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RESUMO

Este texto tem como objetivo estudar a estrutura de categorias n-abelianas e n-
conglomerados inclinados e suas n-sequéncias de Auslander Reiten. Estas sdo generaliza-
¢oes homologicas superiores de categorias abelianas e de modulos, bem como de sequén-
cias de Auslander Reiten. Estas generalizacoes foram iniciadas com o trabalho de Iyama
(Iya07), definindo subcategorias n-conglomerados inclinados de categorias abelianas e
introduzindo a teoria superior Auslander Reiten. Em seguida, Jasso (Jas16) introduziu
a nocao de categorias n-abelianas como categorias aditivas com n-ntucleos e n-co-ntcleos.
Apresentamos algumas propriedades bésicas e exemplos de categorias n-abelianas e sub-
categorias n-conglomerados inclinados, também, mostramos a relagao entre elas. Explo-
ramos a teoria superior de Auslander Reiten, que estuda as n-sequéncias de Auslander
Reiten em categorias n-abelianas e n-conglomerados inclinados. Em particular, fornece-

mos uma caracterizagao das 2-sequéncias de Auslander Reiten e alguns exemplos.

Palavras-chave: Teoria de Auslander Reiten Superior. Categorias n-Abelianas. Sub-

categorias n-Conglomerados Inclinados. n-Sequéncias de Auslander Reiten.



ABSTRACT

This text aims to study the structure of n-abelian and n-cluster tilting categories and their
n-Auslander Reiten sequences. These are higher homological generalizations of abelian
and module categories, as well as Auslander Reiten sequences. These generalizations were
started with Iyama’s work (Iya07), by defining n-cluster tilting subcategories of abelian
categories and introducing the higher Auslander Reiten theory. Then, Jasso (Jasl6)
introduced the notion of m-abelian categories as additive categories with n-kernels and
n-cokernels. We present some basic properties and examples of n-abelian categories and
n-cluster tilting subcategories, also, we show the relation between them. We explore
higher Auslander Reiten theory, which studies the n-Auslander Reiten sequences in n-
abelian and n-cluster tilting categories. In particular, we provide a characterization of

2-Auslander Reiten sequences and some examples.

Keywords: Higher Auslander Reiten Theory. n-Abelian Categories. n-Cluster Tilting

Subcategories. n-Auslander Reiten Sequences.
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INTRODUCTION

Abelian categories are categories that have enough structure to define kernels and cokernels, pushouts and
pullbacks, and short exact sequences. They are well-known concepts in homological algebra. An important
example of abelian categories are the categories of modules over Artin algebras.

Auslander-Reiten theory is a fundamental tool for the representation theory of Artin algebras, which are
a generalization of finite-dimensional algebras over a field. It studies the structure of the category of modules
over an algebra through outlining almost split sequences, also called Auslander Reiten sequences. These
sequences carry important information about the module category because their morphisms are irreducible,
and their end terms are indecomposable.

However, abelian categories are not sufficient to capture the homological behavior of some algebraic
objects. These objects require higher homological methods, such as derived categories, triangulated categories
and cluster tilting categories.

Cluster tilting subcategories are subcategories of the module category of an algebra that are functorially
finite and self Ext'-orthogonal. These subcategories are important in the study of cluster algebras and their
categorifications.

The theory of n-cluster tilting subcategories and higher Auslander-Reiten theory, developed by Osamu
Iyama (Iya07) in the early 2000s, is a generalization of the theory of cluster tilting subcategories and
Auslander-Reiten theory that applies to more general classes of algebras. These theories use the concepts of
n-cluster tilting objects and n-almost split sequences (also called n-Auslander Reiten sequences), which are
generalizations of cluster tilting objects and almost split sequences, respectively.

Then, in 2013, Geiss, Keller and Oppermann (GKO13), introduced the idea of n+ 2-angulated categories,
which are a generalization of triangulated categories. Inspired by that, Gustavo Jasso (Jasl6) in 2016
introduced a generalization of the theory of abelian categories that incorporates the higher homological
methods. An n-abelian category is an additive category that satisfies certain axioms involving n-kernels and
n-cokernels. In this structure, it is possible to construct n-pushouts, n-pullbacks, and n-exact sequences,
which are a generalization of the notions of pushouts, pullbacks, and short exact sequences.

In particular, n-cluster tilting subcategories are n-abelian, as proved by Jasso (Jasl6). And a few years
later, Kvamme (Kva22), and Ebrahimi and Nasr-Isfahani (EN22) proved that n-abelian categories are also

equivalent to n-cluster tilting subcategories of abelian categories.
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Therefore, the main topic of this dissertation is to understand the structure of n-abelian and n-cluster
tilting categories and their n-Auslander Reiten sequences.

The text consists of four chapters, where the first one reviews some basic notions of categories and
modules theories, quivers, and path algebras, and the classical Auslander-Reiten theory. Most proofs are not
presented, by they are easily found in the bibliography cited, namely, (ASS06),(Ass97), (AC20), (ARS95).

The second chapter introduces the definitions and properties of n-abelian categories, such as n-kernels,
n-cokernels, n-pushouts, n-pullbacks, and n-exact sequences. The reader may notice that many of the results
presented in this chapter are higher analogues of the abelian case. This chapter main source was Jasso’s work
(Jasl6).

The third chapter studies n-cluster tilting subcategories and their relation to n-abelian categories. Here,
some examples are presented to illustrate the results and definitions. Also, the examples provide an idea of
how to find these subcategories in module categories.

The fourth chapter explores higher Auslander-Reiten theory, exploring the definitions and properties of
n-Auslander Reiten sequences. In particular, we provide a characterization of 2-Auslander Reiten sequences.
Also, this chapter presents a series of examples of n-cluster tilting subcategories, the construction of n-

Auslander Reiten sequences and n-Auslander Reiten quivers.
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Chapter 1

BASIC THEORY

In this chapter we will establish many definitions, properties and results that will be used or generalized

in the second and third chapters.

1.1 Categories, Modules and Complexes

The basic setting for this work will be module categories over algebras. More details about this can be
found in the bibliography (Ass97), (AC20) and (ASS06). Throughout this text, K will be a field and A will
be a K-algebra of finite dimension.

The category of right finitely generated modules over A, denoted by mod A, is an abelian category. To
understand what an abelian category is, we start with the definitions of linear category, kernel, cokernel and

isomorphism.
Definition 1.1.1. A category A is called K-linear if

(Ly) For all X,Y € A, the set HomA(X,Y) is a K-module.
(La) The composition of A is compatible with the structure of K-module:
go (fion + faoz2) = (g o fr)an + (g o f2)az
(91814 g2B2) o f = (g1 0 f)B1 + (920 f)B2
for fifi,f2: X =Y, 9.91,92:Y = Z and a1, a2, 51,52 € K.
(Ls) All finite families of objects of A admits direct product and sum in A.

When a category is Z-linear, it is called an additive category. In this work, we will use the notation
add(M) to represent the additive subcategory of mod A composed by all sums of direct summands of M €
mod A.

In order to simplify notations, we represent the morphism Hom (X, f) by f o  and the morphism

Homy(f,X) by of.

12



Definition 1.1.2. Let f : A — B be a morphism in a linear category A. A kernel of f is a morphism
g:C — A, such that fg =0 and for all x : X — A, with X € A and fxz = 0, there is a unique morphism
p: X — C with gp = x. Fquivalently, g is a kernel of f, if for all X € A the following sequence is exact:

0—— Homa(X,C) — = Homa(X,A) —°~ s Homa(X, B).

Dually, a cokernel of f is a morphism h : B — D, such that hf = 0 and for ally: B —Y, withY € A
and yf = 0, there is a unique morphism q : D — Y with y = qh. Equivalently, for all Y € A, the following

sequence 18 exact:
0 —— Homa(D,Y) —="" s Homa(B,Y) —="1 Hom(A,Y).

In module categories, these definitions are equivalent to the classic definition of ker f = {z € A|f(z) = 0}
and coker f = B/Im f.

Now, we define abelian categories.
Definition 1.1.3. A linear category A is called an Abelian Category if it satisfies the following:
(Aby) All morphisms in A admit a kernel and a cokernel.

(Aby) For all morphism f of A, there is a commutative diagram

0—— Ker f A / B Coker f —— 0
P
Coim f BEEAN Imf

where Coim f = Coker(Ker f), Im f = Ker(Coker f) and f is an isomorphism.

A simple example of abelian category is mod A.
In the case of module categories, a frequent and important construction are projective and injective

resolutions. See (Ass97).

Definition 1.1.4. Given a A-module M, and its projective and injective resolutions

f3 f2 f1 fo

P, P Py M 0

0 M g0 IO g1 Il 92 12 93

ey

we denote by QI M its j"-syzygy, that is, the kernel of fj_1. By Q=7 M, we denote its j'"-cosyzygy, which

is the cokernel of gj_1.
We end this section with the important notion of a complex.

Definition 1.1.5. Let A be an algebra. A complex X = (X;, o;)icz is defined by a sequence of A-modules

and A-linear maps

X:

where c;o; 1 = 0, for all i € Z.

13



The condition that a;a;_1 = 0 is equivalent to say that Ima; 1 C Ker «;.
A morphism of complexes, is a map f = (f;);cz, such that each f; is a homomorphism in mod A, and
the following diagram commutes:

Qj—1 a;

X: ‘e Xi—l XZ Xi+1
fi fi—lJ/ fiJ/ fi+1J/
Y- Yy Bi—1 Y, Bi Vi

We dennote by Ch(A) or Ch(mod A) the category of complexes, where the objects are complexes and the
morphisms are morphisms of complexes.

We also define the cohomology of a complex.

Definition 1.1.6. The k*'-cohomology of a compler X = (X;, a;)icz, is

Ker(ay)
HENX) = H(Xp) = ———L.
( ) ( k) Im(ozk,l)

Finally, we say a morphism f : X — Y is null-homotopic if there are morphisms h; : X; — Y;_1, such
that f; = Bi_1h; + hir1q, for all ¢ € Z. That is, the following diagram is commutative.

Qj—1 a;

X : Xi—l Xl Xi+1
e e

fl /1l o h; f7l ){hi+1 lf“‘r/

Y : Y;,1 Bia Y; 5 YvH,l

In this case, h is called an homotopy. Also, two morphisms f, g : X — Y are called homotopic equivalent,
if f — g is null-homotopic. In this case, we denote it by h: f — g.

The last important definition is of the cone of a morphism of complexes.

Definition 1.1.7. Given a morphism of complezes f: X =Y,

X : Xog -0y x;, 20y xS X,
fJ/ foJ{ fll fn—ll fnJ{
Y Yo oy, Py Py Pty
the cone of f is the complex
C(f): e X0 Y L X1 BY) s X DY —— . —— X B Y 5 Y, B X — ..
where
— 0
e = i , with k € Z.
fre1 B

1.2 Quivers and Path Algebras

A quiver Q = (Qo, @1, s,t) is a quadruple, where Q) is a set, whose elements are called vertices, Q; is
a set, with elements called arrows, s and ¢t are maps s,t : Q1 — Qq, called respectively, source and target.

The quiver @ is called finite if )y and @)y are finite sets.

14



For example, in the following quiver

leg @ 4 o2

we get Qo = {1,2}, @1 = {a}, s(a) =1 and t(a) = 2.

A path of length r in a quiver is sequence of arrows ajp ..., where s(a;) =t(aj_1) forall 2 < j <r.
We associate to each vertex x a stationary path, with length zero, that is denoted by e,

A quiver is called acyclic if there is no path with length at least one with source and target at the same
vertex.

A walk of length r in a quiver is a sequence o' a5 ... a2, where v; € {1, -1}, a; ! is the inverse of aj,

J

1 =t(a;) and t(ozj_l) = s(a;), and {s(a;), t(oj)} N {s(a;y1), t(ajq1)} # 0. A quiver is connected

Le., s(a;

if for every two vertices, there is a walk connecting them.

Definition 1.2.1. Let Q be a quiver. The path algebra KQ, is the algebra with underlying K -vector space
with basis consisting of the set of all paths in Q, and multiplication set by

ar...opfr. By, ift(ar) = s(61)

0, otherwise.

(1. .an)(Br...Bp) =

The product is extended by distributivity for all other elements of KQ. The identity is ZJCEQ() €z

For example, the quiver

D)

1

has path algebra K@ with basis {e1,a, a? a?,...}. Thus, it is isomorphic to the polynomial algebra in one
indeterminate.

We call KQ7 the ideal generated by all arrows in Q. Then, (KQT)™ is the ideal generated by all paths
of length m. An ideal I of K@ is called an admissible ideal, if there is an integer m > 2, such that

KQ+m g I g KQ+2.

Then, the algebra KQ/I is called a bound quiver algebra.
We call an algebra A basic if A is finite dimensional K-algebra and A/rad A is isomorphic to a finite

product of copies of K, where rad A is the radical of A.

Definition 1.2.2. Let A be a basic algebra and {e1, ..., e,} be a complete set of primitive orthogonal idempo-

tents. The ordinary quiver Qa of A is defined so that Qay = {1,...,n} is in bijection with the idempotents

{e1,...,en}, for two vertices x,y € Qny, the number of arrows from x to y is equal to the dimension of the
rad A
K-vect —_— .
vector space €, (rad2 A) €y

The next Theorem establishes the relation between basic algebras and bound quiver algebras. It allows

us to work with path algebras in the rest of this text.

15



Theorem 1.2.3. (AC20)

(a) Let A be a basic K-algebra. There is a quiver Q and an algebra isomorphism ¢ : KQx/I — A, with T

an admissible ideal.

(b) Let Q be a finite connected quiver and I an admissible ideal of KQ. Then, A = KQ/I is a basic and

connected finite dimensional algebra, and rad A = KQ*/I.

For convenience, we will denote the radical of a path algebra by J in the rest of the text.

For example, take the algebra

K 0 0
A= K K 0
0 K K

Then, e11, €20, €33 is a complete set of primitive orthogonal idempotents for A, and

0 0 O 0 0 O
rad A = K 0 0 and rad® A = 00 0
0 K 0 0 0 O

So,
rad A rad A

N G and eao a2 A ) 1

rad A

——— | ej; are zero.
Tad2A> 77

are one-dimensional and the rest of the e;; (
Which means that @, is like:

1<T2<TB

And
P KQa

%
€5 = €jj
’_>

B = €21
But, ¥(af) = () (B) = ezaea1 = ez1 ¢ A, so, aff € Ker. Therefore, KQa /I ~ A, with I = (af3).
The next Theorem gives a convenient description of all projective, injective and simple modules of a path

algebra.
Theorem 1.2.4. (AC20) Let A ~ KQ/I. For each x € Q,

(i) The indecomposable projective A-module P, is generated, as K-vector space, by all paths starting at x,

modulo 1.

(i¢) The indecomposable injective A-module I, is generated, as K-vector space, by all paths ending at x,

modulo I.

(#i7) The simple A-module S,, is the one dimensional K-vector space generated by €.

