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RESUMO
Os sistemas estratificantes foram introduzidos por C. Sáenz e K. Erdmann como uma

generalização dos módulos estandares e são conjuntos de módulos indecomponíveis que

respeitam certas condições de ortogonalidade. Neste trabalho, introduzimos a teoria básica

sobre sistemas estratificantes e apresentamos alguns resultados recentes sobre a construção

de sistemas estratificantes a partir de módulos 𝜏-rígidos. Em seguida, introduzimos a

noção de família encaixante de pares de torção, que permitirá generalizar a construção de

sistemas estratificantes para além daqueles obtidos por módulos 𝜏-rígidos. Mostraremos

que todo sistema estratificante pode ser obtido por meio dessa nova construção.

Palavras-chave: Sistemas Estratificantes, Teoria de Representações, Teoria de Torção,

Álgebras Quase-hereditárias.



ABSTRACT
Stratifying systems were introduced by C. Sáenz and K. Erdmann as a generalization of

standard modules and are sets of indecomposable modules that satisfy certain orthogonality

conditions. In this text, we introduce the basic theory of stratifying systems and present

some recent results on the construction of stratifying systems from 𝜏-rigid modules. We

then introduce the notion of nested families of torsion pairs, which will allow us to generalize

the construction of stratifying systems beyond those obtained from 𝜏-rigid modules. We

will show that every stratifying system can be obtained through this new construction.

Keywords: Stratifying Systems, Representation Theory, Torsion Theory, Quasi-hereditary

Algebras.
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Introduction

Stratifying systems were introduced by C. Sáenz and K. Erdmann as a generalization

of standard modules, extending the notion of exceptional sequences. While the category of

modules filtered by an exceptional sequence is equivalent to the subcategory of modules

filtered by standard modules in the category of a quasi-hereditary algebra, the category

of modules filtered by a stratifying system is likewise equivalent to the subcategory of

modules filtered by standard modules in the category of modules over a standardly stratified

algebra (25, Theorem 1.6).

Furthermore, the homological properties of these stratifying systems play an important

role in the context of quasi-hereditary algebras and standardly stratified algebras (20; 23),

attracting considerable interest from researchers in representation theory. Given a stratifying

system, it is well known that the full subcategory consisting of the trivial module and

all modules admitting a filtration by this system is closed under direct sums and direct

summands. In this regard, the pioneering work of V. Dlab and C. Ringel (24) serves as a

foundational reference. Moreover, for a novel characterization of quasi-hereditary algebras,

we refer the reader to (3).

Additionally, in the context of the structural analysis of the subcategory of filtered

modules, C. Ringel’s work (38) establishes that this subcategory is functorially finite in the

sense of Auslander-Smalø (9). Moreover, it is demonstrated that this subcategory contains

almost split sequences, providing a deeper insight into its homological properties. Recently,

R. Bautista, E. Pérez, and L. Salmerón have advanced this line of research (12), further

exploring the structure of almost split sequences in these subcategories. They also proved

that the category of filtered modules is either tame or wild, but not both. All of these results

are clearly underpinned by the existence of a stratifying system.

However, given a set of modules, to verify whether it forms a stratifying system, it

is often sufficient to directly check whether certain morphism properties and extension

conditions hold. Nevertheless, an important question is how to find a stratifying system.

Despite significant advances, with the exception of hereditary algebras, little is known

about the existence of non-trivial stratifying systems (defined by the standard modules)

in arbitrary algebras (18; 19). An important first step in this direction was made by O.



Mendoza and H. Treffinger (36), who demonstrated that it is possible to construct stratifying

systems with indecomposable summands from a certain quotient of a 𝜏-rigid module (36,

Theorem 3.4). However, since a basic 𝜏-rigid module 𝑀 has at most |𝐴𝐴| direct summands

(1, Proposition 1.3), the size of a stratifying system induced by 𝑀 is bounded by |𝐴𝐴|
(36, Theorem 3.4). This technique is noteworthy, as it forms the foundation for an idea we

introduce in this text. Specifically, from these stratifying systems, we can generate what

we call nested families of torsion pairs, with the stratifying system being intricately linked

to this family in a special way.

It is also important to highlight another aspect that motivated us to present the more

general definition of stratifying systems (see Definition 4.0.1). It is known that even in

representation-finite algebras it is possible to find stratifying systems of size greater than|𝐴𝐴| (29, Remark 2.7). In (41), H. Treffinger presents a stratifying system indexed by (ℕ,

≤), where ≤ is the natural order, demonstrating that a stratifying system can indeed have

infinite size. Since there does not always exist an order-preserving bijection between totally

ordered sets (𝐺,≤) and (𝐻,⪯) (even if 𝐺 and 𝐻 have the same cardinality), the possibility

of stratifying systems indexed by infinite ordered sets other than (ℕ,≤) further justifies the

need for this more general definition.

Our main result in this master’s thesis is to show that the construction of stratifying

systems can be done in a more general way by considering the concept of nested family of

torsion pairs, which is a collection of torsion pairs Γ = {(𝑘,𝑘)}𝑘∈𝐺 indexed by a totally

ordered set (𝐺,≤), satisfying 𝑘 ⊋ 𝑙 whenever 𝑘 < 𝑙 (see Definition 3.1.1).

This concept arises naturally, as every stratifying system induces at least two nested

families of torsion pairs (Corollary (4.2.3)). A stratifying system can belong to two types of

nested families of torsion pairs, both of which are induced by modules possessing special

properties. To facilitate understanding and exposition, we organize these modules into

certain special subcategories, which we denote by ∗(Γ) and in  ∗(Γ′) (see Definition

(3.1.3)).

The converse also holds: certain objects in these two subcategories induce stratifying

systems. More precisely, we can formulate this as follows. We show that, given a nested

family of torsion pairs Γ = {(𝑘,𝑘)}𝑘∈𝐺, if there exists a module 𝑀 ∈ †(Γ) (or in

 †(Γ), see Definition 4.2.5), we can obtain at least one stratifying system by selecting

indecomposable summands of each module 𝔉𝑘(𝑀) (or 𝔗𝑘(𝑀), respectively, see Definition

3.2.1), which is a quotient (or submodule, respectively) of 𝑀𝑘. Moreover, all stratifying

systems can be obtained in this way, as demonstrated by the results of the following two

theorems.

Theorem. (5, Theorem 4.8) Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family of torsion pairs and
let 𝑀 =

⨁
𝑘∈𝐺

𝑀𝑘 be a module.



1. If such a decomposition of 𝑀 is compatible in †(Γ), then 𝑀 induces at least one
stratifying system Θ = {Θ𝑘}𝑘∈𝐺 such that Θ𝑘 is a summand of 𝔉𝑘(𝑀).

2. If such a decomposition of 𝑀 is compatible in  †(Γ), then 𝑀 induces at least one
stratifying system Θ = {Θ𝑘}𝑘∈𝐺 such that Θ𝑘 is a summand of 𝔗𝑘(𝑀).

Theorem. (5, Theorem 4.9) Let Θ = {Θ𝑘}𝑘∈𝐺 be a stratifying system.

1. Then there exists a module 𝑀 ∈†(𝐴) such that Θ is induced by 𝑀 .

2. Then there exists a module 𝑁 ∈ †(𝐴) such that Θ is induced by 𝑁 .

The prerequisites for this text are basic knowledge of category theory (particularly

abelian and module categories), including projective, injective, and simple objects, the

notions of monomorphism and epimorphism, kernel, cokernel, as well as basic concepts

of top, and radical.

In Chapter 1, we establish the notation and present six sections that will aid in un-

derstanding the text. The first and most comprehensive one is about finite dimensional

𝑘-algebras, where we introduce the reader to the main results and techniques in the area,

such as the Auslander-Reiten quiver and the Auslander-Reiten translation, Gabriel’s theo-

rem, the category of representations, and the Jordan-Hölder theorem. We also provide a

brief introduction to Torsion Theory, 𝑡-Tilting Theory, and 𝑛-representation infinite alge-

bras. Finally, we include a section on filtered modules and an overview of quasi-hereditary

algebras and standardly stratified algebras.

In Chapter 2, we present the definitions of Ext-injective stratifying system (EISS, for

short), Ext-projective stratifying system (EPSS), and stratifying system (SS). We will

show that the concepts of EISS and SS are equivalent, in addition to proving some results

about the category of modules filtered by an SS and its relation to standardly stratified

algebras. Next, we present a historical overview of the development of the theory of

stratifying systems, where we chronologically outline the main articles and results on the

topic. We conclude the chapter by presenting the results obtained in (36), which relate

𝜏-rigid modules and stratifying systems.

In Chapter 3, we define the notion of a nested family of torsion pairs Γ (nested family, for

short), a central idea that will allow us to generalize the results from (36). The definition of a

nested family is strongly tied to the notion of a totally ordered set. Given a nested family, we

introduce subcategories of Mod𝐴, denoted by (Γ),  (Γ), ∗(Γ), and  ∗(Γ), whose

modules admit a certain ordered decomposition. We also define maps 𝔉 ∶ (Γ) ⟶
∗(Γ) and 𝔗 ∶ (Γ)⟶ ∗(Γ), called stratum and substratum, respectively, which will

be used in the following chapter to obtain stratifying systems from certain modules.



In Chapter 4, we provide a more general definition of stratifying systems, opening the

possibility for infinite stratifying systems not indexed by ℕ. We then show that the category

of modules filtered by this new definition satisfies the Jordan-Hölder property. Next, we

relate stratifying systems and nested families, showing that every stratifying system induces

at least two distinct nested families and that every stratifying system can be induced by

certain modules, thereby completing the results from (36). We conclude the chapter by

introducing the notion of expansions in nested families, which will allow us to show that

𝜏-rigid modules induce stratifying systems beyond those presented in (36), and we present

a stratifying system that cannot be indexed by (ℕ,≤), where ≤ is the natural order.



Chapter 1

Preliminaries

Throughout this master’s thesis, 𝐴 denote a finite dimensional 𝑘-algebra over an al-

gebraically closed field 𝑘. For a given algebra 𝐴 we denote by Mod𝐴 the category of

right 𝐴-modules and by mod𝐴 the category of finitely generated right 𝐴-modules. The

number of pairwise non-isomorphic indecomposable direct summands of 𝑀 ∈ mod𝐴 is

denoted by |𝑀|. If 𝑀 does not have two isomorphic direct summands, we say that 𝑀 is a

basic module. The Auslander-Reiten translation is denoted by 𝜏 and 𝐷 = Hom𝑘(−,𝑘) is

the duality functor. 𝐺 will denote a set with a total order ≤, and 𝐺𝑜𝑝 will denote the same

set with the total order ≤𝑜𝑝, where 𝑥 ≤𝑜𝑝 𝑦 in 𝐺𝑜𝑝 if and only if 𝑦 ≤ 𝑥 in 𝐺. 𝕀𝑛 will denote

the set {1,⋯ ,𝑛} with the natural order.

For a given class  ⊆ mod𝐴, we define

⊥ ∶= {𝑀 ∈ mod𝐴 | Hom𝐴(−,𝑀)| = 0}.
⊥ ∶= {𝑀 ∈ mod𝐴 | Hom𝐴(𝑀,−)| = 0}.

If  = {𝑀} for some 𝑀 ∈ mod𝐴, we will denote {𝑀}⊥ and ⊥{𝑀} simply by 𝑀⊥ and
⊥𝑀 , respectively. A module 𝑀 ∈  is called Ext-projective in  if Ext1

𝐴
(𝑀,−)| = 0.

Dually, it is called Ext-injective in  if Ext1
𝐴
(−,𝑀)| = 0.

For a given 𝑀 ∈ mod𝐴 we define

Fac(𝑀) ∶= {𝑋 ∈ mod𝐴 | ∃ an epimorphism 𝑀⊕𝑛 → 𝑋 for some 𝑛 ∈ ℕ}.

Sub(𝑀) ∶= {𝑋 ∈ mod𝐴 | ∃ a monomorphism 𝑋 → 𝑀⊕𝑛 for some 𝑛 ∈ ℕ}.

Given a class  ⊆ mod𝐴, we will denote by () and () the subclasses of  con-

sisting of the Ext-projective and Ext-injective 𝐴-modules in , respectively. We denote by

𝑃 () (respectively, 𝐼()) the direct sum of a complete set of representatives of the isomor-

phism classes of indecomposable Ext-projective (respectively, Ext-injective) modules in .

Given a class , we define the annihilator of , denoted by ann, as the subset of 𝐴



consisting of the elements that annihilate all the modules in . We say that  is sincere if

there are no nonzero idempotents in ann. We also say that  is faithful if ann = {0}.

We say that  is

1. Closed under direct sum if 𝑀,𝑁 ∈  ⟹ 𝑀
⨁

𝑁 ∈ .

2. Closed under summands if 𝑀
⨁

𝑁 ∈  ⟹ 𝑀,𝑁 ∈ .

3. Closed under extensions if 𝑀,𝑁 ∈  and

0⟶ 𝑀 ⟶ 𝐿 ⟶ 𝑁 ⟶ 0

implies 𝐿 ∈ .

4. Closed under submodules if there exists a monomorphism 𝑀 ⟶ 𝑁 with 𝑁 ∈ ,

then 𝑀 ∈ .

5. Closed under quotients if there exists an epimorphism 𝑀 ⟶ 𝑁 with 𝑀 ∈ , then

𝑁 ∈ .

We have that 𝑀⊕𝑛 ∶=
𝑛⨁

𝑗=1
𝑀 and we will denote by 𝑀 ′|𝑀 if 𝑀 ′ is a direct summand

of 𝑀 , that is, if there exists a module 𝑀 ′′ such that 𝑀 ≅ 𝑀 ′⨁𝑀 ′′. For a given 𝑀 =
𝑀

⊕𝛼1
1

⨁
⋯

⨁
𝑀

⊕𝛼𝑡

𝑡 ∈ mod𝐴 with 𝑀1,⋯ ,𝑀𝑡 indecomposable, we define

add(𝑀) = {𝑋 ∈ mod𝐴 | 𝑋 ≅ 𝑀
⊕𝑛1
1

⨁
⋯

⨁
𝑀

⊕𝑛𝑡

𝑡 for some 𝑛1,⋯ ,𝑛𝑡 ∈ ℕ∪{0}}.

If 𝑆 = {𝑀1,𝑀2,⋯ ,𝑀𝑡} is a set of indecomposable 𝐴-modules we also define

add(𝑆) = {𝑋 ∈ mod𝐴 | 𝑋 ≅ 𝑀
⊕𝑛1
1

⨁
⋯

⨁
𝑀

⊕𝑛𝑡

𝑡 for some 𝑛1,⋯ ,𝑛𝑡 ∈ ℕ∪{0}}.

Let  ⊆ mod𝐴 be a full subcategory and 𝑀 ∈ mod𝐴. A morphism 𝑓 ∶ 𝑋 ⟶ 𝑀

in mod𝐴 is a right -approximation if 𝑋 ∈  and Hom𝐴(𝑋′,𝑓 ) ∶ Hom𝐴(𝑋′,𝑋) ⟶
Hom𝐴(𝑋′,𝑀) is surjective for any 𝑋′ ∈ . The subcategory  is called contravariantly
finite if any 𝑀 ∈mod𝐴 admits a right -approximation. Dually, a morphism 𝑓 ∶𝑀 ⟶𝑋

in mod𝐴 is a left -approximation if 𝑋 ∈  and Hom𝐴(𝑓,𝑋′) ∶ Hom𝐴(𝑋,𝑋′) ⟶
Hom𝐴(𝑀,𝑋′) is surjective for any 𝑋′ ∈ . The subcategory  is called covariantly finite
if any 𝑀 ∈ mod𝐴 admits a left -approximation. It is said that  is functorially finite if

it is both contravariantly and covariantly finite.

1.1 Finite dimensional 𝑘-algebras
We are interested in studying categories of finitely generated modules mod𝐴, where 𝐴

is a finite dimensional 𝑘-algebra and 𝑘 is an algebraically closed field. In this section, we



will present some useful tools and techniques for this purpose, many of which are used

almost exclusively in this setting (such as the Auslander-Reiten translation and the duality

functor). For a comprehensive and detailed reading, we recommend (7) and (8).

Finite dimensional, connected and basic 𝑘-algebras

Let 𝐴 be an 𝑘-algebra, we say that 𝐴 is a finite dimensional 𝒌-algebra if 𝐴𝐴 is a finite

dimensional 𝑘-vector space. We denote by Mod𝐴 the category of right 𝐴-modules and

by Mod𝐴𝑜𝑝 the category of left 𝐴-modules, which can be viewed as the category of right

𝐴𝑜𝑝-modules, where 𝐴𝑜𝑝 is the opposite algebra of 𝐴, having the same elements as 𝐴 but

with the product of 𝑎,𝑏 ∈ 𝐴 defined as follows: 𝑎×𝑜𝑝 𝑏 = 𝑏𝑎 (where 𝑏𝑎 denotes the product

of 𝑏,𝑎 in 𝐴). We are interested in the full subcategory of Mod𝐴 consisting of finitely
generated 𝐴-modules, that is, right 𝐴-modules 𝑀 such that there exists an epimorphism

𝑓 ∶ 𝐴⊕𝑛 ⟶ 𝑀 for some 𝑛 ∈ ℕ. We will denote this subcategory by mod𝐴.

A 𝐴-module 𝑀 is finitely generated if and only if it is a finite dimensional 𝑘-vector

space. This result holds when we assume that 𝐴 is a finite dimensional 𝑘-algebra, but it

does not hold when 𝐴 is an infinite dimensional 𝑘-algebra. For example, consider 𝐴=ℂ[𝑥].
Clearly, 𝐴𝐴 is an infinite dimensional ℂ-vector space, yet 𝐴𝐴 is finitely generated over 𝐴.

We say that 𝐴 is a connected 𝑘-algebra if 𝐴 ≠ 0 and if there exists a 𝑘-algebra isomor-

phism 𝑓 ∶ 𝐴 ⟶ 𝐴1 ×𝐴2, then 𝐴1 = 0 or 𝐴2 = 0. The following proposition is useful for

determining whether an algebra is connected or not. We say that 𝑒 ∈ 𝐴 is idempotent if

𝑒2 = 𝑒, and we also say that an idempotent is central if 𝑒𝑎 = 𝑎𝑒 for all 𝑎 ∈ 𝐴.

Proposition 1.1.1. An 𝑘-algebra is connected if and only if its only central idempotents
are 0 and 1.

The next proposition shows that to study categories of finitely generated modules, we

can consider without loss of generality that 𝐴 is a connected 𝑘-algebra.

Proposition 1.1.2. Suppose that 𝐴 = 𝐴1 ×𝐴2. Then the category mod𝐴 is equivalent to
the product category mod𝐴1 ×mod𝐴2.

If 𝐴 is a finite dimensional 𝑘-algebra, then 𝐴𝐴 = 𝑃 (1)⊕𝑎1
⨁

𝑃 (2)⊕𝑎2
⨁

⋯
⨁

𝑃 (𝑛)⊕𝑎𝑛

decomposes as a direct sum of a finite number of indecomposable projective modules,

where 𝑎𝑗 ∈ ℕ for all 𝑗 = 1,2,⋯ ,𝑛 and 𝑃 (𝑗) ≇ 𝑃 (𝑖) if 𝑖 ≠ 𝑗. We say that 𝐴 is a basic
𝒌-algebra if 𝑎𝑗 = 1 for all 𝑗 = 1,2,⋯ ,𝑛, that is, if two indecomposable factors of 𝐴 are

non-isomorphic.

Let 𝐴 be a finite dimensional 𝑘-algebra such that 𝐴𝐴 = 𝑃 (1)⊕𝑎1
⨁

⋯
⨁

𝑃 (𝑛)⊕𝑎𝑛 ,

consider the 𝐴-module 𝑀 = 𝑃 (1)
⨁

𝑃 (2)
⨁

⋯
⨁

𝑃 (𝑛) and the 𝑘-algebra 𝐵 = End𝐴(𝑀),
we have that 𝐵 is a basic algebra. We also have that 𝐴 and 𝐵 are Morita equivalent, that



is, there is an equivalence of categories between mod𝐴 and mod𝐵. Therefore, to study the

category of finitely generated modules mod𝐴, we can assume without loss of generality

that 𝐴 is a finite dimensional 𝑘-algebra that is connected and basic.

Consider the 𝐴-module 𝐴𝐴 = 𝑃 (1)
⨁

𝑃 (2)
⨁

⋯
⨁

𝑃 (𝑛) where 𝑃 (𝑗) is indecompos-

able for 𝑗 = 1,2,⋯ ,𝑛. There exists a set of idempotents {𝑒1, 𝑒2,⋯ , 𝑒𝑛} such that 𝑃 (𝑗) = 𝑒𝑗𝐴,

where the 𝑒𝑗 are orthogonal, that is, 𝑒𝑖𝑒𝑗 = 0 if 𝑖 ≠ 𝑗, and the 𝑒𝑗 are primitive, that is, if

𝑒𝑗 = 𝑒′
𝑗
+ 𝑒′′

𝑗
with 𝑒′

𝑗
, 𝑒′′

𝑗
orthogonal idempotents, then 𝑒′

𝑗
= 0 or 𝑒′′

𝑗
= 0. Furthermore, such

a set is complete, that is, 1 = 𝑒1 + 𝑒2 +⋯+ 𝑒𝑛.

Path algebras

We can characterize all finite dimensional 𝑘-algebras that are basic and connected. To

do this, we start by defining a quiver.

A quiver is a quadruple 𝑄 = (𝑄0,𝑄1, 𝑠, 𝑡), where 𝑄0 is a set whose elements are called

vertices, 𝑄1 is a set whose elements are called arrows, and 𝑠, 𝑡 ∶ 𝑄1 ⟶ 𝑄0 are two

functions called source and target, respectively. Given an arrow 𝛼 ∈ 𝑄1, we say that the

start of 𝜶 is 𝑠(𝛼) and the end of 𝜶 is 𝑡(𝛼). If 𝑠(𝛼) = 𝑎 and 𝑡(𝛼) = 𝑏, we will denote this

situation by 𝛼 ∶ 𝑎 → 𝑏.

Let 𝑎,𝑏 ∈ 𝑄0. A path 𝛾 of length 𝑙(𝛾) ≥ 1 starting at 𝑎 and ending at 𝑏 is a sequence

(𝑎|𝛼1,𝛼2,⋯ ,𝛼𝑙|𝑏) where 𝛼𝑘 ∈ 𝑄1 for 𝑘 = 1,2,⋯ , 𝑙, 𝑠(𝛼1) = 𝑎, 𝑡(𝛼𝑙) = 𝑏, 𝑡(𝛼𝑘) = 𝑠(𝛼𝑘+1)
for 𝑘 = 1,2,⋯ , 𝑙−1 and 𝑙 = 𝑙(𝛾). We will denote such a path by 𝛼1𝛼2⋯𝛼𝑙. Furthermore,

for each vertex 𝑎 ∈ 𝑄0, we define a path of length 0, (𝑎||𝑎), denoted by 𝜖𝑎. For a path

𝛾 = (𝑎|𝛼1,𝛼2,⋯ ,𝛼𝑙|𝑏) we define 𝑠(𝛾) = 𝑎 and 𝑡(𝛾) = 𝑏.

Given a quiver 𝑄 and a field 𝑘, we define the path algebra 𝑘𝑄 as follows: 𝑘𝑄 is a

𝑘-vector space with a basis given by all paths of length 𝑙 ≥ 0 in 𝑄. The product is defined

as follows: if 𝛾1 = (𝑎|𝛼1,𝛼2,⋯ ,𝛼𝑙|𝑏) and 𝛾2 = (𝑐|𝛽1,𝛽2,⋯ ,𝛽𝑘|𝑑), then

𝛾1𝛾2 =
⎧⎪⎨⎪⎩
(𝑎|𝛼1,𝛼2,⋯ ,𝛼𝑙,𝛽1,⋯ ,𝛽𝑘|𝑑), if 𝑏 = 𝑐,

0, otherwise.

A relation in 𝑄 is a 𝑘-linear combination of paths of length 𝑙 ≥ 2 that have the same

start and the same end. That is, a relation 𝜌 is an element of 𝑘𝑄 of the form 𝜌 =
∑𝑛

𝑗=1𝜆𝑖𝛾𝑖,

where 𝜆𝑖 ∈ 𝑘 (not all zero), 𝑠(𝛾𝑖) = 𝑠(𝛾𝑘), 𝑡(𝛾𝑖) = 𝑡(𝛾𝑘), and 𝑙(𝛾𝑘) ≥ 2 for all 𝑖,𝑘 = 1,2,⋯ ,𝑛.

Given a quiver 𝑄, we denote by 𝑅𝑛 the ideal of 𝑘𝑄 consisting of elements of length 𝑛

(if 𝑛 = 1, we can think of 𝑅 as the ideal generated by the arrows). We say that an ideal 𝐼 of

𝑘𝑄 is admissible if 𝑅𝑚 ⊆ 𝐼 ⊆ 𝑅2 for some 𝑚 ∈ ℕ.

Note that if 𝑄 is a finite quiver (i.e., both 𝑄0 and 𝑄1 are finite sets) and 𝐼 is an admissible

ideal of 𝑘𝑄, then there exists a finite set of relations such that 𝐼 is generated by this set of



relations. The pair (𝑄,𝐼) will be called a quiver with relations, and we associate with it

the algebra 𝑘𝑄∕𝐼 , called the path algebra with relations.

We can now state a characterization of finite dimensional 𝑘-algebras that are connected

and basic.

Theorem 1.1.3 (Gabriel’s Theorem). Let 𝐴 be a finite dimensional, connected, basic
𝑘-algebra, where 𝑘 is an algebraically closed field. Then there exists a quiver 𝑄 and an
admissible ideal 𝐼 of 𝑘𝑄 such that 𝐴 ≅ 𝑘𝑄∕𝐼 .

An interesting fact is that if 𝐴 = 𝑘𝑄∕𝐼 , then to obtain 𝐴𝑜𝑝 it suffices to “reverse” the

direction of the arrows in 𝑄 and the relations in 𝐼 , that is, 𝐴𝑜𝑝 = 𝑘𝑄′∕𝐼 ′, where 𝑄′ is such

that 𝑄′
0 = 𝑄0 and 𝑄′

1 is such that 𝛼′ ∶ 𝑎 → 𝑏 ∈ 𝑄′
1 if and only if 𝛼 ∶ 𝑏 → 𝑎 ∈ 𝑄1, and 𝐼 ′

has the same relations as 𝐼 but with all paths reversed in direction.

Representations of quivers

Given a quiver with relations (𝑄,𝐼), we define a 𝒌-linear representation 𝑴 of (𝑸,𝑰)
as follows:

1. For each vertex 𝑎 ∈ 𝑄0, we associate a 𝑘-vector space 𝑀𝑎.

2. For each arrow 𝛼 ∶ 𝑎 → 𝑏 in 𝑄1, we associate a 𝑘-linear map 𝜑𝛼 ∶ 𝑀𝑎 ⟶ 𝑀𝑏

such that, if 𝜌 =
∑𝑛

𝑗=1𝜆𝑗𝛾𝑗 is a relation in 𝐼 , then 𝜑𝜌 ∶=
∑𝑛

𝑗=1𝜆𝑗𝜑𝛾𝑗
= 0, where

𝜑𝛾 = 𝜑𝛼𝑛
◦⋯◦𝜑𝛼2

◦𝜑𝛼1
if 𝛾 = 𝛼1𝛼2⋯𝛼𝑛.

Given two representations 𝑀 and 𝑁 , we define a morphism of representations
as follows: for each 𝑎 ∈ 𝑄0, we associate a 𝑘-linear map 𝑓𝑎 ∶ 𝑀𝑎 ⟶ 𝑁𝑎 such that

𝜑′
𝛼𝑓𝑎 = 𝑓𝑏𝜑𝛼, where 𝛼 ∶ 𝑎 → 𝑏 and 𝜑𝛼, 𝜑′

𝛼 are the maps defined in the representations 𝑀

and 𝑁 , respectively.

The composition of morphisms between representations is defined in the natural way:

if 𝑓 ∶ 𝑀 ⟶ 𝑁 and 𝑔 ∶ 𝑁 ⟶ 𝐿 are morphisms of representations, then 𝑔◦𝑓 ∶ 𝑀 ⟶ 𝐿

is given componentwise by (𝑔◦𝑓 )𝑎 = 𝑔𝑎◦𝑓𝑎 for each 𝑎 ∈ 𝑄0.

We say that a representation 𝑀 is finite dimensional if
⨁

𝑎∈𝑄0

𝑀𝑎 is a finite dimensional

𝑘-vector space. It is easy to see that the class of 𝑘-linear representations of (𝑄,𝐼) defines a

category, denoted by 𝑅𝑒𝑝𝑘(𝑄,𝐼), where the morphisms are morphisms of representations.

We denote by 𝑟𝑒𝑝𝑘(𝑄,𝐼) the full subcategory of 𝑅𝑒𝑝𝑘(𝑄,𝐼) whose objects are finite

dimensional representations.

We have the following theorem, which simplifies the study of the category mod𝐴.

Theorem 1.1.4. Let 𝐴 = 𝑘𝑄∕𝐼 be a finite dimensional, connected, basic 𝑘-algebra, where
𝑄 is a finite quiver, and 𝐼 is an admissible ideal of 𝑘𝑄. Then there exists a 𝑘-linear



equivalence of categories
𝐹 ∶ Mod𝐴 ⟶ 𝑅𝑒𝑝𝑘(𝑄,𝐼)

whose restriction defines an equivalence

𝐹 ∶ mod𝐴 ⟶ 𝑟𝑒𝑝𝑘(𝑄,𝐼).

Due to this equivalence, we will treat a 𝐴-module as synonymous with its 𝑘-linear

representation via this equivalence.

Projectives, Injectives and Simple modules

If 𝐴 is a finite dimensional 𝑘-algebra that is connected and basic, then Gabriel’s theorem

states that there exists a quiver with relations (𝑄,𝐼) such that 𝐴 ≅ 𝑘𝑄∕𝐼 . It is possible to

prove that 𝑄0 will be a finite set in this case. It is convenient to assume that 𝑄0 = 𝕀𝑛, and

in this case, we have that |𝐴𝐴| = 𝑛.

For each 𝑘 ∈ 𝕀𝑛, there exists an associated indecomposable projective 𝐴-module, which

we denote by 𝑃 (𝑘). Conversely, each indecomposable projective 𝐴-module is associated

with a vertex of 𝑄. Since there exists a primitive idempotent 𝑒𝑘 such that 𝑃 (𝑘) ≅ 𝑒𝑘𝐴, an

enumeration of the vertices of the quiver corresponds to an enumeration of a complete

set of pairwise orthogonal primitive idempotents. We also associate with each vertex the

simple 𝐴-module 𝑆(𝑘) = top𝑃 (𝑘). All simple modules are of this form.

Consider the duality functor 𝐷 ∶ mod𝐴 ⟶mod𝐴𝑜𝑝 given by 𝐷(−) = Hom𝑘(−,𝑘).
The functor 𝐷 establishes a contravariant equivalence between mod𝐴 and mod𝐴𝑜𝑝, whose

quasi-inverse will again be denoted by 𝐷 ∶mod𝐴𝑜𝑝 ⟶mod𝐴, where 𝐷(−) =Hom𝑘(−,𝑘).
The fact that the duality functor is a contravariant equivalence implies a (covariant) equiva-

lence between mod𝐴𝑜𝑝 and (mod𝐴)𝑜𝑝. This equivalence is false in the general case, where,

although (mod𝐴)𝑜𝑝 is an abelian category, it is not necessarily a category of modules.

Consider the projective 𝐴𝑜𝑝-module 𝐴𝑒𝑘. We have that 𝐼(𝑘) ∶= 𝐷(𝐴𝑒𝑘) is an inde-

composable injective 𝐴-module. All injective modules are of this form, and we have that

soc𝐼(𝑘) = 𝑆(𝑘).

Jordan-Hölder Theorem

Given a nonzero 𝑀 ∈ mod𝐴, there exists a finite chain

𝜂 ∶ 0 = 𝑀0 ⊆ 𝑀1 ⊆ ⋯ ⊆ 𝑀𝑚 = 𝑀

such that 𝑀𝑖∕𝑀𝑖−1 is isomorphic to a simple module 𝑆(𝑘𝑖) for some 𝑘𝑖 ∈ 𝕀𝑛, for all

𝑖 = 1,2,⋯ ,𝑚, where 𝑛 = |𝐴𝐴|. Such a chain is called a composition series. Given a

composition series 𝜂 of 𝑀 , we denote by [𝑀 ∶ 𝑆(𝑘)]𝜂 the number of quotients isomorphic

to 𝑆(𝑘) in 𝜂.



