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RESUMO

Neste trabalho apresentamos o estudo do problema de Cauchy para operadores de

p—evolugao com coeficientes dependendo de tempo e espaco, com p > 2, dado por

P(t,x, Dy, Dy)u(t,x) = f(t,z), (t,z)€[0,T] xR
U(va):g(l‘)a zeR

onde f e g pertencem a certos espagos de Gevrey ou Gelfand-Shilov, P é um operador

da forma

p
P(t,x,Dy,Dy) = Dy + ap(t)D2 + Y a,—(t,2)DE7,

j=1
ay(t) € R, os coeficientes a,_; assumem valores complexos e satisfazem condices de
decaimento para |z| — co. Para provar existéncia e unicidade de uma solugao u(t,x)
para este problema em classes de fungoes ou distribuigoes convenientes, precisamos fazer
uma conjugagao em P usando algum operador pseudodiferencial de ordem infinita. Por
fim, concluimos que existe uma unica solugao para este problema, satisfazendo uma
estimativa de energia e, consequentemente, este problema é bem posto em alguma classe

de Gevrey-Sobolev ou alguma classe de Gelfand-Shilov-Sobolev.

Palavras-chave: equacoes de p—evolugao, espacos de Gevrey, espacos de Gelfand-

Shilov, operadores pseudodiferenciais.



ABSTRACT

In this work we present the study of the Cauchy problem for p—evolution operators with

time and space depending coefficients, with p > 2, given by

P(t,x, Dy, Dy)u(t,x) = f(t,z), (t,x)€[0,T] xR
U(va):g(l‘)a zeR

(1)

where f and g are assumed to belong to some Gevrey or Gelfand-Shilov space, P is an

operator of the form

P
P(t,,Dy,Dy) = Dy + ap(t)DE + Y " a,_;(t, 2)DE7,
Jj=1

ap(t) € R, the coefficients a,_; are complex-valued Gevrey regular and satisfy some
decay conditions for |x| — oo. To prove existence and uniqueness of a solution wu(t,x)
for this problem in suitable classes of functions or distributions, we need to perform a
conjugation of P by some special pseudo-differential operator of infinite order. At the
end, we conclude that there exists a unique solution for this problem, satisfying an energy
estimate and, consequently, this problem is well-posed in a certain Gevrey-Sobolev space

or Gelfand-Shilov-Sobolev space.

Keywords: p—evolution equations, Gevrey spaces, Gelfand-Shilov spaces, pseudo-

differential operators.
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INTRODUCTION

The main concern in this PhD thesis is the study of the Cauchy problem for linear p—evolution
equations with initial data in Gevrey and in Gelfand-Shilov spaces. Linear p—evolution equations are a
wide class of PDE introduced by Mizohata in [39] for which the analysis of the Cauchy problem in the
Gevrey setting is still, for several aspects, a challenging and open problem. In this thesis we shall focus
on equations of order 1 in the time variable and p in the space variables, p > 2 being a fixed integer,

and with real characteristics. Namely, we shall consider equations of the form

P
P(t,z, D¢, Dy)u := Dyu + Z Z ajo(t,x)Dyu= f(t,z), tel[0,T], z€R", (2)

7=0 |a|=j
where D := —i0, whose principal symbol in the sense of Petrowski 7+ Z|a\:p ap,o&" = 0 admits a real

root. The coefficients a; depend in general on (t,x). We notice that for p = 1 the equation (2) is
strictly hyperbolic, whereas 2—evolution equations are also called Schrédinger type equations. In fact,
the Schrodinger equation thdyu = —%Au +Vu, t €[0,T], x € R", which models the evolution in time
of the wave function’s state u(t,z) of a quantic particle with mass equals to m, is the most relevant
example of 2—evolution equation. For higher values of p, the importance of p—evolution equations is
mainly related to the fact that they can be viewed as linearizations of several non-linear equations of
physical interest. Namely, assuming for a moment that the coefficients of (3) may depend also on the

unknown u, an example of non-linear 3—evolution equation, for n = 1, is the KdV equation, which is

1 /g 3 g 3 _
Du 2\/;oDzu+\/;<a+2u)Dmu—0, teR, zeR,

and describes the wave motion in shallow waters, where u(t, x) stands for the wave elevation with respect

given by

to the water level h. Another famous non-linear 3—evolution equation is the KdV-Burgers equation
Dyu + 2auDgu + 5ibDyu — chzu =0,

with a,b,c € R, which models both the flow of liquids containing gas bubbles and the propagation of

waves in an elastic tube containing viscous fluid in [31]. For p = 5, we mention the Kawahara equation
Dyu+ uDyu — aDgu — bDiu =0, a,b>0,

describing magneto-acoustic waves in plasma and long water waves under ice cover (see [36, 38]).
Notice that, in all examples mentioned above, the coefficients are independent of time and
space variables t and x, respectively. Actually, in a first approach the coefficients might depend on the

variables ¢ and x, but they are approximated by their main value in order to simplify the equations.
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Although non-linear equations are out of the goals of this thesis, since linearization is often the first
step in the analysis of a non-linear problem, we stress the fact that the results presented here may serve
also for future applications in this direction.

Let us now go back to (2). If the dependence is only with the respect to the time variable,
the way to deal with the equation is via Fourier transform, while if the coefficients depend on the space
variable must be employed some micro-local analysis technique, in particular the pseudo-differential
calculus. Another important fact that can be observed about the coefficients in the examples here
above is that the lower order terms may appear and they can be either real or complex-valued. As
we can see in [16, 23], complex-valued coefficients naturally arise in the study of higher order (in )
evolution equations. Finally, we stress the fact that, except for the case p = 2, all the existing results on
p—evolution equations concern the one space dimensional case, that is € R. The general case is still
totally unexplored and more involved. For simplicity we also focus here on equations in space dimension
1, which nevertheless is sufficiently motivated by the presence of the above mentioned equations from
Mathematical Physics.

After all the previous considerations, we are motivated to study equations of the form Pu = f
where

p
P(t,,Dy,Dy) = Dy + ap(t) D2+ a,—j(t,2)D07,  (t,z) € [0,T] x R, (3)

j=1
under the assumption that the leading coefficient a, is continuous on [0, 77, it is real-valued and does
not vanish on [0,7], and the lower order coefficients a,_;, for j = 1,...,p — 1, belong to the space
C ([0,T]; B> (R; C)), where B> (R; C) is the space of all smooth functions on R which are bounded with

all their derivatives. Our goal in this work is to study the Cauchy problem associated with (3), namely

P(t,x, Dy, Dy)u(t,x) = f(t,z), (t,z)€[0,T] xR

4
u(0,2) =g(z), zeR W

More precisely, we intend to study the well-posedness of the problem (4), that is, the existence of a
unique solution and the continuous dependence of the solution on the Cauchy data, in suitable classes
of functions (which will be the Gevrey and Gelfand-Shilov spaces).

The choice of assuming the coefficient a, () of the leading term independent of x is due to some
technical difficulties which will be clarified later, cf. Remark 3.5. Since a,, is real-valued, 7 = —a,(t)&P
is the real root of the principal symbol of P, and the necessary condition Ima,(¢) <0, for all ¢ € [0, 77,
for well-posedness in H*(R) := Nger H*(R) given in [40] is satisfied. Thus, if the well-posedness in
H®° fails, this is not caused by the principal part but by the lower-order terms. It is known that if the
lower-order coefficients are all real-valued, then the Cauchy problem (4) is well-posed in all the classical
functional settings (L2, Sobolev spaces, Gevrey type spaces) under suitable decay assumptions on the

x-derivatives of a,_; for |z| — oo.

14



If some of the lower order terms a,_;,7 = 1,...,p — 1, are complex-valued, the problem

becomes more challenging. For instance, in the case p = 2, a simple computation leads us to

%Hu(t)HQLQ = 2Re (Qwu(t), u(t)) -

= 2Re (iPu(t),u(t)) -
+2Im ({as(t)D2 + a1 (t, ) Dy + ao(t, z) u(t), u(t)>L2

[Pu(t)|Z> + CllullZ> + 2Im (as(t, 2) Dou(t), u(t)) . -

IN

Once Imaq (t,x) # 0, the last term in the right-hand side of the inequality above does not allow to derive
an L? energy estimate in a straightforward way. Besides, some control on the behaviour of Im a (¢, z)
for || — oo is necessary. Moreover, it becomes necessary to introduce a suitable change of variable,
which will transform the Cauchy problem (4) into an auxiliary Cauchy problem for a new operator of
the same form as (3) but with lower-order terms given by positive operators whose contribution can be
ignored in the application of the energy method. This technique has been used for the first time in [32]
and adapted and generalized in [4, 6, 13, 15, 24]. Of course, there is a price to be paid when we use the
mentioned change of variable, that is, some technical difficulties arise, especially in the Gevrey setting,
where it requires the use of pseudo-differential operators of infinite order. Before moving on with more
details of our work, let us give an overview of results that can be found in the literature about the
problem (4) with P as in (3).

About L? and H™ theory: for p = 2, necessary and sufficient conditions for well-posedness in
the Sobolev setting have been given in [29, 30, 32, 40]. For the general case p > 2, in [13, 14] the authors
have studied the problem. The semi-linear case is treated in [12]. In particular, by [14], we know that
a necessary condition for well-posedness of (4) in H*°(R) is the existence of constants M, N > 0 such
that:

e
SUD o<y / Ima, 1 (t, @+ pap(7)0)d) < Mlog(1+ )+ N, Vo> 0. (5)
zeRVSTSIS —o0

In the Gevrey setting, the well-posedness is studied by introducing a suitable scale of Gevrey-

Sobolev spaces, namely, for m € R, p > 0 and 6 > 1 the Gevrey-Sobolev space HJY (R™) is

™ (R™) = {u € L*(R"): (D,)"e’P=)""y € L2(R™)},

m

where (D, )™ is the pseudo-differential operator given by the symbol (£)™ := (1+£|?)2 and eP(Da)""" i
the pseudo-differential operator given by the symbol Pt Moreover, we set Hy°(R™) = o0 ) (R™)
and HG°(R") = U, H)y(R™). Sufficient conditions for well-posedness in HG°(R") have been studied
only in the cases p = 2 in [17, 24, 32] and recently in [6] for 3-evolution equations. Concerning necessary

conditions in the Gevrey setting, the authors in [7] have proved the following result for the operator (3):

Theorem. If the Cauchy problem (4) is well-posed in H*(R), 0 > 1, and:

15



i) there exist R,A >0 and o,—; € [0,1], 7=1,...,p— 1, such that
p—j
Ima,_j(t,z) > A(z) %7, z>R(or x<—R),t€[0,T],j=1,...,p—1;
(ii) there exists C > 0 such that for every § € N:
00ap_j(t, )| < CPHBUz) 7, weR, te(0,T], j=1,...,p,

then

2= max {(p-1)(1-0,;)—j+1} <7 (©)
Jj=1,....,p—1 0

The previous result gives some necessary conditions on the decay rates of the coefficients
for the Gevrey well-posedness. Due to the fact that = > 0 and é < 1, the following sentences are

consequences of (6):

e if o, ; < 2=12J for some j =1,...,p — 1, the Cauchy problem is not well-posed in H:°(R);
pP=J p—1 J ’ p y P p 0 ’
o ifo,_; € (p;i;j, 1’:{) for some j = 1,...,p — 1, then the power o,_; imposes the restriction

(p—1)(1—0,_j) —j+1< 4 for the indices 6 where H3°(R) well-posedness can be found;

o if g, > ;’%{ for some j = 1,...,p — 1, then the power o,_; has no effect on the Hg°(R)

well-posedness.

We can use this result for a better understanding of the sufficient conditions given in [6, 32] for the

cases p = 2,3 and in this thesis for a generic p. In short, in the case p = 2 in [32], the assumption over

the coefficient a; is that it is Gevrey regular of order 6y > 1 and the decay at infinity goes like |2| =7 for

some o € (0,1), and well-posedness in H3°(R) is achieved for §y < 6 < (1 —o)~'. On other hand, for
1

the case p = 3, in [6], assuming o € (%7 1) ,00 < o) and

(i) as € C'([0,T];R) and 3C,, > 0 such that |az(t)| > Cq, ¥Vt € (0,17,
(i) ap—; € C([0,T]; G (R)), 6y > 1, for j =1,2,3,
(iii) there exists Cy, > 0 such that

102as(t,z)| < CEFIRI%(2)=7, VWt € [0,T], z € R, B € Ny,

(iv) there exists Cy, such that [Imay(t,z)| < C,, (x)~2 for every t € [0,T], z € R,

then well-posedness in Hg°(R), for 6 € [00, ﬁ), holds. A similar analysis has been developed for
H°(R), cf. [5] and in the Gelfand-Shilov spaces 8¢(R), cf. [3, 4, 15]. The space 8¢(R), s > 1, 6 > 1, is
defined as the space of all f € C°°(R) such that

07 f(2)] < CIIT187 exp (el

1
?), r € R,

16



for all B € Ny and for some constants C,c¢ > 0 independent of 3. These spaces introduced in [26]
represent a global counterpart of Gevrey spaces and acquired strong importance in the last decades as
a functional setting to micro-local analysis and PDE, cf. [3, 6, 4, 9, 15, 20, 21, 22, 41, 43].

Taking into account the above mentioned results, the aim of this thesis is then to extend
the analysis of the Cauchy problem with data in Gevrey and in Gelfand-Shilov spaces to the case of
p—evolution equations of arbitrary order p. We are now ready to describe in short how the chapters
are presented and divided. As a matter of fact, it can be informed in advance that, the most important

results of this thesis are:
e Theorems 3.1 and 3.3 in Chapter 3
e Theorem 4.1 and Theorem 4.2 in Chapter 4.

The Chapters 1 and 2 are dedicated to background theory. To be more specific, we devote
Chapter 1 to introduce notations, formulas, inequalities and some functional spaces. In Chapter 2,
the symbol classes are presented together with the associated pseudo-differential operators and we also
collect several results concerning pseudo-differential calculus.

In Chapter 3, our goal is to prove Theorems 3.1 and 3.3. In short, both theorems aim to study
well-posedness for the Cauchy problem (4); the only difference is that in Theorem 3.1 we are interested
in studying the problem for the inductive Gevrey-Sobolev space H°(R), while in Theorem 3.3 we are
interested in the projective Gevrey-Sobolev space Hj°(R). In order to obtain these results, we devote
most part of the chapter to find a way to conjugate our p—evolution operator to get an equivalent
Cauchy problem which allows to employ well known theory and obtain the desired conclusions. Part of
the content of this chapter, namely Theorem 3.1, appeared in the recent paper [8].

Finally, in Chapter 4, in the first part, we study well-posedness for the Cauchy problem (4),
in the Gelfand-Shilov setting, that is, the well-posedness is studied with respect to the space 8%(R).
Namely, in Theorem 4.1, under the same assumptions of Theorem 3.1 on P(t,z, Dy, D,) we prove a
well-posedness result in 8Y(R) for # < min {Wl(l—a)’ p%l} In the second part of the chapter we
prove that this upper bound for 6 is indeed sharp, i.e. we prove that if (p — 1) > min {ﬁ, s}, then
the Cauchy problem (4) is not well-posed in general for an operator satisfying assumptions of Theorem
4.1. This last part is the content of Theorem 4.2.

The thesis is concluded by some final remarks on open problems and possible improvements

of the results presented.
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Chapter 1

PRELIMINARIES

As usual, we dedicate this chapter to introduce some basic notations and concepts that we

will need for the whole work.

1.1 Multi-indexes and some differential formulas

By Ny we denote the union of the sets {0} and N = {1,2,...}. Any element of the set

N = Np x -+- x Ny, n € Ny, is called a multi-index and we can represent o € Njj as o := (aq, ..., ).
| —

n—times
The length of a multi-index is defined as the number

la] = a1+ -+ + ay.

For any = = (21,...,x,) € R” and a = (ay, ..., o) € Njj we define

(03

=gt

n °

In R™ the j-th partial derivative operator, j = 1,...,n, is represented by % (when we have
J
no doubt about the variable, we can write it just as d;;). Another important notation is D,, = —i0,,,

where i = /—1. If @« = (a1, ..., ) is a multi-index, then we may define

0% := 0% ...0%  and  D%:= D ...Do.

Tn Tn

. . lol
The above notation also can be viewed as 0% = 9% and

SOl Ao
Oxy ' Oxy,

D*=Dgl - Dgr = (=i0y, )™ -+ (=i, ) = (=0)*(8g) - 9gr) = (=)o,

If a« = (a1,...,a) and 8 = (1, ..., Bn) are multi-indexes, we say that « is less than or equal
to B (o < ) if and only if
Qa; < ,Bj, Vj = 1, ey N

The factorial of o = (aq, ..., ap,) € N} is defined by
al:=aq! - a,l.

Given «, 8 € Ny, with g < «, we define the binomial coefficient

(3) = 5=
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with a — 8 := (a1 — B1, .., . — Bn)-

Now, by using these ideas about multi-indexes, let us present some important formulas whose

notations will depend of it.

e The Taylor formula: The set of all infinite differentiable functions f: R™ — C will be denoted
by C*(R™). If f € C>(R"), its Taylor formula is given by the following: given N € N,

fa+6=Y %(aaf)(x)wv 3 %/O (1= ON-1(0°f)(x + 06)dd, =,€ € R™.

la|<N la]=N

e Leibniz Rule: Another formula that will be often used is the well known Leibniz rule:

« Oé! « « @ o—
Dfg)= DL e PP =) (5>D5fD °9.
altaz=a B<a

e Faa di Bruno formula: If f: R — C and g: R* — R, then

|| . J

. [9(g()) al »

92(f o g)(a) = g SR D el | SR
el > 1

1.2 Useful identities and inequalities

Now we intend to establish some identities and inequalities that will be used frequently during
our work to perform very important estimates which characterize the spaces we are interested to work

with. Given N € N and tq, ...,t, € R, the generalized Newton formula is given by

n

N! N!
N _ i N _ s o
(it ttn)¥ =3 —rt?or (et = Y e [

la|=N la|=N i=1
a€Ng a€eNg
In particular, if ¢t = --- =t, = 1, if follows that
N!
N _ -
= Z al’
|la]=N

From the above identity, we can derive some inequalities and identities. In fact:

e If N = |af, then

lal < nlelal, o e NE.

o If n =2, we obtain
N N!
oV = ) S (1.1)
jh=n I
From this, with N = j + k, if follows that
(J+k)!

il <R o (G k)< 2R IR
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Obviously, (j + k)! < 27+F41k! implies that
(a+ B)! < 2letBlagr,

It is easy to notice that (1.1) can be written as

|
a1!a2!

altas=a

Another inequality that will be often used is
alfl < (a+ p)l.

Now, by considering the Taylor expansion of the exponential e! = Zzozo %, t > 0, we can
obtain

tN < NV, NeNg, t>0.

For the next inequalities, let us consider the following notations: if z,& € R", we set

z¢ ;:x.fzzxjgj’ || ::Zm? and (x) == 1+ |z|%
j=1

j=1
The symbol (z) is called the japanese bracket of x. Besides, (-) is a smooth function with asymptotic

behaviour equivalent to 1 + |z| for |z| — oo since
(x) <1+ |z] <V2(z), z€R"

and

07 (@)™ < C1PI g1y 1P,
for some constant C' > 0 independent of 5. Finally, for any s € R there exists c¢s > 0 such that
(z+6)° Ses(2)(e)°, z,6 R,

and this inequality is known as Peetre’s inequality. Another useful notation we shall use frequently is

the bracket (£)y,, where 1 is replaced by some constant h > 1, that is,

(Ehn = V> +[¢%.

1.3 Fourier transform and inversion formula

Our intention from now until the end of this chapter is to define several spaces of functions
and/or distributions which will be used as domain of pseudo-differential operators or simply the universe

where we are considering the data of a Cauchy problem.
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As mentioned before, the space of all infinitely differentiable functions f: R™ — C, or simply
the space of smooth functions, is denoted by C*°(R™).
The space L2(R") is the set of all measurable functions f: R™ — C satisfying

1

il = { /. f<x>|2d4 * < foo.

We point that || - ||z2 is a norm in L?(R") induced by the inner product

(fag)L2 = on f(x)gzgjdxa fag € L2(H£n)

and (L?(R™), (,-)12) is a Hilbert space.
The space of all smooth rapidly decreasing functions, also known as the Schwartz space, will

be denoted by . (R"™) and it is characterized as

pe.Z(R") & e C®R") and satisfies sup |2207p(z)| < 400, a, € Np.
ESING

The Schwartz space is a Fréchet space when equipped with the usual semi-norms

lelle,s» == max sup |m0‘8£g0(x)|, (e IN(, p e S (R").
‘a+6|§€x€R”

The topological dual of #(R"™), denoted by /(R™), is called the space of tempered distributions.
Now we are able to talk about the Fourier transform. We define the Fourier transform of a
function ¢ € /(R") as
F@O=0) = [ o)z, (R

The map % : . (R") — .%(R™) is an isomorphism which can be extended to an isomorphism ./ (R"™) —
Z!(R™) and L?(R™) — L?(R™). The inverse Fourier transform of ¢ € .#(R") is defined by

n

F ) (a) = (2m)" / o (E)dE, @€ R

We conclude this section with two very important formulas involving the Fourier transform:

e Parseval formula: [, f(z)g(z)dx = (2m)™" [;. F(£)(€)F (9)(£)de.

e Plancherel formula: ||f|2. = (2r) " ||.Z (f)|3..

1.4 Sobolev, Gevrey and Gelfand-Shilov spaces
The standard Sobolev space H®(R™) is defined as

HYR") :={uec ' (R"): (D)*uc L*(R")}, scR,
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where (D)* is the Fourier multiplier defined by (D)*u = % ~1({:)*u(-)). For s = (s1,s2) € R? we also

define the weighted Sobolev space
H*(R™) = H**2(R") = {u € .¥'(R™): (z)*2(D)*u € L*(R")}.

Notice that
) H*®") =R, |J H®R")=5"R").

sER2 s€R2
One of the most important spaces that we need to consider for our work is the space of

functions of Gevrey type. Namely, some of the functions involved in the main result of this work are
functions of this type. In the book [44], L. Rodino presents a very well detailed development of the
Gevrey theory.

Given § > 1 and h > 0, the set G?(R"; ) is defined as follows:

peG(R"h) & e C®R") and lellgo@niny < +oo,

where

I pllGo(rnpny = sup sup [0%p(x)[h~ a1 ~?.
z€R™ aeNy

The norm || - [|gegn,p) turns G?(R™; ) into a Banach space. Observe that G?(R";h) € G?(R"; 1) if
h < h'. Then we can define

G'®R") = G"(R™; R

h>0

endowed with the inductive limit topology. By G§(R™) we denote the set of all compactly supported
functions in GY(R™). Still in the Gevrey setting, we also define the space (R™) as the space of all
smooth functions such that

sup sup b1l (a)7%0% f(z)| < o0
a€eNy zeR™

for every h > 0, and 7J(R™) stands for the space of all compactly supported functions in 7% (R™).
In order to obtain energy estimates for our p—evolution equations we need to work with Hilbert

spaces of Gevrey regular functions. With this purpose, for § > 1, m, p € R, we set
Hy(R") = {ue #'(R") : (D)"e" PV "y e L2(R™)},

where (D)™ and e?(P )"'? are the Fourier multipliers with symbols (&)™ and P&’ respectively. We

call this kind of space a Gevrey-Sobolev space. It is a Hilbert space equipped with the inner product
(u,v)gm = ((D}mepw)l/gu <D>mep<D>1/9U) u,v € H'Y(R™)
B Hp;?) — 5 12 ) ) ;0 .
For p = 0 we recover the standard Sobolev spaces H™(R™). We set

HPR") := | J HJp(R") and  HG*(R") := (| HJ:
p>0 p>0
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Remark 1.1. Notice that Hg};e(R”) C HJy(R™) whenever m" > m and p" > p. This is a consequence

of Plancherel formula, since we have

P60 —

£z, < 1F gy, £ € Hp®).
The previous Gevrey spaces are related with Hg°(R™) and Hg°(R™) through the inclusions
GH(R") € 3 (R") € G°(R™)
and
W(R") C HFER") C7°(R").

