
UNIVERSIDADE FEDERAL DO PARANÁ

BRUNO HENRIQUE MEYER

OPTIMIZATIONS AND APPLICATIONS OF THE T-DISTRIBUTED STOCHASTIC

NEIGHBOR EMBEDDING ALGORITHM: AN APPROACH BASED ON HIGH

SCALABILITY SOLUTIONS

CURITIBA PR

2021

BRUNO HENRIQUE MEYER

OPTIMIZATIONS AND APPLICATIONS OF THE T-DISTRIBUTED STOCHASTIC

NEIGHBOR EMBEDDING ALGORITHM: AN APPROACH BASED ON HIGH

SCALABILITY SOLUTIONS

Dissertação apresentada como requisito parcial à obtenção

do grau de Mestre em Informática no Programa de Pós-

Graduação em Informática, Setor de Ciências Exatas, da

Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Wagner M. Nunan Zola.

Coorientador: Aurora Trinidad Ramirez Pozo.

CURITIBA PR

2021

MINISTÉRIO DA EDUCAÇÃO
SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -
40001016034P5

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em INFORMÁTICA da

Universidade Federal do Paraná foram convocados para realizar a arguição da Dissertação de Mestrado de BRUNO HENRIQUE

MEYER intitulada: OPTIMIZATIONS AND APPLICATIONS OF THE T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING

ALGORITHM: AN APPROACH BASED ON HIGH SCALABILITY SOLUTIONS, sob orientação do Prof. Dr. WAGNER MACHADO

NUNAN ZOLA, que após terem inquirido o aluno e realizada a avaliação do trabalho, são de parecer pela sua APROVAÇÃO no rito

de defesa.

A outorga do título de mestre está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 20 de Abril de 2021.

Assinatura Eletrônica

22/04/2021 14:38:11.0

WAGNER MACHADO NUNAN ZOLA

Presidente da Banca Examinadora (UNIVERSIDADE FEDERAL DO PARANÁ)

Assinatura Eletrônica

22/04/2021 08:17:59.0

RICHARD ADERBAL GONÇALVES

Avaliador Externo (UNIVERSIDADE ESTADUAL DO CENTRO-OESTE)

Assinatura Eletrônica

22/04/2021 09:31:20.0

ANDRÉ LUIZ PIRES GUEDES

Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

Documento assinado eletronicamente de acordo com o disposto na legislação federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificação única: 89754

Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 89754

I dedicate this work to all the pro-
fessors and people who somehow
helped me in my studies.

ACKNOWLEDGEMENTS

This work was partially supported by Brazilian Research Council – CNPq. Also, I want to thank

all people in the Bio-inspired Computation lab (C-Bio) for the support and advice. Specifically i

would like to acknowledge the guideness and patient of my advisors Wagner M. Nunan Zola and

Aurora Pozo.

RESUMO

O t-Distributed Stochastic Neighbor Embedding (t-SNE) é uma técnica amplamente usada

para redução de dimensionalidade, mas é limitada por sua escalabilidade quando aplicada a

grandes conjuntos de dados. Uma aproximação bem-sucedida do t-SNE chamada BH-tSNE

foi recentemente proposta, a qual transforma uma etapa do algoritmo original em um problema

de simulação de N-Corpos, que pode ser resolvido pelo algoritmo Barnes-Hut. No entanto,

essa melhoria ainda tem limitações para processar grandes volumes de dados (milhões de

registros). Estudos posteriores como t-SNE-CUDA usaram GPUs para paralelizar a execução

do BH-tSNE. A pesquisa desta dissertação desenvolveu uma nova implementação em GPU

do BH-tSNE que produz resultados em duas e três dimensões. Examinamos os problemas de

escalabilidade em duas das etapas mais caras do GPU BH-tSNE usando estratégias eficientes de

acesso à memória, técnicas de aceleração recentes para GPU e uma nova abordagem para calcular

a estrutura de grafos de K-Vizinhos mais próximos (KNN Graph) usada no GPU BH-tSNE.

Nosso design permite uma aceleração do tempo de execução em até 460% quando comparado à

implementação t-SNE-CUDA. Considerando as tecnologias emergentes de Inteligência Artificial

(IA) aplicadas a conjuntos de dados em grande escala, vários estudos focam ou usam a redução de

dimensionalidade como t-SNE para visualizar os dados. A literatura conta com vários métodos de

redução de dimensionalidade para processar grandes conjuntos de dados. Esta pesquisa também

comparou diferentes técnicas para realizar a redução de dimensionalidade usando conjuntos

de dados em grande escala obtidos de aplicações do mundo real. A comparação enfocou na

relação entre as características dos algoritmos, a qualidade dos resultados e a interpretação dos

pontos de dados de baixa dimensão. Nossos experimentos concluíram que estratégias como

o método denominado AtSNE podem melhorar a qualidade da redução de dimensionalidade,

considerando a preservação da informação global. No entanto, não pode obter resultados

melhores do que outras práticas, como usar a Análise de Componentes Principais na inicialização

do t-SNE. Ainda assim, as idéias de ambos os métodos podem ser combinadas em uma única

técnica por estudos futuros. Comparamos sete métodos considerando duas aplicações de IA:

Aprendizagem por Reforço e Redes Adversariais Gerativas (GAN). As principais contribuições

desta pesquisa consistem na proposta de duas técnicas denominadas SWW-tSNE (Simulated

Wide-Warp t-SNE) e SWW-AtSNE (Simulated Wide-Warp AtSNE) para realizar a redução da

dimensionalidade em duas ou três dimensões. Esta dissertação também propôs um algoritmo

denominado RSFK (Random Sample Forest KNN) que utiliza GPU para calcular uma estrutura

denominada Approximate KNN Graph, necessária no algoritmo BH t-SNE. A preservação de

estruturas globais foi medida com uma nova métrica chamada Preservação de Vizinhança Média.

Palavras-chave: t-SNE. Dados de larga escala. GPU. Redução de dimensionalidade.

ABSTRACT

The t-Distributed Stochastic Neighbor Embedding (t-SNE) is a widely used technique for

dimensionality reduction but is limited by its scalability when applied to large datasets. A

successful approximation of t-SNE called BH-tSNE was recently proposed, which transforms a

step of the original algorithm into an N-Body simulation problem that a modified Barnes-Hut

algorithm can solve. However, this improvement still has limitations to process large data volumes

(millions of records). Late studies such as t-SNE-CUDA have used GPUs to implement highly

parallel BH-tSNE. The research of this thesis has developed a new GPU BH-tSNE implementation

that produces the embedding of multidimensional data points into three-dimensional space. We

examine scalability issues in two of the most expensive steps of GPU BH-tSNE by using efficient

memory access strategies, recent acceleration techniques, and a new approach to compute the

KNN graph structure used in BH-tSNE with GPU. Our design allows an acceleration of the

execution time in up to 460% when compared to the t-SNE-CUDA implementation. Considering

the emergent technologies of Artificial Intelligence (AI) applied to large-scale datasets, numerous

studies focus on or use dimensionality reduction like t-SNE to visualize the data. The literature

counts with various dimensionality reduction methods to process large datasets. This research

also compared different techniques to perform dimensionality reduction using large-scale datasets

obtained from real-world applications. The comparison focused on the relation between the

characteristics of the algorithms, the quality of the results, and the interpretation of the low

dimensional data points. Our experiments conclude that strategies like a method called AtSNE

could improve dimensionality reduction quality, considering global information preservation.

However, it cannot achieve better results than other practices like using the Principal Component

Analysis in the initialization of t-SNE. Still, the ideas of both methods could be merged into

a unique technique in future studies. We have compared seven methods considering two AI

applications: Reinforcement Learning and Generative Adversarial Networks (GAN). The major

contributions of this research consist in the proposal of two techniques named SWW-tSNE

(Simulated Wide-Warp t-SNE) and SWW-AtSNE (Simulated Wide-Warp AtSNE) to perform

dimensionality reduction in two or three dimensions. This thesis also proposes an algorithm

named RSFK (Random Sample Forest KNN) that uses GPU to compute a structure called

Approximate KNN Graph, required in BH t-SNE algorithm. The preservation of global structures

was measured with a new metric called Medium Neighborhood Preservation (MNP).

Keywords: t-SNE. Large scale data. GPU. Dimensionality reduction.

LIST OF FIGURES

1.1 Visualization of a dataset consisting of 500005 points with 1536 dimensions,

where each point represents an image generated with a Generative Adversarial

Networks method. The figure illustrates the representation of these images using

dimensionality reduction obtained by the execution of the Simulated Wide-Warp

t-SNE technique using Principal Component Analysis as initialization. Each color

represents a different class. 17

1.2 3-dimensional embedding generated for different datasets. Each color represent a

class for the original instance.. 18

2.1 Example of a quadtree representation in the Barnes-Hut algorithm. Internal nodes

of the trees represents the centers of mass and leafs nodes the input data points. . 22

4.1 Comparison between the representation of a quadtree using sparse and implicit

and sparse structures. 32

4.2 Illustration of the difference between a normal traverse in the implicit quadtree

structure (bottom) and the same traversal using the Simulated Wide-Warp technique

(top).. 32

4.3 Correlation between the quality of approximate KNN graph and the respective

t-SNE projection quality using the MNIST dataset for 1000 t-SNE iterations.. . . 42

4.4 Comparison between IVFFLAT, FLATL2, and the proposed RSFK algorithm.

The vertical axis represents the total of points divided by the time required to

compute the approximate KNN graph (in log scale) and the horizontal axis

respective accuracy. Each curve represents the execution of the algorithms with

different configurations and by varying the parameters that control the trade-off

between computational time and quality. The time of FLATL2 (exact result),

which accuracy is 1.0, is used as the baseline and is dashed in the chart. The labels

MNBS (𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒) and MXBS (𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒) represent the minimum

and maximum of points inside each leaf, respectively, in each configuration of the

RSFK algorithm. 43

4.5 Execution time breakdown of different GPU t-SNE versions applied to Amazon

Electronics dataset for 1000 t-SNE iterations. Original represents the standard

t-SNE-CUDA, Original+RSFK represents the standard t-SNE-CUDA using our

RSFK implementation instead of the FAISS library to compute the approximate

KNN graph, and the other versions represent our implementations using Implicit

Tree data structure and Simulated Wide-Warp with different WarpWidth sizes. . 44

4.6 Result of the 3-dimensional embedding and convergence generated for MNIST

datasets using different versions and fixed random seed for 1000 t-SNE iterations. 47

5.1 2-Dimensional embedding result of the MNIST using different dimensionality

reduction approaches. Note that plots (a) to (h) are in increasing order of Global

Structure Preservation, as evaluated by our proposed MNP(16) metric. 55

5.2 Comparative of different dimensionality reduction techniques for different datasets.

The global structure preservation were measured using 1000 samples of the

MNP(16) metric with sample size 𝐶 = 100. The Nearest Neighborhood Preser-

vation was measured using the 𝑅NX(16) metric. 57

5.3 Representation of images of the BigGAN dataset using dimensionality reduction

obtained by the execution of PCA and AtSNE. Each color represents a different

class. 59

5.6 Phoenix-V0 visualization with SWW-tSNE using PCA initialization. The points

color represent the normalized Q-Value related to the action that leads the agent

to that state. The frames at top of each image represent samples of states with

different Q-Values. The color of each frame were inverted in order to obtain better

contrast in the image. 62

A.1 Metodologia utilizada para buscar trabalhos relacionados.. 71

LIST OF TABLES

4.1 Dataset sizes used in experiments. 38

4.2 Computational time (seconds) for 1000 t-SNE iterations with the breakdown

of each step, for different methods, to create 3-dimensional embeddings of the

GoogleNews300 dataset. WarpWidth=n is abbreviated as WW𝑛. 45

4.3 Computational time (seconds) for 1000 t-SNE iterations with the breakdown

of each step, for different methods, to create 3-dimensional embeddings of the

Amazon Electronics dataset. WarpWidth=n is abbreviated as WW𝑛. 45

4.4 Average speedup achieved and (standard deviation) in the Barnes-Hut Tree
Traversal (Repulsive Forces Calculations) in the different versions of t-SNE-

CUDA for 1000 t-SNE iterations. WarpWidth=n is abbreviated as WW𝑛.. 45

4.5 Average speedup achieved and (standard deviation) of the total time execution in

the different versions of t-SNE-CUDA for 1000 t-SNE iterations. WarpWidth=n

is abbreviated as WW𝑛. 45

4.6 Average 𝑅NX(32) and (standard deviation) achieved for 1000 t-SNE iterations. . 46

4.7 Comparison of execution time and local neighborhood preservation of different

methods to create 2 and 3-dimensional embeddings using the GoogleNews300

dataset for 1000 t-SNE iterations.. 46

5.1 Information of the different stages where the agent model were saved and their

respective performance measured by the average reward for all steps from 600

episodes. 50

5.2 Dataset useds in the experiments. Deep Neural Network is abbreviated as DNN. . 51

A.1 Artigos de controle utilizados na metodologia para buscar trabalhos relacionados 71

A.2 Categorias e descrições das abreviaturas utilizadas na Tabela A.3. 72

A.3 Características dos trabalhos selecionados. O símbolo � representa a confirmação

da característica em um trabalho, � representa a não presença e valores em branco

indicam características não identificadas.. 73

A.4 Tamanho da maior base de dados utilizada para aplicar o t-SNE dentre os trabalhos

selecionados. 76

LIST OF ACRONYMS

DINF Departamento de Informática

PPGINF Programa de Pós-Graduação em Informática

UFPR Universidade Federal do Paraná

SGD Stochastic Gradient Descent

SNE Stochastic Neighbor Embedding

t-SNE t-distributed Stochastic Neighbor Embedding

PCA Principal Component Analysis

UMAP Uniform Manifold Approximation and Projection

BH-tSNE Barnes-Hut t-SNE

SWW-tSNE Simulated Wide-Warp t-SNE

GAN Generative Adversarial Networks

DQN Deep Q-Network

AtSNE Anchor-t-SNE

SWW-AtSNE Simulated Wide-Warp AtSNE

LIST OF SYMBOLS

𝑢 Parameter called perplexity used in SNE e t-SNE

𝜎 Standard deviation in a gaussian function

𝜃 Parameter that controls the approximation in the Barnes-Hut algo-

rithm

𝜂 Step size (or learning rate) of SGD algorithm

𝛼 Momentum of SGD algorithm

CONTENTS

1 INTRODUCTION . 14
2 BACKGROUND . 19
2.1 BARNES-HUT T-SNE . 20

2.2 K-NEAREST NEIGHBORS GRAPH (KNN GRAPH) 23

2.2.1 Approximate Nearest Neighbors Search . 23

2.3 T-SNE-CUDA. 24

2.4 ATSNE . 25

2.5 THE QUALITY OF DIMENSIONALITY REDUCTION 26

3 STATE OF THE ART . 28
4 IMPROVING THE SCALABILITY OF BARNES-HUT T-SNE WITH GPU 31
4.1 SIMULATED WIDE-WARP T-SNE (SWW-TSNE) 32

4.1.1 Implicit Tree . 33

4.1.2 Simulated Wide-Warp (SWW) . 33

4.1.3 GPU Random Sample Forest KNN . 34

4.2 METHODS . 35

4.2.1 Environment. 38

4.2.2 Datasets . 38

4.2.3 Evaluation . 39

4.3 RESULTS AND DISCUSSION . 41

4.3.1 2-Dimensional Embedding . 44

5 APPLYING T-SNE TO REAL-WORLD APPLICATIONS WITH LARGE
DATASETS. 48

5.1 SIMULATED WIDE-WARP ATSNE (SWW-ATSNE) 48

5.2 REAL-WORLD APPLICATIONS . 48

5.2.1 Generative Adversarial Network . 49

5.2.2 Deep Q-Network . 49

5.2.3 Medium Neighborhood Preservation (MNP) . 50

5.3 METHODS . 51

5.3.1 Parameters. 52

5.3.2 Evaluation . 52

5.4 RESULTS AND DISCUSSION . 52

5.4.1 Overall comparison (RQ1, RQ2) . 52

5.4.2 PCA Initialization and Global Structures Preservation (RQ3) 57

5.4.3 Real World Applications Interpretability (RQ4) 59

6 TECHNOLOGICAL AND BIBLIOGRAPHIC PRODUCTION 63
7 CONCLUSIONS AND FUTURE WORK . 64
7.1 FUTURE WORK . 65

REFERENCES . 67
APPENDIX A – “REVISÃO BIBLIOGRÁFICA”. 70

A.1 METODOLOGIA DE BUSCA POR TRABALHOS RELACIONADOS 70

A.2 AVALIAÇÃO DE TRABALHOS. 70

A.2.1 Otimizações . 71

A.2.2 Avaliação de resultados . 74

A.2.3 Reprodutibilidade e Escalabilidade . 75

A.2.4 Considerações finais . 76

A.3 REFERÊNCIAS . 77

14

1 INTRODUCTION

Recently, different subareas of Artificial Intelligence and Machine Learning are trying to solve

problems containing large datasets which are difficult to process even in modern hardware.

Applications such as Deep Convolutional Neural Networks or Deep Reinforcement Learning

using this type of big data commonly create intermediate or final results that consists of sets

of data points in a high dimensional space, which are impossible to interpret and visualize in

its original form. To address this problem, several dimensionality reduction techniques can be

used to approximate the structure of these high dimensional point sets by two-dimensional or

three-dimensional representations that can easily be visualized in scatter plots. For the sake of

simplicity, we will refer to the techniques that do not create the exact result as “approximate”

techniques. This term should not be confused with the approximation algorithms for optimization

problems.

The t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van Der Maaten and

Hinton, 2008) is a dimensionality reduction algorithm that was widely used in machine learning

applications due to its efficiency in discovering natural clusters. For instance, t-SNE can be used

to understand the results of Generative Adversarial Networks (GAN) models as illustrated in

Figure 1.1. In the figure, it is possible to see the representation of artificial images generated

with a GAN model. These representations are high-dimensional data points obtained from

the activation of an intermediate layer of the neural network. With t-SNE, it is possible to

convert this type of data into two-dimensional points, which allows the visualization of aspects

such as the interpolation of images as shown in the figure. The t-SNE algorithm focuses on

creating a low-dimensional embedding by preserving the local structures (nearest neighbors).

Techniques that use this main idea, like the Uniform Manifold Approximation and Projection

(UMAP) approach (McInnes et al., 2020), have gained significant attention recently. However,

when projecting a large set of data points into a lower dimensional space to create an embedded

representation from the original points, t-SNE presents quadratic computational time complexity,

which is a limiting factor for this algorithm. Several strategies have been developed to overcome

this problem with approximate algorithms and parallelizing them using Graphics Processing

Units (GPU).

The high execution time to execute the t-SNE was differently studied in recent work

(Van Der Maaten, 2014; Linderman et al., 2017) where the computational time complexity of

t-SNE could be reduced to O(𝑁 log 𝑁) or O(𝑁). Still, even with the algorithmic improvements,

many constant parameters could interfere in the scalability of these approximations. Further

works were made to explore the potential of GPU hardware to improve the scalability of the

mentioned algorithms using parallel computation methods (Chan et al., 2018, 2019; Pezzotti

et al., 2019; Fu et al., 2019). The t-SNE-CUDA library1 (Chan et al., 2018, 2019) utilizes the

CUDA language to improve the performance of the approximate Barnes-Hut t-SNE (BH-tSNE)

version (Van Der Maaten, 2014) and FIt-SNE (Linderman et al., 2017) in NVIDIA GPU hardware.

The library can accomplish considerable execution speedup, achieving up to 700 times faster

execution when compared to other well-known implementations such as the BH-tSNE CPU

implementation available in the Scikit-Learn2 library. Nevertheless, these GPU methods based

in t-SNE can still take hours when executed in large datasets. Therefore, there are several

1https://github.com/CannyLab/tsne-cuda
2https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.

html

15

challenges to improving these algorithms and reducing the execution time, which could be done

by changing the algorithms used in each step or using efficient techniques that take advantage of

GPUs architectures.

Different approaches inspired by t-SNE and BH-tSNE have also been proposed like

Anchor-t-SNE (AtSNE) (Fu et al., 2019), t-SNE-CUDA (Chan et al., 2018, 2019), allowing the

t-distributed Stochastic Neighbor Embedding strategy for millions of data points. However, there

is a lack of studies on the impact of the different t-SNE approximations in applications with large

datasets.

The AtSNE focuses on preserving the global structure and the stability of the resulted

low-dimensional embedding. The experiments presented by Fu et al. (2019) have compared

AtSNE with t-SNE-CUDA using the default parameters of the implementation, which does

not allow the authors to run t-SNE-CUDA for large datasets. Therefore, it is possible to say

that AtSNE was not fairly compared with t-SNE-CUDA since it is possible to choose better

parameters for t-SNE-CUDA execution in the experiments described by Fu et al. (2019). Further,

the AtSNE research has discussed the preservation of global structures using only qualitative and

subjective analysis of the results. Other studies (Kobak and Linderman, 2019) have compared

different types of strategies to improve the global structure preservation of t-SNE based methods

using a criteria that can be measured.

One possible strategy to improve global quality preservation of t-SNE consists in

choosing the Principal Component Analysis (PCA) to initialize t-SNE. According to Kobak and

Linderman (2019), it could lead to equivalent results compared with UMAP, which is a technique

also proposed to improve the preservation of global structures of the dimensionality reduction.

