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RESUMO

Este trabalho investiga trés problemas de transmissao distintos em estru-
turas unidimensionais compostas por regioes com propriedades mecanicas
heterogéneas. O modelo considerado envolve, em todos os casos, tres sub-
dominios: um material eldstico sem dissipacdo, um material viscoelastico
governado pela lei constitutiva do tipo Kelvin-Voigt e um terceiro compo-
nente com dissipacio varidvel, assumindo ora o caréater friccional, ora o
efeito de memdria, ora ainda um comportamento termoelastico. A andlise
desenvolvida tem como objetivo compreender a influéncia do tipo e da
localizacao desses mecanismos dissipativos na evolugéo temporal da en-
ergia do sistema. Os resultados obtidos mostram que a taxa de decai-
mento da energia nao depende apenas da presenca da dissipacdo, mas
também da posicdo em que esta ¢ introduzida, o que evidencia aspectos
sutis na formulacio e no tratamento de problemas de transmissdo. Dessa
forma, este estudo contribui para o avanco na compreensio da estabili-
dade assintética em estruturas compostas, oferecendo subsidios tedricos
relevantes para aplicacoes em engenharia e ciéncias aplicadas.

Palavras-chave: problema de transmissdo, mecanismos dissipativos, de-
caimento exponencial, decaimento polinomial, kelvin-voigt, friccional,
elastico, efeito de memoria, termoelastico.



ABSTRACT

This work investigates three distinct transmission problems in one-
dimensional structures composed of regions with heterogeneous mechan-
ical properties. In all cases, the model involves three subdomains: an
elastic material without dissipation, a viscoelastic material governed by a
Kelvin—-Voigt constitutive law, and a third dissipative component, which
varies between a frictional mechanism, a memory effect, or a thermoelas-
tic behavior. The analysis aims to understand the influence of both the
type and the location of these dissipative mechanisms on the temporal
evolution of the system’s energy. The results show that the energy decay
rate depends not only on the presence of dissipation but also on its spa-
tial placement, thereby highlighting subtle aspects in the formulation and
treatment of transmission problems. In this sense, the study contributes
to advancing the understanding of asymptotic stability in composite struc-
tures, providing relevant theoretical insights for applications in engineer-
ing and applied sciences.

Keywords: transmission problem, dissipative mechanisms, exponential
decay, polynomial decay, Kelvin-Voigt, frictional, elastic, memory effect,
thermoelastic.
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Introduction

Wave propagation occurs when a vibrating source disturbs a medium, transmitting
oscillations from particle to particle. To mitigate these vibrations, several dissipative
mechanisms can be incorporated into mathematical models, among which the following
stand out: Kelvin-Voigt damping, representing the material’s viscoelastic behavior; fric-
tional damping, associated with energy dissipation through velocity-dependent forces;
memory effect damping, which accounts for the influence of past deformations on the
system’s current response; and thermoelastic damping, related to energy loss due to
heat exchange with the environment.

In recent years, there has been growing interest within the scientific community in
problems involving these types of damping, both local and global, with a strong focus on
the asymptotic behavior of solutions. Numerous studies have established exponential
and polynomial energy decay rates, with particular emphasis on the optimality of the
latter. An extensive body of literature highlights the relevance and timeliness of this
topic. See, for example, the extensive list of contributions addressing these topics: [3],
(41, [11]1, [12]1, [14],[17], [18], [19], [20], [24], [271,[29], [40]), and references
therein.

Taking into account the results mentioned above, it becomes relevant to investi-
gate the behavior of solutions in elastic systems where both Kelvin-Voigt damping and
frictional or memory-based damping act simultaneously. These dissipative mechanisms
may operate jointly within the same region of the domain or separately in different
parts of the medium.

In this thesis, we study three transmission problems involving localized Kelvin-Voigt
viscoelasticity. We consider a string composed of three distinct components. In the first
problem, one part exhibits viscoelastic behavior, another is purely elastic (i.e., without
any damping mechanism), and the third features frictional damping. In the second
problem, we replace the frictional component with one governed by memory effects.
In both cases, the string is divided into four or five subdomains, and we demonstrate
that the spatial positioning of these components plays a critical role in the stabilization
analysis.

In the third problem, we consider a bar composed of three different components:
one viscoelastic, one purely elastic, and one thermoelastic. The main result in this case
reveals that the position of the thermoelastic component also plays a decisive role in the
asymptotic behavior of the system, further highlighting the relevance of how dissipative
mechanisms are spatially distributed.

Our main analytical tool to address these problems is the Semigroup Theory. To
establish the well-posedness of the systems under consideration, we apply the classi-
cal Hille-Yosida and Lumer-Phillips theorems, which ensure the generation of contrac-
tion semigroups in suitable Hilbert spaces. Furthermore, in the analysis of exponen-
tial stability and polynomial decay of energy, we rely on the results of Priiss and the
Borichev-Tomilov theorem, which provide essential spectral and frequency-domain cri-

10



Introduction 11

teria to characterize the asymptotic behavior of solutions.

This thesis is organized as follows:

In Chapter 1, we briefly present the notation and preliminary results required through-
out the work, including key properties of Sobolev spaces, some functional inequalities,
relevant spectral properties, and foundational concepts from semigroup theory.

In Chapter 2, we investigate a wave equation system with Kelvin-Voigt damping
combined with frictional damping. In Section 2.2, we establish the well-posedness of
the system using a semigroup approach. Section 2.3 analyzes the case of exponential
decay of solutions, which occurs when all elastic components are connected to the fric-
tional damping region. In Section 2.4, we study the case in which an elastic component
is connected solely to the region with Kelvin-Voigt damping, leading to slower decay.
Section 2.5 addresses the optimality of the decay rates obtained.

In Chapter 3, we study a wave equation system involving memory damping in com-
bination with Kelvin-Voigt damping. In Section 3.2, we prove the well-posedness of the
model via semigroup theory. Section 3.3 covers the case of exponential stabilization,
occurring when all elastic components are connected to the memory damping region.
Section 3.4 focuses on the situation where one elastic component interacts only with
the Kelvin-Voigt damping region. Section 3.5 discusses the optimality of the resulting
decay rates.

In Chapter 4, we examine a system involving a bar with thermoelastic damping. In
Section 4.2, we establish the well-posedness of the model, while Section 4.3 proves that
the associated semigroup is exponentially stable, provided the viscoelastic component
is not located at the center of the bar. Finally, Section 4.4 demonstrates that, in the
absence of exponential stability, the system exhibits polynomial energy decay at the
rate of t72.



Chapter 1

Preliminaries

In this chapter, we present key definitions and results essential for understanding
the development of this work. For detailed proofs and further discussion on the results
introduced here, we refer the reader to [8], [15], [16], and [33].

1.1 Notations

Let X and Y be two normed vector spaces. We denote by B(X,Y) the space of
continuous (=bounded) linear operators from X into Y. As usual, one writes B(X)
instead of B(X,X).

If GG is a linear subspace of a (possibly infinite dimensional) vector space Y then the
codimension of G in Y is the dimension (possibly infinite) of the quotient space Y/G.
This agrees with the previous definition

codim(G) = dim(Y/G).

Let 2 be a bounded domain of R” with smooth boundary denoted by 9¢). We define
a multi-index o = {ay,a1, -+ ,a,} € N?, with |a| = ay + -+ + a, and for a function
u : 2 — R the a-derivative

Hloly

Dy = ————.
(0]

The gradient operator is defined by

Vu(au Ou .. %>,

Ay’ Dy’ Oy
and the Laplacian operator by

n
9%u

' Q2
=1

Au—=V - -Vu—=

Lef f, g :]0, co[— R. In this work, the following notations will appear frequently:

1. |f] < lg|, if there exist C' > 0 sucht that | f| < C|g[;

2. f[z gl if lg| < 1S5
3. frgif|fl <l < I/

12



Preliminaries 13

1.2 Sobolev spaces and inequalities

In this section, we will review Lebesgue spaces and introduce the definition of
Sobolev spaces. Let i be an integrable, non-increasing function defined in €2, and let X
be a normed space with the norm denoted as || - ||.

Definition 1.2.1. We define for 1 < p < oo the space
IA(Q,X) = {u : Q — X | pu is measuable and/gu(x)”u(x)”%dx < oo} .

The usual norm in space is

WM@(LM@NW@N%M>;

If X is a Hilbert space and p = 2 then [/ (2, X) is a Hilbert space with following inner
product

(o) — [ plo)ute). ola)ede.

When o = 1 we just write LP(2,X) and when X = R or X = C we write LL ().
Now we will define the Sobolev spaces:

Definition 1.2.2. Let m € Nand 1 < p < oo, the Sobolev spaces are defined by
WmP(Q) = {u € LP(Q) | D% € LP(Q) for each multi-index |a| < m}.
It is possible to prove that W™?((2) is a Banach space with the norm

P

o) = | 37 1Dl

jal<m

When p = 2, we denote the space W™?(Q)) by H™(Q2)(or eventually just H™) where
this is a Hilbert space. Note that H°(Q) = L?(2). Moreover, C*(Q)(1 < k < oo) will
denote the space of k times continuously differentiable functions on 2 and C¥(Q) =
{u € C*(Q) | supp(u) C Q}, where supp represents the support of a function, that is,
the closure of the subset of (2 where the function is not zero.

Definition 1.2.3. The space W,""(Q) is defined as the closure of C5(Q) in WP ().

In other words, W;""(€)) consists in all functions « € W™?(Q) such that “D*u = 0 on
o0, for |a] < m— 1. However, this idea is more general because it involves trace theory.
For a thorough analysis, a relevant reference is [8].

The upcoming theorems concern inequalities that we will frequently utilize through-
out this thesis.

Theorem 1.2.1. (Holder inequality) Let v € LP(Q2) and v € L9(Q)), where 1 < p < oo,
1 < g <oowith 4 ¢ = 1. We have uv € L'(Q) and also

/Q [uvlde < [lull oo 0] -
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Proof. See [8]. [l

Theorem 1.2.2. (Young inequality) Let a and b nonnegative real numbers with 1 < p <
oo and 1 < q < cosuch that & + ¢ = 1. For ¢ > 0 there exists C'(¢) > 0 such that

ab < ea? + C(e)b.
Proof. See [8]. [l

Theorem 1.2.3. (Poincaré inequality) If ) is a bounded domain in R™ and v € H} (1),
then there exists a positive constant C' > 0, depending only on ), such that

lull 220y < ClIVull 2y, Vu € Hy(Q).

Proof. See [8]. [l

1.3 Functional analysis

In this section, we present some classical definitions in functional analysis.

Definition 1.3.1. (Sesquilinear form) Let H be a complex vector space. A map a :
H x H — C is a sesquilenar form if for all x,y, z,w € H and for all a, ¢ € C,

D alx +y,z+w)=alx, z) +alr,w) + aly, 2) + aly, w)
ii) alax, oy) = ava(z,y).
Definition 1.3.2. Amap a : H x H — C is called bounded 1f
la(z, )| < llellallyllz,  Va,y e H.
Definition 1.3.3. Amap a : H x H — C is called coercive if
Rela(z,2)| = ||zll3, Vx€H.

Theorem 1.3.1. (Lax-Milgram) Let ‘H be a complex Hilbert and a : H x H — C a
sesquilinear form, bounded and coercive on H. If [ € H', where H' denotes the dual space
of H, then there exists a unique x € H such that

a(z,y) = (f,y), VyeH.
Proof. See [8, Page 140]. [l

Theorem 1.3.2. If M is a closed subspace of the Hilbert space H, then H — M & M+,
that is, each v € ‘H admits a unique representation in the form

u=p+q, withpe Mandqe M*,
where M+ = {qgc H : (p,q) =0, Vp € M}.
Proof. See [9, Page 111]. O

Lemma 1.3.1. Let T': X — Y be a bijective mapping with a closed graph in X x Y, where
X and Y are normed spaces. Then T~ also has a closed graph in Y x X.
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Proof. Let (x,y) be an element of the closure of the graph of T-! denoted as G(T-1).
Then, there exists a sequence (x,,¥,) in the graph of 7~!, which is a subset of Y x X,
such that (z,,y,) converges to (x,y) in Y x X. It should be noted that vy, = T (x,),
which implies that 7'(y,,) = x,. Therefore, we have (y,,T(y,)) € G(T), and (y., T(y.))
converges to (y,x). So, we have (y,z) € G(T). Since G(T) is closed, we can conclude
that (y,z) € G(T). This implies x = T'(y), and consequently y = T~'(x). Therefore,

(z,y) € G(T7). m
<

Let g € L'([0,00)) N C'([0, 00)) be a positive function such that ¢(0) > 0 and ¢'(s)
—cog(s), for some ¢y > 0, Vs > 0. Consider the weighted space G, = L2((0, oo); Hj(0, L))
with the inner product

/ / )0 Opndsdz, V' n? € g,

Lemma 1.3.2. If 9,7, € G, and n(-,0) = 0in (0, L) x (0, 00), then

re [ [ gt ase =3 [T gt s
0

Proof. Note that

—Re/ / $)0,0,n(-, $)0un(-, s)dsdr = ——/ / —|8$77 s)|2dsdx
1y

) d
= — lim 9(8)£||5x77(‘7 5)||%2d5-

+
y—0 y

Using integration by parts, we get

/ / $)0s0.m(+, 8)0xn(+, 8)dsdx
== lim [g(1/p)l0nC, 1/y)z2 = 9@ 1DanC, 9)]72]
Ly

+ lim g ()10en(-, 8)|132ds. (1.1)

y—0t y
Since 5 € G, then g||0.n(-,s)||3, € L'(0,00) and thus

. . 2 — ] . 22: . .
S g (/)| an( 1/)Le = Lim _g(m)l|0an(, 7l = 0 (1.2)

Furthermore, as n(-,0) = 0 in (0, L) and ¢ is non-increasing and positive, it follows from
the Holder’s inequality that

2

g(y)||8xn(-,y)||izg(y)‘ 0,0, 5)ds )

) ( / 100 s>||des)2
(

JACICIEERTS >||des)2
J

< (s
< g(S)HaSafn()S)H%QdS) vy < (0700)
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Given that d.n € G,, we get

Yy
05 g0 y)lz: £ lim y/ 9()19:0sn(-, 8)I12ds = lim ylldn(:, s)[1g, = O,
y—>0+ 0 y—>0+

this is,
lim g(y)ll0:n(-,y) |72 = 0. (1.3)
y—0t

Inserting (1.2) and (1.3) in (1.1), we obtain the desired result. O

Definition 1.3.4. (Fredholm operators) Given two Hilbert spaces X and Y, one says
A € L(X,Y) is a Fredholm operator if it satisfies:

1. N(A) is finite-dimensional;
2. R(A) is closed and has finite codimension.
The index of A is defined by
ind A = dimN(A) — codimR(A)

Lemma 1.3.3. If A is a Fredholm operator and K is a compact operator, then A + K is a
Fredholm operator and
ind(A+ K) = ind(A)

Proof. See [8, Page 169]. ]
The following theorem is used to show the well-posed of partial differential equations.

Lemma 1.3.4. Let A € R such A # 0 and ¢ > 0. Also, consider 0 < o < § < oo and
N+ pOpeu = 0, in (o, §)
u(a) = Oyu(a) = 0 or u(B) = d,u(B) = 0.

Then, u =0 in («, f).

Proof. We will do it for u(a) = d,u(a) = 0, the case u(3) = d,u(3) = 0 follows in a
similar way. Solving the equation

N pdepu =0, in (a, §)

u(x) = ¢ cos <\/¥x> + cosin <\/¥x> , forz e (a,p).

Then, using u(a) = d,u(a) = 0 and squaring it, we get

2 2 2 2

0= cf cos? )\—oz + cg sin? )\—oz + 2c¢1c9 cos )\—oz sin )\—oz )
P P P P
2 2 2 2

0= cf sin? )\—oz + cg cos? )\—oz — 2¢1C9 COS )\—oz sin )\—oz .
P P P P

Adding the two equations above, we get ¢; = ¢y = 0. Therefore, u = 0. O

we obtain
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1.4 Some definitions about Semigroups Theory and Spec-
tral Properties

In this section, we present some definitions concerning the semigroup theory of
operators. These properties are crucial for establishing the well-posedness and under-
standing the asymptotic behavior of all problems addressed in this thesis.

Definition 1.4.1. Let X be a Banach space with norm || - ||. A family {T'(t) }+>0 of bounded
linear operators in X is called a strong continuous semigroup (or Cy -semigroup) 1if:

(i) T(0) = I, where I is the identity operator in the set of all bounded linear operator in
X;

(i) T(t+ s)=T(t)T(s),Vt,s € RT;
(iii) For each x € X, lim | T(t)x — x| = 0.
t—07T

Theorem 1.4.1. If {T'(¢)}+>0 is a Cy-semigroup then there exists M > 1 and w > 0 such
that

IT(0)]] < Me, ¥t > 0.
Proof. See [33]. O

Definition 1.4.2. A semigroup T'(t) is called a semigroup of contractions if for all t > 0
we have

1@ <1.

Theorem 1.4.2. If x € X and {T'(t)} is a Cy-semigroup, then the function t — T'(t)x is
continuous on [0, +00).

Proof. See [33]. O
From Theorem 1.4.2 it is possible to define:

Definition 1.4.3. Let X be a Banach space and {T'(t)}+>0 a Cy-semigroup. The linear
operator A : D(A) C X — X defined by

t—0+

D(A) = {x € X such that 3 lim %} :
and
Az .= lim %, Vo € D(A),

is called the infinitesimal generator of the semigroup {T'(t) }1>o.
The next theorem gives us the answer to how it is possible to solve the abstract problem

Definition 1.4.4. Let A be a linear operator in a Hilbert space H. The resolvent set of an
operator A is

p(A) = {\ € C | X — Ais injective; RO\ — A) = H; (M — A)~! is bounded}

Moreover, the set 0(.A) = C\ p(A) is called the spectrum of A.
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Lemma 1.4.1. Let T : H — H be a continuos linear operator with continuos inverse. If

S e L{(H) and
1

< e,
1T~ 230y

then T + S is a continuos linear operator with continuous inverse.

151 22

Proof. See [8]. O

Lemma 1.4.2. Let an unbounded linear operator A : D(A) C H — H. If 0 € p(A), then
there is A > 0 such that A € p(A).

Proof. Let |A] < 1/| A7) and note that
M—A=ANAT - 1).

IfT = —Tand S = M=, we have T, T~! are continuos and S € L(H), because 0 € p(.A)
with

1
1T 20

From Lemma 1.4.1, we can conclude that AMA~! — I is a continuous linear operator
with a continuous inverse. Furthermore, we can assert that A/ — A is also a continuous
linear operator with a continuous inverse, as it is the composition of two continuous
and invertible operators. Therefore, we get A € p(A). O

1Sl = IMAT 2 = IMIAT 2o <

Definition 1.4.5. Let H be a Hilbert space. The operator A ¢ called dissipative operator
when for all x € D(A),

Re(Az,x) <0.

Lemma 1.4.3. Let an unbounded linear operator A : D(A) C H — H. If Ais dissipative
and 0 € p(A), then D(A) is dense in A, that is, D(A) = H.

Proof. According to Theorem 1.3.2, we can write H = D(A) & D(A)L. We will show
D(A)L = {0}. In fact, suppose U € (A)L, This implies that (U,V)y = 0, for all

V € D(A). In particular, we have
(U, V) =0, VVeD(A.

Since 0 € p(A), by Lemma 1.4.2, there exists A > 0 such that Im(\/—.A4) = H. Therefore,
there exists Vj, € D(A) such that U = AV, — AV,. Hence, we have

Taking the real part and using the fact that A is dissipative, we get

AVo, Vo)u = Re(AVp, Vo)u < 0.

Thus, we obtain 1 = 0 and consequently, U = 0. Therefore, we get (A)L ={0}. O
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1.5 Some notions and stability theorems

We recall in this short section some notions and stability results used in this work.

Theorem 1.5.1. (Lumer-Phillips’s Theorem) Let A be a linear operator in a Hilbert
space ‘H with dense domain D(A) in H. If A is dissipative and there exists Ao > 0 such that
Im(\oI — A) = H, then A is the infinitesimal generator of a Cy-semigroup of contractions
on H.

Proof. See [33, Theorem 4.3, page 14]. O

As a collorary of the above theorem, the following result will be frequently used

Theorem 1.5.2. (Variant of Lummer-Phillips’s Theorem) Let A be a linear operator
with domain D(A) dense in a Hilbert space H. If A is dissipative and 0 € p(A), then A is
the infinitesimal generator of a Cy-semigroup of contractions on H.

Proof. See [33, Theorem 1.2.4, page 3]. ]
We will present some results about asymptotic behavior.

Definition 1.5.1. Assume that que A is the generator of Cy-semigroup of contractions

(€*) 50 On a Hilbert space H. The Co-semigroup ('), is said to be

(1) Strongly stable if
lim |||l =0, YU, € H.
t—+4o0
(2) Exponentially (or uniformly) stable if there exists two positive constants M and ¢
such that
e Usllse < Me™|Usll, Yt > 0,YUy € H.

(3) Polynomially stable 1f there exists two positive constans C' and « such that

el < C*|Unllpeay, ¥t > 0,Y0s € D(A).

In that case, one says that the semigroup (et““) decays at a rate t—*. The Cy-semigroup

t>0
(e") o, is said to be polynomially stable with optmial decay rate t~*(with v > 0) if it is
polynomially stable with decay rate t—* and, for any ¢ > 0 small enough, the semigroup

(e) 1> does not decay at a rate (=),

Concerning the characterisation of exponential stability of Cy semigroup of contraction
(e!Y),50 we rely on the following result due to Huang and Pruss.

Theorem 1.5.3. (Huang and Pruss’ Theorem) Let A : D(A) C H — H generates a Cj
semigroup of contractions (e');>o on H. Assume that iR C p(A). Then, the Cy-semigroup
(eV);>0 is exponentially stable if and only if

limsup [|(4A — A) 7|y < oo
AER, | M| 400

Concerning the charaterization of polinomial stability of a C,-semigroup of contraction
(e) 1~ We rely on the following result due Borichev and Tomilov([7]).
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Theorem 1.5.4. (Borichev and Tomilov’s Theorem) Let A be the generator of a bounded
Cy-semigroup of contractions (e*),.  on a Hilbert space H. If iR C p(A), then for a fixed
¢ > 0, we have -

C
e Usll% < = |Usllpeay, ¥t > 0,0y € D(A), some constant C' > 0,
¢
if and only if,

lim sup —||(iA[ — A) ™" 23 < 0.

1
AER, | A= o0 | Al

Proof. See [7]. [l



Chapter 2

Wave Equation with Kelvin-Voigt and
Frictional Damping: Analysis of
Asymptotic Stability

2.1 Introduction to the problem

In studies of vibrating systems modeled by wave equations, beams or plates, it is
known that Kelvin-Voigt damping mechanisms, when distributed globally, stabilize the
solutions of these systems exponentially. Furthermore, this damping mechanism is so
strong that it tends to regularize the solutions. The situation may be completely dif-
ferent if this type of damping acts only on a part of the body as was shown by K. Liu
and Z. Liu in [24] (see also [11]). These authors proved that if Kelvin-Voigt damping
acts locally in a wave equation with discontinuous coefficient then the solutions of the
equation are not exponentially stable.

Later, Alves et al [3], studied the stabilizing force that Kelvin-Voigt damping ex-
erts on a transmission problem. This time, two dissipative mechanisms act on different
parts of the body. In one part, Kelvin-Voigt damping and in the other, frictional damping.
Even with the collaboration of frictional damping, the authors showed that Kelvin-Voigt
damping can predominate in the decay of the solutions, not allowing the exponential
decay of the solutions. However, the authors showed that the solutions decay polyno-
mially with the optimal decay rate t=2.

Problems with localized Kelvin-Voigt damping have aroused the interest of several
researchers in the last two decades and several results have been obtained. The problem

U (0, 1) — Uga (0, 1) — (b(x)uzt(x,t))m =0,

was studied by Liu and Zhang [27] in the interval (—1, 1) (see also [43]). They showed
that if the coefficient b(x) is zero in (—1,0], positive in (0, 1) and has a behavior like
x around zero then the solution of this problem is exponentially stable. Also, if the
behavior of b(x) around zero is z*, a > 1, the solution is polynomially stable with a
decay rate depending on «. A result with sharp stability {1 were obtained by Han et
alin [19] (see also [18, 27]).

When the coefficient b(x) is discontinuous, Liu et al. [24] had shown the solution
does not decay exponentially. A few years later, this same problem was studied by
Rivera et al. [2] where they showed that the solutions of the system decay polynomially
with the optimal rate ¢t=2 (see also [17, 20, 29, 40]).

21
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Taking into account the results mentioned above, it is interesting to study the be-
havior of solutions in elastic systems where both Kelving-Voigt and frictional damping
act simultaneously on the body. These dissipative mechanisms can act jointly on a part
of the body or on separate parts. In this work we try to answer which of the dissipative
mechanisms prevails: the frictional damping that stabilizes the system exponentially,
or the Kelving-Voigt damping, which, being discontinuous, stabilizes the system more
slowly.

Therefore, in this article we consider the following problem: to study the asymptotic
behavior of the solutions of the equation

(2, ) — (pug(z, t) + b(x)uy (2, 1)), + alx)u, =0,  (x,t) € (0,L) x (0,00). (2.1)
satisfying the Dirichlet boundary conditions
w(0,8) = u(L,t) = 0, ¢t >0, 2.2)
and initial data
w(x,0) = up(x), w(x,0)=1w(x), x < (0,L). (2.3)

Here, L and p are positive real numbers.
The coefficients a(x) and b(x) are characteristic functions whose supports are subin-
tervals of [0, L]. These supports can overlap, be disjoint, or even contain one another.
Given the variety of possible configurations for the supports of a(x) and b(x), we
will focus on three specific cases. In the first case, the supports do not overlap, and
all purely elastic components are in contact with the component containing frictional
damping. In this scenario, we define:

b(l’) — bOX[O,L1]($)7 a(a:) — Q0 X[La,L3] (:U)y ap, bO > O)

where 0 < | < Ly < Ls < L. This model is referred to as the KEFE model.

In the second case, the supports of a(x) and b(x) remain disjoint, but there is a
purely elastic component that only interacts with the Kelvin-Voigt component, without
any contact with the frictional component. In this case, we have:

b($) — bOX[Ll,Lz]($)7 a($) — aOX[L37L4]($)7 o, bO > O)

where 0 < L; < Ly < Ly < L, < L. This model is referred to as the EKEFE model.

Finally, in the third case, the supports of a(x) and b(x) overlap, but there is still a
purely elastic component that interacts exclusively with the Kelvin-Voigt component. In
this configuration, we define:

b(x) = boX|L,,23)(x),  alx) = aoX(L,.La(T), ao,bo > 0.

This model is referred to as the EKIFE model.

Geometric description of the functions a(x) and b(x) in each model is described in
Figure 1 below.