Next, let us introduce some definitions and properties concerning the so called Gelfand-Shilov
spaces. The reader can find a deeper approach to this subject in [22, 26, 39, 43]. If s > 1,6 >1, A >0
and B > 0, we say that a function f belongs to the set Sz:g (R™) if f is smooth and there exists C' > 0
such that

2705 f(x)| < CAIIBY I (al)?(81)°,

for each «, 8 € Ny and x € R™. The function || - |lg,s,4,5: 59 A(R”) — R given by

[ fllo,s,4,5 :== sup sup |2°0% f(z)|A7I*IB7IPl(al) =0 (1),
zER™ a,BEN]

is a norm in SZ’g (R™) which turns it into a Banach space. As usual, we can define the spaces
SIR™) = | SUAMR™Y) and EIR"):= [ SUARM),
A,B>0 A,B>0
respectively, with the inductive and projective limit topology. When s = 6, the notations 85(R™) and

$9(R™) can be simplified as 8y(R™) and y(R™), respectively.

Remark 1.2. The spaces 8?(R™) and X%(R™) may also be characterized in a different way. Let C' > 0
and € > 0. The space Szf(R”) is defined as the set of all smooth functions f such that

,C
1156 < +oo,

where

.C - - H
I£1155 = sup sup C~1*(al)=%e V" |52 f ()]
z€R™ a €Ny

15 a norm which turns S‘zf(R") ito a Banach space. Then, we have

SIRY) = | J 82ER") and XIR™) = [ 82I(R")
C,e>0 C,e>0

with equivalent topologies to the ones described above.
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For p = (p1,p2) € R?, p1,p2 > 0, and m = (my, mz) € R?, we consider
;?S,Q(Rn) — {U, c y!(Rn) . <x>m2<D>m16p2<z>l/s6p1<D>1/9u c LQ(Rn)}.

which is called Gelfand-Shilov-Sobolev space. By endowing H . , (R™) with the inner product

(1, 0) = (<x>m2 <D>m1epz(w}l/sem(D}l/ew ()™= <D>m1epz(w)l/sep1<D>1/9U> ( )7u,v € H™ o(R™),
PiS, L2(R" 19y
it becomes a Hilbert space and the induced norm is denoted by || - ”H;'fs ,- Fors <&, 0 <0, m; >m]

and p; > ,0;-, j = 1,2, the following inclusion holds
;:LS,G( n) - HZ};S’,G/(RH)'
Then, the Gelfand-Shilov classes can be expressed as

Sz(Rn) = U H2;579(Rn) and Zz(Rn) = ﬂ HO;S,Q(Rn)

p1,p2>0 p1,p2>0

As usual, the dual spaces of §(R") and %¢(R™) will be denoted as (87)'(R™) and (%9)"(R"),

respectively.

Remark 1.3. The following inclusions are obviously continuous
ZIR") C 8UR") C TIEE(R™),

for each € > 0.

Concerning the Fourier transform, the Gelfand-Shilov type spaces have the following proper-
ties:

F: YR = B5(R"), F: 8Y(R™) — 85(RM),
F:(B)(R™) = (Z5)(R™),  F: (89)'(R™) = (85) (R™)

are all isomorphisms.
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Chapter 2

PSEUDO-DIFFERENTIAL OPERATORS AND SYMBOLIC
CALCULUS

This chapter is dedicated to introduce several classes of symbols and the related pseudo-
differential operators we shall work with and a suitable version of the sharp Garding inequality. The
pseudo-differential operator theory developed here is based mostly in the work [2]. In the frame of
pseudo-differential operators, we are also using results and concepts which can be found in [1, 18, 19,
20, 21, 25, 28, 37, 41, 42, 44, 45, 46].

Let us consider the set

BX(R") = {p € C°(R™;C) : sup |0°p(z)| < oo, VB € NI}.
TER™

The action of a linear partial differential operator

p(z, D) = jg: aa () D%,

lor|<m

with coefficients a, € B> (R"™), can be expressed as
paD)u(e) = [ €pla )aQ)d, 7 €RY, we SR (2.1)

where p(z,€) is the symbol of the operator p(x, D), which is given by

p(@,€) = Y aa(2)E”, (x,6) €R™

o] <m

and d@¢ = (2m)"d€.
Remark 2.1. We point that:
e (2.1) can be obtained by using Fourier transform and its standard properties.

e The symbol p(z, &) satisfies: for all o, B € Ny, there exists Cy. 5 > 0 such that

0807 p(x,€)] < Ca (€)1, (2,6) e R*™. (2.2)

The right hand side of (2.1) indeed makes sense for any smooth function p(z, ) satisfying an

estimate like (2.2), for m € R. Smooth functions with this property are called symbols, and operators of
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the form (2.1) associated with some symbol are called pseudo-differential operators (p.d.o.). If a symbol
is polynomially bounded like in (2.2), we say that it has finite order. When a symbol is not polynomially

bounded but it is bounded by an exponential function, the symbol has infinite order.

Remark 2.2. Concerning operators of infinite order, intending to obtain convergence in the integral
which defines the right hand side of (2.1), it is required some stronger decay condition for the Fourier

transform of u, for this we could take u belonging to some suitable Gelfand-Shilov class.

Sometimes we will be interested in symbols that have boundedness of polynomial type with
respect to variables x and & simultaneously, namely: for mq, ms € R, for each o, 8 € Njj, there exists
Ca,3 > 0 such that

0805 p(w,6)] < Cap(€)™ 1N z)m VL (2,6) e R*™, (2.3)

Operators with symbols satisfying (2.3) are called pseudo-differential operators of SG type.

2.1 S™(R*) and SG™(R*") classes

In this section we present the well known Hérmander classes S™(R?") and the SG™ (R?*")
classes. In the sequel, we intend to list some results involving these classes of symbols and their principal

properties. Proofs and more details can be found in [18], [25], [37], [41], [42] and [45].

Definition 2.1. Let m be a real number. A smooth function p belongs to S™(R?") if for every

a, B € Njj, there exists a constant C, g > 0 such that
0207p(x,€)| < Capl)™ 1, (,6) R
The class S™(R?") is a Fréchet space equipped with the semi-norms

plsm ¢ = max sup 8‘”8513 z,6)|(€ 7m+|a‘7 pesm R reN,.
| ‘S |a+B]<L ((1;7£)ER277/‘ 3 ( )|< > ( ) 0

If a pseudo-differential operator has its symbol belonging to S™(R?"), it is continuous from
7 (R™) to itself and it can be extended to a continuous map from .#’(R™) to itself. Actually, another
kind of extension can be established for operators of this nature: an operator with symbol in S™(R?")
extends to a bounded map from H*(R"™) to H*~™(R"), for all s € R. The norm of the pseudo-differential
operator p(x,D): H*(R™) — H* ™(R) is bounded in terms of a finite number of semi-norms of the
symbol p.

As usual, when we are working with pseudo-differential operators, it is fundamental to consider
the asymptotic expansion of symbols. This will make our life easier when we need to compose, to take

adjoint and transpose operators.
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Definition 2.2. Let (m;);en, be a non-increasing sequence of real numbers which diverges to —oo,
and symbols p € S™(R?"), p; € S™i(R?"), for all j € Ny, with m = mg. We say that p is asymptotic
to Y, pj in S (R*") if

p— Y p €S™(R™), VYNeN.
J<N

If p is asymptotic to Ej pj, it can be used the notation p ~ Zj p; in S™(R?*") to indicate it.

The next results concern to the composition, adjoint and transposition of pseudo-differential

operators whose symbols are in the Hormander classes.

Theorem 2.1. Let p € S™(R?") and q € S™ (R2"). There exists ¢ € S™™ (R2™) such that
c(z,D) = p(x, D) o q(z, D)

and

1 N m m/ n
c(@,€) ~ D —0Ep(x, ) Diq(w,€) in 8™ (R).
— al
Theorem 2.2. Let p € S™(R??), p*(z, D) the L*-adjoint and ‘p(x, D) the transpose of p(x, D). Then:

(i) There exists a € S™(R?*") such that a(x, D) = p*(z, D) and

el
(w6~ 3 3 O¢ Dgp(x,€) in S™(R™).

(ii) There exists b € S™(R?") such that b(z, D) = 'p(x, D) and

b, €) ~ 3 (02 DEp)(, ~€) in ST (R,

(o3

Now let us introduce a new weight function ()" bounding our symbols and its derivatives.

From this it will raise the so called SG classes.

Definition 2.3. Let m = (mj,my) € R2. We shall denote by SG™(R?") or by SG™*"?(R?") the
space of all functions p € C°°(R?") such that for every a, 3 € N%, there exists a constant Cu,3 > 0 such
that

108 07 p(,€)| < Cap(&)™ 1N (@)= 71PL (2,€) € R*".

The class SG™(R?") is a Fréchet space equipped with the semi-norms

plsgme = max sup |0£0Sp(w,&)|(&) " ol (z)TmeFIBl L p € SG™(R™), € € No.
lat+B]|<¢t (z,&)€ER2"

If a pseudo-differential operator has its symbol belonging to SG™(R?"), it is continuous from
Z(R™) to itself and it can be extended to a continuous map from .’/(R™) to itself. Another kind of
extension can be established for operators of this nature: an operator with symbol in SG™ (R?") extends

to a bounded map from H*1*2(R™) to H51~™1:52=m2(R") for all s = (s1,52) € R%.
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Definition 2.4. An operator r(z, D) is said to be a SG smoothing operator if its symbol r(x, ) belongs
to SG™(R?") for all m € R?. In fact, under this condition, r(z, D) maps continuously .#/(R") —
S (R™).

Remark 2.3. Notice that
(] SG™(R*™) = 7 (R*").

meR?

Definition 2.5. Let (m;)jen,, m; = (mgj)7m§j)), be a sequence in R? whose coordinates are non-

increasing sequences of real numbers which diverge to —oo, and symbols p € SG™ (R?*"), p; € SG™ (R?"),

for all j € Ng, with m = mg. We say that p is asymptotic to Zj p; in SG™(R?") if

p— Y pj €SG™(R™), VNeN.
J<N
If p is asymptotic to Zj pj, it can be used the notation p ~ Zj p; in SG™(R?") to indicate it.
Theorem 2.3. Letp € SG™(R?*") and q € SG™ (R?™). There exist ¢ € sGmtm (R?*™) and a smoothing

operator r(x, D) such that
p(z, D)o q(x,D) = c(x,D) + r(z,D)

and

le,€) ~ Y~ 0Dl ) D a(w,€) in SG™™ (&),

Theorem 2.4. Let p € SG™(R?*"), p*(x, D) the L?>—adjoint and ‘p(x, D) the transpose of p(x, D).
Then:

(i) There exist a € SG™(R?") and a smoothing operator r1(z, D) such that
p*(z,D) = a(x, D) +ri(x, D)

and

a(z,&) ~ Y %ﬁla‘m in SG™(R?™).
(ii) There exist b € SG™(R?*") and a smoothing operator ro(x, D) such that
'p(x, D) = b(x, D) + r2(x, D)
and

b, €) ~ 3 (08 DSp)(r, ~€) in SG™ (B,

«
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2.2 Sp,(R*™), T, (R*) and S7°,,(R*") classes

In the analysis of p—evolution equations in Gevrey and Gelfand-Shilov spaces we will need to
work with symbols in Hérmander and SG classes which are also Gevrey regular and with operators of
infinite order. We dedicate this section to introduce these symbols. The theory presented here can be

found in [2], Chapter 2, and other recommended works are [15, 19, 27, 44, 46].

Definition 2.6. Let A > 0, u,v > 1 and m € R. We define SKD(R%; A) to be the Banach space of

all smooth functions a(x, &) satisfying

lalla:= sup sup A~IFFlarmrgIm(g)=mHel 920l a(z, €)| < +oo.
o,BENy z,L€R™

We set

RQn 3 U S RZn
A>0

equipped with the inductive limit topology of the Banach spaces S}, (R?7; A), and

RQn . ﬂ S RQn
A>0

equipped with the projective limit topology of the Banach spaces S:ZV(RM; A).

Definition 2.7. Let A > 0, p,v > 1 and m € R. We define gmy(RQ”; A) to be the Banach space of

all smooth functions a(x, £) satisfying

llall|a := sup sup A~loFAlal=rg1I=v(e)= m|8°‘8ﬁ (x,6)] < +o0.
a,BeNG z,£€R™

We set,

R2n . U S RQn
A>0

equipped with the inductive limit topology and

R2n ) ﬂ S R2n
A>0

equipped with the projective limit topology.
Finally, we define symbols of infinite order.

Definition 2.8. Let consider the constants p,r,0 > 1 and A,c¢ > 0. The space S ,(R?"; A, c) is

w30

defined as the Banach space of all smooth functions a(zx, £) satisfying

1
lallac = sup sup A~lFAlal=rp1I7v(g)lele=<lEl” |28 a(z, €)| < +oo.
o,BENG x,EER
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We set

;.L?U;O(Rzn) = U Sy (Rzn;Avc)

,v30
A,c>0

endowed with the inductive limit topology of the Banach spaces SZ"’V;Q(]RQ”; A c).

Remark 2.4. If the constants p and v are equal, then the spaces SZM(RQ"), ST,N(R%) and S57,,

will be denoted for simplicity by SZL(]R%), SZL(R%) and SZ?O(R%), respectively.

(R2")

Remark 2.5. For allm € R and 6 > 1, we have S}}'(R*") C S;?a(R2”),
Remark 2.6. If i1 < pig, then for every A > 0 we have ST (R**; A) C T2 (R*") and gl’ﬁ (R?"; A) C
I‘an (RQ”).

We dedicate the next subsections to collect some definitions, properties and results concerning

the pseudo-differential operators with symbols in S$2°, ,(R*") and S}, (R*").

2.2.1 Continuity on Gelfand-Shilov spaces

The next result states that any operator of the form (2.1) acts continuously on Gelfand-Shilov

spaces and its proof can be checked in [2], Proposition 2.1.

Proposition 2.1. Let p,v,s,0 > 1 such that s > p and 0 > v. Ifp € S;‘Lf’y;g(RQ"), then the operator

p(z, D) is continuous from X(R") to X9(R") and it can be extended to a linear continuous operator

from (22)'(R™) to (29)'(R™).

Remark 2.7. Using the same argument as in the proof of Proposition 2.1, it can be proved that operators
with finite order symbols in S}, (R*") are continuous from 8%(R™) into 8¢(R™) if s > p and 0 > v and

it extends continuously to the dual space (82)(R™).

2.2.2 Asymptotic sums

In order to develop a symbolic calculus for the classes of pseudo-differential operators we are

dealing with, we will need the following concept of asymptotic sums.
Definition 2.9. We say that:

(i) the formal sum »>72a; belongs to FS;°,.o(R*) if a; € C°°(R**) and there are constants

H,C,c, B > 0 such that
. . 1
08080, (x, )| < HOIH125aun g juutv—1(g)~lal—i el

for every o, f € NI, # € R", j € Ny and (€) > B(j) := Bj#t 1.
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(ii) the formal sum Z;io a; belongs to FS} (R*") if a; € C*°(R*") and there are constants H,C, B >
0 such that
|8£o¢a§aj (.’17, g)l < Hc\a+[3\+2ja!p,ﬁ!uj!u+y—1 <€>m—|oz\—j7

for every a, 3 € NZ, € R", j € Ny and (£) > B(j) := Bj*+v—1.

Remark 2.8. Notice that S7°,,. o(R*™) can be viewed as a subset of FS}Y, o(R*") in the sense that, for
o VQ(R%) we set ag := a and aj =0, for j > 1, thena =} a; € FS;’,.o(R®"). On the other
hand if 3>, b; € FS;7,, o(R2™) then by € S

case FS}} (R*™) and S}, (R*").

8%

a € 8%

o G(RQ”). Analogous considerations hold for the finite order

Remark 2.9. For every m € R and 6 > 1 the inclusion FS}}' (R**) C FS;°,o(R**) holds.

;0

Remark 2.10. Let a,b € S5°, ,(R*"). Define, for j >0,

o (_1)|a\ a o _ 1 1o} «
= ——0¢Da, d; = ZaagaDzb.

lov|=3 lev|=3

Then ) cj, > ;d; € FS7,, 0(R?"™). We have analogous considerations for the finite order case SJ', (R*").

I, 1/(

Definition 2.10. Let }:;a;,> . b; € FS/7 (R?"). The notation >_ja; ~ >_;b; means that there

w0
are constants H, C, ¢, B > 0 satisfying

1
0807 Y (aj = bj)(,€)| < HCIHPIF2N que g1 Nty =1 (g lal =N eelel
<N
for every o, 3 € N§, 2 € R", N € N and (£) > B(N) := BN**"~1. An analogous definition can be
established for FS}’ (R*").

Proposition 2.2. If Z a; € FS},
an~ 3 ;a; inFS;

(R?™), then there exists a symbol a € S ,(R?") such that

1,v;0
(R*"). An analogous result holds for FS (R*").

1,0

w30

Proof. We address the reader to Proposition 2.2 in [2]. 0
The next result is responsible to provide us a way to define regularizing operators for our

classes.
Proposition 2.3. Let a,b € S, ,(R*") and 3 a; € FS;7, ,(R*). Ifa~ 3 a; ~bin FS, o(R*)
and 0 > p+ v — 1, then there exist constants H,C,c > 0 such that

0805 (a — b)(x,8)| < HC1*HPlalrple<ll” - 5 ¢ e R", o, B € N,
where r >+ v — 1.
Proof. Check Proposition 2.3 of [2]. 0

In an analogous way, a similar result can be obtained for the classes of finite order, except

that in this case we do not need to ask any hypothesis over the parameter 6.
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Proposition 2.4. Leta,b € S, (R*") and 3, a; € FS]' (R*"). Ifa~ " a; ~bin FS], (R*") then

2214

there exist constants H,C,c > 0 such that
1
10208 (a — b)(2,&)| < HCIPHPlalrglre =™ 4 ¢ e R™ a, 8 € N,
where r > pu+v — 1.

Definition 2.11. For any 7 > 1, we define JZ; as the space of all symbols ¢ € S}TU;Q(RQ”) such that

for every r > 7 there exist positive constants C' and ¢ such that
1
0208 q(z,€)| < ClotAITLaIrgIre=eltl™ 5 ¢ e R" a, B € N}
The operator @ = ¢(x, D) is said to be 7—regularizing whenever its symbol ¢(z, &) belongs to .

Remark 2.11. Operators with symbols in Jz are regularizing in the sense that they can be extended
to linear and continuous maps from (v§)'(R™) to 4%(R™) if @ > 7. This can be easily proved observing
that the Fourier transform of u € (v§) (R™) goes like exp(fc|§|%) for some ¢ > 0 and arquing as in [}4,

Lemma 8.2.12]. See also Theorem 2.8 for other regularizing properties of these operators.

2.2.3 Adjoint, transpose and composition

This section is dedicated to analyse how to deal with the composition, transpose and adjoint
of our pseudo-differential operators. The first result concerns the adjoint and the transpose, and its

proof can be checked in [2], Theorem 2.6.
Theorem 2.5. Letp € SZ?V;Q(RQ”) with p,v > 1 and 0 > p+v—1. Let moreover p*(z, D) and 'p(x, D)

the L? adjoint and the transpose of p(xz, D) respectively. Then there exist symbols q; € Sfij;e(RQ") and

Tj € Kpytv—1, j = 1,2, such that

el
p*(x,D) = q1(z,D) + ri(x, D), q(x,&) ~ Z ( 3 g Dep(x,§) in F fj‘fy;g(RZ”)

and

'p(w, D) = qa(x, D) +r2(z, D), qa(w,&) ~ > 5(3?17319)(93, —€) in FS%,.(R*").

By Lemma 2.5 in [2], if > 1, v > 1, 0 satisfies > p+v—1,r € X, 4,1 andp € wag(RQ"),
then all the operators 'r(z, D), r*(x, D) and p(z, D) o r(x, D) are generated by symbols in 4, 1.
In other words, for regularizing symbols, the transpose and the adjoint do not lose the characteristic
of being given by symbols which still are regularizing. The same holds if we compose an operator of
infinite order symbol with an operator with regularizing symbol. The next result concerns about the

composition of two pseudo-differential operators whose symbols are in Sivie (R?"). A complete proof

for such result can be found in Theorem 2.7 of [2].
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Theorem 2.6. Let us consider the parameters p,v > 1 and 0 > p+ v — 1. If p and q are symbols in

Shov: o (R?™), then there exist symbols s € Sy, 0(R2”) and r € Hjq,—1 such that

p(z, D) o gq(x,D) = s(z, D) + r(x, D), Z agp z,£)D3q(x, &) in FSY2, 4 (R*™).

Remark 2.12. To conclude this subsection, we point out that analogous results concerning the prod-
uct, transpose and adjoints of pseudo-differential operators with symbols in SZfl,(R”) can be obtained.

Besides, in the frame of finite order we do not need to require any hypothesis over the parameter 6.

Pseudo-differential operators of finite order act in Gevrey-Sobolev spaces according to the

next Theorem.

Theorem 2.7. Let p € SZZ;(RQ") and consider the parameters 0 > yu+v —1 and m,p € R. Then
p(z,D): HJH(R") — H;’?{m/ (R™), continuously.

Proof. Check Theorem 2.8 in [2]. 0
To conclude, the next result tells us how regularizing operators act in Gevrey-Sobolev spaces.

The proof can be consulted in [2], Theorem 2.9.

Theorem 2.8. If u,v >1,0>pu+v—1andr € H#,q1,_1, then for everym € R and p € R

r(x,D): H ﬂ R™), continuously.
pER

m 2n m 2n
2.3 SG},(R™) and I'G}},(R*") classes

The symbol classes introduced here satisfy some Gevrey estimates and the boundedness is
given in terms of weights with respect to the both variables z and &, namely (z) and (). We start with

some definitions.

Definition 2.12. Let A > 0, m := (m1,mz) € R* and p,v > 1. The space SG};', (R*", A) is defined

as the Banach space of all smooth functions p(z, §) satisfying

pla = sup, SUp ¢ € R ATIHBlgIr =y gy =matlel gy =matlal|ga 9By, )] < +oo.
a,BeN,

We set

SG',(R™) := | ] SG/",(R*™, A)
A>0

equipped with the inductive limit topology of the Banach spaces SG:ZV(]RQ", A), and

TG, (R*) = ] SGJ,(R*", A)
A>0

equipped with the projective limit topology of the Banach spaces SGZTV(R%, A).
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Remark 2.13. Again, we can use a simpler notation to represent these classes when p = v, namely
m 2 m 2
SG(R™) and TG (R™).
Remark 2.14. Notice that, if py < pa, then for every A >0 we have SG}' (R*"; A) C TG, (R*").

