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RESUMO

Neste trabalho apresentamos publicações relevantes no campo de simulação de cabelos, com

foco em simulações em tempo real, no contexto de Computação Gráfica. Também explicamos

o framework de simulação PBD e mostramos como foi usado para simular cabelos. O ponto

central de nosso trabalho é a formulação de uma constraint que permite manter a forma dos fios

de cabelo durante a simulação. Apresentamos, também, os resultados quantitativos e qualitativos

de nossa contribuição.

Palavras-chave: Física em tempo real, Simulação de cabelos, Position-based dynamics



ABSTRACT

In this work we present relevant publications in the field of hair simulation, with focus on

real-time simulations, in the context of Computer Graphics. We also explain the simulation

framework PBD and show how it was used to simulate hair. The central point of our work is the

formulation of a constraint that allows the hair strands to keep their shape during the simulation.

We also present the quantitative and qualitative results of our contribution.

Keywords: Real-time physics, Hair simulation, Position-based dynamics
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1 INTRODUCTION

This work is fruit of the curiosity to understand more deeply how real-time hair simulation works.

What began as a personal project eventually evolved into this Masters dissertation, and as we

studied the topic, the relevance of our research became even more apparent.

Whenever there is a human character or some other fur-covered creature portrayed in a

computer generated image, there is the need to represent visually what hair looks like. That’s not

a trivial task, since there are between 100.000 and 120.000 strands of hair in the human head,

with each hair strand measuring between 40𝜇𝑚 and 120𝜇𝑚 in diameter (Rosenblum et al., 1991).

The challenge is even bigger if we need not just a single image, but a sequence of images in form

of an animation, because now we need to emulate the motion of hair, which can be influenced by

many things, such as hair length, water and humidity, wind, and collision among the hair strands

and other objects. Add to that the time budget available to real-time and interactive applications,

which is at most 33𝑚𝑠 per frame (Akenine-Möller et al., 2018), and we’ve got in our hands a

pretty interesting challenge.

How realistic should be the motion of the hair, or how much artistic freedom should

one have when styling a character’s hair, depends much on the application for which it’s being

used. For instance, in animation feature movies such as Tangled (Walt Disney Animation Studios,

2010) and Brave (Walt Disney Animation Studios, 2012), hairstyle and movement are important

aspects of storytelling (see Figure 1.1). On the other hand, there are several applications of

Computer Graphics outside the entertainment industry that would benefit from enhanced realism

that comes from natural motion of hair.

The use of virtual reality is ever more common in education and professional training

(Renganayagalu et al., 2021), as well as in therapy and other health-related activities (for example,

see Hoffman et al. (2020), Smith et al. (2020) and Emmelkamp and Meyerbröker (2021)). Many

of the works cited in this paragraph mentions that one of the shortcomings of VR in therapy and

education is the poor feeling of social presence and place illusion caused by technical limitations.

Zibrek and McDonnell (2019) showed evidence that photorealistic characters can improve such

feelings. Therefore, techniques that enable simulation of natural hair motion in VR applications

can improve the efficacy of education and health tools that use that medium.

Many works have been published in the last three decades about techniques to simulate

hair movement and the many ways it can interact with the environment. Those techniques vary in

levels of realism, artistic freedom and compute efficiency. Our work will focus on approaches

Figure 1.1: Examples of hair as part of storytelling. On the left: Rapunzel from the movie Tangled. On the right:
Lord Dingwall and Lord Macintosh from the movie Brave
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based on Position-Based Dynamics (PBD) (Müller et al., 2007) and will present an improvement

to an existing approach, so that hair can keep its curls and hairstyle.

This work has the following structure: in Chapter 2 we will present some notation

conventions and fundamental concepts of Computer Graphics and real-time simulations. In

Chapter 3 we’ll discuss some of the most relevant works related to hair simulation, with focus on

approaches that are suited for real-time and interactive applications. Chapter 4 will expose in

detail what is Position-Based Dynamics and how it has been used to simulate hair. In Chapter 5

we will present our contribution: a new way to maintain hair shape using PBD. Implementation

details will be discussed in Chapter 6. In Chapter 7 we will outline and evaluate our results.

Finally, in Chapter 8 we will present the conclusion of our work, reviewing our contribution, its

results and opportunities for future studies.
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2 NOTATIONS AND CONCEPTS

Before we can start discussing hair simulation and the many techniques developed to solve the

challenges related to it, we will present some notation conventions that we’ll use throughout

this text, as well as some core concepts in Computer Graphics and real-time simulation that are

necessary for the reader to follow this dissertation.

2.1 NOTATION CONVENTIONS

A lowercase roman letter or Greek letter in italics (for example: 𝑎,𝑥, 𝜆, etc.) represents a scalar
value, with exception of Greek letters that have special meaning in Mathematics, such as Δ, which

denotes variation or change, ∇, which represents the gradient of a function, and ∇2, commonly

used to represent the Lagrangian multiplier. A lowercase roman letter or Greek letter in italics

with a hat represents an angle (e.g. �̂�, 𝛽).

A lowercase roman letter in boldface (for example: v) represents a vector. In this text,

a vector is usually a 3D vector (in other words, it is defined in R
3), unless stated the contrary.

Vectors can be interpreted either as directions or positions in 3D space. v.𝑥, v.𝑦 and v.𝑧 represents

the first, second and third components of such vector. An uppercase roman letter in boldface (e.g.
M) represents a matrix. Any other type of diacritics besides the one defined above is used only

as means of distinction (e.g. x̃).

A subscript in the right-hand side (𝑚𝑖) is used for indexing, whereas a right-hand side

superscript (v𝑖+1) denotes different time-steps or iterations in the simulation. A superscript prime

or star on the right (x′, x∗) or a left-hand side superscript might be used ad hoc.

2.2 DEFINITIONS AND CONCEPTS

Now we will present definitions and assumptions for some terms, which might be different from

other fields. We’ll also explain some fundamental concepts in Computer Graphics.

2.2.1 Real-time

In the book "Real-Time Rendering, fourth edition", Akenine-Möller et al. (2018) wrote:

Real-time rendering is concerned with rapidly making images on the computer.

It is the most highly interactive area of computer graphics. An image appears on

the screen, the viewer acts or reacts, and this feedback affects what is generated

next. This cycle of reaction and rendering happens at a rapid enough rate that

the viewer does not see individual images, but rather becomes immersed in a

dynamic process.

While this quote specifically addresses rendering, simulations of any kind are part of

the feedback loop described above. The authors continue by stating that at 6 FPS there starts to

be a sense of interactivity. 24 FPS is the rate at which projectors show frames. Video games aim

for at least 30 FPS, and VR applications need at least 90 FPS to not cause discomfort to users.

If we consider that lowest FPS rate acceptable for a game or other interactive application

is 30 FPS, it gives us at most 30𝑚𝑠 to process input, run simulations for next frame, apply updates

in the scene and render the result.
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2.2.2 Numerical integration of differential equations

Complex physical phenomena can be described by differential equations. It’s not rare for such

equations to not have an exact analytical solution, so the alternative we have is to solve them

using a numerical integration method, which is a way to approximate the result by iteratively

converging towards the exact solution.

How fast we can reach a result within an acceptable error margin or how resilient to

approximation errors our result can be depends on the method used. For instance, let’s consider

that Y(𝑡) describes the state of a physical system at moment 𝑡 and that we want to compute the

state of the system in a later moment Y(𝑡 + Δ𝑡). An explicit integration method would use the

previous state to compute the next:

f (Y(𝑡)) = Y(𝑡 + Δ𝑡).

