
UNIVERSIDADE FEDERAL DO PARANÁ 

ANTONIO GUIMARÃES LEITE

ASYMPTOTIC BEHAVIOR IN THREE LOCALLY DISSIPATIVE ELASTIC MODELS

CURITIBA
2025



ANTONIO GUIMARÃES LEITE

ASYMPTOTIC BEHAVIOR IN THREE LOCALLY DISSIPATIVE ELASTIC MODELS

Tese apresentada ao Curso de Pós-Graduação em 
Matemática, Setor de Exatas, da Universidade Fed­
eral do Paraná, como requisito parcial a obtençao do 
título de Doutor em Matematica.

Orientador: Prof. Dr. Higidio Portillo Oquendo 
Coorientadora: Profa. Dra. Maria Rosario Astudillo 
Rojas

CURITIBA
2025



DADOS INTERNACIO NAIS DE CATALO G AÇÃO  NA PUBLICAÇÃO  (CIP) 
UN IVERSIDADE FEDERAL DO PARANÁ 

S ISTEM A DE BIBLIO TECAS -  B IBLIO TECA DE C IÊNC IA E TECNO LO G IA

Leite, Antônio Guim arães
Asym ptotic behavior in three locally dissipative elastic m odels /  Antônio 

G uim arães Leite. -  Curitiba, 2025.
1 recurso on-line : PDF.

Tese (Doutorado) - Universidade Federal do Paraná, Setor de Exatas, 
Program a de Pós-G raduação em Matemática.

Orientador: H igidio Portillo Oquendo 
Coorientador: María Rosario Astudillo  Rojas

1. O peradores polinom iais. 2. Funções exponenciais. 3. Elasticidade. 4. 
Term oelasticidade. I. Universidade Federal do Paraná. II. Program a de Pós- 
G raduação em Matemática. III. Oquendo, Higidio Portillo. IV. Rojas, María 
Rosario Astudillo. V. Título.

B ibliotecário: Douglas Lenon da Silva CRB-9/1892



M IN IS TÉR IO  DA ED UC AÇ AO  

S ETO R  DE C IE N C IAS  EXATAS 

U N IV ER S ID A DE  FE D E R AL DO PAR ANÁ 

P R Ó -R E ITO R IA  DE P Ó S -G R A D U A Ç Ã O  

PR O G R AM A  DE P Ó S -G R A D U A Ç Ã O  M A TE M Á TIC A  - 

40001016041P1

ATA N°55-D

ATA DE SESSÃO PÚBLICA DE DEFESA DE DOUTORADO PARA A OBTENÇÃO DO
GRAU DE DOUTOR EM MATEMÁTICA

No dia doze de agosto  de d o is  mil e v in te  e c inco  às  13 :30 horas, na sa la  v irtu a l, P la ta fo rm a Team s, e sa la  PA 300, B loco PA, 

C e n tro  P o lité cn ico , U FP R , fo ra m  in s ta la d a s  a s  a tiv id a d e s  p e rtin e n te s  ao rito  de d e fe sa  de te se  do d o u to ra n d o  A N T O N IO  

G U IM A R Ã E S  L E IT E , in titu lada : A s ym p to tic  be h av io r in th re e  lo ca lly  d is s ip a tiv e  e la s tic  m o d e ls , sob  orie n taçã o  do Prof. Dr. 

H IG ID IO  P O R TILLO  O Q U E N D O . A  Banca E xam inadora, designada pelo C oleg iado do P rogram a de P ós-G raduação M A TE M Á TIC A  

da U n ivers idade Federa l do Paraná, fo i constitu ída  pe los seg u in tes  M em bros: H IG ID IO  P O R TILLO  O Q U E N D O  (U N IV E R S ID A D E  

F E D E R A L  DO P A R A N Á ), C A R L O S  A L B E R T O  R A P O S O  DA C U N H A  (U N IV E R S ID A D E  F E D E R A L  DO  P A R Á ), M A R C E L O  

M O R E IR A  C A VA LC A N TI (U N IV E R S ID A D E  E STA D U A L DE M A R IN G Á ), O C TA V IO  PAULO  V ER A  V ILLA G R Á N  (U N IV E R S ID A D  DE 

TA R A P A C á), M A R C IO  A N TO N IO  JO R G E  DA S ILV A  (U N IV E R S ID A D E  E S TA D U A L DE LO N D R IN A ). A  p res idência  in ic iou os  ritos 

de fin idos  pelo C o leg iado do P rogram a e, ap ós  exa rados  os pa receres dos m em bros do com itê exa m inad o r e da respectiva  contra 

a rgum entação, ocorreu a le itura do pa rece r final da banca exam inadora , que decid iu  pela A P R O V A Ç Ã O . Este resu ltado deverá ser 

ho m o log ado  pe lo  C o leg iado  do p rog ra m a, m e d ian te  o a te nd im e n to  de to d a s  as  ind ica çõ e s  e co rre çõ e s  so lic ita d a s  pe la banca 

dentro dos prazos reg im en ta is  de fin idos pelo program a. A  ou torga de títu lo  de doutor está cond ic ionada ao a tendim ento de todos  os 

requ is itos  e prazos de te rm inados no reg im en to do P rogram a de P ós-G raduação. Nada m ais havendo a tra ta r a p res idência  deu por 

encerrada a sessão, da qual eu, H IG ID IO  P O R TILLO  O Q U E N D O , lavre i a p resente ata, que va i ass inada por m im e pe los dem ais  

m em bros da C om issão Exam inadora.

C U RITIBA , 12 de A gosto de 2025.

A ssina tu ra  E letrônica 

13/08/2025 09 :53:35.0 

H IG ID IO  P O R TILLO  O Q U EN D O  

P residente da Banca E xam inadora

A ssina tu ra  E letrônica 

14 /08/2025 13:28:03.0 

CA RLO S  A LB E R TO  R A PO S O  DA C U N H A  

A va liado r Externo (U N IV E R S ID A D E  FE D E R AL DO PARÁ)

A ssina tu ra  E letrônica 

13 /08/2025 16 :24:09.0 

M A R C ELO  M O R E IR A  C AVALC AN TI 

A va liado r Externo (U N IV E R S ID A D E  ESTA DU A L DE M ARING Á)

A ssina tu ra  E letrônica 

13 /08/2025 15:53:13.0 

O C TA V IO  PAULO  V ER A  V ILLA G R Á N  

A va liado r Externo (U N IV E R S ID A D  DE TA R A PA C á)

A ssina tu ra  E letrônica 

13 /08/2025 11 :40:17.0 

M A R C IO  A N TO N IO  JO R G E DA SILVA 

A va liado r Externo (U N IV E R S ID A D E  ESTA DU A L DE LO ND RIN A)

C oordenação PPG M A, Centro Politécnico, UFPR - C U R IT IB A  - Paraná - Brasil 
CEP 81531990 - Tel: (41) 3361-3026 - E-m ail: pgm at@ ufpr.b r 

D ocum ento assinado e le tron icam ente  de acordo com  o d isposto na legis lação federa l Decreto 8539 de 08 de ou tubro de 2015.
G erado e au tenticado pelo S IG A-U FPR , com  a seguin te  iden tificação única: 473206 

Para autenticar este documento/assinatura, acesse https://siga.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 473206

mailto:pgmat@ufpr.br
https://siga.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp


M IN IS TÉR IO  DA ED UC AÇ AO  

S ETO R  DE C IE N C IAS  EXATAS 

U N IV ER S ID A DE  FE D E R AL DO PAR ANÁ 

P R Ó -R E ITO R IA  DE P Ó S -G R A D U A Ç Ã O  

PR O G R AM A  DE P Ó S -G R A D U A Ç Ã O  M A TE M Á TIC A  - 

40001016041P1

TERMO DE APROVAÇÃO

O s m em bros da Banca E xam inadora  des ignada  pelo C o leg iado do P rogram a de P ós-G raduação  M A TE M Á T IC A  da U n ivers idade 

Federal do Paraná foram  con vocados para rea liza r a a rgu ição da tese de D outorado de A N TO N IO  G U IM A R Ã E S  L E IT E , in titu lada: 

A sym p to tic  behav ior in th ree  lo ca lly  d iss ip ativ e  e las tic  m o d e ls , sob  o rie n taçã o  do Prof. Dr. H IG ID IO  P O R TILLO  O Q U E N D O , 

que após terem  inqu irido o a luno e realizada a ava liação do traba lho , são de pa recer pela sua A P R O V A Ç Ã O  no rito de defesa.

A  ou to rg a  do títu lo  de d o u to r está  su je ita  à h o m o log ação  pe lo  co leg iado , ao a te nd im e n to  de to d a s  as  in d ica çõ e s  e co rre çõ e s  

so lic itadas pela banca e ao pleno atend im ento  das dem andas reg im en ta is  do P rogram a de P ós-G raduação.

C U RITIBA , 12 de A gosto de 2025.

A ssina tu ra  E letrônica 

13/08/2025 09 :53:35.0 

H IG ID IO  P O R TILLO  O Q U EN D O  

P residente da Banca E xam inadora

A ssina tu ra  E letrônica 

14 /08/2025 13:28:03.0 

CA RLO S  A LB E R TO  R A PO S O  DA C U N H A  

A va liado r Externo (U N IV E R S ID A D E  FE D E R AL DO PARÁ)

A ssina tu ra  E letrônica 

13 /08/2025 16 :24:09.0 

M A R C ELO  M O R E IR A  C AVALC AN TI 

A va liado r Externo (U N IV E R S ID A D E  ESTA DU A L DE M ARING Á)

A ssina tu ra  E letrônica 

13 /08/2025 15:53:13.0 

O C TA V IO  PAULO  V ER A  V ILLA G R Á N  

A va liado r Externo (U N IV E R S ID A D  DE TA R A PA C á)

A ssina tu ra  E letrônica 

13 /08/2025 11 :40:17.0 

M A R C IO  A N TO N IO  JO R G E DA SILVA 

A va liado r Externo (U N IV E R S ID A D E  ESTA DU A L DE LO ND RIN A)

C oordenação PPG M A, Centro Politécnico, UFPR - C U R IT IB A  - Paraná - Brasil 
CEP 81531990 - Tel: (41) 3361-3026 - E-m ail: pgm at@ ufpr.b r 

D ocum ento assinado e le tron icam ente  de acordo com  o d isposto na legis lação federa l Decreto 8539 de 08 de ou tubro de 2015.
G erado e au tenticado pelo S IG A-U FPR , com  a seguin te  iden tificação única: 473206 

Para autenticar este documento/assinatura, acesse https://siga.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 473206

mailto:pgmat@ufpr.br
https://siga.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp


ACKNOWLEDGEMENTS

The journey toward the completion of this thesis was marked by challenges, learning 
experiences, and, above all, by people who left a profound impact on my academic and 
personal development.

First and foremost, I thank God for the strength, health, and resilience throughout 
every moment of this journey.

To my advisor, Higidio, and my co-advisor, Maria, for their steady guidance, pa- 
tience, constant encouragement, and valuable scientific contributions. Your dedication 
and commitment were fundamental to the development of this work and to my growth 
as a researcher.

To the professors and colleagues from PPGM-UFPR and PROMAT-UFS, for the stim- 
ulating environment, academic discussions, and support throughout the course.

To my family, for all the love, unconditional support, and understanding during this 
process. To my parents, Pedro and Lourdes, for teaching me the value of education and 
honesty To my siblings — Daguia, João, and Socorro — for all their emotional support. 
To the love of my life, Anne, for being by my side at every stage, even during the hardest 
moments. To her parents, Angerleide and Naldo, for welcoming me with such warmth 
and encouragement throughout this journey.

To the Coordination for the Improvement of Higher Education Personnel (CAPES), 
for the financial support, and to the university, for being my second home during this 
period.

Finally, I thank all those who, in one way or another, contributed to making this 
work possible. To each one of you, my most sincere thank you.



RESUMO

Este trabalho investiga três problemas de transmissão distintos em estru­
turas unidimensionais compostas por regiões com propriedades mecanicas 
heterogêneas. O modelo considerado envolve, em todos os casos, três sub- 
domínios: um material elástico sem dissipacõo, um material viscoelastico 
governado pela lei constitutiva do tipo Kelvin-Voigt e um terceiro compo­
nente com dissipacao variável, assumindo ora o caráter friccional, ora o 
efeito de memária, ora ainda um comportamento termoelástico. A análise 
desenvolvida tem como objetivo compreender a influencia do tipo e da 
localizacao desses mecanismos dissipativos na evolucõo temporal da en­
ergia do sistema. Os resultados obtidos mostram que a taxa de decai­
mento da energia nao depende apenas da presenca da dissipacõo, mas 
tambem da posicõo em que esta e introduzida, o que evidencia aspectos 
sutis na formulacõo e no tratam ento de problemas de transmissõo. Dessa 
forma, este estudo contribui para o avanco na compreensao da estabili­
dade assintática em estruturas compostas, oferecendo subsídios teáricos 
relevantes para aplicacões em engenharia e ciências aplicadas.
Palavras-chave: problema de transmissõo, mecanismos dissipativos, de­
caimento exponencial, decaimento polinomial, kelvin-voigt, friccional, 
elaástico, efeito de memoária, termoeláastico.



ABSTRACT

This work investigates three distinct transmission problems in one- 
dimensional structures composed of regions with heterogeneous mechan- 
ical properties. In all cases, the model involves three subdomains: an 
elastic material w ithout dissipation, a viscoelastic material governed by a 
Kelvin-Voigt constitutive law, and a third dissipative component, which 
varies between a frictional mechanism, a memory effect, or a thermoelas- 
tic behavior. The analysis aims to understand the influence of both the 
type and the location of these dissipative mechanisms on the temporal 
evolution of the system’s energy. The results show that the energy decay 
rate depends not only on the presence of dissipation but also on its spa- 
tial placement, thereby highlighting subtle aspects in the formulation and 
treatm ent of transmission problems. In this sense, the study contributes 
to advancing the understanding of asymptotic stability in composite struc- 
tures, providing relevant theoretical insights for applications in engineer- 
ing and applied sciences.
Keywords: transmission problem, dissipative mechanisms, exponential 
decay, polynomial decay, Kelvin-Voigt, frictional, elastic, memory effect, 
thermoelastic.
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Introduction

Wave propagation occurs when a vibrating source disturbs a medium, transmitting 
oscillations from particle to particle. To mitigate these vibrations, several dissipative 
mechanisms can be incorporated into mathematical models, among which the following 
stand out: Kelvin-Voigt damping, representing the material's viscoelastic behavior; fric- 
tional damping, associated with energy dissipation through velocity-dependent forces; 
memory effect damping, which accounts for the influence of past deformations on the 
system's current response; and thermoelastic damping, related to energy loss due to 
heat exchange with the environment.

In recent years, there has been growing interest within the scientific community in 
problems involving these types of damping, both local and global, with a strong focus on 
the asymptotic behavior of solutions. Numerous studies have established exponential 
and polynomial energy decay rates, with particular emphasis on the optimality of the 
latter. An extensive body of literature highlights the relevance and timeliness of this 
topic. See, for example, the extensive list of contributions addressing these topics: [3], 
[4], [11], [12], [14], [17], [18], [19], [20], [24], [27], [29], [40]), and references 
therein.

Taking into account the results mentioned above, it becomes relevant to investi- 
gate the behavior of solutions in elastic systems where both Kelvin-Voigt damping and 
frictional or memory-based damping act simultaneously. These dissipative mechanisms 
may operate jointly within the same region of the domain or separately in different 
parts of the medium.

In this thesis, we study three transmission problems involving localized Kelvin-Voigt 
viscoelasticity. We consider a string composed of three distinct components. In the first 
problem, one part exhibits viscoelastic behavior, another is purely elastic (i.e., without 
any damping mechanism), and the third features frictional damping. In the second 
problem, we replace the frictional component with one governed by memory effects. 
In both cases, the string is divided into four or five subdomains, and we demonstrate 
that the spatial positioning of these components plays a critical role in the stabilization 
analysis.

In the third problem, we consider a bar composed of three different components: 
one viscoelastic, one purely elastic, and one thermoelastic. The main result in this case 
reveals that the position of the thermoelastic component also plays a decisive role in the 
asymptotic behavior of the system, further highlighting the relevance of how dissipative 
mechanisms are spatially distributed.

Our main analytical tool to address these problems is the Semigroup Theory. To 
establish the well-posedness of the systems under consideration, we apply the classi- 
cal Hille-Yosida and Lumer-Phillips theorems, which ensure the generation of contrac- 
tion semigroups in suitable Hilbert spaces. Furthermore, in the analysis of exponen- 
tial stability and polynomial decay of energy, we rely on the results of Priiss and the 
Borichev-Tomilov theorem, which provide essential spectral and frequency-domain cri-

1 0



Introduction 11

teria to characterize the asymptotic behavior of solutions.
This thesis is organized as follows:
In Chapter 1, we briefly present the notation and preliminary results required through- 

out the work, including key properties of Sobolev spaces, some functional inequalities, 
relevant spectral properties, and foundational concepts from semigroup theory.

In Chapter 2, we investigate a wave equation system with Kelvin-Voigt damping 
combined with frictional damping. In Section 2.2, we establish the well-posedness of 
the system using a semigroup approach. Section 2.3 analyzes the case of exponential 
decay of solutions, which occurs when all elastic components are connected to the fric­
tional damping region. In Section 2.4, we study the case in which an elastic component 
is connected solely to the region with Kelvin-Voigt damping, leading to slower decay. 
Section 2.5 addresses the optimality of the decay rates obtained.

In Chapter 3, we study a wave equation system involving memory damping in com- 
bination with Kelvin-Voigt damping. In Section 3.2, we prove the well-posedness of the 
model via semigroup theory. Section 3.3 covers the case of exponential stabilization, 
occurring when all elastic components are connected to the memory damping region. 
Section 3.4 focuses on the situation where one elastic component interacts only with 
the Kelvin-Voigt damping region. Section 3.5 discusses the optimality of the resulting 
decay rates.

In Chapter 4, we examine a system involving a bar with thermoelastic damping. In 
Section 4.2, we establish the well-posedness of the model, while Section 4.3 proves that 
the associated semigroup is exponentially stable, provided the viscoelastic component 
is not located at the center of the bar. Finally, Section 4.4 demonstrates that, in the 
absence of exponential stability, the system exhibits polynomial energy decay at the 
rate of t - 2 .



Chapter 1

Preliminaries

In this chapter, we present key definitions and results essential for understanding 
the development of this work. For detailed proofs and further discussion on the results 
introduced here, we referthe reader to [8], [15], [16], and [33].

1.1 Notations
Let X and Y be two normed vector spaces. We denote by B(X, Y) the space of 

continuous (=bounded) linear operators from X into Y. As usual, one writes B(X) 
instead of B(X,  X).

If G is a linear subspace of a (possibly infinite dimensional) vector space Y then the 
codimension of G in Y is the dimension (possibly infinite) of the quotient space Y/G. 
This agrees with the previous definition

codim(G) =  dim(Y/G).

Let Q be a bounded domain of Rn with smooth boundary denoted by d Q. We define 
a multi-index a = [a i ,a i ,  ■ ■ ■ , an} e  Nn, with |a| =  a l +  ■ ■ ■ +  a n and for a function 
u : Q ^  R the a-derivative

d |a|uD au = ___ ——____.
d x a  ■ ■ ■ õxcan

The g rad ien t operator is defined by

í  du du 3 u \
U \  ôx l , dx 2 , . . . , dxn )  ,

and the Laplacian operator by

n d 2u
Au =  V  ■Vu = Y  .dx 2i=l 1

Lef f ,  g :]0, R. In this work, the following notations will appear frequently:

1. If I ~ |g|, if there exist C > 0 sucht that |f  | < C |g |;

2. If I > |g|, if |g| < If I;

3 . f  ~  g, if |f  | < |g | < |f  |.

12
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1.2 Sobolev spaces and inequalities
In this section, we will review Lebesgue spaces and introduce the definition of 

Sobolev spaces. Let p be an integrable, non-increasing function defined in Q, and let X 
be a normed space with the norm denoted as || ■ ||.

Definition 1.2.1. We define for  1 < p < m  the space

If X is a Hilbert space and p =  2 then Lp (Q, X) is a Hilbert space with following inner

When p = 1  we just write Lp(Q, X) and when X =  R or X =  C we write Lp(Q). 
Now we will define the Sobolev spaces:

Definition 1.2.2. Let m  g N and 1 < p < m , the Sobolev spaces are defined by 

Wm,p(Q) = {u g Lp(Q) | D au g Lp(Q) for each multi-index |a | < m}. 

It is possible to prove that Wm,p(Q) is a Banach space with the norm

When p =  2, we denote the space Wm,p(Q) by H m(Q)(or eventually just H m) where 
this is a Hilbert space. Note that H 0 (Q) =  L2(Q). Moreover, Ck(Q)(1 < k < <x>) will 
denote the space of k times continuously differentiable functions on Q and C0k(Q) =  
{u g Ck (Q) | supp(u) c  Q}, where supp represents the support of a function, that is, 
the closure of the subset of Q where the function is not zero.

Definition 1.2.3. The space W0m,p(Q) is defined as the closure of C£°(Q) in Wm,p(Q).

In other words, Wm,p(Q) consists in all functions u g W m,p(Q) such that “D au =  0 on 
d Q”, for |a | < m — 1. However, this idea is more general because it involves trace theory. 
For a thorough analysis, a relevant reference is [8 ] .

The upcoming theorems concern inequalities that we will frequently utilize through- 
out this thesis.

Theorem  1.2.1. (Holder inequality) Let u g Lp(Q) and v g Lq(Q), where 1 < p < x>, 
1 < q < m  with 1 +  1 =  1. We have uv g L l (Q) and also

product
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Proof. See [8 ]. □

Theorem  1.2.2. (Young inequality) Let a and b nonnegative real numbers with 1 < p < 
ro and 1 < q < ro such that 1 +  1 =  1. For e > 0 there exists C(e) > 0 such that

ab < eap +  C(e)bq.

Proof. See [8 ]. □

Theorem  1.2.3. (Poincare inequality) If  Q is a bounded domain in Rn and u e  H1(Q),
then there exists a positive constant C > 0, depending only on Q, such that

\\u\\l2(n) < C ||V u |L2(Q),Vu e H01(Q).

Proof. See [8 ]. □

1.3 Functional analysis
In this section, we present some classical definitions in functional analysis.

Definition 1.3.1. (Sesquilinear fo rm )  Let H be a complex vector space. A map a :
C is a sesquilenar form iffor all x , y , z ,w  e H  and for all a ,g  e  C,

i) a(x +  y, z +  w) =  a(x, z) +  a(x, w) +  a(y, z) + a(y, w)

ii) a(ax, gy) = aga(x, y).

Definition 1.3.2. A map a : H x H ^  C is called bounded if

\a (x ,y ) \ £ IMIhIMIh Vx, y e H .

Definition 1.3.3. A map a : H x H ^  C is called coercive if

Re \a (x ,x)\> \\x \\H, Vx e H .

Theorem  1.3.1. (Lax-Milgram) Let H be a complex Hilbert and a : H x H  ^  C a 
sesquilinear form, bounded and coercive on H. If f  e  H', where H' denotes the dual space 
of H, then there exists a unique x  e H  such that

a(x, y) = (f, y), Vy e  H.

Proof. See [8 , Page 140]. □

Theorem  1.3.2. I f  M  is a closed subspace of the Hilbert space H, then H = M  © M ±,
that is, each u e H  admits a unique representation in the form

u = p +  q, with p e  M  and q e  M ± ,

where M x =  {q e H  : (p,q) = 0 , Vp e M } .

Proof. See [9, Page 111]. □

Lemma 1.3.1. Let T  : X ^  Y be a bijective mapping with a closed graph in X x Y, where 
X and Y are normed spaces. Then T - 1 also has a closed graph in Y x X.
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Proof. Let (x,y) be an element of the closure of the graph of T - 1 denoted as G (T - 1). 
Then, there exists a sequence (xn,yn) in the graph of T - 1, which is a subset of Y x X, 
such that (xn,yn) converges to (x,y) in Y x X. It should be noted that yn =  T - 1(xn), 
which implies that T(yn) =  xn. Therefore, we have (yn,T(yn)) e  G(T), and (yn,T(yn)) 
converges to (y,x). So, we have (y,x) e  G(T). Since G(T) is closed, we can conclude 
that (y, x) e  G(T). This implies x =  T(y), and consequently y =  T - 1(x). Therefore, 
(x,y) e  G(T- 1). □

Let g e  L 1 ([0, ro)) n C 1([0, ro)) be a positive function such that g(0) > 0 and g/(s) < 
- c 0g(s), for some c0 > 0 , Vs > 0 . Consider the weighted space Gg =  L^( ( 0 , ro); #0(0, L)) 
with the inner product

pL p^
( n \n 2)g9 := g(s)ôxg1ôxn2dsdx, V n \ n 2 e  Gg.

g Jo ./o

Lemma 1.3.2. If  n, ns e  Gg and nO, 0) =  0 in (0, L) x (0, ro), thenIs e  Gg
L

1
-R e  g(s)dsd*nO,s)d*nO,s)dsdx =  - /  g/ (s)||dxnO, s ) ||l2 ds

.7 0 JO  ̂d 0

Proof. Note that
pL p<x>   1 pL p<x> d

- R e /  I g(s)ôsôxn(-,s)ôxn(-,s)dsdx =  -  - /  g(s) — jd^nC', s)|2dsdx
/O J0  ̂ J0 J0

"1/« , d
-  lim- I  g(s)^“ lldxn( ,̂ s ) |L2ds.y—0+ d y ds

Using integration by parts, we get
L

/ g(s)ôsôxn(^,s)ôxn(^,s)dsdx 
J 0 d 0

=  -  lim+ [g(l / y) |^ xn(•, Vy)llL2 -  g ^ R n O ^ I ^ ]y—0+
r 1/y

+  lim / g/(s)|dxn(', s ) I l 2ds. (1 .1)
y—0+ d y

Since n e  Gg, then g||dxnO ,s)lL 2 e  L 1(0, ro) and thus

lim+ g ^ M ^ n ^ - / y) | L2 =  lim g C O H d x n M I^  =  0. (1 .2)y—>-0+ t —+to

Furthermore, as nO, 0) =  0 in (0, L) and g is non-increasing and positive, it follows from 
the Holder’s inequality that

g(y) |d xn( ,̂ y) | L2 =  g(y) / ôsôxn(^,s)ds 
0
y

L2
2

0
y

^  ( I  g 2 (s) l ds dx n (•, s) | l 2 ds 
y

2

£ y /  g(s ) |d sdxn( ,̂ s ) |L2ds, V y e  (0 , ro ).
0

oo

2y
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Given that dsn e  Gg, we get
r y

0 < g{y)\\dx V{-, y ) \ \ 2L 2  <  lim+ y 9 ( s ) ^dx ds V{ -, s ) ^ 2L 2 ds =  lim y\\ds g { - , s)\\2Gg =  0,y^0+ J 0 y^0+ g

this is,

lim + 9 (y ) \ \ d x g ( - , y ) \ \ 2L 2 =  0 .
y ^ 0 +

Inserting (1.2) and (1.3) in (1.1), we obtain the desired result.

(1.3)

□
Definition 1.3.4. (Fredholm operators) Given two Hilbert spaces X  and Y, one says 
A  e  L(X, Y) is a Fredholm operator if i t  satisfies:

1. N(A)  is finite-dimensional;

2. R(A) is closed and hasfinite codimension.

The index of A  is defined by

indA = d imN  (A) — codimR(A)

Lemma 1.3.3. If A  is a Fredholm operator and K  is a compact operator, then A  +  K  is a 
Fredholm operator and

ind(A  +  K ) =  ind(A)

Proof. See [8, Page 169]. □

The following theorem is used to show the well-posed of partial differential equations. 

Lemma 1.3.4. Let X e  R such X = 0 and q > 0. Also, consider 0 < a < 0 < and

ÍX2u +  pdxxu =  0, in ( a ,0 )

u(a) = dxu(a) =  0 or u(0 ) = dxu(0 ) = 0.

Then, u =  0 in (a, 0).

Proof. We will do it for u(a) = dxu(a) = 0, the case u(0) =  dxu(0 ) =  0 follows in a 
similar way. Solving the equation

X2u +  pdxxu =  0, in (a ,0 )

we obtain

u(x) = c1 c o s  ( ^ I —  x j  +  c2 s i n  — x  ) , f°r x e  (a, 0 ).

Then, using u(a) = dxu(a) = 0  and squaring it, we get

2 2 1 X  \  2 2 ( IX2 \  ( I X 2 \ ( IX2 ,
0  =  c1 cos [ <  — a  +  c2 s i n  \ — a  ) +  2 c i c 2 c o s  ( ^ / — a  ) s i n  ( ^ / — a  ) ,

P P P P

2 2 X2 2 2 X2 X2 X2
0  =  c1 s i n  J  — a  +  c2 cos (  ̂I — a  | — 2 c 1c 2 c o s  (  ̂/ — a  | s i n  (  ̂/ — a

P P P

Adding the two equations above, we get c1 =  c2 =  0. Therefore, u = 0.

P

□
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1.4 Some definitions about Semigroups Theory and Spec- 
tral Properties

In this section, we present some definitions concerning the semigroup theory of 
operators. These properties are crucial for establishing the well-posedness and under- 
standing the asymptotic behavior of all problems addressed in this thesis.

Definition 1.4.1. Let X  bea Banach space with norm || ■ ||. Afam ily {T(t)} t > 0 ofbounded 
linear operators in X  is called a strong continuous semigroup (or C0 -semigroup) if:

(i) T  (0) =  I, where I  is the identity operator in the set of all bounded linear operator in
X;

(ii) T (t  +  s) = T (t)T (s),Vt, s e  R+;

(iii) For each x  e  X, lim ||T (t)x — x|| = 0.
t^ 0+

Theorem  1.4.1. If {T(t)} t > 0 is a C0-semigroup then there exists M  > 1 and u  > 0 such 
that

Definition 1.4.2. A semigroup T(t) is called a semigroup o f  contractions iffor all t > 0 
we have

Theorem  1.4.2. If x  e  X  and {T(t)} is a C0-semigroup, then thefunction t i— > T(t)x  is 
continuous on [0 , +ro).

From Theorem 1.4.2 it is possible to define:

Definition 1.4.3. Let X  be a Banach space and {T (t ) } t > 0 a C0 -semigroup. The linear 
operator A  : D (A) C X ^  X defined by

is called the infinitesimal generator of the semigroup {T(t)} t>0.

The next theorem gives us the answer to how it is possible to solve the abstract problem

Definition 1.4.4. Let A  be a linear operator in a Hilbert space H. The resolvent set of an 
operator A  is

p(A) = {X e  C | XI — A  is injective; R(XI — A) = H; (XI — A ) -1  is bounded} 

Moreover, the set o(A) = C \  p(A) is called the spectrum of A.

||T(t)|| < M eMt, Vt > 0 .

Proof. See [33]. □

l|T ( t ) |<  1.

Proof. See [33]. □

and

A x  := lim
t^ 0+
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Lemma 1.4.1. Let T  : H ^  H be a continuos linear operator with continuos inverse. If 
S  e L(H) and

l| S "LÍH) < \\T- 1 IIl ( « )  ’
then T  +  S is a continuos linear operator with continuous inverse.

Proof. See [8 ] . □

Lemma 1.4.2. Let an unbounded linear operator A  : D (A) C H ^  H. If  0 e p(A), then 
there is X > 0 such that X e p(A).

Proof. Let |X| < 1 /\\A~1\\c(h) and note that

XI - A  =  A(XA- 1 -  I ).

If T =  - I  and S =  XA- 1, we have T, T - 1 are continuos and S e  L(H), because 0 e  p(A) 
with

| I S \\c(H) = l l XA-1 |kw) =  | x | | a - 1 \ l í h )  < \T - 1 ||£(.h)

From Lemma 1.4.1, we can conclude that XA- 1 — I  is a continuous linear operator 
with a continuous inverse. Furthermore, we can assert that XI — A is also a continuous 
linear operator with a continuous inverse, as it is the composition of two continuous 
and invertible operators. Therefore, we get X e  p(A). □

Definition 1.4.5. Let H be a Hilbert space. The operator A  é called dissipative operator 
whenfor all x  e D (A),

Re(Ax, x) < 0.

Lemma 1.4.3. Let an unbounded linear operator A  : D (A) C H ^ H .  If A  is dissipative 
and 0 e  p(A), then D (A) is dense in A, that is, D (A) = H.

Proof. According to Theorem 1.3.2, we can write H =  D (A) © D (A )±. We will show
D (A )± = {0}. In fact, suppose U e D (A )±, This implies that (U, V)H =  0, for all 
V  e D (A). In particular, we have

(U, V )H = 0, V V e  D (A).

