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Ao meu orientador na UFPR, professor Fernando de Ávila Silva, por todos esses anos — desde
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A todos os membros da banca examinadora, pelas correções e sugestões que contribúıram para
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RESUMO

Neste trabalho apresentamos o estudo do problema de Cauchy para operadores de

p−evolução com coeficientes dependendo de tempo e espaço, com p ≥ 2, dado por⎧⎨⎩ P (t, x,Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ [0, T ] × R

u(0, x) = g(x), x ∈ R

onde f e g pertencem a certos espaços de Gevrey ou Gelfand-Shilov, P é um operador

da forma

P (t, x,Dt, Dx) = Dt + ap(t)D
p
x +

p∑
j=1

ap−j(t, x)D
p−j
x ,

ap(t) ∈ R, os coeficientes ap−j assumem valores complexos e satisfazem condições de

decaimento para |x| → ∞. Para provar existência e unicidade de uma solução u(t, x)

para este problema em classes de funções ou distribuições convenientes, precisamos fazer

uma conjugação em P usando algum operador pseudodiferencial de ordem infinita. Por

fim, conclúımos que existe uma única solução para este problema, satisfazendo uma

estimativa de energia e, consequentemente, este problema é bem posto em alguma classe

de Gevrey-Sobolev ou alguma classe de Gelfand-Shilov-Sobolev.

Palavras-chave: equações de p−evolução, espaços de Gevrey, espaços de Gelfand-

Shilov, operadores pseudodiferenciais.



ABSTRACT

In this work we present the study of the Cauchy problem for p−evolution operators with

time and space depending coefficients, with p ≥ 2, given by⎧⎨⎩ P (t, x,Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ [0, T ] × R

u(0, x) = g(x), x ∈ R

(1)

where f and g are assumed to belong to some Gevrey or Gelfand-Shilov space, P is an

operator of the form

P (t, x,Dt, Dx) = Dt + ap(t)D
p
x +

p∑
j=1

ap−j(t, x)D
p−j
x ,

ap(t) ∈ R, the coefficients ap−j are complex-valued Gevrey regular and satisfy some

decay conditions for |x| → ∞. To prove existence and uniqueness of a solution u(t, x)

for this problem in suitable classes of functions or distributions, we need to perform a

conjugation of P by some special pseudo-differential operator of infinite order. At the

end, we conclude that there exists a unique solution for this problem, satisfying an energy

estimate and, consequently, this problem is well-posed in a certain Gevrey-Sobolev space

or Gelfand-Shilov-Sobolev space.

Keywords: p−evolution equations, Gevrey spaces, Gelfand-Shilov spaces, pseudo-

differential operators.
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INTRODUCTION

The main concern in this PhD thesis is the study of the Cauchy problem for linear p−evolution

equations with initial data in Gevrey and in Gelfand-Shilov spaces. Linear p−evolution equations are a

wide class of PDE introduced by Mizohata in [39] for which the analysis of the Cauchy problem in the

Gevrey setting is still, for several aspects, a challenging and open problem. In this thesis we shall focus

on equations of order 1 in the time variable and p in the space variables, p ≥ 2 being a fixed integer,

and with real characteristics. Namely, we shall consider equations of the form

P (t, x,Dt, Dx)u := Dtu+

p∑
j=0

∑
|α|=j

aj,α(t, x)D
α
xu = f(t, x), t ∈ [0, T ], x ∈ R

n, (2)

where D := −i∂, whose principal symbol in the sense of Petrowski τ +
∑

|α|=p ap,αξ
α = 0 admits a real

root. The coefficients aj,α depend in general on (t, x). We notice that for p = 1 the equation (2) is

strictly hyperbolic, whereas 2−evolution equations are also called Schrödinger type equations. In fact,

the Schrödinger equation i�∂tu = − �
2

2mΔu+ V u, t ∈ [0, T ], x ∈ R
n, which models the evolution in time

of the wave function’s state u(t, x) of a quantic particle with mass equals to m, is the most relevant

example of 2−evolution equation. For higher values of p, the importance of p−evolution equations is

mainly related to the fact that they can be viewed as linearizations of several non-linear equations of

physical interest. Namely, assuming for a moment that the coefficients of (3) may depend also on the

unknown u, an example of non-linear 3−evolution equation, for n = 1, is the KdV equation, which is

given by

Dtu− 1

2

√
g

h
σD3

xu+

√
g

h

(
α+

3

2
u

)
Dxu = 0, t ∈ R, x ∈ R,

and describes the wave motion in shallow waters, where u(t, x) stands for the wave elevation with respect

to the water level h. Another famous non-linear 3−evolution equation is the KdV-Burgers equation

Dtu+ 2auDxu+ 5ibDxu− cD3
xu = 0,

with a, b, c ∈ R, which models both the flow of liquids containing gas bubbles and the propagation of

waves in an elastic tube containing viscous fluid in [31]. For p = 5, we mention the Kawahara equation

Dtu+ uDxu− aD3
xu− bD5

xu = 0, a, b > 0,

describing magneto-acoustic waves in plasma and long water waves under ice cover (see [36, 38]).

Notice that, in all examples mentioned above, the coefficients are independent of time and

space variables t and x, respectively. Actually, in a first approach the coefficients might depend on the

variables t and x, but they are approximated by their main value in order to simplify the equations.

13



Although non-linear equations are out of the goals of this thesis, since linearization is often the first

step in the analysis of a non-linear problem, we stress the fact that the results presented here may serve

also for future applications in this direction.

Let us now go back to (2). If the dependence is only with the respect to the time variable,

the way to deal with the equation is via Fourier transform, while if the coefficients depend on the space

variable must be employed some micro-local analysis technique, in particular the pseudo-differential

calculus. Another important fact that can be observed about the coefficients in the examples here

above is that the lower order terms may appear and they can be either real or complex-valued. As

we can see in [16, 23], complex-valued coefficients naturally arise in the study of higher order (in t)

evolution equations. Finally, we stress the fact that, except for the case p = 2, all the existing results on

p−evolution equations concern the one space dimensional case, that is x ∈ R. The general case is still

totally unexplored and more involved. For simplicity we also focus here on equations in space dimension

1, which nevertheless is sufficiently motivated by the presence of the above mentioned equations from

Mathematical Physics.

After all the previous considerations, we are motivated to study equations of the form Pu = f

where

P (t, x,Dt, Dx) = Dt + ap(t)D
p
x +

p∑
j=1

ap−j(t, x)D
p−j
x , (t, x) ∈ [0, T ]× R, (3)

under the assumption that the leading coefficient ap is continuous on [0, T ], it is real-valued and does

not vanish on [0, T ], and the lower order coefficients ap−j , for j = 1, ..., p − 1, belong to the space

C ([0, T ];B∞(R;C)), where B∞(R;C) is the space of all smooth functions on R which are bounded with

all their derivatives. Our goal in this work is to study the Cauchy problem associated with (3), namely⎧⎨⎩ P (t, x,Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ [0, T ]× R

u(0, x) = g(x), x ∈ R

. (4)

More precisely, we intend to study the well-posedness of the problem (4), that is, the existence of a

unique solution and the continuous dependence of the solution on the Cauchy data, in suitable classes

of functions (which will be the Gevrey and Gelfand-Shilov spaces).

The choice of assuming the coefficient ap(t) of the leading term independent of x is due to some

technical difficulties which will be clarified later, cf. Remark 3.5. Since ap is real-valued, τ = −ap(t)ξ
p

is the real root of the principal symbol of P , and the necessary condition Im ap(t) ≤ 0, for all t ∈ [0, T ],

for well-posedness in H∞(R) := ∩s∈RH
s(R) given in [40] is satisfied. Thus, if the well-posedness in

H∞ fails, this is not caused by the principal part but by the lower-order terms. It is known that if the

lower-order coefficients are all real-valued, then the Cauchy problem (4) is well-posed in all the classical

functional settings (L2, Sobolev spaces, Gevrey type spaces) under suitable decay assumptions on the

x-derivatives of ap−j for |x| → ∞.

14



If some of the lower order terms ap−j , j = 1, . . . , p − 1, are complex-valued, the problem

becomes more challenging. For instance, in the case p = 2, a simple computation leads us to

d

dt
‖u(t)‖2L2 = 2Re 〈∂tu(t), u(t)〉L2

= 2Re 〈iPu(t), u(t)〉L2

+2Im
〈{a2(t)D2

x + a1(t, x)Dx + a0(t, x)}u(t), u(t)
〉
L2

≤ ‖Pu(t)‖2L2 + C‖u‖2L2 + 2Im 〈a1(t, x)Dxu(t), u(t)〉L2 .

Once Im a1(t, x) �= 0, the last term in the right-hand side of the inequality above does not allow to derive

an L2 energy estimate in a straightforward way. Besides, some control on the behaviour of Im a1(t, x)

for |x| → ∞ is necessary. Moreover, it becomes necessary to introduce a suitable change of variable,

which will transform the Cauchy problem (4) into an auxiliary Cauchy problem for a new operator of

the same form as (3) but with lower-order terms given by positive operators whose contribution can be

ignored in the application of the energy method. This technique has been used for the first time in [32]

and adapted and generalized in [4, 6, 13, 15, 24]. Of course, there is a price to be paid when we use the

mentioned change of variable, that is, some technical difficulties arise, especially in the Gevrey setting,

where it requires the use of pseudo-differential operators of infinite order. Before moving on with more

details of our work, let us give an overview of results that can be found in the literature about the

problem (4) with P as in (3).

About L2 and H∞ theory: for p = 2, necessary and sufficient conditions for well-posedness in

the Sobolev setting have been given in [29, 30, 32, 40]. For the general case p ≥ 2, in [13, 14] the authors

have studied the problem. The semi-linear case is treated in [12]. In particular, by [14], we know that

a necessary condition for well-posedness of (4) in H∞(R) is the existence of constants M,N > 0 such

that:

sup
x∈R

min
0≤τ≤t≤T

∫ �

−�

Im ap−1(t, x+ pap(τ)θ)dθ ≤ M log(1 + 	) +N, ∀	 > 0. (5)

In the Gevrey setting, the well-posedness is studied by introducing a suitable scale of Gevrey-

Sobolev spaces, namely, for m ∈ R, ρ > 0 and θ ≥ 1 the Gevrey-Sobolev space Hm
ρ;θ(R

n) is

Hm
ρ;θ(R

n) = {u ∈ L2(Rn) : 〈Dx〉meρ〈Dx〉1/θu ∈ L2(Rn)},

where 〈Dx〉m is the pseudo-differential operator given by the symbol 〈ξ〉m := (1+ |ξ|2)m
2 and eρ〈Dx〉1/θ is

the pseudo-differential operator given by the symbol eρ〈ξ〉
1/θ

. Moreover, we setH∞
θ (Rn) =

⋂
ρ>0 H

m
ρ;θ(R

n)

and H∞
θ (Rn) =

⋃
ρ>0 H

m
ρ;θ(R

n). Sufficient conditions for well-posedness in H∞
θ (Rn) have been studied

only in the cases p = 2 in [17, 24, 32] and recently in [6] for 3-evolution equations. Concerning necessary

conditions in the Gevrey setting, the authors in [7] have proved the following result for the operator (3):

Theorem. If the Cauchy problem (4) is well-posed in H∞
θ (R), θ > 1, and:

15



(i) there exist R,A > 0 and σp−j ∈ [0, 1], j = 1, . . . , p− 1, such that

Im ap−j(t, x) ≥ A〈x〉−σp−j , x > R (or x < −R), t ∈ [0, T ], j = 1, . . . , p− 1;

(ii) there exists C > 0 such that for every β ∈ N:

|∂β
xap−j(t, x)| ≤ Cβ+1β!〈x〉−β , x ∈ R, t ∈ [0, T ], j = 1, . . . , p,

then

Ξ := max
j=1,...,p−1

{(p− 1)(1− σp−j)− j + 1} ≤ 1

θ
. (6)

The previous result gives some necessary conditions on the decay rates of the coefficients

for the Gevrey well-posedness. Due to the fact that Ξ ≥ 0 and 1
θ < 1, the following sentences are

consequences of (6):

� if σp−j ≤ p−1−j
p−1 for some j = 1, . . . , p− 1, the Cauchy problem is not well-posed in H∞

θ (R);

� if σp−j ∈
(

p−1−j
p−1 , p−j

p−1

)
for some j = 1, . . . , p − 1, then the power σp−j imposes the restriction

(p− 1)(1− σp−j)− j + 1 ≤ 1
θ for the indices θ where H∞

θ (R) well-posedness can be found;

� if σp−j ≥ p−j
p−1 for some j = 1, . . . , p − 1, then the power σp−j has no effect on the H∞

θ (R)

well-posedness.

We can use this result for a better understanding of the sufficient conditions given in [6, 32] for the

cases p = 2, 3 and in this thesis for a generic p. In short, in the case p = 2 in [32], the assumption over

the coefficient a1 is that it is Gevrey regular of order θ0 > 1 and the decay at infinity goes like |x|−σ for

some σ ∈ (0, 1), and well-posedness in H∞
θ (R) is achieved for θ0 ≤ θ < (1 − σ)−1. On other hand, for

the case p = 3, in [6], assuming σ ∈ ( 12 , 1) , θ0 < 1
2(1−σ) and

(i) a3 ∈ C ([0, T ];R) and ∃Ca3
> 0 such that |a3(t)| ≥ Ca3

∀t ∈ [0, T ],

(ii) ap−j ∈ C
(
[0, T ];Gθ0(R)

)
, θ0 > 1, for j = 1, 2, 3,

(iii) there exists Ca2
> 0 such that

|∂β
xa2(t, x)| ≤ Cβ+1

a2
β!θ0〈x〉−σ, ∀t ∈ [0, T ], x ∈ R, β ∈ N0,

(iv) there exists Ca1
such that |Im a1(t, x)| ≤ Ca1

〈x〉−σ
2 for every t ∈ [0, T ], x ∈ R,

then well-posedness in H∞
θ (R), for θ ∈

[
θ0,

1
2(1−σ)

)
, holds. A similar analysis has been developed for

H∞
θ (R), cf. [5] and in the Gelfand-Shilov spaces Sθs(R), cf. [3, 4, 15]. The space Sθs(R), s > 1, θ > 1, is

defined as the space of all f ∈ C∞(R) such that

|∂βf(x)| ≤ C |β|+1β!θ exp
(
−c|x| 1s

)
, x ∈ R,
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for all β ∈ N0 and for some constants C, c > 0 independent of β. These spaces introduced in [26]

represent a global counterpart of Gevrey spaces and acquired strong importance in the last decades as

a functional setting to micro-local analysis and PDE, cf. [3, 6, 4, 9, 15, 20, 21, 22, 41, 43].