Besides the continuity properties on weighted Sobolev spaces inherited from SG™ (R?") and
I'G™(R?") the operators with symbol in SG}', (R**) and I'G]}’,(R*") are continuous in Gelfand-Shilov-

Sobolev in the following sense, cf. [15, Theorem A.18].

Theorem 2.9. Ifp € SGIZ;(RQ”) for some m' € RZ%, then for any m,p € R? and 5,0 satisfying

min{s, 0} > p+v — 1, the operator p(z, D) maps H] ,(R") into H;’fsjgml (R™) continuously.

We conclude this section with a result we shall use intensively in the proof of our main result.
This can be regarded as a variant of sharp Garding inequality for Gevrey regular SG symbols. This

result follows directly from Theorem 6 in [9].

Theorem 2.10. Let p € SG}, (R*") such that Re p(x,€) > 0. Then there exist ¢ € SG,(R*"),
re SG™ WD(R2Y) and ro € Hp, with k> p+v — 1 such that

p(z, D) = q(x, D) + r(z,D) + re(z, D)

and

(q(x7D)U7U)L2(Rn) 2 0, Yov € Y(R")
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Chapter 3

CAUCHY PROBLEM FOR p-EVOLUTION OPERATORS
WITH DATA IN GEVREY SPACES

3.1 Well-posedness in inductive Gevrey spaces

For the main result of this chapter, we consider an integer number p > 2 and the class of
differential operators of the type
p .
P(t,2,D;,D;) = Dy + a,(t)DE + > " ap(t,2)D 7, (t,2) € [0,T] x R, (3.1)
j=1
where T' > 0, the symbol a,(t,€) := a,(t)&EP is real-valued with order p and a,—;(t, x, &) := a,_;(t,z)EP~7

has order p — j (with respect to &), for each j =1,...,p.

Remark 3.1. It is easy to notice that ap(t,&) = a,(t)EP is the symbol of the differential operator
a,(t)DE and, for each j =1,...,p, ap—;(t,z,£) = a,—;(t,z)P~7 is the symbol of the differential operator

ap—;(t,x)DP=I .
Our goal is to study the Cauchy problem

P(t,z, Dy, Dy)u(t,x) = f(t,z), (t,z)€[0,T] xR
u(0,2) = g(z), xz€eR

: (3-2)

with data f and g in Gevrey-Sobolev spaces H;’;LQ(R). In our first main result, we will prove what we

call the well-posedness in 33°(R) for the Cauchy problem, which is defined in the following.

Definition 3.1. We say that the Cauchy problem (3.2) is well-posed in H3°(R) when, for any given
p > 0 there exists p > 0 and a constant C := C(p,T) > 0 such that, for all f € C ([O,T]; H;’;Q(R)) and
g € H}'p(R), there exists a unique solution u € ot ([O7 TV HEY, (R)) and the following energy estimate
holds .

ult, Yz, < C (ngn%{;;e + |f<T,~>||%{;;9dT) .

The first result we intend to prove in this chapter is stated in the following.

Let P be an operator of the

Theorem 3.1. Let 0g > 1 and o € (g%f,l) such that 6y < m.

type (3.1) whose coefficients satisfy the following assumptions:
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(i) ap € C([0,T);R) and there exists Cq, > 0 such that |a,(t)| > Cq,, for all t € [0,T].

(i) 102a,—;(t,2)| < CEH1 310 (@) =540 for some C,

iy >0,j=1,...,p—1 and for all B € Ny,
(t,z) €[0,7] x R.

p—J

If 0 > 1 is such that 6y < 0 < m, the data f € C([O,T];HZ‘@(R)) and g € HJ(R), with
m,p € R and p > 0, then the Cauchy problem (3.2) admits a unique solution u € C* ([0, T); H[%(R))

for some p € (0,p), and the solution satisfies the energy estimate
t
o0y, <€ (lolg, + [ 11 gar ) (33)

for all t € [0,T] and for some constant C' > 0. In particular, for 0 € [90, m) the Cauchy
problem (3.2) is well-posed in Hg°(R).

In [6], Theorem 1, the authors have proved the above theorem for p = 3. They noticed that
the conclusion of the result cannot be achieved in a straight way, however, by performing a suitable
change of variable in order to obtain an equivalent Cauchy problem, the theorem can be proved after
several steps. Another similar result (by changing some hypothesis and/or functional classes) can be
found in other works developed by the same authors, namely [4, 5]. We recommend the P.h.D. thesis [2],
Section 3.2, for a very well detailed description about the obstacles found to obtain the energy estimate
in the Cauchy problem for 3-evolution equations. Similar results had been proved in [33] for p = 2. The
novelty in this thesis is that we will prove Gevrey well-posedness for a general p. This extension leads

to non-trivial technical difficulties as we will see in the sequel.

Remark 3.2. Comparing the assumptions of Theorem 3.1 with the known literature for 3-evolution
equations, e.qg., [6, Theorem 1.2], we notice that our decay at infinity condition (ii) is given on the whole
coefficients of the lower-order terms (without distinguishing the behaviour of the real and the imaginary
parts) and prescribes for the derivatives of the coefficients a decay that increases with the order of the
derivatives. This extra decay is used in Subsection 3.5 to absorb a growth in x of some terms appearing,
for instance, in (3.32) and (3.33). Without this assumption, the estimate of these terms is possible but
more involved. Moreover, under the condition (i), the symbols a,_;(t,x)EP~7 are symbols in SG classes,
and this allows to apply Theorem 2.10 in Section 3.6. As far as we know, a version of this theorem for
Gevrey reqular Hormander symbols with a precise estimate of the regularity of the remainders is still
missing in the literature, although it is a somewhat expected result. In conclusion, we believe that we
could have distinguished conditions on real and imaginary parts of the coefficients as in [13, Theorem
1.1] or [6, Theorem 1.2], and we could have assumed (ii) only for a finite number of derivatives or
avoided the extra decay for the x-derivatives, but we preferred to skip these refinements in order to not

add further technicality to the proof and to work in the frame of the SG calculus.

36



3.2 The description of the change of variable

As explained in the introduction, in order to prove Theorem 3.1, it is necessary to make a
change of variable and to transform the Cauchy problem (3.2) into an equivalent problem which will
be well-posed in Sobolev spaces and then obtain Gevrey well-posedness for (3.2) by using the inverse
change of variable. To perform this change of variable, we shall consider an invertible pseudo-differential

operator of infinite order given by

Qnk,p(t,z,D) = eMicor (t,D)o eA(x, D), (3.4)
where
p—1
A@,8) = Mpr(,€) € 8GR 7 (R?) N8P~ NI~)(R?)
k=1

for some p > 1 and functions A,_; which will be defined in (3.6), and
Micr(6,6) = K(T =)&)~V + o/ (€)”

with 0 < p/ < p, K > 0 and (£)), := \/m for h >> 1 to be chosen later. The inverse operator
Qa,k,p (t,z, D)~ will recover the solution u = Qa k., (t,z, D) 'v of (3.2), where v is the solution of
the auxiliary problem. The properties of the operator Qa, i, (t,z, D) and its inverse are responsible to
determine the space where the Cauchy problem (3.2) is well-posed. Now, let us describe each part of
the operator Qa k,, (t, z, D).

e The role of each factor e*»=7 of the symbol e} = e*r=1 ... .e*»-1 in the conjugation with e*(z, D)

isto turn Ima,_;(t,z,D),j =1,...,p—1, into the sum of a positive operator plus a term of lower
order, without changing the parts of order p,p—1,...,p — j + 1 of the operator. Summing up, the
conjugation with e (z, D) turns the operator P(t,z, D;, D,) into a sum of positive operators plus

a remainder of order (p — 1)(1 — o).

e The operator I (T—t)(D);r =0

does not change terms of order 1, ..., p, but it corrects the error
of order (p — 1)(1 — o) coming from the previous transformation by changing it into the sum of a

positive operator plus a remainder of order zero. This is obtained by choosing K sufficiently large.

o The term ¢” (P)'" is the leading term of the transformation Qa, k (¢, , D), since we are assuming
(p—1)(1—0) <1/0 and p’ > 0: it changes the setting of the Cauchy problem from Gevrey-
Sobolev-type spaces to the standard Sobolev spaces. Moreover, since p’ > 0, the inverse operator
(Qa,k,p(t,, D))" has regularizing properties with respect to the spaces H"p(R), ie., it maps
H™(R) into a Gevrey-Sobolev space H]} s ,(R) for every positive .

In next sections we will give more details about this change of variable. By denoting

PA,K,p’ (t,.’l% Dt; Dx) = QA,K,p' (t7x7 Dx) o (ZP)(tu wata Dz) o (QA,K,p' (tu m7D:L’))_1a
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just notice that the Cauchy problem (3.2) is equivalent to the auxiliary Cauchy problem
PA,K,p’(taantaDm)v(tax) = QA,K,p’(taanz)f(tax)a (t,l‘) € [OaT] x R (3 5)
v(0,2) = QK (0,2, Dy)g(z), reR

in the sense that if u solves (3.2), then v = Qa (¢, 2, D;)u solves (3.5) and, if v solves (3.5), then
u=(Qa Kyt z,Dy)) v solves (3.2).

3.3 The functions \, ;(z,&), k=1,...,p—1

As we described in the previous section, one of the parts used in the change of variable is the
operator eA(as7 D), where A = A\,_1 + -+ + A1. Let us define each one of the functions \,_j. For each

k=1,...,p—1,let M,_j;, > 0 to be chosen later on and define

i) = My () @17 [ F << g;f) . (3

where w and ¢ are C'"*° functions such that

0, <1 1, <1
w(e) = o R
—senap(®), I > R, 0, Iyl >1

and these functions also satisfy

Ogw(@)] < Coal  and  [|9fy(y)| < CLT A

Notice that, by assumption (i) in Theorem 3.1, w is constant for |{| > R, , hence, if a # 0 we have that

w(@) (%) is supported for |¢|/h < R,,, which gives us
h= <€), (Ra,)™
Remark 3.3. The h—bracket (-)}, satisfies
08 (O1'] < Cral{§) ™ €eR, aeNy,

where Cyp, > 0 is independent of h. We can replace (§) by (£)n because this does not change the
symbol classes and it is very useful in the proofs of our results (for instance, to obtain the invertibility
Qak,p(t,z,D)). The new class obtained by replacing (&) for (€)y is SY*, ,(R?), and a smooth function

h,pu,v
p belongs to S’,ﬁ#yu(RQ) if there exists C' > 0 such that
0807 p(x,€)| < COTPH gl ()=, a,8 €Ny, =, €R.

Since h >> 1, it follows that
(€ < (On <&, EE€R,
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hence ST, (R?) = S}ZH’V(RQ) with equivalent topologies. Besides, (€) and (&), are asymptotically equiv-

alent, which means that

gl =00 (£)
The above limit implies that for any € > 0 there exists Ry . > 0 such that

En <A +e)&), &l = Rh.e.

Finally, the exchange of () for (§) does not change the dependence of the constants appearing in this
work, which will be independent of h.

The following result summarizes some properties about the functions A,_.

Lemma 3.1. For each k=1,...,p — 1, the following statements are true:

. _ —k)(1—0o
(1) Pp-r(w )] < RO P07,
=
(i) |0gAp—k (@, )] < CoFLalr (€)M for all a > 1.
(iii) 08Ny (x, €)] < CoHLali(€)H2 ()15 for all o > 0.

p—k

(iv) [0gAp—r (@, )] < CoFLali(€), *(x) =17 for all a > 0.

p—k

(v) 0202 Np—k(z,€)| < COTBFL(IBN(E)) (@) 17~V for all v > 0 and B > 1.

follows that

Proof. Let us denote by x¢(z) the characteristic function of the set {z € R™; (z) < (€)?~'}. Then, it
R =L {y)
{y)" =% = | dy
/0 e

o (§)] @k

||
My [t ey
et min{|1\-,<5>;’;71} _p=k,
My [ W

ey [ ORTY
M,_(&), /0 y~ 1%y

p—1

L g min{ (@), (€F 1)
]

Ap—r(z, )] = Mp

IN

IN

IN

My, _
= et

p—1

p—1
0

= (O min{(a), (N

IN
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which gives us (i). Similarly, we have

M,_ _ _p=k,
ok (,€)] < ——L=2— (&)} () 517
1 jO‘

Now, we want to obtain the estimate (ii) for [0g'A\,—k(2,&)[. Note that, by Leibniz rule we

85{ o (£) <£>i"“/j<y>‘“”¢<<é> ) y}

Vo Yt e (§)] o]

ajtaztaz=«a

S22k | pas ()
/O (W) [afw<<§>£_1>]dy (3.7)

Now we need to find a way to deal with the derivatives which appears in (3.7). The first one is very

obtain

83)\p—k:(x7 g)

X

simple; the second one we can estimate by ¢ (§)7" < Cal(€);' ™%, £ € R, & € IN, where C,, is a positive
constant independent of h; the third derivative needs to be computed by using Faa di Bruno’s formula

in the following way

(Y

Hence, we can estimate in (3.7) by taking the modulo

) Cal (W) )
)£ (). 5wt o (s

Y1t +yj=as

o & | o (EN] st in e
‘aﬁ)‘P—k’(‘ragﬂ < Mp—k Z m w )(h>‘h |3 < > k+1|
ataztaz=a 12 es:
" e AR
X xe(y)(y) " »=1° - @/J(J) ()‘
| xenw ;J!’ i
> [To (!
x o Tlaven
[ 3
Y1t tyi=as n ReA (=1
o b —an ay e —k—aq
< Mp—k Z mc 1+1a1|l‘<£>h <Rap> C a2!<£>}1L k
aytaztaz=a 1-62:43
|| ok as
</ xs(y)<y>’ﬁ”zj'cﬂ+1

Y

Y1+ +yj=as

|
My Y L00‘1“ ()7 (Ray )1 C2 an€) K (€);,

Hc’w,},@ 1 —-p— ’dey
’71

<
- aqlaslas!
a)taztaz=«a
|| k31 Q
_ 3 . —
X / (y) v*l"zj,c:;*“ as Y e IR IUREL LT
0 R

it Ay=as 1 J
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We obtain

|0 Ap—r (2, §)

IN

la| i
My €2t o€ O [ el ) oy

My - —k)(1—0
e Do (O P (3

=1

M, —k o —k)(1—0)—«

I;,k +1 <€>§LP )(1—0) 7
p—1

1— Wv"[URap

and we get (ii). To obtain (iii), we just need to observe that
=l _p=k, 1—p=k,
| e Fody < o),
0

To obtain (iv), we use the fact that, on the support of ¥ ((y)/(€)?™"), we have (€)1 7% < (x}:lﬂ%’;, which

implies

p—k

(OF @) T < (6) () T ),

Now, by considering 5 > 1, we have

O 6) = My () @102 [ ) 5w ( : £§%>_1> dy. (39

Note that, we need to compute the derivative of order § of the integral. If 8 = 1, we have

f o —p=k, (y) _p=k, (z)
Op p—1 T | dy = (z)” 1 — |
| w w<<£>i> y= o) w(m )
and then we can compute by using Leibniz formula
v _p=k, <y> -1 —p=k, <J}>
P =1 dy = 0271 |(x) w1 -
! [ w<<€>2_1> y = o [<> w<<§>2_1>]

5 —1)! _p=kg g T
> U o5 a£w<<£<p>1>-

B1+p2=B—-1

Returning to (3.8), we can write

apr,k(x,g) = Mpfkw (2) <£>}:k+1 Z (ﬁ - 1)!aﬂ1 <x>_f7;—];‘78521/} ( <:Z>1>

Bi1+B2=p—1 ﬂl'ﬁQ' ’ <£>h
_ (B=D! g, 2=ty <§> —k+1 56 ( () )
= M,_ a:c Pt n 8x -
’ kﬁlﬁggﬁfl ﬁl!ﬁﬂ <x> “ h <£>h v <5>Z '
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and from this, it follows that

R0 = My T Gt [w(,ﬁ) <£>h’€“852¢<@<;”,>1>]

B1+p2= h
(6 - 1) B1 bk,
= My Z 511! 0yt (x) " »=1
B1+B2=B—-1

al 5 fe ) — a3 582 <$>
X S e w( )a (€ rogeazy <<§>2_1>

altastaz=a

(6 ) B o=k,
= M,_ E 6 ! p—1
’ kﬁl-‘rﬁz Bl'ﬁQ < >

ol

N C ) § —ay Hae k+1
. Z arlaglag!” <h>h %

ataztaz=«a
agte ) (k)

X Z j!h

Jj=1

lﬁ .
> > ﬁﬂa‘” )03 ()

Yy =as §i 40 =P2

Now, we can estimate

et (ﬁ_ 1)! 1 —p=k,
020N (&) < Myi Y w?af (z)~ 3]
Bi+pa=p—1 "L

a! 13 _ _
- (1) [ & aq | ez k+1
% Z 0[1!Oé2!043! v (h) ' h |6€ <§>h |

ar1tazstas=a
() (ﬁ)‘
v @n!

7!

az+B2

X xelz) >

Jj=1

Yy wf“"’ﬁ? IRt

Vit tyi=as §14+8;=P2

(/8 ) B1 7%0*51

|
X Z @ C’O‘1+1041W<§>;_La1 <Rap>a1ca1a1!<§>;k+l—a1

CX1'O¢2'O¢3'

IN

ajtaztaz=a
oty as!Bs!
J+1 . Totmer
T S TSNS S ppp
=1 i = s 614t 05 = I
J
x [T C%deta) 0 el (€), P
(=1

RO qi (B — 1)) LR ) TR0,

IN

a

)(R2) and Ap_i € Sflpfk)(lfg)(}l@), for each

Remark 3.4. We can conclude that \,_j, € SGO”’ i(-o

k=1,...,p—1. Hence
p—1
A=Y "Xk €SGYITIRY) NS VIR, (3.9)
k=1
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3.4 Invertibility of the operator ¢*(z, D)

In this section we construct the inverse operator of e*(x, D), for A = Ap—1+---+A1. In order
1
to do this, we need to introduce the notion of reverse operator. Let A € S;(R?), 1 < u < k, be a

real-valued symbol satisfying
0207\ (x,€)| < poA°HP (alB) (€)= . (3.10)
Note that e** € S, (R?). Let

(2. DJule) = op(e 9 u(o) = [ NG
R
Let us consider the reverse operator T(e**(x, D)) which is defined as the transpose of e**(x, —D).

Namely, this operator is given by the oscillatory integral
e e Dule) = Os— [ [ S0y ayag

— lim / / GEEENWO (cy, € )u(y)dyde

e—0

for some x € 8, (R?) such that x(0,0) = 1. The reader can find more details about the reverse operator
in [34] and [35, Proposition 2.13].
The operators e*(x, D) and £(e*(z, D)), for a symbol A satisfying (3.10), have continuity

properties given by the next result.
Proposition 3.1. Let us consider a symbol \ satisfying (3.10), p,m € R and 1 < 0 < k. Then:

(i) If k > 0, the operators e*(x, D) and f(e*(z, D)) map continuously HJ'»(R) into H)' 5 o(R) for

every 6 > 0.

(i) If k = 0, there exists 6 > 0 such that e*(z, D): Hp(R) = H' 5.9(R) is continuous for every o >0
satisfying

SA— )\(l',f)
|6 —p| <A™V and §>C(N\):= sup .
(@.g)ere (E)1/°

Moreover, the reverse T(e*(x, D)): Hp(R) — HJ" 5(R) is continuous for every [6] < SA~/0

and 6 > C'(N).
Proof. Check [34, Proposition 6.7]. 0
In the following we shall consider the operator %(e~*(x, D)) with A defined by (3.9). Notice
that
08 A, €)] < poAllat ()P~ P 0= (3.11)
and
10208 A (2, €)] < po AP (1B (E); (3.12)
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whenever 8 > 1. This estimate means that for 8 # 0, 92A behaves like a symbol of order 0. Taking

into account conditions (3.11) and (3.12) the following result holds, cf. Lemma 4 in [6].

Lemma 3.2. Let > 1. Then, for h > 0 large enough, the operator e®(x, D) is invertible and its

inverse is given by

(M@, D) = e Ma, D))o (L +7(z, D)) = Fle™ z,D)) 0 Y (~r(z, D)V,
320

where r =T 4+ T for some T € SG;l’_U(R2) and T € K, that is, satisfying
1 1
02007 (,€)] < CoTPH(alpl)remellml =+ =) (3.13)
with K > 2u — 1 and for some C,c > 0. Moreover, for every N € IN, we have

1
Fe Y =07 (e*Die) € 8GNV o NFU(R?), (3.14)
15728 T

and the symbol of the operator >_(—r(x, D)) is of the form q + qoo, where q € SG%O(RZ) and oo

satisfies (3.13) for all C,c >0 and k > 2u — 1.

Now we can prove some results about the symbol r(z, ) of the operator r(x, D) and on the

corresponding Neumann series.

Lemma 3.3. The symbol r(x,§) which appears in the above lemma can be expressed as

r= *agDmA +b o4+ b_(p_g) + b—(p—l) + b_p (3.15)

—m,—b=mtl,
where b_,, € SG, ?=1 7 (R2) depends only on Ap—1s 0 Ap—(m—1), for m = 2,....,p — 1. Moreover,

1
—P— 5=

b_, is the sum of a symbol in SG,, (R?) and a symbol in ., for k > 2u — 1.
Proof. We have that r ~ szl %82 (eADge’A), hence
p—1 1
r=—0¢D, A\ + 232 582 (e*DYe™) + q_p. (3.16)
=

For v > 2, by Faa di Bruno’s formula we get

i J
A —A (=1)7 7!
e*Dle " = - _— DJA.
Z 4! Z 71!...%!221_[1

j=1 Y1ty =y
Yez1

Now, let us analyse 82 <H%:1 Dng). Since v > 2 in the formula (3.16), it is sufficient to prove that
j ~ ~ ~
[ DA = boabor by +
=1
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~ —m+2,—pomil, . .
for some b_,, € SG, * =1 T (R?), m = 2,...,p, depending only on Ap—1s s Ap—(m—1)- Since

A= X1+ -+ A, we have that DJ*A = DY (A\p—1 +---+ A1), £ =1, ..., j, which implies that
J
[[ D0 A = (D Ao+ DPX) - (DFApos 4+ DY),
=1

By (v) of Lemma 3.3, the only term in the above product with order exactly 0 with respect to & is
D Ap_1--- DY Ap_1 € SG) 7 (R?).

Similarly we notice that the only term of order exactly —1 with respect to £ is the sum of products of
the form

2
g

DY Aper [[ DY A1 €85G, 7 (R),

£<j

l#s
which do not depend on A,_3, ..., A\1. In general, we note that products containing at least one factor of

the type DJ*A,_j with k& > m have order at most —m +1, so the terms of order —m 4 2 with respect to
& cannot depend on A,y for kK > m. Among these terms, the ones of highest order in x are obviously
those depending on A,_,, 1 that is products of the form

—m+2,— —p-m+l

DY Ap—ms1 [ [ DY Ap-1 € SG,, =R,

<y

U#s
This gives the assertion. 0

By using Lemma 3.3 it can be proved the next result.

Lemma 3.4. For each j €N, j > 2, the operator (—r(x, D))} has order —j. Moreover, for 2 < j < p,
its symbol d; is of the form

d; = bV 4 o

lj] [4]
G+1) + bf(pfl) + Y (3.17)

.
. o _Jjp—m
for some b[f]m € SG#m’ Pt U(Rz) depending only on A\p_1, ..., A\p—m+1, for each m = j,....p — 1.

