
'UNIVERSIDADE FEDERAL DO PARANÁ

SANT'IRU CRISÓSTOMO MEIRELES

MAPEAMENTO DE FLUXO DE VALOR EM UMA LINHA DE PRODUÇÃO DE AMIDO PARA MELHORIA DO LEAD TIME

Trabalho de Conclusão de Curso I apresentado ao curso de Graduação em Engenharia de Produção, Campus Avançado de Jandaia do Sul, Universidade Federal do Paraná, como prérequisito para qualificação a disciplina Trabalho de Conclusão de Curso II.

Orientador: Prof. Rafael Germano Dal Molin Filho

Meireles, Sant'iru Crisóstomo

Mapeamento de Fluxo de Valor em uma linha de produção de amido para melhoria do lead time. / Sant'iru Crisóstomo Meireles. – Jandaia do Sul, 2022.

1 recurso on-line: PDF.

Monografia (Graduação) – Universidade Federal do Paraná, Campus Jandaia do Sul, Graduação em Engenharia de Produção. Orientador: Prof. Dr. Rafael Germano Dal Molin Filho.

1. Produção enxuta. 2. Ferramentas lean. 3. Mapeamento de Fluxo de Valor. 4. Gargalos. I. Molin Filho, Rafael Germano Dal. II. Universidade Federal do Paraná. III. Título.

CDD: 658.5

Bibliotecário: César A. Galvão F. Conde - CRB-9/1747

UNIVERSIDADE FEDERAL DO PARANÁ

PARECER № 65 - SANT'IRU CRISÓSTOMO MEIRELES/2022/UFPR/R/JA

PROCESSO № 23075.079917/2019-87

INTERESSADO: SANT IRU CRISOSTOMO MEIRELES

TERMO DE APROVAÇÃO DE TRABALHO DE CONCLUSÃO DE CURSO

Título: MAPEAMENTO DE FLUXO DE VALOR EM UMA LINHA DE PRODUÇÃO DE AMIDO PARA MELHORIA DO LEAD TIME

Autor(a): SANT'IRU CRISÓSTOMO MEIRELES

Trabalho de Conclusão de Curso apresentado como requisito parcial para a obtenção do grau no curso de Engenharia de Produção, aprovado pela seguinte banca examinadora.

Rafael Germano Dal Molin Filho (Orientador)

André Luiz Gazoli de Oliveira

Daniel Mantovani

Documento assinado eletronicamente por RAFAEL GERMANO DAL MOLIN FILHO, PROFESSOR DO MAGISTERIO SUPERIOR, em 01/06/2022, às 19:39, conforme art. 1°, III, "b", da Lei 11.419/2006.

Documento assinado eletronicamente por ANDRE LUIZ GAZOLI DE OLIVEIRA, VICE-DIRETOR(A) DO CAMPUS AVANCADO DE JANDAIA DO SUL - JA, em 01/06/2022, às 21:58, conforme art. 1°, III, "b", da Lei 11.419/2006.

Documento assinado eletronicamente por Daniel Mantovani, Usuário Externo, em 02/06/2022, às 13:57, conforme art. 1°, III, "b", da Lei 11.419/2006.

A autenticidade do documento pode ser conferida \underline{aqui} informando o código verificador 4570924 e o código CRC 9F96033E.

RESUMO

O segmento agrícola, base para o setor alimentício, cresce cada vez mais, em decorrência da escalada na demanda mundial. Com forte concorrência estabelecia em escala global, para se manter no mercado as indústrias realizam projetos que visam eliminar e reduzir em escala os desperdícios e as ineficiências. Para esta realização utilizam-se técnicas e ferramentas que sobretudo, buscam assegurar a qualidade, a eficiência produtiva dos recursos empregados. Este trabalho tem como objetivo, mapear o fluxo de valor de uma linha de produção de amido com foco na melhoria do *Lead Time* dos produtos. Como principal estratégia para esta realização foi aplicado a ferramenta do *Value Stream Mapping (MFV* - Mapeamento do Fluxo de Valor) aliada as ferramentas do *Lean Manufacturing*. Diante desta aplicação, foram realizadas melhorias na redução dos desperdícios do processo de produção de amido de milho, ao ponto, de significarem redução do *Lead Time* na ordem de 26,9% dos produtos produzidos na linha.

Palavras-Chave: Produção Enxuta, Ferramentas *Lean*, Mapeamento de Fluxo de Valor, gargalos.

ABSTRACT

The agricultural segment, the basis for the food sector, is growing more and more, as a result of the escalation in world demand. With strong competition established on a global scale, to stay in the market, industries carry out projects that aim to eliminate and reduce waste and inefficiencies in scale. For this accomplishment, techniques and tools are used that, above all, seek to ensure the quality, the productive efficiency of the resources used. This work aims to map the value stream of a production line with a focus on improving the Lead Time of products. As the main strategy for this achievement, the Value Stream Mapping (VSM - Value Stream Mapping) tool was applied, allied to the Lean Manufacturing tools. Improvements were obtained in the reduction of waste in the corn starch production process, to the point of reducing Lead Time by 26.9% of the products produced in the line.

Keywords: Lean Production, Lean Tools, Value Stream Mapping, bottlenecks.

LISTA DE EQUAÇÕES

EQUAÇÃO 1 – CÁLCULO DO <i>LEAD TIME</i>	39
EQUAÇÃO 2 – CÁLCULO DA EFICIÊNCIA DO TRABALHO	39
EQUAÇÃO 3 – CÁLCULO DO TAKT TIME	40

LISTA DE FIGURAS

FIGURA 1- FASES DA PESQUISA	14
FIGURA 2- ESTRUTURA DO TRABALHO	15
FIGURA 3- ESTRUTURA DO STP ATRAVÉS DOS PILARES DE SUSTENTAÇÃO	18
FIGURA 4- OS SETES DESPERDICIOS CLÁSSICOS DA MANUFATURA ENXUTA	20
FIGURA 5- O GUARDA-CHUVA DO KAIZEN	24
FIGURA 6- MODELOS DE GESTÃO VISUAL	27
FIGURA 7- FLUXO DE INFORMAÇÃO E MATERIAL	29
FIGURA 8- FASES DO MFV	30
FIGURA 9- ESTADO ATUAL DO MFV	32
FIGURA 10- ESTADO FUTURO DO MFV	34
FIGURA 11- EXEMPLO TPT	40
FIGURA 12- PLANILHA DE COLETA DE DADOS	44
FIGURA 13- FASES DA PESQUISA	45
FIGURA 14- PROCESSO DE PRODUÇÃO	48
FIGURA 15- PROCESSOS PRODUTIVOS DE CADA PRODUTOS	50
FIGURA 16- CABEÇALHO DA CADEIA DE VALOR	51
FIGURA 17- COLETA DE DADOS DO MFV	53
FIGURA 18- ESTADO ATUAL COMPLETO	55
FIGURA 19- PARTE 1 DO MAPA DO ESTADO ATUAL	56
FIGURA 20- PARTE 2 DO MAPA DO ESTADO ATUAL	57
FIGURA 21- PARTE 3 DO MAPA DO ESTADO ATUAL	58
FIGURA 22- PARTE 4 DO MAPA DO ESTADO ATUAL	59
FIGURA 23- PARTE 5 DO MAPA DO ESTADO ATUAL	60
FIGURA 24- PARTE 1 DA PRIORIZAÇÃO DAS CAUSAS	62
FIGURA 25- PARTE 2 DA PRIORIZAÇÃO DAS CAUSAS	63
FIGURA 26- ESTADO FUTURO	65
FIGURA 27- PARTE 1 MONITORAMENTO DAS CAUSAS PRIORIZADAS	67
FIGURA 28- PARTE 2 MONITORAMENTOS DAS CAUSAS PRIORIZADAS	68

LISTA DE ABREVIATURAS OU SIGLAS

FAO - Food and Agriculture Organization of the United Nations

ILO - International Labour Organization

KPI - Key Performance Indicator

OIT - Organiza o Internacional do Trabalho

SKU - Stock Keeping Unit (Unidade de Manutenção de Estoque)

STP - Sistema Toyota de Produção

VSM - Value Stream Mapping

SUMÁRIO

1 INTRODUÇÃO	10
1.1 JUSTIFICATIVA	11
1.2 OBJETIVOS	13
1.2.1 Objetivo geral	13
1.2.1.1 Objetivos específicos	
1.3 MÉTODOS DE PESQUISA	13
1.4 DELIMITAÇÃO DO TRABALHO	14
1.5 APRESENTAÇÃO DO TRABALHO	14
2 REVISÃO BIBLIOGRÁFICA	16
2.1 MANUFATURA ENXUTA	16
2.2 OS DESPERDICIOS CLÁSSICOS DA MANUFATURA	19
2.3 FERRAMENTAS DO LEAN MANUFACTURING	20
2.3.1 Jidoka	
2.3.2 Poka Yoke	
2.3.3 Kaizen	
2.3.4 O Programa 5S	
2.4 VALUE STREAM MAPPING	
2.4.1 Selecionar uma fam lia de produtos	
2.4.2 Mapeamento do estado atual	
2.4.3 Mapear o estado futuro	
2.4.4 Ferramentas de apoio essências	
2.4.4.1 Gemba	
2.4.4.2 Diagrama de Gantt	
2.4.4.3 Matriz GUT	
2.4.5 Desenvolver o plano de a o	
2.5 CONSIDERAÇÕES FINAIS SOBRE A REVISÃO	
3 METODOLOGIA	42
3.1 CLASSIFICAÇÃO DA PESQUISA	42
3.2 COLETA DE DADOS E INSTRUMENTAÇÃO DA PESQUISA	
3.3 ANÁLISE DOS DADOS	45
3.4 FASES DA PESQUISA	45
3.4.1 FASE 1 - Coleta de informações dos SKUs	
3.4.2 FASE 2 - Mapeamento da Matriz da Família de Produtos	
3.4.3 FASE 3 - Coleta de informações do Mapa atual	
3.4.4 FASE 4 – Entrega do Mapa do estado atual	46

3.4.5 FASE 5 – Análise crítica do processo	46
3.4.6 FASE 6 - Entrega do Mapa do estado futuro	
3.4.7 FASE 7 - Monitoramento de desempenho e dos resultados	47
3.5 CARACTERIZAÇÃO DA EMPRESA	47
3.5.1 Caracterização da linha de produção de amido	48
4 RESULTADOS E DISCUSSÕES	50
4.1 FASE 1 – COLETA DE INFORMAÇÕES SKUS E MAPEAMENTO DA MATRIZ DA FAMÍLIA DE PRODUTOS	50
4.2 FASE 2 – COLETA DE INFORMAÇÕES DO MAPA ATUAL	52
4.3 FASE 3 – ENTREGA DO MAPA DO ESTADO ATUAL	54
4.4 FASE 4 – ANÁLISE CRÍTICA DO PROCESSO	62
4.5 FASE 5 – ENTREGA DO MAPA DO ESTADO FUTURO	64
4.6 FASE 6 – MONITORAMENTO DE DESEMPENHO E DOS RESULTADOS	366
5 CONCLUSÃO	70
5.1 RECOMENDAÇÕES PARA TRABALHOS FUTUROS	70
REFERÊNCIAS	72

1 INTRODUÇÃO

A produção de milho no mundo tem aumentado a cada vez mais. É possível observar pelo aumento de produção e de produtividade ao longo dos últimos anos e a sobrevivência de empresas no mercado atual, o que o torna indefinido devido à alta concorrência, em que possível encontrar produtos similares a preços competitivos. Com o avanço da tecnologia e a grande oferta de produtos, o consumidor passa a ter acesso a uma vasta gama de informações e de opções de consumo.

Porter (2005), afirma que toda empresa possui suas regras de concorr ncia incorporadas a cinco for as competitivas: poder de barganha dos fornecedores, poder de barganha dos clientes, amea a de produtos/servi os substitutos, ameaça de potenciais entrantes e rivalidade entre os concorrentes. O conjunto destas for as determina a habilidade que a empresa possui para gerar lucro e permanecer no mercado. Segundo ele, h dois tipos b sicos de vantagens competitivas que uma empresa pode ter: custo e diferencia o. Estas, quando combinadas aos objetivos da empresa, conduzem s tr s estrat gias gen ricas: lideran a em custo, diferencia o e foco. A primeira busca a m xima efici ncia produtiva, a segunda foca em tecnologia, pesquisa e desenvolvimento, dentro outras inova es, e a terceira concentra-se em um grupo espec fico e no atendimento de suas necessidades.

Uma das principais formas de buscar a m xima efici ncia produtiva com a redução dos custos e procurando oportunidades para redução dos desperdícios que ocorrem durante o processo de produção.

Segundo Campos (2011), desperd cio qualquer recurso que n o contribui a alcançar o objetivo, ou seja, satisfazer as necessidades do cliente, que podem ser energia, pessoas, material, informações, equipamentos ou tempo. A elimina o de desperd cios visando diminuir custos e produzir apenas o necess rio, no momento e quantidade correta, a defini o b sica do Sistema Toyota de Produ o (OHNO, 1997). Anos depois, este sistema foi denominado de Sistema *Lean* de Produ o ou Produ o Enxuta, por James P. Womack, no ano de 1990, em seu livro A m quina que mudou o mundo.

Conforme Womack (2007), a produ o enxuta garante melhores produtos por um menor custo, quando comparado a outros sistemas de produ o, e a busca por melhoria cont nua.

Dora (2013), afirma que a busca por mudan as e melhorias nas empresas se inicia, normalmente, devido uma situa o de crise ou demanda do mercado em que a empresa se encontra. sabido que o atual cen rio econ mico se mostra inst vel e em fase de recessão devido a uma pandemia que assola o mundo inteiro e, consequentemente, provoca o aumento da taxa de desemprego.

Segundo relat rio da Organiza o Internacional do Trabalho (OIT), estima-se que no ano de 2020 o desemprego atinja mais de 190,5 milh es de pessoas ao redor do mundo.

O Value Stream Mapping, ou Mapeamento do Fluxo de Valor, permite visualizar por completo o fluxo de valor existente para a transforma o de mat ria prima ao produto final, pois ele permite visualizar o fluxo de material e o fluxo de informa es. O com o mapeamento do fluxo de valor pode ser identificado a fam lia de produtos (produtos que possuem processos similares ou compartilham o mesmo equipamento), situa o atual do processo e plano de implementa o (estado futuro).

Este trabalho realizará por meio de uma análise *Value Stream Mapping* (VSM) a identificação de forma detalhada de todas as etapas do processo de produção do amido. Com os detalhamentos da fase inicial será realizado a identificação dos principais desperdícios para posterior aplicação de um projeto com uso de ferramentas Lean para padronização para reduções de ineficiência e redução do *Lead Time*.

1.1 JUSTIFICATIVA

O cen rio atual de alta competitividade exige das organizações evoluções constantes por meio dos seus indicadores de desempenho. As empresas necessitam produzir de maneira mais eficiente. Nesse sentido, a implanta o de um sistema de Produ o Enxuta, pode proporcionar a elimina o dos desperd cios para utilizar de maneira mais eficaz os recursos empregados, agregando qualidade no processo e buscando melhorar as t cnicas empregadas. As empresas que aplicam as técnicas

de Manufatura Enxuta passam a ter um conhecimento mais claro dos processos e das pessoas que trabalham na linha e dos produtos, e isso se torna motivação para realizar melhorias contínuas.

Segundo MacDonald (2000), a Produção Enxuta reúne uma série de princípios para eliminar desperdícios durante a produção dos produtos, buscando atingir (ou até superar) as expectativas dos clientes. Suas técnicas procuram minimizar as perdas dentro da empresa, gerando produtos a um menor custo e possibilitando à organização produzir a um preço menor e sem perda da qualidade.