16



In this work, we will use a representation of modules based on their radical filtration. This will become

clearer with an Example:

Example 1.2.5. Consider A = KQ, with Q the following quiver:
3

We will determine and present a notation for all projective and injective A-modules. According to the Theorem
1.2.4, for each j € Qo, the projective P; has a space vector basis given by all paths starting at j. Then,
Py = (e1) Py = (€2, )
P3:<€3,ﬂ,,80[> P4:<€4,’Y,’YO¢>-

In our notation, we will represent idempotents by their respective vertex and arrows by arrows or sobreposition:

2
P= 1 P= ‘a_ i
1
3 4
lp 3 b 4
SRR BTN
1 1

I4 = <E4> Ig = <63>
-[2: <€2;6”Y> I1:<617O£,BO£7’)/O{>,

which we represent by

3 4
AV 3 4
1 = 34 g "y -
Y O‘l

3\(32\/ 1

This representation is called radical filtration because it helps us to see the powers of the radical of each

I =

— Do

module. For example,
3 2 3 2
rad(P3) = rad % = ] and rad*(Ps) = rad? % = rad( 1 ) =1

then, the radical filtration of P3 is

— D o
U

— DO
U
—_

17



This notation is also useful to identify submodules: M is a submodule of N if the representation of M is a

subdiagram of N, where all arrows enter and none leaves. For example, all isoclasses of submodules of I, are

34 3 4
2 ,2,2,7,1¢.
1 1

Dually, M is a quotient of N if M is a subdiagram of N where all arrows leave and none enters. For example,

— D

Py/rad*(Py) = % .

To end this section, we present Nakayama Algebras, which will be used several times in this text. To do
that, we define a composition series of length [ for a module M as a sequence of submodules 0 = My C
My C --- C M; = M, such that for all 0 < j <[ —1, the quotient M;;,/M; is simple. We say a A-module is

uniserial if it admits a unique composition series.

Definition 1.2.6. An algebra A is called a Nakayama Algebra if all indecomposable projective and all

indecomposable injective A-modules are uniserial, i.e. have a unique composition series.
The following gives a characterization of Nakayama Algebras based on their ordinary quiver.

Theorem 1.2.7. (AC20) A basic and connected algebra A is a Nakayama algebra, if and only if, its ordinary

quiver Qp is one of the two following quivers:

A, 1 2 3 n—1+—n,

Where the first type are called acyclic Nakayama algebras and the second are called cyclic Nakayama

algebras.

An important property of Nakayama Algebras is the following classification of all their indecomposable

modules.

Theorem 1.2.8. (AC20) Let A be a Nakayama Algebra and M an indecomposable A-module. Then, there
is an indecomposable projective A-module P, and t > 0, such that M ~ P/rad'P.

18



1.3 Auslander Reiten Theory

In this section we will present some basic definitions and results from classical Auslander Reiten Theory.
For more details, the reader can check (AC20), (ARS95), and (ASS06).
In this work, we will focus on module categories. And to study them, two definitions are very important:

the radical and the irreducible morphisms.

Definition 1.3.1. The radical rady of mod A is the unique ideal such that, if A, B € mod A, then radp (A, B)
consists of all morphisms f : A — B such that, for every g: B — A, 15 — fg or 14 — gf is invertible. The

morphisms in rady are called radical morphisms.

An equivalent definition to f : A — B being a radical morphism is that, for every section q : A’ — A and
every retraction p : B — B’, the composition pfq : A’ — B’ is not an isomorphism.

When we take A and B to be indecomposable, we have the following result:
Proposition 1.3.2. (AC20) Let A and B be indecomposable A-modules.
(i) If A # B, then radp(A, B) = Homa(A, B).
(i1) If A~ B, then radp(A, B) ~ rad End A consists of all nonisomorphisms.
Proposition 1.3.3. (AC20) Let f : A — B be a morphism of A-modules.
(1) If A is indecomposable, then f is a radical morphism if and only if [ is not a section.
(1) If B is indecomposable, then f is a radical morphism if and only if f is not a retraction.

Proposition 1.3.4. (AC20) Let A and B be indecomposable A-modules. Then, every radical morphism
f € rada(A, B) can be written as f = u+ v, where u is a sum of compositions of irreducible morphisms and

v € rady’.
Now, we look at irreducible morphisms.

Definition 1.3.5. Let A, B € modA, and [ : A — B a morphism. Then, f is irreducible if f is neither a

section nor a retraction, and whenever f = gh, then h is a section or g is a retraction.
In the case A and B are both indecomposable, we have the following.

Proposition 1.3.6. (ARS95) Let f : A — B be a morphism between indecomposable modules A and B in
modA. Then f is irreducible if and only if f € rads(A, B) \ rad3 (A, B).

Also, if f is an irreducible morphism, then it is a monomorphism or an epimorphism.

Now we present definitions for morphisms that will play an important role in the theory.

Definition 1.3.7. Let f: A — B be a morphism of A-modules. Then f is called

19



(1) left almost split if f is not a section and for every uw : A — C that is not a section, there is a
morphism v’ : B — C such that u = u'f.

A%B

J{ -
y
u .
s /
v’ Ju

(1) right almost split if f is not a retraction, and for every v : D — B that is not a retraction, there is

a morphism v’ : D — A such that v = fv'.

D
EI'U////UJ/
L
Al B

(#i1) left minimal if, whenever there is g € End B, such that gf = f, g is an automorphism.
(iv) right minimal if, whenever there is h € End A, such that fh = f, h is an automorphism.

An important remark is that every irreducible morphism is both left and right minimal.
Lemma 1.3.8. (AC20) Let f : A — B be a morphism of A-modules. Then,

/
(2) if f is left almost split, then there is a decomposition B = B’ ® B” such that [ = ( J(; ), with

f'+ A — B’ left minimal almost split.

(13) if f is right almost split, then there is a decomposition A = A" & A” such that f = ( ' 0), with

[ A" = B right minimal almost split.
(#it) FEwvery right or left minimal almost split morphism is irreducible.
Lemma 1.3.9. (ASS06) Let f : A — B be a morphism.
(1) If A is indecomposable, [ is not a section if and only if Im(_ o f) C rad End A.
(i4) If B is indecomposable, [ is not a retraction if and only if Im(f o ) C rad End B.
Now, we are ready to define the Auslander Reiten sequences.
Definition 1.3.10. A short exact sequence
0-A4LBS 050

in mod A is called an Auslander Reiten sequence, or almost split sequence, if f is left almost split and g

1s Tight almost split.
The following theorem shows equivalent definitions for an Auslander Reiten sequence.

Theorem 1.3.11. (ARS95) Consider a short exact sequence in mod A.
f 9
0—+A=B=C—=0

The following are equivalent:
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(a) The sequence is an Auslander Reiten sequence;

(b) A is indecomposable and g is right almost split;

(¢) C is indecomposable and f is left almost split;

(d) f is minimal left almost split;

(e) g is minimal right almost split;

(f) A and C are indecomposable and f and g are irreducible.

Similarly to how we defined the ideal rady, we will define the ideals P and Z, of the category mod A.
Given modules A, B € mod A, we denote by Pa(A, B) the set of all morphisms f : A — B that factor
through a projective A-module. Dually, Zx (A, B) is the set of all morphisms f : A — B that factor through

an injective A-module.

Definition 1.3.12. We define the projectively stable category of mod A as the quotient category

mod A
dA =
mo Py
and the injectively stable category of mod A by
A
mod A = m;i

we define the transpose of C' as
Tr(C) = Coker (HomA(Po,A) =°h, HomA(Pl,A)> .
Then, the Auslander Reiten translation of C', and its inverse are given by
7(C)=DoTr(C)and 7~ (C) =Tr o D(C),
where D = Homg(_, K).
Theorem 1.3.13. (AC20) 7 : mod A — mod A and 7~mod A — mod A are equivalences of categories.
This equivalence yields the following properties.

Proposition 1.3.14. (AC20) Let A be an indecomposable A-module.

(1) If A is projective, then T(A) = 0. If A is not projective, then T(A) is indecomposable, noninjective, and
7 71(A) ~ A.
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(13) If A is injective, then 7~ (A) = 0. If A is not injective, then 7~ (A) is indecomposable, nonprojective,
and 777 (A) ~ A.

Theorem 1.3.15. (ARS95) Let A be an algebra.

(1) If C is an indecomposable nonprojective module in mod A, then there is an Auslander Reiten sequence
in mod A

0—=7(C)—B—C—=0.

(i1) If A is an indecomposable noninjective module in mod A, then there is an Auslander Reiten sequence
i mod A

0—+A—B—=71 (A —0.

Finally, we present the Auslander Reiten formulas.

Theorem 1.3.16. Let A, B € mod A. Then, there are functorial isomorphisms
Exth (A, B) ~ DHoma (7~ B, A) ~ Homy (B, 7(A))
To end this section, we will introduce the definition of Auslander Reiten quiver.

Definition 1.3.17. The Auslander Reiten quiver I'(modA), or simply T'(A), of an algebra A is a quiver
defined as

(i) The vertices of T'(A) are the isoclasses of indecomposable A-modules.

(1) For two vertices A and B, the arrows from A to B are in bijection with the vectors of a basis of the

K -vector space of irreducible morphisms from A to B.

Notice that by this definition, there is an arrow from A to B in I'(A) if and only if there is an irreducible
morphism from A to B. This is important, because in the case of finite representation type algebras,
all nonisomorphisms between indecomposable modules are a sum of compositions of irreducible morphisms

(Theorem 7.8, (ARS95)).

We end with an example of the construction and use of Auslander Reiten quivers.

Example 1.3.18. Consider the quiver Ay and the Nakayama Algebra A = KAy/J3.

We will construct the Auslander Reiten Quiver I'(A). To do that, we need all indecomposable nonisomorphic
A-modules. By Theorem 1.2.8, we need to use projective modules and their radicals. The projective modules

are
P=1 P=?

P = P, =

— Do o
DO QO W~
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And their radicals are

3

2
1 T(ZdP4: 2

radP, =0 radP,=1 radP;=

So, the indecomposable modules are
{Pl,Pg,Pg,P4,P2/TadP2 —2,Py/rad Py = 3, Py /rad Py = 4, PyJrad®Py = 5, Py/rad®Py = }
3 4
2 3 4
= ]-7 ’ 2 ) 3 723 3747 ) .
{ 1> 775 23 }

Now, we need all irreducible morphisms between indecomposable modules. Recall irreducible morphisms are

monomorphisms or epimorphisms. The irreducible monomorphisms are

3 4
2 3 4 2 3
1—>1,2—>2,3—>3,1—>%,2—>%
And the irreducible epimorphisms are
3 4
%—>2,2—>3,§—>47%—>g,§—>§

Now, we place all these morphisms together:

3

W

2 3
/ ! \ / ’ \
2 3 4
1 / 2 / 3
1 2 3 4
Notice that the arrows that are going "up" are the monomorphisms and the arrows that are going "down”

are the epimorphisms. The dashed lines represent 7 and 7~ . Therefore, we can construct all nonisomorphic

Auslander Reiten sequences of mod A:

0—1— % —2 =0,

0—2— ‘; —3 =0,
0—3— % —4 =0,
3
0%%%2@2%%%0,
1
4
0— % —3® 3 — § —0
2

3 4
Finally, notice there are no Auslander Reiten sequences starting or ending in 2 and 3 , because they are

projective and injective at the same time.
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Chapter 2

n-ABELIAN CATEGORIES

In this chapter we will present an important structure that generalize abelian categories: n-abelian cat-
egories. An m-abelian category is a higher analog of an abelian category from the viewpoint of higher
homological algebra. It is an additive category that has a notion of kernels and cokernels, but these are re-
placed by n-kernels and n-cokernels in the sense of homotopy theory. In the same way, there are n-pushouts
and n-pullbacks in an n-abelian category.

Gustavo Jasso (Jas16) introduced the concept of n-abelian categories in 2016. Since then, these categories

have been used in representation theory, commutative algebra, and non-commutative algebraic geometry.

2.1 n-Analogues

In his article, Jasso (Jasl6) presented many definitions and results that allows us to understand this kind
of structure. Here some of those results will be presented and proved with more details. Also, we will show
an example to illustrate the definitions.

When studying abelian categories, some of the most basic definitions and constructions are kernels,
cokernels, pullbacks, pushouts, and short exact sequences. We will start this section with the definitions of

their analogues.

Definition 2.1.1. Let A be an additive category and f : A — B a morphism in A. A weak kernel of f is
a morphism g : C — A, such that for all X € A we have that

Hom_4(X, C) °=5 Hom.a (X, A) 2°=5 Hom (X, B)
is exact. Dually, a weak cokernel of f is a morphism h: B — D, such that for all X € A we have that
Hom(D, X) =2 Homu(B, X) =2%5 Hom (A, X)

18 exact.
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When we compare definitions 1.1.2 and 2.1.1, we notice that their difference lies on whether g o and
o h are monomorphisms or not. For example, if g o  is a monomorphism, we guarantee that for all
x: X — A, which fax = 0 there exists only one morphism p : X — C such that gp = x. But if go _ is not a
monomorphism, then we can’t guarantee the uniqueness of p.

In conclusion, a weak kernel g of f is a kernel of f, if and only if, ¢ is a monomorphism. Dually, a weak

cokernel h of f is a cokernel of f, if and only if, f is an epimorphism.
Definition 2.1.2. Let A be an additive category.

e A sequence of objects and morphisms in A of the form

QAn—2 Qn—1

(040,...7an,1) X()—)Xl—) —)Xn 1%)(”

is a n-kernel of a morphism X,, =% X, .1 in A, if

Qp—10

0 — Homu(A, Xo) ~2= Homa(A, X,) 2= Homa(A, Xni1)

is an exact sequence for all A € A.
o A sequence of objects and morphisms in A of the form
(a1, 0m)t Xy 25 X 22 S0ty x 9 X
is a n-cokernel of a morphism Xo —% X1 in A, if
0— Homa(Xpt1,4) =222, Hom (X1, A) =200, Hom 4(Xo, A)

is an exact sequence for all A € A.

e An n-exact sequence is a sequence of objects and morphisms in A of the form

(g, .. am) 10— Xo 2% X7 25 X, 22 2 X, 2 X, 0
such that («g, ..., n—1) is an n-kernel of a, and (o, ..., «p) is an n-cokernel of ayg.

An alternative to these definitions is to use weak kernels and weak cokernels. In fact, the sequence
(g, ..., p—1) is an n-kernel of «, if, for all 2 < k < n, ap_; is a weak kernel of oy and moreover, oy is a
kernel of «y. Dually, (a1, ...,q,) is an n-cokernel of ag if, for all 1 < k < n — 1, a; is a weak cokernel of
ag_1 and, «, is a cokernel of a,_1.

One last definition is necessary before we define an n-abelian category.

Definition 2.1.3. A category A is idempotent complete if for every idempotent e = e?> € Hom4(A4, A),
for all A € A, there exists an object B € A and morphisms p: A — B and i: B — A, such that ip = e and

pi = 1p, in other words, every idempotent splits.

A— 5 A

N
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A simple remark is that semisimple categories are idempotent complete. Also, abelian categories are
always idempotent complete. Indeed, consider e : A — A an idempotent in an abelian category A. From

Definition 1.1.3, there is a commutative diagram

0 Kere A c A Cokere —— 0

P

Coime —— Ime

where Coim e = Coker(Kere), Ime = Ker(Cokere). Also, p is an epimorphism, ¢ is a monomorphism and
e is an isomorphism. Then, there is € ! : Ime — Coime such that ' 0€ = lapime and €0t = 17pe.