Taking into account the above mentioned results, the aim of this thesis is then to extend

the analysis of the Cauchy problem with data in Gevrey and in Gelfand-Shilov spaces to the case of

p−evolution equations of arbitrary order p. We are now ready to describe in short how the chapters

are presented and divided. As a matter of fact, it can be informed in advance that, the most important

results of this thesis are:

� Theorems 3.1 and 3.3 in Chapter 3

� Theorem 4.1 and Theorem 4.2 in Chapter 4.

The Chapters 1 and 2 are dedicated to background theory. To be more specific, we devote

Chapter 1 to introduce notations, formulas, inequalities and some functional spaces. In Chapter 2,

the symbol classes are presented together with the associated pseudo-differential operators and we also

collect several results concerning pseudo-differential calculus.

In Chapter 3, our goal is to prove Theorems 3.1 and 3.3. In short, both theorems aim to study

well-posedness for the Cauchy problem (4); the only difference is that in Theorem 3.1 we are interested

in studying the problem for the inductive Gevrey-Sobolev space H∞
θ (R), while in Theorem 3.3 we are

interested in the projective Gevrey-Sobolev space H∞
θ (R). In order to obtain these results, we devote

most part of the chapter to find a way to conjugate our p−evolution operator to get an equivalent

Cauchy problem which allows to employ well known theory and obtain the desired conclusions. Part of

the content of this chapter, namely Theorem 3.1, appeared in the recent paper [8].

Finally, in Chapter 4, in the first part, we study well-posedness for the Cauchy problem (4),

in the Gelfand-Shilov setting, that is, the well-posedness is studied with respect to the space Sθs(R).

Namely, in Theorem 4.1, under the same assumptions of Theorem 3.1 on P (t, x,Dt, Dx) we prove a

well-posedness result in Sθs(R) for θ < min
{

1
(p−1)(1−σ) ,

s
p−1

}
. In the second part of the chapter we

prove that this upper bound for θ is indeed sharp, i.e. we prove that if (p − 1)θ > min
{

1
1−σ , s

}
, then

the Cauchy problem (4) is not well-posed in general for an operator satisfying assumptions of Theorem

4.1. This last part is the content of Theorem 4.2.

The thesis is concluded by some final remarks on open problems and possible improvements

of the results presented.
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Chapter 1

PRELIMINARIES

As usual, we dedicate this chapter to introduce some basic notations and concepts that we

will need for the whole work.

1.1 Multi-indexes and some differential formulas

By N0 we denote the union of the sets {0} and N = {1, 2, ...}. Any element of the set

N
n
0 = N0 × · · · × N0︸ ︷︷ ︸

n−times

, n ∈ N0, is called a multi-index and we can represent α ∈ N
n
0 as α := (α1, ..., αn).

The length of a multi-index is defined as the number

|α| := α1 + · · ·+ αn.

For any x = (x1, ..., xn) ∈ R
n and α = (α1, ..., αn) ∈ N

n
0 we define

xα := xα1
1 · · ·xαn

n .

In R
n the j-th partial derivative operator, j = 1, ..., n, is represented by ∂

∂xj
(when we have

no doubt about the variable, we can write it just as ∂xj
). Another important notation is Dxj

= −i∂xj
,

where i =
√−1. If α = (α1, ..., αn) is a multi-index, then we may define

∂α := ∂α1
x1

· · · ∂αn
xn

and Dα := Dα1
x1

· · ·Dαn
xn

.

The above notation also can be viewed as ∂α = ∂|α|

∂x
α1
1 ···∂xαn

n
and

Dα = Dα1
x1

· · ·Dαn
xn

= (−i∂x1
)α1 · · · (−i∂xn

)αn = (−i)|α|(∂α1
x1

· · · ∂αn
xn

) = (−i)|α|∂α.

If α = (α1, ..., αn) and β = (β1, ..., βn) are multi-indexes, we say that α is less than or equal

to β (α ≤ β) if and only if

αj ≤ βj , ∀j = 1, ..., n.

The factorial of α = (α1, ..., αn) ∈ N
n
0 is defined by

α! := α1! · · ·αn!.

Given α, β ∈ N0, with β ≤ α, we define the binomial coefficient(
α

β

)
:=

α!

β!(α− β)!
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with α− β := (α1 − β1, ..., αn − βn).

Now, by using these ideas about multi-indexes, let us present some important formulas whose

notations will depend of it.

� The Taylor formula: The set of all infinite differentiable functions f : Rn → C will be denoted

by C∞(Rn). If f ∈ C∞(Rn), its Taylor formula is given by the following: given N ∈ N,

f(x+ ξ) =
∑

|α|<N

ξα

α!
(∂αf)(x) +N

∑
|α|=N

ξα

α!

∫ 1

0

(1− θ)N−1(∂αf)(x+ θξ)dθ, x, ξ ∈ R
n.

� Leibniz Rule: Another formula that will be often used is the well known Leibniz rule:

Dα(f · g) =
∑

α1+α2=α

α!

α1!α2!
Dα1fDα2g =

∑
β≤α

(
α

β

)
DβfDα−βg.

� Faà di Bruno formula: If f : R → C and g : Rn → R, then

∂α
x (f ◦ g)(x) =

|α|∑
j=1

f (j)(g(x))

j!

∑
α1+···+αj=α

|α�|≥1

α!

α1! · · ·α!

j∏
=1

∂α�
x g(x).

1.2 Useful identities and inequalities

Now we intend to establish some identities and inequalities that will be used frequently during

our work to perform very important estimates which characterize the spaces we are interested to work

with. Given N ∈ N and t1, ..., tn ∈ R, the generalized Newton formula is given by

(t1 + · · ·+ tn)
N =

∑
|α|=N

α∈N0

N !

α!
tα or (t1 + · · ·+ tn)

N =
∑

|α|=N

α∈N0

N !

α1! · · ·αn!

n∏
i=1

tαi
i .

In particular, if t1 = · · · = tn = 1, if follows that

nN =
∑

|α|=N

N !

α!
.

From the above identity, we can derive some inequalities and identities. In fact:

� If N = |α|, then
|α|! ≤ n|α|α!, α ∈ N

n
0 .

� If n = 2, we obtain

2N =
∑

j+k=N

N !

j!k!
. (1.1)

From this, with N = j + k, if follows that

(j + k)!

j!k!
≤ 2j+k ⇒ (j + k)! ≤ 2j+kj!k!.
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Obviously, (j + k)! ≤ 2j+kj!k! implies that

(α+ β)! ≤ 2|α+β|α!β!.

It is easy to notice that (1.1) can be written as∑
α1+α2=α

α!

α1!α2!
= 2|α|.

Another inequality that will be often used is

α!β! ≤ (α+ β)!.

Now, by considering the Taylor expansion of the exponential et =
∑∞

k=0
tk

k! , t ≥ 0, we can

obtain

tN ≤ N !eN , N ∈ N0, t ≥ 0.

For the next inequalities, let us consider the following notations: if x, ξ ∈ R
n, we set

xξ := x · ξ =

n∑
j=1

xjξj , |x|2 :=

n∑
j=1

x2
j and 〈x〉 :=

√
1 + |x|2.

The symbol 〈x〉 is called the japanese bracket of x. Besides, 〈·〉 is a smooth function with asymptotic

behaviour equivalent to 1 + |x| for |x| → ∞ since

〈x〉 ≤ 1 + |x| ≤
√
2〈x〉, x ∈ R

n

and

|∂β〈x〉m| ≤ C |β|β!〈x〉m−|β|,

for some constant C > 0 independent of β. Finally, for any s ∈ R there exists cs > 0 such that

〈x+ ξ〉s ≤ cs〈x〉|s|〈ξ〉s, x, ξ ∈ R
n,

and this inequality is known as Peetre’s inequality. Another useful notation we shall use frequently is

the bracket 〈ξ〉h, where 1 is replaced by some constant h > 1, that is,

〈ξ〉h :=
√
h2 + |ξ|2.

1.3 Fourier transform and inversion formula

Our intention from now until the end of this chapter is to define several spaces of functions

and/or distributions which will be used as domain of pseudo-differential operators or simply the universe

where we are considering the data of a Cauchy problem.
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As mentioned before, the space of all infinitely differentiable functions f : Rn → C, or simply

the space of smooth functions, is denoted by C∞(Rn).

The space L2(Rn) is the set of all measurable functions f : Rn → C satisfying

‖f‖L2 :=

[∫
Rn

|f(x)|2dx
] 1

2

< +∞.

We point that ‖ · ‖L2 is a norm in L2(Rn) induced by the inner product

(f, g)L2 :=

∫
Rn

f(x)g(x)dx, f, g ∈ L2(Rn)

and
(
L2(Rn), (·, ·)L2

)
is a Hilbert space.

The space of all smooth rapidly decreasing functions, also known as the Schwartz space, will

be denoted by S (Rn) and it is characterized as

ϕ ∈ S (Rn) ⇔ ϕ ∈ C∞(Rn) and satisfies sup
x∈Rn

|xα∂β
xϕ(x)| < +∞, α, β ∈ N

n
0 .

The Schwartz space is a Fréchet space when equipped with the usual semi-norms

‖ϕ‖,S := max
|α+β|≤

sup
x∈Rn

|xα∂β
xϕ(x)|,  ∈ INn

0 , ϕ ∈ S (Rn).

The topological dual of S (Rn), denoted by S ′(Rn), is called the space of tempered distributions.

Now we are able to talk about the Fourier transform. We define the Fourier transform of a

function ϕ ∈ S (Rn) as

F (ϕ)(ξ) = ϕ̂(ξ) :=

∫
Rn

e−iξxϕ(x)dx, ξ ∈ R
n.

The map F : S (Rn) → S (Rn) is an isomorphism which can be extended to an isomorphism S ′(Rn) →
S ′(Rn) and L2(Rn) → L2(Rn). The inverse Fourier transform of ϕ ∈ S (Rn) is defined by

F−1(ϕ)(x) := (2π)−n

∫
Rn

eiξxϕ(ξ)dξ, x ∈ R
n.

We conclude this section with two very important formulas involving the Fourier transform:

� Parseval formula:
∫
Rn f(x)g(x)dx = (2π)−n

∫
Rn F (f)(ξ)F (g)(ξ)dξ.

� Plancherel formula: ‖f‖2L2 = (2π)−n‖F (f)‖2L2 .

1.4 Sobolev, Gevrey and Gelfand-Shilov spaces

The standard Sobolev space Hs(Rn) is defined as

Hs(Rn) := {u ∈ S ′(Rn) : 〈D〉su ∈ L2(Rn)}, s ∈ R,
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where 〈D〉s is the Fourier multiplier defined by 〈D〉su = F−1(〈·〉sû(·)). For s = (s1, s2) ∈ R
2 we also

define the weighted Sobolev space

Hs(Rn) = Hs1,s2(Rn) = {u ∈ S ′(Rn) : 〈x〉s2〈D〉s1u ∈ L2(Rn)}.

Notice that ⋂
s∈R2

Hs(Rn) = S (Rn),
⋃

s∈R2

Hs(Rn) = S ′(Rn).

One of the most important spaces that we need to consider for our work is the space of

functions of Gevrey type. Namely, some of the functions involved in the main result of this work are

functions of this type. In the book [44], L. Rodino presents a very well detailed development of the

Gevrey theory.

Given θ ≥ 1 and h > 0, the set Gθ(Rn;h) is defined as follows:

ϕ ∈ Gθ(Rn;h) ⇔ ϕ ∈ C∞(Rn) and ‖ϕ‖Gθ(Rn;h) < +∞,

where

‖ϕ‖Gθ(Rn;h) := sup
x∈Rn

sup
α∈Nn

0

|∂α
xϕ(x)|h−|α|α!−θ.

The norm ‖ · ‖Gθ(Rn;h) turns Gθ(Rn;h) into a Banach space. Observe that Gθ(Rn;h) ⊂ Gθ(Rn;h′) if

h < h′. Then we can define

Gθ(Rn) :=
⋃
h>0

Gθ(Rn;h),

endowed with the inductive limit topology. By Gθ
0(R

n) we denote the set of all compactly supported

functions in Gθ(Rn). Still in the Gevrey setting, we also define the space γθ(Rn) as the space of all

smooth functions such that

sup
α∈Nn

0

sup
x∈Rn

h−|α|(α!)−θ|∂αf(x)| < ∞

for every h > 0, and γθ
0(R

n) stands for the space of all compactly supported functions in γθ(Rn).

In order to obtain energy estimates for our p−evolution equations we need to work with Hilbert

spaces of Gevrey regular functions. With this purpose, for θ ≥ 1, m, ρ ∈ R, we set

Hm
ρ;θ(R

n) = {u ∈ S ′(Rn) : 〈D〉meρ〈D〉1/θu ∈ L2(Rn)},

where 〈D〉m and eρ〈D〉1/θ are the Fourier multipliers with symbols 〈ξ〉m and eρ〈ξ〉
1/θ

, respectively. We

call this kind of space a Gevrey-Sobolev space. It is a Hilbert space equipped with the inner product

(u, v)Hm
ρ;θ

=
(
〈D〉meρ〈D〉1/θu, 〈D〉meρ〈D〉1/θv

)
L2

, u, v ∈ Hm
ρ;θ(R

n).

For ρ = 0 we recover the standard Sobolev spaces Hm(Rn). We set

H∞
θ (Rn) :=

⋃
ρ>0

Hm
ρ;θ(R

n) and H∞
θ (Rn) :=

⋂
ρ>0

Hm
ρ;θ(R

n).
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Remark 1.1. Notice that Hm′
ρ′;θ(R

n) ⊆ Hm
ρ;θ(R

n) whenever m′ ≥ m and ρ′ ≥ ρ. This is a consequence

of Plancherel formula, since we have

‖f‖Hm
ρ;θ

≤ ‖f‖Hm′
ρ′;θ

, f ∈ Hm′
ρ′;θ(R

n).