Since 0 e  p(A), by Lemma 1.4.2, there exists X > 0 such that Im (X I-A ) =  H. Therefore, 
there exists V0 e D (A) such that U =  XV0 -  AV0. Hence, we have

0 =  (U, Vo )h  =  (XVo, Vo )h  -  (AVo, Vo )h .

Taking the real part and using the fact that A is dissipative, we get

MKb V0 )H = V0 )H < °.

Thus, we obtain V0 =  0 and consequently, U =  0. Therefore, we get D (A )± = {0}. □
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1.5 Some notions and stability theorems
We recall in this short section some notions and stability results used in this work.

Theorem  1.5.1. (Lumer-Phillips’s Theorem) Let A  be a linear operator in a Hilbert 
space H with dense domain D (A) in H. I f  A  is dissipative and there exists À0 > 0 such that 
Im(À01 — A) =  H, then A  is the infinitesimal generator of a C0-semigroup of contractions 
on H .

Proof. See [33, Theorem 4.3, page 14]. □

As a collorary of the above theorem, the following result will be frequently used

Theorem  1.5.2. (Variant o f  Lummer-Phillips’s Theorem) Let A be a linear operator 
with domain D (A) dense in a Hilbert space H. I f  A is dissipative and 0 e  p(A), then A is 
the infinitesimal generator of a C0 -semigroup of contractions on H.

Proof. See [33, Theorem 1.2.4, page 3]. □

We will present some results about asymptotic behavior.

Definition 1.5.1. Assume that que A  is the generator of C0 -semigroup of contractions
(etA) 0 on a Hilbert space H. The C0 -semigroup (etA) 0 is said to be

(1) Strongly stable if
lim \\etAÜ0 \\h =  0, VU0 e  H.t——+<̂ 0

(2) Exponentially (or uniformly) stable if there exists two positive constants M  and £ 
such that

\\etAUo\\h < M e-e t||U0 ||H, Vt > 0 ,VU0 e  H.

(3) Polynomially stable if there exists two positive constans C and a such that

||etAU0 ||H < C t—a || U0 1| d(a) , Vt > 0 , VU0 e  D (A).

In that case, one says that the semigroup (etA) 0 decays at a rate t -a . The C0 -semigroup 
(etA t>0 is said to be polynomially stable with optmial decay rate t -a (with a > 0) i f i t  is 
polynomially stable with decay rate t -a and, for any £ > 0 small enough, the semigroup 
(etA  t>0 does not decay at a rate t -(a-e).

Concerning the characterisation of exponential stability of C0 semigroup of contraction 
(etA) t>0 we rely on the following result due to Huang and Pruss.

Theorem  1.5.3. (Huang and Pruss’ Theorem) Let A  : D (A) c H ^ H  generates a C0 

semigroup of contractions (etA) t> 0 on H. Assume that iR  c  p(A). Then, the C0 -semigroup 
(etA) t>0 is exponentially stable if and only if

limsup ||(iÀI — A)-1 ||h < &>.
ÀER, | à| ——+<0

Concerning the charaterization of polinomial stability of a C0-semigroup of contraction 
(etA  t>0 we rely on the following result due Borichev and Tomilov([7]).
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Theorem  1.5.4. (Borichev and Tomilov’s Theorem) Let A  be the generator o fa  bounded 
C0-semigroup of contractions (etA) 0 on a Hilbert space H. I f  iR c  p(A), thenforafixed  
l >  0 ,w e  have

C
||etAU0 ||H < — |U 0| D(A), Vt > 0 , U0 g D (A), some constant C > 0 , 

t 1

ifand only if,

limsup  ||(iA/ — A )~ 1 Hc(h) < m .
AeR,|A| r̂o |A|

Proof. See [7]. □



Chapter 2

Wave Equation with Kelvin-Voigt and 
Frictional Damping: Analysis of 
Asymptotic Stability

2.1 Introduction to the problem
In studies of vibrating systems modeled by wave equations, beams or plates, it is 

known that Kelvin-Voigt damping mechanisms, when distributed globally, stabilize the 
solutions of these systems exponentially. Furthermore, this damping mechanism is so 
strong that it tends to regularize the solutions. The situation may be completely dif- 
ferent if this type of damping acts only on a part of the body as was shown by K. Liu 
and Z. Liu in [24] (see also [11]). These authors proved that if Kelvin-Voigt damping 
acts locally in a wave equation with discontinuous coefficient then the solutions of the 
equation are not exponentially stable.

Later, Alves et al [3], studied the stabilizing force that Kelvin-Voigt damping ex- 
erts on a transmission problem. This time, two dissipative mechanisms act on different 
parts of the body. In one part, Kelvin-Voigt damping and in the other, frictional damping. 
Even with the collaboration of frictional damping, the authors showed that Kelvin-Voigt 
damping can predominate in the decay of the solutions, not allowing the exponential 
decay of the solutions. However, the authors showed that the solutions decay polyno- 
mially with the optimal decay rate t - 2.

Problems with localized Kelvin-Voigt damping have aroused the interest of several 
researchers in the last two decades and several results have been obtained. The problem

utt(x,t) -  uxx(x,t) -  (b(x)uxt(x ,t ) )X = 0 ,

was studied by Liu and Zhang [27] in the interval (-1 ,1 )  (see also [43]). They showed 
that if the coefficient b(x) is zero in (—1 , 0 ], positive in (0 , 1) and has a behavior like 
x  around zero then the solution of this problem is exponentially stable. Also, if the 
behavior of b(x) around zero is x a, a > 1, the solution is polynomially stable with a 
decay rate depending on a. A result with sharp stability t - ^  were obtained by Han et 
al in [19] (see also [18, 27]).

When the coefficient b(x) is discontinuous, Liu et al. [24] had shown the solution 
does not decay exponentially. A few years later, this same problem was studied by 
Rivera et al. [2] where they showed that the solutions of the system decay polynomially 
with the optimal rate t - 2 (see also [17, 20, 29, 40]).

2 1
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Taking into account the results mentioned above, it is interesting to study the be- 
havior of solutions in elastic systems where both Kelving-Voigt and frictional damping 
act simultaneously on the body. These dissipative mechanisms can act jointly on a part 
of the body or on separate parts. In this work we try to answer which of the dissipative 
mechanisms prevails: the frictional damping that stabilizes the system exponentially, 
or the Kelving-Voigt damping, which, being discontinuous, stabilizes the system more 
slowly.

Therefore, in this article we consider the following problem: to study the asymptotic 
behavior of the solutions of the equation

Utt(x, t) — (pux(x, t) +  b(x)uxt(x, t))x +  a(x)ut = 0, (x, t) e  (0, L) x  (0, x>). (2.1)

satisfying the Dirichlet boundary conditions

u(0,t) =  u(L,t) = 0, t > 0, (2.2)

and initial data

u(x, 0) =  u0 (x), ut (x, 0) =  u f x ) ,  x  e  (0,L). (2.3)

Here, L and p are positive real numbers.
The coefficients a(x) and b(x) are characteristic functions whose supports are subin- 

tervals of [0, L]. These supports can overlap, be disjoint, or even contain one another.
Given the variety of possible configurations for the supports of a(x) and b(x), we 

will focus on three specific cases. In the first case, the supports do not overlap, and
all purely elastic components are in contact with the component containing frictional
damping. In this scenario, we define:

b(x) = b0X[0,Li](x), a(x) = a0 X[l2 , l3](x), a0 ,b0 > 0,

where 0 < L 1 < L2 < L 3 < L. This model is referred to as the KEFE model.
In the second case, the supports of a(x) and b(x) remain disjoint, but there is a 

purely elastic component that only interacts with the Kelvin-Voigt component, without 
any contact with the frictional component. In this case, we have:

b(x) = b0 X[LiM](x), a(x) = a0 X[L3 ,n](x), a0 ,b0 > 0 ,

where 0 < L 1 < L 2 < L 3 < L4 < L. This model is referred to as the EKEFE model.
Finally, in the third case, the supports of a(x) and b(x) overlap, but there is still a 

purely elastic component that interacts exclusively with the Kelvin-Voigt component. In 
this configuration, we define:

b(x) = b0 X[LiM](x), a(x) = acXMM](x), a0 ,b0 > 0 .

This model is referred to as the EKIFE model.
Geometric description of the functions a(x) and b(x) in each model is described in 

Figure 1 below.
The main results we obtain in this work are the following:

• If all the purely elastic components are in contact with the frictional damping com­
ponent, whether or not they contact the component with Kelvin-Voigt damping, 
then the solutions of the system (2.1)-(2.3) decay exponentially
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• If there is a purely elastic component that contacts only the component with 
Kelvin-Voigt damping then the solutions of the system (2.1)-(2.3) do not decay 
exponentially. However, it is proven that the solutions decay polynomially with 
the rate t -2 .

• In case of non-exponential decay of the solutions, it is proven that the polynomial 
decay rate t -2 is optimal.

The remaining part of this chapter is organized as follows: In Section 2.2, we study 
the well-posedness of the system (2.1)-(2.3) using a semigroup approach. In Section
2.3, we study the case when the solutions of the system decay exponentially, that is, 
when all the purely elastic components are in contact with the frictional damping com­
ponent. In Section 2.4, we study the case when there exists a purely elastic in contact 
only with the Kelvin-Voigt damping component. Finally, Section 2.5 deals with the opti- 
mality of the decay rates obtained in the previous section.

In the KEFE Model In the EKEFE Model

Figure 2.1: Geometric description of the functions b(x) and a(x)

2.2 Existence of solutions
In this section, we will establish the well-posedness of problem (2.1)-(2.3) by using 

a semigroup approach.

H := #0(0, L) x L2(0,L)
The Hilbert space H is equipped with the inner product defined by

pL pL
(U1 ,U2)h = puXuXdx +  v 1vdx

J 0 J 0
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for all Ui =  (ul ,v 1) and U2 =  (u2,v2) in H. We use ||U||H to denote the corresponding 
norm. We define the unbounded linear operator A : D (A) c H  ^  H by

D(A) =  {U =  (u, v)T e H |  v g H01(0,L), and (pu +  b(-)v) g H 2(ü,L)} ,

and

A (  v )  =  (  (pux +  b(-)vx)x -  a(-)v )  , 

for all U =  (u, v)T g D (A).
If U =  (u ,u t)T is the state of System (2.1)-(2.3), then this system is transformed into 
the first order evolution on the Hilbert space H given by

Ut =  AU, U(0) =  Uo, (2.4)

where U0 =  (u0, u i)T g H. We have the following result on the well-posedness of system 
(2.4).

Proposition 2.2.1. Let A  and H be defined as before. Then A  generates a C0 semigroup 
of contractions etA in H.

Proof. First, note that the A is a dissipative operator in the energy space H. In fact, 
let U =  (u,v)T g D (A). Using the inner product in H, integration by parts, and the 
boundary conditions (2.2), we have

/ nL pL \ pL pL
(AU, U)h = \ vxüXdx -  uxvXdx I -  a(-)|v|2dx -  b(-)|vx|2dx

0 0 0 0

Using —(z,w) L 2 +  (z,w) L 2 = —2Im(z,w)L 2, for z ,w  e  L 2, and taking the real part, we 
get L

L L

Re(AU,U)h = — a(-)lvl2dx — b(-)lvx l2dx < 0 (2.5)
0 0

therefore, A  is dissipative.
Now, we will prove 0 e  p(A),  the resolvent set of A, this is, A  is bijective and

A - 1 is bounded. In fact, let F = ( f ,g )T e  H.  We will show that there is unique
U = (u, v)T e  D(A)  such that

—AU  = F. (2.6)

The solver equation (2.6) in terms of its components is equivalent to the following 
system of differential equations

—v =  f ,  (2.7)
— [pux + b(-)vx ]x + a(-)v = 9 , (2.8)

with the boundary conditions

u(0) =  u(L) = 0, in (0,L). (2.9)

First, note that from (2.7) we have v = —f  e  H1 (0, L). Now we need to show that u,
(pux + b(-)vx ) e  H1 (0, L). In fact, from (2.8), we have

— (pux + b(-)fx )x = 9  + a(-)f. (2.10)
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Multiplying (2.10) by 0 e  H0O(0,L), integrating over (0,L)  and using integration by 
parts, we get

pL pL pL
I  pux0 xdx = I (g +  a(-)f )0 dx -  f  b(-)fx0 xdx. (2 .1 1 )

Define Y : Ho1(0, L) x Ho1(0, L) ^  C and J  : Ho1(0, L) ^  C, such that

Y(u,0) =  í  pux0xdx, V0 E Hq1(0,L), (2.12)
J o

and
pL pL

J (0) =  /  (g + a(-)f)0dx -  b(-)fx0xdx, V0 E H01(0,L). (2.13)
J 0 J 0

From (2.11), we get

Y(u, 0) =  J(0), V0 E H01(0,L), (2.14)

Note that Y is a sesquilinear form on H01(0, L) x Hq1(0, L). Moreover, by Holder’s inequal- 
ity and Poincaré’s inequality, Y is a continuous and coercive form on H01(0, L) x Hq1(0, L), 
because

Y(U1,U2) : =  (U^ ^ f l ^ L )  < II U1 II H°(0,L) \l U2 11(0,L), VU1 ,U2 E

Y(U,U) := (U, U)h1(o,l) =  ||U||Hi(o,l), VU E H0(0,L).

and
2

(0

On the other hand, J  is a antilinear functional on HO(0, L) and using Holder’s inequality, 
we get J  is a continuos functional on H0O(0,L). Therefore, by Lax-Milgram theorem 
we have that (2.14) admits a unique solution u e  H0(0,L). By taking test function 
0 e C,f>(0, L), we deduce that

- ( Pux +  b(-)vx)x =  - ( Pux +  b(-)fx)x =  g +  a ( ' ) f  E L2(0, L).

Therefore, U e D(A) is a unique solution of (2 .6). This tells us that A is bijective 
and there is A -1. So, to conclude that 0 e  p(A), we just need to show that A - 1 is 
bounded. For this, as there is only one U e D (A) such that -A U  =  F , we need to show 
|| U||H < ||F ||H. In fact, since v =  - f , then by Poincaré’s inequality, we have

l|v|i2(0,L) < IIfxIL2(o,l) < IIFIIH. (2.15)
Furthermore, from (2.14) and by Poincare’s inequality, we get

L L L
p|ux|2dx = (g +  a(-)f)udx -  b(-)fxüxdx

0 0 0
< ( |g \ l 2(o,l) +  ||f \ l 2(0,l) +  ||f x \ l 2(o,l)) |u x \ l 2(o,l)
< IIFIIh IIU||h (2.16) 

Thus, from (2.15)-(2.16), we obtain
L L

\UIIH = /  p|ux|2dx W  |v|2dx < | | F I h I U +  IIF\\H,
0 0

using Young’s inequality, we get | | U < IIF\H, how we wanted to show.
Then, since A is dissipative and 0 e  p(A), then D(A) is dense in H. Therefore, the

operator A satisfies the conditions of Lumer-Phillips’s Theorem (see Pazy [25]) and the
result of the proposition follows. □

0 0
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The well-posedness of the problem (2.4) and therefore of problem (2.1)-(2.3) is a 
consequence of semigroup theory and we state this result in the following theorem.

Theorem  2.2.1. For U0 = (u0 ,u 1) e  H, the problem (2.4) admits a unique mild solution 
U satisfying

U = etAUo e  C0([0, ro[; H).

Moreover, if U0 e  D (A), then the solutions belong to the following space:

U e  C0([0 , ro[; D(A))  n C  1([0 , ro[; H).

2.3 Asymptotic behavior: Exponential Stability
We will study the asymptotic behavior of the semigroup etA associated to the sys- 

tem (2.1)-(2.3). The results will be obtained using the spectral characterizations for 
exponential stability of semigroups (see [21] or [32]).

We will demonstrate the exponential stability of system (2.1)-(2.3) in the case that 
every elastic part of the string either connects only with the frictional part or connects 
with both types of dampings. Since the proof of the decay rate is similar in all these 
cases, we focus on the proof considering the KEFE model, which is given by (2.1)-(2.3) 
considering

where a0 , b0 > 0 .
The main result of this section is Theorem 2.3.1 and to prove this theorem we will 

need to introduce some technical lemmas.
Let X e R  and F = (f,  g)T e  H.  In what follows, the stationary problem

will be considered several times. Note that U = (u, v) is a solution of this problem if the 
following equations are satisfied:

b(x) = boX[o,Li](x) and a(x) = aoX[L2 ,Ls](x), (2.17)

(iXI -  A) U = F, (2.18)

iXu -  v = f ,  
iXv -  [pux + b(-)vx]x + a(-)v = g,

(2.19)
(2 .2 0 )

with the following boundary conditions

u(0) =  u(L) = 0. (2 .2 1 )

Note that
((iXU -  AU),  U)h = iX\\UIIH -  (AU, U)H,

so, we have

Re (AU, U )h < \\(íXU -  AU )\\h \\U\\h = | |F \\h \\U\\h .

Therefore, from (2.5), we get

0

L
í Lb(x)\vx\2dx < | |F \\h \\U\\h 
0

a(x)\v \2 dx + (2 .2 2 )



From (2.19) and (2.22), we get

pL / pL pL
/ pb(x)|ux|2dx < |À|- 2 ( / pb(x)|vx|2dx +  / pb(x)|fx|2dx 

.70 V./0 d 0
< |à |- 2( |F ||h ||U ||h  +  IIFIIH). (2.23)

Furthermore, by Poincaré’s inequality and (2.22), we have

Ç  b(x)|v|2dx < ||F ||h ||U ||h . (2.24)
0

Then, from (2.23) and (2.24), for |À| large, we have

/ Ll b0 (|v |2 +  p|u*|2)dx < ||F ||h ||U ||h  +  |À|- 2 ||F ||H . (2.25)
0

The following lemma will be used in the next lemmas.

Lemma 2.3.1. Let us [a0, ^0] c  [0, L] \  supp b(x). For |À| large and e > 0 small, we have

K M I 2 +  |v(a0) |2+ |ux(^0 ) |2 +  |v(A, ) |2
r 3

< (|v |2 +  p|ux|2)dx +  C (e)||F ||h |U  ||h +  e||U ||H. (2.26)
J ao

Furthermore, check the following inequalities:

r 3
/ (|v |2 +  |u*|2)dx < |ux(a0 ) |2 +  |v(a0 ) |2 +  C (e)||F ||h ||U ||h  +  e||U||H, (2.27)

J ao 

r 3
/  (|v |2 +  |ux|2)dx < |ux(^0 ) |2 +  |v(^0 ) |2 +  C (e)||F ||h ||U ||h  +  e||U||H, (2.28)
ao

for  e > 0 small.

Proof. Let [a0,^ 0] c  [0,L] \  supp b(x). First, let’s prove the inequality (2.26). In fact, 
multiplying (2 .2 0 ) by (x — ao+3oC uX and using (2.19), we have

f  a 0 +  ^0  \    f  a 0 +  ^0  \    . / \ f  a 0 +  ^0 \   — ( x  2----- ) VxV—p ( x  2--  ) uxuxx +  a(xU  x  ^----- ) u^v

a 0 +  ^0 \   (  a 0 +  ^0 \  ~f~
—  I uxg — ( x 2  "
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=  ( x   —  ) u^g — ( x   —  j fxV, in [a0 ,&].

Using integration by parts in [a0 , ^0] and taking real part, we obtain

K M ! 2 +  |v(a0) |2 +  M A ,) |2 +  |v(A,)|2

< í  (|v|2 +  p|uX|2)dx +  Re |  í  ( x — a ° +  uxgdx*x| / — ■ — l i  i ~ 2
^ao Uao \  2

— Re /  J  a(x) b r -----" + j uXvdx

— Re { j f  ( x  — )  & d x } . (2.29)
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Note that |x -  a°+l3° | < ^°2a° for all x e  [a0 ,G0] and using Holder’s inequality, Young’s 
inequality and (2 .2 2 ) , we get

-  Re |  J  a(x) ^ x  0 +  U7 v d x | < —0 J  a0|UXvjdx

L2 L2
< e / |ux|2dx +  C(e) / |v|2dx

JLl JLl
< e||U||H +  C (e ) ||F ||„ |U ||„ , (2.30)

for e > 0 small.
Therefore, using (2.30) and Holder’s inequality to estimate the other terms on the right- 
hand side of inequality (2.29), we obtain

ju x M I 2 +  | v M |2+|u*(G0) |2 +  |v(A,)|2
r P°

< (|v |2 +  p|ux |2)dx +  e||U||H +  C (e)||F ||„ ||U ||„ ,
J a°

for e > 0 small. Now, let’s prove (2.27). In fact, multiplying (2.20) by (x -  G0)üX, using 
integration by parts in [a0, G0], taking real part and using (2.19), we get

r P° ( r P°
(|v |2 +  p|ux|2)dx < |ux (G0) |2 +  |v(^0 ) |2 +  R ^ W  (x -  ^0)üXgdx

J a° L J a°

-  Re < a(x)(x -  Go)Uxvdx> -  Re < (x -  Go)/xvdx >.
Ua° J Ua° J

Note that |x -  G0| < G0 for all x e  [a0, G0], using Holder’s inequality and (2.30), we get

r P°
/  (|v |2 +  p|ux |2)dx < |ux(G0) |2 +  |v(G0) |2 +  c (e ) ||F ||W||U||w +  e||U||H,

7 a°

for e > 0 small.
The proof of (2.28) follows in a similar manner, multiplying (2.20) by (x -  a 0)ux. □

Lemma 2.3.2. For |À| large and e > 0 small, we have

í'L'í 

L2

Proof. Multiplying (2.20) by u, we have

- iÀuv -  puxxu +— r°viÀu =  gu, in [L2, L3].
À

Using integration by parts in [L2, L3], taking real part and using (2.19), we get

í'L 3 í'L'í r í'L'í __
p|ux|2dx =Re{pux(L3)u(L3)} -  Re{pux(L2)u(L2)} +  |v|2dx +  Re < v /dx

L2 +  Re { £ 3 g a fe } -  Re { f  ^ L3 v j d x } . ' 2 L2

p|u*|2dx < e | | U 11 H + C(e) 11 F 11 « 11U 11 « +  11F  11 H
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Using (2.22) and by Holder’s inequality, we get

(• L3 1
J  p lux\2dx < |pux(L3)u(L3)| +  |Pux(L2)u(L2)| +  ||h ||U ||h +  ||F  ||hIIU ||h,

L2 (2.31)

for |X| large. Finally, using Lemma 2.3.1 and that H  1 (L2 ,L 3 ) c  L ^ ( L 2 , L 3 ) with contin- 
uous injection, we get

|pux(L3)u(L3)| +  |pux(L2)u(L2)| =  |X| {|ux(L3)||iXu(L3)| +  |ux(L2)lliXu(L2 )l}

= JX\{lux(L3)llv(L3) + f  (L3)I + |ux(L2)||v(L2) +  f  (L2 )I} 

< (|v|2 +  p\ux \2 )dx + ^jXj^ l l F I H I Uh

+ | X| IlUll H +  ^  11 F ||H, (2.32)

for |X| large and e > 0 small. Therefore, from (2.31)-(2.32) and using (2.22), we obtain

[ LS p M d x  < ellUUH + C ( e ) l l F M U ||„ +  | |F M
L2

provided that X is large enough and e > 0 small. □

From Lemma 2.3.2 and (2.22), we have

/ L3 (|v |2 +  p|ux|2) dx < e11U11H + C(e) 11 F 11h 11 U11h + || F 11 (2.33)
L2

for | X| large and e > 0 small.

Lemma 2.3.3. For |X| large and e>  0 small, we have

[ L 2 (|v|2 +  p M 2 )dx < e11U 11H +  C(e) 11F 11„ 11U 11„  +  11F 11H.
Li

Proof. Using Lemma 2.3.1 twice and (2.33), we obtain

/ L2 (|v|2 +  p|ux|2 )dx < + ^ L ^ 2 + C (e) 11F11H11U11H + e 11U 11 H
Li

< (|v|2 + p|ux|2)dx + C(e) 11F 11H11 U 11 „  +  e | |U 11 H

< e | l V  11 H +  C (e) 11F 11 „  11U 11 „  +  || F 11H  (2.34)

for |X| large and e > 0 small. □

Lemma 2.3.4. For |X| large and e>  0 small, we have

[ " ( H 2 + M x ^ d x  < e11U 11H +  C(e) 11 F 11h 11U 11h +  11 F 11H
L3
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Proof. Again, using Lemma 2.3.1 twice and (2.33), we obtain

[ L(lvl2 + Pluxl2)dx < lux(Ls)l2 + lv(L3 )l2 + C(e)\\F\\H\\U\\H + e\\U\\H
JLi

< r (lv l2 +  Pluxl2)dx + C(e) \\F\\H\\ U\\H + e\\ U\\H
< e | | U\\H +  C(e) 11 F\\h \\U\1 h  +11 F\\H, (2.35)

for lXl large and e > 0 small. □

The main result of this section is given by the following theorem.

Theorem  2.3.1. Let H and A  be defined as before, considering the conditions of the KEFE 
model. Then, the system (2.4) is exponentially stable, that is, there exists a positive con- 
stant e such that

\\etAU0 \1 h  < e-et\\U0 \\h, V U0 e H ,  t >  0,

Proof. The proof is based on Theorem 1.5.3, for which we need to prove that iR c  p(A).
First, let us prove that iR c  p(A).  In fact, since A  is a closed operator and D (A)
has compact embedding over the phase space H  , then the spectrum a (A) contains
only eigenvalues. Thus, it suffices to prove that a (A) does not contain any imaginary
eigenvalues. To do this, we will use the argument by contradiction. Let us suppose 
that there exists an imaginary eigenvalue iX with X e  R such that iXU — A U = 0, with 
0 = U e D(A) .  From (2.19)-(2.22) with F  =  0, we get

L L
/ a(x)lvl2dx + b(x)lvx l2dx =  0 ,
0 0

which implies in

v =  0 in (L2, L 3) and vx =  0 in (0, L 1). (2.36)

From (2.19) and (2.36), we have

u =  0 in (L2, L 3) and ux =  0 in (0,L1). (2.37)

Since U e D(A) ,  then (pux + b(-)vx)x e  L 2( 0 ,L),  and using (2.36) we have

u e  H 2(0,L),  and consequently u e C  1([0,L]). (2.38)

From (2.37) and (2.38), we get

u( L 1) = ux (L1) = u(L2 ) = ux(L2 ) = u(L3) = ux(L3) = 0. (2.39)

Now, using (2.19)-(2.20), we have

X2u + pdxxu = 0, in (0, L).

Then, from (2.39), we obtain u =  0 in (0,L),  and consequently, from (2.19), we have 
v =  0 in (0, L).  Therefore, U =  0. But this is a contradiction, and therefore there are no 
imaginary eigenvalues. Thus, iR c  p(A).
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Now, let F  e  H, consider U =  (u,v) solution of (iXI -  A) U  =  F , i.e, the system
(2.19)-(2.20) is satisfied. To show the exponential decay, according Theorem 1.5.3 is 
sufficient to show ||U||H < ||F ||H, for |À| large. In fact, from (2.25), (2.33) and from 
Lemmas 2.3.3-2.3.4, we get

for |À| large and e > 0 small. Thus, using Young’s inequality, taking |À| large and a 
suitably small e > 0 , we obtain

2.4 Asymptotic behavior: Polynomial stability
To show the polynomial decay of the solution for the system (2.19)-(2.20) we use a 

result due to Borichev and Tomilov ( [7]).
Here we consider the cases where at least one of the elastic parts of the string (with 

no dissipation) connects with only the Kelvin-Voigt damping. We focus in investigating 
the stability of the EKIFE model because the EKEFE model and other cases are similar. 
We recall that the EKIFE model is given by considering

The main result of this section is Theorem 2.4.1 and to prove this theorem we will 
need to introduce some technical lemmas.
From (2.22) and (2.40), we have

í L
\\U|IH =  /  (|v |2 +  p\ux|2) dx < e||U + C (e)||F \\n \\U||„ +  ||F | | H,

J 0

I I U 11 H < I I F  11 H,

as we desired to prove. □

b(x) =  &oX[Li,Ls](x) and a(x) =  aoX[L2,L4](x), ao,bo > 0. (2.40)

(2.41)

and

(2.42)

Now, from (2.19) and (2.42), we get

< |À| 2( 11 F  11 H 11 U 11 H +11 F  11 H). (2.43)

Lemma 2.4.1. For |À| large, we have

Proof. From (2.42) and (2.43), we get

\pux +  boVx|2 dx < / p |ux |2 dx bo |v^ |2 dx < || F ||h || U||h +  || F||H,

for \À\ large. □



Lemma 2.4.2. For \X\ large, we have

\X| f ’ \v\2dx < ||F ||„ ||U Ih + ||F||H/2 ||F||H/2 + \F\\H
J Li

Proof. Consider H -1(L1, L 3) the dual space of H  1(L1,L 3). From (2.20),(2.41), (2.43), 
we get

\X\IIvI|h - i(Li,L3)
i i

< \\ux ||L2(Li,L3) +  \\b(x) 2 vx \ l 2(Li,L3) +  lla0 v |L2(L2,L3) +  IMU2(Li.L3)

< IIF\\H\\U\\H + \\F\\h . (2.44) 

Using Interpolation and inequality (2.44), we obtain

I I v \\2 L2(Li ,L3) < \\v \\ H-i(Li,L3) 11 v \\ Hi(LiM)
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i
1 ( i  i

£ m  ( l I F\lH11 U |1H + 11 F 11 h  ) ( l\dxv\\l2(l,.l3) +  11 v l\l>(l,m))

£  ±  (  11 F\\h11 U |\h + 11 F 11 H 11U\\H) + C M  ( \\F\\h\\U\\h + | \F\\H) +  t \\v\\Í2(l,.l3). 

for \X\ large and t > 0 small. Considering an appropriate small t > 0, we obtain

3 i
\X\ 11 v 11 L2(Li,L3) < I I F\\h \\U\\H +11 F\\H 11 U\\H +11 F\\H, 

for \X\ large. □

Lemma 2.4.3. We have

(p\ux\2 + K f ) *  < \X\1/2 (  \\F\\Hl\U\\H + \lFl\H/4 11 U I\H/4 + | \F\\H\\U\\H/2) + I \F\\H.

for \X\ large.

Proof. Multiplying (2.20) by (L2 -  x)(pux + b0vx), integrating over (L1, L 2) and taking 
the real part, we arrive at

R e { /  iX(L2 -  x)v(pux + b0 vx)dx j  -  R ^ 2 J  L  -  x)d^-\pux + b0vx\2dx

= Re { /  (L2 -  x)g(pux + b0 vx)dx j  . (2.45)

By (2.19), we have

r L2

R ^  p / (L2 -  x ) v ( - i Xux)dx
JLi

( rL2 'j f rL2 __
- R ^  p (L2 -  x )vvxdx \ -  R ^  P (L2 -  x ) v f xdx 

P( 2 1) \v(L1 ) \ 2 -  p í  \v\2dx -  R^ p  í  ó2 (L2 -  x ) v f xd x \  , (2.46)
2 ' V 1/1 2 j  Li , JLi
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and
r*L2 d

Re <J — J  (L2 -  x) — Ipux +  boVx| dx

1 1 í l 2
=  — ( L 2 -  L l )|Pux (L1) +  b0Vx(Ll) |2 -  — J  |Pux +  b0Vx|2dx.

(2.47)

On the other hand, by Lemma 2.4.2 and using (2.20), we get

Re|bo J  2iX(L 2 -  x)vvxdx

< bo|X|O/̂  /* bo|vx|(|X|l/2 |v|)dx
Jlo

L  \  O/2 /  /• L2 \  O/2
< |X|O/̂  bo|vx|2d x j (|X| j  ivi2

< |X|1/2 1F llOfiIU IlO/ 2 ( ||F  | | ‘/2 ||U ||O/ 2 + || F11 IIUI» + ||F  ||„
1

< |X|l/2 ( ||F ||« ||U ||h  + ||F |5 /4 |U ||3/4 + ||F||3/2 | |í / ||l /2 ) . (2.48)I H I I ̂  I I H ' 11í \ \ H \ \ w \ \ H

We define the functional

^u =   ̂  ̂[p|v(Ll )|2 +  |Pux(Ll ) +  b0vx (Ll ) |2]

So, from (2.45)-(2.48) and using Lemma 2.4.1 and Lemma 2.4.2, we get
p rL 2 1 rL 2 f rL 2 __

^u =  ~ /  |v|2dx +  -  /  |pux +  bovx|2dx +  Re p / (L2 -  x)vfxdx, . |2dx +  — ' |2-
— Li — J Li k J Li

f í'L2   'j f í'L2

+  Re < (L2 -  x)g(pux +  b0vx)dx > -  Re < b w  iX(L2 -  x)vv^dx

< |X|l/2 (  11 F  | I h11 U 11 h + | I F  11 H/4 11 U11 H/4 + | I F  11 H/2 11 U11 f )  + | I F  11 H, (2.49)

for |X| large.
On the other hand, multiplying (2.20) by xux, integrating over (0 ,LO) and taking the 
real part, we get

Re |iX  J  xvüxdx | -  Re |  J  pxuxuxxd x |  =  Re |  J  xgü^dx 

Using Equation(2.19), we get

Re | i Xf  xvuxdx | =  -  Re |  J  xvvxdx| -  Re xvfxdx

=  0 |v(L j)|2 - J  |v|2dx -  R e ^ J  x v fx d ^  . (2.50)

Also, we have

-R e   ̂ í  pxuxuxxd^ =  L p|ux(Lj)|2 -  [  p|ux|2dx. (2.51)
0 ) — Jo
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Therefore, from (2.49)-(2.51), we have

^ (pluxl2 + lvl2)dx = L  [plux(L1)l2 + lv(L1)l2] — Re j  í  xvf xdxX — Re j  í  xguxdx
10 2 1 ./0 j

< Vu + |  | F \ \ H \ \ U \ \ H

< lXl1/2 ( \\F\\H\\U\\H + \\F\\%/ \\UI\H4 + \\F\\H2\\U\\H2) + \\F\\H,

for lXl large. □

So, from (2.43) and from Lemma (2.4.2), we have

r  (lvl2 + Pluxl2) dx < lXl- 1 ( I\F\\H\\U\\h + \\F\\H \\U\\H +  \\F\\H) , (2.52)

for lXl large.

