
UNIVERSIDADE FEDERAL DO PARANÁ

MICHELLE THAYS KHUN SANTURIO

MONITORAMENTO E TOXICIDADE DE RECURSOS HÍDRICOS NO MUNICÍPIO DE URUGUAIANA, RS, BRASIL

Monografia apresentada à disciplina de Estágio Supervisionado em Biologia, requisito parcial da conclusão do curso de Bacharelado em Ciências Biológicas da UFPR.

Orientador: Prof.(a). Marco Randi/ Departamento de Biologia Celular da UFPR. Coorientador: Prof. Rafael Roehrs/ Departamento de Bioquímica da UNIPAMPA Uruguaiana.

CURITIBA

2022

Matrícula GRR: 20159034

Nome completo: Michelle Thays Khun Santurio

E-mail: michellesanturio2@gmail.com

Ministério da Educação UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Biológicas Coordenação do Curso de Ciências Biológicas

Telefone: 41996686397

morary to be britten	DE MONOGRAFIA E TCC
Disciplina: () BIO027 – Estágio Curri (x) BIO028 – Estágio Curri () TCC II – Licenciatura	
Título do Projeto: MONITORAMENT HÍDRICOS NO MUNICÍPIO DE URUG	O E TOXICIDADE DE RECURSOS UAIANA, RS, BRASIL.
Avaliador 1 (orientador ou coorientador): Avaliador 2: Me. Aliciane de Almeida Aoqu	Brof Dr. Marco Randi
UFPR/Departamento: Biologia Celular	Alian de A. Roque
Avaliador 3: Me. Murilo Carriço	
Instituição: Universidade Federal do Pamp	a ffeeto
Declaramos que todos os membros da b e que pelo menos dois avaliadores perte cientes de que o trabalho escrito dever-	anca possuem titulação mínima de Mestre encem ao corpo docente da UFPR. Estamos á ser entregue aos avaliadores, e as notas os prazos estipulados e divulgados pela

AGRADECIMENTOS

À Universidade Federal do Paraná, pelo apoio ao meu desenvolvimento profissional.

Ao meu orientador, Prof. Dr. Marco Randi, pela orientação, pelos conselhos e dedicação.

À banca examinadora por terem aceitado participar, Me. Murilo Carriço e Me. Aliciane Roque, e dedicado tempo para sugestões e colaborações.

Aos meus pais, Mario e Sirlene, pela inspiração e apoio incondicional em todos esses anos.

À minha irmã Pamela, pela amizade e companheirismo em todos esses anos de vida e faculdade.

Aos colegas da turma, principalmente aos meus queridos amigos, Rothmans, Mary, Malu e Isa, pela amizade e companheirismo durante esses anos de faculdade, que irei levar para a vida toda.

Ao LAQAT (Laboratório de Análises Químicas Ambientais e Toxicológicas - UNIPAMPA) e a UNIPAMPA (Universidade Federal do Pampa) pelo acolhimento e colaboração na utilização do espaço para a elaboração dos experimentos.

Aos colegas e amigos que fiz ao realizar os experimentos no LAQAT, principalmente ao Murilo que se tornou além de um amigo uma inspiração como pessoa e pesquisador, muito obrigada.

E a todos que, direta ou indiretamente, contribuíram para a minha formação, obrigada.

RESUMO

O rio Uruguai é o rio mais importante do oeste do estado do Rio Grande do Sul, separando Brasil, Argentina e Uruguai. O rio apoia a pesca e fornece água potável às cidades, mas a poluição é um problema devido atividades humanas, como agricultura. A região de Uruguaiana é uma das principais produtoras de arroz e, por ser uma área de fronteira, há muito uso de agrotóxicos legais e ilegais. A longo prazo, essa prática pode causar danos irreversíveis pelo depósito de resíduos, inclusive em ambiente aquático, por isso torna-se fundamental avaliar suas implicações biológicas e as possíveis interações com o meio ambiente. Testes de toxicidade utilizando plantas como organismo teste são mais simples se comparados a estudos com animais e demonstram eficiência no monitoramento da toxicidade de poluentes da água e do solo, incluindo efluentes de diversas origens. o presente estudo teve como objetivo determinar a presenca de agrotóxicos na água superficial de três localidades da bacia do Rio Uruguai, bem como avaliar o potencial fitotóxico dessas águas residuais por meio da exposição de sementes de alface (Lactuca sativa) e pepino (C. sativus) por 24 e 120 horas.Para isso, foram definidas três localizadas na bacia do rio Uruguai: ponto 1- Barragem sanchuri, ponto 2- Rio Uruguai, e ponto 3- Arroio, que recebe o depejo de efluentes tratados da cidade de Uruguaina. As amostras dos três pontos foram pré concentradas e extraídas para a identificação e quantificação de imazetapir, sulfentrazone, diuron, 3,4-dichloroanilina (3,4-DCA), propanil, 3,5-dichloroanilina (3,5-DCA), tebuconazol, 2,4-ácido 2,4-diclorofenoxiacético (2,4-D) e quinclorac, através de cromatografia sementes de L. sativa e C. líquida. Para as avaliações ecotoxicológicas, sativus foram incubadas durante 24 e 120 horas em placas de petri contendo as amostras dos três pontos. Após esse tempo, foi realizada a contagem de germinação e a medição das radículas ocorreu apenas após o período mais prolongado. A partir desses dados foram calculados o índice de germinação percentual (IGN) e o índice de alongamento radical residual (IER). Foram detectados a presençados herbicidas 2,4-D (ponto 2) e Imazetapir (ponto 1, 2 e 3), mas em concentrações em conformidade com os parâmetros estabelecidos pelo Conselho Nacional do Meio Ambiente (CONAMA). Os resultados de toxicidade utilizando os indicativos de IGN e o IER, obtidos pelo ensaio utilizando Cucumis sativus indicaram um nível de toxicidade baixo para o indicativo do IGN (0 < IGN < -0,25) e para o indicativo do IER as amostras foram classificadas com efeito hormese (IER ≥ 0). Já para Lactuca sativa o IGN indicou a classificação das amostras dos pontos 1 e 2 como um nível moderado (-0,25 < IGN < -0.5) de toxicidade e a amostra do ponto de coleta 3 com um efeito de hormese (IGN ≥ 0). Já o IER classificou todas as amostras com efeito hormese (IER ≥ 0).

