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“Umas coisas nascem de outras,
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”

e o tempo vai andando sem se perder a si.
— (Machado de Assis, "Esai e Jaco")



RESUMO

A desordem é onipresente em dados de sistemas fisicos—seja decorrente de ruido de medicao
ou de variabilidade intrinseca ao sistema—e constitui uma propriedade informacional fun-
damental. Quantificar essa desordem é desafiador porque as séries temporais costumam ser
curtas e exibem dindmicas hibridas de ordem e desordem, flutuagoes (des)correlacionadas
significativas e assinaturas que podem ser ambiguas, por exemplo, confundindo caos com
estocasticidade. Neste trabalho, introduzimos um arcabougo formal que quantifica a des-
ordem ao explorar a acao do grupo simétrico no espago de recorréncia, o que gera classes
de equivaléncia de microestados de recorréncia equiprovaveis. Ao maximizar a entropia
de informacao resultante, derivamos uma métrica robusta que discrimina entre dinamicas
caoticas, processos estocasticos correlacionados e ruido nao correlacionado—mesmo quando
os conjuntos de dados sao reduzidos. Nosso método também caracteriza a estrutura de
correlacao do ruido que perturba sistemas deterministicos. Quando aplicado a registros pa-
leoclimaticos, os minimos no quantificador de desordem coincidem com grandes transi¢oes
do Cenozbico, marcando épocas dominadas por mecanismos de forgamento especificos.
Testes estatisticos extensivos em modelos paradigméticos e em dados empiricos demon-
stram que esse quantificador é uma ferramenta valiosa para avaliar a natureza subjacente

de fendomenos complexos.

Palavras-chave: Desordem; recorréncias; grupo simétrico; entropia da informacao; caos;

ruido.



ABSTRACT

Disorder is ubiquitous in data from physical systems—whether arising from measurement
noise or inherent system variability—and represents a fundamental informational property.
Quantifying this disorder is challenging because time series are often short and exhibit
hybrid order—disorder dynamics, significant (un)correlated fluctuations, and signatures
that can be ambiguous, e.g. conflating chaos with stochasticity. In this work, we introduce
a formal framework that quantifies disorder by exploiting the action of the symmetric
group on recurrence space, which induces equivalence classes of equiprobable recurrence
microstates. By maximizing the resulting information entropy, we derive a robust metric
that discriminates among chaotic dynamics, correlated stochastic processes, and uncorre-
lated noise—even when datasets are small. Our method also characterizes the correlation
structure of noise perturbing deterministic systems. When applied to paleoclimate records,
minima in the disorder quantifier coincide with major Cenozoic transitions, marking epochs
dominated by specific forcing mechanisms. Extensive statistical testing on paradigmatic
models and empirical data demonstrates that this quantifier is a valuable tool for assessing

the underlying nature of complex phenomena.

Keywords: Disorder; recurrences; symmetric group; information entropy; chaos; noise.
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Chapter

Introduction

The analysis of physical systems is deeply rooted in the interpretation of empirical
data. Yet, a recurring challenge arises when such data originates from systems governed
by a complex interplay of order and disorder—where deterministic laws and stochastic
fluctuations coexist [1]. Observed across disciplines from climatology to biophysics, these
systems raise fundamental questions about how to characterize their underlying dynamics
[2]. Paradoxically, fluctuations themselves often carry rich information about system
behavior, particularly when stochastic components exhibit temporal correlations [3, 4].

For example, paleoclimate time-series data may reflect fluctuations stemming from
deterministic responses to orbital cycles or stochastic resonance triggered by environmental
noise. Disentangling these origins extends beyond theoretical inquiry; it holds critical
implications for forecasting system behavior, characterizing signals, identifying noise
sources, and detecting shifts in a system’s state [5, 6, 7, 8]. However, this task is hindered
by limited temporal resolution, small datasets, experimental artifacts, and the lack of
universal tools to rigorously quantify properties such as disorder.

Traditional approaches, such as entropy-based metrics (e.g., Shannon entropy [9],
permutation entropy [10]) and complexity measures [11, 12, 13, 14], aim to address these
challenges by encoding data into symbolic sequences or probability distributions. Rooted in
information theory, these methods leverage entropy frameworks to quantify unpredictabil-
ity and irregularity. Shannon’s foundational work on information entropy [9], initially
developed for communication systems, was later adapted to dynamical systems through
metrics like approximate entropy [15] and sample entropy. Subsequent advancements, such
as permutation entropy [10], introduced symbolic encoding to map time series into ordinal
patterns, enabling statistical characterization of temporal structures. These methods
were refined to distinguish deterministic chaos (e.g., Lorenz systems) from time-correlated
stochastic processes (e.g., fractional Brownian motion) or uncorrelated noise [16].

The core premise involves transforming temporal data into discrete symbolic sequences
or partitioned phase-space regions, constructing probability distributions that reflect

dynamical behavior. For instance, symbolic false nearest neighbors [17] and Kaplan’s test

13
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for determinism [18] use embedding techniques to classify trajectories in reconstructed phase
spaces, differentiating low-dimensional chaos from high-dimensional stochasticity. Recent
innovations, such as direct complexity [14] and stochasticity quantifiers [19], incorporate
multiscale and graph-theoretic frameworks to address nonstationary and high-dimensional
data. These tools have been applied across domains, from detecting epileptic seizures in
EEGs [20] to identifying climatic predictability [21].

Despite their successes, these methods face three key limitations. First, they often
conflate disorder with unrelated dynamical features like nonlinearity and nonstationarity.
Second, their performance degrades with high-dimensional or short datasets [22, 23], as
sparse sampling biases probability distributions. Third, many rely on heuristic parameter
choices (e.g., partition size, embedding dimension) rather than first-principles criteria
[24]. Symbolic encoding techniques, for example, require ad hoc definitions of embedding
dimensions or binning thresholds, while recurrence-based analyses depend on phase-space
proximity thresholds. Such subjective parameterization introduces biases and undermines
reproducibility. Additionally, in high-dimensional systems like turbulent flows or gene
regulatory networks, traditional tools oversimplify complex interactions into scalar metrics,
further limiting their utility.

We present a novel methodology grounded in recurrence analysis to rigorously quantify
disorder within arbitrary numerical datasets. Central to this approach is the demonstration
that entropy maximization constitutes an indispensable methodological strategy for achiev-
ing optimal estimation of disorder, thereby eliminating reliance on ad hoc parameterization.
The proposed framework enables precise discrimination between three fundamental dynam-
ical regimes: (i) deterministic dynamics, (ii) temporally correlated stochastic processes,
and (iii) uncorrelated random noise, through systematic evaluation of disorder magnitude.
Furthermore, the method permits identification and characterization of the fundamental
properties of system-corrupting noise, including its correlation structure and intensity.

To validate the methodology’s practical utility, we apply it to high-resolution paleocli-
mate proxy records [21], successfully detecting dynamical transitions in Earth’s Quaternary
climate system. This empirical application demonstrates the framework’s capacity to
resolve regime shifts and decode noise signatures in real-world systems, establishing its
broader relevance for data-driven investigations across scientific domains.

Helpful discussions with Prof. Jiirgen Kurths contribute significantly to the formulation
of the numerical validation strategy presented herein. Insightful comments and guidance
from Prof. Norbert Marwan on the real-world application are hereby acknowledged. The
computational algorithm derived from the framework proposed herein represents the main
practical outcome of this research, and the valuable contributions of Prof. Thiago de Lima
Prado to its development are gratefully acknowledged.

The remainder of this dissertation is organized as follows:
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Chapter 2: Some prior approaches to measuring complexity
Critical review of existing complexity metrics (statistical complexity, permutation
entropy, recurrence measures) with analysis of their theoretical foundations and practical

limitations in disorder quantification.

Chapter 3: Benchmark models and their challenges
Presentation of paradigmatic dynamical systems and stochastic processes serving as

testbeds: deterministic chaos, stochastic processes, and hybrid models.

Chapter 4: A formalism for disorder quantification
Derivation of a theoretical framework based on information theory, group theory, and
recurrence analysis. Proof of entropy-based quantifier uniqueness under the ideal
disorder condition. Detailed algorithmic architecture to directly measure disorder from

data based on the proposed framework.

Chapter 5: Numerical validations using benchmark models
Quantitative assessment through statistical tests. Systematic comparison with tradi-

tional methods using synthetic benchmarks.

Chapter 6: Real-world application to understand Earth’s dynamics
Application to proxy records revealing disorder signatures in Cenozoic climate transi-

tions.

Chapter 7: Conclusions and Perspectives
Synthesis of methodological advances, discussion of limitations, and roadmap for further

applications.



Chapter 2

Some prior approaches to measuring

complexity

In this chapter, we present a comparative analysis between our proposed approach
and six well-established methods for characterizing the complexity and disorder of time
series: the determinism derived from recurrence quantification analysis (DET) [25], the
permutation entropy (PE) [26], the multivariate permutation entropy (MvPE) [27], the
statistical complexity (SC) [16], structurality (A) [28], and dynamical complexity (DC)
[28].

The implementation of the methods was carried out using the Julia language, specifically
leveraging the ComplexityMeasures. j1 [29] and RecurrenceAnalysis. j1 [30] packages,
except for A and DC, implemented directly. These tools provide robust and efficient
computational frameworks for calculating the respective complexity measures, ensuring
reproducibility and methodological consistency across all analyses.

The objective of this comparative study is to evaluate the sensitivity, robustness, and
discriminative power of each method when applied to the benchmark datasets, thereby
highlighting the strengths and potential limitations of existing approaches relative to our

proposed quantifier.

2.1 Determinism (DET)

The determinism (DET) measure, derived from recurrence quantification analysis
(RQA), evaluates the predictability and structural regularity of time series based on the
proportion of recurrent points that form diagonal lines in the recurrence plot [25]. A
high DET value indicates that the system exhibits deterministic and predictable patterns,
whereas low values reflect stochastic or highly disordered dynamics.

In the context of this study, we expect DET values to approach 1 for systems charac-

terized by strong deterministic behavior. Conversely, as the system’s dynamics become

16



2.1. Determinism (DET) 17

more disordered or unpredictable, the DET measure is expected to decrease significantly.
This sensitivity to the underlying temporal structure makes DET a valuable tool for
distinguishing between different regimes of dynamical systems.

Determinism (DET) quantifies the proportion of recurrence points forming diagonal
structures in a Recurrence Plot (RP), serving as a crucial indicator of deterministic
dynamics in time series analysis. Its computation involves a multi-step procedure. First,

given a dataset ® = (x;)X |, we construct the recurrence plot by defining the binary matrix
Ri; = O — |xi—xjll), 4,i=1,...,K,

where ¢ is a chosen distance threshold and ©(-) is the Heaviside step function. A value
R; ; = 1 indicates that states x; and x; are within distance €, i.e. a recurrence has occurred.

Next, we identify diagonal lines of consecutive ones parallel to the main diagonal (the
Line of Identity, LOI). A diagonal line of length [ at offset A satisfies

Rk,k—i—A =1 for k=4, i+1, ..., 1+1—1,

where A is the fixed column offset and ¢ is the starting row index. To avoid counting
small, spurious recurrences arising from noise, we impose a minimum diagonal length [,
typically i, > 2.

Once all diagonal lines of length [ > [, are located, we compile a histogram P(1),
which records the number of diagonal lines of each length [. Let L,,,, denote the maximum

diagonal length observed. The DET measure is then defined as

Lmax

> [P
DET = Sl

K
> Rij

ij=1
i#]
Here, the numerator >_; [ P(l) counts all recurrence points that belong to diagonal structures
of length at least [nn, while the denominator },.; R;; counts the total number of off-
diagonal recurrence points. By construction, DET ranges from 0 (no diagonal lines of
length > i) to 1 (all recurrences lie on diagonals).
The determination of an appropriate distance threshold e constitutes a critical method-
ological step in Recurrence Plot (RP) construction. The literature provides extensive

discussion regarding the optimal selection of this parameter. Some primary strategies are:

1. Recurrence Rate Optimization: Calibrates the threshold e to achieve a target
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recurrence density (typically RRiarget € [5%, 20%]) by solving:

1 N
ﬁ Z @(8 - Hxl - XjH) = RRtarget (21)

ij=1
where ©(-) is the Heaviside function, ensuring cross-system comparability [31].

2. Phase Space Topology Methods: Defines recurrence through local attractor density
invariants, generating scale-adaptive recurrence plots that capture essential dynamics

while minimizing tangential motion artifacts [32, 33].

3. Noise-Adaptive Thresholds: Determines € proportionally to the system’s noise floor:
e =1k Onoise;, k€ [3,5] (2.2)

with Gpeise denoting the estimated noise standard deviation [34].

4. Maximum Entropy Optimization: Maximizes the Shannon entropy of recurrence

matrix microstates (submatrices of size m x m):

n;

Dk M

N
S =— sz- Inp;, p;i= (2.3)
i=1
where .4 is the number of unique microstates and n; their occurrence frequency
[35].