Theorem 1.1.5 (Jordan-Hölder theorem). Let 𝐴 be a finite dimensional 𝑘-algebra and
𝑀 ∈mod𝐴 a nonzero module, 𝜂 and 𝜂′ two composition series for 𝑀 . Then [𝑀 ∶𝑆(𝑘)]𝜂 =
[𝑀 ∶ 𝑆(𝑘)]𝜂′ for all 𝑘 = 1,2,⋯ ,𝑛.

We denote [𝑀 ∶ 𝑆(𝑘)] as the multiplicity [𝑀 ∶ 𝑆(𝑘)]𝜂 for any composition series of

𝑀 , and we say that 𝑆(𝑘) is a composition factor of 𝑀 if [𝑀 ∶ 𝑆(𝑘)] ≠ 0.

It is immediate that the value 𝑙(𝑀) =
∑𝑛

𝑘=1[𝑀 ∶ 𝑆(𝑘)] is well defined and does not

depend on the choice of the composition series. We call this value the length of 𝑴 and

say that 𝑀 has finite length. It is convenient to define 𝑙(0) = 0.

Length generalizes the notion of dimension. In fact, the rank-nullity theorem implies

that if

0⟶ 𝐿 ⟶ 𝑀 ⟶ 𝑁 ⟶ 0

is an exact sequence of 𝑘-vector spaces, then dim𝑀 = dim𝐿+dim𝑁 . Similarly, if such a

sequence is an exact sequence of 𝐴-modules, then 𝑙(𝑀) = 𝑙(𝐿)+ 𝑙(𝑁). Furthermore, we

have [𝑀 ∶ 𝑆(𝑘)] = [𝐿 ∶ 𝑆(𝑘)]+ [𝑁 ∶ 𝑆(𝑘)] for all 𝑘 = 1,2,⋯ ,𝑛.

Another important fact is that if 𝑀 ∈ mod𝐴, then 𝑀 is both artinian and noetherian.

We say that 𝑀 is artinian (respectively, noetherian) if every set of submodules of 𝑀 has

a minimal (respectively, maximal) element with respect to inclusion.

Homology

A morphism 𝑓 ∶ 𝑁 ⟶ 𝑀 is called left minimal if, for every ℎ ∶ 𝑀 ⟶ 𝑀 such that

ℎ𝑓 = 𝑓 , ℎ is an automorphism. Dually, such a morphism is called right minimal if, for

every 𝑔 ∶ 𝑁 ⟶ 𝑁 such that 𝑓𝑔 = 𝑓 , 𝑔 is an automorphism.

Given a module 𝑀 ∈ mod𝐴, there exist long exact sequences of the form

⋯ 𝑃2 𝑃1 𝑃0 𝑀 0

where 𝑃𝑗 is a projective module for every 𝑗. Such a sequence is called a projective
resolution. If all morphisms in a projective resolution are right minimal, we will refer

to it as a minimal projective resolution. It can be proven that the minimal projective

resolution always exists and is unique up to isomorphism.

We define the projective dimension of 𝑀 , denoted by pd(𝑀), as:

pd(𝑀) = sup{𝑚 ∣ 𝑃𝑚 ≠ 0},

where the 𝑃𝑚 are obtained from the minimal projective resolution. It is possible that

pd(𝑀) = ∞.

We also define the global dimension of the algebra, denoted by gl.dim(𝐴), as:

gl.dim(𝐴) = sup{pd(𝑀) ∣ 𝑀 ∈ mod𝐴}.



We will say that 𝐴 has finite global dimension if gl.dim(𝐴) < ∞, and we will say that

𝐴 has infinite global dimension otherwise.

Much can be said about the module category of an algebra when its global dimension is

known. For example, if gl.dim(𝐴) = 𝑚, then both Ext𝑗
𝐴
(−,𝑀) and Ext𝑗

𝐴
(𝑀,−) are equal

to 0 for all 𝑀 ∈ mod𝐴 and 𝑗 > 𝑚.

A particular case of strong interest is that of hereditary algebras. We say that 𝐴 is a

hereditary algebra if gl.dim(𝐴) ≤ 1, and, in particular, we say that 𝐴 is a semisimple
algebra if gl.dim(𝐴) = 0.

We can characterize hereditary algebras as those where every submodule of a projective

module is projective, and dually, where every quotient of an injective module is injective.

If 𝐴 = 𝑘𝑄∕𝐼 , then 𝐴 is hereditary if and only if 𝐼 = 0, that is, 𝐴 = 𝑘𝑄. Furthermore,

𝐴 is semisimple if and only if 𝐴 = 𝑘𝑄, where 𝑄 is a finite quiver with 𝑄1 = ∅.

Short exact sequences

Short exact sequences play a central role in the study of module categories and abelian

categories in general, being one of the most important tools.

Consider the following diagram:

𝑁 ′

0 𝐿 𝑀 𝑁 0

ℎ

𝑓 𝑔

where the bottom row is exact. It is possible to complete the diagram above to obtain the

pull-back diagram

0 𝐿 𝑀 ′ 𝑁 ′ 0

0 𝐿 𝑀 𝑁 0

1𝐿 ℎ

𝑓 𝑔

where the top row is exact, and the squares commute. If ℎ is an epimorphism, then the



diagram can be completed as follows:

0 0

𝐾 𝐾

0 𝐿 𝑀 ′ 𝑁 ′ 0

0 𝐿 𝑀 𝑁 0

0 0

1𝐾

1𝐿 ℎ

𝑓 𝑔

where both rows and columns are exact, and all squares commute.

Analogously, consider the following diagram:

0 𝐿 𝑀 𝑁 0

𝐿′

𝑓

ℎ′

𝑔

where the top row is exact. It can be completed to the push-out diagram

0 𝐿 𝑀 𝑁 0

0 𝐿′ 𝑀 ′ 𝑁 0

𝑓

ℎ′

𝑔

1𝑁

where both rows are exact, and the squares commute. If ℎ′ is a monomorphism, then we

obtain:
0 0

0 𝐿 𝑀 𝑁 0

0 𝐿′ 𝑀 ′ 𝑁 0

𝑄 𝑄

0 0

𝑓

ℎ′

𝑔

1𝑁

1𝑄

where both rows and columns are exact, and all squares commute.

We also have the theorem known as the Snake Lemma.



Theorem 1.1.6 (Snake Lemma). Let 𝐿,𝑀,𝑁,𝐿′,𝑀 ′,𝑁 ′ ∈ mod𝐴 and consider the fol-
lowing commutative diagram in which the two middle rows are exact.

ker 𝑓 ker 𝑔 kerℎ

𝐿 𝑀 𝑁 0

0 𝐿′ 𝑀 ′ 𝑁 ′

coker 𝑓 coker 𝑔 cokerℎ

𝛿

𝑓 𝑔 ℎ

Then there exists a morphism 𝛿 ∶ kerℎ ⟶ coker 𝑓 that makes the following sequence
exact:

ker 𝑓 ⟶ ker 𝑔 ⟶ kerℎ ⟶ coker 𝑓 ⟶ coker 𝑔 ⟶ cokerℎ.

Consider two exact sequences 𝜖 and 𝜖′ with the same endpoints. We say that 𝝐 and
𝝐′ are equivalent if there exists an isomorphism ℎ ∶ 𝑀 ⟶ 𝑀 ′ such that the following

diagram commutes:

𝜖 ∶ 0 𝐿 𝑀 𝑁 0

𝜖′ ∶ 0 𝐿 𝑀 ′ 𝑁 0

1𝐿 ℎ 1𝑁

We denote by 𝐸(𝑁,𝐿) the set of equivalence classes of exact sequences that begin with

𝐿 and end with 𝑁 , and we denote by [𝜖] the equivalence class containing 𝜖. It is possible

to endow the set 𝐸(𝑁,𝐿) with a 𝑘-vector space structure using pull-back and push-out

diagrams. For details on the construction of this structure, we recommend (10, Chapter I,

Section 5) or (37, Chapter VII). The zero element of the vector space 𝐸(𝑁,𝐿) is the class

of the split exact sequences, one of whose representatives is given by:

0 𝐿 𝐿
⨁

𝑁 𝑁 0𝑖 𝜋

where 𝑖 is the inclusion into the first coordinate, and 𝜋 is the projection onto the second.

It is known that there exists a 𝑘-vector space isomorphism between 𝐸(𝑁,𝐿) and

Ext1
𝐴
(𝑁,𝐿), such that Ext1

𝐴
(𝑁,𝐿) = 0 if and only if every exact sequence that begins with

𝐿 and ends with 𝑁 is split.

Consider a short exact sequence

0 𝐿 𝑀 𝑁 0



and a module 𝑀 ′ ∈ mod𝐴. The application of the functor Hom𝐴(𝑀 ′,−) to the above

exact sequence induces exact sequences of 𝑘-vector spaces:

0⟶ Hom𝐴(𝑀 ′,𝐿)⟶ Hom𝐴(𝑀 ′,𝑀)⟶ Hom𝐴(𝑀 ′,𝑁)

Ext𝑗
𝐴
(𝑀 ′,𝐿)⟶ Ext𝑗

𝐴
(𝑀 ′,𝑀) ⟶ Ext𝑗

𝐴
(𝑀 ′,𝑁)

for every 𝑗 ≥ 1. There also exist morphisms 𝛿 ∶ Hom(𝑀 ′,𝑁)⟶ Ext1
𝐴
(𝑀 ′,𝐿) and 𝛿𝑗 ∶

Ext𝑗
𝐴
(𝑀 ′,𝑁)⟶Ext𝑗+1

𝐴
(𝑀 ′,𝐿) for every 𝑗 ≥ 1 that “connect” all the above sequences into

a long exact sequence. These linear transformations are known as connecting morphisms
(it is possible to dualize the above result by applying the functor Hom𝐴(−,𝑀 ′)).

There exists an exact sequence

0 𝐿 𝑀 𝑁⊕𝑚 0

such that the connecting morphism 𝛿 ∶ Hom(𝑁,𝑁⊕𝑚)⟶ Ext1
𝐴
(𝑁,𝐿) is surjective. Such

a sequence is called a universal extension. The construction of the universal extension

proceeds as follows: we fix 𝑚 = dimExt1
𝐴
(𝑁,𝐿), take exact sequences 𝜖1, 𝜖2,⋯ , 𝜖𝑚 such

that [𝜖1], [𝜖2],⋯ , [𝜖𝑚] form a basis of 𝐸(𝑁,𝐿). Taking the direct sum of the 𝑚 exact

sequences, we obtain the following exact sequence:

0 𝐿⊕𝑚 𝐸 𝑁⊕𝑚 0

Defining ℎ ∶ 𝐿⊕𝑚 ⟶ 𝐿 as the map that takes the vector (𝑙1, 𝑙2,⋯ , 𝑙𝑚)𝑇 to 𝑙1 +⋯+ 𝑙𝑚,

we obtain the following push-out diagram:

0 𝐿⊕𝑚 𝐸 𝑁⊕𝑚 0

0 𝐿 𝑀 𝑁⊕𝑚 0

ℎ

The second row constitutes the universal extension we were looking for.

The Auslander-Reiten translation

We define the stable category modulo projectives mod𝐴, whose objects are the

same as those of mod𝐴, and whose morphisms are the same as in mod𝐴, modulo the

following relation: we say that 𝑓,𝑔 ∶ 𝑀 ⟶ 𝑁 in mod𝐴 are congruent if their difference

factors through a projective module, that is, if there exists a projective module 𝑃 and

morphisms ℎ1 ∶ 𝑀 ⟶ 𝑃 and ℎ2 ∶ 𝑃 ⟶ 𝑁 such that 𝑓 − 𝑔 = ℎ2ℎ1. In this case, we

denote 𝑓 ≅ 𝑔. Notice that every projective module 𝑃 becomes isomorphic to 0 in mod𝐴
since if 𝑓 ∶ 𝑃 ⟶ 𝑀 and 𝑔 ∶ 𝑀 ⟶ 𝑃 , then 𝑓 = 𝑓◦1𝑃 and 𝑔 = 1𝑃◦𝑔. Dually, we define

the stable category modulo injectives mod𝐴.



Consider the functor (−)∗ ∶= Hom𝐴(−,𝐴) ∶ proj𝐴 ⟶ proj𝐴𝑜𝑝, where proj𝐴 denotes

the full subcategory of mod𝐴 whose objects are projective 𝐴-modules, and consider the

minimal projective presentation of 𝑀 ∈ mod𝐴

𝑃1 𝑃0 𝑀 0
𝑑1 𝑑0

where 𝑑0 and 𝑑1 are minimal right morphisms. Applying the functor (−)∗ to 𝑑1 and taking

the cokernel, we obtain the transpose of 𝑴 , denoted by Tr 𝑀

𝑃 ∗
0 𝑃 ∗

1 Tr 𝑀 0.
𝑑∗
1

We define the Nakayama functor 𝜈 ∶ 𝐷◦(−)∗ ∶ proj𝐴 ⟶ inj𝐴, whose quasi-inverse

is given by 𝜈−1 ∶ (−)∗◦𝐷 ∶ inj𝐴 ⟶ proj𝐴, where inj𝐴 denotes the full subcategory of

mod𝐴 whose objects are injective 𝐴-modules. Applying the functor 𝜈 to 𝑑1 and taking the

kernel, we obtain the Auslander-Reiten translation 𝜏 ∶ mod𝐴 ⟶mod𝐴

0 𝜏(𝑀) 𝜈(𝑃1) 𝜈(𝑃0).
𝜈(𝑑1)

Notice that 𝜏 = 𝐷◦Tr. The Auslander-Reiten translation is a covariant functor that defines

an equivalence between the categories mod𝐴 and mod𝐴, whose quasi-inverse is given

by 𝜏−1 = Tr◦𝐷. In particular, 𝜏(𝑀) = 0 if and only if 𝑀 is a projective 𝐴-module.

Furthermore, if 𝑀,𝑁 ∉ proj𝐴 with 𝑀 ≇ 𝑁 both indecomposable, then 𝜏(𝑀) ≇ 𝜏(𝑁).
If 𝑀 ∉ proj𝐴 is indecomposable, then 𝜏(𝑀) is also indecomposable. Moreover, we

have that 𝜏(𝑀
⨁

𝑁) = 𝜏(𝑀)
⨁

𝜏(𝑁).
The Auslander-Reiten translation of 𝑀 establishes connections between exact se-

quences involving 𝑀 and morphisms involving 𝜏(𝑀). For example, if 𝑀 ∉ proj𝐴, then

Ext1
𝐴
(𝑀,𝜏(𝑀)) ≠ 0. In particular, there exists at least one non-split exact sequence

0⟶ 𝜏(𝑀)⟶ 𝑁 ⟶ 𝑀 ⟶ 0.

Similarly, if 𝑀 ∉ inj𝐴, then Ext1
𝐴
(𝜏−1(𝑀),𝑀) ≠ 0, and there exists at least one non-split

exact sequence that begin with 𝑀 and end with 𝜏−1(𝑀).
We also have the following formulas known as the Auslander-Reiten duality

Ext1
𝐴
(𝑀,𝑁) ≅ 𝐷Hom𝐴(𝜏−1(𝑁),𝑀) ≅ 𝐷Hom𝐴(𝑁,𝜏(𝑀))

where Hom𝐴(𝑀,𝑁) and Hom𝐴(𝑀,𝑁) denote the set of morphisms between 𝑀 and 𝑁

in the categories mod𝐴 and mod𝐴, respectively. In particular, if 𝐴 is a hereditary algebra,

the Auslander-Reiten duality simplifies to

Ext1
𝐴
(𝑀,𝑁) ≅ 𝐷Hom𝐴(𝜏−1(𝑁),𝑀) ≅ 𝐷Hom𝐴(𝑁,𝜏(𝑀)).



The Auslander-Reiten quiver

We say that 𝐴 is a representation-finite algebra if Ind(𝐴) is a finite set, where Ind(𝐴)
denotes a complete set of representatives of the isomorphism classes of indecomposable

𝐴-modules in mod𝐴. Otherwise, we say that 𝐴 is a representation-infinite algebra.

We can characterize representation-finite hereditary algebras as those of the form

𝐴 = 𝑘𝑄, where the underlying graph of 𝑄 is one of the following cases, known as Dynkin
diagrams:

𝔸𝑛 ∙ ∙ ⋯ ∙ ∙ 𝑛 ≥ 1

∙

𝔻𝑛 ∙ ∙ ∙ ⋯ ∙ 𝑛 ≥ 4

∙

𝔼6 ∙ ∙ ∙ ∙ ∙

∙

𝔼7 ∙ ∙ ∙ ∙ ∙ ∙

∙

𝔼8 ∙ ∙ ∙ ∙ ∙ ∙ ∙

The underlying graph of a quiver 𝑄, denoted by 𝑄̄, is defined as follows: the vertices of 𝑄̄

coincide with the set 𝑄0, and the edges from 𝑎 to 𝑏 (with 𝑎,𝑏 ∈ 𝑄0) are in bijection with

the arrows 𝛼 ∶ 𝑎 → 𝑏 and 𝛽 ∶ 𝑏 → 𝑎. We can imagine obtaining the underlying graph by

“forgetting” the directions of the arrows in 𝑄.

Let 𝑋,𝑌 ∈ mod𝐴 be two indecomposable modules. We define 𝐫𝐚𝐝𝑨(𝑿,𝒀 ) as the

𝑘-vector space of non-invertible morphisms 𝑓 ∶𝑋 ⟶ 𝑌 . For a fixed 𝑛 > 1, we also define

rad𝑛
𝐴
(𝑋,𝑌 ) as the 𝑘-vector space of morphisms in mod𝐴 of the form 𝑓𝑛⋯𝑓2𝑓1, where

𝑓𝑘 ∶ 𝑍𝑘 ⟶ 𝑍𝑘+1 with 𝑍1 = 𝑋, 𝑍𝑛+1 = 𝑌 , and 𝑓𝑘 ∈ rad𝐴(𝑍𝑘,𝑍𝑘+1) for all 𝑘 = 1,2,⋯ ,𝑛.

Finally, we define Irr(𝑋,𝑌 ) = rad𝐴(𝑋,𝑌 )∕rad2𝐴(𝑋,𝑌 ), called the space of irreducible
morphisms from 𝑋 to 𝑌 .



Given a finite dimensional 𝑘-algebra 𝐴, we define the Auslander-Reiten quiver
Γ(mod𝐴) as follows: the set of vertices is given by 𝑄0 = Ind(𝐴). The number of arrows

between 𝑀,𝑁 ∈ Ind𝐴 corresponds to the dimension of the 𝑘-vector space Irr(𝑀,𝑁).
Note that the Auslander-Reiten quiver of an algebra is finite if and only if 𝐴 is a

representation-finite algebra. If this is the case and furthermore 𝐴 is a connected algebra,

then the Auslander-Reiten quiver will be connected.

As an example, consider 𝐴 = 𝑘𝑄, where 𝑄 is the following quiver:

1 2 3

We have that #Ind(𝐴) = 6. The Auslander-Reiten quiver has only one component and is

given by:
𝑃 (1) 𝑆(2) 𝐼(3)

𝑃 (2) 𝐼(2)

𝑃 (3)
where the solid lines represent linearly independent irreducible morphisms. We have that

𝑃 (1) = 𝑆(1), 𝑃 (3) = 𝐼(1), and 𝐼(3) = 𝑆(3).
It is convenient, but not mandatory, to represent the Auslander-Reiten translates of the

indecomposable modules in the Auslander-Reiten quiver. The dashed arrows point to the

respective translates. Notice that no dashed arrow originates from a projective module,

just as none ends at an injective module.

Another interesting example is the Kronecker algebra, given by 𝐴 = 𝑘𝑄, where 𝑄 is

the following quiver:

1 2

Since 𝐴 is a hereditary algebra and 𝑄̄ is not a Dynkin diagram, we have that 𝐴 is a

representation-infinite algebra, and consequently, the Auslander-Reiten quiver of 𝐴 will be

infinite.

1.2 Torsion Theory
Torsion Theory in abelian categories was introduced by Dickson in (22) as a categorical

generalization of the concept of torsion abelian groups. The results presented here can be

found in (8, Chapter VI).

Definition 1.2.1. A pair ( , ) of full subcategories of mod𝐴 is called a torsion pair
if  = ⊥ and  =  ⊥.  and  are called the torsion class and torsion-free class,
respectively.



The next proposition provides a characterization of torsion classes and torsion-free

classes.

Proposition 1.2.2. 1. Let  be a full subcategory of mod𝐴. The following conditions
are equivalent:

a)  is the torsion class of some torsion pair ( , ) in mod𝐴.

b)  is closed under quotients, direct sums and extensions.

2. Let  be a full subcategory of mod𝐴. The following conditions are equivalent:

a)  is the torsion-free class of some torsion pair ( , ) in mod𝐴.

b)  is closed under submodules, direct products and extensions.

For every 𝑀 ∈ mod𝐴, there exists a short exact sequence (unique, up to isomorphism

of exact sequences)

0⟶ 𝑡(𝑀)⟶ 𝑀 ⟶ 𝑓 (𝑀)⟶ 0

such that 𝑡(𝑀) is the maximal submodule of 𝑀 contained in  and 𝑓 (𝑀) ∈  . This

exact sequence, called canonical short exact sequence defines covariant functors 𝑡(−) ∶
mod𝐴 ⟶mod𝐴 and 𝑓 (−) ∶ mod𝐴 ⟶mod𝐴, called the torsion functor and torsion-
free functor, respectively. We have that 𝑡(𝑀

⨁
𝑁) = 𝑡(𝑀)

⨁
𝑡(𝑁) and 𝑓 (𝑀

⨁
𝑁) =

𝑓 (𝑀)
⨁

𝑓 (𝑁).
We have that 𝑡(𝑀)⟶ 𝑀 is a  -right approximation of 𝑀 and 𝑀 ⟶ 𝑓 (𝑀) is a

 -left approximation of 𝑀 . In particular,  is always contravariantly finite and  is always

covariantly finite.

A torsion pair ( , ) such that each indecomposable 𝐴-module lies either in  or in 

is called splitting. The following proposition characterizes splitting torsion pairs:

Proposition 1.2.3. Let ( , ) be a torsion pair in mod𝐴. The following conditions are
equivalent:

1. ( , ) is splitting.

2. For each 𝐴-module 𝑀 , the canonical sequence for 𝑀 splits.

3. Ext1
𝐴
(𝑁,𝑀) = 0 for all 𝑀 ∈  and 𝑁 ∈  .

4. If 𝑀 ∈  , then 𝜏−1(𝑀) ∈  .

5. If 𝑁 ∈  , then 𝜏(𝑁) ∈  .



Proposition 1.2.4. 1. Assume that 𝑀 is Ext-projective in Fac(𝑀), then (Fac(𝑀),𝑀⊥)
is a torsion pair.

2. Assume that 𝑀 is Ext-injective in Sub(𝑀), then (⊥𝑀,Sub(𝑀)) is a torsion pair.

It is known that if  = Fac(𝑀) is a torsion class for some 𝑀 ∈ mod𝐴, then  = 𝑀⊥;

similarly, if  = Sub(𝑀) is a torsion-free class, then  = ⊥𝑀 . If  is a class in mod𝐴,

then the smallest torsion class containing  is given by ( , ), where  = ⊥ and  = ⊥ .

We will denote the smallest torsion class containing  as 𝖳(). Analogously, the smallest

torsion-free class containing  is given by ( , ), where  = ⊥ and  =  ⊥. We will

denote the smallest torsion-free class containing  as 𝖥(). It is known that if  is a torsion

class containing , then 𝖳() ⊆  . Similarly, if  is a torsion-free class containing , then

𝖥() ⊆  . Proposition 1.3.4 provides a characterization of torsion classes of the form Fac
and torsion-free classes of the form Sub.

1.3 𝜏-Tilting Theory
𝜏-Tilting Theory was introduced by T. Adachi, O. Iyama, and I. Reiten in (1) as a

generalization of Tilting Theory and is strongly related to Torsion Theory. We can think

of 𝜏-Tilting Theory as “filling the gaps” in Tilting Theory in the non-hereditary case, as

when 𝐴 is a hereditary algebra, the theories coincide. For a review of Tilting Theory, we

recommend Chapter VI of (8). We begin by defining tilting and 𝜏-tilting modules.

Definition 1.3.1. Let 𝐴 be an 𝑘-algebra. A 𝐴-module 𝑇 is called a tilting moduleif the
following conditions are satisfied:

1. pd 𝑇 ≤ 1.

2. Ext1
𝐴
(𝑇 ,𝑇 ) = 0.

3. There exists a short exact sequence

0⟶ 𝐴𝐴 ⟶ 𝑇0 ⟶ 𝑇1 ⟶ 0

with 𝑇0,𝑇1 ∈ add(𝑇 ).

A module satisfying conditions 1 and 2 of the definition above is called a partial tilting
module. It is possible to prove that if 𝑇 is a tilting module, then |𝑇 | = |𝐴𝐴|. Moreover,

if 𝑇 is a partial tilting module, then there exists a tilting module 𝑈 such that 𝑇 |𝑈 and

Fac(𝑈 ) = {𝑀 | Ext1
𝐴
(𝑇 ,𝑀) = 0}. Such a module is called the Bongartz completion of

𝑇 . Dually, one can define cotilting and partial cotilting modules.



Definition 1.3.2. 1. We call 𝑀 in mod𝐴 𝝉-rigid if Hom𝐴(𝑀,𝜏𝑀) = 0.

2. We call 𝑀 in mod𝐴 𝝉-tilting (respectively, almost complete 𝝉-tilting) if 𝑀 is 𝜏-rigid
and |𝑀| = |𝐴𝐴| (respectively, |𝑀| = |𝐴𝐴|−1).

3. We call 𝑀 in mod𝐴 support 𝝉-tilting if there exists an idempotent 𝑒 of 𝐴 such that
𝑀 is a 𝜏-tilting (𝐴∕⟨𝑒⟩)-module.

Dually, 𝑀 is said to be 𝝉−-rigid if Hom𝐴(𝜏−1𝑀,𝑀) = 0. All the above definitions

and subsequent results can be dualized for 𝜏−-rigid modules. Just like tilting modules,

every 𝜏-rigid module is a direct summand of a 𝜏-tilting module. Furthermore, we have

that if 𝑀 is a 𝜏-rigid module, then |𝑀| ≤ |𝐴𝐴|.
Recall that a 𝐴-module 𝑀 is said to be sincere if no nonzero idempotent annihilates

𝑀 , which is equivalent to every simple module appearing as a composition factor of 𝑀 .

A module 𝑀 is said to be faithful if ann𝑀 = 0. The next proposition relates tilting and

𝜏-rigid modules.

Proposition 1.3.3. (1, Proposition 2.2)

1. 𝜏-tilting modules are precisely sincere support 𝜏-tilting modules.

2. Tilting modules are precisely faithful support 𝜏-tilting modules.

3. Any 𝜏-tilting (respectively, 𝜏-rigid) 𝐴-module 𝑇 is a tilting (respectively, partial
tilting) (𝐴∕ann𝑇 )-module.

Proposition 1.3.4. (1, Proposition 1.1) Let ( , ) be a torsion pair in mod𝐴. Then the
following conditions are equivalent.

1.  is functorially finite.

2.  is functorially finite.

3.  = Fac(𝑋) for some 𝑋 in mod𝐴.

4.  = Sub(𝑌 ) for some 𝑌 in mod𝐴.

5. 𝑃 ( ) is a tilting (𝐴∕ann  )-module.

6. 𝐼( ) is a cotilting (𝐴∕ann  )-module.

7.  = Fac𝑃 ( ).

8.  = Sub𝐼( ).



Proposition 1.3.5. (11, Proposition 5.8) The following statements are equivalent for a
pair of modules 𝑀,𝑁 ∈ mod𝐴.

1. Ext1
𝐴
(𝑀,𝑁 ′′) = 0 if 𝑁 ′′ ∈ Fac(𝑁).

2. Hom𝐴(𝑁,𝜏𝑀) = 0.

Theorem 1.3.6. (11, Theorem 5.10) If 𝑀 is 𝜏-rigid, then Fac(𝑀) is a functorially finite
torsion class and 𝑀 is Ext-projective in Fac(𝑀).

Lemma 1.3.7. (15, Lemma 4.6) If 𝑋 is an indecomposable 𝐴-module such that 𝑋
⨁

𝑈

is 𝜏-rigid, then either 𝑓 (𝑋) is indecomposable or 𝑓 (𝑋) = 0, where 𝑓 is the torsion-free
functor with respect to the torsion pairs (Fac(𝑈 ),𝑈⊥). We have 𝑓 (𝑋) = 0 if and only if 𝑋

is in Fac(𝑈 ).

We denote by s𝜏-tilt 𝐴 (respectively, 𝜏-tilt and tilt 𝐴) the set of isomorphism classes

of basic support 𝜏-tilting 𝐴-modules (respectively, 𝜏-tilting and tilting 𝐴-modules). We

also denote by f-tors 𝐴 (respectively, sf-tors 𝐴 and ff-tors 𝐴) the set of functorially finite

(respectively, sincere functorially finite and faithful functorially finite) torsion classes in

mod𝐴.

Theorem 1.3.8. (1, Theorem 2.7, Corollary 2.8) There are bijections

1. s𝜏-tilt 𝐴 ⟷ f-tors 𝐴.

2. 𝜏-tilt 𝐴 ⟷ sf-tors 𝐴.

3. tilt 𝐴 ⟷ ff-tors 𝐴.

In all cases, the bijection is given by 𝑇 ↦ Fac(𝑇 ) and  ↦ 𝑃 ( ).

Proposition 1.3.9. (1, Proposition 2.9) Let  be a functorially finite torsion class and 𝑈 a
𝜏-rigid 𝐴-module. Then 𝑈 ∈ add(𝑃 ( )) if and only if Fac(𝑈 ) ⊆  ⊆ ⊥(𝜏𝑈 ).

Theorem 1.3.10 (Bongartz Completion). (1, Theorem 2.10) Let 𝑇 be a 𝜏-rigid 𝐴-module.
Then  = ⊥(𝜏𝑇 ) is a sincere functorially finite torsion class and 𝑃 ( ) is a 𝜏-tilting 𝐴-
module satisfying 𝑇 ∈ add(𝑃 ( )) and Fac(𝑃 ( )) = ⊥(𝜏𝑃 ( )).

We call 𝑇 ∶= 𝑃 (⊥(𝜏𝑇 )) the Bongartz completion of 𝑻 .

Theorem 1.3.11. (1, Theorem 2.12) The following are equivalent for a 𝜏-rigid 𝐴-module
𝑀 .

1. 𝑀 is 𝜏-tilting.



2. ⊥(𝜏𝑀) = Fac(𝑀).

Definition 1.3.12. Let (𝑀,𝑃 ) be a pair with 𝑀 ∈ mod𝐴 and 𝑃 ∈ proj 𝐴.

1. We call (𝑀,𝑃 ) a 𝝉-rigid pair if 𝑀 is 𝜏-rigid and Hom𝐴(𝑃 ,𝑀) = 0.

2. We call (𝑀,𝑃 ) a support 𝝉-tilting pair (respectively, almost complete support 𝝉-
tilting pair) if (𝑀,𝑃 ) is a 𝜏-rigid pair and |𝑀|+ |𝑃 | = |𝐴𝐴| (respectively, |𝑀|+|𝑃 | = |𝐴𝐴|−1).

Proposition 1.3.13. (1, Proposition 2.17) Let 𝑇 be a basic 𝜏-rigid module which is not
𝜏-tilting. Then there are at least two basic support 𝜏-tilting modules which have 𝑇 as a
direct summand.

We will say that the 𝜏-rigid pair (𝑈,𝑄) is a direct summand of (𝑇 ,𝑃 ) if 𝑈 |𝑇 and 𝑄|𝑃 .

Theorem 1.3.14. (1, Theorem 2.18) Any basic almost complete support 𝜏-tilting pair
(𝑈,𝑄) is a direct summand of exactly two basic support 𝜏-tilting pairs (𝑇 ,𝑃 ) and (𝑇 ′,𝑃 ′).
Moreover we have {Fac(𝑇 ),Fac(𝑇 ′)} = {Fac(𝑈 ),⊥(𝜏𝑈 )∩𝑄⊥}.