Segundo a Food and Agriculture Organization of the United Nations (FAO), um ter o do alimento produzido para consumo humano perdido ou desperdi ado, o que corresponde a 1,3 bilh es de toneladas por ano. Por outro lado, apenas um quarto do que desperdi ado suficiente para acabar com a fome do mundo.

Ainda segundo a FAO, no mundo, aproximadamente 185 kg por pessoa por ano s o perdidos ou desperdi ados durante a produ o para varejo e consumo. Com rela o Am rica Latina, somente a perda no processo de produ o para o varejo corresponde a quase 200 kg por pessoa por ano, o que representa aproximadamente 85% do total de perdas dessa regi o.

Os desperd cios de alimentos destinados ao consumo, definidos como perdas de alimentos na cadeia de suprimento, podem ser classificados como perdas ocorridas durante a produ o, colheita e processamento; ou res duos alimentares, definida como qualquer comida que seja descartada no varejo e no consumo (DE STEUR, 2016).

A indústria onde o estudo será desenvolvido está situada na região dos Casmpos Gerais no Estado do Paraná. Ela possui aproximadamente 450 funcion rios. Entre os desafios atuais, está a adequação da linha de produ o do amido filosofia enxuta, visando o aperfei oamento dos processos e a redu o de custos e desperd cios.

Entretanto, a principal mat ria prima deste mercado é o milho juntamente com enzimas que ajudam no processo, muitos deles perec veis, o que exige o cumprimento

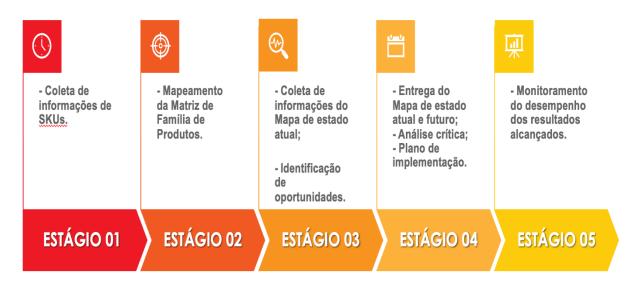
de requisitos de qualidade, al m da exigência de respeitar os prazos de validade estabelecidos, e devido a isso, gera-se desperdícios ainda em estoque.

Como resultado desse mapeamento almeja-se o aprimoramento do fluxo de valor que está sendo entregue para o cliente através da identificação das oportunidades de melhoria da linha do amido e a obtenção do *lead time* do mesmo, que é de suma importância para os envolvidos.

1.2 OBJETIVOS

1.2.1 Objetivo geral

Mapear o fluxo de valor de uma linha de produção de amido com foco na redução do *Lead Time* dos produtos.


1.2.1.1 Objetivos específicos

- Identificar os tipos e as causas de desperdícios na linha de produção de amido;
- 2. Identificar o *Lead Time* atual do processo produtivo do amido;
- 3. Propor um projeto para melhoria do *Lead Time* para um MFV de estado futuro;
- 4. Capacitar os recursos da linha para a implementação das melhorias.

1.3 MÉTODOS DE PESQUISA

De acordo com Silveira e Gerhardt (2009) esta pesquisa classificasse como uma pesquisa exploratória com direcionamento aplicado por meio de um estudo de caso com relação a natureza, essa pesquisa enquadra-se como uma pesquisa aplicada, pelo fato de gerar conhecimentos possíveis de serem aplicados na prática, voltado a solução de problemas específicos. E com relação aos objetivos e a problemática a pesquisa terá a seguinte estrutura de acordo com a figura 1:

Figura 1- Fases da pesquisa

FONTE: O autor (2021)

1.4 DELIMITAÇÃO DO TRABALHO

Este projeto foi realizado experimentalmente para a linha de produtos de amido de milho. A empresa possui outras linhas de produção, tais com a linha de ração animal, e as linhas de óleos e xaropes. A escolha pela linha de produção de amido de milho foi assumida de maneira estratégica por ter uma base mais completa no que se refere-se as etapas de manufatura de entrada, transformação e saída. Assim, esta experiência servirá de base para estruturar as próximas fases de melhoria que possivelmente envolverão outras linhas de produção.

1.5 APRESENTAÇÃO DO TRABALHO

O Capítulo 1, faz referência a Introdução da pesquisa, detalhando a contextualização sobre a busca da máxima eficiência produtiva e com a redução dos custos e procurando oportunidades para redução dos desperdícios em seguida a problemática da pesquisa, juntamente com os objetivos, justificativa para elaboração da pesquisa e por fim, apresentação da estrutura do trabalho.

Subsequentemente o Capítulo 2, apresenta revisão bibliográfica, sendo apresentado primeiramente com a abordagem da Manufatura Enxuta, posteriormente contextualiza os desperdícios clássicos em manufatura, ferramentas usadas no Lean, seguido por MFV aplicado a a indústria e no final as considerações sobre a importância da mesma.

Em seguida, o Capítulo 3 é composto pela metodologia utilizada para o discernimento da pesquisa, explanando a classificação de natureza, objetivo, abordagem e procedimentos metodológicos.

No Capítulo 4, é apresentado os resultados esperados, sendo eles voltados a temática do Value Stream Mapping nesta etapa do projeto ele consiste em desenvolver a pergunta de pesquisa proposta no trabalho.

Por fim, o Capítulo 5, é apresentado as considerações finais do trabalho e a recomendação/sugestão da temática para futuro novos trabalhos.

Revisão Considerações Resultados e Introdução Metodologia **Bibliográfica** Discussões **Finais** Manufatur<u>a</u> Contextualização Diretrizes e Divulgação dos Cumprimento Enxuta; procedimentos Resultados e dos objetivos; da pesquisa; metodológicos. análise crítica. Os desperdícios Limitações Objetivos; clássicos da ocorridas; Justificativas. Manufatura; Sugestões Ferramentas do futuras. Manufacturing; Value Stream Mapping.

Figura 2- Estrutura do trabalho

FONTE: O autor (2021)

2 REVISÃO BIBLIOGRÁFICA

O desenvolvimento deste capítulo de revisão foi pautado na exposição das informações sobre o entendimento e a evolução do MFV. Para tal realização, estruturaram-se os seguintes subcapítulos: Manufatura Enxuta, Os Deperdícios Clássicos da Manufatura Enxuta, Ferramentas do *Lean Manufacturing*, Mapeamento do Fluxo de Valor e Considerações Finais sobre a Revisão.

2.1 MANUFATURA ENXUTA

Em um primeiro momento, a produ o era realizada de forma artesanal, e, por isso, a produtividade era baixa e os pre os elevados. Os funcionários eram habituados a ser negociantes independente, no tendo uma separação do trabalho e utilizando apenas algumas momentas simples. A Revolu o Industrial, que ocorreu no soculo XIX, foi um marco no modo de produ o, havendo uma transi o do que anteriormente era uma produ o manual para uma feita por momenta quinas, Wood (2002)

Segundo Wood (2002) a energia de trabalho consumida, que anteriormente era basicamente humana, passou a ser de m quinas a vapor. Com isso, a produtividade e o lucro cresceram. O trabalhador passou a ter um patr o e houve uma divis o, e consequentemente aliena o, do trabalho. E, com isso, tornou-se necess rio a administra o das grandes unidades fabris que estavam surgindo.

Taylor (1990), afirma que o objetivo da administra o de garantir a m xima prosperidade ao patr o e ao empregado. E por prosperidade, entende-se como o desenvolvimento do neg cio, grandes dividendos, altos sal rios e eficiente aproveitamento do oper rio. Administrar uma empresa envolve a fixa o e o alcance de metas, organiza o eficiente, detalhamento das atividades e, principalmente, controle. Tentando alcançar esse objetivo, diversos sistemas de produ o foram propostos, sendo o mais consagrado, o Sistema Toyoata de Produção (STP).

O STP chamado de sistema de produ o *just intime* (JIT), ou, como Womack (2007) denominou, sistema de produ o *lean manufacturing* ou, em portugu s, sistema de produ o enxuta esse sistema desenvolveu-se da necessidade, pois limitações no mercado exigiam produ o em poucas quantidades devido baixa demanda, conforme explanado por Ohno (1997).

O principal objetivo do *lean* aumentar a efici ncia produtiva e eliminar constantemente os desperd cios. O sistema de produ o foi desenvolvido logo após a Segunda Guerra Mundial e a implantação por outras empresas do Japão foi fator essencial para o crescimento econ mico do país (WOMACK, 2007).

Ohno (1997), afirmou que, ao implantar o JIT, r pidas melhorias s o executadas, como por exemplo, redu o do tempo de entrega, menores estoques e custos de armazenagem.

Segundo Ohno (1997), atualmente imposs vel vender sem pensar nos desejos dos clientes, que podem variar com rela o ideia e ao gosto. As indústrias se viram for adas a produzir em variedade e menor quantidade. A produ o que anteriormente era empurrada ao mercado, passou a ser puxada por este, ou seja, o sistema toyotista conquistou o seu lugar.

Para o desenvolvimento de uma produ o JST, Ohno (1997) afirma que os padr es de trabalho para cada processo devem ser claros e concisos. Estes padr es s o compostos de tr s elementos:

- Estoque padr o, onde se tenha o necess rio para manter a produ o.
- Sequ ncia do fluxo de trabalho e as ordens das opera es;
- Takt time, no qual o ritmo de produ o dever ser necess rio para atender a demanda;

Womack (2007), relata que esse sistema possui uma característica elevada para a qualidade dos produtos. Isso devido possibilidade que os oper rios tinham de parar a linha de produ o, caso detectassem algum problema, e evitar o retrabalho, e custos, ao detectar apenas no final do processo produtivo.

Os oper rios tinham uma vis o sist mica do processo, eram trabalhadores multifuncionais, em contrapartida ao fordismo, em que os mesmos eram alienados com rela o ao todo. Al m disso, houve a separa o do trabalhador da m quina, ou seja, a automa o da produ o (SHINGO, 2019).

Com o intuito de facilitar o processo de resolu o do problema, quando detectado e indicado no painel, o sistema enxuto defende a implementa o de um

sistema de controle visual. H somente uma fun o para parar a linha de produ o para garantir que n o ocorra de novo (SHINGO, 2019).

fundamental que os fornecedores adotem o mesmo sistema de produ o da montadora. Visando proporcionar um relacionamento montadora-fornecedor est vel e confi vel e um trabalho em coopera o.

Womack (2007), descreve que na produ o enxuta h um n mero reduzido de fornecedores, os quais formam uma rede integrada de suprimento ao sistema de produ o enxuta da empresa. Estes s o pressionados a melhorar o seu desempenho.

Godinho (2004), elencou os princ pios mais importantes do Lean Manufacturing de acordo com as principais refer ncias sobre o assunto. A classificação representada pela Figura.

Custo Mais Baixo **CLIENTE** Mais Alta Menor qualidade Lead Time Just-in-Time Jidoka Separação Fluxo Contínuo Homem/ Segurança Máquina Moral Takt Time Poka-Yoke Prod. Puxada Heijunka Operações Padronizadas Kaizen Estabilidade

Figura 3- Estrutura do STP através dos pilares de sustentação

FONTE: Adptado de Ghinato (2000)

2.2 OS DESPERDICIOS CLÁSSICOS DA MANUFATURA

O desperdício está alocado em todos os elementos produtivos que aumentam o custo e n o agregam valor ao produto final (OHNO, 1997).

Ohno (1997), afirma que a capacidade atual o trabalho mais o desperd cio gerado. Logo, zero defeitos representam transformação da capacidade total em trabalho, isto é, efici ncia produtiva m xima e através disso identificou-se sete diferentes tipos de desperd cios:

- Superprodu o. Segundo Rodrigues (2014), representa produ o em momento equivocado ou em quantidade superiores, gerando inventário desnecessário e tendendo a encobrir problemas no processo;
- Espera quando o oper rio fica ocioso, vendo uma m quina em funcionamento ou quando o processo anterior n o entrega o produto na quantidade, qualidade e tempo certo, "nada sendo feito". (RODRIGUES, 2014);
- Transporte. A es de transporte nunca agregam valor e, por isso, deve-se otimizar o layout sempre que poss vel (SHINGO, 2019);
- Super Processamento. Acontece através de defeitos ou limita es de capacidade nos equipamentos. O processo p ra ou se desenvolve lentamente gerando atividades desprez veis ou sendo realizadas de maneira inadequada por m o de obra incompat vel que n o agregam valor ao produto (RODRIGUES, 2014);
- Inventário. Custo e espa o gastos de forma desnecess ria. Lotes e tempo de ciclo menores s o gerados pela equaliza o e sincroniza o do fluxo de produ o (SHINGO, 2019);
- Movimenta o. Rodrigues (2014) afirma que corresponde ao deslocamento dos operadores nas esta es de trabalho devido o posicionamento das ferramentas e equipamentos, layout do ambiente e aspectos ergon micos;
- Retrabalho ou corre o. Relaciona-se aos desperd cios com retrabalho e perdas de materiais defeituosos. Produzir produtos defeituosos consiste em desperdiçar materiais, disponibilidade de m o de obra e de equipamentos e até movimentação dos mesmos (RODRIGUES, 2014).

Esses desperd cios n o geram necessariamente efeitos e consequ ncias iguais no produto ou no processo produtivo (SHINGO, 2019).

Figura 4- Os setes desperdicios clássicos da Manufatura Enxuta

Fonte o autor (2021)

2.3 FERRAMENTAS DO LEAN MANUFACTURING

2.3.1 Jidoka

De acordo com Kosaka (2006), o Jidoka nasceu mediante ao uso da automa o da m quina de tear fabricada por Sakichi Toyoda e fundador da Toyoda *Automatic Loom Works*. O motivo do tear automático ter problemas era relacionado no qual a máquina continuava trabalhando mesmo quando o fio se rompia e o defeito era identificado apenas quando o processo era finalizado e com isso era produzido muito tecido com defeito. E para evitar tal problema, havia a necessidade de ter um operador observando a m quina como se fosse um vigia e, diante de qualquer anomalia, deveria parar a m quina.

A solu o tomada por Toyoda que foi inventada e colocada em pr tica em 1924 foi uma m quina de tear com mecanismos que parava a m quina quando (KOSAKA, 2006):

- O rompimento da linha era detectado;
- Quando a linha era finalizada;
- A quantidade programada era atinginda.

Desta forma Kosaka (2006) denomina o Jidoka como equipar a m quina com dispositivos ou recursos que ao detectar qualquer irregularidade faz a m quina parar evitando desta maneira produzir produtos com defeitos.

De acordo com Ohno (2015) Jidoka ou autonoma o (automa o) com um toque humano, n o somente uma automa o dos processos, expressa uma transfer ncia de intelig ncia para o equipamento, este conceito deu origem ao tear auto- ativado de Toyoda. Na Toyota o conceito aplicado n o apenas maquinários, mas linha de produ o e aos oper rios também, pois se surgir um cenário anormal, é exigido que um operador pare a linha.

A autonoma o tem o objetivo de impedir a fabrica o de produtos com defeitos, eliminar o super processamento, e travar automaticamente no caso de anormalidades na linha, permitindo que haja uma investigação do ocorrido (OHNO, 2015).

Segundo J nior (2002), a Produ o *Lean*, conforme descrita por Taiichi Ohno quando descreveu o Sistema Toyota de Produ o, tem, como um dos pilares o Jidoka.