Palavras-chave: Ecotoxicologia. Agrotóxicos. Teste Agudo. Fitotoxicologia.

ABSTRACT

The Uruguay River is the most important river in the west of the state of Rio Grande do Sul, separating Brazil, Argentina and Uruguay. The river supports fishing and provides drinking water to cities, but pollution is a problem due to human activities such as agriculture. The Uruguaiana region is one of the main rice producers and, as it is a border area, there is a lot of use of legal and illegal pesticides. In the long term, this practice can cause irreversible damage by depositing waste, including in an aquatic environment, so it is essential to evaluate its biological implications and possible interactions with the environment. Toxicity tests using plants as a test organism are simpler compared to animal studies and demonstrate efficiency in monitoring the toxicity of water and soil pollutants, including effluents from different sources. The present study aimed to determine the presence of pesticides in the surface water of three locations in the Uruguay River basin, as well as to evaluate the phytotoxic potential of these wastewaters through the exposure of lettuce (Lactuca sativa) and cucumber (C. sativus) seeds) for 24 and 120 hours. For this, three located in the Uruguay River basin were defined: point 1- Sanchuri Dam, point 2- Uruguay River, and point 3- Arroyo, which receives the disposal of treated effluents from the city of Uruguaina. Samples from the three points were pre-concentrated and extracted for the identification and quantification of imazethapyr, sulfentrazone, diuron, 3,4-dichloroaniline (3,4-DCA), propanil, 3,5-dichloroaniline (3,5-DCA), tebuconazole, 2,4-2,4-dichlorophenoxyacetic acid (2,4-D) and guinclorac, by liquid chromatography. For ecotoxicological evaluations, L. sativa and C. sativus seeds were incubated for 24 and 120 hours in petri dishes containing samples from the three points. After this time, the germination count was performed and the measurement of the rootlets occurred only after the longest period. From these data, the percentage germination index (IGN) and the residual radical elongation index (IER) were calculated. The presence of herbicides 2,4-D (point 2) and Imazetapir (point 1, 2 and 3) were detected, but in concentrations in accordance with the parameters established by the National Council for the Environment (CONAMA). The toxicity results using the IGN indicative and the IER, obtained by the assay using Cucumis sativus indicated a low level of toxicity for the IGN indicative (0 < IGN < -0.25) and for the IER indicative the samples were classified with hormesis effect (IER ≥ 0). As for Lactuca sativa, the IGN indicated the classification of samples from points 1 and 2 as a moderate level (-0.25 < IGN < -0.5) of toxicity and the sample from collection point 3 with a hormesis effect (IGN ≥ 0). The IER classified all samples with a hormesis effect (IER ≥ 0).

Keywords: Ecotoxicology. Pesticides. Acute Test. Phytotoxicology.

SUMÁRIO

1.Introdução	8
1.1. Organismos teste	10
2.Objetivos	11
2.1. Objetivo Geral	11
2.2. Objetivos Específicos	11
3.Materiais e métodos	11
3.1. Coleta de amostras	11
3.2. Análises Físico-químicas	13
3.3. Determinação de pesticidas	14
3.4. Teste de toxicidade com Lactuca sativa e Cucumis sativus	14
3.5. Análise de toxicidade e tratamento de dados	16
3.6. Análises estatísticas	17
4.Resultados e discussão	17
4.1. Detecção de pesticidas	17
4.2. Análises de toxicidade	19
5.Conclusão	23
6. Referências bibliográficas	25

1. INTRODUÇÃO

Os ecossistemas aquáticos sofrem constantes mudanças, principalmente devido a fatores externos (COSTA et al., 2008), como aporte de poluentes oriundos de atividades humanas (CONNEL E MILLER, 1984). De acordo com a Lei nº 6.938, que regulamenta a Política Nacional do Meio Ambiente, a poluição inclui a deterioração da qualidade do meio ambiente, que é resultado direto e indireto das atividades humanas que emitem poluentes causando danos ambientais, econômicos e à saúde humana (Brasil, 1981).

A qualidade ambiental dos corpos d'água é muito vulnerável à urbanização. Atualmente, no Brasil, a grande maioria das bacias hidrográficas urbanas está degradada. As consequências desse fato são a redução da disponibilidade hídrica, danos à saúde humana e comprometimento da sustentabilidade do meio aquático (Fonte das informações nesse parágurafo).

A Bacia do Rio Uruguai é uma das doze regiões hidrológicas do território brasileiro, com área de aproximadamente 371.000 km², dos quais 45% estão localizados no país, com destaque para os estados do Rio Grande do Sul (RS) e Santa Catarina (SC) (ANA, 2011a). Esta área hidrológica é muito importante devido ao desenvolvimento das atividades agroindustriais e seu potencial hidrelétrico, devendo também ser enfatizado o uso deste recurso hídrico para geração de renda para os pescadores da área.

No entanto, apesar de contribuir para o desenvolvimento econômico da região, muitas atividades na bacia acabam contribuindo para a poluição de suas águas, como apresentado na Figura 1. Arins (2010) citou que, entre os impactos, foi destacado o despejo de esgoto doméstico e o aporte de agrotóxicos oriundos das lavouras, principalmente utilizados na rizicultura.

A poluição da água foi evidenciada através da análise da Agência Nacional de Águas (ANA, 2011b), revelou altos níveis de poluição no Rio Uruguai frente às recomendações da resolução 357 do Conselho Nacional do Meio Ambiente – CONAMA (MMA, 2005).