The main results we obtain in this work are the following:

+ If all the purely elastic components are in contact with the frictional damping com-
ponent, whether or not they contact the component with Kelvin-Voigt damping,
then the solutions of the system (2.1)-(2.3) decay exponentially
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 If there is a purely elastic component that contacts only the component with
Kelvin-Voigt damping then the solutions of the system (2.1)-(2.3) do not decay
exponentially. However, it is proven that the solutions decay polynomially with
the rate (=2,

* In case of non-exponential decay of the solutions, it is proven that the polynomial
decay rate ¢t is optimal.

The remaining part of this chapter is organized as follows: In Section 2.2, we study
the well-posedness of the system (2.1)-(2.3) using a semigroup approach. In Section
2.3, we study the case when the solutions of the system decay exponentially, that is,
when all the purely elastic components are in contact with the frictional damping com-
ponent. In Section 2.4, we study the case when there exists a purely elastic in contact
only with the Kelvin-Voigt damping component. Finally, Section 2.5 deals with the opti-
mality of the decay rates obtained in the previous section.

In the KEFE Model In the EKEFE Model
N —_— ag ¢ —_—

bo' bo‘

|

=
e

L e
[ S A

|

- ———
- ————————

3 L 0 L1 L2
In the EKIFE Model

hu——————————————————
w
hu——————————————————
=

h

bot e

0 L, Ly, Ls L, L

Figure 2.1: Geometric description of the functions b(x) and a(x)

2.2 Existence of solutions

In this section, we will establish the well-posedness of problem (2.1)-(2.3) by using
a semigroup approach.

H = Hy(0,L) x L*(0, L)
The Hilbert space H is equipped with the inner product defined by

z L
(U, Uz)y / pu;u_mder/ vivde
0 0
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for all U; = (u',v!) and U, = (u?,v?) in H. We use ||U]|y to denote the corresponding
norm. We define the unbounded linear operator A : D(A) C H — H by

D(A)={U=(u,v)T e H|ve Hy(0,L), and (pu-+b(-)v) € H*(0,L)},

A( : ) - ( (e 4 D)), — al e ) 7

forall U = (u,v)" € D(A).
If U = (u,u)" is the state of System (2.1)-(2.3), then this system is transformed into
the first order evolution on the Hilbert space H given by

and

U, = AU, U(0) = Us, (2.4)

where Uy = (ug,u;)T € H. We have the following result on the well-posedness of system
(2.4).

Proposition 2.2.1. Let A and H be defined as before. Then A generates a Cy semigroup
of contractions e"* in H.

Proof. First, note that the A is a dissipative operator in the energy space H. In fact,
let U = (u,v)" € D(A). Using the inner product in H, integration by parts, and the
boundary conditions (2.2), we have

L L L L
(AU, U)y = </ vmu_zdx—/ umv_mdx> —/ a(-)|v|2dx—/ b(-)|ve|*dx
0 0 0 0

Using —(z,w)r2 + (z,w);. = —2Im(z,w)e, for z,w € L?, and taking the real part, we
get

L L
Re(AU, U)y = —/ a(-)|v]Pdx — / b()|ve)?de <0 (2.5)
0 0

therefore, A is dissipative.

Now, we will prove 0 € p(A), the resolvent set of A, this is, .4 is bijective and
A~! is bounded. In fact, let ' = (f,g9)7 € H. We will show that there is unique
U = (u,v)" € D(A) such that

—AU = F. (2.6)

The solver equation (2.6) in terms of its components is equivalent to the following
system of differential equations

—v = f, (2.7)
—|pux + b(-)vg]e +al-)v =y, (2.8)
with the boundary conditions
w(0) = u(L) =0, in (0,L). (2.9)
First, note that from (2.7) we have v = —f € H](0,L). Now we need to show that u,

(pug + b(-)v,) € H(0, L). In fact, from (2.8), we have

_(pu$+b()fz)x :g+a(')f' (210)
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Multiplying (2.10) by ¢ € HZ(0, L), integrating over (0, L) and using integration by
parts, we get

L L L
/O oG — / (g + a() f)dde — / b() frdnd. 2.11)

Define T : H}(0,L) x H3(0,L) — Cand J : H}(0, L) — C, such that

L
Y (u, @) / Pusdedr, Vo € Hy (0, L), (2.12)
0
and

L . L L
J() / (9 + a(-) ) — / bO) fodade, o€ HY0,L).  (213)
From (2.11), we get
Y(u,¢) = J(¢), Vo€ Hy0,L), (2.14)

Note that Y is a sesquilinear form on 7} (0, L) x [} (0, L). Moreover, by Holder’s inequal-
ity and Poincaré’s inequality, T is a continuous and coercive form on H} (0, L) x H3(0, L),
because

(U, U2) = (U, Ua) o,y | S NUilluzo.p iUzl o,y VUL, Uz € Hg (0, L),
and
Y(U,U) = (U, U)oy = 10U Bxorys YU € Hg(0, L).

On the other hand, J is a antilinear functional on H}(0, L) and using Holder’s inequality,
we get J is a continuos functional on Hj(0, L). Therefore, by Lax-Milgram theorem
we have that (2.14) admits a unique solution v € H}(0,L). By taking test function
¢ € C§°(0, L), we deduce that

_(puﬂc + b()vm)m - _(puﬂc + b()fm)m =g+ CL()f S L2(07 L)

Therefore, U € D(.A) is a unique solution of (2.6). This tells us that A is bijective
and there is A~!. So, to conclude that 0 € p(.A), we just need to show that A~ is
bounded. For this, as there is only one U € D(A) such that —AU = F', we need to show
Ul < || F||. In fact, since v = — f, then by Poincaré’s inequality, we have

1122002y S N fellZeony S IF N5 (2.15)
Furthermore, from (2.14) and by Poincaré’s inequality, we get

L L L
| oualie = [ atypyude - [0
0 0 0
< (lgllzeo.ny + 1 lez.n) + [ fellz20,0)) 1 || 22 (0,1
S Nl U] % (2.16)
Thus, from (2.15)-(2.16), we obtain

L L
012, = / plualPd + / o2de < | sl Ulls + 1 IRy
0 0

using Young’s inequality, we get |U]|3, < || F||7,, how we wanted to show.

Then, since A is dissipative and 0 € p(.A), then D(.A) is dense in H. Therefore, the
operator A satisfies the conditions of Lumer-Phillips’s Theorem (see Pazy [25]) and the
result of the proposition follows. O
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The well-posedness of the problem (2.4) and therefore of problem (2.1)-(2.3) is a
consequence of semigroup theory and we state this result in the following theorem.

Theorem 2.2.1. For Uy = (ug,uy) € H, the problem (2.4) admits a unique mild solution
U satisfying
U = Uy € C°([0, oof; H).

Moreover, if Uy € D(A), then the solutions belong to the following space:

U € C°(]0,00f; D(A)) N CY([0, oo[; H).

2.3 Asymptotic behavior: Exponential Stability

We will study the asymptotic behavior of the semigroup e* associated to the sys-
tem (2.1)-(2.3). The results will be obtained using the spectral characterizations for
exponential stability of semigroups (see [21] or [32]).

We will demonstrate the exponential stability of system (2.1)-(2.3) in the case that
every elastic part of the string either connects only with the frictional part or connects
with both types of dampings. Since the proof of the decay rate is similar in all these
cases, we focus on the proof considering the KEFE model, which is given by (2.1)-(2.3)
considering

b(x) = boxpo,,) (%) and a(r) = aoX|L, 1, (), (2.17)

where Ao, bo > 0.

The main result of this section is Theorem 2.3.1 and to prove this theorem we will
need to introduce some technical lemmas.
Let \€¢ Rand I = (f,¢g)" € H. In what follows, the stationary problem

(i — AU = F, (2.18)

will be considered several times. Note that U = (u, v) is a solution of this problem if the
following equations are satisfied:

iAu—uv=f, (2.19)
iAv — [pug + (). +a(-)v =g, (2.20)
with the following boundary conditions
u(0) = u(L) = 0. (2.21)
Note that
so, we have

—Re(AU, U)y S [|GAU = AUl U]l = I F 21U 13-

Therefore, from (2.5), we get

L L
/ aa)|ofPde + / b()loalPdr < | FllallU e (2.22)
0 0
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From (2.19) and (2.22), we get

L L L
[ ol < - ( [ e | pb(x)lfzIde>
0 0 0
ST E N U3+ 1E]17)- (2.23)

Furthermore, by Poincaré’s inequality and (2.22), we have

L
/ b oPde < I1F U . (2.24)
0

Then, from (2.23) and (2.24), for |\| large, we have

Ly
/ (o + plusPde < [ F Il Ulla + A2 FIR,. (2.25)
0

The following lemma will be used in the next lemmas.

Lemma 2.3.1. Let us [ag, o] C [0, L] \ supp b(x). For |A| large and ¢ > 0 small, we have
[z (o) |* + (o) [*+ua (Bo) |* + [0(5o)]*

Bo
5/ (Iv]* + plue|*)dx + CEONF 2l |3 + €| Ull7.  (2.26)

0

Furthermore, check the following inequalities:

Bo
/ (I + Jue|*)da < (o) + [v(ao)|* + CONF U3+ elU13, (2.27)

0

Bo
/ ([0 4 |ue|*)da < e (Bo) I* + [0(Bo)|* + CONF I U 13 + ellU 13, (2.28)

0

for ¢ > 0 small.

Proof. Let [ap, Bo] C [0, L] \ supp b(x). First, let’s prove the inequality (2.26). In fact,
multiplying (2.20) by (x — 221%) 7; and using (2.19), we have

ap+Bo) ap+ fo) __ ap+ B\
B G A Upley +afx) | x — 5 UV
- <$—a0;rﬁo>u_zg—<$—ao+ﬁo>ﬁva in [ag, Bol.

2

Using integration by parts in |ag, 5] and taking real part, we obtain

[z (00)* + [v(00)|* + [ua (Bo)* + [v(Bo)|*

Bo Bo
e R A e e k.
Bo
—Re {/ a(x) <x _ ;r 50) u_mvdx}
8o
—Re {/ <x _ Qo ;r 50) ﬁvdx} ) (2.29)
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Note that |z — 2010 | < 50200 for g]l 7 € [y, 5] and using Holder’s inequality, Young’s
inequality and (2.22), we get

Bo _ Lo
—Re {/ a(x) <x — Oéo;rﬁ()) u_mvdx} < po 5 o / ag|tzv|dx
&0 Ll

Lo Lo
< e/ || *dz + Cfe) / lv]2dx
L

1 Ly

S elUl + CONF IV, (2.30)

for e > 0 small.
Therefore, using (2.30) and Holder’s inequality to estimate the other terms on the right-
hand side of inequality (2.29), we obtain

[a (0)* + [v(00)[*+ [ (Bo)[* + [0(Bo) [

Bo
5/ (I + plue ) + | U3, + CONFlla| Ul

0

for e > 0 small. Now, let’s prove (2.27). In fact, multiplying (2.20) by (z — ()4, using
integration by parts in [«ayg, fo], taking real part and using (2.19), we get

Bo

Bo
/ (Jv]? + plue]?)dr < |ue(Bo)]? + |v(Bo)]* + Re {/

0

(x — ﬁo)u_zgde}

_ Re {/j a(x)(z — ﬁo)u_mvdx} _ Re {/j (- 5O)ﬁvdx} |

Note that |x — 3y| < for all x € |ay, 5], using Holder’s inequality and (2.30), we get

Bo
/ (101 + plua|?)da < [ua(Bo)1* + [0(B0) |2 + CONF Il Ulla + e[| Ul3,,

0

for ¢ > 0 small.
The proof of (2.28) follows in a similar manner, multiplying (2.20) by (x — ao)u,. O

Lemma 2.3.2. For |A| large and ¢ > 0 small, we have

L3
/L pluaPde < el|UNF, + CEONFIallU 2 + | Fll-

Proof. Multiplying (2.20) by u, we have

—IAUV — PUyy T + %vm =gu, in |[Ly, L3

Using integration by parts in [L», L3], taking real part and using (2.19), we get

/LLS plu|*dz =Re{pu, (Ls)u(Ls)} — Re{pu,(La)u(Ls)} + /LS v[’dz + Re {/LLS vfdx}

2 Loy 2

Ls iag [T -
+Re{/ gﬂdx}—Re{—/ vfdx}.
Lo )\ Lo
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Using (2.22) and by Holder’s inequality, we get
L3 ) 1
/L plue*dr < |pua (Ls)u(Ls)| + | puq (Lo )u(La)| + WHFHHHUHH I E 21U N9,
: (2.31)

for |A| large. Finally, using Lemma 2.3.1 and that /'(Ly, L3) C L>(L, L3) with contin-
uous injection, we get

|pux(La)u(Ls)| + | pua (L2)u(La)]| ﬁ {ue (L) |[iXu( L) | + (L) |[A0u( L) }
ﬁﬂum(LS)HU(Li’)) + f(La)| + [ (L) [|o(L2) + f(L2)[}
Fa 2 2 C(e)
< . ([o]" + plug|")dx + B 13U 22
€ 2 1 2
+WHUHH+WHFHH7 (2.32)

for |\| large and ¢ > 0 small. Therefore, from (2.31)-(2.32) and using (2.22), we obtain

L3
/L pluaPde < elUNF + CONF N IUl3 + 1F%,

2

provided that A is large enough and ¢ > 0 small. ]
From Lemma 2.3.2 and (2.22), we have

Lj
/L (I + pluz|?) de < | U3+ CONF I Ulla + 1F 15, (2.33)

2

for |A| large and ¢ > 0 small.
Lemma 2.3.3. For |A| large and ¢ > 0 small, we have

Lo
/L (I + plug *)da < | U3, + CONF N2 Ul A 11F 15

1

Proof. Using Lemma 2.3.1 twice and (2.33), we obtain

Lo
/L (0 + plue)dz < ue(La)|* + [0(L2)]* + CONF |allU % + €llUN1%

!
< /LQLS(IUI2 + plwal*)dz + CONF Ul + €llU 13,
S ellUIR, + CEONFI Ul + 11F115,. (2.39)
for |A| large and ¢ > 0 small. O
Lemma 2.3.4. For |)| large and ¢ > 0 small, we have

L
/L ([0]* + plus|*)d < ellU 15, + CONFlla| Ullee + 1713

3
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Proof. Again, using Lemma 2.3.1 twice and (2.33), we obtain

L
/L (10* + plua|*)dr < Jua(Ls)|* + [o(La)|* + CEIF Nl Ul + €l U3,

3

L
S /L:(|v|2 + plua*)da + C I Flla| Ul + e[ U3,

S ellUlz + CONFNl U+ 1 F 1, (2.35)
for |A| large and ¢ > 0 small. W
The main result of this section is given by the following theorem.

Theorem 2.3.1. Let H and A be defined as before, considering the conditions of the KEFE
model. Then, the system (2.4) is exponentially stable, that is, there exists a positive con-
stant e such that

le“*Usllz < e™Vollm, ¥ Uo€H, >0,

Proof. The proof is based on Theorem 1.5.3, for which we need to prove that iR C p(A).
First, let us prove that iR C p(A). In fact, since A is a closed operator and D(.A)
has compact embedding over the phase space H , then the spectrum o(.4) contains
only eigenvalues. Thus, it suffices to prove that ¢(.4) does not contain any imaginary
eigenvalues. To do this, we will use the argument by contradiction. Let us suppose
that there exists an imaginary eigenvalue ¢\ with A € R such that (AU — AU = 0, with
0# U € D(A). From (2.19)-(2.22) with I' = 0, we get

L L
/o a(x)|v|2dx+/0 b(x)|ve|*dx = 0,
which implies in
v=0in (Ly,L3) and wv,=01in (0, L4). (2.36)
From (2.19) and (2.36), we have
u=01in (L,, L3) and wu, = 0in (0, L). (2.37)
Since U € D(A), then (pu, + b(-)v,). € L*(0, L), and using (2.36) we have
uw € H*(0,L), and consequently wu e C*([0,L]). (2.38)
From (2.37) and (2.38), we get
w(ly) = u.(L1) = u(Ls) = u,(Lo) = u(L3) = u,(L3) = 0. (2.39)
Now;, using (2.19)-(2.20), we have
N+ pOpu =0, in (0, L).

Then, from (2.39), we obtain « = 0 in (0, L), and consequently, from (2.19), we have
v=01n (0, L). Therefore, U = 0. But this is a contradiction, and therefore there are no
imaginary eigenvalues. Thus, iR C p(A).
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Now, let F' € H, consider U = (u,v) solution of (iA\I — A)U = F, i.e, the system
(2.19)-(2.20) is satisfied. To show the exponential decay, according Theorem 1.5.3 is
sufficient to show ||U|y < || F]|n, for |A| large. In fact, from (2.25),(2.33) and from
Lemmas 2.3.3-2.3.4, we get

L
U113 = / (lol* + plual?) do < e U5, + CONF 5l Ul + 115
0
for |A| large and ¢ > 0 small. Thus, using Young’s inequality, taking |\| large and a
suitably small ¢ > 0, we obtain
[Ull3 < 1 (1,

as we desired to prove. O]

2.4 Asymptotic behavior: Polynomial stability

To show the polynomial decay of the solution for the system (2.19)-(2.20) we use a
result due to Borichev and Tomilov ([7]).

Here we consider the cases where at least one of the elastic parts of the string (with
no dissipation) connects with only the Kelvin-Voigt damping. We focus in investigating
the stability of the EKIFE model because the EKEFE model and other cases are similar.
We recall that the EKIFE model is given by considering

b(x) = boX(r1,14 (%) and a(x) = aoX(rs,04(T), ao,bo > 0. (2.40)

The main result of this section is Theorem 2.4.1 and to prove this theorem we will
need to introduce some technical lemmas.
From (2.22) and (2.40), we have

Ly
/ aololPd < | Fllsell Ul 2.41)
Lo

and

Lj
/ bolva2dr < | FllallU (2.42)
L

1

Now, from (2.19) and (2.42), we get

Lg L3 Ls
/ bolue|Pdr < |\ 72 </ bo|v.|*dx +/ bo|fz|2dx>
L1 Ly Ly

SINT2UE NN U 3+ [1113,)- (2.43)
Lemma 2.4.1. For |)| large, we have

L3
/ pe + bovsl dee < | FllsallUllse + | FIE,.
L

1

Proof. From (2.42) and (2.43), we get

Lj N L3 N L3 N
/ pta + byt dxs/ plual dx+/ bo [vsl? do < [ F |l Ullse + 111,
L L

1 In 1

for |A| large. O
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Lemma 2.4.2. For |)| large, we have
Ls 3/2) 1/2
I/\I/ ol de S || FllallU 2+ 1211 E N7+ 111,

Proof. Consider H~'(Ly, L) the dual space of H'(L, Ls). From (2.20),(2.41),(2.43),
we get

Ml z-1(z1,L5)
1 1
S el 2o o) + 10(2) 2ve || 222y L) + lag vl L2(zo,2a) + 19l 2221 29
1 1
SHENZNUZ + 1 - (2.44)

Using Interpolation and inequality (2.44), we obtain

101222, 20 S N0l E-1(20 Loy [0 (L1, 2)

w(WWMWMHHFMQW@ﬂmmm>HMW@MM

C()
ST (HFHHHUHH+HFHHHUHH> BE (N3l U e+ 1E117) + ellvlZar, -

for |A| large and ¢ > 0 small. Considering an appropriate small ¢ > 0, we obtain

3 1
M2y Ly S IE I U N2+ TEIZIU, + 111,
for || large. M

Lemma 2.4.3. We have

Iy
5/4 3/4 3/2 1/2
/ (plal? + o) < M2 (1F e Ul -+ DF IS IO+ WEISZ 0015 ) + I,
0

for || large.

Proof. Multiplying (2.20) by (Ls — x){pu,. + bov.), integrating over (L1, L) and taking
the real part, we arrive at

Lo 1 Lo
Re {/ iA(Lgy — x)v(puy + bovx)dx} —Re {— / (Ly — x)i|puz + bovx|2dx}
I 2/ dx

1 1

Lo
= Re {/ (Ly — x)g{pus + bovm)dx} : (2.45)
L

1

By (2.19), we have

Re { p /L 1L2(L2 _ x)vmdx}

— —Re {p/LLQ(Lg — x)vv_zdx} — Re {ﬁ /LLQ(LQ — x)vﬁdx}

Lo Lo
_ p(L22_L1)|U(L1)|2— g/ |U|2dx—Re {p/ 62(L2_x)vﬁdx}, (2.46)
L L

1 1
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and

Re l/LZ(L )i| + bovs|*d
5 . 2 X dl’ Pl oUzx X

1

1 1 [l
— 5(Lg — Ly)|pu.(Ly) + bovx(L1)|2 — 5/ |pus + bovm|2dx.
Iy
(2.47)
On the other hand, by Lemma 2.4.2 and using (2.20), we get
Lo
Re{bo/ iA(Ly — x)v@dx}
L1
Lo
B [ bl (Aol dz
Iy
Lo 1/2 Lo 1/2
< A2 ( / bo|vm|2dx) (w / |v|2dx)
L1 Ll
3 1
S IMRIFIE IR (P00 162 + PO + 1P )
< M (POl + IEIR OIS+ IFIEPI0 ) 248
We define the functional
Ly — L
eu= LI L) 4 (L) 1 b (0P

So, from (2.45)-(2.48) and using Lemma 2.4.1 and Lemma 2.4.2, we get

P Lo 1 [l Ly —
ou =L / |o|*dx + / |ptt + bove|*dic + Re {p/ (L2 = x)vfxdl"}
2 L 2 L L

1 1 1

Lo Lo
+Re {/ (L2 — x)g(pu + bovx)dl"} —Re {bo/ ALy — x)v@dx}
L1 Ll

< [\[1/2 B/4 3/4 3/2 1/2 2

S 2 (UE a0+ IEIS IO+ IFIRPN0152) + 121, (2.49)
for |A| large.
On the other hand, multiplying (2.20) by x%,, integrating over (0, L,;) and taking the
real part, we get

I1 L1 L1
Re {2)\/ xvu_xdx} —Re {/ pxu_xumdx} — Re {/ xgu_xdx} .
0 0 0

Using Equation(2.19), we get

Ly Ly Li
Re {2)\/ xvu_zdx} — —Re {/ xvv_mdx} — Re {/ xvfmdx}
0 L 0 L 0 . N
- ?1|U(L1)|2 — / lv]2dx — Re {/ xvfmdx} ) (2.50)
0 0

Also, we have

L1 Ll L1
—Re {/ pxu_xumdx} = ?p|uz(l}1)|2 — / plua | d. (2.51)
0 0



Preliminaries 34

Therefore, from (2.49)-(2.51), we have

Ly Ly Ly
/o (pluz|® + |v]*)dx = % [plwa (L) + [o(L1)]?] — Re {/o xvﬁdx} — Re {/o xgu_mdx}

< @t I FIullUllw
5/4 3/4 3/2 1/2
S I (IF 0l + PO+ PPN 154) + 1

for || large. O

So, from (2.43) and from Lemma (2.4.2), we have
La 2 2 1 3 3 2
|+ ptua) do < A (POl + IFIAIONE + IFIR) . @52
1

for |A| large.

Lemma 2.4.4. Let h € C'([0, L]) be a function with h(0) = k(L) = 0 and ¢ > 0 small. We
have

/ R P 1 s + 5P
<Re { /O ’ h(x)gmdx} —Re {i)\ /O ’ b(x)h(x)mdx}
—re{ [ Lph(x)a(x)vu—mdx} F el + COIF U
Proof. Multiplying (2.20) by h(z)(pu. + b(-)v,) and integrating over (0, L), we get
2y bl TR0 — / BT T IO e b))

= /o h(x)g(puy + b(-)vy)dx — /o a(Yh{x)v(pu, + b(-)v,)dx. (2.53)

Using (2.19), we notice that the first term on the left side of the above equation can be
rewritten as follows:

ix /O h(w)olpus T b(Jua)de — /O ph(z)ol—inu)dr + i\ /O b(Yh(z)oTsde

L L L
=— / ph{x)vuzdx — / ph(x)v fodx + i)\/ b(-)h(x)vu dx
’ ’ ’ (2.54)

Taking the real part in (2.53) and using h(0) = h(L) and (2.54), we obtain

/ W@+ [ots + b(usf?)dz < Re { ’ b 00T e + ke [ ’ phta) e

~Re { /O ’ ph(x)a(-)vmdx} — Re {M /O Lb(-)h(x)vmx}

— Re { /O ’ a(-)b(-)h(x)vmx} . (2.55)
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Let’s estimate some terms on the left side of the above equation. First, by Holder’s
inequality, we have

L
“Re { / ph(x)vfxdw} < Wollzonl fllzon < 1PVl (256
0

Furthermore, since supp(b(x)) N supp(a(r)) = (L, L3), then by Young’s inequality and
(2.22), we get

L3

Re { /O ’ a(-)b(-)h(x)vmx} < maxji(x)] | aoholerclds

Lg LS
< e/ ao|v|*dx + C(e) / bo|v.|*dx
LQ LZ

S ellUll5 + CEONFIU 1, (2.57)

for € > 0 small.
Therefore, using (2.56)-(2.57) in (2.55), we get

L L L
[ @) (e + s+ 0000) e < v { [ noygGons ¥ 507030 b~ Re { [ phtaratoma |
0 0 0
L
—Re&A/‘MOM@MBM}+6MW%+CENFMMWM,
0
for ¢ > 0 small. O
Lemma 2.4.5. For |)| large, we have

L
/ (0 + plua]?) d
L

3

5/4 3/4 3/2 1/2
S M2 (NF Il e+ I FISCNO 13+ 1IN0 ) + 1

Proof. Let us introduce Lz € (L2, L3) and ¢; € C'(0, L) such that 0 < ¢i(x) < 1, for all
x € [0,L] and ¢;(z) = 0, if x € [0, Ls] and ¢,(x) = 1 if x € [Ls, L]. Using the result of
Lemma 2.4.4 with h(x) = (x — L)q(x), we obtain

L
/ (o 1 plus?) de
L

3

L3
s—/imlux—m¢ﬂwF+WM+mwmdx
L

3

+Re{Aﬂx—me@ﬂﬁ;I%GZ&M}

_ Re {M /O ) — D (x)vmx} _ Re { /O Y e L)ql(x)a(x)vu_mdx}
+ el U5+ CONF 3| Ul (2.58)

Let us estimate the terms on the right side of the above equation.
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Note that, using ¢, € C'([0,L]) and from the Lemma (2.4.1) and from the Lemma
(2.4.2), we have

L3
_ / (@t (2 — D)) (0 + ous 1 bovs ) de
L
~ LS
<1+ (L - Lg)max|q’1|)/ (Jo? + | puy + bov,|*) da
L3
_ 2 1/2
< T (VF sl -+ IR IS200 1 + 11,

HIE U+ 1715, (2.59)

for |A| large.
Using the Holder’s inequality and the Lemma (2.4.1), we have

Re { / ’ h(x)gmdx}

Lj
S / [(x — L)qrg(pus + bovy)|dx + (x — L)gpu,|dx
L Ls

S NF Il U+ 111 (2.60)

By Lemma(2.4.2) and from (2.42), we get

L Lj
Re{i)\/ b(-)h(x)mdx} 5bomax|h|)\|1/2/ v, | (|2 ]0])de
0

Lj

L3 1/2 L3 1/2
S ([ tear) ([ o)
z/g Z/S
1/2 1/2 1/2 1/2 3/4 1/4
< IO (P20 152+ PO 15+ 1)

5/4 3/4 3/2 1/2
< M2 (1Pl e+ D E SN0 R+ 11210157

(2.61)
for |A| large.
Finally, from (2.41), we have
L
Re {/ ph(x)a(-)vu_mdx}
0
L4 L4
50(6)/ |v|2dx+e/ plug|*dx
Lg LS
S ellUNG + 1 F U (2.62)
Therefore, from (2.58)-(2.62), we get
L
| (0P 4 pluf?) o
L3
< M2 (IF Nl e+ DFISNO 1+ IFIRENO0) + 1N,
for || large. O

The main result of this section is given by the following theorem.
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Theorem 2.4.1. Let ‘H and A be defined as before. Then, the EKIFE model is not expo-
nentially stable. Moreover, the semigroup e of system (2.4) decays polynomially with the
rate t=2, that is

1406l S 72 Uollpay, ¥ Uo € D(A), t>1,

Proof. The proof is based on Theorem 1.5.4. Using the same arguments as in the proof
of Theorem 2.3.1 we can show that iR C p(A).