A "autonoma o" consite em mudar o significado da gest o, visto que, n o há a necessidade de um operador observando enquanto a máquina estiver em funcionamento de forma autônoma e com isso, um trabalhador pode atender diversas m quinas j que apenas quando a m quina parar por uma situa o anormal, que ela receberá aten o humana (J NIOR, 2002).

Taiichi Ohno (2015), vai adiante quando expande o conceito de "autonoma o" como um sistema de gest o aut nomo. A respeito disso, Ohno (2015) expõe todo o esfor o feito dentro da Toyota no sentido de planejar e implementar um sistema capaz de, autonomamente, fazer julgamentos no n vel mais baixo poss vel.

Dentro da Toyota o operador tem o dever e o direito de parar a opera o quando ele descobrir alguma anomalia e a mesma n o for solucionada dentro do tempo *takt*. Isto faz parte do compromisso de n o suceder para opera o ou processo seguinte pe as ou trabalhos com falhas sendo assim, constituindo uma das regras fundamentais do STP- a qualidade constru da dentro do processo (KOSAKA, 2006).Para,Jidoka podemos dizer que seja controlar a qualidade na origem, para isto a liderança deve ter uma grande confian a, pois substitui poss veis inspetores de qualidade e o pr prio operador ser o supervisor do seu trabalho (KOSAKA, 2006).

2.3.2 Poka Yoke

Segundo Shingo (2019), o poka yoke um dispostivo para detec o de falhas que, após sua instalação na opera o, impossibilita a realização irregular de uma atividade antecipando e detectando defeitos potenciais e evitando que cheguem ao cliente (interno e externo). Os mecanismos poka yoke s o o modo no qual o conceito do jidoka colocado em pr tica.

Liker (2020) diz que os funcion rios s o auxiliados com a preven o de erros utilizando-se os m todos ou dispositivos poka yoke em que consiste na filosofia de que pessoas n o cometem falhas ou executam o trabalho de modo incorreto intencionalmente, mas, por alguma razão, os erros podem acontender e de fato acontecem.

Para Liker (2020) H uma distinção entre o modelo Toyota e as outras empresas em que o pensamento Lean não foi aplicado, pois essas organiza es pendem a detectar as causas dos erros como uma falha humana, j na Toyota os erros s o considerados como uma falha dos m todos ou sistemas usados para desempenhar as tarefas. As falhas podem ocorrer por diversos fatores:

- Elaboração de pe as ou material incorretos, em que as pr ticas padronizadas ou procedimentos não foram seguidas ou n o fazendo a manuten o do equipamento;
- Defeito nos equipamentos;
 Setup inadequado, falha no ajuste, uso exagerado, sobrecarga e entre outros;
- Materiais ou peças impr prios;

• Pe as faltando, pe as incorretas, pe as com defeito.

De acordo com Liker (2020) inicialmente, ele foi desenvolvido para impossibilitar a montagem errada de uma pe a, mas logo esse método foi sendo aperfei oado resultando na prevenção de ocorr ncias de falhas ou ainda apontando e eliminando a programa o com defeito. A falha algo que ocorre fora dos padr es esperados do processo e defeito o resultado de uma falha.

2.3.3 Kaizen

O kaizen é uma palavra japonesa que significa fazer melhorias, ou seja, implementar a melhoria contínua se livrando dos desperdícios que possam ser encontrados nos processos de produção de uma empresa. Na aplicação das atividades do kaizen os procedimentos podem se tornar mais enxutos. Essa metodologia deve ser aplicada constantemente, pois sempre haverá melhorias a serem feitas nos processos produtivos (SHINGIJUTSU GLOBAL, 2021).

O Kaizen é definido como um sistema de melhoria contínua e envolvimento de todos da organização desde a liderança a colaboradores. Ainda para Imai (2014), o kaizen é denominado um conceito e não uma ferramenta ou técnica que estão apresentadas em um "guarda-chuva" onde e o descritas as práticas japonesas.

Figura 5- O guarda-chuva do Kaizen

Fonte: Imai (2014)

Esta filosofia do Kaizen está ligada diretamente no nosso modo de vida podendo ser no trabalho, na sociedade ou ainda em casa pois busca-se sempre fazer melhorias (IMAI, 2014).

O trabalho de qualquer pessoa está baseado nos padrões existentes e impostos pela administração da empresa, sendo normas, diretrizes e definir procedimentos para todas as operações com treinamentos específicos, mas também é importante manter e melhorar os padrões. Quanto maior é a participação dos líderes das organizações maior será o nível de melhoria, pois isso aos poucos deve ser repassado aos colaboradores da empresa, que cada vez mais devem buscar aplicar melhoria contínua em seus locais de trabalho, dando sugestões individuais ou em grupo (IMAI, 2014).

De acordo com Todorovíc et al. (2019) o kaizen tem uma evolução única dentro das empresas, sendo que o kaizen vai se adaptar dentro de cada organização conforme for sendo implantado. Os autores identificam três itens em comum:

- Ele é visto como um processo contínuo;
- As pequenos melhorias são grandes inovações que mudam o cenário atual.
- O kaizen é uma filosofia participativa de todos os colaboradores onde aplicam melhorias em busca da excelência.

O evento kaizen pode ser definido como um projeto de melhoria bem estruturado, com a participação de todos a fim de melhorar os processos de produção tendo que cumprir as metas e um curto prazo de tempo para implementação das ações. Os integrantes do evento vão incentivar a resolução de problemas na sua área de trabalho em específico, mesmo que a maioria das ações de melhorias não forem aplicadas durante o evento elas deverão ser colocadas em prática a longo prazo (FARRIS, 2015).

2.3.4 O Programa 5S

O "5S" deve ser visto como uma das bases para a sustenta o da Manufatura Enxuta o responsável pela sua criação foi Kauru Ishikawa no fim da do cada de 60 no Japão, porém no Brasil iniciou-se na docada de 80, mas so a partir dos anos 90 que ganhou maior aceitação, incentivado pela filosofia da Qualidade Total. (FARIA et al., 2014; MATOS et al., 2014)

Segundo Costa et al. (2015) os 5 "S" s o as iniciais de 5 palavras: Seiton, Seiri, Seiso, Seiketsu e Shitsuke, que são escritas japonesas e estão relacionados com wa – harmonia.

SEIRI

Senso de Utiliza o, Sele o, Classifica o, Organiza o significa separar o desnecess rio do necess rio, e guard -lo num lugar que lhe pr prio, para que n o atrapalhe a rotina de trabalho ou qualquer outra atividade. Deixar perto as coisas que são necess rias as atividades e as desnecess rias devem ser acomodadas ou "pass -las para frente" porque aquilo que não serve para um, pode ser til para outro. Os benef cios s o, a elimina o ou redução, do desperd cio e a melhor aproveitamento dos espa os. (MATOS et al., 2014).

SEITON

Senso de Ordena o, Arruma o, Organiza o significa deixar tudo em ordem todos os materiais para que possam ser encontrados de imediato e estejam prontos para uso sempre que necess rios. Deixar as coisas no lugar certo observando a frequência de utilização, para não ter desperdício de tempo e movimento, procurando-as. (FARIA et al.,2014).

SEISO

Senso de Limpeza, Inspe o, Zelo significa manter sempre limpo o local de trabalho ou qualquer outro lugar, com tudo em ordem e somente com o necess rio, para que a sujeira não atrapalhe ou cause m qualidade no processo produtivo. (FARIA et al.,2014).

O principal benef cio deste senso o aumento da vida til das instala es f sicas auxiliando para uma maior disponibilidade operacional das m quinas e equipamentos. (VITAL et al., 2015).

SEIKETSU

Senso de Saúde, Higine, Padroniza o significa manter o ambiente agradável e saudável para todos, procurando fazer o cuidado permanente do ambiente, do corpo e da mente. As melhorias promovidas nos tr s Sensos que antecedem precisam ser mantidas e aperfeiçoadas. Esta pr tica permanente torna-se um h bito estimulando a correção dos valores morais e éticos, melhorando a autoestima. (MATOS et al., 2014).

SHITSUKE

Senso de Disciplina, Autodisciplina, Autocontrole, Respeito significa n o s aprender e seguir os princ pios anteriores e buscar a melhoria contínua dos processos referente ao programa, mas como se policiar, cumprindo rigorosamente o que for estabelecido. respeitar ao pr ximo. A autodisciplina o aprendizado mais alto que o ser humano pode chegar, pois reflete a educa o comportamental. (VITAL *et al.*, 2015).

2.3.5 Gestão Visual

Para Setec (2019), o uso de controle visuais o passo mais importante no processo de desenvolvimento da padroniza o e ele deve atuar junto com a filosofia dos 5"s. Gestão Visual a t cnica utilizada para facilitar o dia a dia de uma f brica ou processo e melhorar ainda mais o ambiente de trabalho e pode ser dividido em:

- Display Visual: Indica informa es importantes, mas n o precisamente controla o que as m quinas ou as pessoas realizam;
- Controle Visual: Comunica informa es importantes, geralmente padr es, de maneira que as atividades sejam monitoradas.

Andon para Setec (2019), um recurso de gestão visual que auxilia o estado das opera es em uma determinada rea ou ainda avisar quando est ocorrendo algo anormal na produ o fornecendo as informa es necess rias s pessoas envolvidas por meio de dispositivos luminosos, como pain is e luzes.

Para Setec (2019), um Andon indica o estado da produ o como por exemplo, quais m quinas est o operando, uma anormalidade, por exemplo, parada de m quina, problema de qualidade, erros ferramental, atrasos do operador e falta de materiais e as a es necess rias, como a necessidade de trocas, conforme a figura 5 abaixo:

Figura 6- Modelos de gestão visual

Fonte: Setec (2019)

2.4 VALUE STREAM MAPPING

Dentre as diversas ferramentas do *lean manufacturing*, duas das mais comumente usadas s o o Mapeamento do Fluxo de Valor, e o nivelamento da produ o, heijunka em japon s (BARBALHO, 2015) no qual o MFV representa a maioria das práticas da Manufatura Enxuta.

Saurin (2010), afirma que o MFV um dos temas de maior destaque com rela o ao *lean manufacturing* a explicação se dá pela possibilidade dessa ferramenta realizar um diagn stico inicial do processo produtivo e por apresentar orientações para execução de princ pios da produ o enxuta.

Segundo Womack (2007), fluxo da cadeia de valor o grupo de a es essenciais para a produ o de um determinado produto ou servi o, desde o recebimento da mat ria prima at a entrega ao consumidor e com isso há a identifica o completa do fluxo de valor e quase sempre expondo diversos desperd cios que ocorrem no processo produtivo.

O MFV uma ferramenta que auxilia na visualiza o e entendimento do fluxo de materiais e informa es de um produto ou servi o, pois realizado atrav s do fluxo de valor (DE STEUR, 2016).

Conforme descrito por Womack (2007), tr s tipos de a es geralmente est o presentes no fluxo de valor: Atividades que agregam valor, que n o agregam valor, por m s o necess rias e que n o agregam nenhum valor e devem ser evitadas (desperd cios).

O MFV envolve a identifica o e mapeamento de desperd cios e gargalos ao longo do fluxo de valor atual e, por meio de outras ferramentas do lean, o desenvolvimento de um mapa de fluxo de valor futuro (DE STEUR, 2016).

J Tegner (2016), al m de utilizar o mapeamento de processo, utiliza outras ferramentas como SIPOC, que é utilizada pela metodologia seis sigma que mapeia e delimita as fronteiras do processo, possibilitando a visualiza o dos diversos envolvidos nos processos e do fluxo de informa o. Outras vantagens na implementa o desta ferramenta que está representa a intera o entre os fluxos de

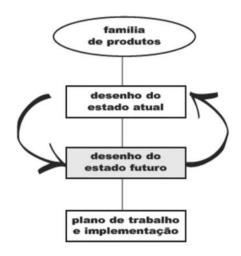
informa o e de material e está base para implementa o de planos de a o (ROTHER, 2009).

Rother (2009), afirma que o fluxo de informa o t o importante quanto o de materiais no sistema de produ o enxuta. Estes fluxos possuem o sentido contr rio, no qual o fluxo de material segue para aos consumidores chamado de jusante e o fluxo de informa o segue para os fornecedores sendo chamado de montante. Estes fluxos s o representados na Figura 7.

Montante Operação Jusante Fornecedores Fornecedores Clientes de Clientes de de segunda de primeira segunda camada camada camada camada Empresa A X Empresa C Rede de Rede de

Figura 7- Fluxo de informação e material

Fonte: Adaptado de Slack (2002)


Fluxo de produtos/serviços
Fluxo de informação

Para o desenvolvimento do MFV, é apresentado por Rother (2009) uma série de procedimentos que devem ser seguidas:

Rede de fornecimento interno

Rede de fornecimento imediato Rede de fornecimento total

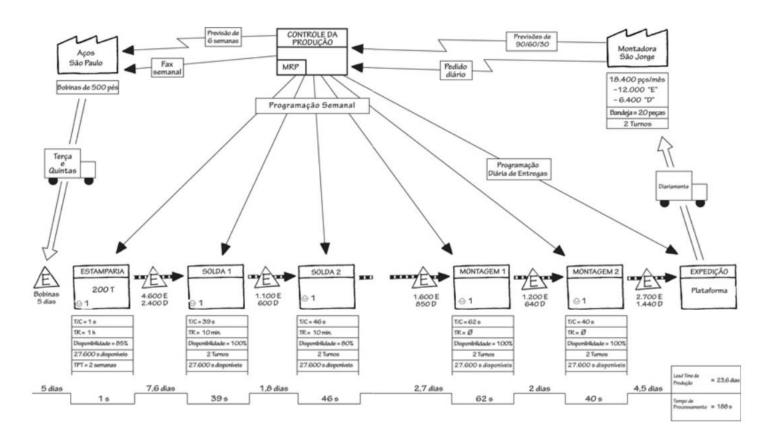
Figura 8- Fases do MFV

Fonte: Aprendendo a Enxergar (2012)

2.4.1 Selecionar uma fam lia de produtos

Assim, a Fam lia de produto um grupo de produtos que realizam processos produtivos semelhantes e utilizam os mesmos equipamentos. Depois de escolhido a família ou o produto com base no consumidor final e nas áreas mais críticas deve-se fazer a matriz de fam lia de produto, para verificação de similaridade de processo com outros produtos.

2.4.2 Mapeamento do estado atual

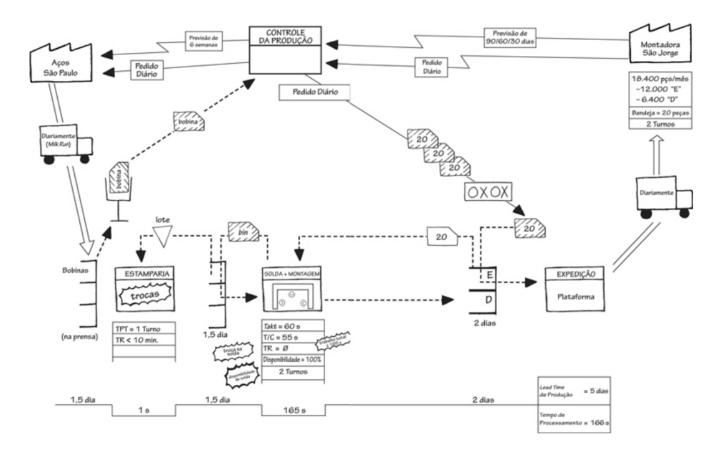

O MFV com base na fam lia selecionada, busca as informa es como o tempo de ciclo, n mero de pessoas envolvidas no processo e lead time deve ser coletada nessa fase. Por ltimo, deve ser desenhada uma linha do tempo informando o lead time de produ o.