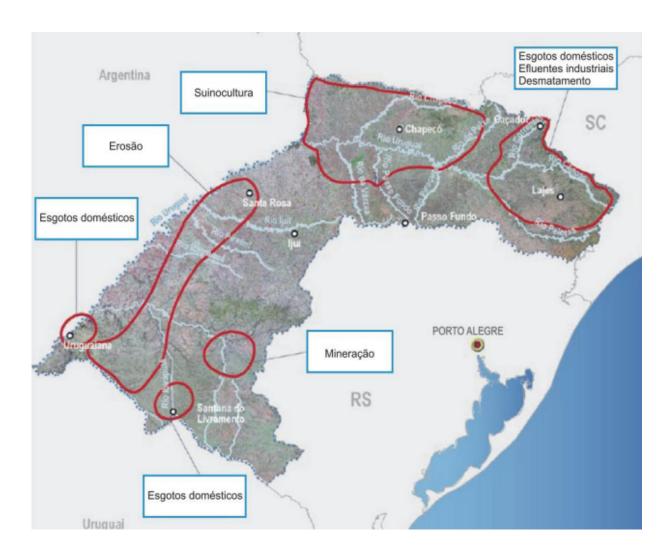


Figura 1 - Principais áreas críticas de contaminação da bacia do rio Uruguai, em território brasileiro. Fonte: Adaptado de ANA (2005)

De todas as regiões banhadas pelas águas do rio Uruguai, a cidade de Uruguaiana, localizada no extremo oeste do RS que faz fronteira com a Argentina, tem uma forte economia agrícola e pecuária, mas principalmente centrada na produção de arroz (BUSATO, et al., 2002). Com as condições climáticas favoráveis, o vasto território e a presença de grandes rios como o rio Uruguai são os principais motivos desse sucesso. Desta forma, o consumo de agrotóxicos no estado do RS responde por cerca de 20% do consumo nacional de agrotóxicos (PRIMAL et al., 2005). Além disso, apesar das visitas frequentes de órgãos reguladores às fazendas, a quantidade de agrotóxicos usados e o tráfico ilícito de produtos proibidos no Brasil como é o caso do paraquat, que entram no país pela fronteira

Uruguai-Argentina, são problemas recorrentes. Existem muitas pequenas barragens, riachos, que fluem para o Rio Uruguai e que são utilizados para irrigação dos campos de arroz, permitindo assim o carreamento de agrotóxicos para dentro desses ambientes. Diante disso é primordial que as águas do rio Rio Uruguai sejam preservadas para fins ecossistêmicos e econômicos, como no caso da utilização na irrigação de lavouras e o turismo na região.

Além do monitoramento físico-químico já padronizado, diferentes ensaios foram utilizados para detectar a ocorrência de contaminação em ambientes aquáticos. No entanto, a maioria deles não consegue identificar todos os poluentes presentes no ambiente aquático. Por esse motivo, o emprego de estudos ecotoxicológicos têm aumentado nos últimos anos e se somado aos programas de monitoramento (CLAVIJO et al., 2016; RUAN et al., 2009; SALEM, 2016).

Ensaios toxicológicos envolvendo o emprego de organismos vegetais, técnica conhecida como fitotoxicidade, têm sido muito utilizados em função de sua alta sensibilidade a compostos químicos e orgânicos, tais como agrotóxicos (STEINKELLNER et al., 1998). Outra vantagem da técnica é que a utilização de partes vegetais permite fácil observação a nível cromossômico, e por isso consiste em uma excelente opção para ensaio citotóxico (GRANT, 1978). Além disso, a conservação e o manejo são realizados de maneira mais prática (FISKESJÖ, 1985), possibilitando a fácil reprodutibilidade e o investimento requerido é menor comparado a utilização de animais (LOPEZ et al., 2008).

Dentre as espécies mais visadas para emprego nesse bioensaios, a utilização de sementes de alface (*Lactuca sativa*) e pepino (*Cucumis sativus*) destaca-se devido apresentar vantagens, como facilidade de execução, rapidez, confiabilidade, economia e dispensa do uso de equipamentos de grande porte (CHARLES et al., 2011). Desse modo, essas sementes têm sido amplamente utilizadas como bioindicadores em estudos ecotoxicológicos, uma vez que correspondem às espécies vegetais mais utilizadas e recomendadas pela Agência de Proteção Ambiental dos EUA (EPA U.S., 1996).

Diante do exposto, o presente estudo teve como objetivo determinar a presença de agrotóxicos na água superficial de três localidades da bacia do Rio Uruguai, bem como avaliar o potencial fitotóxico dessas águas residuais por meio da exposição de sementes de alface (*L. sativa*) e pepino (*C. sat*ivus) por 24 e 120 horas. Para isso a presença de agrotóxico foi detectada por meio de cromatografia

líquida e a fitotoxicidade através de características macroscópicas como germinação e crescimento radicular

1.1. Organismos teste

A avaliação ecotoxicológica é um dos parâmetros mais importantes atualmente monitorados em ambientes aquáticos que recebem resíduos de diferentes características. As análises de toxicidade, com os parâmetros de germinação e crescimento radicular, utilizando *L. sativa* e *C. sativus* foram escolhidas devido a facilidade de aquisição, o baixo custo e praticidade de operação na análise sem a necessidade do uso de insumos e infraestrutura complexos (MEYER et al., 1982).

2. OBJETIVOS

2.1. Objetivo Geral

Realizar o monitoramento da ocorrência de pesticidas em três pontos da bacia do Rio Uruguai no município de Uruguaiana e avaliar a toxicidade das águas residuais em sementes de *Cucumis sativus* e *Lactuca sativa*.

2.2. Objetivos Específicos

Determinar parâmetros físico-químicos e a presença de agrotóxicos em amostras de água coletadas em três pontos do rio Uruguai, sendo eles Barragem Sanchuri, Rio Uruguai e do efluente tratado da cidade que deságua no Rio Uruguai por meio de um arroio.

Avaliar o percentual de germinação de sementes de *L. sativa* e *C. sativus* após 24 e 120 horas de exposição às águas residuais coletadas nos três pontos

previamente definidos, e a partir desses dados calcular o índice de germinação percentual normalizado (IGN).

Medir o tamanho da radícula de *L. sativa* e *C. sativus* após exposição às águas superficiais coletadas nos três pontos previamente definidos e empregar esses valores para calcular o índice de alongamento radical residual normalizado (IER) e o índice de porcentagem de alongamento radical residual normalizado.