In summary, DET captures the degree to which the system’s trajectory revisits similar
states in a deterministic sequence, as evidenced by diagonal lines in the RP. Higher values
of DET imply more regular, predictable dynamics, while lower values indicate increased
randomness or stochasticity.

In this work, we follow the approach implemented by Westerhold et al. [21]. Specifically,
we adopt the Julia function GlobalRecurrenceRate(0.10), which automatically adjusts
the threshold to achieve a fixed recurrence rate of 10%. This choice ensures consistency
with established practices and facilitates comparability with prior analyses of complex
geophysical datasets.

Additional tools of Recurrence Quantification Analysis (RQA), including laminarity
and diagonal line entropy, can be combined to provide further interpretations. Nevertheless,
DET has frequently been applied to empirical data comparable to that examined here,
supporting interpretations like “less predictable” or “more stochastic”, which align with

the concept of disorder in data.



2.2.  Permutation entropy (PE) 19

2.2 Permutation entropy (PE)

The Permutation Entropy (PE) and its multivariate extension (MvPE) are widely
recognized as natural and effective quantifiers of complexity in time series analysis [26, 27].
Both measures are designed to capture the diversity of ordinal patterns present in a dataset,
with higher entropy values reflecting greater complexity and randomness in the underlying
dynamics.

In general, the expected behavior of these quantifiers is to increase as the complexity of
the system grows. For highly regular or deterministic systems, PE and MvPE attain lower
values, while in stochastic or chaotic systems with more intricate temporal structures,
these measures approach their theoretical maximums.

The calculation of PE requires the specification of two parameters: the embedding
dimension m, which defines the length of ordinal patterns, and the embedding delay 7,
which sets the spacing between the components of these patterns. In this study, we adopt
the parameter values established by Rosso et al. [16], namely m = 6 and 7 = 1. This choice
ensures compatibility with a significant body of prior research and facilitates comparison
with results reported in the literature. Additionally, when dealing with multivariate
systems, we compute PE using only the x-variable, as originally proposed for univariate
data analysis.

Given a univariate time series (z;)X,, we first embed the data in an m-dimensional
space using a time delay 7. Concretely, for each time index ¢t = 1,2,..., K — (m — 1)1, we

form the delay vector

X = (xm Titrs Tigory - -, $t+(m—1)r)-

Next, for each vector X;, we identify the ordinal pattern—mnamely, the unique permutation
7= (ro,71,...,Tm—1) of the indices (0,1,...,m — 1) that satisfies

Litror < Tiqrir < - < R

When two components are equal, we break ties by their original temporal order, so that
if x414 = 241y and a < b, then r, < r,. There are m! possible permutations in total; we
denote this set by II. For each permutation 7, € II, we estimate its empirical probability
by counting how many embedded vectors X; realize that pattern:

1 K

—(m—-1)T
p(ﬂ-k> = K — (m — 1)7_ Zl 17Tk(Xt)7

where 1, (X;) is the indicator function that equals 1 if X; has ordinal pattern 7, and 0
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otherwise. Finally, the permutation entropy of order m is defined as

m!

H(m) = =) p(m) logy p(ms),

k=1
using the convention 0log, 0 = 0. For scale-invariance, one often normalizes

H{(m)

Hnorm - T 7 N\
(m) log,(m!)

so that Hyorm(m) lies in [0, 1]. In practice, one selects the embedding dimension in the range
3 < m <7, provided that K > m!, and typically uses 7 = 1 unless the autocorrelation
suggests a larger delay.

Theoretical properties of permutation entropy include: (1) H(m) = 0 for strongly
regular or periodic signals; (2) H(m) ~ log,(m!) when the process is effectively random
(e.g., white noise); (3) invariance under any monotonically increasing transformation of
the data; and (4) robustness to observational noise.

The Multivariate Permutation Entropy (MvPE) extends the PE framework to multi-
variate time series, accounting for the joint ordinal structures across multiple dimensions
[27]. A well-established guideline in the application of MvPE is to set the length of the
ordinal patterns m equal to the dimension D of the dataset, thereby ensuring that the
complexity of the multivariate interdependencies is adequately captured. Following this
approach, we set m = D and maintain the embedding delay at 7 = 1 throughout our
analysis.

The consistent application of these parameter choices across all models enables a
fair and meaningful comparison of PE and MvPE with other complexity measures. The
resulting analyses highlight the sensitivity of these quantifiers to different dynamical

regimes and their effectiveness in detecting variations in system complexity.

2.3 Statistical complexity (SC)

The Statistical Complexity (SC) is a quantifier designed to complement the Permutation
Entropy (PE) by providing a more nuanced characterization of the underlying dynamics
of time series [16]. While PE primarily measures the degree of disorder within a system,
SC integrates both disorder and structure, enabling the differentiation between random
and chaotic behaviors that might otherwise exhibit similar entropy values.

The expected behavior of SC is well-established: it tends to decrease for purely
stochastic signals, such as white noise, due to their maximal disorder but minimal structural
complexity. Conversely, SC increases for deterministic chaotic systems, where the presence
of structured yet unpredictable dynamics leads to higher complexity values. This sensitivity

makes SC particularly useful in distinguishing between different types of complex systems
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that may be indistinguishable through entropy measures alone.

The computation of SC fundamentally depends on the evaluation of the PE, as
originally formulated by Rosso et al. [16]. Specifically, SC combines the normalized PE
with a disequilibrium term that quantifies the divergence between the actual probability
distribution of ordinal patterns and the uniform distribution. Consequently, the parameter
choices for SC are inherently linked to those selected for PE.

Statistical Complexity, denoted by C, is defined as the product of a normalized entropy

measure H and a disequilibrium measure Q:
C =@ H,

where H is typically the normalized Permutation Entropy.
To compute C', we first obtain the normalized Permutation Entropy Hom. Given the

ordinal pattern probability distribution

P = {p(ﬂ'kz) Zip

the unnormalized permutation entropy is

m!

H(m) = =% p(m) log, p(m).
k=1
We then normalize by log,(m!):
L Hm) =S p(m) logyp(m)
T logy(m!) log,(m!) '

Next, we define the reference (equilibrium) distribution P, to be the uniform distribution

over all m! ordinal patterns:

Pe = {pe(ﬂk) - 1/m‘ }Zn:'l

The disequilibrium @ is then computed via the Jensen—Shannon divergence J(P, P,).

Explicitly,

P+Pe)_S(P> S<Pe)

J(P,P) = S . -

2 2
where S(+) denotes the Shannon entropy (base 2) of a distribution. Concretely,

m! m)! 1 1
S(P) = =3 plm) logyp(m),  S(P) = — 3 — logy — — logy(m!).
k=1 k—1 m: m:

We normalize J (P, P,) by a constant (), chosen so that the maximum possible Jensen—Shannon
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divergence (between P and P,) equals 1. Specifically,

1 [ml+1 B
Qo = -5 mm! logy(m!+1) — 2 logy(2m!) + logy(m!)

Thus,
Q - QOJ(P7P6)~

Finally, the Statistical Complexity is given by
C = Hnorm : Q?

which jointly measures both the normalized uncertainty (through H,om) and the departure
from equilibrium (through Q).
Key properties of C' include:

o Boundedness: 0 < C' < Chax, Where Cp . depends on m.

o Invariance: C'is invariant under affine transformations of the original time series.
o Sensitivity: C' detects both purely stochastic and deterministic structures.

o Extremes:

— C = 0 for perfectly ordered (e.g., periodic) or completely random (e.g., white

noise) systems.

— C > 0 for complex systems exhibiting correlated patterns.

Interpreting C' alongside H,,., in the C' x H plane yields a complexity—entropy
diagram, where the lower boundary corresponds to C' = 0 (either perfect order or maximal
randomness), and the upper boundary C' = C.c(H) represents maximal structural
complexity for a given entropy. Intermediate values of C' indicate processes that combine
both disorder and nontrivial correlations.

In this study, we adopt the same embedding dimension m = 6 and embedding delay
7 = 1 as employed in the PE analysis, ensuring consistency across quantifiers and facilitating
direct comparisons. By leveraging this complementary relationship between SC and PE,
the analysis provides a comprehensive assessment of system complexity, capturing both

the degree of randomness and the presence of underlying structure within the datasets.

2.4 Structurality (4A)

The structurality measure, denoted by A, quantifies the spatial organization of dy-

namical trajectories in phase space through the analysis of Poincaré sections. A lack of
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discernible structure in the dynamics manifests as a large A, while well-ordered dynamics
yield A = 0.

To compute structurality, a Poincaré section of the system is discretized into an N, x N,
grid of boxes. Defining the indicator variable v;; as 1 if the box (7, j) contains at least one

crossing point and 0 otherwise, the structurality is given by:

Firstly, we need to construct the frame in which the Poincaré section is analised. A way
to do this is to consider the maximum M; and minimum m; possible values along the axis 7
of the chosen frame and then choose the number of boxes Ny, of length I, = || M; — m;||/ N,

as a function of the number N, of points in the Poincaré section:

Nb Z 10 lOglONp

This measure is primarily grounded in deterministic concepts, such as trajectories and
phase space representations, and inherently depends on several methodological choices,
including the definition of the Poincaré section, the selection of an appropriate grid
resolution, and the reference frame. Moreover, it was originally validated using long time
series, as the number of crossing points in the Poincaré section typically satisfies N, > 103
[28].

2.5 Dynamical complexity (DC)

The dynamical complexity (DC) is a composite metric developed to quantify simulta-
neously the unpredictability and the spatial disorder of a dynamical system. Formally, it
is defined as the sum of the permutation entropy and the structurality A.

In this formulation, the permutation entropy provides a measure of temporal unpre-
dictability by evaluating the diversity of ordinal patterns in the time series, while the
structurality captures the spatial dispersion of trajectories in phase space through the
analysis of Poincaré sections.

It is expected that a value of DC = 0 characterizes a fully predictable and perfectly
ordered system, as typically observed in purely periodic dynamics. Conversely, DC =1
represents processes that are nonpredictable but have organized dynamics, while DC = 2
indicates maximal dynamical complexity, exemplified by uniform white noise that is both
temporally unpredictable and spatially dispersed.

By combining these two complementary aspects—temporal unpredictability and spatial
structure—DC offers a comprehensive characterization of dynamical regimes. For example,

chaotic maps may display high permutation entropy yet maintain a relatively confined
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structure in phase space, resulting in low structurality. In such cases, relying solely on
a single measure may lead to misclassification, whereas DC can correctly capture the

coexistence of temporal disorder and spatial organization.



Chapter

Benchmark models and their

challenges

In this chapter, we introduce a set of benchmark models—ranging from paradig-
matic deterministic systems to stochastic processes—against which different complexity-
quantification methods can be evaluated. For each system, we specify two values of the
control parameter, p; and ps, chosen so that p, is known to produce a higher level of

dynamical disorder than p;.

3.1 Discrete dynamical systems

3.1.1 Logistic map

The Logistic map [36, 37] is one of the simplest and most extensively studied models
in chaos theory. Despite its algebraic simplicity, it exhibits a rich spectrum of dynamical
behaviors, transitioning from fixed points to periodic oscillations, and ultimately to fully
developed chaos as the parameter increases. This makes it an ideal, pedagogical and
practical model for exploring bifurcations and chaos. For our purposes, we choose p; = 3.9
and p, = 4.0. At p; = 3.9, the system is already in a chaotic regime. By contrast, ps = 4.0
places the system at the edge of maximal chaos, where sensitivity to initial conditions
is extreme and the attractor becomes fully developed. This range allows us to test the

capacity of our disorder quantifier to distinguish subtle changes within chaotic regimes.
Tp1 = p1,2xn(1 - xn) (31)

3.1.2 Henon map

The Henon map [37, 38] is a two-dimensional discrete-time dynamical system, well

known for its chaotic attractor and complex geometric structure. It is frequently used to

25
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study attractors, fractal dimensions, and Lyapunov exponents. The coupling between x and
y introduces nonlinearity and memory effects, making the system particularly challenging
for time-series analysis and phase space reconstruction. We select p; = 1.1 and p, = 1.4
as control parameter values. At p; = 1.1, the system dynamics are moderately chaotic,
with some underlying regularities. At py = 1.4, the map exhibits fully developed chaos
with a prominent chaotic attractor. These distinct regimes provide a suitable benchmark

for testing the robustness of the proposed disorder quantification methods.