To the best of our knowledge, until now, no research evaluates the preservation of the

global structures of t-SNE-CUDA considering different initialization strategies like PCA for

large-scale datasets. One of the difficulties of measuring the global quality of dimensionality

reduction is the potential high computational cost intrinsic to this measure, which could involve

the computation of pairwise distances (Kobak and Linderman, 2019) requiring the execution of

algorithms with quadratic computational time complexity.

Despite the usage of the t-SNE for different applications like reinforcement learning

(Mnih et al., 2015), we cannot find any research investigating the importance of dimensionality

reduction techniques for analyzing large datasets with high-dimensional points. Considering the

difference between different dimensionality reduction methods like AtSNE and t-SNE-CUDA, the

resulted low-dimensional points of these techniques may create different types of interpretation

of the structure of the high-dimensional points input.

The main objective of this research is to study methods based in t-SNE, and investigate

new methodologies to improve the execution time of this algorithm using GPU. This research

also compares different t-SNE based techniques that take advantage of GPU and considering

applying these techniques in real-world problems. We have investigated the improvement of the

BH-tSNE algorithm implemented in t-SNE-CUDA, adapted to project data into two or three

dimensions, as in Figure 1.2, while using different strategies proposed by Zola et al. (2014)

to prevent inefficient memory access patterns One of the advantages to project data in three

dimensions, rather than two, is the flexibility to represent points in space with more possibilities

for visualization and for configurations, like the disposal of four equidistant points, which is not

possible in two dimensions. We also extend these methods by proposing a new methodology to

compute an approximate K-Nearest Neighbors graph (KNN graph), necessary in t-SNE-CUDA,

that consists in computing the 𝐾 nearest neighbors for all points in a given dataset. Furthermore,

we also present two real-world artificial intelligence applications that could use t-SNE to interpret

large datasets by visualizing it with dimensionality reduction.

16

The major contributions of this research are described as follows:

• We have adapted, implemented and investigated the two-dimensional BH-tSNE projec-

tion in t-SNE-CUDA to generate the embedding in three dimensions (3D).

• We have applied acceleration techniques to GPU BH-tSNE algorithm while preserving

the quality of the projections.

• We propose a new dimensionality reduction method based in t-SNE for GPU called

Simulated Wide-Warp t-SNE (SWW-tSNE) and have compared with others methods

like the t-SNE-CUDA. It was possible to achieve an speedup of up to 900% in one of

the most time-consuming steps of GPU BH-tSNE in 3 million point datasets, using an

Implicit Tree data layout and Simulated Wide-Warp techniques.

• We propose a new approach to compute an approximate KNN graph in GPU, necessary

in BH-tSNE, instead of the approach used in t-SNE-CUDA. With this approach, named

Random Sample Forest KNN (RSFK), allied with the Simulated Wide-Warp technique,

we have observed an up to 460% speedup in the general computation of BH-tSNE in

GPU.

• Although in the current work our acceleration structures and SIMD parallelization

techniques were used in a modern GPU setup, we have also verified (Zola et al., 2019) a

potential for speeding up BH-tSNE in the context of multi-core processors. Likewise,

the parallel SIMD KNN algorithm used in the current work could be effectively applied

in a CPU vectorized implementation.

• We have introduced a new approach called Simulated Wide-Warp AtSNE (SWW-AtSNE),

that combines the SWW-tSNE and AtSNE strategies.

• We have introduced a new metric to quantify the global structure preservation called

Medium Neighborhood Preservation (MNP).

• We have compared PCA, UMAP, AtSNE, SWW-AtSNE, and SWW-tSNE using well-

known practices to increase the global structure preservation of large datasets.

• We have analyzed and compared different dimensionality reduction techniques for data

visualization in two different AI applications, namely Reinforcement Learning and

Generative Adversarial Networks.

The rest of this work is organized as follows: Chapter 2 discusses the fundamentals

necessary to understand the t-SNE, BH-tSNE, and t-SNE-CUDA. Chapter 3 presents previous

research and contributions to the t-SNE algorithm and its implementation in GPU. The proposal

of SWW-tSNE and RSFK will be introduced in Chapter 4, which will also present and analyse

experiments to compare these methods with different dimensionality reduction techniques.

Chapter 5 will introduce SWW-AtSNE and compare SWW-tSNE, SWW-AtSNE, and other

methods using real-world applications that use dimensionality reduction to interpret data. The

bibliographic and technological products will be mentioned in Chapter 6. Finally, Chapter 7 will

discuss the conclusion conclusions of this thesis and the perspective of future works that could

expand the scope of the research.

17

Figure 1.1: Visualization of a dataset consisting of 500005 points with 1536 dimensions, where each point represents

an image generated with a Generative Adversarial Networks method. The figure illustrates the representation of

these images using dimensionality reduction obtained by the execution of the Simulated Wide-Warp t-SNE technique

using Principal Component Analysis as initialization. Each color represents a different class.

18

(a) Amazon Electronics (b) GoogleNews300

(c) MNIST (d) CIFAR

Figure 1.2: 3-dimensional embedding generated for different datasets. Each color represent a class for the original

instance.

19

2 BACKGROUND

The t-SNE technique (Van Der Maaten and Hinton, 2008) is widely used for visualizing real-

world datasets due to its efficiency in separating the data into clusters during the dimensionality

reduction. The embedding created by t-SNE is done by modeling the dimensionality reduction

as a problem where the objective is to increase the probability that if a pair of points 𝑥𝑖 and 𝑥 𝑗
are close in the high-dimensional space (neighbors), their respective representations 𝑦𝑖 and 𝑦 𝑗
in the low-dimensional space will also be close. Given a distance 𝑑𝑖 𝑗 between 𝑥𝑖 and 𝑥 𝑗 , the

joint probability of any pair of high-dimensional points 𝑝𝑖 𝑗 is defined as a gaussian distribution

centered in each point, as showed in equations 2.1 and 2.2, where
��𝑥𝑖 − 𝑥 𝑗

�� represents the

euclidean distance between these two points. The standard deviation 𝜎 defines the gaussian

distribution of each high-dimensional point, and it is computed choosing its optimal value by

considering that each point contains an average number of neighbors. This estimated number

of neighbors is called Perplexity, and as suggested by the author, should be significantly small

(typically between 5 and 50). These joint probabilities are symmetrized using the Equation 2.3.

For the low-dimensional points joint probabilities 𝑞𝑖 𝑗 , t-SNE uses a Student’s t-

distribution with one degree of freedom (Equation 2.4). The objective of the method is

to minimize the difference between these two distributions by updating the low-dimensional

points. To measure this difference, t-SNE uses the Kullback-Leibler divergence presented in

Equation 2.5. With this difference, it is possible to estimate a cost function using the Equation

2.6, which will measure the overall impact of the Kullback-Leibler divergence considering the

position of all points in the low-dimensional space. Finally, it is possible to obtain the movement

required to “push” each point in order to minimize the Kullback-Leibler by computing the partial

derivative for each point (Equation 2.7).

The original optimization algorithm proposed to implements the t-SNE technique was

the Stochastic Gradient Descent (SGD) (Ruder, 2016), which allows the search for suitable local

minima even for non-convex differentiable functions. Different theoretical properties derived

from t-SNE have been discussed in previous works (Linderman and Steinerberger, 2019). In these

studies, it is possible to observe that t-SNE can achieve exponential convergence to significant

local minima in some controllable circumstances. However, since the stochasticity of the method

and the high number of parameters, t-SNE could present different results when executed multiple

times. Algorithm 1 describes the steps necessary to execute the t-SNE algorithm, where the step

size 𝜂 (or learning rate) and Momentum 𝛼 parameters control the convergence of the SGD. First,

the low-dimensional points are initialized, usually using a random gaussian distribution. The

low-dimensional points will then be updated until the algorithm reaches a maximum number of

steps or achieves pre-defined convergence criteria. The update step consists in computing the

gradient 𝜕𝐶𝜕y𝑖 after the computation of the joint probabilities 𝑞𝑖 𝑗 , which will be used to update the

low-dimensional points considering the “intensity” of the update 𝜂 and the momentum 𝛼 that is

related to the update of the previous iteration. It is important to mention the early exaggeration

strategy proposed in the original t-SNE (Van Der Maaten and Hinton, 2008), where the pairwise

similarities of the high-dimensional points are multiplied by a constant during a fixed initial

number of iterations of the SGD, which helps the algorithm to achieve faster convergence.

𝑑2
𝑖 𝑗 =

��x𝑖 − x 𝑗
��2

2𝜎2
𝑖

(2.1)

20

𝑝𝑖 | 𝑗 =
exp(−𝑑2

𝑖 𝑗)∑
𝑘≠𝑖 exp(−𝑑2

𝑖𝑘)
(2.2)

𝑝𝑖 𝑗 =
𝑝𝑖 | 𝑗 + 𝑝 𝑗 |𝑖

2𝑁
(2.3)

𝑞𝑖 𝑗 =

(
1 +

��𝑦𝑖 − 𝑦 𝑗
��2
)−1

∑
𝑘≠𝑙

(
1 + ‖𝑦𝑘 − 𝑦𝑙 ‖2

)−1
(2.4)

𝐾𝐿 (𝑃𝑖‖𝑄𝑖) =
∑
𝑗

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗
(2.5)

𝐶 =
∑
𝑖

𝐾𝐿 (𝑃𝑖‖𝑄𝑖) =
∑
𝑖

∑
𝑗

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗
(2.6)

𝛿𝐶

𝛿𝑦𝑖
= 4

∑
𝑗

(
𝑝𝑖 𝑗 − 𝑞𝑖 𝑗

) (
𝑦𝑖 − 𝑦 𝑗

) (
1 +

��𝑦𝑖 − 𝑦 𝑗
��2
)−1

(2.7)

Algorithm 1 t-SNE

Input: High-Dimensional points points 𝑋 ∈ R𝐷 , Step size 𝜂, Momentum 𝛼, Low-Dimensional

size 𝐷′, Maximum iterations 𝑚𝑎𝑥_𝑖𝑡𝑒, Perplexity 𝑃𝑒𝑟 𝑝𝑙
Output: Low-Dimensional points 𝑌 ∈ R𝐷 ′

1: Calculate 𝑝𝑖 𝑗 for each pair of points in 𝑋 using perplexity 𝑃𝑒𝑟 𝑝𝑙 (Equation 2.2)

2: 𝑌0 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑟𝑎𝑛𝑑𝑜𝑚_𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛()
3: 𝑌1 ← 𝑌0

4: 𝑡 ← 1

5: repeat
6: Calculate 𝑞𝑖 𝑗 for each pair of points in 𝑌𝑡 (Equation 2.4)

7: Calculate the gradient 𝜕𝐶𝜕y𝑖 for each point 𝑦𝑖 ∈ 𝑌𝑡 (Equation 2.7)

8: 𝑌𝑡+1 ← 𝑌𝑡 + 𝜂 𝛿𝐶𝛿𝑌 + 𝛼𝑡 (𝑌𝑡 − 𝑌𝑡−1)
9: 𝑡 ← 𝑡 + 1

10: until Convergence or 𝑡 > 𝑚𝑎𝑥_𝑖𝑡𝑒
11: return 𝑌𝑡

2.1 BARNES-HUT T-SNE

The standard t-SNE requires a computational time complexity of O(𝑁2), which is not enough to

allow the algorithm to escalate for million-points datasets. Van Der Maaten (2014) proposes the

Barnes-Hut t-SNE (BH-tSNE) to surpass this limitation, which is an approximation of t-SNE

that can be implemented as an algorithm with O(𝑁 log 𝑁) time complexity. The main idea of

BH-tSNE is to rewrite the gradient of Equation 2.7 as the sum of two independent terms that can

be individually approximated.

One of these terms is the attractive forces 𝐹𝑎𝑡𝑡𝑟 , defined in Equation 2.9, which will reflect

the forces in the gradient that pull similar points together in the low-dimensional space. Note that

in the expression of the sum of the attractive forces, pairs of distant points from each other will

21

be represented with a joint probability close to zero, leading to an insignificant contribution to

the total sum. It is possible to approximate the result by choosing only 𝐾-neighborhood (nearest

points) of each point, and then computing these joint probabilities. The 𝑝𝑖 𝑗 value of points that

are not neighbors can be considered 0 in the summation, which allows the computation of the

approximated attractive forces in a linear time complexity controlled by the constant 𝐾 . However,

this method depends on the construction of a 𝐾-neighborhood of each point. This can be solved

by an algorithm that computes the 𝐾-NN Graph of a cloud of data points. The author of BH-tSNE

suggests the value of 𝐾 as �3 × 𝑃𝑒𝑟 𝑝𝑙𝑒𝑥𝑖𝑡𝑦� and the vantage-point tree algorithm to construct an

approximation of the 𝐾-NN Graph, which leads to good results in his experiments. However, it

is possible to use other types of 𝐾-NN Graph algorithms to construct an approximation of the

graph, like the Random Projection Forests discussed by Tang et al. (2016) during the proposal of

LargeVis.

The second term of the rewritten gradient expression in the BH-tSNE is the repulsive

forces 𝐹𝑟𝑒𝑝 (Equation 2.10) , which can be interpreted as the part of the gradient that “push”

dissimilar points in order to minimize the Kullback-Leibler divergence. This equation can be

interpreted as an N-Body simulation problem, where dissimilar (distant) data points have a weak

interaction, and similar points have strong interaction. A widely used algorithm that allows a

reliable approximation of N-body simulation problems is the Barnes-Hut algorithm (Barnes

and Hut, 1986) with computational time complexity of O(𝑁 log 𝑁). This algorithm consists

of constructing an M-ary tree that creates different partitions (quadrants or octants). Each

partition contains a set of points and the pre-computed center of mass of all points contained in it,

illustrated in Figure 2.1. Usually, the M-ary tree is a quadtree or an octree since these structures

are enough to execute BH-tSNE for the dimensionality reduction to 2 or 3 dimensions. A traversal

is performed in the generated tree for each point, and distant points can be approximated using

the centroids (centers of mass) created during the tree construction.

The Algorithm 2 represents the steps that the Barnes-Hut algorithm requires to perform

a traversal in the quadtree or octree. Each traversal can be controlled by a parameter 𝜃 ∈ [0, 1]
that allows the user to modify the trade-off between computational time and the reliability quality.

The value of 𝜃 is used to limit the traversal by checking the ratio between two values like shown

in Equation 2.12. The first value is the distance of the point to the center of mass of the quadrants

(or octants) related to each internal node in the tree. The second value is the radius of these

quadrants. If the ratio is small enough compared to 𝜃, then the interaction between the traversal

point and the center of mass of this quadrant can be computed instead of the interaction between

all leaf points inside the quadrant. This relation will be satisfied if the distance is great or the

quadrant radius is small. If the distance between the traversal point and the center of mass of the

quadrant is great, then the interaction will be small, and therefore can be approximated without

harming the result. If the quadrant (or octant) radius is too small, it will contain points that are

very close to each other. In this case, the interaction could also be approximated using only the

distance to their center of mass.

The value of 𝜃 is typically 0.5, which allows the execution of the Barnes-Hut algorithm

in O(𝑁 log 𝑁) time complexity (Barnes and Hut, 1986). Since the attractive forces and repulsive

forces are the only terms necessary to rewrite the gradient cost in Equation 2.11, then using both

approximations mentioned before to compute these forces will transform the computational time

complexity of t-SNE to O(𝑁 log 𝑁). In this approximation, the fidelity of the 𝐾-NN Graph, the

value of 𝐾 , and 𝜃 are the principal parameters that allow the user of the algorithm to control the

overall trade-off between execution time and quality of the approximation.

22

D

E F G

A H A

B C

B

C

D

E

F G

H

Traversal

Figure 2.1: Example of a quadtree representation in the Barnes-Hut algorithm. Internal nodes of the trees represents

the centers of mass and leafs nodes the input data points.

𝑍 =
∑
𝑘≠𝑙

(
1 + ‖y𝑘 − y𝑙 ‖2

)−1

(2.8)

𝐹𝑎𝑡𝑡𝑟 =
∑
𝑗≠𝑖

𝑝𝑖 𝑗 𝑞𝑖 𝑗 𝑍
(
y𝑖 − y 𝑗

)
(2.9)

𝐹𝑟𝑒𝑝 = −
∑
𝑗≠𝑖

𝑞2
𝑖 𝑗 𝑍

(
y𝑖 − y 𝑗

)
(2.10)

𝜕𝐶

𝜕y𝑖
= 4

(
𝐹𝑎𝑡𝑡𝑟 + 𝐹𝑟𝑒𝑝

)
(2.11)

𝑟𝑐𝑒𝑙𝑙

‖y𝑖 − y𝑐𝑒𝑙𝑙 ‖2
< 𝜃 (2.12)

Algorithm 2 bh_traversal (Recursive Barnes-Hut Tree traversal)
Input: Body 𝑦𝑖, 𝑚-aryTree, Current node 𝑦 𝑗 , Threshold 𝜃
Output: Forces vector with average forces applied into 𝑦𝑖

1: 𝐶 ← children(𝑦 𝑗)

2: Forces ←
⃗⃗
0

3: for all 𝑐 ∈ 𝐶 where 𝑦𝑖 ≠ 𝑐 do
4: 𝑟𝑐𝑒𝑙𝑙 ← radius(cell(𝑐))
5: 𝑦𝑐𝑒𝑙𝑙 ← centroid(cell(𝑐))
6: if Inequation (2.12) is not satisfied then
7: Forces ← Forces + bh_traversal(𝑦𝑖, 𝑚-aryTree, 𝑐, 𝜃) // Recursive call

8: else
9: // Approximates the interaction with distant cells

10: Forces ← Forces + interaction(𝑦𝑐𝑒𝑙𝑙 , 𝑦𝑖)
11: end if
12: end for
13: return Forces

23

2.2 K-NEAREST NEIGHBORS GRAPH (KNN GRAPH)

The K-Nearest Neighbor Graph is a structure that can be computed from a set of data points.

Denote 𝑋 as the set of these points. The KNN Graph can be represented as a function 𝐺 that

takes any 𝑥 ∈ 𝑋 as input and gives the 𝐾 most similar objects of 𝑋 (|𝐺 (𝑥) | = 𝐾) that are

different of 𝑥. 𝐺 (𝑥) is usually mentioned as “neighborhood” of 𝑥. The similarity function

can be defined as any function, but assume that the euclidean distance is used to measure this

similarity (the closer the points are, the bigger is the similarity). In this case, for each 𝑦 ∉ 𝐺 (𝑥),
max𝑦∈𝐺 (𝑥) (‖𝑥 − 𝑦‖) ≤ ‖𝑥 − 𝑦‖. Therefore, there is no element out of 𝐺 (𝑥) that is closer to 𝑥
than any neighborhood element of 𝑥.

When this requirement is not satisfied, we say that the structure is an Approximate

K-Nearest Neighbor Graph. The approximation quality will be related to the intersection of

𝐺 (𝑥) and the real neighborhood of 𝑥 computed with an exact method. The KNN Graph can be

represented as a 𝑁 × 𝐾 matrix, where 𝑁 = |𝑋 |. It will be interesting to keep another 𝑁 × 𝐾
matrix with the precomputed similarities in some contexts.

2.2.1 Approximate Nearest Neighbors Search

The FAISS library (Johnson et al., 2017) contains a method that computes an approxi-

mation of the 𝐾 nearest neighbors of a query points set 𝑄 using a database of points 𝑃. This

is sufficient to create the approximate KNN graph required by the BH-tSNE approximation by

choosing the points in the HD as 𝑄 = 𝑃, thus performing an all-points KNN algorithm. The

t-SNE-CUDA algorithm uses this method to compute the approximate KNN graph using GPU.

The method consists in partitioning 𝑃 in 𝑛𝑙𝑖𝑠𝑡 cells, and storing in an inverted file structure.

For instance, the K-Means algorithm can be used by creating 𝑛𝑙𝑖𝑠𝑡 centroids and storing the

associated points of each centroid as an inverted list. Then, the search for a query point can be

approximated by selecting the 𝑛𝑝𝑟𝑜𝑏𝑒 closest cells of the query point and then scanning the

inverted list to compute the 𝐾 closest points. The risk of this method lies in the fact that if the

cell that contains a real neighbor of the query point is not chosen between the 𝑛𝑝𝑟𝑜𝑏𝑒 cells, the

exact neighbors will not be found. The described FAISS accuracy associated to a approximate

KNN graph can be controlled by choosing the parameters 𝑛𝑝𝑟𝑜𝑏𝑒 and 𝑛𝑙𝑖𝑠𝑡 (usually a multiple

of
√
|𝑃 |).

The Random Projection Forest KNN consists of creating 𝑡 trees according to Algorithm

3. This procedure ensures that different partitions of points will be created with no more than

𝑀 points. Then, the algorithm searches the 𝐾 closest points of each point, considering only

the points that are in the same partition as neighbor candidates. The method used to split each

partition in Algorithm 3 will lean towards allowing points that are close in the D-dimensional

space remain in the same partition. The number 𝑡 of partitions created must be diverse enough to

contain the real neighbors of every point and consequently to allow controlling the accuracy of

this method by increasing the number of trees created.

The described FAISS method performs generic searches using different sets of databases

and queries. When this method is used for the approximate KNN graph computation, it could

be a waste of computation since it is known that the queries and database points are the same.

The operations made by the Random Projection Forest could help to achieve a better speedup in

this case since we can compute the nearest neighbor candidates of each point during the tree

construction.