On the other hand, an implicit method would solve an equation using both the previous

and the next state:

g(Y(𝑡), Y(𝑡 + Δ𝑡)) = 0.

Implicit methods usually require more computation to solve a time step, however, they

don’t suffer as much from numerical stiffness as explicit methods, which requires impractically

small time steps Δ𝑡 to maintain error bounded. There are other types of integration methods and

more nuances to each one of those types, but a complete analysis of them goes beyond the scope

of this work.

2.2.3 Simulation

Also known as physics-based animation. One usually resorts physics simulation in Computer

Graphics when the desired motion or deformation is too complex to be done manually, such as

the motion of a fluid, the shattering of an object or the deformation that happens with cloth.

While in Engineering and Physics precision is paramount, in Computer Graphics some

inaccuracy in the solution is tolerable as long as it looks correct, it is efficient to compute and it is

stable. Marschner and Shirley (2018) explain what a stable solution is in the book "Fundamentals

of Computer Graphics, fourth edition":

Stability of a difference scheme [also known as "integration method"] is related

to how fast numerical errors, which are always present in practice, can grow

with time. For stable schemes this growth is bounded, while for unstable ones

it is exponential and can quickly overwhelm the solution one seeks [...]. It

is important to realize that while some inaccuracy in the solution is tolerable

[...], an unstable result is completely meaningless, and one should avoid using

unstable schemes.

2.2.4 Polygonal Mesh

There are many ways to represent an object in three dimensional space. One could use signed
distance fields (SDFs), curves, polygonal meshes, among others (Akenine-Möller et al., 2018).

Polygonal meshes are one of the most common methods used in games and movies due to its

versatility.

In this representation, the surface of the object is discretized by vertices, which are

points in 3D space. Those points are connected by edges, forming polygons called faces. Faces
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Figure 2.1: A 3D monkey head represented by a polygonal mesh

are usually triangles, but they can have any arbitrary shape. One vertex can be part of many faces,

resulting in a mesh, hence the name (see Figure 2.1).

While we’re in topic of surface representation, it might be useful to expand our mention

on curves. Instead of using vertices and edges to form faces and create a mesh that discretizes a

surface, we can have a sequence of control points that produces a curve. By expanding this idea

to a mesh of control points, one can interpolate a surface that is continuous. How the control

points will be used to calculate the curve and the surface depends on the type of schema used.

For instance, the most common types of curves in Computer Graphics are: Bézier Curves,
Quadratic and Cubic B-Splines and Non-Uniform Rational B-Splines (NURBS). The reader

may consult Salomon (2007) for more details about each type of curve.

2.2.5 Affine Transformations and Homogeneous Coordinates

Linear algebra gives us the tooling to place an object in a scene. By multiplying each vertex of the

object’s mesh by a 3 × 3 transformation matrix, we can scale and rotate the object. However, as

noted by Marschner and Shirley (2018), we cannot translate an object using only a 3 × 3 matrix.

The standard way of implementing affine transformations (rotation, scaling, translation,

shearing, etc.) is by using a 4×4 transformation matrix and homogeneous coordinates. Suppose

we have a 3 × 3 transformation matrix M that represents some rotation and scaling we want to

perform in a vertex v:

Mv = v′ (2.1)

Now, if we also want to translate the same vertex by

t =
⎡⎢⎢⎢⎢⎣
Δ𝑥
Δ𝑦
Δ𝑧

⎤⎥⎥⎥⎥⎦
we would need to sum both vectors:
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v + t = v′′ (2.2)

The way of doing both transformations in one single operation is to create a new

transformation matrix M′ ∈ R
4×4 with the elements of M plus the elements of t (Equation 2.3)

and convert v to its homogeneous form v∗ ∈ R
4 (Equation 2.4). To convert a vector in R

3 to its

homogeneous form, we simply set the last element of the homogeneous vector to 0 if the vector

represents a direction (not affected by translation), or to 1 if the vector represents a position

(affected by translation).

M′ =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑚11 𝑚12 𝑚13 Δ𝑥
𝑚21 𝑚22 𝑚23 Δ𝑦
𝑚31 𝑚32 𝑚33 Δ𝑧
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(2.3)

v∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

v.𝑥
v.𝑦
v.𝑧
1

⎤⎥⎥⎥⎥⎥⎥⎦
(2.4)

We can understand better why it works by expanding and manipulating the equation

M′v∗ = v′′′:

M′v∗ = v′′′ (2.5)⎡⎢⎢⎢⎢⎢⎢⎣

𝑚11 𝑚12 𝑚13 Δ𝑥
𝑚21 𝑚22 𝑚23 Δ𝑦
𝑚31 𝑚32 𝑚33 Δ𝑧
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
·
⎡⎢⎢⎢⎢⎢⎢⎣

v.𝑥
v.𝑦
v.𝑧
1

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝑚11v.𝑥 + 𝑚12v.𝑦 + 𝑚13v.𝑧 + Δ𝑥
𝑚21v.𝑥 + 𝑚22v.𝑦 + 𝑚23v.𝑧 + Δ𝑦
𝑚31v.𝑥 + 𝑚32v.𝑦 + 𝑚33v.𝑧 + Δ𝑧

1

⎤⎥⎥⎥⎥⎥⎥⎦
(2.6)

=

⎡⎢⎢⎢⎢⎢⎢⎣

v′.𝑥 + Δ𝑥
v′.𝑦 + Δ𝑦
v′.𝑧 + Δ𝑧

1

⎤⎥⎥⎥⎥⎥⎥⎦
(from Eq. 2.1) (2.7)

2.2.6 Parenting 3D Objects

It’s extremely common in video games and animations to have the transformation of one object

being dependent of the transformation of another. For example, if there is a character holding a

sword, the sword’s transformation depends, among other things, on the character’s transformation.

In this example, it’s said that the sword is a child of the character and that character is the sword’s

parent.
Now armed with transformation matrices and homogeneous coordinates, we can express

this dependency relationship by having the children’s transformation matrices being relative to

their parents. To place an object in a scene, we must transverse this parent-child relation graph,

also called scene graph (Marschner and Shirley, 2018), multiplying the transformation matrices

along the way.

To make it clearer, suppose we have a scene with a camera, a character with a hat and a

tree. Figure 2.2 illustrates the scene graph for such scene. We can know where to place the hat’s

vertices in the scene with this expression M𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟Mℎ𝑎𝑡v.



17

Figure 2.2: Scene graph example

2.2.7 Particles

In Computer Graphics, a particle is a point in 3D space with one or more attributes, such as

mass, velocity, age, etc. Many of the simulation techniques that we’ll discuss in this work use

some type of particles. It’s also interesting to notice that the vertices of a mesh can be treated as

particles during a simulation.

2.2.8 Graphics Pipeline and Shaders

There are many graphics APIs that make the work of rendering objects a little easier. The

most popular of them are OpenGL and its successor Vulkan (both cross-platform), DirectX

(Windows specific) and Metal (Apple specific). All these APIs define graphics pipelines, which

can be defined as "special software/hardware subsystem that efficiently draws 3D primitives in

perspective" (Marschner and Shirley, 2018). The graphics pipeline perform a series of operations,

starting with some data (such as vertices positions) and ending by updating the pixels in an image,

usually displayed in a screen. These APIs make graphics programming a somewhat easier by

abstracting away some hardware-specific aspects and leveraging GPU features such as triangle

intersection and triangle rasterization under the hood.

While the main structure of the pipeline is fixed, there are some parts that can be

customized with shaders, which are simply programs written in a programming language (such

as GLSL or HLSL) that will be compiled for the GPU. There are also shaders that can be executed

outside a graphics pipeline and don’t have a predefined role, in other words, they don’t need to fit

in a pipeline with predefined inputs and outputs. That type of shader is called compute shader.