Tpyr = 1— Pl,ﬂi + Yn, (3.2)

Yn+1 = 031’”

3.1.3 Ikeda map

The Tkeda map [37, 39] models the dynamics of a laser beam in an optical cavity, with
its behavior governed by a nonlinear dependence on the instantaneous state through the
phase term t,. This system is widely studied in optics and nonlinear dynamics due to
its ability to produce complex attractors and chaotic regimes as parameters vary. The
nonlinearity induced by the phase feedback mechanism makes the system highly sensitive
to parameter changes and initial conditions, posing significant challenges for accurate
prediction and analysis. We use p; = 7.1 and p, = 7.3 as the values of the control
parameter. At p; = 7.1, the system is on the threshold of chaotic behavior, while p, = 7.3
leads to more pronounced chaotic dynamics and a filled phase space. These parameter
choices allow us to test the sensitivity of our disorder quantifier to phase-induced nonlinear

complexity.

Tpt1 = 0.84 + 0.9(z, cost,, — y, sint,),

Ynr1 = 0.9(z, sint, + y, cost,), (3.3)
_ p1,
t, = 0.4 — 1+x%iyi'

3.1.4 Towel map

The Towel map [40, 40] is a higher-dimensional discrete dynamical system derived from
generalizations of the Logistic map, incorporating coupling between multiple variables and
nonlinear feedback mechanisms. Its complexity stems from the interaction among the three
variables, creating a high-dimensional chaotic attractor that is difficult to analyze using
standard time-series methods. This model is relevant for studying multi-variable chaos,
hyperchaos, and intricate bifurcation structures. We set p; = 3.3 and py = 3.8. At p; = 3.3,
the system displays moderately complex dynamics, while at po = 3.8, the system exhibits
hyperchaotic behavior (chaos across multiple dimensions). These parameter values are

chosen to highlight the effectiveness of the proposed disorder quantifier in distinguishing
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different degrees of multidimensional chaos.

Tpi1 = PraTn(l — x,) — 0.05(yn + 0.35)(1 — 22,),
Yns1 = 0.1 [(yn +0.35)(1 — 2z,) — 1] (1 — 1.9z,,), (3.4)
Zpi1 = 3.782,(1 — z,) + 0.2y,,.

3.1.5 Standard map

The Standard map [41, 42] is a fundamental model for studying Hamiltonian chaos and
transport in conservative systems. It represents a kicked rotator and captures essential
features of phase space mixing and the transition from regular to chaotic motion as the
nonlinearity parameter increases. One of the key challenges in analyzing this system is
the coexistence of regular and chaotic regions in phase space, known as a mixed phase
space, which complicates the detection and quantification of disorder. We select p; = 1.0
and p, = 2.0 for the perturbation strength. At p; = 1.0, the system shows a mixture
of regular islands and chaotic seas, while at p, = 2.0, the chaotic component dominates
the phase space. This controlled transition makes the Standard map particularly useful
for evaluating the capacity of our disorder quantifier to detect changes in systems with

conservative dynamics.

0,41 = (6, + py, mod 2,
+1 = ( Pn+1) (3.5)

Pnt1 = Pn + p12sind, mod 2.

3.2 Continuous dynamical systems

3.2.1 Double-gyre system

The Double-Gyre system [28, 43] is a standard model in fluid dynamics and oceanogra-
phy, widely used to investigate transport phenomena, mixing processes, and the formation
of Lagrangian coherent structures. Its dynamics result from nonlinear interactions between
spatial variables (z,y) and auxiliary variables (u,v), leading to intricate flow patterns
that are highly sensitive to parameter variations. These features make it an excellent
benchmark for testing recurrence-based analyses and entropy quantifiers. We set p; = 0.25
and py = 0.10, following previous studies [28]. The lower value po = 0.10 generates
more regular and predictable trajectories, whereas the higher value p; = 0.25 enhances
nonlinearity and increases flow complexity, producing chaotic behavior filling up its phase
space. These distinct dynamical regimes provide a valuable contrast for assessing the

sensitivity of the proposed disorder quantifier.
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i = pyomsin [r(uz? + x — u)] sin 7y,
] = 7 cos [m(ux?® + x — u)| cos my,
§ = p1om cos [( )] cos my (3.6)

U=,
. 7T2

3.2.2 Coupled Rossler system

The coupled Rossler system [28, 44] is a prototypical model for exploring synchronization
phenomena and the emergence of complex collective dynamics in coupled nonlinear
oscillators. It captures how interactions between subsystems influence the global behavior,
including the transition between synchronized and desynchronized states. This system’s
sensitivity to parameter changes, particularly in the coupling strength, poses significant
challenges for detecting subtle transitions in disorder. We consider p; = 0.25 and p, = 0.40
for the coupling parameter. At p;, the system tends toward partial synchronization or
weak interaction, leading to relatively regular dynamics. In contrast, the stronger coupling
at py induces more complex interdependence between the oscillators. These contrasting
regimes are ideal for evaluating the responsiveness of the proposed disorder quantifier to
coupling-induced complexity.

Ty = —y1 — 21,
Y1 = o1+ 0.492y,,

=24 z1(x1 —4) + Zo — 21),
1 1( 1 ) p1,2(2 1) (3‘7)

To = —UYs — 2o,

U2 = o + 0.480y,,

2:’2 =24+ ZQ(LL’Q — 4) +p1,2<21 — 22).

3.2.3 Mackey-Glass system

The Mackey-Glass system [28, 45] is a canonical time-delay differential equation,
originally developed to model physiological processes such as blood cell regulation. Its
dynamics are fundamentally governed by the time-delay parameter, which induces a
transition from periodic to chaotic behavior as it increases. The infinite-dimensional
nature of time-delay systems introduces computational challenges, particularly in state-
space reconstruction and in handling delayed terms accurately. For our analysis, we set
p1 = 1.8 and py, = 6.0 as the values for the delay parameter. When 7 = p; = 1.8, the
system typically exhibits periodic or mildly chaotic behavior, while 7 = p; = 6.0 leads to
highly irregular and chaotic dynamics. This controlled variation in complexity makes the

Mackey-Glass model essential for testing the effectiveness of our framework in detecting
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disorder in delayed systems.

3.2.4 Lorenz system

The Lorenz system [41, 46] is one of the most iconic models of deterministic chaos,
originally proposed to study atmospheric convection. It has become a foundational
paradigm for exploring phenomena such as bifurcations, chaotic attractors, and the limits
of predictability in chaotic systems. Due to its sensitive dependence on initial conditions
and parameters, small variations can lead to dramatically different trajectories, presenting
challenges in long-term prediction and also in disorder quantification. We use p; = 24 and
p2 = 32 as the values for a parameter that directly affects the system’s energy input. At
p1 = 24, the system typically resides in a more regular periodic regime, whereas at ps = 32,
it exhibits robust chaotic behavior characterized by the well-known Lorenz attractor. These
well-documented transitions make the Lorenz system an ideal benchmark for validating

the sensitivity and reliability of the disorder quantifier.

y=x(po—2) —y, (3.9)
z=ay — %z.

3.2.5 Chua’s circuit

Chua’s Circuit [37, 47] is a paradigmatic example of a simple electronic circuit capa-
ble of exhibiting chaotic oscillations. It is widely used both in theoretical studies and
experimental validations of chaos theory, as well as in practical applications such as secure
communications and signal processing. The presence of the piecewise-linear nonlinearity
h(z) introduces sharp transitions and complex bifurcation structures, posing analytical and
numerical challenges. For this system, we set p; = 33 and p, = 25.58 as the values of the
parameter influencing the circuit’s dynamics. The value p; = 33 tends to promote more
regular oscillatory behavior, while p, = 25.58 induces chaotic oscillations with increased
complexity. These contrasting regimes allow us to assess the capability of our disorder
quantifier to detect changes in the system’s dynamic behavior, especially in the presence

of discontinuous nonlinearities.
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& =15.6(y —x — h(z)),
Joemts (3.10)
Z = —p12Y,

h(z) = 2o+ (= 32) (o + 1-|o - 1)).

3.3 Stochastic processes

3.3.1 White Gaussian noise (WGN)

White Gaussian noise [48, 49] represents the simplest form of stochastic signal, charac-
terized by complete absence of temporal correlation and a constant power spectral density
across all frequencies. It is extensively used as a benchmark for randomness in signal
processing, statistical physics, and control theory. The main challenge for quantifiers in
dealing with WGN is recognizing its maximal stochasticity while distinguishing it from
complex deterministic signals with irregular but structured behavior. Using a standard
normal distribution ensures comparability with other stochastic processes and facilitates

statistical interpretation.

xy ~ A(0,1), independent and identically distributed (i.i.d.). (3.11)

3.3.2 Autoregressive model (AR)

The autoregressive (AR) [49, 50] model introduces memory into a stochastic process
through the parameter ¢, which governs the strength of dependence on previous values.
As ¢ approaches 1, the process exhibits stronger persistence and slower decay of auto-
correlations. Conversely, when ¢ = 0, the process reduces to white Gaussian noise. This
model is widely used in econometrics, signal processing, and climatology for modeling
time-dependent stochastic phenomena. The challenge for disorder quantification lies in
detecting subtle changes in correlation induced by varying ¢. For benchmarking purposes,
¢ can be selected at intermediate values (e.g., ¢ = 0.5) to represent moderate correlation,

contrasting with ¢ = 0 for the uncorrelated case.
ni(}) = dn1 +wy,  wp~A(0,1), 0<¢<1. (3.12)

3.3.3 Noisy logistic model

A version of the logistic map but corrupted by some level of correlated noise.

Yi(¢) = x¢ + (), (3.13)
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where x; is the chaotic logistic map, and 7,(¢) is the autoregressive noise defined previously,

with a specified variance ratio:

, (3.14)

qu ‘sqw

in which 2 and 0,27 are the variance of the logistic map x; and AR-noise 77t(¢2). The studied
parameters of this model ranges are ¢ € {0.00,0.25,0.50,0.75,0.90} and Z—Z € [0,1].

In particular, this model is especially important for the present work begause it enables
the study of signals composed of both deterministic chaos and a stochastic component,
serving as a paradigmatic example of data typically encountered in complex phenomena.
Furthermore, it allows for the investigation not only of the underlying deterministic

dynamics but also of the characteristics of the noise processes corrupting the system.

3.3.4 Gaussian-noisy logistic model (GNL)

For comparative tests, we consider a particular configuration of the noisy logistic model
(Subsection 3.3.3) with a fixed variance ratio o7 /02 = 0.3, and set ¢ = p; = 0.50 and
¢ = py = 0.25. In this configuration, we refer to the process as the Gaussian-noisy logistic
(GNL) model.

3.3.5 Uniform-noisy logistic model (UNL)

Time series s; generated from the logistic map

Yer1 = 3.99 yt(l - yt)7

with uniform white noise u; added such that

st = (1 —p12) Y + P12 wy,

where p; = 0.45 and p, = 0.55. This configuration is referred to as the uniform-noisy
logistic (UNL) model [28].

3.3.6 Power law noise

Power law noise [48, 51], also known as 1/f“ noise, is ubiquitous in both natural
and artificial systems, ranging from electronic circuits to biological processes and climate
dynamics. It is characterized by long-range correlations in the frequency domain, where
the spectral exponent o determines the degree of correlation: larger values of o imply
stronger low-frequency components and more persistent behavior, whereas smaller « tends

towards white noise.
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In our analysis, we selected o = ps = 0, representing ideal white noise with no temporal
correlation, commonly referred to as White Gaussian Noise (WGN). This choice provides
a baseline of maximal stochastic disorder with minimal memory, serving as a fundamental
reference point for the performance of disorder quantifiers.

Additionally, we considered o = 1, referred to as Pink Gaussian Noise (PGN) or 1/f
noise, characterized by a power spectrum inversely proportional to frequency. This leads to
long-range temporal correlations, which are prevalent in many natural systems including
electronic devices, biological rhythms, and financial markets. The structured decay of
spectral power makes PGN an important benchmark for evaluating the sensitivity of
disorder measures to the presence of memory and correlation in stochastic processes.

To further extend the range of correlation structures, we included o = p; = 2, corre-
sponding to a Brownian or random walk-like process, also known as Red Gaussian Noise
(RGN). This type of noise exhibits a power spectrum that decays quadratically with fre-
quency, emphasizing strong low-frequency components and resulting in a highly correlated
stochastic signal. RGN is frequently used to model cumulative stochastic processes such
as particle diffusion, climate variability, and financial time series. Compared to pink noise,
RGN exhibits even stronger temporal dependencies, posing a significant challenge for
disorder quantifiers to accurately assess the degree of disorder and to differentiate it from
deterministic systems with memory.

These stochastic signals were generated using the SignalAnalysis.jl package to
ensure reproducibility and adherence to standard spectral properties. A fundamental
challenge in this context is the differentiation between structured stochasticity and deter-
ministic chaos, as both can exhibit broadband frequency spectra. The broad variation
in spectral properties across WGN, PGN, and RGN allows us to rigorously evaluate the
capacity of disorder measures to detect changes in the correlation structure of stochastic

signals.