Definition 1.3.15 (Mutation). Two basic support 𝜏-tilting pairs (𝑇 ,𝑃 ) and (𝑇 ′,𝑃 ′) are
said to be mutations of each other if there exists a basic almost complete support 𝜏-
tilting pair (𝑈,𝑄) which is a direct summand of (𝑇 ,𝑃 ) and (𝑇 ′,𝑃 ′). In this case we write
(𝑇 ′,𝑃 ′) = 𝜇𝑋(𝑇 ,𝑃 ) or simply 𝑇 ′ = 𝜇𝑋(𝑇 ) if 𝑋 is an indecomposable 𝐴-module satisfying
either 𝑇 = 𝑈

⨁
𝑋 or 𝑃 = 𝑄

⨁
𝑋.

Let (𝑇 ,𝑃 ) be a basic support 𝜏-tilting pair and 𝑋 an indecomposable direct summand

of either 𝑇 or 𝑃 .

1. If 𝑋 is a direct summand of 𝑇 , precisely one the following holds.

a) There exists an indecomposable 𝐴-module 𝑌 such that 𝑋 ≇ 𝑌 and 𝜇𝑋(𝑇 ,𝑃 ) =
(𝑇 ∕𝑋

⨁
𝑌 ,𝑃 ) is a basic support 𝜏-tilting pair.

b) There exists an indecomposable projective 𝐴-module 𝑌 such that 𝜇𝑋(𝑇 ,𝑃 ) =
(𝑇 ∕𝑋,𝑃

⨁
𝑌 ) is a basic support 𝜏-tilting pair.

2. If 𝑋 is a direct summand of 𝑃 , there exists an indecomposable 𝐴-module 𝑌 such

that 𝜇𝑋(𝑇 ,𝑃 ) = (𝑇
⨁

𝑌 ,𝑃∕𝑋) is a basic support 𝜏-tilting pair.

Proposition 1.3.16. (1, Proposition 2.22) Let 𝑇 = 𝑋
⨁

𝑈 be a basic 𝜏-tilting 𝐴-module,
with 𝑋 indecomposable. Then exactly one of ⊥(𝜏𝑈 ) ⊆ ⊥(𝜏𝑋) and 𝑋 ∈ Fac(𝑈 ) holds.

Proposition 1.3.17. (1, Proposition 2.28) Let 𝑇 = 𝑋
⨁

𝑈 be a basic 𝜏-tilting 𝐴-module,
with 𝑋 indecomposable. Then the following conditions are equivalent:



1. ⊥(𝜏𝑈 ) ⊆ ⊥(𝜏𝑋).

2. 𝑇 is the Bongartz completion of 𝑈 .

Theorem 1.3.18. (21, Theorem 3.1) Let 𝐴 be a finite dimensional algebra and 𝑀 a support
𝜏-tilting 𝐴-module. Then, the following statements hold:

1. Let  be a torsion class in mod𝐴 such that  ⊊ Fac(𝑀). Then, there exists 𝑁 ∈
s𝜏-tilt 𝐴-module satisfying the following conditions:

a) The support 𝜏-tilting 𝐴-modules 𝑀 and 𝑁 are mutation of each other.

b) We have  ⊆ Fac(𝑁) ⊊ Fac(𝑀).

2. Let  be a torsion class in mod𝐴 such that Fac(𝑀) ⊊  . Then, there exists 𝐿 ∈
s𝜏-tilt 𝐴-module satisfying the following conditions:

a) The support 𝜏-tilting 𝐴-modules 𝑀 and 𝐿 are mutation of each other.

b) We have Fac(𝑀) ⊊ Fac(𝐿) ⊆  .

1.4 𝑛-Representation infinite algebras
𝑛-representation infinite algebras were introduced by M. Herschend, O. Iyama, and S.

Oppermann in (26). One of the central motivations in higher Auslander-Reiten theory is to

generalize the classical notion of representation-finite algebras. In this context, the class of

𝑛-representation finite algebras arises naturally as a higher analog of representation-finite

hereditary algebras. An algebra 𝐴 of global dimension 𝑛 is called 𝑛-representation finite

if for every indecomposable projective module 𝑃 , there exists an integer 𝑙𝑃 ≥ 0 such that

𝜈
−𝑙𝑃
𝑛 (𝑃 ) is an indecomposable injective module. Here, 𝜈𝑛 ∶= 𝜈◦[−𝑛] is defined as the

composition of the classical Nakayama functor 𝜈 =𝐷Hom𝐴(−,𝐴) and the [−𝑛] shift in the

bounded derived category 𝑏(modΛ). Thus for 𝑛 = 1 the notion of 1-representation finite

algebras coincides with the classical notion of representation finite hereditary algebras.

In analogy with the classical case, it is natural to ask what should play the role of

representation-infinite algebras in higher dimensions.

Let 𝑛 be a positive integer, and let 𝐴 be a connected, finite dimensional 𝑘-algebra

which has global dimension at most 𝑛 and 𝑏(mod𝐴) it’s bounded derived category (for

an introduction to derived categories, see (42, Chapter III)). The Nakayama functors are

defined as follows

𝜈 ∶= 𝐷𝑅Hom𝐴(−,𝐴) ∶𝑏(mod𝐴)⟶𝑏(mod𝐴).

𝜈−1 ∶= 𝑅Hom𝐴𝑜𝑝(𝐷−,𝐴) ∶𝑏(mod𝐴)⟶𝑏(mod𝐴).



They are quase-inverse each other. We also define the functors

𝜈𝑛 ∶= 𝜈◦[−𝑛] ∶𝑏(mod𝐴)⟶𝑏(mod𝐴).

𝜈−1𝑛 ∶= [𝑛]◦𝜈−1 ∶𝑏(mod𝐴)⟶𝑏(mod𝐴).

Definition 1.4.1. Let 𝑛 be a positive integer. A finite dimensional algebra of global
dimension at most 𝑛 is called 𝒏-representation infinite if any indecomposable projective
𝐴-module 𝑃 satisfies that 𝜈

−𝑗
𝑛 (𝑃 ) is a module (i. e. concentrad in degree 0) for all 𝑗 ≥ 0.

Proposition 1.4.2. (26, Proposition 2.3 (b)) If 𝐴 is an 𝑛-representation infinite algebra,
then Hom𝑏(mod𝐴)(𝜈𝑖

𝑛(𝐴), 𝜈𝑗
𝑛(𝐴)) = 0 if 𝑖 < 𝑗.

Proposition 1.4.2 is equivalent to Hom𝑏(mod𝐴)(𝜈𝑖
𝑛(𝐷𝐴), 𝜈𝑗

𝑛(𝐷𝐴)) = 0 if 𝑖 > 𝑗. Note

that Hom𝑏(mod𝐴)(𝜈𝑖
𝑛(𝐴), 𝜈𝑗

𝑛(𝐴)) = 0 implies that Hom𝐴(𝜈𝑖
𝑛(𝐴), 𝜈𝑗

𝑛(𝐴)) = 0.

Proposition 1.4.3. (26, Proposition 2.9) The following conditions are equivalent.

(a) 𝐴 is an 𝑛-representation infinite algebra.

(b) 𝜈−𝑖
𝑛 (𝐴) ∈ mod𝐴 for any 𝑖 ≥ 0 and 𝐴 has global dimension at most 𝑛.

(c) 𝜈𝑖
𝑛(𝐷𝐴) ∈ mod𝐴 for any 𝑖 ≥ 0 and 𝐴 has global dimension at most 𝑛.

Let 𝒫 ∶= 𝑎𝑑𝑑{𝜈−𝑖
𝑛 (𝐴) | 𝑖 ≥ 0} and ℐ ∶= 𝑎𝑑𝑑{𝜈𝑖

𝑛(𝐷(𝐴)) | 𝑖 ≥ 0} be two full subcate-

gories of mod𝐴. We call modules in 𝒫 (respectively, ℐ) 𝒏-preprojective (respectively,

𝒏-preinjective) modules.

Proposition 1.4.4. (26, Proposition 4.10) Let 𝐴 be an 𝑛-representation infinite algebra,

with 𝐴𝐴 =
𝑁⨁

𝑗=1
𝑃 (𝑗). The following assertions hold.

(a) We have a bijection from 𝕀𝑁 ×ℤ≥0 to the set of indecomposable modules in 𝒫 given
by (𝑗, 𝑖)↦ 𝜈−𝑖

𝑛 (𝑃 (𝑗)).

(b) We have a bijection from 𝕀𝑁 ×ℤ≥0 to the set of indecomposable modules in ℐ given
by (𝑗, 𝑖)→ 𝜈𝑖

𝑛(𝐷(𝑃 (𝑗))).

(c) Hom𝐴(ℐ,𝒫) = 0.

(d) Ext𝑗
𝐴
(𝒫∨ℐ,𝒫∨ℐ) = 0 for any 𝑗 with 0 < 𝑗 < 𝑛.

An example of an 𝑛-representation infinite algebra is the Beilinson algebra 𝐴 = 𝑘𝑄∕𝐼 ,

where 𝑄 is the following quiver:



1 2 3 𝑛 𝑛+1

𝑎10

𝑎1𝑛

⋮

𝑎20

𝑎2𝑛

⋮ ⋯

𝑎𝑛
0

𝑎𝑛
𝑛

⋮

and 𝐼 is the ideal generated by 𝑎𝑘
𝑖
𝑎𝑘+1

𝑗
− 𝑎𝑘

𝑗
𝑎𝑘+1

𝑖
for all 𝑘 ∈ 𝕀𝑛−1 and 𝑖, 𝑗 ∈ 𝕀𝑛 ∪{0} (26,

Example 2.15). Note that |𝐴𝐴| = 𝑁 = 𝑛+1.

1.5 Filtered modules
Given a class  of modules, we denote by  () the full subcategory of mod𝐴 that

contains the zero module and the nonzero modules 𝑀 such that there is a finite chain

𝜂 ∶ 0 = 𝑀0 ⊆ 𝑀1 ⊆ ⋯ ⊆ 𝑀𝑛 = 𝑀

of submodules of 𝑀 such that 𝑀𝑖∕𝑀𝑖−1 is isomorphic to a module in  for all 𝑖= 1,2,⋯ ,𝑛.

We say that a nonzero module in  () is a -filtered module and that 𝜂 is a -filtration
of M.

We have that  () is closed under extensions. Indeed, consider the short exact sequence

0 𝐿 𝑀 𝑁 0𝑓 𝑔

with 𝐿,𝑁 ∈  (). In fact, if

𝜂𝐿 ∶ 0 = 𝐿0 ⊆ 𝐿1 ⊆ 𝐿2 ⊆ ⋯ ⊆ 𝐿𝑡

and

𝜂𝑁 ∶ 0 = 𝑁0 ⊆ 𝑁1 ⊆ 𝑁2 ⊆ ⋯ ⊆ 𝑁𝑠

are -filtrations of 𝐿 and 𝑁 , respectively, then

𝜂𝑀 ∶ 0 ⊆ 𝑓 (𝐿1) ⊆ 𝑓 (𝐿2) ⊆ ⋯ ⊆ 𝑓 (𝐿𝑡) ⊆ 𝑔−1(𝑁1) ⊆ ⋯ ⊆ 𝑔−1(𝑁𝑠) = 𝑀 (1.1)

is a -filtration of 𝑀 , where 𝑔−1(𝑁𝑘) denotes the preimage of 𝑁𝑘 in 𝑀 . In particular,

 () is closed under direct sums.

Let Θ ∈  and let 𝜂 be a -filtration of 𝑁 ∈  (). We define [𝑀 ∶ Θ]𝜂 as the number

of quotients isomorphic to Θ in the filtration 𝜂. We say that  () is a Jordan-Hölder
category if, given 𝑁 ∈  (), the multiplicity [𝑀 ∶ Θ]𝜂 does not depend on the filtration 𝜂,

i.e., if 𝜂 and 𝜂′ are two filtrations for 𝑁 and Θ∈ , then [𝑀 ∶ Θ]𝜂 = [𝑀 ∶ Θ]𝜂′ ∶= [𝑀 ∶ Θ]
(see (13, Definition 3.1) for a more general definition).

Note that whether a category is Jordan-Hölder or not depends not only on  () but

necessarily on . For example, if  = {𝑆(1),⋯ ,𝑆(𝑛)} is the set of simple modules up to



isomorphism, then  () = mod𝐴 is a Jordan-Hölder category. On the other hand, if 𝐴 is

an algebra that is not semisimple, then there exists a indecomposable module 𝑀 that is not

simple. Considering ′ = {𝑆(1),⋯ ,𝑆(𝑛),𝑀}, we have that  (′) = mod𝐴 will not be a

Jordan-Hölder category, since the multiplicity [𝑀 ∶ 𝑀]𝜂 will depend on the filtration.

It is easy to see that if  () is a Jordan-Hölder category, then the value

𝑙(𝑀) =
∑
Θ∈

[𝑀 ∶ Θ]

is well defined. This value will be called the -length of 𝑁 . Furthermore, the -filtration

(1.1) shows that [𝑀 ∶ Θ] = [𝐿 ∶ Θ]+ [𝑁 ∶ Θ] and consequently 𝑙(𝑀) = 𝑙(𝐿)+ 𝑙(𝑁).
The Jordan-Hölder theorem ensures that if  = {𝑆(1),𝑆(2),⋯ ,𝑆(𝑛)} is the class of

non-isomorphic simple modules, then  () = mod𝐴 is a Jordan-Hölder category (see

Theorem 1.1.5). It is clear that the modules of length 1 are precisely the simple modules.

Similarly, if  () is any Jordan-Hölder category, then the modules with -length 1 are

exactly the modules in . This fact motivates us to call the modules in  relatively simple
in  ().

1.6 Quasi-hereditary algebras and standardly stratified
algebras

Quasi-hereditary algebras and standardly stratified algebras were introduced by E.

Cline, B. Parshall, and L. Scott in the context of the algebraic theory of groups and highest

weight categories in the representation theory of finite-dimensional complex semisimple

Lie algebras. This section follows the exposition in the master’s thesis of P. Cadavid (16).

We now define the concept of a standard module. Let 𝐴 be a 𝑘-algebra of finite

dimension over an algebraically closed field 𝑘 with rank 𝑛 (that is, |𝐴𝐴| = 𝑛) that is basic

and connected. Under these conditions, Gabriel’s theorem guarantees that there exists

a 𝑘-algebra isomorphism between 𝐴 and 𝑘𝑄∕𝐼 , where 𝑄 is a finite quiver and 𝐼 is an

admissible ideal.

An enumeration of the vertices of 𝑄 is equivalent to an enumeration of the isomorphism

classes of simple modules, which is in turn equivalent to an enumeration of the isomorphism

classes of indecomposable projective modules. Since each indecomposable projective

module is of the form 𝑒𝐴, where 𝑒 is a primitive idempotent, we obtain an enumeration of

a complete list of pairwise orthogonal primitive idempotents (𝑒1, 𝑒2,… , 𝑒𝑛).
We also consider the idempotents (𝜖1, 𝜖2,… , 𝜖𝑛, 𝜖𝑛+1), where 𝜖𝑗 = 𝑒𝑗 + 𝑒𝑗+1 +⋯+ 𝑒𝑛

for 𝑗 = 1,2,… ,𝑛, and 𝜖𝑛+1 = 0. Note that 𝜖1 = 1.

Given two modules 𝑀 and 𝑁 , we define the trace of 𝑴 in 𝑵 , denoted by 𝜏𝑀 (𝑁), as

the submodule of 𝑁 generated by the sums of the images of morphisms from 𝑀 to 𝑁 .



Definition 1.6.1 (Standard modules). Let 𝑒 = (𝑒1, 𝑒2,… , 𝑒𝑛) be a fixed ordering of a
complete set of pairwise orthogonal primitive idempotents of 𝐴. The sequence Δ =
{Δ(1),Δ(2),… ,Δ(𝑛)} of standard modules, with respect to the order 𝑒, is given by

Δ(𝑖) = 𝑃 (𝑖)
𝜏𝜖𝑖+1𝐴

(𝑃 (𝑖))

where 𝑃 (𝑖) = 𝑒𝑖𝐴.

Remark 1.6.2. 1. Note that Δ(𝑛) = 𝑃 (𝑛).

2. Note that in the above definition, for simplicity, we assumed that the order of the
idempotents indexed in the set 𝕀𝑛 is the natural order. This is possible without loss of
generality, as we can always reindex the vertices in this way. In Proposition 2.1.9, it
will be convenient to take the above definition with the opposite order to the natural
order of 𝕀𝑛.

Observe that the standard modules are necessarily indecomposable. Indeed, since they

are quotients of an indecomposable projective module, they have a simple top.

Fixing an order 𝑒 = (𝑒1, 𝑒2,… , 𝑒𝑛) for a complete set of pairwise orthogonal primitive

idempotents, we can characterize the standard modules through the following lemma:

Lemma 1.6.3. For each 𝑖 = 1,2,… ,𝑛, Δ(𝑖) is the maximal quotient of 𝑃 (𝑖) whose compo-
sition factors belong to the set {𝑆(1),𝑆(2),… ,𝑆(𝑖)}.

Standard modules satisfy properties that will also hold for modules in a stratifying

system.

Proposition 1.6.4. Let Δ = {Δ(1),Δ(2),… ,Δ(𝑛)} be a set of standard modules over an
algebra 𝐴. Then:

1. Hom𝐴(Δ(𝑖),Δ(𝑗)) = 0 if 𝑖 > 𝑗.

2. Ext1
𝐴
(Δ(𝑖),Δ(𝑗)) = 0 if 𝑖 ≥ 𝑗.

We consider the category  (Δ) of Δ-filtered modules, where such modules are called

𝚫-good modules.

The next proposition presents the main results about the category of Δ-filtered modules

when Δ is a set of standard modules.

Proposition 1.6.5. Let Δ be a set of standard modules over an algebra 𝐴. Then the
following statements hold:

1.  (Δ) is closed under extensions, direct sums, and direct summands.



2.  (Δ) is functorially finite in mod𝐴.

3.  (Δ) is a Jordan-Hölder subcategory.

4.  (Δ) is closed under kernels of epimorphisms; that is, if

0⟶ 𝐾 ⟶ 𝑀 ⟶ 𝑁 ⟶ 0

with 𝑀,𝑁 ∈  (Δ), then 𝐾 ∈  (Δ).

Finally, we present the main definitions of this section: standardly stratified and quasi-

hereditary algebras.

Definition 1.6.6 (Standardly stratified and quasi-hereditary algebras). Let 𝐴 be a 𝑘-algebra
and Δ a set of standard modules relative to an order 𝑒 = (𝑒1, 𝑒2,⋯ , 𝑒𝑛) of pairwise orthog-
onal primitive idempotents. We say that 𝐴 is a standardly stratified algebra if 𝐴𝐴 ∈  (Δ).
Furthermore, we say that a standardly stratified algebra is quasi-hereditary if End𝐴(Δ(𝑖))
is a division ring for 𝑖 = 1,2,⋯ ,𝑛.

It is straightforward to see from the definition that 𝐴 is a standardly stratified algebra with

respect to an order of pairwise orthogonal primitive idempotents if and only if 𝑃 (𝑖) ∈  (Δ)
for every 𝑖 = 1,2,⋯ ,𝑛.

The following example shows that whether an algebra is quasi-hereditary or standardly

stratified is strongly tied to the chosen order of the idempotents.

Example 1.6.7. Let 𝑘 be an algebraically closed field, and consider 𝐴= 𝑘𝑄∕rad2𝐴, where
𝑄 is the quiver

1 2 3 ⋯ (𝑛−1) 𝑛
𝛼2 𝛼3 𝛼𝑛

Considering the order 𝑒1 = (𝑛,𝑛− 1,⋯ ,2,1), we have Δ(𝑖) = 𝑆(𝑖), hence  (Δ) =
mod𝐴 by the Jordan-Hölder theorem. In particular, 𝐴𝐴 ∈  (Δ), so 𝐴 is standardly
stratified. Moreover, since End𝐴(𝑆(𝑖)) = 𝑘 for all 𝑖 = 1,2,⋯ ,𝑛, we conclude that 𝐴 is
quasi-hereditary.

On the other hand, if we consider the order 𝑒2 = (1,𝑛,𝑛−1,⋯ ,3,2), then Δ(1) = 𝑆(1),
Δ(2) = 𝑃 (2), and Δ(𝑖) = 𝑆(𝑖) for 𝑖 = 3,4,⋯ ,𝑛.

Notice that the only composition series for 𝑃 (3) is given by

0 ⊆ 𝑆(2) ⊆ 𝑃 (3).

However, 𝑆(2) ∉ Δ, so 𝑃 (3) ∉  (Δ), and we conclude that in this order, 𝐴 is not even
standardly stratified.



It can be proven that an algebra is hereditary if and only if it is quasi-hereditary for any

order of the idempotents. Moreover, F. Advincula and E. Marcos showed that the algebras

that are standardly stratifying for any ordering of a set of primitive orthogonal idempotents

are precisely those whose idempotent ideals are projective modules (2).

Modules in  (Δ) exhibit “well-behaved” homological dimensions when Δ is a set of

standard modules over a quasi-hereditary algebra 𝐴, as shown in the following proposition.

Theorem 1.6.8. Let 𝐴 be a quasi-hereditary 𝑘-algebra of rank 𝑛, and letΔ={Δ(1),⋯ ,Δ(𝑛)}
be its set of standard modules. Then, for all 𝑖 = 1,2,⋯ ,𝑛, the following hold:

1. pdΔ(𝑖) ≤ 𝑛− 𝑖.

2. pd𝑆(𝑖) ≤ 𝑛+ 𝑖−2.

3. pd𝑀 ≤ 𝑛−1 for all 𝑀 ∈  (Δ).

4. gl.dim𝐴 ≤ 2(𝑛−1).

The third item in the theorem above holds for standardly stratified algebras in general.

It is possible to prove that the upper bound for the global dimension of 𝐴 is optimal.

We conclude this section by presenting a theorem that relates standardly stratified

algebras and generalized tilting modules.

Definition 1.6.9. Let 𝐴 be a 𝑘-algebra. We say that a module 𝑇 ∈ mod𝐴 is a generalized
tilting module if it satisfies the following conditions:

1. pd 𝑇 < ∞.

2. 𝐸𝑥𝑡𝑖
𝐴
(𝑇 ,𝑇 ) = 0 for all 𝑖 ≥ 1.

3. There exists an exact sequence

0⟶ 𝐴𝐴 ⟶ 𝑇0 ⟶ 𝑇1 ⟶⋯⟶ 𝑇𝑠 ⟶ 0

with 𝑇𝑗 ∈ add(𝑇 ) for all 𝑗 = 0,1,⋯ , 𝑠.

We denote by (Δ) the full subcategory of  (Δ) whose objects are Ext-injective

modules in  (Δ). We have the following theorem.

Theorem 1.6.10. Let 𝐴 be a standardly stratified algebra. Then there exists, up to isomor-
phism, a unique basic generalized tilting module 𝑇 such that (Δ) = add(𝑇 ).



The module 𝑇 in the above theorem is called the characteristic tilting module associ-
ated with 𝚫.

It is possible to prove that 𝐵𝑜𝑝 = End𝐴(𝑇 )𝑜𝑝 is a standardly stratified algebra. Thus,

by applying the above theorem again to 𝐵𝑜𝑝, we obtain a 𝐵𝑜𝑝 generalized tilting module

𝑇 ′ such that add(𝑇 ′) = (Δ′), where Δ′ is the set of standard modules of 𝐵𝑜𝑝. Again, we

have that 𝐶 = End𝐵𝑜𝑝(𝑇 ′) is a standardly stratified algebra. The next theorem relates the

module categories of 𝐴 and 𝐶 .

Theorem 1.6.11. Let 𝐴 be a standardly stratified 𝑘-algebra, and let 𝑇 be its characteristic
𝐴-tilting module associated with it. Let 𝑇 ′ be the characteristic 𝐵𝑜𝑝-tilting module associ-
ated with the standardly stratified algebra 𝐵𝑜𝑝 = End𝐴(𝑇 )𝑜𝑝. Then, End𝐵𝑜𝑝(𝑇 ′) is Morita
equivalent to 𝐴.



Chapter 2

Stratifying Systems

Stratifying systems were introduced by K. Erdmann and C. Sáenz in (25) as a gener-

alization of standard modules, which play a central role in quasi-hereditary algebras and

standardly stratified algebras. This initial definition of a stratifying system is known in

the literature as Ext-injective stratifying system (EISS, for short). Later, E. Marcos, O.

Mendoza, and C. Sáenz defined in (29) and (30) stratifying systems in two equivalent ways,

known in the literature as Ext-projective stratifying systems (EPSS) and simply stratifying

systems (SS), with the latter being the most commonly used definition. In this context,

a stratifying system yields a module 𝑌 whose endomorphism ring 𝐵 = End𝐴(𝑌 ) is left

standardly stratified, and the category of modules filtered by the stratifying system can be

naturally identified inside the category mod𝐵𝑜𝑝.

In the first section, we will define EISS and prove some basic results relating a stratifying

system to a set of standard modules over an appropriate algebra. We will also show that the

definitions of EISS and SS are equivalent. In the second section, we will briefly survey the

history of stratifying systems from their inception to the present day. In the third section,

we will detail some results from (36) that establish connections between 𝜏-rigid modules

and stratifying systems.

2.1 Stratifying systems
In this section, we will define the Ext-injective stratifying system and the stratifying

system, and prove that the two definitions are equivalent. This discussion is based on (25)

and (29).

Definition 2.1.1 (Ext-Injective Stratifying System (25)). Let 𝐴 be an 𝑘-algebra and let
Θ = {Θ(1),Θ(2),⋯ ,Θ(𝑛)} be a fixed ordered set of 𝐴-modules. Moreover, suppose 𝕐 =
{𝑌 (1),𝑌 (2),⋯ ,𝑌 (𝑛)} is a ordered set of indecomposable 𝐴-modules. We call (Θ,𝕐 ,≤) an
Ext-injective stratifying system of size 𝒏 (EISS, for short) if the following conditions hold:



1. Hom𝐴(Θ(𝑘),Θ(𝑗)) = 0 if 𝑘 > 𝑗.

2. For all 𝑖 ∈ 𝕀𝑛, there exists an exact sequence

0⟶ Θ(𝑖)⟶ 𝑌 (𝑖)⟶ 𝑍(𝑖)⟶ 0,

where 𝑍(𝑖) is filtered by Θ(𝑗) with 𝑗 < 𝑖; that is, 𝑍(𝑖) ∈ ({Θ(𝑗) ∣ 𝑗 < 𝑖}) (see Section
1.5).

3. Ext1
𝐴
(−,𝑌 )| (Θ) = 0, where 𝑌 =

𝑛⨁
𝑗=1

𝑌 (𝑗).

Remark 2.1.2. 1. The condition 3 shows that the module 𝑌 is Ext-injective in  (Θ).

2. In the above definition, ≤ is a total order on the set 𝕀𝑛 = {1,… ,𝑛}. We will assume
throughout the text, without loss of generality, that this order is the natural order on
𝕀𝑛.

3. Condition 2 implies that Θ(1) = 𝑌 (1).

We can define a stratifying system by presenting only the set of modules Θ.

Definition 2.1.3 (Stratifying System (29)). Let 𝐴 be an 𝑘-algebra and let (Θ,≤) be a fixed
ordered set of 𝐴-modules Θ = {Θ(1),⋯ ,Θ(𝑛)}. We call (Θ,≤) a stratifying system of size
𝑛 (SS, for short) if the following conditions hold:

1. Θ(𝑗) is indecomposable for all 𝑗 = 1,2,⋯ ,𝑛.

2. Hom𝐴(Θ(𝑘),Θ(𝑗)) = 0 if 𝑘 > 𝑗.

3. Ext1
𝐴
(Θ(𝑘),Θ(𝑗)) = 0 if 𝑘 ≥ 𝑗.

Example 2.1.4. Let 𝐴= 𝑘𝑄∕𝐼 , where 𝑄 is the quiver 1 2 3 4𝛾 𝛽 𝛼 and
𝐼 = rad2𝐴. The Auslander-Reiten quiver of the algebra is given by:

𝑆(1) 𝑆(2) 𝑆(3) 𝑆(4)

𝑃 (2) 𝑃 (3) 𝑃 (4)

We will show that (Θ,𝕐 ,≤) is an EISS of size 3, where Θ = {𝑆(3),𝑆(2),𝑆(1)} and
𝕐 = {𝑆(3),𝑃 (3),𝑃 (2)}. Throughout the text, the elements inside such sets will always be
listed from left to right according to the chosen order; for instance, in Θ we have 𝑆(3) as
the first element, 𝑆(2) as the second, and 𝑆(1) as the third.



Since the modules in Θ are simple, we can easily determine the category of Θ-filtered
𝐴-modules as the full subcategory of mod𝐴 consisting of modules whose composition
factors are in {𝑆(1),𝑆(2),𝑆(3)}, that is,

 (Θ) = add(𝑆(1)
⨁

𝑃 (2)
⨁

𝑃 (3)
⨁

𝑆(2)
⨁

𝑆(3)).

As the modules in Θ are simple, we have that Hom𝐴(Θ(𝑘),Θ(𝑗)) = 0 for all 𝑗,𝑘 ∈ 𝕀3
with 𝑗 ≠ 𝑘, in particular when 𝑘 > 𝑗, so condition 1 is satisfied.

The following exact sequences show that condition 2 is also satisfied:

0⟶ 𝑆(3)⟶ 𝑆(3)⟶ 0 ⟶ 0

0⟶ 𝑆(2)⟶ 𝑃 (3)⟶ 𝑆(3)⟶ 0

0⟶ 𝑆(1)⟶ 𝑃 (2)⟶ 𝑆(2)⟶ 0.

Finally, it is clear from the Auslander-Reiten quiver that 𝑃 (3),𝑃 (2), and 𝑆(3) are
Ext-injective in  (Θ). Therefore, 𝑌 = 𝑃 (3)

⨁
𝑃 (2)

⨁
𝑆(3) is Ext-injective in  (Θ), and

condition 3 is satisfied.
We can also see that (Θ,≤) is an SS. Conditions 1 and 2 are satisfied since Θ is a

set of simple modules, and condition 3 holds since Ext1
𝐴
(𝑆(𝑘),𝑆(𝑗)) = 0 if 𝑘 ≤ 𝑗 (hence

Ext1
𝐴
(Θ(𝑘),Θ(𝑗)) = 0 if 𝑘 ≥ 𝑗).

The example above suggests that (Θ,≤) is an SS whenever (Θ,𝕐 ,≤) is an EISS. We

will show that this is always true. Furthermore, we will demonstrate that if (Θ,≤) is an SS,

then there exists a unique set of indecomposable 𝐴-modules 𝕐 (up to isomorphism) such

that (Θ,𝕐 ,≤) forms an EISS.

 (Θ) is a Jordan-Hölder category

Lemma 2.1.5. Let (Θ,𝕐 ,≤) be an EISS of size 𝑛. Then the following statements hold true

1. Hom𝐴(Θ(𝑗),𝑍(𝑖)) = 0 if 𝑗 ≥ 𝑖.

2. Hom𝐴(Θ(𝑗),𝑌 (𝑖)) ≅ Hom𝐴(Θ(𝑗),Θ(𝑖)) if 𝑗 ≥ 𝑖. In particular, Hom𝐴(Θ(𝑗),𝑌 (𝑖)) = 0
if 𝑗 > 𝑖.

Proof. 1) Suppose that Hom𝐴(Θ(𝑗),𝑍(𝑖)) ≠ 0 with 𝑗 ≥ 𝑖. Since 𝑍(𝑖) ∈  ({Θ(𝑘) | 𝑘 < 𝑖}),
there exists a chain

0 = 𝑀0 ⊆ 𝑀1 ⊆ ⋯ ⊆ 𝑀𝑡 = 𝑍(𝑖)

of submodules of 𝑍(𝑖) such that 𝑀𝑙∕𝑀𝑙−1 is isomorphic to a module in {Θ(1),⋯ ,Θ(𝑖−1)}
for all 𝑙 = 1,2,⋯ , 𝑡. In particular, there exists an epimorphism

𝜋 ∶ 𝑍(𝑖)⟶ 𝑍(𝑖)∕𝑀𝑡−1 ≅ Θ(𝑘),



for some 1 ≤ 𝑘 < 𝑖.

