UNIVERSIDADE FEDERAL DO PARANÁ

GUILHERME BOARETO SEGURA

PREPARO DE CALDA PARA APLICAÇÃO AÉREA NA CULTURA DA CANA-DE-AÇÚCAR

CURITIBA 2025

GUILHERME BOARETO SEGURA

PREPARO DE CALDA PARA APLICAÇÃO AÉREA NA CULTURA DA CANA-DE-AÇÚCAR

Artigo apresentado ao curso de Pós-Graduação Lato Sensu em Fitossanidade, Setor de Ciências Agrárias, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Especialista em Fitossanidade.

Orientador(a): Prof. Dr. Rone Batista de Oliveira

RESUMO

Atualmente no Brasil são aplicados mais de 150,5 milhões de hectares, com potencial de crescimento. Em função da capacidade operacional, a aplicação aérea se faz necessária seu uso a fim de manter a produção de algumas culturas perante a grande pressão das plantas daninhas, pragas, doenças e janelas de aplicação cada vez mais reduzidas. Há necessidade de cuidados em relação ao preparo de calda e misturas em tanque para as aeronaves em campo, uma vez que, a atividade demanda agilidade mediante o curto espaço de tempo para o preparo da calda entre um voo e outro. Portanto, neste trabalho será apresentado uma revisão de literatura sobre o preparo de calda para aplicação aérea, considerando as principais aplicações utilizadas na cultura da cana de açúcar.

A correta aplicação da metodologia e atenção aos detalhes que envolve o planejamento da operação, são a garantia do produtor no sucesso do controle fitossanitário em sua lavoura.

Palavras-chave: Aplicação aérea, Mistura em tanque.

3

ABSTRACT

Currently, more than 150.5 million hectares are applied in Brazil, with potential

for growth.

Without regard to pressure from society due to lack of knowledge and

environmental agencies against the activity, aerial application is necessary to maintain

the production of some crops in the face of the great pressure from weeds, pests,

diseases and increasingly reduced application windows.

Several studies have been carried out on droplet deposition and drift control for

the activity. However, this study presents the need for care in relation to the preparation

of spray and tank mixes for aircraft in the field, since the activity demands agility due

to the short time to prepare the spray between one flight and another. The correct

application of the methodology and attention to the details involved in planning the

operation are the producer's guarantee of successful phytosanitary control in his crop.

Keywords: Aerial application, Tank mix

LISTA DE FIGURAS

FIGURA 1 – AERONAVES DE PULVERIZAÇÃO UTILIZADAS NO BRASIL	13
FIGURA 1 – AERONAVES DE PULVERIZAÇÃO UTILIZADAS NO BRASIL	14
FIGURA 3 - EQUIPAMENTOS UTILIZADOS PARA PREPARO DE CALDA	EM
CAMPO	.21
FIGURA 4 – ADEQUAÇÃO EM SISTEMA DE CALDA PRONTA	22

LISTA DE QUADROS

QUADRO 1 - PRINCIPAIS FORMULAÇÕES UTILIZADAS EM CANA	A DE AÇÚCAR
POR APLICAÇÃO AÉREA	18
QUADRO 2 - ORDEM DE ADIÇÃO E MISTURA DE PROD	OUTOS PARA
FORMULAÇÃO DA CALDA	23