Com base na vis o geral do fluxo, poss vel identificar a etapa que precisa de uma aten o especial e aprofundar a an lise e mapeamento realizado. Segundo Barbalho (2008), nesse est gio s o analisadas as tarefas que n o agregam valor.

Pirasteh (2011), afirma que existem tr s tipos de atividades do ponto de vista de agrega o de valor: aquelas que agregam valor, as que n o agregam e as de valor agregado de neg cio. A primeira descreve as atividades de produ o necess rias e

que atendem s necessidades do cliente. A segunda se refere as atividades que n o agregam nenhum tipo de valor, ou seja, desperd cio para a empresa. A terceira representa as atividades de gest o do neg cio e que s o essenciais para a opera o, por exemplo, rea de recursos humanos e financeiro, porém sendo descritas como atividades necess rias, mas que n o agregam valor diretamente e n o s o pagas por eles.

Figura 9- Estado atual do MFV


Fonte: Rother e Shook (2009)

2.4.3 Mapear o estado futuro

A proposta do mapeamento do estado futuro identificar fontes de desperdícios e elimin -los em um curto período. Ele visa reduzir os estoques e o tempo de espera entre as etapas do processo.

Observe a figura a seguir:

Figura 10- Estado futuro do MFV

Fonte: Rother e Shook (2009)

2.4.4 Ferramentas de apoio essências

2.4.4.1 Gemba

Há tempos acreditou-se que a forma mais eficaz de gerenciar uma empresa é ficando apenas dentro do escritório e em salas de reuniões. Dificilmente os líderes apareciam nas fábricas e pouco sabiam sobre o trabalho que era realizado em suas empresas. Essa era a forma convencional de comandar, mas novos tempos pedem novas abordagens, e o pensamento *lean* descarta essa forma de gerenciar uma organização.

Em Caminhadas pelo Gemba , escrito por James Womack(2011)ele apresenta seus insights sobre assuntos que diversifica entre correto uso de ferramentas específicas, a atribuição da liderança nas transformações enxutas e o papel da gestão na sustentação e na melhoria contínua das empresas lean, explicando o conceito de gemba, estimulando os gestores a sair de suas salas e a ir ver como as coisas estão no local onde o valor está sendo criado para os clientes.

Mediante a reflexão sobre os últimos anos e sobre onde o *lean* está atualmente. Womack afirma de como a mentalidade enxuta pode tornar o mundo um lugar melhor e que o gemba serve como uma ferramenta crucial para líderes de todos os setores.

Womack assegura que líderes ao visitar o gemba devem observar atentamente como as pessoas trabalham juntas e criam valor, abrangendo desde propósito e gestão até desventuras e transformações, o autor partilha das ideias que representam a principal crença dos praticantes lean: que os problemas só podem ser solucionados no local onde acontece.

Para Womack o gemba é obrigatório para todos aqueles que participam ou querem participar de uma transformação enxuta, pois revela a base para a prática lean: ir ver, perguntar "por quê?" e demonstrar respeito.

2.4.4.2 Diagrama de Gantt

Araújo (2009), afirma que o diagrama ou gráfico de Gantt é uma ferramenta gráfica criada pelo engenheiro Henry Lawrence Gantt em 1903, e que busca organizar e controlar atividade de produção e processos de forma mais detalhada e eficiente sendo amplamente empregada no gerenciamento de projetos pois é uma ferramenta bastante visual e, portanto, de fácil compreensão.

Para o autor, Araújo (2009) existem duas coisas que é preciso saber sobre o gráfico de Gantt a primeira é que ele terá prazos para a execução das atividades e segundo é que as atividades estarão colocadas em sequência cronológica. Com a ajuda do diagrama, os gerentes de projetos podem identificar com precisão tanto o início como o término de cada atividade, assim como as folgas, os gargalos, as interdependências e o progresso das atividades, de forma a tomarem decisões mais assertivas em relação à execução dos projetos desenvolvidos e ele finaliza discorre que para tal finalidade o Gráfico de Gantt é usada até hoje e se mostra bastante eficiente.

2.4.4.3 Matriz GUT

A matriz GUT é descrita por Daychoum (2016), como uma ferramenta de auxílio na priorização de resolução de problemas, a matriz serve para classificar cada um deles em que se julga pertinente para a empresa pela ótica da gravidade, da urgência de resolução deste problema e pela tendência de ele piorar com rapidez ou de forma lenta.

A ferramenta é utilizada nas questões em que é preciso de uma orientação para tomar decisões complexas e que exigem análise de vários problemas essa ferramenta utiliza dos fatos e atribui peso ao que são considerados problemas mais críticos de forma a analisá-los no contexto de sua gravidade de urgência e tendência respondendo de forma racional as questões no qual deve se fazer primeiro e por onde deve se começar (DAYCHOUM, 2016).

Os três principais aspectos analisados da matriz GUT são:

- Gravidade diz respeito às tarefas pessoas resultados e processo como por exemplo qual o impacto que esse problema irá gerar nas pessoas nos processos e o resultado.
- Urgência está relacionado ao tempo disponível e necessário para resolver o problema quanto mais urgente menor deve ser o prazo de resolução qual o tempo necessário para resolver o problema.
- Tendência vai representar o potencial de crescimento do problema e a probabilidade dele se tornar ainda maior com o passar do tempo como esse problema pode se tornar maior quais as suas chances de crescer.

As pontuações dos três aspectos variam de um a cinco no qual é dada as notas para cada aspecto e depois são multiplicadas para cada um dos problemas.

Gravidade x Urgência x Tendência

Daychoum (2017) afirma que o resultado indicará qual é o mais importante e que deve ser solucionado primeiro e que a técnica da matriz GUT tem como principal vantagem sua facilidade de uso e rapidez na obtenção de um resultado e como principal desvantagem é possível apontar a igualdade entre os critérios não havendo flexibilidade para alterar a influência ou peso de um determinado critério de acordo com a sua necessidade da situação.

2.4.5 Desenvolver o plano de a o

Nessa fase, deve-se elaborar o plano de a o com base no resultado do mapeamento do estado futuro, quebrando-o em atividades menores. O plano de a o deve apresentar exatamente a a o a ser tomada, e quando necess rio, metas mensur veis e verifica o por um respons vel ap s um prazo previamente definido.

A an lise das rela es de causa-e-efeito s o fundamentais nessa fase para definir quais as a es que devem ser tomadas. O Diagrama de Ishikawa uma ferramenta til, a qual permite realizar esse tipo de associa o. Essa ferramenta, tamb m chamada de espinha de peixe, utilizada para auxiliar na identifica o e

organiza o m tuas das poss veis causas de um problema raiz, de acordo com Ishikawa (2012).

O MFV utilizado por Tanco (2013), para mapear e propor melhorias no fluxo de valor de uma ind stria aliment cia no qual, apresenta particularidades em seu processo de produção, devido ao prazo de validade e variedade das condi es de colheita dos alimentos.

Moya (2016), utiliza esta ferramenta para a implementa o do sistema lean em uma empresa de alimentos, a qual auxiliou na identifica o de desperd cios no processo produtivo dentre os sete tipos definidos por Ohno. Ambos os estudos apresentaram melhorias no lead time de produ o, nos n veis de estoques, nos custos envolvidos no processo e, consequentemente, nos desperd cios.

De Steur (2016), enfatiza os desperd cios de alimentos e nutrientes ao aplicar o Mapeamento do Fluxo de Valor no qual afirma que a implementa o de boas pr ticas do sistema enxuto melhora a efici ncia produtiva reduzindo o custo de produtivos.

Entretanto, Chay et al. (2015) afirma que o sucesso com a implementa o de mentalidade enxuta ainda baixo, pois é uma ferramenta que depende da participação dos funcion rios e liderença da empresa e com isso pode haver o impedimento dos avan os das melhorias que poderiam ser geradas com essa metodologia de produ o.

Durante a elabora o do fluxo de valor, a utiliza o de m tricas necess ria para que as decis es tomadas sejam relacionadas com a melhoria do fluxo (BARBALHO, 2008). Dentre elas pode-se listar:

- Tempo de Ciclo ou Cycle Time (T/C): Frequencia com que uma peça ou produto é completado por um processo, conforme cronometrado por observação, refere-se também ao tempo que um funcionário leva para completar todas as tarefas de um trabalho, antes de repeti-las;
- Tempo de Troca (Set Up): Tempo para mudar a produ o de um tipo de produto para outro;

- Tempo Dispon vel do Operador: Tempo total, que h dispon vel para produ o, excluindo-se por exemplo reuniões, descanso dos funcion rios e tempo de limpeza;
- Tempo de Opera o: Tempo efetivo em que a m quina permanece operando por turno;
- Tempo de Processamento: Tempo em que o produto está realmente sendo trabalhado, seja no projeto ou na produção, e o tempo em que um pedido está realmente sendo processado, normalmente, o tempo de processamento é uma fração do lead time de produção;
- Lead Time de Produ o: Tempo que um produto demora para percorrer todo o processo produtivo, do início ao fim incluindo tempos de espera e de estoque.

Segundo Rother (1999), poss vel calcular os tempos de lead times dos estoques, os quais n o agregam valor ao produto final, com base na quantidade total em estoque dividida pela quantidade de pedidos di rios, conforme Equação 1.

Lead Time =
$$\frac{quantidade\ total\ em\ estoque}{quantidade\ de\ pedidos\ diários} \tag{1}$$

Segundo Pirasteh (2011), valor agregado qualquer atividade que satisfaz os requisitos do cliente e que o mesmo est disposto a pagar. Com o intuito de mensurar a efici ncia com que uma empresa agrega valor, Ballis (2001) definiu a Efici ncia do Ciclo de Trabalho, em ingl s, Work Cycle Efficiency (WCE) como na Equação 2.

$$WCE = \frac{tempo\ de\ valor\ agregado}{tempo\ total\ de\ ciclo} \tag{2}$$

De acordo com Pirasteh (2011), as empresas devem objetivar o aumento da taxa de WCE com a intenção de serem mais lucrativas. Isso deve ser feito por meio da elimina o, ou redu o, dos tempos que n o agregam valor ao cliente, como por exemplo, o tempo de invent rio.

O nivelamento da produ o pode aumentar a taxa de WCE por meio da diminui o dos estoques. Heijunka a express o japonesa para nivelamento da

produ o, visando manter a const ncia do mix e do volume dos produtos ao longo do tempo (SLACK, 2002).

O tempo *takt* ou *takt* time a periodicidade com que determinado produto deve ser produzido com o objetivo de atender os pedidos dos clientes (ROTHER, 1999). Ele pode ser obtido pela Equação 3.

$$Takt\ time = \frac{tempo\ de\ trabalho\ disponível\ por\ dia}{demanda\ dos\ clientes\ por\ dia} \tag{3}$$

Rother (1999), sugere que para o nivelamento de produ o seja adotada a habilidade de fazer "Toda Parte Toda..." (TPT) na frequ ncia que deve ser definida para cada caso, podendo variar de semana, dia, hora, por exemplo. Essa habilidade permite um baixo n vel de estoque e uma r pida resposta as exig ncias dos consumidores. A Figura 4 abaixo representa um TPT.

Figura 11- Exemplo TPT

Fonte: Stefanelli (2010)

2.5 CONSIDERAÇÕES FINAIS SOBRE A REVISÃO

O presente cap tulo abordou as refer ncias para da base ao desenvolvimento de um Mapeamento do Fluxo de Valor. Nele foram apresentados conceitos e hist rico das ferramentas Lean, percorrendo o pensamento enxuto, seus desperdícios e ferramentas. Da mesma forma estruturaram-se informações sobre o *Value Stream Mapping*. Entre os destaques sobre temas e assuntos realçam-se:

I. Manufatuta Enxuta: Uma síntese desde o surgimento do Sistema Toyota de Producão objetivando o pensamento *lean* e qual a sua importância até os dias de hoje e como esse modelo é copiado em empresas ao redor do mundo e em todos os segmentos.

- II. Os Desperdicios Clássicos da Manufatura: Neste tópico abordou-se os 7 desperdícios que são em encontrado dentro das organizações no qual eles podem aumentar os custos e não agregam valor ao produto.
- III. Ferramentas do Lean Manufacturing: Essas ferramentas são de suma importância para fortalecer a cultura do pensamento lean, pois muitas delas tem repostas rápidas após sua execução dentre elas temos: Jidoka, Poke Yoke, Kaizen, O 5S e a Gestão Visual.
- IV. Value Stream Mapping: É considerada uma das ferramentas mais usadas pois representa a maioria das práticas da Manufatura Enxuta, devido ela ser capaz de realizar um diagnostico atual do processo de produção e mostrar orientações para a execução dos princípios lean e com isso tendo um estado futuro do processo.

3 METODOLOGIA

3.1 CLASSIFICAÇÃO DA PESQUISA

O trabalho se enquadra no ponto de vista da sua natureza, pesquisa aplicada, no qual o objetivo mapear o fluxo de valor da linha de produção do amido podendo assim diminuir os desperdícios. Desta forma o objetivo da pesquisa vai de encontro com Silva e Menezes (2005), em que afirmam que a pesquisa aplicada objetivada a gerar conhecimentos para aplica o pr tica na resolu o de problemas específicos.

A abordagem qualitativa foi escolhida por se tratar de uma pesquisa que emprega a experiencia individual do pesquisador desde a coleta e análise de dados de amostras com base na ferramenta do MFV. A pesquisa qualitativa focada na subjetividade, sendo sugestionado pelo positivismo, no qual é capaz de extrair insights a partir da experinecia dos participantes e com isso indo além dos números. (SILVA E MENZES, 2005).

Segundo Silva & Menezes (2005, p. 20), "a pesquisa qualitativa considera que há uma relação dinâmica entre o mundo real e o sujeito, isto é, um vínculo indissociável entre o mundo objetivo e a subjetividade do sujeito que não pode ser traduzido em números. A interpretação dos fenômenos e atribuição de significados são básicos no processo qualitativo. Não requer o uso de métodos e técnicas estatísticas. O ambiente natural é a fonte direta para coleta de dados e o pesquisador é o instrumento-chave. O processo e seu significado são os focos principais de abordagem".

Segundo Gil (2002), as classifica es se fazem seguindo um certo crit rio, frequentemente as pesquisas seguem uma classifica o baseada nos objetivos gerais do trabalho. Sendo assim, o enquadramento dos objetivos do trabalho tem car ter explorat rio. Na maioria das vezes o estudo de caso utilizado em pesquisas explorat rias (GIL, 2002).

Entretanto, Gil (2002) cita estudo de caso para diversos prop sitos, isso faz com que ele seja empregado em diversas pesquisas. Um prop sito, por exemplo, o de descrever a situa o do contexto em que est sendo feita determinada investiga o (GIL, 2002).

Sendo assim, o estudo de caso foi utilizado no presente trabalho como estrat gia de pesquisa.

3.2 COLETA DE DADOS E INSTRUMENTAÇÃO DA PESQUISA

Para que haja possibilidade de elabora o e aplica o do Mapeamento de Fluxo de Valor na adequa o e padroniza o do processo produtivo do amido e atingir os objetivos propostos nesta pesquisa, forma-se imprescindível a elabora o correta do m todo para coleta de dados dos processos.

Para tanto, ap s an lise do processo de produção e das ferramentas disponíveis para coleta de dados, definiram-se alguns m todos, tais como: Nemawashi e planilhas de coleta de dados. Destaca-se que os arquivos dos m todos de pesquisa referidos se encontram nos ap ndices desse trabalho.