Proof. We can argue by induction on j. For j = 2, we have

(—r(z,D))? = (0eDyAp—i)(x, D) 0 (¢ DyAp—r)(z, D)
(o) e (£
k=1 £=2
(Zb g> Z, D (Z@gD )\p k) )
(=2

n Z Z b_s(x,D)ob_y(z,D)



Consider
p—1lp—1

F=) > (9eD:Ap-k)(x, D) 0 (9 Dudp—0)(x, D)
k=1 ¢=1
We immediately notice that, since the order of each term of the sum F' with respect to £ is —s — £, then
the terms with order exactly —m w.r.t. £ cannot depend on A,_ for s > m or A\,_, for £ > m, then
these terms are of the form (0¢DyA,—s)(x, D) o (0¢DyAp—¢)(x, D) for s + ¢ = m, hence they symbols

2p—m

belong to SG;m’_ 7= 7 (R2). Concerning
p—k
G= (ZagDIAM) (z,D)o (Zb >
k=1
we notice that for k& > m the compositions of (9¢DyAp—i)(z, D) with >°7_,b_s(z, D) give operators
with order less than or equal to —m — 2 w.r.t. €. Hence, the terms of order exactly —m in this sum
do not depend on \,_5 for s > m. Moreover, these terms are of the form A, (x, D) o b_y(z, D) with
—m.—2p=—m+l
¢ = m — s, hence they belong to SG,, = 7' (R?). We can argue in a very similar way about H.
Finally, let’s treat the term
PP
L= Y e D)ot
s=2 (=2
The terms depending on \,_j with k& > m appear only in compositions of the form b_,(x, D) ob_,(x, D)

with £ > m and/or s > m, which have order —s—¢ < —m—2. Moreover, every term of order exactly —m

2p—m+42

is obtained as a product of the form b_¢(x, D) ob_s(x, D) for s+ ¢ = m and it decays like ()~ »T 0.

In conclusion we obtain the assertion for 7 = 2. The inductive step follows from similar considerations.

Assume now that the statement is true for j < N and consider
(_r(aj?D))NJrl = (_7"(.’)37 D)) o (—r(aj, D))N

Notice that the only term in the composition with order exactly —N —1 w.r.t. £is (—0¢DgAp—1)(x, D)o
_(N+DpoN-1
M) ~(x, D) whose symbol depends only on A,_; and belongs to SG,, PR 7T 7(R?). The only
term with order exactly —N — 2 w.r.t. £ is given by
(=0 Dahp1)(w, D) 0 b5, (2, D) 4 (=9 Dudpa) (. D) 0 Y (2, D)

_g,_ (NH+Dp-N-2

whose symbol depends only on A,_1, A\p,—2 and belongs to SG;N pot (R?), and so on. O

From Lemmas 3.3, 3.4 and Lemma 3 in [6], it follows the next result.

Proposition 3.2. Let p > 1. For h large enough, say h > hg, the operator eA(x,D) 1s invertible and
its inverse is given by

(e*(z, D))" = B(e™™(@,D)) 0 op(l — i0c0pA + g + -+ + G (p—1) + G—p); (3.18)

—m
o

where q_y, € SG;m’_ (R, m =2,...,p—1, depend only on Ap_1, ..., A\p—(m—1) and q_,, is the sum

of a symbol in SG;p’_FO(IW) and a symbol satisfying (3.13) for all Cyc >0 and k > 2u — 1.
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3.5 Conjugation of the operator P

In this section the goal is to perform the conjugation of the operator iP by
Qax,p(t,xz, D) = erxo (t, D) o e (x, D),

where
p—1
M@, &) =Y Apk(@,6)  and  Agp(t,€) = K(T =€) "7 4 p(e),/".
k=1

Since the inverse of e*(x, D) is f(e™*(z, D))o > isol—r(z, D)), it is necessary to work with composi-
tions of the form e*(z, D) o p(z, D) o £(e=(x, D)), with p an operator whose symbol has finite order.
The next result (Theorem 2 of [6]) will be used to perform this computation. For more details of the

proof the reader also can check Section 3.5.1 of [2].
Theorem 3.2. Let p be a symbol satisfying

|08 07 p(a, €)| < CaA“(alB) (€)1,

and let X satisfying (3.11) and (3.12) for 3 # 0. Then there exist & > 0 and hg = ho(A) > 1 such that
if po < SA™YE and h > ho, then
XMz, D)op(w,D)o *(e™Ne,D)) = p(z,D)+op| > %ag (02X Dp(a, ) D=9
1<atp<n @

+ TN(va)+T00(w7D)

where

108077 N (2, €)] < Cpo,an (CrA)*HIHN (@1gN)E N1 gy (TN e
108027 c (@, €)] < Cppynn(CeA)*HH2N (B F N 12T gmend ™0, (3.19)

In particular, roo € K.

3.5.1 Conjugation of iP by e
Before we start making the conjugation, note that by Lemma 3.3 the function A satisfies
292 A (@, ©)] < CRT P (@B ()T

and
0292 A (2, )| < LT B)M(€),, B> 1

where C} is a constant depending on M,_1, ..., My, Cy,, Cy, i, 0. By the assumption (p —1)(1 —0) <

=

it follows that
02PN, )] < CLTPF(apnp(g) PNt
1
1

CHT (e () P

< Cph@DO==F 0B 181y () 1
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therefore

p(A) := P~ D= =5,

can be taken as small as we want, provided that h can be taken suitably large, and now we are able to
compute e*(z, D) o (iP) o (e®(z, D))~! by using Theorem 3.2.

We conjugate each term of the operator i P, which is given by
p .
iP(t,x, Dy, Dy) = 0y + iay(t) DL + Y ia,_;(t,x) DL (3.20)
j=1

The next items are dedicated to this purpose.
e The conjugation of J;. Since A does not depend on ¢, the conjugation of 0; is trivial, namely
ez, D)o 0,0 (eMx, D)7 = 0.

e The conjugation of ia,(t)DE. First of all, we will treat only the conjugation of iD? by e*(z, D)

(since a, does not depend on ). By Theorem 3.2 it follows that
e*(z, D)oiDEo F(e (2, D)) = iD?+op (z Z i'ag‘ (eA.prg‘eA)) +ro(z, D)+re(z, D). (3.21)
[e%
1<a<p—1

Note that we can write

1 _
> —0¢ (erePDSe™) = 9 (6P Dy (—A)) + coa+ g+ -+ c_(p1) + C—p, (3.22)
1<a<p—1

p—m,—

p—m+1
where c_,,, € SG, Pt U(Rz) and it depends only on A,_1, ..., Ap_m41, for each m =2, ..., p.

Now we can substitute (3.22) in (3.21) to obtain
eMx,D)o0iDl o Ble™(x, D)} = iDP +iop(9:{’Dy(—A)}) +ic_o(x, D) + -+ +ic_,(z, D)
+ TO(:CaD)+TOO(I7D)'

From Proposition 3.2, we have that the Neumann series is given by

Z(—r(m, D)) = op(1 — i0¢0sA + g+ + q_(p—1) + 4—p)- (3.23)
Jj=0

Since we have to perform a composition between the two operators given in (3.22) and (3.23), let

us analyse what happens with

[iD? + iop(0¢{" Dy (—A)}) + i(c—2(x, D) + - - +ic_p(z, D)) cop(1 —i0c0z A+ g2+ -+ q—p).
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We can rewrite it as

iDE +i0p(9c{P Do (—A)}) +i(ca(z, D) + -+ -+ c—p(2, D))
iDE 0 op(0¢ D) +iop(0¢{" Dz (—A)}) 0 op(9¢ D A)

i(c_a(x, D -+ c_p(x, D))o (0¢DyA)(z, D)

)+
iDg o (q-—2(z, D) + -+ q-p(x, D)) +i0p(Ie{€" Du(—=A)}) © (q-2(z, D) + -+ + q—p(2, D))
i(ca(@, D) + -+ +cp(a, D)) o (q2(2, D) + - + gp(z, D))

)
1DP + iop(p&P~ 'D.(—A) + EP0¢ Dy (—A)) +i(c—o(x, D) + - - + c—p(x, D))
P
+ iop(€P0cD,A) + iop (Z 07" DMA) + iop(0e (€ Du(~A)}) 0 0p(3e D, A)
=1

+ i(e—a(w, D) + -+ c_p(x, D)) o (9 D:A)(z, D)
+ Do (qoa(w, D) + -+ q_p(w. D)) + iop(de{E" Du(~A)}) 0 (q-a(z, D) + - - + g_p(x. D))

+ i(c_a(x, D)+ -+ c_p(x, D))o (q-2(z,D) + -+ + q_p(z, D)).

+ o+ 4+ o+

After some simplifications in the above expression, we get

[iD? + iop(0e{&’ Dy (—A)}) +i(c—2(x, D) + - - + c_p(z, D))]
o [I+o0p(0eDyA)+ g—2(x,D) + -+ g_p(x, D)]

= ’LDg + iop(pgp_lDI(—A» + Z-(C*2(x7D) +ot C,p(l‘,D))

+ iop (Z ;agc‘pagDz“Q +i0p(c{EP Do (—A)}) 0 op(9e D A)
+ i(C,Q(CE, D) +oo C*p(*% D)) © (aEDZL’A)(x7 D) +iD? o (qu(x, D) +oe qu(xv D))
i0p(9e{€" D (=A)}) 0 (q—2(2, D) + -+ + q—p(x, D))

+ i(c—2(x,D)+---+c_p(x,D)) o (q_2(z, D)+ -+ q_p(z,D)). (3.24)

Next, let us make some remarks about the order and dependence on the constants M,_;, of some

terms.

Let us first look at the term )
) 1
iop (Z 7!aggfﬂagngA> .
y=1
From the definition of A, we have for each v > 1
8g£pD;+18€A = Ogng;’+185)\p_1 + -t 5@5ng+18§)\1.

For each k =1,...,p — 1, we obtain that 8;’5ng+165)\,,,;€ has order

p—k—v<p—k—1wrt. &
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and
_k —k
_Lg—yg—p oc—1w.rt. x.
p—1 p—1

Notice that the highest order with respect to £ in this case is p — 2.

The term iop(0:{’ Dy (—A)}) 0 op(9¢ D, A) can be written by using the definition of A as

p—1lp—1

10D (D¢ {€7 Du(—A)}) 0 0p(9¢ Dul) = —i Yy > 0P(Fe{E" Dup—i}) © 0P(Fe DiAp—s)-

(=1 s=1

Note that, for £ =1, ...,p — 1, the symbol 0¢{{P Dy Ap—¢} has order p— £ w.r.t. £ and 75—:{0 w.r.t.

x and, for s = 1,...,p—1, the symbol J¢: D, \,_ has order —s w.r.t. £ and —g%‘fa w.r.t. . Hence,

the operator op(9¢{?DyAp_r}) 0 0p(Je Dy A,—s) has order
p—(L+s) wrt. &

and

_2]);—0(_63—3)0 w.r.t. z,
foreach £ =1,...,p—1and s=1,...,p— 1. If we consider terms of order p — j with respect to &,
they cannot depend on terms \,_j with £ > j, because otherwise the order would be strictly less

than p — j. With respect to z, the order is

2p—J p—j+1
- o< — o,
p—1 p—1

because 2p — j > p— j + 1, for p > 1. Again, the highest order with respect to £ is p — 2, since ¢
and s runs through the set {1,...,p — 1}.

Concerning the term
i0p(9¢{&" Dy (=A)}) 0 [g-2(z, D) + -+ + q-p],

we see that the first term in this composition can be rewritten as
—i0p(De{E7 DNy 1+ + A1)} = —i0P(Ie{E" Dudp1} + -+ + DL Dy }).

Hence the composition is a sum of terms whose symbols are of the form 9¢{{PDyAp—1} - ¢—¢, for
k=1,..,p—1and ¢ =2,..,p, whose order is p — (k + ¢) depending only on Ap_1, ..., A\p_g—s41.

Therefore, the highest order here is p — 3, which is more than we need.

The other terms are all of negative order, then there is no need to make the same analysis as the
listed above. Summarizing this discussion: The conjugation e*(z, D) o (iD?) o (e*(x, D))~! can
be expressed as

p—1
e™(z, D) o (iDP) o (e*(z,D))" ' =iDP — op <85£p81A + Z cpm> +ro(x, D) + roo(z, D),

m=2
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p—m+1
op-1
with respect to x and depends only on Ap_1, ..., A\p_py1, for each m = 2,...,p — 1. Summarizing,

with rg of order zero, ro, a regularizing term, c,_,, has order p—m with respect to £ and o

the conjugation of the leading term is

e*(z, D) o (iay()D2) o (e (2, D))" = ia,(t)DL — op (agapa)é’axuap(t) m>

m=2

+ ro(z, D) + reo(x, D), (3.25)
where 79 and r new order zero and regularizing terms, respectively.

e The conjugation of ia,_;(t,z)D?~7, for j = 1,....,p — 1. For some N € N to be chosen later,
by Theorem 3.2 it follows that there exist an order zero term ry and a regularizing term r., such

that
eA(mv D) o aP—j(t7 :U)Dgij o R(eiA(xv D))

- apj(t,mDi”OP( S (8§eA-D5am<t,w>s”-D?€A)>

13!
1<drpan P
+ ro(z, D) + reo(z, D). (3.26)

For the next computations, we shall omit (z, ) and (z, D) looking for a simple way to write. Our

goal here is to analyse what happens with the terms in

1. P
3 % (afeWDfap,ng 7. D% A). (3.27)
1<at+p<N

By Faa di Bruno formula, the terms 8? eM and D¢e~" become

B J
1 J51
B A _ A B
SN ST e | PO
j=1 B1+--+Bj=B I k=1
Be>1

and

o 14
_ -1t a!
S D e SR § oY
/=1 ay+Fap=a 1 £ m=1
an>1

By fixing v + 3, the general term in (3.27) will be a sum of terms of the form

18 ) 1= 0¢ (Diay €79 - 00 Ny gy 00 Ny DN, g, - DA, ) (3.28)

where

kl,...,kr,lzl,...,lzsG{l,...,pfl} and 1<r<p, 1<s<a.

Now, we want to show that if A\,_j appears in I([ja} 5) with k > M, then I([fx] 8) s of order at most

p— M — 1 with respect to &.

Case 1: Let us suppose that there is a term of the type Dg}l)\pf;Cl with &y > m, with m > 2 in
(3.28).
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By using (v) of Lemma 3.3 and the fact that k1 > m and each k, < p—1,foralll <a<s,it

follows that

so

[(D2a, 5, - DA, 1) (.8)] < CoF ()M @)t (3.29)

Now, from (iv) of Lemma 3.3 and the fact that k, > 1, for all 1 < a < r, we obtain the estimate
(02 At -+ 0 Nk, ) (,6)| < CPFH(BY() A )1, (3.30)
By hypothesis, we have that
[Dlay—; (¢, 2)e" 7] < C (B (€))7 < CP (B (€ () 0. (3.31)
From (3.29), (3.30) and (3.31), we get

10 ) @0 < Copl@) i itrmiagymetemgiristiooistos - (3.39)

By a simple computation, the exponent in () is p—m — «a — 8. About the exponent in (z), note

that
fonrs—iqu(lfU)fpi]Ufﬂ <—0c+(s—a)+(r—p) < =i,
p— 1 N—— D — 1 N—— N — p— 1
— <r s<a r<g

<0

Hence
17 ) (@,6)] < Caple)r=m—7+1=0=0 () ~55He, (3.33)

which implies that 77, e SGJ, " 7T (R2),

Case 2: Assume that 8?1 Ap—k,, With £y > m, appears in I([Ja] )

Here we need to present more details in the computations, because this case is a little bit trickier

than the previous one. By using estimates (iii) and (iv) of Lemma 3.3 and k; > m,

‘(8?1)‘p—k‘1 o '65,81/\17—1%) (@,€)

< CPTL(pH <£>1—k1—51 <m>1*”p—ff o <§>—6z (z) L2 (1-0) <§>—Br <x>’;_fkf(1*0)
from (iii) from (iv)
< CPFL(BN)(g) 1M () et ot e (L) B (1) (3.34)

By hypothesis and the fact that j > 1,

pP—J

|DBay,—j(t, )P ~7| < CP(BY)* (€)P~I () "+, (3.35)
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By using (v) of Lemma 3.3 and 1 < ko < p—1, for each 1 < a < s, we obtain

’(D?Apil“'DﬁAp@J(%fﬂ

< Ca+1(a!>u<§>1—]}1+1—1~cg+m+1—l~£5 <x>,1’p*j“11 Jfa1+17---7%0'7a5+1
all ka>1 all ka<p—1
2> —_——
T T —~ —_ . e e — I
_ Ca+1(a!)u<£>s—k1 — o — kg <x>—a+s—spklpflksa
<o
eSS
< 0 (al)(€) 3 () p=1
< Ca+1(a!)”<x>_a+s. (3.36)

It follows from (3.34), (3.35) and (3.36) that

(2, €)| < Cap (€)1 B+p—i=0 (g1~ 55 o+ 52 (=)ot Bt (1) == BFo—acts

0
(o)

Now we perform some computations on the exponents. Since k, > 1, for each 2 < a < r, we

obtain
p—k _ p—Fko p— ks p—J
1— 1— RSO L S S S _
p710+p71( o)+ +p71( o)—0 pfla a+s
—k 1) - (r—1 —j
< 1P S Gt el Ml_gy_a_ﬂ_p ots
p—1 p—1 p—1
K g
_ 1_2_f0+@—nﬂ—®—ﬂ—g_imm—a
<0
K o
<r—1
—k o
< 1-PE8s 1oL,
p—1 p—1
—_——
<1
G A R P B
p—1 ~—— p—1
<0
Hence
10 (@, €)] < CaplE)r—m—IH1-0=8 (@) 5,
From (3.26) and the above discussion it follows that
. . p—j
e o (iap_j(t,2)DP ) o BL{e ™} =ia, ;(t,2)DE™7 + op (Z c][[,]]m> +ro(t,z, D) + reo(t,x, D),
m=2

where 7o has order zero, r, is regularizing and cz[)jlm has order p — j — m + 1 with respect to &,
_%U with respect to « and depends only on A\p,_1, ..., A\y—ym+1. By composing with the Neumann
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series and using similar arguments as in the conjugation of the leading term, the previous structure
of the composition does not change, which means that

m=2

p—1
Mz, D)o(iap_j(t,2)DP~Yo(eM (x, D)) ™1 = iap_;(t,z)DP~7 +op (Z dg]m> +ro(t, 2, D)+7oo(t, z, D), (3.37)

with dl[)j]_m of order p — j —m+ 1 with respect to £ and —g%{a with respect to z, depending only

on A\p_1, ey Ap—m+1, To and 7o new terms with the same properties as before.
e The conjugation of iag(t,x). For this term, the conjugation is given by
e® o (iag(t,z)) o (M)t = ro(t, 2, D) + roo(t, z, D), (3.38)
where 7o has order zero and 7 is a regularizing term.

Finally, let us gather all the previous computations. It follows that

Mo (iP)o (et = 8y 4 €M o (iay(t)DP) o ()T + ZeA o (iay_;(t,x)DP~7) o ()71

+ eto(iag(t,z)) o (h) 7

p—1
= O +iap(t)D} — op (Jeap(t)€70:A) + op (%(t) Z Cp—m>

m=2
p—1 4 p—1lp—j
+ Y a2 D2 op [ DN dd |+ (ro +ree)(t,2, D). (3.39)
j=1 j=1m=2

Now we define

dp—j(t,x,&) = ap(t)cp—j(z, &) + Z d][ghlm(x,f), ji=2,.,p—1,

h+m=j+1
which has &-order p — j, x-order —g%{o and depends only on Ap_1,..., A\p—j41. Hence we can rewrite
(3.39) as
p—1
ez, D)o (iP)o (eM(x, D)™ = 0 +iay(t)DE+Y ia,_;(t,x)DE~
j=1
— 0p(0zap(t)§P0zAp—1) — -+ — 0P(Deap (L)€ Dp 1)
p—1
+ op de_j + (10 + 700) (t, 2, D), (3.40)
j=2

. . .. . pP—J
where 7( is a zero order term, r is regularizing, and d,—; has £-order p—j, z-order — =10 and depends
only on Ap_1,..., A\p—jy1.

In order to perform the next conjugation, let us improve (3.40). Essentially we must put the
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terms level by level according to the {-order. Namely

Az, D) o (iP)o Mz, D))" = 0 +ay(t)D?
iap—1(t, x) Db~ — op (O ap(t)&" Oz Ap—1)

iap—(t,x) D™ — op(Jeay (t)EP Dy Ap—2) + 0p(dy—2)

ias(t, z) D7 — op(deap(t)EP0xX2) + op(da)
ial(tv m)Dx - Op(aﬁap(t)fpaz)‘l) + Op(dl)

(T0+r00)(taan)a (341)

+ o+ + o+ o+ o+

where d,_j, j = 2,...,p — 1, 79 and r, are as described previously.

3.5.2 Conjugation of ¢*(iP)(e*)~! by e’x»
For some K > 0 and p’ < p, we consider the operator e*x.» (t, D), where
A (8,8) = K(T = )€™+ ()" (3.42)
is a symbol of order 1/, since (p — 1)(1 — o) < 1/6 by assumption.
e Conjugation of 0;. For this term we get
Ay —Age _ (p—1)(1-0)
et ke (t,D) o 0y oe” MKp (t, D) = 0y + K(Dy)y, .
e Conjugation of ia,(t)DE. Since a,(t) does not depend on z, the conjugation is simply given by
erer’ (t, D) o (iay(t)DP) o e ™0 (t, D) = ia,(t) DP.
e Conjugation of ia,_i(t,z)D2~! — op(dea,(t)EPOyA\p—1). We have that
eMe (t, D) o (iap,l(t,x)Dé’*l — op(agap(t)fpam)\p,l)) oe M (t, D)
= a1 (t,x)DEY — op(Beay (t)EPONp—1) + AL (t 2, D),
with A[Ig;}} (t,z,D) a remainder term whose symbol satisfies

0207 AL (1,2, )| < Croicprong, 1 (€02 ()= (3.43)

for all o, 8 € Ny, t € [0,T] and z,§ € R.
e Conjugation of ia,_;(t,z)D2™7 — op(dea,(t)EPO:\p—j) + 0p(dp—j)s j =2, ...,p — L.
e’ (t,D) o (iap—j(t,2) DL~ — op(deay ()P OpAp—;) + 0op(dp—;)) 0 e A5’ (¢, D)

= iay_;(t,x) D2 — op(Deay(t)E Dphp—j) + 0p(dy—;) + AL N (t 2, D),
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with A[}?;{] (t,z,D) a remainder term whose symbol satisfies
g 1 p—J
0208 AL N (t,2,6)| < Crokepraty vy, (77 (@) T (3.44)
for all o, 8 € Ny, t € [0,T] and z,§ € R.

