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Algoritmos meta-heurísticos são usados para obter boas soluções em tempo factível

para vários problems de busca NP-difícil. Entretanto, o desempenho dos algoritmos depende

fortemente das características do problema, o que significa que não há um único método capaz

de obter as melhores soluções em todos os cenários. Portanto, estudar formas de realizar

seleção automática de algoritmo para problemas de otimização é um crescente tópico de

pesquisa nos últimos anos. Esse tipo de tarefa pode ser abordado através de conceitos de meta-

aprendizagem, oriundos da comunidade de aprendizagem de máquina, cujo objetivo é mapear

as características das instâncias do problema ao desempenho de um conjunto de algoritmos.

Um aspecto fundamental de meta-aprendizagem é a caracterização das instâncias, o que é feito

pelas meta-características e que, por sua vez, devem ser propriedades informativas que afetam o

desempenho dos algoritmos. Algumas pesquisas propõem o uso de medidas baseadas em Análise

de Superfície de Aptidão (ASA) para representar as instâncias. Esse tipo de métrica caracteriza

as formas das superfícies geradas por um operador heurístico, e são tradicionalmente usadas para

relacionar a dificuldade que um determinado problema oferece à uma meta-heurística. Neste

trabalho, foi conduzida de forma progressiva uma série de estudos relacionados à seleção de

algoritmos com meta-aprendizagem e medidas de ASA para o Problema Quadrático de Alocação

(PQA). O PQA é um clássico problema de busca NP-difícil e é conhecido por ser um dos mais

desafiadores para algoritmos de otimização. As principais contribuições deste trabalho são os

experimentos de meta-aprendizagem realizados usando medidas de ASA conhecidas na literatura

e alguns dos algoritmos meta-heurísticos do estado-da-arte. Diversos aspectos da abordagem são

evidenciadas ao longo dos estudos, como desempenho de classificação, esforço de aplicação e

consumo de tempo.

Palavras-chave: Seleção de Algoritmo. Meta-aprendizagem. Otimização Combinatória.

Análise de Superfície de Aptidão.



Meta-heuristic algorithms have been used to obtain good solutions in feasible time for

many NP-hard search problems. However, the performance of the algorithms heavily depends on

the features of the problem, meaning that it does not exist a single method able to achieve the best

solutions in all scenarios. Therefore, studying ways to perform automatic algorithm selection

for optimization problems is an increasing research topic in the past recent years. This type of

task can be addressed by using meta-learning concepts, from the machine learning community,

which aims at mapping the characteristics of problem instances to the performance of a set of

algorithms. A key aspect of meta-learning is the characterization of the instances, which is done

by the meta-features that, in turn, must be informative properties that affect the performance of

the algorithms. Some researches have proposed the use of features based on Fitness Landscape

Analysis (FLA) to characterize the instances. This type of measures characterizes the landscape

shapes generated by a heuristic operator, and are traditionally used to relate the difficulty in

which a problem imposes to a meta-heuristic. In this work, a series of studies were progressively

conducted regarding algorithm selection with meta-learning and FLA features for the Quadratic

Assignment Problem (QAP). The QAP is a classical NP-hard search problem that is known for

being one of the most challenging for optimization algorithms. The main contributions of this

work are the meta-learning experiments performed using well known sets of FLA measures from

the literature and some of the state-of-the-art meta-heuristic algorithms. Several aspects of the

approach are highlighted along the studies, such as the performance of classification, application

effort and time consumption.

Keywords: Algorithm Selection. Meta-learning. Combinatorial Optimization. Fitness Land-

scape Analysis.
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1 Introduction

Optimization problems consist on the search for minimizing or maximizing one or more functions

through the attribution of a set of variable, which could also be subjected to some constraints

(Talbi, 2009). The problem can be classified into two major categories according the nature of

the variables, they being the continuous and discrete types. Combinatorial optimization problem

are discrete problems with a finite search space and have a great practical importance, making

them the object of study of several works (Blum e Roli, 2003).

The Quadratic Assignment Problem (QAP) is one of the most challenging combinatorial

optimization problems and was first proposed as a mathematical model in 1957 (Koopmans e

Beckmann, 1957). It consists on assigning a set of facilities into a set of locations in a way to

obtain the minimal possible flow between the facilities and the minimal distance between the

locations. The QAP is a widely studied problem, not just because its difficulty, but also because

several real world problems can be modeled as QAP, such as the typewriter keyboard design, the

location of the hospital departments, the backboard wiring, among others (Burkard et al., 1998a).

Because the QAP is an NP-hard problem (Sahni e Gonzalez, 1976), the use of exact

methods is unfeasible for instances with large sizes. Therefore, practitioners have used meta-

heuristics approaches to obtain good solutions in a reasonable computational time. Meta-heuristics

are generic methodologies that act as guiding strategies for heuristic search operators (Talbi,

2009). Several meta-heuristics have been proposed, each one with distinct properties, such the

ones based on single-solution perturbation, like the Tabu Search (Glover, 1989), the population

evolutionary approaches, like the Genetic Algorithm (Holland, 1975), and constructive methods,

such the Ant Colony Optimization (Dorigo e Caro, 1999).

However, although the proposed meta-heuristics have achieved satisfying results, they

have different biases. Hence, there is not a single algorithm able to outperform the others in all

cases, according to the No Free Lunch Theorem (Wolpert e Macready, 1997), meaning that some

algorithms are preferable to others on specific problems (Schumacher et al., 2001; Langdon e

Poli, 2007; Auger e Teytaud, 2010).

Because of that, there has been an increasing interest in studying ways to automatically

choose the most suitable meta-heuristic for a particular problem instance. But, selecting an

appropriate algorithm for a given problem is a difficult task (Tang et al., 2014) that requires

expert knowledge on search algorithms (Blum et al., 2011). In the machine learning community,

the task of automated algorithm selection has been tackled by meta-learning. Meta-learning aims

at understanding the relationship between the problem characteristics and the performances of

the solving algorithms (Smith-Miles, 2008), thus allowing the selection of the most promising

algorithm using an inductive learning process. Although the term was originally used for

applications on classification and data mining problems, the concept has been extended to other

application domains (Smith-Miles, 2008) such as regression, time-series forecasting, sorting,

constraint satisfaction, optimization and recommender systems (Cunha et al., 2018).

The success of a meta-learning approach relies mostly on the quality of the characteristics

used to represent the instances, namely the meta-features. Some of them can be properties of
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the instance definition itself, such as matrix and graph properties. Additionally, it has been

demonstrated that measures based on Fitness Landscape Analysis (FLA) can be used for this

goal (Pitzer et al., 2013). FLA is a technique that aims at gathering more knowledge about the

internal structure of a problem. This is done by analysing the shape of the landscape formed by a

set of sampled solutions, given their costs and neighborhoods (Pitzer et al., 2011).

This work is compound of several studies that were conducted on automatic algorithm

selection with meta-label and FLA features for the Quadratic Assignment Problem. These studies

were performed in a progressive way, meaning that each next in order improves some aspect of

the previous. Wherefore, this research culminated on the production of three scientific papers,

and the experiments and results of each of them are presented here in full in their respective

chapter.

The first paper, titled A Meta-Learning Algorithm Selection Approach for the Quadratic

Assignment Problem, is presented in Chapter 5. The meta-learning process was performed using

all 135 instances from the QAPLIB benchmark, with 14 meta-features, being 7 based on matrices

and 7 based on FLA, and considering three state-of-the-art meta-heuristics. A Random Forest

was used as the prediction model.

The experiments were focused on improving not only the overall accuracy, but also

the prediction performance on individual meta-labels. The best results were achieved after

performing exhaustive feature selection and by employing a cascade classification scheme. A

brief discussion about the role of the meta-features on prediction is also presented. Albeit

the promising results, the additional work that was required for achieving good classification

performance is undesirable.

Besides, because more than one algorithm can have the same performance for a given

instance, it is reasonable to handle this task as a multi-label learning problem. This is done

in the next paper named Selecting Algorithms for the Quadratic Assignment Problem with a

Multi-label Meta-learning Approach (Chapter 6). Two techniques for dealing with multi-label

datasets are evaluated and, in addition to having high prediction accuracies without much effort,

the results point out that the meta-learning approach is statistically better than running only the

most occurrent meta-heuristic on all problems.

At last, Chapter 7 shows the third paper with the title Low Cost Fitness Landscape

Features for Meta-Learning Algorithm Selection: a Study on the Quadratic Assignment Problem.

The main aspect of this study was to evaluate an additional set of recently proposed FLA measures,

by also highlighting the required computational time for their extraction. Moreover, 17 new and

hard instances were added to the dataset, and the worst algorithm from the previous studies was

replaced by a novel evolutionary algorithm in the algorithm pool.