To estimate an accuracy metric of an approximate KNN graph, we can compute and

normalize the intersection of the estimated neighbors and the real neighbors similar to Equation

2.14. This metric is used by Tang et al. (2016) to compare the trade-off between computational

24

time and quality of the KNN graph created by the LargeVis algorithm. It is essential to mention

that LargeVis also includes a post-processing step, after the construction of the graph, called

neighbor exploring.

The neighbor exploring method consists in exploring the neighbors of neighbors for

each point and compute the distances during the exploration, to search for new neighbors that

are closer to the current 𝐾 nearest neighbors. This process can be repeated iteratively and, as

demonstrated by experiments (Tang et al., 2016), only needs a few number of iterations to achieve

maximum accuracy. The scalability of this method depends on the size of 𝐾 since the number

of distances computed for each point is O(𝐾2), which can leads to poor scalability when 𝐾 is

significantly high.

Algorithm 3 rp_tree (Random Projection Tree)

Input: A set of points 𝑃 of 𝐷 dimensions, A limit of points inside each leaf node 𝑀
Output: A list of subsets containing every point of 𝑃

1: if |𝑃 | ≤ 𝑀 then
2: return {𝑃}
3: end if
4: Generate a random vector

⃗⃗
𝑟 in the D-dimensional space

5: 𝑃𝑟𝑜 𝑗 ← Projection of each point of 𝑃 onto
⃗⃗
𝑟

6: Select a break point 𝑏 ∈ [𝑚𝑖𝑛(𝑃𝑟𝑜 𝑗), 𝑚𝑎𝑥(𝑃𝑟𝑜 𝑗)]
7: 𝑃1 ← {𝑝 ∈ 𝑃 if projection of 𝑝 onto

⃗⃗
𝑟 ≤ 𝑏}

8: 𝑃2 ← {𝑝 ∈ 𝑃 if projection of 𝑝 onto
⃗⃗
𝑟 > 𝑏}

9: return 𝑟 𝑝_𝑡𝑟𝑒𝑒(𝑃1, 𝑀) + 𝑟 𝑝_𝑡𝑟𝑒𝑒(𝑃2, 𝑀)

2.3 T-SNE-CUDA

Chan et al. (2018) proposed t-SNE-CUDA, and a subsequent improved version (Chan et al., 2019),

which implements BH-tSNE algorithm using GPU and CUDA primitives. FIt-SNE (Linderman

et al., 2017) was also implemented in GPU. In t-SNE-CUDA, the FAISS library (Johnson et al.,

2017) is used to compute an approximate KNN of HD points with GPU parallelism in linear

computational time complexity (Chan et al., 2019). As demonstrated by the author’s experiments,

the t-SNE-CUDA was bounded mainly by the approximate KNN graph computation and the

attractive forces computation when the value of 𝐾 is too high. The authors suggest using the

multiple GPUs to compute the KNN graph in these cases, which is one option available in

the FAISS library. When 𝐾 is significantly small or multiple GPUs are used to compute the

KNN graph, the computation of the repulsive forces also becomes one of the bottlenecks of

t-SNE-CUDA.

The t-SNE-CUDA proposes two different alternatives to compute the repulsive forces:

One based in the FIt-SNE algorithm, and the other based in the BH-tSNE. Even with the

difference in the computational complexity of these methods, the different constants related to

their implementations will also significantly impact the computational time. The computational

time of these methods is O(𝑁) for FIt-SNE and O(𝑁 log 𝑁) for BH-tSNE. But, it is important to

note that the computational time of both methods is significantly impacted by other implementation

parameters (Chan et al., 2019). To the best of our knowledge, no technique was proposed to

execute t-SNE with more than billions of data points as inputs. The input size is usually limited

by the memory usage and computational time bottleneck of the KNN step. This can impact

the interpretability of the computational complexity since the value of 𝑁 has a practical limit.

25

Therefore, it is possible to perceive that the BH-tSNE could present faster execution than the

FIt-SNE due to the constant time cost of the operations in their implementations, despite the

difference in the computational complexity.

The original implementation1 allows t-SNE-CUDA to create the projection only to a

two-dimensional space. In this case, the computation of attractive forces at each SGD step uses

cuBLAS library to apply sparse matrix multiplications, which was improved in (Chan et al.,

2019) using GPU atomic operations.

As described in the original article, the Barnes-Hut steps are mainly composed by:

• Finding the bounding box of all points: The result of this step is used to construct initial

cells of the Quadtree;

• Construction of the Quadtree;

• Nodes summarization: Computation of the radius, center of mass and number of points

of each cell;

• Sorting of points in spatial order (Morton Order);

• Computation of the repulsive forces: Traverses the tree while evaluating forces for each

body (Algorithm 2).

In current NVIDIA GPU architectures, there is a concept called warp that represents

a set of 32 cores executing the same SIMD (Single Instruction Multiple Data) instruction at a

given time. When cores of the same warp try follow different paths in the code, the GPU must

necessarily serialize execution of some cores, partially wasting the potential parallel advantage

of GPU SIMD hardware and leading to a problem called thread divergence. Sorting points in

Morton order is an optional step, but it improves the chances that threads with close indices in

the GPU agree in expanding the same cells (line 6 of Algorithm 2), and consequently reducing

divergence.

2.4 ATSNE

The Anchor-t-SNE (AtSNE) (Fu et al., 2019) was proposed for being an algorithm well suited for

implementations in GPU compared to t-SNE-CUDA. AtSNE is a t-SNE approach that uses the

graph-based strategy similar to the LargeVis application (Tang et al., 2016), where the repulsive

force is approximated in each iteration of the SGD using a sampling of non-neighbors of each

data point.

The other novelty in the AtSNE approach is that it creates “anchors” obtained by a

pre-clustering of the input points of t-SNE, where each anchor is related to a set of the input

data points, and its position is the center of mass of these points. In the research, the authors

discuss that the pre-clustering used by AtSNE does not need to be accurate. In the available

code of the algorithm2, the FAISS library is used to compute the 𝐾-NN, which also allows

obtaining a reliable clustering of the input data points generated by a 𝐾-Means algorithm during

the similarity search of the library.

These anchors of AtSNE are used to create an initial solution in the low-dimensional

space by executing a dimensionality reduction of all anchors and then initializing the low-

dimensional output points around the anchors using a normal distribution. In the t-SNE, the

1https://github.com/CannyLab/tsne-cuda/tree/bh_tsne.

2https://github.com/ZJULearning/AtSNE

26

initialization of the low-dimensional points is usually defined as a random normal distribution.

Previous works have analyzed the potential influence of the initialization to improve the global

quality of t-SNE and UMAP (Kobak and Linderman, 2019). Therefore, the usage of anchors in

AtSNE to create an initialization could, by itself, allow the SGD to achieve a better global structure.

Besides the initialization, the AtSNE also uses the anchor points 𝐴 and its representation in the

low-dimensional space 𝐵 to rewrite the objective cost of t-SNE defined in Equation 2.6 as the

Equation 2.13.

The cost function of AtSNE has two new terms compared to t-SNE: one term that

increases with the Kullback-Leibler divergence of the similarities distributions 𝑃(𝐴) of the

high-dimensional anchor points 𝐴 and the distributions 𝑃(𝐵) of the low-dimensional anchor

points 𝐵. The other term of the cost function will increase if a point is distant from its anchor

during the stochastic optimization. In this way, AtSNE “forces” that the layout defined by the

anchors must be preserved during the iterations of the SGD algorithm. The AtSNE optimization

algorithm proposed by the authors consists of three steps in the SGD. First, the input data points

are fixed, and then the low-dimensional anchor points are individually updated with one step

of the SGD. The algorithm then fixes the anchor points and updates only the low-dimensional

data points, which considers their anchors inside its 𝐾-neighborhood. The last step consists

of updating the positions of the low-dimensional anchors using the updated locations of the

low-dimensional points to compute the new mass centers.

𝐶 =
∑
𝑖

𝐾𝐿 (𝑃𝑖‖𝑄𝑖) +
∑
𝑗

𝐾𝐿
(
𝑃(𝐴𝑗)‖𝑄(𝐵𝑗)

) +
∑
𝑗

| |𝑏𝑖 −
∑
𝑦𝑘∈𝐶𝑏𝑖

𝑦𝑘

|𝐶𝑏𝑖 |
| |, 𝑏𝑖 ∈ 𝐵 (2.13)

2.5 THE QUALITY OF DIMENSIONALITY REDUCTION

Visualization quality can be subjective, considering the diversity of applications that requires

interpreting high-dimensional data by visualizing it through dimensionality reduction. Commonly,

researches inspired by t-SNE try to discuss the image of scatter plots obtained from applying

their methods in a real-world dataset by a qualitative analysis. It is also common to use the

dimensionality reduction algorithm to create a dataset embedding and obtain a quantitative

measure of the quality of the methods to be analyzed. A measure to evaluate the quality of

the dimensionality reduction is an issue not solved yet. Most of the researchers use qualitative

analysis from the generated image on a low dimension. Besides, quantitative analysis was made

in some studies by using the accuracy of KNN classification methods, here, the data need to be

previously classified.

However, the KNN classification accuracy can be affected by outliers and real class

intersection present in the data. Therefore, using the accuracy of the KNN to quantify the quality

of the dimensionality reduction can be a low indicative analysis of neighborhood and structure

preservation, besides depending on supervised datasets. One alternative solves the mentioned

problems by measuring the real neighborhood preservation without using any label information

(Lee et al., 2015). The average 𝐾-ary neighborhood preservation measures an average ratio

by considering the preservation of the 𝐾 closest points of each point for the low-dimensional

representation compared to the high-dimensional input data points like described in Equation

2.14. In the equation, 𝐾 represents the neighborhood size to be considered, 𝑁 is the total number

of points, with 𝜈𝐾𝑖 and 𝑛𝐾𝑖 meaning the set of the 𝐾 nearest neighbors of any point in the high

and low-dimensional space respectively. The rescaled average 𝐾-ary neighborhood, or 𝑅NX(𝐾),
is a modification of the previous metric, presented in Equation 2.15. With the 𝑅NX(𝐾) metric,

27

the quality measurement of random projections will tend to 0, which is not the case of the

non-rescaled metric.

The evaluation of the neighborhood preservation indicates if the local structures were

successfully preserved by the dimensionality technique analyzed. Usually, preserving these local

structures is enough to create a reasonable representation of the data points for visualization

analysis. However, this measurement does not consider the relationship between global structures

and the relative position for distant points in the high-dimensional data points distribution. One of

the objectives in the proposal of the AtSNE was to capture global information and preserve both

local and global structures. However, the authors present only a qualitative analysis to interpret

the global structure information preserved by the methods compared in their experiments.

As far as we are aware, there is a lack of researches that try to interpret the global structure

preservation as a nonsubjective property of the dimensionality reduction results, especially for

large datasets. In the study presented by Kobak and Linderman (2019), UMAP and t-SNE are

compared by using two different metrics to evaluate the preservation of pairwise distances and the

reproducibility of large-scale structures. However, the metrics of the mentioned research require

the usage of large subsamples to be computed, which could be impractical for large datasets.

𝑄𝑁𝑋 (𝐾) = 1

𝐾𝑁

𝑁∑
𝑖=1

𝜈𝐾𝑖 ∩ 𝑛𝐾𝑖

 (2.14)

𝑅NX(𝐾) = (𝑁 − 1)𝑄NX(𝐾) − 𝐾
𝑁 − 1 − 𝐾 (2.15)

28

3 STATE OF THE ART

The t-SNE (Van Der Maaten and Hinton, 2008) method was based on the SNE (Stochastic neighbor

embedding) technique (Hinton and Roweis, 2003). Both methods create a low-dimensional

representation of each data point in the high-dimensional space by preserving the nearest

neighbors of each point. This characteristic seems to create a successful data representation for

visualization, specifically for supervised learning applications.

Other approaches based in linear projections such as the PCA (Principal component

Analysis) (Hotelling, 1933) have been widely used in different areas to simplify the visualization

of high-dimensional data points. However, these kinds of techniques fail to preserve non-linear

structures in the data, which is not the case of t-SNE based techniques since its approach transform

the data without linear projections.

Currently, Barnes-Hut t-SNE (Van Der Maaten, 2014), or BH-tSNE, is one of the most

well-known implementations of t-SNE sustaining O(𝑁 log 𝑁) computational time complexity.

This technique uses Barnes-Hut method (Barnes and Hut, 1986) to approximate a step in t-SNE

called Repulsive Forces Computation which is, in the general case, the bottleneck in execution

time. The Barnes-Hut algorithm is an approximate method controlled by a parameter 𝜃, which

specifies the trade-off between accuracy and time consumption.

Besides the approximation of the repulsive forces proposed in the BH-tSNE algorithm,

the author also presents an approximation of a step called attractive forces, which depends on the

construction of a k-Nearest Neighbors (KNN) graph. Initially, the BH-tSNE used a vantage-point

tree data structure to solve the nearest neighbor’s problem. However, it is possible to use other

strategies to compute an approximate KNN graph. For instance, the LargeVis (Tang et al., 2016)

project uses a method similar to t-SNE, but applies the Random Projection Forest KNN (Yan

et al., 2019) algorithm to create the KNN graph.

Despite the contribution of the BH-tSNE to reduce the computation time to execute

t-SNE, it still cannot scale for datasets with millions of data points and achieve reasonable

time for real-world applications. Different works have introduced news approaches based in

better approximations considering the trade-off between computational time and quality of the

dimensionality reduction result. Some studies also focus on the scalability of t-SNE based

techniques by improving its implementation with parallel primitives.

Recently, much work has been devoted to propose methodologies and techniques that

efficiently implements the algorithms based on t-SNE with Graphics Processing Units (GPU)

(Chan et al., 2018, 2019; Fu et al., 2019; Pezzotti et al., 2019). The utilization of this highly

parallel, many-core, hardware enables the use of t-SNE with millions of data points. Chan, et

al. (Chan et al., 2018, 2019) proposes the t-SNE-CUDA, which brings about BH-tSNE in GPU

using a modified version of the Barnes-Hut algorithm that was based on the Burtscher and Pingali

implementation (Burtscher and Pingali, 2011) and allows two-dimensional visualization of the

entire ImageNet dataset (Deng et al., 2009). Further, t-SNE-CUDA uses FAISS (Johnson et al.,

2017) library to compute a approximate KNN graph in the first step of the algorithm.

One interesting method that has gained attention in recent years is the UMAP technique

(McInnes et al., 2020), which is inspired in t-SNE but is based in other theoretical concepts to

preserve the topological and geometrical information of the data points. A recent study (Nolet

et al., 2020) has been made to propose the UMAP using GPU primitives. This implementation is

part of the cuML project, related to the RAPIDS (a suite of open-source software libraries). The

main idea of the GPU implementation of UMAP in the mentioned work is to use the FAISS library

29

to compute the 𝐾-NN graph and use efficient structures to represent the data. In the original

proposal of UMAP (McInnes et al., 2020), different discussions and observations were made

considering its superiority in preserving the global quality during the dimensionality reduction.

However, further investigations have shown a counter-proof by changing the initialization of t-SNE

and comparing it with UMAP methodology (Kobak and Linderman, 2019). This comparison

concludes that both techniques have similar efficiency in preserving global quality when the

correct initialization of the low-dimensional points is chosen. In these studies, the global quality

was compared using a subjective analysis of the resulting image or the pairwise distances of a

subsample of the points. There are other options to measure global structure preservation, like

analyzing the neighborhood preservation with different neighborhood sizes (Lee et al., 2013),

which requires a high computational cost and is impracticable for large datasets.

Other implementations that focus on GPU’s efficient usage were defined like Anchor

t-SNE (AtSNE) (Fu et al., 2019). AtSNE is based in the LargeVis approach (Tang et al., 2016)

where the 𝐾-NN graph is used to approximate part of the computation by negative sampling

instead of using the Barnes-Hut algorithm. AtSNE also implements a new strategy that computes

a high-dimensional skeleton layout of the points to improve the preservation of the global

structures and preserve the stability of the results when the algorithm is executed with different

random seeds.

Although the t-SNE-CUDA and AtSNE are significant contributions, these approaches

are proposed and implemented specifically for NVIDIA hardware. Pezzotti et al. (2019) proposed

a new approach based in the principles of General-purpose computing on graphics processing

units (GPGPU) that avoids the challenge of improving the irregular memory access pattern in

GPU of Barnes-Hut algorithm. The GPGPU approach could not surpass the t-SNE-CUDA

implementation considering the execution time, but presents a competitive trade-off between

quality and execution time in addition to the possibility of being implemented and executed in

specific environments like web browsers via WebGL API.

Despite the existence of different works that approximate t-SNE with a linear complexity

algorithms like GPGPU t-SNE, there is still a need to investigate Barnes-Hut t-SNE due to its

competitive performance in computational time. Different approaches can be used to improve

BH-tSNE. The Barnes-Hut method traditionally computes attractive forces in 3D or 2D particle

systems. Techniques such as the Implicit Tree structure and Simulated Wide-Warp presented

by Zola, et al. (Zola et al., 2014) mitigates the inefficient GPU memory access present in

common Barnes-Hut implementation. Recently the Implicit Octree acceleration structure were

successfully applied to BH with multi-core SIMD vectorization (Zola et al., 2019). The implicit

tree consists in changing the tree data structure representation in the Barnes-Hut algorithm using

an implicit representation instead of a sparse representation. Although the implicit representation

lowers the memory footprint in the BH step, the bottleneck in memory consumption in t-SNE

is located in the approximate KNN graph representation. However, the implicit tree structure

allows an efficient execution of the operations in the Barnes-Hut algorithm, which significantly

reduces the overall computational time. While some speedup could be acquired in a sequential

version, it is mostly effective in the GPU parallel execution. The simulated wide warp is another

technique that enables the simulation of virtual threads in GPU, and enhance throughput in GPU

parallel/SIMD calculations. Combined with the implicit tree acceleration structure, SWW allows

more regular access patterns to the memory hierarchy and speed up the algorithms.

Currently, there is a significant variety of methods and technologies available to compute

the Nearest Neighbors using standard CPU architectures (Aumüller et al., 2019). However,

there is a lack of options for those technologies in GPU. The FAISS library is a well known

implementation used to create approximate KNN graphs in t-SNE-CUDA (Chan et al., 2018,

30

2019). The Random Projection Forest (RPF) algorithm for approximate nearest neighbor search

has demonstrated competitive results considering the trade-off between accuracy and execution

time (Aumüller et al., 2019). To the best of our knowledge, no specific research focuses on

using the RPF algorithm to create KNN graphs (one of the required steps t-SNE approximations)

using GPU primitives. RPF algorithm benefits from performing several NN searches and then

combining the results, thus improving the accuracy of the overall search. LargeVis algorithm

successfully uses the Annoy library (another RPF implementation) to compute a approximate

KNN graph from high-dimensional points using multi-core CPUs, enabling the algorithm to

achieve competitive results compared to the BH-tSNE implementation.

A broad examination of different works related to t-SNE was discussed in the document

presented in the Master’s qualification examination related to this thesis. The appendix A contains

the chapter related to the methodology and results of the research, which allows examining the

trends and gaps present in the State of The Art t-SNE.

31

4 IMPROVING THE SCALABILITY OF BARNES-HUT T-SNE WITH GPU

Despite the novelty of the BH-tSNE implementation in t-SNE-CUDA to scale for million-points

datasets, there were still some limitations of the technique, mainly in the irregular GPU memory

access, leading to a non-GPU friendly algorithm (Fu et al., 2019). This Chapter will present

a new method named Simulated Wide-Warp t-SNE (SWW-tSNE) to overcome this limitation

and improve the efficiency of the Barnes-Hut t-SNE implementation using two strategies (Zola

et al., 2014) to improve the access pattern to the GPU memory. One of these strategies is the

manipulation of the tree using an implicit structure, which avoids the usage of a sparse structure

with pointer-based references (see Figure 4.1). Figure 4.1(a) shows that several pointers are

allocated in the sparse representation of a quadtree but are useless since they are pointing to null

nodes. Also, in a postorder traversal in the tree using a sparse representation, required in the

Barnes-Hut algorithm, it will be necessary to use stacks to manipulate and control the order that

each node is explored. However, the nodes can be put sequentially in a unique array as illustrated

in Figure 4.1(b), which we refer to as the implicit representation. In the implicit representation, the

nodes placed in the memory already consider the postorder required in the Barnes-Hut algorithm.

The only pointers required in this tree are those that indicate where the traversal should jump if

the Inequation 2.12 is satisfied. This precomputation of the order that each node will be consulted

eliminates the need to use stacks in the traversal, enabling a better memory access pattern. The

second strategy improves the algorithm used to traverse the tree using a method called Simulated

Wide-Warp. In Figure 4.2, the main idea of the Simulated Wide-Warp is represented, which

consists of improving the memory access pattern by creating virtual threads inside each GPU

physical thread. A warp in the GPU is the concept that abstracts a set of cores that will follow

the same instruction. The size of each warp is related to each GPU architecture, which is 32

for all NVIDIA architectures until now. The Simulated Wide-Warp virtually multiplies the size

of each warp by a factor called WarpWidth through code implementation. The implementation

consists in the execution of multiples virtual threads inside a unique thread, which allows the

algorithm to share common memory data and reduce unnecessary loads in the memory. Using

the Implicit Tree representation and the Simulated Wide-Warp technique in the SWW-tSNE, it is

possible to obtain equivalent results compared to t-SNE-CUDA with the same reliability, but

with a shorter execution time due to the efficient usage of the GPU memory.