Lemma 2.4.4. Let h e C  1([0, L]) be afunction with h(0) = h(L) = 0 and e > 0 small. We 
have

í  h'(x)(lvl2 +  lpux + b(-)vxl2)dx 
0

L
< Re < h(x)g(pux + b(-)vx) d x \  — Re < iX b(x)h(x)vvxdx

L
— Re{ I ph(x)a(x)vüxdx\ + e\\ U \\H +  C(e) \\ F\\h \\ U\\h .

Proof. Multiplying (2.20) by h(x)(pux + b(-)vx) and integrating over (0, L),  we get

nL pL
iX h(x)v(pux + b(-)vx)dx h(x)(pux + b(-)vx)(pux + b(-)vx))xdx

0 0
nL pL

= h(x)g(pux + b(-)vx)dx — a(-)h(x)v(pux + b(-)vx)dx. (2.53)
0 0

Using (2.19), we notice that the first term on the left side of the above equation can be 
rewritten as follows:

iX h(x)v(pux + b(-)vx)dx = ph(x)v(—iXux)dx + iX b(-)h(x)vvxdx
J0 J 0 J 0

L L L
= — ph(x)vvx dx — ph(x)vfxdx + iX b(-)h(x)vvxdx

0 0 0
(2.54)

Taking the real part in (2.53) and using h(0) = h(L) and (2.54), we obtain

J  h'(x)(lvl2 + lpux + b(-)vxl2)dx < Re |  J  h(x)g(pux + b(-)vx)d x | + Re |  J  ph(x)vfxdx

— Re |  J  ph(x)a(-)vüxdx |  — Re | iX j  b(-)h(x)vvxdx

— Re |  J  a(-)b(-)h(x)vvxdx| . (2.55)

L L L
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Let’s estimate some terms on the left side of the above equation. First, by Holder’s 
inequality, we have

— R e { lo  Ph(x)vfxd x } < I I v 11 L2(0,L) 11 fx 11 L2(0,L) < I I F 11 h  11U 11 h . (2.56)

Furthermore, since supp(b(x)) n supp(a(x)) =  (L2, L 3), then by Young’s inequality and 
(2 .2 2 ) , we get

Re |  J  a(-)b(-)h(x)vvxxdx|  < max|h(x)| J  a0b0|vvX|dx

/L3 í'L3
a ^ v f d x  + C (e) b0 |vx|2dx

< e | | U | | H +  C(e) 11 F 11h 11U || h , (2.57)

for e > 0 small.
Therefore, using (2.56)-(2.57) in (2.55), we get

h'(x) (|v |2 +  |pux +  b(-)vx|2) dx < Re j  h(x)g(pux + b(-)vx) d x j  — Re |  J  ph(x)a(-)vuxdx

r-L

— Re | i X ^  b(-)h(x)vvxdxj  + e11U11H +  C(e) 11F 11h 11U 11h ,

for e > 0 small. □

Lemma 2.4.5. For |X| large, we have

í  ( |v|2 +  p|ux|2)dx 
JL3

< |X|1/2 ( 11 F 11 H 11 U11 H + I l F11 H/4 11 U 11 H/4 +  11 F11 H11 U11 H/2)  +  11 F11 H.

Proof. Let us introduce L 3 e  (L2, L 3) and q1 e  C 1(0,L) such that 0 < Q]_(x) < 1, for all
x  e  [0,L] and q̂ _(x) = 0, if x  e  [0,L3] and q̂ _(x) = 1 if x  e  [L3,L]. Using the result of 
Lemma 2.4.4 with h(x) = (x — L)q1(x), we obtain

LL3
(|v|2 +  p|ux|2) dx

L3

'L3
< — / (q1 + (x — L)q[) (|v |2 +  |pux +  b0 vJ:|^  dx

L
+ R e ^ J  (x — L)q1 (x)g(pux + b(-)vx )dx

— Re | iX  j  b(x)(x — L)q1 (x)vvxdx |  — Re p(x — L)q1 (x)a(x)vu^dx

+ eUU UH +  C (e)UF |h |U  ||h- (2.58)

Let us estimate the terms on the right side of the above equation.

L L L

ü



Note that, using q1 e  C 1([0,L]) and from the Lemma (2.4.1) and from the Lemma
(2.4.2), we have

pL 3
-  (?1 +  (x -  L)qí) (|v |2 +  |pux +  &0Vx|^ dx

JL 3
fL 3

< ( 1 +  (L -  L 3)max|q/ 1) ( |v|2 +  |pux +  b0vx12) dx
JL 3

< |À|- 1 (| | F  11 H 11 U 11 H + I | F  11 H/2 11 U11 H/2 +  | I F  11 H

+ I | F  11 h  11 U 11 h +  | | F  11 H, (2.59)

for |À| large.
Using the Holder’s inequality and the Lemma (2.4.1), we have

L
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Re |  J  h(x)g(pux +  b(-)vx)dx

fL3   z*L
< |(x -  L)g1g(pux +  &0Vx)|dx +  |(x -  L)gpUx|dx

< I I F | I H |1 U 11 H +  |I F  11 H. (2.60) 

By Lemma(2.4.2) and from (2.42), we get

Re |iÀ  J  6 (-)h(x)vvxdx| < b0max|h|À|1/2 J  |vx|(|À|1/2 |v|)dx

-L3 \  1/2 /  rL3 \  1/2
< |À| 1/2 / K |2dx |À| /  |v |2

VdL 3 (  V dL3

< |À| 1/2 11 F  11 H/2 11 U11 H/2 ( 11 F  11 H/2 11 U11 H/2 + I I F  11 H/4 11 U11 H  + | | F  11 H

< |À|1/2 ( II F  11 h11 U11 h + II F  11 H 11 U11 H  + II F  11 H/2  11 U11 H/2

(2.61)

for |À| large.
Finally, from (2.41), we have

Re |  J  ph(x)a(-)vuxdx

z*L4 z*L4
< C(e) / |v|2dx +  e p|ux|2dx

< e | | U 11 2 + | |  F  11 h 11 U 11 h (2.62)I H +  I I F I I H 11 U 11 H

Therefore, from (2.58)-(2.62), we get

í  (|v |2 +  p|ux|2) dx
JL 3

< |À|1/2 ( I | F  11 h11 U11 H + I I F  11 H/4 11 U11 H  + I I F  11 H/2 11 U11 H/2)  + I I F  11 H,

for |À| large. □

The main result of this section is given by the following theorem.
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Theorem  2.4.1. Let H  and A be defined as before. Then, the EKIFE model is not expo­
nentially stable. Moreover, the semigroup etA ofsystem  (2.4) decays polynomially with the 
rate t - 2, that is

Proof. The proof is based on Theorem 1.5.4. Using the same arguments as in the proof 
of Theorem 2.3.1 we can show that iR c  p(A).

Now, let F  e H, consider U =  (u,v) solution of (iÀI — A)U =  F , i.e, the system
(2.19)-(2.20) is satisfied. To show the polynomial decay with the rate t - 2, according 
the Theorem 1.5.4, is sufficient to show

I^U oU h < t -2  11 U0 11 d(A), V U° e D (A), t > 1 ,

I | U11 H < |À| 1/2 11 F  11

for |À| large.
Therefore, from Lemmas 2.4.3, 2.4.5 and Equation (2.52), we obtain

U 2
H / (|v |2 +  p|ux|2) dx +  I (|v |2 +  p|ux|2C dx +  I (|v |2 +  p|ux|^  dx

< |À|1/2 ( | | F  11 h 11 U 11 H +  11 F  11 H/4 11 U 11 H/4 +  11 F  11 H/2 11 U11 H/2) + I | F  11 H,

for |À| large. Thus, using Young’s inequality, we obtain

||U||H < (IÀ| + |À|4/5 +  |À|2/3 + 0  l|F||H < |à |||F ||H ,

for |À| large. Therefore, we get

||U 11h < |à |1/2 |F |h ,

for |À| large. □
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2.5 Optimality of the decay rate
In this section we show that the decay rate obtained in Theorem 2.4.1 is the best. 

We recall that Theorem 2.4.1 was proved for the EKIFE model, but the proof is similar 
for the cases where at least one of the elastic parts of the string is connected only with 
the Kelvin-Voigt damping leading to the same decay rate. In the proof of optimality we 
will address the EKIFE model, with the proof being similar for other models. The EKIFE 
model, already introduced, considering in problem (2.1)-(2.3) that

b(x) =  boX[L1,L3](x) and a(x) =  aoX[L2,L4](x), ao ,bo > °.

Thus, both the Kelvin-Voigt and frictional type dampings are effective in the interval 
(L2 ,Ls).

Theorem  2.5.1. The polynomial decay rate obtained in Theorem 2.4.1 f or the EKIFE model 
is optimal in the sense that the semigroup does not decay with the rate t -s for s > 2 .

To prove the above theorem, we need to state and prove some important results.
Let À e R  and F  =  (f, g)T e  H. In what follows, the stationary problem

(iÀI - A ) U  =  F, (2.63)

will be considered several times. Note that U =  (u, v) is a solution of this problem if the 
following equations are satisfied:

iÀu — v =  f, (2.64)
iÀv — [pux +  b(-)vx]x +  a(-)v =  g, (2.65)

with the following boundary conditions

u(0) =  u(L) =  0 in (0, to), (2.66)

and
b(x) boX[Li,L3](x) and a(x) aoX[L2,L4](x).

For i =  1 , . . . ,  5, we consider

ui =  uX[Li-1,Li], Lo =  0, L5 =  L.

We have the following lemma

Lemma 2.5.1. Consider a particular solution, defined by v =  iÀu, f  =  0 and g =  
(ph)x(o,Ll), where h will be chosen later. Then, the system (2.63) can be written as

d x u  +  Ifu i =  —h(x), x e  (0 ,Li);
dxu  +  l 2ui =  0, x e  (Li-i, Li), i =  2 , . . . ,  5.

with boundary conditions

u(0) =  u(L) =  0, ui (Li) =  ui+i(Li), Oidxui (Li) =  ai+idxui+i(Li), i = 1 . . .  4. 

where

„2 _  „2 _  à 2 2 -  à 2 2 -  à 2 — iÀao 2 -  à 2 — iÀaol i =  l 5 =  , , l 2 =  , -u  3 =  i -7 a , l 4 =  ;p p +  iÀbo p +  iboÀ p
ai =  a  4 =  03 =  a 5 =  p, a 2 =  p +  boiÀ.
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Proof. Let a particular solution, defined by f  =  0 and g =  (ph)x (0,Ll), where h will be 
chosen later.
From (2.64) - (2.65), we have v = iXu and

d2xUl +  y  Ui = —h, in (0,Ll);

d"xU 2 + p+)boX u 2 = ° in (Ll , L 2 )

dlu3 + Xb-;bX07  U3 = 0, in (L2 , L 3 )

d luA +  Ab-“0iA Ua = 0 ,x p 1 in (L3, L4)

d%U5 + y  U5 = 0, in (L4 , L).

with transmission condition
ui(Li)  = U2 (Li),  

u 2 (L2 ) = u3(L2),

u 3 (L3) = uA(L3),

pdxui(Li) = pdxU2 (Li) + bQdxV2 (Li),

Pdxu2 (L2) +  b0 dxv2 (L2) = Pdxu3(L2) , 

pdxU3 (L3) =  pdxUA(L3 ),

U4 (L4 ) = u 3 (L4), pdxUA(LA) = pdxU$(LA) ,

and boudary condition u l (0) =  0, u 5 (L) = 0.

The following theorem will help us find an estimate for the lemma system (2.5.1).

Lemma 2.5.2. Let h e  L 2 (0, L l ). For i = 1, . . . ,  5, letus consider the following system

dx2ul + ( 2lu l = -h(x) ,  x  e  (L0 , L l ),
d2xu% +  12Uí  =  0, x e  (Li - 1 , Li), i = 2, . . . ,  5

with boundary conditions

u(0) u(L)  °  ui (Li) ui+l(Li ), 7 idxui (Li) 7 i+ldxui+l(Li) , i 1

where
X2 ^  x2

p

□

.. 4 .

i 2 =  i 2 = __ i2   ,   ,l l =  l 5 =  , l 2 =  , • \ 1. , l 3 1 • 7 \ , l 4p +  ibo Xp +  iXbo
fí2 X2 — iXa0 ^  X2 — iXa0
l 3 = ' r; r-, lA = ;

p
(2.67)

7l =  O3 =  0 4  = (75 = p, 0 2  = p + b0 iX.

The solution ofthe system is given by

/ \ \ sin(llx) 1 sin(llx) TT ,T , 1 TT . ,
u l (x) = u(Ll ) + — . H 2 (Ll ) — — H 2 (x).sin(llL l ) l l sin(llL l ) l l

where we have the estimate

\u(Ll)\
\7i H i (Li )\

\Wl sin(llL l ) \  

with W l = o ll l cot(llL l) — 7 2l 2 cot(l2(Ll — L 2)) and

(2 .6 8 )

(2.69)

H l (x) = sin(lls)h(s) ds, H2(x) = sin(ll (x — s))h(s) ds.
0 0

x x
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Proof. Solving the stationary differential equations with boundary conditions u(0) 
u(L) =  0, we have

. . , r . sin(lix) 1 sin(lix) 1 TT . .
u 1(x) =  u(L1^  , . +  — . , . H 2 (L1) — Y H 2(x),sin(l1L1) l 1 sin(l1L1) l 1

sin(l2(x — L2)  ̂ sin(l2(x — L 1))u2(x) — u(L1)——. . ------ .. +  u(L2)-
sin(l2(L1 — L2)) sin(l2(L2 — L 1))

^   ̂ sin(l3(x — L3)  ̂ , r , sin(l3(x — L2))u3(x) =  u(L2) . , , ------+  u(L3) —
sin(l3(L2 — L3)) sin(l3(L3 — L2))
sin(4(x — L4)) sin(4(x — L3))

u4(x) =  u(L3) . ------—— +  u(L4) —
sin(l4 (L3 — L4)) sin(l3(L3 — L4))

, sin(l5(x — L5))u5(x) =  u(L4) —
sin(l5(L4 — L5) ) '

Using the transmission conditions a 1ôXu 1(L1) =  a 2ôXu2(L1) we have 

^ 1l 1u(L 1) cot( l1L 1) +  cot( l1 L 1)H 2(L1) — H 2(L1)

=  a 2l 2u(L 1) cot(l2(L1 — L2)) +  a 2l 2u(L2)
sin(l2(L2 — L 1))

Since

cot(l1x)H 2(x) — -1  H2 (x) =  — . 1 H 1 (x),
l 1 sin(l1x)

we obtain

a 1l 1u(L 1) cot(l1L 1)  ; ^  ) =  a 2l 2u(L 1) cot(l2(L1 — L2)) + : / / , / / - (  ) \\ ,sin(i1 L 1) sin(l2(L2 — L 1))

this is

W1u(L 1) +  U2u(L2) =  a 1 1 , (2.70)sin(l1L 1)

where

W1 =  0-1I 1 c o t^ L ^  — a 2I 2 cot(l2(L1 — L2)), U2 =  / 2^2
sin(l2(L2 — L 1) ) '

Using the transmission conditions a 2dXu2(L2) =  a 3ôXu3(L2), we get

. //) /! -(  +  a 2l 2u(L2) cot(l2(L2 — L 1))sin(l2(L1 — L2))
/3l3u(L3)

/3^3u(L2) cot(^3(L2 — L3)) +  —
sin(4 (L3 — L2)) 

from where follows that

U2 u(L 1) +  W2u(L2) +  U3u(L3) =  0 , (2.71)

where

/3^3W  =  a 2I 2 cot(^2(L2 — L 1)) — 03I 3 cot(^3(L2 — L3)), U3 sin(l3(L3 — L2))'
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Using the transmission conditions / 3dxu3(L3) = / 4dxu4(L3) we get 

a3£3u(L2)
sin(4 (L2 -  L3))

+  ^ 3 4 u(L3) cot(l3(L3 -  L2))

=  ^4^4u(L3) COt(^4(L3 -  L4)) +
/ 4l 4u(L4) 

sin(l4 (L4 -  L3))

from where follows that

U M L 2) +  W:iu(L3) +  Ü4u(L4) =  0 ,

where

W3 =  &3l 3 Cot(l3(L3 -  L2)) -  O4Í 4 Cot(l4( L 3 -  L4)), U4
/ 4l 4

sin(l4(L4 -  L3))

Using the transmission conditions / 4dxu4(L4) =  / 5dxu5(L4) we get

——// ,/ , - (  )  +  / 4l 4u(L4) Cot(l4(L4 -  L3)) =  / 5l 5u(L4) Cot(l5(L4 -  L5))sin(l4 (L3 -  L4))

from where follows that

U4u(L3) +  W4u(L4) =  0,

where

W4 =  / 414 Cot(^4 (L4 — L3)) — / 5I 5 Cot(^5(L4 — L5)).

Solving u(L3) (from (2.72)-(2.73)) in terms of u(L2), we get

W3 U4 ' u(L3) -U3u(L2)
U4 W4 u(L4) 0

this is

) - U 3W4 ,
“ <Í3) =  W W w 7  “ (i2)

Solving u(L 4) (from (2.70)-(2.71)), we get

Wi U u(Li) H0"
U2 W2 U2W4 2 W2 W3W4—u2 _ u(L2) 0

this is

u (L i)
Ho Wo

0 •=
/iH i(L i)
sin(l1L1)

W1W0 -  U22 : 

We consider - 0 > 0, such that

u 2 w 4
with W0 •= W2 -

W3W4 -  U42

-1 ( 2nn +— 0  ) </ Z, i =  1, 2, 
n V \ / n .

(2.72)

(2.73)

(2.74)
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where

L3 — L2 L5 — L4
<3i =   p , a2 =   p 'L1 L1

We take À =  Àn, where

•= . ,

Li \  ^fn

From (2.67), note that

Àn •= f  2nn +— ^  ^  Àn w n.

aili =  , i =  1 , . . . ,  5.
l i

• Our objective will now be to estimate the terms that involve: l i and l 5. Note that

l i  W I 5 W Àn.

Furthermore, l iL i =  2nn +  ^ 0 , we have5 i i y/n 5

sin(liL i ) =  sin ^ w  À- i/2  ^  a il i co t(liL i ) w à1/2.

• Our objective will now be to estimate the terms that involve: l 2 e l 4 .
Note that, if

l  =  x +  iy and l 2 =  A  +  iB =  x2 — y2 +  i2xy,

then

2 A +  VA2 +  B 2 2 —A +  VA2 +  B 2 a>o B 2
x = -------------------- , y = ------------------------ =   , -.

2 ’ y 2 2 (A +  VA2 +  B 2)

Since

^  Àn Àn(p —boiÀn) ,  , . D
l 2 =   , 1 -A =  2 , A N2 =  A2 +  iB 2 ,p +  boiÀn p2 +  (bo Àn) 2

we have A2 w 1 and B2 w Àn. Then

Rel2 w à1/2, Im l2 w à1/2. (2.75)

Since

l 4 =  Àn — iÀnao =  A4 + iB4,
4 p

we have that A4 w à1 and B4 w Àn. Then

Rel4 w Àn, Im l4 w 1 .

On the other hand, since a il i =  ^ , i =  2,4, from the previous estimates we haveli

a212 W Àn/2 (1 +  i), 0414 W Àn +  i.
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In that follows, we use the identities

. . . . , l2 . 2 . . . n 2 . . . . . cos(p)sin(p) — i cosh(n) sinh(n)
l sin(p + in)l = sin (p) + sinh (n), and cot(p + in) = -------------------  r - —--------- .

cosh (n) — cos2 (p)
(2.76)

Since I 2 & Xi/2(1 + i) we can write £2 ^ 2  — L 1) = XÍ/ 2 (p2,n + in2 ,n) with p 2,n & 1 & n2 ,n. 
Then, we have

l sin(Í2(L2 — L 1) )  > l sinh(Xl/2n2,n)l ̂  U l  <  \r2\-------------- > 0 .1/2nl sinh(Xn2n2 ,u)l

Moreover, we also have

cot(Í2 (L2 — L 1)) & i a 2Í 2 cot(l2 (L2 — L 1)) & }Xn[2(1 + i). (2.77)

Since l 4 & Xn + i we can write £4 (L4 — L 3 ) = Xnp 4 ,n + in4 ,n with p 4 n & 1 & n4 ,n. Then

l sin(l4 (L4 — L 3))l & 1 ^  l U4 l & Xn.

Writing cot(£4 (L4 — L 3 )) = pn + iqn, we have

lPn l < 1 , qn & 1 .

Since a4 l 4 & Xn + i, we can write a4 l 4 = rnXn + isn where rn & 1 & sn, then 

a4Í 4 cot(£4 (L4 — L 3 )) = (rnXn + iSn)(Pn + iqn)
Xnrnpn snqn + i(Xnrnqn + snpn).

From where follows

lRe {a4l 4 cot(l4 (L4 — L 3))} l < Xn, lIm {a4l 4 cot(l4 (L4 — L 3))} l & Xn

Therefore

\a4l 4 cot(l4 (L4 — L 3))l & Xn.

• Our objective will now be to estimate the terms that involve: l 3 .
Note that

i2 = Xn — iXn a0 = Xn(P — a0 b0 ) — i(Xn b0 + Xna0P)
3 P + iXnb0 P2 + Xnb0 ,

then Re(12) & 1 and Im (£3) & Xn. Then

Re(£3 ) & Xn/2, Im (£3 ) & Xn/2.

On the other hand, since a3l 3 = ^ , from the previous estimates we have 

cot(£;i(L3 — L 2 )) & i a3Í3 cot(£;i(L3 — L 3 )) & X^ 2 (1 + i).

In that follows, we use the identities (2.76).
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Since I 3 w Xn2(1 +  i) we can write 4 (L3 — L 2 ) = Xn 2 (p3,n + M n )  with p 3%n w 1 w ^3,n.
Then we have

X3/2
| sin(£:i(L3 — L2))| > | sinhM J2̂ )  ^  |U31-< ---------^  > 0 ,1/2n

• Our objective will now be to estimate the terms that involve: l 1 and l 5. Note that

11 W I 5 W Xn.

Furthermore, l 1L 1 = 2nn + , we have

sin(l1L 1) = sin ^ w  X- 1/2 ^  co t(l1L 1) w Xn/2

Now, since l 5(L5 — L4) =  a2 ^2nn +  , we have

• ( o , a2a0 ^ • ^   ̂ Z a2a0 ^ , ■ ( a2a0sin I 2 a2nn + ^  I =  sin(2 a2nn) cos I I  +  cos(2 a2nn) sin
n

From the condition (2.74), note that the sequence

A2,n :=  sin(l5(L5 — L4))

is a non-zero bounded sequence (note that maybe it could converge to zero). 
Note that, if A2,n ^  0, then cos (2a2nn) ^  0 and we get

|^5l 5 cot(l5(L5 — L4))| W 77----T.
|^ 2 ,n|

On the other hand, if A2,n ^  0, then

I fí Ufí (T T w\ Xn| cos (2 a2nn) |^5l 5 cot(l5(L5 — L4)) | W [7 | .
|^ 2 ,n|

• Our objective will now be to estimate the terms: W 1 and W4 .
From the previous estimates, we immediately obtain that |W1| w X3n/2.
If A2,n ^  0 and since |A2,n | =  | sin(l5 (L5 — L4))| < 1, we obtain

|W4| =  \&4l 4 cot(l4(L4 — L 3)) — &515 cot(l5(L4 — L5))|

(2.78)

|A2,n|

On the other hand, if A2,n ^  0, we have

|W4| =  ^4l 4 cot(l4(L4 — L 3)) — &5l 5 cot(l5(L4 — L5))| < Xn ( 1 +  (  j < Xn.
V | A2,n| /

and

|W4| = \®4l 4 cot(l4(L4 — L 3)) — ^515 cot(l5(L4 — L5))| > Xn ( 1 — '---- (  i > Xn.
V |A2,n| /

It is important to note that this last inequality cannot occur if | W41 w 0, but in this case,
the proof to estimate |u(L1)| follows in an analogous way.
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Then, if A2,n 0, we have | W4 | «  Àn. So, we get

|W4| ~  77 T, if A2,n —— 0 and |W4| ~  Àn, if A2,n ^  0 .
|A2,n|

• Term estimates: W2 and W3.
Note that

|W3 | «  Àn/2 and |W2 | < Àn/2.

• Now let’s estimate the term u(L 1). 
First, suppose that A2,n — 0.
Let us first estimate the term

W0 =  W2  -  F f) -  W JJj  (2  7 9 )
W0 W2 W3W4 -  U42 W3W4 -  . (

Since
À 5/2À

2 3 || W 4 | ~  TV | 
| A2,n|

we have

|W3 ||W4 | «  ,n and |U4 |2 «  Àn,

À 5/2
|W3W4 -  U || «  .

|A2,n|

On the other hand, since | U3 1 — 0 , note that

Im(W2W3 -  U32) «  Im(W2W3)
=  Im{AB +  (A +  B )C  +  B 2 -  U32)}
=  Im{AB +  (A +  B )C  -  U32)}

where

A =  O2I 2 COt(l2(L2 -  L 1)), B =  O313 cot(l3(L3 -  L2)), C =  O4I4 cot(l4 (L4 -  L3)) 

Since

|Im(AB)| =  |Re(A)Im(B) +  Re(B)Im(A)| «  Àn,

and

|Im(A + B )C |< |A ||C | + |B ||C | < Â /2, 

from where follows that

|W2W3 -  U321 > |Im(W2W3 -  U32)| > |Im(AB)| «  Àn.

Provided that

à4
|W 1|W2W3 -  U2 | > |

follows

|W4 HW2W3 -  U3 1 > 7 ^  and |W2 ||U4 |2 «  Àn/2
|A2,n|

À4
|W4(W2W3 -  U32) -  W2U42| > - -^ - r

|A2,n|
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IW4 CW2W3 — U|) — W2U42\ > . 3/2

\W3W4 — U4 \ > n .

0 .

Using all previous estimates we have

\Wo\ =
\ W3 W4 — u 4

Therefore,
M i
\Wo

Now, suppose that A2,n ^  0.
Again, note that

W =  W  U|W4 =  W4(W2W3 — U|) — W2U42

o 2 W3W4 — U42 W3W4 — U42 '

Since
\W3 \\W4 \ w Àn/2 and \U4\2 w À

we have

\W3W4 — u 2 \ w Àn/2.

On the other hand, since \ U3 \ —̂ 0, note that

Im(W2W3 — U32) w Im(W2W3)
=  Im{AB +  (A +  B )C +  B 2 — U32)}
=  Im{AB +  (A +  B )C — U32)}

where

A =  a 2I 2 cot(l2(L2 — Li)), B =  0313 cot(l3(L3 — L2)), C =  0414 cot(l4 (L4 — L3)) 

Since

\Im(AB)\ =  \Re(A)Im(B) +  Re(B)Im(A)\ w

and

\Im(A +  B)C\ < \A\\C\ +  \B\\C\ < à1/2, 

from where follows that

\W2W3 — U|\ > \Im(W2W3 — U32)\ w \Im(AB)\ w A£.

Provided that

\W4 WW2W3 — U32 \ > Àn and \W2 \\U4 \2 w Àn/2

follows

\W4(W2W3 — U32) — W2U2 \ > à1 

Using all previous estimates we have

\W4(W2W3 — U2) — W2U42 \ > . 3/2W (W W U ) W U2
iWol —
\ o\ \W3W4 — U2\ ~ n

Therefore,
\u22\
\ 2 \ ->• 0 .
\ Wo

□
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Lemma 2.5.3. Take h(s) =  sin(ls) in the previous Lemma 2.5.1. I f  l  e  R is such that 
sin(lL?) =  0 and cos(lL?) =  1, then the solution in (2.68) satisfies

ui(x) = u (L 1) 

Proof. Take h(s) =  sin(ls), we have

sin(l?x) 
sin(liLi) l? -  l 2

sin(lx).

Since

px px
H i (x) =  / sin(l?s) sin(ls) ds, H 2(x) =  / sin(l?(x — s))sin(ls) ds.

do do

sin(ls) sin(l?(x — s)) =  sin(l?x) cos(li s) sin(ls) — cos(l?x) sin(li s) sin(ls)],

l i sin(l?x) sin(lx) +  l  cos(l?x) cos(lx) — l
sin(l?x) / cos(l?s) sin(ls)ds =  sin(l?x) 

o l i  - 12

cos(l?x) / sin(li s) sin(ls)ds =  cos(l?x)
ls in ( l ix) cos(lx) — l? cos(l?x) sin(lx) 

l? — l 2

Using the hypothesis, we get

l  sin(l?L?) cos(lL?) — l? cos(l?L?) sin(lL?) lsin(l?L?)

and

Hi(Li)

H 2(x)

l? — l 2 l? — l 2 ’

l? sin(lx)[sin2(l?x) +  cos2(l?x)]
l? — l 2

lsin(l?x)[cos(l?x) cos(lx) — cos(l?x) cos(lx)] lsin(l?x)
l? — l 2 l? — l 2

l? sin(lx) — l  sin(l?x)
l? — l 2

Note that

1 sin(l?x) H L  1 H 
T  ■ ( 0  T \ H 2(L1) — H 2(x)l? sin(l?L?) l?

1 sin(l?x) —l  sin(l?L?) 1 l? sin(lx) — l  sin(l?x)
l? sin(l?L?) _ l? — l 2 _ l i _ l? — l 2 _

1

l? -  l 2
sin(lx).

Thereby, we have

/ \ / t \ sin(l?x) 1 sin(l?x) TT , T  , 1 TT . ,
u ?(x) =  u(L? ^  +  — . H2(Li ) — y  H2(x)sin(l?L?) l? sin(l?L?) l?

u (L ?)-
sin(l? x) 1

sin(liLi) l2 — l 2
sin(lx).

□

x

o
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Lemma 2.5.4. Assuming the same conditions as the Lemma 2.5.3 and considering l  
l n =  T f , we have

1 # 0Im(u(L1)) -  Im [

Proof. We know

u(L 1) 0

w  -  S i
with

U22

W 0
0 .

We remember H0 := ^̂i1rf(-<11(L'1j>, where H 1(L1) =  1 ̂ - f ^ . Then, from l 1 — l  — À,
we have

n,

# 0
lO1

À1/2.l 21 -  l 2

Since W1 =  o 1 l 1 co t(l1L 1) -  o2l 2 cot(l2(L1 -  L2)), then

|Im(W1)| =  |Im(o2l 2 cot(l2(L1 -  L2)))| -  à1/2.

u2Let hn =  H0, W1 =  ^n +  inn, with nn — ro as n — ro and w  =  J1,n +  i j2,n where 
J 1,n, J2,n — 0 as n — ro. Note that hn e  R for every n e  N. From

u(L 1)

we get

Note that

Im(u1(L1))

(^n +  inn) (j1,n +  ij 2,n)
hn

(^n J 1,n) +  i(nn J2,n)
hn((^n J1,n) i(nn J2,n))

(^n -  J1,n)2 +  (nn -  J2,n)2

hn(nn J2,n)
(^n -  J1,n)2 +  (nn -  J2,n)2

and

hn(nn J2,n) =  - _  ^  - _h (n _  x _h n— 1 — 1 ^  hn('/n j 2,n) — ^nvn
hnnn nn

(^n -  J1 ,n) 2 +  (nn -  J2,n)2 ^n 2^nJ 1,n +  j2,n +  n!  2nnJ2,n +  J 2

^ n + nn
- 2^nJ1,n +  ,n -  2nnJ2,n +  J2,í

^ n + nn

this is,

Therefore, we get
(^n -  J 1,n) +  (nn -  J2,n) ~  ^n +  nn.