- Nemawashi¹: A intenção de efetuá-lo, foi para conseguir a aprovação junto a liderança e a engenharia para extrair informações chaves da operação e a indicação dos operadores que poderiam fazer parte do projeto.
- Planilhas de coleta de dados: foi utilizado na coleta de dados planilhas eletr nicas e de papel (Figura 11), o prop sito de elabora o da planilha eletr nica foi para coletar os dados facilitando a an lise dos dados e a planilha de papel foi utilizada para facilitar a coleta de dados no rondas Gemba.
- MFV: O mapeamento de fluxo de valor será uma importante ferramenta na coleta de dados, pois irá reportar a situação atual do processo e ajudará a chegar onde é pretendido.

¹ De acordo com o Lexo Lean o termo Nemawashi "é conhecido como Catchball é a técnica de conseguir aceitação e pré-aprovação do projeto através da avalição da ideia com os gestores, engenheiros e operadores, para extrair informações adicionais, identificar a resistência de forma antecipada e alinhar a mudança proposta a outras perspectivas e prioridades nas organiz s. O termo significa "preparar o solo para o plantio" em japon " (2016, p 73).

Figura 12- Planilha de coleta de dados

1	Informações dos processos											
#	Processo	Descrição Atividades	Tempo Inicial	Tempo Final	Duração	Qtd de Op.	Ferramentas Utilizadas	Matéria Prima	Oportunidades	Desperdício	IT de Processo	
1												
Г												
2												
Г												
3												
4												
Г												
5												
6												

Para a Ferramenta do processo, foi utilizado um pequeno quadro informativo para a extração das informações junto aos operadores chaves de cada área, no quadro contém as seguintes informações necessárias: O processo, descrição das atividades, tempo Inicial, tempo final, duração, quantidade de operadores, ferramentas utilizadas, matéria prima, oportunidades, desperdícios e instruções de processo. Esse documento era preenchido em cada área com a presença de cada operador chave para coletar as informações.

Com o planejamento dessas ferramentas de pesquisa, as coletas de dados se tornarão mais fáceis de serem coletadas e de simples compreensão, reduzindo o tempo de coleta de dados.

3.3 ANÁLISE DOS DADOS

Os dados coletados no rondas Gemba, com o formulário impresso de cada processo, será analisado pelas ferramentas que o MFV exige para o seu desenho do estado atual e estado futuro.

3.4 FASES DA PESQUISA

As fases da pesquisa estão estruturadas através do diagrama de Gantt, com isto obtém-se um planejamento do trabalho.

2021 **Fases** J A S O N D J F M A Coleta de informações **SKUs** Mapeamento da Matriz da Família de Produto Coleta de informações do Mapa atual Entrega do Mapa do estado atual Análise crítica do processo Entrega do Mapa do estado futuro Monitoramento de desempenho e dos resultados

Figura 13- Fases da pesquisa

Fonte: O autor (2022)

3.4.1 FASE 1 - Coleta de informações dos SKUs²

A fase inicial do projeto ocorreu com reuniões com a liderança e com a equipe de melhoria contínua para definição do escopo e a linha de produção que será

² SKU é a sigla para Stock Keeping Unit (Unidade de Manutenção de Estoque) e é uma referência ou código identificador atribuído a um item. Seu uso facilita o gerenciamento, a localização e o fluxo de produtos, já que permite identificar os itens por suas características, como tamanho, peso, cor, forma, etc.

mapeada. Nesta etapa também haverá reuniões com a equipe do comercial para coleta de informações dos Skus que são produzidos na planta.

O estudo dos processos de produção inicia-se também nessa fase para maior conhecimento do produto.

3.4.2 FASE 2 - Mapeamento da Matriz da Família de Produtos

Diante do conhecimento adquirido com os estudos do processo produtivo, inicia-se a fase do mapeamento da Matriz da família de produtos, onde foi elaborada uma matriz por similaridade para que seja observado as famílias apropriadas de produto.

3.4.3 FASE 3 - Coleta de informações do Mapa atual

É considerada a fase mais rica do mapeamento pois através das rondas gemba que significa o local onde tudo acontece, isto é, o trabalho cria valor e através da observação direta é que pode ser observado as oportunidades e os desperdícios que ocorrem no processo.

Para está fase serão coletados os seguintes dados:

- Tempo de ciclo;
- Quantidade de operadores.

3.4.4 FASE 4 – Entrega do Mapa do estado atual

Após as coletas das informações começa a fase do desenho do estado atual juntamente com os envolvidos na operação de cada processo, isso ocorre através de entrevistas com operador para obter mais informações sobre o processo e desperdícios e fazendo com que cada funcionário possa conhecer o processo do outro e assim acabando com o de "departamento".

3.4.5 FASE 5 – Análise crítica do processo.

A análise crítica do processo ocorrerá depois de desenhado o estado atual com os apontamentos, começasse as análises das ferramentas da matriz GUT e as ferramentas lean para conter os desperdícios e assim desenhar o mapa do estado futuro.

3.4.6 FASE 6 - Entrega do Mapa do estado futuro.

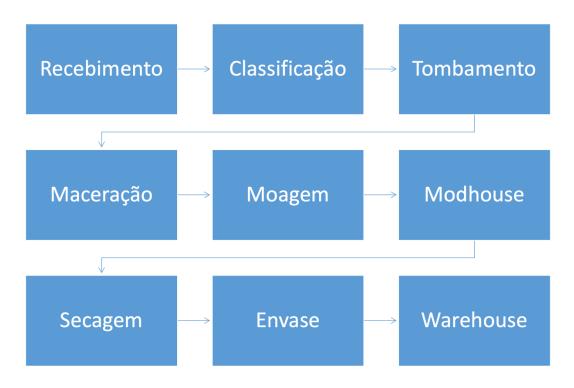
Um mapa do estado futuro irá desdobrar as oportunidades de melhoria encontradas pelo mapa de estado atual, para atingir um nível mais alto de desempenho em algum ponto no futuro.

3.4.7 FASE 7 - Monitoramento de desempenho e dos resultados

A última fase ocorre a fase de monitoração dos resultados através de ações e futuros projetos *belts* ou outras ferramentas para verificação de que todos os desperdícios encontrados sejam tratados e que o processo de produção garanta a qualidade que é exigida por parte dos clientes.

3.5 CARACTERIZAÇÃO DA EMPRESA

A organização no qual será aplicado a pesquisa atua no Brasil desde 1965 e com cerca de 12 mil funcionários é uma das maiores indústrias de alimentos do País. Com sede em São Paulo (SP), a empresa está presente em 17 Estados brasileiros e no Distrito Federal por meio de unidades industriais, armazéns, terminais portuários e escritórios em 147 municípios ela ajuda seus clientes a alcançar o sucesso por meio da colaboração e da inovação, e está comprometida a usar seu conhecimento e experiência globais para superar desafios econômicos, ambientais e sociais onde quer que faça negócios. Em 2018 alcançou no país receita líquida consolidada de R\$ 47 bilhões.


A planta onde foi efetuado o mapeamento situa-se na região dos Campos Gerais, no Estado do Paraná, é uma biorrefinaria de processamento de milho que tem a produção voltada para amidos, adoçantes e texturizantes, ela atua na produção de derivados refinados tais como óleos, rações, xaropes e amido desde o ano de 2014. A fábrica, tem aproximadamente 450 funcionários sendo efetivos e terceirizados e que trabalham em três turnos para que a operação não pare.

3.5.1 Caracterização da linha de produção de amido

Para a planta fabril, o amido produzido é do tipo nativo, no qual possuem certas características inerentes ao seu uso para desenvolvimento de produtos alimentícios, farmacêuticos e industriais.

O processo no qual o amido percorre e o da figura abaixo:

Figura 14- Processo de produção

- Para o recebimento é feito a verificação dos documentos e nota fiscais, entrada no sistema em relação a origem, peso e outras informações necessárias;
- Classificação é o primeiro contato que a empesa tem com o milho, então ali acontece a primeira peneira, onde os operadores fazem as análises para identificar a qualidade do milho que tá entrando para o processo, algumas especificações de umidade e também tem especificação de presença de grão de soja, presença de grão de trigo e de contaminantes para o processo. Então, existe uma série de controles de qualidade que são

- analisados para determinar se aquele caminhão ele vai seguir para o processo ou se essa carga vai ser reprovada.
- A etapa de maceração é basicamente onde o milho vai ficar de molho, para ele conseguir absorver água e soltar todas as proteínas solúveis que ele tem e fazer a fermentação láctica e com isto, ele vai ser direcionado para os steeps, onde a água do processo vai entrar nesses tanques para deixar o milho fazendo o processo de absorção de água e fermentação.
- A moagem é a etapa do processo no qual é feito através dos moinhos a
 estratificação do milho para os coprodutos e o amido no qual ele é
 separado do glúten que seguirá para o doorclone que é o sistema de
 miniciclos que vai fazer a lavagem do amido para retirar qualquer impureza
 de proteína que ainda esteja ligada no amido, após este processo o amido
 é enviado dentro das especificações que a refinaria precisa;
- O modhouse é o processo no qual o milho é recebido em formato de Slury e é onde começa o processo de mistura dos químicos para controle de PH e outras especificações;
- Para o processo de secagem ele é feito através de uma centrifuga, no qual a secagem segue por bateladas e enviada para o envase.
- O envase é a área no qual recebe o amido nativo, e é feito os testes de qualidade junto com o processamento de envase do amido através do estilo granel, sacarias de 25kg e big bags de 500 e 1000 kg;

Após o envase o amido é embalado, armazenado e transportado pelo Warehouse para a entrega ao cliente.

4 RESULTADOS E DISCUSSÕES

Nesta sessão serão apresentadas as informações geradas, as quais tiveram sua apresentação e discussão estruturadas no rito das fases da pesquisa.

4.1 FASE 1 – COLETA DE INFORMAÇÕES SKUS E MAPEAMENTO DA MATRIZ DA FAMÍLIA DE PRODUTOS

A empesa não possuía um Mapeamento do seu Fluxo de Valor e não conhecia os números sobre o lead time do produto estudado e através da figura abaixo, iniciase o MFV com a seleção da família de produtos da empresa.

Figura 15- Processos Produtivos de cada produtos

Produtos	Classificação	Tombagem	Steeps	Moagem	FeedHouse	Cornoil	Modhouse	Refinaria	Envase	Warehouse
ProMill	х	X	X	X	Х					
Glutenose	x	×	X	X	x					
GoldenMill	х	X	X	X	X					
Óleo de Milho	х	×	x	X		x				
Milho Quebrado	х	X								
Slury	x	X	X	X			X	x		
Brewgill	x	X	X	X				x		
Dextrose	x	X	X	X				x		
Glucose	x	x	x	х				x		
Amido Nativo	х	х	х	Х			х	·	x	х

Fonte: O autor (2022)

No primeiro momento foi realizado o Nemawashi com a liderança para garantir o apoio na implementação do projeto, houve a explicação do MFV, em seguida, a linha de produção no qual seria feito o projeto, juntamente com a explicação de como ela foi escolhida dentre as outras linhas de produção.

Para a Figura 15, foi mostrado o cabeçalho de cadeia de valor para melhor entendimento da ferramenta para a necessidade de negócio.

Figura 16- Cabeçalho da Cadeia de valor

Cadeia de valor:	Lir	nha de Produção Àmi	do	
Data:		15-24/02		
Necessidade do Négocio	Declaração de Valores	Limites	Medidores	Objetivo inicial
O VSM é uma ferramenta que permitirá uma visualização bem detalhada de todas as etapas dos processo de trabalho do amido e com isso nos ajudará a visualizar os desperdícios e aprimorar o fluxo de valor que estamos entregando aos nossos clientes	"Criar valores diferenciado" Missão da Cargill e através do VSM ter um produto com qualidade, excelente perfomance no processo e flexibilidade e respostas rápidas	- Portaria - Classificação - Tombagem - Steeps - Moagem - Modhouse - Envase - Warehouse	- T/C -Disponibildiade real da máquina -N° de operadores; -Tempo de Trabalho disponível;	- Obter o lead time do amido; -Encontrar novas oportunidades no processo;

O cabeçalho da cadeia de valor foi um quadro informativo no qual continha as informações sobre a necessidade do Negócio que explicava o porquê o mapeamento do Fluxo de Valor é a uma ferramenta é importante para a Declaração de Valores envolvia a missão da empresa correlacionando com MFV, o escopo do projeto no qual foi envolvido a áreas da portaria, classificação, tombagem, steeps, moagem, refinaria, envase e os armazéns. Os medidores necessários para o MFV tais como, Tempo de Ciclo, número de operadores e o tempo de trabalho disponível e objetivo inicial do MFV que é a obtenção do *Lead time* da linha do Amido e encontrar novas oportunidades de melhorias no processo.

4.2 FASE 2 – COLETA DE INFORMAÇÕES DO MAPA ATUAL

Para o desenvolvimento do Estado atual, foi necessário coletar as informações de forma exata do processo, iniciando a primeira entrada do milho no fluxo at a saída do produto acabado. Algumas análises essenciais foram desenvolvidas para obter essas informa es, como por exemplo, "Processo", "Descrições das atividades", "Tempo Inicial e tempo Final", "Quantidade do operador". Para isso, foram realizadas gembas pelo pesquisador a todos os setores que compõem o fluxo do processo, foram realizadas as observações, sendo possível compreender as responsabilidades que cada operador desempenha para que o processo seja feito, identificação de desperd cios clássicos, verificação da existência de métodos padrão para execução das atividades e proposições de melhorias por partes dos operadores.

Junto com a entrevista, foram tomados tempos iniciais e finais de execução das atividades a fim de chegar a um tempo de duração para ser considerado na elaboração do MFV.

A imagem de coleta de dados (Figura 17) apresenta as datas e informações de cada etapa que foi seguido.

Figura 17- Coleta de dados do MFV

O mapeamento de dados foi validado junto a liderança, em que nele está todos os passos a serem seguidos, e em todas as áreas com os dados necessários para o avanço da construção do MFV. Junto com a entrevista, foram tomados tempos iniciais e finais de execução das atividades a fim de chegar a um tempo de duração para ser considerado na elaboração do MFV.

4.3 FASE 3 – ENTREGA DO MAPA DO ESTADO ATUAL

A seguir, est apresentado o Mapeamento do Estado Atual do processo de produção do amido.