3.3.7 Nonlinear colored noise

The nonlinear colored noise model [52] introduces memory and nonlinearity into an
otherwise random sequence, thereby generating complex stochastic behavior. It is a
stochastic process specifically designed to challenge the distinction of deterministic and
stochastic signals via the “noise titration” technique. This process is relevant for modeling
phenomena where stochastic fluctuations are modulated by nonlinear feedback. The
parameter p controls the strength of the nonlinear interaction between successive noise
terms. We select p; = 4, yielding a strong nonlinear influence and more structured noise,
and p, = 0, corresponding to a purely linear combination of independent random variables,
effectively reducing the process to simple scaled noise. The transition from structured to

unstructured noise in this model provides a useful test for evaluating disorder quantifiers’
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ability to capture nonlinear stochastic dynamics.

Tp = 3Yn + P12Yn—1(1 — yn), (3.15)

Yn ~ % [0,1] (uniform white noise).

3.3.8 Bounded random walk

The bounded random walk [53] is a variation of the classical random walk with
reflecting boundaries introduced via an exponential confinement term. This model is
significant in applications where stochastic processes are constrained within physical or
theoretical limits, such as population dynamics or particle motion in bounded media. The
parameter p scales the amplitude of the stochastic forcing: low p values lead to nearly
deterministic confinement, whereas higher p introduce greater randomness. We select
p1 = 0.05, representing weak noise where the confinement dominates, and p, = 0.4, allowing
for stronger stochastic excursions within the bounds. This controlled variation provides
a clear scenario to assess how disorder quantifiers respond to noise-induced transitions

within bounded stochastic systems.

Tpi1 = Tn + e~ 15 <€—3(acn—100) _ 63(30n—100)) + P12,

0y ~ A(0,1) (white Gaussian noise).

(3.16)

3.3.9 Fractional Gaussian noise

Fractional Gaussian noise (fGn) [54, 55] generalizes white Gaussian noise by introducing
long-range dependencies parameterized by the Hurst exponent H. This process is widely
used in fields such as hydrology, finance, and physiology to model persistent or anti-
persistent behaviors. For H < 0.5, the process exhibits anti-persistence, while for H > 0.5,
it becomes persistent. We select p; = 0.1, inducing strong anti-persistence with rapid
oscillations and low predictability, and p, = 0.5, corresponding to standard uncorrelated
Gaussian white noise. These choices test the sensitivity of disorder measures to changes in

memory structure and long-range dependence within Gaussian stochastic processes.
{Xi}ez with Hurst exponent H = p15 € (0, 1). (3.17)

3.3.10 Langevin equation

The Langevin equation [56, 57] is a fundamental model in stochastic dynamics, describ-
ing systems influenced by both deterministic damping and random forcing. It is widely
employed in statistical physics, chemical kinetics, and financial mathematics to model
relaxation processes under the influence of noise. The parameter p controls the strength

of deterministic relaxation: larger values of p correspond to faster returns to equilibrium,
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whereas smaller values allow noise to dominate over longer timescales. For this study, we
select p; = 0.1, which results in longer time correlations in the trajectory, and py, = 1.0,
which induces rapid damping and shorter time correlations. This contrast provides an ideal
framework to evaluate the sensitivity of disorder measures to variations in the balance
between deterministic and stochastic forces.

dv
ot = —Dh120 + wy,

(3.18)
wy ~ A(0,1) (white Gaussian noise).



Chapter 4:

A formalism for disorder

quantification in data

To construct a meaningful quantifier of disorder in data, we begin by introducing an
idealized disorder condition. This condition is formally defined and its consequences are
explored in a systematic framework. We start by characterizing the disorder condition
in terms of the data structure, then develop a method to encode sequences accordingly.
Next, we examine the measurable implications that follow from the hypothesis and, finally,
propose a procedure to assess how closely empirical data conforms to the ideal disorder

scenario.

4.1 Describing the disorder condition in data

The first definition breaks the full dataset into smaller overlapping segments, allowing
us to study local patterns within the data. The second definition introduces the idea of
“similar events”, where two segments are considered similar if their elements are close

enough, based on a chosen level of tolerance.

Definition 4.1.1 (The data and its subsequences). Let ® = (x;)X, be a sequential
representation of data elements. Inside ©, there are smaller sequences X,,) of IV elements
for 0 <n < K — N such that X(,) = (x;)5% ;.

Definition 4.1.2 (Similar events). Let X; be an element similar to x; as
X, €e{xe®:|x; —x|<}, (4.1)

in which ¢ is an arbitrary nonzero element. Also, a subsequence similar to X, is

X = &)

A completely disordered dataset can be regarded as dense, with each event X,

statistically independent of all others [28]. Based on the previous definitions, a probabilistic

35
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treatment becomes appropriate—enabled by considering intervals of values, since the
probability of exact single values would be zero. Under this background, we now formally

state the main hypothesis as:

Hypothesis 4.1.1 (Statistical independence). The disorder condition implies independence

of all elements of the data, such that the probability of occurrence p(X,)) is

p(Xw) = II »). (42)

A more precise formulation of this hypothesis involves expressing the relationship
between a given subsequence X(n) and other similar subsequences. To this end, we refor-
mulate Hypothesis 4.1.1 to explicitly capture this relationship. By employing permutation
operations, we express the invariance of the probability distribution of a sequence under

its permutations as follows:

Definition 4.1.3 (Disorder condition). Let Sy be the set of all possible permutations
of N elements, i.e. the so-called symmetric group from Group Theory [58]. Denote a

permutation operation ¢ such that o € Sy. Then, a direct consequence of Eq. 4.2 is:
p(Xew) =p(0(Xw)), Vo€ S. (4.3)

This implies that, in a disordered dataset, for any given subsequence X(n), there exists
another subsequence X(k) composed of the same similar events as X(n), but permuted in
temporal order, with the same probability of occurrence. It is important to note that
this formal description of disorder reflects a fundamental physical intuition: disordering
a system (such as shuffling a deck) is effectively achieved by permuting its constituent

elements.

4.2 Codifying sequences of the data

The characterization of disorder in data raises the fundamental challenge of appro-
priately measuring similar events, particularly in the absence of a theoretically justified
partitioning of the data’s elements or sequences. Traditional approaches based on partition-
ing are typically constrained to low-dimensional datasets or a limited class of dynamical
systems [22, 23, 59].

To address this limitation, we adopt a strategy based on the concept of recurrence
between events, thereby encoding the relationships among data sequences into a finite and
computable set of representations. With this objective, we introduce the definition of a

recurrence matrix and examine some of its key properties.
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Definition 4.2.1 (Recurrence matrix). Denote the recurrence function as r(; ;) = ©(e —
|x; — x,||), with © being the Heaviside function and ¢ the recurrence threshold. Then, a

recurrence matrix M = R(X(,), X)) is:

T(n+1,m+1) °°  T(n+1,m+N)
def

R(X ) Xm)) = E - : . (4.4)

T"(n+Nm+1) “°° T(n+N,m+N)

The square matrix constructed for the case N < K is referred to as a recurrence
microstate of size N [11, 60], and represents parts of the well-known recurrence plot, defined
as R(D,9) [61]. This formulation enables the extraction of self-relational patterns within
the data by means of a threshold parameter ¢, through direct element-wise comparisons.
Notably, it bypasses the need for arbitrary phase space partitioning, thereby avoiding
segmentation-dependent biases and preserving the intrinsic structure of the original dataset.

To adopt a formal probabilistic perspective, we establish a connection between the
probability of observing a specific recurrence matrix and the probability of encountering
similar events. In particular, we invoke Definition 4.1.2 to incorporate similarity-based
inputs into the matrix construction. This substitution replaces pointwise comparisons
with intervals of admissible values, thereby yielding nonzero probabilities and allowing a
probabilistic interpretation of recurrence structures.

In this sense, consider that as the data size K increases, the likelihood of finding a
point x; in close proximity to another point x; also increases. In this regime, the condition
0 < € becomes increasingly valid. In the asymptotic limit K — oo, even vanishingly small
distances 6 — 0 become sufficient for x; and x; to be considered similar under a given

threshold €. We state these assumptions as:

Hypothesis 4.2.1 (The data size). The dataset is sufficiently large to justify treating
0-close elements as effectively generating the same recurrence matrix, provided that the
condition ¢ < € holds:

R(X ), X)) = R(X ), Xm)- (4.5)

This approximation is valid within the regime where N < K, under which the resulting

recurrence matrices are referred to as recurrence microstates.

We are now in a position to examine key properties of this type of encoding. In
particular, it allows us to define the probability associated with a recurrence microstate as
p(R(X(n), X(m))). The procedure for computing recurrence microstates consists of counting
the frequency of the matrix generated using X(n) and X(m) as inputs. Importantly, it also
accounts for the reverse configuration,i.e., the matrix obtained by swapping the inputs.
This symmetry implies that the probability of a given microstate satisfies the following

condition:
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Lemma 4.2.1 (Transposition in recurrence microstates). The probability of a recurrence

microstate remains unchanged when the sequences are interchanged.

(R (Xew: Xim) ) = » (R (Kimy, X)) - (4.6)

4.3 Veritying consequences of the disorder condition

At this stage, we have established the necessary tools to investigate the implications
of the ideal disorder condition, as stated in Definition 4.1.3, within a computable set of
symbolic representations derived from the data—mamely, the recurrence microstates. Since
the disorder condition is formulated in terms of permutations of sequences, it becomes
essential to define corresponding operations on recurrence matrices that allow us to formally

relate transformations in the sequences to transformations in the microstates they generate.

Definition 4.3.1 (Transposition operator). Let 7 denote the transposition operator acting

on a matrix. Given a recurrence microstate R(X(n), X(m)), the transposition operator

satisfies:

TRX ), X)) = R(Xm), Ximy)- (4.7)
This behavior of the transposition operator follows directly from Definition 4.4, which

specifies the construction of recurrence microstates from pairs of sequences:

Tn+1,m+1) " T(n+1,m+N) Tn+1,m4+1)  *°° T(ntNm+1)
T : : = : : = R(X(m), Xn))-

T(n+N,m+1) ~°° T(n+N,m+N) T(n+1,m+N) *°° T(n+N,m+N)

(4.8)

Definition 4.3.2 (Operator of row swaps). Let £, be the operator that swaps rows as

described by a given permutation o. By definition, it satisfies:
£0’R(X—(n)7 X(m)) == R(O‘(X(n)), X(m)) (49)

For example, given the permutation o = 132, the operator L3, acts on a matrix
M of order N = 3 by exchanging the third and second rows while leaving the first row
unchanged.

By doing so, we state the main algebraic result as follows, which establishes equiproba-

bility between recurrence microstates as a consequence of the disorder condition.

Theorem 4.3.1 (Classes of equiprobable microstates). Let .#,(M) be the class of the

recurrence microstate M generated by a data satisfying the disorder condition (Definition
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4.1.3), defined as:

My(M) = U {ﬁaj'TEUiM, TEUjTEUiM}. (4.10)
04,0;€ESN
Then:
p(M) =p(M'), VM' € 4,(M). (4.11)

Proof. Let 0; and o; be permutations, g;,0; € Sy. Then, Eq. 4.3 implies:

p (R (X X)) = 2 (R (04X ), 05(Xm) ) ) » ¥ 01,05 € S (4.12)

To express this probability invariance under permutations in a matrix form, consider a
generic recurrence microstate M = R(X(,,), X(,,)) and use the Definitions 4.3.1 and 4.3.2
so that:

R (0:(X (), 05(Xm)) = TLy, TL,,M

- - (4.13)
R (Uj (X(m))7 o (X(n)>) - EU]’ TﬁaiM
Considering Eqgs. 4.13 and 4.6, we rewrite Eq. 4.12 as
p(M) = p(T’CUjT’CG'iM) = p<LO'jT£O'iM)7 0;,05 € Sn. (4.14)

To improve notation, define the set of matrices generated by transpositions and all possible
row swaps of M, which is composed by the kernel of matrix operations used in Equation
4.14:

My(M) = U {Lo, TLM, TL, TL;M}. (4.15)

o’i,UjESN

Equivalently, Equation 4.14 becomes:
p(M) = p(M), ¥ M’ € .4,(M), (4.16)

Note that the symmetric group is a well-established structure in Group Theory, and
we employed it to characterize disorder as a symmetry—specifically, invariance under
permutations. We showed that the disorder condition implies row and transposition
operations in recurrence matrices. A key point to address is how we can be certain that
equation (8) encompasses all possible row swaps and transpositions of a matrix. A formal
justification is that the operations defined in equation (8) form a group induced by the
symmetric group Sy. That is, the set of operations Uy, o, cs,{Lo, T Loy T Lo, T Lo, }
constitutes a group. This implies that any row swaps, transpositions, and any combinations
of them are already included in this set. Consequently, applying this group of operations

to a matrix systematically generates the entire set of matrices related by row swaps and
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transpositions, thereby defining a complete class. Therefore, since the set of operations
in Eq. 4.10 is induced by a group, any composition of operations is included in this set,

ensuring the completeness of the disorder condition’s implications.