Im(u1(L1) hn(nn J2,n) hnn« I m ( # 0
(^n -  J 1 ,n) 2 +  (nn -  J2,n)2 ' ’ ^  +  nn V W1

□

1



Preliminaries 49

Lemma 2.5.5. Let l 1L 1 =  2nn +  —=. We have1 1  y/n

í m { w )  “ À-3/2.

Proof. Let l 1L 1 =  2nn +  —n. We know that W1 =  a 1l 1 co t(l1L 1) +  a 2l 2 cot(l2(L2 — L 1))
and we saw in (2.78) and (2.77) that a 1l 1 co t(l1 L 1) «  Àn2 and a 2l 2 cot(l2(L2 — L 1)) «  
Àn/2(1 +  i), then

Im(W1) «  Im(a2l 2 cot(l2(L2 — L 1))) «  Àn/2 and Re(W1) «  Àn/2.

Therefore, we get

Im —Im(W1)
W j  Re(W1)2 +  Im(W1)2

À-3/2. / \rr>

□
Lemma 2.5.6. There exists (Àn)n e  R+ with Àn ^  x>, (Un)n c  D (A) and (Fn)n e  H such 
that (iÀnI  — A)Un =  Fn is bounded in H  with

ÀjUnllH > 1 , for  n large.

Proof. For n e  N, we consider À =  Àn =  -7 * ( 2nn +  —̂  ], Fn =  (0, (*hn)l(°,Li)) e  H,
L 1 V V n J

hn(s) =  sin(lns), s e  (0 ,L 1) with l n =  and Un =  (un,vn) e  D(A). Therefore
vn =  iÀnun. In what follows, we will avoid putting the subindex n in some variables
that depend on n. Thus, from the lemma 2.5.1, the coordinate u of solution U =  (u, v) 
satisfies the hypotheses of Lemma 2.5.2. Moreover, note that À satisfies the conditions 
of Lemma 2.5.2. Hence, by Lemmas 2.5.3 and 2.5.4, u 1 satisfies the following estimate

|Àn«1 (x)|

> |Im(Ànu1(x))|

On the other hand

f  sin(l1 x)
Im Ànu(L 1) .

\  sin(l 1L 1)
Im

1 \  ÀnH° sin(l 1 x)
W1J sin(^L  1)

(2.80)

12 2||7 112 2 I L 1 sin(2l nL 1) \ . 2
l|Fn||H =  e2 ||hn||Í2(0,L1) =  ^  — < *2 ' T  +  4Jn

*2L 1

which implies that Fn is bounded.
Now, note that l 1 «  l  «  Àn «  n, and as l 1L 1 =  2nn +  —=, thenn

sin(i1i 1) = sin ( —1 )  ^ ——n k  À-1/2 -

Using in Equation (2.80) the previous estimate, the estimate obtained in Lemma 2.5.5
and the fact that we already deduced in Lemma 2.5.4 that H° ~  Àn , we get

|Ànu1(x)| >
\  ÀnH° sin(Ox)

1/2n

Àn/2 | sin(l1 x)|.
W 1J  sin(l1L 1)

Since 11 sin(lr ) 11L2 > —L1/2, from Equation (2.81), we conclude

I I Un 11 H > I I Ànu 1 (x) 11 L2 > Àn/2,

(2.81)

□

1

2
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Finally, let us prove the main result of the section.

Proof of Theorem 2.5.1. Suppose that the rate t - 2 is not optimal. Then, we can improve— 2
the decay rate, say to t l—— . By Borichev-Tomilov theorem, subsequently

llUn | H < \Àn\ 2 |F n!H.

Thus, for n large, we obtain

|(iÀnI — A)- i  ||l(H) < \À n\^  . (2.82)

On the other hand, by Lemma 2.5.6, there exists (Àn)n e  R+ with Àn — to, (Un)n c  
D (A) and (Fn)n e  H such that (iÀnI  — A)Un =  Fn is bounded in H and

f  ||u„||H > 1 ^  ||U„||H > An ^  . i - | | ( i A „ i  — a / f j H  > An,Àn Àn-  Àn-

we get
1 —

—i—— 11(iÀnI — A )iFn 11 h  > An —— + to  as n —— to, 
A ~2~ Àn

what is a contradiction with (2.82). Note that this inequality also implies the lack of 
exponential stability. □



Chapter 3

Asymptotic stability for wave equation 
with Kelvin-Voigt damping and Memory 
Effect

3.1 Introduction to the problem
In studies of vibrating systems modeled by wave equations, beams or plates, it is 

known that Kelvin-Voigt damping mechanisms, when distributed globally, stabilize the 
solutions of these systems exponentially. Furthermore, this damping mechanism is so 
strong that it tends to regularize the solutions. The situation may be completely dif- 
ferent if this type of damping acts only on a part of the body as was shown by K. Liu 
and Z. Liu in [24] (see also [11]). These authors proved that if Kelvin-Voigt damping 
acts locally in a wave equation with discontinuous coefficient then the solutions of the 
equation are not exponentially stable.

Later, Alves et al [3], studied the stabilizing force that Kelvin-Voigt damping ex- 
erts on a transmission problem. This time, two dissipative mechanisms act on different 
parts of the body. In one part, Kelvin-Voigt damping and in the other, frictional damping. 
Even with the collaboration of frictional damping, the authors showed that Kelvin-Voigt 
damping can predominate in the decay of the solutions, not allowing the exponential 
decay of the solutions. However, the authors showed that the solutions decay polyno- 
mially with the optimal decay rate t - 1 /2. In the literature we have not found a study on 
the behavior of solutions where Kelvin-Voigt damping acts collaboratively with memory 
effects and this was what motivated this work.

Problems with localized Kelvin-Voigt damping have aroused the interest of several 
researchers in the last two decades and several results have been obtained. The problem

utt(x,t) — uxx(x,t) — (b(x)uxt(x,t)) x = 0 ,

was studied by Liu and Zhang [27] in the interval (—1,1) (see also [43]). They showed 
that if the coefficient b(x) is zero in (—1 , 0 ], positive in (0 , 1) and has a behavior like 
x  around zero then the solution of this problem is exponentially stable. Also, if the 
behavior of b(x) around zero is x a, a > 1 , the solution is polynomially stable with a 
decay rate depending on a. A result with sharp stability t - ^  were obtained by Han et 
al in [19] (see also [18, 27]).

When the coefficient b(x) is discontinuous, Liu et al. [24] had shown the solution 
does not decay exponentially. A few years later, this same problem was studied by

51
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Rivera et al. [2] where they showed that the solutions of the system decay polynomially 
with the optimal rate t -2 (see also [17, 20, 29, 40]).

Elastic equations with memory effects have been widely studied in recent decades. 
It is known that memory damping can be strong enough for the solutions of the system 
to tend exponentially to zero even if the damping is locally distributed. This problem 
was studied by Liu et al [26] who considered the equation

utt(x,t) — (ux(x, t )  — a(x) J  gs(s)(ux(t) — ux(x, t  — s))ds) = 0 .

In this case, if the kernel of the memory is exponentially decreasing, the authors 
showed that it does not m atter if the coefficient a(x) is discontinuous that the system 
remains exponentially stable. A similar result had already been obtained in [38] when 
considering a transmission problem partially damped by memory effects. Other prob- 
lems with memory effects, locally or globally distributed, can be found in [4, 14, 30, 31, 
36, 4 2 ].

Taking into account the results mentioned above, it is interesting to study the behav- 
ior of solutions in elastic systems where both Kelving-Voigt and memory damping act 
simultaneously on the body. These dissipative mechanisms can act jointly on a part of 
the body or on separate parts. In this article we try to answer which of the dissipative 
mechanisms prevails: the memory damping that stabilizes the system exponentially, 
or the Kelving-Voigt damping, which, being discontinuous, stabilizes the system more 
slowly.

Therefore, in this article we consider the following problem: to study the asymptotic 
behavior of the solutions of the equation

r*00

utt(x, t) — Quxx(x, t )+  g(s)(a(x)ux(x,  t — s))xds — (b(x)uxt(x, t ))x = 0, (3.1)
J 0

x e  (0,L), t > 0 , satisfying the boundary conditions

u(0, t) = u(L,  t) = 0, t > 0 (3.2)

and initial data

u(x,  0) =  u0(x); ut (x, 0) =  u 1(x), u(x, —s) = <fr0(s), (x, s) e  (0, L) x (0, ro). (3.3)

Here, q is positive and the kernel of the memory, g, is a positive function with exponen­
tial decreasing behavior. The coefficients a(x) e b(x) are characteristic functions whose 
supports are subintervals of [0,L]. These supports can intersect, be disjoint or even 
contain each other.

Since the possibilities of location of the supports of the coefficients a(x) and b(x) 
can be diverse, we will focus on 3 cases: The first case that we will study is when the 
supports do not intersect and all the purely elastic components are in contact with the 
component that contains the memory damping, that is

b(x) = b0 X[0,L1](x) and a(x) = a0 X[L2 ,L3](x), a0 ,b0 > 0 ,

where 0 < L 1 < L 2 < L 3 < L. We refer to this model as the KEME model. In the 
second case, we still keep the supports of the coefficients a(x), b(x) disjoint, but there 
is a purely elastic component in contact only with the Kelvin-Voigt component (without 
contact with the memory component), that is

b(x) = b0 X\L1,L2](x) and a(x) = a0 X[L3,L4](x), a0 ,b0 > 0 ,
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where 0 < L1 < L2 < L 3 < L 4 < L. This model is referred to as the EKEME model. 
In the last case we consider that the supports of the coefficients a(x), b(x) intersect, but 
there is still a purely elastic component in contact only with the Kelvin-Voigt component, 
that is

b(x) =  boX[L i , L s ](x) and a(x) =  aoX[L 2 , L 4 ](x), ao,bo > 0.

We refer to this model as EKIME model. The KEME, EKEME and EKIME models are 
shown in Figure 3.1 below.

KEME M odel

Figure 3.1: Different partial viscoelastic materials 

We will use the following assumptions for the memory kernel

Íg E L 1([0, x>)) n C 1([0, x>)) is a positive function such that
g(0) := g0 > 0, f0’° g(s)ds := g, C(x) := q — a(x)g > 0, and (3.4)

g'(s) < —c0 g(s), for some c0 > 0, Vs > 0.

The main results we obtain in this problem are the following:

• If all the purely elastic components are in contact with the memory damping com- 
ponent, whether or not they contact the component with Kelvin-Voigt damping, 
then the solutions of the system (3.1)-(3.3) decay exponentially
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• If there is a purely elastic component that contacts only the component with 
Kelvin-Voigt damping then the solutions of the system (3.1)-(3.3) do not decay 
exponentially. However, it is proven that the solutions decay polynomially with 
the rate t -2.

• In case of non-exponential decay of the solutions, it is proven that the polynomial 
decay rate t -2 is optimal.

The remaining part of this chapter is organized as follows: In Section 3.2, we study 
the well-posedness of the system (3.1)-(3.3) using a semigroup approach. In Section
3.3, we study the case when the solutions of the system decay exponentially, that is, 
when all the purely elastic components are in contact with the memory damping com­
ponent. In Section 3.4, we study the case when there exists a purely elastic in contact 
only with the Kelvin-Voigt damping component. Finally, Section 3.5 deals with the opti- 
mality of the decay rates obtained in the previous section.

3.2 Existence of solutions
In this section, we will establish the well-posedness of problem (3.1)-(3.3) by using 

a semigroup approach. To this aim, as in Dafermos [14], we introduce the following 
auxiliary change of variable

rj(x,s,t) := u(x, t )  — u(x, t  — s), (x, s,t) E (0,L) x (0, ro) x (0, ro). 

Then, system (3.1) becomes

(3.5)

utt(x, t) — ã(x)ux (x,t) + a(x)g(s)qx (x,s)ds + b(x)uxt(x,t)
Jo

(3.6)
OG

0
x

nt(x, s, t) + ns(x, s, t) — ut(x, t) = 0, (3.7)

for (x, s,t) e (0, L) x  (0, ro) x  (0, ro), satisfying the boundary conditions

( u(0,t) = u(L, t )  = 0, t >  0,
< q(-, 0,t) = 0, (x,t) E (0,L) x  (0, ro), (3.8)
y q(0, s, t) = n(L, s, t) = 0, (s, t) E (0, ro) x (0, ro),

and the following initial conditions

u(-, —s) = 0o(s), u(-, 0 ) =  uo(-), ut(-, 0 ) =  ux(-), (3.9)
q(-,s,  0) =  qo(-,s) := uo(-) — 0o(s), (3.10)

with (x, s) E (0, L) x  (0, ro).
The problem (3.6)-(3.10) is dissipative in the sense that its energy is a non-increasing

function with respect to the time variable t. Let us define the energy space H  by

H := H1(0,L) x L2(0,L) x Çg,

where Gg is the weighted space L 2g( ( 0 , ro); H^ ( 0 ,L)),  with the inner product

(v 1,v2 )gg := a(■)g (s)nlxn2 gdsdx, v  n \ n 2 EGg.
J 0 J 0
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The Hilbert space H  is equipped with the inner product defined by

(U1 ,U2 )h
0

v 1v2dx + a(-)ulxuxdx
J 0

pL Ptt
+  /  a(-)g(s)nl (-, s )nl (■,s)dsdx, (3.11)

0 0

for all U1 = (u1 , v 1 , n1 (-,s)) and U2 = (u2, v2, n2 (■, s)) in H. We use | | U\\H to denote the 
corresponding norm. We define the unbounded linear operator A  : D (A) c H  ^  H  by

' U = (u,v,n(- ,s))T e H l v e  H1(0,L),

D(A)
ns(-,s) e  Gg,n(-,0 ) = 0  in (0 ,L),

a(-)ux + /  a(-)g(s)nx(-,s)ds + b(-)vA e L 2(0,L).

(3.12)

and
u

A  ( v
n(-,s)

(  v \
p<X>

a(-)ux +  / a(-)g(s)nx(-,s)ds + b(-)v:

V v — ns(-,s) 

for all U = (u, v, n(' ,s))T e D (A).
If U = (u, ut , n(-, s))T is the state of system (3.6)-(3.9), then this system is transformed 
into the first order evolution problem on the Hilbert space H  given by

Ut = AU, U(0) = U0 , (3.13)

where U0 = (u0 , u 1 ,n0(-, s))T e  H.  We have the following result on the well-posedness 
of system (3.13).

Proposition 3.2.1. Let A  and H be defined as before. Then A  generates a C0 semigroup 
of contractions etA in H.

Proof. Note that the A  is a dissipative operator in the energy space H. In fact, let 
U = (u, v, n(-,s))T e D (A).  Using the inner product in H, integration by parts, and the 
boundary conditions (3.2), we have

(AU,U )h ' a(-)vxux dx — a(-)ux:vx:dx \ — b(-)lvx\ 2dx
0 J 0 J J 0
/ pL pL

+  ( a(-) g(s)nx(-,s)vxdx — / a(-) g(s)nx(-,s)v£ dx
0 0 0 0 

nL
— a(-) g(s)nxs(-,s)nx(-,s)dsdx.

0 0

Using integration by parts with respect to s in the above equation, the hypotheses (3.4) 
and taking the real part, we get

f rL p<x>
Re(AU,U)h = —R e jy  a(-) j  g(s)nxs(■,s)nx(-,s)dsdx\  — / b(-)lvxl2 dx

L L
a(-) g'(s)lnx(-,s)l2dsdx — / b(-)lvxl2dx < 0 ,

L L

oo

0 x

0 x

L L L

2 0 0 0
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therefore, A is dissipative.
Now, we will prove 0 e  p(A), the resolvent set of A. In fact, we will show that there 

is unique U =  (u, v, p(-, s))T e  D (A) such that

-A U  =  F , (3.14)

for F  =  ( f ! , / 2 , f 3(-,s))T e H .
Writing equation (3.14) in terms of its components we obtain the following system of 
differential equations

- v  =  f  1,

ã(-)ux +  / a(-)g(s)nx(-,s)ds +  b(-)vx f 2

ns(-,s) -  v =  f 3(-, s )

(3.15)

(3.16)

(3.17)

with the boundary conditions

u(0) =  u(L) =  0, n(-, 0) =  0 in (0, L) and n(0, s) =  n(L, s) =  0 in (0, ro). (3.18)

First, using (3.15) and (3.18), we have

n(x,s) f  3(x, p)dp — s f 3, (x, s) e  (0 , L) x (0 , ro). (3.19)

Note also that, from (3.15), (3.17) and (3.19), we get n(-,s) e  H01(0,L) in (0, ro) and 
ns(-, s) e  , because v =  —f 1 e  H0(0, L) and f 3(-, s) e  . We will show

/ g(s)lnx(-,s ) lL2(o;L)ds < ro,
0

consequently, we will obtain n(-, s) e  . By (3.4) and taking y e  (0, + ro), we have

r1/y 1 r1/y
g (s)lnx(-, s ) lL2(o;L)ds < — — g  (s)lnx(-, s ) lL2(o;L)ds.

Jy c 0 Jy

Using that above equation and by using integration by parts with respect to s, we get

1/y
g(s)lln* (-, s ) I Í 2(o,L)ds

< — í  g(s)ds ( | nx(-, s ) | Í 2(o,L))dsCo ,/ y 
1

+-----
Co

g(y) | nx(-, y) | Í 2(o;L) — g (1 / y) ||nx(•, V y^lL^L)

Furthermore, using Young’s inequality, we have

1 r1/y d (
Co X  g(s)Ã  (»nx(- 's )»Í2(o,L)ds

= 2  J  nx (-,s)nsx (-,s)d^ds

1 r 1/y 2 f  1/y
< 2  g( s ) |nx(-, s ) | | 2(o,L)ds +  C2 g(s)llF* (-,s ) ll|2(o,L)ds.

2 J y co J y

(3.20)

(3.21)

oo

o x

s

o

CO

y
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From (3.20) and (3.21), we deduce

r 1/y
/ g(s)llnx (-, s ) l | 2(o,L)ds

Jy
4 r 1/y

< — l g( s ) |nsx(-, s ) | Í 2(o;L)ds“  C2 c0 J y

+-----
Co

2
g(y) | nx(-, y) | Í 2(o;L) — y (1 / y) ||nx(•, V y^& ^L ) (3.22)

Hypoteses (3.4) implies that g(s) < goe Cos, and using ys e Gg, n(-,s) =  0 in (0,L), we
get, as y ^  0 +, that

r<x>
/ g( s ) |nx(-, s ) | | 2(o,L)ds < ^  o

and therefore, n(-, s) e  Gg. Furthemore, from (3.19), we have

y x ( x , s ) = f / '  f  3(x,y)dy — s f  ̂  , (x, s) e  (0,L) x (0, w ). (3.23)
o x

Substituing the above inequality in (3.16), we have

X 1 = f 2. (3.24)
/  ps

ç3f„ „£iã(-)ux + a(-)g(sW / f  (x,y)dy — s f  ds +  b(-)va
o o x

Multiplying (3.24) by 0 e  Ho?(0,L), integrating over (0,L) and using integration by 
parts, we get

rL rL rtt / rs \
ã(-)ux0 xdx = f 20 dx — a(-)g(sW f  3(x,y)dy — sfM  ds0 xdx

./o ./o ./o \./o /  x

— /  b(-)fx?0xdx. (3.25)
o

Note that, from (3.25), we get

Y(u, 0) =  J (0), V0 e  Ho?(0, L), (3.26)

where

Y(u, 0) =  í  ã(-)«x0xdx, V0 e Ho?(0,L), (3.27)
o

and
rL r<x> / p s  \

J (0 ) =  f 20 dx — a(-)g(sW f 3(x,y)dy — sfM  ds0 xdx
o o o x

— /  b(-)fx?0xdx. (3.28)
o

Note that Y is a sesquilinear form on Ho?(0,L) x Ho?(0,L). By Holder’s inequality and 
Poincaré’s inequality, Y is a continuous and coercive form on H0?(0, L) x Ho?(0, L). On the 
other hand, J  is an antilinear functional on H1(0, L) and since n(x, s) =  f 0s f 3(x, y)dy —
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s f 1 e  Gg, then using Holder’s inequality, we get that J  is a continuos functional on 
Hl(0,L) .  Therefore, by Lax-Milgram theorem we have that (3.26) admits a unique 
solution u e  H1(0, L). By taking test function G e  C™(0, L),  we deduce that

a(-)ux +  /  a(-)g(s)vx(■, s)ds + b(-)vx
0

f 2 e  L 2(0,L).

Therefore, U e  D (A)  is a unique solution of (3.14). This tells us that A  is bijective and 
thererefore A - 1 exists. So, to conclude that 0 e  p(A), we just need to show that A - 1 is 
bounded. For this, as there is only one U e  D (A) such that —AU =  F , we need to show 
U U||H < ||F ||H. In fact, since v = —f 1, then by Poincaré’s inequality, we have

llvll2 L2(0 ,L) < UFU2 L2( 0 ,L).

Now, by (3.4), we get

this is,

C0 C0
^  11 n(-,s) 11 Gg =  ^  g(s) 11 Vx(-,s) 112L2(0 ,L)

2  J 0 
1

< 2 J0
1

< 2 . 0

—gl(s) 11 Vx(-,s) 11 L2(0,L)

—gl(s) 11 Vx(-,s) 11 2L2(0,L) + Í  b(■)|vx |2dx

<

= Re(—AU, U)h 
= Re(F,U )h 
< 11F11H11 U |1 H,

| I F |1 H 11 U |1 H. Thus, we have

0 0
a(^)g(s)|Vx( ,̂s)|2dsdx < I I v (-, s ) 11 Gg < I I F 11 h  11 U 11 h .

On the other hand, multiplying (3.16) by u, integrating over (0,L),  using integration by 
parts, using (3.15) and Holder’s inequality, we get

L
a ^ ^ u ^ d x  < a(-)g(s)rnx(-,s)uxdsdx + I I F  11 h  11 U 11 h .

J0 J0 J0

Using Young’s inequality in (3.29), we get
í- L

0

Thus, we obtain

a(-)Wx ̂ dx < a 11 v(-,s) 11 Gg + 11 F 11H11U 11H < 11F 11H 11U 11H

nL pL pL
^ f d x  + / a ^ ^ f d x  + / / a(■)g(s)|nx(■,s)|2dsdx

0 0
< 11F 11H 11U 11H + | |  F 11H,

(3.29)

using Young’s inequality, we get 11U 11 H < 11F 11 H, as we wanted to show.
Lastly, since A is dissipative and 0 e  p(A), it follows from Lemma (1.4.3) that D (A) is 
dense in A. Therefore, the operator A satisfies the conditions of Lumer-Phillips Theorem 
(see Pazy [25]) and the result of the proposition follows.

□

CO

x

CO

2s g

0 0
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The well-posedness of the problem (3.13) and therefore of problem (3.1)-(3.3) is a 
consequence of semigroup theory. From Preposition (3.2.1) we can state the following 
result.

Theorem  3.2.1. Under the hypotheses (3.4), for all U° e  H, there exists a unique solution 
to the system in the space (3.13) in the space

U(x, s ,t)  =  etAU°(x, s) e  C ([0, ro[; H).

Moreover, if U° e  D (A), then the solutions belong to the following space:

U (x ,s ,t)  =  etAU°(x,s) e  C ([0 , ro[; D (A)) f  C 1([0 , ro[; H).

3.3 Asymptotic behavior: Exponential Stability
We will study the asymptotic behavior of the semigroup etA associated to the system 

(3.6)-(3.8) under the hypotheses in (3 .4). The results will be obtained using the spectral 
characterizations for exponential stability of semigroups (see [21] or [32]).

We will demonstrate the exponential stability of system (3.1)-(3.3) in the case that 
every elastic part of the string either connects only with the memory part or connects 
with both types of dampings. Since the proof of the decay rate is similar in all these 
cases, we focus on the proof considering the KEME model, which is given by (3.1)-(3.3) 
considering

b(x) =  b°X[°,l1](x) and a(x) =  a°X[L2,L3](x), (3.30)

where a°, b° > 0 .
The main result of this section is Theorem 3.3.1 and to prove this theorem we will 

need to introduce some technical lemmas.
Let À e  R and F  =  ( f 1, f 2, f 3(-, s))T e  H. In what follows, the stationary problem

(iÀI — A)U =  F, (3.31)

will be considered several times. Note that U =  (u, v, n(-, s)) is a solution of this problem 
if the following equations are satisfied:

iÀu — v =  f 1, (3.32)

iÀv — (ã(-)ux +  í  a(-)g(s)nx(-,s)ds +  &(-)v*] =  f 2, (3.33)
V J° J x

iÀn(-, s) +  ns(-, s) — v =  f  3(-, s), (3.34)

with the following boundary conditions

u(0) =  u(L) =  v(0) =  v(L) =  0, n(-, 0) =  0 in (0, L) and n(0, s) =  0 in (0, ro). (3.35)

Note that
((iÀU — AU), U)h =  iÀ||U||H — (AU, U)h ,

so, we have

—Re(AU,U)h < ||(iÀU — AU)||h ||U |h =  ||F ||h ||U||h -



Therefore, we get

pL p<x> pL
— /  a(-)g'(s)lqx(-,s)l2dsdx +  / b(-)lvxl2dx < | | F |1 h |1 U |1 H. (3.36)

Jo Jo Jo

Thus, from the definitions of a(x) and b(x) defined in (3.30) and from (3.36), we obtain

Í L b(x)lvxlgdx < 11F11H11U11H, (3.37)
Jo

and
pL'3 p̂ o i pL'í p̂ o

g(s)lnx(-,s)l2dsdx < ----- g'(s)lnx(-,s)l2dsdx
J l 2 J o c 0 J L2 J o

< 11F11H11U11H. (3.38)

From (3.32) and (3.37), we obtain

í  pluxl2dx < l \ l - 2  (  í  lvxl2dx + í  I f J 2dx 
J o \ J o J o

< |A|- 2( 11 F11H11U11H + | |  F11H). (3.39)

Furthermore, by Poincaré’s inequality and (3.37), we have

í Ll lvl2dx < 11F11H11U11H + | |  F11H. (3.40)
o

Then, from (3.39)-(3.40), for IXI large, we have

í Ll (|v|2 +  gluxl2)dx < 11F 11h 11U 11h . (3.41)
o

Lemma 3.3.1. For |À| large, we have

t  luxl2dx < 11 F 11H 11 U 11H.
L2

Proof. By substituting (3.32) into (3.34) and subsequently differentiating the combined 
equation with respect to x, we can derive:

i\qx(-,s) + Vsx(-,s) — iXux = fx(-,s) — f l .  (3.42)

After multiplying (3.42) by X- 1g(s)ux, integrating over (L2, L 3) x  (0, ro), then taking the 
imaginary part, we obtain

pL 3 Ptt
/ / g(s)lux l2dsdx
L2 o

( ÇL'3 PtX> f pL'3 ptx>
= Im < w  g(s)qx(-, s)uxdsdx > +  Im < X- 1  g(s)nsx(■,s)uldsdx

L2 o L2 o
r pL 3 p^  r pL 3 p^

— Im < X- 1  g(s)f l . (■,s)uldsdx\  +  Im < X- 1  g(s)f^uxdsdx
L2 o x L2 o x
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Using integration by parts with respect to s in the above equation and using the hy- 
potheses (3.4), we get

rL'i
g |ux|2dx

JL2
£̂3 pTC

Im <í i I  J  g(s)px(-, s)«Tdsdx j> +  Im |À

f-L'3 /«TC
— Im l À-1  / g(s)fX3(-, s)uxdsdx

' L2 do
í>L3 TC

í>L3 /*TC
-1  / —g'(s)nx(-, s)uxdsdx

L2  ̂o

+  Im <J À 1 / g (s)fx1 uxdsdx }>.
«/ L2 o

(3.43)

Using integration by parts with respect to s, hypotheses (3.4), Young’s inequality for 
e > 0, Poincare inequality and Cauchy-Schwarz inequality, for |À| > 0 large and e > 0 
small, we get

g í  |ux|2dx < /  |ux|2dx +  (c (e )g 2 |À| 1 +  1  ̂ ||F ||W||U||h
' L2 J L2

Therefore, for |À| large and for e > 0 small and suitable, we obtain

r L3
|ux| dx < ||F ||W||U||h .

Lemma 3.3.2. For |À| Zarge, we have

□

*£3

' L2
ã(x)ux +  / a(x)g(s)px(-,s)ds dx < ||F ||h |U ||h -

Proof. Using (3.38) and Lemma 3.3.1, we get

/*L3

'L2
a(x)ux +  a(x) / g(s)nx(-,s)ds 

o

2 /'L3 /*L3
2dx < / |ux| dx +  / / g(s)|nx(-, s)| dsdx

JL2 ^L2 ^o
< |F | |h ||U |h .

□
Lemma 3.3.3. Consider L2 and L3 such that [L2 ,L 3] c  (L2 ,L 3). Then, for  |À| Zarge, we 
have

^£3
|v|2dx < ||F ||W||U |h . (3.44)

' L2

Proof. Let us consider an auxiliary funtion q1 which satisfies q1 e  C 1([L2 , L3]), such that
0 < q1 (x) < 1, for all x e  [L2,L 3] with q1 (x) =  0 if x e  {L2 ,L 3} and q1(x) =  1 if 
x e  [L2,L 3]. Multiplying Equation (3.33) by —q1 (x) / o~  g(s)n(-, s)ds, integrating over

200

o

co
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(L2, L 3) and using integration by parts, since q1 (L2) = q1 (L3) = 0, we get
í-L'3 ptt

—i X í  q1 (x)v g(s)nj(-, s)dsdx
JL2 0

ÇL3 / p̂ o \ p̂ o
= \ ( e  — a0 a)ux + a0 g(s)nx(-,s)ds) q[(x) g(s)g(-,s)dsdx

L2 0 0
fL'3 / Ptt \ Ptt

+  / I (q — a0a)ux + a0 g(s)nx,(-, s)ds) q^x)  g(s)nx(-, s)dsdx
L2 0 0
pLs p̂

— f  2q1 (x) g(s)nj(-, s)dsdx. (3.45)
L2 0

From (3.34), we have

—iXrj(-,s) = v + f  3 (-,s) — Vs(',s) in (L2 , L 3 ) x (0, <x>).

Inserting the above equation in the left-hand side of (3.45), we obtain
í-Li

a q1 (x)lvl'2dx
L2

pL 3 p^ pLi p^ __
= q1 (x)v g(s)7ns(-, s)dsdx — q1 (x)v g ( s ) f 3 (-,s)dsdx

L2 0 L2 0
çL'3 / ptx> \ Ptx>

+  ( (q — a0 a)ux + a0 g(s)nx(-,s)ds) q[(x) g(s)g(-, s)dsdx
L2 0 0
pLi / Ptt \ Ptt

+  / I (q — a0 a)ux + a0 g(s)nx,(-, s)ds) q^x)  g(s)nx(-,s)dsdx
L2 0 0
pL 3 p^

— f  2 q1 (x) g(s)n(-,s)dsdx.
L2 0

Using integration by parts with respect to s, hypotheses (3.4), Young’s inequality for 
e > 0, Poincaré inequality, Cauchy-Schwarz inequality and Lemma 3.3.2, for lXl > 0, we 
get

/ L3 q1 (x)lvl2dx < | |F \\h\\U\\h.
L2

□
From Lemma 3.3.1 and Lemma 3.3.3, we have for [L2 , L 3] c  (L2 ,L 3) the following 
inequality

[ L:i(|v|2 +  ~a(-)luxl2)dx < \\F\\h \\U\\h , (3.46)
JL 2

for lXl large.
The following lemma will be used in the next lemmas.

Lemma 3.3.4. Let L 1 < a 0 < fi0 < L and Gu,n = a(-)ux + f0° g(s)a(-)nx(-, s)ds. For lXl
large and e > 0 small, we have

\v(G0 ) \ 2 + l v M l 2 +  \Gu,v (P0 )l2 + lGun M l 2 

< [ L (lvl2 +  G n l2) dx + e\\U\\H + C (e)\\F\\„ \\U\\„ + \\F\\H (3.47)
0
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Furthermore, the following inequalities are satisfied:

cP o
(|v |2 +  f )d x

< | v M |2 +  ^ M 2 + e11U 11H +  C(e) 11F 11h h + 1 1 F 11H, (3.48)

rPo
(|v|2 +  ^)dx

< H ^ 2 + ^ m 2 + e11U 11H +  C(e) 11F 11h 11U 11h +  11 F 11H (3.49)

Proof. First, let us prove the inequality (3.47). From Equation(3.32) and Equation(3.34), 
we deduce that

iXux = —vx — f '^,

iXV x t ,s) = Vsx( ,̂s) — vx — f3 (■,s), in (0,L) x (0, ro).