The results demonstrated that it is possible to obtain good classification performances

by using metrics extracted without the need of an expensive sampling methodology, which

is a recurring problem of meta-learning using FLA. Nevertheless, even when removing the

problem specific meta-features, these FLA measures are representative enough to discriminate

the instances with a satisfactory accuracy.
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2 Related Works

One of the first research on Algorithm Selection Problem (ASP) was proposed by Rice (Rice,

1976) which focus on selecting an algorithm from a portfolio that is likely to perform best based

on measurable features of the problems instances. The understanding of problem instances and

algorithm performance is a task that can be tackle with meta-learning approach (ML). The ML

has been used effectively in algorithm portfolio to predict the algorithm that likely performs best

for unseen problems (Smith-Miles, 2008).

A pioneer work regarding automated algorithm selection for QAP has been done in

Smith-Miles (2008), in which three approaches were evaluated for this task. First, a Multi Layer

Perceptron was trained to predict the percentage deviation from the known optimal solutions, and

then choose the algorithm with the least distance. Next, a Probabilistic Neural Network was used

to select the best performing algorithm for each instance as a single label classification problem.

Finally, the author used a Self Organizing Map to cluster the instances based on their features,

and then select the algorithm for a new instance based on the assigned cluster.

More recently, the authors in Beham et al. (2017) investigated algorithm selection for

QAP using a K-Nearest Neighbors (KNN) model. With different parameters settings, a total

of 10 algorithms configurations were considered. However, in order to label the entries of the

dataset, the algorithms were clustered into 6 groups. Hence, the KNN had the task of predicting

which cluster of algorithms is better for a given instance. The best results were achieved when

using k = 1, which means that the model was highly dependent on the existence of an instance

very similar to the one being tested.

Another related work was presented in Pitzer et al. (2013), where 117 instances, two

meta-heuristic algorithms and a total of 34 meta-features from FLA were considered. Here, the

labels were based on the dominance of the performances of the algorithms, which was determined

by taking snapshots of the solution costs at determined times during the optimization. The best

classification results were obtained by using Support Vector Machine, showing the representative

power of the gathered FLA information.

Albeit showing promising results, the two first works made the experiments on small

sets of instances. In Smith-Miles (2008), only 28 instances were analysed, whereas in Beham

et al. (2017) the size of the dataset was 47. Moreover, the mentioned works did not evaluate the

individual classes performances. In Pitzer et al. (2013), the only reported evaluation metric was

the accuracy, which may be deceiving.

Besides, all of them only tackle the algorithm selection as a single-label problem, such

as our first work on this matter. Instead, the algorithm selection problem can be tackled as a

Multi-label classification task, since there are instances in which more than one algorithm achieve

the same solution costs. In Kanda et al. (2011), a multi-label approach is proposed for selecting

meta-heuristics, but applied to the Traveling Salesman Problem. The authors investigated three

transformation methods for dealing with multi-label learning. The first consists in replicating

the features of the instances with many labels and assign to each copy only one of the labels.

The second method simply removes from the dataset the multi-labeled instances. Finally, the
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third method transforms the original problem to several single-label problems and combines

the predictions. Also, 4 classification models were evaluated, being that the best results were

achieved by a Decision Tree with the third transformation method. Furthermore, this work

demonstrated that multi-label algorithm selection for combinatorial optimization problems is a

promising research direction.
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3 Quadratic Assignment Problem

The Quadratic Assignment Problem can be described as the problem of assigning a set of n
facilities to a set of n locations, the goal in QAP is to assign each facility into a unique location

in order to minimize the total flow and distance between the associations. The problem can be

formally defined as

min
φ∈Sn

n∑
i=1

n∑
j=1

fi j dφ(i)φ( j) (3.1)

where Sn represents all possible permutations of a set N = {1,2, . . . n}, fi j and di j are the

correspondent values in the flow and distance matrices, respectively, and the product fi j dφ(i)φ( j)
is the singular cost of assigning the facility i to the location φ(i) and the facility j to the location

φ( j).
The instances are represented by a flow and a distance matrices whose values are

used to compute the solution cost. Figure 3.1 exemplifies an instance of size 5 and a possible

solution configuration. Considering that each element on the permutation represents a facility,

the positions indicate their assigned locations. Therefore, in the example, the facility 3 is assigned

to location 1, facility 4 to the location 2 and so on. Hence, the cost of this solution, according to

(3.1), would be equal to 2140.

Figure 3.1: Example of an instance and a solution

(a) Flow matrix (b) Distance matrix

(c) Permutation

Across the experiments, it was used all 135 instances 1 from the standard benchmark

library QAPLIB (Burkard et al., 1998b). Additionally, the third work also includes 17 new

instances drawn from Drezner et al. (2005), which were designed to be hard for heuristic search.

1The instance esc16f was not considered due to its flow matrix having only zero values.
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The QAP is a widely studied problem because several real world problems can be

modeled as QAP, such as the typewriter keyboard design, the location of the hospital departments,

backboard wiring, among others (Burkard et al., 1998a).

The QAP is a NP-hard optimization problem and is considered as one of the hardest

optimization problems since the largest instances that can be solved today with exact algorithms

are limited to instances of size around 30 (Anstreicher et al., 2002) (instances with sizes of 64 and

128 were solved in Fischetti et al. (2012), but benefiting on their extremely symmetric structures).

So, several meta-heuristic algorithms have been proposed to solve QAP, which include algorithms

like Simulated Annealing (Connolly, 1990), Tabu Search (Battiti e Tecchiolli, 1994), Genetic

Algorithm (Drezner, 2003), GRASP (Pardalos e Resende, 1994), Ant Algorithms (Maniezzo e

Colorni, 1999), and Scatter Search (Cung et al., 1997). Previous research results show that the

characteristics of the QAP instances strongly influence the relative performance of the various

algorithms (Drezner et al., 2005) and that motivate the meta-learning approach presented here.
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4 Meta-learning

Since the seminal work of Rice (1976) Rice (1976), the field of meta-learning (ML), especially

with respect to algorithm selection and configuration, has been an active area of research.

According to Brazdil et al. (2009), meta-learning is the study of principled methods that exploit

meta-knowledge to obtain efficient models and solutions by adapting machine learning and

data mining processes. Although ML has been traditionally applied to classification and data

mining problems, its concept has been extended to other application domains (Smith-Miles,

2008) such as regression, time-series forecasting, sorting, constraint satisfaction, optimization

and recommender systems (Cunha et al., 2018).

In optimization, ML can be defined as mapping the characteristics of problem instances

to the performance of a set of algorithms allowing the selection of the most promising algorithm.

Therefore, a main aspect for ML is the characterization of the problem instances or

meta-knowledge of the problem. One important component of the meta-knowledge are the

meta-features, which in this case are informative properties of the problem instance that affect

the performance of the algorithms. The other component is the meta-labels, which define or rank

the most suitable algorithms for each case.

In ML approach, the algorithm selection problem is addressed like a traditional learning

task. A meta-model is induced, which can be described like the meta-knowledge capable to

explain which algorithm works better than others in problems with specific characteristics. Then,

this meta-model is used to predict the best algorithm(s) for a new problem. The approach includes

a sequence of activities, as presented in Figure 4.1.

• Meta-knowledge extraction: Given a base of past problems with information about the

application of the different algorithms, this task extracts knowledge for the meta-learning

task: meta-features and meta-label.

• Meta-learning: This task corresponds to the application of an ML technique to the

Meta-knowledge base generated in the step before.

• Meta-model: The model obtained in the last step is used to select among the algorithms,

the most suitable considering the characteristics (meta-features) of the current problem.

4.0.1 Meta-features

Meta-features are characteristics of a problem instance that ideally represent its inner information.

They can be extracted directly from the instance definition, called the static features, or from a

sampled set of solutions, which are based on Fitness Landscape Analysis (FLA).

Static

The static features are obtained by solely analysing the information contained in the instance

definition. Therefore, they are the most easily extracted meta-features, specially when considering
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Repository of Past
Problems

Algorithm 1

Algorithm n

Performance  Evaluation

Problem Features

Meta-Knowledge Extraction

…….

Meta-Knowledge

Meta-features Meta-labels

Meta-Learning

Meta-Model

Selected AlgorithmCurrent Problem

Figure 4.1: Meta-learning sequence of activities

the required computing time. For QAP, there are seven simple characteristics that may represent

the instances, which are described next.

- Size (n): this meta-feature is straightforward the size of the instances, i.e., the number

of facilities/locations associations.

- Flow (fd) and distance dominance (dd): the dominance is defined as the coefficient

of variation of values and is obtained by 100 ∗
μ
σ , with μ and σ being the mean and standard

deviation of the matrices values, respectively. A high dominance indicates that the weight of the

relationships are concentrated only on few pairs of items (Stützle, 2006).

- Flow (fsp) and distance (dsp) sparsity: it is the amount of values 0 related to the total

number of cells (n2).

- Flow (fas) and distance (das) asymmetry: is the relative number of cells (i, j) that are

different from cells ( j, i) to the total number of pairs
(

n2−n
2

)
.