Example 4.3.1 (The trivial case of matrices with order N = 2). Consider the case of
recurrence microstates with order NV = 2. The symmetric group Sy in this case, that is,

the set of all permutations of two elements, is given by:

12\ (1 2\ 4
AP

where the first permutation e is the identity (the neutral element of the group) and the

second permutation p is the order-reversing permutation. This implies:

eXn = e((Xnt1,Xn = (Xn+1,Xn :Xn
(X(m) = e((Xn41,Rnt2)) = (Rnt1, Xng2) = Xn) (4.18)

P(X) = P(Zns1s Knt2)) = R, Kni1)

With this definition, we can compute the class of each binary matrix according to
Theorem 4.3.1. The corresponding class ., of a matrix M of order N = 2 is given by
Equation 4.10:

Mo(M) = {LTLM, LTLM, L, TLM, L,TL,M,

) (4.19)
TLTLM, TLTLM, TL,TLM, TL,TL,M}
Consider, for example, the binary matrix
10
M =
0 0
as a recurrence microstate. Applying some of the operations yields:
0 0 0 1 0 0
L, TLM=L,T =L, =
10 0 0 0 1
(4.20)
0
TL,TLM =
0 1

Therefore, the class of this recurrence microstate induced by the disorder condition is:

“lool)toal bbby o

By performing all the operations defined in Equation 4.19 (cf. Theorem 4.3.1) on the
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complete set of binary matrices representing all possible recurrence microstates, we obtain

the full set of equivalence classes under disorder condition.

oo oo o B0 b bo ba D]
(/;/)1 SZ () (d) () ;{)3 () (h) (i)
b Bl bl Bl bl
() (k) U (m) () () (p)

%4 =%5 ‘/%6

The main result is that, if the disorder condition is satisfied, the equiprobability
of recurrence microstates belonging to the same class, as stated in Equation 4.11, is
guaranteed. For the particular case of matrices of order N = 2, this equiprobability was
already observed numerically [14], since it generates only 16 possible matrices, which
facilitates its analysis. It was also explored to distinguish deterministic from stochastic time
series; however, a formal explanation, generalization, and optimization of this property

measure had so far been lacking.

4.4 Measuring data conformity to the disorder condi-
tion

Up to this point, we have imposed an ideal disorder condition on the data in order
to establish a relationship among the recurrence microstates derived from it. Under the
assumption of complete disorder, we have demonstrated that the recurrence microstates
form equivalence classes of matrices that share the same probability. Having established
this ideal upper bound for disorder, we now seek to define a quantitative measure of how
closely any given dataset approaches this theoretical limit.

We seek to define a function =, bounded such that 0 < = < 1, which increases
monotonically with the degree of disorder. The function should attain its maximum value,
= =1, in the case of perfect disorder—specifically, when the equiprobability condition
described by Eq. 4.11 is exactly satisfied.

Let (M) denote the number of occurrences of a given recurrence microstate M € .,
where .#, represents an equivalence class of microstates under the ideal disorder condition.
The total number of occurrences of all microstates within the same class is then given by

> Q(M'). Accordingly, the probability associated with a specific microstate M within
M'ety
its class is defined as:
Definition 4.4.1 (Frequentist probability of a microstate). The probability of a microstate

within its equivalence class is computed using the relative frequency of its occurrence.
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Given a microstate M € .#,, this probability is defined as:

QM)
M)=——"—— 4.22
PO = —= g (422)
M'e,
where (M) denotes the number of times M appears, and the denominator represents the

total number of occurrences of all microstates in the class .#,.

Since we are dealing with a probability distribution in which the ideal disorder condition
leads to a uniform distribution, and any deviation from this condition results in a departure
from uniformity, it becomes necessary to adopt a function that increases with the degree
of equiprobability. A natural choice that satisfies these requirements—being maximal for

a uniform distribution and sensitive to deviations from it—is the information entropy [9].

Definition 4.4.2 (Information entropy of a class). The information entropy &,(¢) asso-
ciated with the probability distribution of microstates belonging to the same class .Z,

is:
&Gle) ™ = 3 p(M)Inp(M). (4.23)

Me.Aq

Let m, denote the number of distinct microstates within the equivalence class .,
of equiprobable recurrence matrices. For a given matrix order N, there exists a finite
number A of such contributing classes. Among these, only two classes consist of a single
microstate each: the class composed entirely of zeros, and the one composed entirely of
ones. As a consequence, their entropies are identically zero and are excluded from the

count of effective contributing classes.

Definition 4.4.3 (Mean information entropy of all classes). The total entropy £(e) is
computed by summing the entropy over all nontrivial classes and normalizing the result

by the maximum possible entropy amplitude determined by A:

ge) € L EA: Salc) (4.24)

A= Inm,

Corollary 4.4.1. Let E be the largest possible distance between the elements of a data,

E = maxj||x; — x|, 4,5 € [1,K]|. In the limit where the equiprobability condition
i#]

(Definition 4.1.3) is exactly satisfied, by definition:

Ce)=1,Va:1<a<A Ve:0<e<FE

4.25
E(e)=1,Ve:0<e< E (4:25)

Finally, the normalized information entropy £(¢) also increases monotonically with
the degree to which the disorder condition is satisfied. As this condition is progressively

fulfilled, one obtains £(¢) — 1. In theory, this convergence occurs independently of the
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specific value of the parameter €. However, in practice, to quantify disorder with minimal
error stemming from the estimation of microstate probabilities, we define the disorder

quantifier =.

Corollary 4.4.2. If the ideal disorder condition is satisfied, then the recurrence microstates

divided into equiprobable classes (cf. Theorem 4.3.1). Furthermore, the disorder quantifier,

= = 4.26
Dax, £(e), (4.26)

increases monotonically with the degree of disorder and attains its maximum value with

minimal error in the estimation of microstate probabilities.

Proof. We quantify the shortfall of each class entropy from its theoretical maximum Ilnm,

by defining the relative loss
Mg (e) =1 - )

Inm,

Y

which vanishes when &,(¢) = Inm, and is positive otherwise. Averaging over the A

non—trivial classes yields the mean percentage error

AZ(e) = 5 Y Atale) =1 - ; > La()

Inm,

We then select the recurrence threshold e that minimizes this error:

A
AZ = min AZ(e) =1— max L > a(¢) .

e€(0,F) e€(0,E) A o

1
and £(g) = 1 > o &ale)/Inmy, it follows that maximizing () is equivalent to minimizing
AZ(e). Therefore, = corresponds to the minimal average entropy-loss and thus provides

the optimal estimation of disorder. [ |

4.5 Implementing the framework algorithm

This section presents the computational procedure for evaluating the disorder quan-
tifier = from a univariate dataset of length K. Implementation notes and optimizations

accompany each titled step to ensure efficiency and reproducibility.

Overview

Input: Time series {x;}X,, embedding dimension N, threshold grid size c.
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Output: Optimal recurrence threshold £* and disorder quantifier =.

Step 1: Identification of Recurrence Microstate Classes

1. Generate all binary matrices of size N x N satisfying Definition 4.4.

2. Group matrices into equivalence classes .#, via row—permutation and transposition
per Theorem 4.3.1.

3. Store a lookup table mapping each matrix to its class index for constant-time
assignment.

4. Implementation note: Construct only recurrence-consistent matrices to avoid full

. 2 .
enumeration of 2" configurations.

Step 2: Generation of Recurrence Microstates
1. Precompute the pairwise distance matrix among series elements.

2. For each threshold ¢; in a uniform grid of size ¢ over (0, £):

o Slide a window of length IV to extract each subsequence X,).

 Build the binary recurrence matrix by comparing within-window distances to ;.
o Assign the matrix to its class via the precomputed lookup table.

3. Parallelization: Window and threshold loops are independent and can be parallelized.

4. Parameter selection: Choose N to set the analysis timescale (here, N = 4).

Step 3: Frequency Counting and Probability Estimation

1. Initialize counters (M) for each microstate M.

2. Increment the count for each generated microstate.

3. After processing all subsequences, compute probabilities according to Definition 4.22,
ensuring normalization within each class.

4. Data structures: Use hash maps or fixed-size arrays for constant-time updates.

Step 4: Disorder Quantifier Evaluation and Threshold Selection
1. For each ¢;, compute &(g;) via Equation 4.26.
2. Determine

e" =arg max {(g;), Z=¢&(e).

=1,...,

3. Early stopping: Terminate if £(¢) stabilizes within tolerance.

4. Validation: Plot £(e) versus € to confirm convergence.

Computational Complexity and Best Practices
- Complexity scales dominated by distance and threshold sweeps.
- Cache distance computations to avoid redundancy across €.

- Implement core loops in compiled or vectorized form to reduce overhead.
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- Ensure lookup tables and counters remain cache-resident for performance.
This algorithmic framework delivers a reproducible and efficient approach to quantifying

disorder in time series via recurrence microstates.



Chapter

Numerical validations using

benchmark models

This chapter presents a comprehensive numerical validation framework for the proposed

disorder quantifier =, systematically addressing three fundamental questions:
(i) How robustly does = capture disorder transitions across dynamical paradigms?
(ii) What are its operational limits under constrained observational conditions?
(iii) How does it compare to established complexity measures in practical scenarios?

To address these questions, we employ a multi-stage validation strategy across 15
benchmark models spanning discrete maps, continuous flows, stochastic processes, and
deterministic-stochastic hybrids. Our methodology adheres to parameter sensitivity,
statistical rigor, limited data and cross-paradigm consistency.

The chapter is structured with the Section 5.1 establishing methodological foundations
for disorder quantification. Section 5.2 validates statistical tests to sensitivity analysis.
Section 5.3 examines quantifier’s convergence behavior with respect to data length K.

The core validation spans Sections 5.4-5.7:
o §5.4 evaluates = across deterministic (discrete/continuous) and stochastic models;

o §5.5 compares the disorder measure directly to past dependence of stochastic pro-

cesses;
o §5.6 tests = on deterministic-stochastic mixtures;
o §5.7 conducts head-to-head comparisons against DET, PE, and SC metrics.

Collectively, these analyses establish the disorder quantifier = as a robust, cross-
paradigmatic disorder measure with superior performance in finite-precision observational

scenarios. The validation protocol intentionally stresses the quantifier under suboptimal

46
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conditions—short time series, coarse sampling, and mixed dynamics—to demonstrate

operational viability for real-world applications.

5.1 Methodological considerations on the disorder

quantification

All analyses were performed by computing recurrence microstates with size N = 4.
This choice provides a balance between capturing sufficient temporal disorder in the time
series and maintaining computational efficiency, as larger values of N (N > 4) substan-
tially increase computational costs without proportionally enhancing the quantification of
disorder.

For N = 4, the total number of possible recurrence microstates is 47,416, which are
systematically grouped into 147 distinct classes by applying Eq. 4.10. Consequently, the
effective number of classes contributing to the entropy computation is A = 145. For
comparison, when using N = 3, the number of distinct classes reduces to A = 23, and for
N =2, to A = 4. The length of the time series analyzed, denoted by K, varies within
the range 10 < K < 10,000, allowing for a comprehensive assessment of the quantifier’s

sensitivity across different temporal resolutions.

5.2 Statistical tests for the quantifier evaluation

To evaluate the statistical significance of the differences in the disorder quantifier =
computed across various models, we perform rigorous statistical tests based on the Welch’s
t-test [62]. This choice is motivated by the potential heterogeneity in variances of the
quantifier across the different samples analyzed, since different behavior is a common
feature in dynamical systems due to the initial conditions, for example.

The Welch’s t-test is a robust statistical method for comparing the means of two
independent samples when the assumption of equal variances is not tenable. Let X =
T1,T,y ..., Tp, and Y = y1,va,...,Yn, denote two independent samples, with respective
sample means 7 and ¢, sample variances s3 and s3-, and sizes n; and ns.

The test statistic is computed as:

Ty
X Yy
ni no

This statistic follows approximately a Student’s ¢-distribution with effective degrees of

freedom v, determined by the Welch-Satterthwaite equation:
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82
(5+2)
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ni—

(5.2)
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The hypotheses tested are:

o Null hypothesis (Hp): The population means are equal, i.e., iy = py. In this case,

one can not distinguish the mean values of the disorder from the two samples.

 Alternative hypothesis (H;): The population means are different, i.e., ux # uy.

The p-value derived from the t-statistic and v indicates whether the observed difference
is statistically significant. Specifically, we reject Hy at a significance level o = 0.05 if
p < «, implying sufficient evidence to claim a statistically significant difference between
the mean disorder values of the compared groups.

The results are also presented using boxplots overlaid with violin plots. This combina-
tion allows the summary statistics, such as the median, interquartile range, outliers, and
the full probability distribution of the measurements to be visualized simultaneously. The
boxplots highlight central tendencies and variability, while the violin plots illustrate the
underlying density of the data.