Figura 18- Estado atual completo

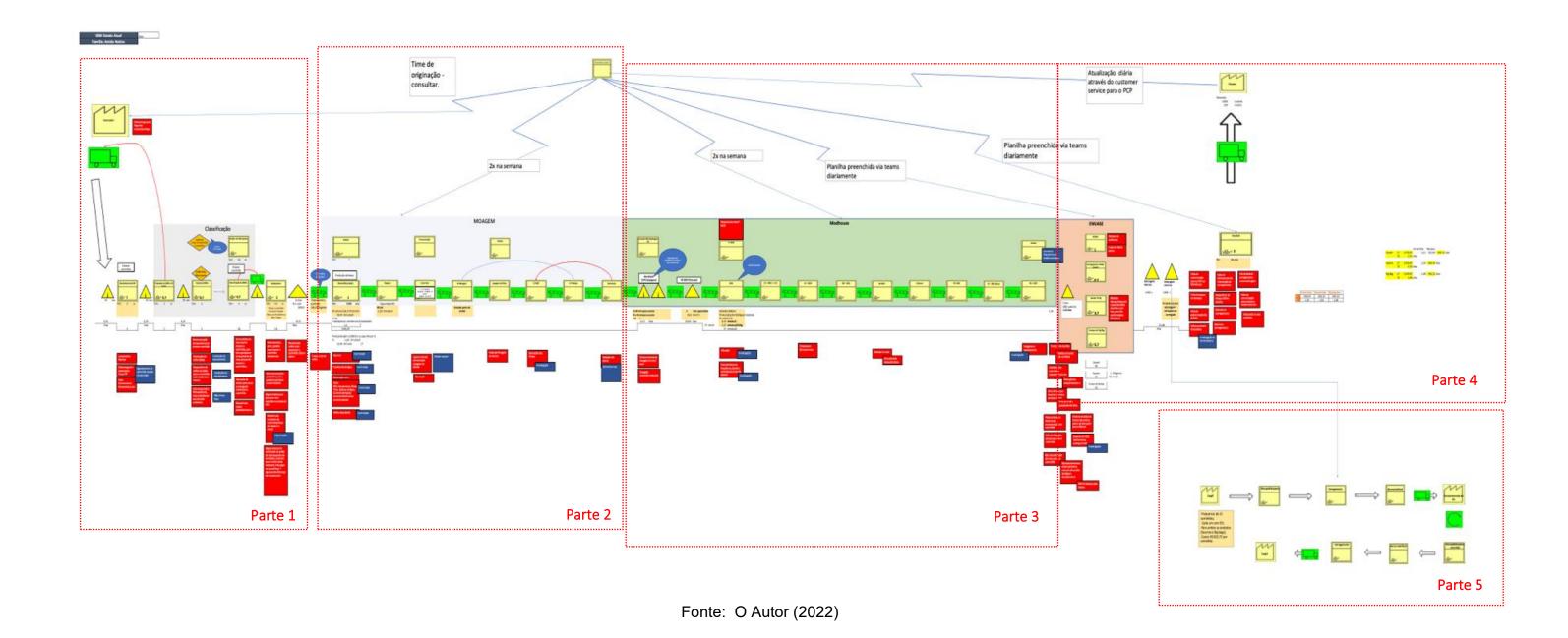


Figura 19- Parte 1 do mapa do estado atual

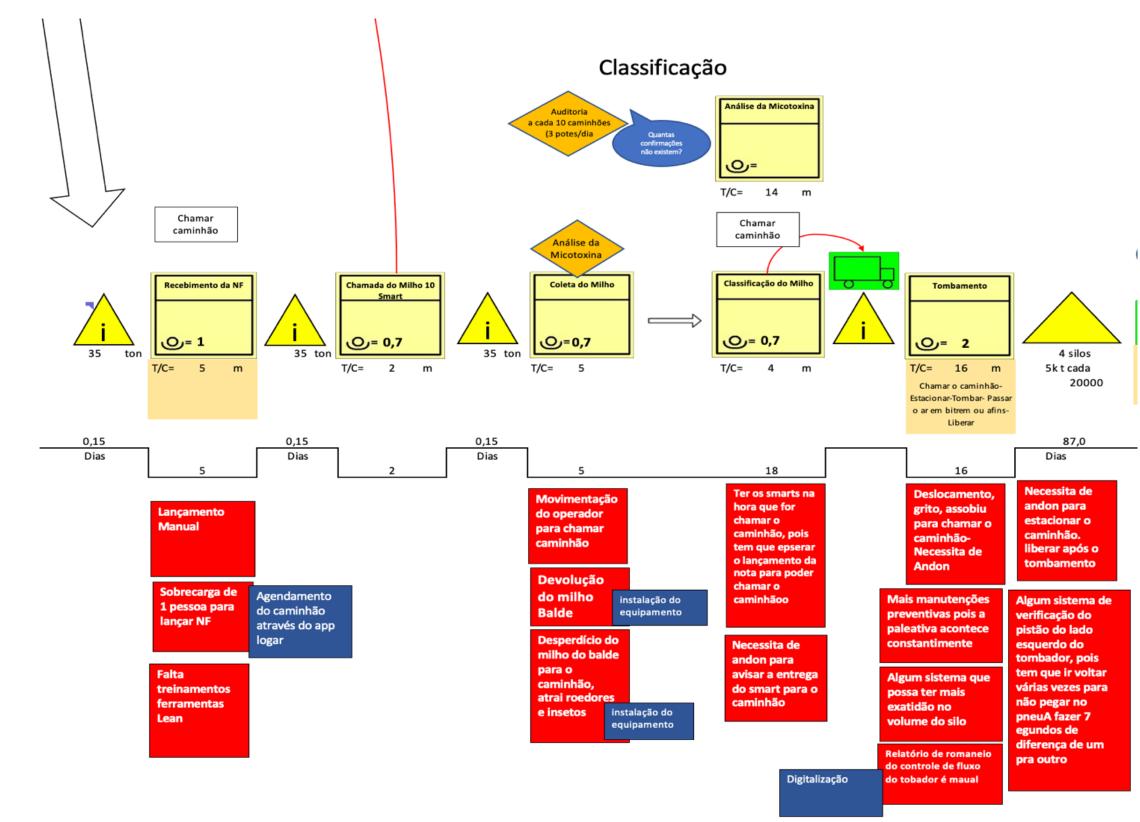


Figura 20- Parte 2 do mapa do estado atual

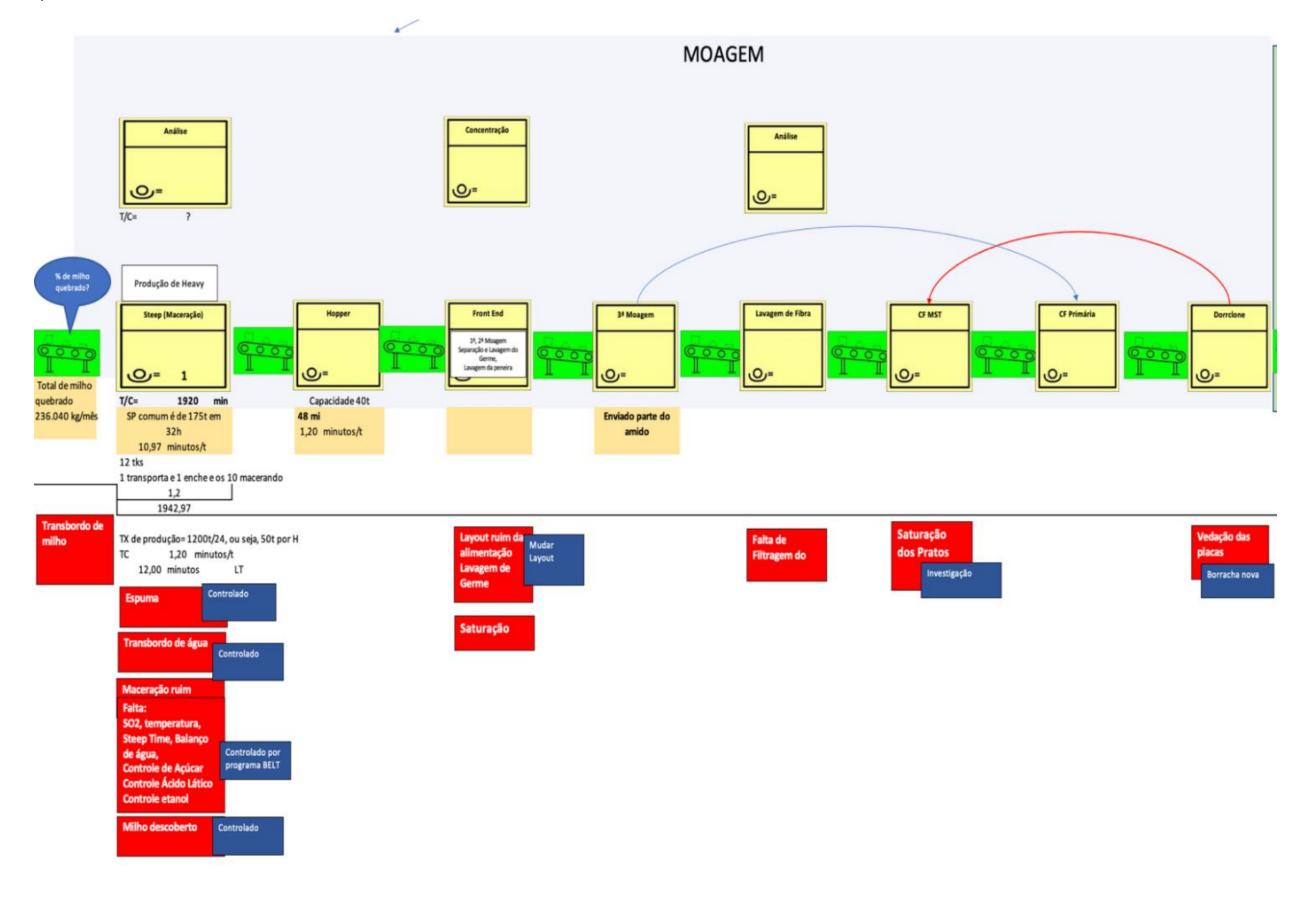


Figura 21- Parte 3 do mapa do estado atual

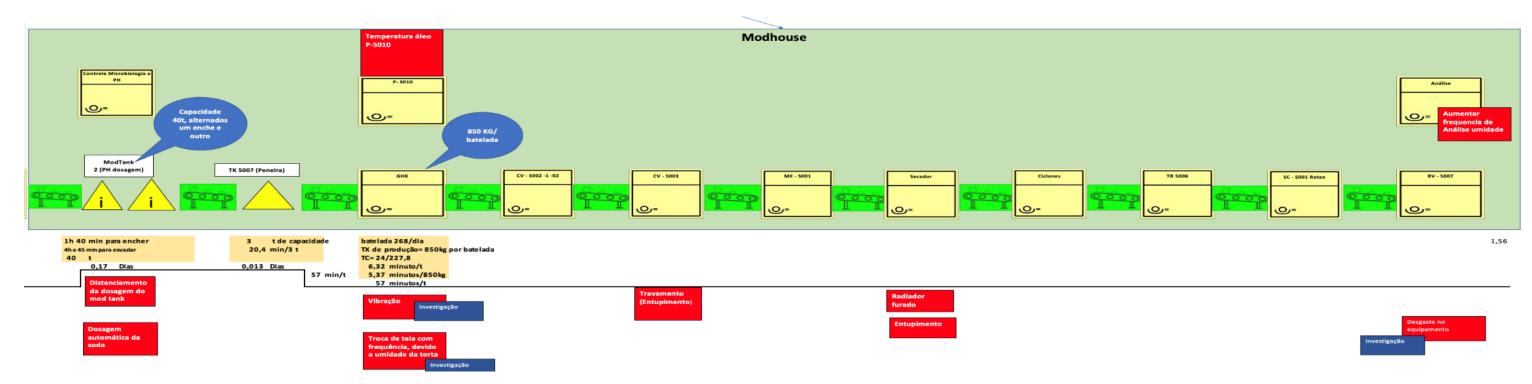
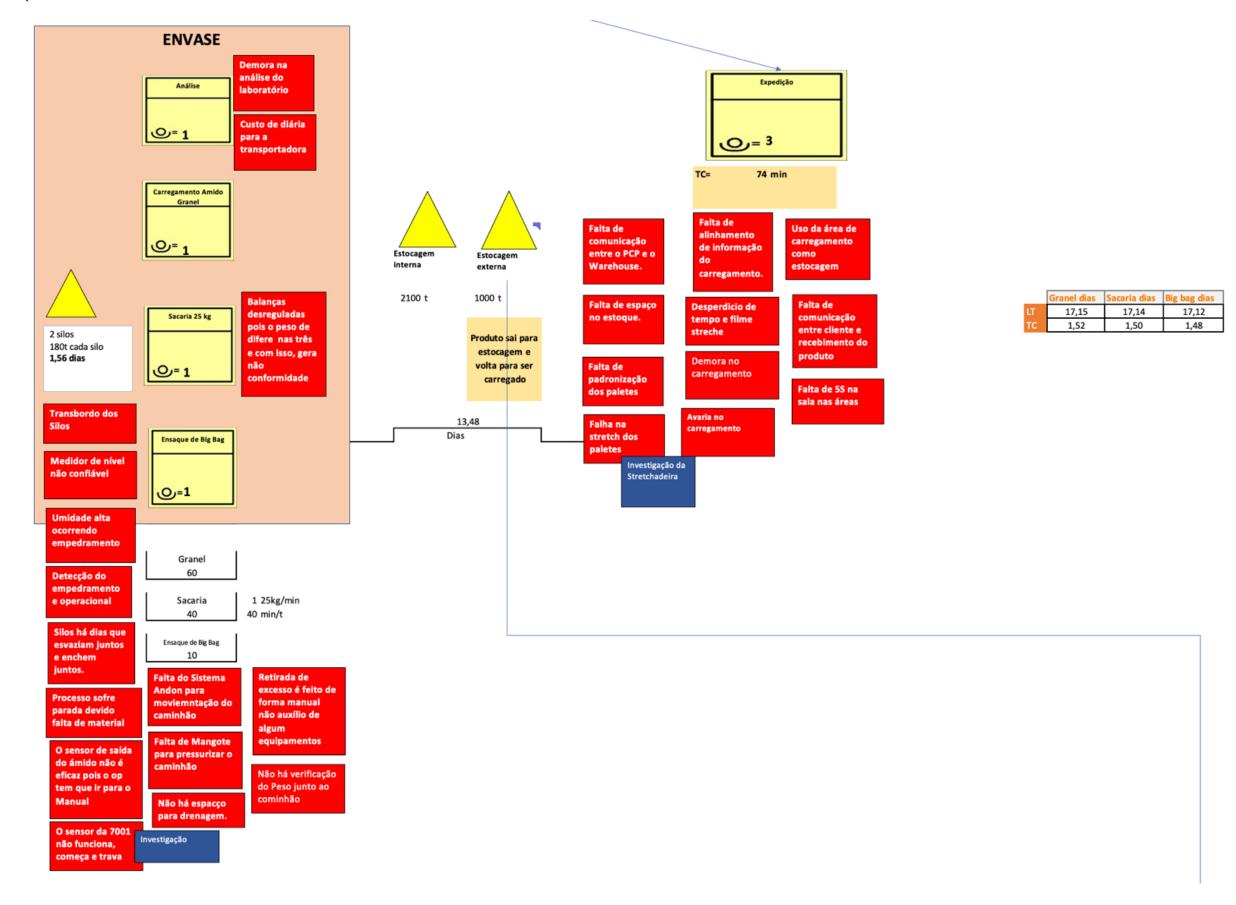
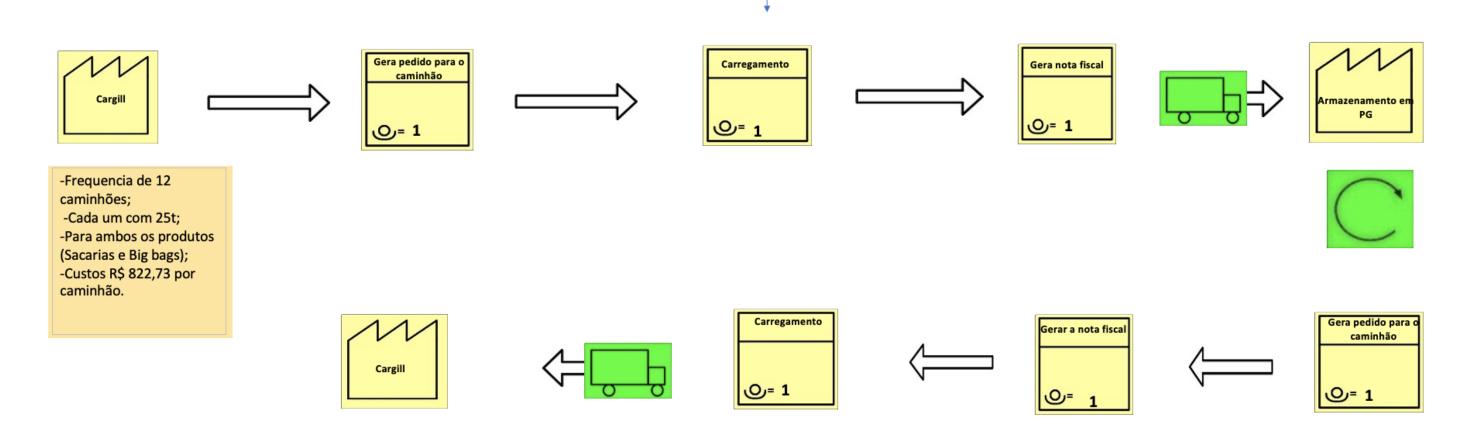




Figura 22- Parte 4 do mapa do estado atual

Fonte: O Autor (2022)

Figura 23- Parte 5 do mapa do estado atual

O desenho do estado atual do processo indicou um *lead time* do processo de 104,15 dias, porém, a pedido da gerência de planta, deve ser desconsiderado do processo os 4 silos de armazenagem com capacidade de 5.000 toneladas cada, que representa 87 dias, pois eles são utilizados para fazer trade de milho no mercado externo, sendo assim o lead time real é 17,15 dias e para o tempo de ciclo de 1,5 dias.