If 𝑓 ∈ Hom𝐴(Θ(𝑗),𝑍(𝑖)) is a nonzero morphism, then 𝜋◦𝑓 ∶ Θ(𝑗)⟶ Θ(𝑘) is a mor-

phism that must be zero since Hom𝐴(Θ(𝑗),Θ(𝑘)) = 0. Hence, the image of 𝑓 is contained

in ker 𝜋 = 𝑀𝑡−1, and there exists a nonzero morphism 𝑓 ′ ∶ Θ(𝑗) ⟶ 𝑀𝑡−1 such that

𝑓 = 𝑖𝑀𝑡−1
◦𝑓 ′, where 𝑖𝑀𝑡−1

∶ 𝑀𝑡−1 ⟶ 𝑍(𝑖) is the inclusion.

Similarly, there exists an epimorphism

𝜋′ ∶ 𝑀𝑡−1 ⟶ 𝑀𝑡−1∕𝑀𝑡−2 ≅ Θ(𝑘′)

for some 1 ≤ 𝑘′ < 𝑖. Again, the image of 𝑓 ′ is contained in ker 𝜋′ = 𝑀𝑡−2 and there

exists a nonzero morphism 𝑓 ′′ ∶ Θ(𝑗)⟶ 𝑀𝑡−2 such that 𝑓 ′ = 𝑖𝑀𝑡−2
◦𝑓 ′′, where 𝑖𝑀𝑡−2

∶
𝑀𝑡−2 ⟶ 𝑀𝑡−1 is the inclusion. Since the chain is finite, by the well-ordering principle,

we conclude that Hom𝐴(Θ(𝑗),Θ(𝑙)) ≠ 0 for some 1 ≤ 𝑙 < 𝑖, a contradiction. Therefore,

Hom𝐴(Θ(𝑗),𝑍(𝑖)) = 0.

2) Suppose that 𝑗 ≥ 𝑖 and consider the exact sequence

0⟶ Θ(𝑖)⟶ 𝑌 (𝑖)⟶ 𝑍(𝑖)⟶ 0.

Applying the functor Hom𝐴(Θ(𝑗),−) to this sequence, we obtain

0⟶ Hom𝐴(Θ(𝑗),Θ(𝑖))⟶ Hom𝐴(Θ(𝑗),𝑌 (𝑖))⟶ Hom𝐴(Θ(𝑗),𝑍(𝑖)),

where item 1) ensures that Hom𝐴(Θ(𝑗),𝑍(𝑖)) = 0, and the result follows. ■

Theorem 2.1.6. Let (Θ,𝕐 ,≤) be an EISS of size 𝑛. Then  (Θ) is a Jordan-Hölder category.

Proof. Consider the matrix 𝐷= [𝑑𝑖𝑗], where 𝑑𝑖𝑗 = dimHom𝐴(Θ(𝑖),𝑌 (𝑗)). By Lemma 2.1.5,

we have that 𝐷 is an upper triangular matrix with det𝐷 ≠ 0, since Hom𝐴(Θ(𝑖),𝑌 (𝑗)) = 0 if

𝑖 > 𝑗 and Hom𝐴(Θ(𝑖),𝑌 (𝑖)) ≠ 0 for all 𝑖 = 1,2,⋯ ,𝑛.

Let 𝑀 ∈  (Θ) be a nonzero module. It is clear that for all 𝑖 ∈ 𝕀𝑛, the dimension of

Hom𝐴(𝑀,𝑌 (𝑖)) is independent of the choice of filtration of 𝑀 .

Consider an arbitrary filtration of 𝑀 :

0 = 𝑀0 ⊆ 𝑀1 ⊆ 𝑀2 ⊆ ⋯ ⊆ 𝑀𝑚 = 𝑀,

then we have the following exact sequences:

0⟶ 𝑀0 ⟶ 𝑀1 ⟶ Θ(𝑗1) ⟶ 0

0⟶ 𝑀1 ⟶ 𝑀2 ⟶ Θ(𝑗2) ⟶ 0

⋮

0⟶ 𝑀𝑚−1 ⟶ 𝑀𝑚 ⟶ Θ(𝑗𝑚) ⟶ 0



where 𝑗𝑘 ∈ {1,2,⋯ ,𝑛} for 𝑘 = 1,2,⋯ ,𝑚.

Applying the functor Hom𝐴(−,𝑌 (𝑖)), which is exact in  (Θ), we obtain

0 ⟶ Hom𝐴(Θ(𝑗1),𝑌 (𝑖)) ⟶ Hom𝐴(𝑀1,𝑌 (𝑖)) ⟶ Hom𝐴(𝑀0,𝑌 (𝑖)) ⟶ 0

0 ⟶ Hom𝐴(Θ(𝑗2),𝑌 (𝑖)) ⟶ Hom𝐴(𝑀2,𝑌 (𝑖)) ⟶ Hom𝐴(𝑀1,𝑌 (𝑖)) ⟶ 0

⋮

0⟶ Hom𝐴(Θ(𝑗𝑚),𝑌 (𝑖))⟶ Hom𝐴(𝑀𝑚,𝑌 (𝑖))⟶ Hom𝐴(𝑀𝑚−1,𝑌 (𝑖))⟶ 0.

In an exact sequence of 𝑘-modules 0 ⟶ 𝐴 ⟶ 𝐵 ⟶ 𝐶 ⟶ 0 we have that dim𝐵 =
dim𝐴+dim𝐶 , so we obtain

𝑚∑
𝑘=1

dimHom𝐴(𝑀𝑘,𝑌 (𝑖)) =
𝑚∑

𝑘=1
dimHom𝐴(𝑀𝑘−1,𝑌 (𝑖))+

𝑚∑
𝑘=1

dimHom𝐴(Θ(𝑗𝑘),𝑌 (𝑖))

which can be simplified if we consider 𝑚𝑗 as the number of quotients isomorphic to Θ(𝑗)
in such a filtration (note that Hom𝐴(𝑀0,𝑌 (𝑖)) = 0)

dimHom𝐴(𝑀,𝑌 (𝑖)) =
𝑛∑

𝑗=1
𝑚𝑗𝑑𝑗𝑖.

If 𝑖 = 1, then 𝑚1 = dimHom𝐴(𝑀,𝑌 (1))∕𝑑11 is defined independently of the choice

of filtration. Recursively, we have that 𝑚𝑖 = (dimHom𝐴(𝑀,𝑌 (𝑖)) −
∑𝑖−1

𝑘=1𝑑𝑘𝑖𝑚𝑘)∕𝑑𝑖𝑖 is

defined independently of the choice of filtration, which proves the lemma. ■

Let (Θ,𝕐 ,≤) be an EISS of size 𝑛 and let 𝑀 ∈  (Θ). For every Θ(𝑖) ∈ Θ, we define

[𝑀 ∶ Θ(𝑖)] as the number of composition factors isomorphic to Θ(𝑖) that appear in some

Θ-filtration of 𝑀 (here, [𝑀 ∶ Θ(𝑖)] = 0 for all 𝑖 if 𝑀 = 0). The theorem above ensures

that this number is well-defined and independent of the choice of such a filtration. We

define the Θ-length of 𝑀 as 𝑙Θ(𝑀) ∶=
𝑛∑

𝑖=1
[𝑀 ∶ Θ(𝑖)].

Corollary 2.1.7. Let (Θ,𝕐 ,≤) be an EISS of size 𝑛. If 𝐿,𝑁 ∈  (Θ) and the following
sequence is exact

0 𝐿 𝑀 𝑁 0,𝑓 𝑔

then 𝑀 ∈  (Θ) and [𝑀 ∶ Θ(𝑖)] = [𝐿 ∶ Θ(𝑖)] + [𝑁 ∶ Θ(𝑖)] for all 𝑖 ∈ 𝕀𝑛. Furthermore,
𝑙Θ(𝑀) = 𝑙Θ(𝐿)+ 𝑙Θ(𝑁).

Proof. It suffices to note that if

𝜂𝐿 ∶ 0 = 𝐿0 ⊆ 𝐿1 ⊆ 𝐿2 ⊆ ⋯ ⊆ 𝐿𝑡

and

𝜂𝑁 ∶ 0 = 𝑁0 ⊆ 𝑁1 ⊆ 𝑁2 ⊆ ⋯ ⊆ 𝑁𝑠



are Θ-filtrations of 𝐿 and 𝑁 , respectively, then

𝜂𝑀 ∶ 0 ⊆ 𝑓 (𝐿1) ⊆ 𝑓 (𝐿2) ⊆ ⋯ ⊆ 𝑓 (𝐿𝑡) ⊆ 𝑔−1(𝑁1) ⊆ ⋯ ⊆ 𝑔−1(𝑁𝑠) = 𝑀

is a Θ-filtration of 𝑀 (𝑔−1(𝑁𝑘) denotes the preimage of 𝑁𝑘 in 𝑀), since

𝑓 (𝐿𝑘)∕𝑓 (𝐿𝑘−1) ≅ 𝐿𝑘∕𝐿𝑘−1

for 𝑘 = 1,2,⋯ , 𝑡 and

𝑔−1(𝑁𝑘)∕𝑔−1(𝑁𝑘−1) ≅ 𝑁𝑘∕𝑁𝑘−1

for 𝑘 = 1,2,⋯ , 𝑠 (note that 𝑔−1(𝑁0) = ker 𝑔 = 𝐿 = 𝑓 (𝐿𝑡)). ■

Relationship Between Stratifying Systems and Standardly Strati-
fied Algebras

Lemma 2.1.8. Let (Θ,𝕐 ,≤) be an EISS, where Θ = {Θ(1),Θ(2),⋯ ,Θ(𝑛)}. Then, we have
that Ext1

𝐴
(Θ(𝑗),Θ(𝑖)) = 0 if 𝑗 ≥ 𝑖.

Proof. Assume 𝑗 ≥ 𝑖 and consider the exact sequence

0⟶ Θ(𝑖)⟶ 𝑌 (𝑖)⟶ 𝑍(𝑖)⟶ 0.

Applying the functor Hom𝐴(Θ(𝑗),−), we obtain

Hom𝐴(Θ(𝑗),𝑍(𝑖))⟶ Ext1
𝐴
(Θ(𝑗),Θ(𝑖))⟶ Ext1

𝐴
(Θ(𝑗),𝑌 (𝑖)).

We have Ext1
𝐴
(Θ(𝑗),𝑌 (𝑖)) = 0 since Θ(𝑗) ∈ (Θ) and Hom𝐴(Θ(𝑗),𝑍(𝑖)) = 0 by Lemma

2.1.5, consequently Ext1
𝐴
(Θ(𝑗),Θ(𝑖)) = 0. ■

The next proposition shows that there is a strong connection between Ext-injectives

stratifying systems and standardly stratified algebras. In what follows, given (Θ,𝕐 ,≤) a

stratifying system over an algebra 𝐴, we define 𝐵 = End𝐴(𝑌 ). We consider the functor

𝐹 ∶ mod𝐴 ⟶mod𝐵𝑜𝑝 defined by 𝐹 = Hom𝐴(−,𝑌 ). Observe that 𝐹 is an exact functor

on  (Θ), as 𝑌 is Ext-injective in this category. We have that 𝑃 (𝑖) = Hom𝐴(𝑌 (𝑖),𝑌 ) is the

𝑖-th indecomposable projective left 𝐵-module, and we denote by 𝑆(𝑖) the simple top of

𝑃 (𝑖). In what follows, by a “left standardly stratified algebra” we mean that 𝐵, regarded as

a left module over itself, is filtered by left standard modules.

Proposition 2.1.9. Suppose (Θ,𝕐 ,≤) is an EISS of size 𝑛. Then 𝐵 = End𝐴(𝑌 ) is a left
standardly stratified algebra, with Δ(𝑖) = Hom𝐴(Θ(𝑖),𝑌 ), with respect to (𝕀𝑛,≤𝑜𝑝) where
≤𝑜𝑝 is the opposite of the natural order.



Proof. Let 𝑃 (𝑖) = Hom𝐴(𝑌 (𝑖),𝑌 ) be the 𝑖-th indecomposable 𝐵-projective left module and

𝐹 (Θ(𝑖)) = Hom𝐴(Θ(𝑖),𝑌 ). We need to show that 𝐹 (Θ(𝑖)) is the maximal quotient of 𝑃 (𝑖)
with composition factors 𝑆(𝑗) for 𝑗 ≥ 𝑖 (not 𝑗 ≤ 𝑖, since the order on 𝕀𝑛 is the opposite) and

that 𝐵𝐵 ∈  ({𝐹 (Θ(𝑗)) | 𝑗 ∈ 𝕀𝑛}).
Consider the sequence

0 Θ(𝑖) 𝑌 (𝑖) 𝑍(𝑖) 0.
𝛽𝑖 (2.1)

Applying the functor 𝐹 (−) = Hom𝐴(−,𝑌 ) to the sequence, we obtain

0 𝐹 (𝑍(𝑖)) 𝑃 (𝑖) 𝐹 (Θ(𝑖)) 0.
𝐹 (𝛽𝑖) (2.2)

where the exactness on the right is obtained since 𝑍(𝑖) ∈  (Θ).
We will show that 𝐹 (𝑍(𝑖)) is filtered by 𝐹 (Θ(1)),𝐹 (Θ(2)),⋯ ,𝐹 (Θ(𝑖−1)). Since 𝑍(𝑖)

is filtered by {Θ(1),Θ(2),⋯ ,Θ(𝑖−1)}, there exists a chain

0 = 𝑀0 ⊆ 𝑀1 ⊆ ⋯ ⊆ 𝑀𝑡 = 𝑍(𝑖)

of submodules of 𝑍(𝑖) such that

0 ⟶ 𝑀0 ⟶ 𝑀1 ⟶ Θ(𝑗1)⟶ 0

0 ⟶ 𝑀1 ⟶ 𝑀2 ⟶ Θ(𝑗2)⟶ 0

⋮

0 ⟶ 𝑀𝑡−1 ⟶ 𝑀𝑡 ⟶ Θ(𝑗𝑡)⟶ 0

where 𝑗𝑘 ∈ {1,2,⋯ , 𝑖−1} for all 𝑘 = 1,2,⋯ , 𝑡. Applying the functor 𝐹 (−) we obtain that

0 ⟶ 𝐹 (Θ(𝑗1))⟶ 𝐹 (𝑀1)⟶ 𝐹 (𝑀0) ⟶ 0

0 ⟶ 𝐹 (Θ(𝑗2))⟶ 𝐹 (𝑀2)⟶ 𝐹 (𝑀1) ⟶ 0

⋮

0 ⟶ 𝐹 (Θ(𝑗𝑡))⟶ 𝐹 (𝑀𝑡) ⟶ 𝐹 (𝑀𝑡−1)⟶ 0.

From the first exact sequence, we conclude that 𝐹 (𝑀1) is filtered by 𝐹 (Θ(𝑗1)) (in

fact, we have 𝐹 (𝑀1) = 𝐹 (Θ(𝑗1))). By induction, assuming that 𝐹 (𝑀𝑘−1) is filtered by

𝐹 (Θ(𝑗1)),𝐹 (Θ(𝑗2)),⋯ ,𝐹 (Θ(𝑗𝑘−1)), from the sequence

0⟶ 𝐹 (Θ(𝑗𝑘))⟶ 𝐹 (𝑀𝑘)⟶ 𝐹 (𝑀𝑘−1)⟶ 0

we conclude that 𝐹 (𝑀𝑘) is filtered by 𝐹 (Θ(𝑗1)),𝐹 (Θ(𝑗2)),⋯ ,𝐹 (Θ(𝑗𝑘−1)),𝐹 (Θ(𝑗𝑘)). There-

fore,

𝐹 (𝑍(𝑖)) ∈  ({𝐹 (Θ(𝑗𝑘)) | 𝑘 = 1,2,⋯ , 𝑡}) ⊆  ({𝐹 (Θ(𝑗)) | 1 ≤ 𝑗 < 𝑖}).



From the exact sequence (2.2), we conclude that 𝑃 (𝑖) is filtered by 𝐹 (Θ(𝑗)) for 𝑗 =
1,2,⋯ , 𝑖 and consequently 𝐵𝐵 ∈  ({𝐹 (Θ(𝑗)) | 𝑗 ∈ 𝕀𝑛}) (Note that [𝑃 (𝑖),𝐹 (Θ(𝑖))] = 1 and

[𝑃 (𝑖),𝐹 (Θ(𝑗))] = 0 if 𝑗 > 𝑖).

We will show that 𝐹 (Θ(𝑖)) = Δ(𝑖), that is, 𝐹 (Θ(𝑖)) is the maximal quotient of 𝑃 (𝑖) with

composition factors 𝑆(𝑗) for 𝑗 ≥ 𝑖. Let 𝑈 (𝑖) be the sum of the images of the morphisms

𝜙 ∶ 𝑃 (𝑗) ⟶ 𝑃 (𝑖) with 𝑗 < 𝑖. We have that 𝑈 (𝑖) is a submodule of 𝑃 (𝑖) and that there

exists a short exact sequence

0⟶ 𝑈 (𝑖)⟶ 𝑃 (𝑖)⟶ Δ(𝑖)⟶ 0.

We will show that 𝑈 (𝑖) is a submodule of 𝐹 (𝑍(𝑖)) = Hom𝐴(𝑍(𝑖),𝑌 ). Consider 𝑔 ∶
𝑃 (𝑗)⟶ 𝑃 (𝑖) with 𝑗 < 𝑖. We have the well-known isomorphism

Hom𝐴(𝑌 (𝑖),𝑌 (𝑗)) ≅ Hom𝐵(Hom𝐴(𝑌 (𝑗),𝑌 ),Hom𝐴(𝑌 (𝑖),𝑌 ))

which maps ℎ ∶ 𝑌 (𝑖)⟶ 𝑌 (𝑗) to 𝑔 =𝐹 (ℎ). Then, there exists a morphism ℎ ∶ 𝑌 (𝑖)⟶ 𝑌 (𝑗)
such that 𝐹 (ℎ) = 𝑔.

We have that Hom𝐴(Θ(𝑖),𝑌 (𝑗)) = 0 if 𝑖 > 𝑗 by Lemma 2.1.5, therefore, ℎ◦𝛽𝑖 = 0, where

𝛽𝑖 is the first morphism in the short exact sequence (2.1), so we have

0 = 𝐹 (ℎ◦𝛽𝑖) = 𝐹 (𝛽𝑖)◦𝐹 (ℎ) = 𝐹 (𝛽𝑖)◦𝑔.

This implies that Im 𝑔 ⊆ ker𝐹 (𝛽𝑖) = Hom𝐴(𝑍(𝑖),𝑌 ) = 𝐹 (𝑍(𝑖)). Consequently, 𝑈 (𝑖) ⊆

𝐹 (𝑍(𝑖)) and 𝐹 (Θ(𝑖)) is a quotient of Δ(𝑖).
Finally, 𝑃 (𝑖) is filtered by 𝐹 (Θ(𝑡)) with 𝑡 ≤ 𝑖. Moreover, 𝐹 (Θ(𝑗)) has simple top 𝑆(𝑗)

since it is a quotient of 𝑃 (𝑗). Therefore, top 𝐹 (𝑍(𝑖)) is isomorphic to the sum of copies of

𝑆(𝑗) with 𝑗 < 𝑖. Indeed, suppose that the simple module 𝑆(𝑘) satisfies 𝑆(𝑘)|top 𝐹 (𝑍(𝑖))
with 𝑘 ≥ 𝑖, and consider

0 = 𝐿0 ⊆ 𝐿1 ⊆ ⋯ ⊆ 𝐿𝑡 = 𝐹 (𝑍(𝑖))

a filtration of 𝐹 (𝑍(𝑖)) in the set {𝐹 (Θ(𝑗)) | 1 ≤ 𝑗 < 𝑖}. Then we have an exact sequence

0⟶ 𝐿𝑡−1 ⟶ 𝐹 (𝑍(𝑖))⟶ 𝐹 (Θ(𝑡))⟶ 0

where 𝑡 ∈ {1,2,⋯ , 𝑖−1}. Such a sequence induces the exact sequence (observe that the

first morphism in the following sequence need not be a monomorphism).

top 𝐿𝑡−1 ⟶ top 𝐹 (𝑍(𝑖))⟶ top 𝐹 (Θ(𝑡))⟶ 0.

Since top 𝐹 (Θ(𝑡)) is simple and different from 𝑆(𝑘), we have 𝑆(𝑘)|top 𝐿𝑡−1. Now consider

the exact sequence

0⟶ 𝐿𝑡−2 ⟶ 𝐿𝑡−1 ⟶ 𝐹 (Θ(𝑡′))⟶ 0



where 𝑡′ ∈ {1,2,⋯ , 𝑖−1}. This exact sequence induces

top 𝐿𝑡−2 ⟶ top 𝐿𝑡−1 ⟶ top 𝐹 (Θ(𝑡′))⟶ 0.

Again, since top 𝐹 (Θ(𝑡′)) is simple and different from 𝑆(𝑘), we conclude 𝑆(𝑘)|top 𝐿𝑡−2,

and proceeding recursively we obtain a contradiction. Since top 𝐹 (𝑍(𝑖)) is isomorphic to

the sum of copies of 𝑆(𝑗) with 𝑗 < 𝑖, we have that [𝐹 (Θ(𝑖)),𝑆(𝑘)] ≥ [Δ(𝑖),𝑆(𝑘)] for 𝑘 ≥ 𝑖.

Since Δ(𝑖) is the maximal quotient of 𝑃 (𝑖) whose composition factors are 𝑆(𝑗) with 𝑗 ≥ 𝑖,

it follows that Δ(𝑖) = 𝐹 (Θ(𝑖)). ■

Lemma 2.1.10. Let (Θ,𝕐 , ≤) be an EISS of size 𝑛 and 𝑀 ∈  (Θ). Then there exists an
exact sequence

0 𝑀 𝑌0 𝑌1 ⋯ 𝑌𝑘−1 𝑌𝑘 0
𝑓−1 𝑓0 𝑓1 𝑓𝑘−1

where 𝑌𝑟 ∈ add(𝑌 ) for 𝑟 = 0,1,⋯ ,𝑘 with 𝑘 < 𝑛. Moreover, we have that Im𝑓𝑟 ∈  (Θ) for
𝑟 = −1,0,⋯ ,𝑘−1.

Proof. If 𝑀 = 0 it is obvious. If 𝑀 ≠ 0, define 𝛿(𝑀) = max{𝑗 | [𝑀 ∶ Θ(𝑗)] ≠ 0}. We

will prove by induction on 𝑖 = 𝛿(𝑀) that there exist short exact sequences

0⟶ 𝑀𝑡 ⟶ 𝑌𝑡 ⟶ 𝑀𝑡+1 ⟶ 0

with 𝑌𝑡 ∈ add(𝑌 ) and 𝑀𝑡 ∈  (Θ) for 𝑡 = 0,1,⋯ ,𝑘, such that 𝑀0 = 𝑀 , 𝑀𝑘+1 = 0, and

𝛿(𝑀𝑡) > 𝛿(𝑀𝑡+1) for 𝑡 = 0,1,⋯ ,𝑘. In this way, we will construct the exact sequence of

the statement through the following composition:

0 𝑀 𝑌0 𝑌1 ⋯ 𝑌𝑘 0.

𝑀1 𝑀2 𝑀𝑘

If 𝛿(𝑀) = 1, then 𝑀 has only quotients isomorphic to Θ(1). Thus, consider a filtration

of 𝑀

0 ⊆ Θ(1) ⊆ 𝑀2 ⊆ ⋯ ⊆ 𝑀𝑡 = 𝑀.

Since Ext1
𝐴
(Θ(1),Θ(1)) = 0 by Lemma 2.1.8, we have that the sequence

0⟶ Θ(1)⟶ 𝑀2 ⟶ Θ(1)⟶ 0

is split, so 𝑀2 ≅ Θ(1)⊕2. Consider the short exact sequence

0⟶ 𝑀𝑘 ⟶ 𝑀𝑘+1 ⟶ Θ(1)⟶ 0.



By induction, we have 𝑀𝑘 ≅Θ(1)⊕𝑘, so 𝑀𝑘+1 ≅Θ(1)⊕𝑘+1, and consequently 𝑀 ≅Θ(1)⊕𝑡.

Since Θ(1) = 𝑌 (1), we set 𝑌0 = Θ(1)⊕𝑡 and the lemma holds if 𝛿(𝑀) = 1.

Suppose that 𝛿(𝑀) = 𝑖 and that the lemma holds for all 𝑁 ∈  (Θ) with 𝛿(𝑁) < 𝑖. We

will show that there exists a short exact sequence

0⟶ Θ(𝑖)⊕𝑎 ⟶ 𝑀 ⟶ 𝑁 ⟶ 0

where 𝑎 ∈ ℕ and 𝑁 ∈  (Θ) with 𝛿(𝑁) < 𝑖. Let

0 = 𝑀0 ⊆ 𝑀1 ⊆ ⋯ ⊆ 𝑀𝑡 = 𝑀

be a filtration of 𝑀 and consider the minimal 𝑘 ∈ {1,2,⋯ , 𝑡} such that 𝑀𝑘∕𝑀𝑘−1 ≅ Θ(𝑖).
We have the following short exact sequences:

0 ⟶ 𝑀0 ⟶ 𝑀1 ⟶ Θ(𝑗1)⟶ 0

0 ⟶ 𝑀1 ⟶ 𝑀2 ⟶ Θ(𝑗2)⟶ 0

⋮

0 ⟶ 𝑀𝑘−1 ⟶ 𝑀𝑘 ⟶ Θ(𝑖) ⟶ 0

where 𝑗𝑙 < 𝑖 for every 𝑙 = 1,2,⋯ ,𝑘−1. Applying the functor Hom𝐴(Θ(𝑖),−) yields the

following exact sequences:

0 ⟶ Ext1
𝐴
(Θ(𝑖),𝑀0)⟶ Ext1

𝐴
(Θ(𝑖),𝑀1)⟶ Ext1

𝐴
(Θ(𝑖),Θ(𝑗1))

0 ⟶ Ext1
𝐴
(Θ(𝑖),𝑀1)⟶ Ext1

𝐴
(Θ(𝑖),𝑀2)⟶ Ext1

𝐴
(Θ(𝑖),Θ(𝑗2))

⋮

0 ⟶ Ext1
𝐴
(Θ(𝑖),𝑀𝑘−1)⟶ Ext1

𝐴
(Θ(𝑖),𝑀𝑘) ⟶ Ext1

𝐴
(Θ(𝑖),Θ(𝑖))

where exactness on the left is guaranteed by the fact that Hom𝐴(Θ(𝑖),Θ(𝑗𝑙)) = 0 for

𝑙 = 1,2,⋯ ,𝑘−1. Proceeding recursively, since 𝑀0 = 0 and Lemma 2.1.8 ensures that

Ext1
𝐴
(Θ(𝑖),Θ(𝑗𝑙)) = 0 for 𝑙 = 1,2,⋯ ,𝑘− 1, we obtain that Ext1

𝐴
(Θ(𝑖),𝑀𝑙) = 0, hence

Ext1
𝐴
(Θ(𝑖),𝑀𝑘) = 0. Consequently, the sequence

0 ⟶ 𝑀𝑘−1 ⟶ 𝑀𝑘 ⟶ Θ(𝑖)⟶ 0

splits and 𝑀𝑘 ≅ Θ(𝑖)
⨁

𝑀𝑘−1. Now observe that

0 ⊆ Θ(𝑖) ⊆ Θ(𝑖)
⨁

𝑀1 ⊆ Θ(𝑖)
⨁

𝑀2 ⊆ ⋯ ⊆ Θ(𝑖)
⨁

𝑀𝑘−1 ⊆ 𝑀𝑘+1 ⊆ ⋯ ⊆ 𝑀

is a Θ-filtration of 𝑀 . Repeating the process if necessary, we obtain a Θ-filtration of 𝑀 of

the form

0 = 𝐿0 ⊆ 𝐿1 ⊆ 𝐿2⋯ ⊆ 𝐿𝑎 ⊆ 𝑁𝑎+1 ⊆ 𝑁𝑎+2 ⊆ ⋯ ⊆ 𝑁𝑡 = 𝑀



where 𝐿𝑗∕𝐿𝑗−1 ≅ Θ(𝑖) for 𝑗 = 1,2,⋯ ,𝑎, and 𝑁𝑗∕𝑁𝑗−1 ≅ Θ(𝑙𝑗) for 𝑗 = 𝑎+1,𝑎+2,⋯ , 𝑡

with 𝑙𝑗 ∈ {1,2,⋯ , 𝑖−1} (here we set 𝑁𝑎 = 𝐿𝑎).

Since Ext1
𝐴
(Θ(𝑖),Θ(𝑖)) = 0, 𝐿𝑎 = Θ(𝑖)⊕𝑎 and we obtain a short exact sequence

0⟶ Θ(𝑖)⊕𝑎 ⟶ 𝑀 ⟶ 𝑁 ⟶ 0 (2.3)

where 𝑁 = 𝑀∕Θ(𝑖)⊕𝑎, which is filtered by {Θ(1),Θ(2),⋯ ,Θ(𝑖− 1)} as it admits the

following composition series:

0 ⊆ 𝑁𝑎+1∕Θ(𝑖)⊕𝑎 ⊆ 𝑁𝑎+2∕Θ(𝑖)⊕𝑎 ⊆ ⋯ ⊆ 𝑁𝑡∕Θ(𝑖)⊕𝑎 = 𝑁

(here we use the fact that if 𝐿 ⊆ 𝑁 ⊆ 𝑀 , then
𝑀∕𝐿

𝑁∕𝐿
≅ 𝑀∕𝑁).

Furthermore, the induction hypothesis states that there exists a short exact sequence

0⟶ 𝑁 ⟶ 𝑌 ⟶ 𝑁̄ ⟶ 0

with 𝑌 ∈ add(𝑌 ) and 𝑁̄ ∈  (Θ) such that 𝛿(𝑁̄) < 𝛿(𝑁).
Consider the diagram

0 0

0 Θ(𝑖)⊕𝑎 𝑀 𝑁 0

0 𝑌 (𝑖)⊕𝑎 𝑊 𝑁 0

𝑍(𝑖)⊕𝑎 𝑍(𝑖)⊕𝑎

0 0

𝛽⊕𝑎
𝑖

where the second row and the second column are obtained as the push-out of the morphisms

𝛽⊕𝑎
𝑖

∶ Θ(𝑖)⊕𝑎 ⟶ 𝑌 (𝑖)⊕𝑎 and the inclusion 𝑖 ∶ Θ(𝑖)⊕𝑎 ⟶ 𝑀 given in the sequence (2.3).

Since 𝑁 ∈ (Θ), the second row splits, so 𝑊 ≅ 𝑌 (𝑖)⊕𝑎⨁𝑁 . Composing the inclusion

𝑀 ⟶ 𝑊 with the inclusion 𝑊 ≅ 𝑌 (𝑖)⊕𝑎⨁𝑁 ⟶ 𝑌 (𝑖)⊕𝑎⨁𝑌 , we obtain

0⟶ 𝑀 ⟶ 𝑌
⨁

𝑌 (𝑖)⊕𝑎 ⟶
𝑌
⨁

𝑌 (𝑖)⊕𝑎

𝑀
⟶ 0 (2.4)

which is the inclusion of 𝑀 into a module in add(𝑌 ). Note that the quotient of such

inclusion fits into the exact sequence

0⟶ 𝑍(𝑖)⊕𝑎 ≅
𝑁

⨁
𝑌 (𝑖)⊕𝑎

𝑀
⟶

𝑌
⨁

𝑌 (𝑖)⊕𝑎

𝑀
⟶ 𝑌

𝑁
≅ 𝑁̄ ⟶ 0.



Since 𝑍(𝑖)⊕𝑎 and 𝑁̄ ∈  (Θ), we have that (𝑌
⨁

𝑌 (𝑖)⊕𝑎)∕𝑀 ∈  (Θ). Moreover, as

𝛿(𝑍(𝑖)⊕𝑎)< 𝑖 and 𝛿(𝑁̄)< 𝛿(𝑁)< 𝑖, we conclude that 𝛿
(
(𝑌

⨁
𝑌 (𝑖)⊕𝑎)∕𝑀

)
< 𝑖. Therefore,

the exact sequence (2.4) is the desired sequence. ■

For the next corollary, we define the evaluation map 𝜖𝑋 ∶ mod𝐴 ⟶mod𝐴 as 𝜖𝑋 ∶
𝑋 ⟶ Hom𝐵(Hom𝐴(𝑋,𝑌 ),𝑌 ). Note that 𝑌 is an 𝐵-𝐴-bimodule.