3. MATERIAIS E MÉTODOS

3.1. Coleta de amostras

As coletas de amostras de águas superficiais foram realizadas no rio Uruguai, na Barragem Sanchuri e no ponto de descarte de efluente tratado da cidade de Uruguaiana. Foram escolhidos 3 pontos com profundidade de no mínimo 15 centímetros de coluna de água. Os locais de amostragem foram selecionados com base em um gradiente de provável recebimento de poluentes. O ponto de coleta 1, Barragem Sanchuri (Figura 2), é um local de fácil acesso para recreação, como banho e pesca, e contribui para a irrigação de lavouras próximas (-29.545071, -56.819373). O ponto 2 (Figura 4) fica na margem do Rio Uruguai em área urbana (-29.545240, -56.819120). O ponto 3, localizado próximo à BR 472, (Figura 4) é o local de despejo de efluentes tratados da cidade de Uruguaiana que seque o curso para o deságue no Rio Uruguai (-29.801213, -57.105086).

As amostras foram coletadas no mesmo dia e acondicionadas em isopor com gelo até o processamento das análises em laboratório.

Figura 2 - Imagem dos pontos de coleta com relação a bacia do Rio Uruguai. Fonte: Autora (2022).

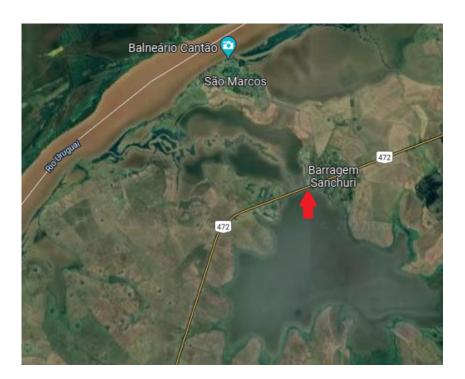


Figura 3 - Imagem de satélite do ponto de coleta na Barragem Sanchuri. Fonte: Autora (2022).

Figura 4 - Imagem de satélite dos pontos de coleta, na margem da bacia do rio Uruguai (ponto 2) e no ponto de despejo de efluente tratado (ponto 3). Fonte: Autora (2022)

3. 2. Análises Físico-químicas

As análises físico-químicas como pH (utilizando o pHmetro de bancada), temperatura (utilizando o pHmetro de bancada) e a determinação de agrotóxicos (utilizando o HPLC-DAD), foram realizadas no Laboratório de Análises Químicas Ambientais e Toxicológicas da UNIPAMPA.

3.3. Determinação de agrotóxicos

As amostras de água superficial dos três pontos foram preparadas a partir de extração em fase sólida, utilizando cartuchos Strata-X (500 mg / 6 mL), os cartuchos foram condicionados com 10 mL de metanol, 10 mL de água destilada e 10 mL de água destilada acidificada pH 1,2. Em seguida, 100 mL de cada amostra corrigida para pH 1,2 foi percolada e eluída com 10 mL de metanol. O eluato foi evaporado em rotavaporador (Buchi) até a secura, e ressuspendido em 1 mL de metanol, para ser analisado em CLAE-DAD.

O equipamento utilizado foi o HPLC-DAD, Young Lin (YL) 9100 (Anyang, Korea) com amostrador automático (YL9150), equipados com bombas quaternárias (YL9110) conectadas a desgaseificador (YL9101) e detector de arranjo de diodos (DAD) (YL9160). Foi utilizada a coluna Inertsil ODS-3 (4,6 × 250 mm) com

temperatura de 35 °C e com um gradiente de eluição composto de acetonitrila (A) e água acidificada até pH 3 com H_2PO_4 (B). O gradiente foi de 30:70 (A:B) até 86:14 (A:B) por 42 minutos, as condições iniciais foram restabelecidas até 44 minutos e seguiram até 50 minutos com fluxo constante de 1 mL/min. A curva de calibração utilizada foi para os compostos, imazetapir, sulfentrazone, diuron, 3,4-dichloroaniline (3,4-DCA), propanil (220 nm), 3,5-dichloroaniline (3,5-DCA) (230 nm), tebuconazole, 2,4-dichlorophenoxyacetic acid (2,4-D) (202 nm) e quinchlorac (254 nm).

Soluções padrões para os 9 pesticidas na concentração de 1.000 mg.L⁻¹ foram preparadas para cada composto separadamente, em seguida foram realizadas diluições apropriadas para a obtenção da solução de trabalho contendo a mistura dos pesticidas na concentração de 100 mg.L⁻¹. A curva de calibração foi construída com 6 pontos entre as concentrações de 0.5 a 10 mg.L⁻¹ para todos os compostos com um n=5 para cada concentração. A equação da regressão linear foi realizada utilizando o software Microsoft Excel 2019.

3.4. Teste de fitotoxicidade

Os ensaios de fitotoxicidade com sementes de *L. sativa* e *C. sativus* foram realizados de acordo com Keddy et al. (1995), com adaptações propostas por Puerari (2014) baseadas nas Regras para Análise de Sementes do Ministério da Agricultura, Pecuária e Abastecimento (BRASIL, 2009). As sementes foram obtidas em uma loja local, sendo todas do mesmo lote, com 90% de germinação e validade até maio de 2023.

O delineamento experimental foi estabelecido com quatro grupos de tratamento sendo o grupo A: controle negativo com água destilada; grupo B: amostra de água do ponto de coleta 1, Barragem Sanchuri; grupo C: amostra de água do ponto de coleta 2, Rio Uruguai; e grupo D: amostra de água do ponto de coleta 3, arroio de despejo de efluente tratado. Para todos os tratamentos foram utilizadas 3 repetições.

O experimento foi realizado conforme protocolos padronizados e metodologias sugeridas pela OECD (2003) e USEPA (1996) com adaptações de Sobrero e Ronco (2004). Foram utilizadas 20 sementes de *L. sativa* e *C. sativus*

alocadas em placas de petri com cinco sementes em cada placa espacialmente distribuídas, sobre papel filtro umedecidos com 1 ml das amostras de cada tratamento. Para garantir a umidade ao longo do desenvolvimento, as sementes, foram regadas diariamente com 1 ml de amostra e as placas tampadas. As condições do ambiente para teste foram: temperatura (23 ± 1 °C) fotoperíodo de 12 h. (12 horas de luz/12 horas no escuro) e tempo total de exposição de 120 h. A taxa de germinação foi avaliada após 24h. Após o período de germinação foram realizadas as medições da radícula e do hipocótilo com a utilização de uma prancha com fundo quadriculado e régua na lateral. Os valores obtidos foram empregados para o cálculo dos índices de germinação percentual e de alongamento radical residual.