The previous Gevrey spaces are related with H∞
θ (Rn) and H∞

θ (Rn) through the inclusions

Gθ
0(R

n) ⊂ H∞
θ (Rn) ⊂ Gθ(Rn)

and

γθ
0(R

n) ⊂ H∞
θ (Rn) ⊂ γθ(Rn).

Next, let us introduce some definitions and properties concerning the so called Gelfand-Shilov

spaces. The reader can find a deeper approach to this subject in [22, 26, 39, 43]. If s ≥ 1, θ ≥ 1, A > 0

and B > 0, we say that a function f belongs to the set Sθ,As,B(R
n) if f is smooth and there exists C > 0

such that

|xβ∂α
x f(x)| ≤ CA|α|B|β|(α!)θ(β!)s,

for each α, β ∈ N
n
0 and x ∈ R

n. The function ‖ · ‖θ,s,A,B : Sθ,As,B(R
n) → R given by

‖f‖θ,s,A,B := sup
x∈Rn

sup
α,β∈Nn

0

|xβ∂α
x f(x)|A−|α|B−|β|(α!)−θ(β!)−s,

is a norm in S
θ,A
s,B(R

n) which turns it into a Banach space. As usual, we can define the spaces

Sθs(R
n) :=

⋃
A,B>0

S
θ,A
s,B(R

n) and Σθ
s(R

n) :=
⋂

A,B>0

S
θ,A
s,B(R

n),

respectively, with the inductive and projective limit topology. When s = θ, the notations Sθθ(R
n) and

Σθ
θ(R

n) can be simplified as Sθ(R
n) and Σθ(R

n), respectively.

Remark 1.2. The spaces Sθs(R
n) and Σθ

s(R
n) may also be characterized in a different way. Let C > 0

and ε > 0. The space Sθ,Cs,ε (R
n) is defined as the set of all smooth functions f such that

‖f‖ε,Cs,θ < +∞,

where

‖f‖ε,Cs,θ := sup
x∈Rn

sup
α∈Nn

0

C−|α|(α!)−θeε|x|
1
s |∂α

x f(x)|

is a norm which turns Sθ,Cs,ε (R
n) into a Banach space. Then, we have

Sθs(R
n) =

⋃
C,ε>0

Sθ,Cs,ε (R
n) and Σθ

s(R
n) =

⋂
C,ε>0

Sθ,Cs,ε (R
n)

with equivalent topologies to the ones described above.
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For ρ = (ρ1, ρ2) ∈ R
2, ρ1, ρ2 > 0, and m = (m1,m2) ∈ R

2, we consider

Hm
ρ;s,θ(R

n) = {u ∈ S ′(Rn) : 〈x〉m2〈D〉m1eρ2〈x〉1/seρ1〈D〉1/θu ∈ L2(Rn)}.

which is called Gelfand-Shilov-Sobolev space. By endowing Hm
ρ;s,θ(R

n) with the inner product

(u, v)Hm
ρ;s,θ

:=
(
〈x〉m2〈D〉m1eρ2〈x〉1/seρ1〈D〉1/θu, 〈x〉m2〈D〉m1eρ2〈x〉1/seρ1〈D〉1/θv

)
L2(Rn)

, u, v ∈ Hm
ρ;s,θ(R

n),

it becomes a Hilbert space and the induced norm is denoted by ‖ · ‖Hm
ρ;s,θ

. For s ≤ s′, θ ≤ θ′, mj ≥ m′
j

and ρj ≥ ρ′j , j = 1, 2, the following inclusion holds

Hm
ρ;s,θ(R

n) ⊂ Hm′
ρ′;s′,θ′(Rn).

Then, the Gelfand-Shilov classes can be expressed as

Sθs(R
n) =

⋃
ρ1,ρ2>0

H0
ρ;s,θ(R

n) and Σθ
s(R

n) =
⋂

ρ1,ρ2>0

H0
ρ;s,θ(R

n)

As usual, the dual spaces of Sθs(R
n) and Σθ

s(R
n) will be denoted as (Sθs)

′(Rn) and (Σθ
s)

′(Rn),

respectively.

Remark 1.3. The following inclusions are obviously continuous

Σθ
s(R

n) ⊂ Sθs(R
n) ⊂ Σs+ε

s+ε(R
n),

for each ε > 0.

Concerning the Fourier transform, the Gelfand-Shilov type spaces have the following proper-

ties:

F : Σθ
s(R

n) → Σs
θ(R

n), F : Sθs(R
n) → Ssθ(R

n),

F : (Σθ
s)

′(Rn) → (Σs
θ)

′(Rn), F : (Sθs)
′(Rn) → (Ssθ)

′(Rn)

are all isomorphisms.
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Chapter 2

PSEUDO-DIFFERENTIAL OPERATORS AND SYMBOLIC

CALCULUS

This chapter is dedicated to introduce several classes of symbols and the related pseudo-

differential operators we shall work with and a suitable version of the sharp G̊arding inequality. The

pseudo-differential operator theory developed here is based mostly in the work [2]. In the frame of

pseudo-differential operators, we are also using results and concepts which can be found in [1, 18, 19,

20, 21, 25, 28, 37, 41, 42, 44, 45, 46].

Let us consider the set

B∞(Rn) = {ϕ ∈ C∞(Rn;C) : sup
x∈Rn

|∂βϕ(x)| < ∞, ∀β ∈ N
n
0}.

The action of a linear partial differential operator

p(x,D) =
∑

|α|≤m

aα(x)D
α,

with coefficients aα ∈ B∞(Rn), can be expressed as

p(x,D)u(x) =

∫
eiξxp(x, ξ)û(ξ)d−ξ, x ∈ R

n, u ∈ S (Rn), (2.1)

where p(x, ξ) is the symbol of the operator p(x,D), which is given by

p(x, ξ) =
∑

|α|≤m

aα(x)ξ
α, (x, ξ) ∈ R

2n

and d−ξ = (2π)−ndξ.

Remark 2.1. We point that:

� (2.1) can be obtained by using Fourier transform and its standard properties.

� The symbol p(x, ξ) satisfies: for all α, β ∈ N
n
0 , there exists Cα,β > 0 such that

|∂α
ξ ∂

β
xp(x, ξ)| ≤ Cα,β〈ξ〉m−|α|, (x, ξ) ∈ R

2n. (2.2)

The right hand side of (2.1) indeed makes sense for any smooth function p(x, ξ) satisfying an

estimate like (2.2), for m ∈ R. Smooth functions with this property are called symbols, and operators of
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the form (2.1) associated with some symbol are called pseudo-differential operators (p.d.o.). If a symbol

is polynomially bounded like in (2.2), we say that it has finite order. When a symbol is not polynomially

bounded but it is bounded by an exponential function, the symbol has infinite order.

Remark 2.2. Concerning operators of infinite order, intending to obtain convergence in the integral

which defines the right hand side of (2.1), it is required some stronger decay condition for the Fourier

transform of u, for this we could take u belonging to some suitable Gelfand-Shilov class.

Sometimes we will be interested in symbols that have boundedness of polynomial type with

respect to variables x and ξ simultaneously, namely: for m1,m2 ∈ R, for each α, β ∈ N
n
0 , there exists

Cα,β > 0 such that

|∂α
ξ ∂

β
xp(x, ξ)| ≤ Cα,β〈ξ〉m1−|α|〈x〉m2−|β|, (x, ξ) ∈ R

2n. (2.3)

Operators with symbols satisfying (2.3) are called pseudo-differential operators of SG type.

2.1 Sm(R2n) and SGm(R2n) classes

In this section we present the well known Hörmander classes Sm(R2n) and the SGm(R2n)

classes. In the sequel, we intend to list some results involving these classes of symbols and their principal

properties. Proofs and more details can be found in [18], [25], [37], [41], [42] and [45].

Definition 2.1. Let m be a real number. A smooth function p belongs to Sm(R2n) if for every

α, β ∈ N
n
0 , there exists a constant Cα,β > 0 such that

|∂α
ξ ∂

β
xp(x, ξ)| ≤ Cα,β〈ξ〉m−|α|, (x, ξ) ∈ R

2n.

The class Sm(R2n) is a Fréchet space equipped with the semi-norms

|p|Sm, := max
|α+β|≤

sup
(x,ξ)∈R2n

|∂α
ξ ∂

β
xp(x, ξ)|〈ξ〉−m+|α|, p ∈ Sm(R2n),  ∈ N0.

If a pseudo-differential operator has its symbol belonging to Sm(R2n), it is continuous from

S (Rn) to itself and it can be extended to a continuous map from S ′(Rn) to itself. Actually, another

kind of extension can be established for operators of this nature: an operator with symbol in Sm(R2n)

extends to a bounded map from Hs(Rn) toHs−m(Rn), for all s ∈ R. The norm of the pseudo-differential

operator p(x,D) : Hs(Rn) → Hs−m(R) is bounded in terms of a finite number of semi-norms of the

symbol p.

As usual, when we are working with pseudo-differential operators, it is fundamental to consider

the asymptotic expansion of symbols. This will make our life easier when we need to compose, to take

adjoint and transpose operators.
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Definition 2.2. Let (mj)j∈N0
be a non-increasing sequence of real numbers which diverges to −∞,

and symbols p ∈ Sm(R2n), pj ∈ Smj (R2n), for all j ∈ N0, with m = m0. We say that p is asymptotic

to
∑

j pj in Sm(R2n) if

p−
∑
j<N

pj ∈ SmN (R2n), ∀N ∈ N.

If p is asymptotic to
∑

j pj , it can be used the notation p ∼∑j pj in Sm(R2n) to indicate it.

The next results concern to the composition, adjoint and transposition of pseudo-differential

operators whose symbols are in the Hörmander classes.

Theorem 2.1. Let p ∈ Sm(R2n) and q ∈ Sm′
(R2n). There exists c ∈ Sm+m′

(R2n) such that

c(x,D) = p(x,D) ◦ q(x,D)

and

c(x, ξ) ∼
∑
α

1

α!
∂α
ξ p(x, ξ)D

α
x q(x, ξ) in Sm+m′

(R2n).

Theorem 2.2. Let p ∈ Sm(R2n), p∗(x,D) the L2-adjoint and tp(x,D) the transpose of p(x,D). Then:

(i) There exists a ∈ Sm(R2n) such that a(x,D) = p∗(x,D) and

a(x, ξ) ∼
∑
α

(−1)|α|

α!
∂α
ξ D

α
xp(x, ξ) in Sm(R2n).

(ii) There exists b ∈ Sm(R2n) such that b(x,D) = tp(x,D) and

b(x, ξ) ∼
∑
α

1

α!
(∂α

ξ D
α
xp)(x,−ξ) in Sm(R2n).

Now let us introduce a new weight function 〈x〉m bounding our symbols and its derivatives.

From this it will raise the so called SG classes.

Definition 2.3. Let m = (m1,m2) ∈ R
2. We shall denote by SGm(R2n) or by SGm1,m2(R2n) the

space of all functions p ∈ C∞(R2n) such that for every α, β ∈ N
n
0 , there exists a constant Cα,β > 0 such

that

|∂α
ξ ∂

β
xp(x, ξ)| ≤ Cα,β〈ξ〉m1−|α|〈x〉m2−|β|, (x, ξ) ∈ R

2n.

The class SGm(R2n) is a Fréchet space equipped with the semi-norms

|p|SGm, := max
|α+β|≤

sup
(x,ξ)∈R2n

|∂α
ξ ∂

β
xp(x, ξ)|〈ξ〉−m1+|α|〈x〉−m2+|β|, p ∈ SGm(R2n),  ∈ N0.

If a pseudo-differential operator has its symbol belonging to SGm(R2n), it is continuous from

S (Rn) to itself and it can be extended to a continuous map from S ′(Rn) to itself. Another kind of

extension can be established for operators of this nature: an operator with symbol in SGm(R2n) extends

to a bounded map from Hs1,s2(Rn) to Hs1−m1,s2−m2(Rn), for all s = (s1, s2) ∈ R
2.
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Definition 2.4. An operator r(x,D) is said to be a SG smoothing operator if its symbol r(x, ξ) belongs

to SGm(R2n) for all m ∈ R
2. In fact, under this condition, r(x,D) maps continuously S ′(Rn) →

S (Rn).

Remark 2.3. Notice that ⋂
m∈R2

SGm(R2n) = S (R2n).

Definition 2.5. Let (mj)j∈N0
, mj = (m

(j)
1 ,m

(j)
2 ), be a sequence in R

2 whose coordinates are non-

increasing sequences of real numbers which diverge to−∞, and symbols p ∈ SGm(R2n), pj ∈ SGmj (R2n),

for all j ∈ N0, with m = m0. We say that p is asymptotic to
∑

j pj in SGm(R2n) if

p−
∑
j<N

pj ∈ SGmN (R2n), ∀N ∈ N.

If p is asymptotic to
∑

j pj , it can be used the notation p ∼∑j pj in SGm(R2n) to indicate it.

Theorem 2.3. Let p ∈ SGm(R2n) and q ∈ SGm′
(R2n). There exist c ∈ SGm+m′

(R2n) and a smoothing

operator r(x,D) such that

p(x,D) ◦ q(x,D) = c(x,D) + r(x,D)

and

c(x, ξ) ∼
∑
α

1

α!
∂α
ξ p(x, ξ)D

α
x q(x, ξ) in SGm+m′

(R2n).

Theorem 2.4. Let p ∈ SGm(R2n), p∗(x,D) the L2−adjoint and tp(x,D) the transpose of p(x,D).

Then:

(i) There exist a ∈ SGm(R2n) and a smoothing operator r1(x,D) such that

p∗(x,D) = a(x,D) + r1(x,D)

and

a(x, ξ) ∼
∑
α

(−1)|α|

α!
∂α
ξ D

α
xp(x, ξ) in SGm(R2n).