Corollary 2.1.11. The evaluation map 𝜖𝑋 is an isomorphism for any 𝑋 ∈  (Θ).

Proof. If 𝑋 = 𝑌 , then Hom𝐵(Hom𝐴(𝑌 ,𝑌 ),𝑌 ) = Hom𝐵(𝐵,𝑌 ) ≅ 𝑌 ; consequently, 𝜖𝑋 is an

isomorphism for 𝑋 ∈ add𝑌 . If 𝑋 ∈  (Θ) is an arbitrary module, by the previous lemma,

there exists an exact sequence

0 𝑋 𝑌0 𝑌1 ⋯ 𝑌𝑠−1 𝑌𝑠 0
𝑓−1 𝑓0 𝑓1 𝑓𝑠−1

such that 𝑋𝑖−1 ∶= im 𝑓𝑖−1 ∈  (Θ) and 𝑌𝑖 ∈ add(𝑌 ) for 𝑖 = 0,1,2,⋯ , 𝑠. Consider the exact

sequences

𝛾𝑖 ∶ 0⟶ 𝑋𝑖−1 ⟶ 𝑌𝑖 ⟶ 𝑋𝑖 ⟶ 0

with 0 ≤ 𝑖 ≤ 𝑠− 1, where we set 𝑋−1 = 𝑋 and 𝑋𝑠−1 = 𝑌𝑠. Since the functor 𝐹 (−) =
Hom𝐴(−,𝑌 ) is exact on  (Θ), we have the following commutative diagram:

0 𝑋𝑠−2 𝑌𝑠−1 𝑌𝑠 0

0 𝐸(𝑋𝑠−2) 𝐸(𝑌𝑠−1) 𝐸(𝑌𝑠)

𝜖𝑋𝑠−2 𝜖𝑌𝑠−1 𝜖𝑌𝑠

where 𝐸(𝑋) = Hom𝐵(Hom𝐴(𝑋,𝑌 ),𝑌 ). Since 𝜖𝑌𝑠−1
and 𝜖𝑌𝑠

are isomorphisms, it follows

that 𝜖𝑋𝑠−2
is also an isomorphism. By induction, we show that 𝜖𝑋−1

= 𝜖𝑋 is an isomorphism.

■

Theorem 2.1.12. The category  (Θ) ⊆ mod𝐴 is contravariantly equivalent to  (Δ) ⊆

mod𝐵𝑜𝑝.

Proof. Since the functor 𝐹 (−) = Hom𝐴(−,𝑌 ) is exact on  (Θ), it induces an equivalence

between  (Θ) and its image. We will show that 𝐹 is faithful and full, that is, given

𝑊 ,𝑉 ∈  (Θ), there is a functorial isomorphism

Hom𝐴(𝑊 ,𝑉 ) ≅ Hom𝐵(𝐹 (𝑉 ),𝐹 (𝑊 )).

We have that

Hom𝐵(𝐹 (𝑉 ),𝐹 (𝑊 )) = Hom𝐵(𝐹 (𝑉 ),Hom𝐴(𝑊 ,𝑌 )) ≅ Hom𝐴(𝑊 ,Hom𝐵(𝐹 (𝑉 ),𝑌 )).

The previous corollary ensures that Hom𝐵(𝐹 (𝑉 ),𝑌 ) = Hom𝐵(Hom𝐴(𝑉 ,𝑌 ),𝑌 ) ≅ 𝑉 , thus

Hom𝐴(𝑊 ,𝑉 ) ≅ Hom𝐵(𝐹 (𝑉 ),𝐹 (𝑊 )).



Since Δ(𝑖) = 𝐹 (Θ(𝑖)), the image of  (Θ) under the functor 𝐹 is contained in  (Δ).
We will show that the image is precisely  (Δ). We start by showing that the functor

𝐺 ∶ mod𝐵𝑜𝑝 ⟶mod𝐴 defined as 𝐺(−) ∶= Hom𝐵(−,𝑌 ) is exact on  (Δ). Applying the

functor 𝐹 to the exact sequence given in condition 2 of Definition (2.1.1), we obtain

0⟶ 𝐹 (𝑍(𝑖))⟶ 𝑃 (𝑖)⟶ Δ(𝑖)⟶ 0.

Applying the functor 𝐺, we obtain the following commutative diagram:

0 Θ(𝑖) 𝑌 (𝑖) 𝑍(𝑖) 0

0 𝐺(Δ(𝑖)) 𝐺(𝑃 (𝑖)) 𝐺(𝐹 (𝑍(𝑖))) Ext1
𝐵
(Δ(𝑖),𝑌 ) 0

Since the vertical morphisms are isomorphisms by the previous corollary, we have that

Ext1
𝐵
(Δ(𝑖),𝑌 ) = 0 for all 𝑖 = 1,2,⋯ ,𝑛, and consequently, the functor 𝐺 is exact on  (Δ).

Given 𝑊 ∈  (Δ), we will show by induction on the Δ-length 𝑘 = 𝑙Δ(𝑊 ) =
𝑛∑

𝑗=1
[𝑊 ∶ Δ(𝑗)]

that 𝑊 = 𝐹 (𝑉 ) for some 𝑉 ∈  (Θ).
If 𝑊 = 𝐹 (𝑋) where 𝑋 ∈  (Θ), then 𝑊 is isomorphic to 𝐹 (𝐺(𝑊 )). Indeed,

𝐹 (𝐺(𝑊 )) = Hom𝐴(Hom𝐵(Hom𝐴(𝑋,𝑌 ),𝑌 ),𝑌 ),

but the previous corollary ensures that Hom𝐵(Hom𝐴(𝑊 ,𝑌 ),𝑌 ) ≅ 𝑋, hence 𝐹 (𝐺(𝑊 )) ≅
Hom𝐴(𝑋,𝑌 ) = 𝑊 . In particular, we have an isomorphism between Δ(𝑖) = 𝐹 (Θ(𝑖)) and

𝐹 (𝐺(Δ(𝑖))).
Let 𝑊 ∈  (Δ) such that 𝑙Δ(𝑊 ) = 𝑘. There exists a Δ-filtration of length 𝑘

0 = 𝑊0 ⊆ 𝑊1 ⊆ 𝑊2 ⊆ ⋯ ⊆ 𝑊𝑘−1 ⊆ 𝑊𝑘 = 𝑊

such that 𝑊𝑗∕𝑊𝑗−1 is isomorphic to a module in Δ for 𝑗 = 1,2,⋯ ,𝑘. By the induction

hypothesis, since 𝑙Δ(𝑊𝑘−1) = 𝑘− 1, we have 𝑊𝑘−1 = 𝐹 (𝑉 ′) for some 𝑉 ′ ∈  (Θ). In

particular, there is an exact sequence

0⟶ 𝑊𝑘−1 ⟶ 𝑊 ⟶ Δ(𝑖)⟶ 0

for some 𝑖 ∈ 𝕀𝑛. Applying the functor 𝐺 and then the functor 𝐹 , we obtain the following

commutative diagram:

0 𝑊𝑘−1 𝑊 Δ(𝑖) 0

0 𝐹 (𝐺(𝑊𝑘−1)) 𝐹 (𝐺(𝑊 )) 𝐹 (𝐺(Δ(𝑖))) 0

where the vertical maps are given by evaluation. Since the vertical morphisms on the left

and right are isomorphisms, the central morphism is an isomorphism, which proves the

theorem. ■



Equivalence Between EISS and SS

Theorem 2.1.13. Let (Θ,𝕐 ,≤) be an EISS of size 𝑛, where Θ = {Θ(1),Θ(2),⋯ ,Θ(𝑛)}.
Then the modules in Θ satisfy:

1. Hom𝐴(Θ(𝑗),Θ(𝑖)) = 0 if 𝑗 > 𝑖.

2. Ext1
𝐴
(Θ(𝑗),Θ(𝑖)) = 0 if 𝑗 ≥ 𝑖.

3. Θ(𝑖) is an indecomposable module for 𝑖 = 1,2,⋯ ,𝑛.

Proof. The first item follows from the definition, while the second was proven in Lemma

2.1.8. To show that Θ(𝑖) is indecomposable, note that under the conditions of the previous

theorem, the contravariantly equivalence between  (Θ) ⊆ mod𝐴 and  (Δ) ⊆ mod𝐵𝑜𝑝

implies End𝐴(Θ(𝑖)) ≅ End𝐵𝑜𝑝(Δ(𝑖)). Since Δ(𝑖) is the quotient of an indecomposable

projective module, Δ(𝑖) has a simple top, hence Δ(𝑖) is indecomposable. Consequently,

End𝐵𝑜𝑝(Δ(𝑖)) is a local ring, which implies that End𝐴(Θ(𝑖)) is also a local ring, and thus

Θ(𝑖) is indecomposable. ■

The theorem above provides necessary conditions for a finite set of modules Θ to be

part of an EISS (Θ,𝕐 ,≤). We will show that these conditions are, in fact, sufficient. To do

this, we will construct the set of indecomposable modules 𝕐 such that (Θ,𝕐 ,≤) forms an

EISS. We will start with a lemma.

Lemma 2.1.14. Let 𝑁,𝑀 be modules such that Hom𝐴(𝑁,𝑀) = 0 and Ext1
𝐴
(𝑀,𝑁) ≠ 0

and 𝑁 is indecomposable. Consider a non-split exact sequence

𝛽 ∶ 0 𝑁 𝑊 𝑀 0.𝑓 𝑔

Then 𝛽 is isomorphic to the direct sum of a split sequence and a non-split sequence

𝛽′ ∶ 0 𝑁 𝑊 ′ 𝑀 ′ 0,

with 𝑊 ′|𝑊 , 𝑀 ′|𝑀 and 𝑊 ′ indecomposable.

Proof. We may assume without loss of generality that 𝑁 ⟶ 𝑊 is an inclusion, so

that 𝑁 is a submodule of 𝑊 . Suppose 𝑊 = 𝑊1
⨁

𝑊2, then we have 𝑔 = [𝑔1 𝑔2] with

𝑔1 ∶ 𝑊1 ⟶ 𝑀 and 𝑔2 ∶ 𝑊2 ⟶ 𝑀 .

We will show that 𝑁 = ker(𝑔1)
⨁

ker(𝑔2). Since ker(𝑔1) ⊆ 𝑊1 and ker(𝑔2) ⊆ 𝑊2, it

follows that ker(𝑔1)
⨁

ker(𝑔2) ⊆ 𝑊 . Furthermore, since 𝑔(ker(𝑔1)
⨁

ker(𝑔2)) = 0, we

have ker(𝑔1)
⨁

ker(𝑔2) ⊆ ker(𝑔) = 𝑁 . Conversely, let 𝑛 = (𝑛1,𝑛2)𝑇 ∈ 𝑁 (where 𝑛1 ∈ 𝑊1
and 𝑛2 ∈ 𝑊2). Then ℎ𝑖 ∶ 𝑁 ⟶ 𝑀 , defined by ℎ𝑖(𝑛) = 𝑔𝑖(𝑛𝑖) for 𝑖 = 1,2, is a morphism

in Hom𝐴(𝑁,𝑀). By the hypothesis Hom𝐴(𝑁,𝑀) = 0, it follows that ℎ𝑖 = 0 for 𝑖 = 1,2,

and thus 𝑛 = (𝑛1,𝑛2)𝑇 ∈ ker(𝑔1)
⨁

ker(𝑔2). Therefore, ker(𝑔1)
⨁

ker(𝑔2) = 𝑁 .



For the remaining part, using the isomorphism theorem, we obtain

𝑀 ≅ 𝑊

𝑁
≅

𝑊1
⨁

𝑊2
ker(𝑔1)

⨁
ker(𝑔2)

≅
𝑊1

ker(𝑔1)
⨁ 𝑊2

ker(𝑔2)
.

Thus, 𝛽 = 𝛽1
⨁

𝛽2, where

𝛽𝑖 ∶ 0⟶ ker(𝑔𝑖)⟶ 𝑊𝑖 ⟶
𝑊𝑖

ker(𝑔𝑖)
⟶ 0.

However, by hypothesis, 𝑁 is indecomposable, so ker(𝑔2) = 0 (without loss of gener-

ality), and 𝛽2 is split. We can repeat the process on 𝛽1 and “remove” split exact sequences

from 𝛽 iteratively until obtaining 𝛽′. The number of iterations is finite since 𝑊 is a module

of finite length, and in such a construction, we have 𝑙(𝑊 ) > 𝑙(𝑊1). ■

Theorem 2.1.15. Suppose that (Θ,≤) is an SS of size 𝑛. Then there exists a set of indecom-
posable modules 𝕐 = {𝑌 (1),𝑌 (2),⋯ ,𝑌 (𝑛)} such that (Θ,𝕐 ,≤) is an EISS.

Proof. We take 𝑌 (1) = Θ(1). Fixing 𝑖 = 2,⋯ ,𝑛, for 𝑘 = 1,2,⋯ , 𝑖−1 we will construct

exact sequences

𝛾𝑘 ∶ 0⟶ Θ(𝑖)⟶ 𝑈𝑘 ⟶ 𝑉𝑘 ⟶ 0

with 𝑉𝑘 ∈ ({Θ(𝑖−1),⋯ ,Θ(𝑖−𝑘)}) and 𝑈𝑘 indecomposable satisfyingExt1
𝐴
(Θ(𝑗),𝑈𝑘) = 0

for 𝑖− 𝑘 ≤ 𝑗 ≤ 𝑛. Under these conditions, we take 𝑌 (𝑖) = 𝑈𝑖−1 and 𝑍(𝑖) = 𝑉𝑖−1. The

exact sequence 𝛾𝑖−1 is the exact sequence given in condition 2 of Definition 2.1.1, where

𝑉𝑖−1 ∈  ({Θ(𝑗) | 𝑗 < 𝑖}). Condition 3 is also satisfied since Ext1
𝐴
( (Θ),𝑌 ) = 0 if, and only

if, Ext1
𝐴
( (Θ),𝑌 (𝑗)) = 0 for all 𝑗 = 1,2,⋯ ,𝑛, where 𝑌 =

𝑛⨁
𝑗=1

𝑌 (𝑗).

We start by constructing 𝛾1. If Ext1
𝐴
(Θ(𝑖−1),Θ(𝑖)) = 0, take 𝑈1 = Θ(𝑖) and 𝑉1 = 0.

Otherwise, there exists a non-split exact sequence

0⟶ Θ(𝑖)⟶ 𝑈 ⟶ Θ(𝑖−1)⊕𝑚 ⟶ 0 (2.5)

given by the universal extension, where 𝑚= dimExt1
𝐴
(Θ(𝑖−1),Θ(𝑖)). Applying the functor

Hom𝐴(Θ(𝑖−1),−), we obtain

Ext1
𝐴
(Θ(𝑖−1),Θ(𝑖)) Ext1

𝐴
(Θ(𝑖−1),𝑈 ) Ext1

𝐴
(Θ(𝑖−1),Θ(𝑖−1)⊕𝑚)0

where the first morphism is 0 since the connecting morphism

𝛿 ∶ Hom𝐴(Θ(𝑖−1),Θ(𝑖−1)⊕𝑚)⟶ Ext1
𝐴
(Θ(𝑖−1),Θ(𝑖))

is surjective. Moreover, we have Ext1
𝐴
(Θ(𝑖−1),Θ(𝑖−1)⊕𝑚) =

𝑚⨁
𝑡=1

Ext1
𝐴
(Θ(𝑖−1),Θ(𝑖−1)) =

0 by hypothesis, and thus Ext1
𝐴
(Θ(𝑖−1),𝑈 ) = 0.



Applying now the functor Hom𝐴(Θ(𝑗),−) for 𝑗 ≥ 𝑖, we obtain

Ext1
𝐴
(Θ(𝑗),Θ(𝑖))⟶ Ext1

𝐴
(Θ(𝑗),𝑈 )⟶ Ext1

𝐴
(Θ(𝑗),Θ(𝑖−1)⊕𝑚).

The end terms of the exact sequence above are 0 by hypothesis, and thus Ext1
𝐴
(Θ(𝑖),𝑈 ) = 0.

By Lemma 2.1.14, removing split summands from (2.5), we obtain

𝛾1 ∶ 0⟶ Θ(𝑖)⟶ 𝑈1 ⟶ Θ(𝑖−1)⊕𝑚′
⟶ 0,

with 𝑈1|𝑈 indecomposable and 𝑚′ ≤ 𝑚. This is the desired sequence.

Now, suppose 𝛾𝑘 has been constructed, with 𝑘 < 𝑖−1. We will construct 𝛾𝑘+1. If

Ext1
𝐴
(Θ(𝑖−𝑘−1),𝑈𝑘) = 0, we set 𝛾𝑘+1 = 𝛾𝑘. Otherwise, constructing the universal exten-

sion,

0⟶ 𝑈𝑘 ⟶ 𝑈 ⟶ Θ(𝑖−𝑘−1)⊕𝑎 ⟶ 0. (2.6)

Similarly to the base case, applying the functor Hom𝐴(Θ(𝑖−𝑘−1),−), we obtain that

Ext1
𝐴
(Θ(𝑖−𝑘−1),𝑈 ) = 0, since Ext1

𝐴
(Θ(𝑖−𝑘−1),Θ(𝑖−𝑘−1)⊕𝑎) = 0, and the connecting

morphism 𝛿′ ∶ Hom𝐴(Θ(𝑖−𝑘−1),Θ(𝑖−𝑘−1)⊕𝑎)⟶ Ext1
𝐴
(Θ(𝑖−𝑘−1),𝑈𝑘) is surjective.

Applying the functor Hom𝐴(Θ(𝑗),−) with 𝑖−𝑘 ≤ 𝑗 ≤ 𝑛, we obtain

Ext1
𝐴
(Θ(𝑗),𝑈𝑘)⟶ Ext1

𝐴
(Θ(𝑗),𝑈 )⟶ Ext1

𝐴
(Θ(𝑗),Θ(𝑖−𝑘−1)⊕𝑎).

By the induction hypothesis, we have Ext1
𝐴
(Θ(𝑗),𝑈𝑘) = 0 and Ext1

𝐴
(Θ(𝑗),Θ(𝑖−𝑘−1)⊕𝑎) =

0, since 𝑗 > 𝑖−𝑘−1. Thus, Ext1
𝐴
(Θ(𝑗),𝑈 ) = 0.

Using Lemma 2.1.14 on the exact sequence (2.6), we obtain the sequence (where 𝑎′ ≤ 𝑎)

0⟶ 𝑈𝑘 ⟶ 𝑈𝑘+1 ⟶ Θ(𝑖−𝑘−1)⊕𝑎′ ⟶ 0,

with 𝑈𝑘+1 indecomposable. Composing the inclusion 𝑖 ∶ Θ(𝑖)⟶ 𝑈𝑘 with 𝑈𝑘 ⟶ 𝑈𝑘+1,

we obtain

𝛾𝑘+1 ∶ 0⟶ Θ(𝑖)⟶ 𝑈𝑘+1 ⟶ 𝑉𝑘+1 ⟶ 0,

which is the desired sequence. Indeed, we have that Ext1
𝐴
(Θ(𝑗),𝑈𝑘) = 0 for 𝑖−𝑘−1≤ 𝑗 ≤ 𝑛,

as 𝑈𝑘|𝑈 , and 𝑈𝑘+1 is indecomposable.

To see that 𝑉𝑘+1 is filtered by {Θ(𝑖−1),⋯ ,Θ(𝑖−𝑘−1)}, consider the following dia-

gram:



0 0 ker 𝑓

0 Θ(𝑖) 𝑈𝑘+1 𝑉𝑘+1 0

0 𝑈𝑘 𝑈𝑘+1 Θ(𝑖−𝑘−1)⊕𝑎′ 0

𝑉𝑘 0 0

𝑖 1 𝑓

where 𝑓 is the unique morphism that completes the diagram. Since 𝑖 is a monomorphism

and the second morphism is the identity, we have that 𝑓 is an epimorphism (see (6, Chapter

2, Theorem 4.4)). Moreover, the Snake Lemma ensures that ker 𝑓 ≅ 𝑉𝑘, and thus the

following sequence is exact

0⟶ 𝑉𝑘 ⟶ 𝑉𝑘+1 ⟶ Θ(𝑖−𝑘−1)⊕𝑎′ ⟶ 0

shows that 𝑉𝑘+1 ∈  ({Θ(𝑖−1),⋯ ,Θ(𝑖−𝑘−1)}). ■

Combining Theorems 2.1.13 and 2.1.15, we have the following theorem:

Theorem 2.1.16. LetΘ={Θ(1),Θ(2),⋯ ,Θ(𝑛)} be a totally ordered set of nonzero modules.
The following are equivalent:

1. There exists a set of indecomposable modules 𝕐 = {𝑌 (1),𝑌 (2),⋯ ,𝑌 (𝑛)} such that
(Θ,𝕐 ,≤) is an EISS.

2. (Θ,≤) is an SS.

■

To characterize a stratifying system by the set of relatively simple modules, we must

prove that, given Θ = {Θ(1),⋯ ,Θ(𝑛)} satisfying the conditions of Theorem 2.1.16, there

exists a unique set of modules 𝕐 = {𝑌 (1),⋯ ,𝑌 (𝑛)}, up to isomorphism, such that (Θ,𝕐 ,≤)
is an Ext-injective stratifying system.

For what follows, we define the following subcategories of  (Θ):

(Θ) = {𝑀 ∈  (Θ) | Ext1
𝐴
(−,𝑀)| (Θ) = 0}.

(Θ) = {𝑀 ∈  (Θ) | Ext1
𝐴
(𝑀,−)| (Θ) = 0}.

Lemma 2.1.17. Let 𝛼𝑖 ∶ Θ(𝑖)⟶ 𝑌 (𝑖) be the morphism given in Definition 2.1.1. Then 𝛼𝑖

is the minimal (Θ)-left approximation of Θ(𝑖).



Proof. Consider the exact sequence

0 Θ(𝑖) 𝑌 (𝑖) 𝑍(𝑖) 0.
𝛼𝑖

Applying the functor Hom𝐴(−,𝐼) with 𝐼 ∈ (Θ), we obtain

Hom𝐴(𝑌 (𝑖), 𝐼) Hom𝐴(Θ(𝑖), 𝐼) 0.
𝛼∗

𝑖

Thus, 𝛼𝑖 is an (Θ)-left approximation. This approximation is minimal since 𝑌 (𝑖) is

indecomposable. ■

Proposition 2.1.18. Let (Θ,𝕐 ,≤) and (Θ,𝕐 ′ ≤) be two EISS of size 𝑛. Then for each 𝑖 =
1,2,⋯ ,𝑛, there exists an isomorphism 𝑓𝑖 ∶ 𝑌 (𝑖)⟶ 𝑌 ′(𝑖), where 𝑌 (𝑖) ∈ 𝕐 and 𝑌 ′(𝑖) ∈ 𝕐 ′.

Proof. Condition 3 of Definition 2.1.1 states that 𝑌 (𝑖) and 𝑌 ′(𝑖) are in (Θ) for all 𝑖 =
1,2,⋯ ,𝑛. Consider the minimal left approximations 𝛼𝑖 ∶ Θ(𝑖)⟶ 𝑌 (𝑖) and 𝛼′

𝑖
∶ Θ(𝑖)⟶

𝑌 ′(𝑖) of the module Θ(𝑖). There exist morphisms 𝑓𝑖 ∶ 𝑌 (𝑖)⟶ 𝑌 ′(𝑖) and 𝑔𝑖 ∶ 𝑌 ′(𝑖)⟶ 𝑌 (𝑖)
such that 𝛼′

𝑖
= 𝑓𝑖◦𝛼𝑖 and 𝛼𝑖 = 𝑔𝑖◦𝛼′

𝑖
. Hence, 𝛼𝑖 = (𝑓𝑖◦𝑔𝑖)◦𝛼𝑖 and 𝛼′

𝑖
= (𝑔𝑖◦𝑓𝑖)◦𝛼′

𝑖
, which

implies that 𝑓𝑖◦𝑔𝑖 and 𝑔𝑖◦𝑓𝑖 are isomorphisms. Thus, 𝑓𝑖 and 𝑔𝑖 are isomorphisms. ■

It is also possible to provide a third characterization of a stratifying system (see (30)).

Definition 2.1.19 (Ext-Projective Stratifying System). Let 𝐴 be an algebra and let Θ =
{Θ(1),Θ(2),⋯ ,Θ(𝑛)} be a fixed ordered set of 𝐴-modules. Moreover, suppose 𝕎 =
{𝑊 (1),𝑊 (2),⋯ ,𝑊 (𝑛)} is a set of indecomposable 𝐴-modules. We call (Θ,𝕎,≤) an
Ext-projective stratifying system of size 𝒏 (EPSS, for short) if the following conditions
hold:

1. Hom𝐴(Θ(𝑘),Θ(𝑗)) = 0 if 𝑘 > 𝑗.

2. For all 𝑖 ∈ 𝕀𝑛, there is an exact sequence

0⟶ 𝐾(𝑖)⟶ 𝑊 (𝑖)⟶ Θ(𝑖)⟶ 0;

and 𝐾(𝑖) is filtered by Θ(𝑗) with 𝑗 > 𝑖, that is, 𝐾(𝑖) ∈  ({Θ(𝑗) | 𝑗 > 𝑖}).

3. Ext1
𝐴
(𝑊 ,−)| (Θ) = 0, where 𝑊 =

𝑛⨁
𝑗=1

𝑊 (𝑗).

All the theorems presented in this section can be dualized for EPSS.

It is possible to use the equivalence of Theorem 2.1.12 to prove that, if (Θ,𝕐 ,≤)
and (Θ′,𝕐 ,≤) are two EISS (or EPSS) modules of size 𝑛, then there exist isomorphisms

𝑓𝑖 ∶ Θ(𝑖)⟶ Θ′(𝑖) for all 𝑖 = 1,2,⋯ ,𝑛. Moreover, it can be shown that  (Θ) is a functo-

rially finite subcategory of mod𝐴 closed under direct summands, sums, and extensions.

Additionally, it can be proven that (Θ) = add𝑌 and (Θ) = add𝑊 .



Let Δ be a set of standard modules. Then Δ is a stratifying system. Consequently, there

exist (Δ,𝕐 ,≤) and (Δ,𝕎,≤), EISS and EPSS, respectively, where 𝕐 and 𝕎 are uniquely

defined up to isomorphism. If 𝐴𝐴 ∈  (Δ) (i.e., if 𝐴 is a standardly stratified algebra), it is

possible to identify 𝕎 as the set of indecomposable projective modules and 𝕐 as the set of

indecomposable summands of 𝑌 , the characteristic generalized tilting module relative to

Δ.

It is easy to see that if (Θ,≤) is a stratifying system of size 𝑛 and Θ′ ⊆ Θ is a non-empty

subset, then Θ′ with the induced order from Θ is again a stratifying system. We conclude

this section with an example that illustrates the relationship between Θ′ and the set 𝕐 ′ such

that (Θ′,𝕐 ′,≤) is an EISS.

Example 2.1.20. Consider (Θ,≤) as the same stratifying system from Example 2.1.4. We
have that Θ′ = {𝑆(3),𝑆(1)} is a stratifying system. In this case,

 (Θ′) = add(𝑆(1)
⨁

𝑆(3)),

and the sets of relatively injective modules are now given by 𝕐 ′ = Θ′. Note that 𝕐 ′ ⊊ 𝕐 is
different from the expected {𝑆(3),𝑃 (2)}, where we only exclude the Ext-injective associated
to Θ(2) = 𝑆(2).

To justify this, consider the canonical sequence associated to the SS Θ:

0⟶ 𝑆(1)⟶ 𝑃 (2)⟶ 𝑆(2)⟶ 0.

Here, 𝑆(2) = 𝑍(3) is filtered by Θ(2) ∈  (Θ(1)
⨁

Θ(2)), but 𝑆(2) ∉  (Θ(1)), hence 𝑃 (2)
cannot be the Ext-injective associated to 𝑆(1) in Θ′.

2.2 Historical overview of stratifying systems
In this section, we present a historical overview of the development of the theory of

stratifying systems through a selection of relevant articles, arranged chronologically. Our

goal is not to offer an exhaustive or comprehensive review of the literature but rather

to highlight some works that played a significant role in advancing this topic. For each

selected article, we provide a brief description, emphasizing the main results, contributions,

and potential innovations introduced.

This approach aims to provide the reader with a broad perspective on the evolution of

the central ideas of the theory, as well as to establish a context for the concepts and results

we will explore in the subsequent sections.

(2003) - On Standardly Stratified Algebras (25)
This was the first article on the topic. In this paper, K. Erdmann and C. Sáenz define

Ext-injective stratifying systems. In addition to proving the results presented in the previous

section, they constructed some stratifying systems in special biserial self-injective algebras.



(2004-2005) - Stratifying Systems via Relative Simple (Projective) Modules (29; 30)
In a series of two papers, E. Marcos, O. Mendoza, and C. Sáenz presented two equivalent

definitions of stratifying systems, via relatively projective and simple modules, with the

latter being the most accepted due to its simplicity. Moreover, they presented various

results about the category  (Θ) and homological results involving standard stratifying

systems, for instance:

Theorem 2.2.1. The algebra 𝐴 is quasi-hereditary if and only if gl.dim 𝐴 < ∞ and there
is a stratifying system (Θ,≤) such that 𝐴𝐴 ∈  (Θ) and Ext2

𝐴
( (Θ),(Θ)) = 0.

(2006) - Applications of Stratifying Systems to the Finitistic Dimension (31)
One of the main tools in the study of homological algebra is homological dimensions,

which, in some sense, “measure the deviation” of a module category from being semisimple.

One such homological dimension is the finitistic dimension, defined as

pfd(𝐴) = sup{pd 𝑀 | 𝑀 ∈ mod𝐴 and pd(𝑀) < ∞}.

H. Bass conjectured in the 60s that the finitistic dimension is finite whenever 𝐴 is a finite

dimensional 𝑘-algebra over an algebraically closed field. Since then, significant progress

has been made, and partial results have been obtained (34).

In this article, E. Marcos, O. Mendoza, and C. Sáenz proved that, given an Ext-injective

stratifying system (Θ,𝕐 ,≤) such that pd𝑌 ≤∞, where 𝑌 =
𝑡⨁

𝑖=1
𝑌 (𝑖), then

pfd(𝐴) = pfd((Θ)).

(2006) - Quadratic Forms Associated to Stratifying Systems (33)
To determine when  (Θ) has a finite number of indecomposable modules, under the

condition that (Θ,≤) is a stratifying system satisfying certain properties, E. Marcos, O.

Mendoza, C. Sáenz, and R. Zuazua defined quadratic forms involving Θ. These forms

address the problem in the case where  (Θ) is Θ-directing, that is, for any 𝑀 ∈  (Θ),
there does not exist a finite sequence of modules 𝑋0,𝑋1,⋯ ,𝑋𝑚 with 𝑋0 ≅ 𝑋𝑚 ≅ 𝑀 such

that rad𝐴(𝑋𝑖−1,𝑋𝑖) ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑚.

Definition 2.2.2. Given a stratifying system (Θ,≤) of size 𝑡, we define two quadratic forms:

1. The Tits form 𝑞Θ ∶ ℤ𝑡 ⟶ ℤ, given by the equation

𝑞Θ(𝑥) =
2∑

𝑙=0

𝑡∑
𝑖=1

𝑡∑
𝑗=1

(−1)𝑙 dim𝑘Ext𝑙𝐴(Θ(𝑖),Θ(𝑗))𝑥(𝑖)𝑥(𝑗),

where 𝑥 = (𝑥(1),𝑥(2),⋯ ,𝑥(𝑡)) ∈ ℤ𝑡.



2. If pd (Θ)(Θ) < ∞, we define a bilinear form ⟨−,−⟩Θ on ℤ𝑡 by

⟨𝑥,𝑦⟩Θ =
∞∑
𝑙=0

𝑡∑
𝑖=1

𝑡∑
𝑗=1

(−1)𝑙 dim𝑘Ext𝑙𝐴(Θ(𝑖),Θ(𝑗))𝑥(𝑖)𝑦(𝑗).

In this case, the Euler quadratic form 𝜂Θ ∶ ℤ𝑡 ⟶ ℤ is defined as

𝜂Θ(𝑥) = ⟨𝑥,𝑥⟩Θ.