2.3 CONCLUSION

With our notation conventions defined and the fundamental concepts outlined, we are ready

to discuss previous works related to real-time hair simulation (Chaps. 3-4) and to explain our

contribution to this field (Chaps. 5-7).
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3 RELATED WORKS

One of the first published works about hair simulation was written more than thirty years ago

(Rosenblum et al., 1991). It described not only how to simulate hair but also how to model and

render it (those two topics evolved now to become research branches of their own). Although

the simulation procedures described there are simple and, to a certain degree, inefficient, they

laid the foundation to almost all the works that came later, either by people looking for ways to

improve it or by people that were looking for alternative approaches.

In this chapter we will discuss the aforementioned work, as well as other works that

might offer a panorama of the field of hair simulation, with an emphasis, as expected, in real-time

techniques. However it will not be a comprehensive survey on the field because that is not the

goal of this dissertation.

Unfortunately there seems to be a lack of systematic reviews about hair simulation:

besides the brief review of the state of the art present in research papers, the only in-depth review

of the topic that we know of was published almost twenty years ago (Ward et al., 2007). A

more recent survey focused on hair modeling (Yang, 2024) cites briefly some works about hair

simulation.

We can separate the works on hair simulation in two main groups: the ones that present

techniques to simulate individual hair strands and the ones that treat hair collectively. There are

also some works that fall in between these two groups. We could say that all of them could be

placed on a scale where, on one end, we have the finest detail at a high computational cost and,

on the other, the coarsest detail with the highest efficiency. This idea is illustrated in Figure 3.1.

From our studies, we identified that every work followed one of two trends: either

advance what "the finest" and most physical-accurate details possible are; or optimize performance,

realism and artistic freedom.

As examples of works that follow the first trend, we mention Bertails et al. (2006), which

developed one of the first approaches to realistically simulate curls and strand torsion, and Fei

et al. (2017), which presented a novel technique to simulate the interactions of hair and liquids

(see Figure 3.2).

On the other hand, Yuksel et al. (2009) created a technique that allows artists to create

arbitrarily complex hairstyles and perform basic real-time simulations with it. Later, Wu and

Yuksel (2016) improved the simulation capabilities of such technique. Another example is the

Figure 3.1: Hair simulation techniques in a scale of detail and computational cost
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Figure 3.2: The clumping effect of wet hair (Fei et al., 2017)

Figure 3.3: Mass-spring scheme by Rosenblum et al. (1991)

work by Jiang et al. (2020), which introduces a new hybrid integration method that achieves

realistic simulations in real-time.

Now we’ll dive deeper in each one of the two groups mentioned at the beginning of this

chapter, describing in more details the works presented. We will also try to place them in the

scale represented in Figure 3.1, as well as identify which trend each work seems to follow.

3.1 STRAND-BASED SIMULATION

In this section, we’ll present works that describe techniques and frameworks that simulate

individual hair strands. Some of those works simulate every single hair strand, while others

simulate a small number of them, which are usually called guide strands, and interpolate the

rest from the guide strands.

Rosenblum et al. (1991) presented a technique that sought to simulate every strand of

hair, placing it in the left-most end of the scale in Figure 3.1. They represented the hair strands as

chains of particles interconnected by springs, which is an instance of a mass-spring system (Fig.

3.3). Their simulation method is simple to implement and was a pioneer in the field, however, it

suffers from numerical instability if the time step is not small enough. That happens because the

authors used forward Euler, an explicit numerical method, to integrate particles’ positions. This

limitation is intensified by the fact that the springs connecting the particles must be very stiff to

prevent shrinking and stretching of the hair strands, therefore requiring even smaller time steps.

One technique that pushed the left end of the scale further and that also uses the

mass-spring was published by Selle et al. (2008). In that work, the authors managed to simulate

thousands of hair strands using a new spring layout (Fig. 3.4) and a new semi-implicit integration

method (in opposition to forward Euler’s explicit method). Their technique is able to simulate
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Figure 3.4: Mass-spring scheme by Selle et al. (2008)

Figure 3.5: Hair simulation by Jiang et al. (2020)

realistically torsion, bending and inextensibility characteristic of hair strands, however it took

the authors several minutes to simulate a single frame. It is interesting to notice that their

simulations ran on a multi-core CPU, therefore, porting their implementation to GPU could allow

this technique to run in real-time.

Naturally, the next step for mass-spring hair simulations would be to simulate a full

head of hair in real-time. Jiang et al. (2020) achieved this feat by innovating in the integration

method. They proposed a framework that produces realistic hair dynamics with self-collisions

and other volumetric phenomena (see Fig. 3.5). The authors linearized the implicit Euler

method to integrate position of the particles and used a Eulerian/Lagrangian hybrid to handle

self-interactions. All of that was done in a way that it is efficient to be computed with the parallel

architecture of GPUs.

Still in the topic of mass-spring simulations, but now going towards the middle of the

scale in Figure 3.1, we have a work (Chai et al., 2014) that presents a data-driven technique to

achieve detailed hair simulation in real-time. In contrast with the works previously described,

this one does not attempt to simulate every single strand of hair in real-time. It rather simulates

only a few guide strands and then interpolates the rest using a a machine learning model. The

guide strands are selected by an algorithm that finds which strands would be the best guides,

and the model is trained on simulation data generated beforehand. This framework was later

improved by Chai et al. (2016) to handle interpolation of hair strands in scenarios with complex

collisions and interactions (see Figure 3.6).

Mass-spring systems are probably the most used representation for hair strands in hair

simulations. However, there are other approaches that are worth mentioning. One of such is the

work by Bertails et al. (2006). It represents hair strands as elastic rods, named "Super-Helices"

by the authors, and draws from Cosserat and Kirchhoff theory of rods instead of Hooke’s law of

elasticity. This technique is able to simulate many types of hair (straight, curly, clumpy, etc.), but

is not well suited for real-time simulation. At its time of publication, the way it handled bending,

torsion and bending was a novelty, however we can’t place this work in the extreme left end of
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Figure 3.6: Complex collisions with hair (Chai et al., 2016)

the scale (Fig. 3.1) due to the fact that the authors interpolated some of the hair strands after

simulating the guide strands.

There are also some works that are based on Position-Based Dynamics (PBD) framework.

Since the subject of research of this dissertation is also based on PBD, we’ll only mention briefly

those works for now, because they will be explained in depth in the next chapter.

The first works about PBD hair simulation were published in the same year by Han and

Harada (2012) and Müller et al. (2012). Even if both works are based on the same framework, they

employ different strategies to solve the same challenges related to hair simulation. For example,

while Han and Harada (2012) use many iterations per frame to preserve inextensibility, Müller

et al. (2012) propose a modification in the PBD algorithm. Some time later, Sánchez-Banderas

et al. (2015) combine the best of each technique in order to improve PBD hair simulation. We

must remark that, although all those works produce realistic results in real-time, they are not

the most accurate when it comes to physics fidelity. The works by Han and Harada (2012) and

Müller et al. (2012) don’t interpolate any hair strand, while the technique by Sánchez-Banderas

et al. (2015) interpolates some of them. Going back to our scale in Figure 3.1, the first two works

could be placed in the left side of the scale, but not in the extreme left due to the limited physical

rigor. The last work would also be in the left side, but placed near the middle.

3.2 GROUP-BASED SIMULATION

Now we are going to present some works that don’t simulate individual hair strands, instead, they

try to capture the global hair dynamics, or in some cases, the local dynamics of groups of hair.

The techniques in this section would be placed after the dashed line in the scale (Fig. 3.1).