By taking p’ = € o p an epimorphism and X = Coime = I'me, we have

A— A

N A

2 = e, we have iep = iepiep. Since i is a monomorphism and p is an epimorphism,

with e = ip’ and since e
we conclude that 1y = p/i.

Now, we establish the higher analogue of an abelian category.
Definition 2.1.4. An n-abelian category is an additive category A which satisfies the following:
(Ao) The category A is idempotent complete.
(A1) Every morphism in A has an n-kernel and an n-cokernel.

(As) For every monomorphism agy : Xo — X1 in A and for every n-cokernel (aq, s, ..., ap) of ag, the

following is an n-exact sequence:

Qn—1

0— Xo 22 X, 24 . —>Xn—>Xn+1—>O

(ASP) For every epimorphism B, : X, — X,41 in A and for every n-kernel (Bo, B, .-, Bn—1) of Bn, the

following is an n-exact sequence:

Brn-1

0 Xo 2o x, 2 Ity x Pro x4

Now, we will present an example to illustrate all of these definitions.

Example 2.1.5. Consider the following quiver A7 and the Auslander Reiten quiver of the path algebra
KA/ J?:

2 3 4 5 6 7
1 2 3 4 5 6
YNNG N N NS N
1 2 3 4 5 6 7

26



Our objective is to present a 2-abelian category that is contained in the abelian category mod KAz /J?. The
construction of such subcategories will be developed in the following sessions, specially in Section 3.1.15. In
this example, we will consider the subcategory Co = add (1 @ % @ % @ % @ 2 @ g @ g DTH3D 5)
and present an idea of the proof that it is a 2-abelian category. For convenience, the following quiver shows

all indecomposable non-isomorphic objects and irreducible morphisms of Ca:

2 faf2 3 frfe fi1f1o 7
1 2 6

e 5 — ] 5 —e
4 N N e
3 5

In this category, it is possible to see the 2-kernel and 2-cokernel of some morphisms and the 2-exact

1 7

Sequences.

We will prove that its 2-kernel is given by 0 — 3 — él —

él is the kernel of é ELLLN Z and

(i) Let f: Z — g

We can prove it by noticing that 3 ELN — Z is a weak

kernel of f. Indeed, as the sequence

0-32% 3 Inas0

is an Auslander Reiten sequence, fofs = 0, so (f7fs)fs = 0. Now, let X € Cy and X EN g be a
morphism such that (f7fs)g = 0. Since f7 is a monomorphism, it follows that feg = 0. Then, as f5 is
the kernel of fs, there is a unique h : X — 3, such that fsh = g. Therefore, f5 is the kernel of f7fs.

Now, we shall prove that frfs is a weak kernel of f. Again, let X € Co and X % i be a morphism
such that fg = (fofs)g = 0. Since fo is a monomorphism, it follows that fsg = 0. Since f7 is the
kernel of fg in mod KAz7/J?, there is a unique h : X — 4 such that fih = g. Then, as fe is minimal
right almost split, there is a morphism r : X — él such that h = fgr. Then, g = f+h = frfer. In
conclusion, if g € Ker(fo ), then g € Im(f7fs o ), meaning that frfs is a weak kernel of f.

11) Similarly, the 2-cokernel of f is given by 6 — 7 — 7 — 0, because T D120 7 4s the cokernel of
5 6 6

g Juifio, g in Cy and g Jufio, g is a weak cokernel of f.

(#it) The sequence

0—=1— % — % —+3—=0

s a 2-exact sequence, because 1 — % is a monomorphism, and % — “;) — 3 s its 2-cokernel.

(iv) Analogously, we can show all 2-exact sequences of Co:

0—1— % — % —+3—=0
0—3— él — i —+5—=0
0—5— g — g —7—=0



2.2 Basic Properties

Now, we will present some properties that arise from the definitions of n-exact sequences, n-kernels, and
n-cokernels. Some of them are analogues of the n = 1 case. A morphism of n-exact sequences is a morphism
of complexes between two n-exact sequences.

To start, we will look at homotopic morphisms between n-exact sequences and conditions for an n-exact

sequence to be split.

Proposition 2.2.1. (Fed20) Let A be an n-abelian category and f a morphism of n-exact sequences

X : 0 Xo—20 Xy~ A X, L X, 2 Xy 0
Jf fol flJ/ fn—ll fﬂi J/fn+l
Y: O YO ﬁO 1/1 Bl T /87172 Yn_l ﬂn— Yn Bn Yn+1 0

the following are equivalent:
(a) There is a morphism hy1 @ Xpy1 — Yy such that By, 0 hpy1 = fri1-
(b) There is a morphism hy : X1 — Yo such that hy o ag = fo.

(¢) The morphism f is null-homotopic, that is, there are morphisms h; : X; — Y;_1 such that f; =
67;,1}% + hi+1ai fOT’i = O, ey n +1 and Y,1 = Xn+2 =0.

Proof. Clearly, (c) implies (a) and (b). Now, suppose (a) holds. By applying Hom (X, ) toY, we get the
sequence

s Homa(Xn, Y1) == Homa(Xon, Ya) —""= Homa(Xn, Yos1)

which is exact because Y is n-exact. Note that

ﬁn (fn - hn+1an) = ﬁnfn - Bnhn+1an = ann - fn+1an =0

and as (fn — hpe1an) : Xo = Yo, (fn — hnyran) € Ker (Bpo ) = Im(8,—10 ). This means that there is
a morphism h,, : X,, — Y, _1 such that 8, _1h, = f, — hnt10y,, equivalently, f,, = B,_1hy + hpy1an,.
Notice that 8,—1(fn-1 — hnayn—1) = 0, then, inductively, by applying Hom4(X;, ) to Y and taking by
hypothesis that 8; (f; — hix1c;) = 0, and the fact that Ker(8;0 ) = Im(B;—10 ), it is possible to construct
hi: X; =Yg, foralli=n—1,n—2,...,1, such that f; = B;_1h; + h;110;.
Finally, as Soh1 = f1 — hoay,
Pohiay = frap — hearag
= fia
= bofo
and [y is a monomorphism, it follows that hyag = fo. This proves (a) = (c).

Now, suppose (b) holds. Analogously, apply Hom 4(_,Y7) to X:

oo —— Homa(Xa, Y1) — = Homa(X1,Y1) — 2 Homa(Xo, Y1)
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Again, we notice that
(f1 = Boh1) g = fravg — Pohiag = Bofo — Pofo =0

Then, (f1 — foh1) € Ker(_oag) = Im(_oa;). Hence, there is a morphism hy : X5 — V) such that
haay = f1 — Bohy, or equivalently, fi = hocy + Bohy.

Inductively, we apply Hom4(_,Y;) to X and check that f; —8;—1h; € Ker (_ o a;—1) and construct h;i1
for all i =2,...,n+ 1. In conclusion, this gives that (b) = (c). O

An easy corollary follows when we take Y=X and f = Idx:

Corollary 2.2.2. (Fed20) Let A be an n-abelian category and X an n-exact sequence:

Qn—1

X : 0 Xo—20 xy 21y A X Xp =2 X 0.
The following are equivallent:

(a) g is a split monomorphism.

(b) v, is a split epimorphism.

(c) the identity on X is null-homotopic.

Definition 2.2.3. An n-ezact sequence is called a split n-exact sequence if it satisfies any (therefore all)

of the conditions from Corollary 2.2.2.

The following results present many interesting properties of n-exact sequences and their morphisms in

n-abelian categories.

Lemma 2.2.4. (Fed20) Let A be an n-abelian category and X and Y two n-exact sequences. Suppose, for

some 0 <i < j <n+1 there are morphisms f;, fix1,..., f; such that the following diagram commutes:
0 Xo—0, X, 2 . X; X; X, s X, 0
0 Yo o Y1 5 Y; Y; Y, o Y1 0

Then, there are morphisms fr, k € {0,...,i — 1,7+ 1,....,n+ 1} completing f to a morphism of n-exact

SEqUENCES.

Proof. First, let’s consider this part of the diagram:

oG — i
Xi1 5X 2 X
fli lfq,-u
Bi— Bi
Yoy ——Y; Vit

Here, fir1a; = B; fi. Then, B; fia;—1 = 0. But, §;_1 is a weak kernel of §;, which means there is a morphism

fiz1: Xi—1 — Y;_1 such that f;a;_1 = B;_1f;_1. Recursively, all morphisms fy,..., f;_1 are constructed.
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Analogously, consider the other side of the diagram:

Qj—1 Qg

Xj-1 X Xjt1
fj—ll f;l
B7—1 Bj
vy Ay,

As fjaj—1 = Bj—1fj—1, we get that 3;f;jo;—1 = 0. Since o is a weak cokernel of a;_1, there is a mor-
phism fjy1 @ Xj41 — Yjy1 such that fj105 = B;f;. Again, proceeding recursively gives us all morphisms

it fnr1- O

An important remark about Lemma 2.2.4, is that it is possible to take i = 0 and j = 1 or i = n and

j =mn -+ 1. In fact, this will usually be the case when we use it.

Lemma 2.2.5. (Fed20) Let X be an n-exact sequence in an n-abelian category A.

0 Xo 20y X, 24y L X, -2 X, —— 0.
Then, for all 1 <i<mn, a; is right minimal, if and only if, a;_1 € rady.

Proof. If o is right minimal, then, for all f: X; — X;_;, we have
aj(lxj — Oéjflf) = Q5 — OéjOéjflf = Q.

Since «; is right minimal, 1x, — ;1 f is invertible, and consequently, a; 1 € rad.

Consider now «;_1 € rad 4, and let h : X; — X; be a morphism such that a;h = «;. Then, o;(h— 1Xj) =

Since (a,...,an—1) is an n-kernel of a,,, oj_1 is a weak kernel of a;. Then, there is a morphism
g:X; — X; 1, such that h — 1x, = a;_19, meaning that h = 1x, + a;_1g. As aj_1 € rad 4, h is invertible

and o is right minimal. O

Lemma 2.2.6. (Fed20) Let X be an n-exact sequence in an n-abelian category A, with ag, ..., Q,—1 € radg
and consider f : X — X a morphism of n-exact sequences, with f, an isomorphism.

Op—2 Qp—1

0 X = x; Xpog —5 X, —5 Xy —— 0

T A A

0 Xo o X1 ol o Tan s Xn,1 ﬁ Xn Tﬂ) Xn+1 — 0
Then, fo,..., fn_1 are all isomorphisms.
Proof. By Lemma 2.2.5, aq,...,«a, are right minimal. Also, since f, is invertible, a, f, = «, and «,, =

a, 71, then, using Lemma 2.2.4, we have a commutative diagram:

Qp— Qp— n
0— Xo % X, 25 28X, 1 4 X, 2 X — 0

nl ol bl ] H

Qp—2 Qg

0— Xo 2% x; 2% 2y, X, 2 X —— 0
ol I o |
«

Qp—2

0— Xo % X, 2% 228X, 4 X, 2 X — 0
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So, a1 = apn_19n—1fn_1- As ay_1 is right minimal, g,,_1f,_1 is an isomorphism. Analogously, f,_19,-1

is an isomorphism. Therefore, f,_; is an isomorphism.

Take hy,—1 = (gn_1fn_1)"', and again, applying Lemma 2.2.4, we get the commutative diagram

« « An—2 On—1 3
0— Xg—-% X, 5% . — Xy 00— X — X, 2 X — 0

gofol glfll gn—?fn—?l gn—lfn—ll H

Qn—2 Qn—1 «

« @ n
OHX()*O>X1%...%Xn,Q%anlHXn*}XnJrl*}O

o | Pnce  fhe |
« 2 « e

[e% « n— n—1 .
0—Xog—2X;—...— Xp 20— Xpn 1 — Xp—> Xpi1 —0

Here, Op_—2 = hn—lgn—lfn—lan—Q = an—th—an—an—2~

Again, since ay,_o is right minimal, A, _2¢,_2fn_2 is an isomorphism. Dually, ¢g,_2fn_2h,_o is an iso-

morphism, which implies that g,_of,_2 is an isomorphism. If we construct the diagram for fg instead of gf,

we would get that f,,_2g,_» is an isomorphism, and thus, f,_o is an isomorphism.

Proceeding recursively, fi,..., fn_2 are all isomorphisms. Finally, for fy, we have the diagram bellow,

where r was constructed so that f; ! = r;:

0—Xo 25X, —...— X1 — X — Xpy1 — 0

plo o ln H H H

0—Xo %X, —...— X1 — X — Xpy1 — 0

ol ner H H H

0—Xo %X, — ... — X1 — X — Xpy1 — 0

Then, ag = agrofo, since o is a monomorphism, rg fo = 1x,. If we constructed the diagram for fr, we would

get ag = g foro, and again, forg = 1x,. In conclusion, fy is an isomorphism.

2.3 n-Pushouts and n-Pullbacks

Finally, we define n-pullbacks and n-pushouts.

O

Definition 2.3.1. Let A be an additive category, a complexr X and a morphism fo : Xog — Yy € A of the

form
X : Xo—20s x, 2 22 x, L X,
|
Yo
An n-pushout of X along fy is a morphism of complexes
X : Xo—20s x, 2 A x, L X,
fl fol flJ/ fﬂ,—ll fnl
Y Yo Bo " Br T Bno2 Yo Bn-1 Yo

such that in the mapping cone C(f)

Xo 5 X109 S X S . S X, 0,1 =5 Y,,
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the sequence (Yo, - .., Yn—1) is an n-cokernel of y_1, where

—ap —agyr 0
Vo1 = y Yn—1 = [ frn Bn-1 } and vy, = , forall0<Ek<n-—2.
fo frer Br

Dually, given a complex Y and a morphism f, : X, = Y,, an n-pullback of Y along f, is a morphism

of complexes like (2.1) and in the mapping cone C(f), the sequence (y_1,...,Yn—2) i an n-kernel of v,_1.

An important remark is that in the construction of an n-pushout, the last square of (2.1) is a pushout in
the usual sense.
The next three results will be used to prove the existence of n-pushouts and n-pullbacks in n-abelian

categories.

Lemma 2.3.2. (Jas16) Comparison Lemma. Let A be an additive category and X

«p aq [e77%

X: XO

X, X, . X, Xoi1

such that for all 0 < k < n, a1 is a weak cokernel of aj. If f: X =Y and g : X = Y are morphisms of

complezes such that fo = go, then there is an homotopy h : f — g, such that hy is the zero morphism.

Lemma 2.3.3. (Jas16) Let A be an idempotent complete additive category and consider a sequence of

morphisms in A as the following

wl . x_9,y_ ",z

If g is a weak cokernel of f, and h is both a split epimorphism and a cokernel of g, then f admits a cokernel

mn A.

Proof. If h is a split epimorphism, there is a morphism k' :Z — Y such that hh' = 15. Then, e = 1y — h'h
is an idempotent, since
2 = 1y —Rh—hh+h'hi'h
= 1y —2h'h+ W1k
= e
By hypothesis, e splits, which means there are morphisms r and s, such that sr = e and rs = 1, for some
N e A

Notice that hs = 0, because
hsr = he

and



We claim that rg is a cokernel of f. Indeed, rg(f) = r(gf) = r0 = 0, and given a morphism v : X — M

such that wf = 0, there is a morphism v : Y — M, with vg = u, because g is a weak cokernel of f.
f x_9 ,y_h
M N

w Z

Then,
vsrg = w(e)g
= ov(ly —h'h)g
= vg— vh/hg
= vg— vh 0
= wvg=u.
In other words, u = (vs)(rg). Now, we need to show that (vs) is unique. For that, we claim rg is an
epimorphism. To prove that, suppose there are morphisms «, 3 : N — @ such that arg = frg. Then,

(ar — Br)g = 0. As h is the cokernel of g, there is a unique morphism w : Z — @ with ar — 8r = wh.