(3.50)
(3.51)

Let Gu,n = a t fux  + f0° g(s)a^)rixt,s)ds. Multiplying (3.33) by (x — ao++Po) GUtV and 
integrating over (a0 ,@0), we get

iX
rPo

rPo
’ ao

a 0 + @0 \  yg ,
x  2----  ) vGu,ndx —

x — a°++^°)  f  2 Gu..ndx.

Using Equation(3.50) and Equation(3.51), we have

rPo /  a 0 + @0 \ (rl \ yx Ax  1----  I (Gu,n)xGv„ndx
2

iX I f  x ------0 + vGundx
f ao

Po ~ < \ í  a 0 + — A ~ f Po f  a 0 + @0 \ ^  —Aa ( ^ ^ x    j  vvxdx — a J  ̂ x   --------- ) a(^)vvxdx

+ j  ^ x  — a ° +  v j  a(^)g(s)nsx(^,s)dsdx

r Po
KO ( x — v f l dx/ a( ■ ) | x  —

ao

I  ^x — a ° +  @0 Ĵ v a(^ g (s) f%^,s)dsdx.

Note that

f * ° ã(-) ( x — vvxdx
2

ao 2 ao 2

(3.52)

(3.53)

r'Po {  a 0 + @0 \   A , ~ f'Po f  ̂ f  a 0 + @0 \   AQ \ x   ---- vvxdx + a ap) I x   ----- ) vvxdx.
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Then, from the above equation and from (3.53), we have

‘X f °  ( x  — ^ o + ^ o )  v’5 " 'd x
f  ̂ 0 (  a o +  A) )   A f  ~(  ̂ (  a o +  A  )  -Jijy I x   - I vvxdx — a(-) I x     I v/^dx

rl3° (  a o +  yo ) r ̂  ----------+ --------x -------- -----  v a(-)g(s)nsx(-, s)dsdx
I ao \  2 /  ./o

x  o +  v [  a(-)g(s)fx(-, s)dsdx. (3.54)
./o

Now, note that

Re{ y ( x — )  vvídr

=  J ^ —r —  ( |v (f t) |2 +  |v(ao) |2) — 1 í  y |v |2dx. (3.55)4 M V̂ o/I ' I V o/l / 2
4 2 J ao

Likewise, we have

r'/o ^ ao +  y
yRe{ J *  ( x — (Gu,^)xGu,ndx

=  ~ —4---- ) (|G«,n(y )|2 +  |G«,n(ao)|2) — ~ í  |G«,n|2dx. (3.56)
4 2 J ao

Taking the real part in (3.52) and using (3.54)-(3.56), we obtain

y ( |v (y ) |2 +  |v(ao)|2) +  (|G (^o)|2 +  |G(ao)|2)

< (|v |2 +  |Gu,n|2) dx — Re j  J  ^x — ao +  f 2 Gu,ridx

— Re{ /  ã( ) ( x — ^  2 ^  )  Vfx?dx

+  R e j J  ^x — ao +  ^ ^ j v j ^  a(-)g(s)nsx(-,s)dsdx|

ao +  y
a 0 2

— Re< ( x   ---- )v  a(-)g(s)fx(-, s)dsdx}.

To obtain the estimate of the terms on the right-hand side of the inequality above, simply
)+/o I ^  ao +/
2 I < 2proceed in the same way as was done in Lemma 3.3.3 and use that Ix — ao+/o I < ao +/o

for all x e  [ao, yo]. Then, for |À| > 0 large and e > 0 small, we get

|v(yo)| +  |v(ao )| +  |G(yo )| +  |G (ao )|

< í  ( |v|2 +  |G«,n|2) dx +  e l l U IlH +  C(e) l l F I I h I I u IIh +  llF IlH.
J 0

To get inequalities (3.48) and (3.49) we multiply (3.33) by (x — y ) G u>n and
(x — a o)Gu>n, respectively. □

oo
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Lemma 3.3.5. For |À| large and e > 0 small, we have

[ L2 (M 2 +  |Gu,n|2)dx < e||U||H +  C (e)||F ||h ||U ||h  +  ||F||H-
JLi

Proof. From (3.46) and using Lemma 3.3.4 twice, we obtain

A ( | v |2 +  |Gu,n|2)dx < |ux(L2 ) |2 +  |v(L2 ) |2 +  e||U||H +  C (e ) ||F ||„ |U ||„  +  ||F||H-
J l 1

< J L (|v |2 +  |G„,n|2)dx + e||U ||2„ + C (e)||F ||« ||U ||«  +  ||F||H-

< e||U||H + C(e)||FBh »U||h + ||F||H-

for |À| large and e > 0 small. □

Lemma 3.3.6. For |À| large and e > 0 small, we have

A h 2 +  |Gu,n|2)dx < e||U||H +  C (e ) ||F ||„ |U ||h  +  ||F||H-
JL 2

Proof. From Lemma 3.3.5 and using Lemma 3.3.4 twice, we obtain

A h 2 +  |Gu,n|2)dx < U ( L 2 ) |2 +  |v(L2 ) |2 +  e||U||H +  C (e ) ||F ||„ |U ||„  +  ||F||H-
JL 2

< A ( | v |2 +  |Gu,n|2)dx +  e||U||H +  C (e ) ||F ||„ |U ||h  +  ||F ||H - 
JLi

< e||U||H +  C (e)||F ||„ ||U ||„  +  ||F||H-

for |À| large. □

The main result of this section is given by the following theorem.

Theorem  3.3.1. Let H  and A be defined as before, considering the conditions ofthe KEME
model. Assume the hypotheses in (3.4). Then the system (3.13) is exponentially stable,
that is, there exists a positive constant e such that

||eíAUo||h < e-eí||Uo||H, V Uo e  H, t >  0,

Proof. We apply Theorem 1.5.3 to prove the exponential stability. Pirst, let us prove 
that iR c  p(A). For this, we will check

(1) Ker(iÀ1 -  A) = {0 }, VÀ e R;

(2 ) R(iÀ1 -  A) =  H, VÀ e R;

(3) (iÀI -  A ) -1  is bounded, VÀ e R.

First, let’s prove (1). From Proposition 3.2.1, we have K er(-A ) =  {0}. We need 
to show the result for À =  0. Suppose there is a real number non-zero À and U =
(w,v,n(-,s))T e  D (A) such that

.AU =  iÀU,
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this is, F  =  0 in (3.32)-(3.34). From (3.36), we get

nL çL
/ / a(-)g'(s)lqx(-,s)l2dsdx +  / b(-)|vx|2dx =  0

/o ./O j o

we deduce that:

a(-)Vx(-, s) = 0 in (0,L) x (0, w ) and b(-)vx =  0 in (0,L).

So, from (3.57) and the fact that n(0, s) =  0, we obtain

n(-,s) =  0 in (L2 ,L 3 ) x  (0, w ) and vx =  0 in (0 ,L ^.

Inserting (3.58) in (3.32)-(3.34), we get

u =  0 in (L2,L 3) and ux =  0 in (0,L1).

in (0, L).

a(-)ux + a(-)g(s)vx(-,s)ds +  b(-)va
J o

E L 2 (0,L).

Since ã(-) =  q -  a(-)g, from (3.58)-(3.59), we obtain

a(-)ux +  / a(-)g(s)vx(-,s)ds +  b(-)vx =  QUx
J 0

Therefore, from (3.60) and the fact that U e D (A), we get

Quxx =

Thus, we obtain

u e H 2(0, L) and consequently u e C  1([0,L]),

From (3.59) and (3.62), we have

u(Li) =  ux(Li) =  u(L2) =  ux (L2) =  u(L3) =  ux (L3) =  u(L) =  ux(L) =  0 

Now, inserting (3.60) in (3.33)-(3.34), we get

À2u +  quxx =  0, in (0,L).

From (3.63)-(3.64), we obtain

u =  0 in (0, L).

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

Inserting (3.65) in (3.33)-(3.34), we get U =  0, and (1) is proved.
At moment, let’s prove (2). From Proposition 3.2.1, we have R ( - A )  =  H. We need 

to show the result for À =  0. For this aim, let F  =  ( f 1 , f 2 , f 3(-,s)) e  H, we look for 
U =  (u ,v ,n (-,s))T E D (a )  solution of (3.31), equivalently, of (3.32)-(3.35).
From (3.32), (3.34), and (3.35), we have

n(x,s)
i í s

— (xÀu -  f  1)(1 -  e-iAs) +  / f 3(x ,^)eiÂ -s)d^, in (0,L) x (0, w ). (3.66)
iÀ . n
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Inserting (3.66) in (3.33) and using (3.32) and that a(x) = q — a(x)g, we get

Fo = — A2u — íc (x )u x +— ( X  í  g(s)(l  — e-iXs'}f .d s
l iA J0 ; x

a(x)g(s) í  f 3 (x, ^)eiX(̂ -s ')d ^ d X  , (3.67)

where c(-) = q — a(-) JO g(s)e-iXsds +  iAb(-) and F0 = f 2 + i X f 1 — b(-)f.x.
Multiplying (3.67) by 0 e  H.(0,L),  integrating over (0,L), then using integration by
parts, we get

pL pL — pL poo
— A2 u 0 dx + c(-)ux0 xdx + ^  a(-)g(s)(l — e-lXs) f 10 xdsdx

Jo Jo iA Jo Jo
L o s L

+  a(-) g(s) f%(-, g)e%X(̂ -s  ̂0xdg,dsdx = Fo0dx (3.68)
Jo Jo Jo Jo

Note that, from (3.68), we obtain

G(u,0) = J (0), V0 e  H.(0 ,L),  (3.69)

where

G (u,0) = Gi(u,0) + G2 (u, 0) (3.70)

with
L L

G.(u ,0 )=  c(-)ux0xdx, G2 (u,0) = —A2 u0dx, (3.71)
o o

and
pL — pL po

J  (0 )=  Fo0 dx — — a(-)g(s)(l — e-lXs)fx1 0 xdsdx
Jo iA Jo Jo

L s
a(') g(s) f x (-,p)eiX̂  s')0xdg1dsdx (3.72)

o o o

Let us consider the following operators,

G : H1(0,L) — ► H - 1 (0,L) í G. : H.(0,L)  — ► H - 1 (0,L)
u 1— > g (u) ( u 1— > G.(u)

and í

such that

G2 : 
2

H.(0 ,L) H - 1 (0,L)
u 1— G2 (u)

G(u,0) =  G (u , 0 ), V0 e H.(0,L)

G.(u,0) = G1 (u , 0 ), V0 e H.(0,L)

, G 2 (u , 0 ) = G2 (u , 0 ), V0 e H.(0,L)

0 0 x
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If G is an isomorphism and J  is a antilinear on H1(0, L) and, furthemore, J  is continuous 
from H1(0, L) to C, then we get Equation (3.69) admits a unique solution u e  H1(0, L) 
and consequently (2) will be proven. In fact, if u e  H1(0,L), then v =  iÀu — f 1 e 
L2(0,L), because f 1 e  L2(0,L). Furthermore, from (3.33), we get

ã(-)ux +  «(■) /  g(s)nx(-,s)ds +  b(-)v^ =  iÀv — f 2 e  L2(0,L).
o x

Similarly as we did with (3.19), we can show that n(-, s) defined by (3.66) belongs to 
Gg and n«(',s) e  Gg, since v e H1(0,L) and f 3(-,s) e  Gg.Thus, we can conclude that 
Equation(3.31) admits a unique solution U e D(A).

Therefore, our goal is to prove that G is an isomorphism operator and that and that 
J  fulfills the conditions mentioned above. To do this, we will show:

(i) Ker{G} =  {0}; (ii) G2 is compact; (iii) G1 is an isomorphism.

Note that by proving the above items, we will be able to prove that G is an isomorphism. 
In fact, from (ii) and (iii), we get that the operator G =  G1 +  G2 is a Fredholm operator. 
From (iii), we have that G1 is a Fredholm operator of index zero and from (i) we have 
dimN(G) =  0. Then, we get

0 =  indG 1 =  indG =  dimN (G) — codimR(G);

this is, codimR(G) =  0, how R(G) is closed (G is Fredholm), we concluded R(G) =  
H - 1(0, L). Then, as G is injective, surjective and continuous (G is Fredholm), it follows 
by the closed graph theorem of Banach that G- 1 is continuous, and therefore, G is an 
isomorphism.
With that in mind, let’s now prove the three items mentioned.

Proof of  (i): Let uo e  Ker{G}, i.e.

G(uo,G) =  0, V0 e  Ho1(0,L).

Equivalently, we have

pL pL
c(-)uox0xdx — À2 / uo0dx =  0, V0 e Ho1(0,L). o o o

Therefore, taking 0 e C£°(0, L) and using C£°(0, L) =  H1(0, L), we get

— À2uo — c(-)(uo)xx =  0, with uo(0) =  uo(L) =  0. (3.73)

From (3.73) and using uo e H1(0, L) and that |1 — e-iAs| < 2, for s e  (0, ro), we get

Uo =  (uo, iÀuo, (1 — e-iAs)uo)T e D (A) and iÀUo — AUo =  0. (3.74)

Therefore, and by (1), we have Uo e  Ker(iÀ1 — A) =  {0}, this is, Uo =  0, consequently, 
uo =  0 and Ker{G} =  {0}. Thus, (i) is proved.

Proof of  (ii): By Holder’s inequality, we have

|G2(u , 0 )| < C ||u |L2(o,L) | 0 | L2 (o,L), V0  e  Ho1 (0,L).

Thus, we obtain

||G2(u ) |H-1(o,L) < ||u 1 L2(o,L). (3.75)
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Now, consider (un) e  Ho1(0,L) bounded. From the compact embedding of Ho1(0,L) in 
L2(0, L), we have that (un) converges in L2(0, L) up to a subsequence. From (3.75), we 
get

|| G2 (un) | 1(0,L) < || un || L2 (0,L),

this is, G2(un) is a Cauchy sequence in H - 1(0, L), and therefore, converges in H - 1(0, L) 
up to a subsequence. Thus, by definition, G2 is a compact operator. Thus, (ii) is proved.

Proof of  (iii): note that by (3.4), we have |c(-)| < 1 and using the Holder's inequality, 
we get

lG1(u,0)l < | u | Hl(0,L) II0IIh<1(O,L), 
this is, G1 is continuous. Now, using Poincaré’s inequality, we get

Re( G1(u ,u )} =  Re j  í  c(-)|ux|2d^  > C ||u 1 h1(o,l),

for some constante C > 0. Therefore, G1 is coercive. Furthermore, it is easy to see that 
G1 is sesquilinear form on H,j(0,L). Then, by Lax-Milgram theorem, the operator G 1 is 
an isomorphism. Thus, (iii) is proved.

It is easy to see that operator J  is a antilinear on H0(0, L). Furthemore, note that, 
by Holder’s inequality, we have J  is continuous from Hd(0, L) to C. Therefore, G is an 
isomorphism. Thus, (2) is proved. Thus, (3) and, therefore, iR c  p(A),  how we wanted 
to show.

Finally, let’s prove (3). It is easy to verify the (iÀ -  A) is closed for all À e  R, because 
A is closed. Furthermore, since (iÀ -  A) is linear, injective (by (1)) and surjective (by
(2)), we can to conclude that the graph of (iÀI -  A )- 1 is closed. Consequently, by closed 
graph theorem of Banach we can deduce that (iÀI — A )- 1 is bounded for all À e  R.

Now, let F  e  H and consider U =  (u,v,n(-,s)) solution of (iÀI -  A)U =  F, i.e, the 
system (3.32)-(3.35) is satisfied. To show the exponentially stability, it is sufficient to 
show That ||U||H < ||F ||H. In order to obtain this estimate, we use hypotheses (3.4) to 
deduce ã(-) > q -  a0g. Recalling as well that Gu,n =  ã(-)ux +  f0° g(s)a(-)gx(-, s)ds we 
obtain

L /  rL
|v|2dx +  a(-)|ux|2)dx < I (|v |2 + a(-)ux + g(s)a(-)gx(-,s)ds

0
dx

J l 1 V J l 1 q -  ao<7
rL pL̂  rtt

< (|v|2 +  |Gu,n|2)dx +  g1/2 ao / g(s)|^x(-, s) |2dsdx.
L1 L2 0

(3.76)

So, from (3.38), (3.41), (3.76), Lemma 3.3.5 and Lemma 3.3.6 , we get
L1 L

||U ||H = (|v|2dx +  ã(-)|ux|2)dx +  / (|v|2dx +  a(-)|ux|2)dx
J 0 J L1

rLs
+  a J  / g(s)|nx(-, s)|2dsdx

L2 0
< e||U||H +  C (e)||F ||W||U ||„ +  ||F||H,

for |À| large and e > 0 small. Thus, using Young’s inequality, taking |À| large and a 
suitably small e > 0 , we obtain

IIU||h < | |F |h ,

as we desired to prove. □

200
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3.4 Asymptotic behavior: Polynomial stability
To show the polynomial decay of the solution for the system (3.1)-(3.3) we use a 

result due to Borichev and Tomilov ( [7]). Here we consider the cases where at least 
one of the elastic parts of the string (with no dissipation) connects with only the Kelvin- 
Voigt damping. We focus in investigating the stability of the EKEME model because the 
EKIME model and other cases are similar. We recall that the EKEME model is given by
(3.1)-(3.3) considering

The main result of this section is Theorem 3.4.1 and to prove this theorem we will 
need to introduce some technical lemmas.

Analogously to what we did in (3.36), we have

for |À| large.
Consider L3 and L4 such that [L3,L 4] c  (L2 ,L 3). Then, using (3.82) and proceeding in 
the same way as in the proof of Lemma 3.3.3, we have

b(x) =  6qX[Li,l2](x) and a(x) =  aoX[L3,L4](x), ao,&o > 0. (3.77)

(3.78)

and

Moreover, from (3.4) and (3.78), we obtain

(3.79)

I  I g(s) |nx( ,̂ s) |2dsdx < -  — I I g'(s)|nxO, s)|2dsdx

< I I F |1 h  11 U11 h. (3.80)

Now, from (3.32) and (3.79), we get

í  £|wx|2dx < |A| 2 (  í  |vx|2dx +  í  |/X|2dx

(3.81)

(3.82)

for |A| large.

Lemma 3.4.1. For |A| large, we have

(3.83)

and
2

ã(x)ux + a(x)g(s)nx(^,s)ds dx < 11F  11H11U 11w. (3.84)
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Proof. Using the definitions of a and b given in (3.77), as well as the definition of ã and 
the estimates in equations (3.79) and (3.81), we get

í  |ã(x)ux +  b(x)vx|2 dx < |IF ||hIIu IIh +  llF IIH
J Li

for |À| large. The equation (3.84) is obtained in the same way as was done in Lemma 
3.3.2. □

Lemma 3.4.2. For |À| large, we have

|À||MIL2(Li,L2) < IIFIIHIUIh +  IIF 1H/2 «U ||.f  +  IIFIIH.

Proof. From Equations(3.33), (3.79), and (3.81), we get

|À|IM|h-1 (Li ,L2) < ||ux||L2(Li,L2) +  ||vx !L2(Li,L2) +  ||f  2 | L2(Li,L2)

< |F  IIH ||U IIH +  ||F  IIh (3.85)

Using Interpolation, inequalities (3.79) and (3.85) and Young’ inequality, we get

IMlL2(Li;L2) < IMIh-i(Li,L2) | v | Hi(Li,L2)

ÍÃT< iTl ( |F  HH |U  HH +  |F  Hh ) ( II vx || L2(Li,L2) +  IMIl2 (Li ,L2))
1 /  3 i

< |À |( |F | |h ||UIIh +  IIFIIH||UIIH

+  ( | F IIh HU IIh +  llF IlH) +  e |v |L2(Li,L2),

for |À| large and e > 0. Considering an appropriate e > 0 small enough, we obtain

3 i
|À ||v |L 2(Li,L2) < | F IIh IIu IIh +  II FHH| | UHH +  ||f ||H , 

for |À| large. □

Lemma 3.4.3. We have

/Li j 5 3 \
(y|ux|2 + |v|2)dx < |À|1/2 ( I I F  11 H 11 U 11 H + | I F  11 H 11 U11 H +  11 F  11 H2 11 U 11 H/2)  +  11 F  11 H,

for  |À| large.

Proof. Using integration by parts, we deduce that

2 J  y|ux|2dx =  — Re j J  yxü^Uxxd^  +  y-y|ux(L?)|2. (3.86)

In order to estimate the firs term on the right of the previous equation, we multiply 
Equation(3.33) by xux and take the real part to get

—Re |  J  yxuxuxxdxj> =  Re |iÀ  J  xvuxdx | — Re x f  2u x d x | . (3.87)
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Using once again integration by parts, it follows that

í  X ^ d x  = —-|v(L1 ) | 2 — R e ! q  í  xvvxdxS  (3.88)
0 2  0 

We wish to estimate the last term, for which we use Equation(3.32) to deduce

Re xvvxdx| =  —Re | iX  j  xvuxdx | — Re xvf,1dx| (3.89)

Substituting (3.87) in (3.86) and (3.89) in (3.88) and taking the sum, using as well 
Holder’s inequality, we obtain

í  (Q|ux|2 +  |v|2 )dx
J 0

= L2  [Q|ux(Ll)|2 + |v(Ll)|2] — R e { /  x v f ^ d x ^  — Re j  J  x f 2uxdx 

< Iu + UFHhHUUh (3.90)

where Iu denotes

Iu = ~ 2 ) [q|v(L1)|2 + |QUx(Ll) + b0 vxXL 1)|‘2] .

We use integration by parts to estimate the first term in Iu

Q(L2 2 L l 1 |v(Ll)|2 = Re j q J  (L2 — x)vvxdx j  +  Q j  X ^ d x  (3.91)

By Equation(3.32), we deduce that iXux — vx = f  and therefore multiplying by
q(L2 — x)v, integrating in (L 1, L 2) and taking the real part we obtain

Re { q J l  2 (L 2 — x)vvxdx

= — Re |  q J  (L2 — x)v(—iXux)dx^j — Re |  q J  (L2 — x)vf,1dx| (3.92)

We use also integration by parts to estimate the second term in Iu

1 ( 1  f  l 2 d
2 ( L 2 — L 1)|QUx(L1) + b0 vx(L 1) | 2  = — Reĵ  2  J  ( L 2 — x ) ~xx |qux +  b0 vx |2dx

1 f  L2
+ o i  ^ux + hvx^dx .  (3.93)

2 L1

Multiplying Equation(3.33) by (L2 —x)(qux + b0vx), integrating in (L 1 , L 2 ) and taking 
the real part, we arrive at

1 rL* , d  ̂ ( r L2
Re <J 2  J  (L2 — x) —  ̂ ux + b0 Vx| dx j  = Re j y  i X L  — x)v(qux + b0 vx)dx

L 2
2— Re^ I  (L2 — x ) f  (qux + b0vx)dxj .

L1 (3.94)



Preliminaries 73

On the other hand, by Lemma 3.4.2 and Equation (3.79), we get

L2
Re I iÀ(L2 — x)vvxdx

L1 L2
< bo|À| 1/2 /  |vx|(|À| 1/2|v|)dx 

L1

aL2 \ 1/2 /  rL2 \ 1/2
|v*|2d r j  ^|À| J  |v |2d x j

< |À| 1/2||F||H/2|U ||J f  ( |F ||H /2 |U«H 2 + ||F||H/4|UBH/4 +

< |À| 1/2 ( ||F ||« ||U ||«  + ||F||H/4|UBH/4 +  ||F|lH/2 |U|H/2)  . (3.95) 

So, from (3.91)-(3.95) and using Lemma 3.4.1 and Lemma 3.4.2, we get

q í L2 1 iQ / i-i2d ^  1 / i~. . i2-

L2

r>L2 1 /*L2 r /*L2 __
= 2 J  |v|2dx +  2 y  |Qux +  bovx|2dx +  Re |  qJ  (L2 — x)vfx1 dx

+  Re (L2 — x )f  2(qux +  bovx)dx

— Re |b o J  iÀ(L2 — x)vvxdx

< |À|1/2 ( ||F ||« ||U ||«  +  ||F|lH/4 |U |H/4 +  ||F|H/2 |U||H"2) + ||FUH, (3.96)

for |À| large.
Therefore, from (3.90) and (3.96), we have

/ Ll (Q|ux|2 +  |v |2 )dx 
Jo

= L  [Q|ux(L1 ) |2 +  |v(L1)|2] — R e { /  x v f d x j  — Re j  J  x f 2uxdx 

< +  UFHhIIUUh

£ |À| 1/2 (||FIIhIIUUh +  ||FUH/4 UU«H/4 + «FUH/2«U llíf) + «FUH

for |À| large, as we desired to prove. □

The following lemma will be used in the next lemmas.

Lemma 3.4.4. Let q e  C 1([0,L]) be afunction with q(0) =  q(L) =  0. Then, we obtain for
e > 0,

r l
2q'(x) (|v |2 +  |W(u, n)|2) dx

< Re q (x )f2W (u ,n )d x | — Re <J iÀ / b(-)q(x)vvxdx

+  e|U«H +  C (e) || F  ||„«U ||„. 

where W (u,n) =  ã(-)ux +  a(-)g(s)nx(-, s)ds +  b(-)vx.

o
L L



Proof. First, from Equation(3.32) and Equation(3.34), we deduce that

iXux = —vx — f 1 ,
iXvx(-,s) = n*x(-,s) — vx — f i(- ,s ) ,  in (0 ,L) x  (0 , <x>). 

Multiplying Equation(3.33) by q(x)W(u, n) and integrating over (0, L), we get

L L L
iX q(x)vW (u,n)dx — q(x)Wx(u,n)W (u,n)dx = q(x)f  2 W  (u,n)dx.

0 0 0

Using (3.97) and (3.98), we have

iX q(x)vW (u,n)dx
J0

L L

Preliminaries

=iX a(-)q(x)vuxdx + iX q(x)v a(-)g(s)nx(-,s)dsdx
J 0 J 0 J 0

+ iX q(x)b(-)vvx dx
J 0

pL Ptt pL
= q(x)v a(-)g(s)nsx(-, s)dsdx — a(-)q(x)vvxdx

0 0 0
L L

— a a(-)q(x)vvxdx — a(-)q(x)vf1 dx
J0 J0
pL P<X> pL

q(x)v a(-)g(s)f3(-,s)dsdx + iX q(x)b(-)vvxdx.
0 0 x 0

Since a(-) = q — a(-)a, note that

So, we have

a(-)q(x)vvxdx = —Q q(x)vvxdx + a a(-)q(x)vvxdx.
10 J 0 J 0

iX q(x)vW (u,n)dx
J0

pL Ptt pL
= q(x)v a(-)g(s)nsx(-, s)dsdx — q q(x)vvxdx—

0 0 0
L L

— (q — a(-)a)q(x)vf!dx + iX q(x)b(-)vvxdx.
J 0 J0
L

q(x)v a(-)g(s)f3 (-, s)dsdx.
0 0 x

Since q(0) = q(L) = 0, we have

—Re q(x)vvxd x \  = q I lvl2 dx,
l rL j

'x
0 2

and

—R e í í  q(x)Wx(u ,n )W (u ,n )dx \  = í  q ( x  lW(u,n)l2 dx.

L rL rL
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Taking the real part in (3.99) and using (3.100)-(3.102), we obtain

nL
q'(x) (|v |2 +  IW(u, n)l2) dx

10 

< Re

-  Re

+  Re

[  q(x)f  2 W (u ,g )dx^  — Re | iA j  b(-)q(x)vvxdx

nL no f nL
q(x)v a(-)g(s)gsx(-,s)dsdx> + Re < (q — a(-)g)q(x)vfj dx

L
q(x)v a(-)g(s)f'3 (-,s)dsdx

Next, we will estimate the terms on the right hand side of the above equation. To do 
this, we will utilize integration by parts with respect to s with the help that g(-, 0 ) =  0 , 
the Young’s inequality, Poincaré inequality, Cauchy-Schwarz inequality. Note that

L
Re i I  q(x)v J  a(-)g(s)nsx(-,s)dsdx

nL\ no
< aoq(x)v g(s)gsx(-, s)dsdx

I l 3 Jo
nL4 no

aoq(x)v —g'(s)gx(-,s)dsdx
’ L3 Jo

/l 4 /  ro  \  I /  ro  \  2
aoq(x)IvI^J —g ' ( s ) d s j y  J  —g’(s)Inx(-, s)I2 d s j  dx

L4 L4 o
< [max |q(x)|]go I e I aoIvI2 dx + C(e) ao —g'(s)Igx(-, s)I2 dsdx

L3 L3 o
L L4 o

< e IvI2 dx + C(e) / —g'(s)[qx(-, s)I2 dsdx
o L3 o

< e | | U 11 H + C(e) 11 F 11 H \\ U 11 h ,

where in the latest inequality we utilize (3.78). The other terms can be estimated 
analogously as in the proof of lemmas 3.3.1 and 3.3.3. Therefore, we obtain

L
q'(x) (|v |2 +  IW(u,g)I2) dx

o

< Re

+  e

q(x)f  2 W (u ,g )d x j  — Re <{ iA j  b(-)q(x)vvxdx 

h + C(e) \\ F\\H \\ U\\H.

□
To address the next lemmas, let us consider L . ,L 2 , L 3 and L 4 such that [L. ,L 2] c  

(L . ,L 2) and [L3, L4] c  (L3, L4). Also, we consider a function q3 satisfying q3 e  C .([0, L]), 
where q3 (x) = 0 for all x e  [0,L2] u [L4, L] and q'3 (x) = qo > 0 for all x e  [L2, L 3].

o o

00

L L

o
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Lemma 3.4.5. For |A| large and e > 0 small, we have

|v|2 + a(-)«x +  /  a(^)g(s)nx(^,s)ds dx

,3/2||rn ,1/2
' L2

£ |A| 1/2 (  11 F  11 H11 U11 « +  11 F  11 J 4 11 U11 J/ 4 + | I F  11 H2 11 U11 H 

+ e I I U 11 H + | I F  11 H.
Proof. Using the result of Lemma 3.4.4 with q3(x) and definition of W(u, n), we get

r*L 3
q3(x) |v |2 +

' L2
«(•)ux +  /  a(^)g(s)nx(^,s)ds

/q
dx

rtL2
£ -  q3(x) (|v |2 +  |£«x +  6qvx|^  dx

JL2

rL 4
q3(x) |v |2 +

' L3
«(•)ux +  /  a(^)g(s)nx(^,s)ds

/q
dx

L2 L3
+  Re M  q3(x )/ (gux +  &oVx)dx > +  Re W  £93 (x )/ u^dx

'L2 J UL2
rtL4

+  Re < / q3(x ) /2 ( a(^)ux +  /  a(^)g(s)nx(^,s)ds )dx
' l 3 V ./o

r>L2 I 2Re jiA y_ b o q ^ v v x d x j +  e11 U 11j  +  11F 11j 11 U 11j .

Using Cauchy-Schwarz inequality and Poincare inequality in the above equation, we 
obtain

q3 (x) |v |2 + a ( > *  +  /  a(^)g(s)nx(^,s)ds
fL3

JL2 

(• L2
< L (|v |2 +  |^Ux +  boVx|^ dx +  I |v |2 +

«/ L2 J L3

dx

a ( > *  +  /  a(^)g(s)nx(^,s)ds
'0

dx

í*L2 />L2
+  / | / 2|2dx +  / |^Ux +  boVx|2dx +

J L 2 J L2

rL4 /*L4
+  / | / 2|2dx +  /

L3 L3

rtL2
iA b0q3(x)vvXdx

./L 2
2

a ( > *  +  / a(^)g(s)nx(^,s)ds dx +  e | | U 11 H + |  | F  11 h 11 U 11 h .

Following a similar approach to Rivera et al. ( [3]), we have the following estimate
/*L2

iA b0q3(x)vvXdx
JL2

< H/4 11 U| | J/4 +11 F | 1 H/2 11 u  11 H/2

Therefore, from the above inequality and using (3.83) and the Lemmas 3.4.1-3.4.2, we 
obtain

/*co 2^
|v|2 + a ( > *  +  / a(^)g(s)nx(^,s)ds dx

< |A| 1/2 ( | | F  11 h11 U11 h +  11 F  11 H/4 11 U 11 H/4 + | | F  11 H/2 11 U11 J f )  + I | F  11 H 

+  e | I U 11 J , 
for |A| large and e > 0 small. □
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To address the next lemmas, let us consider [L3 ,L 4 ] c  (L3 ,L 4 ). Also, we fix q4 e
C  1([0, L]), where q4 (x) = 0 for all x  e  [0, L 3] U {L} and q'4 (x) = q1 > 0 for all x  e  [L3 ,L].

Lemma 3.4.6. For |X| large and e>  0 small, we have

|v |2 +
' L 3

a(^)ux + /  a(Xg(s)nxX,s)ds

< |X| 1/2 ( ||FHhHUUh +  l I F U^IlUUH/4 +  l | F | | : f | |  U||H/2) +  l | F ||H

dx

3/2 1/2

+e H.