Note that the summation in the second item is finite. Using these quadratic forms, the

following theorem was established:

Theorem 2.2.3. Let 𝐴 be an algebra, and (Θ,≤) a stratifying system. If  (Θ) is Θ-directing,
then  (Θ) has a finite number of indecomposable modules.

(2008) - An Approach to The Finitistic Dimension Conjecture (27)
In “Finitistic dimension of standardly stratified algebras” (4), it was proven that if 𝐴 is

a standardly stratified algebra for some ordering of the projectives, then

pfd(𝐴) ≤ 2𝑛−2,

where 𝑛 = |𝐴𝐴|.
In this article, F. Huard, M. Lanzilotta, and O. Mendoza consider the following conjec-

ture:

Conjecture 2.2.4. Let 𝐴 be any finite dimensional 𝑘-algebra. Then, for any stratifying
system (Θ,≤) in mod𝐴, we have that

pfd  (Θ) ∶= sup{pd 𝑀 | 𝑀 ∈  (Θ) and pd(𝑀) < ∞} < ∞.

In the same article, a proof of this conjecture was provided for some particular cases.

For instance, if (Θ,≤) is a stratifying system such that pd Θ(𝑗) < ∞ for all 𝑗 ≠ 𝑖, except for

exactly one index 𝑖 where pd Θ(𝑖) = ∞, then

pfd  (Θ) ≤ max{pd Θ(𝑗) | 𝑗 ≠ 𝑖} < ∞.

They also proved an analogous result in the case where Θ has exactly two or three

modules with pd Θ(𝑖) = ∞.

(2014) - Split-by-Nilpotent Extensions Algebras and Stratifying Systems (28)
Let 𝐴 and 𝐵 be two algebras such that 𝐵 is a split-by-nilpotent extension of 𝐴, that is,

there exists a split surjective algebra morphism 𝑓 ∶ 𝐵 ⟶ 𝐴 whose kernel 𝐾 is a nilpotent

ideal of 𝐵, and let 𝐺 = 𝐵 ⊗𝐴 − and 𝐹 = 𝐴 ⊗𝐵 − be the change-of-rings functors. In

this article, M. Lanzilotta, O. Mendoza, and C. Sáenz provided conditions for when a



stratifying system (Θ,≤) in mod𝐴 induces a stratifying system (𝐺(Θ),≤) in mod𝐵 and

when a stratifying system (Θ′,≤) in mod𝐵 restricts to a stratifying system in mod𝐴 through

the functor 𝐹 .

We say that a stratifying system (Θ,≤) is compatible with the ideal 𝐼 if it satisfies the

following conditions:

1. Hom𝐴(Θ(𝑗), 𝐼 ⊗𝐴Θ(𝑖)) = 0 for 𝑗 > 𝑖.

2. Ext1
𝐴
(Θ(𝑗), 𝐼 ⊗𝐴Θ(𝑖)) = 0 for 𝑗 ≥ 𝑖.

Proposition 2.2.5. Let Θ be an ordered set of modules in mod𝐴 and ≤ be a total order. If
𝐼 is projective, then the following conditions are equivalent:

1. (Θ,≤) is a stratifying system in mod𝐴, which is compatible with the ideal 𝐾 .

2. (𝐺(Θ),≤) is a stratifying system in mod𝐵.

(2015) - Stratifying Systems Over Hereditary Algebras (18)
In this paper, P. Cadavid and E. Marcos show that the size of a stratifying system is at

most |𝐴𝐴| if 𝐴 is a hereditary algebra. Furthermore, they construct all complete stratifying

systems in generalized Kronecker algebras as shown in the proposition below (A stratifying

system is said to be complete if it is not a proper subset of another stratifying system):

Proposition 2.2.6. Let 𝐴 = 𝑘𝑄, where 𝑄 is the quiver

1 2
𝛼1

𝛼𝑚

⋯

with 𝑚 ≥ 2. Then the list of all complete stratifying systems over 𝐴 is the following:

1. {𝐼(2),𝑃 (1)}.

2. {𝜏−𝑖(𝑃 (1)), 𝜏−𝑖(𝑃 (2))} with 𝑖 ≥ 0.

3. {𝜏−𝑖(𝑃 (2)), 𝜏−𝑖−1(𝑃 (1))} with 𝑖 ≥ 0.

4. {𝜏𝑖(𝐼(1)), 𝜏𝑖(𝐼(2))} with 𝑖 ≥ 0.

5. {𝜏𝑖+1(𝐼(2)), 𝜏𝑖(𝐼(1))} with 𝑖 ≥ 0.

The authors also showed that if 𝐴 is of Euclidean type, a stratifying system over 𝐴

has at most 𝑛−2 regular modules. A regular module is a module that is neither of the

form 𝜏−𝑘(𝑃 (𝑖)) nor of the form 𝜏𝑘(𝐼(𝑖)) for any 𝑖,𝑘. For algebras of Euclidean type, we

recommend Chapter VII.2 of (8).



(2016) - Stratifying Systems Over the Hereditary Path Algebra with Quiver 𝔸𝑝,𝑞 (19)
Continuing their previous work, P. Cadavid and E. Marcos construct some complete

stratifying systems with the maximum number of regular modules in algebras of type 𝔸𝑝,𝑞.

The construction of such stratifying systems involves modular arithmetic with the numbers

𝑝,𝑞 and the powers of the Auslander-Reiten translation of certain modules.

(2019) - Cokernels of the Cartan Matrix and Stratifying Systems (32)
Let 𝐴 be an algebra. It is well-known that the Cartan matrix 𝐶𝐴 of such an algebra is

an important tool used in various contexts. It is known that det𝐶𝐴 = ±1 for any 𝑘-algebra

of finite global dimension, and it is conjectured that det𝐶𝐴 = 1 in this case. Considering

the Cartan matrix as a homomorphism 𝐶𝐴 ∶ ℤ𝑛 ⟶ ℤ𝑛, where 𝑛 = |𝐴𝐴|, one can define

the abelian group 𝐺𝐴 ∶= coker(𝐶𝐴).
Considering an EPSS (Θ,𝕎,≤) over an algebra 𝐴, E. Marcos, O. Mendoza, and C.

Sáenz studied properties of the Cartan matrix 𝐶𝐵 and the group 𝐺𝐵 when 𝐵 = End𝐴(𝑊 )op,

with 𝑊 =
𝑡⨁

𝑗=1
𝑊 (𝑗), yielding results such as the following:

Theorem 2.2.7. Let (Θ,𝕎,≤) be an Ext-projective stratifying system of size 𝑡 in mod𝐴,
and 𝐵 = End𝐴(𝑊 )op. Then, the following statements hold true:

1. 𝐺𝐵 ≅ coker(𝐶Θ) and |𝐺𝐵| = 𝑡∏
𝑗=1

dimEnd𝐴(Θ(𝑗)).

2. The exponent of 𝐺𝐵 is a multiple of dimEnd𝐴(Θ(𝑗)), for any 𝑗 ∈ 𝕀𝑡.

Corollary 2.2.8. Let (𝐴,≤) be a standardly stratified 𝑘-algebra. Then, the following
statements hold true:

1. 𝐺𝐴 ≅ coker(𝐶Δ) and |𝐺𝐴| = 𝑡∏
𝑗=1

dimEnd𝐴(Δ(𝑗)).

2. If (𝐴,≤) is weakly triangular, then 𝐶Δ = diag(𝑑1,⋯ ,𝑑𝑛) and 𝐺𝐴 =
𝑛⨁

𝑗=1
ℤ∕𝑑𝑗ℤ, where

𝑑𝑗 = dim(Δ(𝑗)).

3. (𝐴,≤) is quasi-hereditary if and only if 𝐺𝐴 = 0.

(2020) - Stratifying Systems Through 𝜏-Tilting Theory (36)
In this work, O. Mendoza and H. Treffinger show that, given a basic 𝜏-rigid module 𝑀

such that |𝑀| = 𝑡, there exists at least one stratifying system of size 𝑡 induced by 𝑀 . The

construction of the stratifying system depends on a specific order of the summands of 𝑀

and, in some sense, generalizes the notion of standard modules since we can follow the

construction presented in this paper with the 𝜏-rigid module 𝐴𝐴. In the next section, we

will present this construction in detail.



(2022) - Stratifying Systems and Jordan-Hölder Extriangulated Categories (13)
In this paper, T. Brüstle, S. Hassoun, A. Shah, and A. Tattar define stratifying systems

in extriangulated categories, which generalize both abelian categories and triangulated

categories. Furthermore, they studied the subcategory of objects filtered by a stratifying

system and provided a sufficient condition for such a subcategory to be Jordan-Hölder.

(2023) - The Size of a Stratifying System Can Be Arbitrarily Large (41)
It was conjectured that the size of a stratifying system was somehow limited by the

rank |𝐴𝐴| of the algebra. In this paper, H. Treffinger shows that the conjecture is false by

constructing counterexamples in 𝑑-Auslander algebras of 𝔸𝑛.

Theorem 2.2.9. For every positive integer 𝑚, there exists an algebra 𝐴𝑚 and a stratifying
system (Θ𝑚,≤) of size 𝑠𝑚 in mod𝐴𝑚 such that 𝑠𝑚 > 𝑚|𝐴𝑚|.

Furthermore, he showed how to construct a stratifying system of infinite size indexed

by (ℕ,≤) in 𝑛-representation infinite algebras, where ≤ is the natural order.

(2023) - Stratifying Systems and 𝑔-Vectors (35)
Following a similar approach to “Cokernels of the Cartan Matrix and Stratifying

Systems”, O. Mendoza, C. Sáenz, and H. Treffinger studied properties of the Cartan matrix

𝐶Θ𝑀
and the group 𝐺Θ𝑀

when Θ𝑀 is a stratifying system induced by a basic 𝜏-rigid

module. As an example, we present one of the main results:

Theorem 2.2.10. For a basic 𝜏-tilting module 𝑀 ∈mod𝐴 with a TF-admissible decompo-

sition (see Definition 2.3.1) 𝑀 =
𝑡⨁

𝑖=1
𝑀𝑖 such that 𝑀 ∈  (Θ𝑀 ), the following statements

are equivalent:

1. The matrix 𝐶Θ𝑀
is diagonal.

2. Hom𝐴(𝑀𝑖,𝑀𝑗) = 0 for 𝑖 < 𝑗.

3. Hom𝐴(𝑀𝑖,Θ𝑀 (𝑗)) = 0 for 𝑖 < 𝑗.

Moreover, if one of the above conditions holds true, then 𝑀 ≅ 𝐴𝐴 and 𝐴 is a weakly
triangular algebra.

2.3 Stratifying systems through 𝜏-Tilting Theory
Except for standard module sets, no general method for constructing a stratifying

system was previously known. In other words, there was no method that could describe

the construction of a stratifying system for any given algebra 𝐴. In 2020, H. Treffinger

and O. Mendoza demonstrated how to construct a stratifying system starting from a basic

nonzero 𝜏-rigid module. The method can be summarized as follows:



• Given a basic nonzero 𝜏-rigid module 𝑀 such that |𝑀| = 𝑡, we write 𝑀 as an

ordered decomposition into indecomposables:

𝑀 = 𝑀1
⨁

𝑀2
⨁

⋯
⨁

𝑀𝑡,

such that 𝑀𝑘 ∉ Fac
(⨁

𝑗>𝑘 𝑀𝑗

)
. There always exists at least one decomposition as

above, called torsion-free admissible. Such a decomposition can be obtained using

mutation methods for 𝜏-rigid modules.

• Define Θ(𝑘) = 𝑓𝑘+1(𝑀𝑘) for 𝑘 = 1,2,⋯ , 𝑡, where 𝑓𝑘 is the torsion-free functor

associated with the pair
(
Fac

(⨁
𝑗≥𝑘 𝑀𝑗

)
,
(⨁

𝑗≥𝑘 𝑀𝑗

)⊥
)

. The ordered set Θ𝑀 =

{Θ(1),⋯ ,Θ(𝑡)} will be a stratifying system. Note that 𝑓𝑡+1(𝑀𝑡) = 𝑀𝑡.

If 𝑡 < 𝑛= |𝐴𝐴|, it is possible to extend the stratifying system as follows: Let 𝑀 denote

the Bongartz completion of 𝑀 (see Theorem 1.3.10), so that 𝑀 = 𝑀
⨁

𝑁 for some

𝜏-rigid module 𝑁 with |𝑁| = 𝑛− 𝑡. Consider the following decomposition of 𝑀 :

𝑀 = (𝑁1
⨁

⋯
⨁

𝑁𝑛−𝑡)
⨁

(𝑀1
⨁

⋯
⨁

𝑀𝑡),

where (𝑁1
⨁

⋯
⨁

𝑁𝑛−𝑡) is any ordered decomposition of 𝑁 , and (𝑀1
⨁

⋯
⨁

𝑀𝑡) is a

TF-admissible decomposition of 𝑀 . This decomposition of 𝑀 will also be TF-admissible.

Following the previous steps, we obtain a stratifying system Θ′
𝑀

of size 𝑛 that contains

Θ𝑀 .

The results presented below can be dualized for 𝜏−-rigid modules.

Definition 2.3.1. Let 𝐴 be an algebra and 𝑀 ∈ mod𝐴 be a basic nonzero 𝜏-rigid 𝐴-

module. We say that a decomposition of 𝑀 =
𝑡⨁

𝑖=1
𝑀𝑖 as the direct sum of indecomposable

𝐴-modules is torsion-free admissible (TF-admissible, for short) if 𝑀𝑖 ∉ Fac(
⨁

𝑗>𝑖 𝑀𝑗),
for every 𝑖 ∈ 𝕀𝑡.

Proposition 2.3.2. For an algebra 𝐴, every basic nonzero 𝜏-rigid module in mod𝐴 admits
a TF-admissible decomposition.

Proof. We will prove this by induction on the number of summands of 𝑀 . If |𝑀| = 1, the

result follows immediately.

Assume that |𝑀| = 𝑡 ≥ 2. We have that Fac(𝑀) is a functorially finite torsion class

by Proposition 1.3.6, so by Theorem 1.3.8, there exists a basic support 𝜏-tilting module 𝑇

such that Fac(𝑀) = Fac(𝑇 ) (if 𝑀 is support 𝜏-tilting, then 𝑇 = 𝑀).

Since Fac(𝑀) ⊆ Fac(𝑇 ) ⊆ ⊥(𝜏𝑀) (the second inclusion follows from the fact that

Fac(𝑀) = Fac(𝑇 ) and we always have Fac(𝑀)⊆ ⊥(𝜏𝑀) by Proposition 1.3.9), Proposition



1.3.9 ensures that 𝑀 ∈ add𝑃 (Fac(𝑇 )) = 𝑇 , so 𝑇 =𝑀
⨁

𝑀 ′ for some basic 𝜏-rigid module

𝑀 ′ (𝑀 ′ will be zero in the case where 𝑀 = 𝑇 ).

Since 𝑀 is nonzero, we have {0} ⊊ Fac(𝑇 ). Proposition 1.3.18 states that there exists

a basic 𝜏-rigid module 𝑁 , which is a mutation of 𝑇 over a summand 𝑀1, such that

{0} ⊆ Fac(𝑁) ⊊ Fac(𝑇 ).

We claim that 𝑀1 is a summand of 𝑀 . Suppose otherwise. Then 𝑁 = 𝑀
⨁

𝑁 ′, so

Fac(𝑁) = Fac(𝑀
⨁

𝑁 ′) ⊃ Fac(𝑀), a contradiction. Therefore, 𝑀 ≅ 𝑀1
⨁

𝑀 ′′, where

𝑀 ′′ is a basic 𝜏-rigid module with 𝑡−1 summands. By the induction hypothesis, there

exists a TF-admissible decomposition 𝑀 ′′ =
𝑡⨁

𝑖=2
𝑀𝑖, that is, 𝑀𝑖 ∉ Fac

(⨁
𝑗>𝑖 𝑀𝑗

)
for

2 ≤ 𝑖 ≤ 𝑡.

For the remaining part, since 𝑁 = 𝑀∕𝑀1
⨁

𝑄 = 𝑀 ′′⨁𝑄, where 𝑄 is either zero

or an indecomposable 𝜏-rigid module, we have Fac(𝑀 ′′) ⊆ Fac(𝑁). As 𝑀1 ∉ Fac(𝑁),
we conclude that 𝑀1 ∉ Fac(𝑀 ′′) = Fac

(⨁
𝑗>1𝑀𝑗

)
. Hence, we obtain a TF-admissible

decomposition for 𝑀 . ■

Proposition 2.3.3. Let 𝐴 be an algebra, 𝑛 = |𝐴𝐴| and 𝑀 be a basic nonzero 𝜏-rigid

𝐴-module with TF-admissible decomposition 𝑀 =
𝑡⨁

𝑖=1
𝑀𝑖. Then every decomposition

𝑀 =
𝑛⨁

𝑗=1
𝑁𝑗 into indecomposable modules of the Bongartz completion of 𝑀 such that

𝑀𝑖 ≅ 𝑁𝑛−𝑡+𝑖∀𝑖 ∈ 𝕀𝑡 is a TF-admissible decomposition of 𝑀 .

Proof. We have that 𝑀 =𝑀 ′⨁𝑀 for some 𝜏-rigid basic 𝑀 ′ (where 𝑀 ′ = 0 if |𝑀|= 𝑛).

Consider 𝑋|𝑀 ′ indecomposable, 𝑈 = 𝑀
⨁

𝑀 ′∕𝑋, and 𝑇 the mutation of 𝑀 over

𝑋. We have that 𝑈 = 𝑀 . In fact, since 𝑈 |𝑀 , we have ⊥(𝜏𝑀 ) ⊆ ⊥(𝜏𝑈 ), hence

Proposition 1.3.9 and Proposition 1.3.10 ensure that

Fac(𝑈 ) ⊆ Fac(𝑀 ) = ⊥(𝜏𝑀 ) ⊆ ⊥(𝜏𝑈 ) = Fac(𝑈 )

and consequently 𝑀 |𝑈 . Since 𝑀 is 𝜏-tilting, we have |𝑀 | = 𝑛, and thus 𝑀 = 𝑈 .

We have that (𝑈,0) is an almost complete support 𝜏-tilting pair; therefore, Theorem

1.3.14 states that:

{Fac(𝑀 ),Fac(𝑇 )} = {Fac(𝑈 ),⊥(𝜏𝑈 )}.

We have that Fac(𝑇 ) = Fac(𝑈 ). Indeed, suppose Fac(𝑀 ) = Fac(𝑈 ). Since 𝑋|𝑀 , we

would have 𝑋 ∈ Fac(𝑈 ). Proposition 1.3.16 asserts that ⊥(𝜏𝑈 ) ⊈ ⊥(𝜏𝑋), and Proposition

1.3.17 guarantees that 𝑀 is not the Bongartz complement of 𝑈 , which is a contradiction.

Therefore, Fac(𝑇 ) = Fac(𝑈 ) ⊊ Fac(𝑀 ) = ⊥(𝜏𝑈 ).



Suppose that 𝑋 ∈ Fac(𝑇 ). Since 𝑇 = 𝑈
⨁

𝑌 , where 𝑌 = 0 or 𝑌 is indecomposable,

we would have 𝑀 ∈ Fac(𝑇 ), a contradiction. Therefore, 𝑋 ∉ Fac(𝑇 ) and, in particular,

𝑋 ∉ Fac(𝑀
⨁

𝑀 ′∕𝑋).
Consider the decomposition

𝑀 = (𝑁1
⨁

⋯
⨁

𝑁𝑛−𝑡)
⨁

(𝑀1
⨁

⋯
⨁

𝑀𝑡),

where (𝑀1
⨁

⋯
⨁

𝑀𝑡) is a TF-admissible decomposition of 𝑀 . If 𝑖 = 1,2,⋯ ,𝑛− 𝑡, we

have shown that 𝑁𝑖 ∉ Fac(𝑀∕𝑁𝑖), and, in particular, 𝑁𝑖 ∉ Fac(
⨁
𝑗>𝑖

𝑁𝑗). If 𝑖 = 𝑛− 𝑡+

1,⋯ ,𝑛, we have that 𝑁𝑖 ∉ Fac(
⨁
𝑗>𝑖

𝑁𝑗) by hypothesis, which proves the proposition. ■

Theorem 2.3.4. Let 𝐴 be an algebra such that 𝑛 = |𝐴𝐴| and 𝑀 be a basic nonzero

𝜏-rigid module with a TF-admissible decomposition 𝑀 =
𝑡⨁

𝑖=1
𝑀𝑖. If 𝑓𝑘 is the torsion-

free functor associated to the torsion pair
(
Fac

(⨁
𝑗≥𝑘 𝑀𝑗

)
,
(⨁

𝑗≥𝑘 𝑀𝑗

)⊥
)

, then the

following statements hold true.

1. The family Θ𝑀 = {Θ(𝑖) = 𝑓𝑖+1(𝑀𝑖) | 𝑖 ∈ 𝕀𝑡} and the natural order on 𝕀𝑡 form a
stratifying system of size 𝑡 in mod𝐴.

2. There exists at least one stratifying system Θ′
𝑀

of size 𝑛 in mod𝐴 such that Θ𝑀 ⊆Θ′
𝑀

.

Proof. 1) We will denote 𝑘 = Fac
(⨁

𝑗≥𝑘 𝑀𝑗

)
and 𝑘 =

(⨁
𝑗≥𝑘 𝑀𝑗

)⊥
.

We start by showing thatHom𝐴(Θ(𝑘),Θ(𝑗)) = 0 if 𝑘 > 𝑗. Since 𝑀𝑘 ∈ 𝑘 and 𝑘 is closed

under quotients, we have that Θ(𝑘) ∈ 𝑘. On the other hand, we have that Θ(𝑗) ∈ 𝑗 ⊆ 𝑘,

hence Hom𝐴(Θ(𝑘),Θ(𝑗)) = 0 if 𝑘 > 𝑗 since Hom𝐴(𝑘,𝑘) = 0.

We have that Ext1
𝐴
(Θ(𝑘),Θ(𝑗)) = 0 if 𝑘 ≥ 𝑗. Consider the canonical exact sequence

0⟶ 𝑡𝑘+1(𝑀𝑘)⟶ 𝑀𝑘 ⟶ Θ(𝑘)⟶ 0,

applying the functor Hom𝐴(−,Θ(𝑗)) we obtain

Hom𝐴(𝑡𝑘+1(𝑀𝑘),Θ(𝑗))⟶ Ext1
𝐴
(Θ(𝑘),Θ(𝑗))⟶ Ext1

𝐴
(𝑀𝑘,Θ(𝑗)).

We have that Hom𝐴(𝑡𝑘+1(𝑀𝑘),Θ(𝑗)) = 0 because 𝑡𝑘+1(𝑀𝑘) ∈ 𝑘+1 and Θ(𝑗) ∈ 𝑗 ⊆

𝑘+1. We also have that Ext1
𝐴
(𝑀𝑘,Θ(𝑗)) = 0 because Θ(𝑗) ∈ 𝑗 ⊆ Fac(𝑀) (since Θ(𝑗)

is a quotient of 𝑀𝑗) and 𝑀𝑘 is Ext-projective in Fac(𝑀) by Theorem 1.3.6. Therefore,

Ext1
𝐴
(Θ(𝑘),Θ(𝑗)) = 0 if 𝑘 ≥ 𝑗.

Finally, Lemma 1.3.7 ensures that Θ(𝑘) = 𝑓𝑘+1(𝑀𝑘) is indecomposable since 𝑀𝑘 ∉
Fac(

⨁
𝑗>𝑘

𝑀𝑗).



2) This follows directly from Proposition 2.3.3. ■

We conclude this chapter with an example where we apply the result of the theorem

above to obtain a stratifying system through a 𝜏-rigid module.

Example 2.3.5. Let 𝐴 = 𝑘𝑄∕rad3𝐴, where 𝑄 is the following quiver:

2

1 3
The Auslander-Reiten quiver of the algebra is given by:

𝑃 (3) 𝑃 (1) 𝑃 (2)

𝐺(2) 𝐺(3) 𝐺(1) 𝐺(2)

𝑆(2) 𝑆(3) 𝑆(1)

In the quiver above, we denote 𝐺(𝑘) = 𝑃 (𝑘)∕rad2𝑃 (𝑘) (we must identify the two copies
of 𝐺(2), so the quiver takes the shape of a cylinder. Notice that 𝜏(𝑆(2)) = 𝑆(1)).

Consider the module 𝑀 = 𝑃 (1)
⨁

𝑃 (2)
⨁

𝑆(1). We have 𝜏(𝑀) = 𝑆(3), and from the
Auslander-Reiten quiver, it is clear that Hom𝐴(𝑀,𝜏(𝑀)) = 0.

The ordered decomposition 𝑀 = 𝑃 (1)
⨁

𝑃 (2)
⨁

𝑆(1) is TF-admissible (it can also be
shown that 𝑀 = 𝑃 (2)

⨁
𝑃 (1)

⨁
𝑆(1) is another TF-admissible decomposition). Indeed,

we have:

Fac(𝑃 (2)
⨁

𝑆(1)) = add{𝑃 (2),𝐺(2),𝑆(2),𝑆(1)} (𝑃 (2)
⨁

𝑆(1))⊥ = add{𝐺(1),𝑆(3)}

Fac(𝑆(1)) = add{𝑆(1)} (𝑆(1))⊥ = add{𝑆(2),𝑆(3),𝑃 (1),𝑃 (2),𝐺(3),𝐺(1)}.

It is clear that 𝑃 (1) ∉ Fac(𝑃 (2)
⨁

𝑆(1)) and 𝑃 (2) ∉ Fac(𝑆(1)).
To obtain the desired stratifying system, we start by finding the torsion-free part of

𝑃 (1) with respect to the torsion pair (Fac(𝑃 (2)
⨁

𝑆(1)), (𝑃 (2)
⨁

𝑆(1))⊥). We have the
following exact sequence:

0⟶ 𝑆(2)⟶ 𝑃 (1)⟶ 𝐺(1)⟶ 0.

Since 𝑆(2) ∈ Fac(𝑃 (2)
⨁

𝑆(1)) and 𝐺(1) ∈ (𝑃 (2)
⨁

𝑆(1))⊥, we conclude that the torsion-
free part of 𝑃 (1) with respect to this pair is 𝐺(1). Therefore, Θ(1) = 𝐺(1).

Similarly, we determine the torsion-free part of 𝑃 (2) with respect to the torsion pair
(Fac(𝑆(1)), (𝑆(1))⊥). Since 𝑃 (2) ∈ (𝑆(1))⊥, we have Θ(2) = 𝑃 (2). Finally, we set Θ(3) =
𝑆(1) (we can think of Θ(3) as the torsion-free part of 𝑆(1) with respect to the torsion pair
({0},mod𝐴)).

Theorem 2.3.4 ensures that Θ𝑀 = {𝐺(1),𝑃 (2),𝑆(1)} is a stratifying system.



Stratifying systems induced by 𝜏-rigid modules via the method described above gener-

alize standard modules. In fact, since 𝜏(𝐴𝐴) = 0, we have that 𝐴𝐴 is 𝜏-rigid.

Consider 𝐴𝐴 = 𝑃 (1)
⨁

⋯
⨁

𝑃 (𝑛) an arbitrary ordered decomposition into indecom-

posable summands of 𝐴𝐴. Such a decomposition will necessarily be TF-admissible. Indeed,

if 𝑃 (𝑘) belonged to Fac(
⨁
𝑗>𝑘

𝑃 (𝑗)), we would have an epimorphism 𝑓 ∶ (
⨁
𝑗>𝑘

𝑃 (𝑗))𝑙 ⟶ 𝑃 (𝑘)

for some 𝑙 ∈ ℕ. Since 𝑃 (𝑘) is projective, this epimorphism would split, and 𝑃 (𝑘) would

be a summand of
⨁
𝑗>𝑘

𝑃 (𝑗), which is a contradiction.

Consider the torsion pair (Fac(
⨁
𝑗>𝑘

𝑃 (𝑗)), (
⨁
𝑗>𝑘

𝑃 (𝑗))⊥). The canonical exact sequence of

𝑃 (𝑘) with respect to this torsion pair is given by:

0⟶ 𝑡𝑘+1(𝑃 (𝑘))⟶ 𝑃 (𝑘)⟶ 𝑓𝑘+1(𝑃 (𝑘))⟶ 0.

Since every torsion class is contravariantly finite, we have that 𝑡(𝑃 (𝑘)) coincides with the

sum of the images of the morphisms 𝑓 ∶
⨁
𝑗>𝑘

𝑃 (𝑗)⟶ 𝑃 (𝑘). Therefore, 𝑓𝑘+1(𝑃 (𝑘)) = Δ(𝑘),

and the induced stratifying system is Θ𝐴 = {Δ(1),⋯ ,Δ(𝑛)}.

Although this new method constructs stratifying systems beyond those given by standard

modules, it has the limitation that the size of the stratifying system induced by a 𝜏-rigid

module 𝑀 satisfies |𝑀| ≤ |𝐴𝐴|. It is known that there exist stratifying systems of size

greater than |𝐴𝐴|, for example:

Let 𝐴 = 𝑘𝑄∕𝐼 , where 𝑄 is the following quiver:

3 1 2 4𝛼 𝛽 𝛾

and 𝐼 is the ideal generated by 𝛾𝛽. We have that Θ = {𝑃 (1),𝑃 (2),𝑃 (3),𝑃 (4),𝑆(4)} is a

stratifying system (we will prove this in Example 4.2.8).



Chapter 3

Nested Families of torsion pairs

In the previous chapter, we presented a recent result on stratifying systems showing

that a 𝜏-rigid module 𝑀 induces a stratifying system Θ𝑀 of size 𝑡 = |𝑀|. We know that|𝑀| ≤ |𝐴𝐴| and that, in general, there exist stratifying systems of size 𝑠 > |𝐴𝐴|, so this

method cannot generate all stratifying systems. With this in mind, we aim to present a

generalization that makes it possible to generate all stratifying systems through a certain

module.

In this chapter, we introduce the concept of nested families of torsion pairs, which

will play a central role in our approach. This construction not only provides a clear

organizational structure for the study of stratifying systems but also enables the formulation

of new results with greater generality.

We begin with the formal definition of nested families of torsion pairs, followed by

illustrative examples and some fundamental properties that will be essential for the subse-

quent development. The present and the next chapter follow the development presented in

(5).

3.1 Nested families of torsion pairs
Definition 3.1.1 (Nested family of torsion pairs). A nested family of torsion pairs (nested
family, for short) is a set Γ = {(𝑘,𝑘)}𝑘∈𝐺 of torsion pairs in mod𝐴 indexed by (𝐺,≤)
satisfying 𝑘 ⊋ 𝑙 if 𝑘 < 𝑙, or equivalently, 𝑘 ⊊ 𝑙 if 𝑘 < 𝑙.

We will denote by 𝑡𝑘 and 𝑓𝑘 the torsion and torsion-free functors with respect to the
torsion pair (𝑘,𝑘), respectively.

Example 3.1.2. We will show that there exist nested families indexed by any totally ordered
set 𝐺 in a suitable algebra.

We initially consider 𝐺 as an infinite totally ordered set. If card 𝐺 = card ℕ, take
𝐾 = ℚ, where ℚ ⊆ ℂ denotes the field of algebraic numbers, that is, the set of roots of



nonzero polynomials with integer coefficients; if card 𝐺 > card ℕ, consider the integral
domain ℚ[𝐺]. We have card ℚ[𝐺] = card 𝐺. We construct the field of fractions frac ℚ[𝐺]
and take its algebraic closure 𝐾 . Both constructions preserve the cardinality of 𝐺, so that
card 𝐾 = card 𝐺.

Since 𝐺 and 𝐾 have the same cardinality, there exists a bijection 𝜑 ∶𝐺⟶𝐾 . Through
this bijection, we can transfer the total order of 𝐺 to 𝐾 , defining 𝜆1 < 𝜆2 in 𝐾 if and only
if 𝜑−1(𝜆1) < 𝜑−1(𝜆2) in 𝐺.