LISTA DE TABELAS TABELA 1 – TEMPO ESTABILIDADE DAS MISTURAS NO TESTE DA JARRA20

LISTA DE ABREVIATURAS OU SIGLAS

IEA - Instituto Econômico Agrícola

MAPA - Ministério da Agricultura e Pecuária

AVAG – Aviação Agrícola do Brasil

ANAC – Agência Nacional de Aviação Civil

SINDAG – Sindicato Nacional das Empresas de Aviação Agrícola

SIPEAGRO – Sistema Integrado de Produtos e Estabelecimentos Agropecuários

CENIPA – Centro de Investigação e Prevenção de Acidentes Aeronátuicos

ABNT - Associação Brasileira de Normas Técnicas

SUMÁRIO

1	INTRODUÇÃO9
1.1	OBJETIVOS11
1.1.1	OBJETIVOS GERAIS11
1.1.2	OBJETIVOS ESPECÍFICOS11
1.2	METODOLOGIA11
2	REVISÃO DE LITERATURA12
2.1	APLICAÇÃO AÉREA NO BRASIL12
2.1.1	AERONAS DE PULVERIZAÇÃO UTILIZADAS NO BRASIL13
2.2	ASPECTOS DO USO DE PULVERIZAÇÃO AÉREA EM CANA DE
	AÇÚCAR15
2.3	O QUE É MISTURA EM TANQUE E SUAS INFLUÊNCIAS NA
	QUALIDADE DA CALDA15
2.3.1	QUALIDADE DA ÁGUA16
2.3.2	TEMPERATURA16
2.3.3	AGITAÇÃO DA CALDA16
2.3.4	TAXA DE APLICAÇÃO17
2.3.5	TEMPO DE ARMAZENAGEM DA CALDA17
3	PRINCIPAIS FORMULAÇÕES UTILIZADAS EM CANA DE AÇÚCAR EM
	APLICAÇÃO AÉREA17
3.1	INTERAÇÃO MISTURA ENTRE FUNGICIDAS E INSETICIDAS18
3.1.2	INTERAÇÃO ENTRE INSETICIDAS E FERTILIZANTES18
3.1.3	INTERAÇÃO ENTRE INSETICIDAS E FUNGOS
	ENTOMOPATOGÊNICOS19
4	PREPARO DE CALDA E TESTE DA JARRA20
4.1	PREPARO DE CALDA PARA AERONAVES21
5	CONSIDERAÇÕES FINAIS23
	REFERÊNCIAS24

1 INTRODUÇÃO

A cultura da cana de açúcar é uma das culturas mais importantes do mundo, desempenhando importante papel na produção de etanol, açúcar, bioenergia e ração animal. No Brasil, sua produção não reflete apenas na capacidade agrícola do país, mas também no compromisso com as práticas agrícolas sustentáveis, trazendo segurança social, ambiental e econômica as comunidades em seu entorno, bem como influenciando nos avanços tecnológicos.

O setor canavieiro enfrenta a cada ano grandes dificuldades agronômicas seja por surgimento de novas pragas, variedades cada vez mais susceptíveis, esgotamento do solo, mudanças mercadológicas e mudanças climáticas, sendo necessário cada vez mais ser assertivos nas tomadas de decisões, a fim de aproveitar ao máximo os recursos disponibilizados.

Segundo IEA - Instituto Econômico Agrícola, 2024/2025, o aumento da demanda de derivados da cana de açúcar, principalmente a produção de combustível etanol para os mais diversos usos tende a crescer exponencialmente, devido à alta demanda mundial por fontes de energias renováveis.

Com o aumento das áreas de produção, aumenta o uso de produtos químicos e fertilizantes para o controle de plantas daninhas e pragas, bem como uma melhor nutrição da cultura. E com a janela de aplicações cada vez mais reduzida, a necessidade de misturas em tanques de pulverização tem se tornado uma prática cada vez mais comum entre técnicos e produtores (GAZZIERO,2015). Chegando a representa mais de 97% das recomendações agronômicas nos casos de aplicações (GUIMARÃES, 2014).

No entanto, estas misturas podem acarretar incompatibilidade físico-química da mistura, variação do PH, condutividade elétrica e dificuldade de diluição dos produtos, redução da efetividade e contaminações ambientais (ANDRADE et al., 2013)

Em 26 de dezembro de 2017, foi publicada uma portaria número 148, pelo MAPA no Diário Oficial da União, onde esclarece as permissões das misturas em tanques, sendo que, nos artigos 1º ao 7º determinam que há critérios e procedimentos para que sejam realizadas; nesse decreto, no Art. 2º, parágrafo 1º, orienta que as

misturas sejam encaminhadas ao portal do Ministério da Agricultura e Pecuária - MAPA, para serem divulgadas, atualizadas ou até mesmo contestadas (MAPA, 2017).

Em 11 de outubro de 2018, a instrução normativa nº40 descrita no anexo1 (Brasil, 2018), complementa as regras para emissão de receitas agronômicas previstas no decreto nº 4074 de 04 janeiro de 2002 em seu artigo 2 § 1º onde estabelece que informações de rótulos e bulas de agrotóxicos e afins registrados à mistura em tanques, são de caráter obrigatório, devendo constar na receita agronômica, isso tem intensificado os estudos de compatibilidade dos agrotóxicos.

Nos últimos anos na cultura da cana de açúcar, a aplicação de produtos fitossanitários juntamente com produtos de nutrição foliar tem crescido devido à alta demanda, e o emprego da tecnologia tem sido uma ferramenta importante a fim de cumprir o cronograma e a demanda crescente (AVAG, 2021).

Uma vez que, otimizar o uso da aeronave agrícola é fundamental para reduzir custos operacionais e cumprir com o planejamento, logo, o bom uso desta ferramenta visa atingir os resultados de forma segura e eficaz.