The SWW-tSNE and RSFK algorithm will be presented in Section 4.1. Section 4.2 will

introduce the methods used to compare SWW-tSNE with t-SNE-CUDA and compare RSFK with

the FAISS algorithm. The results of these experiments will be discussed in section 4.3.

32

D

E F G

A H

B C

Sparse Quadtree representation based on pointers

(a) Sparse representation

A D G HB C

Implicit Quadtree representation

E F

(b) Implicit representation

Figure 4.1: Comparison between the representation of a quadtree using sparse and implicit and sparse structures.

A D G HB C

One thread for each data point traversal

E F

A D G HB C

Simulated Wide-Warp

E F

Implicit Tree Traversal

Implicit Tree Traversal

...

GPU Physical threads
(One traversal per physical thread)

A H

A

BVirtual threads

... H

...
...

GPU Physical threads
(One traversal per logical thread)

Figure 4.2: Illustration of the difference between a normal traverse in the implicit quadtree structure (bottom) and

the same traversal using the Simulated Wide-Warp technique (top).

4.1 SIMULATED WIDE-WARP T-SNE (SWW-TSNE)

The t-SNE-CUDA Barnes-Hut code is based on the Barnes-Hut Simulation work of Burtscher

and Pingali (Burtscher and Pingali, 2011) (BP-BH), with specific forces calculations modified to

the t-SNE method and with dimensionality of N-Body simulation simplified to 2 dimensions.

These implementations are iterative, instead of recursive as Algorithm 2, and are implemented

33

with a stack data structure in the traversal. The tree representation is Sparse and uses an array of

integer pointers to child nodes in each non-leaf node.

Zola, et al. (Zola et al., 2014) presented a GPU implementation of the Barnes-Hut

algorithm that surpasses BP-BH in computational time by using a different tree representation

called Implicit Tree and proposed Simulated Wide-Warp (SWW), a technique that creates virtual

threads simulating warps with more threads per core than what is physically supported by the

GPU. These modifications allow BH algorithm to present better memory access patterns and

also to acquire more accurate results with considerable speedup.

Another potential improvement in t-SNE-CUDA is related to the KNN graph construction,

which is solved by the use of FAISS library. We believe that this choice does not take advantage

of all features related to the needs of t-SNE. The t-SNE algorithm does not directly need the

execution of a generic KNN search since the query points are also the database points. We

propose an alternative algorithm to compute the KNN graph. This algorithm is based on the

Random Projection Forest KNN that can be implemented in GPU and is described in Subsection

4.1.3.

4.1.1 Implicit Tree

In the Implicit Tree representation, leaf nodes and internal tree nodes are represented in a unique

array, where internal nodes contain a pointer to the next internal node, assuming a pre-order

traversal. Figure 4.1 illustrates the difference between Sparse and Implicit representations. An

advantage of the Implicit representation consists in the fact that it needs to store only one pointer

in each non-leaf node reducing the memory needed in comparison to the Sparse representation,

where even null nodes need to be represented.

While saving space allowing larger trees and posing less bandwidth demand on the

memory system, another benefit of the implicit representation manifests when traversing the

tree in the BH algorithm: unlike the Sparse representation, there is no need to use a stack per

thread when traversing the tree since the skip-link pointers in each internal node are the only

information needed to walk through the tree. This allows the algorithm to access GPU memory

more consistently, reducing register use, global memory accesses and execution time. However,

it is essential to note that the KNN graph input has the size Θ(𝑁𝐷) and the output Θ(𝑁𝐾).
Considering that 𝑁 is the number of leaves in the quadtree or octree, then the number of internal

nodes of these trees will not reach beyond 𝑁 . Specifically, suppose that an octree was created, and

it contains 𝑁𝑖 internal nodes. In the sparse representation, each internal node will be represented

by 12 values (usually 32 bits each): 3 values representing its position, 1 value the octant radius,

and 8 value the pointers to its children. In the implicit representation, only one pointer is needed,

which reduces the number of necessary values to 12𝑁𝑖 − 5𝑁𝑖. However, considering the total

memory required when computing the KNN step in t-SNE, the saved memory by using the

Implicit Tree structures will not be significant in these scenarios. Instead, it will provide a

well-suited structure to improve the memory access pattern during the traversal operation.

4.1.2 Simulated Wide-Warp (SWW)

Modern GPU architectures allow a large number of threads but the actual number of active threads

at a given time is proportional to the number of cores. The Simulated Wide-Warp technique

consists in simulating extra virtual threads by exploring the large number of GPU registers

(currently 65536 per GPU SM multiprocessor). This is done in a target algorithm by carefully

coding specific loop unroll patterns that are not automatically captured by current compilers.

34

The simulation of virtual threads is done inside each physical thread. Virtual threads

allow sharing thread local variables without additional real memory access. Basically, SWW

is used to optimize forces calculation sections with minor changes to the implicit tree traversal

steps in algorithm BH. The programmer must be careful to create specific variables needed by

each virtual thread and not surpass the GPU register limit, otherwise leading to a problem called

register spill where the extra local variables will be placed in global memory.

In SWW, the effective number of simulated threads corresponds to the amount of physical

warp threads multiplied by a constant number (WarpWidth) of virtual threads implemented per

physical thread. To lower thread divergence, the tree traversal in SWW-tSNE must ensure that

all threads in a warp execute the same instruction. This can be ensured if at least one thread

chooses to expand a node. In this case, all threads in the simulated warp must perform the

same expansion, even if Equation (2.12) is not satisfied. With this guarantee, the algorithm can

perform faster and return more accurate results. This is also ensured in t-SNE-CUDA but its

efficiency in SWW-tSNE grows with the width of the virtual warp.

Since the coding of repulsive forces in t-SNE differs from the computation of gravitational

forces in the traditional BH, the number of registers used per thread also tends to be different. As

such, the impact of SWW to t-SNE algorithm needs to be verified to access potential speedup

and quality of algorithm convergence for different values of WarpWidth when processing the

standard datasets with diverse sizes.

4.1.3 GPU Random Sample Forest KNN

As t-SNE-CUDA uses the FAISS library to perform a query for each data point, in SWW-TSNE

we took a different approach to harness parallelism to create approximate KNN graphs. We

investigated the use of a modified Random Projection Forest algorithm using GPU. In this way,

it is possible to directly create the KNN graph without performing the traditional K-Nearest

Neighbor Search.

As discussed by Tang et al. (2016), it is possible to simplify the idea of Random

Projection Forest KNN (Yan et al., 2019) by updating the criteria of splitting each partition of

points described in Algorithm 3. This simplification, named here Random Sample Forest KNN

(RSFK), removes the necessity of projecting each point in a random direction by selecting two

arbitrary points. Then the algorithm computes the equidistant hyperplane between the two points

and creates two new partitions.

In our proposal, we chose to use this minimalist method due to the simplicity of

implementation. Further, there is a reduction of operations needed to construct each tree. The

LargeVis implementation uses the Annoy system1, which until the best of our knowledge does

not allow the user to create the trees in parallel using multiples cores. We implement the RSFK

approach using CUDA parallel primitives as described in Algorithm 5.

Algorithm 4 describes the simplification of the random projection tree by sampling two

points to split the point set in two partitions separated by a hyperplane. A new depth level is built

while there are points that are not related to valid leaves. The following steps construct each

depth level: i) Verify the side of each point according to its "parent" hyperplane. ii) Create the

new hyperplanes to split the current partitions. iii) Update the parent of each point. iv) Check

the validity of each new hyperplane and find valid leaves.

The user specifies the minimum (𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒) and maximum (𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒)
number of points that must be in each tree leaf, which we also will refer to as a “bucket” of data

points. Note that these parameters control the trade-off between the quality and execution time,

1https://github.com/spotify/annoy

35

since the more points are on the same leaf, the higher the number of distance calculations and

neighboring candidates is computed. Also, an invalid hyperplane contains fewer points than

the minimum parameter, and a valid leaf contains a total of points between the minimum and

maximum parameters.

Another parameter that controls the trade-off between quality and computation time of

the presented algorithm is the number of trees used to build the forest, as in Algorithm 5. Every

tree that partitions the set of points is used to update the current neighborhood of each point by

considering the points that lie in the same leaf as possible new neighbors. There are three choices

that we adopted to perform efficient memory access in this step:

• Each GPU thread block evaluates and updates KNN graphs at each leaf.

• We use each Warp in GPU thread block to compute each pair of distances. This

warp-centric approach is equivalent to evaluating the 𝐷 dimensional distances with

SIMD instructions, as the number of dimensions is high in big datasets. Also, this

allows coalesced memory access to the higher dimensional points.

• The neighborhood of each point is not ordered by distance. Instead, we only keep an

index of the farthest neighbor. The search and update in these sets are also performed in

a warp-centric approach.

In the proposed approach, it is important to notice that we need to keep only the memory

allocation of one tree, since the points are partitioned as each depth level is created, and after its

creation, there is not any use for it. Considering the computational cost, the maximum of points

inside each leaf controls a reduction of the computational time in the tree construction step and

an increase in the neighborhood update.

4.2 METHODS

The original implementation of t-SNE-CUDA was modified to project the input data points of

the algorithm into a tridimensional space, which we will call “Original version”. We produced a

new GPU BH-tSNE implementation that uses our RSFK algorithm for KNN graphs, performs

the BH step using implicit trees and conducts the tree walking and forces calculations phase

using SWW techniques, wich we will call SWW-tSNE. Then, different SWW-tSNE versions

were created, increasing WarpWidth in each version, using the maximum number of threads

per block and, consequently, the maximum number of registers available in the GPU, achieving

up to WarpWidth=4 before the register spill problem occurs. It is essential to mention that in

the experiments of this work we will consider only the optimization of the Tree Building and

Traversal present in the Barnes-Hut algorithm. Also, note that the WarpWidth=1 version is

equivalent to the Original, to the extent that it does not simulate larger than physical warps and

the only difference is the Tree structure used by the algorithm.

The computation of the attractive forces in the Original version is still using a deprecated

implementation with cuBLAS (Chan et al., 2018) that was improved in recent work (Chan et al.,

2019) using GPU atomic operations, which was also implemented in the SWW-tSNE algorithm.

Also, we implemented the proposed RSFK algorithm using CUDA programming

language. The experiments compare the trade-off between accuracy and computational time

of RSFK, the IVFFLAT2 index previously used in t-SNE-CUDA, and the FLATL23 index, a

2https://github.com/facebookresearch/faiss/wiki/Faster-search

3https://github.com/facebookresearch/faiss/wiki/Faiss-indexes

36

Algorithm 4 Random Sample Tree

Input: A set of points 𝑃 of 𝐷 dimensions, The maximum number of points inside each leaf node

𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒, The minimum number of points inside each leaf node 𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒
Output: A partition of P where each subset contains at most 𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 and at least

𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 points

1: Sample two points from 𝑃 and create a hyperplane ℎ0 between them

2: for 𝑝 ∈ 𝑃 in parallel do
3: 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝] ← ℎ0

4: end for
5: 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑖𝑛𝑡𝑠← 𝑃
6: 𝐴𝑐𝑡𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠← {ℎ0}
7: 𝐿𝑒𝑎𝑣𝑒𝑠← {}
8: while |𝐴𝑐𝑡𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠 | > 0 do
9: for 𝑝 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑖𝑛𝑡𝑠 in parallel do

10: Compute the side of 𝑝 in the hyperplane 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝]
11: end for
12: for ℎ ∈ 𝐴𝑐𝑡𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠 in parallel do
13: Sample two points from the left side of ℎ and create ℎ1
14: Sample two points from the right side of ℎ and create ℎ2
15: 𝐿𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 [ℎ] ← ℎ1
16: 𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 [ℎ] ← ℎ2
17: 𝐴𝑐𝑡𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠← 𝐴𝑐𝑡𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠 − {ℎ}
18: 𝐴𝑐𝑡𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠← 𝐴𝑐𝑡𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠 + {ℎ1, ℎ2}
19: 𝑆𝑖𝑏𝑙𝑖𝑛𝑔[ℎ1] ← ℎ2
20: 𝑆𝑖𝑏𝑙𝑖𝑛𝑔[ℎ2] ← ℎ1
21: end for
22: for 𝑝 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑖𝑛𝑡𝑠 in parallel do
23: if 𝑝 is in the left side in the hyperplane 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝] then
24: 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝] ← 𝐿𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 [𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝]]
25: else
26: 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝] ← 𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 [𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝]]
27: end if
28: end for
29: for 𝑝 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑜𝑖𝑛𝑡𝑠 in parallel do
30: 𝑡 𝑝 ← Number of active points whose parent is 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝]
31: if 𝑡 𝑝 ≤ 𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 then
32: 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝] ← 𝑆𝑖𝑏𝑙𝑖𝑛𝑔[𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝]]
33: else if 𝑡 𝑝 ≤ 𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 then
34: 𝐴𝑐𝑡𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠← 𝐴𝑐𝑡𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠 − {𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝]}
35: 𝐿𝑒𝑎𝑣𝑒𝑠← 𝐿𝑒𝑎𝑣𝑒𝑠 + {𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝]}
36: end if
37: end for
38: end while
39: return 𝐿𝑒𝑎𝑣𝑒𝑠

37

Algorithm 5 Random Sample Forest KNN

Input: A set of points 𝑃 of 𝐷 dimensions, The maximum number of points inside each leaf node

𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒, The minimum number of points inside each leaf node 𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒,
The number of trees 𝑛𝑡𝑟𝑒𝑒, The number of neighbors 𝐾 , Iterations used in Nearest Neighbors

Exploring 𝑁𝑁𝐸𝐹𝑎𝑐𝑡𝑜𝑟
Output: Updates the neighborhood of each point with new closest neighbors or maintains the

same neighborhood

1: for 𝑡 ← 1 to 𝑛𝑡𝑟𝑒𝑒 do
2: // Create a random tree and a partition of the points with Random Sample Tree algorithm

// For each partition created with the tree, assign it to a block of threads in GPU.

3: 𝐿𝑒𝑎𝑣𝑒𝑠← Algorithm 4 (𝑃, 𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒, 𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒)
4: // For each partition created with the tree, assign it to a block of threads in GPU.

5: for 𝑙 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠 in parallel (GPU block) do
6: // For each pair of points inside each leaf, assign it to a GPU warp, compute its distance

and update the neighborhood of both points if necessary

7: for each pair (𝑝1, 𝑝2) | 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝1] = 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑝2] = 𝑙, in parallel (GPU warp) do
8: 𝑑1 ← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝1, 𝑝2)
9: 𝑑2 ← Distance of the farthest neighbor of 𝑝1

10: 𝑑3 ← Distance of the farthest neighbor of 𝑝2

11: if 𝑑1 < 𝑑2 then
12: Insert 𝑝2 in 𝑝1 neighborhood and remove the farthest neighbor of 𝑝1

13: end if
14: if 𝑑1 < 𝑑3 then
15: Insert 𝑝1 in 𝑝2 neighborhood and remove the farthest neighbor of 𝑝2

16: end if
17: end for
18: end for
19: end for
20: // Execute the Neighbor Exploring with 𝑁𝑁𝐸𝐹𝑎𝑐𝑡𝑜𝑟 iterations

21: for 𝑛𝑛← 1 to 𝑁𝑁𝐸𝐹𝑎𝑐𝑡𝑜𝑟 do
22: // Explore the neighborhood of each point for new neighbors and update its neighborhood

if necessary

23: for 𝑝 ∈ 𝑃 in parallel do
24: for 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (𝑝1) do
25: for 𝑝2 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (𝑛) do
26: 𝑑1 ← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝1, 𝑝2)
27: 𝑑2 ← Distance of the farthest neighbor of 𝑝1

28: if 𝑑1 < 𝑑2 then
29: Insert 𝑝2 in 𝑝1 neighborhood and remove the farthest neighbor of 𝑝1

30: end if
31: end for
32: end for
33: end for
34: end for

38

brute-force approach to compute the KNN search using GPU also implemented in the FAISS

library.

The source-code of the GPU Random Sample Forest KNN and SWW-tSNE will be

publicly available.

4.2.1 Environment

All experiments reported in this work were performed in a 3.20GHz i5-4460 processor with 4

CPU cores, 16GB of processor RAM, and GPU NVIDIA GeForce RTX 2070 with 8GB of GPU

RAM, running CUDA 10.1 tools. We used GNU GCC 4.8, and G++ 4.8 to compile each version

of t-SNE to preserve compatibility with the original code. In the experiments that investigate

graph construction computational time and quality, we use GNU GCC 7.5, and G++ 7.5 to

compile RSFK and FAISS implementations.

4.2.2 Datasets

To observe the behavior of SWW-tSNE, datasets of different sizes and dimensions were used,

presented in Table 4.1. The MNIST (LeCun and Cortes, 2010) and CIFAR-10 (Krizhevsky et al.,

2009) datasets are widely used in supervised machine learning research, which consists of a set

of 60000 and 50000 records that represent raw image data, both with ten different classes.

Dataset Lucid Inception represents data extracted from Lucid4 library, which provides

the intermediate layer activations of Convolution Neural Networks (CNN) models, by collecting

activations of 100000 images from the ImageNet dataset in the Google Inception V1 CNN

architecture (Szegedy et al., 2015).

A similar methodology proposed by Fu, et al. (Fu et al., 2019) was used to create the

Amazon Electronics dataset. The FastText library (Joulin et al., 2016) was used to create a

100-dimensional text embedding of the 1689188 text reviews of electronic products from Amazon

web store5 (McAuley et al., 2015) in which every review also contains an integer value between 1

and 5 that represents the overall rate of the review.

The GoogleNews300 dataset6 consist in the 100 dimensional word embedding of 3

million words created with the Word2Vec (Mikolov et al., 2013) model using the Google News

text dataset.

Table 4.1: Dataset sizes used in experiments.

Dataset name Total of points Total of dimensions

CIFAR 50000 3072

MNIST 60000 784

Lucid Inception 100000 128

Amazon Electronics 1689188 100

GoogleNews300 3000000 300

4https://github.com/tensorflow/lucid
5http://jmcauley.ucsd.edu/data/amazon/
6https://code.google.com/archive/p/word2vec/

39

4.2.3 Evaluation

In the experiments of this study, we aim to investigate the efficiency of the proposed SWW-tSNE

approach. In this sense, we analyze the impact of the modifications in relation to the quality

and computational time. It is possible that the RSFK algorithm presents a different trade-off

between quality and time when compared to IVFFLAT. Thus, we investigate the impact of the

approximate KNN graph quality in the t-SNE quality and the trade-off by comparing directly

the IVFFLAT and RSFK. Finally, we also compare the original implementation of Barnes-Hut

t-SNE in t-SNE-CUDA with our proposed approach SWW-tSNE.

For all SWW-tSNE and t-SNE-CUDA experiments described in this chapter, we executed

the method for 1000 iterations using the default parameters of t-SNE-CUDA. In KNN experiments

different values of 𝐾 were used (32, 64, and 128). During the t-SNE execution we chose to

homogenize the value 𝐾 = 32 in KNN computation of all datasets, considering that the GPU

memory size limits the value of 𝐾 to 32 in the approximate KNN graph computation of the

GoogleNews300 dataset.

When executing SWW-tSNE in MNIST dataset, the approximate KNN graph was

computed by considering 32 neighbors without the use of the technique Nearest Neighbor
Exploring. For each run, a different number of trees was used in the RSFK algorithm (from

1 to 70). The corresponding t-SNE quality projection and approximate KNN graph accuracy

was measured, every tree leaf was limited to contain from 33 (𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒) up to 128

(𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒) points.

Parameter 𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 is set automatically to 𝐾 + 1 (33 in MNIST case), so that at

each leaf, 𝐾 neighbors can be found for all points in the leaf. Parameter 𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 can

be configured, since it determines the amount of KNN pairs considered at a leaf and, hence,

influencing accuracy.

The comparison between the approach using FAISS IVFFLAT approximation and our

RSFK implementation to construct the approximate KNN graph was applied to the Amazon

Electronics and GoogleNews300 dataset. The IVFFLAT was executed several times using

𝑛𝑙𝑖𝑠𝑡 =
√
𝑁 , where N is the number of data points and different values of 𝑛𝑝𝑟𝑜𝑏𝑒 (from 1 to

20). The RSFK algorithm was executed using different combinations of minimum and maximum

number of points in each leaf, different numbers of iterations in the nearest neighbor exploring

technique (0, 1, and 2), and a different number of trees (from 1 to 27 in Amazon Electronics

dataset and from 1 to 896 in GoogleNews300 dataset). For every execution, we collect the

respective approximate KNN graph accuracy and computational time.

In the Amazon Electronics dataset, different values of 𝐾 were used (32, 64, and 128), but

for GoogleNews300 we only could use 32 due to the GPU memory limitation. In the execution

of the RSFK algorithm with 𝐾 = 128 we tested a strategy where a leaf can contain less than

129 points. This strategy can lead to an invalid result where the neighborhood of some points

can contain less than 𝐾 elements. These cases can be solved by performing an additional tree

at the end of the algorithm forcing leaves to contain between 129 and 258 points (independent

of the initial parameters). This procedure ensures that each point will have at least 𝐾 neighbor

candidates.