O MFV do estado atual, ficou estruturado em cinco macro áreas, no qual inicia-se com o recebimento, seguindo para a classificação, moagem, refinaria, envase e finalizando com o armazém cada grande área foi estratificada com os seus processos no qual, deu a oportunidade ter a visão de todo o processo, com isso, foram identificadas sessenta e três possíveis causas de desperdícios.

Para o recebimento foram identificadas a falta de mão de obra, gerando uma sobrecarga na equipe, juntamente com o lançamento manuais de notas fiscais podendo acarretar erros nos dados e falta de treinamento em ferramentas lean.

A área da classificação apesar de ter um programa de 5S aplicada, identificou-se desperdícios de movimentação dos operadores, a falta de projeto para a instalação de equipamentos que possam ajudar na ergonomia dos funcionários, entre eles a coletada de grãos mediante ao uso de baldes.

Na moagem, por ser um fluxo contínuo de processos e ter uma padronização das atividades, apresentou apenas oportunidades para investigações de causas raízes e que poderão se tornar futuros projetos belts e oportunidades nos equipamentos e layouts para em alguns setores.

Para a refinaria, o processo se torna por batelada no qual foi identificado o primeiro gargalo do processo, que é a centrifuga ou GHK, sua capacidade não é alta e apresentava problemas de vibrações no qual a troca de tela era feita de formas constantes e ter um custo alto, problemas estruturais foram identificadas tais como radiador furado e entupimento de transportadoras, chamadas de CV.

No envase e armazém, foram identificadas várias oportunidades que apontam faltas de treinamentos em ferramentas investigativas, programas 5S, problemas com

manutenção de equipamentos e a falta de padronização nos processos e custo extra com armazenagem de produtos em outra cidade. Todas as oportunidades encontradas foram descritas na matriz GUT e foi analisado pela liderança de cada área.

4.4 FASE 4 – ANÁLISE CRÍTICA DO PROCESSO

Após a entrega do estado atual, deu-se início a priorização das causas através da matriz GUT com a liderança, conforme é mostrado na figura abaixo:

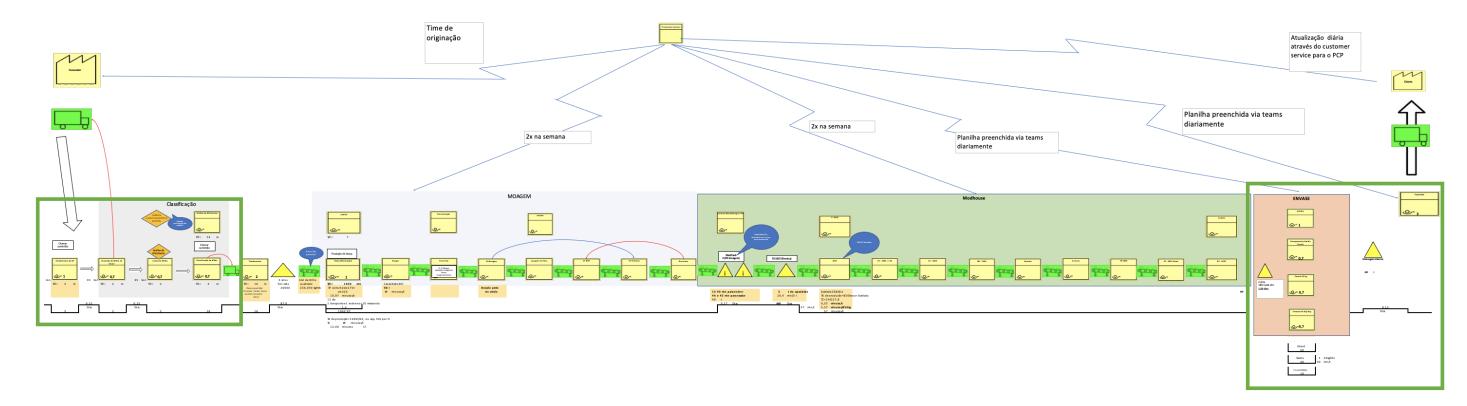
Figura 24- Parte 1 da Priorização das causas

Figura 25- Parte 2 da Priorização das causas

Matriz GUT						
tesponsável			Data da priorização			
ant iru						
Iniciativa	Situaç 🕌	Gravidade	Urgência →	Tendência	GUT	Orden
Mais manutenções preventivas pois a paleativa acontece	A fazer	2 - Pouco grave	5 - O quanto an	2 - Piora a longo	20	38
Sistema Andon de avisos para o caminhões- Hoje feito atn	A fazer	3 - Grave	3 - Médio prazo	2 - Piora a longo	18	39
Desgaste no equipamento RV 5007 *	Fazend	3 - Grave	2 - Bastante pra:	3 - Piora a médi	18	39
Transbordo dos Silos	Fazend	3 - Grave	3 - Médio prazo	2 - Piora a longo	18	39
Desperdício de ar comprimdo como fluetizador do silo pul	Fazend	4 - Muito grave	4 - Curto prazo	1 - Não piora 🚪	16	42
Lançamento Manual das notas	A fazer	2 - Pouco grave	3 - Médio prazo	2 - Piora a longo	12	43
Falta de Sistema Andon para estacionar o caminhão ante:	A fazer	2 - Pouco grave	3 - Médio prazo	2 - Piora a longa	12	43
Andon para avisar para a entrega do smart	A fazer	2 - Pouco grave	3 - Médio prazo	2 - Piora a longa	12	43
Falta de mangote para pressurizar o caminhão	Feito	3 - Grave	2 - Bastante pra:	2 - Piora a longa	12	43
Falta de comunicação entre cliente e recebimento do proc	A fazer	3 - Grave	2 - Bastante pra:	2 - Piora a longa	12	43
Ter os smarts na hora que for chamar o caminhão, pois ter	A fazer	3 - Grave	3 - Médio prazo	1 - Não piora	9	48
Layout ruim da alimentação Lavagem de Germe	Fazend	3 - Grave	3 - Médio prazo	1 - Não piora	9	48
Saturação- Lavagem da Peneira- Segunda Moagem	A fazer	1 - Sem gravida	4 - Curto prazo	2 - Piora a longo	8	50
Falta de Filtragem do Amido- Lavagem da Peneira- Fibra	A fazer	1 - Sem gravida		2 - Piora a longo	8	50
Falha nos coletores de amostra, coleta tem que ser feita m	A fazer	2 - Pouco grave		2 - Piora a longo	8	50
Falta treinamentos ferramentas Lean	Fazend	3 - Grave	1 - Longo prazo	2 - Piora a lonac	6	53
Travamento (Entupimento)	Fazend	2 - Pouco grave		2 - Piora a longo	4	54
Silos há dias que esvaziam juntos e enchem juntos.	A fazer	1 - Sem gravida		3 - Piora a médi	3	55
Relatório de romaneio do controle de fluxo do tobador é n	A fazer	1 - Sem gravida		1 - Não piora	2	56
Espuma	Feito	1 - Sem gravida		2 - Piora a longo	2	56
Transbordo de áqua	Feito	1 - Sem gravida		2 - Piora a longo	2	56
Maceração ruim	Feito	1 - Sem gravida		2 - Piora a longo	2	56
Falta: SO2, temperatura, Steep Time, Balanço de água,		J	9-	1	-	*
Controle de Acúcar						
Controle Ácido Lático	Feito	1 - Sem gravida	1 - Longo prazo	2 - Piora a longo	2	56
Controle etanol						
Milho descoberto	Feito	1 - Sem gravida	1 - Longo prazo	2 - Piora a longo	2	56
Falta de padronização dos paletes	A fazer	2 - Pouco grave		1 - Não piora	2	56
Movimentação do operador para chamar caminhão	A fazer	1 - Sem gravida		1 - Não piora	1	63
	A fazer	1 - Sem gravida		1 - Não piora	1	63
Algum sistema que possa ter mais exatidão no volume do					1	63
Distanciamento da dosagem do mod tank- soda	Fazend	1 - Sem gravida	1 - Longo prazo	1 - Não piora 🏅	1	63

A avaliação das sessenta e três possíveis causas de desperdícios que foram encontradas no mapeamento do estado atual, foram apresentadas e os critérios de gravidade, urgência e tendência da matriz foram preenchidas com cada gerente e supervisor das áreas, no qual foi levado em consideração o benefício e esforço para cada iniciativa, a avalição de investimento financeiro também é algo que foi levado em consideração, devido a restrições de orçamentos.

Após o término, a matriz indicou quais seriam as prioridades de um até sessenta e três na ordem de cálculo, para as notas com o total de cento e vinte cinco pontos, deveriam ter uma atenção maior e ter a solução estudada o mais breve possível pela equipe do envase e warehouse, seguido de recebimento.


Das sessenta e três iniciativas (63) elencadas, dezenove (19) tornaram-se futuros projetos Belts no qual foi repassado para o time de melhoria contínua, pois será feito o estudo de complexidades para ser informado o nível de projetos em qual será encaixado tais como Yellow Belt, Green Belt e Black Belt e seus futuros responsáveis pelo desenvolvimento, vinte e um com implementação com complexidades não tão altas ou que envolva investimentos altos, sete de rápida implementação e de custos baixos, como por exemplo treinamentos que podem ser facilitados pelos engenheiro de melhoria contínua e dezesseis por ordem de cálculo podem não se tornar prioridades para as áreas envolvidas, ficando a cargo do gestor tal decisão.

Através da priorização, foi verificado quais melhorias serão prioridades para cada área de acordo com a necessidade e o tempo de resolução para cada ação, demanda e orçamento.

4.5 FASE 5 – ENTREGA DO MAPA DO ESTADO FUTURO

A entrega do mapa do estado futuro deu-se conforme a Figura 26 abaixo:

Figura 26- Estado futuro

Para o resultado do estado futuro conforme Figura 26, a priorização das causas feita por cada área, o grande impacto foi em três frentes no qual tiveram resultados significativos para as áreas do recebimento, envase e para o armazém.

O recebimento teve a implementação de um sistema no qual suporta a imputação dos dados de nota fiscais, treinamentos e implementação do 5S no setor no que gerou um ambiente organizado e mais produtivo.

Para o envase, considerado uma área crítica do processo, aconteceram os treinamentos de ferramentas investigativas, facilitação, *team work* e a implementação do 5S, iniciou-se a implementação de padronização das atividades junto com a equipe de engenharia de processo e melhoria contínua.

No armazém no qual é uma área que não faz parte das operações, mas em um acordo feito entre as lideranças de operações e supply, ele foi integrado para ações de melhorias, no qual envolve treinamentos de ferramentas lean, programa de belts para futuro projetos e o programa 5S. Entrou em desenvolvimento um projeto no qual poderia ajudar na redução de custos de segundo armazém no valor aproximado de R\$ 118.473,12 por ano e consequentemente na redução do lead time de 17,5 dias para 12,8 dias.

4.6 FASE 6 - MONITORAMENTO DE DESEMPENHO E DOS RESULTADOS

O monitoramento dos resultados continuará sendo feito pela matriz GUT, conforme figura abaixo.

Figura 27- Parte 1 monitoramento das causas priorizadas

esponsável nt iru	Envolvidos na priorização Recebimento, Classificação, Moagem, Modhouse, Envase e Warehous					
Iniciativa	Situação 🕌	Responsável/Áre 🕌	Data de iníci	ıta de términe		
Não há como saber a exatidão do peso do caminhão na l	A fazer	Envase	20/09/2021	05/05/2022		
Falta de visibildade para operação no enximento de bag:	Fazendo	Envase	20/09/2021	05/05/2022		
Dificuldade para retirar o excesso no granel	A fazer	Envase	20/09/2021	05/05/2022		
Falta de comunicação entre o PCP e o Warehouse 🔸	A fazer	Warehouse	20/09/2021	05/05/2022		
Desperdicio de tempo e filme stretch	A fazer	Warehouse	20/09/2021	05/05/2022		
Falta de espeço na sala de embalagem	Fazendo	Warehouse-	20/09/2021	05/05/2022		
Sobrecarga de 1 pessoa para lançar NF	Feito	Portaria de	20/09/2021	05/05/2022		
Processo tem parada devido falta de material vindo do m	A fazer	Envase	20/09/2021	05/05/2022		
Balanças desreguladas pois o peso se difere nas três e cc	Fazendo	Envase/Alexand	20/09/2021	05/05/2022		
Desperdicio de amido nos sacos fora do peso por mal reg	Fazendo	Envase	20/09/2021	05/05/2022		
Falta de alinhamento de informação do carregamento	A fazer	Warehouse	20/09/2021	05/05/2022		
Excesso de poeira na sala de envase, gerando desperdíci	Fazendo	Envase	20/09/2021	05/05/2022		
Montagem dos paletes torto pelo robô	A fazer	Envase	20/09/2021	05/05/2022		
Díficil acesso a plataforma	Fazendo	Envase	20/09/2021	05/05/2022		
Vibração da GHK	A fazer	Modhouse	20/09/2021	05/05/2022		
Troca de tela com frequencia*	A fazer	Modhouse	20/09/2021	05/05/2022		
Demora na análise do laboratório para liberação do gran	A fazer	Envase	20/09/2021	05/05/2022		
Demora no carregamento do caminhão	A fazer	Warehouse	20/09/2021	05/05/2022		
Avárias no carregamento	A fazer	Warehouse	20/09/2021	05/05/2022		
Transbordo de milho CV2003	A fazer	Steeps	20/09/2021	05/05/2022		
Falha no strechi dos paletes	A fazer	Warehouse	20/09/2021	05/05/2022		
Uso da área de carregamento como estocagem	Fazendo	Warehouse-	20/09/2021	05/05/2022		
Algum sistema de verificação do pistão do lado esquerdo	A fazer	Tombamento	20/09/2021	05/05/2022		
Radiador furado	Fazendo	Modhouse	20/09/2021	05/05/2022		
Medidor de nível e sensores de vazão do amído não confic	Fazendo	Envase/Alexand	20/09/2021	05/05/2022		
Falta de espaço no estoque.	A fazer	Warehouse	20/09/2021	05/05/2022		
Vedação das placas	Fazendo	Moagem	20/09/2021	05/05/2022		
Entupimento causando Baixa eficiência	Fazendo	Modhouse	20/09/2021	05/05/2022		
Jmidade alta ocorrendo empedramento do amido 🔸	A fazer	Envase	20/09/2021	05/05/2022		
Detecção do empedramento e operacional	A fazer	Envase	20/09/2021	05/05/2022		
Falta de 5S na área	Fazendo	Warehouse-	20/09/2021	05/05/2022		
Saturação dos Pratos- MST- *	Fazendo	Moggem	20/09/2021	05/05/2022		
Procedimento erginomicamente errado no envase a grane	A fazer	Envase	20/09/2021	05/05/2022		
Desperdicio de embalagem, produto nas esteiras de trasp	A fazer	Envase	20/09/2021	05/05/2022		
Falha nos sensores para Bb de 500kg, gerando excesso de	A fazer	Envase/Alexand	20/09/2021	05/05/2022		
Dosagem manual da soda	Fazendo	Modhouse	20/09/2021	05/05/2022		
Sensor da 7001 funciona e trava * (INVESTIGAR)	A fazer	Envase	20/09/2021	05/05/2022		
Mais manutenções preventivas pois a paleativa acontece	A fazer	Tombamento	20/09/2021	05/05/2022		
Sistema Andon de avisos para o caminhões- Hoje feito atr	A fazer	Tombamento	20/09/2021	05/05/2022		
Desgaste no equipamento RV 5007 *	Fazendo	Modhouse	20/09/2021	05/05/2022		