Wt xtsy -tz
|
Now,
whs = ars—prs
w0 = a(ly)—B(1x)
0 = a-5

proving that r¢ is an epimorphism.
With that, we conclude that vs is unique, because if there exists a morphism ~ with v = yrg and

u = (vs)(rg), as rg is an epimorphism, we can conclude that v = vs. Which proves that rg is the cokernel

of f. O

Proposition 2.3.4. (Jas16) Let A be an additive category that satisfies axioms (Ag) and (A1) from Definition

2.1.4 and X a complex

Qn—1

Qnp—2
Xo—205 Xy —2 s . X1 —5 X,.

If for all 1 < k < n — 1 the morphism ay, is a weak cokernel of ay_1, then a,,_1 admits a cokernel in A.

Proof. We prove this result by induction on n.
For n = 1, Xog —2+ X has (1-) cokernel by hypothesis, since A satisfies axiom (A;).
For n > 2, by hypothesis, the morphisms oy and «,_; have an n-cokernel, respectively,

Xi=vi Py, By iy By and X -2 X

Qn41 Q2n—2 Q2n—1

Xop—1 —— Xop. By
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placing them all together, we have the following diagram

Xo = Xy~ Xp —— o —— Xy = X = Xy =5 Xogg —— o —— Kooy 2555 Xo

H H lo lo Jo

Xo -2 x, Py, Yoo ey, ey 0 0 0

[ : s :
@ @1 Qp—1 Qp Q41 Q2p—1

X() Xl X2 s Xn—l Xn X’rH-l Xn+2 B X2n—1 X2n

As «q is a weak cokernel of ay, and By = 0, there is a morphism f5 : Xo — Y5 with foay = 1. Recursively,
as «ay is a weak cokernel of ay_1, and B fr_10k—1 = BrBr—1frx—2 = 0, there is a morphism f; : X — Y;
with frap_1 = Bpfr_1, forall 2 <k <n—+ 1.

Analogously, as [ is a weak cokernel of 8;_1, and apgr_18k—1 = Qpar_1gx—_2 = 0, there is a morphism

gr : Y — X with gx8r—1 = argp_1, forall 1 <k <n+1.

Xo % X7 5 X X1 5 X 2" X1 5 Xops Xop 1 2% Xy,

H H f2l fn—lj/ fnl fn+1l JO lo JO
ag B1 Bn-1 Bn

X X, Ys> o Y1 Y., Yoi1 0 o 0 0

H H 92\{ gn,—ll g'nJ/ gn+1l JO JO JO

Xo % X1 5 Xo X1 5 Xy =" X1 —5 X Xopo1 =% Xop,

Now, we apply Lemma 2.3.2, which garantees that there is an homotopy h : Idx — gf, with hsy, : X9, —
Xop—1 such that 1x, = ao,_1hon.
This allows us to apply Lemma 2.3.3: «s,_3 has a cokernel in A. This allows us to reduce the n-cokernel

of a,—1 by one morphism. Proceeding inductively, we conclude that a,,—1 has a cokernel in A. 0

Theorem 2.3.5 ((Jasl6), Existence of n-pushouts). Let A be an additive category that satisfies axioms
(Ap) and (A1) from Definition 2.1.4 and consider the complex X and the morphism fo as follows:

XO (7)) Xl «aq B Op—2 Xn_l % Xn
fol
Yo

Then,

(i) There exists an n-pushout diagram

Xo—20 o x, -2, 2 x, 2L X,
fol fll fnflJ/ J/fn
Yo Bo n B1 7 B2 Yo Brn-1 Yo

(1i) If, moreover, A is n-abelian and «q is a monomorphism, then [y is a monomorphism.

Proof. (i) We will proceed by induction on n. We start by setting
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Now, we suppose that for all 0 < &k < n — 2 and [ < k we have constructed Y, f; : X; — Y; and
. — 0
Bi—1:Yi-1 = Yy withy_10y_2=0and y_; = [ fcl” B 1 ]

By hypothesis (41), k-1 has weak cokernel gx, = [ fes1 B |:
XY — L s X oY — 22— Vi

which means that — frpi 10k + Brfr = 0 and Srfr—1 = 0.

We claim that v := k1 0 P X1 @ Ye — X2 @ Yy is a weak cokernel of y,_1. Indeed,
frs1 B
we have that
AOp 10 0 0 0
Yk © V-1 = =
—frr10ok + Befr BrBr—1 00

Moreover, suppose there is a morphism wu : Xg 1 @ Yy — M such that uy,_; = 0. As g is a weak

cokernel of ,_1, there is a morphism v : Yy11 — M, with vo g, = w:

X0 — s X 0V — 22— Vi
M /

By taking [ 0 v ] t X12@Yrr1 — M, we also verify that [ 0 v }O'yk = [ Vferr Bk } =Vgr = U,

S0, Yk is a weak cokernel of yj_1.

Then, by Proposition 2.3.4, the last morphism of the cone C(f) is a cokernel. In other words,

X 0Y) -2 Xo®Y] —— . —— Xy 1 © Yo 5 X, DY, 5 Y, is an n-cokernel of y_1,

and consequently, there is an n-pushout diagram for X along fo.
To prove this, we first claim that v_; is a monomorphism.

Suppose there is a morphism u : M — Xy with v_1 ou = 0. Then, —agu = 0 and fou =0. As g is a

monomorphism, we get that u = 0. Which yields that v_; is a monomorphism.

More than that, the cone C(f) is n-exact, because v_; is a monomorphism and (vg,...,V,—1) is an

n-cokernel of vy_j.

Now, suppose there is a morphism v : M — Y[ such that Syv = 0. Then we have the diagram bellow:

X04>X1@Y0—>X2®Y1

—QQ — Q1 0
[ fo } [ fi Bo }
Since the cone C(f) is n-exact, y_; is the kernel of 7. This means that there is a morphism w : M — X
with v_j ow = [ 8 }, then

—aqw=0 = w=0

fow=v = v=0
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concluding that By is a monomorphism.
O

The last result of this section will show an interesting and useful property of n-exact sequences and n-

pushout diagrams. To prove it, we will need a Lemma first.

Lemma 2.3.6. Let A be an n-abelian category, and consider the commutative diagram bellow in A, where

X is n-exact, Y is the n-pushout of X along fo, C(f) is the cone of f, and for every j € {0,...,n — 1},

0—=Y; KN Xj1 @Y LERET Xjy1 — 0 is a short split exact sequence:
X: 0 Xo—2 X, Xpg—"2 X, — X, 2 X, 0
J J fol Lh lfm lfm lf
Y 0 Yo —2 wm . Yoo — 2y, Iy
|k [
c(f): 0— X5 X6 L XoaY, — .. — 5 Xy 1 8Y s —— X, 8V 5 Y, ——— 0
A b
X[1] : 0 Xog—20 4 X, o X, X1 G X, 0

Then, when we apply Homa(_, M) to the the 3 bottom lines of the diagram, with M € A, the following

commutative diagram has exact lines, where (_, ) := Homu(_, ):
(X, M) —=""1 (X, 1, M) (X2, M) (X1, M) —=222 (X0, M)

,Opnl l l7 op2 l, op1 ‘
OYn—1

00— (Yo, M) =5 (X, ® Yot , M) —— (Xpo1 @ Yoo, M) —— ... —— (Xa @ Y1, M) —— (X1 ® Yo, M) == (Xo, M)

H J-ern | et [

(Yoo, M) =20 (Y M) 5 (Yo_g, M) V1, M) —=""" (v, M) 0
Proof. The top line is exact because X is n-exact, and thus, (aq,...,a,) is an n-cokernel of «p, meaning

that the sequence
00— (X1, M) =25 (X0, M) =225 (X1, M) —— o —— (X, M) —— (X1, M) =5 (X, M)

is exact, and by "forgetting" the first morphism, we get the first line is exact.

The middle line is exact because the cone is an n-cokernel. And each column is exact. To prove that the
last line is exact, we will show that Ker(_o3;_1) CIm(_of;),foralll1 <j<n-—1.

Foreach1 < j<n-—1,let f € Ker o f3;_1, meaning f o f3;_; = 0. Since _ o4; is an epimorphism,
there is g € (X411 @ Yj, M), such that goi; = f. So, (go~yj—1)0ij—1 = (goij)opfj—1 = 0. Thus,
govyj—1 € Ker _oi;_y=1Im _ opj. Then, thereis h € (X;, M) such that hop; = go~y;_1.

(X1, M) —— (X;, M) —= (X;_1, M)

l_OPjJrl l_opj l_opj—l

(Xjr2® Vi1, M) =3 (X1 @Y, My =5 (X; & Y1, M) —5(X;_1 @ Yo, M)

lioi]*l lioij lioijfl

Oﬁj 7oﬁj,
(Y1, M) —=2 (¥, M) L (Y1 M)
If h =0, then, govy;—1 =0 and g € Ker _o~vj_1 = Im_ o~;. So, thereis r € (X492 & Yj41) with

ro~; = g. Therefore, (roiji1)of; = f.
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Ifh#0,and h € Ker _oa;_1 =Im _oqj, thereisr € (X;41, M) withroa; = h. So, (rop;yi1)ovy;—1 =
hopj=go~j_1,and g — (rop;y1) € Ker _o~vyj_1 =1Im _ o~;. Then, thereis s € (X;12® Yjy1, M) such
that sov; = g— (rop,41). On the other side, (soiji1)03; = (sovy;)oi; = (9—(ropji1))oij=f—0=f.

Finally, if 0 # h ¢ Ker o aj_1, there is 0 # t € (X;_1, M) such that hoa;_; =t. But, top;,_1 =
(hoaj_1)opj_1=(hop;)oyj—2=(govj—1)07j—2 =0, which means t € Ker _op;_1, and since _ op;_1

is a monomorphism, t = 0, a contradiction. With this, we conclude that the last line is exact. O

Theorem 2.3.7. (Fed20) Consider A an n-abelian category, X an n-exact sequence, and a morphism fo as

follows:
0 Xo —20y X, -2 e X1 2 X, 2 X —— 0
d
Yo
Then, the n-pushout of Xo —2s X; —21s . 2222 X, 2% X, along fo can be extended to a morphism
of n-exact sequences of the form:
0 Xo—2 x, 2y A X, L X, - X —— 0

fol fll Fa- { fnl

O }/0 ﬁO Yl ﬂl T B?L—Z Y’I’L—l anl }/" Bn X’n,+1 0

Proof. From Theorem 2.3.5, we know that there is an n-pushout diagram,

[e75) a1 Qp—2 Qo —1

0 Xo X Xp1 —= X, 5 X, —— 0

W -

0 YO 60 Yl 61 e ﬂn—2 Yn71 ﬁn—l Yn

such that By is a monomorphism, and in the cone C(f), the morphisms (7o, ...7n,—1) are an n-cokernel of

v—1. With that, we can use Lemma 2.3.6, and the diagram bellow has exact lines:

oQp—1 Sleti}

(X, M) —="2 s (X, y, M) (X, M) (X1, M) —=" (Xo, M)

“om | | [E= (B H

00— (Yo, M) =5 (X ® Y1, M) —— (X1 @ Y0, M) —— . —— (X 0 Y1, M) —— (X, & Yy, M) =273 (Xo, M)

| [ | o L

_oBo

(Y, M) =220 (Y M) —————— (Yo, M) (Y1, M) (Yo, M) 0
Consider now the diagram
X 2224 X,
fums| lfn .
Yoo 0y,

\0\4 X1

In the cone C(f), the morphism v,—1 = ( fn  Bn—1 ) is the cokernel of the morphism 7, o = ( _faizl 8 072 )

Also, notice that ( a, 0 ) is such that

(o o) 7 ) =(00)

fn—l ﬁn—2
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S0, there is a morphism S, : Y;, — X, 11 such that

B fu Bur )=(w 0).

Then, the diagram

dnc2 Xn—l - Xn s Xn+1 0
fn71l fnl
T Yt e X

commutes and, as ., is an epimorphism and «, = B, fn, it follows that 3, is also an epimorphism. All is
left to do, is to prove that 3, is the cokernel of 3, _1.
Let g : Y,, =& M be a morphism such that g35,_1 = 0.

anl e Xn s XnJrl 0
fnfll fnJ/ H
Yoot 25 Y, s Xy ——0

n

\ lg
0

M

In particular, g8,-1fn—1 =0 and gf,a,—1 = 0. As «,, is the cokernel of «,,_1, there is a unique morphism

w: Xp41 — M, such that ua, = gf,.
Recall that ( f, Bp—1 ) is an epimorphism. So, as

9( f0 Bus ) = (afu 98a1)

= (o5 0)

= (wout 0)

= (uBufu uBuBur )
= wB( fu Bt )

we have that ¢ = uf,, and consequently, 3, is the cokernel of 3,,_1.
Finally, since g is a monomorphism, by Theorem 2.3.5, §y is a monomorphism. Also, by Lemma 2.3.6

and the calculations above, (81,...,3,) is an n-cokernel of y. Therefore,
Bo Bn
0=-Yy—Y1—>--—=Y,1 —X,41—0
is an m-exact sequence. O]

We present an example of the construction 2-pushout and the application of Theorem 2.3.7 in Example

4.2.2.
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Chapter 3

n-CLUSTER TILTING
SUBCATEGORIES

In the previous chapter, we presented n-abelian categories, which are a generalization of abelian categories.
Like module categories are examples of abelian categories, we now present n-cluster tilting categories, which
are examples of n-abelian categories, as stated in Theorem 3.2.3. Even more, all n-abelian categories are

equivalent to an n-cluster tilting subcategory of an abelian category.

3.1 n-Cluster Tilting Subcategories

Iyama (Iya07) was the first to introduce n-cluster tilting categories. His work was motivated by the study
of preprojective algebras and cluster categories. In particular, he was interested in generalize the notion of
cluster tilting objects. By extending this notion to n-cluster tilting objects, Iyama was able to create a new
class of categories that have many interesting properties and applications.

An n-cluster tilting subcategory is a subcategory of an abelian category, that is closed under direct
summands and satisfies certain homological properties, as stated in Definition 3.1.3.

For this work, we will focus on n-cluster tilting subcategories of module categories. In the following, A is

an algebra and C is a full subcategory of mod A.
Definition 3.1.1. Let f: A — X and g : Y — A be morphisms, such that X, Y € C and A € mod A. Then,

(i) f is called a left C-approzimation of A, if for every morphism u: A — X', with X' € C, there is a

morphism v : X — X' such that u = vf.
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X is called right C-approximation of A, if for every morphism w :Y' — A, with Y’ € C, there is a
g

morphism z : Y' — Y, such that w = gz.

y -2 54
32! /

1 w
Y/

If for any A € mod A there exists a left C-approximation and a right C-approximation we say that C is

functorially finite.