By confirming the significance of the disorder differences, this statistical procedure
enhances the reliability of our interpretations, supporting the identification of model
regimes. Furthermore, this approach reinforces the applicability of the disorder quantifier

as a robust tool for detecting dynamical shifts in complex data.

5.3 The disorder quantifier and the data size

A key assumption underlying our recurrence-based framework is Hypothesis 4.2.1, which
posits that the total data length K is sufficiently large compared to the subsequence length
N (i.e., K > N). To evaluate numerically how well various signals satisfy Hypothesis 4.2.1,
we compute the disorder quantifier = for White Gaussian Noise (WGN), Pink Gaussian
Noise (PGN), Red Gaussian Noise (RGN), and the logistic map, systematically varying
the time series length K (see Fig. 5.1(a)). We compute the quantifier over 30 time series
for each model, at a timescale N = 4.

White Gaussian Noise, being completely uncorrelated, is the only process for which
= approaches its maximum (= = 1) as K increases. This behavior confirms that WGN
satisfies the ideal disorder condition (Hypothesis 4.1.1); moreover, by the Law of Large
Numbers, probability estimates and the resulting entropy-based quantifier converge rapidly

to their theoretical values as K grows.
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Figure 5.1: (a) The mean of the disorder quantifier (Z) with its corresponding standard
deviation shaded on each curve as a function of the length of the time series
K for the logistic map, WGN, PGN and RGN. (b) The p-values of Welch’s
t-test [A, B] comparing the mean of disorder for the model A and model B as
a function of the time series length [63].

By contrast, RGN exhibits stronger temporal correlations than PGN, and accordingly
its disorder quantifier remains lower. Since = is designed to increase monotonically with
the degree of disorder, PGN—which has weaker correlations than RGN—yields a higher =
for the same K. This ordering is consistent with the requirement that signals closer to the
ideal disorder condition produce larger disorder values.

Finally, all stochastic signals (WGN, PGN, RGN) yield disorder values that differ
markedly from the logistic map, which converges to a value near =Z ~ 0.4 as K increases.
The logistic map does not satisfy the disorder condition, and its relatively low = reflects its
deterministic (chaotic) dynamics. Thus, the dependence of = on K demonstrates both the
convergence properties for stochastic processes and the clear distinction between stochastic
and chaotic behavior.

The differences in disorder values among the models are statistically significant, as
verified by Welch’s t-test [A, B] comparing the mean of disorder for the model A and
model B as a function of the time series length. For K > 40, all p-values fall below 0.05,
indicating that the mean disorder values for WGN, PGN, RGN, and the logistic map can
be distinguished with greater than 95% confidence when K > 40 (Fig. 5.1(b)).
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5.4 The quantifier and the classification of different

model regimes

Quantifying dynamical disorder across different classes of systems requires a unified
metric capable of capturing both deterministic chaos and stochastic randomness. This
section presents a systematic evaluation of the proposed disorder measure = applied to three
fundamental paradigms: discrete maps, continuous flows, and stochastic processes. For
each paradigm, we examine five canonical systems under controlled parameter variations
(p1 vs po) designed to induce graduated disorder levels.

Our experimental design maintains methodological consistency across paradigms: (1)
generation of 50 independent realizations per parameter configuration, (2) fixed trajec-
tory length (K = 3000 points), and (3) identical statistical visualization (boxplot-violin
composites). Crucially, deterministic systems incorporate appropriate transient removal
(T = 1000) and sampling protocols (time step of 0.5), while stochastic processes emphasize
correlation decay properties.

The following subsections validate =’s discriminative capacity through three critical
lenses: sensitivity to parameter-induced disorder transitions (Sections 5.4.1-5.4.2), differ-
entiation between deterministic and stochastic regimes (Section 5.4.3), and robustness
under constrained observational conditions (K < 10%, coarse sampling). Collectively, these
analyses establish = as a cross-paradigm disorder metric with significant implications for

characterizing complex dynamics.

5.4.1 Disorder in discrete deterministic systems

We evaluate five paradigmatic discrete maps, including those with more intricate
dynamics such as the hyperchaotic Towel map and the Standard map, the latter exhibiting
a highly “cloud-like” phase-space structure due to its strong diffusive behavior. The formal
definitions and parameter settings for each map are provided in Section 3.1.

In each case, two parameter values, p; and p,, are chosen so that p; is known to
produce a higher degree of dynamical disorder compared to p;. For each map and each
parameter value, we generated 50 independent time series of length K = 3000 to compute
the disorder quantifier =.

Figure 5.2 presents the results as combined boxplots and violin plots, illustrating the
distribution of = across those realizations. The blue boxplots and violin plots correspond
to the parameter value p; for each model, while the red plots refer to ps, the inducing
parameter value of higher disorder. Boxplots denote interquartile ranges while violin
contours show kernel density estimates.

In all cases, increasing the control parameter from p; to py yields a statistically

significant rise in =, confirming that the quantifier effectively captures the expected
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Figure 5.2: Boxplots with underlaid violin plots showing the distribution of the disorder
quantifier = for each discrete dynamical system under parameter values p; and

increase in disorder. Notably, the highest disorder values are observed for the hyperchaotic

Towel map, reflecting its highly irregular dynamics.

5.4.2 Disorder in continuous deterministic systems

We examine five continuous dynamical systems, each evaluated at two distinct control-
parameter values, p; and py, where ps is known to produce a higher level of dynamical
disorder than p;. Formal definitions and specific parameter settings for these systems are
provided in Section 3.2.

For each model and each parameter value, we generated 50 independent trajectories,
discarding a transient of 1,000 time units. Initial conditions were chosen at random, except
in the Double-Gyre flow, where they were selected within the chaotic sea. Each trajectory
was sampled at fixed time intervals of 0.5 and truncated to a total length of K = 3000
points, ensuring that our analysis applies to relatively short, low—-temporal-resolution
datasets (K < 10%).

Figure 5.3 presents boxplots with overlaid violin plots of the disorder quantifier = for
each system under both p; and p-.

In every case, the disorder measure = is significantly larger at p, than at p;, demon-
strating that the proposed quantifier reliably detects the expected increase in disorder

even for short, coarsely sampled time series.

5.4.3 Disorder in stochastic processes

We extend our analysis to stochastic processes, evaluating two parameter values (p;

and p9) where ps enhances disorder through reduced temporal correlations or weakened
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Figure 5.3: Boxplots with violin overlays showing the distribution of the disorder quantifier
= for each continuous dynamical system under parameter values p; (blue) and
po (red) [63].

dependence on past states. In this case, the conceptualization of disorder fundamentally
differs from deterministic interpretations, being intrinsically linked to decay properties of
autocorrelation functions.

Figure 5.4 presents results from 50 realizations per parameter-process pair, each of
length K = 3000:
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Figure 5.4: Boxplots with violin plots showing the values of the proposed quantifier = for
each stochastic process and its parameter values p; and py [63].

The disorder measure = exhibits statistically significant increases when transitioning to
higher-disorder parameter p, across all processes. Notably, = values for stochastic systems
exceed 0.94 — substantially higher than those observed in deterministic systems (= < 0.865)
despite identical sampling constraints (K = 3000, At = 0.5).

Even the hyperchaotic Towel map (maximum deterministic = = 0.712) remains well
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below minimally disordered stochastic cases. This pronounced separation confirms =’s
discriminative capacity between stochastic and deterministic disorder paradigms under

finite-resolution observations.

5.5 Disorder and past dependence

The autoregressive (AR) model, defined in Section 3.3.2, is a simple stochastic process
that allows direct control over the degree of past dependence through the parameter ¢.
The disorder condition of Hypothesis 4.1.1 corresponds to the limiting case of no memory,
ie, p=0.

Since the disorder quantifier = is constructed to increase monotonically as this memory-
less condition is approached, the AR model serves as an appropriate testbed for numerically
validating our framework. To this end, we computed = for 30 realizations of AR model
time series, each of length 3,000, using a timescale of N = 4.

As the parameter ¢ increases, the process exhibits stronger dependence on its past
values, leading to a systematic decrease in the disorder quantifier. This inverse relationship
is clearly observed in Fig. 5.5, where the mean disorder (=) declines monotonically with

increasing ¢.
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Figure 5.5: The mean of the disorder quantifier (Z) for the autoregressive model. The
disorder decreases as the parameter ¢ increases [63].

5.6 Disorder in data from deterministic-stochastic

mixtures

Because the disorder quantifier = is sensitive both to transitions between deterministic
chaos and purely random processes, and to different forms of temporal correlation in noise,
we now investigate its behavior on time series that combine deterministic chaotic dynamics
with stochastic perturbations. Specifically, we assess the robustness of = when a chaotic
signal is corrupted by noise with varying degrees of temporal dependence.

To this end, we employ the noisy logistic model (Eq. 3.3.3), in which a chaotic logistic
map trajectory is perturbed by additive noise 7,(¢) generated by an autoregressive (AR)
process for correlation parameters ¢ € {0.00,0.25,0.50,0.75,0.90}.
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2
We systematically vary the variance ratio 2%, where o2 is the variance of 7;(¢) and

02 is the variance of the purely chaotic logistic map ;. zZS this ratio increases from 0
(purely deterministic) to 1 (noise variance equal to signal variance), the combined process
transitions from deterministic chaos to a predominantly stochastic regime.

For each combination of ¢ and variance ratio, we generate 30 independent realizations
of length K = 3000 and compute the disorder quantifier = using a recurrence timescale of

N = 4. Figure 5.6(a) displays the mean disorder (Z) as a function of 07 /02 for each value

of ¢.
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Figure 5.6: (a) Mean disorder quantifier (=) for the noisy logistic model y;(¢) = x; 4+ 1:(9),
plotted against the variance ratio 0,27 /o2, Each curve corresponds to a different
AR correlation parameter ¢. (b) Corresponding p-values from Welch’s t-test
comparing the mean disorder between pairs of models as a function of 0727 /o2

[63)].

The disorder increases monotonically with the variance ratio ag /o2, but the slope
of this increase depends on the temporal correlation ¢: signals with higher ¢ (stronger
memory) exhibit a slower rise in = compared to those with weaker correlation.

Figure 5.6(b) reports the p-values of Welch’s ¢-test for pairwise comparisons of mean
disorder between different values of ¢ at each variance ratio. For sufficiently large variance
ratios, the differences in (=) between models become statistically significant (p < 0.05),
confirming that the quantifier reliably distinguishes processes with varying degrees of

correlation even when deterministic and stochastic components are mixed.

5.7 Comparisons with prior measures

We conduct analyses on the same datasets generated in the previous responses, com-

paring with four well-known methods defined in the Chapter 2: the permutation entropy
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(PE) [26], the multivariate permutation entropy (MvPE) [27], the statistical complexity
(SC) [16], and the determinism by recurrence quantification (DET) [25]. All methods
were implemented using the Julia language packages ComplexityMeasures. jl [29] and
RecurrenceAnalysis. j1 [30].

To facilitate comparison, we summarize in Fig. 5.7 the disorder values obtained for the
models that most challenge alternative methods. It consistently increases as the control
parameter shifts from p; to py (Fig. 5.7), reflecting the quantifier’s sensitivity to changes
in system behavior. Notably, all disorder values calculated for the paradigmatic stochastic
processes exceed = = (.94, demonstrating the expected high disorder in these cases. In
contrast, the dynamical systems analyzed yield disorder values below = = 0.8, even when
the datasets are undersampled.
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Figure 5.7: Boxplots with violin plots showing the values of the proposed disorder quantifier
for critical cases [63].

These results confirm a clear and significant distinction between the disorder levels of
typical stochastic processes and deterministic dynamics. They also highlight the robustness
of Z in quantifying order—disorder phenomena across diverse scenarios, supporting its
utility as a reliable measure to differentiate between fundamentally different classes of

processes.

5.7.1 Testing determinism (DET)

We assess the determinism (DET) metric for critical test cases using the established
boxplot-violin visualization framework. Figure 5.8 presents distributions of DET values
across selected systems under parameter configurations p; and ps.

The Standard map exhibits characteristic deterministic behavior with elevated DET
values (DET > 0.5), showing decreased determinism under disorder-inducing parameter
p2. Conversely, the delay-differential Mackey-Glass system displays anomalous behavior:
its po configuration yields significantly lower DET values than p;, contradicting both the
proposed disorder quantifier = (which increases at ps) and the structurality and entropy

measures [28].
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Figure 5.8: Boxplots with violin plots showing the values of the Determinism (DET) for
critical cases [63].

Notably, Mackey-Glass determinism under p, falls below that of correlated power-law

noise, suggesting potential limitations of DET as a universal determinism indicator in

systems with complex temporal organization.

5.7.2 Testing permutation entropy (PE)

The Figure 5.9 presents comparative distributions of Permutation Entropy (PE) and

Multivariate Permutation Entropy (MvPE) for critical test cases under parameter configu-

rations p; and ps.
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Figure 5.9: Boxplots with violin plots showing the values of the Permutation Entropy (PE)

and Multivariate Permutation Entropy (MvPE) for critical cases [63].