Fitness Landscape Analysis

FLA aims at gathering more knowledge about the internal structure of a problem. This is done by

analysing the shape of the landscape formed by a set of sampled solutions, given their costs and

neighborhoods. Therefore, the FLA is highly dependent on the operator that is used to gerante

the neighbor solutions, also called the move operator. In this work, we use the swap operator, that

exchanges the values between two elements found in positions i and j, as shown in Figure 4.2,

and, for an instance of size n, produces
n(n−1)

2
neighbors. This is also the operator used during

the local search phase in the meta-heuristics described later.

There are two major FLA categories, based on which type of sampling they use. It

can be achieved by local methods, that examine the immediate changes found in paths made by

random or directed walks, or global methods, that seek to obtain a higher overview of a landscape,

usually by sampling local optima solutions (Pitzer et al., 2011). The following meta-features are

of the global FLA type.
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Figure 4.2: The swap operator

- Fitness Distance Correlation (FDC): the FDC measures the distance correlation

between the distances from the closest global optimum and the solution cost (Jones e Forrest,

1995). The distance in this context is the amount of different elements in the same positions on

both solutions, also called as the Hamming Distance. Let ci and di be respectively the cost and

distance of the ith solution from the set of local minima and m be the number of local optima, the

FDC is calculated by

FDC =
1
m
∑m

i=1(ci − μc)(di − μd)

σc.σd
(4.1)

where μc and μd are the average cost and distance and σc and σd are the cost and

distance standard deviation. Since knowing the set of global optimum solutions is unpractical, we

refer instead to a set of pseudo-global optima, which are the unique best solutions found during

the sampling.

- Number of pseudo global optima: is the size of the set of the best unique solutions.

- Average Distance to Optima: this is the distance to the closest (pseudo) global optimum

solution (the μd itself).

- Accumulated Escape Probability: it is an evolvability measure that classifies the

hardness of a problem for an Evolutionary Algorithm (the higher, the easier) (Lu et al., 2011). It

is the average of the escape probability of every fitness levels of the solution from the sample.

The escape probability here is calculated as the amount of equal or better neighbor solutions for

a given point divided by the neighborhood size.

- Dispersion Metric: the dispersion of a set of solutions is the average pairwise Hamming

distance of the set. The Dispersion Metric is given by the dispersion of the t best solutions of

the sample minus the dispersion of the first t solutions from the same sample. The key idea

is to measure the change in dispersion when improving the fitness of the solutions (Lunacek e

Whitley, 2006). In this work, we set t to be 5% of the considered sample size.

- Average Descent: this is the number of movements performed by the local search until

reaching the local optima from the starting point. It is also divided by the instance size.

- Optima Fitness Coefficient: this metric is given by dividing the standard deviation of

the fitnesses of all optima solutions by their mean.

The first study, described in Chapter 5, also includes two meta-features belonging to the

group of FLA by local method, namely the autocorrelation coefficient (acc) and the correlation

length (acl), which are metrics that represent the ruggedness of a landscape. The former is the

average variation of fitness caused by a single step along the neighborhood, whereas the later is

the number of required steps to make the correlation values statistically different (Pitzer et al.,

2013). Although this type of FLA is more computational expensive, the authors from Chicano

et al. (2012) proposed an expression to calculate the acc and acl metrics in polynomial time and
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without the need for sampling. They also provided the calculated values for all instances from

QAPLIB.

4.0.2 Meta-labels

The meta-labels represent the most suitable algorithms for a problem instance. So, the considered

algorithms must be executed on all instances and those with the best performances are chosen as

the meta-labels for the dataset entry.

There are different ways to define the performance of an algorithm. For example, the

authors from Pitzer et al. (2013) created a history of solution costs taken at determined periods

during the runtime of the algorithm. The performance then was determined by the domination of

this history, i.e., the algorithms that had a higher amount of better costs considering all snapshots.

The paper from Chapter 5 defines the performance as the average solution cost in 30 runs of the

algorithms and, in case of ties, the execution time. Meanwhile, the next two works (Chapters 6

and 7) deal with multi-label settings and run all algorithms with the same CPU time, hence the

algorithm with the best performance is that with the least average cost.

The meta-label is then defined by the performances of the competing meta-heuristics,

which were chosen because of their reported results, properties of exploration and availability

of implementation. The first two studies employ the algorithms Breakout Local Search (BLS)

(Benlic e Hao, 2013), the Max-Min Ant System with Best Improvement Local Search (MMASBI)

(Stützle e Hoos, 2000) and the Robust Taboo Search (RO-TS) (Taillard, 1991). In the last work,

due to the relatively poor performance of the RO-TS, it is replaced by the novel Breakout Memetic

Algorithm (BMA) (Benlic e Hao, 2015).

They all have in common the appliance of a local search as an intensification mechanism.

More precisely, they employ a Best Improvement (BI) local search, in which the whole

neighborhood (or a truncated one) is first scanned and then it moves to the best solution among

them (Burkard et al., 1998a).

Because we are using the swap operator, it is possible to make the BI faster by, instead

of calculating the O(n2) cost function for each neighbor, we calculate just the cost δ(φ, i, j) of

swapping the elements from positions i and j in permutation φ, with the linear equation (Taillard,

1995)

δ(φ, i, j) = dii ∗ ( fφ( j)φ( j) − fφ(i)φ(i)) + di j ∗ ( fφ( j)φ(i) − fφ(i)φ( j)) +

dji ∗ ( fφ(i)φ( j) − fφ( j)φ(i)) + dj j ∗ ( fφ(i)φ(i) − fφ( j)φ( j)) +
n∑

k=1,k�i,j

(dki ∗ ( fφ(k)φ( j) − fφ(k)φ(i)) + dk j ∗ ( fφ(k)φ(i) − fφ(k)φ( j)) +

dik ∗ ( fφ( j)φ(k) − fφ(i)φ(k)) + djk ∗ ( fφ(i)φ(k) − fφ( j)φ(k)))

(4.2)

This computational cost can be even further reduced by using information from preceding

iterations. For the cases where the swapping indexes {u, v} are different from the previous indexes
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{i, j} that were used to generate the current permutation φ′, such as that ({u, v} ∩ {i, j} = ∅), the

movement cost can be calculated in constant time by (Taillard, 1995)

δ(φ′,u, v) = δ(φ, i, j) ∗ (dru − drv + dsv − dsu)∗( fφ( j)φ(u) − fφ( j)φ(v) +

fφ(i)φ(v) − fφ(i)φ(u)) ∗
(dur − dvr + dvs − dus)∗( fφ(u)φ( j) − fφ(v)φ( j) +

fφ(v)φ(i) − fφ(u)φ(i))

(4.3)

Breakout Local Search

The BLS algorithm is similar to the Iterated Local Search in the way that it initially applies a

local search procedure until a local optimum is found, followed by a perturbation operation to

jump to new search regions. The difference is that BLS may apply three distinct perturbation

moves, depending on the search stage. The more often executed one is the directed perturbation,

which is based on taboo search principles, meaning that it favors movements which improve the

cost function and that have not been recently applied, thus performing an exploitation search.

The other two are the recency-based perturbation, that favors the least recently performed moves,

and the random perturbation. Neither of them takes into account the cost degradation, resulting

in a more explorative behavior (Benlic e Hao, 2013).

Max-Min Ant System

Following the Ant Colony Optimization concepts, the MMAS is a constructive algorithm that

probabilistically chooses the assignments based on two information: the heuristic (problem-

specific) and the pheromone trail (based on experience of the solutions constructed so far)

(Dorigo e Caro, 1999). The main difference introduced by MMAS is that it imposes maximum

and minimum limits to the allowed values of pheromone. This is intended to prevent search

stagnation, where all ants produce the same solution due to a high predominance of that path

in the pheromone matrix (Stützle e Hoos, 2000). A hybrid version of MMAS was employed

in which, after every ant finishes the constructions phase, the best improvement local search is

applied to the solution.

Robust Taboo Search

The Taboo Search algorithm is a simple meta-heuristic that accepts degrading movements when

stuck in local optima. Then, in order to avoid returning to the same positions, it maintains a

list of forbidden movements for a given number of iterations, or until the aspiration criteria is

met, which is traditionally when the taboo movement results in a solution better than the best

found so far (Glover, 1989). The robust version introduces a randomly variable duration for

considering each movement as taboo, and also an additional aspiration criteria which is met

when the elements being swapped will be placed to positions that they have not being for the last

defined number of iterations (Taillard, 1991).

Breakout Memetic Algorithm

The BMA is a steady-state evolutionary algorithm that, in each generation, the BLS is applied on

the new offspring solution. It uses the Uniform Crossover (UX) operator for reproduction. The

UX creates an offspring by assigning at each position one element from either of the parents in

that same position with equal probability, as long as the element has not been assigned yet. At
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the end, if there are unassigned positions, they are set randomly among the remainder values

(Benlic e Hao, 2015). The BMA also applies an adaptive mutation procedure on the whole

population when the best found solution has not changed for a certain amount of generations. The

mutation operator exchanges a number of elements in order to create a solution with a determined

Hamming distance, which is increased after each mutation appliance until being reset (Benlic e

Hao, 2015).
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5 A Meta-Learning Algorithm Selection
Approach for the Quadratic Assignment
Problem

This was the first conducted study, and was mainly focused on discovering the maximum potential

of classification by performing extensive feature selection steps. Also, because in the ASP all

classes have the same importance in terms of misclassification, the classification performance

also takes into account the individual classes predictions, instead of only the overall accuracy

like some previous works have done (Smith-Miles, 2008; Pitzer et al., 2013).