We have compared the original t-SNE-CUDA version with SWW-tSNE considering

the following methodology: For each dataset, the versions implemented where executed ten

times to achieve more accurate analysis and three times in the GoogleNews300 dataset due to its

size and limited resources. Further, we performed one execution of the original t-SNE-CUDA

implementation with the Amazon Electronics and GoogleNews300 datasets by replacing the

FAISS library by our RSFK implementation to compute the approximate KNN graph. With this

latter experiment we can observe the effect of our RSFK method alone. We split SWW-tSNE

40

and the adapted t-SNE-CUDA in five main steps. We have collected the computational time of

each step:

• KNN: Computation of the nearest neighbor of each data point in the high dimensional

space. The result is used to precompute the 𝑝𝑖 𝑗 values;

• Attractive Forces: Computation of (2.9) for each data point using the 𝑝𝑖 𝑗 values;

• Tree Building: Step where all operations necessary to create the Octree are executed.

• Tree Conversion: Necessary step to convert the Sparse tree into an Implicit tree. This

step is not needed in the Original version and can be removed in future SWW-tSNE

implementations by using a direct massively parallel algorithm to construct the Implicit

Tree, in this case, the construction of the sparse tree will also be unnecessary in the

SWW version, further saving execution time.

• Tree Traversal: The computation of repulsive forces described in (2.10) using the

Barnes-Hut algorithm by executing a Traversal in the corresponding Octree for each

data point.

For the datasets with less than one million points, we execute SWW-tSNE with the

FLATL2 implementation instead of the RSFK algorithm. In these datasets, the FLATL2

overcomes IVFLAT and RSFK in computational time and quality because the approximate

methods may create unnecessary computational overhead. In the datasets, where the approximate

KNN graph was computed with RSFK, we use the following parameters:

• Minimum Number of points inside each leaf (𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒): 33

𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 is set automatically to 𝐾 +1, resulting 33 for experiments where 𝐾 = 32.

• Maximum Number of points inside each leaf (𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒): 128

This produces 𝑏𝑢𝑐𝑘𝑒𝑡𝑠 of size up to 4 ∗ 𝐾 thus enhancing accuracy as discussed before.

• Number of trees 𝑡 was derived from the amount of work:

𝑡 = � 𝑁∗𝐷
𝛼 ∗ 𝑎𝑣𝑔𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 �, where 𝑁 is the number of points, 𝐷 is the number of dimensions,

the average bucket size is 𝑎𝑣𝑔𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 = 𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒+𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒
2

.

The associated constant 𝛼 = 24913 was empirically obtained in different tunning tests.

• Total of iterations in Neighbors Exploring technique: 1

The main focus of the experiments of this chapter, was to analyze and compare different

methodologies of t-SNE with dimensionality reduction to 3 dimensions. However, we also

perform a preliminary analysis of the SWW-tSNE to create 2-dimensional embeddings to

demonstrate that all results discussed in this chapter can also be extended to 2 dimensions and

compared with other methodologies present in state of the art, which will be further discussed in

Chapter 5. To perform the experiment with dimensionality reduction to 2 dimensions, we have

used the following methods: AtSNE7 (Fu et al., 2019), BH-tSNE and FIt-SNE implementation of

t-SNE-CUDA8 (Chan et al., 2018, 2019), and our SWW-tSNE proposed method. We have used

the GoogleNews300 dataset and the default parameters of each implementation except for the

perplexity and the value of 𝐾 for the approximate KNN graph construction. The methodology

to create the KNN graph, the perplexity, and 𝐾 values were the same of the experiments for

three dimensions. After the execution of all methods, we have collected the execution time and

computed the 𝑅NX(32) metric to compare the quality of each resulted 2-dimensional embedding.

7https://github.com/ZJULearning/AtSNE/
8ttps://github.com/CannyLab/tsne-cuda/

41

4.3 RESULTS AND DISCUSSION

The impact of the approximate KNN graph accuracy in the t-SNE result is presented in Figure 4.3.

The global structure of the data was already preserved with the low accuracy of the approximate

KNN graph. Also, the impact of the increase in KNN graph accuracy in t-SNE quality decreases

with higher values of approximate KNN graph accuracy. We believe that the reasons behind this

property are related to the fact that the t-SNE can not entirely preserve the neighborhood of each

point during the projection. Therefore, an increase in the approximate KNN graph quality does

not necessarily yield an increase of t-SNE quality, which can also be affected by other parameters

like perplexity, the number of neighbors considered, and the SGD parameters.

Figure 4.4 compares the trade-off between the quality and computational time of

IVFFLAT and RSFK. It is possible to note that our RSFK approach surpasses the IVFFLAT

approximation in different datasets using different values of 𝐾 when building the approximate

KNN graph. Subfigure 4.4(a) illustrates a scenario where both approximate methods (IVFFLAT

and RSFK) demand more computational time and have inferior accuracy in comparison to the

exact method, considering accuracies close to 0.9 or higher in the GoogleNews300 dataset.

However, the use of RSFK is more suitable when the user does not require a high accuracy, which

is the case inside the t-SNE.

The curves marked with "NN exploring factor" describe the use of RSFK with the

Nearest Neighbor Exploring technique using different numbers of iteration. This method was

useful in 32-NN graphs but harms the trade-off between computational time and quality for

higher values of 𝐾 . Subfigures 4.4(a), 4.4(b), and 4.4(c) illustrated this fact for the 64-NN graph.

This behavior was already expected since the total of distances computed by neighbor exploring

grows quadratic in 𝐾, and for this reason, we do not test this approach in the 128-NN graph

experiments described in Figure 4.4(d).

An interesting approach to improve the use of RSFK algorithm in approximate KNN

graphs with higher values of 𝐾 is creating trees with leaves that may contain fewer points than K,

as shown in Subfigure 4.4(d). However, this may lead to an invalid result where some leaves

contain less than 𝐾 neighbors. These invalid results can be prevented by creating a new tree with

leaves that contains a total of points between 𝐾 and 2𝐾 . The creation of each tree with a reduced

size of each leave implicates in a reduced number of distances computed in each tree, which

allows the user to create several trees with a low contribution but faster, which improves the

trade-off in the referenced experiment.

The usage of Implicit Tree structure and Simulated Wide-Warp strategies have demon-

strated to be well suited to improve the scalability of SWW-tSNE without the necessity of

rewriting or approximating the computations of t-SNE.

Table 4.4 shows the speedup in the Tree Traversal step in which it was possible to

achieve an execution up to 9 times faster than the Original version of t-SNE-CUDA to perform the

projection in three dimensions. The Simulated Wide-Warp technique was not wholly successful

in the smaller datasets compared to the million size datasets, because when the WarpWidth

parameter grows, the number of threads to process the computation of each point also increases.

When the number of threads surpasses the real number of points to process, several threads will

be idle. Therefore, the technique will not provide improvement of performance and possibly

creating a computation overhead without benefits. This problem can be prevented by searching

the ideal WarpWidth before the execution of t-SNE by using the information of the current GPU

architecture and the number of points to be processed. It can be verified (Zola et al., 2014) that

the usage of the Implicit Tree by itself allows the speedup of the algorithm even without using

42

Figure 4.3: Correlation between the quality of approximate KNN graph and the respective t-SNE projection quality

using the MNIST dataset for 1000 t-SNE iterations.

the Simulated Wide-Warp method. We have also observed this characteristic in our experiments

by making WarpWidth=1.

Figure 1.2 shown in the introduction, illustrates the result obtained from the execution

of t-SNE-CUDA on Amazon Electronics and GoogleNews300 datasets, and Figure 4.5 shows

the time necessary for the execution of the principal steps of the algorithm. In the figure, it

is possible to analyze the impact of the RSFK algorithm in the SWW-tSNE algorithm, which

resulted in 223% speedup for the GoogleNews300 dataset experiment and 115% in the Amazon

Electronics dataset case. Therefore, we point out that the KNN step was the bottleneck for the

GoogleNews300 dataset. Tables 4.2 and 4.3 show the average computational time of each step.

In scenarios where Barnes-Hut algorithm is improved, it is possible that the other steps (different

from the Tree Traversal and forces calculations) become the bottleneck of execution time, like

the computation of the attractive forces.

Table 4.5 presents the speedup of the SWW-tSNE by considering all steps of the t-SNE

projection. We were able to achieve projections with at least the same quality as the Original

version in up to 4 times faster. This acceleration reflects the impact of using the RSFK algorithm

to compute an approximate KNN graph and the modification of the traversal in the octree by

using the Implicit Tree representation and Simulated Wide-Warp.

The proposed modifications in SWW-tSNE were implemented in an environment

wherein the parameter WarpWidth of the Simulated Wide-Warp technique was limited to create

a maximum of four virtual threads for each physical thread before all registers available in the

GPU were utilized. One of the most limiting factors to explore values greater than 4 is the use of

local variables that grows linearly with the WarpWidth and dimensions of the lower-dimensional

space. It is expected that when the same methodology is used to implement a 2-dimensional

projection algorithm in SWW-tSNE, a higher number of virtual threads could be created, which

would allow even greater speedups than the achieved for three dimensions.

To inspect the projection quality and convergence of each implementation, we analyze

the results of each dataset. The convergence was interpreted as the average magnitude of forces

43

(a) (b)

(c) (d)

Figure 4.4: Comparison between IVFFLAT, FLATL2, and the proposed RSFK algorithm. The vertical axis

represents the total of points divided by the time required to compute the approximate KNN graph (in log scale)

and the horizontal axis respective accuracy. Each curve represents the execution of the algorithms with different

configurations and by varying the parameters that control the trade-off between computational time and quality. The

time of FLATL2 (exact result), which accuracy is 1.0, is used as the baseline and is dashed in the chart. The labels

MNBS (𝑚𝑖𝑛𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒) and MXBS (𝑚𝑎𝑥𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒) represent the minimum and maximum of points inside

each leaf, respectively, in each configuration of the RSFK algorithm.

44

applied to each point during the iterations of the algorithm present in the original t-SNE-CUDA

library, which is called “gradient norm”, and the quality as the 𝑅NX(32) described in (2.15).

Table 4.6 contains the average and standard deviation of 𝑅NX(32) in each dataset with

different SWW-tSNE implementations. In the experiments, WarpWidth=4 seems to create a

better result in two of the five datasets. In the three smallest datasets, the Kruskal-Wallis H test

(Kruskal and Wallis, 1952) with a significance level equal to 0.05 presents a statistical difference

between each SWW-tSNE version and the Original. This difference is explained by the fact

that in these datasets, SWW-tSNE uses the exact KNN graph, and the "Original" approximation

uses the IVFFLAT approximation. However, the Kruskal-Wallis H test indicates that there is not

any statistical difference between different SWW-tSNE implementations in each dataset, which

indicates that the WarpWidth parameter may not affect the quality of the t-SNE projection.

Also, this difference does not seem to impact in the convergence of the algorithm

significantly, which is represented in Figure 4.6 that contains the result of one execution of

t-SNE in MNIST dataset for each implementation and the gradient norm convergence in Figure

4.6(e). In Figure 4.6, it is possible to note that the number of iterations is more relevant than the

difference between each version of SWW-tSNE implemented in this study.

These results are not expected since the Barnes-Hut must be more precise with higher

values of WarpWidth (Zola et al., 2014). This characteristic can be explained by the fact that soft

adjustments in the approximation of the repulsive forces do not necessarily impact positively in

the algorithm convergence, since t-SNE tries to optimize a non-convex function and it is more

susceptible to other parameters like the total number of iterations, learning rate, and projection

initialization. Future work can explore these characteristics and create better approximations of

Barnes-Hut t-SNE in GPU to improve its scalability without harming the quality of projection or

the convergence of the algorithm.

(a) GoogleNews300 (b) Amazon Electronics

Figure 4.5: Execution time breakdown of different GPU t-SNE versions applied to Amazon Electronics dataset for

1000 t-SNE iterations. Original represents the standard t-SNE-CUDA, Original+RSFK represents the standard

t-SNE-CUDA using our RSFK implementation instead of the FAISS library to compute the approximate KNN graph,

and the other versions represent our implementations using Implicit Tree data structure and Simulated Wide-Warp

with different WarpWidth sizes.

4.3.1 2-Dimensional Embedding

Table 4.7 presents the results obtained from the experiment with dimensionality reduction to 2

dimensions. It is clear that SWW-tSNE achieved a high competitive result compared to other

techniques considering the local neighborhood preservation and, it had the lowest execution time,

either for 2D or 3D embeddings. We could not execute AtSNE and the FIt-SNE implementation

45

Table 4.2: Computational time (seconds) for 1000 t-SNE iterations with the breakdown of each step, for different

methods, to create 3-dimensional embeddings of the GoogleNews300 dataset. WarpWidth=n is abbreviated as

WW𝑛.

Method KNN Repulsive

Forces (Tree

Traversal)

Tree Building Tree

Conversion

Attractive

Forces

Total Time

Original 1702.734 268.808 8.319 - 559.465 2539.33

Original + RSFK 304.588 267.115 8.334 - 555.676 1135.71

SWW-tSNE WW1 304.510 52.527 6.627 30.948 180.807 575.42

SWW-tSNE WW2 306.613 32.212 6.473 29.329 181.170 555.80

SWW-tSNE WW3 306.296 28.091 6.474 29.299 181.188 551.35

SWW-tSNE WW4 304.192 27.395 6.474 29.308 181.203 548.57

Table 4.3: Computational time (seconds) for 1000 t-SNE iterations with the breakdown of each step, for different

methods, to create 3-dimensional embeddings of the Amazon Electronics dataset. WarpWidth=n is abbreviated as

WW𝑛.

Method KNN Repulsive

Forces (Tree

Traversal)

Tree Building Tree

Conversion

Attractive

Forces

Total Time

Original 78.410 139.447 3.900 - 237.988 459.75

Original + RSFK 17.330 138.945 3.894 - 236.847 397.02

SWW-tSNE WW1 17.462 27.801 3.156 15.651 76.839 140.91

SWW-tSNE WW2 17.639 17.484 3.069 15.624 76.877 130.69

SWW-tSNE WW3 17.682 15.293 3.072 15.769 76.844 128.66

SWW-tSNE WW4 17.651 14.330 3.069 15.641 76.875 127.57

Table 4.4: Average speedup achieved and (standard deviation) in the Barnes-Hut Tree Traversal (Repulsive Forces
Calculations) in the different versions of t-SNE-CUDA for 1000 t-SNE iterations. WarpWidth=n is abbreviated as

WW𝑛.

Dataset name Original WW1 WW2 WW3 WW4

GoogleNews300 1 5.118 (0.034) 8.345 (0.035) 9.571 (0.116) 9.813 (0.099)
Amazon Electronics 1 5.017 (0.059) 7.977 (0.111) 9.120 (0.124) 9.732 (0.085)

Lucid Inception 1 1.961 (0.043) 2.558 (0.036) 3.028 (0.058) 2.474 (0.074)

MNIST 1 1.609 (0.023) 2.337 (0.078) 1.800 (0.075) 1.470 (0.065)

CIFAR 1 1.571 (0.026) 2.202 (0.037) 1.631 (0.033) 1.302 (0.030)

Table 4.5: Average speedup achieved and (standard deviation) of the total time execution in the different versions of

t-SNE-CUDA for 1000 t-SNE iterations. WarpWidth=n is abbreviated as WW𝑛.

Dataset name Original WW1 WW2 WW3 WW4

GoogleNews300 1 4.413 (0.005) 4.569 (0.006) 4.606 (0.004) 4.629 (0.007)
Amazon Electronics 1 3.273 (0.007) 3.532 (0.008) 3.593 (0.006) 3.620 (0.006)

Lucid Inception 1 1.367 (0.015) 1.481 (0.012) 1.547 (0.013) 1.468 (0.016)

MNIST 1 2.149 (0.009) 2.376 (0.020) 2.221 (0.031) 2.087 (0.036)

CIFAR 1 2.823 (0.014) 3.022 (0.015) 2.847 (0.016) 2.695 (0.019)

46

Table 4.6: Average 𝑅NX (32) and (standard deviation) achieved for 1000 t-SNE iterations.

Dataset name Original WW1 WW2 WW3 WW4

GoogleNews300 0.0890346

(0.0000893)

0.0913467
(0.0001298)

0.0912798

(0.0001610)

0.0913150

(0.0001521)

0.0912839

(0.0001287)

Amazon Electronics 0.1325520

(0.0013960)

0.1328856

(0.0013855)

0.1328982

(0.0013888)

0.1329138

(0.0014039)

0.1329228
(0.0013814)

Lucid Inception 0.1969074

(0.0006490)

0.2007211

(0.0008368)

0.2007448

(0.0008405)

0.2007813
(0.0008754)

0.2007640

(0.0008370)

MNIST 0.3583563

(0.0010649)

0.3597579

(0.0009353)

0.3597713
(0.0009455)

0.3597516

(0.0009252)

0.3597661

(0.0009273)

CIFAR 0.1348499

(0.0009754)

0.1369669

(0.0008853)

0.1370094

(0.0008719)

0.1369815

(0.0009074)

0.1370318
(0.0008832)

of t-SNE-CUDA with three dimensions since no implementation was available (no results in

Table 4.7). However, it is possible to observe that there is a small slowdown when we consider

the execution of t-SNE-CUDA and SWW-tSNE to create 3D instead of 2D embeddings. The

2D embedding execution time of t-SNE-CUDA is around 83% lower than the 3D embedding

time. For the SWW-tSNE, it was around 91%, in the GoogleNews300 dataset, this indicates that

the approximate KNN graph construction was one of the major bottlenecks. In SWW-tSNE,

the use of the RSFK algorithm significantly reduces the computational time of the KNN graph

computation compared to the original t-SNE-CUDA implementation, which was illustrated in

Figure 4.5. Then, it is expected that when the time of the KNN step is reduced, the size of the

low-dimensional space will be more relevant since it will impact other steps of the algorithm like

those in the Barnes-Hut algorithm.

Considering the quality of the neighborhood preservation, we could observe that the

execution with three dimensions achieved better preservation in each analyzed method than

the execution with two dimensions. As we previously have discussed, this could be caused by

the vaster possible configurations of the embeddings in the 3D space when compared to the

2-dimensional space. Therefore, the SGD algorithm may explore more configurations during the

optimization search and converge to better local minimal in 3-dimensional space. In the results

of Table 4.7, the local neighborhood preservation was remarkably different for the different

methods. However, we did not investigate changing the default parameters of each technique,

like the learning rate, since this analysis is beyond the scope of this study. This could explain the

difference observed in the results. Therefore, further comparison and analysis of the quality of

each method considering dimensionality reduction with two and three dimensions could be an

interesting topic to be explored in future works.

Table 4.7: Comparison of execution time and local neighborhood preservation of different methods to create 2 and

3-dimensional embeddings using the GoogleNews300 dataset for 1000 t-SNE iterations.

Method name 2D 𝑅NX (32) 3D 𝑅NX (32) 2D Execution time

(seconds)

3D Execution time

(seconds)

Slowdown 2D/3D

AtSNE 0.0340 - 9587.341 - -

t-SNE-CUDA

(FItSNE)

0.0559 - 1856.552 - -

t-SNE-CUDA

(BH-tSNE)a
0.0318 0.0890 2113.830 2539.326 0.832

SWW-tSNE 0.0600 0.0912 498.864 548.573 0.909

aThe 3D version is our adapted implementation of the t-SNE-CUDA to project data into three dimensions.

47

(a) WarpWidth = 1 (b) WarpWidth = 2 (c) WarpWidth = 3 (d) WarpWidth = 4

(e) Convergence

Figure 4.6: Result of the 3-dimensional embedding and convergence generated for MNIST datasets using different

versions and fixed random seed for 1000 t-SNE iterations.

48

5 APPLYING T-SNE TO REAL-WORLD APPLICATIONS WITH LARGE DATASETS

Chapter 4 presented a new method named SWW-tSNE and compared this proposal with other

methods. This comparison was focused on applying dimensionality reduction to three dimensions

without considering the input data context. This chapter will present a broad comparison of

different dimensionality reduction techniques to create two-dimensional embeddings of large

scale datasets obtained from real-world applications.

A new method named Simulated Wide-Warp AtSNE (SWW-AtSNE) will be proposed

in Section 5.1. The comparison will focus in the importance of preserving local and global

structures, and how this could interfere in the interpretation of the result of dimensionality

reduction techniques. The Research Questions related to the importance of preserving local and

global structures are presented in Section 5.2. This section will also introduce the context of

two real-world applications used in the experiments performed in this chapter. Section 5.3 will

present the methods used in the experiments of this chapter. The discussion of the results of these

experiments will be reported in Section 5.4.

5.1 SIMULATED WIDE-WARP ATSNE (SWW-ATSNE)

In this research, we propose a modification of the SWW-tSNE that uses the main idea based in

anchors of AtSNE, and we will refer to as Simulated Wide-Warp Anchor t-SNE (SWW-AtSNE).

The SWW-AtSNE still uses the Barnes-Hut algorithm to approximate the result instead of the

negative sampling strategy of AtSNE. The implementation of our algorithm does not depend on

any structures related to the KNN graph construction, and therefore, could use any algorithm

to create the cluster. Our approach suggests using a Random Sample Tree (RST), described by

Algorithm 4 to create a partition of the input data points. The Random Sample Tree recursively

samples two points and creates a hyperplane equidistant between these points. Each hyperplane

will divide the set of points into two new partitions. The recursive division is executed as long as

the algorithm can create two new partitions with more points than a parameter that defines the

minimum of points that an anchor must be related to, which is controlled by the user. Using the

Random Sample Tree, a pre-clustering of the input data points can be created with a linear time

complexity algorithm and a computational time insignificant compared to the time required to

execute all iterations of the SGD algorithm.