(ii) There exist b ∈ SGm(R2n) and a smoothing operator r2(x,D) such that

tp(x,D) = b(x,D) + r2(x,D)

and

b(x, ξ) ∼
∑
α

1

α!
(∂α

ξ D
α
xp)(x,−ξ) in SGm(R2n).
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2.2 Sm
μ,ν(R

2n), Γm
μ,ν(R

2n) and S∞
μ,ν;θ(R

2n) classes

In the analysis of p−evolution equations in Gevrey and Gelfand-Shilov spaces we will need to

work with symbols in Hörmander and SG classes which are also Gevrey regular and with operators of

infinite order. We dedicate this section to introduce these symbols. The theory presented here can be

found in [2], Chapter 2, and other recommended works are [15, 19, 27, 44, 46].

Definition 2.6. Let A > 0, μ, ν > 1 and m ∈ R. We define Sm
μ,ν(R

2n;A) to be the Banach space of

all smooth functions a(x, ξ) satisfying

‖a‖A := sup
α,β∈Nn

0

sup
x,ξ∈Rn

A−|α+β|α!−μβ!−ν〈ξ〉−m+|α||∂α
ξ ∂

β
xa(x, ξ)| < +∞.

We set

Sm
μ,ν(R

2n) :=
⋃
A>0

Sm
μ,ν(R

2n;A)

equipped with the inductive limit topology of the Banach spaces Sm
μ,ν(R

2n;A), and

Γm
μ,ν(R

2n) :=
⋂
A>0

Sm
μ,ν(R

2n;A)

equipped with the projective limit topology of the Banach spaces Sm
μ,ν(R

2n;A).

Definition 2.7. Let A > 0, μ, ν > 1 and m ∈ R. We define S̃m
μ,ν(R

2n;A) to be the Banach space of

all smooth functions a(x, ξ) satisfying

|‖a‖|A := sup
α,β∈Nn

0

sup
x,ξ∈Rn

A−|α+β|α!−μβ!−ν〈ξ〉−m|∂α
ξ ∂

β
xa(x, ξ)| < +∞.

We set

S̃m
μ,ν(R

2n) :=
⋃
A>0

S̃m
μ,ν(R

2n;A)

equipped with the inductive limit topology and

Γ̃m
μ,ν(R

2n) :=
⋂
A>0

S̃m
μ,ν(R

2n;A)

equipped with the projective limit topology.

Finally, we define symbols of infinite order.

Definition 2.8. Let consider the constants μ, ν, θ > 1 and A, c > 0. The space S∞
μ,ν;θ(R

2n;A, c) is

defined as the Banach space of all smooth functions a(x, ξ) satisfying

‖a‖A,c := sup
α,β∈Nn

0

sup
x,ξ∈Rn

A−|α+β|α!−μβ!−ν〈ξ〉|α|e−c|ξ| 1θ |∂α
ξ ∂

β
xa(x, ξ)| < +∞.
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We set

S∞
μ,ν;θ(R

2n) :=
⋃

A,c>0

S∞
μ,ν;θ(R

2n;A, c)

endowed with the inductive limit topology of the Banach spaces S∞
μ,ν;θ(R

2n;A, c).

Remark 2.4. If the constants μ and ν are equal, then the spaces Sm
μ,μ(R

2n), S̃m
μ,μ(R

2n) and S∞
μ,μ;θ(R

2n)

will be denoted for simplicity by Sm
μ (R2n), S̃m

μ (R2n) and S∞
μ;θ(R

2n), respectively.

Remark 2.5. For all m ∈ R and θ > 1, we have Sm
μ (R2n) ⊂ S∞

μ;θ(R
2n).

Remark 2.6. If μ1 < μ2, then for every A > 0 we have Sm
μ1
(R2n;A) ⊂ Γm

μ2
(R2n) and S̃m

μ1
(R2n;A) ⊂

Γ̃m
μ2
(R2n).

We dedicate the next subsections to collect some definitions, properties and results concerning

the pseudo-differential operators with symbols in S∞
μ,ν;θ(R

2n) and Sm
μ;ν(R

2n).

2.2.1 Continuity on Gelfand-Shilov spaces

The next result states that any operator of the form (2.1) acts continuously on Gelfand-Shilov

spaces and its proof can be checked in [2], Proposition 2.1.

Proposition 2.1. Let μ, ν, s, θ > 1 such that s > μ and θ > ν. If p ∈ S∞
μ,ν;θ(R

2n), then the operator

p(x,D) is continuous from Σθ
s(R

n) to Σθ
s(R

n) and it can be extended to a linear continuous operator

from (Σθ
s)

′(Rn) to (Σθ
s)

′(Rn).

Remark 2.7. Using the same argument as in the proof of Proposition 2.1, it can be proved that operators

with finite order symbols in Sm
μ,ν(R

2n) are continuous from Sθs(R
n) into Sθs(R

n) if s ≥ μ and θ ≥ ν and

it extends continuously to the dual space (Sθs)
′(Rn).

2.2.2 Asymptotic sums

In order to develop a symbolic calculus for the classes of pseudo-differential operators we are

dealing with, we will need the following concept of asymptotic sums.

Definition 2.9. We say that:

(i) the formal sum
∑∞

j=0 aj belongs to FS∞
μ,ν;θ(R

2n) if aj ∈ C∞(R2n) and there are constants

H,C, c, B > 0 such that

|∂α
ξ ∂

β
xaj(x, ξ)| ≤ HC |α+β|+2jα!μβ!νj!μ+ν−1〈ξ〉−|α|−jec|ξ|

1
θ ,

for every α, β ∈ N
n
0 , x ∈ R

n, j ∈ N0 and 〈ξ〉 ≥ B(j) := Bjμ+ν−1.
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(ii) the formal sum
∑∞

j=0 aj belongs to FSm
μ,ν(R

2n) if aj ∈ C∞(R2n) and there are constants H,C,B >

0 such that

|∂α
ξ ∂

β
xaj(x, ξ)| ≤ HC |α+β|+2jα!μβ!νj!μ+ν−1〈ξ〉m−|α|−j ,

for every α, β ∈ N
n
0 , x ∈ R

n, j ∈ N0 and 〈ξ〉 ≥ B(j) := Bjμ+ν−1.

Remark 2.8. Notice that S∞
μ,ν;θ(R

2n) can be viewed as a subset of FS∞
μ,ν;θ(R

2n) in the sense that, for

a ∈ S∞
μ,ν;θ(R

2n) we set a0 := a and aj := 0, for j ≥ 1, then a =
∑

j aj ∈ FS∞
μ,ν;θ(R

2n). On the other

hand if
∑

j bj ∈ FS∞
μ,ν;θ(R

2n), then b0 ∈ S∞
μ,ν;θ(R

2n). Analogous considerations hold for the finite order

case FSm
μ,ν(R

2n) and Sm
μ,ν(R

2n).

Remark 2.9. For every m ∈ R and θ > 1 the inclusion FSm
μ,ν(R

2n) ⊂ FS∞
μ,ν;θ(R

2n) holds.

Remark 2.10. Let a, b ∈ S∞
μ,ν;θ(R

2n). Define, for j ≥ 0,

cj =
∑
|α|=j

(−1)|α|

α!
∂α
ξ D

α
xa, dj =

∑
|α|=j

1

α!
∂α
ξ aD

α
x b.

Then
∑

j cj ,
∑

j dj ∈ FS∞
μ,ν;θ(R

2n). We have analogous considerations for the finite order case Sm
μ,ν(R

2n).

Definition 2.10. Let
∑

j aj ,
∑

j bj ∈ FS∞
μ,ν;θ(R

2n). The notation
∑

j aj ∼ ∑j bj means that there

are constants H,C, c, B > 0 satisfying

|∂α
ξ ∂

β
x

∑
j<N

(aj − bj)(x, ξ)| ≤ HC |α+β|+2Nα!μβ!νN !μ+ν−1〈ξ〉−|α|−Nec|ξ|
1
θ ,

for every α, β ∈ N
n
0 , x ∈ R

n, N ∈ N and 〈ξ〉 ≥ B(N) := BNμ+ν−1. An analogous definition can be

established for FSm
μ,ν(R

2n).

Proposition 2.2. If
∑

j aj ∈ FS∞
μ,ν;θ(R

2n), then there exists a symbol a ∈ S∞
μ,ν;θ(R

2n) such that

a ∼∑j aj in FS∞
μ,ν;θ(R

2n). An analogous result holds for FSm
μ,ν(R

2n).

Proof. We address the reader to Proposition 2.2 in [2].

The next result is responsible to provide us a way to define regularizing operators for our

classes.

Proposition 2.3. Let a, b ∈ S∞
μ,ν;θ(R

2n) and
∑

j aj ∈ FS∞
μ,ν;θ(R

2n). If a ∼∑j aj ∼ b in FS∞
μ,ν;θ(R

2n)

and θ > μ+ ν − 1, then there exist constants H,C, c > 0 such that

|∂α
ξ ∂

β
x (a− b)(x, ξ)| ≤ HC |α+β|α!μβ!νe−c|ξ| 1r , x, ξ ∈ R

n, α, β ∈ N
n
0 ,

where r ≥ μ+ ν − 1.

Proof. Check Proposition 2.3 of [2].

In an analogous way, a similar result can be obtained for the classes of finite order, except

that in this case we do not need to ask any hypothesis over the parameter θ.
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Proposition 2.4. Let a, b ∈ Sm
μ,ν(R

2n) and
∑

j aj ∈ FSm
μ,ν(R

2n). If a ∼∑j aj ∼ b in FSm
μ,ν(R

2n) then

there exist constants H,C, c > 0 such that

|∂α
ξ ∂

β
x (a− b)(x, ξ)| ≤ HC |α+β|α!μβ!νe−c|ξ| 1r , x, ξ ∈ R

n, α, β ∈ N
n
0 ,

where r ≥ μ+ ν − 1.

Definition 2.11. For any r̃ > 1, we define Kr̃ as the space of all symbols q ∈ S∞
μ,ν;θ(R

2n) such that

for every r ≥ r̃ there exist positive constants C and c such that

|∂α
ξ ∂

β
x q(x, ξ)| ≤ C |α+β|+1α!rβ!re−c|ξ| 1r , x, ξ ∈ R

n, α, β ∈ N
n
0 .

The operator Q = q(x,D) is said to be r̃−regularizing whenever its symbol q(x, ξ) belongs to Kr̃.

Remark 2.11. Operators with symbols in Kr̃ are regularizing in the sense that they can be extended

to linear and continuous maps from (γθ
0)

′(Rn) to γθ(Rn) if θ > r̃. This can be easily proved observing

that the Fourier transform of u ∈ (γθ
0)

′(Rn) goes like exp(−c|ξ| 1θ ) for some c > 0 and arguing as in [44,

Lemma 3.2.12]. See also Theorem 2.8 for other regularizing properties of these operators.

2.2.3 Adjoint, transpose and composition

This section is dedicated to analyse how to deal with the composition, transpose and adjoint

of our pseudo-differential operators. The first result concerns the adjoint and the transpose, and its

proof can be checked in [2], Theorem 2.6.

Theorem 2.5. Let p ∈ S∞
μ,ν;θ(R

2n) with μ, ν > 1 and θ > μ+ν−1. Let moreover p∗(x,D) and tp(x,D)

the L2 adjoint and the transpose of p(x,D) respectively. Then there exist symbols qj ∈ S∞
μ,ν;θ(R

2n) and

rj ∈ Kμ+ν−1, j = 1, 2, such that

p∗(x,D) = q1(x,D) + r1(x,D), q1(x, ξ) ∼
∑
α

(−1)|α|

α!
∂α
ξ D

α
xp(x, ξ) in FS∞

μ,ν;θ(R
2n)

and

tp(x,D) = q2(x,D) + r2(x,D), q2(x, ξ) ∼
∑
α

1

α!
(∂α

ξ D
α
xp)(x,−ξ) in FS∞

μ,ν;θ(R
2n).

By Lemma 2.5 in [2], if μ > 1, ν > 1, θ satisfies θ > μ+ν−1, r ∈ Kμ+ν−1 and p ∈ S∞
μ,ν;θ(R

2n),

then all the operators tr(x,D), r∗(x,D) and p(x,D) ◦ r(x,D) are generated by symbols in Kμ+ν−1.

In other words, for regularizing symbols, the transpose and the adjoint do not lose the characteristic

of being given by symbols which still are regularizing. The same holds if we compose an operator of

infinite order symbol with an operator with regularizing symbol. The next result concerns about the

composition of two pseudo-differential operators whose symbols are in S∞
μ,ν;θ(R

2n). A complete proof

for such result can be found in Theorem 2.7 of [2].
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Theorem 2.6. Let us consider the parameters μ, ν > 1 and θ > μ + ν − 1. If p and q are symbols in

S∞
μ,ν;θ(R

2n), then there exist symbols s ∈ S∞
μ,ν;θ(R

2n) and r ∈ Kμ+ν−1 such that

p(x,D) ◦ q(x,D) = s(x,D) + r(x,D), s(x, ξ) ∼
∑
α

1

α!
∂α
ξ p(x, ξ)D

α
x q(x, ξ) in FS∞

μ,ν;θ(R
2n).

Remark 2.12. To conclude this subsection, we point out that analogous results concerning the prod-

uct, transpose and adjoints of pseudo-differential operators with symbols in Sm
μ,ν(R

n) can be obtained.

Besides, in the frame of finite order we do not need to require any hypothesis over the parameter θ.

Pseudo-differential operators of finite order act in Gevrey-Sobolev spaces according to the

next Theorem.

Theorem 2.7. Let p ∈ Sm′
μ,ν(R

2n) and consider the parameters θ > μ+ ν − 1 and m, ρ ∈ R. Then

p(x,D) : Hm
ρ;θ(R

n) → Hm−m′
ρ;θ (Rn), continuously.

Proof. Check Theorem 2.8 in [2].

To conclude, the next result tells us how regularizing operators act in Gevrey-Sobolev spaces.

The proof can be consulted in [2], Theorem 2.9.

Theorem 2.8. If μ, ν > 1, θ > μ+ ν − 1 and r ∈ Kμ+ν−1, then for every m ∈ R and ρ̃ ∈ R

r(x,D) : Hm
ρ̃;θ(R

n) →
⋂
ρ∈R

Hm
ρ;θ(R

n), continuously.