This approach lead us to propose a cascade classification scheme, which divides the

problem and allows us to train more specialized models. For this, we conducted a series of

experiments that were useful at gaining insight of what steps to take in order to improve the

individual performances, such as data cleansing and dimensionality reduction. At the end, a

reliable automatic algorithm selection system for the QAP was achieved.

5.1 Activities Description

Apart from the 7 static features described in Chapter 4.0.1, this work extracts the same five

meta-features used in Smith-Miles (2008) and with the sampling method proposed by Stützle

e Hoos (2000), in which the authors used them to study the viability of their new algorithm.

The extraction process is based on experimental runs of simple search algorithms and further

analysis of the gathered local optima solutions. Additionally, two meta-features, namely the

autocorrelation coefficient and the correlation length, are also included because their values for

all QAPLIB instances are given in Chicano et al. (2012).

First, an Iterated Local Search (ILS) is executed 1000 times, with 500 iterations each,

and all achieved unique local optima solutions are stored. The best solutions (with the same cost)

within this set are called the pseudo global optima, which are required to compute the features,

since it is unfeasible to know the actual global optima set. Next, a Best Improvement Local

Search is randomly repeated until 5000 unique local optima is found, or until it exceeds a certain

amount of execution time (which was set to 5 minutes for both the ILS and BI runs).

Table 5.1 summarizes the FLA meta-features that were used. The average distance and

the FDC are computed for both the samples gathered by the ILS and the BI runs. For more

detailed explanations, see Chapter 4.0.1.
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Table 5.1: Extracted FLA meta-features

Abbreviation Name Description

n_opt Number of pseudo global optima Best unique solutions found by ILS

ils_dst
Average distance to optima Hamming distance to the closest pseudo optimum

bi_dst

ils_fdc
Fitness Distance Correlation (Jones e Forrest, 1995) FDC =

1
m

∑m
i=1

(ci−μc )(di−μd )

σc .σdbi_fdc

acc Autocorrelation coefficient (Chicano et al., 2012)
Average fitness variation caused by a single

step along the neighborhood

acl Correlation length (Chicano et al., 2012)
Number of required steps to make the

correlation values statistically different

As meta-labels candidates, the following algorithms were considered:

• Breakout Local Search (BLS)

• Max-Min Ant System with Best Improvement Local Search (MMASBI)

• Robust Taboo Search (RO-TS)

The three meta-heuristics were run 30 times for every instance, all with the same set

of 30 initial seeds. A great obstacle when comparing algorithms performances is related to the

definition of a stopping criterion. The most natural approach is limiting their execution with the

same amount of CPU time. But even by doing so, it does not make it necessarily fair, specially

when the algorithms were implemented by different people with different paradigms, as is our

case.

Also, since our goal was to study the ASP as a single label problem, we decided to use

the execution time just as a mean of untying. So, the stopping criterion for each algorithm was

set based on numbers of iterations, it was done according to preliminary tests and considering the

algorithms behaviors. With that said, the BLS and MMASBI were limited to 100 ∗ n iterations,

where each iteration contains full local search appliances. Although the MMASBI operates

with 5 solutions at each iteration (as it is the default configuration), the quality of the solutions

resulted by the construction process implicates that less movements are performed during local

search, compared to the random or perturbed initial positions in the BLS. As for the RO-TS, the

stopping criterion was set to 2000 ∗ n iterations, because in this implementation each iteration

is equivalent to one single movement. With these configuration we could achieve a relatively

balanced dataset after performing some data cleansing, as is discussed later.

Two other reported good algorithms, the Hybrid Genetic Algorithm (Misevicius, 2004)

and the Fast Ant System (Taillard e Gambardella, 1997), were also initially considered, but, with

the implementations that we had at hand and with their default configurations, they could not

achieve competitive results.

The executions were performed on an Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz

and with a time limit of 10 minutes for run, that was only reached for the larger instances. Then,

for labeling the instances, we ranked the three algorithms based on their average solution costs

over the 30 executions and chose the one with the least average cost. In case of ties, the selection

was based on the average execution time. As mentioned later, most of ties only occurred on small

and easy instances. Table 5.2 shows the resulting classes distribution.

Perhaps, in a real case scenario, it would be more interesting to label the data based

on statistical equivalences of the performances. This would result in a multi-label classification

problem, which brings different caveats and was not the objetive of this study. Nevertheless, this

is mentioned as a possible future work.
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Table 5.2: Full dataset

Class Instances

BLS 33

MMASBI 89

RO-TS 13

As classification model, we used the Random Forest implementation from the library

scikit-learn 1. The parameters settings were 100 estimators and a tree depth limit of 10.

The Random Forest was chosen because it can inherently work with multi-class problems and

does not require data normalization. Also, some other models were used in preliminary tests, but,

without any parameter tunning, they showed overall worse predicting performances.

For splitting the dataset, a stratified KFold Cross Validation with 10 groups strategy

was adopted, thus, the performance measurements were obtained by micro-averaging the groups

results. Both the classifier and the folding methods received the same initial seed 0 as parameter,

in order to keep the tests equivalent and reproducible. All other parameters were left the same as

the default.

Before arriving at our proposed cascade scheme, a series of experiments were performed

which guided us in the task of data preprocessing. Initially, we trained the Random Forest for the

complete original dataset and with all features, in which, due to the class imbalance, the minority

classes had considerably worse performances. Therefore, some data cleansing was necessary to

try to improve the results. For this, we inspected the optimization performances and noticed that

for several instances, mostly with small sizes, the three meta-heuristic achieved the same average

cost. So, a new and more balanced dataset was generated by removing said instances.

Following this, we managed to further improve the classification performance by

reducing the dimensionality of the dataset. Because there were only 14 features, it was feasible

to make an extensive search of the best subset of features. We acknowledge that doing it over the

cross validation folds rises the risk of overfitting the model, as is the case for any other supervised

feature selection approach (Smialowski et al., 2009). Even so, we wanted to discover if there

was an optimal subset of features capable of improving both the accuracy and individual classes

performances for the existing benchmark instances, also discussing some remarks about the

behavior of the resulting features, given at Section 5.3.

Finally, when observing that even with the improvements there was still a large difference

in the individual classes performances, we conclude that it would be better to project our multi-

class problem into sequential binary problems, resulting in the proposed cascading scheme. The

experiment materials, such as the source codes of the meta-heuristics and the classification

datasets, can be found online 2.

5.2 Experiments Results

In this section, we show the details of the experiments that lead us to propose the cascade

classification scheme, along with its configuration and results.

1http://scikit-learn.org/stable/index.html
2https://github.com/aldantas/AS_QAP_CEC2018
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5.2.1 Data Cleansing

The results for the classification task using all 14 features are shown in Table 5.3. It can be noted

that, although it achieved a considerably high accuracy, it was mainly due to the performance on

the majority class (MMASBI).

Table 5.3: Evaluation metrics for the classification on the full dataset using all features

Accuracy
F-score

BLS MMASBI RO-TS Average

0.8741 0.8254 0.9180 0.6667 0.8034

In fact, by looking at the normalized confusion matrix illustrated in Figure 5.1, it is

possible to observe that all misclassifications on class BLS (0) and most of the misclassifications

on class RO-TS (2) were related to the class MMASBI (1).

Figure 5.1: Normalized confusion matrix for classification on the full dataset using all features

When inspecting the results achieved by the meta-heuristics, we observed that, for

several instances (most with sizes smaller than 20), the three algorithms achieved the same

average cost over the 30 runs. Thus, it is reasonable to conclude that these easily solvable

instances contain features that may not correctly indicate the performances of the algorithms.

Therefore, we created a reduced dataset by eliminating said instances, resulting on the

removal of 54 instances, all previously belonging to class MMASBI. This happened because

of the different chosen stopping criteria for the algorithms, which gave the MMASBI a small

advantage regarding the execution time. Since these time diferences are mostly in matter of

seconds, all algorithms could be considered as corrected classified for those instances when

applying the model as an algorithm selection system. Table 5.4 summarizes this new dataset.

Table 5.4: Reduced dataset

Class Instances

BLS 33

MMASBI 35

RO-TS 13
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Figure 5.2 shows the bidimensional feature spaces given by applying Principal Compo-

nent Analysis (PCA) (Wold et al., 1987), both to the full dataset (5.2a) and to the reduced dataset

(5.2b). It is clear that, by removing the easy instances, the instances labeled as BLS and RO-TS

became more distinguishable from the instances labeled as MMASBI.