Gathering all these computations, we get

Qaxp(t,z, D)o (iP)o (Qa k. p(t,x, D))"
el (t,D)o (I,D o(iP) o (eA(x D)) to e Mrpr (t,D) = 0 + iay(t)DP

)
iay—1(t,2) D2~ — op(dea, ()P0 Np—1) —|—A (t z, D)
(

iay_a(t,x) D22 — op(Deay(t )fpamp_m+op<dp_2>+A£€;?]<t,x,D>

ias(t, 2) D2 — op(Deay(t)EP0:A2) + op(dz) + AL (t,z, D)

ia1(t,2) Dy — op(Deay(t)EP0: 1) + op(di) + AL (¢, z, D)

+ + + o+ 4+ o+

K(D)P V7 4 (v + 1) (t, 2, D), (3.45)

where A%;j]

2,..,p—1.

is a remainder term depending on M,_1, ..., M,_; satisfying (3.43) and (3.44), for j =

3.6 Estimates from below for the real parts

This section is devoted to prove some estimates from below for the real parts of the lower

order terms of

PA,K,p’ = QA7K7PI OiPO (QA,K,p/)il,

intending to apply to these terms the sharp Garding Theorem 2.10 and finally to achieve a well-posedness
result for the Cauchy problem (3.5). For each j = 1,...,p — 1, by the definition of \,_; it follows that

~010.0,-5(0.€) = €My (£ ) (1) <<s<>?-1> |
h

By the definition of w and provided that |£| > 2h we can rewrite the above expression as

_ 1—j, \—2=d (z)
p 17\1 . T\~ p=17
P|§| p J<§>h < > (0 <<£>Zl>

—0e&P 0, M\ p—j(2,€)

pP—Jj

PIEIP T My (€))7 () " P17
— PlEPTIM, (€))7 @) [1_¢< <i>1>1'
h
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The first term p|£\P_1Mp_j(§>,1l_j<x>7§%{” has order p — j in ¢ and —5%{0 in . For the term

p—j (z)

plP~M,_; (5),1;j (x)y »=17 [1 — (@p,l )], let us make some considerations: first of all, since
h

;<3
0, lyl>1

Y(y) =

it follows that 1 — ¢ ((w}/(f}fl_l) is supported for 2(z) > ()P, From this, for each j = 1,...,p — 1,

we have

hence

P

(3 (@) 7 <2(e, 0",

Therefore, p|é[P~1M,_; <§>%;j<l,>—§%{o [1 _y <<£<>2>71 )] has order less than or equal to (p — 1)(1 — o)

in £ and order zero in z, for each j = 1,...,p — 1, and then the sum of these terms still have order less

than or equal to (p —1)(1 — o) in € and zero in x. It follows that

p—1 )
ZOP —0eap(t)EP 0 Ap— (2, §)) ZpMp jap(®)[EPTHEL Ha)~v=17 — Ble=D0=2)(¢ o D),
Jj=1 j=1
where
Ble=D0=0) (¢ o ¢) Zpa (t)[¢[P <£>}ij<$>—§%{0 ll — <<£<;>1>] , (3.46)
h

that is, BI(P=D(=9)] has order less than or equal to (p — 1)(1 — o) in &, order zero in x and it depends

on Mp_1,..., M. Finally, we can write (3.45) as

QA,K,p’ (t, :Z?,D) o (ZP) o (QA,K,p’ (t, .Z’,D))71 = 3t =+ iap(t)Dp
iap1(6,2) D21 + 0p (pMy 1y ()€~ ) ) + AL (1,2, D)

iay-2(t,x) DL~? + op (pMp,2ap<t>|§|p-1<e>,:1<x>*r1”) +0p(dy-2) + AR (t,2. D)

iax(t,2) D2 + op (pMaay (D]EP" (), ()~ 717) + op(da) + AR, (1,2, D)
ia1(t,2) D + 0p (pMiay (8)|EP ()7 (@) 717 ) + op(dy) + AR, (¢, 2, D)

)
K(D,)~ V0= _ Blo=D0=9l(¢ & D) 4 (ro + ro0)(t, 2, D), (3.47)

+ o+ + o+ o+ o+

with dp—p,, m=2,...,p—1, A[;; pf], j=1,...,p—1, 19, roo and Blr=1)(1=9)] 45 described previously.
¢ Estimates for level (p —1). Let
a1 (t, 2, Dy) = iay 1 (t,2) D21 + op (pMy_1a, (D)6 (2)~7) + AL (¢, 2, D).
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We have that
Re -1 (t,2,€) = —Im ay_1 (£, 2)6" "1 + pMy_a, (1)~ @)™ + Re AL (8, 2,€).  (3.48)
By the assumption (ii) in Theorem 3.1 we obtain
|Im a‘pfl(tvx)gp_w < Cap—l <‘T>_U|£|p_lv
and from (3.43),

—1-1+3, \—
CT,K,p’,Mpfl <£>Z 9<Q]‘> 7

< Crgpon, (62 Th™1H0 (2) 7.

IRe AL J(t,,¢)|

IN

A\

Moreover, |£| > 2h implies that there exists C' > 0 independent of h such that (£)P~" > C|¢[p~1.

Therefore we can estimate in (3.48)
Re dp,l(t,x,f) Z <_Cap71 +pMp,10ap - CT7K’p/,Mp71h_1+é> <$>_U‘f|p_1. (349)

Now we can choose the real number M, _; such that —C,, , +pM,_1C,, > 1, which is equivalent

to
1+C,

p—1

M,
pCa,

p—1 = )

and then we choose h large enough such that

M| —

CT,K,p/,Mp,lhilJr% <
By these choices of M,,_; and h depending only on M,_1, it follows that
Re dp1(6,2,) 2 5() 76, [€l 2 2n,
By Theorem 2.10, the operator a,—1(t,z, D) can be decomposed as
dp1(t,z, D) = QP (¢, 2, D) + 7P~ (1,2, D), (3.50)

where Re (QL{FH (t,z, D)u,u) L >0,u € L*(R), and 7P~ (t,2,€) € SGZ,_Z’_l_"(]RQ), t e 0,T7,
depends only on M,_; and h. We point that, the term Flr—2] (t,z, D) will be put together with
the terms of order p — 2 in (3.47).

e Estimates for level (p — 2). Let

p—2

iap(t, )DL~ + 0p (DM, 20, (1)<~ (€)7 (@) 7517

+ A[Ilé;?](taan)+dp—2(t7x7D)+F[p72](t7an)a

&p,Q(t, Z, D)
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hence

Re a o(t,2,6) = —Im a, o(t,2)€" 2 + pM, aa, (D)~ (€) () 757

+ Re AV (t,2,6) + Re dyp_s(t, 2, €) + PP (t,,€). (3.51)

Since d,_» and 7P=2 depends only on M,_1 and satisfy

2

Re dy-2(t,z,€) + Re #P~2(t,2,6)| < Cu,_, () ()17,
by similar arguments and estimates that we have used in level (p — 1), we estimate (3.51) as

Re a;)72(157 xz, 5)

p—2
> (=Capa +PMy-2Ca, = Oty = Oty vy o h ™) 6772(0) 557 (3.52)

Now, picking M, _» such that —C,,_, +pM, 2C,, — Cp,_, > 1, we obtain

1+ Cap72 + CMp,l

My o >
! pCa,

depending only on M,_;. Also, we can choose h large enough such that

DN =

gl
Cr e My 1My B 17 <
depending only on M,_; and M,_5. Therefore
¥

1 _
Re i, o(t,7,€) > 5 {x) 517leP . [¢] > 2h.

Again by Theorem 2.10, it follows that

iy = QY (t,x, D) + 7P~ (t, 2, D), (3.53)
with Re (QE_)_m(zﬁ,x,D)u,u)L2 >0, u € L*(R), and #P=3l(¢,z,¢) € SGiTB’igail(RQ), t e
[0,T], depends only on M,_1,M,_2, and h.
Estimates for a generic level (p — j), j > 2. We call
ap-j(tiw, D) = iay-j(t,2) DL + 0p (pMy-jap (1)) (@) HE7)

+ APt 2, D) + dyj(t,x, D) + 7P~ (t,2, D).
By similar arguments as in the previous steps, we get

Re a,_;(t,z,§)
— 1
> (—Cap,j +pMy—;Cop —Cnip_y, My — CT K pr My, M, P 1+")

P—J

x e[ (@) T (3.54)
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By choosing M,,_; such that —C,,_; +pM,_;Cs, —Cnr,_, ..M > 1, we obtain

p—jt+l —

1+Cap ; +COMp 1My 1
pCa,

M

p—j =
depending on M,_1, ..., M,_j+1. At this point, we choose h large enough such that
Cr. K p/ M,_1,..., Mp,jh_H% <
depending on M,,_1, ..., M,_;. Hence
~ 1 _P=ig, —i
Re @ (1,0,€) 2 5(a) F7JelPd, Jg| > 2h.
By Theorem 2.10
aypj(t.z, D) = QU /) (t,x, D) +-#P=3 (¢, 2, D),

where

Re (Q[fr’fj] (t,x, D)u, u) L >0, uecL*R),

p—j—1,—1-2={o

and 7P—i-U(t, . £) € SG b= (R?) depends on Mp,_1,..., My_ji1, h.

W
At this point, after we choose all the parameters M,_1, ..., M; and h, we have
Qax.p(t,z, D)o (iP) o (Qa k. p(t,x,D)) "t = 8 +ia,(t)DE

+ QP (e, D)+ Qb a, D)+ + QPt,2, D) + QU (2, D)

+ K(D,)P V09 _ Ble=D0=9l (¢ 0 D) 4 (1o + roo)(t, x, D).

Now we can choose K > Ko(M,_1, ..., M7) large enough such that

Re (K ()PP = gl 5,6)) > 0,

and by applying Theorem 2.10 once more we obtain

PA,K,p’ = QA,K,p/(ta z, D) © (ZP) o (QA,K,p/ (ta z, D))71 = 615 + Zap(t)Dg

p—1
+ 3 QU t,2, D) + QP VNt 2, D) + (ro + roo) (£ 7, D).
j=1

_ 1
Croicp My, anh 77 <= and > ho

1
2

By these estimates, we can assert the next proposition.
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(3.55)

(3.56)

(3.57)

Summing up, for p’ small enough, choosing, in order, M,_1, ..., M, K and h large enough, precisely

enlarging the parameter hg given in Proposition 3.2 if necessary, we obtain that formula (3.57) holds.



Proposition 3.3. Suppose p’ > 0 sufficiently small. There exist My_1,...,My > 0, K > 0 and hy =
ho(K, Mp_1,..., My, T, p") > 0 such that for every h > hq the Cauchy problem associated to the conjugated
operator Pp i, is well-posed in H™(R). More precisely, for any Cauchy data fe C([0,T); H™(R))
and g € H™(R), there exists a unique solution v € C([0,T]; H™(R)) N C1([0,T]; H™"P(R)) such that

the following energy estimates holds

||v<t>|%fmsc(||§||%1m+ / f<r>||ilmd7>, te 0,71,

Proof. First of all, let us consider the choices of the constants which give us the decompositions in (3.50),
(3.55) and that turns the inequality (3.56) true. By Leibniz formula and the identity z + Z = 2Re z,

we obtain

L1012 = 2 Re (@0(1), o(1)) 2.

From this and (3.57), it follows that

%Ilv(t)llia = 2Re (Pak,p(t,z,D)v(t),v(t)) . — 2Re (iay(t)DRv(t), v(t)) 2
p—1
— 2Re | Y Q" (t,2,Dyu(t).v(t) | - 2Re (Q&P—”“—“”(m,D)v(t),v(t))L2
=1 12

— 2Re (ro(t,z, D)v(t),v(t)) 2
< 2|Pakpv@)lzzllv@) 22 + 2[rov(@)] 2 [[v(t)]] L2, (3.58)

where, in order to obtain this inequality, we have used the Cauchy-Schwarz inequality in the first and

last terms and that

Re (ia,(t) DPo(t), v(t)) . =0, Re (Q[fr)_j]v(t),v(t))m >0 and Re <Q[J£p_1)(1_o)]v(t),v(t))L2 > 0.

By the inequality 2ab < a? + b2, for a,b € R, and since ry has order zero, we still can estimate in (3.58)

d
Z1v®lzz < & (@17 + [1Parepv(®)l[72) -

Finally, by using Gronwall inequality and taking to account that e€'* < ¢©'T =: C, for t € [0, T], we get

the energy estimate
t
Il < C (||v<o>||%z - ||pA,K,p,v<7>32dT) ,

which implies the well-posedness in H™(R), by the standard energy method. O

3.7 Proof of Theorem 3.1
Given 6 > 1 satisfying the hypothesis of Theorem 3.1, m € R, p > 0, take the initial data
feC(0,T; HH(R)) and g e HJ(R).

p;0
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Set the positive constants M,_1, ..., My, K, hy for which Proposition 3.3 holds and p’ € (0, p). We know
that both symbols A and K(T — t)(~>;lp_1)(1_g) have order (p — 1)(1 — o) < 1/6, hence by Proposition
3.1 it follows that

fA,K,p/ = QA,K,p/(tvan)f € C([O,TLHm(R))

I\ K,p' = QA,K,,D’ (t,I,D)g € Hm(R)a

for p' < p. By Proposition 3.3, there exists a unique solution v € C ([0, T]; H™(R)) to the Cauchy

problem
P, (t,z) = (t, x
r a6 2) = fascp (b2) (t,x) € [0,T] x R,
v(0,2) = ga,kp (2)

satisfying the energy estimate
t
[ < C (IIQA,K,p/II?{m +/0 IfA,K,p/(T)II?{de) , te[0,T]. (3.59)

By setting u := (Qa k(. JZ,D))il v, we obtain a solution for the original Cauchy problem

(3.2), namely
Pu(t,x) = f(t,x)

w(0,2) = g(z)

The next step is to figure out which space the solution u belongs to. Notice that

(t,z) € [0,T] x R.

Qrrp(tw, D) = <o (t, D)o@, D) = (Qurp(t,z, D))" = (eMx, D)) o (s (t, D)),
and then by the definitions of Ak ,» and A, and by Lemma 3.2 we may write

ult,z) = (e Ma, D)) Y (=r(w, D)) e KT-DWR ot DV ), v € H™(R),
J

1
but v € H™(R) implies that e (P v =: u; € HJJy(R), hence

u(t,z) = (e Mz, D)) Z(—r(x,D))a‘e—m—t)<D>§f*““*”>ul, ur € H7y(R).
J

Notice that, for every §; > 0, we have

1
B B (p—1)(1—0) _ _ (p=1)(1=0) _ 2
e K(T—t)(D), UL =e K(T—t)(D), e 51(D)y U1 =: U € H:J/L_(SI;Q(R),

order zero

and since Zj(—r(m,D))j has order zero, uz := Zj(—r(x,D))qu € HJ} 5 .4(R), which allows us to

write

u(t,z) = " (e Mx, D)) Y (=r(z, D)) us = * (e Mx, D)) us, us € H)' 5 5(R).
J
By Proposition 3.1, we have that (e*A(:c, D)) maps HS?Q(R) into H;"_(;Z;Q(R), for any d5 > 0, and we
can assert that u(t,-) € H)}_;,(R) for all § > 0, t € [0,77]. Notice that the solution is less regular than
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the Cauchy data, in the sense that it exhibits a loss in the coefficient of the exponential weight. If we

set p:=p' — 4, it follows from (3.59) that

[u@ B, = 1@t D)™ o0 B, < Calloe)
t
< Ca(lansslBm + [ Ui (D)lBrndr)
t
< & (laly + [ 1£Oyar) . te 0Tl (3.60)

The conclusion here is: if we take the data f € C ([O,T]; HQ}G(R» and g € Hy(R), for some m € R
and p > 0, then we find a solution u for the Cauchy problem associated with the operator P with initial
data f and g which satisfies

ueC([0,T; Hip(R)), 5 <p.

To prove the uniqueness of the solution, let consider uy,us € C ([0, TJ; HEY (R)) such that

P’U,j = f
u;(0) =g

’ J:]-vz

By shrinking p' if necessary, we can find new parameters M, _,,..., M{ >0, K’ > 0 and hy > 0 in order
to apply Proposition 3.3 again and obtain that the Cauchy problem associated with the conjugated
operator

PA',K',p’ = QA',K',p’ e} (’LP) o QX/{K/,/)’
is well-posed in H™(R), where Qas ks comes from the new choice of parameters. Proposition 3.3

allows us to conclude that Qar k7. f, Qar k7,009, Qar k7,0 € H™(R) and satisfy

Prkr o Qur kg = Qar ke pr f .
b .] - ]" 27
Qnr i puj(0) = Qar ki prg

hence QA k7 pu1 = Qar K7, U2, which implies that u; = uy. This concludes the proof.
O

Remark 3.5. In Theorem 3.1 we assumed that a, depends only on t. In the H°°—setting it is
possible to allow also a dependence on x in a, assuming a suitable decay for |x| — oo as for the
other coefficients, cf. [12, Section 4]. In the Gevrey setting, this is difficult since in the conjugation
eK(T_t)<D>'11/9iap(t,J:)D@@‘K(T_t)wﬁ/g it gives
1
iay(t,z)DP + op (K(T — 1) (€) ] Dpay(t, x)gp) +lot.
iyl
and the second term behaves like <§>Z 1+", that is of order strictly greater than p — 1 and it cannot be

compared with other terms as we did in Section 3.0.
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Remark 3.6. In this final remark, we observe that we could prove a slightly more general version of
Theorem 3.1, which is a kind of sufficiency counterpart for the main theorem in [7]. More to the point,

we may consider the following hypotheses on the decay of the coefficients ap—;(t,z),7 =1,...,p—1:
+1 16 —op, —
08a,_;(t,2)| < COH A1 ()= =0, (3.61)

for some 1 < 8y and op—; € (0,1). Then the condition 8y < 6 < m for HG°(R) well-posedness
of (3.2) would be:

(1]

, (3.62)

| =

<

where E is given by (6). In the next lines, we shall explain how to obtain this improvement using the
1deas developed in this thesis.

To prove the sufficiency of (3.62) under (3.61), we just need to consider a slightly different
change of variables (cf. Section 3.3):

Apfj(x,f) _ Mpfjw(fhilxo}:(j_l) /Ox<y>0pj¢ <<§<>:I}J7>1> dy, 7=1,....,p—1,
h

and
Ak (t,€) = K(T = t){)F +p'(€)-
Arguing as in Lemma 3.1, one gets that

p—1
A=) "Aj € SE(R?) N SGHO(R?),

Jj=1

where

0= max {(-0,)- =11,

1<j<p-1 p—1

1
[
h

Thus, we still have that eP 0 s the leading part of the operator

QA,K,p’ (tava) = eAK'p, (t7 D) © eA(xa D)

—_

So, due to the hypotheses = < %, 1 < 6y <0 and (3.61), one can still run the change of variable
argument and conclude Hg (R) well-posedness for (3.2). Of course the proof of the result described in
this remark is even more technical than the proof of Theorem 3.1. For this reason, we decided to present

a simpler result and leave the details of this more general version to the interested reader.

Remark 3.7. Theorem 1 in [7] shows that if 6 > m, the Cauchy problem (3.2) is not well-posed
in Hg°(R). In critical case 6 = m by modifying the terms of the change of variable it should be
possible to show local in time well-posedness. We do not treat this case in detail for our Cauchy problem

but just refer to similar situations, cf. for instance [17, Remark 8.
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3.8 Well-posedness in projective Gevrey spaces

In this section, we study the same Cauchy problem (3.2), but now we aim to obtain a well-
posedness result in projective Gevrey spaces Hg°(R™). Also we point out that, for this case, it is
necessary a slightly change on the hypotheses on the coefficients of the operator P(t,z, Dy, D). The

second main result of this work is given in the following.

Theorem 3.3. Let g > 1 and 0 € (5%2 1) such that 6y < 0 Let P be an operator of the

1
T Do)
type (3.1) whose coefficients satisfy the following assumptions:
(i) ap € C([0,T];R) and there exists Co, > 0 such that |ay(t)| > Cq,, for all t € [0,T].
(i) For every A > 0 there exists Caq, , > 0 such that |0 a,_;(t,x)| < Caa,_,A°BI% (m)fz%{"*’g,
forallj=1,...,p—1 and for g € Ny, (t,x) € [0,T] x R.

If 6 > 1 is such that 6y < 0 < m, the data f € C ([O,T];H};@(R)) and the data g € H]%5(R),
with m € R and p > 0, then the Cauchy problem (3.2) admits a unique solution u € C* ([0, T HE, (R))

for every p € (0,p) and the solution satisfies the energy estimate
t
(@), < C (ngn%% T / IIf(T)II?q;;BdT> , (3.63)

for all t € [0,T] and for some constant C > 0. In particular, for 0 € [so, m) the Cauchy
problem (3.2) is well-posed in H°(R).

To prove Theorem 3.3 we will proceed in a very similar way as we have done in Theorem 3.1
with the necessary adjustments. Let us consider the functions A\,_x(z,§) given by (3.6) and Ak (¢, §)
given by (3.42) which will be employed in the change of variable, where the parameters K > 0, p’ € (0, p)
will be chosen later in a suitable way.

We observe that under the condition (ii) of Theorem 3.3, the symbol a,_;(t,2)é?~7 belongs
to C ([O,T]; I‘Gzo_jv—““(R%)) which is contained in C ([QT];I‘G’Q’JJ(R%)). Then we can use the

following results to deal with the related operators.

Proposition 3.4. If p is a symbol of f‘g”(RQ”), then the operator p(x, D) maps continuously H;’;e/ (R™)
into Hg;l@/—m(R”) for every m’, p € R.

If p € T2 (R?") and q € T'3" (R?"), by Proposition 6.4 of [34] the operator p(x, D)q(z, D) is a

pseudo-differential operator with symbol s given by

s, €)= Y 08P, O)DIa(w, &) + e, €),

|a| <N

for all N > 1, where ry € I‘g”mLN(R?").
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And now we have the following conjugation theorem, cf. Theorem 2.9 [5], which is a reformu-

lation of Theorem 3.2 for symbols in I'j*(R?").

Theorem 3.4. Let p be a symbol in T (R*™) and ® satisfying (3.11) and (3.12), and p < 0 < k. Then
there exists hg = ho(Cg) > 1 such that if h > hg, then

- 1 (67 T @ ,— x
" (@, D)p(z, D) (e (@, D) = p@.D)+op| Y, mOE{ofem O Dip(r, D)
1<|atpl<N
+ rn(@, D) +roo(z, D), (3.64)

where 'y and 1o satisfy, respectively, the following conditions: there exists ¢ = ¢/ (®) > 0 and for every

A > 0 there ewists Cy > 0 such that

108027 (2, €)] < CaAlHPIF2N (1g1)0 V1201 ()= (1INl (3.65)
and
1
|08 07 oo (2, §)] < Ca Al*FHITN (alp1) I N120 1o @i (3.66)
Proof. Check [34, Theorem 6.9]. =

Remark 3.8. Concerning the remainder terms rn and T+, appearing in the latter result, we can point

that:

e By choosing N large enough depending on k, we notice that m — (1 — %)N shrinks, hence rn can

be considered as a symbol of order zero.

e The operator corresponding to ro, has reqularizing properties on Gevrey classes. In other words, it

maps (G§)'(R™) into GY(R™). However, for our goals we shall consider ro, as a symbol of TY(R?™).

e In the computations of Subsection 3.8.1, if N is sufficiently large, the remainder ry + ro can be

considered as a symbol of TY(R>").

e Since we are dealing now with projective Gevrey reqular symbols p, it is possible to conclude that

the remainders vy and T~ satisfy estimates like (3.65) and (3.66).

We shall apply Theorem 3.4 to ® = A, where A is defined by (3.9). In fact, it is immediate to
verify that A satisfies the assumptions of Theorem 3.4.