One way to achieve simple hair dynamics is to simulate hair strips (Guang and Huang,

2002), which are strips of polygonal mesh or surfaces generated by curves (Liang and Huang,

2003) textured as hair wisps (Fig. 3.7). This approach can be used in real-time applications with

little computational cost, since the number of objects simulated is extremely small. However it is

limited to straight hair and simple hair motion, and the illusion of a head full of hair falls apart if

viewed too close.

Around the same time, another approach was developed. It simulates hair dynamics by

simulating wisps in a layered fashion (Plante et al., 2001): in the first layer, the skeleton curve

(similar to a guide strand) moved according to a spring-mass system. This determines the global

movement of the hair wisp. Then, in the second layer, a polygonal mesh around the skeleton curve
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Figure 3.7: Representation of hair by Liang and Huang (2003)

Figure 3.8: Scheme of polygonal mesh around a skeleton curve (Plante et al., 2002)

(called wisp envelope by the authors) is animated using another spring-mass system, capturing

the wisp deformations. Finally, in the third layer, individual hair strands are generated inside the

envelope. This approach was further improved by Plante et al. (2002) (see Fig. 3.8).

Still on the theme of generating hair strand from the inside of a polygonal mesh, Yuksel

et al. (2009) presented a framework called "Hair Mesh", which gives the artist using it great

control and the ability to create very complex hairstyles. This framework allows the artist to

model the hairstyle by extruding faces of a polyhedron following some specific constraints.

After the modeling phase, an algorithm fills the extruded mesh with hair strands, according to

parameters specified by the artist. Different parameters might give different results from the

same hair mesh, as seen in Figure 3.9. Initially, the authors managed to simulate hair dynamics

by treating the vertices of the hair mesh as chains of rigid bodies. Hair mesh simulation was

later improved by Wu and Yuksel (2016). In the new version, the authors used sheet-based cloth

simulation models and introduced a new volumetric force model to handle collisions better.

There is also an approach that could be considered a hybrid between strand-based and

group-based simulation: simulate hair strands individually but at the same time, treat the hair

as a continuum fluid. Hadap and Magnenat-Thalmann (2001) were one of the first to take that

approach. They modeled hair-hair, hair-body and hair-air interactions using smoothed particle

hydrodynamics (SPH) and the hair geometry in a strand-by-strand fashion using elastic fiber

dynamics.
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Figure 3.9: Hair meshes (Yuksel et al., 2009)

3.3 CONCLUSION

Now that wee have a panorama of the field of hair simulation, we’ll dive deeper in PBD hair

simulation in the next chapter by explaining our motivation to study that simulation framework,

how it works and how it was used to simulate hair dynamics. After that, in Chapter 5, we will

discuss our contribution to that family of hair simulation.
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4 POSITION-BASED DYNAMICS

As mentioned in the Introduction of this dissertation, this work is simply a fruit of curiosity, and

so was the choice to explore Position-Based Dynamics. It is conceptually simple and easy to

understand and to modify and expand. In fact, that was the main motivation of choosing to work

with PBD. In the beginning of this Master’s degree, we considered using the simulation scheme

by Selle et al. (2008), however, when we discovered the work by Müller et al. (2012), we decided

to make it our main research subject, as it is more beginner-friendly. Only after many months

"playing around" with PBD is that we came to know the works of Han and Harada (2012) and

Sánchez-Banderas et al. (2015).

In this chapter we will explain what PBD is and will discuss the details of each of the

works mentioned above.

4.1 INTRODUCTION TO POSITION-BASED DYNAMICS

PBD was first introduced by Müller et al. (2007) as a simulation framework that is stable, robust

and fast to compute, which are characteristics that many times are preferred over accuracy in

real-time applications. While many techniques for simulating dynamic objects work with forces

or impulses, this approach works with the position of the dynamic bodies (hence the name).

According to the authors:

[...] The main features and advantages of position based dynamics are

• Position based simulation gives control over explicit integration and removes

the typical instability problems.

• Positions of vertices and parts of objects can directly be manipulated during the

simulation.

• The formulation we propose allows the handling of general constraints in the

position based setting.

• The explicit position based solver is easy to understand and implement.

In this framework, the main components that drive the types of dynamics being simulated

are the constraints, which are, in short, functions that represent numerically how off the state of

a dynamic body is from what it should be. For example, if we want to simulate particles colliding

with a plane surface, we can devise a constraint (function) that returns how far the particle has

penetrated into the plane. From the value returned by the constraint, we can apply corrections to

the particle’s position accordingly. If we correct so that the constraint is fully satisfied, we call it

a hard constraint, otherwise it is a soft constraint.
In PBD, the way to implement a soft constraint (which is commonly used in soft-body

and elastic simulations) is to have a stiffness parameter that behaves like the factor of a linear

interpolation between fully enforcing the constraint and ignoring it. A limitation of this approach

is that the stiffness of a constraint is dependent on the size of the time step, leading to a inconsistent

behavior if it varies throughout the simulation.

To remedy that, Macklin et al. (2016) proposed an improvement to PBD and called

it Extended Position-Based Dynamics (XPBD). This new version of PBD updated the general

formula of constraints and introduced the concept of a total Lagrange multiplier so that soft
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constraints could be solved independent of time step. XPBD, therefore, has correspondence to

well-defined elastic and dissipation energy potentials.

Since the derivation of XPBD is considerably different from PBD, the simulation solver

would also end up being very different and it wouldn’t benefit from the simplicity and performance

of PBD. To address that, some approximations were made. Although XPBD is not an exact

solver for dynamic objects, the authors demonstrated that the error can be negligible for most

applications and that, given enough iterations, it converges closely to the exact result. Some

time later, Macklin et al. (2019) made the discovery that performing sub-steps results in better

convergence than iterating over the constraints multiple times in one single time step.

4.1.1 The XPBD Algorithm

Algorithm 1 XPBD algorithm

1: // Simulation loop

2: loop
3: Δ𝑡𝑠 ← Δ𝑡

𝑛𝑠𝑢𝑏𝑠
4: for all elements 𝑖 do
5: 𝑛 ← 0

6:

7: while 𝑛 < 𝑛𝑠𝑢𝑏𝑠 do
8: predict inertial state 𝑥𝑖 // see Eq. 4.1

9:

10: for all constraints 𝑗 do
11: compute Δ𝜆𝑖 𝑗
12: compute Δx𝑖
13:

14: update 𝑥𝑖 ← 𝑥𝑖 + Δx𝑖
15: end for
16: update state x𝑛+1

𝑖 ← 𝑥𝑖

17: update velocity v𝑛+1
𝑖 ← x𝑛+1

𝑖 − x𝑛𝑖
Δ𝑡𝑠

18: 𝑛 ← 𝑛 + 1

19: end while
20: end for
21: end loop

In Algorithm 1 we outline the main steps of XPBD after the contributions from Macklin

et al. (2019). In the algorithm an element can be a vertex, a particle or even something else. x𝑛𝑖
usually denotes the position of the 𝑖-th element in the 𝑛-th sub-step, but it can also represent

any generalized coordinate model, such as rigid-body transforms. v𝑛𝑖 is the velocity of the 𝑖-th
element in the 𝑛-th sub-step, and 𝑚𝑖 is its mass. If needed, we can also include the tensor of

inertia, angular velocity, etc. In a real application, at the beginning of the main loop (line 2) we

would process user’s inputs and before the end of the loop (line 21) we would render the results

for that simulation step. The number of sub-steps executed at each frame is given by the constant

𝑛𝑠𝑢𝑏𝑠.
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If we are simulating particles, for example, we would predict the inertial position 1 of the

𝑖-th particle for the next sub-step (line 8) using the following expression from classical Newtonian

physics, where Δ𝑡𝑠 is the time sub-step and fext are the external forces acting over that particle:

x̃𝑖 = x𝑛𝑖 + Δ𝑡v𝑛𝑖 + Δ𝑡2 1
𝑚𝑖

f𝑒𝑥𝑡 (4.1)

To solve a constraint 𝐶𝑗 , we need to compute the Lagrange multiplier for that constraint

in respect to the 𝑖-th particle (Δ𝜆𝑖 𝑗 ) and the position correction for the same particle (Δx𝑖 𝑗 ). The

Lagrange multiplier can be found with Equation 4.2. In that equation, �̃� 𝑗 = 𝛼𝑗/Δ𝑡2𝑠 , where 𝛼𝑗 is

the compliance of said constraint, or the inverse of stiffness.