The analysis reveals three significant limitations of entropy-based measures:

1. Low discriminative power: The Double-Gyre system shows substantial overlap in PE

distributions between p; and ps, failing to detect the expected disorder increase [28];

2. Paradigm ambiguity: Lorenz system PE values are statistically indistinguishable from

the stochastic Langevin equation, confounding deterministic chaos with stochasticity;
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3. Anomalous saturation: The Standard Map attains maximum theoretical MvPE

despite being deterministic, while the GNL shows parameter overlap.

These observations suggest fundamental limitations in entropy-based measures for
distinguishing dynamical regimes and parameter-induced disorder transitions, particularly

in systems with complex temporal structures.

5.7.3 Testing statistical complexity (SC)

The Figure 5.10 presents distributions of Statistical Complexity (SC) and its multivari-
ate counterpart (MvSC) computed in conjunction with the permutation entropy metrics

analyzed in Section 5.7.4.
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Figure 5.10: Boxplots with violin plots showing the values of the Statistical Complexity
(SC) for critical cases [63].

The results are similar to those obtained by the PE. While the joint PE-SC plane
approach [16] theoretically enhances characterization, it introduces significant practical

limitations:
o Indirect interpretation of disorder;
o Obfuscation of temporal disorder progression;
o Increase dimensionality complicates real-world analysis.

These findings suggest that complexity measures, whether univariate or multivariate,
provide limited direct insight into disorder dynamics when used in isolation, while their

combined implementation sacrifices interpretative clarity for marginal diagnostic gains.

5.7.4 Testing structurality (A) and dynamical complexity (DC)

Although the structurality measure A performs satisfactorily in several scenarios, such
as those illustrated in Fig. 5.11(a) and (b), where its results are in close agreement with

the proposed disorder quantifier (cf. Fig. 5.7(a) and (c)), it exhibits notable limitations in



5.7.  Comparisons with prior measures 58

discriminating between certain types of signals. Specifically, when applied to the uniform-
noisy logistic (UNL) and Gaussian-noisy logistic (GNL) models, A produces overlapping

values across these cases, as shown in Fig. 5.11(c) and (d).
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Figure 5.11: Boxplots with violin plots showing the values of the structurality (A) and
dynamical complexity (DC) for critical cases [63].

A similar pattern emerges when considering the dynamical complexity (DC). While
DC performs well with the standard map, successfully capturing the expected increase
in disorder, it also yields overlapping values in the GNL scenario (see Fig. 5.11(e)). This
observation indicates that both A and DC tend to produce results for GNL that fall within
the same range as those obtained for the standard map. Consequently, deterministic
and stochastic signals with differing underlying structures can be assigned comparable
complexity scores. These findings suggest that, despite their utility in certain applications,
A and DC have limited discriminative power in contexts where fluctuations and randomness

dominate the dynamics.

5.7.5 Summarizing the comparative tests

Table 5.1 synthesizes the comparative performance evaluation across all tested metrics,
highlighting distinctive advantages of the proposed disorder measure = when applied to
short (K = 3000) and undersampled (time step 0.5) time series across deterministic and
stochastic scenarios.

This systematic evaluation demonstrates that = uniquely satisfies all five criteria,
outperforming in quantifying disorder transitions across deterministic and stochastic sys-
tems. Crucially, it achieves robust performance despite stringent observational constraints,
establishing it as a general disorder metric for multivariate time series analysis under
limited-data conditions while maintaining consistent performance, statistical significance,

and interpretability.
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Table 5.1: Summary of the comparison between the proposed quantifier = and similar
traditional methods.

Performance criteria ‘ = ‘ DET ‘ PE ‘ MvPE ‘ SC ‘ A ‘ DC

Correct and statistically significant dis-| Yes | No | No No No | No | No
tinction of disorder-inducing parameter
values (p; and py) for all tested models

Correct distinction of deterministic and | Yes | No | No No Yes* | No | No
stochastic typical cases
Independence of dimensionality Yes | Yes | No Yes No | Yes | Yes

Optimal and inherent selection of its | Yes | No | No Yes Yes | Yes | Yes
parameters
Direct interpretation via a single mea-| Yes | Yes | Yes | Yes No* | Yes | No
sure

“If used together with PE.
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Real-world application to understand

Earth’s dynamics

The Cenozoic Era, spanning approximately the last 66 million years, represents a
critical period in Earth’s paleoclimate history, marked by significant transitions such
as the Paleocene-Eocene Thermal Maximum, the onset of Antarctic glaciation, and the
Quaternary glacial-interglacial cycles. Understanding these climatic shifts is essential for
reconstructing past environmental conditions, identifying natural climate drivers, and
contextualizing current anthropogenic changes. However, the analysis of paleoclimate data
faces several challenges: the datasets are typically irregularly sampled, contain substantial
noise from sedimentary and diagenetic processes, and are finite and incomplete due to
the inherent limitations of geological archives. Moreover, distinguishing deterministic
patterns, such as astronomical forcing, from stochastic variability remains a central
problem, requiring robust quantitative methods capable of handling complex, noisy, and

often non-stationary time series.

6.1 The Cenozoic dataset

6.1.1 Data acquisition and structure

The Cenozoic Global Reference benthic foraminifer carbon and oxygen Isotope Dataset
(CENOGRID) [21] is derived from a synthesis of high-resolution stable isotope records
(6'80 and 6'3C) obtained from 14 deep-sea sediment cores collected during the International
Ocean Discovery Program (IODP) and its predecessors. These records ensure precise
orbital tuning with age uncertainties ranging from £100 kiloyear (kyr) to +10 kyr. The
dataset corrects for interspecies isotopic offsets by prioritizing analyses of Cibicidoides
and Nuttallides species, while gaps in critical intervals (e.g., late Miocene) are filled with
new benthic isotope measurements. This approach resolves orbital-scale climate variability

(103-10° years) and addresses longstanding challenges of fragmented records and coarse
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temporal resolution in earlier compilations.

6.1.2 Physical interpretation and geological stages

The CENOGRID physically represents global temperature trends (via 60, adjusted for
ice-volume effects) and carbon cycle dynamics (via 6'3C). It identifies four distinct climate
states: (1) Hothouse (56-47 Ma), characterized by extreme warmth (> 10°C above modern)
and frequent hyperthermal events; (2) Warmhouse (66-56 Ma and 47-34 Ma), marked
by sustained warmth (> 5°C above modern) and stable carbon-temperature coupling;
(3) Coolhouse (34-3.3 Ma), defined by Antarctic ice sheet expansion and eccentricity-to-
obliquity transitions; and (4) Icehouse (post-3.3 Ma), dominated by Northern Hemisphere
glaciation and high-latitude feedbacks.

The Cenozoic era is also divided into stages linked to the driving triggers of transitions,
such as astronomical forcing, tectonic reorganizations, and biogeochemical feedbacks. A
deitailed description of each stage based on the book “Geologic Time Scale 2020: Volume
27 [64] is provided below:

« Dan (Danian; 66—61.6 Ma): Following the Cretaceous—Paleogene (K/Pg) mass
extinction, the Danian marks a period of ecological recovery and gradual warming.
d13C records indicate a stabilization of the global carbon cycle after the abrupt
perturbations associated with the extinction event. Concurrently, 680 data show a
progressive return to warmer ocean temperatures from the relatively cool conditions
that characterized the latest Cretaceous. This stage is also defined paleontologically
by the rapid diversification of planktonic foraminifera and calcareous nannoplankton,

which serve as key biostratigraphic markers.

o Sel (Selandian; 61.6-59.2 Ma) and Tha (Thanetian; 59.2-56 Ma): The
late Paleocene is characterized by sustained warming, culminating in a series of
prelude events to the Paleocene-Eocene Thermal Maximum (PETM). The increas-
ing trend in §3C excursions suggests intensified carbon cycle variability, possibly
linked to volcanic outgassing or methane hydrate destabilization. These stages
are distinguished paleontologically by turnover events in benthic foraminifera and
diversification of mammals, particularly archaic ungulates, which reflect significant

terrestrial ecosystem restructuring.

e Ypr (Ypresian; 56—47.8 Ma): The early Eocene represents the peak of the
Cenozoic “Hothouse” conditions, exemplified by the PETM, a rapid warming event
associated with a sharp negative 6'3C excursion (up to —4%o) and elevated 480
values indicating deep-sea temperatures exceeding 12°C. Paleontologically, this stage

is notable for the first appearance of modern mammalian orders such as primates,
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perissodactyls, and artiodactyls, as well as significant marine plankton turnover

linked to ocean acidification and temperature changes.

Lut (Lutetian; 47.8-41.2 Ma) and Bar (Bartonian; 41.2-37.8 Ma): The
middle Eocene initiates a long-term cooling trend. 'O values increase by approxi-
mately 1%, signaling a gradual decline in global temperatures and the initial buildup
of ephemeral Antarctic ice sheets. These stages are delineated by key paleontological
markers, including the diversification of early cetaceans and sirenians in marine
environments, as well as floral shifts from tropical to more temperate assemblages in

mid-latitudes.

Pri (Priabonian; 37.8-33.9 Ma): The late Eocene culminates in the Eocene-
Oligocene Transition (EOT), a major climatic reorganization characterized by a
sharp positive shift in 6’0 (about +1.5%0). This isotopic shift reflects both sig-
nificant cooling and the first permanent formation of a large-scale Antarctic ice
sheet. Biostratigraphically, the Priabonian is marked by a significant extinction
event among deep-sea benthic foraminifera and nannoplankton, as well as turnover

in terrestrial mammal faunas in response to climatic deterioration.

Rup (Rupelian; 33.9-27.8 Ma) and Cha (Chattian; 27.8-23.0 Ma): The
Oligocene is typified by the establishment of the “Coolhouse” climate state, marked
by relatively stable but cooler conditions compared to the Eocene. The coupling
between §'3C and §'80 records indicates the development of complex feedbacks
between the carbon cycle and expanding polar ice sheets. Paleontological data
define these stages through significant faunal exchanges between continents (e.g., the
Grande Coupure in Europe), as well as changes in marine microfossil assemblages

reflecting cooler, more seasonally variable climates.

Aqu (Aquitanian; 23.0-20.4 Ma) and Bur (Burdigalian; 20.4-14.9 Ma):
The early Miocene witnesses a transient return to warmer conditions during the
Miocene Climatic Optimum (MCO), with §'®0 values decreasing to less than —0.5%o,
implying reduced ice volume and warmer oceans. These stages are paleontologically
distinguished by the radiation of modern cetaceans and pinnipeds, as well as ter-
restrial mammal diversification, notably of ruminants and early hominoids. Marine

biostratigraphy is also refined by planktonic foraminiferal zonations.

Lan (Langhian; 14.9-13.8 Ma) and Ser (Serravallian; 13.8-11.6 Ma): The
middle Miocene is marked by the Middle Miocene Climate Transition (mMCT) around
13.9 Ma, with 680 increasing by approximately +0.8%o. This event represents the
expansion of Antarctic ice sheets to near-modern extents and a shift towards obliquity-

paced glacial-interglacial cycles. Paleontologically, these stages are defined by notable
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turnovers in marine microfauna, especially the extinction and radiation of certain
foraminiferal and nannoplankton groups, alongside the continued diversification of

terrestrial mammals.

o Tor (Tortonian; 11.6-7.2 Ma) and Zan (Zanclean; 7.2-3.6 Ma): The late
Miocene to early Pliocene period is characterized by further depletion of §3C
(around —1%o), likely associated with decreased organic carbon burial, as well
as a gradual trend in 6'®0 indicating the progressive development of Northern
Hemisphere glaciation. Paleontological markers include the Messinian Salinity Crisis
near the Tortonian-Zanclean boundary, major faunal exchanges such as the Hipparion
dispersal, and continued diversification of hominids and other primates, indicating

increasingly complex terrestrial ecosystems.

6.1.3 Scientific relevance and prior insights

The CENOGRID dataset has significantly advanced our understanding of Cenozoic
climate sensitivity and the role of orbital forcing. Previous studies [65] lacked the resolution
necessary to directly link atmospheric CO, fluctuations with ice sheet feedbacks or to
quantify the nonlinear responses of the climate system to astronomical forcing. In contrast,
CENOGRID provides clear evidence that, during warm climate periods, low-latitude
processes such as monsoon systems were the primary drivers of eccentricity-paced carbon
cycling, whereas obliquity became increasingly influential as polar ice sheets expanded.
The dataset also improves the chronological precision of major climate events, including
the Middle Miocene Climate Transition (13.9 million years ago) and the Plio-Pleistocene
intensification of glaciation.

Despite some spatial limitations—being mainly composed of Atlantic and Pacific
sediment records—CENOGRID serves as a critical benchmark for calibrating and validating
Earth system models, thereby enhancing predictions of climate thresholds under future
elevated COs scenarios. Its integration of astronomically tuned stratigraphy highlights the
essential role of high-resolution data in paleoclimatic reconstructions.