Example 3.1.2. Consider the subcategory Co = add (169 % &) % 2] % @ i 2] g @ g @7@3@5)

of mod KA7/J? presented in Example 2.1.5. This category is functorially finite. We shall prove this by
presenting a left and a right Co-approzimation for each M € mod KAz /J?.

When M € Cy, we take M M M as both left and right Co-approximation. Also, in the case of de-
composable modules, the components of their approximations are the approximations of their indecomposable
summands. So, we will only present the Co-approzimations for indecomposable mod K Az /J*-modules that
are not in Co, namely, 2, 4 and 6.

For the module 2, its left Co-approximation is the morphism 2 — % , because for all other modules X in
Ca, if there is a non zero morphism f :2 — X, f factors through % , as it is possible to see in the Auslander
Reiten quiver of mod KAy /J?. Similarly, the right Ca-approzimation of 2 is the morphism % — 2.

For the module 4, its left Co-approximation is the morphism 4 — Z and its right Co-approzimation is
the morphism % — 4. And for 6, the morphism 6 — g is its left Co-approximation, and g — 6 is its

right Co-approximation.

Definition 3.1.3. A subcategory C C mod A is called an n-cluster tilting subcategory if it is functorially
finite and
C=trC=Cr,

where
Lo = {X € modA | Exti(X,C) =0 for all 0 < i < n} and
Ct» ={X € mod A | Ext\(C,X) =0 for all0 < i <n.}

Remark 3.1.4. (i) mod A is always the unique 1-cluster tilting subcategory of modA. For n > 2, the

existence of an n-cluster tilting subcategory is not always guaranteed.
(i1) Some authors ((Jasl16), for example) define an n-cluster tilting subcategory C from any abelian category
A. In that case, an additional hypothesis is necessary: C needs to be generating and cogenerating in A.

A full subcategory C of an abelian category A is called generating in A, if for all M € A, there is
Y € C and an epimorphism Y — M. Dually, C is called cogenerating in A, if for all M € A, there

is X € C and a monomorphism M — X.
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In fact, when C C mod A is n-cluster tilting, it is generating and cogenerating. To prove that, we take
the projective presentation of M, P — M — 0. This is an epimorphism and P € C, because P €1 C,
for any C C mod A. Similarly, taking the injective hull of M, 0 — M — I, we have a monomorphism,

and I € C, because I € C*+n, for any C C mod A.

Because of this, each left C-approximation of M is a monomorphism and each right C-approximation

of M is an epimorphism.

(#i7) If there is an n-cluster tilting subcategory C of mod A, then, the subcategory of all projective modules P
and the subcategory of all injective modules T are contained in C, because for anyn > 1, P Ct» C and

I CCtn.

The next example will show how to find an n-cluster tilting subcategory using Definition 3.1.3 and Remark

3.1.4.

Example 3.1.5. Consider the path algebra A = KAs/J?, whose Auslander Reiten quiver is represented

bellow with projective modules in blue, injective modules in red and projective-injective modules in purple.

=

2 3 4 5
1 2 3 4
SN N NN
1 2 3 4 5
We want to find a subcategory C of mod A such that C is 2-cluster tilting. Considering the Definition
3.1.8, we need to find -2C and C+2.
First, notice that all projective modules are in +2C and all injective modules are in C+2. Since we want
C =2 C = C*'2, our next step is to determine 2P and I 2, where P is the subcategory of all projective
modules, and T is the subcategory of all injective modules.

As % , g , % , i are projective and injective at the same time, they are in 2P and Z+2. So, 12 P =12

1 and T*2 = 5*2. Then,

52 = {X € mod A | Ext}(5,X) = 0}
and by the Auslander Reiten formulas,
L21 = {X € modA | DoHomp(r71,X) =0} ={X € modA | Do Hom,(2,X) =0},
52 = {X € mod A | Do Homp(X,75) =0} = {X € mod A | Do Homy(X,4) = 0}.

Then, looking at the Auslander Reiten quiver of mod A, we get that

lz1:{XEmoalA\DoHomA(Q,X):0}:acld<169369469569 % ® g ® g & i>,
542 = (X € modA | Do Homa(X,4) =0} =add (16263856 | © 5 & 5 & § )
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If there is a 2-cluster tilting subcategory, then C C+2 P, because P C C, and C C T2, because I C C.

Then, when we look at the intersection C =2 P NI = add (1 ©3DO5D % &) g @ % &) i ), we get

that C is a 2-cluster tilting subcategory, because it is functorially finite and C =12 C = C*2.

On the other hand, the following is an example of a category that has no n-cluster tilting subcategories.

Example 3.1.6. By taking Q as the following quiver

D)
1
It is possible to define an isomorphism of algebras:

v: KQ — Kz
€1 — 1

a — xT

Therefore, when we consider KQ/J%, we are actually considering K[z]/{x%). Taking ¢ = 3, we get the
following Auslander Reiten quiver, where the boxed module is projective and injective and the yellow line

shows a gluing of the quiver.
1 1
\, X / \ 1
1 1
N/

=

We will prove that this category does not have any n-cluster tilting subcategories.
1

By Remark 3.1.4, if there exists an n-cluster tilting subcategory C, then % € C, since it is projective and

injective. But, by Definition 3.1.8, it is necessary that C =+ C = C*+~. As

1 1\ 1
Lradd % = add % = mod KQ/J® # add %

1
we conclude that add % 18 mot an n-cluster tilting subcategory for any n.

Our next step is to try to include more modules in this possible n-cluster tilting. The problem is that
Ext! (1,1) # 0, because
0—1— % —-1—=0
is an Auslander Reiten sequence, and Ext! ( % , % ) # 0, since
1 ! 1
0= 1 - 1l&l—- 1 =0
1
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1 1 1
18 also an Auslander Reiten sequence. Hence, L"aald( % b % ) #+ add( % &) % ) and tradd (1 &) % > #*

1
add <1 ® % ) . The result is that there is no n-cluster tilting subcategory for this algebra.

In the same way as the classical Auslander-Reiten theory helps us to understand module categories by spec-
ifying all irreducible morphisms between indecomposable modules, its higher analogue - Higher Auslander-
Reiten theory - helps us to understand all irreducible morphisms in n-cluster tilting subcategories. By

introducing this theory, Iyama (Iya07) has presented the following definition:

Definition 3.1.7. Given a A module M, we define the n-Auslander-Reiten translations t, and T, by
™M = T(Q”flM) and 1,, M = Tf(Qf("fl)M).

Remark 3.1.8. Along with the definition, Iyama (Iyall) also proved that for any n-cluster tilting subcategory
C, the functors 1, and T, induce mutually inverse bijections between isoclasses of indecomposable non-
projective objects in C and isoclasses of indecomposable non-injective objects in C.

From that, it is possible to conclude that M = add{ri(DA) | i > 0} is contained in any n-cluster tilting

subcategory of mod A. Moreover, when gl.dim(\) < oo, we have te following theorem.

Theorem 3.1.9. (Iyall) Let A be an algebra of finite global dimension, and C an n-cluster tilting subcategory
of mod A. Then C is the unique n-cluster tilting subcategory of mod A. In particular, C = M.

The following Example shows the necessity of the finite global dimension for an algebra to have a unique

n-cluster tilting subcategory.

Example 3.1.10. The algebra K14~16/J2 1s the path algebra over the quiver bellow, quotiented by the square

of its Jacobson radical.

~

Its Auslander Reiten quiver is the following, where boxed modules are projective and injective at the same

time.
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Notice that this algebra has infinite global dimension. It is interesting to notice that mod KA@/JQ has two
different 2-cluster tilting subcategories, three different 3-cluster tilting subcategories, and six different 6-cluster
tilting categories. These categories are obtained by using Definition 3.1.3. More details in this procedure are

explained in Example 3.1.6.

C%:add(é@%@%@é@i@g@l@i’)@S),
CS:add(é@%@g@é@i@g@mﬂ@ﬁ),
G=aii(goiojeze]elalel),
C§:add(é@%@‘;’@§@i@g@2@5>,
CG=aii(go i ojese]elases),
Ci=ad(goiejezelelal),
CG=add(goiojeze)el e,
CG=aid(goiojezelesas),
Ci=add(goiojeze)el e,
CG=add(goiejseze)esas),
CG=adi(g o i e3e30]es a6

As presented in (DI20), Proposition 5.3, these n-cluster tilting subcategories are related to (n+1)-angulations
of an hexagon (which is the shape of the quiver 1216). This will be more visible in Example 4.1.13

The existence and the constructions of n-cluster tilting subcategories is not a completely solved problem.
In general, it is hard to determine when there are n-cluster tilting subcategories. There are many articles
showing necessary and sufficient conditions for an algebra to have such subcategories. In this work, we explore
some of the results presented by Vaso (Vasl9), to construct examples and comprehend better the structure

and proprieties of this subcategories. In his work, Vaso worked with representation directed algebras.
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Definition 3.1.11. A path of A-modules My to M; is a sequence of nonzero nonisomorphisms fi : My —
My, with 0 < k <1 —1. Then, A is called a representation-directed algebra if there is no path from
M to N in mod A with M ~ N.

An alternative characterization for representation directed algebras is given in the following proposition.

Proposition 3.1.12. (Rin8/4) A representation-finite algebra is a directed algebra, if and only if, its Auslan-

der Reiten quiver does not contain cyclic paths.
We will need a Lemma to prove the next theorem.
Lemma 3.1.13. Let A be a finite dimensional algebra.

(i) Let M € mod A be an indecomposable and non projective module, and P its projective cover. If QM is

decomposable, then Exth (M, P) # 0.

(i1) Let N € mod A be an indecomposable and non injective module, and I its injective hull. If Q~ N is

decomposable, then Ext)(I,N) # 0.

Proof. We will prove (i), as (ii) follows dually. Assume, by absurd, QM = X; & X, and Ext} (M, P) = 0.
Consider the exact sequence

0=OM 5 P2 M0

and apply Homa(_, P) to it:
0 — Homa(M, P) =2 Homy (P, P) == Homa(QM, P) — Ext (M, P) — ...

If Exti(M,P) = 0, then o is surjective. Then, i is a left add(P)-approximation. Even more, it is left
(4)

minimal, because if P = P; & P, such that i ~ QM L P, © P,, then P, would be a summand of M,

and since M is non projective and indecomposable, P, = 0.

Now, let f; : X3 — P’ and fy : Xo — P” be add(P)-minimal left approximations of X; and X,
respectively. Then, f1 @ fs is a add(P)-minimal left approximation of X; @ Xs and therefore, it is isomorphic
to 7 as a map.

Since P is the projective cover of M, f; and f> are monomorphisms, but they are not isomorphisms. Thus,

coker fi # 0 and coker fo # 0. But, M = coker f1 ®coker fo, a contradiction, since M is indecomposable. []

Theorem 3.1.14. (Vas19) Assume C is a full subcategory of mod A, closed under direct sums and sum-
mands. Denote by Cp and Cy the sets of isomorphisms classes of indecomposable nonprojective respectively

noningjective A-modules in C. Then, if C is an n-cluster tilting subcategory, the following hold:

(i) AeC
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(ii) T, and T, induce mutually inverse bijections

(iii) QXM is indecomposable for all M € Cp and 0 <i <n
(iv) Q7N is indecomposable for all N € C; and 0 <i <n
Also, if A is a representation directed algebra, then the reverse implication holds.

Proof. As stated in Remark 3.1.8, items (7) and (¢7) have been proved by Iyama (Iyall). We will prove item
(7i7) and item (iv) is proved dually. The reverse implication is presented by Vaso (Vasl9).

Let M € Cp and suppose by absurd, there is a minimal k& < n such that Q¥M is decomposable. Then,
k> 1 and Q*~'M is indecomposable. Also, Q*~1M is not projective, otherwise Q¥ M = 0. And for k = 1,
QF=1M = M and M is not projective.

Let P be the projective cover of Q¥~1M/. By Lemma 3.1.13, we have that Exti(Q*~1M, P) # 0. But
that means that Exzth (M, P) # 0, which is a contradiction to the fact that M, P € C, an n-cluster tilting

subcategory. Therefore, QM is indecomposable for all 0 < i < n. O

Now, we show how to use the Theorem 3.1.14 to identify n-cluster tilting subcategories for representation

directed algebras.

Example 3.1.15. Given the algebra KA7 quotiented by the square of its radical, we get the following
Auslander-Reiten quiver, where the blue are the projective modules, the red are the injective modules and
the purple are both projective and injective.

2 3 4 6 7

SN NSNS NSNS

This category has a 2-cluster tilting, a 3-cluster tilting and a 6-cluster tilting subcategories:

ot

G=awd(le e jazejele]eresas),

G=add(leo @ 3030 656§ atal),
2

CG=add1e  ©s3esese el er

1

The construction of these categories follows directly from the conditions of Theorem 3.1.14. This algebra is
representation-directed because it is representation-finite and its Auslander Reiten quiver does not contain

cyclic paths (See Proposition 3.1.12).
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(i71) and (iv) All 2™ syzygys and cosyzygys should be indecomposable, this is visible in the Auslander Reiten

quiver and is valid for all KA7-modules, including those which will be in the 2-cluster tiltitng category.

(7) All projective modules should be objects in an n-cluster tilting category. So, we start with
C=awdlle o3 e3ejeie()

(#4) 1o and T, should induce mutually inverse bijections between nonprojective and noninjective modules in

the category. As 1 is the only noninjective in the category so far, we only need to calculate 75 1.
T, l=7"(271)=7"2=3,
C=adfleo ] o3 e30]6;efas)
Then, as 3 is not injective, we also need to find 75 3:
n3=7 (173)=74=5,
¢"=ad(ie ] o3 e3e]e}efases).

Finally, as 5 is not injective, we find 74 5 =7 and conclude that
G=awd(le e jezejele]eseser)

But one might ask if it is possible to include other modules, like 2 in Co. This is why it is not possible: 2

s nonprojective and noninjective, so calculating o and 75 , we have
72(2) = 7(Q2) = 7(1).
But as 1 is a projective module, it does not have an Auslander Reiten translate.

The next proposition shows a criterion to discard some algebras, based on their ordinary quivers, when

looking for n-cluster tilting subcategories.

Proposition 3.1.16. (Vas19) Let Q be a connected quiver with m wvertices, A = KQ/I where I is an
admissible ideal and n > 2. Let k be a vertex in QQg, which is a sink or a source such that the full subquiver

of Q with vertex set Qo \ {k} is disconnected. Then A admits no n-cluster tilting subcategory.

Proof. Let k be a sink and consider a possible renaming of the vertices of @, so that Q) = Qo \ {k} =
Qa, UQp,, with Qa, ={1,...,k— 1} and Qp, = {k+1,...,m}.