2.3 SGm
μ,ν(R

2n) and ΓGm
μ,ν(R

2n) classes

The symbol classes introduced here satisfy some Gevrey estimates and the boundedness is

given in terms of weights with respect to the both variables x and ξ, namely 〈x〉 and 〈ξ〉. We start with

some definitions.

Definition 2.12. Let A > 0, m := (m1,m2) ∈ R
2 and μ, ν ≥ 1. The space SGm

μ,ν(R
2n, A) is defined

as the Banach space of all smooth functions p(x, ξ) satisfying

|p|A := sup
α,β∈Nn

0

supx, ξ ∈ R
nA−|α+β|α!−μβ!−ν〈ξ〉−m1+|α|〈x〉−m2+|α||∂α

ξ ∂
β
xp(x, ξ)| < +∞.

We set

SGm
μ,ν(R

2n) :=
⋃
A>0

SGm
μ,ν(R

2n, A)

equipped with the inductive limit topology of the Banach spaces SGm
μ,ν(R

2n, A), and

ΓGm
μ,ν(R

2n) :=
⋂
A>0

SGm
μ,ν(R

2n, A)

equipped with the projective limit topology of the Banach spaces SGm
μ,ν(R

2n, A).
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Remark 2.13. Again, we can use a simpler notation to represent these classes when μ = ν, namely

SGm
μ (R2n) and ΓGm

μ (R2n).

Remark 2.14. Notice that, if μ1 < μ2, then for every A > 0 we have SGm
μ1
(R2n;A) ⊂ ΓGm

μ2
(R2n).

Besides the continuity properties on weighted Sobolev spaces inherited from SGm(R2n) and

ΓGm(R2n) the operators with symbol in SGm
μ,ν(R

2n) and ΓGm
μ,ν(R

2n) are continuous in Gelfand-Shilov-

Sobolev in the following sense, cf. [15, Theorem A.18].

Theorem 2.9. If p ∈ SGm′
μ,ν(R

2n) for some m′ ∈ R
2, then for any m, ρ ∈ R

2 and s, θ satisfying

min{s, θ} > μ+ ν − 1, the operator p(x,D) maps Hm
ρ;s,θ(R

n) into Hm−m′
ρ;s,θ (Rn) continuously.

We conclude this section with a result we shall use intensively in the proof of our main result.

This can be regarded as a variant of sharp G̊arding inequality for Gevrey regular SG symbols. This

result follows directly from Theorem 6 in [9].

Theorem 2.10. Let p ∈ SGm
μ,ν(R

2n) such that Re p(x, ξ) ≥ 0. Then there exist q ∈ SGm
μ,ν(R

2n),

r ∈ SGm−(1,1)(R2n) and r∞ ∈ Kk, with k > μ+ ν − 1 such that

p(x,D) = q(x,D) + r(x,D) + r∞(x,D)

and

(q(x,D)v, v)L2(Rn) ≥ 0, ∀v ∈ S (Rn).
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Chapter 3

CAUCHY PROBLEM FOR p-EVOLUTION OPERATORS

WITH DATA IN GEVREY SPACES

3.1 Well-posedness in inductive Gevrey spaces

For the main result of this chapter, we consider an integer number p ≥ 2 and the class of

differential operators of the type

P (t, x,Dt, Dx) = Dt + ap(t)D
p
x +

p∑
j=1

ap−j(t, x)D
p−j
x , (t, x) ∈ [0, T ]× R, (3.1)

where T > 0, the symbol ap(t, ξ) := ap(t)ξ
p is real-valued with order p and ap−j(t, x, ξ) := ap−j(t, x)ξ

p−j

has order p− j (with respect to ξ), for each j = 1, ..., p.

Remark 3.1. It is easy to notice that ap(t, ξ) = ap(t)ξ
p is the symbol of the differential operator

ap(t)D
p
x and, for each j = 1, ..., p, ap−j(t, x, ξ) = ap−j(t, x)ξ

p−j is the symbol of the differential operator

ap−j(t, x)D
p−j
x .

Our goal is to study the Cauchy problem⎧⎨⎩ P (t, x,Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ [0, T ]× R

u(0, x) = g(x), x ∈ R

, (3.2)

with data f and g in Gevrey-Sobolev spaces Hm
ρ;θ(R). In our first main result, we will prove what we

call the well-posedness in H∞
θ (R) for the Cauchy problem, which is defined in the following.

Definition 3.1. We say that the Cauchy problem (3.2) is well-posed in H∞
θ (R) when, for any given

ρ > 0 there exists ρ̃ > 0 and a constant C := C(ρ, T ) > 0 such that, for all f ∈ C
(
[0, T ];Hm

ρ;θ(R)
)
and

g ∈ Hm
ρ;θ(R), there exists a unique solution u ∈ C1

(
[0, T ];Hm

ρ̃;θ(R)
)
and the following energy estimate

holds

‖u(t, ·)‖Hm
ρ̃;θ

≤ C

(
‖g‖2Hm

ρ;θ
+

∫ t

0

‖f(τ, ·)‖2Hm
ρ;θ

dτ

)
.

The first result we intend to prove in this chapter is stated in the following.

Theorem 3.1. Let θ0 > 1 and σ ∈
(

p−2
p−1 , 1

)
such that θ0 < 1

(p−1)(1−σ) . Let P be an operator of the

type (3.1) whose coefficients satisfy the following assumptions:
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(i) ap ∈ C([0, T ];R) and there exists Cap
> 0 such that |ap(t)| ≥ Cap

, for all t ∈ [0, T ].

(ii) |∂β
xap−j(t, x)| ≤ Cβ+1

ap−j
β!θ0〈x〉− p−j

p−1σ−β, for some Cap−j > 0, j = 1, ..., p − 1 and for all β ∈ N0,

(t, x) ∈ [0, T ]× R.

If θ > 1 is such that θ0 ≤ θ < 1
(p−1)(1−σ) , the data f ∈ C

(
[0, T ];Hm

ρ;θ(R)
)

and g ∈ Hm
ρ;θ(R), with

m, ρ ∈ R and ρ > 0, then the Cauchy problem (3.2) admits a unique solution u ∈ C1
(
[0, T ];Hm

ρ̃;θ(R)
)

for some ρ̃ ∈ (0, ρ), and the solution satisfies the energy estimate

‖u(t)‖2Hm
ρ̃;θ

≤ C

(
‖g‖2Hm

ρ;θ
+

∫ t

0

‖f(τ)‖2Hm
ρ;θ

dτ

)
, (3.3)

for all t ∈ [0, T ] and for some constant C > 0. In particular, for θ ∈
[
θ0,

1
(p−1)(1−σ)

)
the Cauchy

problem (3.2) is well-posed in H∞
θ (R).

In [6], Theorem 1, the authors have proved the above theorem for p = 3. They noticed that

the conclusion of the result cannot be achieved in a straight way, however, by performing a suitable

change of variable in order to obtain an equivalent Cauchy problem, the theorem can be proved after

several steps. Another similar result (by changing some hypothesis and/or functional classes) can be

found in other works developed by the same authors, namely [4, 5]. We recommend the P.h.D. thesis [2],

Section 3.2, for a very well detailed description about the obstacles found to obtain the energy estimate

in the Cauchy problem for 3-evolution equations. Similar results had been proved in [33] for p = 2. The

novelty in this thesis is that we will prove Gevrey well-posedness for a general p. This extension leads

to non-trivial technical difficulties as we will see in the sequel.

Remark 3.2. Comparing the assumptions of Theorem 3.1 with the known literature for 3-evolution

equations, e.g., [6, Theorem 1.2], we notice that our decay at infinity condition (ii) is given on the whole

coefficients of the lower-order terms (without distinguishing the behaviour of the real and the imaginary

parts) and prescribes for the derivatives of the coefficients a decay that increases with the order of the

derivatives. This extra decay is used in Subsection 3.5 to absorb a growth in x of some terms appearing,

for instance, in (3.32) and (3.33). Without this assumption, the estimate of these terms is possible but

more involved. Moreover, under the condition (ii), the symbols ap−j(t, x)ξ
p−j are symbols in SG classes,

and this allows to apply Theorem 2.10 in Section 3.6. As far as we know, a version of this theorem for

Gevrey regular Hörmander symbols with a precise estimate of the regularity of the remainders is still

missing in the literature, although it is a somewhat expected result. In conclusion, we believe that we

could have distinguished conditions on real and imaginary parts of the coefficients as in [13, Theorem

1.1] or [6, Theorem 1.2], and we could have assumed (ii) only for a finite number of derivatives or

avoided the extra decay for the x-derivatives, but we preferred to skip these refinements in order to not

add further technicality to the proof and to work in the frame of the SG calculus.
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3.2 The description of the change of variable

As explained in the introduction, in order to prove Theorem 3.1, it is necessary to make a

change of variable and to transform the Cauchy problem (3.2) into an equivalent problem which will

be well-posed in Sobolev spaces and then obtain Gevrey well-posedness for (3.2) by using the inverse

change of variable. To perform this change of variable, we shall consider an invertible pseudo-differential

operator of infinite order given by

QΛ,K,ρ′(t, x,D) = eΛK,ρ′ (t,D) ◦ eΛ(x,D), (3.4)

where

Λ(x, ξ) =

p−1∑
k=1

λp−k(x, ξ) ∈ SG0,1−σ
μ (R2) ∩ S(p−1)(1−σ)

μ (R2)

for some μ > 1 and functions λp−k which will be defined in (3.6), and

ΛK,ρ′(t, ξ) = K(T − t)〈ξ〉(p−1)(1−σ)
h + ρ′〈ξ〉1/θh

with 0 < ρ′ < ρ, K > 0 and 〈ξ〉h :=
√
h2 + ξ2 for h >> 1 to be chosen later. The inverse operator

QΛ,K,ρ′(t, x,D)−1 will recover the solution u = QΛ,K,ρ′(t, x,D)−1v of (3.2), where v is the solution of

the auxiliary problem. The properties of the operator QΛ,K,ρ′(t, x,D) and its inverse are responsible to

determine the space where the Cauchy problem (3.2) is well-posed. Now, let us describe each part of

the operator QΛ,K,ρ′(t, x,D).

� The role of each factor eλp−j of the symbol eΛ = eλp−1 · . . . · eλp−1 in the conjugation with eΛ(x,D)

is to turn Im ap−j(t, x,D), j = 1, . . . , p−1, into the sum of a positive operator plus a term of lower

order, without changing the parts of order p, p− 1, ..., p− j +1 of the operator. Summing up, the

conjugation with eΛ(x,D) turns the operator P (t, x,Dt, Dx) into a sum of positive operators plus

a remainder of order (p− 1)(1− σ).

� The operator eK(T−t)〈D〉(p−1)(1−σ)
h does not change terms of order 1, ..., p, but it corrects the error

of order (p− 1)(1− σ) coming from the previous transformation by changing it into the sum of a

positive operator plus a remainder of order zero. This is obtained by choosing K sufficiently large.

� The term eρ
′〈D〉1/θh is the leading term of the transformation QΛ,K,ρ′(t, x,D), since we are assuming

(p − 1)(1 − σ) < 1/θ and ρ′ > 0: it changes the setting of the Cauchy problem from Gevrey-

Sobolev-type spaces to the standard Sobolev spaces. Moreover, since ρ′ > 0, the inverse operator

(QΛ,K,ρ′(t, x,D))−1 has regularizing properties with respect to the spaces Hm
ρ;θ(R), i.e., it maps

Hm(R) into a Gevrey-Sobolev space Hm
ρ′−δ;θ(R) for every positive δ.

In next sections we will give more details about this change of variable. By denoting

PΛ,K,ρ′(t, x,Dt, Dx) := QΛ,K,ρ′(t, x,Dx) ◦ (iP )(t, x,Dt, Dx) ◦ (QΛ,K,ρ′(t, x,Dx))
−1,
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just notice that the Cauchy problem (3.2) is equivalent to the auxiliary Cauchy problem⎧⎨⎩ PΛ,K,ρ′(t, x,Dt, Dx)v(t, x) = QΛ,K,ρ′(t, x,Dx)f(t, x), (t, x) ∈ [0, T ]× R

v(0, x) = QΛ,K,ρ′(0, x,Dx)g(x), x ∈ R

, (3.5)

in the sense that if u solves (3.2), then v = QΛ,K,ρ′(t, x,Dx)u solves (3.5) and, if v solves (3.5), then

u = (QΛ,K,ρ′(t, x,Dx))
−1v solves (3.2).

3.3 The functions λp−k(x, ξ), k = 1, ..., p− 1

As we described in the previous section, one of the parts used in the change of variable is the

operator eΛ(x,D), where Λ = λp−1 + · · · + λ1. Let us define each one of the functions λp−k. For each

k = 1, ..., p− 1, let Mp−k > 0 to be chosen later on and define

λp−k(x, ξ) := Mp−kω

(
ξ

h

)
〈ξ〉1−k

h

∫ x

0

〈y〉− p−k
p−1 σψ

(
〈y〉

〈ξ〉p−1
h

)
dy, (3.6)

where ω and ψ are C∞ functions such that

ω(ξ) =

⎧⎨⎩ 0, |ξ| ≤ 1

−sgn(ap(t)), |ξ| > Rap

, ψ(y) =

⎧⎨⎩ 1, |y| ≤ 1
2

0, |y| ≥ 1

and these functions also satisfy

|∂α
ξ ω(ξ)| ≤ Cα+1

ω α!μ and |∂β
yψ(y)| ≤ Cβ+1

ψ β!μ.

Notice that, by assumption (i) in Theorem 3.1, ω is constant for |ξ| ≥ Rap
, hence, if α �= 0 we have that

ω(α)
(

ξ
h

)
is supported for |ξ|/h ≤ Rap , which gives us

h−α ≤ 〈ξ〉−α
h 〈Rap〉α.

Remark 3.3. The h−bracket 〈·〉h satisfies

|∂α
ξ 〈ξ〉mh | ≤ Cα

mα!〈ξ〉m−α
h , ξ ∈ R, α ∈ N0,

where Cm > 0 is independent of h. We can replace 〈ξ〉 by 〈ξ〉h because this does not change the

symbol classes and it is very useful in the proofs of our results (for instance, to obtain the invertibility

QΛ,K,ρ′(t, x,D)). The new class obtained by replacing 〈ξ〉 for 〈ξ〉h is Sm
h,μ,ν(R

2), and a smooth function

p belongs to Sm
h,μ,ν(R

2) if there exists C > 0 such that

|∂α
ξ ∂

β
xp(x, ξ)| ≤ Cα+β+1α!μβ!ν〈ξ〉m−α

h , α, β ∈ N0, x, ξ ∈ R.