Notably, a recurrence quantifier known as Determinism (DET) has already been applied
to the CENOGRID dataset (Fig.6.1). DET increases when the system’s behavior becomes
more deterministic or predictable. The key finding from this analysis [21] is that polar
ice volume exerts a major influence on the predictability of Earth’s climatic response
to astronomical forcing. This is reflected by increased fluctuations in the DET measure
between approximately 50 and 35 million years ago, followed by an overall decline in
predictability over subsequent stages. However, identifying and quantifying the major
climate transitions embedded in this dataset remains an open and challenging problem in

paleoclimatic research.
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Figure 6.1: Adapted figure [21] showing the carbon data (CENOGRID), the DET measure,
and the spectrogram.

6.2 Disorder in the Cenozoic dataset

The application of the disorder quantifier to the CENOGRID dataset yields critical
insights into the interplay between stochastic and deterministic drivers throughout Cenozoic
climate evolution. As illustrated in Fig. 6.2, the disorder quantifier exhibits temporal
variations that reflect shifts in the relative contributions of deterministic forcings (e.g.,
orbital cycles, CO5 trends) versus stochastic processes (e.g., regional feedbacks, unforced
variability). The transition from disorder levels comparable to Red Gaussian Noise (RGN;
characterized by long-term autocorrelation) in the early Cenozoic to those approaching
White Gaussian Noise (WGN; indicative of uncorrelated variability) during the Neogene
(Fig. 6.2) highlights a fundamental shift in the climate system’s behavior. This evolution
suggests a progressive decoupling of high-latitude ice sheet dynamics from low-latitude
orbital forcing, as the growing influence of cryospheric feedbacks introduced new modes of
variability [66].

The proposed method = does not only supports the overall decrease in predictability
[21], but also reveals major climate transitions, as minima in disorder often align with
well-established stage divisions. This relationship between disorder/determinism and

paleoclimatic stages could not be assessed using previous methods like DET and opens
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Figure 6.2: The disorder quantifier = applied to benthic foraminiferal carbon isotope
(6'3C) data as a function of geological age (in million years ago, Ma). The
quantifier was computed using a sliding window of length K = 200 (2 Ma),
with a timescale N =4 (0.04 Ma). The background depicts the mean disorder
levels of White Gaussian Noise (WGN), Pink Gaussian Noise (PGN), and Red
Gaussian Noise (RGN), with K = 200. A linear fit highlights the overall trend.
Vertical dotted lines denote stage boundaries.

the door to exploring additional phenomena via the CENOGRID dataset.

6.2.1 Dominant triggers and disorder minima

Stage transitions identified within the CENOGRID (Fig. 6.2) correspond to intervals
where a single forcing mechanism exerted a predominant influence, suppressing stochastic
variability and reducing overall disorder. For example, the Eocene-Oligocene Transition
(EOT) at ~34 Ma—characterized by a pronounced §'*C minimum and a sharp 6'*O
increase—coincides with a marked disorder minimum (Fig. 6.2). This reflects the dominance
of COq-driven Antarctic glaciation [67], which effectively overwhelmed regional climatic
variability. Similar behavior is observed in the Noised Logistic Map model (Fig. 5.6),
where increasing the variance of a primary driver (o7) relative to background noise (o7)
induces a transition from irregular (noisy) to more regular (deterministic chaos) regimes,
manifesting as reduced disorder. In climatic terms, this parallels the emergence of CO,
thresholds or tectonic reorganizations (e.g., Himalayan uplift [68]) capable of restructuring
global climate dynamics.

Representative case studies include:

« Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma): A transient disorder
minimum accompanies the PETM’s abrupt 6'3C excursion, reflecting the dominance
of methane hydrate destabilization as the primary carbon source [69]. The subsequent
recovery phase is marked by rising disorder, indicating the re-emergence of stochastic

ocean-atmosphere interactions.
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« Middle Miocene Climate Transition (mMCT; ~14 Ma): The mMCT is characterized
by a 680 increase associated with Antarctic ice sheet expansion. Disorder decreases
as obliquity-paced ice volume changes supersede eccentricity-driven carbon cycle
variability [70].

o Plio-Pleistocene Glacial Intensification (~3.3 Ma): The expansion of Northern Hemi-
sphere ice sheets is concomitant with a shift toward WGN-like disorder, indicating
an enhanced role for stochastic ice-albedo feedbacks and a concomitant reduction in

system predictability [71].

6.2.2 Theoretical and practical implications

The disorder quantifier framework offers a conceptual and methodological bridge
between empirical paleoclimate data, dynamical systems, and stochastic processes. It
reveals that Cenozoic climate states result from a dynamic interplay between deterministic
forcings and stochastic resilience. Periods of low disorder (e.g., EOT, PETM) represent
intervals wherein external perturbations (e.g., COy drawdown, orbital reconfigurations)
exceeded the climate system’s capacity to absorb variability through internal feedbacks.
Conversely, phases of elevated disorder (e.g., late Miocene) correspond to transitional
regimes where multiple drivers interact nonlinearly, enhancing system complexity.

These findings underscore the importance of quantifying disorder in paleoclimate
archives to better identify tipping points and refine projections of anthropogenic climate
trajectories [72]. Therefore, the proposed quantifier of disorder provides a consistent way
to relate data fluctuations in the Paleoclimate to transitions and behavioral changes, which

was previously not possible with traditional approachs.
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Conclusions and perspectives

In this work, we have embraced the ideal disorder condition—interpreted as the
complete statistical independence of all past states—as the foundational principle for
defining a quantifier using recurrences. By formalizing this condition, we have shown
that the group of all permutations acts naturally on the space of recurrence matrices,
yielding equivalence classes of equiprobable microstates. From these classes, we proposed
the disorder quantifier = defined as the average information entropy across all equivalence
classes. By construction, = increases monotonically as the data’s behavior approaches
the ideal of full disorder. Crucially, we demonstrated that maximizing this entropy-based
measure is not merely convenient but necessary for its optimal estimation. The resulting
quantifier is thus parameter-free (apart from a chosen timescale) and provides a direct,
interpretable measure of disorder in any numerical dataset.

Through extensive numerical experiments on both deterministic and stochastic bench-
mark models, we have validated that = reliably distinguishes chaotic, temporally cor-
related, and uncorrelated signals even when time series are relatively short (K < 10%).
For autoregressive noise, variations in the memory parameter ¢ produced predictable,
monotonic decreases in =. When a chaotic logistic map was corrupted by noise with
differing correlation strengths, = correctly tracked the gradual shift from deterministic
chaos toward stochastic scenarios. Comparisons with traditional measures—Permutation
Entropy (PE) [26], Multivariate Permutation Entropy (MvPE) [27], Statistical Complexity
(SC) [16], and Recurrence Quantification’s Determinism (DET') [25]—demonstrated that
= outperforms them in sensitivity, interpretability, and robustness, while requiring no
user-tuned parameters.

We further applied = to paleoclimate data from the Cenozoic era (the CENOGRID
dataset [21]). Our analysis captured known major climate transitions—such as the
Paleocene-Eocene Thermal Maximum, the Eocene-Oligocene Transition, and the Middle
Miocene Climate Transition—through local minima in disorder. These results confirm that
= not only discriminates between deterministic and stochastic regimes in synthetic data

but also meaningfully reflects Earth’s system dynamics as recorded in geological archives.
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Taken together, these findings establish = as a versatile tool for quantifying disorder
across a wide range of complex systems. Its parameter-free nature reduces the risk
of bias introduced by arbitrary choices, while its basis in maximum entropy ensures a
clear, physically grounded interpretation. Because = can be computed for data of any
dimension with minimal preprocessing, it holds promise for disciplines where fast, reliable
characterization of temporal complexity is essential.

Looking ahead, the framework introduced here can be further expanded into a unified
methodology for the quantitative analysis of complex systems. Ongoing work will integrate
concepts from nonlinear dynamics, statistical physics, information theory, and recurrence
analysis to develop novel algorithms. These algorithms aim to characterize not only
disorder but other temporal symmetries in both experimental and simulated data, thereby
overcoming limitations of current approaches that rely on arbitrary parameters and often
lack clear physical interpretability.

Validation of this broader methodology will proceed on three fronts. First, rigorous
mathematical verification will confirm that the maximum-entropy formulations yield
consistent, well-posed quantifiers across diverse system classes. Second, computational
benchmarks on standard chaotic and stochastic models will test the method’s accuracy,
efficiency, and robustness under controlled conditions. Third, applications to real-world
datasets in climatology, neuroscience, and plasma physics will demonstrate practical utility.
In climatology, = could refine our understanding of tipping points and improve forecasts of
abrupt climate shifts. In neuroscience, it could help distinguish healthy from pathological
brain dynamics. In plasma physics, it could quantify the onset of turbulence and other
complex behaviors.

By unifying these elements into a coherent theoretical and computational framework,
this line of research promises to advance interpretable data science within complex systems.
Ultimately, it can provide a principled basis for comparing dynamic properties across
domains, inform the design of experiments, and guide practical applications such as
improved climate forecasting and neural signal analysis. Through these contributions, we
hope to push the frontier of how disorder and complexity are quantified, interpreted, and

leveraged in scientific discovery.
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This study was published in Physical Review Letters [63]. The abstract is as follows:
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The quantification of disorder in data remains a fundamental challenge in science, as many phenomena
yield short length datasets with order-disorder behavior, significant (unjcorrelated fluctuations, and
indistinguishable characteristics even when arising from distinct natures, such as chaotic or stochastic
processes. In this Letter, we propose a novel method to directly quantify disorder in data through recurrence
microstate analysis, showing that maximizing this measure is essential for its optimal estimation. Our
approach reveals that the disorder condition corresponds to the action of the symmetric group on recurrence
space, producing classes of equiprobable recurrence microstates. By leveraging information entropy, we
define a robust quantifier that reliably differentiates between chaotic. correlated. and uncorrelated
stochastic signals even using just small time series. Additionally, it uncovers the characteristics of
corrupting noise in dynamical systems. As an application, we show that disorder minima over time often
align with well-known stage transitions of the Cenozoic era, indicating periods of dominant drivers in
paleoclimatic data.
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A.2 Analytical results in calculating the entropy of

recurrence microstates (Physica A)

This paper [73] was published in Physica A: Statistical Mechanics and its Applications.

The abstract and some authorship details are provided below.
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ARTICLE INFO ABSTRACT

Keywards: Since the development of recurrence plots (RP) and recurrence quantification analysis (RQA),
Recurrence analysis there has been a growing interest in many areas in studying physical systems using recursion
Recurrence entrogy techniques. In particular, as part of the RQAs, we observed the development of the concept

Approximation method of recurrence microstates, defined as small blocks obtained from a recurrence graph. It can be

shown that some other RQAs can be calculated as a function of recurrence microstates, and
the probabilities of occurrences of these microstates can define an information entropy, the
so-called entropy of recurrence microstates. It was also observed that recurrence microstates
and recurrence entropy can distinguish between correlated and vncorrelated stochastic and
deterministic states, due to their symmetry properties. In this paper we propose analytical
expressions for caleulating the entropy of recurrence microstates, avoiding the need to sample
a large set of recurrence microstates. The results can be particularly important in guantifying
small amounts of dats, where significant sampling of microstates may not be possible. In this
paper we propose analytical expressions to compute the entropy of recurrence microstates
avoiding the need tw sample a large set of recurrence microstates, We show that our results are
accurate for cases where the probability distribution function is known. For ather situations, the
results can be caleulated approximately. Another important fact is that the approximate results
can be generalized to any size of microstate, making them a powerful tool for caleulating the
entropy of recurrence. Our approximate methods allow us to know what these properties are
and how to exploit this quantifier in the best possible way, with minimal memory usage. Finally,
we show that our analytical results are in remarkable agreement with numerical simulations.

A.3 Recurrence microstates for machine learning clas-
sification (Chaos)

This paper [74] was published in Chaos: An Interdisciplinary Journal of Nonlinear

Science. The abstract and some authorship details are provided below.
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ABSTRACT

Recurrence microstates are obtained from the cross recurrence of two sequences of values embedded in a time series, being the generaliza-
tion of the concept of recurrence of a given state in phase space. The probability of occurrence of each microstate constitutes a recurrence
quantifier. The set of probabilities of all microstates are capable of detecting even small changes in the data pattern. This ereates an ideal ool
for generating features in machine learning algorithms. Thanks to the sensitivity of the setof probabilities of occurrence of microstates, it
can be used to feed a deep newural network. namely, a microstate multi-layer perceptron (MMLP) to classify parameters of chaotic systems.
Additionally, we show that with more microstates, the accuracy of the MMLP increases, showing that the increasing size and number of
microstates insert new and independent information into the analysis. We also explore potential applications of the proposed method when
adapted to different contexts.
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