Tabela 1- Condições de ensaios para L. sativa e C. sativus. Fonte: Autora (2022)

Organismos teste	L. sativa e C. sativus
Tipo de ensaio	Agudo
Temperatura	23±1 °C
Fotoperíodo	12:12h
Volume soluções teste	1 ml
Nº sementes por tratamento	15
Nº de réplicas	4
Duração de ensaio	120 h
Parâmetros medidos	Germinação; alongamento da radícula e do hipocótilo
Resultado final	IG%; IGN%; IER%;
Controle negativo	Água destilada

3. 5. Análise de toxicidade e tratamento de dados

Na análise de germinação e desenvolvimento de radícula, a partir dos dados de germinação, também foram avaliados os seguintes indicadores: Índice de germinação (IG) (Fórmula 1); Índice de Porcentagem de Germinação Residual Normalizado (IGN) (Fórmula 2); Índice de Porcentagem de Alongamento Radical Residual Normalizado (IER) (Fórmula 3). Os índices IGN e IER são citados por González *et al.* (2011) como indicadores de nível de toxicidade para a *L. Sativa* e

outras espécies vegetais de modo que no trabalho, também foram utilizados para a análise do *C. Sativus*.

1) Fórmula 1: Índice de germinação

$$IG(\%) = \frac{GRS(\%) \times CRR(\%)}{100}$$

Onde,

GRS é a germinação relativa das sementes e CRR é o crescimento relativo da radícula.

$$GRS(\%) = \frac{N^{\circ} de \ sementes \ germinadas \ com \ amostra}{N^{\circ} \ de \ sementes \ germinadas \ no \ controle} \times 100$$

$$CRR(\%) = \frac{Comprimento\ m\'edio\ da\ rad\'icula\ com\ amostra}{Comprimento\ m\'edio\ da\ rad\'icula\ no\ controle} \times 100$$

Fórmula 2: Índice de Porcentagem de Germinação Residual
 Normalizado

$$IGN(\%) = \frac{Germy - Germcontrole}{Germcontrole}$$

Onde,

Germy é a porcentagem média de sementes germinadas em cada amostra e o Germcontrole é a porcentagem de sementes germinadas no controle.

3) Fórmula 3: Índice de Porcentagem de Alongamento Radical Residual Normalizado

$$IER(\%) = \frac{alongy - alongcontrole}{alongcontrole}$$

3. 6. Análises estatísticas

Para a análise estatística dos dados coletados, foi utilizado o programa GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA, EUA). As diferenças entre os grupos tratados e controle foram avaliadas por meio de ANOVA seguido pelo pós-teste de Tukey, considerando nível de significância de 5% (p < 0,05).

4. RESULTADOS E DISCUSSÃO

4.1. Detecção de agrotóxicos

Em todos os pontos foi identificada a ocorrência de imazetapir com concentrações variando entre 70 e 126 μ g/L, e no ponto 2 foi identificada a ocorrência de 2,4-D em valores inferiores a 14 μ g/L (tabela 2).

Composto	Faixa linear (mg/L)	y = ax + b	R²	Ponto 1	Ponto 2	Ponto 3
Imazetapir	0,5 – 10,0	y = 19,871 + 5,0296	0,9988	85,51 μg/L ± 8,9	126,17 μg/L ± 0,6	73,86 µg/L ± 12,00
2, 4-D	0,5 – 10,0	y = 337,29 – 5,5825	0,9979	-	13,8 μg/L ± 0,11	-

Tabela 2. Curva de calibração dos compostos encontrados nas coletas, e valores encontrados de cada agrotóxico. Fonte: Autora (2022)

O 2,4-D é um herbicida seletivo utilizado no controle de plantas daninhas (ANVISA, 2002). O regulamento e as diretrizes da OMS (OMS, 2017) afirmam que 30 μg/L é o valor máximo permitido para 2,4-D na água destinada ao consumo humano. Portanto, as concentrações desse princípio ativo detectadas nas amostras de água dests estudo atendem aos padrões da legislação nacional e internacional. O herbicida 2,4-D apresenta moderado potencial de contaminação das águas superficiais (CABRERA, 2008), pois é facilmente lixiviado pela ação da água das chuvas para dentro dos corpos hídricos (MILHOME et al., 2009).

O imazetapir é um herbicida do grupo químico das imidazolinonas. É utilizado para aplicação em plantas daninhas nas lavouras de arroz, feijão e soja (ANVISA, 2002). A ingestão diária tolerável estimada pela ANVISA é de 0,25 mg/kg/dia, (ANVISA, 2002). No entanto, não há informações sobre NOAEL (nível

máximo de dose sem observação de efeito adverso) e incertezas de uso, efeitos toxicológicos nas espécies animais selecionadas como as mais relevantes e sensíveis.

A partir dos resultados observados com relação a presença de agrotóxicos, maior é possível verificar uma maior concentração desses compostos no ponto 2, que se encontra nas águas do Rio Uruguai. É provável que essa maior presença de agrotóxicos nesse local se deva em função dodp carreamento desses compostos através da lixiviação do solo ou córregos na região devido à grande presença de lavouras, principalmente dedicadas ao cultivo de arroz.

Esses achados podem ser comparados ao descrito por Kuhn (2021) que também realizou a avaliação dos pontos de coleta 1 (Barragem Sanchuri) e 2 (Rio Uruguai) quanto a presença de agrotóxicos em épocas anteriores e posteriores à aplicação destes compostos nas lavouras. Kuhn (2018) mostra que na coleta realizada em agosto, que é a época anterior a aplicação dos agrotóxicos, não foram encontrados resíduos, mas que nos meses de fevereiro e março, em que ocorrem as aplicações dos agrotóxicos s nas lavouras, houve a detecção de 3 pesticidas, o Clomazone, o Imazetapir e o Tebuconazol. No presente trabalho foram detectados 2,4-D e Imazetapir, contudo as coletas foram realizadas no mês de julho (17), fora da época da aplicação desses compostos.