(a) Full Dataset (b) Reduced Dataset

Figure 5.2: Bidimensional feature spaces resulted by PCA

However, when training the classifier with this reduced dataset, the prediction perfor-

mances for each class were actually deteriorated, as shown in Table 5.5. Because this result

contradicts what the PCA has indicated, it is likely that a proper feature selection is required to

improve the performance on each dataset.

Table 5.5: Evaluation metrics for the classification on the reduced dataset using all features

Accuracy
F-score

BLS MMASBI RO-TS Average

0.8148 0.8182 0.8493 0.6087 0.7587

5.2.2 Dimensionality Reduction

Since our feature set has a small size of 14, it is feasible to evaluate all possible combinations,

which results in a total of 16383 subsets. The best performing feature set is then determined

by picking the one with the highest accuracy, highest average F-score and the least amount of

features, in this respective order. Table 5.6 shows the best features found for the both the datasets.

Table 5.6: Best features for each dataset

Dataset Best Features

Full n, fd, dd, fsp, fas, ils_fdc, bi_fdc, acc

Reduced fd, dd, dsp, fas, ils_dst, ils_fdc, bi_dst, bi_fdc

The results for the classification using the aforementioned features are given in Table

5.7. We can see that, on both cases, the use of a proper set of features enhanced the overall

performances. Also, by reducing the dataset, we noticed a small decay of accuracy and average

F-score comparing to the full dataset, but we could improve the performances on the minority

classes.

But even with all those improvements, the performance on class RO-TS is still con-

siderably below the performances on the other classes. By looking at the Figure 5.2b, we can
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Table 5.7: Evaluation metrics for the classification on the full and reduced datasets using the selected best features

Dataset Accuracy
F-score

BLS MMASBI RO-TS Average

Full 0.9037 0.8667 0.9355 0.75 0.8507

Reduced 0.8765 0.8923 0.8947 0.7619 0.8496

notice that the instances which the best algorithm is the RO-TS are close to the ones labeled

with the BLS algorithm. This proximity is even more highlighted when observing the boxplot

distributions of each feature displayed in Figure 5.3. It is clear that both classes have instances

with similar features, specially those based on fitness landscapes.

Figure 5.3: Features distributions for each class

These similarities are actually not surprising, since both the RO-TS and BLS algorithms

share same common properties such as being single solution based, being iterative improvement

strategies and applying the same neighborhood structures. Hence the RO-TS outperformed the

other algorithms on fewer instances, it ends up getting more disadvantaged from these similarities.

Thus, in an attempt to improve the individual predictions on the minority classes, we propose a

cascade classification scheme.

5.2.3 Cascade Classification Scheme

In this approach, the multi-class problem is divided into two binary output problems, with each

being tackled by a specifically trained Random Forest. At the first level, the model is trained to

classify the class MMASBI against the joint of classes BLS and RO-TS. If the output of this

classification is not MMASBI, then the input is forwarded to a second model that is trained to

distinguish only the instances belonging to classes BLS and RO-TS.

As before, in order to better discriminate the classes, the models were trained using their

respective optimal subset of features, which were found after performing exhaustive searches.

Figure 5.4 illustrates our proposed scheme, along with the best meta-features for each model.

In order to fairly compare it to the previous classification made on the reduced multi-class

dataset (Table 5.4), we used the same folding groups as before. The prediction performances

of the described cascade classification can be seen in Table 5.8. When comparing them to the

multi-class results, displayed in Table 5.7, we can observe that we managed to maintain the exact

same accuracy, but considerably improving the performance on class RO-TS, which, in turn,

improves the classes average F-score.



29

Figure 5.4: Proposed cascade classification scheme

Table 5.8: Evaluation metrics for the cascade scheme classification

Accuracy
F-score

BLS MMASBI RO-TS Average

0.8765 0.875 0.8912 0.8333 0.8665

These results indicate that our scheme has the ability to balance the individual classes

prediction power, making the selection system more reliable.

5.3 Meta-features Analysis

In this section we investigate the resulting meta-features subsets that were able to better

discriminate the instances in the cascade scheme. At the top level of our system, the optimal

subset was: {fd, dd, dsp, n_opt, ils_fdc, bi_fdc}. It is noticeable that the dominance (concentration

of association weights) and the FDC (problem difficulty) have an important role in distinguishing

the local search based algorithms from the MMASBI, which is a bio-inspired constructive

algorithm.

To better understand the influence of the meta-features, in Figure 5.5 we show their

importances returned by the scikit-learn implementation when training the model with

the complete feature set. We can observe that three features from the optimal subset (fd, dd,

bi_fdc) presented high individual performances, but others, such as the n_opt, would likely not

be chosen if this metric was used to perform feature selection. Another remark is that, the second

most important meta-feature, the ils_dst, is not present in the optimal set, probably because,

when removing the noisy features, it becomes redundant, which indicates that thresholding based

feature selection is not a robust approach, since it does not consider the correlational influences.



30

Figure 5.5: Feature importances for the step 1 in the cascade scheme

Going down the cascade scheme, the optimal subset is now: {n, fsp, fas, n_opt}. Indeed,

it is a smaller set than the previous one, which was expected since they are the best features for

a model trained with fewer data instances. Here, we can see that the majority of the optimal

meta-features is static, meaning that the BLS and RO-TS algorithms suffer more influence from

the problem instances structures, and not so much from their landscapes. Again, we show the

feature importances when training with all of them in Figure 5.6. Although the most valuable

meta-feature (fsp) was in fact selected to be in the optimal subset, curiously, the others that

remained are actually those with least individual importances.

Figure 5.6: Feature importances for the step 2 in the cascade scheme

For visualizing how these meta-features may influence the classification task, we trained

a Decision Tree using all instances from the dataset (without splitting for testing) and its graphical

representation is shown in Figure 5.7. As we can see, the combination of the meta-features n,

n_opt and fas (the least valuable ones) was able to isolate 29 out of 33 samples of class BLS. This

highlights the difficulty in performing feature selection, since there may be unknown relationships

between them.

Another observation that we can point out is that neither acc and acl, which belong

to the local method type of FLA features, appeared in any of the cascade optimal subsets. A

possible reason for this is that they were overshadowed by the local search based features, which
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Figure 5.7: Decision tree visualization for the BLS x RO-TS dataset using the optimal meta-features

also employ a form of landscape sampling. In fact, in both dataset, as shown in Figures 5.5 and

5.6, they demonstrated subpar relevancies.

Lastly, the fact that both levels ended up with different meta-features (with the exception

of one) indicates the beneficial traits of a cascade classifying system.

A natural concern regarding algorithm selection based on meta-learning is the computa-

tional time required for extracting the instances features. It is clear that, for practical appliances,

the extraction process should not exceed the time for executing the whole set of algorithms,

otherwise, the selection is unjustified.

In this case, the bottleneck of our approach is the sampling for the FLA features. Hence

we employed two local search methods, each limited by 300 seconds, the execution of the three

meta-heuristics should ideally take more combined time than 600 seconds. In Figure 5.8 is

shown the average sum of the three algorithms execution time by their size. We can see that the

extraction process begins to be worth for instances of size around 100 and beyond. This could be

changed if the sampling had a smaller time limit or if there were more optimization algorithms

being selected. Nevertheless, performing a selection for only new large instances, which are the

most challenging ones, is a valid case scenario.

5.4 Discussion

This paper presented a study on algorithm selection for the Quadratic Assignment Problem

under a meta-learning approach. For this, we have generated classification datasets considering a

meaningful number of QAP instances, 3 meta-heuristic optimization algorithms and 14 meta-

features. These meta-features were extracted based on available information contained in the

problem instance structures, on properties of solution samples collected by simple local search

algorithms and others traditional FLA metrics.

After analysing the solution space representations and the meta-features distributions,

we have applied some steps in order to improve the classifier performance. For data cleansing,

we removed a few redundant instances and then we performed exhaustive searches of optimal

features for the sake of dimensionality reduction.
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Figure 5.8: Time spent for the execution of the three meta-heuristics by size

Since our goal was to evaluate not only the overall accuracy, but also the individual

classes performances, we came to the proposal of a classification performed on a cascade scheme,

breaking the multi-class problem into two binary output problems. Thus, at the first level, a

model is trained to distinguish instances labeled with the MMASBI algorithm from the ones

labels with either the BLS or RO-TS. Next, for the entries that are not classified as the MMASBI

class, they are inputted on a second model specialized for selecting between the BLS and RO-TS

classes.

With this model, we were able to achieve satisfactory results, improving considerably

the performances on the minority classes with a small decay on the majority class, which we

considered as a fair trade-off for an algorithm selection system. Also, we have demonstrated the

importance and difficulty of selecting a proper set of meta-features, highlighting the advantages

of training different specialized models.