Δ𝜆𝑖 𝑗 =
−𝐶𝑗 (x̃𝑖)

1
𝑚𝑖
|∇𝐶𝑗 (x̃𝑖) |2 + �̃� 𝑗

(4.2)

Having Δ𝜆𝑖 𝑗 , we can find Δx𝑖 𝑗 with the following equation, which will be used to correct

the initial guess (x̃𝑖):

Δx𝑖 𝑗 =
Δ𝜆𝑖 𝑗
𝑚𝑖

∇𝐶𝑗 (x̃𝑖) (4.3)

In the works related to XPBD, there is a term called Total Lagrange Multiplier that is

stored across sub-steps (or iterations). It was omitted in Algorithm 1 because is optional for

sub-steps implementation (Macklin et al., 2019), although it can provide useful information about

the total constraint force, which can be used for force dependent effects (like breakable joints)

and haptic feedback (Macklin et al., 2016).

4.2 POSITION-BASED HAIR SIMULATION

We can use PBD (or XPBD) to simulate hair dynamics by representing hair strands as chains

of particles with distance constraints connecting each pair of consecutive particles. Those

constraints will force the particles to stay at a certain distance from each other. To simulate the

hair, we can first move the first particle of the strand (we’ll call it root particle) to follow the

motion of the head or any other surface it is attached to, then we process the next particle in the

chain, predicting its inertial state and then solving its constraints. We repeat this process for all

subsequent particles and for all hair strands.

One problem of the algorithm we just described is that, if we move the 𝑖-th particle

towards or away from the 𝑖+1-th particle to comply with the distance constraint, we’ll be violating

the constraint between the particles 𝑖 − 1 and 𝑖.
Han and Harada (2012) solved this issue by applying the constraints multiple times for

each frame so that the particles’ positions converge to a solution, however hair inextensibility is

not strictly guaranteed. They’ve also introduced a global shape constraint and a local shape
constraint. Both constraints are soft constraints, as formulated by the original PBD. In their

algorithm, they specify the initial particles’ positions as target positions for the global shape

and the local shape constraints. For the first constraint, the target positions are represented in

the global coordinate system, as for the second constraint, the positions are represented in local

coordinate systems relative to the predecessors of each particle. This scheme of constraints allow

the representation of curly hair and different hair styles.

1Inertial position or inertial state refers to the state of an object in which the resulting force acting over it is

constant
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Figure 4.1: Unrealistic motion noted by Müller et al. (2012)

Figure 4.2: Hair simulations by Sánchez-Banderas et al. (2015)

During simulation, this algorithm has to compute a transformation matrix for each

particle that is dependent on the transformation matrices of the particles that came before in

the chain. Because of that dependency, this approach has limited space for parallelization. The

authors proposed variations of their main idea that are more suited for GPUs, although being less

precise.

In the same year, Müller et al. (2012) published a work that presented another approach

for the problem we stated in the beginning of this section. Instead of iterating many times over

the constraints to converge to a better solution with less elongation or shrinking of hair strands,

the authors proposed a modification to PBD that guarantees inextensibility in only one iteration

per time step. They called it Dynamic Follow-The-Leader (DFTL). The rationale for that idea

probably came from the question "what if, instead of moving both particles to comply with the

distance constraint, we moved only the child particle?" (child particle referring to the particle

more distant from the root).

If we move only the child particle, the authors noted, it would be the equivalent of the

parent particle (the one that is closer to the root and comes before in the chain) having infinite

more mass than its child, leading to unrealistic motion (see Figure 4.1). To circumvent that

problem, Müller et al. (2012) proposed a correction term that should be applied to the parent’s

velocity, to be applied on the next step. This term compensate the displacement of the child

particle, while introducing damping. The authors also managed to produce curly hair, but only as

a post-processing effect for rendering, with minimal influence on the way the hair moves.

Some time later, the local shape constraint (Han and Harada, 2012) and DFTL (Müller

et al., 2012) were combined into one simulation framework by Sánchez-Banderas et al. (2015)

(Fig. 4.2). They’ve made two more contributions to PBD-based hair simulation: a method to

simulate hair-hair interactions and a data layout to leverage the GPU’s memory architecture.
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The authors addressed hair-hair interactions by considering the hair volume as a fluid

continuum, like Hadap and Magnenat-Thalmann (2001). The way Sánchez-Banderas et al. (2015)

modeled fluid behavior using SPH allowed them to use the same particle-based representation in

the fluid simulation and in PBD’s distance and shape constraints. The goal of such approach is to

create a volumetric hairstyle and give the impression that the hair strands have a finite thickness.

One of the main problems when trying to parallelize PBD hair simulation is the data

dependency that exists when solving constraints. Processing in parallel constraints that have

no particle in common (which is related to graph-coloring problem) is a way to address this

issue and it is, in fact, the method used by Han and Harada (2012). However, it breaks DFTL’s

motivation of solving all constraints in a single pass. The solution proposed by Sánchez-Banderas

et al. (2015) provides good GPU occupancy and memory coalescence.

Instead of having all the particles’ data from a single strand in a contiguous block of

memory, they suggest to have all the root particles contiguous to each other, then all the next

particles, and so on. In other words, the memory is organized in batches in respect with the local

particle index( e.g. root particles, then particles with index 1, then 2, etc.). This way the particles

are processed in batches and the serial dependency between particles is maintained.

Unfortunately, that data layout is not efficient for the fluid simulation. To remedy that,

the authors employ a spatial subdivision strategy and store the particles’ data in temporary buffers

to enhance memory coalescence and thread coherence.

4.3 CONCLUSION

Now that we have explained in details what is Position-Based Dynamics and how it was used

to simulate hair, we will now introduce in the next chapter our contribution: a new local shape

constraint.
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5 NEW SHAPE CONSTRAINT

Our motivation for the new constraint was to expand the work by Müller et al. (2012) and add

to it the capability of simulating curls and keeping the hairstyle. As we mentioned previously,

there is no recent comprehensive survey on the topic of real-time hair simulation, therefore, at

the beginning of our research, we still had no knowledge of the works by Han and Harada (2012)

and Sánchez-Banderas et al. (2015). Only when we were near the end of our formulation that we

became aware of those works, fortunately, although similar, our technique has enough unique

features to be considered a new work of its own. We took inspiration from the data layout from

Sánchez-Banderas et al. (2015) to parallelize our algorithm.

5.1 MOTIVATION AND OVERVIEW

Our first attempts to simulate curly hair consisted of having soft distance constraints connecting

pairs of particles one particle apart (e.g. particles of index 1 and 3, 2 and 4, and so on), however

we were unable to get satisfying results. Then, we decided to change our approach and work on a

constraint that eventually became the one we are presenting in this dissertation.