Since h >> 1, it follows that

〈ξ〉 ≤ 〈ξ〉h ≤ h〈ξ〉, ξ ∈ R,
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hence Sm
μ,ν(R

2) = Sm
h,μ,ν(R

2) with equivalent topologies. Besides, 〈ξ〉 and 〈ξ〉h are asymptotically equiv-

alent, which means that

lim
|ξ|→∞

〈ξ〉h
〈ξ〉 = 1.

The above limit implies that for any ε > 0 there exists Rh,ε > 0 such that

〈ξ〉h ≤ (1 + ε)〈ξ〉, |ξ| ≥ Rh,ε.

Finally, the exchange of 〈ξ〉 for 〈ξ〉h does not change the dependence of the constants appearing in this

work, which will be independent of h.

The following result summarizes some properties about the functions λp−k.

Lemma 3.1. For each k = 1, ..., p− 1, the following statements are true:

(i) |λp−k(x, ξ)| ≤ Mp−k

1− p−k
p−1 σ

〈ξ〉(p−k)(1−σ)
h .

(ii) |∂α
ξ λp−k(x, ξ)| ≤ Cα+1α!μ〈ξ〉(p−k)(1−σ)−α

h , for all α ≥ 1.

(iii) |∂α
ξ λp−k(x, ξ)| ≤ Cα+1α!μ〈ξ〉1−k−α

h 〈x〉1− p−k
p−1 σ, for all α ≥ 0.

(iv) |∂α
ξ λp−k(x, ξ)| ≤ Cα+1α!μ〈ξ〉−α

h 〈x〉 p−k
p−1 (1−σ), for all α ≥ 0.

(v) |∂α
ξ ∂

β
xλp−k(x, ξ)| ≤ Cα+β+1(α!β!)μ〈ξ〉1−k−α

h 〈x〉− p−k
p−1 σ−(β−1), for all α ≥ 0 and β ≥ 1.

Proof. Let us denote by χξ(x) the characteristic function of the set {x ∈ R
n; 〈x〉 ≤ 〈ξ〉p−1

h }. Then, it

follows that

|λp−k(x, ξ)| = Mp−k

∣∣∣∣ω( ξh
)∣∣∣∣ 〈ξ〉−k+1

h

∣∣∣∣∣
∫ x

0

〈y〉− p−k
p−1 σψ

(
〈y〉

〈ξ〉p−1
h

)
dy

∣∣∣∣∣
≤ Mp−k〈ξ〉−k+1

h

∫ |x|

0

〈y〉− p−k
p−1 σχξ(y)dy

≤ Mp−k〈ξ〉−k+1
h

∫ min{|x|,〈ξ〉p−1
h }

0

〈y〉− p−k
p−1 σdy

≤ Mp−k〈ξ〉−k+1
h

∫ min{〈x〉,〈ξ〉p−1
h }

0

y−
p−k
p−1 σdy

=
Mp−k

1− p−k
p−1σ

〈ξ〉−k+1
h

[
y1−

p−k
p−1 σ
]min{〈x〉,〈ξ〉p−1

h }

0

=
Mp−k

1− p−k
p−1σ

〈ξ〉−k+1
h (min{〈x〉, 〈ξ〉p−1

h })1− p−k
p−1 σ

≤ Mp−k

1− p−k
p−1σ

〈ξ〉−k+1
h (〈ξ〉p−1

h )1−
p−k
p−1 σ

=
Mp−k

1− p−k
p−1σ

〈ξ〉−k+1
h 〈ξ〉p−1−(p−k)σ

h

=
Mp−k

1− p−k
p−1σ

〈ξ〉(p−k)(1−σ)
h
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which gives us (i). Similarly, we have

|λp−k(x, ξ)| ≤ Mp−k

1− p−k
p−1σ

〈ξ〉1−k
h 〈x〉1− p−k

p−1 σ.

Now, we want to obtain the estimate (ii) for |∂α
ξ λp−k(x, ξ)|. Note that, by Leibniz rule we

obtain

∂α
ξ λp−k(x, ξ) = ∂α

ξ

{
Mp−kω

(
ξ

h

)
〈ξ〉1−k

h

∫ x

0

〈y〉− p−k
p−1 σψ

(
〈y〉

〈ξ〉p−1
h

)
dy

}

= Mp−k

∑
α1+α2+α3=α

α!

α1!α2!α3!

[
∂α1

ξ ω

(
ξ

h

)] [
∂α2

ξ 〈ξ〉−1+k
h

]
×
∫ x

0

〈y〉− p−k
p−1 σ

[
∂α3

ξ ψ

(
〈y〉

〈ξ〉p−1
h

)]
dy (3.7)

Now we need to find a way to deal with the derivatives which appears in (3.7). The first one is very

simple; the second one we can estimate by ∂ξ〈ξ〉mh ≤ Cα
mα!〈ξ〉m−α

h , ξ ∈ R, α ∈ IN, where Cm is a positive

constant independent of h; the third derivative needs to be computed by using Faà di Bruno’s formula

in the following way

∂α3

ξ ψ

(
〈y〉

〈ξ〉p−1
h

)
=

α3∑
j=1

1

j!
ψ(j)

(
〈y〉

〈ξ〉p−1
h

) ∑
γ1+···+γj=α3

α3!

γ1! · · · γj !
j∏

=1

∂γ�

ξ

(
〈y〉

〈ξ〉p−1
h

)
.

Hence, we can estimate in (3.7) by taking the modulo

|∂α
ξ λp−k(x, ξ)| ≤ Mp−k

∑
α+α2+α3=α

α!

α1!α2!α3!

∣∣∣∣ω(α1)

(
ξ

h

)∣∣∣∣h−α1 |∂α2

ξ 〈ξ〉−k+1
h |

×
∫ |x|

0

χξ(y)〈y〉−
p−k
p−1 σ

α3∑
j=1

1

j!

∣∣∣∣ψ(j)

( 〈y〉
〈ξ〉p−1

)∣∣∣∣
×

∑
γ1+···+γj=α3

α3!

γ1! · · · γj !
j∏

=1

∂γ�

ξ 〈ξ〉1−p
h 〈y〉dy

≤ Mp−k

∑
α1+α2+α3=α

α!

α1!α2!α3!
Cα1+1

ω α1!
μ〈ξ〉−α1

h 〈Rap〉α1Cα2α2!〈ξ〉1−k−α2

h

×
∫ |x|

0

χξ(y)〈y〉−
p−k
p−1 σ

α3∑
j=1

1

j!
Cj+1

ψ

×
∑

γ1+···+γj=α3

α3!

γ1! · · · γj ! 〈y〉
j∏

=1

Cγ�γ!〈ξ〉1−p−γ�

h dy

≤ Mp−k

∑
α1+α2+α3=α

α!

α1!α2!α3!
Cα1+1

ω α1!
μ〈ξ〉−α1

h 〈Rap〉α1Cα2α2!〈ξ〉1−k
h 〈ξ〉−α2

h

×
∫ |x|

0

〈y〉− p−k
p−1 σ

α3∑
j=1

1

j!
Cα3+1

ψ α3!
μ

∑
γ1+···+γj=α3

α3

γ1! · · · γj !C
α3γ1! · · · γj !〈ξ〉−α3

h .
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We obtain

|∂α
ξ λp−k(x, ξ)| ≤ Mp−kC

α+1
ω,ψ,Rap

α!μ〈ξ〉−α
h 〈ξ〉1−k

h

∫ |x|

0

χξ(y)〈y〉−
p−k
p−1 σdy

≤ Mp−k

1− p−k
p−1σ

Cα+1
ω,ψ,Rap

〈ξ〉−α
h 〈ξ〉(p−k)(1−σ)

h

=
Mp−k

1− p−k
p−1σ

Cα+1
ω,ψ,Rap

〈ξ〉(p−k)(1−σ)−α
h ,

and we get (ii). To obtain (iii), we just need to observe that∫ |x|

0

χξ(y)〈y〉−
p−k
p−1 σdy ≤ 〈x〉1− p−k

p−1 σ.

To obtain (iv), we use the fact that, on the support of ψ(〈y〉/〈ξ〉p−1
h ), we have 〈ξ〉1−k

h ≤ 〈x〉 1−k
p−1 , which

implies

〈ξ〉1−k−α
h 〈x〉1− p−k

p−1 σ ≤ 〈ξ〉−α
h 〈x〉 p−k

p−1 (1−σ).

Now, by considering β ≥ 1, we have

∂β
xλp−k(x, ξ) = Mp−kω

(
ξ

h

)
〈ξ〉−k+1

h ∂β
x

∫ x

0

〈y〉− p−k
p−1 σψ

(
〈y〉

〈ξ〉p−1
h

)
dy. (3.8)

Note that, we need to compute the derivative of order β of the integral. If β = 1, we have

∂x

∫ x

0

〈y〉− p−k
p−1 σψ

(
〈y〉

〈ξ〉p−1
h

)
dy = 〈x〉− p−k

p−1 σψ

(
〈x〉

〈ξ〉p−1
h

)
,

and then we can compute by using Leibniz formula

∂β
x

∫ x

0

〈y〉− p−k
p−1 σψ

(
〈y〉

〈ξ〉p−1
h

)
dy = ∂β−1

x

[
〈x〉− p−k

p−1 σψ

(
〈x〉

〈ξ〉p−1
h

)]

=
∑

β1+β2=β−1

(β − 1)!

β1!β2!
∂β1
x 〈x〉− p−k

p−1 σ∂β2
x ψ

(
〈x〉

〈ξ〉p−1
h

)
.

Returning to (3.8), we can write

∂β
xλp−k(x, ξ) = Mp−kω

(
ξ

h

)
〈ξ〉−k+1

h

∑
β1+β2=β−1

(β − 1)!

β1!β2!
∂β1
x 〈x〉− p−k

p−1 σ∂β2
x ψ

(
〈x〉

〈ξ〉p−1
h

)

= Mp−k

∑
β1+β2=β−1

(β − 1)!

β1!β2!
∂β1
x 〈x〉− p−k

p−1 σω

(
ξ

h

)
〈ξ〉−k+1

h ∂β2
x ψ

(
〈x〉

〈ξ〉p−1
h

)
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and from this, it follows that

∂α
ξ ∂

β
xλp−k(x, ξ) = Mp−k

∑
β1+β2=β−1

(β − 1)!

β1!β2!
∂β1
x 〈x〉− p−k

p−1 σ∂α
ξ

[
ω

(
ξ

h

)
〈ξ〉−k+1

h ∂β2
x ψ

(
〈x〉

〈ξ〉p−1
h

)]

= Mp−k

∑
β1+β2=β−1

(β − 1)!

β1!β2!
∂β1
x 〈x〉− p−k

p−1 σ

×
∑

α1+α2+α3=α

α!

α1!α2!α3!
∂α1

ξ ω

(
ξ

h

)
∂α2

ξ 〈ξ〉−k+1
h ∂α3

ξ ∂β2
x ψ

(
〈x〉

〈ξ〉p−1
h

)

= Mp−k

∑
β1+β2=β−1

(β − 1)!

β1!β2!
∂β1
x 〈x〉− p−k

p−1 σ

×
∑

α1+α2+α3=α

α!

α1!α2!α3!
ω(α1)

(
ξ

h

)
h−α1∂α2

ξ 〈ξ〉−k+1
h

×
α3+β2∑
j=1

ψ(j)
(

〈x〉
〈ξ〉p−1

h

)
j!

∑
γ1+···+γj=α3

∑
δ1+···+δj=β2

α3!β2!

γ1!δ1! · · · γj !δj !
j∏

=1

∂δ�
x 〈x〉∂γ�

ξ 〈ξ〉1−p
h .

Now, we can estimate

|∂α
ξ ∂

β
xλp−k(x, ξ)| ≤ Mp−k

∑
β1+β2=β−1

(β − 1)!

β1!β2!
|∂β1

x 〈x〉− p−k
p−1 σ|

×
∑

α1+α2+α3=α

α!

α1!α2!α3!

∣∣∣∣ω(α1)

(
ξ

h

)∣∣∣∣h−α1 |∂α2

ξ 〈ξ〉−k+1
h |

× χξ(x)

α3+β2∑
j=1

∣∣∣ψ(j)
(

〈x〉
〈ξ〉p−1

h

)∣∣∣
j!

×
∑

γ1+···+γj=α3

∑
δ1+···+δj=β2

α3!β2!

γ1!δ1! · · · γj !δj !
j∏

=1

|∂δ�
x 〈x〉||∂γ�

ξ 〈ξ〉1−p
h |

≤ Mp−k

∑
β1+β2=β−1

(β − 1)!

β1!β2!
Cβ1β1!〈x〉−

p−k
p−1 σ−β1

×
∑

α1+α2+α3=α

α!

α1!α2!α3!
Cα1+1

ω α1!
μ〈ξ〉−α1

h 〈Rap〉α1Cα1α1!〈ξ〉−k+1−α1

h

×
α3+β2∑
j=1

1

j!
Cj+1

ψ j!μ
∑

γ1+···+γj=α3

∑
δ1+···+δj=β2

α3!β2!

γ1!δ1! · · · γj !δj !

×
j∏

=1

Cδ�δ!〈x〉1−δ�Cγ�γ!〈ξ〉1−p−γ�

h

≤ Mp−kC
α+β+1
ψ,ω,Rap

α!μ(β − 1)!μ〈ξ〉1−k−α
h 〈x〉− p−k

p−1 σ−(β−1).