Proof. Using the result of Lemma 3.4.4 with q(x) = q4 (x) and definition of W(u, n), we 
get

q,(x) |v|2 +
' L3

a(Xux +  / a(Xg(s)nx(■, s)ds
0

dx

nL 3
a(Xux +  / a(Xg(s)nxk,s)ds

0
dx< — j ^  q'4 (x)\^  |v|2 +

+  Re j  J  q4 (x) f 2 (ã ( )u x  + j  a(Xg(s)nxX,s)ds)dx

+ e 11U11H +  C (e) 11 F 11 h  11U 11 h. (3.103)

Using Cauchy-Schwarz inequality, Holder’s inequality and Lemma 3.4.1, we have

Re < I q4 ( x ) f 2 ( a(Xux + I a(Xg(s)nxX,s)ds)dx
L3 0

<
çL4 / P̂O
/ q4(x)f2( a(Xux + / a(Xg(s)nxX,s)ds )dx
L3 0

r>L
2+ Qq4 (x ) f  uxdx

'L4

< I I F |1 H 11 U 11 H + | |  F |1 H.

Using (3.104) and Lemma 3.4.5 in inequality (3.103), we get

(3.104)

|v |2 +
' L 3

a(^)ux + /  a(Xg(s)nxX,s) ds dx

< X 1/ 2 U F 11 H 11 U11 H +  11 F11 H11 U11 H/4 +  11 F11 f  11 U11 H/2) +  11 F11 H

+ e|lU UH,

for | X| large and e > 0 small.

The main result of this section is given by the following theorem.

□

Theorem  3.4.1. Let H and A be defined as before and assume the hypotheses in (3.4). 
Then, the EKEME model is not exponentially stable. Moreover, the semigroup etA of system 
(3.13) decays polynomially with the rate t - 2, that is

UetAU0 llH < t - 2 ||U0 ||D(A), V U0 e  D(A), t > 1 ,

2L 00

0

2

2L oo

2oo

2L 00

0
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Proof. The proof is based on Theorem 1.5.4. Using the same arguments as in the proof 
Theorem 3.3.1 we can show that iR c  p(A).

Now, let F  e H ,  consider U =  (u, v, p(-, s)) solution of (iÀ /-A )U  =  F, i.e, the system 
(3.32)-(3.35) is satisfied. To show the polynomial decay with the rate t -2, according to 
Borichev and TomiloVs Theorem (see Borichev and Tomilov [5]), is sufficient to show

I I U 11 H < |À| 1/2 11 F  11 H,

for |À| large.
Using the assumptions in (3.4) as was done in (3.76), we have

(|v| dx +  ã(-)|ux| )dx
' L2

rL
< / ( |v|2 +

L2
ã(-)ux +  /  a(-)g(s)px(-,s)ds dx

+  g1/2ao
r*L4

g(s)|px(-, s) |2dsdx. (3.105)
' L3 </0

Therefore, from the above equation, Lemmas 3.4.2-3.4.3, Lemmas 3.4.5-3.4.6 and Equa- 
tions(3.80)-(3.81), we obtain

L2 L L
(|v |2 +  d(-)|«x|2) dx +  / (|v |2 +  d(-)|ux|^ dx + a(-)g(s)|dx(-, s) |2dsdx

<
'L2 ./o ./o

i5/ ^ m 3/  ̂ mi Z7ii3/ ^ n | i / ^  11 i7ii2|1/2 ( I I F  11 h  11 U11 H + | I F  11 H/4 11 U11 H/4 +  11 F  11 H/2 11 U11 H/2J +  11 F  11 H,

for |À| large. Thus, using Young’s inequality, we obtain

I I U 11 H < (|à| + |À|4/5 +  |À|2/3 + 1 ) I I F  11 H < |à| 11 F  11 H 

for |À| large. Therefore, we get

I I U 11 H < |À|1/2 11 F  11 H,

for |À| large. □

L

2oo

o

o

3.5 Optimality of the decay rates
In this section we show that the decay rate obtained in Theorem 3.4.1 is the best. We 

recall that Theorem 3.4.1 was proved for the EKEME model, but the proof is similar for 
the cases where at least one of the elastic parts of the string is connected only with the 
Kelvin-Voigt damping leading to the same decay rate. In order to prove the optimality 
it will be necessary to separate in two cases. The first case is the EKEME model, already 
introduced, considering in problem (3.1)-(3.3) that

b(x) =  boX[Li,L2](x) and a(x) =  a0X[L3,L4](x), a 0 ,b 0 > 0 .

and therefore we assume that the supports of the viscoelastic dampings do not intersect. 
In the second case, we consider

b(x) =  &0X[L1,L3](x) and a(x) =  ^0X[l2,l4](x), <20,60 > 0.
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Thus, both the Kelvin-Voigt and memory type dampings are effective in the interval 
(L2 ,L 3). We refer to this model as EKIME model to emphasize the intersection of the 
supports of the viscoelastic dampings. The EKEME and EKIME model are shown in 
figure 3.1.

Theorem  3.5.1. Assume that the kernel g(t) goe—cot satisfies the hypotheses in (3.4).
Then, the polynomial decay rate obtained in Theorem 3.4.1 for the EKEME model, which is 
also validfor the EKIME model, is optimal in the sense that the semigroup does not decay 
with the rate t—s for  s > 2.

To prove the above theorem, we need to state and prove some important results.
Let À e R and F  =  ( f 1, f 2, f 3(-, s))T e  H. In what follows, the stationary problem

(iÀI -  A)U =  F, (3.106)

will be considered several times. Note that U =  (u, v, n(-, s)) is a solution of this problem 
if the following equations are satisfied:

iÀu -  v =  f 1,

iÀv -  ^ a (> x  +  j f  a(-)g(s)nx(-, s)ds) +  b(-)va 

iÀn(-,s) +  ns(-,s) -  v =  f 3(-, s),

f 2

(3.107)

(3.108)

(3.109)

with the following boundary conditions

u(0) =  u(L) =  v(0) =  v(L) =  0, n(-, 0) =  0 in (0, L), n(0, s) =  0 in (0, ro). (3.110)

And
b(x) b0X[L1,L2](x) and a(x) a0X[L3,L4](x),

Here, consider the following relaxation function g that satisfies the conditions in (3.4)

g(s) =  goe—C0S, Vs > 0. (3.111)

For i =  1 , . . . ,  5, we consider

ui uX[Li_l,Li], L0 0, L5 L .

We have the following lemma

Lemma 3.5.1. Consider F  =  (0, (Qh)x(0,L1)(x), 0)T, in system (3.106), for a function h to
be chosen later. Then, the system (3.106) can be written as

(u1)xx +  =  - h(x), x e  (Lo, L 1),
(ui)xx +  Ifui =  0, x e  (Li—1, Li), i =  2 , . . . ,  5

with boundary conditions

u(0) u(L) °  ui(Li) ui+1 (Li), 7 i (u^ x (Li) 7 i+1(ui+1)x(Li)

where

i = 1 . . .  4.

À2 À2
l2 =  l 2 =  _  l2 =  l 2 =l 1 =  l 5 =  , l 2 1 7 -\, l 4 =q q +  boiÀ

À2

q _  aofl(0) ’ 
q co+iA

^1 =  (75 =  Q, ^2 =  Q +  boiÀ, ^4 =  Q - aog(0)
Co +  iÀ

x
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For case 1:
À2

13 =  — and a 3

For case 2:

Z2l 3
À2

Q a0g(o) | ib À
Q — C5+Ã +  iboÀ

«og(0 )and a 3 =  q ----------— +  iboÀ.
Co +  iÀ

Proof. We will show the proof only for case 1, since case 2 follows in a similar way. 
Given that f 1 =  f 3(-, s) =  0 and f 2 =  (Qh)x(o,Ll)(x), where h will be chosen later, then,
from (3.109), we deduce

n(-,s) =  u (1 — e-iAs). (3.112)

Using (3.112) and that ã(x) =  q — a(x) / oTC g(s)ds, for x e  (L3 ,L 4), we get

PTC
ã(x)u +  a (x W  g(s)n(x, s)ds =  (q — aogA)u, for x e  (L3,L 4), 

o

where gA =  / oTC g(s)e-iAs. Furthermore, from (3.111), note that

aog(0)/*TC /*TC
q — aogA =  q — g (s)e iAsds =  q — g(0)e (co+iA)sds =  q —o o Co | iÀ

From (3.107) - (3.109), we have v =  iÀu and

(u 1) xx +  u 1 =  —h, in ( 0 ,L 1);

(u2)xx +  e+A6oAu2 =  0 , in (L1, L2);

(u3)xx +  u3 =  0  in (L2,L 3);

(u4)xx +  ^ 0 ^ u4 =  0, in (L3, L4);

(u5)xx +  “T u5 =  0, in (L4,L ).

with transmission condition

u 1(L1) =  u 2 (L1), Qu1x(L1) =  Qu2x (L1) +  bov2x (L1) ,

u 2 (L2) =  u3 (L2) , Qu2x (L2) +  bov2x (L2) =  Qu3x(L2),

u3(L3) =  u4 (L3), Qu3x(L3) =  ã(-)u4x(L3) +  ao / oTC g(s)nx(-, s)ds,

u4 (L4) =  u5 (L4), ã(-)u4x(L4) +  ão / oTC g(s)nx(-, s)ds =  Qu5x (L4) ,

and boudary condition u 1(0) =  0, u5(L) =  0.

The following result will help us find an estimate for the system in Lemma 3.5.1.

□

0
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Lemma 3.5.2. Let h e  L 2 (0, L 1). For i = 1 , . . . ,  5, letus consider the following system

(u1)xx + l 2iu 1 = —h(x), x  e  (L0 , L 1),
(ui)xx + G u  = 0 , x e  (Li-1, L i), i = 2 , . . . ,  5

with boundary conditions

u(0) = u(L) = 0, ui(Li) = ui+ 1 (Li), Oi(ui)x (Li) = 0 i+ 1 (ui+ 1 )x(Li),

We have

X2 X2 X2p2 = p2 =   p2 = _______ p2 =
11 1 5  q , 1 2  q +  boiX, 4 q _  aogM;Q co+iX

a0 g(0 )
7 1 = <75 = Q, 0 2  = Q +  boiX, 74 = Q :—rv.C0  +  iX

For case 1:

For case 2:

, 2  X2l 3 =  — and o3 = q.

f 2l 3
X 2

Q aog(0) . ii X
Q — co+ix + ib0 X

and 7 3  = q — + ib0 X.
C0 +  iX

The solution ofthe system is given by

where we have the estimate

\u(L1)\
\o1H 1 (L1)\ 

\W1 sin(Í1 L 1)  ,

with W 1 = 7 1l 1 cot(£1L 1) — o2í 2 cot(£2 (L1 — L 2 )) and

i = 1 . . .  4.

. . tT . sin(£1x) 1 sin(£1x) TT tT . 1 TT . .
u 1 (x) = u(L 1) + — . H 2 (L1) — Y  H 2 (x).sm(£1L 1) £1 sm(£1L 1) l 1

(3.113)

(3.114)

(3.115)

(3.116)

H 1 (x) = sin(£1s)h(s) ds, H 2 (x) sin(£1(x — s))h(s) ds.

Proof. Solving the stationary differential equations with boundary conditions u(0) 
u(L) = 0, we have

. . .T . sin(£1x) 1 sin(£1x) TT tT . 1 TT . .
u 1 (x) = u(L 1) + — . H 2 (L 1) — y  H 2 (x%),sm(£1L 1) £ 1 sm(£1L 1) l 1

í r ^ s ln (£2 (x — L 2 )) í r ^ s ln (£2 (x — L 1))
u 2 (x) — u(L 1)——. . ------ . . +  u(L 2 ) —

sin(£2 (L1 — L 2 ))
í \ u  x sin(l3(x — L 3)) . ÍT x

u3(x) = u(L2) ■ / 0 (J +  u(L3)sm(Í3 (L2 — L 3 ))
. . tT . sin(£4 (x — L 4 )) 

u4 (x) = u(L3) . ------— - +  u(L4)

u 5 (x) = u(L4)

sin(£4 (L3 — L 4 )) 
sin(£5 (x — L 5 )) 

sin(£5 (L4 — L 5 ))'

sin(£2 (L2 — L 1)) 
sin(£:i(x — L 2 )) 

sin(£:i(L3 — L 2 ))' 
sin(£4 (x — L 3 )) 

sin(£:i(L3 — L 4 ))

x x

0 0
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Using the transmission conditions a . u ^ L . ) =  a2u '2 (L 1) we have 

ai£.u(Li) cot(l.L.) + cot(£iLi)H2 (Li) — — H 2 (L.)

= a2l 2u(Li) cot(Í2 (Li — L 2 )) + a‘2^‘2U(L ‘2 )
sin(Í2 (L2 — Li)) ’

Since

cot(£ix)H2 (x) — — H2(x) = — — 1—r Hi (x), 
l .  sm(£1x)

we obtain

a il iu (L i ) C°t(l iL i ) ---- ; ^  ) = a2l 2u(L1) cot(l2(L 1 — L 2)) + : T/j~FV~1 ) \ \ ,sin(li Li) sm(l2 (L2 — L.))

this is

W .u(L .) + U2u(L 2 ) = Hl} Ll \ , (3.117)
sin(l1 L 1 )

where

C2I 2W. = a . l .  c o t ^ L . )  — 0 2 I 2 cot(l2 (L. — L 2 )), U2 =
sin(l2 (L2 — L 1 ))

Using the transmission conditions a2u'2 (L2) =  a3u'3 (L2), we get 

U2l 2u(Li)
+ G2^ u ( L 2 ) Cot(l2 (L2 — L .))

= <J3l 3u(L 2 ) Cot(l3(L2 — L 3 )) +

sln(l2 (L. — L 2 ))
a3l3u(L3)

sln(l3(L3 — L 2 ))' 

from where follows that

U2 u(L.) + W 2u(L 2 ) + U u L )  = 0, (3.118)

where

W 2 = G2I 2 cot(l2 (L2 — Ll)) — G3I 3 cot(l3(L2 — L 3 )), U3 = . , °( l ^ A p - r .sin(l3 (L3 — L 2 ))

Using the transmission conditions a3u '3 (L3 ) =  a4 u '4 (L3 ) we get 

a3l 3u(L 2 )
+ a3l 3u(L 3 ) cot(l3 (L3 — L 2 )) 

G4l 4 u(L 3 ) cot(l4 (L3 — L 4 )) +

sln(l3(L2 — L 3 ))
a4 l 4 u(L 4 )

sln(l4 (L4 — L 3 )) 

from where follows that

U3u(L 2 ) + W 3u(L 3 ) + U4 u(L 4 ) = 0, (3.119)
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/ 4l 4

sin(l4 (L4 -  L3) ) "

where

W3 =  &3l 3 COt(l 3(L 3 — L2)) — &4l 4 Cot(l4(L3 — L4))> U4 =

Using the transmission conditions a4«4(L4) =  / 5w'5(L4), we get

——// , / , - ( --- ) yT +  / 4l 4u(L4) Cot(l4(L4 — L3)) =  &5l 5u(L4) Cot(l5(L4 — L5)),sin(l4 (L3 -  L4))

from where follows that

U4- (L 3) +  W4- (L 4) =  0 , (3.120)

where

W4 =  &4I4 COt(̂ 4(^ 4  — L3)) — / 5I 5 COt(^5(^ 4  — L5)).

Solving u(L3) (from (3.119)-(3.120)) in terms of u(L2), we get

"W3 U4 ' - (L3) — Ü3-(L2)
U4 W4_ - (L4) 0

this is

(T \ — U3W4 (T ^u(L 3 ) =  -------------- 3- u(L2 ).
V 3; W3W4 — U42 V 2;

Solving u(Li) (from (3.117)-(3.118)), we get

'Wi U2 u(Li) Ho"
U2 W2 U2W4 2W2 W3W4—u_2 _ - (L2) 0

this is

u (L i)
Ho Wo

H
=  /iH i(L i)

0 sin(liL i)

WiWo — U22 : 

We consider —0 > 0, such that

with W0 := W2 —
U32W4

W3W 4 —ü f

— ( 2nn +— ) </ Z, i =  1, 2, 
n V d n

where

We take À =  Àn, where

L3 — L2 L5 — L4
—i =   ; , —2 =L i Li

À„ := —  2nn +  —̂  ^  À„ «  n.
Li n

From (3.113)-(3.114), note that
À2

/ i l i  =  ~ y , i =  1 , . . .  , 5.

(3.121)
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• Our objective will now be to estimate the terms that involve: l i  and l 5. Note that

l i  ~  I 5 ~  A„.

Furthermore, l 1L 1 =  2nn +  ^ 0 , we have 5 1 1

sin(l1L 1) =  sin ^ ~  À-1/2 ^  a 1l 1 co t(l1L 1) ~  À̂ /2.

• Our objective will now be to estimate the terms that involve: l 2 e l 4 .
Note that, if

l  =  x +  iy and l  =  A +  iB =  x — y +  i2xy

then

x
A +  VA2 +  B 2 

2 :
—A +  VA2 +  B 2 a>o B 2

2(A +  VA2 +  B 2)'

Since

l 2 = À2 À^(y — boiÀn)
2 y +  b0iÀn y2 +  (b0 Àn)2

we have A2 «  1 and B2 «  Àn. Then

—  A2 +  ÍB2 ,

Since

l 2
l 4

À

Rel2 «  À /2, ImO ^  Ài/2.

Àin(c0 +  iÀn)

(3.122)

(yco — Qog(0)) — i^Àn 
«ogíOl (yco — Oog(0)) +  iyÀn L (yco — «0g(0)) — iyÀn ̂ Co+iAn

Àn(co(yco — «og(0)) +  (yÀn)2 — iaog(0)Àra) 
(yco — «0g(0 ))2 +  (yÀn)2

— A4 +  ÍB4 , 

we have that A4 «  À̂  and B4 «  Àn. Then

Rel4 «  Àn, Im l4 «  1.

On the other hand, since Ojlj =  , i =  2,4, from the previous estimates we have

O212 ~  Àn/2(1 +  i), 04^  ~  Àra +  i.

In that follows, we use the identities

| sin(y +  in) | 2 =  sin2(y) +  sinh2(n),
(3.123)

cot(y +  in)
cos(n) sin(y) — i cosh(n) sinh(n) 

cosh2(n) — cos2(n)

2y 2
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Since I 2 ~  Àn/2(1 +  i) we can write £2 (^ 2  -  Li) =  Àn/2(p2,n +  in2,n) with p 2,n ~  1 ~  n2,n. 
Then, we have

COt(l2(L2 — Li)) ~  i = ^  ^ 2^2 COt(l2(L2 — Li)) ~  Àn/2(1 +  i). (3.124)

Since l 4 «  Àn +  i we can write l 4(L4 — L3) =  Ànp4,n +  in4,n with p4,n «  1 «  n4,n. Then

1 SÍn(l4 (L4 — L3))| ~  1 ^  |U4| ~  Àn.

Writing cot(l4(L4 — L3)) =  pn +  iqn, we have

|Pn | ^  1, 9n ~  1.

Since a4l 4 «  Àn +  i, we can write a4l 4 =  rnÀn +  isn where rn 1 Sn, then

e”4I 4 cot(^4 (L4 — L3)) =  (r„À„ +  iSn)(pn +  iqn)

|Re {^4l 4 Cot(l4 (L4 — L3))} 1 ^  Àn, ^m {^4l 4 cot(l4(L4 — L3))} 1 ~  Àn

Therefore

• Our objective will now be to estimate the terms that involve l 3.
As l 3 is different for cases 1 and 2, we need to analyze these cases and the terms that 
depend on it separately.
Case 1: w ehave l 3 «  Àn. Since l 3(L3 — L2) =  a 1 ^2nn +  from the condition (3.121)
we inferthe sequence sin(l3(L3 — L2)) is neverzero. We can assume that sin(2a1nn) ^  0, 
otherwise we consider a subsequence. Then, from the identity

From where follows

|^4l 4 cot(l4(L4 — L3))| ~  Àn.

sin 2a 1nn + +  cos(2a 1nn) sin a 1aoA
v n j  ,

we can conclude that

Furthermore, note that

i^ala cot(l3(L3 — L2))| «  «  À /̂2.
|A1,n|
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Case 2: note that

ahi 2
g «üg(0) , ii a
g -  cü+Ãn +  iboAn

AH(c0 +  iAn)
[gc0 — AH60 — a0g(0)] +  iAn [c0 b0 +  g]

_  A;;{c0 [gc0 -  AH60 -  «0g(0)] +  AH[C060 +  g]} 
[gC0 -  AH60 -  «0g(0)]2 +  [Ara(c0&0 +  g)]2 

+  ■ (  AH{-C0An(c060 +  g) +  An [gc0 -  AH60 -  a0g(0)]} +  i
[gC0 -  AH&0 -  «0g(0)]2 +  [A„(C0&0 +  g)]2 

AH{c0 [gC0 -  «0g(0 )] +  AHg}
[gC0 -  AH&0 -  «0g(0)]2 +  [Ara(c0&0 +  g)]2 

. ( AH{-C0Ara(c0&0 +  g) +  Ara[gC0 -  AH&0 -  «0g(0)]}
+  i

[gc0 -  AH60 -  a0g (0)]2 +  [An(c060 +  g)]2 

then Re(l2) w 1 and Im (l|) w An. Then

Re(ls) w AH/2, Im(la) w Â /2.

On the other hand, since a 3l 3 _  Ãn, from the previous estimates we have 

cot(l3(L3 -  L2)) w i _ ^  c 3I 3 co t(4(L 3 -  L3)) w AH/2(1 +  i).

In that follows, we use the identities (3.123).
Since I 3 w aH/2(1 +  i) we can write 4 ( ^ 3  -  L2) _  aH/2(^ 3 ,« +  ig 3,n) with ^ 3 ,„ w 1 w ̂ 3,,
Then we have

A3/2
1 SÍn(l3( L 3 -  L2))| > 1 SÍnh(AH/2n3,n)| ^  |U3| < .̂ 1̂/2----- “  ^  0,

| sinh(AH g 3,n)|

• Our objective will now be to estimate the terms that involve: l 1 and l 5. Note that

l l  w I 5 w An.

Furthermore, l 1L 1 _  2nn +  -H, we have

sln(l1L1) _  sin ^ w  A- 1/2 ^  0 ^ 4  co t(l1L1) w AH/2

Now, since l 5(L5 -  L4) _  a2 ^2nn +  — , we have

• f  o , «2a^ \  .  ̂ Z' a2a0 \  , ^   ̂ . ( a2a 0sin I 2 a2nn +  I _  sin(2 a2nn) cos I I  +  cos(2a2nn) sin

(3.125)

. n

From the condition (3.121), note that the sequence

-A-2,n :_  sin(l5 (L5 -  L4)) ,

is a non-zero bounded sequence (note that maybe it could converge to zero)

3
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Note that, if A 2,n ^  0, then cos (2a2nn) 0 and we get

Xn|751 5  COt(í3(L5 — L 4 )) |
| A2,n|

On the other hand, if A 2 ,n ^  0, then

Xn| cos (2a2nn) |
\0 5 i 5 Cot(l5 (L5 — L4))|

n |
|A2,n|

• Our objective will now be to estimate the terms: W 1 and W4 .
From the previous estimates, we immediately obtain that |W1 | «  X3 J2. 
If A2,n ^  0 and since |A2,n | =  | sin(l5(L5 — L4))| < 1, we obtain

|W4| =  \®4l 4 Cot(l4(L4 — L 3)) — <7 5 15 Cot(l5(L4 — L 5)) | ‘ '

| A2,n|
< Xn.

| W4 | =  7414 Cot(&4 (L4 — L 3 )) — 7 5 I 5 Cot(Í5 (L4 — L5)) |

> x ( 1 _ | C o s ( 2 a2nn) r

| A2,n|

On the other hand, if A2,n ^  0, we have

| W4 | = |7 4I 4 Cot(l4 (L4 — L 3 )) — 7 5 I 5 Cot(l5 (L4 — L 5 )) |

< x J i  + \ Cos(2a2nn)

and

| A2,n|
> Xn.

It is important to note that this last inequality cannot occur if | W4 1 «  0, but in this case, 
the proof to estimate ^(L-i^U follows in an analogous way.
Then, if A 2 ,n ^  0, we have | W4| «  Xn. So, we get

|Wl| ~  77 T, if A 2 ,n ^  0 and |W4 | ~  Xn, if A 2 ,n ^  0 .
|A2 ,n|

• We obtain estimates for W 2 and W3.
For case 1, we have

|W3| ^  Xn and |W2| < Xn
| A1,n| | A1,n|

For case 2, we have

|W3 | «  X3 n/2 and |W2 | < X3 n/2 .

• Now let us estimate the term u(L 1).
For A 2 ,n ^  0. We need to estimate for both cases.
Case 1: Let us first estimate the term

W =  W U2W4 = W4(W2W3 — U2) — W 2 U2 (3126)
W  = W2 — W3 W4 — U2 = W3 W4 -  U2 • (3.126)
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Since

|H'3IIW’4 l“  1  | and | U412 «  Àn,
|A 1,nA 2,n|

We have
À2

IW3W4 — U2| «  n .
|A 1,nA 2,n|

On the other hand, note that

Im(W2W3 — U32) =  Im(W2 W3)
=  Im{AB +  (A +  B)C  +  B 2)}
=  Im{AB +  (A +  B )C )},

where

A =  O2l 2 cot(l2(L2 — L 1)), B =  O3l 3 cot(l3( L  — L2)), C =  04^  cot(l4 ( L  — L3)), 

Provided that

|Im(AB )| =  |Im(A)B |
À 5/2Àn

|^1,n|

|Im(A +  B)C| < |A||C| +  |B ||C | < Àn/2 +  Àn
"  |A1,n|

From where follows that
À 5/2

W 2W3 — U32| > |Im(W2W3 — U32)| «  |Im(A)B| «  .
|A1,n|

Since
\ 7/ 2 À 3Àn  1 I T T T  I I  T r  | 0  . À̂|W4 ||W2W3 — U32| > — ^ — - and |W2 ||U4 |2 < n

|A1,nA2,n| |A1,n|

follows

|W4 (W2W3 — U32) — W2U|| >
À 7/2Àn

|A1,nA2,n|

Using all previous estimates we have

|W | |W4(W2W3 — U2) — W2U42 | > À 3/2

|W>| =  IW3W4 — Uí| > Àn ■

Note that

. =  H0W0 =  Ho
1) W1W0 — u 2 W1 — W  ■1 Wo

Since

|W1 | «  An/2 and 0 ,
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then we can conclude

K L O I« | 1

Case 2: Using (3.126) and

y /2

|^ 2 ,ra|

we have

|W3||W4| — .n and |U4|2 —

à5/2
|W3W4 — U || -  .

|A2,n|

On the other hand, since |U3| —̂ 0, note that

Im(W2W3 — U32) -  I m ^ W O
=  Im{AB +  (A +  B )C +  B 2 — U32)}
=  Im{AB +  (A +  B )C — U32)},

where

A =  o2I 2 cot(l2(L2 — L 1)), B =  O3I 3 cot(l3(L3 — L2)), C =  O4I 4 cot(l4 (L4 — L3)), 

Since

|Im(AB)| =  |Re(A)Im(B) +  Re(B)Im(A)| — - ; ,

and

|Im(A +  B)C| < |A||C| +  |B ||C | < Àn/2 , 

from where follows that

IW2W3 — U321 > |Im(W2W3 — U32)| > |Im(AB)| -  - ; .

Provided that

|W4 ||W2W3 — U2| and |W2 ||U412 -  - ; /2 ,
|A2,n|

follows

|W  (W2W3 — U32) — W2 Uf| > ,
|A2,n|

Using all previous estimates we have

/,
]W 3^4 — U4

|W  | =  |h-4(w W 3 — u?) — w w ? | > À3/2 .

Therefore,
|U22|
1 2 1 ^  0.
|Wo
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For A2,n 0. We need to estimate for both cases.
Caso 1: Again, note that

Ü32W4 _  W4(W2W3 — U32) — W2U42
W 0 — W 2 —

Since

We have

W3W4 — U42 W3W4 — U42

À2
|W3 ||W4 | ^ 7 r ^  and |Ü4 |2 « À ,̂

|Ai,n|

IW3W4 — U ? |~  Àn

We saw that

IW2W3 — U32 1 >

|Ai,n|

À 5/2
2 i - Àn

|Ai,n|

Provided that
7/2

|W4||W2W3 — U2| and |W2||Ü4|2 <
7 / 2 3  

2| ^ Àn lw  II TT |2 ^  Àn
|Ai,n| |Ai,n|

follows

|W4(W2W3 — U2) — W2Ü42| >2 | ^  Àn
7/2

|Ai,n|

Using all previous estimates we have

|W | |W4(W2W3 — U2) — W2Ü|| > À 3/2
|W'01 =  IW3W4 — Uíi > Àn ■

And the conclusion follows as before.
Case 2: Using (3.126) and

|W 3||W 4|« Àn/2 and |U4 12 «  Àn,

we have

|W3W4 — Uf| «  Àn/2■

On the other hand, since | U31 —̂ 0, note that

Im(W2W3 — U32) «  Im(W2W3)
=  Im{AB +  (A +  B )C +  B 2 — U32)}
=  Im{AB +  (A +  B )C — U32)},

where

A =  / 2I 2 COt(l2(L2 — L i)), B =  / 3I 3 COt(l3(L3 — L2)), C =  / 4I 4 COt(l4 (L4 — L3)),
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Since

\Im(AB)\ =  \Re(A)Im(B) +  Re(B)Im(A)\ «  X;

and

lIm(A + B)C\ < lAllCl + lB\\C\ < Xl/2,

from where follows that

Provided that

follows

W 2 W 3 — U2\ > \ I m W 2 W 3 — U2)\ «  \Im(AB)\ «  Xl .

\W4 l\W2W3 — U2\ > Xl and l W ^ U l 2 «  Xl/2 ,

\W4(W2W3 — U32 ) — W 2 UH > Xl,

Using all previous estimates we have

W , =  l 4 ((W2 Wr3 — U2) — W 2 UH > X3/2 
\ 0l W 3 W4 — U2\ > l  .

Therefore,
M
\W0 \

0 .

□
Lemma 3.5.3. Take h(s) = sin(ls) in the previous Lemma 3.5.2. If  l  e  R  is such that 
sin(£L1) = 0 and cos(£L1) = 1, then the solution in (3.115) satisfies

u 1 (x) =u(L1) 

Proof. Take h(s) = sin(ls), we  have

sin(£1x) 
sin(£1 L 1) £j — £2

sin(lx).

Since

x x
H 1 ( x )=  sin(l1s) sin(ls) ds, H 2 ( x )=  sin(£ 1 (x — s))sin(ls) ds.

0 0

sin(ls) sin(£1 (x — s)) = sin(£1x) cos(£1s) sin(£s) — cos(£1x) sin(£1s) sin(ls)],

sin(£1x) cos(£1s) sin(£s)ds = sin(£1x)
0

£1 sin(£1x) sin(£x) + £ cos(£1x) cos(£x) — £
£2 — £2

cos(£1x) sin(l1s) sin(ls)ds = cos(£1x)
0

Using the hypothesis, we get

£ sin(l1 x) cos(£x) — £1 cos(£1x) sin(£x) 
£2 — £2

H 1 L )
£ sin(£1L 1) cos(£L1) — £1 cos(£1L 1) sin(£L1) £ sin(£1L 1)

£2 — £2 £2 — £2 ’

x

x
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and

H 2 (x)
l i  sin(lx)[sin2(lix) +  cos2(lix)]

= l i  -  l 2

ls in ( l ix)[cos(lix) cos(lx) — cos(lix) cos(lx)] ls in ( l ix)
l i  — l 2 l i  — l 2

l i sin(lx) — l  sin(lix) 
l i  -  l 2 '

Note that

1 sin(lix) H x 1 H 
T  ■ ífí T l H2(Li) — T" H2(x)l i sin(liL i) l i

1 sin(lix) —l  sin(liL i ) 1 l i sin(lx) — l  sin(lix)
l i sin(liL i ) . l i  — l 2 . l i . l i  — l 2 _

l 2i — l 2
sin(lx).

Thereby, we have

. . , r . sin(lix) 1 sin(lix) TT ,T , 1 ,
u i (x) — u(L i ^  +  — . H2(Li ) — Y  H2(x)sin(liL i ) l i sin(liL i ) l i

— u(Li)
sin(li x) 

sin(liLi) l i  — l 2
sin(lx).

□
Lemma 3.5.4. Assuming the same conditions as the Lemma 3.5.3 and considering l  
l n — TT’ we have

1 Hn
Im(u(Li )) ~  Im ( w

Proof. We know

u(Li) Hn with U2

Wn
->• 0.