The dimension vector of the projective module Py is

oo

dim Pk =
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P, is not injective, and its injective hull I, has its k** entry with dimension one and at least two other non

zero entries, since k is a sink. So, considering the exact sequence

0P, —> 1, >Q P, —0

a1 ay
ak._1 ak.—l
we have the dimension vectors dim [}, = 1 and dimQ~ P, = 0
k41 br+1
b b
Let Q™ P, = (M;, ¢a) ; ¢ Qo and f = (fi)ieq,, with f; : M; — M; the identity if ¢ < k and zero other-

a €@
wise. With this definition, f is not zero and it is not the identity. We will prove that f is an endomorphism

of O~ P,.
Let o : a — b be an arrow in Q. Notice that we can not have a < k < b or b < k < a, since Q' is

disconnected, also, since k is a sink, a # k. Our aim is to show ¢, fo = frdo. We look at three possible cases:
(i) If a,b < k, then, f, = fp = Id, and the equality holds ¢, fo = foda;
(17) If k < a,b, then, f, = f, =0, and the equality also holds;

(#i7) If b =k, since My, =0, we get ¢, = 0, and the equality ¢, fo = foda holds.

In all of them, f € End(Q~ P). As f2 = f and 0 # f # Id, we have that End(2~ P) is not local, which
means that Q7 P is not indecomposable.

By Theorem 3.1.14, this means P, ¢ C for any n-cluster tilting subcategory C of mod A. Since Py
is projective, and is always in an n-cluster tilting subcategory, this means there are no n-cluster tilting

subcategories for mod A. O
Let us show this condition in an example.

Example 3.1.17. Consider the following quiver Q:
1

3f>4<75

2

Now, let I = {(av), and consider the Auslander Reiten quiver of mod A = mod KQ/I, where projective
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modules are in blue and injective modules are in red.

2

/\/

:

/\/\

\/\/\/
\/\

Notice that in Q, the vertex 4 is a sink, and if we remove it, Q \ {4} would be a disconnected quiver.
Also, Py = 4 is a simple module, with dimension 1 as a vector space. Its injective hull is I, = %45 , and
therefore, its cosyzygy is
Q- ()= 2 &5

which is decomposable. So, mod A has no n-cluster tilting subcategories.

This motivates the study of Nakayama algebras as a source of examples of n-cluster tilting subcategories,
because there are no sinks or sources in their ordinary quivers. The following two theorems establish simple
and useful relations to determine when a Nakayama algebra quotiented by a power of its radical has an

n-cluster tilting subcategory.

Theorem 3.1.18. (Vas19) Let A = KA,,/J' be an acyclic Nakayama algebra. Then, A admits an n-cluster
tilting subcategory, if and only if, | = 2 and m = nk+1 with k > 0, orn is even and m = Gl+1+k(nl—1+2),
with k > 0.

For the case of cyclic Nakayama algebras, the following result shows when it is possible to obtain n-cluster

tilting subcategories.

Theorem 3.1.19. (DI20) Let A = KA,,/J" be a self-injective Nakayama algebra. Then A has an n-cluster
tilting subcategory if and only if I(n — 1) + 2 | 2m or l(n — 1) + 2 | tm, where t = gde(n + 1, 20 — 1).

Notice that for both theorems, the relations between m, [ and n are simple divisibility conditions. This is
due to the shape of the Auslander Reiten quiver of Nakayama algebras with homogeneous relations, and the
position of projectives and injetives on it. More details are on (Vas19).

Those conditions are checked in our previous examples. In Example 3.1.5, we have n = 2,m = 5,1 = 2 and

an acyclic Nakayama algebra. Then, the condition "l = 2 and m = nk + 1" is satisfied, because 5 = 22 + 1.
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In Example 3.1.10, we have a cyclic Nakayama algebra, [ =2, m = 6 and n € {2,3,6}. Then, 2(2—1)+2 |
26,2(3—1)+2|26, and 2(6 — 1) + 2 | 26, i.e., the condition holds for all cases.

3.2 n-Cluster Tilting Subcategories and n-Abelian Categories

In this section, we will present the close relation between n-cluster tilting categories and n-abelian cat-
egories. Two articles, (Kva22) and (EN22), prove that any n-abelian category is equivalent to an n-cluster
tilting subcategory of an abelian category. Those proofs are more technical and therefore will not be pre-
sented in this work.

The following lemmas will be necessary to prove that n-cluster tilting subcategories are n-abelian.

Lemma 3.2.1. (Jas16) Let C be an n-cluster tilting subcategory of mod A. Then, for all A € mod A, there

18 an exact sequence in mod A.

A @0 Xl [e%} o QAn—2 anl Qp—1
B1 Brn_2 Brn_1
Cy Cy Cn-1 Cp

satisfying the following:

0 Xn 0

(1) For all1 <k <n, X, €C.
(14) For all 1 <k <mn—1 the morphism vy : Cy, — X}, is a left C-approximation.
(#i1) For all 1 <k <n—1 the morphism By : X — Cikx1 is a cokernel of .
(iv) For all X € C, the induced sequence of abelian groups
0— Homp(Xp, X) — ... — Homp (X1, X) — Homp(A,X) — 0
15 exact.

Proof. Since C is functorially finite, there is a left C-approximation ag = v : A = C; — Xj. Also, g is a
monomorphism, because C is generating and cogenerating, see 3.1.4.

Since mod A is abelian, there is a cokernel Cy of v, and thus, we have an exact sequence
0—)A=Cl 7—1>X15—1>02—>O

Although C5 may not be in C, there is a left C-approximation 5. Following this construction, conditions
(4), (#) and (4i7) are satisfied.
Here, each ~; : C; — X; is a left-C approximation and thus, is a monomorphism, and each 3; : X; — C; 41

is a a cokernel and therefore, an epimorphism. Since
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is an exact sequence in mod A, and as «; = v;4+10;, we have that Kera; = {z | vi418i(z) = 0} = Ker §;
Im~y;, because the sequence is exact. Because (5;_1 is an epimorphism, I'm «;_1 = I'm~y;, and thus Ker «; =

Im «a;_1. Therefore, consider the exact sequence

0 A Gl X, a2 o X,

We will prove that for all X € C, the induced sequence of abelian groups

_OQap—1

0 —— Homp (X, X) =22 Homa (X1, X) =% Homa (A, X) —— 0

is exact.
First, let g € Ker(_oc«;) C Homp(X;4+1,X), that is ga; = 0 < gv;418; = 0. Since f; is a cokernel, thus

an epimorphism, it follows that gv;41 = 0.

\ﬁp‘rl

Cit1 Ciyo

Since B;+1 is a cokernel of ~;41, there is a unique morphism ¢’ : C;1o — X such that ¢’8;11 = g. Then,
as viy2 : Ciga = Xiqo is a left C-approximation and X € C, there is a morphism « : X;y2 — X such that
g' = aviyo. Therefore, g = ¢'Bit1 = ayiy2fBiv1 = aa;q1, meaning g € Im(_ o aqq).

It is simple to see that o au,—1 is injective: Let g € Homa(X,,, X) such that g o a,,—1 = 0. Then,
go fBnr—1 =0 and as ,_1 is an epimorphism, g = 0.

Next, we check that o« is surjective: let g € Homp (A, X). Since «p is a left C-approximation, there
is a morphism ¢’ : X; — X such that g = ¢’ o ayg.

Finally, we need to prove that C,, € C. In order to do that, we claim that for all X € C and for all
ke{2,...,n}, Exti (Cx,X)=0,forall 1 <i<k-—1.

We prove the claim by induction in k. For k = 2, we apply Homa(_, X) to0 AL X, 25

0 —— Homa(Ca, X) =2 Homa (X1, X) =% Homa(A, X) —— Eatl(Co, X) —— Extl(X;, X) =0
because X1,X € C. Since _ o g is also an epimorphism, Exth (Ca, X) = 0. Suppose now that the claim
holds for [ <k and 2 <k <n — 1. We apply Homa(_,X) to 0 — Cy, Ey Xy BN Cr41 — 0O:

oo —— Ext' 7Y (Cy, X) —— Extl (Cry1, X) — Ext)y (Xy, X)

0 0
Here, the first is equal to zero by hypothesis and the last because X, X € C. Then, Ext} (Cy11,X) = 0, for
all 2 <1 < k.

Also, applying Homa(_,X) to 0 — Cj, 2 Xy N Cry1 — 0, gives

0 —— Homa(Xp, X) =% Homp(Ch, X) —— Exth(Crar, X) —— Btk (Xp, X) = 0.
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Since oy is an epimorphism, it follows that Ext} (Cyi1, X) = 0.

In conclusion, for all X € C, Ext} (C,,X) =0, for all 1 <i < n — 1, meaning that C,, € C. O

Lemma 3.2.2. (Jas16) Let M € mod A and A be a subcategory of mod A, such that Ext} (A, M) =0 for all
0 <i<n-—1. Consider an eract sequence

@

Xo X, 2 X, 1 X, 3 N 0

in mod A such that X; € A, for all1 < j <mn. Then, for each k € {0,...,n — 1}, there is an isomorphism

between Ext’f\(N, M) and the homology of the induced complex
Homp (X, M) —— Homp(Xp—1,M) —— ... —— Homp (X1, M) —— Homu(Xo, M) (3.1)
at Homp (Xy—g, M).

Proof. Let C; := coker oj_1, where a1 : X;_1 — X;, 1 < j < n, notice C,, = coker a,,_1 = N. Since
the sequence is exact, ajoj—1 = 0, then, there is a unique i; : C; — X;41, with a; = 7; o p;, where
p; : X; = C} is the projection on the cokernel. We will prove the lemma by induction on k. For k = 0, we
have ExtQ (N, M) = Hom (N, M). And, H(Homa(X,, M)) = Ker(_oa,_1). Since the sequence

OQn—1

0 —— Homa (N, M) —=—" Hom (X, M) Homa(Xn_1, M)

is exact, we have Ker(_ oap,_1) =Im(_oaw,) ~ Homx(N,M).

Now, we claim that, for all k € {1,...,n—1}, Extk (C,,, M) ~ Exth " (Cp,_1, M) =~ - - - =~ Bt} (Cp_p11, M).
Indeed, for k = 1, we get Ext} (Cy, M) = Ext}(Cy,—141, M) = Ext}(C,, M). Now suppose the claim holds
for all 2 <1 < k. Then, we apply Homa(_, M) to the sequence

nk+l1
0—— Cpppr1 — 55X, o 25 Oy —— 0

where %,,_j4;—1 is a inclusion and p,,_j; is a projection. We get
o —— Bt N (X, M) —— Ext\ (O g1, M) —— Eath (Copyt, M) —— Exth (Xp_grr, M) (3.2)

By hypothesis, Ext?(A, M) = 0forall0 <i <n—1,and X; € Aforj € {1,...,n}. Then, Ext\ (X, x4, M) =
Exth (X, k11, M) = 0 because X,,_j4; € A. Meaning that Extf\_l(C’n_kH_l,M) ~ Bzt (Ch_ky1, M), as
claimed.

Our second claim is that Ext} (Cy,—k+1, M) is isomorphic to the homology of the complex at Homp (X,,—x, M).
We have the following diagram, obtained by putting together 3.1 and 3.2:

_O0n—k OQn—k—1

Homp (X, M)~

_OPn—k
OZn k

Homp(Cp—, M)

/ \
Ext} (Cp_y1, M)
\

Ext) (Xp_ps1, M) =0

Homp (Xp—g41, M Homp (Xpn—g—1,M)



Ker(_oap_k-1)

Then, H(Homp(Cr—r, M)) =
Im(_oap_g)
Also, Ext}y (Cp—kt1, M) = §Homa(Cyy—i, M), which gives that

Homp(Cr—p, M) _ Homp(Ch—y, M) Ker(_ 0 p—k—1)
Kerd  Im(_odp_k)  Im(_oau_g)

l;xtk((jn,k+17ﬂf)ti

Here, Im(_oip—k) ~ Im(_ o a,_k), because 0@ = Olp_ O Pp_k, SINCE Qp_f = lp_k O Pp—k, and
__ 0 pp_k is a monomorphism.

By uniting the two claims, we get that Exth (N, M) ~ Exti(Cp_ji1, M) ~ H(Homn(X,—k, M)), as
stated. O

Theorem 3.2.3. (Jas16) Let A be a finite dimensional algebra. If C C mod A is an n-cluster tilting

subcategory, then, C is an n-abelian category.

Proof. We will prove that an n-cluster tilting categories is n-abelian by showing all axioms from Definition
2.1.4.

To check Axiom (Ap), recall that mod A is an abelian category, and consequently, it is idempotent com-
plete. Let A € C C modA and e : A — A be an idempotent. Then, there is a module B € mod A, an
epimorphism r : A — B and a monomorphism s : B — A, such that e = sr and 15 = rs. Our aim is to show

that B € C. Since mod A is abelian, r has a kernel K and s has a cokernel C":

0 K A——B 0

0 B—— A C 0

As rs = 1p, s is a section and r is a retraction, which means that the sequences above split. In particular,

it means that A ~ B&® C. Since A € C and Emtﬁ is an additive functor,
0 = Exth (A,C) = Extk(B,C) @ Extk (C,0),

0= Exztk(C,A) = Exti (C,B) @ Exth(C,0).

Therefore, 0 = Extk (B,C) = Extk(C,B), and B € C, for 1 <k <n — 1.
To prove axiom (A;), we need to present an n-kernel and n-cokernel for all morphisms in C. Let f: A —
B € C. Since mod A is abelian, there is a cokernel p : B — C of f in mod A. We apply Lemma 3.2.1 and

obtain an n-cokernel (ag,aq,...,Q,—1):
B 20 X, o X L X,
C C L Ch

Dually, it is possible to obtain an n-kernel.

A f

Finally, we prove axiom (Asz): let av,, : X;, — X, 11 be an epimorphism in C and («p, . . ., @, —1) its n-kernel

obtained using axiom (A;). Then, we have the following sequence:

Qp—1

Xog—2 0 x; -2y X, 22 X, s Xy —— 0.
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We apply Lemma 3.2.2 to this sequence, and get that H(Homp (X, _x, M)) = Exth (X, 41, M) = 0, for all
MeCandforalll <k <n-—1. So,

0 —— Homp(Xpy1, M) —— Homp (X, M) —— ... —— Homp (X1, M) —— Homp (X9, M) —— 0

is exact, which guarantees that (ayp,...,«a,) is an n-exact sequence and that (aq,..., @, ) is an n-cokernel of

ap. The axiom (A3") is proved dually. O

With this, we can conclude that all of our previous examples were of n-abelian categories. With that
structure, we want to understand better the n-exact sequences of this subcategories. In order to do that, we

will study Higher Auslander Reiten Theory in the next chapter.
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Chapter 4

HIGHER AUSLANDER REITEN
THEORY AND EXAMPLES

In the classical case, Auslander Reiten theory is a fundamental tool for the study of representation theory
of Artin algebras. It was introduced by Maurice Auslander and Idun Reiten (ARS95), in the 1970s and has
since been developed by many mathematicians. The theory studies the representation theory of artinian
rings using techniques such as Auslander-Reiten sequences and Auslander-Reiten quivers.

The Higher Auslander Reiten theory was introduced by Iyama (Iya07), in the early 2000s and has since
been used to study categories that appear in representation theory, such as n-cluster tilting subcategories.

In this last chapter we present some known results about higher Auslander Reiten theory, some examples

and give a description to 2-Auslander Reiten sequences of 2-cluster tilting subcategories of Nakayama algebras.

4.1 Higher Auslander Reiten Theory

Higher Auslander Reiten theory is a generalization of the classical Auslander-Reiten theory, in the sense
that it studies n-almost split sequences in n-cluster tilting subcategories.