Possible future works are the inclusion of more instances, specially larger ones, using

some crafted generator and the extraction of additional meta-features, considering that this could

imply the necessity of studying a more intelligent feature selection approach. Also, it would

be interesting to add different optimization algorithms for labeling, like an evolutionary one,

provided that its performance is competitive with the others already in use. Another interesting

direction is to tackle the task as a multi-label classification problem, in which the algorithms are

ranked based on statistical equivalences.
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6 Selecting Algorithms for the Quadratic
Assignment Problem with a Multi-label
Meta-learning Approach

Although the previous paper reported great classification performances, they were achieved

only after several manual steps, which is not desirable for an automated algorithm selection

application. Therefore, in this next study, we did not include feature selection and we did not

break down the learning task as before.

Moreover, previously the ranking of the meta-heuristics was done by setting pre-

determined number of iterations and using the computation time as an untying measure. Now,

we investigated the algorithm selection task as a multi-label classification problem, in which the

data entries can be assigned to many classes at the same time (Madjarov et al., 2012). Since

more than one meta-heuristic can have the same performance for a given instance, this approach

is adequate to perform algorithm selection (Kanda et al., 2011).

For dealing with multi-label learning, there are mainly two approaches: the problem

transformation, that manipulates the dataset, and algorithm adaptation, in which the model is

adapted to deal with the multiple labels (Zhang e Zhou, 2014). We investigated both approaches

by using a Random Forest implementation that can inherently work with multi-label classification.

Then, they were compared in terms of evaluation metrics of predictions, namely the accuracies

and the individual label F-scores.

Lastly, we showed the effectiveness of the meta-learning approach by comparing the

solution costs returned by the selected algorithms instead of running only the algorithm with the

best performance among them.

6.1 Experiments

For this study, we used the same set of meta-features extracted in the previous work (see Chapter

5), with the exception of the autocorrelation coefficient and the correlation length which, as

reported previously, did not contribute for the classification very much. As for the meta-labels,

the same three meta-heuristics are considered, namely the Breakout Local Search, The Max-Min

Ant System with Best Improvement and the Robust Taboo Search.

Two approaches for dealing with a multi-label classification were compared. The first

is based on transforming the dataset into a multi-class single label dataset by considering each

subset of classes as a distinct label. The other approach is to let the learning algorithm deal with

the multi-label configuration by its own, which in the literature it is called algorithm adaptation

(Zhang e Zhou, 2014). To make the comparison fair, we used a model implementation that can

handle both cases. First, we present the classifications performances, measured by accuracies

and F-scores. Next, we analyse how good are the solutions retrieved by the selected algorithms
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in relation to the best known solutions, also comparing the improvement of employing algorithm

selection against applying only a single algorithm over the instances.

For generating the multi-label dataset, the three described meta-heuristics were run 30

times for every instance, always with the same set of 30 distinct seeds. These executions were

performed on an Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz, with each 10 tests being run in

parallel with independent processes. Then, each data entry, i.e., the instance meta-features, was

labeled to all algorithms that achieved the same average solution cost over the 30 runs.

In a scenario like this, it is desirable that all algorithms should be executed on the

same amount of computational time. Therefore, to determine the execution time limit for each

instance, we used the experiments from Chapter 5, in which the algorithms were executed for

a predetermined number of iterations, along with a time limit of 10 minutes. The MMASBI

and BLS were limited to 100 ∗ n iterations, where each iteration contains full local search

appliances. Although the MMASBI operates with 5 solutions at each iteration (as it is the default

configuration), the good quality of the solutions given by the construction process implicates that

less movements are performed during local search, when comparing to the random or perturbed

initial positions in the BLS. As for the RO-TS, the stopping criterion was set to 2000 ∗ n iterations,

because in this implementation each iteration is equivalent to one single movement.

Then, using the aforementioned executions, we collected the average time that the

algorithms spent to reach their best found solutions. This data was then used to fit a polynomial

function that dictates the required computational time given the instance size. The data points

and the fitted function t(n) are illustrated in Figure 6.1. Because of the 10 minute limit, the

algorithms could only achieve good solutions for the instances with sizes up to 100, thus, the

remaining instances data points were not used in the fitting process.

Figure 6.1: Fitted function of required running time by size

Therefore, the meta-heuristics were executed for a particular instance according to the

time limit given by (6.1). As it will be pointed out later, with this constraint the algorithms could

achieve overall high quality solutions.{
�t(n)� if t(n) > 1

1 otherwise
(6.1)

The resulting classes distribution of the generated learning dataset is shown in Figure

6.2. Because of the quality of the chosen algorithms, and because there are several easy instances

in QAPLIB, a reasonable amount of data entries received all labels. Nevertheless, it is still

noticeable that each algorithm could outperform another, or all others, in many instances.
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Figure 6.2: Multi-label dataset (BLS/MMASBI/RO-TS)

As classification model, it was used the Random Forest implementation from the

scikit-learn library, with the parameters set to 100 estimators and a tree depth limit of 10.

In order to keep the tests equivalent and reproducible, the seed for the random state parameter

was fixed to 0. The Random Forest was chosen because, in this implementation, it can inherently

work with multi-class and multi-label problems, also dispensing data normalization. Besides,

some other models, such as the Multi Layer Perceptron and the Support Vector Machine on a

Grid Search, were used in preliminary tests, but, without any parameter tunning, they showed

overall worst predicting performances.

For validating the model, the Leave-one-out Cross Validation strategy was adopted.

Thus, the performance measurements were obtained by micro-averaging the results in each

train/test folding. The evaluation metrics used to assess the classification performances were

the accuracy and the F-scores of each individual class. However, for multi-label classification,

there are different types of accuracies that can be evaluated. In this work, we used the traditional

instance accuracy, given by the Jaccard similarity coefficient between the true and predicted

labels, and the subset accuracy, which requires that the predicted set of labels to be an exact

match of the original label set (Madjarov et al., 2012).

Additionally, a third accuracy was used, which we called the recommendation accuracy,

that evaluates if the system is able to recommend only the best performing algorithms, i.e., it

considers the classification as correct if there are no false positives for that instance. As far as we

know, this type of accuracy is usually not discussed in the multi-label learning literature, and

has not yet been applied in the context of algorithm selection for optimization problems. The

experiment materials are available at https://bit.ly/2KtOlEL.

6.2 Classifications Results

Initially it was validated the classification using the label powerset transformation method, which

means that the problem was turned into a single label problem by treating each subset of classes

as a unique label. In this way, the model is trained to predict among 7 different labels, shown in

Table 6.1.



36

Table 6.1: Powerset labels

Subset Samples

only BLS 30

only MMASBI 18

only RO-TS 2

BLS/MMASBI 13

BLS/RO-TS 5

MMASBI/RO-TS 6

BLS/MMASBI/RO-TS 61

However, to evaluate the predictions and to further compare them to the direct multi-

label classification, we converted the powerset labels back to their original multi-label settings.

Nevertheless, the traditional single label accuracy is still measured by the subset accuracy.

Next, we performed the same cross validation over the classification using the algorithm

adaptation method, i.e., the learning algorithm is prepared to directly deal with a multi-label

dataset by itself. The accuracies of both approaches are shown in Table 6.2.

Table 6.2: Evaluated accuracies on the complete dataset

Approach Instance Subset Recommendation

Powerset Labels 0.881 0.793 0.837

Multi-labels 0.893 0.815 0.852

As it can be observed, both approaches achieved good performances, although the

algorithm adaptation presented higher accuracies, showing that the model could probably identify

some classes relationships, which is not possible with the label powerset method. Moreover, even

when analysing the individual classes performances (BLS, MMASBI and RO-TS), as shown in

Table 6.3, both approaches presented similarly high F-scores.

Table 6.3: Labels F-scores

Approach BLS MMASBI RO-TS Average

Powerset Labels 0.920 0.960 0.904 0.928

Multi-labels 0.916 0.980 0.910 0.935

However, we suspected that those high evaluations were influenced by the 61 easy

instances that were labeled to all three meta-heuristics. In fact, by looking at the individual subsets

F-scores, displayed in Table 6.4, we can notice that said instances (subset BLS/MMASBI/RO-TS)

are indeed showing high performances on both approaches. But, interestingly, the subsets only

BLS and only MMASBI also achieved predicting measurements above random (0.5), specially

the former. Therefore, these two algorithms were able to outperform the others for a reasonable

amount of instances and with distinct properties. Meanwhile, the subset only RO-TS suffered

from the lack of samples, being unable to be correctly predicted.

Thus, we calculated the accuracy metrics considering only the instances not belonging

to subset BLS/MMASBI/RO-TS (without the 61 instances with all labels), which are shown in

Table 6.5. As it can be observed, the accuracies were considerably decreased, confirming our

belief.
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Table 6.4: Subsets F-scores

Subset Powerset Labels Multi-labels

only BLS 0.903 0.933

only MMASBI 0.722 0.689

only RO-TS 0.000 0.000

BLS/MMASBI 0.538 0.533

BLS/RO-TS 0.500 0.800

MMASBI/RO-TS 0.000 0.000

BLS/MMASBI/RO-TS 0.891 0.928

Table 6.5: Accuracies of the multi-label classification on the reduced dataset

Approach Instance Subset Recommendation

Powerset Labels 0.802 0.676 0.703

Multi-labels 0.818 0.703 0.720

Nevertheless, the recommendation accuracy was still considerably above random.