We remember Hn :— ^̂1rf(-11(L'1j>, where H i (Li ) — 1 sl2—l^1̂ • Then, from l i — l  — Àn 
we have

l a i

n,

Hn Ài/2.l 2i — l 2

Since Wi — a il i co t(liL i ) — a 2l 2 cot(l2(Li — L2)), then

|Im(Wi)| — |Im(^2l 2 cot(l2(Li — ^ 2 )))! -  À̂ /2.
~ U 2Let hn — Hn, Wi — ^n +  irçn, with nn ^  ro as n ^  ro and w  — J i,n +  i j2,n where 

Ji,n,J2,n ^  0 as n ^  ro. Note that hn e  R  for every n e  N. From

hnu(L i)
(Pn +  i-Vn) (Ji,n +  ij 2,n)

hn
(Pn Ji,n) +  i(nn ] 2 ,n)
hn((Pn Ji,n) i(^n J2 ,n))

(pn — Ji,n) 2 +  (dn — J2,n)2

1
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we get
hn(n— J2,n)

(pn — Jl,n) 2 +  (Vn — J2 ,n) 2

Note that

hn(nn J2 ,n) _  . 3_Vn ^  _h (n _  ) ^  _h  n
1 — 1 ^  hn(>ln J2 ,n) — hn>ln

nh—n— P

and

(Pn — Jl,n)2 +  (V'n — J2 ,n) 2 pn 2pnJ1,n + Jl,n + Vn 2VnJ2 ,n + J2,n
p— + ni p— + n—

 ̂ ~ 2 Un Jl n + ,2 ^  , „22pn J1,n + J 1 ,n — 2 1 nJ2,n + J2a

this is,

Therefore, we get

p —+ nn

(pn — Jl,n) 2 + (nn — J2,n) 2 — p— +  / —

T / í t \ hn(n— J2 ,n) hnn— T /" H0
m(u1( 11 =  (Pn——t t õ n — 2j 2 — p—r m  = m v w

Lemma 3.5.5. Let =  2nn + -^0. We have
1 1  y/n

□

m  ( / )  — X- 8/2 .

Proof. Let l 1L 1 = 2nn + . We know that W 1 = a 1£1 cot(l1L 1) +  o2t 2 cot(£2 (L2 — L 1))

and we saw in (3.125) and (3.124) that a 111 cot(l1L 1) — X—'/2 and o2t 2 cot(£2 (L2 — L 1)) — 
X—í 2 ( 1  + i), then

Im(W1) — Im(a2l 2 cot(£2 (L2 — L 1))) — X—/ 2 and Re(W1) — X—/2 .

Therefore, we get

Im ( X )  =  .  .., —m(W 1) ........« X - V2.
W ^  Re(W1 ) 2 + Im(W 1 ) 2

□
Lemma 3.5.6. There exists (Xn)n e  R+ with Xn ^  (Un)n c  D (A) and (Fn)n e  H such
that (iXnI  — A)Un =  Fn is bounded in H  with

X—IIU—IH £ 1 , fo r n íarge.

Proof. For n e  N, we consider X =  Xn = 2nn + —̂  ], Fn = (0, (ghn) l  (0 ,Ll), 0) e
L 1 n 1

H, hn(s) = sin(lns), s e  (0 ,L 1) with l n = 2 /  and Un = (un ,vn,n—(^s))  e  D (A).
Therefore vn = iXnun and n— (•, s ) =  un(1 — e-iXnS). In what follows, we will avoid
putting the subindex n in some variables that depend on n. Thus, from the lemma

1
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3.5.1, the coordinate u of solution U =  (u, v, n(-, s)) satisfies the hypotheses of Lemma
3.5.2. Moreover, note that À satisfies the conditions of Lemma 3.5.2. Hence, by Lemmas 
3.5.3 and 3.5.4, u  satisfies the following estimate

|ÀnUi(x)|

> |Im(À„Ui(x))|

On the other hand

f  sin(lix)Im ÀraU(L i ) .

V sin(liLi)
Im

1 \  ÀnH0 sln(l i x)
i y sln(l iL i )

(3.127)

II C1 II2 2 ||l || 2 2 I L i sln(2l nL i ) \  2 ( L i . 1
llFn |W =  0 IIM l2 (0,Li) =  0 ( y  ------ ) <  0 ( Y  +

í?2L i

which implies that Fn is bounded.
Now, note that l  i «  l  «  Àn «  n, and as l  Y i =  2nn +  , thenV n

sin< lii ■ > = sin ( y n ) "  ( I  K À_ 1/2-

Using in Equation (3.127) the previous estimate, the estimate obtained in Lemma 3.5.5 
and the fact that we already deduced in Lemma 3.5.4 that H0 ~  Àn , we get

|ÀnU i (x)| >
_ Y \  ÀnHo sln(lix)

Àn/2 | sin(lix)|.
W i )  sln(l iL i)

Since || sln(li -)||L2 > V Li/2, from Equation (3.128), we conclude

||Un|H > |ÀnU i (x ) |L2 > Àn/2,

Finally, let us prove the main result of the section.

(3.128)

□

Proof of Theorem 3.5.1. Suppose that the rate t 2 is not optimal. Then, we can improve— 2 1 —e
the decay rate, sayto t 1—e. By Borichev-Tomilov theorem, subsequently ||Un ||H < |Àn | ~n—~ ||Fn || 
Thus, for n large, we obtain

||(iÀn1  — A) IU(H) < |Àn | 2 (3.129)

On the other hand, by Lemma 3.5.6, there exists (Àn)n e  R+ with Àn — w , (Un)n c  
D (A) and (Fn)n e  H such that (iÀn1 — A)Un =  Fn is bounded in H and

1 1 1
À llUn|lw > 1 ^  à i-e |Un | H > Àn ^  _  ||(iÀn1  A) Fn||% > À

Àn e

we get
1

À 2
— ||(iÀnI — A) F n |n  > Àn —— + w  as n —— w ,1—e 

n
what is a contradiction with (3.129). Note that this inequality also implies the lack of 
exponential stability. □

2



Chapter 4

Asymptotic behavior for a 
Thermoelastic transmission problem 
with Kelvin-Voigt damping

4.1 Introduction to the problem
In recent years, there has been a growing interest in studying the dynamical be- 

havior of various thermoelastic problems to better understand the thermo-mechanical 
interactions in elastic materials (see [12, 22, 28]). Initially, research focused primar- 
ily on the dynamical aspects of classical thermoelastic systems, whose one-dimensional 
linear model is given by:

-íí — =  0, x G (0, L), t > 0,

=  0, x G (0, L), t > 0,

where u(x ,t) represents the displacement of the rod at time t, and 0 (x,t) denotes the 
tem perature variation relative to a fixed reference temperature. In the 1960s, Dafermos
[13] investigated the existence of solutions for the classical thermoelastic system and 
demonstrated its.

In this paper, we consider the asymptotic behavior of beams composed of three 
distinct regions: one made of purely elastic material, another of thermoelastic m ate­
rial with Kelvin-Voigt-type dissipation, and a third composed of thermoelastic material 
w ithout dissipation.

Due to the presence of three different materials, the density of the beam is, in gen­
eral, not a continuous function. Moreover, since the stress-strain relationship varies 
across the regions—for instance, from the thermoelastic part to the purely elastic one, 
the resulting model is not continuous in the classical sense.

The mathematical problem that describes this situation is known as a transmission 
problem. From a mathematical point of view, it is modeled by a system of partial differ- 
ential equations with discontinuous coefficients, requiring appropriate coupling condi­
tions at the interfaces between the different materials.

When thermoelastic dissipation is effective throughout the entire domain of a body, 
it is sufficiently strong to guarantee an exponential decay rate of the solutions to zero for 
one-dimensional bodies or plates as time approaches infinity Examples of this situation 
can be found in ( [23, 35]). For nonlinear problems in one-dimensional thermoelasticity, 
see also ( [34, 37]).

95
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Rivera et al. ( [39]) studied the asymptotic stability of a transmission system involv- 
ing two materials: one thermoelastic and the other insensitive to tem perature changes, 
characterizing a system with localized damping. Due to differences in densities and 
elastic coefficients, the model involves discontinuous coefficients. The authors showed 
that, even when thermal dissipation acts only on part of the domain, the solution of the 
semilinear problem decays exponentially to zero. See also ( [10, 12, 35]).

In studies of vibrating systems modeled by wave equations, bars or plates, it is known 
that Kelvin-Voigt damping mechanisms, when distributed globally, stabilize the solutions 
of these systems exponentially. Furthermore, this damping mechanism is so strong that 
it tends to regularize the solutions. The situation may be completely different if this 
type of damping acts only on a part of the body as was shown by K. Liu and Z. Liu in
[24] (see also [11]). These authors proved that if Kelvin-Voigt damping acts locally in a 
wave equation with discontinuous coefficient then the solutions of the equation are not 
exponentially stable.

Later, Alves et al [3], studied the stabilizing force that Kelvin-Voigt damping ex- 
erts on a transmission problem. This time, two dissipative mechanisms act on different 
parts of the body. In one part, Kelvin-Voigt damping and in the other, frictional damping. 
Even with the collaboration of frictional damping, the authors showed that Kelvin-Voigt 
damping can predominate in the decay of the solutions, not allowing the exponential 
decay of the solutions. However, the authors showed that the solutions decay polyno­
mially with the optimal decay rate t - 1/2. In the literature we have not found a study 
on the behavior of solutions where Kelvin-Voigt damping acts collaboratively with ther- 
moelastic damping and this was what motivated this work.

Problems with localized Kelvin-Voigt damping have aroused the interest of several 
researchers in the last two decades and several results have been obtained. The problem

Utt(x,í) -  Uxx(x,t) -  (&(x)uxt(x ,t))x _  0 ,

was studied by Liu and Zhang [27] in the interval (-1 ,1 )  (see also [43]). They showed 
that if the coefficient 6 (x) is zero in ( - 1 , 0 ], positive in (0 , 1) and has a behavior like 
x around zero then the solution of this problem is exponentially stable. Also, if the 
behavior of 6 (x) around zero is xa, a  > 1, the solution is polynomially stable with a 
decay rate depending on a. A result with sharp stability t - ^  were obtained by Han et 
al in [19] (see also [18, 27]).

When the coefficient 6 (x) is discontinuous, Liu et al. [24] had shown the solution 
does not decay exponentially. A few years later, this same problem was studied by 
Rivera et al. [2] where they showed that the solutions of the system decay polynomially 
with the optimal rate t - 2 (see also [17, 20, 29, 40]).

Taking into account the results mentioned above, it is interesting to study the trans­
mission problem with localized viscoelasticity of Kelvin-Voigt type. Here we consider 
a bar composed of three different components, one of viscoelastic type, one of only an 
elastic part, and the third of type thermoelastic. The main result of this work is that the 
position of this component plays an important role in the study of the stabilization. We 
consider the models shown in Figure 1.1.

In the first case, we consider, we consider the viscolestatic part of Kelvin-Voigt type 
in (0, L 1). Therefore, in this case, we define

a(x) _  «0X[0,Li](x), «0 > 0 .

We refer to this model as the KET model. We show that there is exponential stability for 
the KET model.



In the second case, we consider that the elastic part of the bar (with no dissipation) 
connects with only the Kelvin-Voigt damping. In this case, we consider a Kelvin-Voigt 
damping (K) defined in (L1, L2), in this case, we define

a(x) a0X[Lx,L2](x), a 0 > °.

We refer to this model as EKT. We show that the solutions of this models dacays to zero 
polynomially as t - 2 .

The KET model is

^  — [^1«X +  a (x)uXt]x =  0, in (0, L1) x R+,

^ u !  — ^2«Xx =  0 , in (L1, L2) x R+,
(4.1)

— ^ 3^Xx +  ko^x =  0, in (L2, L) x R+,

^4^t — ^ 4 +  kouXt =  0, in (L2, L) x R+,

The coefficients 4 ,,$ , k0 are positive for i = 1 , ■ ■ ■ , 4 and a(x) =  a0X[0,Li], where a0 > 0. 
The transmission conditions are given by
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u 1(L1,t) =  u2(L1,t), (^1uX +  a(x)uXt)(L1, t) =  ^ 2uX(L1,í), t > 0,
(4.2)

U2(L 2 ,t)=  U3(L2,t), ^2«X(L2,t)= ^ 3uX(L2,t), t > 0.

The boundary conditions are

u 1(0,t) =  0, u3(L,t) =  0, 0(L2,t) =  0(L,t) =  0, t > 0, (4.3)

and the initial data are

u 1 (x ,0) =  u1 (x), u ^ x ,0) =  u ^x ), in (0 ,L1),

u2(x ,0) =  «2 (x), u^(x,0) =  «2(x), in (L1,L 2),

u3(x ,0) =  u (x ) ,  u3(x ,0) =  u3(x), in (L2 ,L),

0(x, 0) =  0O(x), in (L2 ,L).

The natural energy of (u1, u2, u3 , 0) solution (4.1)-(4.4) and instant t > 0 is given by

2 £ j(t)  =  í  (^1 |u1 12 +  ^1 |uX |2)dx +  í  (^2 |uf |2 +  ^ 2 |uX|2)dx 
J 0 J Li

+  í  (^ u ^  |2 +  ^3 |uX |2 +  44|0|2)dx,
Jh2

(4.4)

and
r-Li nL

E1 (t) =  — / a0 |u2x|2dx — / ^4 |0x|2dx. V t >  0. (4.5)
*/ 0 L2
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The EKT model is

-  A u L  =  0, in (0, L1) x R+,

^ u ^  -  [^2«X +  a(x)uXt]x =  0, in (Li, L2) x R+,
(4.6)

^uj* — ^ 3uXx +  ko^x =  0, in (L?, L) x R+,

— A4^xx +  ko«Xt =  0, in (L2, L) x R+,

The coefficients 4,, A, k0 are positive for i = 1 ,  ■ ■ ■ , 4 and a(x) =  a0X[Li,L2], where a0 > 0.
The transmission conditions are given by

u 1(L1,t) =  u2(L1,t), (A2uX +  a (x)uXt)(L1, t) =  ^ 1uX(L1,í), t > 0,
(4.7)

U2(L2 , t ) =  U3(L2,t), (^2«X +  a(x)«Xí)(L2 , t) =  ^3«X(L2,t), t > 0.

The boundary conditions are

u 1(0,t) =  0, u3(L,t) =  0, 0(L2,t) =  0(L,t) =  0, t > 0, (4.8)

and the initial data are

u 1 (x ,0) =  u1 (x), «1(x ,0) =  u ^x ), in (0 ,L1),

u2(x ,0) =  u^(x), uX(x,0) =  u2(x), in (L1,L 2),
(4.9)

u3(x ,0) =  uj](x), u3(x ,0) =  u3(x), in (L2 ,L),

0(x, 0) =  00 (x), in (L2 ,L).

The natural energy of (u1, u2, u3 , 0) solution (4.6)-(4.9) and instant t > 0 is given by

2 £ 2 (t) =  í  (Í1 lu1 12 +  A1 |uX |2)dx +  í  (Í2 |ut2 |2 +  ^ 2 |uX|2)dx 
J 0 J Li

+  í  (^luX12 +  ^ 3 |uX|2 +  Í4 1012)dx,
JL2

and
L2 L

E2(t) =  — / a0|uXX|2dx — / A4|0X|2dx. V t >  0. (4.10)
Li L2

Therefore, it is worth highlighting that the energy is a non-increasing function of the 
time variable t.

The remainder of this chapter is organized as follows: In Section 4.2, we establish 
the well-posedness of the corresponding models. In Section 4.3, we demonstrate that 
the associated semigroup is exponentially stable, provided the viscous component is 
not located at the midpoint of the beam. Finally, in Section 4.4, we prove that, in the 
absence of exponential stability, the semigroup decays polynomially to zero at the rate 
of t -2 .
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KTE Model EKT Model

a 0

0 L 1 L 2 L

a 0

0 L1 L2 L

Figure 4.1: Geometric description of the function a(x)

4.2 Existence of solutions
In this section, we use the semigroup approach to show the well-posedness of sys- 

tems (4.6)-(4.9) and (4.1)-(4.4).
Let us define

Hm = H m(0,L1) x H m(L1, L 2) x H m(L2,L),  L2 =  L 2(0,L1) x L 2(L1,L 2) x (L2(L2,L))2, 
=  {(u1,u2,u3) e  H 1 : u1(0) = u3(L) = 0, u 1(Ll ) = u2(Ll), u2D  = u3(L2 )}.

where m  = 1,2. Under the above conditions, we have that the phase space is given by

H = x L2 .

The Hilbert space H  is equipped with the inner product defined by

(U1 , U ) h  = ( /5[v^ ,  / ô [ v ^ ) +  ( / ~̂ 2v1, /ô2v^) + ( / f a v ^  \ f 0 ~3vl) + (Vfi iu lx ,  y/p iulx)  

+  (/ W 2u 21x , / W 2u\x ) +  (/ Ã i u\ 2 , / Ã i u\ x) +  (/W4@1i / Ã̂i9 2 ),

for Ui = (u1,u3,u3‘,v l,v3,vf ,  9i) e H ,  i = 1,2. The (■, ■) denotes the inner product in L 2 . 
We use ||U \\H to denote the corresponding norm.

We define the unbounded linear operator A i : D ( A )  c  H ^  H, for i = 1 , 2, by

(

A 1 (U)

\

s1  [A ul: + a(x)vx]xx
u2S2 xx

S3 (@3uxx k0 9 x)
V £  (A 9xx — k0 -v3x) J

(

and A 2 (U)

\

f  u 1Si xx
[p 2ux + a(x)vx)xx

S3 (^3uxx k09 x)
V SI W x x  — k 0 vx) )

on its domain

D(A1)
U = (u1 ,u 2 ,u 3 , v 1 , v 2 , v 3 ,9)T e  H \ (v1 , v 2 , v 3 ) e  H |, 
9  e  h 2 (L2 ,L)  n H 1 (L2 ,L),
( A u 1 + a(x)v1) ,u 2 , u 3 ) e  H2 .

1 1v v
2 2v v
3 3v v
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and

í  U — (u1, u2, u3, v1, v2, v3 ,0)T e  H ! (v ^v 2 ,v3) e  HL, 1
d (A 2) — < o e  h 2(L2 , l )  n h 01(L2 , l ) ,  l

[ (u1, (^2u2 +  a(x)v2) ,u 3) e  H2. J

for all U — (u1 ,u 2 ,u 3,v 1,v2 ,v3 , 0 )t  e  D(A*), for i — 1 , 2 .

Rem ark 4.2.1. In order to verify this equality, note that A i U e D (A i ) implies (v1, v2, v3) e 
H ,  u2 e  H 2(L1,L 2), (^iu2 +  «(x)v1) e  H 2(0,L i ). Moreover, (,53uX — ko0) —: z0 e 
H  1(L2 ,L), hence 0 — fc0"i (z — ^ 3u^) e  H i (L2 ,L). Now, one can readfrom A iU e D (A i ) 
that v3 e  H  1(L2,L) and (,d40x — k0v3) —: zi e  H i (L2 ,L) which imply together that 
0x — ^ - 1(fc0v3 +  zi ) e  H i (L2, L), then 0 e H 2(L2 ,L). Finally, one can directly see that 
u3 e  H 2(L2, L). Similarly, we can check D (A 2).

When the subindex i is removed A stands for any of the operators A*. The system
(4.6)-(4.9) and (4.1)-(4.4) can be rewritten as an evolution equation in H:

Ut — AU, U(0) — Uo t >  0, (4.11)

where U(t) — (u1,u2, u3, u^  uf, u^,0t)T and U(0) — (û ,, u0, u^, u1, u2, u3 ,0o)T e  H.

Proposition 4.2.1. Let A and H  be defined as before. Then A generates a C0 semigroup 
of contractions etA in H.

Proof. Note that the A is a dissipative operator in the energy space H. In fact, let
U — (ui ,u 2 ,u 3 ,v i ,v 2,v 3,0)T e  D (A). Using the inner product in H, integration by
parts, the transmission conditions (4.7) and the boundary conditions (4.8), we have

(A2U,U )h

— (^iuXx,v i) +  ((&uX +  a(x)v2 )x, v2) +  (A?uXx — ko0x,v3) +  (VÃ vX , VÃuX)

+  ^V ^ 2va;, V ^ uX) +  ( V ^  V ^ uX) +  (A 0xx — k0vX, 0)

— (V í̂vX, V í̂uX) — V í̂uX) + (V ^ X, V &uX) — (V 2̂vX, V f e x )
+  ( V ^ v ^ , VÃXuX) — (vX,A?uX) +  (kov3, 0 x) — (kov3, 0 x)

— (VO0vX, VÕÕvX) — (VÃOx, V Ã 0^  .

Using — (z,w )L2 +  (z,w)L2 — —2 Im (z,w)L2, for z,w  e  L2, and taking the real part, we 
get

Re(A2U U)H — — ( V ^ V  V^õV) — ^^/Ã40x, VÃ40x^ < 0. (4.12)

Similarly, we have that

Re(A1U, U)H — — ( V ^ V  VaÕvX) — ( V Ã ^  V Ã 0x^ ^  °. (4.13)

Therefore, A is dissipative.
Let us prove 0 e  p(A2). The case 0 e p(Ai ) follows similarly.
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Let F  =  ( f : , f 2, f 3, f 4, f 5, f 6, f  7)T in H. We will show that there is unique
U =  (u1,u 2 ,M3,v 1,v2 ,v3,0)T g D (A 2), such that

- A 2U =  F. (4.14)

The solver equation (4.14) in terms of its components is equivalent to the following 
system of differential equations

- v 1 =  f 1, (4.15)
- v 2 =  f 2, (4.16)COCO?>1 (4.17)

- Y uL  =  £1A (4.18)
-(/(u* +  a(x)v^ )* =  £2 f 5, (4.19)

-  (& u*x -  k0Bx) =  £3f  6, (4.20)

-  (^4 B** -  fcov̂ ) =  £4 f 7, (4.21)

with the transmission conditions (4.7) and the boundary conditions (4.8).
Thus, it follows from equations (4.15)-(4.17) that we can consider

( v \v 2 ,v3) =  ( - f 1, - f 2 , - f 3) G HL.

Moreover, using v3 =  —f 3 g H  1(L2, L) and the (4.21), we have

Bxx =  g1, with B(L2) =  B(L) =  0, (4.22)

where g1 := — ̂ ( k 0fX +  £4f 7) G L2(L2, L). We already know that the bounded problem 
above has a unique solution B g H 2(L2 ,L) n H0(L2,L). Now, from (4.18)-(4.20), we 
have

A uL  =  g2, (4.23)
(^u *  +  a(x)f*)x =  g3, (4.24)

^u** =  g4, (4.25)

with g2 := — f  G L2(0, L 1), g3 := - ^ f 5 G L2(L1,L 2) and g4 := ( -£ 3f 6 +  M *) G
L2(L2 ,L).

The objective is to show that the above system has a unique solution (u1, u2, u2) g HL 
and (u1, (^2u2 +  a(x)v2) ,u 3) g H 2. To do this, the Lax-Milgram theorem will be used. 
Define B : HL x HL ^  C and F  : HL ^  C, such that

pLi PL2 pL
B(Y1, Y2) := (Y1, Y2)Hi = ^ 1u*u*dx +  / ^ 2u*u*dx +  / ^ 3u*u*dx,

«/ 0 «/ Li */ L2
pL± pL2 pL

J(Y2) =  / g2u 1dx +  / (g3u2 -  a(x)f*u*)dx +  / g4u3dx,
0 Li L2

for all Y1 =  (u1, u2, u2), Y2 =  (u1,u 2 ,u 3) g HL. Note that B is a sesquilinear form on 
HL x HL. Moreover, B is a continuous and coercive form on HL x HL, because

B(Y1,Y2) :=  (Y1,Y2)hí < I I Y  11 h  11 Y> 11 h1 , V Y ^  G HL,
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and

B(Y,Y) :=  (Y,Y)hL =  |Y |H . , VY e HL

On the other hand, J  is an antilinear functional in HL and using Holder’s inequality, 
we get J  is a continuous functional in H01(0, L). Therefore, by Lax-Milgram theorem we 
have that

B(Y,Y) =  J(Y ), V Y =  (u1,u 2,u 3) e  HL. (4.26)

admits a unique solution Y =  (u1, u2, u3) e  HL. In particular, taking Y1 =  (u1, 0,0), Y2 =  
(0,u2, 0) and Y3 =  (0 ,0 ,u3) in (4.26) with u 1 e C(f ’(0,L1), u2 e  C(f ’(L1,L 2) and u3 e 
C ~ (L 2, L ) , we obtain (u1, (^2u2+ a(x)v2), u3) e  H2, how we wanted to show. Therefore, 
there is unique U =  (u1,u 2,u 3, v1, v2, v3,0)T e D (A 2) such that —A2U =  F . This tells 
us that A2 is bijective and there is A-1 . So, to conclude that 0 e  p(A2), we just need 
to show that A-1 is bounded. For this, as there is only one U e D (A 2) such that 
—A2U =  F , we need to show |U |H < | |F |H. In fact, since v1 =  — f 1, v2 =  —f 2 and 
v3 =  — f 3, then by Poincaré’s inequality, we have

|v 1|L2(0,Li) < IIFIIH, |v 2|L2(Li,L2) < IIFIIH, |v 3|L2(L2,L) < IIFIIH. (4.27)

Multiplying (4.23), (4.24), (4.25) by ü 1,^ 2,^ 3 respectively, using integration by parts, 
the transmission and boundary conditions (4.7) -(4.8), Holder’s inequality, Poicanré’s 
inequality, Young’s inequality, we get

AKllÍ2(0,Li) < I f 4IL2(0,Li) < l|F||H,
^ 3 |luXIL2(L2,l) < IIf 61L2(L2,l) +  II0IIL2(L2,l) < llF IlH,

and

^ 2 |luX!L2(Li,L2) < ~2 lluX!L2(o,Li) +  llf x2!L2(Li,L2) + | f 5 |L2(Lim)

< ~ 2  |u X| L2(o,l1) +  llF  IlH.

Moreover, from (4.22), we have

Ã||0||L2(L2,L) < |g 1|L2(Li,L2) < I f 3 l L2(Li ,L2) +  I f  7|L2(Li,L2) < l|F IH  (4.28)

Therefore, from (4.27)-(4.28), we get 11U 11H < 11F 11H.
Lastly, since A is dissipative and 0 e  p(A), then D (A) is dense in A. Therefore, the 

operator A satisfies the conditions of the Lumer-Phillips Theorem (see Pazy [25]) and 
the result of the proposition follows. □

The well-posedness of the problem (4.11) is a consequence of the semigroup theory 
whose result we enunciate to follow.

Theorem  4.2.1. For U(0) =  (u1, u(, u(, u1, u2, u3,0O) e  H there exists an unique solution 
ofthe system (4.6)-(4.9) and (4.1)-(4.4) in the space

U =  (u1, u2, u3, u^  u^, u^, 0) e  C ([0, ro[; H).

Moreover, if U0 e  D(Ai), then the solutions belong to the following space

U e C ([0, ro[; D (A,)) n C 1 ([0, ro[; H).
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4.3 Asymptotic behavior: Exponential Stability
We will study the asymptotic behavior of the semigroup etA associated to the sys- 

tem (4.1)-(4.4). The results will be obtained using the spectral characterizations for 
exponential stability of semigroups (see [21] or [32]).

It is important to highlight that we will demonstrate the exponential stability of 
system (4.1)-(4.4) in the case that every elastic part of the string either connects only 
with the frictional part or connects with both types of dampings. Since the proof of the 
decay rate is similar in all these cases, we focus on the proof considering the KET model, 
which is given by (4.1)-(4.4) considering

where a0 > 0 .
The main result of this section is Theorem 4.3.1 and to prove this theorem we will 

need to introduce some technical lemmas.
Let À e  R and F  =  ( /  ̂ / 2 , / 3 , / 4 , / 5 , / 6 , / 7) e  H. In what follows, the stationary 
problem

a(x) =  aoX[o,Li](x), (4.29)

(iÀI — A i )U =  F, (4.30)

will be considered several times. Note that U =  (u ̂ u  ̂ u 3 ,v ̂ v 2 , v3,0) is a solution of 
this problem if the following equations are satisfied:

iÀu i — v i =  /  i , 
iÀu2 — v2 =  / 2, 
iÀu3 — v3 =  / 3,

(4.31)
(4.32)
(4.33)
(4.34)
(4.35)
(4.36)
(4.37)

iÀíi v i — ( ^  uX +  a(x)vX )x =  £ / 4, 
iÀ^2v2 — ^2uXX =  £2/ 5, 

iÀ^3v3 — (̂ 3UÍXX — ko^x) =  £3/ 6, 
ÍÀÍ40 — ^4^xx +  kov  ̂ =  £4/ 7,

with the transmission conditions (4.2) and the boundary conditions (4.3). 
Note that

rLi rL
/ £ iao|vX|2dx +  / ^ 4 |^x|2dx < ||F ||h ||U || H. (4.38)

Using the above equation and Poicanré’s inequality, we have

(4.39)
0 0
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and

Ç  Í41012dx < 5 4 [ L A4|0x|2dx < ||F ||h||UIIh. (4.40)
J l 2 «4 0 L2

From (4.32) and (4.38), we have

/ Li . « ^ K í 2*  < |Ai-2 ( | | F I I h + ||F ||H) . (4.41)
00

Lemma 4.3.1. We have

r (Í2 |v2|2 +  «2 |uX|2)dx < |uX(L2) |2 +  |v2(L2) |2 +  ||FIIhIUIIh.
Li

Proof. Multiplying (4.35) by (x — «0)uX and using (4.32), we have

— (x — L2)^2vXv —(x — L2 )«2uXuxx

=  (x — L2) í2uX/5 — (x — L2) í2fXv2, in [L1, L2].

Using integration by parts in [L1, L2], taking real part, we get

í  (Í2 |v212 +  «2 |uX|2)dx < |uX(L2) |2 +  |v2(L2)|2 +  Re j  í  (x — L2)Í2uX/5dx 
Li Li

— R e { /  (x — L2)d2/Xv2dx j  .

Note that |x — L2| < L2, for all x e  [L1,L 2], using Holder’s inequality in the above 
equation, we get

F (Í2 |v2|2 +  «2 |uX|2)dx < |uX(L2) |2 +  |v2(L2) |2 +  ||FIIhIUIIh.
Li

□
Lemma 4.3.2. For e > 0 small, we have

|uX(L2) |2 +  |uX(L)|2 +  |v3(L2)|2 < / V 3 |v3|2 +  «3|uX|2)dx +  e||U||H +  C(e)||F||h||U ||w-
L2

Proof. Multiplying (4.36) by (x — L 2 L) uX and using (4.33), we have

-  ( x — L2 +  L )  Í3vXv3 — ( x -  L2 +  L j  A uX»4 +  ( x — L2 +  L j  k0«X0

(x  -  ^ 3 2 - ^ )  Í3«X/6 -  ( x  — í 3/Xv3, in |L2, L].

Using integration by parts in [L2 , L], v3 (L) =  0 and taking real part, we obtain

|uX(L2)|2 +  |uX(L)|2 +  |v3(L2) |2
L

(
L 2 L 2

< I ($31 v312 +  «3|uX|2)dx — Re  ̂ I x — uX0Xdx

+  R e { /  $3 ̂ x — L2 +  L ^ uX/6dx

— Re { í  53 x  ^ /^v3d x l  . (4.42)
L2 \  2
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Note that |x — L +L | < L—L2  for all x  e  [L2 ,L] and using Holder’s inequality, Young’s 
inequality and (4.38), we get

Re { /  ko x  — L  +  L ^ u\Qxd x j  < J  ko\uX9x \dx

/.L rL
\uX\2 dx + C (e) \9x \2 dx

< e |U |H  +  C (e)\\F\\H\\U\\u, (4.43)

for e > 0 small.
Therefore, using (4.43) and Holder’s inequality to estimate the other terms on the right- 
hand side of inequality (4.42), we obtain

4(-L2 ) \ 2 + \uX(L) \ 2 + \v3 (L2 ) \2
r L

< (S3\v3 \2 +  /33\uX\2)dx + e |U  |H +  C (e)\\F | |„ |U  |h ,
L

for e > 0 small. □

Lemma 4.3.3. For e > 0 small, we have
L L

/  (6 2 \v2 \2 +  3 2 \uX\2)dx < (ía\v3 \2 +  3 s\uX\2)dx + e | U +  C(e)\\F| |„ |U ||„ .
Li L

Proof. Using Lemmas 4.3.1 and (4.3.2) and the transmission conditions, we obtain

r (6 2 \v2 \2 +  3 2\uX\2)dx < \uX(L2 )\2 + \v2(L2 )\2 + ||FIIhIIU 
Li

<\uX(L2 )\2 + \v3(L2 )\2 + |F  |h |U  |h

< [ L(6 3\v3\2 + 3 3\uX\2)dx + e |U |H  +  C (e)\\F| |„ |U |h ,
L

for e > 0 small. □

Lemma 4.3.4. Let [£2,£] c  (L2, L) and e > 0 small . We have

C£ { 3 3\uX\2 + 3 4 \v3 \2) dx < e\\U|H +  C (e)\\F| |„ |U |h  +  | F \\2H.