The next result (we are considering the particular case of symbols in R?) is used to perform
conjugations with operators e+’ (z, D), where Ag , is given by (3.42) for some K > 0 and p’ € (0, p)
(where p > 0 is the same as in the statement of Theorem 3.3). Compared to the latter result we have
a small difference in the sense that the conjugation now can be performed for every p’ > 0, since the

symbol of the operator satisfies projective Gevrey estimates.
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Proposition 3.5. If p € TJ*(R?), then we can write

1

eAK’pl (t7 D)p(ma D)e_AK’P/ (ta D) = op ( : : ja?eAKypl(tﬂg)D;‘p($7 g)e_AK’P/(Ié)) +7rN (t7 €, D)a

(e%)
a<N

where v satisfies the following condition: for every A > 0 there exists Ck , a,n > 0 such that

o a m—N(1—4%
102027 n (8,2, €)] < |[Ipll|aCkpr 4w A () VTS

3.8.1 Conjugation of the operator

Now we are ready to perform the conjugation for the projective case, that is, let us obtain

a suitable representation for Py kv = QA K p (iP)QK}K - The reader must have in mind that some

details in the computations will be omitted since they follow the same ideas as in the inductive case, so

it can be checked in Section 3.5.1.

Conjugation of iP by e

The goal here is to perform the conjugation of i P by the operator e*(z, D) for A = ZZ: Ap—k-

Since iP(t,z, Dy, Dy) = 8¢ + ia,(t)DE + ia,_1(t,2)DP~ + - - +iay (t, ) Dy + iag(t, z), let us split the

computations term by term.
e The conjugation of 0;. It is trivially given by

eMxz,D) o8y o (eMx, D))"t =0,

e The conjugation of ia,(t)D?. We notice that ia,(t) D2 does not depend on z, hence we can use

Theorem 3.4 to obtain

eM(x, D) o (iay(t)Dh) o R(e"™(x,D)) = ia,(t)D +iop | > %ag (eta,(t)EPD2e™™)
1<a<p
+ Tp(t,l‘,D)—f—?”oo(t,l',D), (367)

where r, € TY(R?) and r satisfies an estimate like (3.66). As in (3.21), (3.67) becomes
e’ (a, D)o (iay(t)DF) o (e (2, D)) = iay(t)D} +iop (Je{ap(t)€" Du(—A)})
+ dap(t)e—o(x, D) + - +ia,(t)c—p(x, D)

+ roo(taan)a

—m+1
p—m,—%

where c_,,, € SG, Pt U(R2) and depends only on A\p_1,..., \p_m+1, for each m = 2,...,p.

Now, composing with the Neumann series, it follows that

eA(x, D) o (ia,(t)DP) o (e/\(,r, D))71 = ia,(t)D? — op (85%(15)51’81.1& + a,(t) Z Cp_m>

m=2

+ Folt,z, D), (3.68)
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with 7o € C ([O7 TY; f‘g(RQ)) and c,_,, of order p—m with respect to { and —p;%“a with respect

to x depending only on A,_q, ..., A foreachm =2,....,p— 1.

p—(m—1)»

From now on, symbols of C' ([0, T, T (R2)> are denoted by 7.

e Conjugation of ia,_;(t,x)DE=7, j=1,..,p—1. For N € N sufficiently large to be chosen later,
by Theorem 3.4 we get

(@, D) o (iap—;(t,x) DY) o (e~ (z, D))
= iap—; (tv I)Dgij + op Z 71

13!
1<a+B<N alp!
+ Fo(t,:z:,D). (3.69)

og (3?6A -iDPa, ;(t, z){pijgefA)

By analogous arguments as used to the conjugation of the inductive case, (3.69) turns into

P—J
et o (iapfj (t7 f)Dgij) ° R(eiA) = iap*j (t’ x)Dgij +op (Z Cg]—m> + fo(t, €, D)a

m=2

where c[j]_ € I‘Gz_j_(m_l)’_’)%1(7

bm (R?) and depends only on A\,_1, ..., Ap—(m—1)- And now com-
posing with the Neumann series, we keep the structure of the above expression in the following

way
e(x,D) o (iay—; D7) o (e*(z, D))"

p—1
= ia,_j(t,z)D” + op <Z dg1m> + 7o(t,x, D), (3.70)

m=2

p—j—(m—l)ri%{a(

with dE]_m eI'G, R?) depending only on A\p_1, ..., Ap—(m—1)-
e Conjugation of ia(t,z). We have that
eMa, D) o (iag(t, x)) o (e(x, D)) = 7o(t, x, D). (3.71)

Now, putting all these computations together and arguing like in the inductive case, we have

eA(x, D)o (iP) o (eA(;zc7 D))_1 Oy + a,(t)DP
iap—1(t, x)Dg_l — op(0ap(t)EP 0z Ap—1)

iap—a(t, ) D8 ™? — op(Deap(1)EPDu)p—2) + 0p(dp—2)

iaz(t, 2) D3 — op(Deay(t)§" 0y \2) + op(d)
ia1(t,x) D, — op(deay(t)EP0 A1) + op(dy)

7o(t, z, D), (3.72)

+ o+ o+ o+ o+ o+
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with d,,_; of order p—j with respect to { and 711;%{0 with respect to z, depending only on Ap 1, ..., Ay (1),

for every j =2,...,p— 1.

Conjugation of ¢*(iP)(e?)~! by e’x.o
Before we start with the conjugation, just recall that e*x." (¢, D) is such that
~1)(1—0 1/0
A (8,2,6) = K(T = )€™ + o' ()",

for some K > 0 and p/ < p, and it is a symbol of order 1/6, since (p—1)(1—0) < 1/60 by assumption. In
the projective case, we shall conjugate operators with symbols of Gevrey regularity 6 > 1 with Gevrey
constant A > 0 which can be taken arbitrarily small. We notice that, to perform this conjugation in the
inductive case, we had to consider p’ small enough to apply Theorem 3.2. However, in the projective
setting, no assumptions appear on p’ in Theorem 3.4 neither in Proposition 3.5, since A can be chosen as

small as we want. Summing up, we can choose p’ € (0, p) arbitrarily and then perform the conjugation.

e Conjugation of 0;. For this term we get

Mot (1, D) 0 8y 0 e A (8, D) = 8, + K (D) PV,

e Conjugation of ia,(t)D?. Since a,(t) does not depend on z, the conjugation is simply given by

eMre (t, D) o (iay(t)DP) o e M50 (t, D) = ia,(t) DP.

e Conjugation of ia,_1(t,z)DE~! — op(deay(t)EP0,Ap—1). We have that
et (t, D) o (iap—_1(t,x)DE™! — op(deay (t)EPO,Ap—1)) © e Mk (t, D)
= dap_1(t,2)DE — op(dea, ()P0 A p—1) + A[};Tp}} (t,z, D),
with A[};j] (t,z, D) a remainder term whose symbol satisfies: for any A > 0, there exists
Car.K,p M, >0

such that
_ _ 1
g0l AL (1,0, €)| < Carriepran, AT (@B) (€N 0 () =Y, (3.73)

for all a, B € N, t € [0,T] and z,£ € R.

e Conjugation of ia,_;(t,2)DE~7 — op(O¢ay(t)EP0: Ap—;) + op(dp—;), 5 =2,...,p — 1. For each j,

we have

elrp (t,D)o (z'ap,j (t, x)Dé’_j — op(0eap(t)EPOxAp—j) + op(dp,j)) oe M (t, D)

= iay_;(t,x) D2 — op(Deay(t)E Dphp—;) + 0p(dy—;) + AL N (t 2, D),
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with A[};_j] (t,z, D) a remainder term whose symbol satisfies: for any A > 0, there exists

CAvT,K,p’,Mpfl,...,Mp,j >0
such that
OO0 AY 1,2, 6)| < Cureyrovy vty AP IR () ) B (ara)
for all o, 8 € Ny, t € [0,T] and z,§ € R.

Gathering all these computations, we get

QA7K7p’(tvx7 D) © (ZP) © (QA,K,p’ (t,.’I}, D))_l

= Mo (t,D)o (:c,D) o (iP) o (e(x, D))" o e Mo (t, D) = 0y + ia,(t)DE
tap—1(t,2)DE™" — op(O¢ap(t)EP Oz Ap—1) +A (t x, D)
iy (t, 1) DY * — 0p(Deap () D\ - 2>+op<dp 2) + AR (8,2, D)

iay(t, z)D? — op(deap(t)€"Du)2) + op(da) + AR (£, 3, D)

iay(t,x) Dy — op(deay ()P0, \1) + op(dy) + AR, (t,z, D)

+ + + + o+ o+

K(D)P " 4 5o (t, 2, D), (3.75)

where A[fgf/’] is a remainder term depending on M,_1, ..., M, _; satistying (3.73) for j = 1 and (3.74)

for j=2,...,p— 1, and 7 is a projective symbol of order zero.

3.8.2 Lower bound estimates for the real parts

At this moment, we do not intend to repeat all the computations to obtain the desired esti-
mates. For this reason, we recommend that the reader checks Section 3.6 for more details. The operator

given in (3.75) can be rewritten as

PA,K,p’ (t, z, D) = QA,K,pI (t,a:,D) o (’LP) o (QA,K,‘,/ (t, a:,D))71
8,5 —|—zap(t)Dg
iap_1(t,2) D2 + op (pM—1a, (t)[€]" " (x) =) + AL (¢, 2, D)

iaya(t.) DY + op (pMy-aa, (DI~ (€7 ) 57) + op(dy—a) + AL, 2 2. D)

iax(t,2) D2 + op (pMaay (DIEP (), ()77 ) + op(da) + AR, (.2, D)
iay(t.2) Dy + op (pMiay (D]E" (), ()" 717 ) + op(dy) + Al (1.2, D)

K (D)~ 077 — plo=00=9l(¢ 4 D) 4 7o(t,z, D), (3.76)

+ o+ 4+ o+ 4+ o+
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with dp_pp, m =2, ...,p—1, A[;;;jﬂ, j=1,...,p—1, as described previously, 7y € C ([O,T],f‘g(RQ)) and

Blp-1)(1-0)] (t,z,€) : Zpa )P <§>}1L—j<x>f§%{a |} — <<€<;;>_1>]

has order less than or equal to (p—1)(1—0) in &, order zero in « and it depends on M,_1, ..., My. Next,
we shall fix A = 1 in the estimates and omit the dependence on A in the constants. And now we are
ready to obtain the desired estimates from below. We summarize the estimates for each level in the

following:
e Estimates for level (p —1). Set
Gp1(t, 2, Dy) := iy, 1 (t, ) D2 + op (pM, 10, (D)6~ (2)~7) + AL (¢, 2, D).
Then
Re ap-1(t,z,€) > 5 €77, [€ = 2,
ap-1(t,2, D) = QY7 (t, 2, D) + #P=A(t, 2, D),
Re (Q[f‘” (t,z, D)u, u) 1,20, ueI*(R), and
=2t  2,6) € SGE 2 T1T(R?), t € [0,T] dep. on M,_y, h.

¢ Estimates for a generic level (p — j), 7 > 2. We set

ap—j(t,z,D) = ia,_;(t,z)D} - + op (PMp jap(t )|£|p71<§>};j<x>_£%{0)
+ APt 2, D) + dyj(t,x, D) + 7P~ (t,2, D).
Then v
Re d,;(t,2,8) > $) »=17[¢lr=, ¢ > R,
iy j(t,z, D) = QY7 (t, 2, D) + 7P~ -1(t,z, D),
Re (Q[p_j](t,z,D)u u)L >0, wue L2(R), and

pjllz%i

Flp—i—1] (t x,€) € SG G(R2) dep. on My_1,...., Mp_¢j_1y, h.

At this point, after the choice of all the parameters M,_1, ..., M; and h, our conjugation can

be expressed as

PA,K,p’ = at + Zap(t)Dp
QU Nt 2, D)+ Q¥ (t, 2, D) + -+ QP(¢t, 2, D) + Q1 (t, 2, D)
K <Dx>§f"”‘1—”) = BIe=DU=(t 4, D) + 7o (t, 2, D).

Now, recalling the definition of BI(P=D(1=)]'in (3.46) we can choose K > Ko(M,_1, ..., My) large enough
such that
Re (K (¢ V7 = B0t 5,6)) > 0
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and by applying Theorem 2.10 once more we obtain

p—1
PA,K,p’ = 6t + Zap(t)Dg + Z Q[ffj] (t, Z, D)

j=1
+ QP VYNt z, D) + 7o (t,z, D). (3.77)

Summing up, for p’ small enough, choosing, in order, M,_1, ..., M7, K and h large enough, precisely

141
CrK,p My s, My R e < and h > hy

N | =

enlarging the parameter hy given in Proposition 3.2 if necessary, we obtain that formula (3.77) holds.

Now we are ready to prove Theorem 3.3.

3.8.3 Proof of Theorem 3.3

Given 6 > 1 satisfying the hypothesis of Theorem 3.1, m € R, p > 0, take the initial data
feC(0,T; HH(R)) and g e HJ(R).

Set the positive constants M,_1, ..., My, K, hy for which Proposition 3.3 holds and p’ € (0, p). We know
that both symbols A and K (T — t)<~>;lp71)(170) have order (p — 1)(1 — o) < 1/6, hence by Proposition
3.1 it follows that

Iar,py = Qak,p(t,x,D)f € C(0,T]; H"(R))

IrNK.p = QA ke (tz,D)g € H™R),

for p’ < p. By Proposition 3.3, we have well-posedness in Sobolev spaces H™(R) for the Cauchy problem
associated with the operator Pk, = Qa K, © (iP) 0 QX}K’p, given by (3.57), that is, there exists a
unique solution v € C ([0, T]; H™(R)) to the Cauchy problem

PA,K,p/U(th) = fA,K,ﬁ/(t7x) (t x) c [0 T] X R

v(0,2) = ga,kx,p (2)

satisfying the energy estimate
t
2 2 2
Ol <€ (lanseln+ [ IsmpDlfmar), t€ 0.7 (3.78)

By setting u := (Qa, k., (t, x,D))_1 v, we obtain a solution for the original Cauchy problem

(3.2), namely

Pu(t,z) = f(t,x) . (t,2) €[0,T] x R.
u(0,z) = g(x)
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As before,

S

u(t,z) = *(eM@, D)) Y (~r(x, D)y e KT=DENE =/ (D)
J

v(t,x), ve H™(R),

1
but v € H™(R) implies that e P v =: uy € HJJ(R), hence

u(t,z) = % (e_A(a?,D)) Z(_r($7D))je—K(T—t)<D>;(f_1)(l_a)u1, uy € Hy'y(R).
J

Notice that, for every §; > 0, we have

=

1
—1)(1—0 —1)(1—0o 0
e K@=(DRIHET KD DN 0 (DN iy € BT 5 o(R),

order zero

and since Y (—r(z, D))’ has order zero, uz := Y ;(—r(z, D))uy € H}} 5 o(R), which allows us to
write

u(t,z) = B (e_A(x,D)) Z(—r(aﬁ,D))jug =R (e_A(sc,D)) uz, uz € Hy' 5 o(R).
J
By Proposition 3.1, we have that ¥ (e™*(x, D)) maps HJ»(R) into H)" 5 »(R), for every d> > 0, and
we can assert that u(t,-) € HJ_;,(R) for all § > 0, ¢t € [0,T]. If we set p := p’ — 4, it follows from
(3.78) that

[, = 1@t D) o(0) B, < Callolt)
t
< G (lonscslBon + [ Winsey )
t
< (ol + [ 15@Iar) . te 0Tl (3.79)

To conclude, we notice that if the data f and g are valued in H;’}G (R) for all p > 0, then the solution

belongs to H\ 4(R), for every p” € (0, p), which means that
ue C([0,T]; Hy*(R)) .

The uniqueness follows as in the proof of Theorem 3.1.
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Chapter 4

CAUCHY PROBLEM FOR p-EVOLUTION OPERATORS
WITH DATA IN GELFAND-SHILOV SPACES

4.1 Gelfand-Shilov well-posedness and main result

In this chapter, we shall consider the same p-evolution operator given by (3.1) as in Chapter

3, for p > 2, that is,

p
P(t,x,Dy,Dy) = Dy + ap(t) DL + Y a,—j(t,2)D07,  (t,x) € [0,T] x R.

j=1

Our goal is to study the same Cauchy problem

P(t7$,Dt7Dz)u(t7x) = f(t,$)7 (t71') € [O’T] xR , (41)
u(0,2) =g(z), zeR

except that now the data f and g will be considered in Gelfand-Shilov-Sobolev spaces, that is, f €

C ([OvT]3H&1,p2);s,e(R)) and g € H?plm);sﬂ(R), where

HYy, oo ®) = {u € S (R) o e P e L(®)).
In Gelfand-Shilov setting, we also have the definition of well-posedness.

Definition 4.1. We say that the Cauchy problem (4.1) is well-posed in 8(R) when, for any given
m € R, p = (p1,p2), p1p2 > 0, there exists p = (p1,p2), p1,p2 > 0 and a constant C := C(p,T) > 0
such that, for all f € C ([O7T];Hm (R)) and g € H™ ,(R), there exists a unique solution u €

p;s,0 p;s,0
o ([07 T); H™

e, (R)) and the following energy estimate holds

t
fott. Mg, < (lolag,, + [ 1576y, 7).

It is easy to verify, eventually conjugating our operator by (x)™2(D)™ | that we can replace
m € R? by (0,0) in Definition 4.1. The first main result that will be proved in this chapter, is stated in

the following.

Theorem 4.1. Let 8y > 1 and o € (;;%f, 1) such that 6y < m Let P be an operator of the

type (3.1) whose coefficients satisfy the following assumptions:
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(i) ap € C([0,T];R) and there exists C,, > 0 such that |a,(t)| > C,,, for all t € [0,T].

(ii) [0ap—;(t,2)| < CLFL A% ()" 5=1"F | for some C,

Ap—j

(t,z) € [0,T] x R.

>0,j=1,...,p—1 and for all B € Ny,

p—J

Let 5,0 > 1 such that (p — 1)0 < min{ﬁﬂs} and 8 > 0y, and let f € C([O T Hgse

(R)) and

H,?sa( ), for some p = (p1,p2) € R? with p1,ps > 0. Then there exists a unique solution
u e C! ([ , ];H(Oﬁ1 6)-59(R)) of (4.1) for some p1 € (0,p1), 6 € (0,p2) and it satisfies the energy
estimate

ol ., < (Ioliy,, + [ 15, dr) (12)

1,5):5,6
for all t € [0, T] and for some constant C > 0. In particular, the Cauchy problem (4.1) is well-posed in
8Y(R).

By similar reasons as we have discussed in Chapter 3, the proof of Theorem 4.1 cannot be
achieved in a straight way. Then we need to work in a strategy to conjugate the operator P, which
means that a change of variable must be done in the original Cauchy problem. Essentially, it is sufficient
to add a new term to the change of variable used before.

As a matter of fact, the Cauchy problem (4.1) has the data f ang g in Gelfand-Shilov-Sobolev
spaces, namely

f(t), ge H?p17p2);s79(R), te0,T).

The idea is to multiply f and g and to conjugate P by the term eéml/s, with § € (0, p2) to be chosen
later. Notice that this change of variable pulls back the data f and g to some Gevrey-Sobolev space (of
course, the coefficients of the conjugated operator Ps := @) pe=8(2)'"* ghould preserve the properties
of the coefficients a,_; of P) and this will give us an auxiliary Cauchy problem whose data will be in

some Gevrey-Sobolev classes, that is,
o)1/ o)/
WS (), g € HY) 4(R).
Indeed, the auxiliary Cauchy problem becomes

Ps(t, 2, Dy, Dy )u(t, @) = 5@ (¢, )

0(0,2) = 5@ g(z) . (t,z) €[0,T] x R. (4.3)

Once we conclude that this conjecture works, the next step is simply apply Theorem 3.1 to the Cauchy

problem (4.3), provided that 6 € [HO,min{m“s}), and then the proof of Theorem 4.1 is a

consequence of it.
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4.2 Conjugation of P by @'

After all the previous, let us perform the conjugation of the operator P(t,z, Dy, D,.) by ed (@)t

and its inverse, where 0 € (0, p2). As before, the conjugation will be made term-by-term, and the next

steps are dedicated to this purpose.

e The conjugation of D;. Since @' does not depend on t, the conjugation is trivially given
by

§(zyt/e

@ Dioe” = Dy.

e The conjugation of a,(t)D?. First of all, the computation is made just with D (and then we

can put the factor a,(t) later). By using Leibniz formula, it can be computed

k=1
- Dlio ii p! gk D)/ ple=s(a)!/*
TP L k) @
k=1
0
= DY+ b (x)DEF,
k=1

where

Now, let us check what happens with the terms bf_) .- By Faa di Bruno formula, it follows that

V2 B 1/s k 1
() Dl gmo(a) z::z 3 kzyl_[le< ')

k14 +ko=k
ky>1

Notice that, since |92 (x)™| < CPB1{z)™ 8 we obtain the estimate

H Dk ( 1/5> 5t ﬁ ‘D§u<x>1/s
v=1

= §'CFky) - k() s

4
<o T €™ k()=

v=1

< CFF gyl kg ()Y,
Hence

)
67, ()]
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which gives us that bz(;i) L~ (x)F (5-1). Similarly we obtain that

D2V, (2)] < CF+FH By ()4, (44)
for all 5 € Ny. Therefore, the conjugation of a,(t)D? is given by

1/s

p
O (ay (DR = 0, ()DL + Y 0D, (1 @) DI
k=1

where dx(f_)k(t, x) = ap(t)b](f_)k(x) satisfy, for every k = 1, ..., p, the following estimate

sup |DIal”, (x)] < CFFp1(a) (1) =0, (4.5)
te[0,7)

e The conjugation of a,_;(t,z)D?™7, j =1,..,p — 1. At this moment, we need to be concerned

what happens with the lower order terms. For each j = 1,...,p — 1, by using again the Leibniz

formula
e (@ (t, ) DI O =y (4, 2) DR
pijl L Y YIRS VRN R YIRSV
+ op Zgap,j(t,x)aggp_je (@) 7" pke=d(z)
k=1
= a,_;(t,x)DL77
p—J p—j , e y
+ op Z( % )ap_j(t,m)fp_]_keﬂ“) "DEem0@ )
k=1
= ap j(t,e)DY T+ ay (b))’ (@)D
k=1
where

D—

By the same argument used before, it follows that 0 satisfy (4.4), for every j = 1,....,p—1

p—j—k
and k=1,...,p—j.
e The conjugation of ag(t,z). It is simply given by

65<:”>1/Sao(t7 x)e_6<””>l/s =ag(t, ).

By the previous analysis, we can assert that the conjugated form of the operator P(t,z, Dy, D)

1/s . . .
by €*® " and its inverse can be written as

p—1
SO o Poe @ = D, 4 a,(t)DE + > apj(t, @) DY +ao(t, x)
j=1
G (®) & ®) '
+ a, i (t, x)DPF 4 ag? (t,x) + Z Z ap—;(t, x)cpfjiz(:v)Dg_]_é.
k=1 J=10=1
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Notice that the double sum in the last term can be expressed as (omitting the variables ¢ and z for

simplicity)
5 _
Zap chp ji— @Dp it Zd(szg ka
where
d(é)k = c(é) Z ap—g, =2,..,p.
t=k—1
In particular, we have that d;f_)k satisfy (4.5). Hence
p—1
1/s 1/s .
@) o poe i@ — p, 4 ap(t) D + Zap,j(t,ac)Dg_J + ao(t, )
j=1
p—1
+ Y al (oDt +al) (¢t x)
k=1
"
+ Y dY, (ta)yprt
k=2
p—1
= Di+ay(t)D2 + ap1(t,2)D2 + Y ap_(t,x) DL + ag(t, z)
j=2
-1
+ &( ) 1 (t,z)DP= 1—|—Za(5) (t,z)DP~ k—|—aé )(t x)
k=2
p—1
+ d¥, (t,2)D27* + d)(t, ),
k=2
and finally

S p o @

P
+ Z{apjtm

where
1(05)1(2? x) = ap_1(t,x) + dif_)l(t,x),
§ ~ (6
ap?j(t,@) = apy(t2) + ) (t2) +

From the previous estimates we obtain that a

mP] *p—j

tel0,T
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p—

sup] (\Dﬁ = () (t,z)| + IDﬂd(é) (t, ,I)|) < Cﬁ+16!90<x>—j(17§)75.