Let 𝐴 = 𝐾𝑄 be the Kronecker algebra. For every 𝜆 ∈ 𝐾 , consider the module 𝑀𝜆

whose representation is given by

𝐾 𝐾
𝜆

1

and consider for every 𝑖 ∈ 𝐺 the torsion pairs (𝑖,𝑖)

𝑖 = T({𝑀𝜆 | 𝜆 ≥ 𝜑(𝑖)})

𝑖 = ({𝑀𝜆 | 𝜆 ≥ 𝜑(𝑖)})⊥,

We have that Γ = {(𝑖,𝑖)}𝑖∈𝐺 is a nested family. Indeed, it is immediate from the definition
that if 𝑗 < 𝑘 then 𝑗 ⊇ 𝑘. To show that the inclusion is proper, we just notice that
𝑀𝜆 ∈ 𝜑−1(𝜆). However, since Hom𝐴(𝑀𝜌,𝑀𝜆) = 0 if 𝜆≠ 𝜌, we have that 𝑀𝜆 ∈𝜑−1(𝜌) ⟹
𝑀𝜆 ∉ 𝜑−1(𝜌) if 𝜌 > 𝜆. Therefore, 𝑗 ⊋ 𝑘.

If card 𝐺 = 𝑛, we can follow the same construction over a finite subset of ℚ.

Nested families of torsion pairs in an abelian category  are defined analogously.

Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family in the category . An easy calculation shows

that if (𝑘,𝑘) is a torsion pair in , so (𝑜𝑝

𝑘
,

𝑜𝑝

𝑘
) is a torsion pair in 𝑜𝑝, and conse-

quently Γ𝑜𝑝 ∶= {(𝑜𝑝

𝑘
,

𝑜𝑝

𝑘
)}𝑘∈𝐺𝑜𝑝 is a nested family in 𝑜𝑝. In particular, if 𝐴 is a finite

dimensional 𝑘-algebra, then Γ = {(𝑘,𝑘)}𝑘∈𝐺 is a nested family in mod𝐴 if and only if

Γ𝑜𝑝 ∶= {(𝑜𝑝

𝑘
,

𝑜𝑝

𝑘
)}𝑘∈𝐺𝑜𝑝 is a nested family in (mod𝐴)𝑜𝑝.

The definition of a nested family of torsion pairs is similar to, but distinct from, the

definition of a maximal green sequence (14, Definition 4.8), a chain of torsion classes (40,

Definition 1.1), and twin torsion pairs (39, Section 3).

Given a nested family of torsion pairs Γ, the modules 𝑀 in Mod𝐴 that admit a certain

ordered decomposition relative to the torsion (or torsion-free) classes of Γ will play an

important role.

Definition 3.1.3 (Γ-compatibility). Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family of torsion
pairs. We define (Γ) as the full subcategory of Mod𝐴 that contains 0 and the modules
𝑀 that admit a direct sum decomposition 𝑀 =

⨁
𝑘∈𝐺

𝑀𝑘 satisfying the following conditions

for all 𝑘 ∈ 𝐺:



t1. 𝑀𝑘 ∈ mod𝐴 is a nonzero module;

t2. 𝑀𝑘 ∈ 𝑘;

t3. If 𝑋|𝑀𝑘 with 𝑋 ≠ 0, then 𝑋 ∉ 𝑗 if 𝑗 > 𝑘.

We will say that such a decomposition is compatible in (𝚪). Furthermore, we define
∗(Γ) as the full subcategory of (Γ) that contains 0 and the modules 𝑀 whose com-
patible decomposition in (Γ) satisfies 𝑀𝑘 ∈ 𝑗 if 𝑗 > 𝑘 for all 𝑘 ∈ 𝐺. We will say that
such a decomposition is compatible in ∗(𝚪).

Analogously, we define  (Γ) as the full subcategory of Mod𝐴 that contains 0 and the
modules 𝑁 that admit a direct sum decomposition 𝑁 =

⨁
𝑘∈𝐺

𝑁𝑘 satisfying the following

conditions for all 𝑘 ∈ 𝐺:

f1. 𝑁𝑘 ∈ mod𝐴 is a nonzero module;

f2. 𝑁𝑘 ∈ 𝑘;

f3. If 𝑋|𝑁𝑘 with 𝑋 ≠ 0, then 𝑋 ∉ 𝑗 if 𝑗 < 𝑘.

We will say that such a decomposition is compatible in  (𝚪). Additionally, we define
 ∗(Γ) as the full subcategory of  (Γ) that contains 0 and the modules 𝑁 whose compat-
ible decomposition in  (Γ) satisfies 𝑁𝑘 ∈ 𝑗 if 𝑗 < 𝑘 for all 𝑘 ∈ 𝐺. We will say that such
a decomposition is compatible in  ∗(𝚪).

Note that 𝑀𝑘 is not necessarily indecomposable. The next proposition shows that if

𝑀 ∈(Γ) (or 𝑀 ∈ (Γ)), then 𝑀 admits a unique compatible decomposition in (Γ)
(or in  (Γ), respectively) up to isomorphisms.

Proposition 3.1.4. Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family. Then the following hold:

1. If 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 =
⨁
𝑘∈𝐺

𝑀 ′
𝑘

are two compatible decompositions in (Γ), then 𝑀𝑘 ≅

𝑀 ′
𝑘

for all 𝑘 ∈ 𝐺.

2. If 𝑁 =
⨁
𝑘∈𝐺

𝑁𝑘 =
⨁
𝑘∈𝐺

𝑁 ′
𝑘

are two compatible decompositions in  (Γ), then 𝑁𝑘 ≅𝑁 ′
𝑘

for all 𝑘 ∈ 𝐺.

Proof. We will prove the first item, with the proof of the second being analogous. Consider

the summand 𝑀𝑘. By definition of (Γ), 𝑀𝑘 has no direct summands in common with

𝑀𝑗 for any 𝑗 ≠ 𝑘. We will show that 𝑀𝑘 is a direct summand of 𝑀 ′
𝑘
. Since 𝑀𝑘 is a direct



summand of 𝑀 , there exist 𝑓 ∶ 𝑀𝑘 ⟶ 𝑀 a split monomorphism and 𝑔 ∶ 𝑀 ⟶ 𝑀𝑘 a

split epimorphism such that 𝑔𝑓 = 𝐼𝑑𝑀𝑘
. We have that

𝑓 ∈ Hom𝐴(𝑀𝑘,𝑀) = Hom𝐴

(
𝑀𝑘,

⨁
𝑗∈𝐺

𝑀 ′
𝑗

)
=
⨁
𝑗∈𝐺

Hom𝐴(𝑀𝑘,𝑀 ′
𝑗)

since 𝑀𝑘 is a module of finite presentation. Thus, there exist 𝜙(1),⋯ ,𝜙(𝑡) ∈ 𝐺 such that

𝑓 ′ ∶ 𝑀𝑘 ⟶ 𝑀 ′
𝜙(1)

⨁
⋯

⨁
𝑀 ′

𝜙(𝑡) is a split monomorphism (𝑓 ′ is the co-restriction of 𝑓 ),

which implies that 𝑀𝑘 is a direct summand of 𝑀 ′
𝜙(1)

⨁
⋯

⨁
𝑀 ′

𝜙(𝑡). Therefore, 𝑀𝑘 is a

direct summand of 𝑀 ′
𝑘

since Γ is a nested family. Similarly, 𝑀 ′
𝑘

is a direct summand of

𝑀𝑘, and 𝑀𝑘 ≅ 𝑀 ′
𝑘

for all 𝑘 ∈ 𝐺. ■

Furthermore, 𝑀 ≇ 0 in (Γ) is finitely generated if and only if 𝐺 is a finite set.

Moreover, if 𝐺 has a maximal element 𝑚 (respectively, a minimal element 𝑛) and 𝑚 = 0
(resp. 𝑛 = 0), then

(Γ) = {0} (resp.  (Γ) = {0}).

We have that the category (Γ) is an additive subcategory of Mod𝐴 (or mod𝐴 if

𝐺 is finite). In fact, if 𝑀,𝑁 ∈(Γ), then there exist decompositions 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 and

𝑁 =
⨁
𝑘∈𝐺

𝑁𝑘 compatible in (Γ). It is easy to see that the decomposition 𝑀
⨁

𝑁 =⨁
𝑘∈𝐺

(𝑀𝑘

⨁
𝑁𝑘) is compatible in (Γ), hence 𝑀

⨁
𝑁 ∈(Γ). The above comments

also apply to the categories ∗(Γ),  (Γ), and  ∗(Γ).
Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family in the abelian category . The following

pairs of categories form contravariant equivalences (or dualities):

((Γ), (Γ𝑜𝑝)), ( (Γ),(Γ𝑜𝑝)), (∗(Γ), ∗(Γ𝑜𝑝)), ( ∗(Γ),∗(Γ𝑜𝑝)).

Indeed, let 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 be the compatible decomposition in (Γ). We have that 𝑀𝑘 ∉ 𝑗

if 𝑗 > 𝑘, which is equivalent to 𝑀𝑘 ∉ 
𝑜𝑝

𝑗
if 𝑗 <𝑜𝑝 𝑘. This shows that such a decomposition

of 𝑀 is compatible in  (Γ𝑜𝑝). (Note that  𝑜𝑝
𝑗

is the torsion-free part of the pair (𝑜𝑝
𝑗

,
𝑜𝑝

𝑗
)

in 𝑜𝑝). Moreover, we have that (Γ) ⊆  (Γ𝑜𝑝); similarly,  (Γ𝑜𝑝) ⊆ (Γ) can be

shown. The other cases follow analogously.

The categories (Γ) and  (Γ) will play a dual role in the development of this master’s

thesis. For the sake of completeness, we will state both versions of each result; however,

we will only prove the ones related to (Γ), as the other case is analogous.

3.2 Stratum and Substratum
For the next definition, let  = {𝑀𝑘}𝑘∈𝐺 be a collection of submodules of 𝑀 in mod𝐴

such that 𝑀𝑗 ⊆ 𝑀𝑘 if 𝑗 ≥ 𝑘. We define the smallest and largest elements of  with respect



to the order given by inclusion. Let  = {𝑀∕𝑀𝑘}𝑘∈𝐺 be a collection of quotients of 𝑀 .

We define the smallest quotient in  as the element 𝑀∕𝑀𝑚𝑎𝑥, where 𝑀𝑚𝑎𝑥 is the largest

submodule in  with respect to the order given by inclusion.

Definition 3.2.1 (Stratum and Substratum). Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family of
torsion pairs and let 𝑀 be a module.

If 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 is a compatible decomposition in (Γ), for every 𝑘 ∈ 𝐺 we define

𝔉𝑘(𝑀) as the smallest quotient of the family {𝑓𝑗(𝑀𝑘) | 𝑗 > 𝑘}∪ {𝑀𝑘}. We define the
stratum of 𝑴 as the module 𝔉(𝑀) =

⨁
𝑘∈𝐺

𝔉𝑘(𝑀).

If 𝑁 =
⨁
𝑘∈𝐺

𝑁𝑘 is a compatible decomposition in  (Γ), for every 𝑘 ∈ 𝐺 we define

𝔗𝑘(𝑁) as the smallest submodule of the family {𝑡𝑗(𝑁𝑘) | 𝑗 < 𝑘}∪{𝑁𝑘}. We define the
substratum of 𝑵 as the module 𝔗(𝑁) =

⨁
𝑘∈𝐺

𝔗𝑘(𝑁).

Remark 3.2.2. (a) 𝔉𝑘(𝑀) and 𝔗𝑘(𝑀) are well-defined since 𝑀𝑘 is both artinian and
noetherian. Moreover, if 𝑘 < 𝑗 then 𝑘 ⊋ 𝑗 implies that 𝑡𝑘(𝑀) ⊇ 𝑡𝑗(𝑀).

(b) If 𝐺 = 𝕀𝑛, then 𝔗𝑘(𝑁) = 𝑡𝑘−1(𝑁𝑘) and 𝔉𝑘(𝑀) = 𝑓𝑘+1(𝑀𝑘), where we set 𝑡0(𝑁1) =
𝑁1 and 𝑓𝑛+1(𝑀𝑛) = 𝑀𝑛.

It is easy to see that if 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 is a compatible decomposition in (Γ), then if

𝑘 is not a maximal element of 𝐺, we can take 𝔉𝑘(𝑀) = 𝑓𝑚(𝑀), where 𝑚 is such that,

if 𝑘 < 𝑙 < 𝑚, then 𝑓𝑙(𝑀) = 𝑓𝑚(𝑀). If 𝑘 is the greatest element of 𝐺 (if it exists), then

𝔉𝑘(𝑀) = 𝑀𝑘. Similarly, if 𝑁 =
⨁
𝑘∈𝐺

𝑁𝑘 is a compatible decomposition in  (Γ), then

if 𝑘 is not a minimal element of 𝐺, we can take 𝔗𝑘(𝑁) = 𝑡𝑚(𝑁), where 𝑚 is such that,

if 𝑚 < 𝑙 < 𝑘, then 𝑡𝑙(𝑁) = 𝑡𝑚(𝑁). If 𝑘 is the minimal element of 𝐺 (if it exists), then

𝔗𝑘(𝑁) = 𝑁𝑘.

Lemma 3.2.3. Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family of torsion pairs and let 𝑀 =⨁
𝑘∈𝐺

𝑀𝑘 be a non-zero module.

1. If such a decomposition of 𝑀 is compatible in (Γ), then 𝔉(𝑀) ∈ ∗(Γ) and
𝔉(𝑀) = 𝑀 if and only if 𝑀 ∈∗(Γ).

2. If such a decomposition of 𝑀 is compatible in  (Γ), then 𝔗(𝑀) ∈  ∗(Γ) and
𝔗(𝑀) = 𝑀 if and only if 𝑀 ∈ ∗(Γ).

Proof. We will prove the first item, with the proof of the second being analogous.

We have that 𝔉𝑘(𝑀)≠ 0. Indeed, if 𝑘 is a maximal element of 𝐺, then 𝔉𝑘(𝑀) =𝑀𝑘 ≠

0. Suppose otherwise, then by definition there exists 𝑚 > 𝑘 such that 𝔉𝑘(𝑀) = 𝑓𝑚(𝑀𝑘).
Since 𝑀𝑘 ∉ 𝑚, then 𝔉𝑘(𝑀) = 𝑓𝑚(𝑀𝑘) ≠ 0.



We will show that 𝔉𝑘(𝑀) ∈ 𝑗 if 𝑗 ≤ 𝑘. If 𝑘 is a maximal element of 𝐺 then 𝔉𝑘(𝑀) =
𝑀𝑘 ∈ 𝑘 and then 𝔉𝑘(𝑀) ∈ 𝑗 for all 𝑗 ∈ 𝐺 since the family of torsion pairs is nested.

Suppose otherwise, by definition there exists 𝑚 > 𝑘 such that 𝔉𝑘(𝑀) = 𝑓𝑚(𝑀𝑘). Consider

the short exact sequence

0⟶ 𝑡𝑚(𝑀𝑘)⟶ 𝑀𝑘 ⟶𝔉𝑘(𝑀)⟶ 0.

Since 𝔉𝑘(𝑀) is a quotient of 𝑀𝑘 and 𝑀𝑘 ∈ 𝑘, then 𝔉𝑘(𝑀) ∈ 𝑗 for 𝑗 ≤ 𝑘 ∈ 𝐺 since the

family of torsion pairs is nested.

We have that 𝔉𝑘(𝑀) = 𝑓𝑚(𝑀𝑘) ∈ 𝑗 for 𝑗 ≥ 𝑚. Consider 𝑘 < 𝑙 < 𝑚, we have that

𝑓𝑙(𝑀𝑘) = 𝑓𝑚(𝑀𝑘) since 𝑡𝑚(𝑀) ⊆ 𝑡𝑙(𝑀) and 𝑓𝑚(𝑀𝑘) is the smallest quotient of

{𝑓𝑗(𝑀𝑘) | 𝑗 > 𝑘}∪{𝑀𝑘}.

This implies that 𝔉𝑘(𝑀) ≅ 𝑓𝑙(𝑀𝑘) ∈ 𝑙. This proves that the decomposition 𝔉(𝑀) =⨁
𝑘∈𝐺

𝔉𝑘(𝑀) is compatible in ∗(Γ).

Finally, since 𝔉(𝑀) ∈∗(Γ), we have that 𝔉(𝑀) =𝑀 implies 𝑀 ∈∗(Γ). Suppose

𝑀 ∈∗(Γ), then {𝑓𝑗(𝑀𝑘) ∣ 𝑗 > 𝑘}∪{𝑀𝑘} = {𝑀𝑘} and 𝔉(𝑀) = 𝑀 . ■

Corollary 3.2.4. Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family of torsion pairs.

1. If 𝑀 ≠ 0 is in (Γ), then

a. 𝔉𝑘(𝑀) ≠ 0.

b. 𝔉𝑘(𝑀) ∈ 𝑗 if 𝑗 ≤ 𝑘.

c. 𝔉𝑘(𝑀) ∈ 𝑗 if 𝑗 > 𝑘.

2. If 𝑁 ≠ 0 is in  (Γ), then

a’. 𝔗𝑘(𝑁) ≠ 0.

b’. 𝔗𝑘(𝑁) ∈ 𝑗 if 𝑗 ≥ 𝑘.

c’. 𝔗𝑘(𝑁) ∈ 𝑗 if 𝑗 < 𝑘.

■

We conclude this section with an example of how to construct modules in the category

(Γ) and their stratums.

Example 3.2.5. Let 𝐴 = 𝑘𝑄, where 𝑄 is the following quiver:

1 2 3𝛼 𝛽



The Auslander-Reiten quiver is given by:

𝑃 (1) 𝑆(2) 𝑆(3)

𝑃 (2) 𝐼(2)

𝑃 (3)

Let Γ = {(𝑘,𝑘)}𝑘∈𝕀2 be a nested family of torsion pairs, where:

1 = add{𝑃 (1),𝑃 (2),𝑆(2)} 1 = add{𝑆(3)}

2 = add{𝑃 (1)} 2 = add{𝑆(2),𝑆(3), 𝐼(2)}.

We can easily find the nonzero modules in (Γ). Let 𝑀 ∈(Γ) be a nonzero module,
then 𝑀 admits a decomposition 𝑀1

⨁
𝑀2, where 𝑀𝑘 ∈ 𝑘 and no nonzero direct summand

of 𝑀𝑘 belongs to 𝑗 if 𝑗 > 𝑘. It is easy to see that 𝑀1 = 𝑃 (2)⊕𝑛1
⨁

𝑆(2)⊕𝑛2 and 𝑀2 =
𝑃 (1)⊕𝑛3 , with 𝑛1 +𝑛2 ≠ 0 and 𝑛3 ≠ 0, since 𝑀1 and 𝑀2 are nonzero modules. Similarly, it
can be shown that the nonzero modules in ∗(Γ) are of the form 𝑀 =𝑆(2)⊕𝑛1

⨁
𝑃 (1)⊕𝑛2 ,

with 𝑛1,𝑛2 ≠ 0.
We will find the stratum 𝔉(𝑀) of 𝑀 . We have that

𝔉1(𝑀) = 𝑓2(𝑀1) = 𝑓2(𝑃 (2)⊕𝑛1
⨁

𝑆(2)⊕𝑛2) = 𝑆(2)⊕(𝑛1+𝑛2)

and
𝔉2(𝑀) = 𝑓3(𝑀2) = 𝑓3(𝑃 (1)⊕𝑛3) = 𝑃 (1)⊕𝑛3 ,

so
𝔉(𝑃 (2)⊕𝑛1

⨁
𝑆(2)⊕𝑛2

⨁
𝑃 (1)⊕𝑛3) = 𝑆(2)⊕(𝑛1+𝑛2)

⨁
𝑃 (1)⊕𝑛3 .



Chapter 4

Conditions for the existence of a
stratifying system

In (41), H. Treffinger demonstrated the existence of stratifying systems of infinite size

indexed by ℕ in 𝑛-representation infinite algebras. Since there does not always exist an

order-preserving bijection between totally ordered sets (𝐺,≤) and (𝐻,⪯), even if 𝐺 and 𝐻

have the same cardinality, we will consider a more general definition of stratifying systems,

maintaining the same philosophy that a stratifying system is a set of modules that satisfies

certain orthogonality conditions.

In this chapter, we will show that a stratifying system Θ= {Θ𝑘}𝑘∈𝐺 induces two distinct

nested families of torsion pairs Γ and Γ′, both indexed by 𝐺, such that the characteristic

module 𝑀Θ of Θ is in ∗(Γ) and in  ∗(Γ′) (see Definition 4.2.1). Conversely, let Γ be

a nested family of torsion pairs indexed by 𝐺. If 𝑀 is a module in †(Γ) (or  †(Γ),
see Definition 4.2.5), then 𝑀 induces at least one stratifying system Θ such that 𝑀Θ
is a quotient of 𝑀 (or a submodule of 𝑀 , respectively). We will also show that every

stratifying system can be obtained in this way.

Definition 4.0.1 (Stratifying System). Let 𝐺 be a set with total order ≤. A stratifying
system indexed by 𝑮 is a set Θ= {Θ𝑘}𝑘∈𝐺 of indecomposable modules in mod𝐴 satisfying
the following conditions:

1. Hom𝐴(Θ𝑘,Θ𝑗) = 0 if 𝑘 > 𝑗.

2. Ext1
𝐴
(Θ𝑘,Θ𝑗) = 0 if 𝑘 ≥ 𝑗.

4.1 Filtered modules
Given a stratifying system Θ, we denote by  (Θ) the full subcategory of mod𝐴 con-

taining the zero module and all modules which are filtered by modules in Θ. That is, a



nonzero module 𝑀 belongs to  (Θ) if there is a finite chain

𝜂 ∶ 0 = 𝑀0 ⊆ 𝑀1 ⊆ ⋯ ⊆ 𝑀𝑛 = 𝑀

of submodules of 𝑀 such that 𝑀𝑖∕𝑀𝑖−1 is isomorphic to a module in Θ for all 𝑖= 1,2,⋯ ,𝑛.

Such a decomposition is called a 𝚯-filtration.

K. Erdmann and C. Sáenz proved that  (Θ) is a Jordan-Hölder category if Θ is a finite

stratifying system (25, Lemma 1.4) (see Lemma 2.1.6). Using this result, we can show that

 (Θ) is a Jordan-Hölder category even if Θ is a stratifying system of infinite size.

Theorem 4.1.1. Let Θ = {Θ𝑘}𝑘∈𝐺 be a stratifying system, then  (Θ) is a Jordan-Hölder
category.

Proof. Let 𝑀 ∈  (Θ) and consider two Θ-filtrations of 𝑀 :

𝜂 ∶ 0 = 𝑀0 ⊆ 𝑀1 ⊆ ⋯ ⊆ 𝑀𝑛 = 𝑀

and

𝜂′ ∶ 0 = 𝑀 ′
0 ⊆ 𝑀 ′

1 ⊆ ⋯ ⊆ 𝑀 ′
𝑚 = 𝑀.

Consider the set  = {𝑀𝑖∕𝑀𝑖−1 | 𝑖 = 1,2,⋯ ,𝑛}∪{𝑀 ′
𝑖
∕𝑀 ′

𝑖−1 | 𝑖 = 1,2,⋯ ,𝑚}. We have

that is a finite subset ofΘ, thus is a finite stratifying system with the order inherited from

Θ. Furthermore, 𝜂 and 𝜂′ are -filtrations. Therefore, 𝑛 = 𝑚 and [𝑀 ∶ Θ𝑘]𝜂 = [𝑀 ∶ Θ𝑘]𝜂′
by Lemma 2.1.6. ■

The modules in Θ are called relative simple modules of  (𝚯) because they admit a

unique Θ-filtration 𝜂 ∶ 0 ⊆ Θ𝑘.

4.2 Nested families and stratifying systems
Given a stratifying system Θ indexed by 𝐺, we can define a module 𝑀Θ that will be

used to connect the stratifying system to a nested family; this is the characteristic module

of Θ.

Definition 4.2.1 (Characteristic module of Θ). Let Θ = {Θ𝑘}𝑘∈𝐺 be a stratifying system.
We will call the module 𝑀Θ ∶=

⨁
𝑘∈𝐺

Θ𝑘 the characteristic module of the stratifying system

𝚯.

Let 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 be a module in Mod𝐴 such that 𝑀𝑘 is a nonzero finitely generated

module for every 𝑘 ∈ 𝐺. We will denote by 𝖳(
⨁
𝑘∈𝐺

𝑀𝑘) the smallest torsion class in mod𝐴

containing the summands of 𝑀 , that is, 𝖳(
⨁
𝑘∈𝐺

𝑀𝑘) ∶= 𝖳(), where  = {𝑀𝑘 | 𝑘 ∈ 𝐺}.

We define 𝖥(
⨁
𝑘∈𝐺

𝑀𝑘) analogously.



Let 𝑀 ∈Mod𝐴 and Γ a nested family of torsion pair. We will say that 𝑴 induces the
nested family 𝚪 if there exists a decomposition 𝑀 =

⨁
𝑘∈𝐺

𝑀𝑘 with 𝑀𝑘 nonzero and finitely

generated such that Γ = {(𝖳(
⨁
𝑗≥𝑘

𝑀𝑗), (
⨁
𝑗≥𝑘

𝑀𝑗)⊥)}𝑘∈𝐺 or Γ = {(⊥(
⨁
𝑗≥𝑘

𝑀𝑗),𝖥(
⨁
𝑗≥𝑘

𝑀𝑗))}𝑘∈𝐺.

We will also say that a stratifying system Θ induces the nested family of torsion pairs Γ if

𝑀Θ induces Γ.

The following theorem shows how to construct two distinct nested families from a

module 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 such that 𝑀𝑘 ≠ 0 and Hom𝐴(𝑀𝑗,𝑀𝑖) = 0 if 𝑗 > 𝑖. In particular,

every stratifying system induces two distinct nested families of torsion pairs through its

characteristic module 𝑀Θ.

Theorem 4.2.2. Let 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 be a decomposition of 𝑀 with 𝑀𝑘 ∈ mod𝐴 being

nonzero modules such that Hom𝐴(𝑀𝑗,𝑀𝑖) = 0 if 𝑗 > 𝑖. Then the following statements hold
true.

1. Γ = {(𝖳(
⨁
𝑗≥𝑘

𝑀𝑗), (
⨁
𝑗≥𝑘

𝑀𝑗)⊥)}𝑘∈𝐺 and Γ′ = {(⊥(
⨁
𝑗≥𝑘

𝑀𝑗),𝖥(
⨁
𝑗≥𝑘

𝑀𝑗))}𝑘∈𝐺 are distinct

nested families of torsion pairs.

2. The decomposition of 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 is compatible in ∗(Γ) and in  ∗(Γ′).

Proof. We will prove only one side of each item, the other side is analogous.

1) and 2) Since
⨁
𝑗≥𝑘

𝑀𝑗 ⊊
⨁
𝑗≥𝑖

𝑀𝑗 if 𝑖 < 𝑘, then 𝖳(
⨁
𝑗≥𝑘

𝑀𝑗) ⊆ 𝖳(
⨁
𝑗≥𝑖

𝑀𝑗). 𝖳(
⨁
𝑗≥𝑘

𝑀𝑗) is

defined as the smallest torsion class that contains {𝑀𝑗 | 𝑗 ≥ 𝑘}, so we have that 𝑀𝑘 ∈
𝖳(

⨁
𝑗≥𝑘

𝑀𝑗). On the other hand, we have that 𝑀𝑘 ∈ (
⨁
𝑗≥𝑖

𝑀𝑗)⊥ if 𝑖 > 𝑘. Since 𝑀𝑘 ∈ (
⨁
𝑗≥𝑖

𝑀𝑗)⊥

for all 𝑖 > 𝑘, we have that 𝑀𝑘 ∉ 𝖳(
⨁
𝑗≥𝑖

𝑀𝑗) if 𝑖 > 𝑘, then Γ is a nested family of torsion

pairs and the decomposition 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 is compatible in (Γ). We have that Γ and Γ′

are distinct because 𝑀𝑘 ∈ 𝖳(
⨁
𝑗≥𝑘

𝑀𝑗) and 𝑀𝑘 ∉ ⊥(
⨁
𝑗≥𝑘

𝑀𝑗).

Finally, we have that 𝑀𝑘 ∈ 𝑗 if 𝑗 > 𝑘, then {𝑓𝑗(𝑀𝑘) | 𝑗 > 𝑘} ∪ {𝑀𝑘} = {𝑀𝑘}.

Therefore, 𝔉(𝑀) = 𝑀 and Lemma 3.2.3 ensures that 𝑀 ∈∗(Γ). ■

Corollary 4.2.3. Let Θ = {Θ𝑘}𝑘∈𝐺 be a stratifying system. Then Θ induces two distinct
nested families of torsion pairs Γ and Γ′, both indexed by 𝐺, such that 𝑀Θ is in ∗(Γ)
and in  ∗(Γ′).

■

The following example illustrates how to obtain a non-enumerable nested family that

cannot be induced from a stratifying system.



Example 4.2.4. Let 𝐴=ℂ𝑄 be the Kronecker algebra, and let (ℂ,≤) be the field of complex
numbers with the lexicographic order, that is, 𝑥+ 𝑦𝑖 > 𝑥′ + 𝑦′𝑖 if 𝑥 > 𝑥′ or 𝑥 = 𝑥′ and
𝑦 > 𝑦′. For every 𝜆 ∈ ℂ, consider the module 𝑀𝜆 whose representation is given by

ℂ ℂ
𝜆

1

We have that the module 𝑀 =
⨁
𝜆∈ℂ

𝑀𝜆 satisfies the conditions of the Theorem 4.2.2 (since

Hom𝐴(𝑀𝜆,𝑀𝜌) = 0 if 𝜆 ≠ 𝜌), thus inducing an uncountable nested family of torsion pairs.
However, there do not exist stratifying systems of size greater than 2 in the Kronecker
algebra (17, Theorem 2.3.18).

Let Γ be a nested family and let 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 be a compatible decomposition in (Γ).

Corollary 3.2.4 ensures that 𝔉(𝑀) satisfies Hom𝐴(𝔉𝑘(𝑀),𝔉𝑗(𝑀)) = 0 whenever 𝑘 > 𝑗,

with 𝔉𝑘(𝑀) ≠ 0 for all 𝑘 ∈ 𝐺. If it is possible to ensure that Ext1
𝐴
(𝔉𝑘(𝑀),𝔉𝑗(𝑀)) = 0 if

𝑘 ≥ 𝑗, then, by choosing an indecomposable summand Θ𝑘 of 𝔉𝑘(𝑀) for each 𝑘, we obtain

a stratifying system Θ = {Θ𝑘}𝑘∈𝐺. This observation motivates the following definition.

Definition 4.2.5. Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family of torsion pairs. We define
†(Γ) as the subcategory of (Γ) that contains the modules 𝑀 that admit a compatible
decomposition 𝑀 =

⨁
𝑘∈𝐺

𝑀𝑘 in (Γ) satisfying Ext1
𝐴
(𝑀𝑘,𝔉𝑗(𝑀)) = 0 if 𝑘 ≥ 𝑗. Such a

decomposition is called compatible in †(𝚪).
We also define  †(Γ) as the subcategory of  (Γ) that contains the modules 𝑁 that

admit a compatible decomposition 𝑁 =
⨁
𝑘∈𝐺

𝑁𝑘 in  (Γ) satisfying Ext1
𝐴
(𝔗𝑘(𝑁),𝑁𝑗) = 0

if 𝑘 ≥ 𝑗. Such a decomposition is called compatible in  †(𝚪).

Let 𝑀 be in †(Γ). We say that 𝑴 induces the stratifying system 𝚯= {𝚯𝒌}𝒌∈𝑮 as
a quotient if 𝑀 admits a compatible decomposition 𝑀 =

⨁
𝑘∈𝐺

𝑀𝑘 in †(Γ) such that Θ𝑘

is a direct summand of 𝔉𝑘(𝑀). Similarly, let 𝑁 be in  †(Γ). We say that 𝑵 induces the
stratifying system𝚯= {𝚯𝒌}𝒌∈𝑮 as a submodule if 𝑁 admits a compatible decomposition

𝑁 =
⨁
𝑘∈𝐺

𝑁𝑘 in  †(Γ) such that Θ𝑘 is a direct summand of 𝔗𝑘(𝑁). The following theorem

shows that modules in †(Γ) and in  †(Γ) induce at least one stratifying system.

Theorem 4.2.6. Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 be a nested family of torsion pairs and let 𝑀 =⨁
𝑘∈𝐺

𝑀𝑘 be a module.

1. If such a decomposition of 𝑀 is compatible in †(Γ), then 𝑀 induces at least one
stratifying system Θ = {Θ𝑘}𝑘∈𝐺 as a quotient such that Θ𝑘 is a summand of 𝔉𝑘(𝑀).