Proof. Let q1 e  C 1 ([L2 ,L]) and [l2 ,l] c  (l2 ,l)  c  (L2 ,L),  such that q1 > 0, for all
x  e  [L2 , L] with supp(q1) c  (£2 ,£),\q[ \ 2 < \q1\ and q^x)  > c0 > 0, for all x  e  [£2 ,£].
Inserting (4.33) in (4.37), we have

ÍX6 4 9  — 349xx +  ikoXuX = 6 4  f 7 +  kofX (4.44)

Multiplying (4.44) by q ^ x  and integrating over (L2 , L), we get

iXko q1 (x)\u3x \2
Jl 2

L L
=34 q1(x)9xxuxdx — iX64 q1(x)9uxdx

L2 L2

+  /  (64f7 + kofx3)q1(x)uxdx. (4.45)
L2
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L
4 |2iÀko / q i(x ) |u j2

JL2
L L L

=  — $4 /  qí(x)0XuXdx — $4 / q i (x)dXuXXdx — iÀ£4 / q i (x)duXdx
L2 L2 L2

+  í  (£4/7 +  ko/_3)qi(x)uXdx. (4.46)
L2

From (4.37), we have

—$3uXX =  iÀ£3v3 — kodc +  £3/ 6. (4.47)

Multiplying (4.47) by ^ q  ̂  and integrating over (L2, L), we obtain

—$4 /  q i (x)dXuXXdx
JL2

= iÀ$4£3 r qi(x)^^v3dx — $4ko í  qi(x)|dx|2dx +  í  qi(x)#*/6dx. (4.48)
$3 dL2 $3 ,/L2 $3 dL2

Inserting (4.48) in (4.46) and using |q]|2 < |q 11, Young’s inequality, we get

í  qi(x)|uX|2
JL2

< I  qi(x)|uX|2dx +  í  |dx|2dx +  í  qi(x)|v3|2dx +  t1  í  |0x|2dx
| À| L2 |À| L2 | À| L2 |À| L2

+ ||F  ||«||U  ||* +  |Ài«F BH- (4.49)

Using Poincare’s inequality, the Equation (4.38) and taking |À| large in (4.49), we obtain

L L
/ $4q i (x)|uX|2 < e /  £4qi(x)|v3|2dx +  C(e) | F ||wllU llw +  llF IIH (4.50)
L2 L2

for e > 0 small.
Multiplying (4.36) by q i u3, integrating over (L2, L) and using (4.33), we have

L L L
£3qi (x)|v3 |2dx — $3 qi (x)uXXu3 dx +  k0q3(x)dXu3

L2 L2 L2
- L

' ,3 '£3qi (x) ( / 6u3 +  / 3v3) dx.
L2

Integration by parts and using q i (L2) =  q i (L) =  0, we have

nL pL pL pL
£3qi (x)|v3 |2dx =  — $3qí (x)uXu3dx — $3qi (x)|uX|2dx +  k0qi (x)dXu3dx

L2 L2 L2 L2

+  y  £3qi(x) / 6Û  +  / V )  dx. (4.51)
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Since supp(q1) c  (l2 ,l)  and |q'|2 < |q|, by Young’s inequality, we have

Y qí (x)u*u3dx L2 1 x < e í  ^3 |u*|2dx +  C(e) í  ^ 3 |q1 (x)|2||u*|2dx
JI2 J  L2

< e I #3|u*|2dx +  C(e) í  ^ 3q1(x)||u*|2dx, (4.52)
Jl2 " L2

for e > 0 small. Using Young’s inequality, Poincaré’s inequality, the equation (4.38) and 
(4.52) in (4.51), we get

J L J L
£3d1(x)|v3|2dx < e I I U 11 H +  C(e) / #391 (x)|u*|2dx +  11F 11H11U 11h, (4.53)

L2 L2

for e > 0 small. Therefore, from (4.50) and (4.53), we obtain

/ L 91 (x) (fti|u*í2 + £3 |v3|2) dx < e I I U 11 H + C(e) 11 F  11 h  11U11 h +  11F11 H,
L2

for e > 0 small. □

Lemma 4.3.5. Let e > 0 small and q3 G C 1([L2,L]), such that q3(x) > 0,forall  x G [L2,L]
with q3(L2) =  q3(L) =  0 and q3(x) =  1 for all x G [l2,l]c. We have

f  (#3|u*|2 +  £3 |v3|2) dx < e I I U11 H +  C(e) 11 F  11 h  11 U11 h  + I I F11 H.
d[i'2,í']c

Proof. Multiplying (4.36) by q3u*, integrating over (L2, L) and using (4.33), we have

L L L
£3q3(x)v3v3dx -  #3q3(x)u**u*dx +  k0q3(x)B*u3

L2 L2 L2
-L # __ __

’ fY,3 1 Í3„,3 '
L2

Integration by parts and using q3 (L2) =  q3(L) =  0, we have

£393(x) f  6u* +  f v 3) dx. (4.54)

-  #32Re q1(x)u*xu*dx =  #3 / q̂  (x)|u*|2dx. (4.55)91(x )|i-3 '2 '
L2 L2

On the other hand, similarly, using integration by parts, we get

-L /*L
,3„,3^™  X J  (^ \l„,3|2.-  £32Re £3q3(x)v3v^dx =  £3 / q3 (x)|v3|2dx. (4.56)

L2 L2

Taking the real part in (4.54) and using (4.55)-(4.56), we obtain

2 Jl q3(x) (#3|uX|2 +  £3|vT ) dx

Re í  £393(x) ( f 6u* +  f 3v3  ̂ dx -  Re í  fc093(x)B*u* (4.57)
L2 L2

L L
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Therefore, using Lemma 4.3.4, the Equation (4.38) and Young’s inequality in (4.57), 
we get

f  (x) ( f t ^ 2 +  12) dx
Ag A

< e í  qs(x)|uX|2dx +  max |q3(x)| /  (^s|«X|2 +  A |v3|2) dx +  C(e)11 F\\ hI1 U 11 h
J l 2 xeiL2,L] A-GÂ]

< eI I U 11 H +  C(e) 11 F  11h 11U11h +  |I F11H,

for e > 0 small. □

Lemma 4.3.6. For e > 0 small, we have

í L ( « | 2 +  f t |v 3|2) dx < e | | U 11 H +  C(e) 11F 11h 11U11h +  11 F11H.
JL2

Proof. Follow from Lemma 4.3.4 and from Lemma 4.3.5. □

The main result of this section is given by the following theorem.

Theorem  4.3.1. Let H  and A i be defined as before, considering the conditions ofthe KET
model. Then the semigroup etAl of system (4.11) is exponentially stable, that is, there
exists a positive constant e such that

11etAlUo 11 h  < e-£í 11 Uo 11h, V Uo G H, í >  0,

Proof. The proof is based on using Theorem 1.5.3. First, let us prove that iR c  p(Ai). 
For this, we will check

(1) Ker(iÀZ -  Ai) = {0}, VA g R;

(2 ) R(iÀ1 -  Ai) =  H, VA g R;

(3) (iÀI -  A i )- i  is bounded, VA g R.

First, let’s prove (1). In fact, from Theorem 4.2.1, we have K er(-A i ) =  {0}. We need
to show the result for À =  0. Suppose that there is a real number non-zero À and
U =  (ui ,M2 ,u 3,v i ,v2 ,v 3 ,d) g D (A i), such that

- A i  U =  iÀU,

this is, F  =  0 in (4.31)-(4.37). So, from (4.13), a direct computation gives

rLi rL
0 =  Re(iÀU, U)h =  R e(-A iU, U)h = aolv^pdx +  / ^4 |dx|2dx.

J 0 J L2

consequently, we deduce that

vX =  0, in (0 ,L i ) and =  0 in (L2,L). (4.58)

Since 9 g H 2(L2 ,L) n H0(L2,L), because U g D (A i ), then d g C i ([L2 ,L]) and conse-
quently, from (4.58), we have

9 =  0 in [L2,L],
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it follows, from (4.33) and (4.37), that

uX =  vX =  0, in (L2 ,L). (4.59)

Since u3 g H  2(L2, L), because U g D (Ai ), then u3 g C 3([L2, L]) and consequently, from
(4.59), we have

u3 =  0 in [L2 ,L], (4.60)

and, therefore, from (4.33), we get

v3 =  0 in [L2 ,L]. (4.61)

On the other hand, Inserting (4.32) in (4.35), we get
r

uXX +—~õ~ A2u2 =  0 , in (L i, L2). (4.62)
P2

Moreover, since uX(L2) =  uX(L2) =  0 and u2(L2) =  u3(L2) =  0, from (4.62) and using
u2 g H 2(L1,L 2), we obtain

u2 =  0, in [L1,L 2],

and, hence, from (4.32), we get

v2 =  0, in (0, L2).

Since (^uX +  a(x)vi) g H  1(0, L1), because U g D (A 1), then, from (4.58), we have

u 1 g C 1([0,L1]) and consequently, uX =  0 in [0,L1).

Since u 1(0) =  0 and u 1(L1) =  u2(L1) =  0, by Poincaré’s inequality,

u 1 =  0, in [0,L1 ],

and, therefore, from (4.31), we get

v1 =  0, in [0,L1].

Therefore, U =  0 and the proof is complete.
At moment, let’s prove (2). From Theorem 4.2.1, we have R ( -A 1) =  H. We will 

need to show the result for À =  0. Set F  =  ( f 1, f 2, f 3, f 4, f 5, f 6, f 7) g H, we look for 
U =  (u1,u 2 ,u 3,v 1,v2 ,v 3 ,0) g D (A 1) solution (4.30), equivalently, of (4.31)-(4.37).
Let (^ 1, ^ 2, ^ 3 ,0) g HL x H0(L2 ,L), multiplying Equations (4.34)-(4.37) by ^ 1, ^ 2,^ 3, 
and 0  respectively and using integration by parts, we get

nL 1 nLi
iÀÍ1v1^ 1dx +  (^1uX +  a(x)vX) ^Xdx — (AuX +  a(x)vX) ^ 1

/o ./o

L1

L2 rL 2
iÀÍ2v2^ 1dx +  ^ 2 uX^Xdx — ^ 2u2^ 2^ X T  X

L1 L1

= í  ^ f V ^ x ,  (4.63)
o

L2 L2
= Í2f 5p 2dx,

L1 L1

o
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rL rL rL rL
iÀ53V3̂ 3dx + «3uX^Xdx — k0 0^Xdx +  «3uX(L2 )^ 3(L2) =  $3/ 6̂ 3dx,

L2 L2 L2 L2

Í'L -  f L -  f L 3-  f L 7-/ iÀ5400dx +  / «40X0Xdx +  / k0vX0dx = 54/  0dx. (4.64)
L2 L2 L2 L2

Substituing v1, v2, v3 by iÀu1 — / 1, iÀu2 — / 2 and iÀu3 — / 3 respectively in (4.63)-(4.64), 
we obtain

Li Li ( ) ( )
—À2 / 51u 1̂ 1dx +  («1uX +  a(x)(iÀuX — /X) )Fcdx — («1uX +  a(x)vX) ^ 1

00 00

L2

Li

L2 L2
—À2 / 52 u2̂ 2dx +  «2uX^Xdx — «2u VXX

Li Li

=  5̂  /" ( / 4 +  iÀ /2) ^ 1dx, (4.65) 
0

2 =  52 P ’ ( / 5 +  iÀ /1) p 2d.t,
L1 L1

L L L
—À2 / 53u3̂ 3dx + «3uX^Xdx — k00^Xdx+«3uX(L2)^3(L2)

L2 L2 L2
r l f6 1 • \ í3\ -^3,=  53 / (/ 6 +  iÀ /3)
L2

rL rL rL rL
iÀ5400dx +  «40X0Xdx +  iÀk0uX^dx = (54/ 7 +  k0/X) 0dx. (4.66)

L2 L2 L2 L2

Adding the equations (4.65)-(4.66), using the transmission conditions (4.2) and the 
boundary conditions (4.3), we obtain

B (p ,v ) =  F (v ), Vv =  (^ 1, ^ 2, ^ 3, 0) e  HL x H ( L 2,L). (4.67)

and p =  (u1,u 2 ,u 3 ,0) e  HL x H1(L2 ,L), where

B(p, v) =  B1(p, v) +  # 2(p, v),

with
aLi rL2 rL rL

B1(p ,v ) =  — À2 / 51u 1̂ 1 dx — À2 / 52u2̂ 2dx — À2 / 53u3̂ 3dx +  iÀ5400dx
0 L1 L2 L2

/•L _ 3
— k00 ^ Xdx,

L2 X

/•Li /*L2 />L /«L
B2(p ,v ) =  ( « 1 +  iÀa(x)) uX^Xdx +  «2uX^Xdx +  «3uX^Xdx +  «40X0 Xdx

0 L1 L2 L2
r l .3"

and

+  / iÀk0uX 0dx, L2 X

F (v ) =$1 /  ( / 4 +  iÀ /1) ^ 1dx +  $2 í  ( / 5 +  iÀ /2) ^ 2dx +  í  a(x)/XVXdx 
00 0 Li 00

L ( ) L ( )
+  5 3 / ( / 6 +  iÀ /3) ^ 3dx +  / (54/ 7 — / )  0dx.

L2 L2
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Consider M := H | x H1 (L2, L), H- 1 the dual space of H | and M* := H - 1  x H  1 (L2, L)
the dual of M. Let us consider the following operators,

B : M — y M* ( B1 : M — y M* ( B2 : M — y M*
p —— y B(p) \  p i— y B ^p) \  p 1— y B 2 A )

such that

i ,v ) = B (p ,v ), B 1 (p ,v ) = B 1 (p ,v ) and B 2 (p ,v ) = B2 (p ,v ), Vv e  M.

If B is an isomorphism and F  is a antilinear on M and, furthemore, F  is continuous from 
M to C, then we get Equation (4.67) admits a unique solution p e  M and consequently
(2) w illbe proven. In fact, if p e  M c  H, then (v1 , v 2 , v 3 ) e  H |,  because vi = iXui — f i for 
i = 1,2 , 3 and ( f 1, f 2, f 3 ) e  H |.  Furthermore, using the classical regularity arguments 
(similarly when we proved that 0 e  p (A 1)), we concluded that Equation (4.30) admits 
a unique solution U e D ( A 1).

Therefore, our goal is to prove that B is an isomorphism operator and that and that 
F  fulfills the conditions mentioned above. To do this, we will show:

(i) Ker{B} =  {0}; (ii) B2 is compact; (iii) B1 is an isomorphism.

Note that by proving the above items, we will be able to prove that B is an isomorphism. 
In fact, from (ii) and (iii), we get that the operator B =  B 1 +  B2 is a Fredholm operator. 
From (iii), we have that B1 is a Fredholm operator of index zero and from (i) we have 
dimN(B) =  0. Then, we get

0 =  indB1 =  indB =  dimN (B) — codimR(B);

this is, codimR(B) =  0, how R(B) is closed (B is Fredholm), we concluded R(B) =
M*. Then, as B is injective, surjective and continuous (B is Fredholm), it follows by 
the closed graph theorem of Banach that B- 1 is continuous, and therefore, B is an 
isomorphism.
With that in mind, let’s now prove the three items mentioned.
(i) We prove that ker{B} =  {0}. For this aim, let p e  ker{B}, i.e.

B(p, v ) =  0, Vv e  M.

Equivalently, we have

rLi rL2 rL rL
— X2 ô1ii1p 1dx — X2 ó2ü 2 p)2dx — X2 ô3u 3 p 3dx + iXô4 9(fidx

0 Li L2 L2
L L2 Li L

— k0 9f(p3xdx + A u 2xÃ 2xdx + (A  + iXa(x)) uíx^l-dx + A ^ ^ d x
L2 Li 0 L2
L L

+ A & A xdx + iXk0 u3x4>dx = 0. (4.68)
L2 L2

Taking v = (0,0, iXu3, 9) in (4.68), we obtain

rL rL   rL
iXS4 \9\2dx — i2k0XIm u 3xÕdx + A l&x \2dx = 0. (4.69)

L 2 L 2 L 2
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Taking the real part of (4.69) and using 6  e  H1(L2, L) , we get

6  = 0, in (L2,L). (4.70)

Moreover, using (4.68) and (4.70), we find that

À% u 1 +  (^1 +  iÀa(x))ulxx =  0 , in (0 , L 1)

À2^2« 2 +  ^ 2«XX =  0 , in (L1, L2)

À2 Ô3ll3 +  ^ 2uXX =  0 , in (L2 ,L)

iÀk0uX =  0 . in (L2 ,L)

Therefore, the vector Ü defined by

Ü = (771 ,772 ,773 ,iÀ771 ,iÀ772 ,iÀ773 , 0) 

belongs to D ( A 2) and we have
iÀÜ -  AiU =  0 .

Hence, Ü e  Ker(iÀ1 -  A 1), then we get Ü =  0, this implies that u 1 =  u2 =  u3 =  0. 
Consequently, by (4.70), ker{B} =  {0}. Since u =  v =  0, we have ker{B} =  {0}, how 
we wanted to show.
(ii) We prove that the operator B1 is compact. For this goal, note that, by Holder’s 
inequality, we have

|Bi(p, v )| < | |^ |L21|v||L2, Vv e M.

Or yet, using Poincaré’s inequality, we get

sup |B1^̂ ,,v)| < II^!l2, Vv e  M . 
imim=o llv ||m

Soon, by definition, we have

PiM H m * < | |^ | l 2. (4.71)

Now, consider e  M bounded. From the compact embedding of M in L2, since H 1 is 
compactly embedded in L 2 , we have that converges in L2 up to a subsequence. So, 
from Equation (4.71), we get

||B 1 (pn) ||m* < ||Pw||l2 ,

This is, B1(pn) is a Cauchy sequence in M*, and therefore, converges in M* up to a 
subsequence. Thus, by definition, B1 is compact.
(iii) We prove that the operator B2 is an isomorphism. For this goal, note that by 
Holder’s inequality, we have

|B2(^ ,v)| < IMIm|Iv ||m, 

this is, B2 is continuous. Now, using Poincare’s inequality, we have

pL± pL2 rL
Re#2( p ,p )=  / (^1|«X|2dx +  / (^2 |uX |2dx +  / (^3|«X|2 +  ^4 |9 |2) dx > ||p.||M.

J 0 *J Lp *J L2



Preliminaries 113

Therefore, B2 is coercive. Furthermore, it is easy to see that B2 is a sesquilinear form on 
M. Then, by Lax-Milgram Lemma, the operator B2 is an isomorphism. Finally, from (iii) 
and Fredholm alternative, we deduce that the operator B is isomorphism. It is easy to 
see that the operator F  is a antilinear on M. Moreover, by Holder’s inequality, we have 
F  is continuous from M to C. Therefore, (2) is proven.

Finally, let’s prove (3). It is easy to verify that (iX—A ^ is closed for all X e  R, because 
A 2 is closed. Furthermore, since (iX — A 1) is linear, injective and surjective, we can 
apply Lemma 4.4.3 to conclude that the graph of (iXI — A1)- 1 is closed. Consequently, 
by closed graph theorem of Banach we can deduce that (iXI — A 1)- 1 is bounded for all 
X e R. Therefore, iR c  p (A 1), how we wanted to show.

Now, let F  e  H, consider U = (u1 , u 1 ,u 3 , v 1 , v 2 , v 3 ,9) solution of (iXI — A )U = F , i.e, 
the system (4.31)-(4.37) is satisfied. To show the exponential decay, according Theorem 
1.5.3 is sufficient to show |U |H < | F | H, for \X\ large. In fact, from (4.39) -(4.40) and 
from Lemmas 4.3.3 and 4.3.6, we get

|U  |H = í  (6 1 \v1 \2 + 31\ulx \2 )dx + í  (6 2 \v2 \2 + 32\u2x \2 )dx 
J0 J Li

+  J  (63 \v3 \2 +  3 3\uxx\2 +  6 i \9 \2)dx 

< e\\U\|H +  C (e)\\F\\n \\U||„ +  |F \H ,

for \X\ large and e > 0 small. Thus, using Young’s inequality, taking \X\ large and a 
suitably small e > 0, we obtain

I I U\\H < | | F \\H,

as we desired to prove. □

4.4 Asymptotic behavior: Polynomial stability
To show the polynomial decay of the solution for the system (4.6)-(4.9) we use a 

result due to Borichev and Tomilov ( [7]).
In this subsection, we will prove the polynomial stablity, which is valid for the cases 

where the elastic part of the string (with no dissipation) connects with only the Kelvin- 
Voigt damping. As the proof is similar for all these cases, we focus in investigating 
the stability of the EKT model. We recall that the EKT model is given by (4.6)-(4.9) 
considering

a(x) = aoX[Li,L2](x), ao > 0.

The main result of this section is Theorem 4.4.1 and to prove this theorem we will 
need to introduce some technical lemmas.
Let X e  R and F = ( f  1 , f 2 , f 3 , f 4 , f 5 , f 6 , f 7 ) e  H. In what follows, the stationary 
problem

(iXI — A 2 )U = F, (4.72)

will be considered several times. Note that U = (u1 , u 1 , u 3 , v 1 , v 2 , v 3 , 9) is a solution of 
this problem if the following equations are satisfied:
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L -  Í'L
-4 1912dx < & |9*|2dx < I I F  11 H 11 U 11h. (4.82)

iÀu1 -  v1 =  f i , (4.73)
iÀu2 -  v2 =  f 2 , (4.74)
iÀu3 -  v3 =  f 3 , (4.75)

iÀ-iv1 -  ^ iuXX =  - if 4 , (4.76)
iÀ-2v2 -  (AuX +  a(x)v2)) =  - 2f 5, (4.77)

iÀ-3v3 -  (^3uXx -  ko9x) =  - 3f 6, (4.78)
iÀ-49 -  ^49xx +  kovX =  -4f  7> (4.79)

with the transmission conditions (4.7) and the boundary conditions (4.8).
Note that inequality (4.12) implies

/>L2 pL
/  «o-2 |vX|2dx +  / ^4 |9x|2dx =  Re((iÀ1 - A 2)U,U)h < 11F11 h  11U11 h. (4.80)

«/ Li «/ L2

From (4.74) and (4.80), we have

/ L2 aofl2 |«X|2dx < |À|- 2 ( 11 F  11 h  11 U11h + I I F11 H) . (4.81)
J Li

From (4.80) e using the Poicanré’s inequality, we have

l2 j ~ ^ TT /  ^4|9x12JL2 P4 J L2

Lemma 4.4.1. For |À| large, we have

I |A«X +  «ovXI2 dx < I I F  11 H 11 U11 H + I I F  11 H.
J Li

Proof. Using (4.80) and (4.81), we get

f L2 | |2 f L2 | |2 f L2 |
/ |^ 2uX +  «ovX| dx < / ^ 2 |uX| dx +  / ao |vX| dx < | | F  11 h  11U11 h  +  11F11 H,

J Li J Li J Li

for |À| large. □

Lemma 4.4.2. For |À| large, we have

|À| 11 v2 | | L.(Li,l1) < I I F  11 h  11 U 11 h  + 1 I F  11 h/2 11 U 11 h/2 +  11 F  11 h.

Proof. Consider Hi the dual space of H i (Li , L2). From (4.77), (4.80) and (4.81), we get

|À| 11 v2 11 Hi < | | uX I I L2(Li,L2) +  I I a(x) 2 vX 11 L2 (Li ,L2) +  I I f 5 11 L2(Li,L2)

< I I F  11 H 11 U 11 H +11 F  11 H (4.83)

Using Interpolation and inequalities (4.77) and (4.83), we obtain

|À| 11 v2 I I L2(Li,L2) < |À| 11 v2 11 Hi 11 v2 11 Hi(Li,L2)

< I I F  11 h  11 U11 H + I I F  11 H/2 11 U11 H/2 +  |I F  11 H. 

for |À| large. □
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(ft|uX|2 +  Í 2 |vT)<fe < |À|- 1 ( ||F ||h ||U ||«  +  ||F||H/2 ||UBi/2 +  BFBH . (4.84)

Note that from Equation (4.81) and from Lemma 4.83, we have

L2 

L1

Lemma 4.4.3. We have

L1

Jo
^ l \ l 1/ 2 (\\ Z 7 l l _ . i l / T I L .  I I I I BU bh +  BF Bh Bu Bh I +  BF Bh

CA|uX|2 +  Í 1 |v1 |2)dx

< |À|1/2 ( | | f  BhBu Bh +  BF | | f | |U  b3/4 +  BF b3/2bu ||1/ 2) +  BF B2

for  |À| Zarge.

Proof. Multiplying (4.77) by (L2 — x)(p2uX +  a0v^) and taking the real part, we arrive at

R e { /  iÀ^2 (L2 — x)v2(^2uX +  «ov2 )d x j — Re j  2 J  (L2 — x) dX J^uX +  aov^|2dx 
1 L2 1

=  Re ^2 (L2 — x )f  (^2uX +  aov^)dx

Note that the above equation can be rewritten as follows

Re l  í  iÀd2(d2(L2 — x)v2uXdxl — Re { -  í  (L2 — x) —  |p2uX +  aov^|2dx
'L1 ) l 2  JL1 dx

rL2 5=Re | y  ^2(L2 — x )f  (^2uX +  «ov2)—x

— Re |  J  iÀd2ao(L2 — x)v2v2dx | (4.85)

Next, let us rewrite the terms on the left side of the above equation.
By (4.74), we have

L̂2
2Re <J p2 / d2(L2 — x)v (—iÀuX)dx

L1 x

= — Re | p 2 J  r 2(L2 — x)v2v2dx | — Re | f í j  r2(L2 — x)v2f d x  

^ 2d2(L 2 — L 1) ^ r m2 ^2 f L% i  2|2■|v(L1) |2 — ^  Í2 |v2 |2 dx

and

2   2 ^ 1

— Re | P 2 J  ^2 (L2 — x)v2f,2dx }> , (4.86)

-  L2 d
Re  ̂ / (L2 — x) —  |^2uX +  «o v^|2dx

2 L1 dx x x
- - r L2
— (L2 — L 1)|^2uX(L1) +  aov^(L1) |2 — t  / |^2uX +  «ovX|2dx. (4.87)
2 2 L1

Thus, substituting (4.86) and (4.87) into equation (4.85) yields:
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( ~  [#2£2 |v2(L1)|2 +  |#2u*(L1) +  a0v2 (L1)|2]

|v2 |2dx + 2 /  |#2u* +  «0v^ |2dx +  Re j  # 2 J  £2 (L2 -  x)v2f d x

+  Re £2(L2 -  x )f  5(#2u* +  a0v2)dx | -  Re | a 0 J  iÀ£2(L2 -  x)v2v 2 d x |.

1 1 (4.88)

We define the functional

/„ =  -̂---- 2  ̂ [#2£2 |v2 (L1)|2 +  |#2u* (L1) +  a0 vl  (L1)|2] .

Thus, from (4.88), we have

Iu =  í  |v2 |2dx + 2 í  |#2u* +  a0v^|2dx +  Re <f #2 í  £2(L2 -  x)v2f d x
2 7 lí 2 ./ Li L J Li

+  Re £2(L2 -  x )f  5(#2u* +  a0v2)dx | -  Re | a 0 J  iÀ£2(L2 -  x)v2v 2 d x |.

We now need to estimate the terms on the right-hand side of the equation above. To 
this end, we note that by Lemma 4.4.2 and using (4.80), we get

Re | a 0£2 J  iÀ(L2 -  x)v2v2dx

< «0 1À| 1/2 í  £2a(x)|v^|(|À|1/2 |v2|)dx
J L1
J L 1/2 J  L 1/2

< |À| 1/2 í / a(x)|v^|2d x j ( |À̂  / |v2|2d x j

£ |À| 1/2 ( i f  ||«||U  IIh +  IIF IiflIU  «H4 + IIF IlH/2IU «H/2) + «fIH .

The estimates for the remaining terms follow from Lemmas 4.4.1 and 4.4.2, and from 
Holder’s inequality. Therefore, we obtain

S |À| 1/2 («FIIhIIUBh +  ||FBH/4 «UBH/4 + BF«H/2«UBÍf) + BF«H (4.89) 

On the other hand, multiplying Equation(4.76) by xu* and taking the real part, we get

Re |iÀ £ 1 J  xvY^dx |  -  Re |  J  # 1xu*u**d^ =  Re £1x f  4u*dx |  . (4.90)

Using Equation(4.73), we get

Re |iÀ £ 1 J  xvu*dx| =  -  Re | £ 1 J  xv1v1 dx |  -  Re |  £1 J  xv1 f d x

1£1 |v1(L1) |2 -  [  £1|v1|2dx -  Re <(£1 [  x v f d x

(4.91)
2 0 0
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Also, we have
( pLi t rL 1

L 1 n I ,1 t T \ |2  o |„,1 |2- R e \ l  fi1x u lxdxx:u 1 d x |  = —  fi1 \u1x(L1) \2 — J  fi1 \u1x\2dx. (4.92)

Therefore, from(4.89)-(4.92), we have

í  (fi1 \ulx \2 + Ó1 \vl \2 )dx
'o

= —  [fi^ul(L 1)l2 +  Ô1 lv1 (L1)l2] — Re xv^-f^dxj — Re x f 4uldx

< +  ||F ||h ||U ||h

< | A| 1/2 C |F  ||« |U  |\h +  \ |F \ l f \ I U \\3i‘ +  \|F f f H U  lllA  + | | F  ||?\H \\ U 11 H + \\F \\H \\ U 11 H ) + \\F \\H,

for IXI large. □

Proceeding in a manner similar to that in the proof of Lemma 4.3.6, we obtain the 
following result:

C L
(fi3|ux |2 + /M vT ) dx < c\ I UI\H + C(e) I\F\IHI\U\\h + \\F\\H, (4.93)

f L2

for c > 0 small.

Theorem  4.4.1. Let H and A 2 be defined as before. Then, the EKT model is not exponen­
tially stable. Moreover, the semigroup etA of system (4.11) decays polynomially with the 
rate t - 2, that is

11 e*AU0 11H < t 2 11 U0 11 D(A2) , ^  U0 G D (A 2 ) , t > 1,

Proof. The proof is based on Theorem 1.5.4. Similarly, as we did in the proof of the 
Theorem 4.3.1, we obtain that iR c  p(A).

Now, let F g H, consider U = (u1 , u 1 ,u 3 , v 1 , v 2 , v 3 ,9) solution of (iXI — A)U = F, 
i.e, the system (4.6)-(4.9) is satisfied. To show the polynomial decay with the rate 
t - 2 , according to Borichev and TomiloVs Theorem (see Borichev and Tomilov [5]), is 
sufficient to show

I I UI\H < \X\1/2 I\ F11H,

for 1X1 large.
Therefore, from Equations (4.82), (4.84) and (4.93) and Lemma 4.4.3, we get

I I U 11H = í  N v T  +  fi1 luH2) dx + f  (Ó2 \ v 2 \  + fi2 lu2xl2) dx
o L 1

+  í  (As\v3\2 +  fi?,\u3x\2'̂  dx 
J l 2

< ( 11 F\IHI\U\IH + I\F\IH\IUI\If + I I FI\H2 11U 111H2 j  + 11F 11H,

for \X\ large. Thus, using Young’s inequality, we obtain

I I UI\H < (\X\ +  \X\4/5 + + 1) I I F11H < \X| 11 F11H,

for \X\ large. Therefore, we get

IIUIIh £  \X\1/2 \\F\|h,

for \X\ large. □



Conclusion

In this thesis, we analyze the asymptotic behavior of solutions to three elastic prob- 
lems related to wave equations with localized Kelvin-Voigt damping, in combination 
with other dissipative mechanisms—namely, frictional, memory, and thermoelastic damp- 
ing. Considering systems composed of different elastic and dissipative regions, we 
demonstrate that the spatial distribution of these mechanisms plays a decisive role in 
the system’s energy decay rate.

In the first two problems, we study strings composed of three main regions: one vis- 
coelastic, one purely elastic, and one with frictional or memory damping. Through the 
application of Semigroup Theory, we established the correct mathematical formulation 
for each model and obtained precise conditions under which exponential energy decay 
occurs. When any part of the elastic region is connected to the frictional component (in 
the first problem) or the memory component (in the second), the semigroup is expo­
nentially stable. On the other hand, when there is a portion of the elastic region that 
is connected only to the viscoelastic dissipative region, the system ceases to be expo- 
nentially stable, and we show that the associated semigroup decays polynomially at the 
rate t -2—a result that was also proven to be optimal.

In the third problem, involving a rod with thermoelastic damping, we again verify 
that exponential stability depends on the position of the dissipative mechanism. When 
the viscoelastic component is located at the center of the rod, exponential stability is 
lost. In this configuration, we demonstrate that the semigroup decays polynomially at 
the rate t - 2; however, the optimality of this rate remains an open problem.
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