In this section, although not necessary in general, we will consider A a finite representation type algebra,
and C is an n-cluster tilting subcategory of mod A. We start with two interesting properties of n-exact

sequences.

Proposition 4.1.1. (Fed20) Let X be a sequence in C

[e75) a Qp—1 Qp

X : 0 Xo X1

Xn+1 —0
then, X is n-exact in C, if and only if, X is exact in mod A.

Proof. First, consider X an exact sequence in mod A. Then, for all M € C, we will prove that the sequence

0 —— Hompa(M,Xog) —— ... —— Hompa(M, Xp1+1) (4.1)
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is exact. Indeed, first, we need to prove that Kerajo = Imago . This follows from the exact sequence
0— Xo 2% X; 25 X,
that yields the exact sequence
0 —— Homp (M, Xo) 2= Homa (M, X1) —22= Homy (M, X)

Now, consider the following diagram

Xo 20 X, e X5 .
p1
C() Cl

where Cj = Ima; = Ker ajyq, for 0 < j <n, and a; = i;p;.

X: 0

From the exact sequence

O*)Clil%Xgai)Xg

we get the exact sequence
0 —— Homa(M,Cy) 2= Hom (M, X2) ~2°= Homy (M, X;),

And, therefore, Keraso =Imijo .
Then, for the exact sequence

0—>X0a—O>X1p—1>Cl—>O

we apply Homa (M, ), and get
0 —— Homp (M, Xo) —= Homa (M, X1) 2= Homy (M, Cy) — Eath (M, X,) =0,

because Xo, M € modC. Which means p; o _ is an epimorphism. So, for all f € Homu (M, C4), there is
g € Homp(M, X7), such that f = pig.
Now, a morphism u € Homp (M, Xs) isin Imiyo__ if and only if u = 410 f, with f € Homa (M, Cy), if and

only if u = i1p1g, g € Homa (M, X1). Sincei1p1 = a1, u € Imajo_, and it follows that Imiio  C Imajo_.

On the other side, since @ 0 = (i1 0 _)o(py o ), it follows that Imaj; o C Imi; o . Then,
Imajo =Imijo = Kerazo .

Recursively, we prove that Imajo = Imijo = Kerajiio_,forall je{0,...,n—1}, and 4.1 is an
exact sequence. This means that (g, ..., a,—1) is an n-kernel of a,,. And dually, since the sequence

0—— Homp(Xp41, M) —— ... —— Homp(Xo, M)

is exact, (aq,...,q,) is an n-cokernel of ag. Therefore, X is n-exact in C.
Now, consider X an n-exact sequence in C. We will prove that X is exact in mod A, that is, Ker a; =

Imaj_q, forall1 <j<n.
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Since X is n-exact, we already have that a;_j;0a; = 0 for all 1 < j < n, meaning that Ima;_1 C Ker a;.
Next, take M € C and an epimorphism u : M — Ker a;. This epimorphism exists because C is functorially

finite. Then, we have an exact sequence
vj @
M— X; —— X1

in mod A, where v; is the composition of w and the inclusion Kera; — X;. Then, Kera; = Imu = Imw;

and, because X is n-exact, the following is exact
Homa (M, X;_1) —2==— Homa (M, X;) —2"=— Hom(M, X;41).

Also, aj ov =0, because Imwv; = Ker «;, then there is a morphism w : M — X;_; such that v = a;;_1 o w.
In other words, Kera; = Imv; =Im(a;_1ow) C Ima;_;.
Finally, by definition of n-kernel and n-cokernel, we know that « is the kernel of a1 and «, is the cokernel

of a,_1. So, g is a monomorphism and «,, is an epimorphism. In conclusion, X is exact in  mod A. O

Lemma 4.1.2. Let X an n-exact sequence in C

g aq Op—2

Qo — n
Xpo1 —5 X, 25 Xy —— 0

0 Xo Xy

and denote K; = Ker ay, for 1 <j <n. Then, for all Y €C,
Eath (Y, Ky) ~ - - ~ Fat} (Y, K,,).
Proof. First, since Ker a; = I'maj_1, consider the following induced exact sequence

in—1 Qn—1

0 Kn—l Xn—l

K, 0.

Then, applying Homa (Y, ) to it, we get

00— Homa(Y, K1) — Homa(Y, X,,_1) — Homa (Y, K,,) — Ext} (Y, K1) j

[» Extl (Y, X,_1) —— Eatl (Y, K,) — Bt (Y, Kp_1) — Ext2 (Y, X,_1)
0 0
Then, Ext} (Y, K,) ~ Ext3 (Y, K,,_1). The result follows recursively. O

Proposition 4.1.3. (Fed20) Let X an n-exact sequence in C.

Qn—2

0 Xo—20y x; -2 Xpo1 424 X, =2 X —— 0.

Then, X induces exact sequences

0 — Home(Y,Xo) — ... — Home (Y, X,,) — Home(Y, Xp41) — ExtR (Y, Xo) — Ext} (Y, X1)

0— Home¢(Xp11,Y) — ... — Home(X3,Y) — Home(Xo,Y) — Exth (Xp4+1,Y) — Exth(X,,Y)

for any Y € C.
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Proof. We apply Homa(Y, ) to X:
0—— Homp (Y, Xo) —— ... —— Homp (Y, X,,) —— Homa (Y, Xp41). (4.2)

Since C is n-cluster tilting, E:Utf\(Y, Xp)=0,foralll<j<n-—-landall0<k<mn+1.
Let K = Ker ay, and consider the exact sequence 0 - K — X,, — X,,11 — 0. We apply Homu (Y, )
to it:

0—— Homp(Y,K) —— Homp (Y, X,,) —— Homp (Y, X, 11) —— Extj (Y, K) —— 0 (4.3)

Analogously, we apply Homu (Y, ) to the sequence 0 — Xy — X; — C — 0, where C = Coker ap, and get

0 — Homa (Y, Xo) — Homa(Y, X1) — Homp(Y,C) — ... j
(4.4)

[» Exty (Y, C) — Bxt} (Y, Xo) — Ext} (Y, X1).

We claim Ezty '(Y,C) ~ Ezti(Y,K). Indeed, by Lemma 4.1.2, we know that Ext} (Y, Ky) =~

Exti(Y,K), where K5 = Keras. Then, we need to prove that Ko ~ C, which is very simple consider-
ing the isomorphism theorem:

X X
C ~ !~ ! ~ Ima; ~ Keray = Ks.
Imag Keraoy

By connecting 4.2, a part of 4.3 and the second part of 4.4 using the isomorphism, we get

. — Homp (Y, X)) — Homa (Y, X11) ExtR (Y, Xo) — ExtR (Y, X1)

\ /

Exth (Y, C)
Dually, we construct the second exact sequence. O
Now, we establish the higher analogue of Auslander-Reiten sequences. This notion was first introduced
by Iyama (Iya0T).
Definition 4.1.4. An n-exact sequence

[e7)) (o)

aq Qp—1

X: 0 Xo X1 X, Xn+1 —0

in C is called n-Auslander Reiten sequence, or n-almost split sequence, if ag is left almost split in C, a,

is right almost split in C, and oy, € rade fork € {1,...,n—1}.

Remark 4.1.5. We will prove that when X as above is an n-Auslander Reiten sequence, then Xy and X,,41
are indecomposable. Indeed, assume towards a contradiction Xog = X' ® X7 and consider p' : Xog — X'
and p” : Xo — X7 be the canonical projections. Since Xy is decomposable, p' and p” are not sections,
otherwise they would be isomorphisms. Then, as oy is left almost split, there are morphisms u' : X1 — X'
and v’ : X1 — X7, such that v'ag = p' and v’ ag = p”. But then,

/

u = :X1—>XO

7
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satisfies uag = 1x,, which is a contradiction, as ag is not a section.

Similarly, we prove that X, 11 is indecomposable.

Thus, Endy(Xo) and Endp(Xn41) are local. Now, for any 8 : X1 — Xo, Bag € Endp(Xp). As
Enda(Xo) is local, By or 1 — Bayg is invertible. Since ag is not a section, Boyg is not invertible, so 1 — Bayg

is invertible. By definition of radical, ag € rade. Dually, o, € rade.
The next result helps us to identify these sequences, by giving alternative characterizations.

Lemma 4.1.6. (Fed20) For an n-exact sequence in C

QAn—1

X: 0 Xo 2 x; 2 X, s X1 —— 0,

the following are equivalent:
(a) X is an n-Auslander Reiten sequence in C
(b) ag,a,...,an_1 € rade and o, is right almost split in C
(¢c) at,...,Qn_1,Q, € radc and o is left almost split in C.

Proof. By definition of n-Auslander Reiten sequence and by Remark 4.1.5, we have (a) = (b) and (a) = (¢).

Suppose (b) holds. To conclude that X is an n-Auslander Reiten sequence, we need to prove that aq is
left almost split.

Since «, is right almost split, «,, is not a split epimorphism, which means, by Corollary 2.2.2, that «q is
not a split monomorphism.

Let u : Xg — W be a morphism in C, such that u # v o ag, for all v : X; — W in C. We will prove that
u is a split monomorphism. Indeed, consider the following diagram, obtained by the n-pushout of X along u

and completed as in Theorem 2.3.7:

0 Xo—0, X 2 2 X, -2 X —— 0
| o
0 A Y /A I e p—

The morphism gq is not a split monomorphism, because if it was, there would exist a morphism v : X; — W
such that v = (go) 'u; and then, u = v o ag. So, g, is not a split epimorphism. Since a, is right almost
split, there is a morphism h,, : W,, — X,, such that g, = a,h,. By Lemma 2.2.4, h,, can be extended to a

morphism of n-exact sequences:

0 Xo 2 X, 2 L X, 2 X —— 0
o w| |

0 w—Lsw L S w, T X —— 0
[ b

0 Xo 20 X, 20y X, 2 X —— 0

Note that a,hpu, = . Since o, is right minimal, it follows that h,u,, is an isomorphism. Then, by Lemma

2.2.6, hou is an isomorphism, and consequently, u is a split monomorphism.
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Hence, «q is left almost split, and we proved that (b) = (a). Dually, it is possible to prove that (¢) =
(a). O

The next theorem guarantees the existence of n-Auslander Reiten sequences in n-cluster tilting categories.
Theorem 4.1.7. (Iya07) Let C be an n-cluster tilting subcategory of C. Then,

(i) For any mnon-projective X,4+1 € indC, there exists an mn-Auslander Reiten sequence

0—Xo— X1 —...— X, = X411 —0inC.

(ii) For any non-injective X € indC, there ezxists an mn-Auslander Reiten sequence

0—Xo— X1 —...— X, = Xpp1 — 0 C.

(iti) Any n-Auslander Reiten sequence 0 — Xog — X1 — ... — X,, — X,, 11 — 0 satisfies Xo ~ 7, Xpn41

and Xp41 >~ 7, Xo.
Analogously to the n =1 case, there is an n-Auslander Reiten duality.

Theorem 4.1.8 ((Iya07), (Fed20)). For all A, B € C there are functorial isomorphisms
Ext} (A, B) ~ DHom, (1, ' N, M) ~ DHoma (N, 7, M).
In the next example, we will use these isomorphisms in the construction of n-cluster tilting subcategories.

Example 4.1.9. [t is possible to prove that the group algebra K Ss3, where Ss is the symmetric group and
char(K) = 3 is isomorphic to the path algebra of the quiver @ (shown bellow) module the ideal generated by

{afa, Baf}.

1 2
~ —
B
This isomorphism is given by
o: KQ/I — KS;
€1 — (—1—y9)
€ — (—1+s)

@ = (1+s—1—sr?)

Ié; = (1+s—12—sr)

where s = ( 1 2 ) and r = ( 1 2 3 ) € S3. Also, its Auslander-Reiten quiver is given by

A NN
YAWAW,

2

2 1 2
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where the purple modules are projective and injective and the yellow lines show the gluing of the quiver.
This category has no 2-cluster tilting subcategories, and we will prove it by looking at Exth (A, B) and the

formula from Theorem 4.1.8. First notice that

2 2 1 1
Extk( % ,M) = Ext) (M, % ):ExtlA< % ,M) = Ext}, (M, % ) =0

2 1
for all M € mod A, since 1 and 2 are injective and projective. Now, we look at the other modules in the

category:

Exty(1,1) ~ DHomp(1,71) ~ DHom(1,2) =0

Since there are no nonzero morphisms 1 — 2. Similarly,

Ext}(2,2) ~ DHoma(2,72) ~ DHom(2,1) = 0
Extk(%, %)zDHomA(%,T%>2DH0mA<%, %):0
E:rt}\(%, %)zDHomA<%,T%>2DHomA(%, %):0

On the other hand,
Ext}(1,2) ~ DHoma(2,71) ~ DHomx(2,2) # 0

since 2 % 2 does not factor through an injective module and is not zero. In the same way,

Ext}(2,1) ~ DHomy(1,1) # 0

And

And following this procedure,

Eath (5.1)#0  Euth( 5.2) =0
Bty (T .1)=0 Bty (] ,2)#0
So, we can conclude that

9 2 1 1 2 1
+21 = add 1@1@%@% 112 = add 1@2@%@%
1 2 1 9 2 1
129 — qdd 2@2@%@% 2+2 = qdd 2@1@%@%
1 1 2 1 1 Lo 1 2 1
t2 5 =add dle 1 @ 2 = add ®2¢ 1 ¢ 2
2 2 9 1 2 2 9 1
2 1 L 2 1
J‘22:a,dd 2@2@1@2 2 2:add 2@1@1@2
1 1 D) 1 1 1 D) 1
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In other words, there is no subcategory C, such that +2C = C*+2. Therefore, there are no 2-cluster tilting
subcategories.

But, mod A has four different 3-cluster tilting subcategories. To find them, we will use Ext3 (A, B):

Ext3(1,1) ~ DHomp (1,721) ~ DHomy (1,7Q1) ~ DHomy (1,7’ % ) ~ DHomp (1, % ) =0

):DHomA( : ,Tgl):DHomA( 3 %)7&0
2
1

) ~ DHomy (1,1) #0

2 1
So, +31 =112 = add (1@ % @ %), which means,
2 1
Ci=add| 1 © 2 @ 1
2 1

is a 3-cluster tilting subcategory of mod A. Doing the same for the other modules, we find the four different

3-cluster tilting subcategories:

2 1 2 1
Ci=add| 1 ® 2 & 1 CP=add| 1 & 2 & 2

2 1 2 1

2 1 1 2 1 9
C3 = add % &) % ® 9 C3 = add % &) % ® ]

It also does not have any other n-cluster tilting subcategory, because for all n,

12 1 2\ 1
Lradd %@% = add %@% =mod KQ/I # add %@

NNl )

)

and for M € {1,27 % , % }, and g > 3, Ext?(M, M) # 0, because

Ext3(1,1) ~ DHoma(1,731) ~ DHomx(1,1) # 0
And for all other M, the same happens. That means M is not in a n-cluster tilting subcategory, with n > 4.

To study n-Auslander Reiten sequences, it is necessary to understand the morphisms that are in the

radical of an n-cluster tilting category. For that, we present two results that characterize them.

Theorem 4.1.10. (DN22) Let C be an n-cluster tilting subcategory of modA, with A a finite-representation

algebra. Then, radz® = 0.