To the best of our knowledge, there is no theoretical proof that the AtSNE cost function

(Equation 2.13) is differentiable and that the algorithm of the authors could necessarily converge

to a local minimum. Therefore, we choose to mitigate this problem by simultaneously updating

the points and the anchors by sharing the same normalization variables, which leads to a more

stable algorithm since the SGD struggles with the optimization of non-convex complex functions.

5.2 REAL-WORLD APPLICATIONS

In Section 5.3, we will present our methodologies and the setup used in our experiments to

answer the following Research Questions (RQ):

RQ1. Is the SWW-AtSNE proposal comparable to AtSNE and SWW-tSNE methods consider-

ing computational time and the quality of the resultant embedding?

49

RQ2. What is the relationship between the resulting cluster quality computed from different

clustering methods (used to define the anchors) and the quality of the SWW-AtSNE?

RQ3. Is the usage of anchors in the t-SNE a strategy any better than other practices that could

improve the global structure preservation of the resulted embedding, like PCA usage for

the low-dimensional points initialization?

RQ4. How the improvement of the local and global structure representation impact the

interpretation of the visualization?

To answer these questions, we have executed different dimensionality reduction algo-

rithms using the MNIST and ImageNet datasets1. Moreover, we considered experimenting with

the data obtained from two different artificial intelligence applications: Generative Adversarial

Networks and Reinforcement Learning.

5.2.1 Generative Adversarial Network

A Generative Adversarial Network (GAN) model can be used to generate realistic images, mostly

representing these images as high-dimensional data points. GAN architectures consist of training

two different artificial neural networks: the generative and the discriminative networks. The

generative network is trained to transform an instance from a noise domain into a domain

containing realistic data instances. For example, suppose that the Generative model was trained

with images of dogs. In that case, the model could transform a high-dimensional vector with

random values into a real image of a dog that not necessarily exists in the training dataset. The

discriminative network tries to identify if a given input, for instance, the generated dog’s image,

is a real image or an artificial image generated by the generative network. Usually, the noise

input used in GAN models are high-dimensional vectors generated with a random uniform

distribution, where different random seeds create different input. Each input will be transformed

using convolutional neural networks into a different realistic artificial image. Various approaches

use this idea to generate realistic artificial data from different domains, like text and images.

The BigGAN (Brock et al., 2018) is a study that investigates GAN models specifically in the

context of large-scale applications. In our experiments, we have used two of the available

models of BigGAN23 trained on the Imagenet dataset to generate 100000 images and their

representations as vectors with 1536 dimensions for ten different classes. We have added five

additional images to reproduce the example of the original research, where the generative model

creates an interpolation between images of two different classes (see Figure 5.3).

5.2.2 Deep Q-Network

The last example of artificial intelligence application that we have considered in our experiments

consists in the visualization of the training process of the Deep Q-Network (DQN) model (Mnih

et al., 2015) to learn how to play the Phoenix Atari game available in the Gym library4. Using

the Gym library, we can run any agent to control the player using the screen image and a reward

quantification for the actions of the agent. In the library, we can run any number of episodes.

An episode represents a complete simulation of the agent in the environment (game) since the

beginning until the last frame where the player loses the game. The DQN is a break-point

1https://github.com/ZJULearning/AtSNE
2https://tfhub.dev/deepmind/biggan-deep-128/1
3https://tfhub.dev/vtab/cond-biggan/1
4https://gym.openai.com/envs/Phoenix-v0/

50

approach recently proposed in the reinforcement learning field, allowing computational agents

to learn how to play some Atari games as good as humans. In the DQN model, the standard

Q-Learning algorithm is used, where the agent learns to estimate how good it is to take any

of the available actions for a specific state (Q-value). The Q-Values can be interpreted as the

immediately expected reward that the agent playing the game will obtain if a given action was

chosen at a particular state. In the policy that uses the trained model to play the game, the best

Q-value is chosen to achieve states that give higher rewards, which are score-points in the game

environment. The DQN model uses a Convolutional Neural Networks (CNN) to transform any

image frame of the game into a high-dimensional vector with 512 dimensions representing the

state of the agent. We have used the implementation available in the Keras-RL project5 to train

the DQN model for 1750000 episodes, and save the trained model in different stages of training

(episodes 250000, 1000000 and 1750000). For each saved stage, we have executed the agent for

600 episodes. At every four frames, we have obtained the frame image, their representation as

vectors with 512 dimensions, and the associated Q-values of the action that leads the agent to

that state. The agent actions result reported in Table 5.1 shows that the model obtained from the

last stage has an average reward smaller than the intermediate stage of the training. This is an

impressive result considering that it is expected that a higher number of training episodes should

result in better agents.

Table 5.1: Information of the different stages where the agent model were saved and their respective performance

measured by the average reward for all steps from 600 episodes.

Number of training episodes Generated Dataset Name Average Reward and (standard deviation)
250000 Phoenix-V0-250K 11.79 (5.00)

1000000 Phoenix-V0-1M 29.68 (10.11)

1750000 Phoenix-V0-1M750K 27.85 (8.99)

5.2.3 Medium Neighborhood Preservation (MNP)

To measure the global preservation in dimensionality reduction for large datasets, we propose

and use a new metric called Medium Neighborhood Preservation (MNP). Following the idea

of the preservation of pairwise distances, we try to verify if the order of distances for non-

neighbors points is preserved for all points. A sample 𝑠𝑋 of size 𝐶 must be sampled from the

high-dimensional points by ensuring that 𝑥𝑖 ∉ 𝜈𝐾𝑗 : ∀𝑥𝑖 ∈ 𝑠𝑋 ;∀ 𝑗 ∈ [1, . . . , 𝐶], where 𝐾 is the

considered neighborhood size. Therefore, 𝑠𝑋 is a set of points that are not neighbors, which

gives a possible skeleton layout of the input data points. The MNP is computed using Equation

5.1 and considering 𝑅′
NX

as the computation of Equation 2.15 but using the sample 𝑠𝑋 and their

representation 𝑠𝑌 in the low-dimensional space to compute the neighborhoods 𝜈𝐾𝑖 and 𝑛𝐾𝑖 . The

MNP can be computed multiple times by choosing different samples 𝑠𝑋 and 𝑠𝑌 , which will give

a more accurate average to measure the global information preserved by the dimensionality

reduction result. As we will present in the Section 5.4, the MNP can successfully represent the

global structure preservation for different dimensionality reduction techniques using low values

of 𝐶 regardless of the size of the input size. Therefore, MNP computation requires a constant

time if the neighborhood of the points were already computed.

𝑀𝑁𝑃(𝐾) = 𝑅′NX(�𝐶/2�) (5.1)

5https://github.com/keras-rl/keras-rl

51

5.3 METHODS

Using the MNIST and ImageNet datasets, and the BigGAN and DQN applications mentioned

before, we were able to prepare six different datasets presented in Table 5.2.

Table 5.2: Dataset useds in the experiments. Deep Neural Network is abbreviated as DNN.

Dataset Name Number of data points Number of dimensions Dimensions description
MNIST 70000 784 Pixel values (gray images).

ImageNet 1275219 128 DNN Intermediate layer activation.

Phoenix-V0-250K 513575 512 DNN Intermediate layer activation.

Phoenix-V0-1M 983557 512 DNN Intermediate layer activation.

Phoenix-V0-1M750K 1043054 512 DNN Intermediate layer activation.

BigGAN 500005 1536

DNN Intermediate layer activation.

The representation was created

using the discriminative network

related to the BigGAN model.

For these experiments, we have used a computer with a 3.20GHz i5-4460 CPU processor,

16GB of processor RAM memory, and an NVIDIA GeForce GPU RTX 2070 with 8GB of GPU

RAM, running CUDA 10.1 toolkit. All datasets described in Table 5.2 were used to compare

different methods of dimensionality reduction to 2 dimensions.

We have compared five different methods: SWW-tSNE, SWW-AtSNE, AtSNE, the GPU

UMAP implementation available in the cuML project6(version 0.14), and the CPU implementation

of Principal Component analysis available in the Scikit-Learn library7. We could execute the

UMAP method in the experiments using only the MNIST and ImageNet datasets due to our

limited time and resources and the high computational cost of the used implementation.

All dimensionality reduction techniques were used to project data into 2 dimensions.

Considering that the initialization of the low-dimensional points has potential influence in

the global structure for t-SNE and similar techniques (Kobak and Linderman, 2019), we have

configured the SWW-tSNE method to perform dimensionality reduction using two different

strategies for pre-processing and initializing the data. One strategy consists in applying a

dimensionality reduction of the input data points using the PCA with 16 components, which

reduces the computational time and memory cost of the 𝐾-NN Graph construction used to create

the pairwise similarities (Equation 2.3) of the high-dimensional data in t-SNE. This pre-processing

is a discussed approach in previous researches to deal with datasets with many dimensions (Van

Der Maaten, 2014). The other strategy uses PCA to initialize the low-dimensional embedding of

t-SNE instead of a random normal distribution. Therefore, it initializes the resultant embedding

of t-SNE with an excellent global quality (McInnes et al., 2020) but with poor neighborhood

preservation since it is not the main objective of PCA.

The SWW-AtSNE was executed using two different clustering methods. The first

clustering method is the Random Sample Tree (RST), a “weak” clustering that can be computed

in negligible execution time compared to the time that t-SNE requires. The second clustering

consists of applying kmcuda8, a method with better quality result than RST, which implements

the K-Means algorithm to use the GPU efficiently, but still requires a significant execution time

compared to t-SNE. Further, we have computed the 𝐾-NN Graph approximation in SWW-tSNE

and SWW-AtSNE algorithms with the Random Sample Forest KNN method .

6https://github.com/rapidsai/cuml
7https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.

PCA.html
8https://github.com/src-d/kmcuda

52

5.3.1 Parameters

We have used the following parameters to execute each technique described before:

• Pexplexity: 16

• Number of Neighbors (𝐾): 48

• Total of iterations of SGD: 10000

For the SWW-tSNE and SWW-AtSNE approaches, we were able to adopt the suggestion

of Linderman and Steinerberger (2019) to define a relation between the early exaggeration factor

and the learning rate. Then, we have defined the 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 parameter as 1000 and the early

exaggeration factor as 𝑁
10×𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 , where N is the total number of data points of each dataset.

5.3.2 Evaluation

Each approach for dimensionality reduction was executed five different times using different

random seeds. From the execution, we have collected the execution time and estimated the

preservation of the local structures using 𝑅NX(16) and the preservation of the global structure

with an average of the 1000 different samples of MNP(16) and a sample size 𝐶 = 100. The

next section will also present the scatter plot obtained from the 2-dimensional embedding of the

dimensionality reduction methods. For the BigGAN dataset, the position in the embedding of

each class interpolation image was identified. Besides, we have analyzed the image frames with

different associated Q-Values in the DQN datasets by comparing their respective positions in the

embedding resulted from the different dimensionality reduction approaches.

5.4 RESULTS AND DISCUSSION

This section will discuss the results of our experiments and their relation to the research questions

described in Section 5.3. The figures 1.1 and 5.3 illustrates the results of dimensionality reduction

for the BigGan application. Figure 5.6 presents the visualization of different stages of an agent

training with the DQN method using 2-dimensional embeddings obtained with SWW-tSNE.

The measures of the quality of the result and execution time of each compared technique are

presented in Figure 5.2.

5.4.1 Overall comparison (RQ1, RQ2)

Figure 5.1 presents one result embedding of the MNIST dataset for each methodology compared

in this research. The average computational time and quality (local and global preservation)

of each method are presented in Figure 5.2 for different datasets. A comparison between the

2-dimensional embedding generated by t-SNE-CUDA and AtSNE is described by Fu et al.

(2019). However, the comparison does not take into account the same number of nearest

neighbors for both techniques to perform the 𝐾-NN graph construction, due to the limitation of

executing t-SNE-CUDA with large datasets and bounded by memory and computational costs.

In our experiments, since the number of neighbors is fixed for all techniques, we made a fairer

comparison.

The execution time required for the cuML UMAP implementation for GPU was the

largest between the compared techniques. This is an expected result since it is not based in any

study that focuses on strategies for efficient approximations and implementation of UMAP in

53

GPU, which is not the case of AtSNE, t-SNE-CUDA, SWW-tSNE, and SWW-AtSNE. The global

and local structures preservation does not justify the high computational time required for the

used implementation of UMAP in GPU. However, it is essential to mention that further studies

could improve UMAP to be implemented with efficient programming primitives for GPU and

also be used with fine-tuning parameters, which is beyond the scope of this research.

The AtSNE was able to preserve the quality for different runs, which can be observed in

the low standard deviation in the Figure 5.2. However, the global structure preservation of AtSNE

was not preserved better than SWW-tSNE or SWW-AtSNE except for one dataset (Subfigure

5.2(e)). Despite the inferior quality result, AtSNE could execute faster for the smaller datasets,

but it is one of the most time-consuming methods for the largest datasets. This difference could

be caused by the method used to approximate the repulsive forces in each technique, indicating

that the negative sampling used in AtSNE without tunned parameters can disturb the convergence

of the algorithm to achieve better local and global structures preservation. Further studies could

try to investigate this characteristic with more experiments using different parameters.

Compared to SWW-tSNE, the SWW-AtSNE achieved better or similar global quality

results without reducing the nearest neighbor preservation for all datasets. When we compare the

methods to compute the clustering used to generate the anchors of SWW-AtSNE, it becomes

evident in our experiments that the RST algorithm influences the algorithm to create results with

better global preservation compared with the 𝐾-Means. The increase in the global preservation

could be explained by the fact that the convergence of SGD in the SWW-AtSNE with RST could

consider the similarities between distant points defined by t-SNE since these points could be

related to the same anchor. This characteristic is possible since the cluster resulting from the

RST is inferior (distant points could be clustered together) to K-Means. Even with GPU usage

and the optimizations present in the kmcuda library, the computation of K-Means increases the

computation time of SWW-AtSNE significantly compared with the usage of “weaker” clustering

algorithms like the RST. The effort to create and use high-quality clusters could demand higher

computational time and decrease the preservation of the global structures. Therefore, we cannot

observe any reason for using high-quality clustering algorithms to generate the anchors of AtSNE

and SWW-AtSNE.

54

(a) SWW-AtSNE with 𝐾 -Means.

𝑅NX (16)=0.395. MNP(16)=0.083.

(b) AtSNE.

𝑅NX (16)=0.308. MNP(16)=0.108.

(c) PCA with 16 components + SWW-tSNE.

𝑅NX (16)=0.312. MNP(16)=0.146.

(d) SWW-tSNE.

𝑅NX (16)=0.395. MNP(16)=0.167.

(e) UMAP.

𝑅NX (16)=0.165. MNP(16)=0.171.

(f) SWW-AtSNE with Random Sample Tree.

𝑅NX (16)=0.394. MNP(16)=0.199.

55

(g) SWW-tSNE with PCA Initialization.

𝑅NX (16)=0.394. MNP(16)=0.224.

(h) PCA.

𝑅NX (16)=0.071. MNP(16)=0.315.

Figure 5.1: 2-Dimensional embedding result of the MNIST using different dimensionality reduction approaches.

Note that plots (a) to (h) are in increasing order of Global Structure Preservation, as evaluated by our proposed

MNP(16) metric.

(a) MNIST. The axis scale of the computational time in the chart does not represent the execution time of UMAP, which is explicit in the bar.

(b) ImageNet. The axis scale of the computational time in the chart does not represent the execution time of UMAP, which is explicit in the bar.

56

(c) Phoenix-V0-250K

(d) Phoenix-V0-1M

(e) Phoenix-V0-1M750K

57

(f) BigGAN

Figure 5.2: Comparative of different dimensionality reduction techniques for different datasets. The global structure

preservation were measured using 1000 samples of the MNP(16) metric with sample size 𝐶 = 100. The Nearest

Neighborhood Preservation was measured using the 𝑅NX (16) metric.

5.4.2 PCA Initialization and Global Structures Preservation (RQ3)

The best algorithm in our experiments to preserve global structures was the PCA, which could

be executed in less than 11 seconds for all datasets. However, as expected, PCA could not

preserve the nearest neighbors of each point since it is a technique that focuses exclusively

on preserving the covariance of the data. The second best technique between the analyzed

methods was the SWW-tSNE using the PCA initialization strategy. Using this strategy, we could

significantly increase the global structure preservation, reduce the variability in the technique

output, and maintain one of the best nearest neighborhood preservation for all datasets. Figure

5.3 presents an example using the BigGan dataset, where we want to preserve both local

and global structures to observe a specific property of the data. In the example, the images

generated by the generative network are represented by the discriminative network “perspective”

as high-dimensional data points that were projected into two dimensions. Five of these images

were specifically generated using a linear interpolation between two classes, which could be

specified in the BigGan conditional model (Brock et al., 2018). If it is required to analyze the

capacity of the discriminative network to represent this interpolation, a dimensionality reduction

could be used to gain insight. In the figure, it is possible to see that only with a technique that

reaches a good local and global preservation of the structures (Figure 1.1) could be useful to

observe the interpolation in the 2-dimensional representation. This type of interpretation could

be useful in interpreting the data in different AI applications. However, the users must be aware

of the flaws of the methods to preserve the information of the high-dimensional data. Therefore,

the dimensionality reduction techniques used for these applications should be widely chosen

considering their capacities to preserve local and global structures.

Another approach to use PCA with t-SNE is to pre-process the data using PCA to reduce

the dimensionality of the data using a small number of components. In Figure 5.2, we can

see that this could significantly reduce the execution time of SWW-tSNE since it reduces the

number of dimensions of the input for the 𝐾-NN Graph computation. However, it could reduce

the local structure preservation, which was explicit in the ImageNet dataset (Subfigure 5.2(b)).

This technique could be a well-suited if the user wants to execute t-SNE with high Perplexity,

which will require a large number of 𝐾 in the 𝐾-NN Graph, increasing the memory required

and computation cost and can be mitigated by reducing the dimensionality of the input. Our

experiments show that if this method is used, the user should be aware of the trade-off between

58

time and local structure preservation. Therefore, the user should widely choose the number of

components to preserve as much information as possible.

(a) BigGan dataset visualization with PCA.

59

(b) BigGan dataset visualization with AtSNE.

Figure 5.3: Representation of images of the BigGAN dataset using dimensionality reduction obtained by the

execution of PCA and AtSNE. Each color represents a different class.

5.4.3 Real World Applications Interpretability (RQ4)

Considering the usage of the dimensionality reduction to interpret the BigGan dataset, the

representation illustrated in Subfigure 5.3(a), generated with PCA, has a high intersection

between different classes of images. Moreover, the representation appears to contain only one

cluster with some outliers, which is not the case. Unlike AtSNE (Subfigure 5.3(b)) and SWW-

tSNE with PCA initialization (Figure 1.1), the image generated with PCA fails to preserve the local

preservation. It consequently also fails to preserve real clusters present in the high-dimensional

data points.

In the Subfigure 5.3(b) generated with AtSNE, it is clear to identify different clusters for

each class. These clusters could be visualized even without the usage of the labels of the points.

However, one of the image classes, related to the purple color, has been split in two different

clusters. Another problem of AtSNE is that it could not represent the low-dimensional data

points in a way that the linear interpolation between two images could be identified. Figure 5.2

indicates that SWW-tSNE with PCA initialization results have a higher local and global structure

preservation compared with AtSNE. Furthermore, Figure 1.1 indicates that SWW-tSNE with

PCA initialization does not suffer from the problems mentioned before for AtSNE to interpret

the high-dimensional points of the BigGan dataset, and the linear interpolation is evident in the

2-dimensional embedding.

Figure 5.6 presents another application where data visualization through dimensionality

reduction could be useful to interpret some characteristics of the high-dimensional data points.

Each data point is associated with the DQN representation of a frame in the Phoenix game in the

figure. The color of each point represents a Q-Value, which can be interpreted as an estimation

for the agent of the expected reward for the action that leads to that specific state. We can see

60

that in the earliest stage of the training, the Q-Values are relatively low (blue in the figure) for all

executed episodes, compared with the other scenarios where the agent was trained with more

episodes. This is expected since the agent could not reach advanced parts of the game at this

stage. Therefore, it will associate high Q-Values for actions related to “easy” immediate rewards.

For instance, the top-right frame in the Subfigure 5.4(a) has the best associated Q-Value and

indicates a state where the player is invulnerable and able to destroy several enemies, which will

guarantee the achievement of immediate rewards.

Another insight that t-SNE could give by analyzing the Figure 5.6 is a possible

explanation for the result presented in Table 5.1. A possible explanation relies on the possibility

that the method and parameters used to train the DQN model could not explore the environment

enough to surpass one of the final challenges of the game, represented by the top-right frame in

the Subfigure 5.5(a). The frames related to these final parts of the game probably would lead to

the states close to the end of the game where the player loses, which have low Q-Values and affect

the agent model considering the Q-Learning algorithm. Therefore, during the training stage, the

agent could update the model to give lower Q-values for these advanced parts of the gameplay.

With the 2-dimensional embedding, we can see that the agent represented several data

points with high Q-value and are similar to the frame with the higher Q-value of Subfigure

5.5(a), represented by several clusters preserved by the global structure preservation of the

SWW-tSNE method using PCA initialization. However, these structures cannot be identified

in the 2-dimensional embedding of the Subfigure 5.6(a), which reinforces the possibility that

the agent deteriorates the Q-values of advanced parts of the game. If it is correct, this could

support the propositions of new strategies to use the DQN model with different policies for the

exploration-exploitation trade-off.

(a) Phoenix-V0-250K visualization with SWW-tSNE using PCA initialization.