1.1 OBJETIVOS

1.1.1 Objetivo geral

 Realizar uma revisão bibliográfica sobre o preparo de calda para aplicação aérea, considerando as principais aplicações utilizadas na cultura da cana de açúcar.

1.1.2 Objetivos específicos

- Identificar quais as principais misturas utilizadas na cultura da cana de açúcar;
- Identificar principais falhas nos processos de preparo de calda em campo;
- Apresentar método de avaliação do comportamento da calda em campo para obtenção de melhores resultados;

1.2 METODOLOGIA

O trabalho foi realizado através de consultas e revisão bibliográfica em material publicado em plataformas de pesquisa, empresas do setor e pesquisa digital disponível na internet.

2 REVISÃO DE LITERATURA

2.1 APLICAÇÃO AÉREA NO BRASIL

Com a expansão das fronteiras agrícolas no Brasil, extensas áreas passaram a ser utilizadas para produção agrícola, surgindo a necessidade do emprego de novas tecnologias agrícolas que buscasse a maximização da produtividade e da rentabilidade da atividade (MATOS E PESSOA, 2011).

No Brasil, a aviação agrícola passou a ser oficialmente reconhecida em 1969, através do decreto de lei nº 917, sendo somente regulamentada em 1981 pelo Decreto nº 86765 (SOARES, 2010).

Em 2011, o Sindicato Nacional das Empresas de Aviação Agrícola - Sindag, já estimava que a área pulverizada pela a aviação, já ultrapassava os 20 milhões de hectares, correspondendo a 15% da aplicação de agrotóxicos no Brasil. Já em 2016, a ANAC – Agência Nacional de Aviação Civil, com base em estimativas feita pelo Sindag, colocaram a aviação agrícola como responsável por 25% das aplicações de agrotóxicos no país, com a estimativa de cobertura de área de 72 milhões de hectares (MHEREB e NORDER, 2018). Atualmente em 2024, o Brasil se encontra com 135,9 milhões de hectares aplicados com expectativa de 150,5 milhões de hectares para a safra (Sindag, 2024).

Em 2022, a aviação agrícola já possuía uma frota de 2432 aeronaves, sendo, 2409 aviões e 23 helicópteros destinados à atividade. Os Estados que tem liderado o setor por número de aeronaves em atividade são: Mato Grosso, Rio Grande do Sul, São Paulo e Goiás, tendo como principais culturas a soja, cana de açúcar, algodão, milho, arroz e laranja (ARAÚJO, 2022).

Dados das aplicações realizadas via Drones ainda são inconclusivos, devidos falta de informações confiáveis. Para resolver este problema o Ministério da Agricultura, Pecuária e Abastecimento lançou a Portaria 298/21 a fim de regulamentar o uso de Drones para pulverização agrícola, tornando obrigatório o registro no Sistema Integrado de Produtos e Estabelecimentos Agropecuários - Sipeagro, do Ministério (ARAÚJO, 2022).

Mediante aos expressivos números da atividade, ainda falta uma plataforma de dados com homogeneidade de parâmetros, uma vez que, o levantamento de dados

de acidentes vem sendo realizado pelo Centro de Investigações e Prevenção de Acidentes Aéreos - Cenipa, o que considera apenas como acidente segundo seus critérios as ocorrências que envolvem aeronaves e seus operadores; sabendo que, a aviação agrícola quando mal empregada, pode gerar contaminação do solo, água, ar, plantas e animais e a população, gerando fortes conflitos, fazendo com que haja necessidade de maiores discussões e análises científicas (ARAÚJO, 2022).

2.1.1 AERONAVES DE PULVERIZAÇÃO UTILIZADAS NO BRASIL

No Brasil atualmente, em se tratando de aeronaves tripuladas para uso em pulverização agrícola temos o Ipanema, Piper Panwee, Cessna AG-Wagon, Air Tractor, Gippsland GA200, Grumman Ag Cat, PZL-106 Kruk, M-18 Dromader, PAC Fletcher, Piper PA-36 e o helicóptero Robinson R44.