At a high level, before starting the simulation, our algorithm stores the target position of

each particle after the root in the local coordinate system of their respective parents. During the

simulation, our shape constraint tries to minimize the angle between each particle and its target

position in respect to the coordinate system of its predecessor. Conceptually, our approach is very

similar to that of Han and Harada (2012), however there are some key differences. For instance,

while Han and Harada’s local shape constraint minimizes the Euclidean distance between particle

and its target position, ours minimizes the angle between the particle and the target, passing by

the particle’s parent.

Another distinction is the method used to compute the local coordinates for each particle.

Han and Harada take a more traditional approach by first defining the root’s coordinate system

and then rotating and translating it for all the next particles. On the other hand, we explored

an unorthodox approach that involves projecting an auxiliary point for each particle in the

strand. Although our approach is a simplification of the algebraic principles applied by Han and

Harada, it brought satisfactory results. Yet another distinction from Han and Harada (2012) and

Sánchez-Banderas et al. (2015) is the fact that we used XPBD’s formulation for soft constraints.

5.2 DETAILED EXPLANATION

We can separate our method in two phases: the preparation and the simulation. The first must be

executed only once, while the last will happen every frame.

5.2.1 Preparation

Before starting the simulation, we have to compute and store some data that our algorithm will

use during the simulation. Since our shape constraint uses the target position in local coordinates,

we need a way to compute such coordinate systems. We will now describe the process to do it

and all the other procedures involving our method focusing only on a single strand, therefore

we’ll index particles in respect with their position in the chain.
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We get the local coordinates centered at the root particle in a similar way to Han and

Harada (2012): let p0 be the position of said particle, then we choose an arbitrary point Aux0

(called auxiliary point) that satisfies the following properties:

1. |Aux0 − p0 | = 1

2. Aux0 is on the plane perpendicular to the unit vector n0, which is the normal vector of

the surface from which the strand is protruding at p0

With Aux0 and n0, we can compute the basis vectors i0, j0 and k0 for the local coordinates

relative to p0:

i0 = Aux0 − p0 (5.1)

j0 = n0 (5.2)

k0 = i0 × j0 (5.3)

Let T0 be the basis matrix from those basis vectors. To simplify our explanation, let’s

consider that the particles’ target positions are their initial positions. Therefore, the target position

for the next particle in the chain can be computed by p∗
1
= T0(p1 − p0) (where p1 is the position

of the particle right after the root). For the simulation phase, we’ll need to store the auxiliary

point Aux0, the normal vector n0 and the target position p∗
1
.

To compute the next target positions p∗
𝑖 = T𝑖−1(p𝑖 − p𝑖−1), we will need to find the local

basis matrix T𝑖−1, relative to p𝑖−1. To do so, we need the basis vectors i𝑖−1, j𝑖−1 and k𝑖−1, which

are given by:

i𝑖−1 = Aux𝑖−1 − p𝑖−1 (5.4)

j𝑖−1 =
p𝑖−1 − p𝑖−2

|p𝑖−1 − p𝑖−2 |
(5.5)

k𝑖−1 = i𝑖−1 × j𝑖−1 (5.6)

We compute Aux𝑖−1 by projecting Aux𝑖−2 onto the plane defined by the point p𝑖−1 and

the normal vector p𝑖−1 − p𝑖−2, and adjusting it so that |Aux𝑖−1 − p𝑖−1 | = 1. This time, we need to

store only p∗
𝑖 for the simulation phase.

5.2.2 Simulation

In the simulation phase, our algorithm will do something similar to what was done in the

preparation phase, except that instead of storing the target position, it will compare the particles’

current positions with their respective target position using our formulation for the shape constraint.

Algorithm 2 describes what we’ve just written:

The function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑎𝑠𝑖𝑠𝑀𝑎𝑡𝑟𝑖𝑥 (lines 7 and 24) computes the basis matrix by

finding the basis vectors i𝑖, j𝑖 and k𝑖 like in Equations 5.4, 5.5 and 5.6 respectively. The function

𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝐴𝑢𝑥𝑃𝑜𝑖𝑛𝑡 (line 23) computes the next auxiliary point by projecting the previous one

onto the plane defined by the point p𝑖 and the normal vector n and then moving it so that

|Aux − p𝑖 | = 1.

One might ask why do we do this projection step instead of computing a rotation matrix

to find T, like Han and Harada (2012) did. Our rationale for that is the fact that projecting the

auxiliary point takes less trigonometric operations than computing a rotation matrix.
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Algorithm 2 Shape Constraint algorithm for a single strand

1: // Inside the simulation loop

2: // Some elements from XPBD were omitted for brevity

3:

4: update n0 and Aux0 according to base surface transformations

5: n ← n0

6: Aux ← Aux0

7: T ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑎𝑠𝑖𝑠𝑀𝑎𝑡𝑟𝑖𝑥(p0, Aux, n)
8:

9: 𝑖 ← 1

10: while 𝑖 < number of particles in strand do
11: predict inertial state p̃𝑖

12:

13: Δp𝑖 ← 𝑠ℎ𝑎𝑝𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (T(p̃𝑖 − p𝑖−1), p∗
𝑖 )

14: correct p̃𝑖 using Δp𝑖

15:

16: // Other constraints can be placed here

17:

18: p𝑖 ← p̃𝑖

19: update v𝑖
20: correct v𝑖−1 using Δp𝑖

21:

22: n =
p𝑖 − p𝑖−1

|p𝑖 − p𝑖−1 |
23: Aux ← 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝐴𝑢𝑥𝑃𝑜𝑖𝑛𝑡 (p𝑖 , n, Aux)
24: T ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑎𝑠𝑖𝑠𝑀𝑎𝑡𝑟𝑖𝑥(p𝑖 , Aux, n)
25:

26: 𝑖 ← 𝑖 + 1

27: end while
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The function 𝑠ℎ𝑎𝑝𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 computes Δ𝜆 (Eq. 4.2) and Δx (Eq. 4.3), returning the

later. The formulas for 𝐶 and ∇𝐶 in our constraint are given by Equations 5.7 and 5.8, where v1

and v2 are the arguments of the function 𝑠ℎ𝑎𝑝𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡.

𝐶 =𝑎𝑐𝑜𝑠

(
v1 · v2

|v1 | · |v2 |

)
(5.7)

∇𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1.𝑥 · 𝑎 − v2.𝑥 · 𝑏
𝑏
√
𝑏𝑐 − 𝑎2

v1.𝑦 · 𝑎 − v2.𝑦 · 𝑏
𝑏
√
𝑏𝑐 − 𝑎2

v1.𝑧 · 𝑎 − v2.𝑧 · 𝑏
𝑏
√
𝑏𝑐 − 𝑎2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where 𝑎 = v1 · v2, 𝑏 = |v1 |2, and 𝑐 = |v2 |2 (5.8)

5.3 CONCLUSION

In this chapter we have explained our contribution, which consists in a new shape constraint

and the algorithm to be used with it. We have also highlighted the main distinctions from our

approach to other similar works. In the next chapters we will describe our implementation and

present the results from our experiments.
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6 IMPLEMENTATION

We’ve wrote two implementation for our hair simulation. The first one served as a proof of

concept for our constraint formulation, while the later was used to evaluate performance and

stress test it. In this chapter we will present both.

6.1 IMPLEMENTATION 1: TYPESCRIPT AND WEBGL

We chose to use web-based technologies for three main reasons: first, modern web frameworks

have the feature "hot reload", in which the code running in the browser is updated as soon as

the source code is modified. This feature allows fast iterations during development. The second

reason is level of abstraction: even when it comes to graphics programming, there are many

frameworks and libraries that abstract away much of the boilerplate code and low-level memory

management. Third, having a simulation that runs in the web browser is very useful for live

demonstrations. We’ve also chose to use Typescript instead of pure JavaScript because static

typing helps to write less error-prone code.