4.2. Análises de toxicidade

O processo de contagem das sementes germinadas foi realizado nas primeiras 24 horas e às 120 horas (Figura 5), no final do experimento.

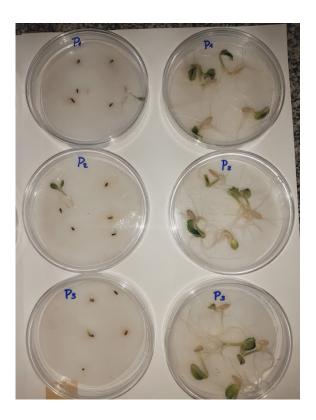


Figura 5 - Germinação e desenvolvimento das radículas de sementes de *C. sativus* (direita) e *L. sativus* (esquerda) expostas as amostras de água provenientes dos diferentes locais de coleta: P1- ponto de coleta 1; P2- ponto de coleta 2; P3-ponto de coleta 3. Fonte: Autora (2022)

A Figura 6 apresenta os resultados da exposição aos diferentes tratamentos sobre os parâmetros de germinação de sementes (Fig. 6A-B) e comprimento de radícula (Fig. 6C-D), onde é possível verificar ausência de diferença significativa tanto em relação ao controle quanto em relação aos diferentes pontos de coleta (p >0,05).

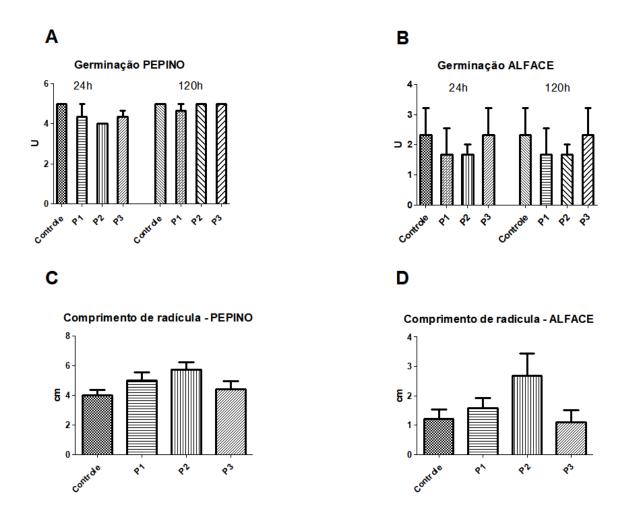


Figura 6. Germinação das sementes de *C. sativus* em 24 horas e 120 horas (A) e de *L. sativa* em 24 horas e 120 horas (B), tamanho de radícula de *C.s sativus* (C) e *L. sativa* (D), ambos após 120 horas. Fonte: Autora (2022)

Amostra	Nº de sementes	Média do nº de	GRS(%)	CRR(%)	IG(%)	IGN(%)	IER(%)	
	expostas	sementes germinadas						
Água								
destilada	20	5,0	-	-	-	-	-	
P1	20	4,3	86,6	128,3	111,2	-0,13	0,40	
P2	20	4,0	80,0	146,6	117,3	-0,20	0,60	
P3	20	4,3	86,6	122,6	97,9	-0,13	0,20	

Tabela 3- Germinação das sementes de *C. sativus*.: Germinação Relativa da Semente (GRS), Crescimento Relativo da Radícula (CRR), Índice de Germinação (IG), Índice de Porcentagem de Germinação Residual Normalizado (IGN), Índice de Porcentagem de Alongamento Radical Residual Normalizado (IER) da *Cucumis sativus*. Fonte: Autora (2022)

Na análise da germinação do *C. sativus* (tabela 3), os valores do IG variaram de 97,901% a 117,333 % dentro dos três pontos de coleta verificados, sendo o menor IG para o ponto de coleta do efluente tratado, e maior para o ponto de coleta no Rio Uruguai. A partir do IGN todas as amostras foram classificadas como um nível baixo (0 < IGN < -0,25) de toxicidade. Já com os resultados de IER as amostras foram classificadas com efeito hormese (IER \geq 0).

De acordo com LI et. al. (2019), muitos estressores ocorrem naturalmente e são necessários para um crescimento saudável ou homeostase. Isso expressa a "doença é a porta de entrada para a saúde" na filosofia yin e yang. Originalmente, um "efeito tóxico" foi definido como um fenômeno em que a exposição a uma substância nociva tem efeitos benéficos em um organismo quando a dose da substância é muito pequena.

Amostra	Média do comprimento do hipocótilo (cm)	Desvio padrão	Porcentagem de inibição (%)
Controle	3,8	1,5	-
1	5,4	2,6	-43,5
2	6,2	2,3	-62,8
3	4,6	2,3	-22,1

Tabela 4 - Média do comprimento; Desvio Padrão e Porcentagem de Inibição do hipocótilo da *C. sativus* para as amostras. Fonte: Autora (2022)

Amostra	Nº de sementes expostas	Média do nº de sementes germinadas	GRS (%)	CRR (%)	IG (%)	IGN (%)	IER (%)
Água destilada	20	5,0	-	-	-	-	-
P1	20	4,3	72,4	61,5	44,5	-0,3	0,84
P2	20	4,0	72,4	75,0	54,3	-0,3	0,79
P3	20	4,3	101,4	32,2	32,7	0	0,01

Tabela 5- Germinação das sementes de *L. sativa L.*: Germinação Relativa da Semente (GRS), Crescimento Relativo da Radícula (CRR), Índice de Germinação (IG), Índice de Porcentagem de Germinação Residual Normalizado (IGN), Índice de Porcentagem de Alongamento Radical Residual Normalizado (IER) da *Lactuca sativus*. Fonte: Autora (2022)

Na análise da germinação de *L.a sativa*, os valores do IG variaram de 32,7% a 54,34% entro os três pontos de coleta, sendo o menor IG para o ponto 3, e o maior, para o ponto 2, seguindo a mesma tendência do índice com as sementes de *C. sativus*. A partir dos dados do IGN as amostras foram classificadas como um nível moderado (-0.25 < IGN < -0.5) de toxicidade nos pontos 1 e 2 e com um efeito de hormese ($IGN \ge 0$) a amostra do ponto 3. Já o IER teve como resultado a classificação de todas as amostras com efeito hormese ($IER \ge 0$).