FIGURA 1 – AERONAVES DE PULVERIZAÇÃO UTILIZADAS NO BRASIL

Fonte: AVAG (2025)

FIGURA 2 – AERONAVES DE PULVERIZAÇÃO UTILIZADAS NO BRASIL

Fonte: Avag (2025)

2.2 ASPECTOS USO PULVERIZAÇÃO AÉREA EM CANA DE AÇUCAR

A recorrência de plantas daninhas, insetos-pragas, doenças na cultura da cana de açúcar e a necessidade do planejamento do processamento da cana, combinado com o porte da cultura que dificulta a mecanização, a aplicação aérea se torna ferramenta indispensável como aliada controle da sanidade do canavial, bem como interferência no estágio fenológico da cultura conforme planejamento do processo de sua colheita. Sendo assim, o emprego do uso do controle químico e biológico tem sido a principal ferramenta estratégica de controle Sphenophorus levis (Bicudo da cana), Diatraea saccharalis (Broca da cana), Mahanarva fimbriolata (Cigarrinha das raízes), Spodoptera litura (Lagarta desfolhadora), Sporisorium scitamineum (Carvão), Xanthomonas albilineans (Escaldadura), Puccinia melanocephala (Ferrugem marrom), Puccinia kuehnii (Ferrugem alaranjada) entre outras.

2.3 O QUE É MISTURA EM TANQUE E SUAS INFLUÊNCIAS NA QUALIDADE DA CALDA.

Mistura em tanque é a associação de produtos fitossanitários e/ou adubos foliares a fim de ser utilizado para aplicação, sendo estes diluídos em água ou em alta concentrações na forma in-natura como fornecido diretamente pela indústria, com o objetivo de controlar pragas e doenças ou suprir a carência nutricional da cultura. Trata-se de uma prática comum no campo e considerado fundamental para o uso racional da água, produtos e equipamentos (AZEVEDO, 2015).

Estudos tem demonstrados que a mistura em tanque tem apresentado como principais problemas a dissolução de produtos mistos, formação excessiva de espuma e precipitação no tanque. De modo geral, o mal preparo da calda pode ocasionar em intoxicação da cultura, incompatibilidade química, agravando a dificuldade de dissolver produtos, promovendo o entupimento de bicos, decantação dos produtos e floculação (GAZZIERO, 2015).

No entanto, estas alterações ocorrem em função das características físico-químicas (solubilidade, ionização – pKa, coeficiente de partição octanol-água – Kow) dos defensivos, ocorrendo as interações químicas (PETTER et al., 2013).

Importante destacar que incompatibilidade química em misturas em tanque se torna difícil de identificar, uma vez que, somente conseguirá observar quando se manifestar na planta através dos sintomas de fito-toxidade ou através da redução da eficácia de controle dos produtos (WHITFORD et al., 2018).

Muitos são os fatores envolvidos direta ou indiretamente no preparo de uma calda, como qualidade da água, temperatura, falta de agitação, volume e tempo de armazenagem (AZEVEDO, 2015).

Considerando o acesso a uma água com qualidade excepcional para utilização é comum deparar com transporte desta água ao local de preparo em condições inadequadas, de materiais inadequados, sem proteção contra corrosões, tornando a mesma imprópria para uso, mesmo atingindo todos os requisitos na sua origem (CARVALHO et al., 2019).

2.3.1 QUALIDADE DA ÁGUA

A maioria das formulações necessitam ser diluídas até uma concentração adequada no ato da aplicação, sendo assim, em sua maioria a água torna-se o principal veículo utilizado neste processo, e suas características influenciam na qualidade da mistura. Sendo o PH o fator que influencia na solubilidade dos ingredientes ativos e a sua interação com outros componentes pode comprometer a eficácia dos ingredientes ativos presentes na mistura, da mesma forma a presença de material orgânico e argila (Embrapa ISSN 2176-2937, 2021)

2.3.2 TEMPERATURA

A temperatura gera influência na dissolução dos produtos, que de uma maneira geral tende a ser mais rápidos em temperaturas mais elevadas, sendo necessário maior tempo para os produtos dissolverem e dispersarem na calda (Embrapa ISSN 2176-2937, 2021).

2.3.3 AGITAÇÃO DA CALDA

Falha mais comum que ocorre durante todo o processo até a aplicação efetivamente. A calda desde o momento do seu preparo necessita de uma agitação adequada de forma constante, sem a devida agitação, produtos de maior dificuldade de dissolver e dispersão no meio, vindo a decantar no fundo do tanque (Embrapa ISSN 2176-2937, 2021).

2.3.4 TAXA DE APLICAÇÃO

A taxa de aplicação ou volume da calda por hectare poderá ser comprometido em casos em que a relação taxa – quantidade de componentes existentes na formulação da calda, uma vez que, algum produto para sua diluição necessite maior volume de água na sua diluição (Embrapa ISSN 2176-2937, 2021)

2.3.5 TEMPO DE ARMAZENAGEM DA CALDA

Devidos as influências meteorológicas no momento da aplicação, pode ocorrer atrasos na aplicação dos produtos e com o passar do tempo essa calda pode ter a sua estabilidade comprometida, devido a degradação provocada pelo processo de hidrolise, assim, na aplicação aérea se faz necessário monitoramento constante das condições climáticas para realizar o preparo da calda (Embrapa ISSN 2176-2937, 2021).