Now, let F' € H, consider U = (u,v) solution of (iA\I — A)U = F, i.e, the system
(2.19)-(2.20) is satisfied. To show the polynomial decay with the rate ¢t=2, according
the Theorem 1.5.4, is sufficient to show

1O 12 < I,

for |A| large.
Therefore, from Lemmas 2.4.3, 2.4.5 and Equation (2.52), we obtain

Iy
W2, = / (0P 1 plusl) da + /

L1

Lj

(Jo]? + pluz|?) dx + /LL (Jo]? + plus|?) dx
3
< A2 (1P a0l + D FISL N0 15+ IS0 057) + 11
for |A| large. Thus, using Young’s inequality, we obtain
U135 (AL I P2 1) EIE < I
for |A| large. Therefore, we get
U 1 < 21 F L,

for || large. O
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2.5 Optimality of the decay rate

In this section we show that the decay rate obtained in Theorem 2.4.1 is the best.
We recall that Theorem 2.4.1 was proved for the EKIFE model, but the proof is similar
for the cases where at least one of the elastic parts of the string is connected only with
the Kelvin-Voigt damping leading to the same decay rate. In the proof of optimality we
will address the EKIFE model, with the proof being similar for other models. The EKIFE
model, already introduced, considering in problem (2.1)-(2.3) that

b(x) = boX[L,.Lal(x) and a(x) = aoX[Ly,L)(x)s Q0,00 > 0.

Thus, both the Kelvin-Voigt and frictional type dampings are effective in the interval
(L27 LS) .

Theorem 2.5.1. The polynomial decay rate obtained in Theorem 2.4.1 for the EKIFE model
is optimal in the sense that the semigroup does not decay with the rate t~* for s > 2.

To prove the above theorem, we need to state and prove some important results.
Let \€¢ Rand I = (f,¢g)" € H. In what follows, the stationary problem

(i — AU = F, (2.63)

will be considered several times. Note that U = (u, v) is a solution of this problem if the
following equations are satisfied:

iAu—v=f, (2.64)
iAv — [puy + b()ve]x + a(-)v =g, (2.65)
with the following boundary conditions
u(0) =u(L)=0 in (0,00), (2.66)
and
b(x) = boX|Ly.Ls)@) AN @) = A0X (Lo, La)(x)-
Fori=1,...,5, we consider

Uy — UX[LFLLI‘]) Lo — O, L5 = L.
We have the following lemma

Lemma 2.5.1. Consider a particular solution, defined by v = i\u, [ = 0 and ¢ =
(ph)X(0,r,), where h will be chosen later Then, the system (2.63) can be written as

O?uy + Puy = —h(z), x€(0,L);
8§uz+€?u,:0, T e (Li—lyLi)) Z:2,,5
with boundary conditions
U(O) — U(L) — O, uz(Lz) — ui+1(Lz'), Uzﬁmuz(l}z) — U,'H@mui“ (Lz), Z =1... 4

where
A2 9 A2 s AP —i)dag 9 )\Q—i)\ao.

p=r=" 2= : =0 ST
Los 27 kM P ptibo) 4 0

01— 04 — 03 — 05 — p, 02:p+boi)\.
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Proof. Let a particular solution, defined by f = 0 and g = (ph)x(0,1,), where h will be
chosen later.
From (2.64) - (2.65), we have v = ¢ \u and

[ Pu+Xu = —h,  in (0, Ly);

2 A2 : .
81162 -+ p+z’b0>\u2 = O, n (Ll, Lg),

2 >\2—i>\a0 _ : .
81’&3 + o ibo) Uz = O, n (LQ, Lg),

O2us + 222920y = 0, in (L, La);

02us + Xus = 0, in  (Ly, L).

\

with transmission condition
wr (L) = ua(Ly), POty (L) = pOyuz(Ly) 4 boOyva(ln),

UQ(LQ) — U3(L2), p@mUQ(Lg) + boaxUQ(Lg) — p@mu;),(Lg),
uz(Lz) = wa(Ls),  pOruz(La) = pOrua(Ls),

us(La) = us(La),  pOaus(La) = pOaus(La),
and boudary condition u;(0) = 0, us(L) = 0. O
The following theorem will help us find an estimate for the lemma system (2.5.1).
Lemma 2.5.2. Let h € L?(0, Ly). Fori=1,...,5, let us consider the following system

OPuy + Cuy = —h(x), € (Lo, Ly),
8§uz+€?u,:0, ZCG(Li_l,Li), 1=2,...,0

with boundary conditions

U(O) — U(L) — O, uz(Lz) — ui+1(Lz'), Uzﬁmuz(l}z) — U,'H@mui“ (Lz), Z =1... 4

where
A2 A2 A2 —ida A2 —ida
2:2:_ 2:7 62:70 62:70
€1 €5 p? €2 p‘l‘l}\bo’ 3 p‘l‘lbo)\’ 4 p ’
(2.67)
01— 03 — 04 — 05 — P, 02:p+boi)\.
The solution of the system is given by
sin(4x) 1 sin(4yx) 1
= — Hy(Ly) — —Hsy(x). 2.68
ZH(ZC) U( ! sin(ﬁlLl) + 61 sin(ﬁlLl) 2( 1) 61 2($) ( )
where we have the estimate
H(L
u(Ly)| ~ 17D 2.69)

T Wy sin(é Ly)]
with W1 = 0'161 COt(ﬁlLl) — 0'262 COt(ﬁg(Ll — Lg)) and

Hi(x) = /Om sin(fys)h(s) ds, Hy(x) = /Om sin(¢;(x — s))h(s) ds.
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Proof. Solving the stationary differential equations with boundary conditions «(0) =
u(L) = 0, we have
sin(¢yx) 1 sin(fyx)

() = U(Ll)sin(ﬁll}l) + Zsin(ﬁlLl)H 2L) = _H2(x)

S i L)
zmwu@giiﬁi % u@)iiﬁi:%%
) = wtba) S =T V) S
o) <) ST

Using the transmission conditions 010, u (L) = 020, us(L1) we have

1
01€1U(L1) COt(glLl) + 04 {COt(ﬁlLl)Hg(Ll) — g—Hé(Ll)}
1

O'2€2’LL(L2)
sin(€2 (L2 — Ll))

= o9lou(Ly) cot(€a(Ly — Ly)) +

Since
cot () () — - TT(2) — ———— I, (2)
! 2 6 sin(fa) T
we obtain
UlHl(Ll) o O'2€2’LL(L2)
a&munm%gy_mwﬂﬂfa%mumm%@lJMHkm%@ery
this is
H{(L
Wiu(L1) + Usu(Ly) = o (1) (2.70)
sm(€1L1)
where
Wy = o16y cot(ty L) — ool cot(ba(ly — Ls)), U il
=0 -0 — ; = — .
1 1t1 141 242 2 1 2 2 81n(€2(L2 _ Ll))
Using the transmission conditions 050, us(Ly) = 030, us(L,), we get
O'2€2’LL(L1)
L Ly — L
Sin(€2(L1 _L2)) +02€2U( 2) COt(ﬁg( 2 1))
O'3€3’LL(L3)
O'3€3’LL( 2) COt(ﬁg( 2 3)) + Sin(gg([/g — Lg))
from where follows that
UQU(Ll) + WQU(LQ) + Ugu(Lg) = O, (271)

where

0353

W2 = 0'262 COt(€2(L2 — Ll)) — 0'363 COt(ﬁg(LQ — Lg)), U3 = Sin(€3(L3 — L2)) .
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Using the transmission conditions 030, us(Ls) = 040,us(L3) we get

O'3€3’LL(L2)
Sin(gg(Lg — Lg))

-+ 03€3U(L3) COt(€3(L3 - L2))

O'4€4’LL(L4)

= o4lyu(L3) cot(€y(Ls — Ly)) + sin(f4(Ly — L3))

from where follows that
U3U(L2) + WgU(Lg) + U4U(L4) — O, (272)

where

g 454

T sin(ly(Ly — Ly))

Wg = 0'363 COt(ﬁg(Lg — Lg)) — 0'464 COt(€4(L3 — L4)), U4

Using the transmission conditions c40,u4(L4) = 050, us(L4) We get

O'4€4’LL(L3)
sin(€4 (Lg — L4))

+ oylyu(Ly) cot(by( Ly — L3z)) = os5bsu(Ly) cot(€5(Ly — Ls))

from where follows that
Usu(Ls) + Wau(Ly) = 0, (2.73)
where
Wy = o4bycot(by(Ly — L3)) — o505 cot(€5(Ly — Ls)).

Solving u(L3) (from (2.72)-(2.73)) in terms of u(L,), we get

Wg U4 U(Lg) _ —U3U(L2)
U4 W4 ’LL(L4) 0
this is
—UsW,
L) = —2"4 (L
u( 3) W3W4 _ U42u( 2)
Solving u(L;) (from (2.70)-(2.71)), we get
Wi Uz ) {u(l}l)} B {Ho} _ oHi(1y)
Uy Wy — %%V%% u(Ly) 0]’ 0 sin(#y Ly)
this is
HoW, . UZW,
LyW=——+— th Wo =Wy — ————.
b)) = o M T T W, — 02

We consider ag > 0, such that

a; ag .
— 12 —= Z =1,2 2.74
“ (o S gz i1 2.74)
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where

We take A = \,, where

From (2.67), note that
)\2

O_igi:_n’ Zil,,5
%

¢ Our objective will now be to estimate the terms that involve: ¢; and ¢5. Note that
€1 ~ €5 ~ )\n

Furthermore, ¢, L, = 27n + <&, we have

sin(ﬁlLl) —sin <3Oﬁ> ~ )\;1/2 = 0'161 COt(ﬁlLl) ~ )\2/2

¢ Our objective will now be to estimate the terms that involve: ¢, e ¢4 .
Note that, if

(=x+iy and 2= A+iB = 2% —y® + 22y,

then
g AVETR AL VT B?
2 ’ 2 2(A+\/A2+BQ)'
Since
2 20, 1
@ A B Az (p — boidg,) Ayt By,

0T hoide P21 (boda)?

we have A, ~ 1 and B, ~ \,. Then

Rely =~ A2 Imb, ~ N2, (2.75)
Since
A2 — i\,
3 ==" — o = Ay + 1By,
P

we have that Ay ~ \2 and By ~ \,. Then

Rel, ~ A,, Imé, ~1.

2
a3

2,4 = 2,4, from the previous estimates we have

On the other hand, since o;¢; —

ool = AL 44),  ouly = Ay + 1.
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In that follows, we use the identities

cos() sin(u) — 7 cosh(n) sinh(n).

cosh?(n) — cos2(p)
(2.76)

|sin(p + i) |> = sin?(u) + sinh?(n), and  cot{u + in) =

Since ¢, &~ Ay/*(1 + i) we can write 5(Ly — L1) = MY *(fign + in2) With 10, & 1 & 10,
Then, we have

1

|sin(fa(Lo — L1))] = |sinh(\2m0)] = |Us] S 7 — 0.
| sinh(A “n2.) |
Moreover, we also have
COt(€2(L2 — Ll)) S — 0'262 COt(€2(L2 — Ll)) ~ )\2/2(1 + Z) (277)

Since ¢4 ~ A\, + i we can write ¢,(Ly — L3) = A\yptan + s, With gy, &~ 1 ~ 1y,. Then
|Sin(€4([z4 — L3))| ~ 1 = |U4| ~ )\n
Writing cot(¢4(Ly — L3)) = p, + iq,, we have

pal 1, o= 1.
Since o464 ~ \, + i, we can write o046, — r,\, + is, wWhere r,, ~ 1 &~ s, then
0464 COt(€4(L4 - L3)) — (Tn)\n + isn)(pn + iQn)
— )\nrnpn — Spdn + Z()‘nTnQn + Snpn)'

From where follows

|Re {0'464 COt(€4(L4 — Lg))} | < )\n, |Im {0'464 COt(£4(L4 — Lg))} | 7 )\n

~

Therefore
|O'4£4 COt(£4(L4 — Lg))| ~ )\n

e Our objective will now be to estimate the terms that involve: /5.
Note that
A —idan A2(p — aobo) — i(A3bo + Anaop)

02— — :
2 0+ idnbo 0%+ N2

then Re(¢2) ~ 1 and Im(¢2) ~ \,. Then
Re(ls) ~ A2 Im(ls) ~ A2,
On the other hand, since o33 = %, from the previous estimates we have
cot(ls(Ls — L)) ~i ==  oslscot(fs(Ls — Ls)) ~ X214 1).

In that follows, we use the identities (2.76).
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Since /5 ~ )\i/Q(l + i) we can write ¢3(Ls — Lo) = )\i/Q(ug,n + inspn) With gz, ~ 1 & n3,.

Then we have

)\3/2

|sin(€s(Ls — L2))| 2 [sinh(\?nsn)l = [Us| < 7 — 0,
| sinh(A' “n3.) |

¢ Our objective will now be to estimate the terms that involve: ¢, and ¢5. Note that
61 ~ 65 ~ )\n

Furthermore, ¢, L, = 2mn + <&, we have

Sin(glLl) = sin <%> ~ )\;1/2 = 0'161 COt(glLl) ~ )\2/2 (278)

Now, since ¢5(Ls — Ly) = as (27m + %), we have

sin <2a27m + aj/%) = sin(2ap7n) cos <a2_\/c%)> + cos(2aymn) sin <a2_\/c%)> :

From the condition (2.74), note that the sequence

Aoy = sin(ls(Ls — Ly))

is a non-zero bounded sequence (note that maybe it could converge to zero).
Note that, if Ay, — 0, then cos (2a2mn) - 0 and we get

An
|O'5€5 COt(€5(L5 — L4))| ~N —.
Azl

On the other hand, if A,,, - 0, then

Anlcos (2aamn
losls cot(€5(Ls — Lg))| ~ | |A( |27r )|
2n

e Our objective will now be to estimate the terms: W, and W,.
From the previous estimates, we immediately obtain that |V, ]| ~ AY2,
If Ay, — 0 and since |Ay,| = |sin(l5(Ls — L4))| < 1, we obtain

An

|W4| = |O'4£4 COt(£4(L4 — Lg)) — 0'565 COt(€5(L4 — L5))| ~ |A |
2n

On the other hand, if A;,, - 0, we have

2
(Wil = |oaba cot(fa(La — L3)) — osbs cot(bs(La — Ls))| < An<1 1 M) <.

|A2,n|

and

2
(Wl = [o4ls cot(ba(Ly — Ls)) — asbs cot (bs(Ly — Ls))| = An<1 _ W) >\,
2n

It is important to note that this last inequality cannot occur if || ~ 0, but in this case,
the proof to estimate |u(L4)| follows in an analogous way.
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Then, if A, ,, - 0, we have |W,| ~ A,. So, we get

A

Wyl =& ——
| 4| |A2,n|’

if A27n — 0 and |W4| ~ )\n; if A27n - 0.
e Term estimates: W, and Wj.

Note that

(Ws| ~ X2 and  |W,| < A3/2.

e Now let’s estimate the term u(/L4).
First, suppose that A,,, — 0.
Let us first estimate the term

U2W, Wiy(WoWs — Ug) — W2U42
O T Waw, — U2 WsW, — U2 (2.79)
Since
5/2
(Ws||Wa| ~ - and  |U]® =~ A2,
|A2,n|
we have
\5/2
_ 2 ~ —n X
|WsW, — Uf| |A2,n|

On the other hand, since |Us| — 0, note that

Im(W2W3 — Ug) ~ Im(W2W3)
=Im{AB + (A + B)C + B* - U2)}
=Im{AB + (A + B)C — U3)}

where
A= oxlycot(la(Le — Ly)), B =o03lscot(l3(Ls— La)), C = o4lycot(y(Ly— L3))
Since
Im(AB)| = |Re(A)Im(B) + Re(B)Im(A)| ~ A3,
and
m(A + B)C| < |AJIC] + |BI|C] £ A2,
from where follows that
[WolWs — US| 2 Im(WoWs — U3)| 2 Im(AB)| =~ X;.

Provided that
4

A
(Wl |WoWy — U2| > —|A“ | and  |Wa||U4|? ~ \T/?
2.n

follows
)\4

\Wa(WaWs — U3) — WaUZ| = |An |
2n
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Using all previous estimates we have
W (WaWs — U2) — WoU?|

Wo| = > \3/2,
| O| |W3W4 _ U42| ~ “'n
Therefore,
U3
— 0.
[Wol
Now, suppose that A, ,, - 0.
Again, note that
W W UZW, : W (WoWs — U2) — WLU?2
T T LW, - U2 WsW, — UZ '
Since
|W3||W4| %)\2/2 and |U4|2%)\721,
we have

(WsW, — UZ| ~ A2/2.
On the other hand, since |U;| — 0, note that
Im(WoWs — UZ2) ~ Im(W,Ws)
=Im{AB + (A + B)C + B* - U})}
=Im{AB + (A + B)C — U3)}
where
A= oxlycot(la(Le — Ly)), B =o03lscot(l3(Ls— La)), C = o4lycot(y(Ly— L3))
Since
Im(AB)| = |Re(A)Im(B) + Re(B)Im(A)| ~ A}
and
m(A -+ B)C| < JA||C| + |BI|C] £ A%,
from where follows that
\WoWs — UZ] 2 [Im(W,Ws — U3)| ~ Im(AB)| =~ A2
Provided that
(Wal[WoWs — UF| 2 A, and  [Wal|U|* =~ N/
follows
(Wa(WolVs — US) = WaU| 2 A,

Using all previous estimates we have
W (W W5 — U2y — WLoU2|

Wo| = > \3/2,
Wl (WsWy — U2 ~
Therefore,
2
LT
[Wol
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Lemma 2.5.3. Take h(s) = sin(¢s) in the previous Lemma 2.5.1. If ¢ € R is such that
sin(¢L,) = 0 and cos(¢Ly) = 1, then the solution in (2.68) satisfies

sin(4x) 1 )
—u(L - :
) U( 1)sin(€1L1) 6% — 62 Sln(€$)

S

Uy
Proof. Take h(s) = sin(¢s), we have
Hy(x) = /x sin(fys)sin(fs) ds, Hy(x) = /x sin(¢1(x — s)) sin(¢s) ds.

Since

sin(¢s) sin(¢1(x — s)) = sin(¢1x) cos(¢18) sin(€s) — cos(¢1x) sin(f1s) sin(¥s)],

() /Ox cos(6s5) sin(£s)ds — sin(612) {61 sin(¢yx) sin(fx) + € cos(fyx) cos(bx) — q |

P

cos(,2) /O”“" sin(fys) sin(fs)ds — cos(f,z) V sin(¢x) cos(fx) — €, cos(fx) Sin(ﬁx)} .

02— 2
Using the hypothesis, we get
 Usin(l1Ly) cos(Ly) — €y cos(€yLy)sin(¢Ly)  £sin(€;L,)

Hl(Ll) 6? _ /2 o 6? —f2 )
and
¢y sin(fx)[sin?(¢12) + cos? (b
Hy(z) — 1 sin( x)[81n€2(_1£)2 (1)
1
_ Esin(liz)[cos(fix) cos(fx) — cos(brz) cos(fx)]  Esin(lix)
02— 2 02— 2
i sin{lx) — £sin(¢x)
B 02— 2 '
Note that
1 sin(¢yx) 1
= S (L) — —H
61 sin(ﬁlLl) 2( 1) 61 2($)
~ Lsin(lz) [—fsin(liLy)] 1 [4isin(ler) — Csin(liz)
n 61 sin(ﬁlLl) 6% — 12 61 6% — (2
L.
= E_p sin(fx).
Thereby, we have
sin(¢1x) 1 sin(¢yx) 1
=u({L — Hy(L) — —H.
U1($) U( 1)sin(€1L1) + 61 sin(ﬁlLl) 2( 1) 61 2($)
sin(61) ! sin(fx).

- U( ! sin(ﬁlLl) B 6% — 62
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Lemma 2.5.4. Assuming the same conditions as the Lemma 2.5.3 and considering ¢ =
¢, = 22 we have

= Zom,
Hy
Imu(L)~Im{ — | .
ity ~am (12
Proof. We know
H, ) U2
w(Ly) = “—, with ‘—2 — 0.
Wi — 1 Wo
We remember [, :— anlzgl%b), where H (L) = % Then, from ¢, ~ ¢ ~ \, =~ n,
1
we have ’
_ o 1/2
Hy = ~AE
e

Since W1 - 0'161 COt(ﬁlLl) — 0'262 COt(ﬁg(Ll — Lg)), then
|Im(W1)| = |Im(02€2 COt(ﬁg(Ll — Lg)))| ~ )\2/2

Let h, = Ho, Wi = jin + i1, with 1, — oo as n — oo and %{ = Jin + iJ2., Where
J1ms Jom — 0 @sn — oo. Note that h,, € R for every n € N. From

hy
(ftn + 110) — (Jl,n + Z]Zn)
— hn
(= J10) + (00 — J2n)
(ttn — Jl,n)2 + (1 — 32,71)2 ’
we get N
Im(ul(Ll)) = . .
(ftn — Jl,n)2 + (1 — 32,71)2
Note that
_Bn n T n n 7 T
(n J2:n) =1- 2n ~1 = —ha(he — J2n) & —hntn.
_hnnn nn
and
(1 = 710)* + (B = 22.0)*  Hi = 24nd1in + 33 + 75— 20ng2n + 130
(2 -+ n? ta =+ 0y,
1y _2un,]1,n + .]%,n - 27777«]2,71 + J%,n ~ 1
p2 4+ n? ’
this is,

(tn = 710)% + (0 = J2n)® A iy + 135
Therefore, we get

(b = J10)% + (e = J2n)® 13+ 07 Wi

Im(u (L) =
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Lemma 2.5.5. Let {11, = 2n7 + <. We have

1
Im{ — | ~ 272,
" <W1> "

PT’OOf. Let €1L1 = 2nm + 2. We know that W1 = 0'161 COt(glLl) + 0'262 COt(ﬁg(LQ — L1 )

and we saw in (278) and (277) that 0'161 COt(glLl) ~ )\7?;,/2 and 0'262 COt(€2(L2 — Ll)) ~
)\7?3/2(1 + 1), then
Im(Wl) ~ Im(0'2€2 COt(€2(L2 — Ll))) ~ )\2/2 and Re(Wl) ~ )\2/2

Therefore, we get

1 —Im(Wl) _3
Im(— | = ~ N2
m <W1> Re(W1)2 + Im(W1)2 "

O

Lemma 2.5.6. There exists (), € RY with A, — oo, (Up), C D(A) and (F},), € H such
that (i, I — A)U,, = F,, is bounded in H with

MllUnl3, =1, forn large.

1
Proof. For n € N, we consider A = \, = \L/—? 2nm + %>, Fo = (0, (0hn)1o1,)) € H,

hn(s) = sin(€,s), s € (0,L;) with ¢, = 2};‘—? and U, = (u,,v,) € D(A). Therefore
v, = i\u,. In what follows, we will avoid putting the subindex n in some variables
that depend on n. Thus, from the lemma 2.5.1, the coordinate « of solution U = (u, v)
satisfies the hypotheses of Lemma 2.5.2. Moreover, note that ) satisfies the conditions
of Lemma 2.5.2. Hence, by Lemmas 2.5.3 and 2.5.4, u; satisfies the following estimate

| Anun (2)]

2 Im(Aua (2))] = ‘Im<Anu(Ll)%“x))>‘ ~ ‘1m<L>M

2.80
sin(€1L1 Wl sin(ﬁlLl) ’ ( )

On the other hand

Ly sin(26,Ly) L 1 0°Ly
[Enllz = o [l 70,2,y = € <?_T> S0 <7+@> - ’

which implies that F,, is bounded.
Now, note that ¢, ~ ¢ ~ \, ~n, and as ¢/, L, = 2n7 + 2%, then

sin(#1 1) = sin <%> ~ %
Using in Equation (2.80) the previous estimate, the estimate obtained in Lemma 2.5.5
and the fact that we already deduced in Lemma 2.5.4 that Hy ~ Ay/? , we get

L\ A Hysin(€yx)
Im([ — | ———
W1 sm(€1L1)

Since || sin(¢1-)||z2 = v/ L1/2, from Equation (2.81), we conclude

Ul 2 A ()| 22 2 A2,

o \—1/2
~ )‘n )

| Anur(z)] > ~ A2 sin(fy)|. (2.81)
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Finally, let us prove the main result of the section.

Proof of Theorem 2.5.1. Suppose that the rate t~2 is not optimal. Then, we can improve
—2
the decay rate, say to t7-<. By Borichev-Tomilov theorem, subsequently

1—e
1Unll2 < [An] 2

Thus, for n large, we obtain

1—¢

1ExT = A lzen S Al 2 (2.82)

On the other hand, by Lemma 2.5.6, there exists (\,), € R with A, — oo, (Uy,), C
D(A) and (F},),, € H such that (i\,I — A)U,, = F, is bounded in H and

1

1
e

1—
AL€

1
N0l 2 1= =10l 2 A, = 5= 1A = A Fally, 2 A

we get

what is a contradiction with (2.82). Note that this inequality also implies the lack of
exponential stability. O

(Ml — A Foll = M — +oo as n — oo,




Chapter 3

Asymptotic stability for wave equation
with Kelvin-Voigt damping and Memory
Effect

3.1 Introduction to the problem

In studies of vibrating systems modeled by wave equations, beams or plates, it is
known that Kelvin-Voigt damping mechanisms, when distributed globally, stabilize the
solutions of these systems exponentially. Furthermore, this damping mechanism is so
strong that it tends to regularize the solutions. The situation may be completely dif-
ferent if this type of damping acts only on a part of the body as was shown by K. Liu
and Z. Liu in [24] (see also [11]). These authors proved that if Kelvin-Voigt damping
acts locally in a wave equation with discontinuous coefficient then the solutions of the
equation are not exponentially stable.