Amostra	Média do comprimento do hipocótilo (cm)	Desvio padrão	Porcentagem de inibição (%)
Controle	1,0	0,9	-
P1	2,0	1,0	-16,3
P2	1,9	2,0	-123,5
P3	1,1	1,0	-17,9

Tabela 6 - Média do comprimento; Desvio Padrão e Porcentagem de Inibição do hipocótilo da Lactuca sativa para as amostras. Fonte: Autora (2022)

Verifica-se, com os índices apresentados, que não houve toxicidade das amostras acima de nível moderado, como no caso do IGN nos pontos de coleta 1 e 2 com as sementes de *L. sativus*.

Os efeitos estimulantes observados têm sido associados a substâncias tóxicas ou estressantes quando em altas concentrações, mas com efeitos estimulantes e benéficos no organismo em baixas concentrações e produzem uma resposta positiva (SILVA et al., 2020). Podemos vincular este efeito a vários fatores, dentre os quais o IGN forneceu resultados que demonstram um efeito estimulante

no ponto 3 que está localizado no local de descarte do esgoto tratado, conforme mencionado por Oliveira (2021), os resultados obtidos por ele tiveram uma variação significativa com sementes de *L. sativa* em efluente tratado na ETE-Maratoan.

5. CONCLUSÃO

No presente estudo foram utilizadas sementes de *L. sativa* e *C. sativus* para avaliar a fitotoxicidade das águas do Rio Uruguai coletadas em locais vulneráveis a contaminação periódica, especialmente proveniente das lavouras agrícolas em suas proximidades.

Com relação a presença de agrotóxicos foram detectados dois princípios ativos,imazetapir e 2,4-D, ambos comumente utilizados para o manejo das culturas de arroz. A presença desses compostos especialmente no ponto 2 (rio Uruguai) indica que a população pode estar sendo constantemente exposta a baixas doses desses agrotóxicosuma vez que a água desse local é utilizada para o abastecimento da cidade de uruguaina, além de ser um local frequentemente utilizado para recreação e pescaria. Apesar das quantidades encontradas para ambos os agrotóxicos estarem dentro dos padrões estabelecidos pelo RCONAMA (ResoluçãoN° 357, 2005), sua presença em época fora do período de aplicação nas lavoras alerta a necessidade de monitoramento constante para a presença desses compostos ao longo do ano.

Kuhn (2021) também avaliou a presença de agrotóxicos nos pontos de coleta 1 e 2 em épocas de pré e pós dosagem de herbicidas nas lavouras, não tendo detectado a presença de nenhuma substância na época anterior a aplicação. Desse modo, pode-se supor que após a aplicação essas substâncias podem estar sendo acumuladas no solo e com a estação chuvosa sendo carreadas para dentro do rio. Outra hipótese para a presença desses agrotóxicos em época fora do período de aplicação é de que possam ter sido aplicados fora em época não habitual. Juntamente com os dados de avaliação de agrotóxicos nas águas, o trabalho de Kuhn (2021) demonstrou uma variação nos parâmetros biológicos do modelo de estudo *C. elegans*.

No presente estudo, apesar de ter sido detectada a a presença de agrotóxicos, não foram observados resultados significativos que possam ser

sugestivos de toxicidade sobreos dois organismos modelos empregados. A ausência de efeito pode estar relacionado ao fato da coleta ter sido realizada em uma estação chuvosa, uma vez que os compostos pode ter sido diluídos de maneira a não afetar os parâmetros avaliados.

Os índices de toxicidade com relação ao IER demonstraram tanto para *L. sativa* quanto para *C. sativus* um efeito de hormese, mas para o IGN a toxicidade se definiu em um nível baixo para as sementes de *C. sativus* e o mesmo índice para *L. sativa* se mostrou nível moderado nos pontos de coleta 1 e 2, contudo para o ponto de coleta 3 se estabeleceu em hormese.

Lactuca sativa	Ponto de coleta 1	Ponto de coleta 2	Ponto de coleta 3
IGN	nível moderado (-0,25 < IGN < -0,5)	nível moderado (-0,25 < IGN < -0,5)	hormese (IGN ≥ 0)
IER	hormese (IER ≥ 0)	hormese (IER ≥ 0)	hormese (IER ≥ 0)
Cucumis sativus	Ponto de coleta 1	Ponto de coleta 2	Ponto de coleta 3
IGN	nível baixo (0 < IGN < -0,25)	nível baixo (0 < IGN < -0,25)	nível baixo (0 < IGN < -0,25)
IER	hormese (IER ≥ 0)	hormese (IER ≥ 0)	hormese (IER ≥ 0)

Tabela 7 - Resultados dos índices de toxicidade (IGN e IER) com as sementes de *L.a sativa* e *C. sativus* tratadas com amostras de águas superficiais dos três pontos de coleta do estudo. Fonte: Autora (2022)

Destacamos a ameaça que o uso não consciente de agrotóxicos e outros contaminantes pode oferecer aos recursos hídricos, fauna aquática e ao turismo/lazer devido à toxicidade gerada.

6. REFERÊNCIAS BIBLIOGRÁFICAS

ANA – Agência Nacional de Águas (Brasil). **Conjuntura de recursos hídricos no Brasil**: 2011. Brasília: ANA, 2011a.

ARINS, A. L. V. B. **Bacias hidrográficas e aquíferos do Brasil**. Estágio Curricular (Curso de Engenharia de Produção e Sistemas) – Universidade do Estado de Santa Catarina, Joinville, SC, 2010.

BELMONTE, Andressa; KUHN, Eugênia Carla; DE AVILA, Daiana Silva. MONITORAMENTO ECOTOXICOLÓGICO DA BACIA DO RIO URUGUAI MÉDIO ATRAVÉS DO MODELO ALTERNATIVO CAENORHABDITIS ELEGANS. Anais do Salão Internacional de Ensino, Pesquisa e Extensão, v. 11, n. 2, 2019.