3 PRINCIPAIS FORMULAÇÕES UTILIZADAS EM CANA DE AÇÚCAR POR APLICAÇÃO AÉREA

Atualmente as principais misturas aplicadas em cana de açúcar por meio de aplicação aéreas estão representadas no quadro a seguir.

QUADRO 1 - PRINCIPAIS FORMULAÇÕES UTILIZADAS EM CANA DE AÇÚCAR POR APLICAÇÃO AÉREA

Pó molhável (WP) Pó solúvel (SP) Pó emulsionável (EP) Granulado dispersível (WG)	FORMULAÇÕES SÓLIDAS PARA DISSOLUÇÃO EM ÁGUA
Suspensão concentrada (SC) Suspensão de encapsulado (CS) Suspo-emulsão (SE) Suspensão concentrada em óleo (OD) Concentrado emulsionável (EC) Concentrado solúvel (SL) Concentrado dispersível (DC) Emulsão de água em óleo (EO) Emulsão de óleo em água (EW) Microemulsão (ME) Dispersão de óleo ou suspensão concentrada em óleo (OD)	FORMULAÇÕES LÍQUIDAS PARA DILUIÇÃO EM ÁGUA

Fonte: Embrapa ISSN 2176-2937, 05/2021.

3.1 INTERAÇÃO MISTURA ENTRE FUNGICIDAS E INSETICIDAS

Prática mais comum entre as misturas realizadas, devido a necessidade de aumento do espectro de controle de pragas e doenças, contudo, essa mistura pode danificar a lavoura ou expandir o sinergismo para organismos não alvos, importante respeitar a ordem dos produtos no preparo da calda (WERNECKE et al., 2019).

3.1.2 INTERAÇÃO ENTRE INSETICIDAS E FERTILIZANTES

A utilização de inseticidas sozinhos ou associados a mais outro defensivo agrícola juntamente com fertilizante foliar pode alterar as características físico-química da calda, resultando em perda da seletividade e eficiência (REZENDE et al, 2012).

Caldas preparadas com fertilizantes nitrogenados associado a Clorantraniliprole não apresentam incompatibilidade físico e química em preparo da calda em campo e em análise laboratoriais (SILVA, 2021).

Os fertilizantes ricos em cloreto + S, B,Cu, Mn, Mo e Zn associado a Clorantraniliprole, apresentou alteração da calda ocorrendo floculação quando em repouso (SILVA, 2021).

3.1.3 INTERAÇÃO ENTRE INSETICIDAS E FUNGOS ENTOMOPATOGÊNICOS

Os inseticidas podem influenciar no crescimento, esporulação e a virulência de fungos (TKACZUK et al., 2012; 2015). Estudos com o intuito de investigar essa relação inseticidas e fungos vem sendo realizados, geralmente, promovendo o contato entre o fungo e o agrotóxico.

Pesquisas demonstram que a compatibilidade de acetamiprid, imidaclopirid e tiametoxam, descrevem resultados promissores, pois apresentam baixa toxidade ao microrganismo e também da degradação das moléculas (SHEWALE e MOHITE, 2018; DA COSTA et al., 2018). O mesmo resultado se apresentou para azadiractina (HALDER et al., 2017).

O uso de inseticidas organofosforados evidenciaram casos de incompatibilidade (DA COSTA, 2018). Grupo químico dos piretróides, já evidenciam incompatibilidade, com elevado grau de toxidade em relação a sobrevivência dos microrganismos (BATISTA FILHO et al., 2001; MEYLING et al., 2018).

A incompatibilidade de uma mistura pode acarretar gasto de tempo e dinheiro, uma vez que, a mistura pode não apresentar a eficácia de controle esperado, comprometer o sistema de pulverização, reduzindo a eficiência operacional e aumento da geração de resíduos (AZEVEDO et al., 2006).

Entretanto, no campo, o que se tem observado o aumento de incompatibilidade principalmente quando as aplicações de fungicidas, inseticidas pegam "carona" na calda de preparo para nutrição foliar da cultura.

4 PREPARO DE CALDA E TESTE DA JARRA EM CAMPO

A Associação Brasileira de Normas Técnicas – ABNT, por meio da normativa NBR13875/2014, elaborou uma metodologia a ser utilizada em campo baseada na técnica estática e dinâmica, realizando através de tempo pré-estabelecidos avaliação visual da calda, a fim de, identificar alterações visuais da homogeneidade da calda (ABNT, 2014).