Later, Alves et al [3], studied the stabilizing force that Kelvin-Voigt damping ex-
erts on a transmission problem. This time, two dissipative mechanisms act on different
parts of the body. In one part, Kelvin-Voigt damping and in the other, frictional damping.
Even with the collaboration of frictional damping, the authors showed that Kelvin-Voigt
damping can predominate in the decay of the solutions, not allowing the exponential
decay of the solutions. However, the authors showed that the solutions decay polyno-
mially with the optimal decay rate ¢~'/2. In the literature we have not found a study on
the behavior of solutions where Kelvin-Voigt damping acts collaboratively with memory
effects and this was what motivated this work.

Problems with localized Kelvin-Voigt damping have aroused the interest of several
researchers in the last two decades and several results have been obtained. The problem

U (2, 1) = Ugw (2, 1) — (D(@)u0e(2, 1)) =0,

was studied by Liu and Zhang [27] in the interval (—1, 1) (see also [43]). They showed
that if the coefficient b(x) is zero in (—1,0], positive in (0, 1) and has a behavior like
x around zero then the solution of this problem is exponentially stable. Also, if the
behavior of b(x) around zero is %, a > 1, the solution is polynomially stable with a
decay rate depending on «. A result with sharp stability {1 were obtained by Han et
alin [19] (see also [18, 27]).

When the coefficient b(x) is discontinuous, Liu et al. [24] had shown the solution
does not decay exponentially. A few years later, this same problem was studied by

51
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Rivera et al. [2] where they showed that the solutions of the system decay polynomially
with the optimal rate ¢t =2 (see also [17, 20, 29, 40]).

Elastic equations with memory effects have been widely studied in recent decades.
It is known that memory damping can be strong enough for the solutions of the system
to tend exponentially to zero even if the damping is locally distributed. This problem
was studied by Liu et al [26] who considered the equation

g, 1) — (um(x,t) — alx) / () (un(t) — up(z, 1 — s))ds) —0.
0 x

In this case, if the kernel of the memory is exponentially decreasing, the authors
showed that it does not matter if the coefficient a(x) is discontinuous that the system
remains exponentially stable. A similar result had already been obtained in [38] when
considering a transmission problem partially damped by memory effects. Other prob-
lems with memory effects, locally or globally distributed, can be found in [4, 14, 30, 31,
36, 42].

Taking into account the results mentioned above, it is interesting to study the behav-
ior of solutions in elastic systems where both Kelving-Voigt and memory damping act
simultaneously on the body. These dissipative mechanisms can act jointly on a part of
the body or on separate parts. In this article we try to answer which of the dissipative
mechanisms prevails: the memory damping that stabilizes the system exponentially,
or the Kelving-Voigt damping, which, being discontinuous, stabilizes the system more
slowly.

Therefore, in this article we consider the following problem: to study the asymptotic
behavior of the solutions of the equation

w(x, t) — QU (2, t) + /Ooo g(s) (a(x)u (2, t — s)) ds — (b(x)uwe(x,t)) =0, (3.1)

x € (0,L), t > 0, satisfying the boundary conditions
w(0,t) = u(L,t) =0, t>0 (3.2)
and initial data
w(x,0) = uo(x); u(2,0) = w (), u(x, —s) = do(s), (2,5) € (0,L) x (0,00). (3.3)

Here, ¢ is positive and the kernel of the memory, g, is a positive function with exponen-
tial decreasing behavior. The coefficients a(x) e b(x) are characteristic functions whose
supports are subintervals of [0, L]. These supports can intersect, be disjoint or even
contain each other.

Since the possibilities of location of the supports of the coefficients a(x) and b(x)
can be diverse, we will focus on 3 cases: The first case that we will study is when the
supports do not intersect and all the purely elastic components are in contact with the
component that contains the memory damping, that is

b($) — bOX[O,L1]($) and a($) — aOX[Lz,Ls]($)7 o, bO > O)

where 0 < L, < Ly < Ls < L. We refer to this model as the KEME model. In the
second case, we still keep the supports of the coefficients a(x), b(x) disjoint, but there
is a purely elastic component in contact only with the Kelvin-Voigt component (without
contact with the memory component), that is

b(l’) - bOX[Ll,Lz](x) and CL(I’) — Q0X|[L3,L4] ($)7 agp, by > 0,
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where 0 < Ly < Ly < L3 < Ly < L. This model is referred to as the EKEME model.
In the last case we consider that the supports of the coefficients a(x), b(x) intersect, but
there is still a purely elastic component in contact only with the Kelvin-Voigt component,

that is

b(x) = boX(r,,14 (%) and a(x) = aoX(rs,24(%), ao,bo > 0.
We refer to this model as EKIME model. The KEME, EKEME and EKIME models are
shown in Figure 3.1 below.

KEME Model
Kelvin-Voigt Elastic part Memory Elastic part
HE aERERk s ERaR
COaaITTrIreraaTT
N e e
bo ag
0 B Ls B E;
EKEME Model

-1 Elastic part Kelvin-Voigt Elastic part Memory Elastic part . :

PR F T+ T ]
Rttt e

bo i

EKIME Model

-:j Elastic part Kelvin-Voigt Intersection Memory  Elastic part ::

PR F 7T+ ] T T
L 0 0 0 s B s il el

|

I
L e o o o | S I |
O dTITTTTICC I

I

|

|

I A iy A ) I
| | |

|

L

~e

by @ .
0 Ly Ly L Ly

Figure 3.1: Different partial viscoelastic materials

We will use the following assumptions for the memory kernel

g € LY]0,00)) N C*(]0,00)) is a positive function such that
9(0) == go > 0, " g(s)ds == g,a(x) = 0 — a(x)§ > 0,and (3.4)
g'(8) < —cog(s), for some ¢y > 0,Vs > 0.

The main results we obtain in this problem are the following:

« If all the purely elastic components are in contact with the memory damping com-
ponent, whether or not they contact the component with Kelvin-Voigt damping,
then the solutions of the system (3.1)-(3.3) decay exponentially
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 If there is a purely elastic component that contacts only the component with
Kelvin-Voigt damping then the solutions of the system (3.1)-(3.3) do not decay
exponentially. However, it is proven that the solutions decay polynomially with
the rate {72,

* In case of non-exponential decay of the solutions, it is proven that the polynomial
decay rate ¢~? is optimal.

The remaining part of this chapter is organized as follows: In Section 3.2, we study
the well-posedness of the system (3.1)-(3.3) using a semigroup approach. In Section
3.3, we study the case when the solutions of the system decay exponentially, that is,
when all the purely elastic components are in contact with the memory damping com-
ponent. In Section 3.4, we study the case when there exists a purely elastic in contact
only with the Kelvin-Voigt damping component. Finally, Section 3.5 deals with the opti-
mality of the decay rates obtained in the previous section.

3.2 Existence of solutions

In this section, we will establish the well-posedness of problem (3.1)-(3.3) by using
a semigroup approach. To this aim, as in Dafermos [14], we introduce the following
auxiliary change of variable

n(x, s, t) = ulx,t) —u(x,t —s), (x,s,t) € (0,L)x (0,00) x (0, 00). (3.5)

Then, system (3.1) becomes

ug (T, t) — {Zz(x)um(x,t) + /00 a(x)g(s)nu(x, s)ds + b(x)un(z,t)| =0, (3.6)
0 z
Ut($;5;t)+778($;57t) Ut(ZU t) (37)
for (x,s,t) € (0, L) x (0,00) x (0, ), satisfying the boundary conditions
u(0,t) = u(L,t) = 0, t>0,
T/()O)t) — 07 ('I.?t) e (OPL) X (0700)7 (3'8)
n(0,s,t) = n(L,s.t) =0, (s,t) € (0,00) x (0, 00),
and the following initial conditions
U(-, _S) - QSO(S)) U(,O) - Uo(‘), ut('70) - ul(')) (3.9)
1(-;8,0) = mo(; 8) 7= uo(-) = do(s), (3.10)

with (z,s) € (0, L) x (0, c0).
The problem (3.6)-(3.10) is dissipative in the sense that its energy is a non-increasing
function with respect to the time variable ¢. Let us define the energy space H by

H = Hi(0,L) x L*(0,L) x G,

where G, is the weighted space L2((0,00); H(0, L)), with the inner product

/ / (synin2dsdz, ¥ o', € G,
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The Hilbert space H is equipped with the inner product defined by
L L _
(U1, U)n / vlvldr + / a(-)uiutdr
0

T / / " (g5t $)TEC s)dsde, (3.11)

for all Uy, = (u!,v',n*(-,s)) and U, = (u?,v?, (-, s)) in H. We use ||U]|y to denote the
corresponding norm. We define the unbounded linear operator A : D(A) C H — H by

(U = (u,v,n(-,s))" € H|ve H0,L), )
D(.A) _ 773(';5) < ggan('ao) = 0in (OPL)P ’ (312)
(a0 + [ abhalomsds 1300 ) € 10,1,
and
A ( v ) - <&()uﬂc + /Oo a(')g(s)ﬁm(';s)ds + b()%ﬂ) )
n(-,s) 0 v—ns(-, s) ’

forall U = (u,v,n(-,s))T € D(A).
If U = (u,u,n(-,s))" is the state of system (3.6)-(3.9), then this system is transformed
into the first order evolution problem on the Hilbert space H given by

U, = AU, U(0) = Uy, (3.13)

where Uy = (ug,ui, (-, s))T € H. We have the following result on the well-posedness
of system (3.13).

Proposition 3.2.1. Let A and H be defined as before. Then A generates a Cy semigroup
of contractions e"* in H.

Proof. Note that the A is a dissipative operator in the energy space H. In fact, let
U = (u,v,n(-,s))T € D(A). Using the inner product in H, integration by parts, and the
boundary conditions (3.2), we have

(AU, Uy, = ( / Aoy — / ’ a<->umx) - / b0l

+ (/OLCL(‘)/OOOg(S)WVS)%dx—/OLQ(')/OOOg(s)m(-,s)v—mdx>
- /OL a(')/ooo 9(8)s (-, 8) (-, 5)dsd.

Using integration by parts with respect to s in the above equation, the hypotheses (3.4)
and taking the real part, we get

Re(AU, /)y — —Re { / “a) / " (W asl, TR s)dsdx} -/ bl e

a0 [T @ s pasie — [ b0 lar <o
ARl /
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therefore, A is dissipative.
Now, we will prove 0 € p(A), the resolvent set of A. In fact, we will show that there
is unique U = (u,v,n(-,s))T € D(A) such that

AU =F, (3.14)

for I = (f17 f27 fg('7 S))T €H.
Writing equation (3.14) in terms of its components we obtain the following system of
differential equations

—v=fl (3.15)

- {a(-m [ algtm s 10| - (3.16)
0 x

773(';5)_7}: 3('75)7 (317)

with the boundary conditions
w(0) =w(L) =0, n(-,0) =01in (0, L) and n(0,s) = n(L,s) = 0 in (0, c0). (3.18)
First, using (3.15) and (3.18), we have

D s) - / Plopdn—sft () € (0,L) x (0, 00). (3.19)

Note also that, from (3.15), (3.17) and (3.19), we get n(-,s) € H}(0, L) in (0,00) and
ns(-,s) € Gy, because v = — f1 € H}(0, L) and f3(-,s) € G,. We will show

[ ot s < .
0

consequently, we will obtain (-, s) € G,. By (3.4) and taking y € (0, 4+00), we have

1/y
/ 9(3) e ) 3oy < / e 8) 20 1,5
Yy

Using that above equation and by using integration by parts with respect to s, we get

1/y ,
[ ot s
Yy

Lot d
<o) 005 (o) ds
1
o {9 . = 90 /) a1 /) oy | (3.20)

Furthermore, using Young’s inequality, we have
1M d
— [ g(5) (e ) 720,05

Coy

2 / (me | / T ) | ds

Ly 9 [y ,
<5 [ o onds t % [ gt o nds. 32D
Yy O Yy
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From (3.20) and (3.21), we deduce

1y ,
[ s g s
Yy

4 (Vv )
< 9($) 052 (5 $) 720,15
b Jy
2
= gl )y = 91/ ) o) (3.22)

Hypoteses (3.4) implies that ¢(s) < goe~*%, and using 7, € G,, n(-,s) = 01in (0, L), we
get, as y — 01, that

[ s < o
0

and therefore, (-, s) € G,. Furthemore, from (3.19), we have

wes) = ([ Fawdi=sf) | woenx 00, G2
0 z
Substituing the above inequality in (3.16), we have

= f2, (3.24)

x

et [ atts) ( [ - f) ds + b0

Multiplying (3.24) by ¢ € HL(0, L), integrating over (0, L) and using integration by
parts, we get

/OL A )ty ppd = /OL Jrode — /Ooo al-)g(s) </O P, w)dp — 5f1>m dsprdz

_ /O C ) g (3.25)
Note that, from (3.25), we get
T(u,¢) = J($), Vo€ Hy(0,L), (3.26)
where
T (u, ) = /OL a(Vugdedr, Vo € Hy(0,L), (3.27)
and

L [ s
J(¢) = / [P — / a(-)g(s) ( / f3<x,u>du—sf1> dsgade
-/ b0 e (3.28)

Note that T is a sesquilinear form on H}(0, L) x H;(0,L). By Holder’s inequality and
Poincaré’s inequality, Y is a continuous and coercive form on H} (0, L) x H; (0, L). On the
other hand, J is an antilinear functional on Hj(0, L) and since n(x, s) = [, f?(x, u)dp —
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sf! € g, then using Holder’s inequality, we get that .J is a continuos functional on
H}0,L). Therefore, by Lax-Milgram theorem we have that (3.26) admits a unique
solution v € Hj (0, L). By taking test function ¢ € C$°(0, L), we deduce that

— {d(-)um + /Ooo a(-)g(8)n. (-, 8)ds + b()v.| = f* € L*(0,L).

x

Therefore, U € D(.A) is a unique solution of (3.14). This tells us that A4 is bijective and
thererefore A~! exists. So, to conclude that 0 € p(A), we just need to show that A~!
bounded. For this, as there is only one U € D(A) such that —AU = F', we need to show
U3 < || F||%. In fact, since v = — f1, then by Poincaré’s inequality, we have

||U||%2(O,L) S HFH%Q(O,L)'

Now;, by (3.4), we get

Co co [
5|| (- s)lg, = / 9( )1 )| Z20.1
0

Co

2

L=, 2

Sl AL LASDIZINS
0

1 [°S) L
<5 [ I@InC Mo + [ WOl

— Re(— AU, U}y,
= Re(F, U)y,
SN U s,

this is, [|n(, $)1Z, < [ Fllx/|U||%. Thus, we have

/ / s, ) Pdsdz < [0 )12, < 1|l Ul

On the other hand, multiplying (3.16) by @, integrating over (0, L.), using integration by
parts, using (3.15) and Holder’s inequality, we get

/ |um|2d:c</ / (e sdsda 4 | Pl Ul (3.29)

Using Young’s inequality in (3.29), we get

L
/O a()usl*de < glinC, s)llg, + 1 TallUllze < 1F TV ¢

Thus, we obtain

L
W2, = / w2z 1 / s 2 + / / ) ne (-, ) Pdsda
0

S IF Nl Ulle+ 1 F 113,

using Young’s inequality, we get |U||3, < || F]|7,, as we wanted to show.
Lastly, since A is dissipative and 0 € p(.A), it follows from Lemma (1.4.3) that D(A) is
dense in .A. Therefore, the operator A satisfies the conditions of Lumer-Phillips Theorem
(see Pazy [25]) and the result of the proposition follows.

0
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The well-posedness of the problem (3.13) and therefore of problem (3.1)-(3.3) is a
consequence of semigroup theory. From Preposition (3.2.1) we can state the following
result.

Theorem 3.2.1. Under the hypotheses (3.4), for all U, € H, there exists a unique solution
to the system in the space (3.13) in the space

Uz, s,t) = eUs(x,s) € C([0, 00[; H).
Moreover, if Uy € D(A), then the solutions belong to the following space:

Ulz,s,t) = eUs(z,s) € C([0,00[; D(A)) N CH[0, cof; H).

3.3 Asymptotic behavior: Exponential Stability

We will study the asymptotic behavior of the semigroup e associated to the system
(3.6)-(3.8) under the hypotheses in (3.4). The results will be obtained using the spectral
characterizations for exponential stability of semigroups (see [21] or [32]).

We will demonstrate the exponential stability of system (3.1)-(3.3) in the case that
every elastic part of the string either connects only with the memory part or connects
with both types of dampings. Since the proof of the decay rate is similar in all these
cases, we focus on the proof considering the KEME model, which is given by (3.1)-(3.3)
considering

b($) - bOX[O,Ll]($) and a($) — QX [La,L3] ($)7 (330)

where ao, bo > 0.

The main result of this section is Theorem 3.3.1 and to prove this theorem we will
need to introduce some technical lemmas.

Let A\ ¢ Rand F = (f!, f2, f3(-,s)) T € H. In what follows, the stationary problem

(i — AU = F, (3.31)

will be considered several times. Note that U = (u, v, 7(-, s)) is a solution of this problem
if the following equations are satisfied:

iu—v = f! (3.32)
iAv — <Zz(-)um + /oo a()g(8)n.(-, s)ds + b(-)vm> = f3 (3.33)
iAn(-,s) +n.(-,8) —v = f3(-,s), (3.34)

with the following boundary conditions
w(0) = u(L) = v(0) = v(L) = 0,n(-,0) = 0in (0, L) and 7(0, s) = 0 in (0,00). (3.35)

Note that
(AU — AUY, Uy = iA||U |3, — (AU, U),

so, we have

—Re(AU, Uy < [[GAU = AU |[U I3 = [1E 21 U]l
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Therefore, we get

L
[T aodme gpaste 1 [ i0lpar < IFohe 630
0
Thus, from the definitions of a(x) and b(x) defined in (3.30) and from (3.36), we obtain
L
| velede < 1Pl Ul (3.37)
0

and

Lj
/ / )12 (-, 8)|Pdsdr < —— / $)|n. (-, 8)[Pdsdx
Lo

< ||F||”H||U||”H- (3.38)

From (3.32) and (3.37), we obtain

Ll L1 L1
/ ol 2z < |\ (/ |vm|2dx+/ |f;|2dx>
0 0 0

S T2 AF Il Ul + 11F15)- (3.39)

Furthermore, by Poincaré’s inequality and (3.37), we have
L1
| e S VLUt 1 (3.40)
0
Then, from (3.39)-(3.40), for |A| large, we have
L1
|0+ gl < 1Pl Ul (3.41)
0
Lemma 3.3.1. For |)| large, we have
L3
| el < 1l Ul
Lo

Proof. By substituting (3.32) into (3.34) and subsequently differentiating the combined
equation with respect to x, we can derive:

Z)‘nm(7S)+nsm(75)_2)\um:f§)(75)_le (342)

After multiplying (3.42) by A~'¢(s)u,, integrating over (L, L3) x (0, o0), then taking the
imaginary part, we obtain

L3
/ / 8)|ue|*dsdx
Loy
LS Lg o0
Im{/ / uxdsdx}JrIm{)\_l/ / g($)Ns2(, 8 uxdsdx}
LQ LZ
LS Lg o0
{ / / umdsdx} m{)\ 1/ / g(s) [, umdsdx}
Lo Lo



Preliminaries 61

Using integration by parts with respect to s in the above equation and using the hy-
potheses (3.4), we get

L3
g/ |, |2 d
L3 L3
=Im { / / umdsdx} + Im { / / )uzdsdx}
Lo Lo
L3
{ / / uxdsdx}
Lo
L3
+ Im { / / $) [y uxdsdx} (3.43)
Lo

Using integration by parts with respect to s, hypotheses (3.4), Young’s inequality for
e > 0, Poincaré inequality and Cauchy-Schwarz inequality, for |A| > 0 large and ¢ > 0
small, we get

be 2 be 2 L 1
3 [ ubdese [ e (CEBNT L) IFdUlbe
L

2 2

Therefore, for |\| large and for ¢ > 0 small and suitable, we obtain

L3
tA a2 < | FllsellU .

2

Lemma 3.3.2. For || large, we have
Ls

J.

Proof. Using (3.38) and Lemma 3.3.1, we get

Ls 2 L3
/ dxg/ |, |? dx+/ / $)n. (-, 8)|Pdsdx
Lo Lo Ly

SE U 2

2

de < [ Flla U

aumx+émmmmg%u@%

aun%+auy/mg@mawgﬁ

0

O

Lemma 3.3.3. Consider L, and Ls such that [L,, Ls] C

C (L, L3). Then, for |\| large, we
have

Ls
t/ w2 < | Fllsll Ul (3.44)
Loy

Proof. Let us consider an auxiliary funtion ¢, which satisfies ¢, € C''([Ls, Ls]), such that
0 < qi(z) < 1, forall x € [Ly, L] with ¢i(x) = 0if = e {Lg,Lg} and ¢ (zr) = 1if
x € [L,, Ls]. Multiplying Equation (3.33) by —qi(x) [, ¢ s)ds, integrating over
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(Ls, L3) and using integration by parts, since ¢;(L,) = ¢1(L3) = 0, we get

o [ [t st

2

-/ : (@ g oo [ gt s)ds) @) [ gt sydsis

2

+ /LLS ((@ — apJ)u, + ag /Ooog(s)%(., S)ds> (@) /O°° G(S)T=(-, 5)dsclx

23 o0
— Pq(x) / g(s)7(-, s)dsdz. (3.45)
Lo 0

From (3.34), we have
_i)‘ﬁ(VS) :E+F('7S) _ﬁs(VS) in (L27L3) X (0700)

Inserting the above equation in the left-hand side of (3.45), we obtain

Lj
i / a1 (@)oPdz
L

2

-/ " @ | st spisde - [ " @ | i syiss

2 2

v B (o= tao [~ ashntoos) o) [~ atomt.syisis

2

+ /LLS ((@ — aod)u, + ag /Ooo 9($)ma (-, S)ds> (@) /O°° G($)T (-, $)dsdz

Ly s
- [ ra / g((-, s)dsd.

Using integration by parts with respect to s, hypotheses (3.4), Young’s inequality for
e > 0, Poincaré inequality, Cauchy-Schwarz inequality and Lemma 3.3.2, for [\| > 0, we
get

L3
/L a1 (@)oPde < | FllslU

2

O

From Lemma 3.3.1 and Lemma 3.3.3, we have for [L,, Ls] C (Lo, Ls) the following
inequality

Ly
/ (o + a()lusPde < [ Fllal Ul (3.46)
L

2

for |A| large.
The following lemma will be used in the next lemmas.

Lemma 3.3.4. Let L1 < ap < By < L and Gy = a(-)us + [ g(s)a(-)n.(-, s)ds. For ||
large and ¢ > 0 small, we have

[0(B0) I + [v(a0)|* + [Gun(Bo)* + [Gun(ao)|®

L
< [ (o 16wl dr b U+ CONF U+ P (347
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Furthermore, the following inequalities are satisfied:

Bo
/ (ol 1 |Gu?)d

0

< [(eo) P + 1Gunlao)* + el Ul + CEOINF Il Ul + 11F 15 (3.48)

Bo
/ (ol 1 |Gu?)d

0

< [w(Bo)* + [Gun(Bo)* + el Ull3, + CEONF Il Ul + 11715 (3.49)

Proof. First, let us prove the inequality (3.47). From Equation(3.32) and Equation(3.34),
we deduce that

NG = 7, — I, (3.50)
Z)\ﬁI(P S) — %(7 S) — Uy — f_3(7 S)) in (O7L) X (07 OO) (351)

Let G, = a(us + [7° g(s)a(-)n. (-, s)ds. Multiplying (3.33) by (x — 2=t G, and
integrating over (ay, 5y), we get

Bo Bo
i)\/ <x _ 2o ;r 50) v@umdx — / <x _ 2o ;r 50) (Gum)m@umdaz
Bo
_ / <x— 0‘0;50> [2Cnd. (3.52)

0

Using Equation(3.50) and Equation(3.51), we have

- /jo <x _ Qo ;r 50) U/Ooo a(-)g(s)f2(-, s)dsdzx. (3.53)

Note that
Bo
_/ i) <x— aogﬁ()) vTrdx
Bo Bo
= —/ 0 <x— Oéo;rﬁ()) vmdx+§/ al-) <x— a0;50> vodx.
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Then, from the above equation and from (3.53), we have
A /50 <x _ 2o ;r 50) v@umdx
—//Bog<x— ao;rﬁo> vv_mdx—/ﬁoé(-) <x— a0;50> vfldx

' /ﬁ (=2 o [T atrgtematstdsde

_ /j (x _ o ; 50) U/OOO a(-)g(s)J3C, 5)dsda. (3.54)
Now, note that
o5
— 2 o) + o)) - 5 [ ﬁ olofds. (3.55)

Likewise, we have

Bo
Re{/ <x _ @ ;r 50) (Guﬁ,)x@umdaz}

(Bo — aw)

1 [P
— 0GB+ (Gunle)?) 5 [ |Guafde (356

Taking the real part in (3.52) and using (3.54)-(3.56), we obtain

o0 @)l 1 foton?) + 2 el + 160

L Bo
< / (|v|2+ |Gu,n|2) dr — Re {/ <x— ao;rﬁo> fQGU,ndx}
0 [s%

el [ (o2 i)
| Re{ /j <x R 50) v/ooo a(-)g(s)mdsdaz}
_ Re{ /j <x R 50) v/ooo a()g(s) TP (- s)dsdx?}.

To obtain the estimate of the terms on the right-hand side of the inequality above, simply
proceed in the same way as was done in Lemma 3.3.3 and use that |z — 20250 | < 2ot
for all x € [, fo]. Then, for |A| > 0 large and ¢ > 0 small, we get

[0(Bo)|* + [v(ao)* + |G (Bo)[* + G lao)|*

L
= /0 (10]* + |Guyl®) dz + ellU 15, + CEOIF Nl Ul + 1715

To get inequalities (3.48) and (3.49) we multiply (3.33) by (z — $)G.., and
(x — )G,y respectively. O
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Lemma 3.3.5. For |\| large and ¢ > 0 small, we have

2
/L ([0]* + [Gunl*)dz < Ul + CEIF I3l U I3 + 11715

1

Proof. From (3.46) and using Lemma 3.3.4 twice, we obtain

Ly i i
/L (10" + |Guy)d < Jua(La)[* + [o(La)* + €l U3, + CEONF Il Ul + [ F1l3,-

!
L

S /E:(|v|2 | Gug[)de + U3+ CONF MU 3+ IFI,

S ellUl + CEOIF N U2+ 1713,
for |A| large and ¢ > 0 small. W
Lemma 3.3.6. For |\| large and ¢ > 0 small, we have

L
/EZ (101 + | Gunl*)dz < el U3+ CONE Ul + 115

Proof. From Lemma 3.3.5 and using Lemma 3.3.4 twice, we obtain

L
//z (10" + |Guy)dr < Jus (L) * + Jo(L)[* + e U3, + CEONFIallU 13+ 1113,

2

:

< /le(lvl2 +[Guy*)de + €| U5+ CEOIF Il U5+ 11l
S ellUllz + CEONFl Ul + 113

for || large. O

The main result of this section is given by the following theorem.