Besides, this decay of performance was mainly due to the prediction of the minority class

(RO-TS), as displayed in Table 6.6.

Table 6.6: Labels F-scores on the reduced dataset

Approach BLS MMASBI RO-TS Average

Powerset Labels 0.835 0.909 0.538 0.760

Multi-labels 0.823 0.947 0.560 0.778

Therefore, our meta-learning based algorithm selection approach still demonstrated to

be able to provide good prediction results. This is likely to be even further improved if the RO-TS

would be assigned more often when including more QAP instances outside from the benchmark.

6.3 Output Performances

This section discusses the comparison of the solution costs returned by the selected algorithms

with the output of each individual algorithm for all 135 instances. The obtained solutions were

evaluated in relation to the best known solutions of the respective instance.

Table 6.7 shows the amount of instances that the algorithms themselves, and both the

selection approaches, could achieve the best solution at least once among the 30 executions. We

can observe that the BLS presented the best results among the three meta-heuristics, which was

expected since it was the most present class in the dataset. For the classifier outputs, in cases

that more than one class was predicted, the algorithm was selected at random among them. By

doing so, the algorithms selected by the multi-label approach were able to find the best-known

solutions more often than if using only the BLS.

Although it was a low improvement, this was the case because the QAPLIB contains only

a small set of instances, and most of them may not be representative enough for current research

tendencies. Perhaps the advantages of algorithm selection would be even more highlighted if

larger and harder instances (Drezner et al., 2005) were included.

Since the generation of the learning dataset was based on average costs, we also evaluated

the frequencies that each algorithm and classification strategy was able to reach the best solutions
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Table 6.7: Best known solutions achieved at least once

BLS MMASBI RO-TS Powerset Labels Multi-labels

122 116 107 121 124

in all 30 runs. Table 6.8 displays those frequencies, showing that the MMASBI presented more

stable results in this case. Because of the randomness for choosing the algorithm when more

than one is predicted, the outputs of the classifiers may vary between worst and best cases.

Table 6.8: Best known solutions achieved in all runs

BLS MMASBI RO-TS

79 91 76

Powerset Labels Multi-labels

Worst Case Best Case Worst Case Best Case

80 91 82 95

The problem adaption approach, i.e., using the multi-label dataset, achieved best

solutions in average more often than the MMASBI at the best cases. Meanwhile, the selections

made by the problem transformation approach could only achieve the same performance as

MMASBI and only at the best case.

Considering the worst cases of both approaches, we evaluated the solution costs of the

remaining instances, that is, the instances that the selected algorithms did not achieve the best

known cost in average. Table 6.9 displays how many times the classifiers were statistically better,

worse and equivalent, in comparison with the solutions given by MMASBI for the same instances.

This is done by applying the Kruskal-Wallis H test on each pair of 30 results sets, considering a

threshold of 0.05 for the p-value.

Table 6.9: Statistical comparison of the selected algorithms results against the MMASBI standalone results

Approach Better Worse Equivalent

Powerset Labels 18 12 25

Multi-labels 28 7 18

Therefore, even in the worst case, the classifiers presented overall better performances.

The advantage of using algorithm selection was even more noticeable with the classifications

made on the original multi-label dataset, showing that this approach is better for the given task.

Nevertheless, although the recommendation accuracy was around 85%, the misclassifications are

less costly in a multi-label setting because it still has a fair possibility to fallback to the next best

algorithm, thus making the system more reliable.

6.4 Discussion

This paper investigated a meta-learning approach for algorithm selection applied to the Quadratic

Assignment Problem. A multi-label classification dataset was created considering: all instances

from the QAPLIB, 3 meta-heuristic algorithms and 12 instance meta-features. Two approaches

for dealing with multi-label learning problems were evaluated. One is the label powerset method,

in which the original dataset is turned into a single label multi-class dataset by considering each
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subset of labels as a different class. In the other approach, the classification is directly made over

the multi-labeled instances. A implementation of Random Forest that is able to deal with both

cases was used as classification model.

Regarding the predictions, both methods achieved similarly good performances, which

were measured by three different types of accuracies and by the individual label F-scores.

However, besides presenting slightly higher evaluation metrics, the direct multi-label strategy

allowed to select the algorithms that resulted in overall better solutions than the execution of

the individual algorithms, even in the worst case regarding misclassifications. Meanwhile, the

label powerset method could not outperform the results of the best algorithm. Therefore, the

experiments point out that the proposed multi-label algorithm selection is a reliable approach.

Future works should use larger and harder QAP instances. In addition, it would

be interesting to raise the dimensionality of the classification problem by extracting more

meta-features and considering other competitive meta-heuristics.
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7 Low Cost Fitness Landscape Features
for Meta-Learning Algorithm Selection:
a Study on the Quadratic Assignment
Problem

In the past experiments, a few weaknesses in the approach were detected, which are the target of

this study First, one of the meta-heuristics, the Robust Tabu Search (RO-TS) (Taillard, 1991) had

a considerably worse performance compared to the other algorithms, making the meta-learning

dataset unbalanced. So, here we replaced the RO-TS by the recently proposed Breakout Memetic

Algorithm (Benlic e Hao, 2015). By doing so, we also improved the diversity of the nature of our

algorithm pool by having one perturbative, one constructive and one evolutionary.

Moreover, we also included additional instances drawn from Drezner et al. (2005),

which were designed to be hard for heuristic search. Specifically, they are 12 instances of the

type drexx with sizes ranging from 15 to 132, and 5 instances of the type taixxeyy whose

size is 343, which is very large for the QAP.

Finally, and mainly, this work performs the meta-learning with a new set of FLA

based meta-features that were found in the literature. Besides that, the main drawback of FLA

features for algorithm selection is the high time consumption for the extraction (Pitzer et al.,

2013). Therefore, these features are extracted with a cheaper sampling methodology, namely the

Metropolis-Hasting algorithm, as described in Vanneschi et al. (2004).

7.1 QAP Meta-learning Activities

This Section gives details of the Meta-learning activities that we conduct in this study. Initially,

the meta-heuristic are executed on all instances in order to rank their performances and generate

the meta-labels. Then, the meta-features must be extracted to compose the meta-knowledge

base. Here, we create three different meta-knowledge base composed by three different sets

of meta-features. One of them is the same set generated in Chapter 6. The other two include

the additional FLA meta-features that are extracted with the Metropolis-Hastings sampling,

but considering different sample sizes. At last, the evaluation results of the classification are

described.

7.1.1 Meta-heuristics ranking

For generating the labels, the three described meta-heuristics were run 30 times for every instance,

always with the same set of 30 seeds. These executions were performed on an Intel(R) Core(TM)

i7-5930K CPU @ 3.50GHz, where 10 trials were run in parallel as independent processes. Then,
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each data entry, i.e., the instance meta-features, was labeled as all algorithms that achieved the

same average solution cost over the 30 runs.

Again, the algorithms were executed under the same computational time, such as in

Chapter 6, that uses a fitted polynomial function to dicate the allowed time for an instance based

on its size (Figure 6.1). Therefore, the meta-heuristics were executed for a particular instance

according to the time limit in seconds given by (6.1). For the 5 instances of size greater than 300,

this time was fixed to 5 hours. This time limit is not an actual run time prediction, since it was

set with the only intention of giving the same computational resources for the algorithms in a

fairly reasonable way.

Also, as previously observed, there are several small and easily solvable instances in

which all algorithms achieve the same performance. This means that their meta-features may not

be representative enough for performance prediction. Additionally, their presence in the learning

dataset would deceptively increase the accuracy. Therefore, the dataset was built without these

instances, resulting in the class distribution shown in Figure 7.1.

Figure 7.1: Multi-label dataset (BLS/MMASBI/BMA)

7.1.2 Sampling

The first set of meta-features were extracted by running the sampling strategy proposed by Stützle

(2006), this set is the same used in Chapter 7. First, an Iterated Local Search (ILS) is shortly

executed 1000 times, with 500 iterations each, and all achieved unique local optima solutions are

stored. Next, a Best Improvement Local Search (BI) is randomly repeated until 5000 unique

local optima is found.

Previously, we had set a time limit of 5 minutes for both stages. Since now we are

also including larger instances, it became necessary to run this sampling for a longer period.

Therefore, for running the ILS 1000 times, we set the same time limit as given by (6.1). For the

BI, the execution stops prematurely if no new unique local optima is found after 1000 tries.