2. If such a decomposition of 𝑀 is compatible in  †(Γ), then 𝑀 induces at least
one stratifying system Θ = {Θ𝑘}𝑘∈𝐺 as a submodule such that Θ𝑘 is a summand of
𝔗𝑘(𝑀).

Proof. We will prove the first item, with the proof of the second being analogous.

1) Suppose first that 𝑖 > 𝑗, we have that 𝔉𝑖(𝑀) ∈ 𝑖 and 𝔉𝑗(𝑀) ∈ 𝑖 by Corollary

3.2.4, so Hom𝐴(𝔉𝑖(𝑀),𝔉𝑗(𝑀)) = 0.

Suppose now that 𝑖 ≥ 𝑗 and that 𝑖 is not the maximal element of 𝐺 (if it exists). In this

case, there exists 𝑚 > 𝑖 ≥ 𝑗 and a short exact sequence such that

0⟶ 𝑡𝑚(𝑀𝑖)⟶ 𝑀𝑖 ⟶𝔉𝑖(𝑀)⟶ 0.

Applying the functor Hom𝐴(−,𝔉𝑗(𝑀)) we obtain

Hom𝐴(𝑡𝑚(𝑀𝑖),𝔉𝑗(𝑀))⟶ Ext1
𝐴
(𝔉𝑖(𝑀),𝔉𝑗(𝑀))⟶ Ext1

𝐴
(𝑀𝑖,𝔉𝑗(𝑀)).

We have Hom𝐴(𝑡𝑚(𝑀𝑖),𝔉𝑗(𝑀)) = 0 since 𝑡𝑚(𝑀𝑖) ∈ 𝑚 and 𝔉𝑗(𝑀) ∈ 𝑚, as stated in

Corollary 3.2.4. We also have that Ext1
𝐴
(𝑀𝑖,𝔉𝑗(𝑀)) = 0 since the decomposition of 𝑀

is compatible in †(Γ), then Ext1
𝐴
(𝔉𝑖(𝑀),𝔉𝑗(𝑀)) = 0. If 𝑖 is the maximal element of

𝐺, the result follows using the same argument, starting from the following short exact

sequence:

0⟶ 0⟶ 𝑀𝑖 ⟶𝔉𝑖(𝑀)⟶ 0.

Finally, since mod𝐴 is a Krull-Schmidt category, we have that 𝔉𝑘(𝑀) decomposes

uniquely (up to isomorphism) as a finite direct sum of indecomposable modules. By

choosing an indecomposable summand Θ𝑘 of 𝔉𝑘(𝑀), we obtain that Θ = {Θ𝑘}𝑘∈𝐺 is a

stratifying system. ■

In the above theorem, the module 𝑀 induces
∏

𝑘∈𝐺

|𝔉𝑘(𝑀)| (or
∏

𝑘∈𝐺

|𝔗𝑘(𝑀)|) stratifying

systems indexed by 𝐺, where the product should be interpreted as ∞ if there are infinitely

many indices 𝑘 such that |𝔉𝑘(𝑀)| > 1 (or |𝔗𝑘(𝑀)| > 1, respectively).

Example 4.2.4 shows that †(Γ) may be empty; otherwise, it would be possible to

obtain a stratifying system of infinite size in the Kronecker algebra.

We say that a 𝐴-module 𝑀 is stratified (or substratified) if there exists a nested family

of torsion pairs Γ and a decomposition 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 (not necessarily into indecomposable

summands) such that this decomposition is compatible in †(Γ) (or  †(Γ), respectively).

We will denote by †(𝐴) and  †(𝐴) the class of 𝐴-modules that are stratified and

substratified, respectively.

The following theorem shows that every stratifying system can be induced by a stratified

module or by a substratified module.

Theorem 4.2.7. Let Θ = {Θ𝑘}𝑘∈𝐺 be a stratifying system.



1. Then there exists a module 𝑀 ∈†(𝐴) such that Θ is induced as a quotient by 𝑀 .

2. Then there exists a module 𝑁 ∈ †(𝐴) such that Θ is induced as a submodule by
𝑁 .

Proof. We will prove the first item, with the proof of the second being analogous.

Suppose that Θ = {Θ𝑘}𝑘∈𝐺 is a stratifying system and let 𝑀Θ =
⨁
𝑘∈𝐺

Θ𝑘 be its charac-

teristic module. Theorem 4.2.2 ensures that Γ = {(𝖳(
⨁
𝑗≥𝑘

Θ𝑗), (
⨁
𝑗≥𝑘

Θ𝑗)⊥)}𝑘∈𝐺 is a nested

family of torsion pairs and that this decomposition of 𝑀Θ is compatible in ∗(Γ).
We will show that this decomposition is, in fact, compatible in †(Γ). Theorem 4.2.2

ensures that 𝔉𝑘(𝑀) = Θ𝑘. Therefore, Ext1
𝐴
(Θ𝑗 ,𝔉𝑘(𝑀)) = Ext1

𝐴
(Θ𝑗 ,Θ𝑘) = 0 if 𝑗 ≥ 𝑘 since

Θ is a stratifying system. Applying Theorem 4.2.6, we have that the family Γ and the

module 𝑀Θ induce the stratifying system Θ as a quotient. ■

Note that we do not use the fact that the modules are indecomposable.

We conclude this section with a detailed example of applications of Theorem 4.2.6. In

this example, we will show how the stratifying system of size 5 presented in (29, Remark

2.7.) can be induced from a module 𝑁 ∈ †(𝐴).

Example 4.2.8. Let 𝐴 = 𝑘𝑄∕𝐼 , where 𝑄 is the following quiver:

3 1 2 4𝛼 𝛽 𝛾

and 𝐼 is the ideal generated by 𝛾𝛽. The Auslander-Reiten quiver of the algebra is given by:

𝑃 (3) 𝑆(2) 𝑆(4)

𝑃 (1) 𝐼(1) 𝑃 (4)

𝑃 (2) 𝑆(3)

Consider 𝑁 =
5⨁

𝑘=1
𝑁𝑘, where 𝑁𝑘 is 𝑃 (1),𝑃 (2), 𝐼(1),𝑃 (4), and 𝑆(4) for 𝑘 = 1,2,3,4,

and 5, respectively. Note that 𝑁 is not 𝜏−-rigid, since there exists a morphism 𝑁 → 𝜏−1(𝑁),
where 𝜏−1(𝑁) = 𝐼(1)

⨁
𝑆(3).

Consider the nested family of torsion pairs Γ = {(𝑘,𝑘)}𝑘∈𝕀5 , where

1 = add{𝑃 (2),𝑃 (3),𝑃 (4), 𝐼(1),𝑆(2),𝑆(3),𝑆(4)} 1 = add{𝑃 (1)}

2 = add{𝑃 (3),𝑃 (4),𝑆(3),𝑆(4)} 2 = add{𝑃 (1),𝑃 (2),𝑆(2)}

3 = add{𝑃 (4),𝑆(3),𝑆(4)} 3 = add{𝑃 (1),𝑃 (2),𝑃 (3), 𝐼(1),𝑆(2)}

4 = add{𝑆(4)} 4 = add{𝑃 (1),𝑃 (2),𝑃 (3),𝑃 (4), 𝐼(1),𝑆(2),𝑆(3)}

5 = add{0} 5 = add{𝑃 (1),𝑃 (3),𝑃 (2),𝑃 (4), 𝐼(1),𝑆(2),𝑆(3),𝑆(4)}.



It is easy to see that such a decomposition of 𝑁 is compatible in  (Γ).

The substratum of 𝑁 is given by 𝔗(𝑁) =
5⨁

𝑘=1
𝑡𝑘−1(𝑁𝑘). Since (𝑘,𝑘) is splitting if

𝑘 ≠ 2 we have 𝑡𝑘−1(𝑁𝑘) = 𝑁𝑘 for 𝑘 ≠ 3.
Note that there exists an exact sequence

0⟶ 𝑃 (3)⟶ 𝐼(1)⟶ 𝑆(2)⟶ 0,

where 𝑃 (3) ∈ 2 and 𝑆(2) ∈ 2, hence 𝑡2(𝑁3) = 𝑃 (3).
It is also easy to see that such a decomposition is compatible in  †(Γ). Indeed, we

have that Ext1
𝐴
(𝔗𝑘(𝑁),𝑁𝑗) = Ext1

𝐴
(𝑡𝑘−1(𝑁𝑘),𝑁𝑗) = 0 if 𝑗 ≤ 𝑘 since 𝑡𝑘−1(𝑁𝑘) is projective

if 𝑘 ≠ 5, and the only exact sequence ending at 𝑆(4) is given by:

0⟶ 𝑆(2)⟶ 𝑃 (4)⟶ 𝑆(4)⟶ 0.

Theorem 4.2.6 ensures that Θ = {𝑃 (1),𝑃 (2),𝑃 (3),𝑃 (4),𝑆(4)} is a stratifying system.

4.3 Stratifying system via 𝜏-rigid modules
In Theorem 2.3.4, H. Treffinger and O. Mendoza showed that every nonzero basic 𝜏-

rigid module induces a stratifying system as a quotient. In this section, we will demonstrate

that this result can be obtained as a corollary of Theorem 4.2.6.

We begin with a lemma that provides a sufficient condition for a compatible decompo-

sition in (Γ) to be compatible decomposition in †(Γ).

Lemma 4.3.1. LetΓ= {(𝑘,𝑘)}𝑘∈𝕀𝑛 be a nested family of torsion pairs and let 𝑀 =
𝑛⨁

𝑘=1
𝑀𝑘

be a decomposition of 𝑀 .

1. If 𝑀 is Ext-projective in 1 and such a decomposition is compatible in (Γ), then
such decompositon is compatible in †(Γ).

2. If 𝑀 is Ext-injective in 𝑛 and such a decomposition is compatible in  (Γ), then
such decompositon is compatible in  †(Γ).

Proof. We will prove the first item, with the proof of the second being analogous.

Since 𝑀𝑘 is a summand of 𝑀 , we have that 𝑀𝑘 is Ext-projective in 1. On the other

hand, Lemma 3.2.3 ensures that 𝔉𝑗(𝑀) ∈ 1. Thus, Ext1
𝐴
(𝑀𝑘,𝔉𝑗(𝑀)) = 0 for all 𝑗 ∈ 𝕀𝑛.

In particular, Ext1
𝐴
(𝑀𝑘,𝔉𝑗(𝑀)) = 0 if 𝑘 ≥ 𝑗 and 𝑀 ∈†(Γ). ■

Theorem 4.2.2 demonstrates how to obtain nested families of torsion pairs from a class

of modules that admit a certain decomposition. The following theorem shows how to

induce a nested family of torsion pairs from another class of modules.



Theorem 4.3.2. Let 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 be a decomposition of 𝑀 with 𝑀𝑘 ∈ mod𝐴 a nonzero

module for each 𝑘 ∈ 𝐺.

1. If for every 𝑘, we have 𝑀𝑘 ∉ 𝖳(
⨁
𝑗>𝑘

𝑀𝑗), then Γ = {(𝖳(
⨁
𝑗≥𝑘

𝑀𝑗),(
⨁
𝑗≥𝑘

𝑀𝑗)⊥)}𝑘∈𝐺 is a

nested family of torsion pairs, and this decomposition of 𝑀 is compatible in (Γ).

2. If for every 𝑘, we have 𝑀𝑘 ∉ 𝖥(
⨁
𝑗<𝑘

𝑀𝑗), then Γ = {(⊥(
⨁
𝑗≤𝑘

𝑀𝑗),𝖥(
⨁
𝑗≤𝑘

𝑀𝑗))}𝑘∈𝐺 is a

nested family of torsion pairs, and this decomposition of 𝑀 is compatible in  (Γ).

Proof. 1) Clearly, 𝖳(
⨁
𝑗>𝑘

𝑀𝑗) ⊆ 𝖳(
⨁
𝑗≥𝑘

𝑀𝑗) and 𝑀𝑘 ∈ 𝖳(
⨁
𝑗≥𝑘

𝑀𝑗). Since 𝑀𝑘 ∉ 𝖳(
⨁
𝑗>𝑘

𝑀𝑗), it

follows that Γ is a nested family of torsion pairs, and this decomposition of 𝑀 is compatible

in (Γ). The second item is analogous. ■

Such a decomposition of 𝑀 , as described in the lemma above, generalizes the concept

of a torsion-free admissible decomposition described in Definition 2.3.1. Note that

Theorem 4.2.2 can be seen as a corollary of Theorem 4.3.2. Unlike in Theorem 4.2.2, it is

not necessarily the case that 𝑀 is in ∗(Γ) (or in  ∗(Γ)) if 𝑀 induces Γ as in the lemma

above.

Example 4.3.3. Let 𝑃 (1),𝑃 (2),⋯ ,𝑃 (𝑛) be an enumeration of the indecomposable projec-
tive modules of mod𝐴. Given 𝜎 ∶ 𝕀𝑛 ⟶ 𝕀𝑛 a permutation of 𝕀𝑛 and given {𝑘2,𝑘3,⋯ ,𝑘𝑡} ∈

2𝕀𝑛−1 a set with 𝑡−1 elements, we define a decomposition of 𝐴𝐴 =
𝑡⨁

𝑗=1
𝑀𝑗 where 𝑀𝑗 =

𝑘𝑗+1⨁
𝑖=𝑘𝑗+1

𝑃 (𝜎(𝑖)) for 1 ≤ 𝑗 < 𝑡 and 𝑀𝑡 =
𝑛⨁

𝑖=𝑘𝑡+1
𝑃 (𝜎(𝑖)) (here, we fix 𝑘1 = 0 and 𝕀0 = {}).

It is easy to see that 𝑀𝑗 ∉ Fac

(
𝑡⨁

𝑘>𝑗

𝑀𝑘

)
since every epimorphism onto 𝑀𝑗 splits,

then such a decomposition induces a nested family indexed by 𝕀𝑡. This shows that any
decomposition of 𝐴𝐴 is torsion-free admissible and that 𝐴𝐴 induces 2𝑛−1𝑛! distinct nested
families. A similar reasoning shows that 𝐷(𝐴𝐴) induces 2𝑛−1𝑛! distinct nested families.

Let 𝑀 be a 𝜏-rigid module. Proposition 1.3.6 ensures that 𝖳(𝑀) = Fac(𝑀) since it

always holds that Fac(𝑀) ⊆ 𝖳(𝑀). Using mutation techniques from 𝜏-Tilting Theory, H.

Treffinger and O. Mendoza proved Proposition 2.3.2, which states that every basic nonzero

𝜏-rigid module admits at least one torsion-free admissible indecomposable decomposition.

Assuming the existence of such a decomposition, we will show that Theorem 2.3.4 can be

seen as a corollary of Theorem 4.2.6.

Corollary 4.3.4. (36, Theorem 3.4) Let 𝑀 be a nonzero, basic, and 𝜏-rigid module

with a torsion-free decomposition 𝑀 =
𝑡⨁

𝑗=1
𝑀𝑗 . If 𝑓𝑘 denotes the torsion-free functor



associated to the pair (𝑘,𝑘), where 𝑘 = Fac(
⨁
𝑗≥𝑘

𝑀𝑗) and 𝑘 = (
⨁
𝑗≥𝑘

𝑀𝑗)⊥, then Θ =

{Θ𝑘 ∶= 𝑓𝑘+1(𝑀𝑘)}𝑘∈𝕀𝑡 is a stratifying system of size 𝑡.

Proof. Since the decomposition of 𝑀 is torsion-free admissible, Theorem 4.3.2 ensures

that Γ = {(Fac(
⨁
𝑗≥𝑘

𝑀𝑗), (
⨁
𝑗≥𝑘

𝑀𝑗)⊥)}𝑘∈𝕀𝑡 is a nested family of torsion pairs and that this

decomposition of 𝑀 is compatible in (Γ). On the other hand, Proposition 1.3.5 and

Lemma 4.3.1 guarantee that such a decomposition of 𝑀 is compatible in †(Γ).
In accordance with Theorem 4.2.6, it is possible to choose an indecomposable summand

for each module of {𝔉𝑘(𝑀) = 𝑓𝑘+1(𝑀𝑘)}𝑘∈𝕀𝑡 and construct a stratifying system.

Lemma 1.3.7 ensures that 𝑓𝑖+1(𝑀𝑖) is indecomposable since 𝑀𝑖

⨁(⨁
𝑘>𝑖

𝑀𝑘

)
is 𝜏-rigid

and 𝑀𝑖 ∉ Fac
(⨁

𝑘>𝑖

𝑀𝑘

)
, which proves the corollary. ■

Corollary 4.3.4 and Theorem 4.2.7 ensure that †(𝐴) contains all 𝜏-rigid modules

(such as projective and tilting modules) and the characteristic modules 𝑀Θ of all stratifying

systems Θ. It is possible to prove the dual of Corollary 4.3.4 and show that  †(𝐴) contains

all 𝜏−-rigid modules (such as injective modules) and the characteristic modules 𝑀Θ of all

stratifying systems Θ.

4.4 Expansions in nested families

Let 𝑀 =
𝑡⨁

𝑗=1
𝑀𝑗 be a torsion-free admissible decomposition into indecomposable

summands of the basic 𝜏-rigid module 𝑀 . Corollary 4.3.4 shows that such a decomposition

of 𝑀 is compatible in †(Γ), where Γ = {(Fac(
⨁
𝑗≥𝑘

𝑀𝑗), (
⨁
𝑗≥𝑘

𝑀𝑗)⊥)}𝑘∈𝕀𝑡 . However, it is

possible that the same decomposition is compatible in †(Γ′) for Γ′ ≠ Γ.

In this section, we will study the relationship between the stratifying systems induced

by the same module when the nested family is changed. We begin with a definition.

Definition 4.4.1. (Expansion) Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 and Γ′ = {( ′
𝑘
, ′

𝑘
)}𝑘∈𝐺 be nested

families of torsion pairs. We say that 𝚪 expands 𝚪′ if  ′
𝑘

⊆ 𝑘 for all 𝑘 ∈ 𝐺.

We write Γ′ ≤ Γ to indicate that Γ expands Γ′. We will say that Γ′ is tighter than Γ
and that Γ is looser than Γ′. Note that, by definition, every nested family Γ expands itself.

The following proposition shows the relationship between the nested families induced

by 𝑀 and a nested families Γ′ such that 𝑀 ∈(Γ′).

Proposition 4.4.2. Let 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 be a decomposition of 𝑀 with 𝑀𝑘 ∈ mod𝐴 being a

nonzero module for each 𝑘 ∈ 𝐺, and let Γ′ = {( ′
𝑘
, ′

𝑘
)}𝑘∈𝐺 be a nested family of torsion

pairs.



1. If such a decomposition induces the nested family Γ = {(𝖳(
⨁
𝑗≥𝑘

𝑀𝑗), (
⨁
𝑗≥𝑘

𝑀𝑗)⊥)}𝑘∈𝐺,

then Γ is the tightest nested family such that 𝑀 ∈(Γ), that is, if 𝑀 ∈(Γ′), then
Γ ≤ Γ′.

2. If such a decomposition induces the nested family Γ = {(⊥(
⨁
𝑗≤𝑘

𝑀𝑗),𝖥(
⨁
𝑗≤𝑘

𝑀𝑗))}𝑘∈𝐺,

then Γ is the loosest nested family such that 𝑀 ∈ (Γ), that is, if 𝑀 ∈ (Γ′), then
Γ′ ≤ Γ.

Proof. 1) Suppose that 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 belongs to (Γ′), then {𝑀𝑗 | 𝑗 ≥ 𝑘} ∈  ′
𝑘

for all

𝑘 ∈ 𝐺. Since 𝖳(
⨁
𝑗≥𝑘

𝑀𝑗) is the smallest torsion class containing {𝑀𝑗 | 𝑗 ≥ 𝑘}, we have

𝖳(
⨁
𝑗≥𝑘

𝑀𝑗) ⊆  ′
𝑘

, hence Γ ≤ Γ′. The second item is analogous. ■

Let 𝑀 ≠ 0 be a basic 𝜏-rigid module with a torsion-free decomposition 𝑀 =
𝑡⨁

𝑗=1
𝑀𝑗 .

Corollary 4.3.4 shows that the stratum of the torsion-free admissible decomposition of 𝑀

is a basic module when considering the tightest nested family such that 𝑀 ∈(Γ). The

following proposition shows the relationship between the stratums of 𝑀 when changing

the family Γ to a looser one.

Proposition 4.4.3. Let Γ = {(𝑘,𝑘)}𝑘∈𝐺 and Γ′ = {( ′
𝑘
, ′

𝑘
)}𝑘∈𝐺 be nested families of

torsion pairs such that Γ ≤ Γ′ and 𝑀 =
⨁
𝑘∈𝐺

𝑀𝑘 a decomposition of 𝑀 .

1. If such a decomposition of 𝑀 is compatible in (Γ) and in (Γ′), then 𝔉′(𝑀) is
a quotient of 𝔉(𝑀), where 𝔉(𝑀) and 𝔉′(𝑀) are the stratum of 𝑀 with respect to
Γ and Γ′, respectively.

2. If such a decomposition of 𝑀 is compatible in  (Γ) and in  (Γ′), then 𝔗(𝑀)
is a submodule of 𝔗′(𝑀), where 𝔗(𝑀) and 𝔗′(𝑀) are the substratum of 𝑀 with
respect to Γ and Γ′, respectively.

Proof. 1) We have that 𝔉𝑘(𝑀) and 𝔉′
𝑘
(𝑀) are the smallest quotients of the families

{𝑓𝑗(𝑀𝑘) ∣ 𝑗 > 𝑘} ∪ {𝑀𝑘} and {𝑓 ′
𝑗
(𝑀𝑘) ∣ 𝑗 > 𝑘} ∪ {𝑀𝑘}, respectively. Since 𝑗 ⊆  ′

𝑗
,

we have that 𝑡𝑗(𝑀𝑘) ⊆ 𝑡′
𝑗
(𝑀𝑘) implies that 𝑓 ′

𝑗
(𝑀𝑘) is a quotient of 𝑓𝑗(𝑀𝑘). Therefore,

𝔉′
𝑘
(𝑀) is a quotient of 𝔉𝑘(𝑀), and 𝔉′(𝑀) is a quotient of 𝔉(𝑀). The second item is

analogous. ■

The next two examples explore the consequences of Proposition 4.4.3.



Example 4.4.4. Let 𝐴 = 𝑘𝑄∕𝐼 , where 𝑄 is the quiver

2 4 6

1 3 5

𝜇

𝜆

𝛽

𝛼

𝛾

𝜈 Θ

and 𝐼 is the ideal generated by 𝛼𝛽 − 𝛾Θ and 𝜆𝜇−𝛽𝜈. The Auslander-Reiten quiver of the
algebra is given by:

Consider the 𝜏-rigid 𝑀 = 𝑀1
⨁

𝑀2, where 𝑀1 = 2 3
1 and 𝑀2 = 6 (see (7, Example

I.2.18) for a brief explanation of the notation). Such a decomposition of the module is
torsion-free admissible.

Consider the nested family

Γ = {(Fac(𝑀1
⨁

𝑀2), (𝑀1
⨁

𝑀2)⊥); (Fac(𝑀2),𝑀⊥
2 )}.

We have that 𝔉1(𝑀) = 𝑀1 and 𝔉2(𝑀) = 𝑀2. Corollary 4.3.4 ensures that Θ = {2 3
1 ,6}

is a stratifying system.
On the other hand, consider the nested family

Γ′ = {(mod𝐴,{0}); (Fac(1
⨁

6), (1
⨁

6)⊥)}.

Note that Γ ≤ Γ′ and that such a decomposition of 𝑀 is compatible in †(Γ′). We have
𝔉1(𝑀) = 2

⨁
3 and 𝔉2(𝑀) = 6. Theorem 4.2.6 ensures that Θ′ = {2,6} and Θ′′ = {3,6}

are two stratifying systems induced as a quotient by 𝑀 .

The above example suggests that a module 𝑀 ∈†(𝐴) induces a unique stratifying

system if Γ is a “sufficiently tight” nested family. The next example shows that this is not

the case.



Example 4.4.5. Let 𝐴 be the same algebra as in Example 4.4.4 and consider also the
module 𝑀 = 𝑀1

⨁
𝑀2, where 𝑀1 = 2 3

1 and 𝑀2 = 1. We have that 𝑀 is not 𝜏-rigid
since 𝜏(𝑀) = 𝑀2.

Let Γ = {(𝖳(𝑀),𝑀⊥), (𝖳(1),1⊥)} be the tightest nested family such that 𝑀 ∈(Γ).
We have that 𝑀 ∈†(Γ) and we have the exact sequence

0⟶ 1⟶ 2 3
1 ⟶ 2

⨁
3⟶ 0.

Since 1 ∈ 2 and 2
⨁

3 ∈ 2, we have that 𝔉1(𝑀) = 𝑓2(𝑀1) = 2
⨁

3. Theorem 4.2.6
ensures that Θ = {3,1} and Θ′ = {2,1} are stratifying systems induced by 𝑀 .

4.5 A stratifying system of infinite size that cannot be
indexed by (ℕ,≤)

In (41), H. Treffinger demonstrated the existence of stratifying systems of infinite size

indexed by (ℕ,≤) in 𝑛-representation infinite algebras. We conclude this master’s thesis

by showing that, using the formalism of a nested family of torsion pairs, it is possible to

obtain, all at once, infinite stratifying systems of infinite size, including those obtained in

(41). Moreover, we obtain stratifying systems that cannot be indexed by (ℕ,≤), where ≤ is

the natural order, as shown below.

Theorem 4.5.1. Let 𝐴 be an 𝑛-representation infinite algebra with 𝑛 > 1. Then, there exists
a stratifying system of infinite size that cannot be indexed by (ℕ,≤), where ≤ is the natural
order.

Proof. Let 𝐴 be an 𝑛-representation infinite algebra such that 𝐴𝐴 =
𝑁⨁

𝑗=1
𝑃 (𝑗), with 𝑃 (𝑗)

indecomposable for all 𝑗 ∈ 𝕀𝑁 , and let 𝐺 = {−1,1}×ℕ be a totally ordered set with the

lexicographic order, i.e., with the ≤ order such that (𝑦,𝑚) > (𝑥, 𝑙) if 𝑦 > 𝑥 or 𝑥 = 𝑦 and

𝑚 > 𝑙. Define 𝑀(𝑥,𝑙) = 𝜈𝑥𝑙
𝑛 (𝐷

𝑥+1
2 (𝐴)) and 𝑀 =

⨁
(𝑥,𝑙)∈𝐺

𝑀(𝑥,𝑙) (where we set 𝐷0𝐴 = 𝐴).

Let (𝑦,𝑚) = 𝖳

( ⨁
(𝑥,𝑙)≥(𝑦,𝑚)

𝑀(𝑥,𝑙)

)
and (𝑦,𝑚) =

( ⨁
(𝑥,𝑙)≥(𝑦,𝑚)

𝑀𝑗

)⊥

. Since such a decom-

position of 𝑀 is such that Hom𝐴(𝑀(𝑦,𝑚),𝑀(𝑥,𝑙)) = 0 if (𝑦,𝑚) > (𝑥, 𝑙) by Proposition 1.4.2

and Proposition 1.4.4 (c), Theorem 4.2.2 ensures that Γ = {((𝑦,𝑚),(𝑦,𝑚))}(𝑦,𝑚)∈𝐺 is a

nested family of torsion pairs, such a decomposition of 𝑀 is compatible in ∗(Γ) and

𝔉(𝑀) = 𝑀 .

Since 𝑛 > 1, we have that Ext1
𝐴
(𝑀(𝑦,𝑚),𝔉(𝑥,𝑙)(𝑀)) = Ext1

𝐴
(𝑀(𝑦,𝑚),𝑀(𝑥,𝑙)) = 0 by Propo-

sition 1.4.4 (d), in particular, if (𝑦,𝑚) ≥ (𝑥, 𝑙). Therefore, the decomposition of 𝑀 is also

compatible in †(Γ).



According to Theorem 4.2.6, for each (𝑥, 𝑙) ∈𝐺 and for each indecomposable summand

Θ(𝑥, 𝑙) of 𝑀(𝑥,𝑙), we have that Θ = {Θ(𝑥, 𝑙)}(𝑥,𝑙)∈𝐺 is a stratifying system indexed by 𝐺.

Such a stratifying system cannot be indexed by (ℕ, ≤). Indeed, there does not exist an

order-preserving bijection 𝜎 ∶ 𝐺 ⟶ ℕ; since {(𝑥, 𝑙) < (1,1) | (𝑥, 𝑙) ∈ 𝐺} is an infinite set,

which, in turn, would imply that {𝑛 < 𝜎(1,1) | 𝑛 ∈ ℕ} is infinite, which is absurd. ■

We can explicitly present all the stratifying systems constructed in the theorem above.

We have that Θ(𝑥, 𝑙) is an indecomposable summand of 𝑀(𝑥,𝑙) =
𝑁⨁

𝑗=1
𝜈𝑥𝑙
𝑛 (𝐷

𝑥+1
2 (𝑃 (𝑗))).

Proposition 1.4.4 (a) and (b) ensures that 𝜈𝑥𝑙
𝑛 (𝐷

𝑥+1
2 (𝑃 (𝑗))) is an indecomposable mod-

ule for every 𝑗 ∈ 𝕀𝑁 , which implies that Θ = {𝜈𝑥𝑙
𝑛 (𝐷

𝑥+1
2 (𝑃 (𝑓 (𝑥, 𝑙))))}(𝑥,𝑙)∈𝐺 is a stratifying

system for any function 𝑓 ∶ 𝐺 ⟶ 𝕀𝑁 . In particular, the number of induced stratifying

systems is in bijection with the number of functions 𝑓 ∶ 𝐺 ⟶ 𝕀𝑁 .

Corollary 4.5.2. Let 𝐴 be an 𝑛-representation infinite algebra with 𝑛 > 1 and |𝐴𝐴| > 1.
Then, there exist infinitely many stratifying systems of infinite size that cannot be indexed
by (ℕ, ≤), where ≤ is the natural order.

■

It is important to note that the order plays a central role in the definition of a stratifying

system. Observe that Δ = {𝑃 (2),𝑃 (3)} and Δ′ = {𝑃 (3),𝑃 (2)} are distinct stratifying

systems, despite defining the same set, where 𝑃 (2) and 𝑃 (3) are defined in the Example

4.2.8.

Since 𝐺 is a countable set, there exists a bijection 𝜎 ∶ 𝐺 ⟶ (ℕ,≤) (which does not

preserve the order) such that 𝑀 =
⨁

(𝑥,𝑙)∈𝐺

𝑀(𝑥,𝑙) =
⨁

𝜎(𝑥,𝑙)∈ℕ
𝑀𝜎(𝑥,𝑙). It is not possible to follow

the proof of Theorem 4.5.1 to construct a stratifying system indexed by (ℕ,≤) induced by

𝑀 . In the proof, we heavily used the fact that Hom𝐴(𝜈𝑙
𝑛(𝐷𝐴), 𝜈−𝑘

𝑛 (𝐴)) = 0 for all 𝑙,𝑘 ≥ 0.

On the other hand, indexing the summands of 𝑀 by (ℕ,≤), there will exist infinitely many

pairs of indices (𝑖, 𝑗) ∈ (ℕ,≤) with 𝑖 > 𝑗 such that 𝑀𝑖 = 𝜈−𝑘
𝑛 (𝐴) and 𝑀𝑗 = 𝜈𝑙

𝑛(𝐷𝐴), with

𝑘, 𝑙 ≥ 0. In general, we do not have that Hom𝐴(𝜈−𝑘
𝑛 (𝐴), 𝜈𝑙

𝑛(𝐷𝐴)) = 0.
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finitistic dimension, 57

functorially finite subcategory, 12

generalized Kronecker algebras, 59

generalized tilting module, 36

global dimension, 17

hereditary algebra, 18

idempotent, 13

infinite global dimension, 18

Jordan-Hölder category, 32

Kronecker algebra, 24
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Nakayama functor, 22
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push-out diagram, 19

quasi-hereditary, 35

quiver, 14

quiver with relations, 15

regular module, 59

relation, 14

relatively simple, 33

representation-finite algebra, 23

representation-infinite algebra, 23

right -approximation, 12

right minimal morphism, 17

semisimple algebra, 18

sincere class, 12

sincere module, 27

source, 14

space of irreducible morphisms, 23

split exact sequences, 20

split-by-nilpotent algebra, 58

splitting torsion pair, 25



SS, 39

stable category modulo injectives, 21

stable category modulo projectives, 21

standard modules, 34

standardly stratified algebra, 35
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