Theorem 3.3.1. Let H and A be defined as before, considering the conditions of the KEME
model. Assume the hypotheses in (3.4). Then the system (3.13) is exponentially stable,
that is, there exists a positive constant ¢ such that

||6tAUO||'H S 6_€t||UO||H7 v UO € %7 t> O)

Proof. We apply Theorem 1.5.3 to prove the exponential stability. Pirst, let us prove
that iR C p(.A). For this, we will check

(1) Ker(iAl — A) = {0}, VIeR;
(2) RGA — A) = H, YAeR;
(3) (1M — A)~tisbounded, VA eR.

First, let’s prove (1). From Proposition 3.2.1, we have Ker(—.A4) = {0}. We need
to show the result for A # 0. Suppose there is a real number non-zero A and U =
(u,v,m(-,s))T € D(A) such that

AU = i\,
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this is, /' = 0 in (3.32)-(3.34). From (3.36), we get

7
/ / $) 7. (-, )|2dsdx+/ b() v, |2dz = 0;
0

a(-n.(-,8) =0in (0, L) x (0,00) and b(-)v, = 0in (0, ). (3.57)

we deduce that:

So, from (3.57) and the fact that (0, s) = 0, we obtain
n(-,8) = 01in (Ly, L3) x (0,00) and v, =01in (0, Ly). (3.58)
Inserting (3.58) in (3.32)-(3.34), we get
u=01in (L,, L3) and wu, = 0in (0, L). (3.59)

Since a(-) = 0 — a(+)g, from (3.58)-(3.59), we obtain
A + /Oo a(g(s)ma (- )ds + b(-)vs — oy, in (0, L), (3.60)
0

Therefore, from (3.60) and the fact that U € D(A), we get

Qum<d(')uz+ /Oma«)g(sm(-,s)ds+b<->vm> e I20,L).  (3.61)

x

Thus, we obtain
w € H*(0, L) and consequently v € C*([0, L]), (3.62)
From (3.59) and (3.62), we have
w(Ly) = ux(Ln) = w(lz) = ux(L2) = u(Lls) = ux(Ls) = u(l) = us(L) =0 (3.63)
Now, inserting (3.60) in (3.33)-(3.34), we get
N+ ouge = 0, in (0, L). (3.64)
From (3.63)-(3.64), we obtain
uw=01in (0, L). (3.65)
Inserting (3.65) in (3.33)-(3.34), we get U =0, and (1) is proved.
At moment, let’s prove (2). From Proposition 3.2.1, we have R(—.A) = H. We need
to show the result for A\ # 0. For this aim, let ' = (f!, /2, f3(-,s)) € H, we look for

U= (u,v,n(-,s))T € D(A) solution of (3.31), equivalently, of (3.32)-(3.35).
From (3.32),(3.34), and (3.35), we have

n(zx, s)
= i}\(z)\u — O — e +/ f?’(x,u)ei’\w_S)du, in (0, L) x (0, 00). (3.66)
0

?
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Inserting (3.66) in (3.33) and using (3.32) and that a(x) = 0 — a(x)g, we get

Fy— — Nu— {C(%)Uz + % /°° g(s)(1 — e—iAS)fidS}

- { / " al)gls) / s fg?(x,u)e“<“—s>duds} , (3.67)

where ¢(-) = 0 — af fo e~ ds +iAb(-) and Fy = f2 4+ idfl —b(-) fL

Multiplying (3.67) by ¢ e H 1(0, L), integrating over (0, L), then using integration by
parts, we get

— )2 / Luadx+ / c(- umgzﬁmder— / / (1 —e ™) flo,dsdx
+ / / / L2, e =g dudsde = /O Fogdx (3.68)

Note that, from (3.68), we obtain

Gu,¢) = J(¢), Vo€ Hy0,L), (3.69)
where
with
L e L .
0u(w.d) — [ clyuude.  Guug) — ¥ [ i, 3.7D)
and

L [eS)
1) = [ e [ [ a0 - e ptpasar
— La- h s ) 3, 1) e =90 dudsdx 3.72
i ()0 g()ofm(,u) Gxdpt (3.72)

Let us consider the following operators,

{@ . HY0,L) — H7Y0,L) {@1 © H0,L) — H™Y0,L)

u —  G(u) u —  Gy(u)
and
Gy : HNO0,L) — H7Y0,L)
u —  Go(u)
such that

G(u,¢) = Glu,¢), Vo€ H;(0,L)
Gl(uagb) - gl(uygb)) VQS S H(}(())L)
GQ(U,QS) - g2(u7¢)7 VQS S H(}(())L)
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If G is an isomorphism and J is a antilinear on F; (0, L) and, furthemore, .J is continuous
from H}(0, L) to C, then we get Equation (3.69) admits a unique solution u € H}(0, L)
and consequently (2) will be proven. In fact, if u € H;(0,L), then v = idu — f! €
L?(0, L), because f! € L?(0, L). Furthermore, from (3.33), we get

<&(')um +a() /Ooog(S)nm(-, s)ds + b(-)vx> =i\ — f* e L*0,L).

x

Similarly as we did with (3.19), we can show that 5(-, s) defined by (3.66) belongs to
G, and n,(-,s) € G, since v € Hy(0,L) and f*(-,s) € G,.Thus, we can conclude that
Equation(3.31) admits a unique solution U € D(A).

Therefore, our goal is to prove that G is an isomorphism operator and that and that
J fulfills the conditions mentioned above. To do this, we will show:

(i) Ker{G} = {0}; (ii) G, is compact; (iii) G; is an isomorphism.

Note that by proving the above items, we will be able to prove that G is an isomorphism.
In fact, from (ii) and (iii), we get that the operator G = G, + G, is a Fredholm operator.
From (iii), we have that G, is a Fredholm operator of index zero and from (i) we have
dimN (G) = 0. Then, we get

0 = indG; = indG = dimN (G) — codimR(G);

this is, codimR(G) = 0, how R(G) is closed (G is Fredholm), we concluded R(G) =
H=Y(0, L). Then, as G is injective, surjective and continuous (G is Fredholm), it follows
by the closed graph theorem of Banach that G~! is continuous, and therefore, G is an
isomorphism.
With that in mind, let’s now prove the three items mentioned.

Proof of (i): Let ug € Ker{G}, i.e.

g(UO,QZS) - O) VQS S H(}(())L)

Equivalently, we have

L L
/ c()uorprdr — )\2/ uppdr =0, V¢ € Hy(0,L).
0 0

Therefore, taking ¢ € C°(0, L) and using C2°(0, L) = H(0, L), we get
—Xup — () (uo)ee = 0, with  up(0) = uo(L) = 0. (3.73)
From (3.73) and using ug € H}(0, L) and that |1 — e=*¢| < 2, for s € (0, c0), we get
Us = (uo, idug, (1 — e o) " € D(A) and i\Uy — AU = 0. (3.74)

Therefore, and by (1), we have U, € Ker(iAI — A) = {0}, this is, Uy = 0, consequently,
uo = 0 and Ker{G} = {0}. Thus, (i) is proved.
Proof of (ii): By Holder’s inequality, we have

1Ga(u, 9)| £ Cllull 201 |9l 22001, Vo € Hy (0, L).

Thus, we obtain

1G2(u)|g-1(0,0) S el z2(0,1)- (3.75)
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Now, consider (u,) € Ha(0,L) bounded. From the compact embedding of (0, L) in
L?(0, L), we have that (u,,) converges in L?(0, L) up to a subsequence. From (3.75), we
get

G2 ()l =100,y < lunllz2,),

this is, G, (u,,) is a Cauchy sequence in /~1(0, L), and therefore, converges in H~1(0, L)
up to a subsequence. Thus, by definition, G, is a compact operator. Thus, (ii) is proved.

Proof of (iii): note that by (3.4), we have |c()| < 1 and using the Holder’s inequality,
we get

G1(u, D) < Nl o, 1201 2o,y
this is, G; is continuous. Now, using Poincaré’s inequality, we get

L
Re{Gy(u, u)} — Re { / c<->|um|2dx} > Cllullo,
0

for some constante C' > 0. Therefore, G, is coercive. Furthermore, it is easy to see that
G is sesquilinear form on H}(0, L). Then, by Lax-Milgram theorem, the operator G, is
an isomorphism. Thus, (iii) is proved.

It is easy to see that operator J is a antilinear on H}(0, L). Furthemore, note that,
by Hoélder’s inequality, we have .J is continuous from /;(0, L) to C. Therefore, G is an
isomorphism. Thus, (2) is proved. Thus, (3) and, therefore, iR C p(.A), how we wanted
to show.

Finally, let’s prove (3). It is easy to verify the (iA — A) is closed for all A € R, because
A is closed. Furthermore, since (:A — A) is linear, injective (by (1)) and surjective (by
(2)), we can to conclude that the graph of (s\] — A)~! is closed. Consequently, by closed
graph theorem of Banach we can deduce that (iA\] — A)~! is bounded for all X € R.

Now, let F' € H and consider U = (u, v, n(-,s)) solution of (i\[ — A)U = I, i.e, the
system (3.32)-(3.35) is satisfied. To show the exponentially stability, it is sufficient to
show That ||U]|y < || F|l%. In order to obtain this estimate, we use hypotheses (3.4) to
deduce a(-) > o0 — aog. Recalling as well that G,,,, = a(-)u, + [, g(s)a(-)n.(-, s)ds we

obtain
/LL <|U|2dx+&(-)|um|2)dx5 /LL(|U|2+ Q—la g a(.)uﬁ/“’g( Vo) (-. $)ds 2>dx

Lj
/ (o 1 |GuglP)d + 540 / / ) [1a (-, ) sl
L1 Lo
(3.76)

So, from (3.38),(3.41), (3.76), Lemma 3.3.5 and Lemma 3.3.6 , we get

12, — / (ol + a() Py 1 / (oPdz + a()|us)dx

Ly

Lj
+ao/ / $)|n.(:, s |dsdx
Loy

S U+ CONF IVl + 1F 113,

for |A| large and ¢ > 0 small. Thus, using Young’s inequality, taking |\| large and a
suitably small ¢ > 0, we obtain

102 < 1E |,

as we desired to prove. O]
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3.4 Asymptotic behavior: Polynomial stability

To show the polynomial decay of the solution for the system (3.1)-(3.3) we use a
result due to Borichev and Tomilov ([7]). Here we consider the cases where at least
one of the elastic parts of the string (with no dissipation) connects with only the Kelvin-
Voigt damping. We focus in investigating the stability of the EKEME model because the
EKIME model and other cases are similar. We recall that the EKEME model is given by
(3.1)-(3.3) considering

b(x) = boX[r1,1.)(x) and a(x) = aoX(rs,r.(x), ao,bo > 0. (3.77)

The main result of this section is Theorem 3.4.1 and to prove this theorem we will
need to introduce some technical lemmas.
Analogously to what we did in (3.36), we have

Ly
/ / ) e -, ) Pdsdz < | Fllal| Ul (3.78)
Lj

and
Loy
/ P < 1P U . (3.79)
L1

Moreover, from (3.4) and (3.78), we obtain

Ly
/ / )12 (-, 8)|Pdsdr < —— / $)|n. (-, 8)[Pdsdx
Lj

< ||F||”H||U||”H- (3.80)
Now, from (3.32) and (3.79), we get

Lo Lo Ly
/ Q|um|2dx5|)\|_2</ |vm|2dx+/ |f;|2dx>
Ll L1 L1
S IANT2UFNllU e+ 1 FN3)- (3.81)

Proceeding in the same way as in the proof of Lemma 3.3.1, we get

Lg
/ aO)lusPde < 1F 5l Ul (3.82)
L

for |A| large. ) o
Consider L3 and L, such that L3, L4] € (Ls, Ls). Then, using (3.82) and proceeding in

the same way as in the proof of Lemma 3.3.3, we have

Ly
/ (o + a()lusPde < [ Fllal Ul (3.83)
L

for |A| large.

Lemma 3.4.1. For |)| large, we have

Lo
/L (@), + b(@)v,|* de < | F|allU s+ 11F 13,

1
/L4
LS

and
2

i)+ / a(@)g(s)na(,s)ds| de < [Pl Ul (3.84)
0
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Proof. Using the definitions of ¢ and b given in (3.77), as well as the definition of @ and
the estimates in equations (3.79) and (3.81), we get

Lo
/L (@), + b(@)v,|* de < | F|allU s+ 11F 13,

1

for |A| large. The equation (3.84) is obtained in the same way as was done in Lemma
3.3.2. 0

Lemma 3.4.2. For |)| large, we have
Mole(ryn0) S DEI#IT 3+ IF IS0+ 1F 3
Proof. From Equations(3.33), (3.79), and (3.81), we get

IANolla=121.20) S Nwall 2oy no) + 10ell2zn,ne) + 122202000

1 1
SIFNZNO 3+ 11 (3.85)
Using Interpolation, inequalities (3.79) and (3.85) and Young’ inequality, we get

||U||L2 (L1,L3) ~ ||U||H Y(L1,L9) ||U||H1 L1,Lo)

= (||F||H||U||H F1F ) ez ey + o2 z0,1)

S
1
< 7 (I IUTh + DFIIU 1)
Cle
+ A UF U IFI) + el

for |A| large and ¢ > 0. Considering an appropriate ¢ > 0 small enough, we obtain

3 1
M2y Ly S IE I U N2+ TEIZIU, + 11,
for || large. M

Lemma 3.4.3. We have
I 3/21 771 1/2
2
| Celual oz 5 P2 (POl + IFVIUNE + IPIIO1E) + 1)
0

for |\ large.

Proof. Using integration by parts, we deduce that

5/ olu.|*dxr = —Re {/ qu_zumdx} + ?Q|um(L1)| . (3.86)
0 0

In order to estimate the firs term on the right of the previous equation, we multiply
Equation(3.33) by xwu, and take the real part to get

L1 L1 In
—Re {/ qu_xumdx} — Re {2)\/ xvu_xdx} — Re {/ fou_xdx} . (3.87)
0 0 0
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Using once again integration by parts, it follows that

L1 Ll L1
/ lv|2dx = ?|U(L1)|2 —Re {Q/ xvv_xdx} (3.88)
0 0

We wish to estimate the last term, for which we use Equation(3.32) to deduce

Ly Ly Ly -
Re {/ xvv_mdx} = —Re {2)\/ xvu_zdx} — Re {/ xvfg}dx} (3.89)
0 0 0

Substituting (3.87) in (3.86) and (3.89) in (3.88) and taking the sum, using as well
Holder’s inequality, we obtain

Ly
/ (olual? + [0]?)da
0

L1 - Ll
% [Q|uz(L1)|2 + |U(L1)|2} — Re {/ xvfg}dx} — Re {/ xf2u_mdx}
0 0
S Lo+ F (3l U] 2 (3.90)

where [, denotes

f= T2 () 4 o (L) + b (L))

We use integration by parts to estimate the first term in 7,

Ly— 1L b2 -
%w(&)ﬁ — Re {Q/ (Ly — :c)mdx} + g/ |of*dx (3.91)
Ly Ly

By Equation(3.32), we deduce that i u, — 7, — f! and therefore multiplying by
o(Ly — x)v, integrating in (L, L,) and taking the real part we obtain

Lo
Re {Q/ (Ly — x)v@dx}
Ly

— —Re {Q/LLQ(LQ — x)v(—i)\um)dx} —Re {Q/LLQ(LQ — x)vf_g}dx} (3.92)

1 1
We use also integration by parts to estimate the second term in /,,

Lo

1 1 d
—(L2 — L1)|Q’LL$(L1) + bovm(L1)|2 — —Re —/ (L2 — $)—|qu + bovm|2dl'
2 2 L d.fC

1

1 [l
+ 5/ | o + bov,|*d. (3.93)
L1

Multiplying Equation(3.33) by (Ly—x)(ou. + bov. ), integrating in (L, L;) and taking
the real part, we arrive at

1 LQ LZ
Re {— / (Ly — x)i|gux + bovm|2dx} = Re {/ i Ly — x)v(ou, + bovx)dl“}
2 Ly dzx L.

Loy
— Re{ / (Ly — ) f*(ous + bovm)dx}.
L1
(3.94)
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On the other hand, by Lemma 3.4.2 and Equation (3.79), we get

Lo
Re{bo/ iA(Ly — x)v@dx}
Iy

Lo
< bolA[2 / el (A o]y de
L

1
Lo 1/2 Lo 1/2
s ([ ear) ([ opa)
L1 Ll
1/2 1/2 1/2 1/2 3/4 1/4
< IMIF 052 (VFIN0 12 + LFIS N0+ 1)

< A2 (1P el Ul + D E SO R+ 115710157 (3.95)

So, from (3.91)-(3.95) and using Lemma 3.4.1 and Lemma 3.4.2, we get

0 Lo 1 Lo Ly —
I, _/ |v|2dx+—/ |Qum+bovz|2d$+Re{Q/ (L2—$)Ufm1d$}
2 Iy 2 L

Ly 1

Lo
+ Re {/ (Ly — x)fQ(qu + bovm)dx}
L

1

Lo
—Re {bo/ iNLy — x)v@dx}
Iy

< M2 (P el + IEI NS+ IE 20132 -+ 1P (3.96)

for |A| large.
Therefore, from (3.90) and (3.96), we have

Iy
/ (olual? + [0}
0

% [Q|UI(L1)|2 + |U(L1)|2} —Re {/OLl xvf_g}dx} — Re {/OLl xf2u_mdx}

< Lt 1P U
5/4 3/4 3/2 1/2
< M2 (N FIslU e+ DFINO I+ IEIIUN) + 1P I,

for |A| large, as we desired to prove. O
The following lemma will be used in the next lemmas.

Lemma 3.4.4. Let ¢ € C*(|0, L]) be a function with q(0) = (L) = 0. Then, we obtain for
e >0,

/O ¢ () (Jo? + W () ) da

< Re { /O C ) P n)dx} _Re {m /O ’ b(-)q(x)vmx}
+c[UNF + CONF | Ul

where W (u,n) = a(-)u, + f;° a(-)g(s)n.(-, s)ds + b(-)v.
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Proof. First, from Equation(3.32) and Equation(3.34), we deduce that
iINT; =~y — f1 (3.97)

x?

Z)‘ﬁm(ﬂs) — m(; S) — Uy — f_5(7 S)) in (O7L) X (07 OO) (398)

Multiplying Equation(3.33) by ¢(x)W (u,n) and integrating over (0, L), we get
L o L o L o
i [ o nde - [ @ Watw W = [ g W nde. 6.9
0 0 0
Using (3.97) and (3.98), we have
L JEE—
i)\/ q(x)oW (u,n)dx
’ L L [°S)
i)\/ &(-)q(x)vu_mderi)\/ q(x)v/ a(-)g(s)n. (-, s)dsdx
0 . 0 0
+2)\/ q(x)b(-)vvydx

/ / §)Nse (-, 5 dsdx—/OLd(-)q(x)vv_mdx

3 / o Yg(x)vTrda — / “a( gy i

/ / T30 s)dsdx + iA /O ¥ @b () omd.

Since a(-) = 0 — a(-)g, note that

_ /OL@(-)q(x)vde = —Q/OL q(x)vozdr + g/oLa(-)q(x)vde.

So, we have

M/L (x)oW (u, n)dx

L
/ / $)Nsa (v, 8 d5d$_Q/ q(x)vt,dr—
0

- / (0 — a()3)ala)oTidx + iX / o(2)b( )T,

/ / dsdx (3.100)

Since ¢(0) = ¢(L) = 0, we have

L L
—Re {Q/ q(x)v@dx} = Q/ @h}ﬁdaj, (3.101)
0 0

_Re {/OL ()W, (u, )W (u, n)dx} - /OL q'(;) W (u, ) [2dx. (3.102)

and




Preliminaries 75
Taking the real part in (3.99) and using (3.100)-(3.102), we obtain

/O £(@) (o] + (W () P) da

< Re{/L () [T (1, n)dx} {M/OL b(-)q(x)vmx}
—re{ [Matwe [ a0t sitsir v [0 gt
+ Re {/ / )dsdx}

Next, we will estimate the terms on the right hand side of the above equation. To do
this, we will utilize integration by parts with respect to s with the help that 5(-,0) = 0,
the Young’s inequality, Poincaré inequality, Cauchy-Schwarz inequality. Note that

Re{ / / SUme )dsdx}

[t / (Vs

/L j4aoq(x)v /O s

< [ waenl( [ o) ([Tsomin dsfdx

< [max |g(x)]go <€/L aolv|*dx + C(e /LL / $) (-, )|2dsdx>
/ []2da + C(e /LL/ sl ) Pdsde

S elUl + CONEF U,

S

Ne (-, 8)dsdx

where in the latest inequality we utilize (3.78). The other terms can be estimated
analogously as in the proof of lemmas 3.3.1 and 3.3.3. Therefore, we obtain

/O 7@ (o + W) ?) da

<Re { /O Lq(x) W (u, n)dx} — Re {M /O ’ b(-)q(x)vmx}

+ U5, + CONF )| Ul
O
To address the next lemmas, let us consider Ly, L,, L; and L, such that [Ly, L,| C

(L1, L) and [Ls, L] C (L3, Ly). Also, we consider a function ¢; satisfying ¢; € C'([0, L]),
where gs(x) = 0 for all « € [0, L] U [L4, L] and ¢4(x) = o > 0 for all & € [La, Ls].
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Lemma 3.4.5. For |\| large and ¢ > 0 small, we have

[~/3 2
/ lv]? + dx
Lo
5/4 3/4 3/2 1/2
< Y2 (Ul + NIV I+ P12 1013

+ellUN5 + 17115
Proof. Using the result of Lemma 3.4.4 with ¢3(x) and definition of W (u, n), we get

Lg%uﬂom2% )m
< _/E “ah(@) (0P + lous + bovs ) da
—/E 4@3(@ <|U|2+ &(')um+/ooo a(-)g(s)n.(-, s)ds )dw

Lo - e
+ Re {/ g3(2) f2(ous + bovm)dx} + Re {/ Q%(x)fQU_xdx}
L L

2 2

+Re{lj}d$ﬁqcﬂﬁw*tAMGOQQWAw@¢§d$}

Lo
~refir [ manCayorzde h + U+ 1F TVl
L

2

MMu+[fammgmm@m

MMu+[fammgmmgw

Using Cauchy-Schwarz inequality and Poincaré inequality in the above equation, we

obtain
2
) dx
2
) dx
2

LS%uWFF+
MMw+[fammgmmgw
dr 1 e|UIZ 4+ | FllslU e

MMu+[fammgmmgw

Lo E4
S / ([0 + | ot + bove]?) dx+/ v]? +
Lo I

Lo Lo Lo
+/ | f2|?dx +/ oty + bove|2da + i)\/ bogs(x)vvLdx
o I I

Ly Ly 00
[P [t [ abgtsin s
L3 Ls 0
Following a similar approach to Rivera et al. ([3]), we have the following estimate

Lo
i)\/ bogs(x)vugdr| <
I

2

A (UE U e+ IE I DO+ IEISNU 1)

Therefore, from the above inequality and using (3.83) and the Lemmas 3.4.1-3.4.2, we

obtain
2
<|v 2+ ) dx

5/4 3/4 3/2 1/2
S| 1ﬂmmewH+ww/ww4+wﬂwnmw)+wm&

AMMMGMAAMS

~

+ellU13,
for |A| large and ¢ > 0 small. O
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To address the next lemmas, let us consider [Ls, Ly] C (Ls, Ls). Also, we fix ¢, €

C'(]0, L)), where g4(x) = 0 for all z € [0, Ls] U {L} and ¢,(x) = ¢, > 0 for all = € [Ls, L|.
Lemma 3.4.6. For |\| large and ¢ > 0 small, we have

/; <|v|2+ 2) i

5/4 3/4 3/2 1/2
< M2 (IF sl e+ DFISLNO I+ IFIRENO7) + 1,
U

Ao T / " a()g(sne (-, s)ds

Proof. Using the result of Lemma 3.4.4 with ¢(x) = ¢4(x) and definition of W (u, n), we

get
/ e <|v|2 ¥

</ e <|v|2+ ) dr

+Re { [ (a6 [ atratsine o) dx}

+ e|U]5, + CENFllallU |- (3.103)

iy, + / " a()g()ma( 5)ds

iy, + / " a9 5)ds

Using Cauchy-Schwarz inequality, Holder’s inequality and Lemma 3.4.1, we have

Re { / ) (a0 + [ atomt, s)ds)dx} \

[ (a0 + [ abiatein.eopds o

3

<

~

L
+ / 0qa(x) f*uydx
L

4

S FallU 3 + 1713, (3.104)

Using (3.104) and Lemma 3.4.5 in inequality (3.103), we get

L 2
/ <|v|2 + ds) dx
L

5/4 3/4 3/2 1/2
< I (PO e+ P NV 5L+ 1PN 152) + 11
el

il + / (g5l )

for |A| large and ¢ > 0 small. O
The main result of this section is given by the following theorem.

Theorem 3.4.1. Let H and A be defined as before and assume the hypotheses in (3.4).
Then, the EKEME model is not exponentially stable. Moreover, the semigroup e of system
(3.13) decays polynomially with the rate t=2, that is

||6tAUO||'H < t_2||UO||D(.A)7 v UO < D(A)7 t> 17
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Proof. The proof is based on Theorem 1.5.4. Using the same arguments as in the proof
Theorem 3.3.1 we can show that iR C p(A).

Now, let F' € H, consider U = (u, v, n(-, s)) solution of i A\[—A)U = F, i.e, the system
(3.32)-(3.35) is satisfied. To show the polynomial decay with the rate t=2, according to
Borichev and Tomilov’s Theorem (see Borichev and Tomilov [5]), is sufficient to show

U |3 < INY2F ||,

for |A| large.
Using the assumptions in (3.4) as was done in (3.76), we have

(/Q (oPdz + () us?)de

2

L 2
< / <|U|2 ) dx
Lo

Ly
+ gl/2ao / / )0 (-, 8)[Pdsda. (3.105)
L3

a0w+/m<M@muww

Therefore, from the above equation, Lemmas 3.4.2-3.4.3, Lemmas 3.4.5-3.4.6 and Equa-
tions(3.80)-(3.81), we obtain

|uw%[fzam2+a«nuuﬂdx+t/ (Iof? + () dx*b/ /‘ (-, 5)|dsd
< I (IF Il + IER U1+ IF RPN -+ 1F I
for |A| large. Thus, using Young’s inequality, we obtain
IO < (I Y2 AP 4 1) )15, < I,
for |A| large. Therefore, we get
101l < A2l

for || large. M

3.5 Optimality of the decay rates

In this section we show that the decay rate obtained in Theorem 3.4.1 is the best. We
recall that Theorem 3.4.1 was proved for the EKEME model, but the proof is similar for
the cases where at least one of the elastic parts of the string is connected only with the
Kelvin-Voigt damping leading to the same decay rate. In order to prove the optimality
it will be necessary to separate in two cases. The first case is the EKEME model, already
introduced, considering in problem (3.1)-(3.3) that

b(l’) = bOX[Ll,LQ](m) and a(x) = Q0X|Ls, L] () ao,bo > 0.

and therefore we assume that the supports of the viscoelastic dampings do not intersect.
In the second case, we consider

b(l’) - bOX[Ll,LS] ($) and CL(I’) = Q0X|[Ly,L4 ($)7 ag, bo > 0.
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Thus, both the Kelvin-Voigt and memory type dampings are effective in the interval
(Lo, L3). We refer to this model as EKIME model to emphasize the intersection of the
supports of the viscoelastic dampings. The EKEME and EKIME model are shown in
figure 3.1.