Responsável Envolvidos na priorização Sant iru Recebimento, Classificação, Moagem, Modhouse, Envase e Warehouse Situação 🕌 Iniciativa Responsável/Áre Data de iníci duta de términ Envase/Alexand 20/09/2021 Envase/Alexand 20/09/2021 Portaria de 20/09/2021 Fazendo 05/05/2022 Transbordo dos Silos Desperdício de ar comprimdo como fluetizador do silo pul Fazendo A fazer Lançamento Manual das notas Classificação 20/09/2021 05/05/2022 Falta de Sistema Andon para estacionar o caminhão ante A fazer A fazer 20/09/2021 05/05/2022 Andon para avisar para a entrega do smart Classificação Falta de mangote para pressurizar o caminhão Envase 20/09/2021 05/05/2022 Falta de comunicação entre cliente e recebimento do proc A fazer Warehouse Ter os smarts na hora que for chamar o caminhão, pois ter A fazer Classificação 20/09/202 05/05/2022 20/09/2021 Fazendo 05/05/2022 Layout ruim da alimentação Lavagem de Germe Moagem 05/05/2022 20/09/202 Saturação- Lavagem da Peneira- Segunda Moagem A fazer Falta de Filtragem do Amido-Lavagem da Peneira-Fibra Falha nos coletores de amostra, coleta tem que ser feita m A fazer 20/09/2021 05/05/2022 Mogaem A fazer Envase 20/09/2021 10/09/2021 Falta treinamentos ferramentas Lean Fazendo " Portaria de Travamento (Entupimento) Fazendo Modhouse 20/09/202 05/05/2022 20/09/2021 05/05/2022 Silos há dias que esvaziam juntos e enchem juntos. A fazer Envase 05/05/2022 Relatório de romaneio do controle de fluxo do tobador é n A fazer 20/09/202 Tombamento Feito 05/05/2022 20/09/2021 Espuma Steeps Transbordo de água Steeps 20/09/2021 05/05/2022 Feito Maceração ruim Falta: SO2 temperatura Steep Time Balanco de áqua Controle de Açúcar Feito Steeps 20/09/2021 05/05/2022 Controle Ácido Lático Controle etanol Feito 20/09/2021 05/05/2022 Milho descoberto Steeps 20/09/2021 05/05/2022 20/09/2021 05/05/2022 20/09/2021 05/05/2022 Falta de padronização dos paletes Warehouse Movimentação do operador para chamar caminhão A fazer Classificação A fazer Algum sistema que possa ter mais exatidão no volume do Tombamento 20/09/2021 05/05/2022 05/05/2022 Distanciamento da dosagem do mod tank- soda Fazendo Modhouse/Hele 20/09/2021

Figura 28- Parte 2 monitoramentos das causas priorizadas

A matriz segue a seguinte estrutura:

- Inciativa;
- Situação;
- Responsável;
- Datas de início e fim.

O monitoramento de vinte e uma (21) ações que representa 33,3% estão em execução, pois são ações com possibilidade de retorno financeiro e pode envolver investimentos em capex e deve ter um retorno financeiro calculado antes do início ou demandam assistência de terceiros como por exemplo a troca de um equipamento mais complexo ou de valor superior a trezentos mil reais, eles possuem a finalização prevista para o final de maio de 2022, os acompanhamentos são feitos junto dos responsáveis através de reuniões de cadência marcado com a periodicidade informada por cada área. Para os possíveis projetos belts que é um total 30,1% serão feitos após a validação de complexidade e feito isso, seguem um processo diferente e o monitoramento e distribuição dos responsáveis, estudo de capex e a possibilidade de retorno financeiro, dependendo do nível de complexidade e a gestão é feita por

sistema específico, sete ações já foram realizadas significando o resultado de 11,1% pois foram ações de rápida implementação, tais como treinamentos, troca de equipamentos de custo menor ou reparos na estruturas entre outros e dezesseis não serão priorizadas devido terem um benefício baixo e um esforço alto ou não serem de grande importância no momento.

5 CONCLUSÃO

O presente trabalho teve como objetivo principal o mapeamento do fluxo de valor para a busca e redução do *Lead time*, em uma indústria alimentícia, mais precisamente na linha de produção do amido e com isto foi identificado o *lead time* de 17,5 dias e com aplicação das ferramentas *lean* foi projetado uma redução de 26,9% do resultado.

Considerando todas as dificuldades que envolve o tema proposto e as barreiras da empresa onde foi projetada a aplicação, mesmo possuindo uma filosofia *Lean* muito forte implementada em alguns setores, a abordagem do pesquisador foi bastante equilibrada, adequando-se à realidade da empresa, procurando por adaptações ou formas alternativas para o planejamento e aplicação das práticas propostas pelo método e juntamente com o apoio por parte da liderança e colaboradores envolvidos na aplicação do MFV, pois através da aplicação foi identificado sessenta e três (63) causas, no qual a falta de treinamentos em ferramentas e padronização de processos foram as maiores causas apontadas.

Sendo assim, das sessenta e três (63) iniciativas encontradas, dezenove (19) delas tornaram-se futuros projetos *Lean Six Sigma*, sete (7) foram aplicadas com sucesso, e vinte e um (21) encontrasse em execução que podem ser sintetizados na redução de 17,5 dias para aproximadamente 12,8 dias no qual foram capacitados recursos para treinamentos em ferramentas investigativas, programa 5S e em parceria com a engenharia de operações a padronização dos processos de áreas chaves.

Dentro do âmbito acadêmico, a pesquisa foi conduzida de acordo com a metodologia, adaptada e complementada de acordo com a realidade encontrada com os resultados encontrados na literatura.

5.1 RECOMENDAÇÕES PARA TRABALHOS FUTUROS

Fica como recomendação para pesquisas futuras, o gerenciamento das soluções propostas pelas ferramentas Lean e o acompanhamento dos indicadores que servem como parâmetro para avaliação de desempenho do método.

Outra sugestão a aplicação periódica do MFV em outros fluxos de processo dentro da fábrica, aprimorando as bases de dados do tema com a aplicação do método e validando se os resultados encontrados são sustentados.

REFERÊNCIAS

ARAUJO, M. A. DE. Administração de Produção e operações: uma abordagem prática/Marco Antonio de Araujo. Rio de Janeiro: Brasport, 2009. v., p 248-249.

ARGOUD, A. R. T. et al. Aplica o de Conceitos de Produ o Enxuta em um Ambiente de Alta Diversidade de Produtos e Demanda Vari vel: Um Estudo de Caso. In: ENEGEP - ENCONTRO NACIONAL DE ENGENHARIA DE PRODU O, 14, 2004, Florian polis. Anais. Florian polis: Abepro, 2004.

BARBALHO, S. C. M.; NITZSCHE, M. C. M.; DANTAS, A. S. Melhoria de Processos na Gest o P blica: Uma Pesquisa-a o com Foco nas Atividades Administrativas de um Programa de Interc mbio Estudantil de uma Universidade P blica. REVISTA PRODU O ONLINE, v. 17, p. 406-439, 2015.

BARBALHO, S. C. M.; RICHTER, E. H.; ROZENFELD, H. MELHORANDO O PROCESSO DE AQUISI O DE MATERIAIS E COMPONENTES PARA PROTÓTIPOS DE NOVOS PRODUTOS. Revista Gest o Industrial (Online), v. 4, p. 22-33, 2008.

CAMPOS, V. F. Gerenciamento da Rotina: Do trabalho ao dia-a-dia. Nova Lima: Indg Tecnologia e Servi os LTDA, 2004.

COSTA, L. B. M., MONTE, V. M.; ESPOSTO, K. F. Mapeamento de Fluxo de Valor: Um Estudo de Caso em uma Farm cia Hospitalar. *In*: ENCONTRO NACIONAL DE ENGENHARIA DE PRODU O, 35., 2015, Fortaleza. *Anais do XXXV ENEGEP*. Fortaleza: 2015, p.1-13.

DAYCHOUM, Merhi. 40+16 Ferramentas e técnicas de gerenciamento. Rio de Janeiro v. 6, 2016. p. 109.

DE STEUR, H. E. A. Applying Value Stream Mapping to Reduce food Losses and Wastes in Supply Chains: A Systematic Review. Waste Management, 2016.

DORA, M. et al. Aplication of Lean Practices in Small and Medium-Sized Food Enterprises. British Food Journal, v. 116, p. 125-141, 2013.

FARIA, A. F.; GALV O, M. F.; LEMOS, C. F. V. B.; RODRIGUES, M. F. C.; SUZUKI, J. A. Implanta o do Programa 5S: Pesquisa-A o em um Centro Tecnol gico P blico e Prestador de Servi o. *In*: ENCONTRO NACIONAL DE ENGENHARIA DE PRODU O, 34., 2014, Curitiba. *Anais do XXXIV ENEGEP*. Curitiba: 2014, p.1-17.

FARRIS, J. A., Van Aken, E. M., Doolen, T. L., & Worley, J. Learning from less successful Kaizen events: a case study. Engineering Management Journal, 20(3), 10-20, 2015.

GIL, Ant nio Carlos. Como elaborar projetos de pesquisa. 4. ed. S o Paulo: Atlas, p 175, 2002.

IMAI, Masaaki. Gemba Kaizen, 2ª Edição. Editora Bookman. 2014.

ISHIKAWA, K. Introduciton to Quality Control. Springer: Softcover reprint of the original 1st ed. 1989 edição (April, 9, 2012)

KOSAKA, Gilberto I. Jidoka.2006. Lean Institue Brasil. Artigo disponível em http://www.lean.org.br. Acessado em 09/03/2021.

LEXO LEAN: Glossário Ilustrado para praticantes do pensamento Lean. Lean Institute Brasil. – São Paulo, 2016.

LIKER, Jeffrey K. The Toyota way: 14 Management Principles from the World's Greatest Manufacturer. 2 ed. McGraw-Hill Education, 2020.

LYONS, A. C.; MA'ARAM, A. An Examination of Multi-Tier Supply Chain Strategy Alignment in the Food Industry. International Journal of Production Research, Liverpool, v. 52, p. 1911-1925, 2014.

M. Todorovic;. Key Success Factors and Benefits of Kaizen Implementation, vol 32, p 98-106, 2019.

MACDONALD, T; VAN AKEN,E.; RENTES, AF. (2000) Utilization of simulation model to support value stream analysis and definition of future state scenarios in a high-technology motion control plant. Research Paper. Departament of Industrial & Systems Engineering, Virginia Polytechnic Institute and State University & São Carlos Engineering School, University of São Paulo

MATOS, A. M. O.; LUCENA, K. S.; ALMEIDA, L. K. S.; SOUSA, L. F.; SILVA, A. M. Implanta o da Ferramenta 5S's no Almoxarifado de uma Empresa de Produ o Agr cola, Localizada na Chapada do Apodi/CE. *In*: ENCONTRO NACIONAL DE ENGENHARIA DE PRODU O, 34., 2014, Curitiba. *Anais do XXXIV ENEGEP*. Curitiba: 2014.

MOYA, J. V. et al. Implementation of Lean Manufacturing in a Food Enterprise. EnfoqueUTE, v. 7, p. 1-12, mar o 2016.

OHNO, T. Gestão dos Postos de Trabalho. Bookman, 1ª ed. 2015.

OHNO, T. Sistema Toyota de Produ o: Al m da Produ o em Larga Escala. Nova York: Productivity Press, 1997.

PIRASTEH, R. M.; FOX, R. E. Profitability with No Boundaries: Optimizing TOC, Lean, Six Sigma Results. Wisconsin: Quality Press, 2011.

PORTER, M. E. Competitive Estrátegia Competitiva: Técnicas para análise de indústrias e da Concorrência. GEN Atlas., 2005. 17-30 p.

RODRIGUES, M. V. Sistema de Produ ao Lean Manufacturing: Entendendo, Aprendendo e Desenvolvendo. Rio de Janeiro: Elsevier Editora Ltda, 2014.

ROTHER, M.; SHOOK, J. Learning to See: Value-Stream Mapping to Create Value and Eliminate Muda. Cambridge, 2009.

SAURIN, T. A.; RIBEIRO, J. L. D.; MARODIN, G. A. Identifica o de Oportunidades de Pesquisa a Partir de um Levantamento da Implanta o da produ o Enxuta em Empresas do Brasil e do Exterior. Revista Gest o & Produ o, S o Carlos, v. 17, n.4, p. 829-841, 2010.

SETEC Consulting Group. Apostila Setec Consulting Group Treinamento Black Belt, Lean Six Sgima, 2019

SHINGIJUTSU GLOBAL. Kaizen. Shingijutsu Global Consulting. 2021. Disponível em: Acesso em: 15/03/2021

SHINGO, S. A Study of the Toyota Production System. Cambridge: Productivity Inc., 2019.

SILVA, Edna L cia da; MENEZES, Estera Muszkat. Metodologia da pesquisa e elabora o de disserta o. Florian polis: UFSC, 2005. 138 p. 4. ed. rev. atual.

SILVEIRA, D. T.; GERHARDT, T. E. Métodos de pesquisa. Porto Alegre: Editora daUFRGS, 2009.

SLACK, N.; LEWIS, M. Operations Strategy. Harlow: Pearson Education Limited, 2002.

TAYLOR, F. W. Os Princ pios da Administra o Cient fica. 8. ed. S o Paulo: Atlas S.A., 1990.

TEGNER, M. G.et al. Lean Office e BPM: Proposi o e Aplica o de M todos para a Redu o de Desperd cios em reas Administrativas. REVISTA PRODU O ONLINE, v. 16, p. 1007-1032, 2016.

VITAL, A. F. M.; AZEVEDO, G. H.; SILVA, E. C.; TUTU, B. R. S. A Import ncia da Ferramenta 5S na Gest o de Materiais do Laborat rio Did tico de Pintura com Terra. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODU O, 35., 2015, Fortaleza. Anais do XXXV ENEGEP. Fortaleza: 2015, p.1-11.

WOMACK, J. P.; JONES, D. T.; DANIEL, R. The Machine That Changed The World: The Story of Lean Production. Free Press, 2007.

WOOD, T. J. Fordismo, Toyotismo e Volvismo: Os Caminhos da Ind stria em Busca do Tempo Perdido. Revista de Administra o de Empresas, S o Paulo, v. 32, n. 4, p. 6-18, setembro/outubro 2002.