Essas misturas por sua vez, devem ser preparadas seguindo as orientações da NBR 13074/2004 utilizando as doses máximas registradas para cada agroquímico (ABNT, 2004).

Visualmente, a mistura deve ser avaliada em presença (P) ou ausência (A) de alterações de acordo com os parâmetros: homogeneidade, floculação, sedimentação, separação de fases, formação de caroços em uma peneira, conforme NBR NM ISO 3310-1/2010 (ABNT,2010).

Outro teste simples em campo que pode ser realizado é o "teste da jarra", que se baseia em simular possíveis efeitos da mistura utilizando-se de baixo volume (WHITFORD et al., 2018).

De acordo com as recomendações, estas misturas deverão seguir a sequência apresentada na Figura 1, importante além de se obedecer a esta sequência, fazer o uso de um pré mistura para diluição uniforme dos produtos (GAZZIERO, 2015). Na Tabela 1, segue a escala de tempo apropriado para avaliação da calda durante a aplicação do teste da jarra, facilmente aplicado a campo.

TABELA 1 – TEMPO ESTABILIDADE DAS MISTURAS NO "TESTE DA JARRA"

Grau	Condição	Recomendação
1	Separação imediata	Não aplicar
2	Separação até 5 minutos	Não aplicar
3	Separação até 10 minutos	Agitação contínua
4	Separação até 30 minutos	Agitação contínua
5	Estabilidade perfeita	Sem restrições

Fonte: Centro Brasileiro de Bioaeronáutica - CBB

4.1 PREPARO DE CALDA PARA AERONAVES

Diferentemente dos pulverizadores utilizados na agricultura como os de arrasto e autopropelidos, aeronaves agrícolas não possuem um sistema incorporado de preparo de calda, geralmente adotando misturadores acoplados em motobomba Atualmente o preparo de calda em campo para o abastecimento das aeronaves são realizados através de tanques de capacidade de volume reduzido, chamados de pré mistura ou através do sistema de calda pronta. A dificuldade do preparo de calda em tanque de pré-mistura se atribui a capacidade limitada do volume do reservatório para realização da diluição e mistura dos insumos (Moderno, 2020).

Geralmente o tanque de pré- mistura costuma ter a capacidade limitada de apenas 200 a 100 litros de água, haja visto que, seu volume e estrutura dependerá do planejamento do preparo, considerando a solubilidade e saturação entre as formulações, já que são diferentes entre si (Moderno, 2020).

Estes reservatórios podem ser encontrados em diferentes materiais como barricas plásticas, inox, ferro e caixa de água.

FIGURA 3 – EQUIPAMENTOS UTILIZADOS PARA PREPARO DE CALDA EM CAMPO

Fonte: Arquivo pessoal

Considerando as aplicações mais comuns em cana de açúcar utilizando aeronave com capacidade de transporte de carga de 1800 litros e 600 litros de calda operando com uma taxa taxa de aplicação que varia entre 10 e 30 litros/há respectivamente, com a utilização no preparo de calda a combinação de três produtos

comumente mais usados como inseticida na formulação WG (Grânulo Dispersível em Água) indicado pelo fabricante a diluição na proporção de 1:10 (produto comercial: água), de fungicida na formulação WP (Pós Molháveis) iniciando-se na proporção de 1:2 (produto comercial: água) sendo necessário acrescer água até alcançar a fluidez (normalmente 1:7) para que estas formulações sejam hidratadas e, sequencialmente, solubilizadas e um nutriente foliar, na proporção de 100 g/L de água, considerando os fatos citados (AZEVEDO, 2015), observa-se que a estrutura de preparo de calda da deverá ser diferente mediante a escolha da aeronave e taxa de aplicação, sendo que uma poderá tratar até 9 vezes mais área que a outra; significando que, no mínimo, o misturador deve ser no mínimo 9 vezes maior, assim, o preparo de calda passa a atender à necessidade da configuração de voo (Moderno, 2020).

Em virtude desta adequação, visando um preparo de calda adequado, com maior segurança operacional, qualidade e agilidade o investimento em tanques de calda pronta proporciona a otimização dos custos e traz maior segurança à operação.

FIGURA 4 – ADEQUAÇÃO EM SISTEMA DE CALDA PRONTA

Fonte: arquivo pessoal

Na figura a seguir demonstra a ordem correta de adição dos insumos no tanque durante o preparo da calda, que deve ser respeitada.