Theorem 3.5.1. Assume that the kernel g(t) = goe " satisfies the hypotheses in (3.4).
Then, the polynomial decay rate obtained in Theorem 3.4.1 for the EKEME model, which is
also valid for the EKIME model, is optimal in the sense that the semigroup does not decay
with the rate t~* for s > 2.

To prove the above theorem, we need to state and prove some important results.
Let A\ € Rand F = (f!, f2, f3(-,s)) T € H. In what follows, the stationary problem

(i — AU = F, (3.106)

will be considered several times. Note that U = (u, v, 7(-, s)) is a solution of this problem
if the following equations are satisfied:

idu—v = f (3.107)
iAv — <Zz(-)um + /00 a(-)g(s)n.(-, s)ds) + b(-)vl«) = 12 (3.108)
i)‘n('75)+ns('75)_7}:fg('75)7 (3.109)

with the following boundary conditions

u(0) = u(L) = v(0) = v(L) = 0,n(-,0) = 01in (0, L), n(0,s) = 01in (0,00).  (3.110)

b(x) = boX|L,Lo)) aNd a(x) = aoX(Ls,L4)(x),
Here, consider the following relaxation function ¢ that satisfies the conditions in (3.4)
g(s) = goe™®*, Vs> 0. (3.111)
Fori=1,...,5, we consider
Uy = UX[L_1,Ls]s Lo =0, Ls= L.
We have the following lemma

Lemma 3.5.1. Consider F' = (0, (0h)x (0,1, (x),0)?, in system (3.106), for a function h to
be chosen later. Then, the system (3.106) can be written as

(u1)ge + Cuy = —h(x), x & (Lo, L),
(Ui) 2z + C2u; = 0, ze(Lic, L), i=2,...,5

with boundary conditions

w(0) =w(L) =0, w(L;) = w1 (L), oi(w)(Ly) = opp1(uwiyr)e(Li), i=1...4.

)\2

0Go=— =—"—;
0 0+ boid 0~ 3

apg(0)
co + A ’

01 — 05 — 0, 02:Q+boi)\, 04 — 0 —
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For case 1:

For case 2:

A2 0
@Z a and 03— 90— aog(.)
0— cgim + ibo A o + @A

+ b .

Proof. We will show the proof only for case 1, since case 2 follows in a similar way:.
Given that f!' = f?(-,s) = 0 and f? = (oh)x(0,z,)(x), where h will be chosen later, then,
from (3.109), we deduce

N 8) = u(l — ™). (3.112)
Using (3.112) and that a(z) = o — a(x) [, g(s)ds, for x € (Ls, L,), we get

i)+ alo) / " g, s)ds — (0 — aog)u, fora € (Ls, Ly),

where g = [.° g(s)e=**. Furthermore, from (3.111), note that

. > Cids g = —(eotiN)s g apg(0)
— Qogr = 0 — s)e " ds = o — 0)e ds = ¢ — e
0 — aogr = @ /O g9(s) 0 /O 9(0) 0= o

From (3.107) - (3.109), we have v = i\u and

2wy =—h, in (0,L);

(ul)mm + 0

(u2)mm + Q+ZZO>\U2 O in (Lh L2)7

(t3)zx + 23 = 0, in (L, Ls);

(u4)mz + Uy = O, in (Lg, L4)7

A
0—aogx

(U5)mz + A—2U5 e O, in (L4, L)

\ 4

with transmission condition

uy(Ly) = ua(Ly), ou1, (L) = oug,(Ly) + bovay (L),

uz(Lo) = us(L2), Uy (L) + bovar (La) = ousy(La),

us(Ls) = ug(Ls),  ouse(Ls) = a(-)usa(Ls) + ao fy g(s)na(-, s)ds,
ug(Ly) = us(Ly), a(-)uaz(La) + ao fo $)Nx (-, 8)ds = ousy(Ly),
and boudary condition u;(0) = 0, us(L) = 0. O

The following result will help us find an estimate for the system in Lemma 3.5.1.
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Lemma 3.5.2. Let h € L?(0, Ly). Fori=1,...,5, let us consider the following system

(U1) g + Oy = —h(x), =€ (Lo, L1),
(uz)mm+€z2uz:07 $€(Li—1;Li), 1=2,...,5

with boundary conditions
uw(0) =u(L) =0, w(ls) = wip1(Ls), 0i(ui)e(Li) = oip1(wira)e(Ls),

We have

A2 A2 A2
G=G== L=—T G=—7
0 0 + boiA o — s
apg(0
oy =05=0, 02— 0+byi\, 04— 0— cooi(lg\
For case 1:
)\2
(=" and o3=0
For case 2:
)\2 0
- and o5 —o— 290 Ly
— 209® 4 oA co + A
co+iA
The solution of the system is given by
sin(¢yx) 1 sin(fyx) 1
=u({L — Hy(Ly) — —H .
U1($) U( 1)sin(€1L1) + 61 sin(ﬁlLl) 2( 1) 61 2($)

where we have the estimate

loyHy(Ly)]
|W1 Sin(€1L1)| ’

with W1 = 0'161 COt(glLl) — 0'262 COt(gg(Ll — Lg)) and

u(ln)] ~

Hi(x) = /Om sin(fys)h(s) ds, Hy(x) = /Om sin(¢1(x — s))h(s) ds.

(3.113)

(3.114)

(3.115)

(3.116)

Proof. Solving the stationary differential equations with boundary conditions «(0) =

u(L) = 0, we have

B sin(¢yx) 1 sin(fyx)
wlr) = U(Ll)sin(ﬁll}l) + Zsin(ﬁll} )H2( 1)~ _H2(x)

() = u(Ly) Ssiinn((éz((gl— L2)))) W) Ssilnn((éz((zfz—_ 1)))) |
ZM”“MQEﬁZ % “%ﬁiﬁiiﬁg’
us() — (L )Sf;n((f((i—_%g)))
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Using the transmission conditions o) (L) = oqub(L1) we have

1
O'1€1’LL(L1) COt(ﬁlLl) + o1 {COt(ﬁlLl)HQ(Ll) — g—Hé(Ll)}
1

O'2€2’LL(L2)

—= O'2€2’LL(L1) COt(ﬁg(Ll — Lg)) + Sin(€2(L2 — Ll)) .

Since
H(t12) H () — - Hy(w) = ———Hy ()
COMPIT) H2AT ¢ 2\ = sin(¢,x) 1,
we obtain
UlHl(Ll) o O'2€2’LL(L2)
orbyu(L) cot(frLy) = - N alau(Ly) cot(b2(Ly — L)) + e — L)
this is
UlHl(Ll)
B EE—— .11
Wlu(Ll) -+ UQU(LQ) sin(ﬁlLl) s (3 7)
where
Wi = 01y cot(b1L1) — ooly cot(ba( Ly — La)), U = il
1 = 01t1 COULL L1 L7 O2£2 COL L2\ L1 2))s 2isin(€2(L2—L1))'
Using the transmission conditions oqub (L) = osuf(L2), we get
O'2€2’LL(L1)
L Lo — L
Sin(€2(L1 — L2)) + O'2€2’LL( 2) COt(ﬁg( 2 1))
O'3€3’LL(L3)
— Lo — L .
O'3€3’LL(L2) COt(ﬁg( 2 3)) + Sin(gg([/g — Lg))
from where follows that
UQU(Ll) + WQU(LQ) + U3U(L3) — O, (3118)

where

0353

W2 = 0'262 COt(€2(L2 — Ll)) — 0'363 COt(ﬁg(LQ — Lg)), U3 = sin(€3(L3 _ L2)) .

Using the transmission conditions osu}(Ls) = oqu)(L3) we get

O'3€3’LL(L2)
sin(f3(Ly — L3))

+ o3lsu(Ls) cot(€3(Ls — L))

O'4€4’LL(L4)

= o4lqu(Ls) cot(ly(Ls — La)) + sin(€a(La — L))’

from where follows that

U3U(L2) + Wgu(Lg) + U4’LL(L4) = O, (3119)
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where

g 454

Wg = 0'363 COt(ﬁg(Lg — Lg)) — 0'464 COt(€4(L3 — L4)), U4 = Sin(€4(L4 _ Lg)) .

Using the transmission conditions oyu)(L4) = osut(Ly), we get

O'4€4’LL(L3)

sin(f4(Ls — Ly)) + oubyulLy) cot(€4(Ly — L3)) = os5lsu(Ly) cot(ls(Ly — Ls)),

from where follows that
Usu(Ls) + Wau(Ly) = 0, (3.120)
where
Wy = o4bycot(by(Ly — L3)) — 055 cot(€5(Ly — Ls)).
Solving u(L3) (from (3.119)-(3.120)) in terms of u(Ly), we get
|:W3 Uﬂ |:U(L3):| B |:—U3U(L2):|

U4 W4 U (L4) 0
this is
—UsWa
Ls) = L)
ulls) = gy — k)

Solving u(L;) (from (3.117)-(3.118)), we get

|44} U {u(l}l)} {Ho} o H(Ly)
UZW; = , Hy = —7,
Us Wa = gz | Lu(Le) 0 sin(¢, L)
this is
HoWy . UZW,
)= —— th Wo =Wy — ———.
b)) = o M T T W, — 02
We consider ag > 0, such that
a; Qg .
— 12 — Z =1,2 3.121
% (2t S gz i1 (3.121)
where
Ly — Ly " Ly — Ly
a; = , = )
L L L

We take A = \,, where

An :$<2wn+&> = A\, =~
1

From (3.113)-(3.114), note that

)\2
Uz[i:ﬁ_?’ Zil,,5
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¢ Our objective will now be to estimate the terms that involve: ¢, and ¢5. Note that
€1 ~ €5 ~ )\n

Furthermore, ¢, L, = 2n + <&, we have

sin(ﬁlLl) = sin ﬂ ~ )\;1/2 = 0'161 COt(glLl) ~ )\2/2
Vn

¢ Our objective will now be to estimate the terms that involve: ¢, e ¢4 .
Note that, if

¢=x+iy and = A+iB=az*—9*+ i2xy,

then
$2:A+\/m y2:_A+mA§O B? .
2 ’ 2 2(A + VA% + B?)
Since
€2 - )‘721 o )‘721(@ - bOZ)\n) - A + iB
27 04 boide 2+ (boM)? O C »
we have A, ~ 1 and B, ~ \,. Then
Rely ~ A2 Imly ~ N2, (3.122)
Since
2 S Anlco +i)n) (eco — aog(0)) — ifAn
too- % (0co — apg(0)) + toAn | (0o — aog(0)) — igA,

_ An(eoloco — agg(0)) + (0An)? — iaog(0)An)
(0co — a0g(0))? + (0An)?
— Ay +iBy,

we have that Ay ~ \? and B, ~ \,. Then
Rel, ~ A,, Imé, ~1.
2

On the other hand, since o;¢; — %,

i = 2,4, from the previous estimates we have
ool = AL 44),  ouly = Ay + 1.
In that follows, we use the identities

[sin(u -+ in) [ = sin®(1) + sinh® ().
(3.123)

cos(p) sin(p) — 7 cosh(n) sinh(n).

It 7)) =
cotlp 1 in) cosh?(n) — cos2(p)
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Since ¢, ~ )\i/Q(l + i) we can write lo(Lo — L) = )\711,/2(/,52777, + i) With o, ~ 1 & na,.
Then, we have
1

|sin(fa(La — L1))| 2 |sinh(\?n20)] = U] S : 72 — 0.
| sinh(An “n2. )|

Moreover, we also have
cot(lo(Ly — L)) ~i ==  oalycot(la(Ly — L1)) ~ A2 (144).  (3.129)
Since ¢4, ~ A\, + i we can write ¢4(Ly — Ls) = Appian + inapn With g, ~ 1 &~ 1y,,. Then
|sin(y(Ly — L3))| =1 = |Us] = Ay
Writing cot(¢4(Ly — L3)) = pn + ig,, we have

Since o464 ~ A\, + i, we can write o464 — 1\, + 18, Where r,, & 1 &~ s, then

o4ly cot(by(Ly — L3)) = (rpAn + i8n) (pn + ign)
— )\nrnpn — Spdn + Z()‘nTnQn + Snpn)'

From where follows

|Re {0'464 COt(€4(L4 — Lg))} | < )\n, |Im {0'464 COt(£4(L4 — Lg))} | 7 )\n

~

Therefore
|O'4£4 COt(£4(L4 — Lg))| ~ )\n

e Our objective will now be to estimate the terms that involve ¢;.
As /5 is different for cases 1 and 2, we need to analyze these cases and the terms that
depend on it separately.

Case 1: we have /3 ~ \,. Since l3(Lz— L) = a4 (27rn + %) from the condition (3.121)

we infer the sequence sin(¢3(L3— L)) is never zero. We can assume that sin(2a,7n) — 0,
otherwise we consider a subsequence. Then, from the identity

. a1ap . a1ap . a1ap
sin | 2a;7mn + = sin (2ay;7n) cos | —= | + cos(2a;7n)sin | — | ,
( " ﬁ) ) <ﬁ> ) <ﬁ>

we can conclude that

1 An

Al,n — Sin(gg([/g - LQ)) ~

=

Furthermore, note that

|O'3€3 COt(ﬁg(Lg — Lg))| ~ ~ )\3/2.
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Case 2: note that

€2 _ n
’ 0ol | by,

e— cot+idn
)\721(60 -+ Z)\n)
loco — A2bg — aog(0)] + A, [cobo + o]

: A2 {coloco — A2bo — aog(0)] + A2 [cobo + o]}
[oco — A2bo — aog(0)]? + [Au(cobo + 0)]2

W <)\Z{—CO)\n(Cobo +0) + Maloco = ANobo — aog(o)]}>
loco — A2bo — aog(0)]? + [An(cobo + 0)]?

_ Aa{coloco — aog(0)] + Ao}

loco — A2bo — agg(0)]? + [An(cobo + 0)]?

i <>\721{—Co)\n(cobo +0) + Aaloco — Axbo — aog(o)]}>

[oco — N2by — ang(0)]? + [An(cobo + 0)]? ’

then Re(¢2) ~ 1 and Im(¢2) ~ \,. Then

Re(ls) ~ A2 Im(ls) ~ A2
On the other hand, since o3¢3 = %, from the previous estimates we have
COt(ﬁg(Lg — Lg)) =X} — 0'363 COt(ﬁg(Lg — Lg)) ~ )\2/2(1 + Z)

In that follows, we use the identities (3.123).
Since {5 ~ )\i/Q(l + i) we can write ¢3(Ls — Lo) = )\711/2(/L3m + i03,) With s, ~ 1 & 13-
Then we have

)\3/2

Ty

sin(¢3(Ls — Ls2))| = |sinh )\i/2 n = |Us] < —
| sin(¢s(Ls 2)) Z | ( N3n)| |Us| |sinh()\,1ﬂ/27737n)|

¢ Our objective will now be to estimate the terms that involve: ¢; and ¢5. Note that
61 ~ 65 ~ )\n

Furthermore, ¢, L, = 27n + <&, we have

sin(¢1L;) = sin (%) ~ MY = ol cot(Ly) = N2 (3.125)

Now, since ¢5(Ls — Ly) = as (27m + %), we have

sin <2a27m + a2—\/%)> = sin(2ap7n) cos <a2_\/c%)> + cos(2aymn) sin <a2_\/c%)> :

From the condition (3.121), note that the sequence
A27n i sin(€5(L5 — L4)),

is a non-zero bounded sequence (note that maybe it could converge to zero).
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Note that, if Ay,, — 0, then cos (2a,7n) - 0 and we get

An
|O'5€5 COt(€5(L5 — L4))| ~N .
[ Azl

On the other hand, if A,,, - 0, then

An| cos (2asmn
055 cot(€s(Ls — La))| ~ | |A( |2 )|
2n

e Our objective will now be to estimate the terms: W, and W,.
From the previous estimates, we immediately obtain that |V, | ~ AT,
If Ay, — 0 and since |Ay,| = |sin(l5(Ls — L4))| < 1, we obtain

An
|W4| — |O'4£4 COt(£4(L4 — Lg)) — 0'565 COt(€5(L4 — L5))| ~ m
2n

On the other hand, if A;,, - 0, we have

|W4| :|O'4€4 COt(€4(L4 — Lg)) — 0'565 COt(€5(L4 — L5))|
| cos (2axmn) |>
S|+ ——m——
< Azl
< A

and

|W4| :|O'4€4 COt(€4(L4 — Lg)) — 0'565 COt(€5(L4 — L5))|
| cos (2aymn) |>
>\, (1 2
~ < |A2,n|
> A

It is important to note that this last inequality cannot occur if || ~ 0, but in this case,
the proof to estimate |u(/,)| follows in an analogous way.
Then, if Ay, - 0, we have |Wy| ~ \,. So, we get

A

Wyl ~ ——
Wl TR

if A2,n — 0 and |W4| ~ )\n) if A2,n - 0.
e We obtain estimates for W, and Ws.
For case 1, we have

A A
T and |Wy| <
1,n

Wil ~ < .
| 3| |A1,n|

For case 2, we have
(Ws| ~ A2 and  |[Ws| < A3/2.

e Now let us estimate the term u(/L).
For A,,, — 0. We need to estimate for both cases.
Case 1: Let us first estimate the term

U2Wy  Wa(WoWs — U2) — WalI2
WaW, — U2 WaW, — U2 '

Wy =W, — (3.126)
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Since \2
N d |2~ N\
[Ws||[Wy| T and |Uy] s
We have
)\2
Pl
|W3W4 U4 | |A1,nA2,n|

On the other hand, note that

Im(W2W3 — Ug?) - Im(W2W3)
=Im{AB + (A + B)C + B}
—Im{AB 1 (A 1 B)O)},

where

A= 0'262 COt(€2(L2 — Ll)), B = 0'363 COt(ﬁg(Lg — Lg)), C = 0'464 COt(€4(L4 — Lg)),

Provided that

)\5/2
Im(AB)| = |Im(A)B| ~ L
|A1,n|
)\2
Im(A + B)C| < |A||C] + |B|IC] < A2+ ﬁ
1,n
From where follows that
A/
|%m—mzmmw@wmmmwmzwy
Since
, A/ , A
Wil|WoWs — UZ| 2 ————  and |Wa|U|* § -2,
| 4|| 2VV3 3|~ |A1,nA2,n| | 2|| 4| |A1,n|
follows
\7/2
(Wi (WaWs — US) — WoUZ| = m;

Using all previous estimates we have

 Wa(WaWs — US) — WLUZ

Wo| = > 232,
Wl \WsWy — U2 ~
Note that
HyW, H,
U(Ll) - 2 2
W1WO — U2 Wl _ I[/{/_ZO
Since

88
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then we can conclude

| Ho
u(L .
| ( 1)| |Wl|
Case 2: Using (3.126) and
)\5/2
[Ws|[Wy| ~ |ART| and |U|* =~ A2,
we have
)\5/2
_ 2 ~ n .
|\WsW, — Uf| .

On the other hand, since |U;| — 0, note that

Im(W2W3 — Ug) ~ Im(W2W3)
=Im{AB+ (A+ B)C + B* - U2)}
=Im{AB + (A + B)C — U3},

where
A= ogolycot(la(Ly — Ly)), B =o3lzcot(l3(Ls— L)), C = cg4lycot{€y(Ly— Ls)),
Since
Im(AB)| = |Re(A)Im(B) + Re(B)Im(A)| ~ A3,
and
Im(A + B)C| < JA|C] + |BIIC] £ A2,

from where follows that

[WaWs — Ug| 2 [Im(WoWs — US)| 2 [Im(AB)| =~ A

Provided that

4

Ao
WallWaWs = Ul 2 e and - [Wal|UAP° »~ X,
2.n

follows
4

A
(Wi (WoWs — U3) — WhU7| 2 ﬁ,
2.n

Using all previous estimates we have

(Wi (WoWs — U3) — WoUZ|
|W3W4 — U42|

[Wol| = > A2,

Therefore,
U3
[Wol
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For A,,, - 0. We need to estimate for both cases.
Caso 1: Again, note that

_ U2Wy  Wa(WoWy — U2) — WaU?
Wy = Wy — S = ~ .
W3W4 - U4 W3W4 — U4
Since .
|Ws| [ W] ~ |An | and |Uy]* = A2,
1,n
We have
)\2
— 2 ~ n .
|W3W4 U4| |A17n|
We saw that
W — 02 2 M
|A1,n|
Provided that
A A
|W4||W2W3_U§|Zm and |W2||U4|25 |A1 |)
follows
2 2 )\72/2
|W4(W2W3_U3)—W2U4|2 |A |
1,n
Using all previous estimates we have

|WaWy — UZ|

And the conclusion follows as before.
Case 2: Using (3.126) and

(Wa||Wal = A2 and  |UL]? ~ X2,
we have
(WsW, — U2| ~ AY/2,
On the other hand, since |U;| — 0, note that

Im(W2W3 — Ug) ~ Im(W2W3)
=Im{AB + (A + B)C + B> - U3)}
=Im{AB + (A + B)C - U})},

where

A= 0'262 COt(€2(L2 — Ll)), B = 0'363 COt(ﬁg(Lg — Lg)), C = 0'464 COt(€4(L4 — Lg)),
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Since
Im(AB)| = |[Re(A)Im(B) + Re(B)Im(A)| ~ X3,
and
m(A + B)C| < |AJIC] + |BI|C] £ A2,
from where follows that
[WoWs — U3| 2 [Tm(WoWs — U3)| = [Im(AB)| ~ X},

Provided that

(Wil WaWs — UF| 2 A, and  [Wh||U4[* =~ A2,
follows

(Wa(WoWs — U3) = WaUZ| 2 Ay,

Using all previous estimates we have

(Wi (WoWs — U3) — WoUZ|

Wol — > N2
Wl \WsWy — U2 ~
Therefore,
2
U3,
[Wal

O

Lemma 3.5.3. Take h(s) = sin(¢s) in the previous Lemma 3.5.2. If ¢ € R is such that
sin(¢L,) = 0 and cos(¢L,) = 1, then the solution in (3.115) satisfies

B sin(¢yx)
) 7U( ! sin(ﬁlLl) 6% — 62

Proof. Take h(s) = sin(¢s), we have

sin(fx).

S

Uy

Hy(x) = /Om sin(fys) sin(¢s) ds, Hsy(x) = /Om sin(¢;(x — s)) sin(¢s) ds.
Since

sin(¢s) sin(¢1(x — s)) = sin(¢1x) cos(¢18) sin(€s) — cos(¢1x) sin(f1s) sin(¥s)],

() /Ox cos(6s5) sin(£s)ds — sin(612) {61 sin(¢1x) sin(fx) + ¢ cos(¢1x) cos(fx) — q |

e

osltrn) /Ox sin(6,s) sin(és)ds — cos(fs2) V sin(f1x) cos(fx) — ¢4 cos(f1x) sin(ﬁx)} .

02— 02
Using the hypothesis, we get

 Usin(l1Ly) cos(Ly) — €y cos(€yLy)sin(¢Ly)  £sin(€;L,)

Hl(Ll) 6? _ 62 6? _ 62 )
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and
¢y sin(fx)[sin?(¢1x) + cos®({1x
Hy(x) — 2 ()| 62(16)2 (£1)]
2 _
_ Esin(lyz)[cos(lix) cos(bx) — cos(lyz) cos(fr)]  sin(lix)
2 — (2 2 — (2
{1 sin(lx) — €sin(f1x)
B [y '
Note that
1 sin(¢yx) 1
—————Hy(l4)— —H
61 sin(ﬁlLl) 2( 1) 61 2($)
~ Lsin(lx) [—fsin(fily)| 1 [f4sin{lx) — Csin(fir)
n 61 sin(ﬁlLl) 6% — 62 61 6% — 62
1 .
= —m Sln(ﬁfb’).
Thereby, we have
sin(¢yx) 1 sin(¢yx) 1
= — Hy(Ly) — —H.
U1($) U( ! sin(ﬁlLl) + 61 sin(ﬁlLl) 2( 1) 61 2($)
B sin(yx) L.
= u(Ly Sn(hL,) B sin(fx).
O
Lemma 3.5.4. Assuming the same conditions as the Lemma 3.5.3 and considering ¢ =
€, = %%, we have
H,
Im(u(l4)) ~ Im <W2> .
Proof. We know
2
u(Ly) = Ho —,  with ‘ﬁ — 0.
Wi — 52 Wo

We remember Hy := S0, where Hy(Ly) = “p25. Then, from ¢, ~ £ ~ ), = n,

we have

Ho = ~ Y2,
e

Since W1 - 0'161 COt(ﬁlLl) — 0'262 COt(ﬁg(Ll — Lg)), then
IIm(Wy)| = [Tm(oafs cot(fa(Ly — Ly)))| m A3/2.
Us

Let h, = Ho, Wi = jin + i1, with 1, — oo as n — oo and W& = Jin T 072, Where

J1ms J2.n — 0 @sn — oco. Note that h,, € R for every n € N. From

ho,
— (J1n +1920)
ha
(tn — ]1,n) +i(nn — ]2,71)
fﬁn((ﬂn - ]1,n) - i(nn - ]2,n))
(= 31,0)* + (e — J2.0)°

) = (fn + inn)

)
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we get ~
Im(ul(Ll)) = : .
(,un - ]1,n)2 + (nn - J2,n)2
Note that
_Bn n — J2n n T 7
and
(fn — ]1,n)2 + (0 — ]2,71)2 — iz — 2pinin ﬁ,n + 7 — 2nJan T Jg,n
(2 -+ n? ta =+ 0y,
1 _2Mn]1,n + J%,n - 27771.]2,71 + j%,n ~ 1
o 1 o
this is,

(= 310)% + (= J2.0)% ~ iy + 1.
Therefore, we get

_Nn (3 n _Enn H
Im(uy (L) = ol — Jon) o 1m< 0).

(tn — Jl,n)2 + (N — 32,71)2 - w2 4 n2 Wl

Lemma 3.5.5. Let ¢, L, — 2nmw + & f We have

1
Im{ — | ~ 272,
" <W1> "

Proof Let ¢ L1 = 2nm + 2 \F We know that W1 = 0'161 COt(€1 ) + 0'262 COt(ﬁg(LQ — L1 )

and we saw in (3.125) and (3.124) that o¢; cot(¢, L) ~ ~ AY? and 0,6 cot(lo(Lo—Ly)) ~
)\3/2(1 + i), then

m(Wl) 7 Im(02€2 COt(€2(L2 — Ll))) 7 )\2/2 and Re(Wl) 7 )\2/2

Therefore, we get

1 —Im(Wl) _3
Im(— | = ~ N2
m <W1> Re(W1)2 + Im(W1)2 "

L]

Lemma 3.5.6. There exists (\,), € R with A\, — oo, (U,), C D(A) and (F,),, € H such
that (i\, I — A)U,, = F,, is bounded in H with

MlURN3, 21, forn large.