Notice that, since C is a full subcategory of mod A, for any two modules A, B € C, we have radc(A, B) =
rady (4, B).

Theorem 4.1.11. (DN22) Let C be an n-cluster tilting subcategory of modA and f € rade(A,B) be a
nonzero morphism with A and B indecomposable modules in C. Then f is a sum of compositions of irreducible

morphisms in C between indecomposable A-modules.
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With this idea in mind, we define a higher analogue of the Auslander Reiten quiver.

Definition 4.1.12. We define the n-Auslander Reiten quiver I'(C) of an n-cluster tilting subcategory C
of mod A as follows:

e The vertices are the indecomposable and non-isomorphic A-modules that are in C.

e For M and N, wvertices in I'(C), there is an arrow M — N, if there is an irreducible morphism

f:M— N inC.

Notice that if there is an arrow M — N in I'(C), then either there is an arrow from M to N in I'(A), or
there is an irreducible morphism f: M — N in C, such that f # 0 and f = gh, withh: M — L, g: L — N,
and L ¢ C.

Similarly to the classical Auslander Reiten quiver, we will place dotted lines to represent 7,, and 7,, .

Example 4.1.13. Recall Example 3.1.10, and the Auslander Reiten quiver of mod KA(;/JQ :

® 305 0le3es5):

Notice the vertices are the indecomposable modules of C5. While some arrows are the same as in I'(A), others

are new, like

=N
[N ROV



This arrow represents an irreducible morphism f in C3, since f does not factor through any other morphism

of C3. But in mod A, f was not irreducible, as it was a composition

Also, the dotted lines represent o and 74 , as 72(5) = 3, 12(1) =5 and 72(3) = 1.

The 3-Auslander Reiten quiver of C = add( é é % &) g &) él & Z &) g a1 @4) s given by

In the special case of Nakayama algebras, and inspired by the study of 2-cluster tilting subcategories of
KA,,/J" and KAm/Jl7 we give the following result.

Theorem 4.1.14. Let A = KA,,/J!, or A = KAm/Jl such that there is a 2-cluster tilting subcategory C of

mod A. Then,
f

0 M x X, PN

1s a 2-Auslander Reiten sequence of C, if and only if
(1) M ~7N and N ~ 7, M;

(14) M is not injective and N is not projective;
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(#i7) The components of f: M — Xy are all the irreducible morphisms of C starting at M.
(iv) The components of h: Xo — N are all the irreducible morphisms of C ending at N.
(v) The components of g : X1 — X are sums of compositions of irreducible morphisms of C.

Proof. Suppose
f

0 M X, -2 x, N 0

is a 2-Auslander Reiten sequence. Then, by Theorem 4.1.7, (i), holds. If M was injective, then M ~ 5N =
T7QN would imply 0 = 7~ M ~ QN, and then, N would be projective and 7QN = 70 = 0. That is a
contradiction, since M ~ 75N. So, M is not injective. Similarly, N is not projective, which proves (ii).
From Theorem 4.1.11, since g € radc, we know the components of g are sums of compositions of irreducible
morphisms in C, so, (v) holds.
Finally, we need to prove that the components of the left almost split morphism f are all the irreducible
morphisms of C that start at M.
First, suppose
f/
f= M —=>X1=Y18Y,,
f??
where f’ was not irreducible. That means f’ was a section or a retraction, or f’ = fi fo with f3 not a section

and f1 not a retraction.

If f is a section, then there is a morphism u : Y7 — M such that uf’ = 1,;, and then,

o)1)=

which means f is a section, a contradiction. If f is a retraction, then the sequence
0= Kerf' M5y -0

splits, and then M ~ Y7 & Ker f’. Since M is indecomposable, Ker f' =0, and f’ would be a isomorphism.
That would contradict the fact that f is left minimal almost split. Finally, if f’ = fi fo with f5 not a section,
we have

f! Ji 0 I2

7’ 0 1 7

Since fs is not a section, by Lemma 1.3.9, Im (_ o f2) C rad End M, and then, by the same Lemma, ( ]]:727 )

is not a section. As f is irreducible, ( J81 (1) ) is a retraction, thus, fi is a retraction. So, f’ is irreducible.

Suppose there is a morphism ¢ : M — U in C that is irreducible. Since ¢ is not a section and f is left
almost split, there is a morphism u : X1 — U, with ¢ = uf. As ¢ is irreducible and f is not a retraction, it
follows that u is a section. Therefore, ¢ is isomorphic to a component of f.

That proves (iii). Dually, (iv) is proven.
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For the reverse implication, by Definition 4.1.4, we need to prove that f is left almost split, A is right
almost split and ¢ € rade.

From Proposition 1.3.6, we get that a composition of p irreducible morphisms is in radl C rade. As g is
a composition of irreducible modules, g € radc.

Consider now, a morphism u : M — U in C that is not a section, where U is indecomposable. Then,
since M and U are indecomposable, v is irreducible if and only if u € rade(M,U) \ rad3(M,U). Also,
rade(M,U) = Home(M,U), which means, u € rade(M,U).

If w ¢ rad3(M,U), u is irreducible and thus, is a component of f. Then, u = fu/, where v/ : X; =
UdX| —Uissuchthatu' =(1 0).

If u € mdg(M7 U), there are indecomposable modules Vi,...,V, € C and morphisms v; : M — Vj,
w; : V; — U, such that u = 25:1 w;v;, vj € rade(M,V;), and w; is a sum of composition of irreducible
morphisms. Also, by Proposition 1.3.4, each v; is a sum v; = «o; + (5, with §; € rad, and o = szl dj,
where each d;, = d;k e dj; " is a composition of irreducible morphisms. But, from Theorem 4.1.10, rad®® = 0.
So, v; = a; is a sum of compositions of irreducible morphisms. Also, for each j, and each %, the morphism
dji" is a irreducible morphism that starts at M, and therefore, is a component of f. Since u = 22:1 wjvj,
it follows that there is a morphism v’ : X; — U such that u = u'f.

This concludes that f is left almost split. Dually, we prove that h is right almost split. O

4.2 Examples

In this section, we will present some examples that illustrate many of the definitions and results approached
during this work, such as the construction of n-cluster tilting subcategories, n-Auslander Reiten sequences,
n-pushouts, n-Auslander Reiten quivers and 2-Auslander Reiten sequences of some Nakayama algebras.

To start, we conclude this example that was recurrent throughout the text.

Example 4.2.1. Concluding Example 3.1.15, we highlight the 2-Auslander Reiten sequences of Co C mod K A7/ J>.
From 4.1.14, we can see that the first morphism of each of them is the original irreducible morphism from
the module category. The last morphism is given in the same way. The middle morphism is a connection

morphism given by composing irreducible morphisms.

0—1— 2 — 3 —3 =0,
1 2
0—3— § — Z —5—=0,
0—5— g — (75 —7—=0.

To properly prove these sequences are 2-Auslander Reiten sequences, it is necessary to consider Definition
4.1.4. In other words, the first morphism needs to be left almost split in Cs, the last morphism needs to be
right almost split in Co and the middle morphism needs to be in the radical of Cs.

We will analyse only the first sequence, as the others are analogues.
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e The morphism 1 — % is left almost split in Co because it already is so in mod KAz/J?. Moreover,
it is mot a split monomorphism and for all M € Ca, every morphism « : 1 — M which is not a split
monomorphism factors through 1 — % , which is visible from the quiver, as this is the only irreducible

morphism starting at 1.

e In the same way, % — 3 s right almost split in Cy, because it is not a split epimorphism and for all

M € Cs, every morphism B : M — 3 that is not a split epimorphism factors through g’ — 3.

e Finally, the morphism % — g is in the radical of Co. To prove that,we remember that (Proposition
1.3.6) in mod KA7/J?, all irreducible morphisms are in rad (mod KA7/J?) \ rad® (mod KAz/J?),
meaning that a composite of n irreducible morphisms is in rad” (mod KA7/J2) C rad (mod KA7/J2).

Moreover, as stated in Proposition 1.3.3, since % — g’ is not a retraction or a section and % and

g are indecomposable modules, we have that % — 3 € rad (Cy).

The next example shows the use of the n-Auslander Reiten quiver to visualize the 2-Auslander Reiten
sequences of a subcategory of a Nakayama algebra. In this case, the morphisms may have more than one

component.

Example 4.2.2. Given the algebra KA1, quotiented by the 4™ power of its radical, we get the following

Auslander-Reiten quiver, where the blue are the projective modules, the red are the injective modules and the

/ \#4/‘ \5/ \6/ \7/ \8/ \9/ \10/8 \11
/ YAV \/ \YAY \/ \/ N7/ \
7/ WAV, \/ \/ \/ /NSNS .

The category Co generated by all the bozed modules, their sums and summands is a 2-cluster-tilting subcategory.

purple are both projective and injective.

(G283 arEoNRoe)
—_

It is obtained in the same way as the one presented before and it allows us to better understand 2-Auslander
Reiten sequences for Nakayama algebras, as shown in Proposition 4.1.14. In particular, Co can be seen by
its 2-Auslander Reiten quiver, where the vertices are the indecomposable nonisomorphic modules, the arrows

are the irreducible morphisms of Co and the dashed lines are 5 and T, :
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W= T
[SrEN o olNe]

— Do W
L = Ot

— Do

17

These are all the 2-Auslander Reiten sequences for Co:

> 4 8
0—=1—= 1 = 3 = 4 =0,

\L o
= Ot \L
LI =~ Ot
1
1
W T
&
=~ Ot
1

o
{
ot
{

SRR IO NS Fo RN |

10

9
0— 8 — g — %(1) — 11 —=0.

7

of irreducible morphisms, resulting that it lies in the category’s radical.

10
9
\
11
19()
N\
11

S 11

It is possible to see that the first and the last morphisms of each sequence are the sum of the irreducible

morphisms of Cy that appear starting or ending at the modules. Also, the middle morphism is a composition

In this example, it is possible to construct a 2-pushout diagram, like Theorem 2.53.7. To start, consider
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5
And let fy be the morphism él — i .

We will construct a 2-pushout of {ag, a1} along fo. By Definition 2.3.1, we need a 2-cokernel in the

mapping cone.

First, we look at the morphism

6
In mod A, its cokernel would be Z , but since this module is not in C, we take its left C-approximation:
7 7
6 6 6
5 — 5 - S0, X = &, this way, Yo is a weak cokernel of y_1.
4 1
Now, we look at ~y:
5 6 9 7
i —=—jei—"—>7eq
3 6 4
9 9
Its cokernel is 7 & ? , which is in C. So, Y = 7@ 573 . Since v1 is the cokernel of vy and 7 is a weak
6 6
cokernel of y_1 it follows that (yo,71) s a 2-cokernel of y_1:
5 6 9 7 9
él V-1 2@2 Yo g@g 7 7@?-
3 6 4 6
Then, this is a 2-pushout diagram:
6 9
5
b § e f e
3 3 6
‘/fo flj/ lf‘z
7 9
5 6 8
0 4 Bo b B1 [ 7
4 6

Finally, acording to Theorem 2.5.7, it is possible to complete the bottom row, such that f3 is the identity and

the bottom row is 2-exact.

28 a2

AN 00O

— 0

J
2]

B2

%Cﬂ% QO Ot
o
=
U WUt
»

—
<~
S
o0 O —/—= ~J0©

SAJ00©

The following examples explore n-cluster tilting categories in cyclic Nakayama algebras.
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Example 4.2.3. Considering Ay the following quiver

And A = KA, /J?, we get T(A) as

2
1

7N
1 2
AN

1
2

The interesting thing about the n-cluster tilting subcategories of mod A is that they have To-periodic mod-
ules. By Ta-periodic module, we mean that there exists a module M, which has M = 1o(M). We see this

looking at the 2-cluster tilting subcategories and the 2-Auslander Reiten sequences:

Cs = add (1 &) % &) % ), has the 2-exact sequence:

0—1— % — % —1—=0

And C3 = add (2 &) % &) % ), has the 2-ezxact sequence

0—2— % — % —2—=0

Notice that since A is a Nakayama algebra, the 2-exact sequences are in the form of Theorem 4.1.14.

Example 4.2.4. Let A = KA6/J4 and consider its Auslander Reiten quiver:
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The subcategory

Cy = add ®

= otoy =
TN
57

18 a 2-cluster tilting subcategory. Here, we show its 2-Auslander Reiten quiver:

And all of its 2-Auslander Reiten sequences:

3 0 5
4
0—-1— 2 — 3 P3— 4 =0
1 9 3
5 : 1
0—)3—>4—>5€B5%6%0
3 4 5
1 5 3
0—>5—>6—>1@1—>2—>0
5 6 1
3 3 5
0= 2 - 5 ®3—> 4 =550
1 1
5 0 1
0%4%4@5%6%1%0
3 3 5
1 i 3
0—>6—>6@1—>2—>3—>0
5 5 1

This is not the unique 2-cluster tilting subcategory of mod A. In fact, mod A has 14 different 2-cluster tilting

subcategories and 6 different 5-cluster tilting subcategories.
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Example 4.2.5. Although the following quiver is type As, it sets apart from the ezamples of other Nakayama

algebras because of its quotient. In this example, the admissible ideal is not a power of the radical.

1

72— 33

Let A = K/I?,/I, where I = (cab,bc). This is its Auslander Reiten quiver, where blue modules are projective,

red modules are injective, purple modules are injective and projective and the yellow lines show the gluing of

— o

the quiver.
1
2
JUN /TN
2 1 3
3 / 2 / 1
3 2 1 3
We will apply Definition 3.1.3 to find all possible n-cluster tilting subcategories. From Remark 3.1.4, we know
1 3
that add M := add Z{’ P g P % P g ) C C. Now, looking at the definition, we find
L20dd M = add (32 @ M)
add M** = add (1638 5 & M)

As*2add M # add M*2 # add M, we need to include more modules in C. The obvious candidate is 3, because

3ect2add M Nadd M*2. Let N :=3@® M. Then,
L20dd N = add (N)

add N*2 = add (N)

Which shows us that C = add N is a 2-cluster tilting subcategory. In fact, we also have that

(2 . 3

To 3 =3 To (3) =1
3 2

T2 ( 1 ) = T2(3) = 3

which determines the bijection between isoclasses of indecomposable nonprojectives and indecomposable non-

injectives. This is the 2-Auslander Reiten quiver of C:

With that, the 2-Auslander Reiten sequences of C are
9 3
0—=3—= 3 — % —
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2 L 3
0— - 2 = —+3—=0
3 3 1

Finally, one might ask if there is another n, for which there exists an n-cluster tilting subcategory. The

1 3
answer is affirmative and found within some calculations. Again, M = :f &) :23 &) % &) :23 .

L3add M = add (3® 2@ M)

add MY+ = add (10 § @ M)

As *2add M # add M~*2 and “3add M N add M+ = add M, add M is not a 3-cluster tilting subcategory and

there are no candidates to be included. But,
tiadd M = add M,

add M** = add M.

Which means that C' = add M is a 4-cluster tilting subcategory.

2 3
3 1
3\ _ 2 - (2\ _ 3 . . ;.
Also, T4 ( 1 ) = 3 andTy ( 3 ) = ] - So, the unique 4-Auslander Reiten sequence of C' is

—

—>i’—>0.

jan)

1

1
LN —

1

1

1
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