Remark 3.4. We can conclude that λp−k ∈ SG
0, p−k

p−1 (1−σ)
μ (R2) and λp−k ∈ S

(p−k)(1−σ)
μ (R2), for each

k = 1, ..., p− 1. Hence

Λ =

p−1∑
k=1

λp−k ∈ SG0,1−σ
μ (R2) ∩ S(p−1)(1−σ)

μ (R2). (3.9)
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3.4 Invertibility of the operator eΛ(x,D)

In this section we construct the inverse operator of eΛ(x,D), for Λ = λp−1+ · · ·+λ1. In order

to do this, we need to introduce the notion of reverse operator. Let λ ∈ S
1
κ
μ (R2), 1 < μ ≤ κ, be a

real-valued symbol satisfying

|∂α
ξ ∂

β
xλ(x, ξ)| ≤ ρ0A

α+β(α!β!)κ〈ξ〉 1
κ−α. (3.10)

Note that e±λ ∈ S∞
κ;κ(R

2). Let

e±λ(x,D)u(x) = op(e±λ(x,ξ))u(x) =

∫
R

eixξ±λ(x,ξ)û(ξ)d−ξ.

Let us consider the reverse operator R(e±λ(x,D)) which is defined as the transpose of e±λ(x,−D).

Namely, this operator is given by the oscillatory integral

R(e±λ(x,D))u(x) = Os−
∫∫

eiξ(x−y)±λ(y,ξ)u(y)dyd−ξ

= lim
ε→0

∫∫
eiξ(x−y)±λ(y,ξ)χ(εy, εξ)u(y)dyd−ξ

for some χ ∈ Sκ(R
2) such that χ(0, 0) = 1. The reader can find more details about the reverse operator

in [34] and [35, Proposition 2.13].

The operators eλ(x,D) and R(eλ(x,D)), for a symbol λ satisfying (3.10), have continuity

properties given by the next result.

Proposition 3.1. Let us consider a symbol λ satisfying (3.10), ρ,m ∈ R and 1 < θ ≤ κ. Then:

(i) If κ > θ, the operators eλ(x,D) and R(eλ(x,D)) map continuously Hm
ρ;θ(R) into Hm

ρ−δ;θ(R) for

every δ > 0.

(ii) If κ = θ, there exists δ̃ > 0 such that eλ(x,D) : Hm
ρ;θ(R) → Hm

ρ−δ;θ(R) is continuous for every δ > 0

satisfying

|δ − ρ| < δ̃A−1/θ and δ > C(λ) := sup
(x,ξ)∈R2

λ(x, ξ)

〈ξ〉1/θ .

Moreover, the reverse R(eλ(x,D)) : Hm
ρ;θ(R) → Hm

ρ−δ;θ(R) is continuous for every |δ| < δ̃A−1/θ

and δ > C(λ).

Proof. Check [34, Proposition 6.7].

In the following we shall consider the operator R(e−Λ(x,D)) with Λ defined by (3.9). Notice

that

|∂α
ξ Λ(x, ξ)| ≤ ρ0A

|α|α!μ〈ξ〉(p−1)(1−σ)
h (3.11)

and

|∂α
ξ ∂

β
xΛ(x, ξ)| ≤ ρ0A

α+β(α!β!)ρ〈ξ〉−α
h . (3.12)
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whenever β ≥ 1. This estimate means that for β �= 0, ∂β
xΛ behaves like a symbol of order 0. Taking

into account conditions (3.11) and (3.12) the following result holds, cf. Lemma 4 in [6].

Lemma 3.2. Let μ > 1. Then, for h > 0 large enough, the operator eΛ(x,D) is invertible and its

inverse is given by

(eΛ(x,D))−1 = R(e−Λ(x,D)) ◦ (I + r(x,D))−1 = R(e−Λ(x,D)) ◦
∑
j≥0

(−r(x,D))j ,

where r = r̃ + r̄ for some r̃ ∈ SG−1,−σ
μ (R2) and r̄ ∈ Kκ, that is, satisfying

|∂α
ξ ∂

β
x r̄(x, ξ)| ≤ Cα+β+1(α!β!)κe−c{〈x〉 1

κ +〈ξ〉 1
κ }, (3.13)

with κ > 2μ− 1 and for some C, c > 0. Moreover, for every N ∈ IN, we have

r̃ −
∑

1≤γ≤N

1

γ!
∂γ
ξ

(
eΛDγ

xe
−Λ
) ∈ SG−(N+1),−σ(N+1)

μ (R2), (3.14)

and the symbol of the operator
∑

(−r(x,D))j is of the form q + q∞, where q ∈ SG0,0
μ (R2) and q∞

satisfies (3.13) for all C, c > 0 and κ > 2μ− 1.

Now we can prove some results about the symbol r(x, ξ) of the operator r(x,D) and on the

corresponding Neumann series.

Lemma 3.3. The symbol r(x, ξ) which appears in the above lemma can be expressed as

r = −∂ξDxΛ + b−2 + · · ·+ b−(p−2) + b−(p−1) + b−p (3.15)

where b−m ∈ SG
−m,− p−m+1

p−1 σ
μ (R2) depends only on λp−1, ..., λp−(m−1), for m = 2, ..., p − 1. Moreover,

b−p is the sum of a symbol in SG
−p,− 1

p−1σ
μ (R2) and a symbol in Kκ for κ > 2μ− 1.

Proof. We have that r ∼∑γ≥1
1
γ!∂

γ
ξ

(
eΛDγ

xe
−Λ
)
, hence

r = −∂ξDxΛ +

p−1∑
γ=2

1

γ!
∂γ
ξ

(
eΛDγ

xe
−Λ
)
+ q−p. (3.16)

For γ ≥ 2, by Faà di Bruno’s formula we get

eΛDγ
xe

−Λ =

γ∑
j=1

(−1)j

j!

∑
γ1+···+γj=γ

γ�≥1

γ!

γ1! · · · γj !
j∏

=1

Dγ�
x Λ.

Now, let us analyse ∂γ
ξ

(∏j
=1 D

γ�
x Λ
)
. Since γ ≥ 2 in the formula (3.16), it is sufficient to prove that

j∏
=1

Dγ�
x Λ = b̃−2 + · · ·+ b̃−(p−1) + b̃−p,
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for some b̃−m ∈ SG
−m+2,− p−m+1

p−1 σ
μ (R2), m = 2, ..., p, depending only on λp−1, ..., λp−(m−1). Since

Λ = λp−1 + · · ·+ λ1, we have that Dγ�
x Λ = Dγ�

x (λp−1 + · · ·+ λ1),  = 1, ..., j, which implies that

j∏
=1

Dγ�
x Λ = (Dγ1

x λp−1 + · · ·+Dγ1
x λ1) · · · (Dγj

x λp−1 + · · ·+Dγj
x λ1).

By (v) of Lemma 3.3, the only term in the above product with order exactly 0 with respect to ξ is

Dγ1
x λp−1 · · ·Dγj

x λp−1 ∈ SG0,−σ
μ (R2).

Similarly we notice that the only term of order exactly −1 with respect to ξ is the sum of products of

the form

Dγs
x λp−2

∏
�≤j

 �=s

Dγ�
x λp−1 ∈ SG

−1,− p−2
p−1σ

μ (R2),

which do not depend on λp−3, ..., λ1. In general, we note that products containing at least one factor of

the type Dγ�
x λp−k with k ≥ m have order at most −m+1, so the terms of order −m+2 with respect to

ξ cannot depend on λp−k for k ≥ m. Among these terms, the ones of highest order in x are obviously

those depending on λp−m+1 that is products of the form

Dγs
x λp−m+1

∏
�≤j

 �=s

Dγ�
x λp−1 ∈ SG

−m+2,− p−m+1
p−1 σ

μ (R2).

This gives the assertion.

By using Lemma 3.3 it can be proved the next result.

Lemma 3.4. For each j ∈ N, j ≥ 2, the operator (−r(x,D))j has order −j. Moreover, for 2 ≤ j < p,

its symbol dj is of the form

dj = b
[j]
−j + b

[j]
−(j+1) + · · ·+ b

[j]
−(p−1) + b

[j]
−p, (3.17)

for some b
[j]
−m ∈ SG

−m,− jp−m
p−1 σ

μ (R2) depending only on λp−1, ..., λp−m+1, for each m = j, ..., p− 1.

Proof. We can argue by induction on j. For j = 2, we have

(−r(x,D))2 =

p−1∑
k=1

p−1∑
=1

(∂ξDxλp−k)(x,D) ◦ (∂ξDxλp−)(x,D)

−
(

p−k∑
k=1

∂ξDxλp−1

)
(x,D) ◦

(
p∑

=2

b−

)
(x,D)

−
(

p∑
=2

b−

)
(x,D) ◦

(
p−1∑
k=1

∂ξDxλp−k

)
(x,D)

+

p∑
s=2

p∑
=2

b−s(x,D) ◦ b−(x,D)

=: F+ G+ H+ L.
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Consider

F =

p−1∑
k=1

p−1∑
=1

(∂ξDxλp−k)(x,D) ◦ (∂ξDxλp−)(x,D)

We immediately notice that, since the order of each term of the sum F with respect to ξ is −s− , then

the terms with order exactly −m w.r.t. ξ cannot depend on λp−s for s ≥ m or λp− for  ≥ m, then

these terms are of the form (∂ξDxλp−s)(x,D) ◦ (∂ξDxλp−)(x,D) for s +  = m, hence they symbols

belong to SG
−m,− 2p−m

p−1 σ
μ (R2). Concerning

G =

(
p−k∑
k=1

∂ξDxλp−1

)
(x,D) ◦

(
p∑

=2

b−

)
(x,D),

we notice that for k ≥ m the compositions of (∂ξDxλp−k)(x,D) with
∑p

l=2 b−(x,D) give operators

with order less than or equal to −m − 2 w.r.t. ξ. Hence, the terms of order exactly −m in this sum

do not depend on λp−2 for s ≥ m. Moreover, these terms are of the form λp−s(x,D) ◦ b−(x,D) with

 = m − s, hence they belong to SG
−m,− 2p−m+1

p−1
μ (R2). We can argue in a very similar way about H.

Finally, let’s treat the term

L =

p∑
s=2

p∑
=2

b−s(x,D) ◦ b−(x,D).

The terms depending on λp−k with k ≥ m appear only in compositions of the form b−s(x,D)◦b−(x,D)

with  > m and/or s > m, which have order −s− < −m−2. Moreover, every term of order exactly −m

is obtained as a product of the form b−s(x,D) ◦ b−(x,D) for s+  = m and it decays like 〈x〉− 2p−m+2
p−1 σ.

In conclusion we obtain the assertion for j = 2. The inductive step follows from similar considerations.

Assume now that the statement is true for j ≤ N and consider

(−r(x,D))N+1 = (−r(x,D)) ◦ (−r(x,D))N

= op(−∂ξDxλp−1 − · · · ∂ξDxλ1 + b−2 + · · ·+ b−p) ◦ op(b[N ]
−N + · · ·+ b

[N ]
−p ).

Notice that the only term in the composition with order exactly −N−1 w.r.t. ξ is (−∂ξDxλp−1)(x,D)◦
b
[N ]
−N (x,D) whose symbol depends only on λp−1 and belongs to SG

−N−1,− (N+1)p−N−1
p−1 σ

μ (R2). The only

term with order exactly −N − 2 w.r.t. ξ is given by

(−∂ξDxλp−1)(x,D) ◦ b[N ]
−N−1(x,D) + (−∂ξDxλp−2)(x,D) ◦ b[N ]

−N (x,D)

whose symbol depends only on λp−1, λp−2 and belongs to SG
−N−2,− (N+1)p−N−2

p−1
μ (R2), and so on.

From Lemmas 3.3, 3.4 and Lemma 3 in [6], it follows the next result.

Proposition 3.2. Let μ > 1. For h large enough, say h > h0, the operator eΛ(x,D) is invertible and

its inverse is given by

(eΛ(x,D))−1 = R(e−Λ(x,D)) ◦ op(1− i∂ξ∂xΛ + q−2 + · · ·+ q−(p−1) + q−p), (3.18)

where q−m ∈ SG
−m,− 2p−m

p−1 σ
μ (R2),m = 2, ..., p− 1, depend only on λp−1, ..., λp−(m−1) and q−p is the sum

of a symbol in SG
−p,− p

p−1σ
μ (R2) and a symbol satisfying (3.13) for all C, c > 0 and κ > 2μ− 1.
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3.5 Conjugation of the operator iP

In this section the goal is to perform the conjugation of the operator iP by

QΛ,K,ρ′(t, x,D) = eΛK,ρ′ (t,D) ◦ eΛ(x,D),

where

Λ(x, ξ) =

p−1∑
k=1

λp−k(x, ξ) and ΛK,ρ′(t, ξ) = K(T − t)〈ξ〉(p−1)(1−σ)
h + ρ′〈ξ〉1/θh .

Since the inverse of eΛ(x,D) is R(e−Λ(x,D)) ◦∑j≥0(−r(x,D))j , it is necessary to work with composi-

tions of the form eΛ(x,D) ◦ p(x,D) ◦ R(e−Λ(x,D)), with p an operator whose symbol has finite order.

The next result (Theorem 2 of [6]) will be used to perform this computation. For more details of the

proof the reader also can check Section 3.5.1 of [2].

Theorem 3.2. Let p be a symbol satisfying

|∂α
ξ ∂

β
xp(x, ξ)| ≤ CAA

α+β(α!β!)κ〈ξ〉m−α
h ,

and let λ satisfying (3.11) and (3.12) for β �= 0. Then there exist δ̃ > 0 and h0 = h0(A) ≥ 1 such that

if ρ0 ≤ δ̃A−1/μ and h ≥ h0, then

eλ(x,D) ◦ p(x,D) ◦ R(e−λ(x,D)) = p(x,D) + op

⎛
⎝ ∑

1≤α+β<N

1

α!β!
∂α
ξ

(
∂β
ξ e

λ(x,ξ)Dβ
xp(x, ξ)D

α
x e

−λ(x,ξ)
)⎞⎠

+ rN (x,D) + r∞(x,D)

where

|∂α
ξ ∂

β
x rN (x, ξ)| ≤ Cρ0,A,κ(CκA)α+β+2N (α!β!)κN !2κ−1〈ξ〉m−(1− 1

κ )N−α

h ,

|∂α
ξ ∂

β
x r∞(x, ξ)| ≤ Cρ0,A,κ(CκA)α+β+2N (α!β!)κN !2κ−1e−cκA

−1/κ〈ξ〉1/κh . (3.19)

In particular, r∞ ∈ Kκ.