1
Proof. For n € N, we consider A = \, = \L/?<2mr + %> Fo = (0, (0hn)10,1,),0) €

H, h,(s) = sin(¢,s), s € (0,Ly) with ¢, = 22—? and U, = (Un,Vn,n0(:,8)) € D(A).
Therefore v, = i\u, and n,(-,s) = u,(1 — e~*=*). In what follows, we will avoid

putting the subindex n in some variables that depend on n. Thus, from the lemma
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3.5.1, the coordinate u of solution U = (u, v, n(-, s)) satisfies the hypotheses of Lemma
3.5.2. Moreover, note that )\ satisfies the conditions of Lemma 3.5.2. Hence, by Lemmas
3.5.3 and 3.5.4, u, satisfies the following estimate

| Anua (2))]

> [tm(Aus (2))] ‘Im<)\nu(L1) sin(fr) )‘ _ ‘1m<L>M

sin(ﬁlLl) Wl sin(ﬁlLl)

, (3.127)

On the other hand

Ly sin(26,14)
WHMQH%MWA>Q(Q__fﬁf_>sg<2+4@>N 2

which implies that F,, is bounded.
Now, note that ¢, ~ ¢ ~ \, ~n, and as ¢, L, = 2n7 + <%, then

sin(#;Ly) = sin <%> ~ %
Using in Equation (3.127) the previous estimate, the estimate obtained in Lemma 3.5.5
and the fact that we already deduced in Lemma 3.5.4 that H, ~ A2, we get

Im 1 AnHosin(f1x)
W1 sin(ﬁlLl)

~ \—1/2
~ A2

| Anu ()] > ~ A2 sin(6x)|. (3.128)

~

Since || sin(¢1-)||z2 = v/ L1/2, from Equation (3.128), we conclude

Ul 2 1At (@)l 2 2 A2

YU

Finally, let us prove the main result of the section.

Proof of Theorem 3.5.1. Suppose that the rate t~2 is not optimal. Then, we can improve
-2 —€
the decay rate, say to ¢ <. By Borichev-Tomilov theorem, subsequently ||Us |2 < [An| 2" || Foll5-

Thus, for n large, we obtain

1—¢

1G@AT = A) e S Al 7 (3.129)

On the other hand, by Lemma 3.5.6, there exists (),), € R* with A, — oo, (U,), C
D(A) and (F},),, € H such that (i\,I — A)U,, = F, is bounded in H and

1

1
A

1—
AL€

1
N0l 2 1= =10l 2 A, = 5= 1A = A Fally, 2 A

we get

(Ml — A Foll = M — +oo as n — oo,

1—¢

An?
what is a contradiction with (3.129). Note that this inequality also implies the lack of
exponential stability. O



Chapter 4

Asymptotic behavior for a
Thermoelastic transmission problem
with Kelvin-Voigt damping

4.1 Introduction to the problem

In recent years, there has been a growing interest in studying the dynamical be-
havior of various thermoelastic problems to better understand the thermo-mechanical
interactions in elastic materials (see [12, 22, 28]). Initially, research focused primar-
ily on the dynamical aspects of classical thermoelastic systems, whose one-dimensional
linear model is given by:

Uy — Uge + 00, =0, x€(0,L), t>0,

Op — Opy + bugy =0, x€(0,L), >0,

where u(x,t) represents the displacement of the rod at time ¢, and #(x,t) denotes the
temperature variation relative to a fixed reference temperature. In the 1960s, Dafermos
[13] investigated the existence of solutions for the classical thermoelastic system and
demonstrated its.

In this paper, we consider the asymptotic behavior of beams composed of three
distinct regions: one made of purely elastic material, another of thermoelastic mate-
rial with Kelvin—Voigt-type dissipation, and a third composed of thermoelastic material
without dissipation.

Due to the presence of three different materials, the density of the beam is, in gen-
eral, not a continuous function. Moreover, since the stress—strain relationship varies
across the regions—for instance, from the thermoelastic part to the purely elastic one,
the resulting model is not continuous in the classical sense.

The mathematical problem that describes this situation is known as a transmission
problem. From a mathematical point of view, it is modeled by a system of partial differ-
ential equations with discontinuous coefficients, requiring appropriate coupling condi-
tions at the interfaces between the different materials.

When thermoelastic dissipation is effective throughout the entire domain of a body,
it is sufficiently strong to guarantee an exponential decay rate of the solutions to zero for
one-dimensional bodies or plates as time approaches infinity. Examples of this situation
can be found in ([23, 35]). For nonlinear problems in one-dimensional thermoelasticity,
see also ([34, 371).

95
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Rivera et al. ([39]) studied the asymptotic stability of a transmission system involv-
ing two materials: one thermoelastic and the other insensitive to temperature changes,
characterizing a system with localized damping. Due to differences in densities and
elastic coefficients, the model involves discontinuous coefficients. The authors showed
that, even when thermal dissipation acts only on part of the domain, the solution of the
semilinear problem decays exponentially to zero. See also ([10, 12, 35]).

In studies of vibrating systems modeled by wave equations, bars or plates, it is known
that Kelvin-Voigt damping mechanisms, when distributed globally, stabilize the solutions
of these systems exponentially. Furthermore, this damping mechanism is so strong that
it tends to regularize the solutions. The situation may be completely different if this
type of damping acts only on a part of the body as was shown by K. Liu and Z. Liu in
[24] (see also [11]). These authors proved that if Kelvin-Voigt damping acts locally in a
wave equation with discontinuous coefficient then the solutions of the equation are not
exponentially stable.

Later, Alves et al [3], studied the stabilizing force that Kelvin-Voigt damping ex-
erts on a transmission problem. This time, two dissipative mechanisms act on different
parts of the body. In one part, Kelvin-Voigt damping and in the other, frictional damping.
Even with the collaboration of frictional damping, the authors showed that Kelvin-Voigt
damping can predominate in the decay of the solutions, not allowing the exponential
decay of the solutions. However, the authors showed that the solutions decay polyno-
mially with the optimal decay rate t~'/2. In the literature we have not found a study
on the behavior of solutions where Kelvin-Voigt damping acts collaboratively with ther-
moelastic damping and this was what motivated this work.

Problems with localized Kelvin-Voigt damping have aroused the interest of several
researchers in the last two decades and several results have been obtained. The problem

U (0, 1) — Uga (0, 1) — (b(x)um(x,t))z =0,

was studied by Liu and Zhang [27] in the interval (—1, 1) (see also [43]). They showed
that if the coefficient b(x) is zero in (—1,0], positive in (0, 1) and has a behavior like
x around zero then the solution of this problem is exponentially stable. Also, if the
behavior of b(x) around zero is z*, a > 1, the solution is polynomially stable with a

decay rate depending on «. A result with sharp stability {1 were obtained by Han et
alin [19] (see also [18, 27]).

When the coefficient b(x) is discontinuous, Liu et al. [24] had shown the solution
does not decay exponentially. A few years later, this same problem was studied by
Rivera et al. [2] where they showed that the solutions of the system decay polynomially
with the optimal rate ¢t=2 (see also [17, 20, 29, 40]).

Taking into account the results mentioned above, it is interesting to study the trans-
mission problem with localized viscoelasticity of Kelvin—Voigt type. Here we consider
a bar composed of three different components, one of viscoelastic type, one of only an
elastic part, and the third of type thermoelastic. The main result of this work is that the
position of this component plays an important role in the study of the stabilization. We
consider the models shown in Figure 1.1.

In the first case, we consider, we consider the viscolestatic part of Kelvin-Voigt type
in (0, L,). Therefore, in this case, we define

a(x) = aoxpo,r.)(x), a0 > 0.

We refer to this model as the KET model. We show that there is exponential stability for
the KET model.
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In the second case, we consider that the elastic part of the bar (with no dissipation)
connects with only the Kelvin-Voigt damping. In this case, we consider a Kelvin-Voigt
damping (K) defined in (L, L,), in this case, we define

a(r) = Ao X[y, Lo)(x), o > 0.

We refer to this model as EKT. We show that the solutions of this models dacays to zero
polynomially as ¢=2.
The KET model is

61“1& - [ﬁluglv + a($)uglvt]$ — 07 in (07 Ll) X RJr)

62’&% — ﬁgufm e O, in (Ll, Lg) X RJr,

4.1)
63’&% — 53’&21 -+ k’oem = O, in (LQ, L) X R+,
649,5 — 54(911 + k’ouit e O, in (LQ, L) X R+,
The coefficients ¢;, 3;, ko are positive for ¢ = 1,--- ,4 and a(x) = aoxp,z,, where ay > 0.
The transmission conditions are given by
ul(Lht) :U2(L1,t), (ﬁlualv+a($)ualvt)(Ll7t) :ﬁ2ua2v(L17t)7 t =0,
(4.2)
U2(L2,t) :ug([@)t)) ﬁ2ug2n(L27t) ZBSUi(L%t)) t Z 0.
The boundary conditions are
u'(0,t) =0, u*(L,t) =0, O(Ly,t) =0(L,t)=0, ¢>0, (4.3)
and the initial data are
Ul(l’,O) :u(l)($)7 U%(l’,O) :U%(l’), in (O7L1)7
U2($,O) :U?)(l’), u?($70) :U%(l’), in (L17L2)7
4.4

u3(x,0) - u%(x)P u?(xPO) - u?(x)ﬂ in (L2;L)7
0(x,0) — O (), in (Ly,L).

The natural energy of (u!, u?,u?*, 0) solution (4.1)-(4.4) and instant ¢ > 0 is given by

Lo

L1
2B, (1) = / Gulul? 4 BiulP)de + / (G122 + oo} e
0 L

1

L
| / ol 1 Bl + 6416,
L

2

and

Ly L
E(t) = —/ aolul |*de — | Bal0.*dx. Vit >0. (4.5)
0

Lo
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The EKT model is
61’&,& — ﬁlu;m = O, in (O,Ll) X RJr,

daupy — [Boul + a(x)uZ ], = 0, in (Ly, Lz) x RY,

(4.6)
63’&% — 53’&21 + k’oem = O, in (LQ, L) X R+,
649t - 54(911 + kouit - O, in (LQ, L) X R+,
The coefficients 4;, 5;, ko are positive for i = 1,--- ,4 and a(z) = aoX(L,,1.], Where ap > 0.
The transmission conditions are given by
ul(Llat) :u2(L17t)7 (52u§+a($)uit)([/1,t) :ﬁluglc([/l)t)) tZ 07
4.7)
(Lo t) = u’(La,t), (Baui + alx)uz,)(Le,t) = Baui(Le,t), t2>0.
The boundary conditions are
u'(0,8) =0, w*(L,t) =0, O(Lat)=0(L,t)=0, >0, (4.8)
and the initial data are
Ul(l’,O) :u(l)($)7 U%(l’,O) :U%(l’), in (O7L1)7
u?(r,0) = uj(r), ui(r,0)=ui(x), in (L, La),
(4.9)

u3(x,0) - u%(x)P u?(xPO) - u?(x)ﬂ in (L2;L)7
0(x,0) — O (), in (L, L).

The natural energy of (u!, u?,u?*, 0) solution (4.6)-(4.9) and instant ¢ > 0 is given by

L1 Lo
2B, (1) = / il 2 + BuluP)de + / (G2 + ol P)de
0 L

1

L
| / ol 1 Bl + 6416,
L

2

and

Ly L
EL(t) = —/ aolu?,Pdr — | B4|0.2dx. ¥t > 0. (4.10)
L

1 Loy

Therefore, it is worth highlighting that the energy is a non-increasing function of the
time variable ¢.

The remainder of this chapter is organized as follows: In Section 4.2, we establish
the well-posedness of the corresponding models. In Section 4.3, we demonstrate that
the associated semigroup is exponentially stable, provided the viscous component is
not located at the midpoint of the beam. Finally, in Section 4.4, we prove that, in the
absence of exponential stability, the semigroup decays polynomially to zero at the rate
of 72,
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KTE Model EKT Model
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L
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Figure 4.1: Geometric description of the function a(x)

4.2 Existence of solutions

In this section, we use the semigroup approach to show the well-posedness of sys-
tems (4.6)-(4.9) and (4.1)-(4.4).
Let us define
H™ = H™(0, L) x H™(Ly, Ly) x H™(Ly, L), L? = L*(0, Ly) x L*(Ly, L) x (L*(Ly, L))?,
Hp = {(u',v*,v*) e H' 1 w'(0) = w*(L) = 0, w'(L1) =u?(L1), w®(Le)=u’(Lo)}.

where m = 1, 2. Under the above conditions, we have that the phase space is given by
H = H} x L2
The Hilbert space H is equipped with the inner product defined by

(Ur, Un)s =(V/b101, V/6103) + (v/6207, V/6203) + (/8508 v/ 8503) + (v/ B o v/ Bz )
+ (VB2 o VB2t ) + (v Bstil o v/ B3l ) + (V B, v/ Baba),

for U; = (u},u?,u?, v}, v2,03,0;,) € H, i = 1,2. The (-,-) denotes the inner product in L2

R TR T B T

We use ||U]|4 to denote the corresponding norm.
We define the unbounded linear operator A; : D(A;) C H — H, fori = 1,2, by

v v
v? 112
U3 U
A Uy = | b +a@)vile and A, (U) = Bl
53tz L1802 + ala)ell,
5 (Baug, — kob) % (Bsu, — ko)
d.

i (54911 - kovg) " (54911 - kovg)

on its domain

D(A)) =< 0 H?(Ly, L) N HY(Ly, L),

U= (ul,u2,u3,vl,v2,v3,9)T &H | (U17U27U3) = Hi)
(Bru! + alx)v), u? u?) € H2.
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and
U= (ul,u2,u3,vl,v2,v3,9)T €H | (U17U27U3) < Hi)
D(Ay) = 0 € H*(Ly, L) N HY (Lo, L),
(ul, (Bou? + a(x)v?), u®) € H2.
forall U = (u',u? u®, v 023,03, 0)T € D(A), fori = 1,2.

Remark 4.2.1. In order to verify this equality, note that A, U € D(A,) implies (v, v*,v%) €
M}, w? € H?*(Ly, L), (Bu® + a(z)vl) € H?(0,L1). Moreover, (fsu’ — ko0) =: z €
H'(Ly, L), hence 0 = ky'(z — Bsul) € H'(La, L). Now, one can read from AU € D(A;)
that v* € HY Ly, L) and (B40, — kov®) =: 21 € H'(Ly, L) which imply together that
0, = By (kov® + z1) € HY(Ly, L), then 0 € H?*(Ly, L). Finally, one can directly see that
u® € H?*(Ly, L). Similarly, we can check D(A,).

When the subindex i is removed A stands for any of the operators A;. The system
(4.6)-(4.9) and (4.1)-(4.4) can be rewritten as an evolution equation in H:

U, — AU, U(0) = U, t >0, (4.11)

Proposition 4.2.1. Let A and H be defined as before. Then A generates a Cy semigroup
of contractions e"* in H.

Proof. Note that the A is a dissipative operator in the energy space H. In fact, let
U = (u',u?u®, 003 03,0)7 € D(A). Using the inner product in A, integration by
parts, the transmission conditions (4.7) and the boundary conditions (4.8), we have

(AU U)o
= (Buth ')+ (B - a(w)o) )+ (Bl — oo, 0?) + (VBrod v/ B
(VB2 B + (VBad V/Baid) 4 (Biba — ko' 0)
= (VBiwn Vi) — (VBiwk /B ) + (VB2 Vi) = (VB2 VB
(VB B ) = 03, Bid) + (koo 02) = (hor®, )
~ (Va2 van?) = (VBiba/Bib ).

Using —(z,w)r2 + (z,w);. = —2Im(z,w)e, for z,w € L?, and taking the real part, we
get
Re(Aol), Uy = — (v, y/ae?) — (v/Bibe, /sl ) < 0. (4.12)

Similarly, we have that

Re(AyU, Uy, = — (v/aoul, /aovl) — (\/Eem, \/Eex) <0. (4.13)

Therefore, A is dissipative.
Let us prove 0 € p(A,). The case 0 € p(A;) follows similarly.
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Let ' = (fY, £2, F2, f4 5, f6, )T in H. We will show that there is unique
U= (ut,u?,u? vt 02,03, 0)T € D(A,), such that
— AU = F. (4.14)

The solver equation (4.14) in terms of its components is equivalent to the following
system of differential equations

—v' = 1 (4.15)

—v® = f? (4.106)

—v® = f?, (4.17)

_ﬁlu;z — 61f47 (418)

—(faul + a(x)vd)e = 62, (4.19)
— (53“2«1 — ko@:) — 03 f°, (4.20)
- <ﬁ4emm - kOU§> - 64f7; (421)

with the transmission conditions (4.7) and the boundary conditions (4.8).
Thus, it follows from equations (4.15)-(4.17) that we can consider

(U17U27U3) - (_f17 _f27 _fg) S Hi
Moreover, using v* = — f* € H'(L,, L) and the (4.21), we have
0., = ¢', with 0(L,) = 0(L) = 0, (4.22)

where g' := — (ko f; + 61f7) € L?(L2, L). We already know that the bounded problem

above has a unique solution § € H?(Ly, L) N HY(Ly, L). Now, from (4.18)-(4.20), we
have

By, = ¢°, (4.23)

(Bou2 + a(x) f2)e = ¢°, (4.24)

Bsus, = g°, (4.25)

with g2 = —61f4 - L2(O,L1),g3 = —62f5 - L2(L1,L2) and g4 = (—63f6 + ko@m) €

L*(Ls, L).

The objective is to show that the above system has a unique solution (u', v?, u?) € H}
and (u!, (Bou? + a(x)v?),v*) € H?. To do this, the Lax-Milgram theorem will be used.
Define B : H} x H} — C and F' : HI} — C, such that

Iy Lo L
B(Y1,Ys) = (Y1, Ya)p1 = Brutalde + Bouliiidr + | Baulidder,
0 L Lo
L

L1 Lo
J(Y5) / g*utdr +/ (¢*0® — a(x) f302)dx +/ grutda,
0 L1 Lo
for all V| = (u',v? u?),Y, = (4!, @? @*) € Hi. Note that B is a sesquilinear form on
H} x H}. Moreover, B is a continuous and coercive form on H} x Hj, because

B, Y2) = (Vi Vo)
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and
BOY,Y):= (V.Y )y = VI, VY € H,

On the other hand, J is an antilinear functional in H} and using Holder’s inequality,
we get J is a continuous functional in H} (0, L). Therefore, by Lax-Milgram theorem we
have that

BY,Y)=JY), VY = (' a%a) e HL (4.26)

admits a unique solution Y = (u', 2, v*) € HL. In particular, taking Y, = (@', 0,0), Y, =
(0,42,0) and Vs = (0,0,#®) in (4.26) with @il € C(0,Ly), @2 € C=(Ly, Ly) and @° €
C°(Ly, L) , we obtain (u', (Bou? +a(x)v?), u®) € H?, how we wanted to show. Therefore,
there is unique U = (u!,u?, u® v v, 03, 0)T € D(A,) such that — A, = F. This tells
us that A, is bijective and there is A;'. So, to conclude that 0 € p(A,), we just need
to show that A;' is bounded. For this, as there is only one U € D(A;) such that

— AU = F, we need to show |U]|x < || F|l%. In fact, since v' = —f!, v? = —f? and
v? = — f3, then by Poincaré’s inequality, we have
10 122 0,20) S 113 10 W22 pey S NE NG 101 22y S NN (4.27)

Multiplying (4.23),(4.24),(4.25) by u',u?,u® respectively, using integration by parts,
the transmission and boundary conditions (4.7) -(4.8), Holder’s inequality, Poicanré’s
inequality, Young’s inequality, we get

BillualZo0, 00 S 1 N Z20.00 S 1FI
53”“2”%2(/;2,@ S ||f6||%2(L2,L) + HQH%Z(LQ,L) < 1Pl

and

A

BalluzFecr, 10y S 7||Ui||iz<o,m F N e 1PN 0
P
S 7”“;”%2(0@1) + | FIl
Moreover, from (4.22), we have

BallON Loy S 19 W2 rr 2y S W2 0y + 1 W12y S IF I (4.28)

Therefore, from (4.27)-(4.28), we get ||U|lx < || F||%-

Lastly, since A is dissipative and 0 € p(.A), then D(.A) is dense in .A. Therefore, the
operator A satisfies the conditions of the Lumer-Phillips Theorem (see Pazy [25]) and
the result of the proposition follows. O

The well-posedness of the problem (4.11) is a consequence of the semigroup theory
whose result we enunciate to follow.

Theorem 4.2.1. For U(0) = (u}, ud, uy, ui, u? u3, 0y) € H there exists an unique solution
of the system (4.6)-(4.9) and (4.1)-(4.4) in the space

U= (u',u? o’ ug,uf i, 0) € C([0, 00f; H).
Moreover, if Uy € D(A;), then the solutions belong to the following space

U € C([0, oof; D(A;)) N C ([0, 0of; H).
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4.3 Asymptotic behavior: Exponential Stability

We will study the asymptotic behavior of the semigroup e* associated to the sys-
tem (4.1)-(4.4). The results will be obtained using the spectral characterizations for
exponential stability of semigroups (see [21] or [32]).

It is important to highlight that we will demonstrate the exponential stability of
system (4.1)-(4.4) in the case that every elastic part of the string either connects only
with the frictional part or connects with both types of dampings. Since the proof of the
decay rate is similar in all these cases, we focus on the proof considering the KET model,
which is given by (4.1)-(4.4) considering

a($) — aOX[OyL1]($)7 (429)

where ay > 0.

The main result of this section is Theorem 4.3.1 and to prove this theorem we will
need to introduce some technical lemmas.
Let A € Rand F = (fY /2 /2 /4, /2, /%, /7)) € H. In what follows, the stationary
problem

(M — A)U = F, (4.30)

will be considered several times. Note that U = (u!, u!,v?® v, v?, 0% 0) is a solution of
this problem if the following equations are satisfied:

it — ot = 1 (4.31)

iz —v? = f? (4.32)

id — o = f3, (4.33)

it — (Brus + alx)vh), = 01 f2, (4.34)
IANV? — Boul, = 0af”, (4.35)

iAd30® — (Baul, — ko) = d5f°, (4.36)
iAIL0 — Bubus + kv = 04f”, (4.37)

with the transmission conditions (4.2) and the boundary conditions (4.3).
Note that
(AU — AU), U)y = iU I3, — (AU, U,

so, we have
—Re(AU, U)y 5 | GAU = AU) 3| U3 = ([ F[3 || U |32

Therefore, from (4.13), we get

L1 L
/ SraglvlPdr + Bal0x1Pdx < || F | |U |- (4.38)
0

Lo

Using the above equation and Poicanré’s inequality, we have

L1 Ll
|l [ siaolelde < 1Pl U (4.39)
0 0
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and

/ 5.J0Pde < 2 / Bul0u Pz < | FlladlU e (4.40)
Lo

From (4.32) and (4.38), we have

Ly

Braolu, Pde < A2 (I F Ul + 1F13,) - (4.41)

0
Lemma 4.3.1. We have

Lo
/ Ol + Balul[*)da < [u (L) + [0 (L) + | Flla| Ul
L

1

Proof. Multiplying (4.35) by (x — £,)u2 and using (4.32), we have

—(x = L2)6v20°—(x — L) fouu,
— (.CC — L2)62u§f5 — (.CC — L2)62f_m21}2, in [Lly LQ]

Using integration by parts in [, L,|, taking real part, we get

Loy

Loy
/ (Golo?l? 4 Bali P < [ (Lo)? + |*(Lo)P + Re { /
L L

1

(ZL’ — Lg)égu_%fg)dl’}

1

—Re {/L2 (x — L2)62f_§v2dx} :
L1

Note that |x — Ly| < Ly, for all x € [Ly, L,], using Holder’s inequality in the above
equation, we get

Lo
/ Ol + Balul[*)da < [u (L) + [0 (L) + | Flla| Ul
L

1

Lemma 4.3.2. For ¢ > 0 small, we have
L
|tz (L) + |ug (L)) + [v* (L) * < /L (03[0®|* + Baluz] ) de + €| U3, + COIFIaIU |l
2

Proof. Multiplying (4.36) by (x — £2}£) 43 and using (4.33), we have
—<x—L2+L>6v3v - <x L2+L> Baudu?, + <x—L2+L> kou30,
2 2 2
( ) 5o 0 — ( L22+L> 55 30%, in (Lo, L.
Using integration by parts in [L,, L], v*(L) = 0 and taking real part, we obtain

(L) |* + [ (D) + [v*(Lo)[?

L L I, I\ —
5/ (63|US|2+53|U;O’32)dx—Re{/ ko <x— 2 >u;°;0$dx}
Lo Lo 2
L
+Re{/ 53<x—L2+L>u_gf6dx}
Ly 2
L Ly + L\ —
—Re{/ Js <x— 2; )fgv?’dx}. (4.42)
Loy
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Note that |z — 22| < £5%2 for all # € [L,, L] and using Holder’s inequality, Young’s
inequality and (4.38), we get

L Lo+ L\ — L—1Ly [F
Re{/ ko <x— 2 >ugexdx}g 2/ ko w30, |dux
Lo 2 2 Lo

L L
<e¢ [u|?dx + Cle) |0, |2 dx
LQ LZ

SelUlz + CONIF IV I, (4.43)

for e > 0 small.
Therefore, using (4.43) and Holder’s inequality to estimate the other terms on the right-
hand side of inequality (4.42), we obtain

i (L2)[* + Jug (L)* + [v* (L) |*

L
S/L(63|U3|2+53|u§:|2)dx+€”UH3{+C(€)HFHHHUH’H;

2

for ¢ > 0 small. 1
Lemma 4.3.3. For ¢ > 0 small, we have
Lo L
/ (ol + Boli2 P < / B3P+ Balil P + | U, + COIFIxllU 4.
L1 LZ

Proof. Using Lemmas 4.3.1 and (4.3.2) and the transmission conditions, we obtain

Lo
/ Oa|v?* + Balul [*)da < |ui (L) + [* (L) |* + | Flla /U |
L

1

S (L) P+ (L) + [P U 1

L
S / (Bs]0”[* + Bsluz[*)da + | Ul + CEIF [l U5,
L

2

for e > 0 small. 0

Lemma 4.3.4. Let [(5,¢] C (L2, L) and e > 0 small . We have

7
/z (Bslwz* + Balv™*) da < e U1l + CEIF Il Ullae + I1F 5.
2

Proof. Let ¢; € CY[Ly, L)) and [(5,f] C (€5,6) C (Ly, L), such that ¢, > 0, for all
x € [Ly, L] with supp(q1) C (€2, £),|¢/]* < || and gy (x) > ¢o > 0, for all z € [¢,, ).
Inserting (4.33) in (4.37), we have

iNO40 — Palue + thou® = S4f7 + ko f2 (4.44)

Multiplying (4.44) by ¢ u3 and integrating over (L, L), we get

L
i)\ko/ ql(x)|ui 2
L

2
L

L
L

2 Loy

L
+ / (54f7 + kofj’)ql (x)u_;’;dx (4.45)
L

2
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Using integration by parts in (4.45), we obtain

L
i)\ko/ 0 (:L°)|uf’c|2
L

2

L L L
= — 54/ g1 (x)0,u3dx — 54/ qu{x)0,u3 dx — i)\64/ qu{x)0uddx
Lo Lo Lo
L
+ / (04 f7 + ko f2)qu(x)uder. (4.46)
Lo
From (4.37), we have
—Bau3, = iAdsv® — kol + 03 f5. (4.47)

Multiplying (4.47) by %qlem and integrating over (L., ), we obtain

L
Sy
Lo
A3405 [T — ko [ 5. L _
= P10 / q1{x)0,v3dx — Piko / q1 (2)]0,*dx + @/ G ()0, fOdx. (4.48)
Bz Jr, B3 Ji, Bs Jr,
Inserting (4.48) in (4.46) and using |¢||? < |¢1|, Young’s inequality, we get
L
| @l
Lo
L 0(6) L ¢ L 1 L
< -— qu () |ud |Pdx + 0,2 dx + — g (2) |0 Pde + — 0. |2dx
|)\| L 1( )| | |)\| L2| | |)\| L 1( )| | |)\| L2| |
1
+ 1 F U3 + WIIFH%- (4.49)

Using Poincaré’s inequality, the Equation (4.38) and taking |A| large in (4.49), we obtain

L L
Baqa (@) iz |* < 6/ Saqu(@) [V [Pdx + COINF 2| Ullse + 113, (4.50)
Lo L

2

for ¢ > 0 small. o
Multiplying (4.36) by ¢,u?, integrating over (/L», L) and using (4.33), we have

L _

L L
—/ 63q1(x)|v?’|2dx— 53Q1($)Uim$d$+/ kogs(x)0,u?
L Lo L

2 2

-/ ) (1 4 o) do.