61

(a) Phoenix-V0-1M visualization with SWW-tSNE using PCA initialization.

62

(a) Phoenix-V0-1M750K visualization with SWW-tSNE using PCA initialization.

Figure 5.6: Phoenix-V0 visualization with SWW-tSNE using PCA initialization. The points color represent the

normalized Q-Value related to the action that leads the agent to that state. The frames at top of each image represent

samples of states with different Q-Values. The color of each frame were inverted in order to obtain better contrast in

the image.

63

6 TECHNOLOGICAL AND BIBLIOGRAPHIC PRODUCTION

The development of this research allows the production of four bibliographic works and two

technological projects. The bibliographical production are:

• Meyer, B. H., Pozo, A. T. R., and Zola, W. M. N. (2020). Improving barnes-hut t-sne

scalability in gpu with efficient memory access strategies. In 2020 International Joint
Conference on Neural Networks (ĲCNN), pages 1–8

• Meyer, B. H., Pozo, A. T. R., and Zola, W. M. N. (in press 2021). Improving Barnes-Hut

t-SNE algorithm in modern GPU architectures with Random Forest KNN and Simulated

Wide-Warp. ACM Journal on Emerging Technologies in Computing Systems (JETC)

• Meyer, B. H., Pozo, A. T. R. and Zola, W. M. N. (under review 2021). t-SNE based

techniques comparison for dealing with large scale datasets. Expert Systems with

Applications

• Meyer, B. H., Pozo, A. T. R. and Zola, W. M. N. (under review 2021) Algoritmo

RSFK para busca de similaridade em GPU. In Anais da XXI Escola Regional de Alto

Desempenho da Região Sul. SBC, 2021

The technological production consists of implementing two libraries that can be used

in C++ and Python programming languages. The first library is implementing the SWW-

tSNE and SWW-AtSNE, which was based in the t-SNE-CUDA project available in GitHub 1.

Several modifications were made to improve the project, including the possibility of using other

KNN Graph algorithms rather than the usage of the FAISS library. The second library is the

implementation of RSFK, which allows the users to compute the KNN Graph and partitioning

the input data with one or more Random Sample Tree.

The SWW-tSNE and SWW-AtSNE will be publically available at https://github.
com/BrunoMeyer/sww-tsne after the remaining publications and when all code depen-

dencies were revised. The RSFK library is already available at https://github.com/
BrunoMeyer/gpu-rsfk.

The public repositories will contain example codes to execute the experiments described

in this research, which will improve the reproducibility of the methods and facilitate the

development of future works.

1https://github.com/CannyLab/tsne-cuda/

64

7 CONCLUSIONS AND FUTURE WORK

Despite t-SNE-CUDA efficiency and competitiveness among state-of-the-art t-SNE implementa-

tions in GPUs, to the best of our knowledge, there are no previous work verifying the impact of

Implicit Tree representation and SWW techniques in GPU t-SNE. Further, we are unaware of any

work that investigates GPU implementations of the Random Projection Forest with strategies like

those proposed in the LargeVis algorithm. LargeVis is a well-known CPU implementation that

uses concepts like t-SNE to perform dimensionality reduction.

This research has investigated the advantages of these techniques considering the

potential speedup in the Barnes-Hut and approximate KNN graph construction steps of t-SNE.

This investigation led to the proposal of SWW-tSNE, which allows up to 460% faster execution

of dimensionality reduction than the t-SNE-CUDA.

One of the most computationally expensive steps of t-SNE-CUDA is the calculation of

repulsive forces while traversing the tree in the modified Barnes-Hut phase, which is a memory

bound step. Our current work further contributes to mitigate the memory accesses and reduce

execution time. Our experiments demonstrate that strategies such as the usage of the Implicit

Trees and Simulated Wide-Warp can speedup the tree traversal and repulsive forces calculations

step in up to 980% in 3 million point datasets. The t-SNE-CUDA algorithm uses the FAISS

library to compute an approximate KNN graph using GPU, needed to execute the t-SNE method.

We have proposed a simplification of the Random Projection Forest, the RSFK, that is similar to

the methods used in LargeVis algorithm. The performance of our RSFK method was analyzed in

GPU manycores. The experiments presented in this study indicate a fair competition with the

IVFFLAT method presented in FAISS library when we compared the trade-off between time and

quality of these algorithms to build the approximate KNN graph.

The experiments related in Chapter 4 and 5 confirms that SWW-tSNE could obtain

better or equivalents results compared with other dimensionality reduction techniques like t-SNE-

CUDA, but with faster execution. These results were performed considering the dimensionality

reduction to three and two dimensions.

This research also compares different approaches for dimensionality reduction applied to

data visualization tasks considering different AI applications with large datasets. Acknowledging

the difficulties of processing large datasets, we have focused in techniques proposed to achieve

higher scalability using GPU hardware. We have measured the capacities of each technique to

preserve local and global structures of high-dimensional points when these are projected in two

dimensions. To take advantage of the computational time of SWW-tSNE and the strategy to

preserve the global structures of AtSNE, we have proposed the SWW-AtSNE, which combines

and preserve both of these characteristics.

In our experiments, the GPU implementation used for UMAP had the worst execution

time between the compared techniques. Therefore, it requires further studies to be compared

with other dimensionality reduction techniques for large datasets like the AtSNE, t-SNE-CUDA,

SWW-tSNE, and SWW-AtSNE. We also cannot observe the superiority of UMAP to preserve

local or global structures compared to other methods. However, it is important to mention that

we have not explored approaches for tunning any parameters of the technique, which could be

investigated in future works.

AtSNE and SWW-AtSNE mostly differ by the method used to compute the repulsive

forces and the technical details of implementation since both algorithms derive from different

t-SNE implementations. AtSNE could achieve a reasonable computational time for the smaller

65

datasets. However, SWW-AtSNE executed faster for the largest datasets and achieved better

or similar preservation (local and global structures) for all datasets. This is evidence that the

negative sampling approximation used by AtSNE is worse than the Barnes-Hut approximation.

Another possible explanation is that the original AtSNE implementation depends on the right

choice of parameters to perform dimensionality reduction without losing the information of local

and global structures.

In our experiments, we compared two methods to compute the clustering to construct

the anchors in SWW-AtSNE. It was evident that the usage of high-quality methods like 𝐾-Means

could be a waste of computation since we could not perceive any evidence that relates the

clustering quality with the dimensionality reduction quality. On the contrary, we have noted

evidence that it is desirable to create clusters where distant points are clustered together and

related to the same anchor. This possibility explains the result observed in our experiments where

SWW-AtSNE with Random Sample Tree clustering achieves higher global structure preservation

than the same technique with 𝐾-Means.

The AtSNE technique was proposed to improve the global quality of t-SNE. We cannot

observe any evidence that this approach is better than simple practices like the initialization

of the low-dimensional embedding with the PCA technique. However, the usage of anchors in

the AtSNE and in our proposed SWW-AtSNE method slightly improves the preservation of the

global structures compared to the standard SWW-tSNE approach.

Considering the two real-world applications analyzed in this research, we have presented

possible uses of t-SNE to interpret large datasets and explain the importance of preserving

local and global structures when dimensionality reduction is used to visualize high-dimensional

points. In the application of Generative Adversarial Networks, we have extended the example

of BigGAN, where two classes are interpolated with different images by analyzing if the

representation of the discriminative network corresponds to the expected interpolation. Through

dimensionality reduction, the interpolation was clear only in the embedding of SWW-tSNE with

PCA initialization, which had the second-best global structures preservation and one of the best

nearest neighborhood preservation for the BigGan dataset. Therefore, the users of dimensionality

reduction techniques for visualization tasks should be aware of the pitfalls that these techniques

can provide. When the information of the high-dimensional points is not preserved, it could lead

to misinterpretations of the real data.

7.1 FUTURE WORK

It was clear in this research that the scalability of t-SNE could be improved with new approximated

algorithms and with efficient strategies to implement of these algorithms in GPU. The Simulated

Wide-Warp (SWW) was widely studied in this work. It will be interesting to further study the

effectiveness of SWW applied to other steps of GPU implementations of t-SNE.

Additionally, the FAISS library used in the original t-SNE-CUDA allows the use of

multiple GPUs to construct the approximate KNN graph. This feature is not trivial to add in the

proposed RSFK algorithm used in SWW-tSNE and was not discussed in this research. Future

works can approach this scenario by improving our methods and comparing it with the IVFFLAT

and other resources present in FAISS library.

We have observed that t-SNE using PCA initialization achieves better preservation of

global structures compared to AtSNE. However, we cannot see any reason why future studies

do not try to elaborate methods to merge PCA initialization and the anchor strategy to achieve

results with global preservation even higher than the observed in this research.

66

Different studies can elaborate methodologies to improve the UMAP implementation,

which has good results considering local and global structures preservation. However, the

available GPU implementation of UMAP is still inferior to other GPU implementations for

dimensionality reduction like the SWW-tSNE.

Another possibility to expand the scope of this research is to investigate the usage of the

methods cited in this research for data visualization in other artificial intelligence applications.

67

REFERENCES

Aumüller, M., Bernhardsson, E., and Faithfull, A. (2019). ANN-benchmarks: A benchmarking

tool for approximate nearest neighbor algorithms. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10609

LNCS:34–49.

Barnes, J. and Hut, P. (1986). A hierarchical O(N log N) force-calculation algorithm. Nature,

324(6096):446–449.

Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for high fidelity

natural image synthesis. arXiv preprint arXiv:1809.11096.

Burtscher, M. and Pingali, K. (2011). An efficient cuda implementation of the tree-based barnes

hut n-body algorithm. In GPU computing Gems Emerald edition, pages 75–92. Elsevier.

Chan, D. M., Rao, R., Huang, F., and Canny, J. F. (2018). t-SNE-CUDA: GPU-Accelerated t-SNE

and its applications to modern data. Proceedings - 2018 30th International Symposium on
Computer Architecture and High Performance Computing, SBAC-PAD 2018, pages 330–338.

Chan, D. M., Rao, R., Huang, F., and Canny, J. F. (2019). GPU accelerated t-distributed stochastic

neighbor embedding. Journal of Parallel and Distributed Computing, 131:1–13.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee.

Fu, C., Zhang, Y., Cai, D., and Ren, X. (2019). AtSNE: Efficient and robust visualization on

GPU through hierarchical optimization. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 25:176–186.

Hinton, G. and Roweis, S. (2003). Stochastic neighbor embedding. Advances in Neural
Information Processing Systems.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.

Journal of educational psychology, 24(6):417.

Johnson, J., Douze, M., and Jégou, H. (2017). Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of tricks for efficient text

classification. arXiv preprint arXiv:1607.01759.

Kobak, D. and Linderman, G. C. (2019). Umap does not preserve global structure any better

than t-sne when using the same initialization. bioRxiv.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.

Technical report, Citeseer.

Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal
of the American statistical Association, 47(260):583–621.

68

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

Lee, J. A., Peluffo-Ordóñez, D. H., and Verleysen, M. (2015). Multi-scale similarities in

stochastic neighbour embedding: Reducing dimensionality while preserving both local and

global structure. Neurocomputing, 169:246–261.

Lee, J. A., Renard, E., Bernard, G., Dupont, P., and Verleysen, M. (2013). Type 1 and 2

mixtures of Kullback-Leibler divergences as cost functions in dimensionality reduction based

on similarity preservation. Neurocomputing, 112:92–108.

Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S., and Kluger, Y. (2017). Efficient

algorithms for t-distributed stochastic neighborhood embedding. ArXiv, abs/1712.09005.

Linderman, G. C. and Steinerberger, S. (2019). Clustering with t-sne, provably. SIAM Journal
on Mathematics of Data Science, 1(2):313–332.

McAuley, J., Targett, C., Shi, Q., and Van Den Hengel, A. (2015). Image-based recommendations

on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 43–52. ACM.

McInnes, L., Healy, J., and Melville, J. (2020). Umap: Uniform manifold approximation and

projection for dimension reduction.

Meyer, B. H., Pozo, A. T. R., and Zola, W. M. N. (2020). Improving barnes-hut t-sne scalability

in gpu with efficient memory access strategies. In 2020 International Joint Conference on
Neural Networks (ĲCNN), pages 1–8.

Meyer, B. H., Pozo, A. T. R., and Zola, W. M. N. (in press 2021). Improving Barnes-Hut t-SNE

algorithm in modern GPU architectures with Random Forest KNN and Simulated Wide-Warp.

ACM Journal on Emerging Technologies in Computing Systems (JETC).

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,

Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through

deep reinforcement learning. nature, 518(7540):529–533.

Nolet, C. J., Lafargue, V., Raff, E., Nanditale, T., Oates, T., Zedlewski, J., and Patterson, J.

(2020). Bringing umap closer to the speed of light with gpu acceleration. arXiv preprint
arXiv:2008.00325.

Pezzotti, N., Thĳssen, J., Mordvintsev, A., Thomas, H., Lew, B. V., Lelieveldt, B. P. F., Eisemann,

E., and Vilanova, A. (2019). GPGPU linear complexity t-SNE optimization. IEEE Transactions
on Visualization and Computer Graphics, 2626(c).

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,

and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9.

69

Tang, J., Liu, J., Zhang, M., and Mei, Q. (2016). Visualizing large-scale and high-dimensional

data. 25th International World Wide Web Conference, WWW 2016, pages 287–297.

Van Der Maaten, L. (2014). Accelerating t-SNE using tree-based algorithms. Journal of Machine
Learning Research, 15:3221–3245.

Van Der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Yan, D., Wang, Y., Wang, J., Wang, H., and Li, Z. (2019). K-nearest Neighbors Search by

Random Projection Forests. IEEE Transactions on Big Data, 7790.

Zola, W., Delgado, A., and Blanco, R. (2019). Caminhamento paralelo barnes-hut com vetorização

avx2. In Anais do XX Simpósio em Sistemas Computacionais de Alto Desempenho, pages

454–461, Porto Alegre, RS, Brasil. SBC.

Zola, W. M. N., Bona, L. C. E., and Silva, F. (2014). Fast GPU parallel n-body tree traversal

with Simulated Wide-Warp. Proceedings of the International Conference on Parallel and
Distributed Systems - ICPADS, 2015-April:718–725.

70

APPENDIX A – “REVISÃO BIBLIOGRÁFICA”

A proposta foi embasada por quatro principais trabalhos apresentados na Tabela A.1. Dois desses

trabalhos apresentam as técnicas SNE e t-SNE (Hinton and Roweis, 2003; Van Der Maaten and

Hinton, 2008) enquanto os outros apresentam metodologias para reduzir o tempo de execução

da técnica utilizando aproximações, estruturas de dados eficientes (Van Der Maaten, 2014) e

paradigmas de programação paralela em GPU (Chan et al., 2018).

Neste Capítulo serão apresentados trabalhos relacionados ao tema desta proposta.

Na Seção A.1 é apresentada a metodologia utilizada para encontrar trabalhos relacionados

e posteriormente na Seção A.2 são discutidas as características observadas nos trabalhos

encontrados.

A.1 METODOLOGIA DE BUSCA POR TRABALHOS RELACIONADOS

Para encontrar os trabalhos relacionados ao tema desta proposta, foi estabelecida uma metodologia

ilustrada na Figura A.1 para auxiliar na busca de artigos científicos que abordam a técnica t-SNE

e suas variações. Como primeira etapa, uma String de Busca foi gerada para encontrar trabalhos

presentes nas bibliotecas digitais IEE, ScienceDirect e Scopus de forma que os resultados da

pesquisa incluíssem os artigos de controle apresentados na Tabela A.1 e limitando os trabalhos

encontrados para a área da computação.

A String de Busca encontrada é representada pela expressão “((t-sne) OR (t-distributed

AND stochastic AND neighbor AND embedding) OR (stochastic AND neighbor AND
embedding))”, que apresenta as palavras e termos presentes nos resumos e palavras-chave dos

trabalhos científicos presentes nas bibliotecas digitais. Posteriormente à definição da String
de Busca, a procura pelos trabalhos relacionados nas três bibliotecas foi realizada e foram

encontrados 693 trabalhos, dos quais 188 são duplicações e assim totalizando 505 trabalhos

diferentes.

Em seguida foram eliminados os trabalhos cujos títulos ou palavras-chave indicavam

apenas aplicações da técnica abordada, restando 99 documentos não classificados. Com isso,

espera-se que as contribuições não significativas para o escopo do presente estudo fossem

descartadas. De forma semelhante, os resumos dos artigos não classificados foram utilizados para

identificar os trabalhos que contribuíram para a análise ou melhora de desempenho computacional

do t-SNE (ou técnicas semelhantes), o que resultou em 28 documentos não classificados. Como

última etapa, os artigos não acessíveis ou desconsiderados após a leitura completa foram

descartados seguindo os critérios mencionados na Seção A.2, restando 22 trabalhos relacionados

ao tema desta proposta. Após a finalização da metodologia descrita, um artigo adicional foi

identificado e adicionado ao processo de revisão devido à sua relevância para o presente estudo,

que não foi encontrado na execução da metodologia por ser um trabalho relativamente recente e

ainda não estar indexado nas bibliotecas digitais utilizadas.

A.2 AVALIAÇÃO DE TRABALHOS

Após a leitura dos trabalhos relacionados foram identificados os tipos de otimizações da técnica

estudada e principais contribuições de cada trabalho. Dessa forma foi possível identificar

tendências e possíveis contribuições que podem ser feitas, além de identificar o estado da arte

do t-SNE. A Tabela A.3 apresenta diferentes características presentes nos trabalhos analisados,

71

Título do trabalho Descrição

Stochastic neighbor embedding (Hin-

ton and Roweis, 2003)

Proposta inicial do SNE. Aplica a técnica na base de

dados MNIST e discute sobre a convergência, vantagens e

desvantagens do algoritmo.

Visualizing Data using t-SNE (Van Der

Maaten and Hinton, 2008)

Proposta da técnica t-SNE. Expande os conceitos já apre-

sentados no SNE e outras variações. Resolve principal-

mente o crowding problem, problema presente em várias

outras técnicas além do SNE.

Accelerating t-SNE using tree-based

algorithms (Van Der Maaten, 2014)

Primeira implementação do BH t-SNE. Aproximação que

reduz o custo para O(𝑁 log 𝑁).
T-SNE-CUDA: GPU-Accelerated T-

SNE and its Applications to Modern

Data (Chan et al., 2018)

Primeiro trabalho a implementar e apresentar a implemen-

tação do t-SNE em GPU. Utiliza a biblioteca FAISS para

calcular o KNN aproximado.

Table A.1: Artigos de controle utilizados na metodologia para buscar trabalhos relacionados

String de busca

Contém artigos de
controle?

Busca nos
repositórios digitais

IEE
Science@Direct

Scopus

Não

 IEEE Digital Library 198
 Science@Direct 91
 Scopus 404

Eliminação de trabalhos
duplicados

693 trabalhos Rejeitados 0
Duplicados 188
Não classificados 505

Eliminação por título

Rejeitados 406
Duplicados 188
Não classificados 99

Sim
Eliminação por resumo

Rejeitados 477
Duplicados 188
Não classificados 28

Eliminação por acessibilidade
e relevância para o tema

Rejeitados 483
Duplicados 188
Restantes 22

Figure A.1: Metodologia utilizada para buscar trabalhos relacionados.

descritas na Tabela A.2, agrupadas nas categorias “Avaliação de qualidade”, “Inicialização”, “Tipo

de otimização” e “Reprodutibilidade”. Além disso, as aplicações de redução de dimensionalidade

foram analisadas de forma que a escalabilidade fosse levada em conta, considerando as maiores

bases de dados identificadas em cada trabalho (apresentado na Tabela A.4). Durante a revisão

dos trabalhos selecionados, foi observado que alguns desses trabalhos não são completamente

relacionados ao tema desta proposta, porém, será discutido brevemente as contribuições para a

escalabilidade do t-SNE de cada abordagem identificada.

A.2.1 Otimizações

Após a proposta do SNE (Hinton and Roweis, 2003) e do t-SNE (Van Der Maaten and Hinton,

2008), outros trabalhos apresentaram soluções para problemas do algoritmo, como versões

paramétricas da técnica, alterações no processo de convergência do algoritmo e aproximações

para reduzir o custo computacional. Van Der Maaten (2009) apresentou uma versão paramétrica

do t-SNE para transformar novos dados após a execução do algoritmo utilizando redes neurais

profundas com o modelo de redes autoencoders. Gisbrecht et al. (2012) também utilizaram um

72
T
ab

le
A

.2
:

C
at

eg
o
ri

as
e

d
es

cr
iç

õ
es

d
as

ab
re

v
ia

tu
ra

s
u
ti
li
za

d
as

n
a

T
ab

el
a

A
.3

.

C
at

eg
o
ri

a
S
ig

la
D

es
cr

iç
ão

A
v
al

ia
çã

o
d
e

q
u
al

id
ad

e:
U

ti
li
za

d
a

p
ar

a
av

al
ia

r
a

q
u
al

id
ad

e

d
as

p
ro

je
çõ

es
(r

es
u
lt
ad

o
s)

d
o

u
so

d
a

re
d
u
çã

o
d
e

d
im

en
si

o
n
-

al
id

ad
e.