D+ ap ()DL + {ap 1 (t,2) + ) (t,2) } D2

5 ©) _
' (t,x) +dp_j(t,a:)} pp

(%) :
dp—j(t,x)v 23] §P,

; satisfy the following estimate:



4.3 Proof of Theorem 4.1

To prove Theorem 4.1 we want to apply Theorem 3.1 to the operator Ps. So we need to show
that the operator Pj satisfies the assumptions of Theorem 3.1. With this purpose we distinguish two
cases.

The case s > ﬁ In this case, the assumption of Theorem 4.1 reads as

p-D1-0) “p-1

In this case we observe that the coefficients of Pj satisfy the assumptions of Theorem 3.1, that is,

. »
j<1> >P7I0 0 vi=1,..p.
p—1

0 <

S
In fact, we notice that as j increases, the left-hand side of the above inequality increases and the right-
hand side decreases, so this inequality holds for all j = 1,...,p if, and only if, it holds for j = 1, that

is,

1 -1 1 1
1—- Zp c & 1—=->20 & s> ,
S p—1 S 1—-0

which is true. Hence we have

sup |D2al®) (t,2)] < O 1o ()~ FH 8, (4.8)
t€[0,7)

Let us then consider the Cauchy problem (4.1) with data

feC([0,T];H),,(R)) and g€ H), ,4(R),

for p = (p1, p2), with p1,p2 > 0. If 6 € (0, p2), then

1/s 1/s
fo = e fecC ([O’T]; H?Plvpzfﬁ);s,e(R)) and g5 = (") g€ H(Opl,,ﬂszs);sﬂ(R)’
because, if ¢ € HS;S,G(R), then
(b(pl’pQ)(x) = eﬂ2<x>1/sel’1(D>l/9¢ c LQ(R), (4.9)

and

(P2 =0)(@)!* o (D) (5(@)1/* o e(p2=6)(@)'/* o1 (D)° 5(a)/? (€p2<m>“~*em<D>“9) - er2 (@) o (DY

———
=05 =®(py1,p2)
= PO (D) 5(@) = (DY el e [2(R),
=Ap1,02,8)
since A(,, ,, 5 has order zero and ¢,, ,,) € L*(R), and this means that ¢s € H?php?_é);sﬂ(R).

Since py — d > 0, it follows that
fs€C([0,T; H) 4(R)) and g5 € H) 4(R).
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Once we are considering 6 € [00, min{m, s}), we obtain that the auxiliary Cauchy problem
given by (4.3) is well-posed in Hg°(R), that is, there exists a unique solution v € C* ([O, T Hgl;e(R))

of (4.3), with initial data f5 and gs, satisfying

lo(t. Mo , < Clor. >(|ga||Ho; / 1sr. ). df) (4.10)

for some py € (0,p1). Now we set u(t,z) := 6_5@”)1/51)(15,96). Notice that u € C* ([0,T]; H (s, 5).5,0(R))
and it solves the Cauchy problem (4.1), because

1/s )1/ _sia)L/s 2)1/s
u(0,2) = e~ T0(0,2) = e gs () = e T g () = g(a),
and Ps(t,x, Dy, D, )v(t,z) = f5(t,z) implies that

@ Pt 2, Dy, D) e @ oty x) = SO f(tw) = P(t,x, Dy, Dy)u(t,x) = f(t ).
N—_— —

=u(t,z)

Finally, we can use estimate (4.10) to obtain

Jeu(t, o < CO)olt s, ,

(51,8):5,0
t
< C(p,6,T) <|g5||ilol.9+/ 1£5(m, ) 1370 ﬁdr)
013 0 P1i

t
S C(pla(S)T) (|g|%lo S)is +/ Hf(T,)”f:]O 1,6);s, GdT>
< lonan) (lally,, + [ 1560l or).

where C'(p1,0,T) is a positive constant depending on py, § and 7T

To prove the uniqueness of the solution, let us consider two solutions
uj € C" ([O,T];H&hé);sﬂ(R)) =12

with § < ps, for the Cauchy problem (4.1). By taking any é € (0,4), notice that

V) = e[f(ac)l/suj7 j=1,2,

are solutions of (4.3), for § replaced by 4, and also v; € C! ([ T); H? (R)) The well-posedness in

p130
§(z)t/®

H°(R) of (4.3) gives us v; = vy, hence e i eSMl/Sug, which implies that u; = us.

The case s < ﬁ Now the assumption of Theorem 4.1 becomes

S 1
p—1"p-1l-0)

Oy <0<

pP—J

In this case we observe that <x>_§%{” < <m>_ﬁ(1_%) and <x>7j(17%) < <m>_5%{(1_-%), so we get

sup [D]afl)(t,2)] < OFF 1% (@) 5007
te[0,T]
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Then we can repeat the same argument used in the first case with o replaced by 1 — % Notice that

1—%6 (ﬁ 1) since

p—1’
1 -2 1 1
1—=>P2 & < —— & s>p-—1
s p-—1 s p-—1
which holds true since —*5 > 6 > 1. Then in this case the Cauchy problem is well-posed in 8Y(R) for
1 s . 1 s te .
90 < 0 < m = p—1 = mln{m, pTl} This concludes the pI'OOf.

O

Remark 4.1. Under the assumptions of Theorem 3.3 for P(t,x, Dy, D,), arguing as in the proof of
Theorem 4.1 we may prove a similar well-posedness result for the Cauchy problem with data in ¥ (R)

with minor modifications. We leave the details for the reader.

4.4 TIll-posedness results for model operators

In the previous section we have proved Theorem 4.1 under the assumption

(p—1)0<min{ ! ,s}.
1-0o

The aim of this section is to prove that if

(p—1)9>min{1ia,s}, (4.11)

then the Cauchy problem (4.1) is not well-posed in general for an operator P satisfying the conditions
(i) and (ii) of Theorem 4.1. With this purpose we distinguish two cases.
The case s < 72— In this case, (4.11) turns into the condition s < (p — 1)f. Then we have

the following result.

Proposition 4.1. Let 5,0 > 1 such that s < (p—1)6. Then there exists g € 8?(R) such that the Cauchy

problem

Dt DJu=0 " eI xR, (4.12)
u(0,z) = g(x)

is not well-posed in 8 (R).

Proof. The proof relies in the application of Theorem 1.2 in [10] which states that for every polynomial
q(&) of degree p with real coefficients and for every s,6 > 1 such that 1 < s < (p — 1)@ there exists
¢ € 83(R) such that

e (€) ¢ 83(R). (4.13)
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Taking g(t,&) := t&P for fixed ¢ > 0 and ¢ € 8§(R) such that (4.13) holds and choosing g = .ZF ~!(p) as

initial datum of (4.1), by elementary arguments we have that the solution of (4.1) is
ug(t,x) = F 1 1G(€) = FHET p(€)) ¢ SUR).

U

The operator D; + DP obviously satisfies the assumptions (i), (ii) for every o € (ﬁ%ﬁ, 1).

Hence we are in the situation s < ﬁ Then we have proved that if s < (p — 1)6, the Cauchy problem
(4.1) is not well-posed in general.

The case s > 1. Now (4.11) turns into 1= < (p — 1)f. Then we can prove the following

Theorem by considering the operator
M = D; + D? +i(x)~°DP~ 1, (4.14)
Theorem 4.2. Let M be the operator in (4.14), with o € (;;%f, 1). If the Cauchy problem

Mu =20
u(0,z) = g(z)

(t,z) €0,T] x R (4.15)

)

is well-posed in 8% (R), then

Now, if s > -1 and (p — 1)§ > 1, this yields 1 — ¢ > max{ﬁ, %} Then Theorem
4.2 implies that the Cauchy problem (4.15) is not well-posed. Since M is of the form (3.1) and satisfies
conditions (i) and (ii) of Theorem 4.1 then we conclude that if (4.11) holds, then in general the Cauchy
problem (4.1) is ill-posed.

In view of the the considerations above, we devote the rest of this section to prove Proposition

4.2.

4.4.1 Proof of Theorem 4.2

Let us consider the Cauchy problem associated to the model operator M given by (4.14), that
is,
(Dy + D? +i{z)=° D~ Yu(t,z) = 0
u(0,z) = g(x)

where ¢ > 0. Our goal is to prove that, if the Cauchy problem (4.15) is well-posed in 8%(R), then

. (ta) € [0.T] xR, (4.16)

1 — 0 > max { m, %} leads to a contradiction.

To keep the development of our work, we need to establish some notations, concepts and

results which were not mentioned before in the background chapters.
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Definition 4.2. For any m € R, the set Si(R) is defined as the space of all functions p € C*>°(R?)

satisfying: for all o, B € Ny, there exists a constant Cy, g > 0 such that

0807 p(x,€)] < Cap(€)™

The topology in Sg%(R) é induced by the family of semi-norms

pl{"™ = max sup |90, O(€) ", p € SFo(R), £ € No.
£,B<L z,£ER

Theorem 4.3 (Calderén-Vaillancourt). If p € Si'y(R) then, for all s € R, there exist £ := {(s,m) € Ny
and C := Cs , > 0 such that

Ip(e, Dyull sy < Clplf™ fullerme), Vue H™(R).
Besides, when m = s =0, |p|ém) can be replaced by

max sup |0 85 x, &
Jnax, mgeng p(z, )]

Proof. Check Theorem 1.6 of [37]. 0
Now we consider the algebra properties of g, (R) with respect to the composition of operators.

Let p; € Sgg(R), j = 1,2, and define

@8 = Os= // e~ Ypy(x, &+ n)p2(x + y, §)dydn

=t [ e (o€ mpata . e e dyay, (4.17)

e—0
We often write g(x, &) = p1(x, &) o pa(x, ), but we need to have in mind that this means the expression

given in the right-hand side of (4.17). Therefore, we have the following result concerning the composition.

Theorem 4.4. Let p; € Sm]( ), J = 1,2, and q defined by (4.17). Then q € Sm1+m2(R) and
q(z, D) = p1(x, D)pa(x, D). Moreover,

EXIEDY agpl(x ) Dypa(w, &) +rn(, ), (4.18)
oz<N
where
N 1
N(2,6) =N / Er—0s = [ [ €m0 pi(a, 4 0)DY pa(a + y.€)dydnds,

and the semi-norms of ry can be estimated in the following way: for any £y € Ny, there exists {1 = {1 ({p)
such that
Il < Cog 08 palyy™ 10 pal )
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Proof. For a proof of this result, we recommend to the reader [37], Lemma 2.4 and Theorem 1.4. 0O
In order to obtain the desired contradiction mentioned in the first lines of this section, let us

define some essential elements. Let ¢ € GY(R) satisfying

~ y1/0

P(&) = e (4.19)

for some py > 0. Notice that ¢ € 8¢(R). In order to reach this conclusion, we need to prove that
o(z) = feifwa(ﬁ)dg satisfies |¢(x)| < Ce™l for some positive constants C' and ¢, due to Proposition

6.1.7 of [41]. Integration by parts leads us to
() = (-1)° / ¢S Dlem e a,

and Faa di Bruno formula together with some factorial inequalities imply the following estimate

|$B¢(‘T)| < / eingge*PO(x)l/e ’ dc
/i e > & ﬁ‘aﬂf( <€>1/9) ac
. i Bil-- B! —po |
! ... 3. 13
=7 Brt-+B;=5 pil--- B! et
Be>1
< Chp, VzeR, BeN,, .

hence ¢ € 8f(R) C 8?(R), for all s > 1. Then, there exists p = (p1, p2), with p1,p2 > 0, such that
NS HPO;S,G(IR)7 for all s > 1.

Now let us consider a sequence (oj)ren, of positive real numbers such that o — oo, as
k — oo. Then we define the sequence of functions (¢ )ren, by setting

on(x) = e~V (x - 405‘1) ., ke N,

For each k € Ny, ¢y, € H°

p:s,0(IR) and satisfies

= /e2l’2<1>1/5 ‘691<D>1/0¢k($)‘2d{£

= /62/)2(@1/5
2

s p—1
— /62pz<m+4ﬂi’l>”‘ 202410, 7 ‘6P1<D>1/9¢(I)‘ da

y1/e /6 2
||¢k||?{2;s,e = /’eﬂz( )yt ePI<D)1 Qﬁk(:r)’ dx

2

p—1
1/6 1/s s 1
P (D) T2 oyt g (m —4o¥ ) dx

< / R R

= ||¢||§{259 = constant,

which means that the sequence (qukH O

) is uniformly bounded in k.
p;s,0 keNy
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By assuming that the Cauchy problem (4.15) is well-posed in 8/ (R), we can consider, for every
k € Ny,
u, € C*([0,T); Hy,, 4(R)),

where p = (p1, p2), with p1, po > 0, the solution of (4.15) with initial datum ¢y, that is,

Muy(t,z) =0
up(0,2) = gp(x)

The energy inequality gives us the estimate

st 22 < llust.las, < Crplléxllan, < Crolléla . (4.21)

.0 ,0

From the above inequality, it can be concluded that the sequence (||uk(t)||12),ey, is uniformly bounded
with respect to k € Ny and ¢ € [0, T.

Now we consider a Gevrey cut-off function h € G&*(R), for 6), > 1, such that h(z) = 1 for
|z| < 1 and h(z) = 0 for |z| > 1; besides, we assume that its Fourier transform satisfies E(O) > 0 and

ﬁ(ﬁ) > 0 for all £ € R. By using the sequence (o) )ren,, let us define the sequence of symbols

p—1
(e, 6) = (x;f‘_’f )h(f;’“)- (1.22)
k

Remark 4.2. For each k, notice that wy(x, &) is a symbol localized around the bicharacteristic curve of

&P passing through the point (0,01) at some fized time t. Indeed, it is also known as the Hamilton flow

generated by the operator Dy + DP passing by a point (xq,&) € R?, is the solution of

a'(t) = p§(t)P~, x(0) = xo

: (4.23)
§'(t) =0, £0) =&

that is, (a(t), £()) = (w0 +pt&h &)
Remark 4.3. On the support of wy, x is comparable with 0£71 and & is comparable oy, because x €
supp wg(+, &) implies that

x — 402’_1

-1
O.P

<1l <= 30@71§x§50£71,

and & € supp wg(x, ) implies that

T < <E< =
Zo-k 4 4

for each k € Ny.

For some A € (0, 1) to be chosen later, let #; > 1 such that 6, < 6, and, for each k € Ny, let

Ny = LUQ/GIJ — max {a ENg: a< 02/01}. (4.24)
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For each k, we consider the energy Ei(t) given by

1 a
B = Y g A7 @D, = Y Buas@,  (42)
a<Ny,B<Nyg a<Ny,B<Nyg

where )
o

w® (3, ) = B(®) (“74%> L (5 —Jk>

k ’ p—1 1 :

Ok 1%k

From Remark 4.3 it can be easily established the next lemma which gives us an estimate for the norms

of wy.

Lemma 4.1. Let o, 3,7,6,¢ € Ng. Then w,(f’g) € SgyO(Rz) and satisfies the estimate
|8§8§w,§a5) (, £)|E}0) < QotBty ottt (a!m,y!(;mz)ehkavgk—é(p—l),

for some constant C > 0 which does not depend on k,«, B, and §.

We also need the two following propositions to prove the main result of this section. Proposi-
tion 4.2 has a simple proof, which will be done in the sequel. However, Proposition 4.3 requires a lot of
steps to be proved, so we will dedicate a particular subsection to prove it. In the sequel of this section

we shall give it as true and use it to prove Theorem 4.2.

Proposition 4.2. Suppose the Cauchy problem (4.15) is well-posed in 8¢(R). Then there exists C' > 0
such that, for allt € [0,T] and k € Npy:

B o p(t) < COTPTL(a1B1)0n =0 (4.26)

and

Ei(t) < C. (4.27)

Proof. Since w,iaﬂ) € S0 o(R?), Calderén-Vaillancourt Theorem together with (4.21) and Lemma 4.1

implies that

|l (@, Dyui(o)

Cllug(t)||z> max sup [020%wy(z, )
02 i, s 1% |

< Ca+ﬂ+1(a!5!)9;L7

L2

hence by the definition of Ej  s(t), we have

1
Bool) = fargiye

w,(cam (ac7D)uk(zﬁ)HL2 < C“+ﬁ+1(a!51)9“_91.
Since 01 > 6}, we finally obtain (4.27), that is,
EL(t) = Z Eiap(t) <C Z CtP(a!p)?»~% = constant.

a<Ny,B<Ny a,BENg
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Proposition 4.3. Let us suppose that the Cauchy problem (4.15) is well-posed in 8(R). Then there
exist positive constants C, ¢, ¢ such that, for all t € [0,T] and all k sufficiently large, the inequality

p 1D\
—1)(1—0o g —c
atEk(t) > <clo-](<:p )( ) C E 1,(51)) E}c(t) o CNk-‘rla_g Nlc7
=1 Tk
holds.

Now we are ready to go on with the proof of Theorem 4.2 assuming that Proposition 4.3 holds

true.

Proof of Theorem 4.2. First of all, we set

P X
—1)(1— o _
Ay = C1J](€P o E 7(571), Ry := CN’“HakC Nk
=1 JZ

By Proposition 4.3, we have that
OBy (t) > ApEk(t) — Ry. (4.28)

Picking A < min{(p — 1)(1 — o), 1}, we notice that

=D A=p)FA<A<(p—-1(1l—-0) = A-p(l-1)<(p-1)1-o0),
<0

so the leading term in Ay is the first one, hence for k sufficiently large we have

Ay > %a,i”‘”““”. (4.29)

From now on, let us consider k sufficiently large. Then, by using Gronwall’s inequality, if follows from

(4.28) that
t
Ei(t) > et (Ek(o) — Ry, / e_AdeT> .
0

Then, for any T* € [0,T], by using (4.29), the above inequality turns into

T 6710_;(‘}1—1)(1—0)

Ek<T*) Z € (Ek(()) — T*Rk) . (430)
The next step is to estimate Ry and Fj(0). Since Ny = {02/91} R;. can be estimated as

Ry < Ce™ " . (4.31)

To obtain an estimate from below for Ej(0), we notice that, by definition of Ey(t), wi(z, &) and ¢y, if
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Z denotes the Fourier transform, we get

Ep(0) > fwg(z, D)drllr2(r,)

— 40Pt D—4
()
7k 1% 12(R,)
— 4P D—4
h (9‘" Tk ) h ( : "’“) d(a — 4o
Uk 107@ LZ(RI)

x— 4ol §—0k\ _sior—1¢7
Tk 19k

P SN (02_16) *h (§ _ U’“) el (8)

1
10k

s —1)/«
e_l0241/ ”fcp )/s

_ e—P241/sU§CP71)/S

L2(Re)

_ 1/s (p=1)/s _q
= ¢ p2d™ Yoy oP ;

L2(Re)

hence

2
Ei(o) Z 6_2p241/so§€p—1)/50’i(p71) / dé-

Re¢

/R K (o2 c=m)n (”fa:‘“) o)

4

Since 7(0) > 0 and h(£) > 0, for all £ € R, it will be possible to obtain estimates from below to E2(0)

performing a restriction in the integration domain. Set

7 7 _ 7 7 _
Gy = [SUk’ g0k + oy, p] and Goy = {Sak -0, 7, g0k + oy, p} )
Notice that, if n € G i then |n — o] < %, because

Ok

7 7 _
neG = §0k§n§§0k+gkp = -3

<n-op < -t o”
Also, if n € G1 1, and € € Ga i, we notice that

op e —nl < 20,

because 7 € (1 ;, implies that

_ 7 7
—o, = g0k <-n< —g% (4.32)

& € Gg ), implies that

7 _ 7 _
éak—akpgﬁggak—l—akp, (4.33)

and from (4.32) and (4.33) we get
20, <t-n<o0, <20 = [£—n| <20, " = UZ_1|§ —nl < 20,;1.

If we pick (§,7n) € Ga, X G, then 0£71(§ —n) is close to zero for k large enough, hence by the choices
of E(O) > 0 and h(£) > 0, there exists a constant C > 0 such that

h(ot M e-m)>C.
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Furthermore, if n € Gy then h (m) = 1. Finally, since n is comparable with o} in Gk, it follows

10k
from ¢(n) = e=Pom"? that
o) = eer”

for a positive constant c,, depending on py. Finally, we obtain

1/s _(p—=1)/ — 1/6
e 2p24 / o,r SO'IQc(p 1)/ / Cle €ro% df/]
G,k

Gak
s (p-1)/s _ 1/6
— 06—20241/ a,(f' )/ oy, (P+2)e—2c,,00k/

2

E;(0) de

Y

which implies that
max p—_l,l
E,(0) > Ca,;(p+2)/2 exp (—p241/301(€p71)/5) exp (—cpoai/o) > Cexp (—épo’pzok = 9}) . (4.34)

From (4.30), (4.31) and (4.34) we get

_pt2 p=1 1 A
Ey(T*) > Cexp (T*%a,&pfl)(lfﬂ)) [ak 2 exp (—p24%ak - cpoak”) — T exp (—cakel )]
max{ 2=t 1 A
> Chiexp (%T*J,Ep_l)(l_a)) {exp (@mngk {73 ) —T" exp <ca,§1>} . (4.35)

for all T* € (0,77], once A < (p — 1)(1 — o) and k is sufficiently large. Assume by contradiction that

max{ﬁ, %} < 1—0, which is equivalent to max {1, 2=} < (p—1)(1—0), and take A < (p—1)(1—0).

S

Then, we can pick #; very close to 1 such that
A 1 p—-1
E > max { R s} .

cT* _ - max{ +,2=1
Ep(T*) > Cyexp <0201(f ba )> exp <—c"ak (555 }> — 00, as k — 00,

It follows from (4.35) that

since (p—1)(1 — o) > max{é, pT_,l , which gives us a contradiction, due to Proposition 4.2.