QUADRO 2 - ORDEM DE ADIÇÃO E MISTURA DE PRODUTOS PARA FORMULAÇÃO DA CALDA

19	Encher o tanque com 70% de água	ÁGUA
2º	Adjuvantes Corretivos/Condicionadores de Água (pH, quelatizantes)	ESPECIAIS
3º	SG – Granulado Solúvel	
49	SP – Pó Solúvel	SÓLIDOS
5º	WP – Pó Molhavel	3011003
6º	WG – Granulado Dispersível	
7º	CS – Suspensão de Encapsulado	
80	SC – Suspensão Concentrada	SUSPENSÕES
9º	OD – Dispersão de Óleo/Suspensão Concentrada em Óleo	
109	SE – Suspo-Emulsão	INTERMEDIÁRIO
119	EC – Concentrado Emulsionável	
129	Adjuvantes em Óleo	~
139	EO – Emulsão de Água em Óleo	EMULSÕES
149	EW – Emulsão de Óleo em Água	Allower than the same
15º	ME – Microemulsão	
16º	SL – Concentrado Solúvel	ALTA SOLUBILIDADE
179	Adjuvantes Surfactantes, Espalhantes, Estabilizadores	
18º	Fertilizantes Foliares	ESPECIAIS
19º	Adjuvantes Redutores de Espuma	

Fonte: Adaptação de Decaro Junior (2019).

5 CONSIDERAÇÕES FINAIS

Esta revisão demonstra que as misturas em tanque para aplicação aérea em cana de açúcar se fazem necessário devido à alta demanda do setor e as características da cultura; contudo, um bom planejamento e dimensionamento correto da estrutura a ser utilizada se torna fundamental para que haja um bom emprego dos recursos, dando ao produtor o retorno financeiro esperado.

O volume de água necessária para que haja diluição correta dos produtos em relação a taxa de aplicação deve estar equilibrado

Devido a impressibilidade e complexidade do processo, simples teste prático como o "teste da jarra", possibilita evitar maiores problemas no campo, diminuindo os impactos negativos de um processo de formulação de calda mal realizado.

Misturas em tanques e suas interações ainda necessitam de maiores estudos, chamando a atenção quando associado o uso de fertilizantes ricos em cloreto, S, B,Cu, Mn, Mo e Zn associado a Clorantraniliprole, o mesmo ocorre com o uso de inseticidas organofosforados ou piretróides com biológicos.

REFERÊNCIAS

AZEVEDO, F. R. de; FREIRE, F. das C. O. **Tecnologia de aplicação de defensivos agrícolas.** Embrapa Agroindústria Tropical. p. 14, 2006.

DECARO JUNIOR, S. T. **Dinâmica da calda fitossanitária no reservatório do pulverizador**.In:COSTA, L. L.; POLANCZYK, R. A. Tecnologia de aplicação de caldas fitossanitárias.1ed.Jaboticabal: FUNEP, cap. 3, p. 38-56, 2019.

GAZZIERO, D. L. P. Misturas de agrotóxicos em tanque nas propriedades agrícolas do Brasil. Planta Daninha, v. 33, n. 1, p. 83-92, 2015.

GUIMARÃES, G. L. Principais fatores comerciais condicionantes da disponibilidade de produtos isolados e em misturas. In: CONGRESSO BRASILEIRO DA CIÊNCIA DAS PLANTASDANINHAS, 29., 2014, Gramado. Palestra, 2014.

PETTER, A. F.; SEGATE, D.; ALMEIDA, F. A.; NETO, F. A.; PACHECO, L. P. **Incompatibilidade física de misturas entre herbicidas e inseticidas**. Planta Daninha,v.30,n.2,p.449-457,2012.

PETTER, F. A.; SEGATE, D.; ALMEIDA, F. A.; NETO, F. A.; PACHECO, L. P.

Incompatibilidade física de misturas entre inseticidas e fungicidas. Comunicata Scientiae, v.4, n.2. p. 129-138, 2013.

QUEIROZ, A. A.; MARTINS, J. A. S.; CUNHA, J. P. A. R. **Adjuvantes e qualidade da água na aplicação de agrotóxicos**. Bioscience Journal, v. 24, n. 4, p. 8-19, 2008.

RAETANO, C. G.; CHECHETTO, R. G. **Misturas em tanque**. In: ANTUNIASSI, U. R.; REZENDE, P. M.; GRIS, C.F; CARVALHO, J.G; GOMES, L. L., & BOTTINO, L.

Adubação foliar em épocas de aplicação de fósforo na cultura da soja. *Revista Ciência e Agrotecnologia*, 29 (6), 1105-1111, 2005.

WERNECKE, A., FROMMBERGER, M., FORSTER, R., PISTORIUS, J., Lethal effects of various tank mixtures including insecticides, fungicides and fertilizers on honey bees under laboratory, semi-field and field conditions. Journal of Consumer ProtectionandFoodSafety.14(3),239-249,2019.