M
1

V
is

u
al

iz
aç

ão
q
u
al

it
at

iv
a

d
a

p
ro

je
çã

o

M
2

Pr
ec

is
ão

M
3

Re
ca

ll
M

4
Tr

us
tw

or
th

in
es

s
M

5
C

o
n
ve

rg
ên

ci
a

(K
L

-D
iv

er
g
en

ce
)

M
6

K
N

N

M
7

T
em

p
o

d
e

ex
ec

u
çã

o
d
o

al
g
o
ri

tm
o

M
8

K-
ar

y
ne

ig
hb

ou
rh

oo
d

pr
es

er
va

tio
n

In
ic

ia
li
za

çã
o
:

T
éc

n
ic

a
u
ti
li
za

d
a

p
ar

a
in

ic
ia

li
za

r
a

so
lu

çã
o

o
u

p
ré

-p
ro

ce
ss

ar
o
s

d
ad

o
s.

I1
PC

A:
O

al
g
o
ri

tm
o

P
C

A
fo

i
u
ti
li
za

d
o

an
te

ri
o
rm

en
te

à
ex

ec
u
çã

o
d
o

al
g
o
ri

tm
o

I2
Al

ea
tó

ria
:

O
tr

ab
al

h
o

in
ic

ia
li
za

o
s

p
o
n
to

s

p
ro

je
ta

d
o
s

co
m

v
al

o
re

s
d
er

iv
ad

o
s

d
e

al
g
u
m

a

d
is

tr
ib

u
iç

ão
al

ea
tó

ri
a

T
ip

o
d
e

o
ti
m

iz
aç

ão
:

C
o
n
tr

ib
u
iç

ão
q
u
e

o
tr

ab
al

h
o

o
fe

re
ce

p
ar

a
a

o
ti
m

iz
aç

ão
d
o

t-
S
N

E
o
u

v
ar

ia
n
te

s.

O
1

A
lt
er

aç
ão

d
a

fu
n
çã

o
q
u
e

al
te

ra
o

cu
st

o

(c
ál

cu
lo

d
o

g
ra

d
ie

n
te

)
d
a

té
cn

ic
a

O
2

CP
U:

O
tr

ab
al

h
o

d
is

cu
te

ca
ra

ct
er

ís
ti
ca

s

so
b
re

a
im

p
le

m
en

ta
çã

o
d
o

al
g
o
ri

tm
o

co
n
si

d
er

an
d
o

as
p
ec

to
s

d
e

C
P
U

O
3

G
PU

:
O

tr
ab

al
h
o

d
is

cu
te

ca
ra

ct
er

ís
ti
ca

s

so
b
re

a
im

p
le

m
en

ta
çã

o
d
o

al
g
o
ri

tm
o

co
n
si

d
er

an
d
o

as
p
ec

to
s

d
e

G
P
U

O
4

Ap
ro

xi
m

aç
ão

:
O

tr
ab

al
h
o

ap
re

se
n
ta

té
cn

ic
as

q
u
e

p
o
ss

ib
il
it
am

ap
ro

x
im

ar
o

cá
lc

u
lo

d
o

g
ra

d
ie

n
te

R
ep

ro
d
u
ti
b
il
id

ad
e:

C
ar

ac
te

rí
st

ic
as

re
la

ci
o
n
ad

as
à

fa
ci

li
d
ad

e

d
a

re
p
ro

d
u
ti
b
il
id

ad
e

d
o

tr
ab

al
h
o

an
al

is
ad

o
.

R
1

O
có

d
ig

o
-f

o
n
te

d
a

im
p
le

m
en

ta
çã

o
fo

i

d
is

p
o
n
ib

il
iz

ad
o

e
é

d
e

fá
ci

l
ac

es
so

R
2

A
p
ri

n
ci

p
al

b
as

e
d
e

d
ad

o
s

u
ti
li
za

d
a

n
o

tr
ab

al
h
o

es
tá

d
is

p
o
n
ív

el
e

é
d
e

fá
ci

l
ac

es
so

O
u
tr

o
s

O
T

73

T
ab

le
A

.3
:

C
ar

ac
te

rí
st

ic
as

d
o
s

tr
ab

al
h
o
s

se
le

ci
o
n
ad

o
s.

O
sí

m
b
o
lo
�

re
p
re

se
n
ta

a
co

n
fi
rm

aç
ão

d
a

ca
ra

ct
er

ís
ti
ca

em
u
m

tr
ab

al
h
o
,
�

re
p
re

se
n
ta

a
n
ão

p
re

se
n
ça

e
v
al

o
re

s
em

b
ra

n
co

in
d
ic

am
ca

ra
ct

er
ís

ti
ca

s
n
ão

id
en

ti
fi
ca

d
as

.

A
v
al

ia
çã

o
d
e

q
u
al

id
ad

e
In

ic
ia

li
za

çã
o

T
ip

o
d
e

o
ti
m

iz
aç

ão
R

ep
ro

d
u
ti
b
il
id

ad
e

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

O
T

I1
I2

O
T

O
1

O
2

O
3

O
4

R
1

R
2

(H
in

to
n

an
d

R
ow

ei
s,

2
0
0
3
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(N

am
et

al
.,

2
0
0
4
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(V

an
D

er
M

aa
te

n
an

d
H

in
to

n
,
2
0
0
8
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(V

an
D

er
M

aa
te

n
,
2
0
0
9
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(Y

an
g

et
al

.,
2
0
1
0
)
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
(X

ie
et

al
.,

2
0
1
1
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(V
la

d
y
m

y
ro

v
e

C
ar

re
ir

a-
P
er

p
iñ

án
,
2
0
1
2
)
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
(G

is
b
re

ch
t
et

al
.,

2
0
1
2
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(K
im

et
al

.,
2
0
1
4
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(V

la
d
y
m

y
ro

v
e

C
ar

re
ir

a-
P
er

p
iñ

án
,
2
0
1
4
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(V
an

D
er

M
aa

te
n
,
2
0
1
4
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(P

ar
v
ia

in
en

,
2
0
1
5
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(L
ee

et
al

.,
2
0
1
5
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(T

an
g

et
al

.,
2
0
1
6
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(P
ez

zo
tt
i
et

al
.,

2
0
1
6
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(S
h
en

et
al

.,
2
0
1
7
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(P
ez

zo
tt
i
et

al
.,

2
0
1
7
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(C

h
an

et
al

.,
2
0
1
8
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(P

as
sa

li
s

e
T
ef

as
,
2
0
1
8
)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(J
o

et
al

.,
2
0
1
8
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(P

ez
zo

tt
i
et

al
.,

2
0
1
9
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(C

h
an

et
al

.,
2
0
1
9
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(F

u
et

al
.,

2
0
1
9
)
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

74

modelo paramétrico utilizando poucos dados para treinar o modelo e aplica-lo a uma quantidade

de dados relativamente maior de forma que a qualidade da projeção fosse significativamente

preservada.

Nam et al. (2004) apresentaram uma alteração do SNE que adiciona “ruídos” durante as

iterações do algoritmo, o que aparenta melhorar a convergência em diferentes cenários. Yang

et al. (2010) alteraram o t-SNE de forma que a técnica chamada “atualizações multiplicativas”

é utilizada para evitar a busca exaustiva dos parâmetros do gradiente descedente estocástico.

Xie et al. (2011) criaram uma variação do t-SNE chamada Multiview stochastic neighbor
embedding (m-SNE) de forma que a função a ser otimizada passa a ser convexa, o que simplifica

a convergência do algoritmo, além de utilizar o método de Nesterov para acelerar o gradiente

descendente estocástico. Shen et al. (2017) também utilizam o método de Nesterov para melhorar

a convergência do algoritmo em uma variação do t-SNE chamada mm-tSNE.

Vladymyrov e Carreira-Perpiñán (2012) analisaram a relação do SNE, t-SNE e técnicas

semelhantes com grafos laplacianos de métodos espectrais para redução de dimensionalidade.

Kim et al. (2014) propuseram uma versão supervisionada do t-SNE que utiliza informações sobre

os rótulos dos dados de entrada do algoritmo, superando diferentes técnicas em várias métricas

de qualidade de projeção. Lee et al. (2015) apresentaram uma técnica que considera a relação de

pontos distantes durante a projeção chamada multi-scale-similarities, na qual a média de diversas

funções gaussianas é utilizada de forma que informações sobre a estrutura global dos pontos seja

preservada e a convergência do algoritmo não leva a mínimos locais ruins, porém a complexidade

computacional é maior que o t-SNE e consequentemente dificulta seu uso em bases de dados de

larga escala.

As propostas originais do SNE e t-SNE possuem custo computacional assintótico

O(𝑁2), e pode ser simplificado com aproximações que preservam a qualidade da projeção. Van

Der Maaten (2014) apresenta uma das principais contribuições para o t-SNE que consiste em

abstrair o cálculo das forças de repulsão em um problema de simulação de corpos utilizando o

algoritmo de Barnes-Hut, o que também é feito no trabalho de Vladymyrov e Carreira-Perpiñán

(2014) de forma que outro algoritmo é utilizado para a simulação de corpos. Parviainen (2015)

apresenta uma metodologia para resolver o problema de simulação de corpos, aplicado ao t-SNE,

que não é baseada em árvores e utiliza grafos que conectam os corpos, porém não compara

o tempo de execução apesar de relatar resultados significativos em relação à qualidade das

projeções e apresenta um custo assintótico melhor que o BH t-SNE no pior caso. Pezzotti et al.

(2019) apresentaram uma abordagem que não utiliza a simulação de corpos para minimização da

função de custo do t-SNE utilizando campos que representam direções e magnitudes das forças

de atração e repulsão que devem ser aplicadas em cada região do espaço dos pontos projetados.

Além disso, o trabalho discute vários aspectos que permitem implementar o algoritmo de forma

eficiente em GPU.

A.2.2 Avaliação de resultados

Dentre os trabalhos selecionados, os tipos de avaliação de qualidade mais comuns são a medida

do tempo de execução e a visualização dos resultados projetados para duas dimensões. Devido à

especificidade de alguns trabalhos, algumas avaliações particulares foram utilizadas.

Em relação à qualidade das estruturas globais das projeções, foi observado que apenas

dois trabalhos discutiram aspectos sobre essa característica. O trabalho de Lee et al. (2015)

foi o primeiro, dentre os analisados, que discute sobre a qualidade global, e utiliza a versão

normalizada do K-ary neighbourhood preservation para avaliar os resultados da técnica proposta.

Fu et al. (2019) discutem sobre a qualidade global dos resultados que sua técnica oferece, uma

75

vez que um “esqueleto”, gerado pelo algoritmo de clusterização K-Means, é utilizado até o final

da execução do algoritmo, porém utiliza apenas o KNN para avaliar os resultados.

É interessante perceber que em alguns dos trabalhos mais recentes (Chan et al., 2019;

Fu et al., 2019), diversas características sobre o uso de recursos computacionais são discutidos.

Chan et al. (2018) discutem sobre o problema da escalabilidade da etapa de cálculo das forças de

atração, que depende do algoritmo KNN (em GPU) e apresentam uma alternativa para o problema

que consiste em utilizar múltiplas GPU. Fu et al. (2019) apresentam o consumo de memória de

diferentes variações e implementações eficientes do t-SNE, e discutem sobre a inviabilidade da

execução de algumas dessas implementações, como o tsne-cuda, em alguns cenários.

A.2.3 Reprodutibilidade e Escalabilidade

É possível observar na Tabela A.4 um crescimento no tamanho da maior base de dados ao longo

dos anos após a proposta inicial da técnica, característica que é possível devido à evolução e

acessibilidade de computadores com arquiteturas eficientes e também pelo avanço de técnicas que

implementam e aproximam o t-SNE. É importante mencionar que alguns dos trabalhos utilizaram

várias bases de dados com variações de dimensões e número de pontos, e por simplificação a

tabela apresenta a maior base de dados considerando o número de pontos como fator principal.

Para resolver o problema da alta dimensionalidade dos dados de entrada, Van Der

Maaten and Hinton (2008), Van Der Maaten (2014) e Lee et al. (2015) utilizaram a técnica

PCA para reduzir a dimensionalidade de bases de dados anteriormente ao uso do t-SNE. Outros

trabalhos utilizaram versões limitadas ou aproximadas do KNN para calcular as similaridades

dos pontos no início do algoritmo (Chan et al., 2018, 2019; Fu et al., 2019). Chan et al. (2018)

e Chan et al. (2019) utilizaram a biblioteca FAISS para implementar o KNN aproximado em

GPU e Fu et al. (2019) utilizam a técnica Inverted Files (IVF) para aproximar o KNN e reduzir

o uso de memória além de aumentar a eficiência da paralelização em GPU. Tang et al. (2016)

apresentaram o método LargeVis, que possibilita calcular um grafo de vizinhos mais próximos

aproximados e usa-lo para reduzir a dimensionalidade dos dados de maneira similar ao t-SNE, de

forma que o cálculo da similaridade dos pontos é computada de forma eficiente e precisa.

Van Der Maaten (2014) propõe o BH t-SNE, que foi a primeira implementação

disponibilizada do t-SNE com complexidade O(𝑁 log 𝑁). Vladymyrov e Carreira-Perpiñán

(2014) também propuseram uma técnica baseada em simulação de corpos cuja complexidade

computacional é linear, porém não utilizam nenhuma métrica que indique a qualidade da projeção

além da análise da convergência do algoritmo. Devido à disponibilização do código-fonte e

fácil acessibilidade às bases de dados utilizadas por Van Der Maaten (2014), o BH t-SNE foi

popularizado, o que facilitou sua aplicação e estudo em diversos outros trabalhos que tentam

otimizar a técnica.

Passalis e Tefas (2018) apresentaram o framework chamado PySEF que permite executar

o t-SNE de forma que o usuário especifique a função de similaridade, e implementaram a técnica

utilizando a ferramenta PyTorch que é conhecida pela sua eficiência computacional e simples

adaptação para utilizar CPU ou GPU. O trabalho de Chan et al. (2018) foi o primeiro a apresentar

uma implementação (tsne-cuda) do BH t-SNE em GPU, o que foi continuado em seu próximo

trabalho (Chan et al., 2019) que realiza otimizações e também implementa em GPU o FIt-SNE

(FFT-accelerated Interpolation-based t-SNE), que resolve o problema de simulação de corpos

utilizando interpolações transformadas rápidas de Fourier.

Pezzotti et al. (2019) sugeriram uma implementação alternativa do t-SNE em GPU

que não depende da linguagem CUDA, e portanto não necessita de produtos da NVIDIA. Essa

implementação demonstra ter um maior custo de tempo computacional e resultados de qualidade

de projeção melhores comparado ao tsne-cuda .

76

Fu et al. (2019) apresentaram uma abordagem implementada para GPU que utiliza o

algoritmo K-Means, de forma que uma ancoragem é feita para o “esqueleto” da estrutura global

dos pontos da dimensão original e reduzida. Dessa forma, o algoritmo preserva a estrutura

global e permite uma execução significativamente mais rápida devido à aproximação que pode

ser feita quando o “esqueleto” é utilizado para “mover” vários pontos durante a convergência do

algoritmo.

Table A.4: Tamanho da maior base de dados utilizada para aplicar o t-SNE dentre os trabalhos selecionados.

Trabalhos que não permitiram a identificação (ou não eram aplicáveis) estão representados por “?”.

Trabalho Número de dimensões Número de pontos

(Hinton and Roweis, 2003) 256 3000

(Nam et al., 2004) 560 530

(Van Der Maaten and Hinton, 2008) 784 6000

(Van Der Maaten, 2009) 8100 40121

(Yang et al., 2010) ? ?

(Xie et al., 2011) 8000 29780

(Vladymyrov e Carreira-Perpiñán, 2012) 784 20000

(Gisbrecht et al., 2012) 784 10000

(Kim et al., 2014) ? ?

(Vladymyrov e Carreira-Perpiñán, 2014) 784 1020000

(Van Der Maaten, 2014) 273 1105455

(Parviainen, 2015) 3072 5000

(Lee et al., 2015) 784 3000

(Tang et al., 2016) 100 3997963

(Pezzotti et al., 2016) 39 1000000

(Shen et al., 2017) ? ?

(Pezzotti et al., 2017) 39 1000000

(Chan et al., 2018) 4096 1200000

(Passalis e Tefas, 2018) 784 60000

(Jo et al., 2018) 784 60000

(Pezzotti et al., 2019) 300 3000000

(Chan et al., 2019) 50 10000000

(Fu et al., 2019) 96 19531329

A.2.4 Considerações finais

Este Capítulo abordou trabalhos relacionados ao tema de interesse desta proposta. Percebe-se

um interesse comum dentre os trabalhos recentes para reduzir o tempo de execução do t-SNE e

técnicas similares de forma que o algoritmo possa ser aplicado a bases de dados maiores.

Essas otimizações computacionais normalmente consistem em utilizar aproximações

e paralelizações das técnicas. Chan et al. (2019) apresentaram, até o presente momento, a

implementação mais rápida do BH t-SNE utilizando GPU.

Além disso, percebe-se uma inconsistência da padronização das métricas utilizadas para

avaliar os resultados das projeções realizadas nos trabalhos relacionados. Em específico, poucos

trabalhos discutem e apresentam metodologias para avaliar a estrutura global dos dados originais

após a redução de dimensionalidade.

77

A.3 REFERÊNCIAS

Chan, D. M., Rao, R., Huang, F. e Canny, J. F. (2018). t-SNE-CUDA: GPU-Accelerated t-SNE

and its applications to modern data. Proceedings - 2018 30th International Symposium on
Computer Architecture and High Performance Computing, SBAC-PAD 2018, páginas 330–338.

Chan, D. M., Rao, R., Huang, F. e Canny, J. F. (2019). GPU accelerated t-distributed stochastic

neighbor embedding. Journal of Parallel and Distributed Computing, 131:1–13.

Fu, C., Zhang, Y., Cai, D. e Ren, X. (2019). AtSNE: Efficient and robust visualization on GPU

through hierarchical optimization. Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 25:176–186.

Gisbrecht, A., Mokbel, B. e Hammer, B. (2012). Linear basis-function t-SNE for fast nonlinear

dimensionality reduction. Proceedings of the International Joint Conference on Neural Networks,
páginas 1–8.

Hinton, G. e Roweis, S. (2003). Stochastic neighbor embedding. Advances in Neural Information
Processing Systems.
Jo, J., Seo, J. e Fekete, J. D. (2018). PANENE: A Progressive Algorithm for Indexing and

Querying Approximate k-Nearest Neighbors. IEEE Transactions on Visualization and Computer
Graphics, páginas 1–14.

Kim, H., Choo, J., Reddy, C. K. e Park, H. (2014). Doubly supervised embedding based on

class labels and intrinsic clusters for high-dimensional data visualization. Neurocomputing,

150(PB):570–582.

Lee, J. A., Peluffo-Ordóñez, D. H. e Verleysen, M. (2015). Multi-scale similarities in stochastic

neighbour embedding: Reducing dimensionality while preserving both local and global structure.

Neurocomputing, 169:246–261.

Nam, K., Je, H. e Choi, S. (2004). Fast Stochastic Neighbor Embedding :. IEEE International
Joint Conference on Neural Networks, 1:123–128.

Parviainen, E. (2015). A graph-based N-body approximation with application to stochastic

neighbor embedding. Neural Networks, 75:1–11.

Passalis, N. e Tefas, A. (2018). PySEF: A python library for similarity-based dimensionality

reduction. Knowledge-Based Systems, 152:186–187.

Pezzotti, N., Höllt, T., Lelieveldt, B., Eisemann, E. e Vilanova, A. (2016). Hierarchical Stochastic

Neighbor Embedding. Computer Graphics Forum, 35(3):21–30.

Pezzotti, N., Lelieveldt, B. P., Van Der Maaten, L., Höllt, T., Eisemann, E. e Vilanova, A. (2017).

Approximated and user steerable tSNE for progressive visual analytics. IEEE Transactions on
Visualization and Computer Graphics, 23(7):1739–1752.

Pezzotti, N., Thĳssen, J., Mordvintsev, A., Thomas, H., Lew, B. V., Lelieveldt, B. P. F., Eisemann,

E. e Vilanova, A. (2019). GPGPU linear complexity t-SNE optimization. IEEE Transactions on
Visualization and Computer Graphics, 2626(c).

Shen, X., Zhu, X., Jiang, X., He, T. e Hu, X. (2017). Visualization of disease relationships

by multiple maps t-SNE regularization based on Nesterov accelerated gradient. Proceedings -
2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017, 2017-

Janua(2):604–607.

78

Tang, J., Liu, J., Zhang, M. e Mei, Q. (2016). Visualizing large-scale and high-dimensional data.

25th International World Wide Web Conference, WWW 2016, páginas 287–297.

Van Der Maaten, L. (2009). Learning a parametric embedding by preserving local structure.

Journal of Machine Learning Research, 5:384–391.

Van Der Maaten, L. (2014). Accelerating t-SNE using tree-based algorithms. Journal of
Machine Learning Research, 15:3221–3245.

Van Der Maaten, L. e Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Vladymyrov, M. e Carreira-Perpiñán, M. (2014). Linear-time training of nonlinear low-

dimensional embeddings. Journal of Machine Learning Research, 33:968–977.

Vladymyrov, M. e Carreira-Perpiñán, M. Á. (2012). Partial-Hessian strategies for fast learning of

nonlinear embeddings. Proceedings of the 29th International Conference on Machine Learning,
ICML 2012, 1:345–352.

Xie, B., Mu, Y., Tao, D. e Huang, K. (2011). M-SNE: Multiview stochastic neighbor embedding.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(4):1088–1096.

Yang, Z., Wang, C. e Oja, E. (2010). Multiplicative updates for t-SNE. Proceedings of the
2010 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2010,

(Mlsp):19–23.