4.4.2 Proof of Proposition 4.3

As we mentioned before, the proof of Proposition 4.3 is very long, so we will dedicate this
section to prove it.
Let us set
v,(cam (t,x) := w,(caﬂ)(x,D)uk(tx).
By denoting [H, K] = HK — KH, for H, K operators, we can write
Mv,(caﬁ) = Mw,(fﬁ)uk

= w,iaﬂ) Muy, +[M, wlgaﬁ)]uk
=0
= [M, Wu),(f“m]u;c =: f,gaﬁ).
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In order to obtain an estimate from below for d;F), let us compute
1

1
2
m&%mm®@MWmmmm::(/wﬁtm|m) (/mﬁtx|M)

= (/ |v,(€a5)(t,x)|2d:r) . (/ |v(o"8) t,x) |2d:r)
X 8t/|v(a5 (t,z)|*dx
(ap
= 50 (I 0 e
— Re (8,51),(;15)() ,(fﬁ)(t))Lz(R). (4.36)

The definition of M implies that 9; = iM —iDP + (x)~° DP~1 hence we can rewrite (4.36) and estimate

from below

[0S ()] 22 ) D[P ()| 2 )

= Re (iMof* (1), 0™ ®) |~ Re (iDL (1), v (1))

L?(R) L*(R)
purely imaginary
R ( 70'D,p.71 (aB) t (aB) t )
+ Re (@D o 0.600)
> AP Ol I Ol + Re (@77 D™ 0,07 () | o (@80)
and now we need to estimate:
1. Re ((x}‘”Dg_lv,(fﬁ)(t),v,(fﬁ) (t)>L2(R) from below.
2. || M 2wy from above.
: —o np—1 (aB) (aB)
Estimates from below to Re ( () 7 D2~ v, "7 (t), v, " (1) .
Let xx and ¢y cut-off functions defined by
_4oP 1
X(Q—h<£ ”) and p(x) =h | k), (4.38)
4O'k 30'2
respectively. Recalling the definition of h, we notice that in the support of ¢y (2)x% (&) we have
3 Ok To
|§_Jk|§10k = Iﬁggjk

and

|x — 40571\ < Z’>0Z71 pa 0271 <zx< 70£71,

for all k € Ny. From these inequalities, it follows that if (z,§) € suppyr(z)xx () then

p—1

é'pfl > ak

w-1 and (x)=7 > 77 (PO,
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hence

R e

By setting © := 41,—1, let us consider a decomposition of the symbol of (z) =7 D=1 in the following way

(@)77€t = 0ol ) ol ()Tl ol
= O ) ol (@) e = 0ol o) dl)xa(€)
T =1Ta 1 (2.6)
+ (@ el ™ o) (1 - vl@)xe(©))
=:I3,k(,§)

- Il,k"—IZ,k(xag)+IS,]€($’§)'

In the following, we shall estimate each Re (Ig)k@ﬁ, D)vl(fﬁ)(t), v,(caﬁ)(t)) ®’ e {1,2,3}.

e Estimate of Re (11 kv(aﬁ) (1), v,gaﬁ(t))Lz(R). Since I, = O(ch )70l we get

(aB) (ap) —I\—o_p—1_(aB) ap
Re (Il’kvka ®), k(y ())Lz(]R) B Re(@( Tk ) Uz Uka (), Uk (t))Lz(R)
= 0 ) ol M O
—g —1)(1—0o @
> 27500 VoD (1) g (4.39)
. (aB) (aB) .
e Estimate of Re (Ig,k(sc,D)vk (t), vy, (t)) . Just recall that

Lo(e,€) = (@)™ = 0ol ) (@) o),

and this symbol belongs to SGP~~7(R?) with uniform estimates with respect to k. Indeed, we

have that
00 Tax(z ) = [070% [(() o€t = Ol ) 7o) vnl@nn(©)]|
~Iv! Y1 A, —oep—1 p—1\ p—1
: +Zf Y11yl lvs! ‘85 O ((az) ¢ Olok )i )‘
Vit va—v
<072 i (2)10¢% Xk (€)]-

Since h € Ggh (R), ¥y and i satisfy, respectively,

—4 p—1 o
02 bk ()| = |05 (W) < Oty g (P70
k
and
‘angk( )| = 872h (g U:k> S C’Yerl’YQ!eho';'Yz
1
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Now, by using the above inequalities and the fact that x is comparable with a£71 and ¢ is com-

parable with o4 on the support of ¥ (x)xk(€), we can compute and estimate

10407 T2,1(, &)

~lv! 1 o —1- 1. 10n,, 10n —v2 _—va(p—1
< Z b '071+V1+ Yl W) =TV (E)P T oytret LA L 'mgk 2 )
y1+v2=v 1or2er1eba
v1+rvo=v

< OV () ()P () T

Moreover, by the choice of ©, we have that Is(z,§) > 0, for all 2, € R, then it follows by
Theorem 2.10 that

Iy k(z, D) = p2k(z, D) + r2k(2, D),
where pa i (x, D) is a positive operator and ra j, € SGP_2’_U_1(]R2). Once the semi-norms of Iy
are uniformly bounded with respect to &, the same holds to the semi-norms of ry ;. In this way,

we have that

Re (124l DY OA0) 1y 2 Re (raswn DR O00)
= Re(ra(z) 7 z) 7 Loy (1), 0" (1)) 12y
order p—2
> —Ca) " )| -2 iy 105 () 22 )
p—2
> Ol Wl Y ||P8 ()P 0) |,

=0

we need to use the Leibniz formula and write

To deal with the terms HDﬁ ((xf‘”lv,(fm (t)) ’
L2(R)

0 (i1 ) = 3 (o)t 0Dt ),

£'=0

On the support of Dﬁfé,v,(fﬁ ) (t), x is comparable with 0271, hence

| (@) 1P )

0
—(p—1)(o a — e
< (g DD 3 D5 o Ol 2 w)-
0'=0

L2(R) (£—em

Now, we need the following lemma to conclude the desired estimate. The proof follows readily
the same argument of the proof of Lemma 2 in [7], the only difference is that here we require

well-posedness in 8%(R).

Lemma 4.2. If the Cauchy problem (4.15) is well-posed in 8 (R), then for all N € N, the following

estimate holds:
ID50 ()]l 2y < Copllof™ (1)l 2y + COHPHN T (@1l N12n =g,

for some positive constant C which does not depend on k.
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Applying Lemma 4.2 for N = Ny, the following estimate can be achieved

1D (@)1 )|

—(p—1)(c+1)+4 «
< Cgk(p S+ ||v,1(c 5)||L2(R)

L2(R)
+ CaJrﬁJrNkJrl (OL!/B!)eh Nk!20h710;(P—1)(0+1)0£—Nk'

Therefore, we conclude that

Re (Tz(z, D)ol (1), 0" (1)) —Co, P ™ (1)1 (4.40)

L2 (R)

Ca+,8+Nk+1(a!ﬁ!)QhNk!ZQh—lalz(Pfl)U*Nkfl Hv[(fﬁ) (t)||L2(R)~

Estimate of Re (Ig’k(l', D)v,(caﬁ)(t),v,gaﬁ)(t)) e Recalling that

Ty x(2,€) = ()76 = ©(of ™) ™70l ™) (1 = da(@)xn(€)),

,(caﬂ)(x,f) and 1 — g (z)xk(§) are disjoint, we may write

due to the fact that the supports of w
I3 4(2, D) o w™ (z, D) = RV (2, D),

where

o L1 = )Nt ; o
R;(C ﬁ)(%f) = Nk/o %Os - // e‘“”’@év’clg’k(gc,f—|—1917)D£CV’°wl(C ﬁ)(x—l—y,f)dydndﬁ.

The semi-norms of R,(caﬁ) can be estimated as: for each ¢y € Ny, there exists £1 = ¢1({y) such that

0 Ni 0 aB) (0
Bl < Clbo) 37108 To 102 w1

From Lemma 4.1, we have that
|aNkwl(€04ﬁ)|§0) < C€1+a+ﬂ+N;€+1g1!20;L (a!ﬁ!Nk!)GhU;Nk(Pfl).
T T

Since o — +00, we can assume that Ny > p, then

N, Nk! Ny —o¢ep—1 —1\—0o —1 No
afkls,k(x,s):wa - N ((x) el — Qo) P )wk(x)ag e (6),
Ji’lfif—lk

hence

0 +Ni+ p—1—Ny
|C{)NS’C 37k(x,§)|(gl) < Cél N 161!29hNk!0h0'k ! k.
By ga hering the previous estimates, we obtain

|RI(€0¢B)|é0) < Ca+ﬂ+Nk+1(a!ﬁ!)ehNk!29h—10_£(1*Nk)*1
o = )

which provides that

13 1 (2, D)™ (8)|| L2y < COFPHNEHL (1 81)00 Ny 1200 =1 PN
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Finally, we get

pogmy = ~CTNE @) N () .

(4.41)

Re (T4 (z, D)o (1), 01" (1))

From (4.39), (4.40) and (4.41), we obtain the following Lemma.

Lemma 4.3. If the Cauchy problem (4.15) is well-posed in 82(R), then for all k sufficiently large the

estimate

—1)(1—0o [e%
Clgl(cp )( )”v§C B)(t)

Re ((@*@g*lu;aﬁ) (1), v,(;“ﬁ)(t))

Y

2
. [

Ca+5+Nk+1(04!5!)9hNk!29h_10£(17Nk)71 o (t) 22 (®)

holds for some ¢ > 0 independent of k,«, B and N.
Estimates from above of ||f,£°‘ﬁ)(t)||Lz(R)
We know that
7 = Mg = D+ D+ i)~ DE
so our goal is to estimate the above commutators.

e Estimate of [D, + D?, w,(caﬁ)]uk. Since w,(caﬁ) does not depend on ¢, we have that

p
Dy + D, w ™y, = (:) DIw\* D=y, (4.42)
y=1

because

[D: +D§,w§fﬁ)]uk = [D? w,(ca’g)]uk

To deal with the right-hand side of (4.42), we will need the identities:

¢
F()Dlg() = S (-1 (f) DL (g(w) D7 f(2), (4.43)

Jj=0
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for f and g smooth functions,

P Py
Z CyjOy+j = Z ZCM q| @
=1 j=0 =1
and
( 1)Z+1 B Z (71)€7q
0T 2q 9
Then (4.42) becomes
[D; + D? w(af’)}
p L\
= Z Z — Di*“{*j o w’i(a+€+3)5) (z,D)
im0t - 7—.7) io},
P 4 — ¢
1)f-a ! 1
= Z Z (l ) . T Dyt Owi(c(aM)B)(va)
S\ dUl-a! ) (b= O \ioy,
p

- >

{=1

By Lemma 4.2, we get

¢
e+1< ) : 171 Di’*e ow}i(oz%)ﬁ) (z,D).
o

|0+ D2,

L2(R)

o+
< CZ ( ) = |DEte oDy
< OY — I ay + O g N N (4a)
=1
e Estimate of [i(zx)~7DE~ 1 wl(fﬁ)]uk. Notice that the commutator can be written in the following

way:

[i(z) =" D~ w

Py

= iz)77 (p )Dgw,ga‘”(x D)Dr1
v=1 v
Np—1 1
— 0 Y D) w P (@, DYDY 4 P (@, D), (4.45)
— 7!
=

where the symbol of rliaﬁ) (x,D) is

1
0w = -im [

In order to estimate r

S

_ 19 Nk—l ) o /
Ni:’Os — // e—zynaé\fkwl(c 5)(%5_,_ 1977)1);\@ (x+ y>—a§p—1dydnd?9.
(2f) , we use the su ies of w®? ;
k pport properties of wy, and write

p—1

=(E+om—tnPt =) (p_ ) (€ + On)' (—9n)P~ 1=~

£=0
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Now we deal with the oscillatory integral by using the above identity and integration by parts,

which lead us to

05 // e N w ™ (. € + 9m) DY (w + ) 7€ dydy
-1
- pZ <p P 1) gr1-t
=0 ¢

g OS‘/ Dyt gk (2, €+ 9) (€ + 0n)’ DY w4+ )~ dyily

- 50 eor

£=0

* O // =N " (1, € + 9n) (€ + On) DY w ) dyd.

(aB) -

Hence we can estimate the semi-norms of 7, in the following way:

Np+p—17P
o 0 O k «a c+p—1— —o (0
el Zm‘faNk O e )

IN

Ca+5+Nk+1(a!B!)9hNk!29h 102’7171\7’“. (4.46)

By using Calderén-Vaillancourt Theorem and the well-posedness in S?(R), it can be concluded
that
s (2, DYu || L2y < COFPHNFL (13100 Ny 12001 g~ 1N (4.47)

In Z,vakl L D (x)~ ”3gw,(€aﬂ) (z, D)DP~1 the formula (4.43) can be applied, that is,

1 o _
JD;@)*"@gw,(c Az, D)DP1

Np—1
~y=1
Nty N1

> ZV< >(ok) ( ) D} ()= Dy 0wy (@, D). (4.48)
=1 ¢=0

v Tk

Using the support of Dﬁflfzvlg(a+z)(5+7)) and the fact that | DY (x) =7 < C7Tlyl(z) =777, it follows
that

”Dz< > o pr- 1—¢ ((@+€)(ﬁ+7))” 2R )<Cw+1 —(P 1)(0+’Y)HDp 1—¢ ((04+5)(/3+’7))” L2(®)-

By Lemma 4.2, with N = Ny — y, we get

||D£—1—ZUI(€(0¢+E)(5+V)) HL2(]R) < Cgi—l—f||vl(€(a+f)(ﬁ+“/))||L2(R)

)

+ Ca+é+ﬂ+Nk+1 (a|6|£|,y|)0h (Nk o V)ZG;L—lgi—l—l—Nk-i-y
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hence

HD;Y <x>—oD£—1—£vl(€(a+€)(5+’Y)) ||L2(]R) < C'y+1,y!0_]:(a+“/)a_;z—1—é||vl(€(a+£)(ﬁ+”/)) ||L2(R)

+ C’H-l,YIO.k*(17*1)(0+“/)0a+é+ﬁ+1\/k+1(a!ﬁw!,}/!)@h (Nk _ 7)!29;1—10.1]:*1*5*(1\71«*“/)
_ Cv-&-lv!U;(P*l)(UJﬂYHp*l*f||vl(€(a+f)(5+’y))HL2(R)

+ Cv+l,y!o_k—(P—l)(”+7)ca+é+,8+Nk (a'ﬁ'@'y')Qh (Nk o 7)!29;17101’2—1—5—(1\71@—"/).

Now we can estimate

Np—1

> LDy 0wl (v, D)DE
=t L2(®)
Np—1p—1 £
= 71'( 1) <U4k) <0p1—1> 1DY ()~ D2 0wy ™ (@, Dug |2y
7=t =0 i —p{(2 OGN
< AR o Vgt +1,),(P=D(e+n)+p=1=£) (a+£)(B+7))
< Z 7( ) Ok Ok {07 Yoy, vy, 2 w)
y=1 ¢=0
+ C'v-&-l,ylakf(z?*l)(ﬂrv Cott+B+Ny (Oé!ﬁ!fwl)eh (N — 7)!20h—102*1*f*(1\’rv)}
p—1 Np—1
< CZ Z Cvai’*l*(p*l)afp(H’Y)Hv}({(@+¢)(ﬁ+'¥))||L2(R)
(=0 v=1

+ Ca+B+Nk+1(alB!)GhNk!Zthlo_i—Nk—(P—l)ff.

To estimate the first term of (4.45), we can write

1

.
( )Dzw,iam(x,D)Dg-l-v
y=1
L, p—1\ 1
- 11— o+l
_ : (_1)e+1< ) >WD£ 10 5 {(@+09) (3 Dy,
=1

and then, by using Lemma 4.2 once again, it follows that

o

p—1
_ 1 o L
ila)~ (” )D;w,i #) (e, D)DI
-1 v
v L2(®)
p—1
i) (-1
/=1

1\ 1 N
ye+t <p , >( — 1)[Dp 1-0 /(c( +4)5)(I,D)uk
Zo'k LQ(R)

IA

{=1

IN

p—1
OZ U}:(o+p(271)+1) H,U](c(aJré)B) ||L2(R) + Oa+6+Nk+1(Q!B!)OhNk!QOhflagz—l—a—Nk.
=1
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p—1
¢ Z Jk—a—ﬁ(p—l) {CJ£717Z||UI(€(Q+E)5)) HLZ(]R) + Coc+€+ﬂ+Nk+l (a!ﬂ!)eh Nk!29h*10Z*1*f*Nk }

(4.50)



From (4.47), (4.49) and (4.50), we get

p—1
« . — - 1 « —1—
(e S T B (R0 S (o A Oy
L2(R) =\ .
Nig—1 1
+ |2 Z —'D;’<x>_”8gw,(fﬁ)(x7D)Di‘luk
= T L2(R)
(aB) D
+ Ay (2, D)ukl L2 r)
p—1 Np—1
< OZ Z C’yazflf(pfl)afp(wrf)||U](€(a+f)(ﬁ+7))||L2(R)
£=0 ~v=1
p—1
+ CzUz(l—f)—(tﬂ-l)||U](€(Ol+€)5)“L2(]R)
=1
+ COFBENHL (| g1y 0n N 12001 g1 (4.51)

After all the previous computations, the inequalities (4.44) and (4.51) lead us to the next

result, which provides the desired estimate from above to f,gaﬁ ),

Lemma 4.4. Let suppose that the Cauchy problem (4.15) is well-posed in 8¢(R). Then

P p—1 Np—1
« 1 o+l —1—(p—1)o—p(L+ a+4 +
Hflg ﬁ)||L2(]R) < Cz T ”’Ul(g( )/B)”L2(R)+CZ Z C'YUZ (p—1)o—p( ’Y)Hvl(c( ) (B ’Y))||L2(R)
=10} =0 ~=1

+ CO&—‘rﬁ—‘rNk—‘rl(a!ﬁ!)ehNk!QGh—lo_z_l_Nk

for some positive constant C which does not depend on k, o, B and Nj.
Finally, we are able to conclude the proof of Proposition 4.3.

Proof of Proposition 4.3. Inequality (4.37) can be combined with Lemmas 4.3 and 4.4 in order to obtain

that
(aB) (aB) o1, (aB)  (aB) (aB) -1
W Nr2wy = —IIfy ||L2<R>+R6(<x> DYooy )LQ(R)II% 122wy
p
“1(l-0o 1 adr
> a0l o g — Yy I ey
=10k
SRS (p—D)o—p(t+) | (atO)(B+7))
— CY Y oy e (e O )
(=0 ~v=1

COTATNEEL () B1)0n N 1200 1 g = 1= N
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Then, by definition of Ej(t), it follows that

1 «
O Er(t) = Z Watllvl(c B)(t7')HL2(R)
a<Ny,B<Ng o
1 —1)(1—0o «
= Z (al 1o clo,(f s )||U1(c mHLZ(]R)
a<Ny,B<Ng e
-1 1 (a+0)8)
B sz Z (a1 o, |l 2 ®)
=19k a<Ny,B<Ni
p—1 Np—1 ]
—1=(p—1)o—p(¢ a+0)(
— CZ Z C'Ya-z (p—1) p(L+7) Z WHU](C( +£)(B+7)) || L2(R)
=0 7=1 a<Np BN ©
1
_ Z (a]6|)91 Coc+5+Nk+1(a!B!)G;LNk!QG;L—lo,zflka.
a<Ny,B<Ng o

Now our task is to treat all the terms in the right-hand side of the above inequality. Starting with the

first one, we simply have

1 —1)(1—0o « -1)(1—0o
> s TN e = o B, (4.52)
a<Ng,B<Ny o

To deal with the second term, just recall that Ej, o 5(t) = (a+£)!=% 3176 Hv,(C(O‘H)B) (Ol 2wy

hence
p P 0
c 1 (a+0)8) c (a+ 01"
2o 2 @pmle Ulee = Xomm DL T im Prates
=10y a<Ny,B<Ny * 7° =10 a<Ny,B< Ny ’
p £0 Ny,
CN,™*
< Z W (Ek + Z Ek,a+£,5> :
(=1 "Lk a=Np—{+1

From (4.26) in Proposition 4.2 it holds that
Ekatep < COPPTH ((a+ 01800,

and, since a + ¢ > Nj and 0, — 0, < 0, we obtain that
p C 004

P
(a N,
Z Z (a |ﬂ|)91 H o9 ||L2( ) < Z W (Ek + CNk‘HN 10n— 91) )

P
=1 Tk agNk,,BSNk =1

A
The definition Ny = |o," | and the inequality N, ,iv # < eNeN! allow us to estimate

Ep: c § : 1 ” (((H-@)ﬂ)”
1y v LQ(R)

/-1 1316
Y N, (B
_ cz o (s 0ot 00
< — o | Bk

Jké 1) Tk

< CZ (tz 1)Ek+CNk+1 oy M, (4.53)
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where, from now on, ¢ is a positive constant independent from k.
In the third term, we employ the identity ||v,(€(a+z)(ﬁ+7)) I2@®) = ((a+ONB4+7))" Ex ate,844

the estimate

(B+7)! v v Y %7 i
< (B4+7) < (rNi)?” <r7(o,")?, provided that f+~v < rNg, r €N,

B!

and the fact that, if A € (0, 1), then for k sufficiently large it holds 00'2_1 < 1. Notice that

S (p—1)o—p(t+ 1 10)(B+
> Crop it R (avﬁl)eh\lv;i(a R P
(=0 v=1 a<N,B<N, * 77
p—1 Np—1 Y 1601
_ OV P~ 1= (P=Do—p(t+7) ((a+ OB+ E
- Tk Z (I katl, B4y
=0 7=1 a<Ng,B<Nk o
p—1 Np—1
_ 1 (p—1)o—p(t
< > > > (Cop™ ol =TI sy
(=0 v=1 a<Ny,B<Ng a<Np—¢ a<Np,B<Ny
B<Np—v a+f>Nj or B+v>Ny
p—1 Np—1
< Ek+z Z Z Ca+€+ﬂ+7+1((a+€)!(ﬂ+,y)!)«9h7«91
=0 ~v=1 a<Ny,B<Ny

a+£>Ny, or B+vy>Ny
< By + CNeIN 100

A
Since Ny, = |0, |, the above inequality turns into

p—1 Np—1

—1—(p—1)o—p(¥ 1 a+l —c
$ 3 ot 5L 00 <y 0 5
=0 v=1 <N, BNy, ~ T

for all k sufficiently large, where C' and c¢ are positive constants which do not depend on k.
A
For the fourth and last term, by using definition of Ny = [0, | and recalling that 6), < 61, it

can be concluded that

1 @ - —1-N; —cNyg
Z WC’ +ﬁ+Nk+1(a!IB!)0hNk!26h 10_2 1 k S CN)C+1O']€ Nk. (455)
a<Ny,B<Ng
Therefore, gathering (4.52), (4.53), (4.54) and (4.55) the proof is concluded. 0O
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4.5 Open problems and concluding remarks

In this last section we outline some possible improvements which could be done and some

open problems related to p—evolutions equations in Gevrey and Gelfand-Shilov spaces.

1. First of all, one important extension is the study of the Cauchy problem for a p—evolution operator
of the form (2) in arbitrary space dimension, that is for x € R™, n > 1. Essentially, the main
difficulty in this case is the definition of the functions A\,_j appearing in the change of variable.
The only known results are for p = 2, see [24, 32]. In these papers, the functions A, A\; are chosen

such that they satisfy suitable differential inequalities. The case p > 2 is completely unexplored.

2. The class of p—evolution equations defined in [39] is wider than the one given by operators of the

form (2). Namely, it includes equations of the form

pm
Dfu+ S0 3 ajalt.)DSu = f(ta), (ta) € [0,T] x R,

J=0 |a|=j
for fixed m > 1. In the thesis we treated the case m = 1. For the case m > 1, the only known
results in H*>® are for p = 2, c¢f. [11] and the Gevrey case is particularly involved since the

techniques used in [11] seem not to work in this setting.

3. Finally, it would be interesting to apply the results obtained here to the study of non-linear
p—evolution equations such as the ones mentioned in the introduction. This problem is highly
non-trivial and probably requires strong decay conditions on the coefficients of the lower order
terms in order to avoid the loss of regularity in the energy estimates and to make possible the

application of fixed point arguments.
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