We’ve used the library Three.JS (Cabello, 2025) to handle rendering and user input.

This is a graphics library for the web built on top of WebGL which takes care of low-level buffer

management, as well as scene graph management and input processing, allowing users to interact

with the virtual 3D space.

As we’ve mentioned before, our goal for the web implementation was to use it as

proof of concept and as a tool to refine our constraint formulation and our algorithm, therefore,

performance was not our main concern. A screenshot of our application can be found in Figure 6.1.

As we can see, it features a parameter menu in the right-hand side of the screen. With that menu,

we can show or hide the target points and auxiliary point of each particle, change simulation

parameters, such as compliance and damping, and configure hair strand characteristics, like

number of segments per hair strand or whether the hair is curly or not.

Besides the menu, our application featured interactive camera and real-time interactions

with the object in the scene. In other words, users can pan, orbit, zoom in and out the camera and

can drag the object around the scene, causing the hair to react to the movement in real-time.

We’ve developed a second version of this application, this time with predefined

parameters and simplified user interface optimized for mobile devices (Figure 6.2). It was used

as a live demo for a presentation done at 2024 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (I3D) (Cavazotti and Guedes, 2024).

6.2 IMPLEMENTATION 2: PYTHON AND CUDA

The goal of our second implementation was to run the simulation on a GPU. To do that, we needed

a way to write our simulation algorithm for GPU and then render the results in real-time. We’ve

considered many options to accomplish our goal: we could use WebGPU, which is a new web

API and specification for browsers that allows platform-agnostic GPU programming, however,

since it’s still something new in the space of web programming, there’s not much support from

existing frameworks and libraries. That being said, we would need to program the rendering

pipeline ourselves if we wanted to use WebGPU’s compute shaders to run our simulation, and

that would be too much work for the scope of our project.
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Figure 6.1: Web-based virtual simulation environment

We have also thought about using OpenGL or Vulkan, but we would run into the same

issues as WebGL. Another option was to use a game engine such as Unity or Godot, but it felt

that this choice would bloat our project and would require learning how to use those tools. In

short, we couldn’t find a solution that would allow us to easily implement our algorithm and have

the performance we needed.

Finally, we discovered Taichi, “an open-source library [...] which alleviates this practical

issue by providing an accessible, portable, extensible, and high-performance infrastructure that

is reusable and tailored for computer graphic” (Hu, 2018). This library is a “domain-specific

language embedded in Python” (Hu, 2025) that JIT compiles Python-like code into machine

code for the CPU or GPU, depending on the client’s hardware. In our case, our simulation was

compiled into CUDA because we have NVIDIA GPUs.

In our second implementation, we focused on performance and tooling rather than

interactivity, therefore, users can’t orbit the camera nor move the object around. On the other

hand, we’ve implemented mechanisms to run automated tests, gather data and generate reports.

In this implementation, as well as the one written in Typescript, we generate the hair

strands procedurally from the vertices of a base mesh. We can define how many particles the

strands will have and the distance between each particle. This implementation also features the

ability to place spherical colliders and have the hair react with it.

Our simulation kernel closely follows the structure outlined in Müller et al. (2012): first,

we move the strands’ roots to match the base mesh transform, then, for all the next particles in the

strand, we predict the inertial position, then we solve the constraints by correcting the predicted

position. Next, we update the particle position, its velocity, and apply the DFTL correction on

the previous particle’s velocity.

We’ve also added some additional steps necessary to our shape constraint. For instance,

when updating the root particle, we retrieve the normal vector as well as the auxiliary point

stored in the preparation phase, since these information will be used in the next particle’s shape

constraint. Similarly, after updating the position, but before processing the next particle, we

compute the next normal vector and auxiliary point.
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Figure 6.2: Mobile version of web-based simulation

Figure 6.3: Screen shots of simulation written with Taichi
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Regarding parallelization, we assigned one hair strand for each thread, which iterates

over all the particles that constitutes the strand, performing operations as we’ve just described. We

could have implemented a more sophisticate parallelization approach to reduce serial computation,

like the one used by Han and Harada (2012), however that would require more sub-steps and

defeats the purpose of DFTL, which is to simulate hair dynamics with only one sub-step per frame.

That being said, our parallelization strategy was similar to the one employed Sánchez-Banderas

et al. (2015).

We’ve implemented three constraints in our application: the new shape constraint, a

distance constraint like the one used in Müller et al. (2012) and a simple penetration constraint

that moves the particles out of the spherical colliders.

6.3 CONCLUSION

Now that we have presented how we’ve implemented the constraint from the last chapter, we will

discuss in the next chapter the tests we’ve performed and the results we’ve observed. After that,

in Chapter 8, we will present the conclusion of our work.
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7 TESTS AND RESULTS

After arriving at the formulation and implementations described above, we put our ideas to

test. We’ve performed most of the qualitative tests using the web implementation. Quantitative

tests regarding performance and error margin were done in the GPU implementation. Before

presenting the data we’ve collected, we will describe the hardware used for the tests.

While the web version was tested on many devices, the GPU version was tested on a

Acer Predator Helios 300 notebook with 16 𝐺𝐵 of RAM, a 9th generation Intel Core i7 processor

and a NVIDIA GeForce RTX 2060 GPU. See Table 7.1 for more details.

NVIDIA GeForce RTX 2060
Clock Frequency 1.37-1.68 GHz

CUDA Cores 1920

VRAM 6GB GDDR6

Memory Bus Width 192 bits

Intel Core i7-9750H
Clock Frequency 2.60-4.50 GHz

Cache 12 MB Intel Smart Cache

CPU Cores 6 (12 logic cores)

Memory
Size 1x 16GB DDR4

Clock Frequency 2666 MHz

Table 7.1: Hardware details

7.1 QUANTITATIVE TESTS

Our goal was to simulate as many hair strands as possible. In our web implementation, we

managed to simulate around 11 thousand particles at frame rates between 37 and 58, depending

on the machine that was running it. However, we’re more interested in the performance of the

GPU implementation, since that implementation was the final goal of our project.

7.1.1 Data Layout and Performance

We compared two levels of optimization in data layout with a naive implementation. In the

naive version, we used a “struct-of-arrays” approach, in other words, we had an array for particle

positions, another for particle velocities, and another for target positions, and so on, as shown in

Figure 7.1.

If we analyze Algorithm 2 and consider that each thread has to iterate through many

particles, it’s clear that the naive data layout is not a good approach. To be clearer, in the algorithm

Figure 7.1: Naive data layout
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we can see that we need p𝑖, v𝑖 and p∗
𝑖 at each iteration. If those values are distant from each other,

the GPU will have to load different blocks of data, also known as pages of memory, increasing

memory bandwidth consumption, blocking threads and decreasing throughput, leading to worse

performance. It’s worth remembering that modern GPU architecture is based on the concept of

single instruction, multiple data (SIMD), so every thread in a block of threads is executing the

same single instruction at any given time. If there is divergence in execution flow or if the data

needed by a thread is unavailable, the other threads are blocked until the data is available or the

execution flow can be reconciled1.

This leads us to the first level of optimization: “array-of-structures”. In this layout, we

group together all the data related to each particle, as represented in Figure 7.2. This way, the

GPU doesn’t need to load different blocks of data to simulate one particle. However, both the

naive layout and this one have a problem in common: two neighboring threads are not processing

data that live in neighboring memory addresses. That also causes increased memory bandwidth

usage and lower throughput, since threads from the same group might be working with data from

different pages.

Figure 7.2: Array-of-structs

This issue was addressed by Sánchez-Banderas et al. (2015) in their “batch” data layout.