WHITFORD, F.; OLDS, M.; CLOYD, R.; YOUNG, B.; LINSCOTT, D.; DEVEAU, J.; REISS, J.; PATTON, A.; JOHNSON, B.; OVERLEY, T.; SMITH, K. L. **Avoid tank mixingerrors. A guide to applying the principles of compatibility and mixing sequence**. Purdue University, p. 44, 2018.

WHITFORD, F; PENNER, D; JOHNSON, B; BLEDSOE, L; GARR, J; OBERMEYER, J.Purdue university. **Th e impact of water quality on pesticide performance**. Disponívelem:https://www.extension.purdue.edu/extmedia/ppp/ppp-86.pdf Acesso em: 14 jun. 2024.

ANDRADE, D. J; FERREIRA, M. C; FENÓLIO, L. Compatibilidade entre acaricidas e fertilizantes foliares em função de diferentes águas no controle do ácaro da leprose dos citros *Brevipalpus phoenicis*. Rev. Bras. Frutic., Jaboticabal - SP, v. 35,n.1,p.039-050,Março,2013.

ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - **NBR NM ISO 3310-1:2010**. Peneiras de ensaio - Requisitos técnicos e técnicos verificação. Parte 1: Peneiras de ensaio com tela de tecido metálico. p. 20, 2010.

AENDA – ASSOCIAÇÃO BRASILEIRA DE DEFENSIVOS GENÉRICOS. **Técnica e controle das misturas**. Disponível em: http://www.aenda.org.br/artigos_post/tecnica-econtrole-das-misturas. Acesso em: 12 de junho de 2024.

AGROFIT. Ministério da Agricultura, Pecuária e Abastecimento – MAPA. Disponível site MAPA (08 abr. 2019). URL:http://www.agricultura.gov.br. Acesso em 12 jun. 2024. AGROFIT: **Sistema de agrotóxicos fitossanitários.** Disponível em:

http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. (09 abr 2020). Acesso em: 10 jul. 2024.

Preparação de água-padrão para ensaios. Rio de Janeiro: 2004. 14 p.

ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - **NBR NM ISO 3310-1:2010**. Peneiras de ensaio - Requisitos técnicos e técnicos verificação. Parte 1: Peneiras de ensaio com tela de tecido metálico. p.20, 2010.

AENDA – ASSOCIAÇÃO BRASILEIRA DE DEFENSIVOS GENÉRICOS. **Técnica e controle das misturas**. Disponível em: http://www.aenda.org.br/artigos_post/tecnica-econtrole-das-misturas. Acesso em: 12 de junho de 2024.

AGROFIT. Ministério da Agricultura, Pecuária e Abastecimento – MAPA. Disponível site MAPA (08 abr. 2019). URL:http://www.agricultura.gov.br. Acesso em 12 jun. 2024. AGROFIT: **Sistema de agrotóxicos fitossanitários.** Disponível em:

http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. (09 abr 2020). Acesso em: 10 jul. 2024.

GAZZIERO, D.L.P. Misturas de agrotóxicos em tanque nas propriedades agrícolas do Brasil. **Planta Daninha**, Viçosa-MG, v. 33. 2015. No prelo.

RAMOS, H. H.; ARAÚJO, D. **Preparo da calda e sua interferência na eficácia de agrotóxicos**. Artigo em Hypertexto. 2006. Disponível em: http://www.infobibos.com/Artigos/2006_3/V2/index.htm. Acesso em: 10 nov. 2024.

GAZZIERO, D. L. P.; OLIVEIRA, R. B.; OVEJERO, R. F. L.; BARBOSA, H. N.; PRECIPITO, L. M. B. **Manual técnico para subsidiar a mistura em tanque de agrotóxicos e afins**. D.437. ISSN 2176-2937., maio 2021. Disponível em: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1132371/manual-tecnico-para-subsidiar-a-mistura-em-tanque-de-agrotoxicos-e-afins>. Acesso em: 10 jan. 2025.

COSTA, G. M.; SANTOS, C. A. M.; **Preparo de calda e a interferência das aplicações em campo.** Ibravag (18 maio 2021). Disponível em: https://revistaavag.org.br/preparo-de-calda-e-a-interferencia-das-aplicacoes-em-campo-como-devemos-atuar-no-planejamento/>. Acesso em: 15 dez. 2024.

MHEREB, G. A.; NORDER, L. A. Aviação agrícola no Brasil: contexto e caracterização.

Disponível em: < https://journals.openedition.org/confins/13638?lang=pt >