We refer to these sets of solutions as ILS/BI sampling. With them, the following

meta-features were extracted:

• Number of pseudo global optima (n_opt): the best unique solutions found during all

short runs of the ILS
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• Fitness Distance Correlation (ils_fdc) and Average Distance to Optima (ils_dst) for the

solutions set given by the ILS sampling

• Fitness Distance Correlation (bi_fdc) and Average Distance to Optima (bi_dst) for the

solutions set given by the BI sampling

The new set of FLA meta-features, which are the main target of this study, are extracted

by applying the Metropolis-Hastings (MH) algorithm. The MH aims at sampling the space

by giving more importance to solutions with better fitness values, thus avoiding the sample of

solutions belonging to the same plateau. Also, this form of exploration is more relatable to the

exploration performed by a searching algorithm (Vanneschi et al., 2004).

Therefore, the algorithm iteratively adds to the sample a solution with better fitness than

the previous by a random factor. This process is shown in Algorithm 1, where m is the sample

size, f (γk) is the fitness of individual γk , u is the factor of acceptance and the α function is given

by

α(x, y) = min
{
1,
y

x

}
(7.1)

Algorithm 1: Metropolis-Hastings

Result: The sample γ with m solutions

γ1 ← random solution

for k = 2 to , do
repeat
φ← random solution

u ← random number from uniform (0,1) distribution
until u <= α( f (γk−1), f (φ))
γk ← φ
k ← k + 1

end

We run the MH until 5000 unique points are stored, which are then referred to as the

base solutions. Moreover, we evaluate the prediction performance of the meta-features calculated

using all 5000 solutions (the complete MH sampling), but also when using only the first 1000

solutions, which is called as the short MH sampling. With these base solutions, the following

meta-features are computed for both the complete and short samples:

• Accumulated Escape Probability (aep)

• Base Dispersion Metric (base_dm)

Then, for each base solution, a BI Local Search is applied and the unique local optima

found are stored. The following meta-features are calculated using this set of local optima (also

for the both sample sizes):

• Optima Fitness Coefficient (opt_fit_coef)

• Average Descent (avg_descent)

• Fitness Distance Correlation (fdc) and Average Distance to Optima (avg_dst): the best

solutions among the local optima set are referred as the pseudo-global optima
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• Optima Dispersion Metric (opt_dm)

All described sampling methodologies are executed on the same CPU that the meta-

heuristics were run (Section 7.1.1), with at maximum 10 processes being run simultaneously.

Figure 7.2 compares the execution times of the three samplings with the time spent when running

all three meta-heuristics. It is noticeable that any sampling method requires less time than

running all search algorithms for large instances. Moreover, the computational advantage of

short MH sampling is visibly evident.

Figure 7.2: Comparison of sampling execution times

7.1.3 Classification

As meta-model, we used the Random Forest implementation from the scikit-learn library, with

the parameters set to 100 estimators and a tree depth limit of 10. In order to keep the tests

equivalent and reproducible, the seed for the random state parameter was fixed to 0. This Random

Forest implementation was arbitrarily chosen because it works with multi-class and multi-label

problems, also dispensing data normalization.

For validating the model, the Leave-one-out Cross Validation strategy was adopted.

Thus, the performance measurements were obtained by micro-averaging the results in each

train/test folding. The evaluation metrics used to assess the classification performances were

the accuracy and the F-scores of each individual class. However, for multi-label classification,

there are different types of accuracies that can be evaluated. In this work, we used the traditional

instance accuracy, given by the Jaccard similarity coefficient between the true and predicted

labels (Madjarov et al., 2012).

Additionally, a second type of accuracy was reported, which we called the recommen-

dation accuracy, that evaluates if the system is able to recommend only the best performing

algorithms, i.e., it considers the classification as correct if there are no false positives for that

instance. As far as we know, this type of accuracy is usually not discussed in the multi-label

learning literature.
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7.2 Results

As first experiment, we trained and evaluated the Random Forest model on the three datasets,

with each having different meta-features, as discussed in Section 7.1.2. Specifically, the dataset

obtained using the ILS/BI sampling contains the same 12 meta-features (7 static and 5 based

on FLA) from our previous work. Meanwhile, the two datasets built with the MH sampling are

made of the same 7 static meta-features plus the 7 new landscape metrics previously described.

Table 7.1 shows the accuracies on the three datasets with different sets of meta-features.

Both the Metropolis-Hastings samplings resulted in better predictions, even with a slight advantage

for the short version. Considering the small computation cost required, this recommendation

accuracy of 75% is very satisfactory.

Table 7.1: Sampling meta-features accuracies

Sampling Instance Accuracy Recommendation Accuracy

ILS/BI 0.66 0.67

MH 0.71 0.74

Short MH 0.72 0.75

If we look at the individual labels F-scores, as displayed in Table 7.2, we can observe

that, besides giving good accuracies, the short sampling meta-features also resulted in better and

more balanced prediction across the classes.

Table 7.2: Labels F-scores

Sampling BLS MMASBI BMA Average

ILS/BI 0.61 0.77 0.66 0.68

MH 0.56 0.83 0.74 0.71

Short MH 0.65 0.81 0.73 0.73

Next, because the meta-features extracted with the MH sampling yielded overall better

results, they are further compared. Here, we evaluated the prediction performances when using

only the FLA meta-features (without the static ones) of both complete and short sampling. The

accuracies shown in Table 7.3 indicates that, in both cases, we could still achieve prediction

performances above random. But now, without the aid of the static features, having a more

complete sample results in a small improvement on accuracy.

Table 7.3: Accuracies with only MH samplings meta-features

Sampling Instance Accuracy Recommendation Accuracy

MH 0.75 0.77

Short MH 0.68 0.70

Nevertheless, the huge reduction of computational cost for the short sample still makes

it desirable, considering that the time consumption is so far a significant drawback when using

FLA metrics for automatic algorithm selection. In fact, if we look at the features distributions of

both samples in Figure 7.3, there are almost no visible differences.

Additionally, the good performances when using only the FLA meta-features are

particularly interesting because, differently from the matrix measures, they can be extracted for

any combinatorial problem.
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(a) MH sampling

(b) Short MH sampling

Figure 7.3: Features distribution

At last, focusing on the short sample and on the FLA meta-features, we trained the model

to perform binary classifications for each algorithm, like a one-vs-all strategy. The intention here

is to better visualize the role of the meta-features to distinct the performances of the algorithms.

The accuracies and F-scores of the positive class, shown in Table 7.4, remained as expected.

Table 7.4: Performance of binary classifications

Algorithm Accuracy F-Score Positive Class

BLS 0.79 0.65

MMASBI 0.87 0.83

BMA 0.76 0.71

The importances percentual of the features (reported by the scikit-learn implementation)

for each algorithm are displayed in Figure 7.4. A first remark is that the dispersion of the local

optima solutions remained as the most important meta-feature in the three cases, whereas the

base dispersions did not have a significant role.

For the MMASBI classification, which had the best prediction accuracy, fewer meta-

features had greater importances. Specifically, the dispersion and the FDC related measures

were fundamental for the classification. If we look at the distribution of these features in Figure

7.3, we can notice that the instances labeled as MMASBI have a lower optima dispersion with a

higher fitness correlation. This means that those instances are better solved by algorithms with

a more exploitative behavior, which is the case for the MMASBI and most of the constructive

meta-heuristics.

Meanwhile, the BLS and BMA classifications required the use of the all features more

equally. This was not unexpected since the BMA also embeds the BLS, meaning that they
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(a) BLS (b) MMASBI

(c) BMA

Figure 7.4: Feature importances

have the same intensification properties. Nevertheless, we can see that the Accumulated Escape

Probability, which is an evolvability metric, had a greater impact on classifying the evolutionary

algorithm.

7.3 Discussion

This paper presented a study on meta-learning for algorithm selection applied to the Quadratic

Assignment Problem. The main objetive was to investigate the use of some recently proposed

meta-features based on Fitness Landscape Analysis. The results demonstrated that it is possible

to obtain good classification performances by using metrics extracted without the need of a

sampling methodology with a high time consumption, which is a recurring problem of FLA.

Nevertheless, we could also achieve satisfactory prediction results even if no problem

specific meta-feature is included. Further, the good predictive power of the meta-features

extracted with low cost of sampling methods, highlights the possibility to incorporate these

features in other techniques that aims at automatising the solving of optimization problems, such

as hyper-heuristics.
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8 Conclusion

This research presented a set of incremental studies about algorithm selection with meta-learning

concepts and measures of Fitness Landscape Analysis. Each progression of the work was

responsible for increasing the robustness of the approach and also was fundamental to draw some

different conclusions.

The first work highlights the potential of achieving high classification accuracy provided

that the practitioner performs some steps to improve the results. Nevertheless, the second paper

shows that even without the manual effort made in the previous study, the selection approach

yield reliable results, at least better than using always only one algorithm to solve the instances.

Finally, the last work demonstrates the possibility of using measures of Fitness Landscape

Analysis as meta-features without requiring a huge amount of computational effort, which is

normally the case when dealing with FLA.

Moreover, since the chosen case study was the Quadratic Assignment Problem, which

is known for being a very hard problem and also being a generalization of other combinatorial

problems, it is likely that similar good performances may be achieved on different domains. This

remains as an open question for future researches.
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