Instead of having the data of all the particles of a strand in contiguous spaces of memory (see

Figure 7.3), we can allocate the first particles of every strand together, then the second particles,

and so on, as illustrated in Figure 7.4. In this layout, it’s less likely that threads will be blocked

because of memory access, and although the stride done on memory addresses in the kernel’s

main loop is bigger and may cause new pages of memory to be loaded, it will not block any

threads.

We’ve tested our implementation with each one of the three data layouts, and for each

version, we’ve experimented with varying number of hair strands and particles per strand.

7.1.2 Tests description

We chose an icosahedron as our base mesh from which the hair strands would be generated.

This geometric primitive wasn’t an indexed mesh, so each face had its own vertices, even if they

coincided with the vertices from neighboring faces. Therefore, the mesh had 60 vertices instead

of 12, resulting in 60 hair strands. Then, we applied the Catmull-Clark subdivision algorithm

(Catmull and Clark, 1998) and obtained a mesh with 80 faces and 240 vertices. We repeated this

procedure three more times, obtaining meshes with the following number of faces and vertices:

Since we can only do strand-level parallelization, we wanted to test how the serial part

of the algorithm (the number of particles in each strand) impacted performance, so we tested

with strands 10, 25, 50, 100 and 200 (only for subdivision levels 1,2 and 3) particles long.

Our tests consisted of running 500 frames and measuring the kernel execution time

using Taichi’s profiling tools, then repeat the test using NVIDIA NSight Compute to collect other

GPU metrics.

1This explanation is a simplification of how GPUs actually work. In reality, there are many optimizations that

can lessen the impact of these issues.
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Figure 7.3: Schema of memory access in “array-of-structs” layout

Figure 7.4: Schema of memory access in “batch” layout
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Subdivision Level Faces Vertices
0 20 60

1 80 240

2 320 960

3 1280 3840

4 5120 15360

Table 7.2: Number of faces and vertices in each subdivision level

7.1.3 Results

We will start the presentation of our results with Figure 7.5, which depicts kernel execution times

with the heaviest workloads we tested:

Figure 7.5: Kernel time for 15360 hair strands

In this figure, the colored areas represent the maximum and the minimum time recorded

throughout the 500 frames simulated, and the lines represent the average. The number of particles

simulated ranged from around 153 thousand to more than 1.5 million. In the chart we can see

how much the “batch” data layout improved performance, with average kernel execution time

for 100 particles per strand dropping from 5.4 𝑚𝑠 in the naive layout to only 0.64 𝑚𝑠 in the

optimized version. NVIDIA NSight Compute’s SM Throughput raised from 3.11% to 23.73%.

The performance gain from the “array of structures” optimization is relatively small due to the

issue we’ve described earlier: threads from the same group are working with data far apart from

each other.

If we compared the kernel execution times with hair strands with the same number of

particles but with different number of strands, in theory we should expect the times would be

the same for all executions, since in all of them, the kernel would process the same number of

particles. However that is not what we observed:



41

Figure 7.6: Kernel time for 100 particles per strand

The increase of execution time observed when comparing 60 and 240 strands is due

to memory access pattern: the less optimized versions had to load more pages of memory, and

that caused the significant increase in execution time. Then, the time is reduced at 960 and

3840, probably indicating that the data was more aligned with memory page size. The spike in

execution time at 15360 is probably also caused by inefficient memory access patterns, but we

couldn’t pinpoint the specific cause, and our knowledge only goes so far to make assumptions.

The careful reader might notice that, when solving constraints, each constraint “undoes”

what the previous one did. This effect can be attenuated with multiple passes of constraint

solving: although not perfect, the particles position will converge so that the error is minimized.

In our case that doesn’t happen, since we made a strong point of only performing a single pass of

constraint solving for each particle.

In our implementations, the order in which we solved the constraints are: shape constraint

first, then distance constraint, then penetration constraint. Therefore, from the observation that

we’ve just made, there’s no real guarantee that the hair strands are inextensible. We claim that,

for the purposes of our algorithm, the resulting error is negligible. To back that claim, we’ve

calculated the error in each frame by summing the length of all hair strands after the simulation

and, then, dividing it by the expected total length. In all our tests, the average error was never

greater than 0.2%.

All the data we’ve collected in our tests can be found in Appendix A.

7.2 QUALITATIVE TEST

Now, regarding the visual quality of our algorithm, we can see, as an example, in Figure 7.7

the rendered result of a simulation with more than 17 thousand hair strands and more than 1.3

million particles. We exported the hair strands from our application to the 3D modeling software

Blender (Blender Online Community, 2025), where we rendered the images. Some inaccuracies
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seen in the second image where caused by the way we approximated the geometry of the head

using only spheres.

Figure 7.7: Rendered hair simulations

We’ve observed that our constraint can emulate appearance of volumetric hair as seen in

Figure 7.8 and that it can recover its shape even after violent motions, such as the one shown in

Figure 7.9.

Figure 7.8: Appearance of volumetric hair
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Figure 7.9: Hair undergoing violent motion

Our constraint can also simulate curly hair, as seen in the minimal demo shown in Figure

7.10. Each image is a few frames apart from each other. As we can see, the curls can recover

their shape even after undergone severe deformation, even if the strands suffer from sagging.

This phenomenon can be corrected if we apply the technique described by Hsu et al. (2023).
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Figure 7.10: Recovery of curls after deformation

We would like to compare our results both in terms of performance and visual quality

with the works that closely related to ours (Müller et al. (2012), Han and Harada (2012) and

Sánchez-Banderas et al. (2015)), but we couldn’t find their implementations, making it impossible

to do any type of comparison.

7.3 PUBLIC RECEPTION

In May 2024, we presented our work at 2024 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. Even if it was not finished at the time, our work was received with interest

by the research community, in so much so that it was awarded the prize for “Best Poster” by

community vote (Cavazotti and Guedes, 2024).
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7.4 CONCLUSION

We are satisfied with the results we’ve obtained, both in terms of performance and visual quality.

Although the motion produced by our algorithm is not as precise as those produced some other

works presented in Chapter 3, it’s good enough for real-time applications. The time it takes for

our CUDA kernel to simulate more 1.5 million particles makes our algorithm suitable for VR

applications, which are known for having strict frame rate requirements.
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8 CONCLUSION

In this Masters dissertation we’ve explained some fundamental concepts of Computer Graphics,

then we’ve presented many works from the same field as our research, with greater focus on

techniques based on PBD, which we’ve also explained in depth. We have identified the need for a

comprehensive systematic survey about hair simulation, since the latest work of this kind that we

have knowledge of was published almost two decades ago.

We have reached our goal to expand the technique developed by Müller et al. (2012),

enabling it to simulate curly hair and other hair styles. We also managed to develop an algorithm

that is simple to implement and has good performance, making it suitable real-time applications.

Although the simulation quality of our algorithm is not on par with some other techniques

presented in Chapter 3, it received interest from the computer graphics community, showing its

potential. In terms of performance, we are very pleased. We’ve managed to simulate more than

1.5 million particles in such a small amount of time that it is possible to integrate our technique

into VR applications. The code we’ve written and the data we’ve produced are available at:

https://gitlab.c3sl.ufpr.br/teoria/hair-simulation.

We’ve identified some areas of improvement, such as reducing the effects of sagging

in order to maintain the original shape of the hair unaffected by its own weight. We can also

implement some mechanisms to simulate hair-hair interaction, making our simulations even

more realistic. Finally, we could try to implement other PBD-based hair simulation techniques

and compare them to ours.
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APPENDIX A – TEST DATA

In the following pages are all the data we’ve collected in our tests.
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