BENITES, Leonardo Munhoz et al. **Avaliação do potencial mutagênico de cobre da água do rio Uruguai**. Ciência e Natura, v. 36, n. 2, p. 107-113, 2014.

BRASIL. **Política Nacional do Meio Ambiente**. Lei nº 6.938, 31 de agosto de 1981. Brasília-DF, 1981. Disponível em:http://www.planalto.gov.br/ccivil_03/LEIS/L6938.htm. Acesso em: 30 jan. 2022.

CABRERA, Liziara; COSTA, Fabiane Pinho; PRIMEL, Ednei Gilberto. Estimativa de risco de contaminação das águas por pesticidas na região sul do estado do RS. Química Nova, v. 31, p. 1982-1986, 2008.

CHARLES, J. et al. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicology and Environmental Safety, v. 74, p. 2057-2064, 2011.

CLAVIJO, A. et al., **The nematode** *Caenorhabditis elegans* as an **integrated toxicological tool to assess water quality and pollution**. Science of the Total Environment. v. 569. p. 252–261. 2016.

CONNELL, D.W. and Miller, G.J. (1984), "Chemistry and Ecotoxicology of Pollution", John Wiley & Sons, New York.

COSTA, C. R. et al. **A toxicidade em ambientes aquáticos: discussão e métodos de avaliação**. Química Nova. Ribeirão Preto, v. 31, n. 7, p. 1820-1830, out./2007 – jan./2008.

CUNHA, Bruna Müller da. **Avaliação ecotoxicológica de distintos tipos de** efluentes mediante ensaio de toxicidade aguda utilizando artemia salina e lactuca sativa. 2011.

DA SILVA, Sônia Maria et al. **Aspectos microbiológicos do arroio Salso de Cima e Rio Uruguai, na região urbana de Uruguaiana**, RS, Brasil. Biodiversidade Pampeana, v. 6, n. 1, 2008.

EPA U. S. ENVIRONMENTAL PROTECTION AGENCY. **Ecological effects test guidelines** (OPPTS 850.4200): Seed germination/ root elongation toxicity test. 1996.

FISKESJÖ, Geirid. **The Allium test as a standard in environmental monitoring**. Hereditas, v. 102, n. 1, p. 99-112, 1985.

FRANCO, Heider Alves et al. **Ecotoxicidade de lixiviado de aterro** sanitário na germinação de sementes de alface (*Lactuca sativa L.*) e pepino (*Cucumis sativus L.*). Revista de Estudos Ambientais, v. 19, n. 1, p. 36-43, 2017.

GRANT, William F. Chromosome aberrations in plants as a monitoring system. Environmental Health Perspectives, v. 27, p. 37-43, 1978.

GUEVARA, Miguel David Fuentes et al. **Fitotoxicidade em águas** residuárias domésticas utilizando sementes como bioindicadores. Revista DAE, v. 67, p. 44-51, 2019.

KUHN, Eugênia Carla et al. **Ecotoxicological assessment of Uruguay River and affluents pre-and post-pesticides' application using Caenorhabditis elegans for biomonitoring**. Environmental Science and Pollution Research, v. 28, n. 17, p. 21730-21741, 2021.

LI, Xin; YANG, Tingting; SUN, Zheng. Hormesis in health and chronic diseases. **Trends in Endocrinology & Metabolism**, v. 30, n. 12, p. 944-958, 2019.

MEYER, B. N. et al. **Brine shrimp: a convenient general bioassay for active plant constituents**. Planta medica, v. 45, n. 05, p. 31-34, 1982.

MILHOME, Maria Aparecida Liberato et al. **Avaliação do potencial de contaminação de águas superficiais e subterrâneas por pesticidas aplicados na agricultura do Baixo Jaguaribe**, CE. Engenharia Sanitária e Ambiental, v. 14, p. 363-372, 2009.

MMA – Ministério do Meio Ambiente. **Resolução nº 357 do CONAMA** (Conselho Nacional do Meio Ambiente). Disponível em . Acesso em 30 agosto. 2022.

OECD: **OECD guideline for the testing of chemicals proposal for updating guideline** 208. Terrestrial Plant Test: 208: Seedling Emergence and Seedling Growth Test 37-41, 2003.

OLIVEIRA, Jhulia Fabrinny Rodrigues. **Avaliação ecotoxicológica do** efluente da ETE-MARATOAN utilizando sementes de *Lactuca sativa L.* e *Cucumis sativus L.* 2021.

PEREIRA, Márcio Paulo et al. **Fitotoxicidade do chumbo na germinação e crescimento inicial de alface em função da anatomia radicular e ciclo celular.** Revista Agro@ mbiente On-line, v. 7, n. 1, p. 36-43, 2013.

PESSANO, E. F. C., et al. **Análise Da Atividade Pesqueira No Rio Uruguai Médio**, Diante Do Panorama Da Associação De Pescadores De Uruguaiana, RS –
Brasil. Biodiversidade Pampeana, v. 6, n. 2, p. 49-62, 2008.

RODRIGUES, Luiz C. de A. et al. **Fitotoxicidade e citogenotoxicidade da água e sedimento de córrego urbano em bioensaio com** *Lactuca sativa*. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, p. 1099-1108, 2013.

SALEM, F. B. el at., Pesticides in Ichkeul Lake-Bizerta Lagoon Watershed in Tunisia: use, occurrence, and effects on bacteria and free-living marine nematodes. Environmental Science and Pollution Research. v.23, p. 36–48. 2016.

SILVA, S. M. et al. **Aspectos Microbiológicos Do Arroio Salso De Cima e Rio Uruguai, Na Região Urbana De Uruguaiana**, RS, Brasil. Biodiversidade Pampeana. v. 6, n.1, p. 34-39, 2008.

STEINKELLNER, H et al. **Genotoxic Effects of Heavy Metals**: Comparative Investigation With Plant Bioassays. Environmental and Molecular Mutagenesis. [S. I.]. v. 31, n. 2, p. 183-191, 1998.

TECHIO, Vânia Helena et al. Karyotipic asymmetry of both wild and cultivated species of Pennisetum. Bragantia, v. 69, p. 273-279, 2010.

USEPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY – Seed Germination/ Root Elongation Toxicity Tests. Ecological Effects, Tests Guidelines, 1996.