2
Integration by parts and using ¢;(L5) = ¢:(L) = 0, we have

L L L L
/ d3q1 (x)|v?’|2dx = — ﬁgq'l(x)uiﬁdx — B3qq (x)|ui|2dx + / koql(x)01$dx
L Lo Lo L

2 2

L —_— —_—
+/ d3q1 () <f6u3 + f3v3> dx. (4.51)
L

2
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Since supp(q;) C (¢, ¢) and |¢'|? < |q|, by Young’s inequality, we have

4 L
<c [ BlPde + CO / Bulds (@) Pl P
Lo

£

L
53@’1(55)U§:U3dx
Lo

‘ L
<e | Bslul)Pdx + C(e) / Baqy ()] [ul]?dx, (4.52)
Loy

L2

for e > 0 small. Using Young’s inequality, Poincaré’s inequality, the equation (4.38) and
(4.52) in (4.51), we get

L L
/ d3q1 () |[0*Pdx S e||UN5 + Cle) | Baqu(@)|uz|*da 4 || Fllo| Ul (4.53)
L Loy

2

for € > 0 small. Therefore, from (4.50) and (4.53), we obtain

L
/L au(@) (Bslis* + 05 1°*) do < el| U3 + CONF sl Ul + 1 F 1,

2

for e > 0 small. O

Lemma 4.3.5. Let ¢ > 0 small and g3 € C*([Ly, L), such that gs(x) > 0, for all x € [Ly, L]
with g3(L2) = q3(L) = 0 and ¢4(x) = 1 for all x € [¢2, ¢]°. We have

/[z ; (Balugl® + 030 *) d < €| U5, + CONF Ul + 1 F15,-
27 c
Proof. Multiplying (4.36) by ¢su?, integrating over (L, L) and using (4.33), we have

L L L
—/ J3qs(x)v’ vide — 53Q3(x)uimu_§dx+/ kogs ()0,
L L

2 Lo 2

L PR _
- / 8sqs() (f6ug+ f;wﬁ) dr.  (4.54)
L

2

Integration by parts and using ¢s(5) = ¢3(L) = 0, we have

L L
—532Re/ ql(x)uimu_gdxﬁg/ q'l(x)|u;°’3|2dx (4.55)
L L

2 2
On the other hand, similarly, using integration by parts, we get

L

L
—632Re/ 63Q3(x)v31}_§dx63/ ga(2) |0 Pde. (4.56)
L

2 Lo

Taking the real part in (4.54) and using (4.55)-(4.56), we obtain

1 L
5 [ @) (Gl 1 e P) d
Lo
L o L o
— Re/ d3q3 () <f6u§; + f5’113> dr — Re/ kogs(x)0,u (4.57)
L

2 Lo
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Therefore, using Lemma 4.3.4, the Equation (4.38) and Young’s inequality in (4.57),
we get

/[~ : ds(x) (Bs|ul]® + 05]0°) da
0o ,0]¢

L
<e / (@) Pde + max (@] [ (Baled 4 6o} ) de + O FllalUl
Lo mE[LQ,L] [52751
< ellUIZ + COIFlllUlls + 1FI2,
for ¢ > 0 small. O

Lemma 4.3.6. For ¢ > 0 small, we have

L
/L (Bsliz* + Balv®l?) da < e[ U3, + CONF I Ullae + 11715

2

Proof. Follow from Lemma 4.3.4 and from Lemma 4.3.5. ]
The main result of this section is given by the following theorem.

Theorem 4.3.1. Let H and A, be defined as before, considering the conditions of the KET
model. Then the semigroup e of system (4.11) is exponentially stable, that is, there
exists a positive constant ¢ such that

||6tA1UO||'H < 6_€t||UO||'H7 v UO S H) t> O)

Proof. The proof is based on using Theorem 1.5.3. First, let us prove that iR C p(A;).
For this, we will check

(1) Ker(iAl — A;y) = {0}, VAeR;
(2) RGAL — A) = H, YAER;
(3) (1Al — Ay)~lisbounded, Ve R.

First, let’s prove (1). In fact, from Theorem 4.2.1, we have Ker(—.A4;) = {0}. We need
to show the result for A # 0. Suppose that there is a real number non-zero A and
U= (ul,u?,u? v 02 02, 0) € D(A,)), such that

— AU =i\,

this is, ' = 0 in (4.31)-(4.37). So, from (4.13), a direct computation gives

Ly L
0 = Re(i\U, U)y = Re(—A U, U)gy = / aolvy|®de + [ Bal0.|*dx.
0

Lo

consequently, we deduce that
vl=0, in (0,L;) and 6,=0 in (Lo, L). (4.58)

Since 0 € H?*(Lo, L) N Hy (Lo, L), because U € D(A,), then § € C'(|Ly, L]) and conse-
quently, from (4.58), we have

=0 in [LQ,L],
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it follows, from (4.33) and (4.37), that

ud =02 =0, in (L L). (4.59)

x x

Since u® € H*(L,, L), because U € D(A,), then v* € C*([L,, L]) and consequently, from
(4.59), we have

w* =0 in [Ly, L], (4.60)
and, therefore, from (4.33), we get
v®* =0 in [Ly, L] (4.61)

On the other hand, Inserting (4.32) in (4.35), we get

ur, + %A%ﬁ =0, in (L, Lo). (4.62)
2

Moreover, since u2(Ly) = u’(Ly) = 0 and u?(L,) = u*(Ly) = 0, from (4.62) and using
u? € H?*(Ly, L), we obtain

u? =0, in [Ly, Ly,
and, hence, from (4.32), we get
vP =10, in (0,L,).
Since (ful + a(x)vl) € HY(0, L), because U € D(A,;), then, from (4.58), we have
u' € C'([0, Ly]) and consequently, wul=0 in [0,L;).
Since u'(0) = 0 and u!'(L,) = v*(L1) = 0, by Poincaré’s inequality,
u' =0, in [0,L],
and, therefore, from (4.31), we get
vt =0, in [0,L,].

Therefore, /' = 0 and the proof is complete.

At moment, let’s prove (2). From Theorem 4.2.1, we have R(—A4;) = H. We will
need to show the result for A # 0. Set F' = (f1, f2, f3, f4 f5, /5, f7) € H, we look for
U= (u',v?,u? v' 0%, 0% 0) € D(A;) solution (4.30), equivalently, of (4.31)-(4.37).

Let (!, 2%, 0% ¢) € HL x HY(L,, L), multiplying Equations (4.34)-(4.37) by @', %%, %,
and ¢ respectively and using integration by parts, we get

Ly

L1 Ll
/ iN B dr + / (Bruy + a(z)v,) Bode — (Bruy + alx)v,) B
0 0

0

L1
- / 5,15 de, (4.63)

0

Lo LQ
= / 8o [P d,
L

LQ LZ
/ i)\6202¢1dx + ﬁgufc@idx — 52u2¢2
L L1 1

1 In
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L L L L
/ iIN PP + | Baulpidr — / koO@2dax + Bau(Ly)p (Ly) = / Ss fo7  de,
L Lo L

2 2 Lo
L . L . L i L N
/ iNuObdr 1+ | Babud,dr + / kov>gd — / 5, [T dd. (4.64)
Lo Ly Lo Lo

Substituing v, v, v® by i u! — f1, i u? — f? and i u® — f2 respectively in (4.63)-(4.64),
we obtain

Lo

L1 L1
—)\2/ Siu'ptdr + / (ﬁlu; + a(x)(i)\u; — fgf))@lcdx — (ﬁlu; + a(x)v}c) 7!
0 0

Iy
L1

51/ (f*+irNf?)p'de, (4.65)
0

Lo

LQ LZ
—\? / 62u2¢2dx + ﬁguiﬁidx — 52u2$1
L1 L1

Lo
52/ (f° +irf!) Pda,
L

1

Iy

L L L
—)\2/ Ssu”BPdx + B da —/ kotp2 da+-Baul (L)@ (Ls)
L Lo L

2 2

L
53/ (f5 +irf?) Poda,
Lo

L

L
Nkt G — / (5o 1 kof) Fde. (4.66)

Lo Lo

L L
/ iNOddr + | Babudydx + /
L

2 Lo

Adding the equations (4.65)-(4.66), using the transmission conditions (4.2) and the
boundary conditions (4.3), we obtain

B(u,v) = F(v), Yv={(¢" % ¢’ ¢) € H} x Hy(Ly, L). (4.67)
and p = (u',u? u? 0) € H x H}(Ls, L), where

B(M)”) — Bl(u;”) +B2(M7V)7
with

L

Ly Lo L
By, v) =— )\2/ S u'pldr — )\2/ SouPdr — )\2/ Ssu* B da + / i 0pdx
0 L L

1 Loy 2
L
_ / ko7 di,
Lo

L1 Lo L L .
Ba(u,v) — / Byt dat@) wipide + [ pl@de [ palBde v [ 5i0.da
0 Lo Lo

L1

L
+ / iNkoulddr,
L

2
and
Lo

L1 In
F(v) =6, /O (S i) plda + 6y (f° +iNf?) PPde + /o a(x) f2plde

= &

L
s / (1N Bt | (6f — kof?) B
Loy

Lo
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Consider M := H} x H}(Ly, L), H;' the dual space of H} and M* := H;' x H™(Ly, L)
the dual of M. Let us consider the following operators,

{B:M—> M* {IB%le—> M* {BQ:M—> M*
po— Bu) po— Bi(w) poo— By

such that

B(M;V):B(M;V); Bl(ﬂy”):lgl(ﬂﬂ) and B2(M7V):B2(M7V)a Vv e M.

If B is an isomorphism and F is a antilinear on M and, furthemore, F is continuous from
M to C, then we get Equation (4.67) admits a unique solution ;» € M and consequently
(2) will be proven. In fact, if x € M C H, then (vl v?,0%) € H}, because v* = i u*— f* for
i = 1,2,3and (f!, f2, f*) € H}. Furthermore, using the classical regularity arguments
(similarly when we proved that 0 € p(.4,)), we concluded that Equation (4.30) admits
a unique solution U € D(A,).

Therefore, our goal is to prove that B is an isomorphism operator and that and that
F ftulfills the conditions mentioned above. To do this, we will show:

(i)Ker{B} = {0}; (ii) B, is compact; (iii) B, is an isomorphism.

Note that by proving the above items, we will be able to prove that B is an isomorphism.
In fact, from (ii) and (iii), we get that the operator B = B, -+ B, is a Fredholm operator.
From (iii), we have that B, is a Fredholm operator of index zero and from (i) we have
dimN (B) = 0. Then, we get

0 = indB; = indB = dimN (B) — codimR(B);

this is, codimR(B) = 0, how R(B) is closed (B is Fredholm), we concluded R(B) =
M*. Then, as B is injective, surjective and continuous (B is Fredholm), it follows by
the closed graph theorem of Banach that B=! is continuous, and therefore, B is an
isomorphism.

With that in mind, let’s now prove the three items mentioned.

(i) We prove that ker{B} = {0}. For this aim, let & € ker{B}, i.e.

B(f,v) =0, Yve M.

Equivalently, we have

L

L1 L
— )\2/ Su'pdr — )\2/ 80P dx — )\2/ 03 P d +/ 1A, 0¢dx
0 Iy Ly

Loy

L Ly
- / ko0, dr + 52Ux%d$ + / (B -+ ida(x)) @B, dx + 53%%
Lo L1 0

L

L
Bab, b, dx + / iNkoti2 pdr = 0. (4.68)

Loy Loy

Taking v = (0,0,i\&?, 0) in (4.68), we obtain

L L — L N
iNy | |0)%dx —i2koNIm [ @30dx+ | B4)0.*dx = 0. (4.69)

Loy Loy Loy
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Taking the real part of (4.69) and using 6 € H} (L., L) , we get
0=0, in (L, L). (4.70)
Moreover, using (4.68) and (4.70), we find that
Noyat + (B + ida(x))al, =0, in (0,L;)
N5t + Boti?, =0, in  (Ly, L)
N30 + Boti, =0, in (L, L)

iNeo@® = 0. in (L, L)
Therefore, the vector 7 defined by

U = (@', @2 @, i 0, i a2, idi®, 0)
belongs to D(.A,) and we have )

AU — AU = 0.
Hence, U € Ker(iA\I — A,), then we get U = 0, this implies that &' = @*> = @* = 0.
Consequently, by (4.70), ker{B} = {0}. Since & = © = 0, we have ker{B} = {0}, how
we wanted to show.

(ii) We prove that the operator B, is compact. For this goal, note that, by Holder’s
inequality, we have

B, V)| < llpellnel|v ||z, Vo€ ML
Or yet, using Poincaré’s inequality, we get

up 1B

< lllpe, Ve ML
lohero VI

Soon, by definition, we have

1B (o) |l < Mgz (4.71)

Now, consider j,, € M bounded. From the compact embedding of M in .2, since H! is
compactly embedded in L?, we have that y, converges in .2 up to a subsequence. So,
from Equation (4.71), we get

By Chn ) llne < N2,

This is, By (u,) is a Cauchy sequence in M*, and therefore, converges in M* up to a
subsequence. Thus, by definition, B; is compact.

(iii) We prove that the operator B, is an isomorphism. For this goal, note that by
Holder’s inequality, we have

1B (11, )| < allnall e,

this is, B, is continuous. Now, using Poincaré’s inequality, we have

Lo L
2

Iy
ReB(j1, 1) — / (Gl Pde + / (Bl Pde + / (Balu + Bu10P) dx 2 [l
0 L L

1
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Therefore, B, is coercive. Furthermore, it is easy to see that B, is a sesquilinear form on
M. Then, by Lax-Milgram Lemma, the operator B, is an isomorphism. Finally, from (iii)
and Fredholm alternative, we deduce that the operator B is isomorphism. It is easy to
see that the operator F is a antilinear on M. Moreover, by Holder’s inequality, we have
F is continuous from M to C. Therefore, (2) is proven.

Finally, let’s prove (3). It is easy to verify that (¢A—.A;) is closed for all A € R, because
A, is closed. Furthermore, since (iA — A;) is linear, injective and surjective, we can
apply Lemma 4.4.3 to conclude that the graph of (:AI — A;)~! is closed. Consequently,
by closed graph theorem of Banach we can deduce that (i\] — A4,)~! is bounded for all
A € R. Therefore, iR C p(A;), how we wanted to show.

Now, let F' € H, consider U = (u!,u!,u? vt v? v?, 0) solution of (A — A)U = I, i.e,
the system (4.31)-(4.37) is satisfied. To show the exponential decay, according Theorem
1.5.3 is sufficient to show ||U|| < || F||l%, for |A| large. In fact, from (4.39) -(4.40) and
from Lemmas 4.3.3 and 4.3.6, we get

Lo

Iy
W13, = / i o' + Bulul Py + / (Ga 0?1 + Bal2 )
0 L

1

L
+/ (63|U3|2‘|‘53|U2|2+64|9|2)d$
L

2

S Ul + CONF IVl + 1F 113,

for |A| large and ¢ > 0 small. Thus, using Young’s inequality, taking |\| large and a
suitably small ¢ > 0, we obtain

102 < 1E |,

as we desired to prove. O]

4.4 Asymptotic behavior: Polynomial stability

To show the polynomial decay of the solution for the system (4.6)-(4.9) we use a
result due to Borichev and Tomilov ([7]).

In this subsection, we will prove the polynomial stablity, which is valid for the cases
where the elastic part of the string (with no dissipation) connects with only the Kelvin-
Voigt damping. As the proof is similar for all these cases, we focus in investigating
the stability of the EKT model. We recall that the EKT model is given by (4.6)-(4.9)
considering

a(x) = aoX[L1,La)@)s G0 > 0.

The main result of this section is Theorem 4.4.1 and to prove this theorem we will
need to introduce some technical lemmas.
Let A € Rand F = (fY /2 /2 /4, /2, /%, /7)) € H. In what follows, the stationary
problem

(N — A)U = F, (4.72)

will be considered several times. Note that U = (u!, u!,v?® v, v?, 0% 0) is a solution of
this problem if the following equations are satisfied:
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i — o' = L (4.73)

iz —v? = f? (4.74)

i — ot = 3 (4.75)

iAW — Brul, = 012, (4.76)

iA2v? — (ot + a(x)vd), = 0af”, 4.77)
iNz0" — (Bsul, — koby) = 03f°, (4.78)
iAIL0 — Bubus + kv = 04f”, (4.79)

with the transmission conditions (4.7) and the boundary conditions (4.8).
Note that inequality (4.12) implies

Lo L
/ apba|v2|*dx + Ba|0x2dx = Re((GA — AU, U)gy < | Fll|U || (4.80)
L1 LZ
From (4.74) and (4.80), we have
Lo
/ aoBeluzdr < I (I FllalUllx + [ F113,) - (4.81)
L

1

From (4.80) e using the Poicanré’s inequality, we have

L 6 L
/ 6,102z < 2 / 8116, Pde < | Fllse| Ul (4.82)
L 54 Lo

2

Lemma 4.4.1. For |)| large, we have

Lo
2
/ 1Bt + agt?|Pdie < | FllsclU e + 11,

Iy

Proof. Using (4.80) and (4.81), we get

Lo Lo Lo
/ \ﬁzu§+aovi\2dxs/ 52\u§\2dx+/ a0 |22 dz < | FlalUlls + 1 P12,
Iy

1 Ly
for || large. M
Lemma 4.4.2. For |)| large, we have

AN W20, 200 S I N0 e+ IS NT 52 + 111
Proof. Consider H! the dual space of H'(L1, L). From (4.77),(4.80) and (4.81), we get
1
IMNv2 e < 2l 2,0 + la(@) 202 2y + 170 22,20
1 1
SIENRNUT 5 A+ T 5 (4.83)

Using Interpolation and inequalities (4.77) and (4.83), we obtain

MO 122202y S IO g 0?4, 20

3/2 1/2
SNEIl U+ 1F 12U 1507 + | FIIZ

for || large. O
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Note that from Equation (4.81) and from Lemma 4.83, we have

Lo
G+ sl ydn < I (VUL IFICIOIES + 1P @89

1

Lemma 4.4.3. We have

Iy
| @it sy
0
5/4 3/4 3/2 1/2
< M2 (IF e+ IEIL N5+ IF N0 12 -+ 1
for || large.

Proof. Multiplying (4.77) by (Ls — x)(fB2u2 + agv?) and taking the real part, we arrive at

Lo 1 Lo
Re { / iAo (Ls — )02 (P | aovg)dx} _ Re {5 / (Lo — 2)-L B2 + a0v§|2dx}
L L

1 1 dx

— Re {/L2 6o(Lo — ) f°(Bau + aovg)dx} :
L

1

Note that the above equation can be rewritten as follows

Lo - 1 Lo d
Re {/ iAo B2 ( Ly — x)qugdx} —Re {5 / (Ly — x)—|Bau2 + aov§|2dx}
L L

1 1 d$

—Re {/L2 6o( Lo — ) f°(Bou? + aovg)dx}
L

1

Lo o
— Re {/ iAO2ao (Lo — x)v%%dx} (4.85)
L

1

Next, let us rewrite the terms on the left side of the above equation.
By (4.74), we have

Ly
Re {BQ/L 9o (Lo — x)vQ(—i)\ug)dx}

' LQ LZ
— _Re {52/ 9o (Lo — x)v%?dx} — Re {ﬁ/ da (Lo — x)va_l?dx}
L L

— Lo
_Baba(lz — 1) L1)|U(L1)|2_@/ 5,]0? 2 da
L

2 2 Ji,
Lo o
— Re {52/ 62([/2 — $)U2fm2dl’} , (486)
Iy
and
Re l/L2<L —2) Lig2 + age?fd
5 L 2 X dr U, g, X
1 2 2 o 1 L2 2 212
= §(L2 — Ly)|Boui( L) + apvi(lq)|* — 5 |Bouy + apvi|“d. (4.87)
In

Thus, substituting (4.86) and (4.87) into equation (4.85) yields:
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Ly— L
2 B0 [ o (L) 4 (a2 (1) + a2 (L)]]
5262 Lo 212 1 F2 2|2 L2 272
5 |v| dx+§ 8o + agv?|*dx + Re 52 8a(Lg — x)v® f2dx
Ly Iy L
LQ 2
+ Re {/ 6o(La — ) f°(Bau® + agv?) dx} { iAO2(Lo — x)v U2dl’}
L1 Ll

(4.88)

We define the functional

= B ) [ (L) 4 Ba2(L) + (L))

I,
2

Thus, from (4.88), we have

/6262 L2 1 LQ L2 R
=20 [ ey ][ o i re o [ e -
2 L1 2 Ll Ll

Lo Loy _
+ Re {/ 6o(Lo — ) f°(Bou + aovg)dx} —Re {ao/ iAO2(Lo — x)v%%dx} :
L L

1 1

We now need to estimate the terms on the right-hand side of the equation above. To
this end, we note that by Lemma 4.4.2 and using (4.80), we get

Lo o
Re {aoég/ iNLy — x)v%%dx}
Iy

Lo
< ao|\[2 / 5aa(2) |2 (A2 1e?) e
Iy

Lo 1/2 Lo
swl/?(/ a<x>|v§|2dx) (w / |v2|2dx)
L1 Ll

5/4 3/4 3/2 1/2
< N2 (Il U e+ IR IO+ IERPIO 1) + 1),

1/2

The estimates for the remaining terms follow from Lemmas 4.4.1 and 4.4.2, and from
Holder’s inequality. Therefore, we obtain

<IN (Il U e+ IS OIS+ LRS00 1) + 11, (4.89)
On the other hand, multiplying Equation(4.76) by zul and taking the real part, we get
L1 - Ll Ll _
Re {i)\él/ xvlu;dx} — Re { ﬁlxumumdaj} = Re {/ 61xf4u;dx} . (4.90)
0 0 0
Using Equation(4.73), we get
Li Li Ly
Re {i)\él/ xvu}:dx} — —Re {61/ xvlv;dx} — Re {61/ xvlfg}dx}
0 0 0

L6, L bo
== |vl(L1)|2—/ 61|v1|2dx—Re{61/ xvlfxldx}.
0 0
(4.91)
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Also, we have

L1 e I, L1
—Re { ﬁlxu}ﬁmuldw} = ?151|u313(l}1)|2 — 51|u;|2dx. (4.92)
0

0

Therefore, from(4.89)-(4.92), we have
Iy
| @it s
0

— % [51|u;(L1)|2 + 51|Ul(L1)|2} — Re {/OLl xvlf_g}dx} —Re {/OLl xf4u_}3dx}
S Lo+ I F iUl
S A2 (1P 0 e+ IE IR NS+ IR0 152) + 11
for || large. O

Proceeding in a manner similar to that in the proof of Lemma 4.3.6, we obtain the
following result:

L
/ (Bslzl? + Balv®?) de < el|U5, + CONFIlall Ul + 1 F1I3,, (4.93)
Lo

for e > 0 small.

Theorem 4.4.1. Let H and A, be defined as before. Then, the EKT model is not exponen-
tially stable. Moreover, the semigroup ¢'* of system (4.11) decays polynomially with the
rate t=2, that is

||6tAUO||’H, < t_2||UO||D(.A2)7 v UO € D(A2)7 > 17

Proof. The proof is based on Theorem 1.5.4. Similarly, as we did in the proof of the
Theorem 4.3.1, we obtain that iR C p(A).

Now, let F' € H, consider U = (u!,u!,v? vt v? v, 0) solution of (A — AU = F,
i.e, the system (4.6)-(4.9) is satisfied. To show the polynomial decay with the rate
t=2, according to Borichev and Tomilov’s Theorem (see Borichev and Tomilov [5]), is
sufficient to show

U2 < A2 e,

for |A| large.
Therefore, from Equations (4.82), (4.84) and (4.93) and Lemma 4.4.3, we get
Lo

L1
nm&/ @WFﬂmm%m+/ (521072 + Bolu2P) de
0 L

1

L
+/ (63|US|2 + 53|u§’J 2) dx
L

2
S I (P a0 e+ IE IR NS+ P20 1502 + 11
for |A| large. Thus, using Young’s inequality, we obtain
U135 (AL I+ P2 1) I < I
for |A| large. Therefore, we get
1113 < 21
for |A| large. O



Conclusion

In this thesis, we analyze the asymptotic behavior of solutions to three elastic prob-
lems related to wave equations with localized Kelvin-Voigt damping, in combination
with other dissipative mechanisms—namely, frictional, memory, and thermoelastic damp-
ing. Considering systems composed of different elastic and dissipative regions, we
demonstrate that the spatial distribution of these mechanisms plays a decisive role in
the system’s energy decay rate.

In the first two problems, we study strings composed of three main regions: one vis-
coelastic, one purely elastic, and one with frictional or memory damping. Through the
application of Semigroup Theory, we established the correct mathematical formulation
for each model and obtained precise conditions under which exponential energy decay
occurs. When any part of the elastic region is connected to the frictional component (in
the first problem) or the memory component (in the second), the semigroup is expo-
nentially stable. On the other hand, when there is a portion of the elastic region that
is connected only to the viscoelastic dissipative region, the system ceases to be expo-
nentially stable, and we show that the associated semigroup decays polynomially at the
rate t~%—a result that was also proven to be optimal.

In the third problem, involving a rod with thermoelastic damping, we again verify
that exponential stability depends on the position of the dissipative mechanism. When
the viscoelastic component is located at the center of the rod, exponential stability is
lost. In this configuration, we demonstrate that the semigroup decays polynomially at
the rate ¢t=2; however, the optimality of this rate remains an open problem.
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