3.5.1 Conjugation of iP by eΛ

Before we start making the conjugation, note that by Lemma 3.3 the function Λ satisfies

|∂α
ξ ∂

β
xΛ(x, ξ)| ≤ Cα+β+1

Λ (α!β!)μ〈ξ〉(p−1)(1−σ)−α
h

and

|∂α
ξ ∂

β
xΛ(x, ξ)| ≤ Cα+β+1

Λ (α!β!)μ〈ξ〉−α
h , β ≥ 1

where CΛ is a constant depending on Mp−1, ...,M1, Cω, Cψ, μ, σ. By the assumption (p− 1)(1− σ) < 1
θ

it follows that

|∂α
ξ ∂

β
xΛ(x, ξ)| ≤ Cα+β+1

Λ (α!β!)μ〈ξ〉(p−1)(1−σ)−α
h

= Cα+β+1
Λ (α!β!)μ〈ξ〉 1

θ−α

h 〈ξ〉(p−1)(1−σ)− 1
θ

h

≤ CΛh
(p−1)(1−σ)− 1

θCα+β
Λ (α!β!)μ〈ξ〉 1

θ−α

h ,
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therefore

ρ(Λ) := h(p−1)(1−σ)− 1
θCΛ

can be taken as small as we want, provided that h can be taken suitably large, and now we are able to

compute eΛ(x,D) ◦ (iP ) ◦ (eΛ(x,D))−1 by using Theorem 3.2.

We conjugate each term of the operator iP , which is given by

iP (t, x,Dt, Dx) = ∂t + iap(t)D
p
x +

p∑
j=1

iap−j(t, x)D
p−j
x . (3.20)

The next items are dedicated to this purpose.

� The conjugation of ∂t. Since Λ does not depend on t, the conjugation of ∂t is trivial, namely

eΛ(x,D) ◦ ∂t ◦ (eΛ(x,D))−1 = ∂t.

� The conjugation of iap(t)D
p
x. First of all, we will treat only the conjugation of iDp

x by eΛ(x,D)

(since ap does not depend on x). By Theorem 3.2 it follows that

eΛ(x,D)◦iDp
x◦ R(e−Λ(x,D)) = iDp

x+op

⎛
⎝i

∑
1≤α≤p−1

1

α!
∂α
ξ

(
eΛξpDα

x e
−Λ

)⎞⎠+r0(x,D)+r∞(x,D). (3.21)

Note that we can write∑
1≤α≤p−1

1

α!
∂α
ξ

(
eΛξpDα

x e
−Λ
)
= ∂ξ (ξ

pDx(−Λ)) + c−2 + c−3 + · · ·+ c−(p−1) + c−p, (3.22)

where c−m ∈ SG
p−m,− p−m+1

p−1 σ
μ (R2) and it depends only on λp−1, ..., λp−m+1, for each m = 2, ..., p.

Now we can substitute (3.22) in (3.21) to obtain

eΛ(x,D) ◦ iDp
x ◦ R{e−Λ(x,D)} = iDp

x + iop(∂ξ{ξpDx(−Λ)}) + ic−2(x,D) + · · ·+ ic−p(x,D)

+ r0(x,D) + r∞(x,D).

From Proposition 3.2, we have that the Neumann series is given by∑
j≥0

(−r(x,D))j = op(1− i∂ξ∂xΛ + q−2 + · · ·+ q−(p−1) + q−p). (3.23)

Since we have to perform a composition between the two operators given in (3.22) and (3.23), let

us analyse what happens with

[iDp
x + iop(∂ξ{ξpDx(−Λ)}) + i(c−2(x,D) + · · ·+ ic−p(x,D))] ◦ op(1− i∂ξ∂xΛ+ q−2 + · · ·+ q−p).
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We can rewrite it as

iDp
x + iop(∂ξ{ξpDx(−Λ)}) + i(c−2(x,D) + · · ·+ c−p(x,D))

+ iDp
x ◦ op(∂ξDxΛ) + iop(∂ξ{ξpDx(−Λ)}) ◦ op(∂ξDxΛ)

+ i(c−2(x,D) + · · ·+ c−p(x,D)) ◦ (∂ξDxΛ)(x,D)

+ iDp
x ◦ (q−2(x,D) + · · ·+ q−p(x,D)) + iop(∂ξ{ξpDx(−Λ)}) ◦ (q−2(x,D) + · · ·+ q−p(x,D))

+ i(c−2(x,D) + · · ·+ c−p(x,D)) ◦ (q−2(x,D) + · · ·+ q−p(x,D))

= iDp
x + iop(pξp−1Dx(−Λ) + ξp∂ξDx(−Λ)) + i(c−2(x,D) + · · ·+ c−p(x,D))

+ iop(ξp∂ξDxΛ) + iop

(
p∑

γ=1

1

γ!
∂γ
ξ ξ

p∂ξD
γ+1
x Λ

)
+ iop(∂ξ{ξpDx(−Λ)}) ◦ op(∂ξDxΛ)

+ i(c−2(x,D) + · · ·+ c−p(x,D)) ◦ (∂ξDxΛ)(x,D)

+ iDp
x ◦ (q−2(x,D) + · · ·+ q−p(x,D)) + iop(∂ξ{ξpDx(−Λ)}) ◦ (q−2(x,D) + · · ·+ q−p(x,D))

+ i(c−2(x,D) + · · ·+ c−p(x,D)) ◦ (q−2(x,D) + · · ·+ q−p(x,D)).

After some simplifications in the above expression, we get

[iDp
x + iop(∂ξ{ξpDx(−Λ)}) + i(c−2(x,D) + · · ·+ c−p(x,D))]

◦ [I + op(∂ξDxΛ) + q−2(x,D) + · · ·+ q−p(x,D)]

= iDp
x + iop(pξp−1Dx(−Λ)) + i(c−2(x,D) + · · ·+ c−p(x,D))

+ iop

(
p∑

γ=1

1

γ!
∂γ
ξ ξ

p∂ξD
γ+1
x Λ

)
+ iop(∂ξ{ξpDx(−Λ)}) ◦ op(∂ξDxΛ)

+ i(c−2(x,D) + · · ·+ c−p(x,D)) ◦ (∂ξDxΛ)(x,D) + iDp ◦ (q−2(x,D) + · · ·+ q−p(x,D))

+ iop(∂ξ{ξpDx(−Λ)}) ◦ (q−2(x,D) + · · ·+ q−p(x,D))

+ i(c−2(x,D) + · · ·+ c−p(x,D)) ◦ (q−2(x,D) + · · ·+ q−p(x,D)). (3.24)

Next, let us make some remarks about the order and dependence on the constants Mp−k of some

terms.

Let us first look at the term

iop

(
p∑

γ=1

1

γ!
∂γ
ξ ξ

p∂ξD
γ+1
x Λ

)
.

From the definition of Λ, we have for each γ ≥ 1

∂γ
ξ ξ

pDγ+1
x ∂ξΛ = ∂γ

ξ ξ
pDγ+1

x ∂ξλp−1 + · · ·+ ∂γ
ξ ξ

pDγ+1
x ∂ξλ1.

For each k = 1, ..., p− 1, we obtain that ∂γ
ξ ξ

pDγ+1
x ∂ξλp−k has order

p− k − γ ≤ p− k − 1 w.r.t. ξ
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and

−p− k

p− 1
σ − γ ≤ −p− k

p− 1
σ − 1 w.r.t. x.

Notice that the highest order with respect to ξ in this case is p− 2.

The term iop(∂ξ{ξpDx(−Λ)}) ◦ op(∂ξDxΛ) can be written by using the definition of Λ as

iop(∂ξ{ξpDx(−Λ)}) ◦ op(∂ξDxΛ) = −i

p−1∑
=1

p−1∑
s=1

op(∂ξ{ξpDxλp−}) ◦ op(∂ξDxλp−s).

Note that, for  = 1, ..., p− 1, the symbol ∂ξ{ξpDxλp−} has order p−  w.r.t. ξ and − p−
p−1σ w.r.t.

x and, for s = 1, ..., p−1, the symbol ∂ξDxλp−s has order −s w.r.t. ξ and − p−s
p−1σ w.r.t. x. Hence,

the operator op(∂ξ{ξpDxλp−}) ◦ op(∂ξDxλp−s) has order

p− (+ s) w.r.t. ξ

and

−2p− (+ s)

p− 1
σ w.r.t. x,

for each  = 1, ..., p− 1 and s = 1, ..., p− 1. If we consider terms of order p− j with respect to ξ,

they cannot depend on terms λp−k with k ≥ j, because otherwise the order would be strictly less

than p− j. With respect to x, the order is

−2p− j

p− 1
σ ≤ −p− j + 1

p− 1
σ,

because 2p− j ≥ p− j + 1, for p > 1. Again, the highest order with respect to ξ is p− 2, since 

and s runs through the set {1, ..., p− 1}.

Concerning the term

iop(∂ξ{ξpDx(−Λ)}) ◦ [q−2(x,D) + · · ·+ q−p],

we see that the first term in this composition can be rewritten as

−iop(∂ξ{ξpDx(λp−1 + · · ·+ λ1)} = −iop(∂ξ{ξpDxλp−1}+ · · ·+ ∂ξ{ξpDxλ1}).

Hence the composition is a sum of terms whose symbols are of the form ∂ξ{ξpDxλp−k} · q−, for

k = 1, ..., p − 1 and  = 2, ..., p, whose order is p − (k + ) depending only on λp−1, ..., λp−k−+1.

Therefore, the highest order here is p− 3, which is more than we need.

The other terms are all of negative order, then there is no need to make the same analysis as the

listed above. Summarizing this discussion: The conjugation eΛ(x,D) ◦ (iDp
x) ◦ (eΛ(x,D))−1 can

be expressed as

eΛ(x,D) ◦ (iDp
x) ◦ (eΛ(x,D))−1 = iDp

x − op

(
∂ξξ

p∂xΛ +

p−1∑
m=2

cp−m

)
+ r0(x,D) + r∞(x,D),
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with r0 of order zero, r∞ a regularizing term, cp−m has order p−m with respect to ξ and −p−m+1
p−1 σ

with respect to x and depends only on λp−1, ..., λp−m+1, for each m = 2, ..., p− 1. Summarizing,

the conjugation of the leading term is

eΛ(x,D) ◦ (iap(t)D
p
x) ◦ (eΛ(x,D))−1 = iap(t)D

p
x − op

(
∂ξap(t)ξ

p∂xΛ + ap(t)

p−1∑
m=2

cp−m

)

+ r0(x,D) + r∞(x,D), (3.25)

where r0 and r∞ new order zero and regularizing terms, respectively.

� The conjugation of iap−j(t, x)D
p−j
x , for j = 1, ..., p − 1. For some N ∈ N to be chosen later,

by Theorem 3.2 it follows that there exist an order zero term r0 and a regularizing term r∞ such

that

eΛ(x,D) ◦ ap−j(t, x)D
p−j
x ◦ R(e−Λ(x,D))

= ap−j(t, x)D
p−j
x + op

⎛
⎝ ∑

1≤α+β≤N

1

α!β!
∂α
ξ

(
∂β
ξ e

Λ ·Dβ
xap−j(t, x)ξ

p−j ·Dα
x e

−Λ
)⎞⎠

+ r0(x,D) + r∞(x,D). (3.26)

For the next computations, we shall omit (x, ξ) and (x,D) looking for a simple way to write. Our

goal here is to analyse what happens with the terms in

∑
1≤α+β≤N

1

α!β!
∂α
ξ

(
∂β
ξ e

Λ ·Dβ
xap−jξ

p−j ·Dα
x e

−Λ
)
. (3.27)

By Faà di Bruno formula, the terms ∂β
ξ e

Λ and Dα
x e

−Λ become

∂β
ξ e

Λ =

β∑
j=1

1

j!
eΛ

∑
β1+···+βj=β

βk≥1

β!

β1! · · ·βj!
j∏

k=1

∂βk

ξ Λ

and

Dα
x e

−Λ =

α∑
=1

(−1)

!
e−Λ

∑
α1+···+α�=α

αm≥1

α!

α1! · · ·α!

∏
m=1

Dαm
x Λ.

By fixing α+ β, the general term in (3.27) will be a sum of terms of the form

I
[j]
(α,β) := ∂α

ξ

(
Dβ

xap−jξ
p−j · ∂β1

ξ λp−k1
· · · ∂βr

ξ λp−kr
·Dα1

x λp−k̃1
· · ·Dαs

x λp−k̃s

)
, (3.28)

where

k1, ..., kr, k̃1, ..., k̃s ∈ {1, ..., p− 1} and 1 ≤ r ≤ β, 1 ≤ s ≤ α.

Now, we want to show that if λp−k appears in I
[j]
(α,β) with k ≥ M , then I

[j]
(α,β) is of order at most

p−M − 1 with respect to ξ.

Case 1: Let us suppose that there is a term of the type Dα1
x λp−k̃1

with k̃1 ≥ m, with m ≥ 2 in

(3.28).
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By using (v) of Lemma 3.3 and the fact that k̃1 ≥ m and each k̃a ≤ p − 1, for all 1 ≤ a ≤ s, it

follows that ∣∣∣(Dα1
x λp−k̃1

· · ·Dαs
x λp−k̃s

)
(x, ξ)

∣∣∣ ≤ Cα+1(α!)μ〈ξ〉−M+1〈x〉−α+s− sσ
p−1 . (3.29)

Now, from (iv) of Lemma 3.3 and the fact that ka ≥ 1, for all 1 ≤ a ≤ r, we obtain the estimate∣∣∣(∂β1

ξ λp−k1 · · · ∂βr

ξ λp−kr

)
(x, ξ)

∣∣∣ ≤ Cβ+1(β!)μ〈ξ〉−β〈x〉r(1−σ). (3.30)

By hypothesis, we have that

∣∣Dβ
xap−j(t, x)ξ

p−j
∣∣ ≤ Cβ(β!)s0〈ξ〉p−j〈x〉− p−j

p−1σ−β ≤ Cβ(β!)s0〈ξ〉p−j〈x〉−β−σ. (3.31)

From (3.29), (3.30) and (3.31), we get

|I [j](α,β)(x, ξ)| ≤ Cα,β〈ξ〉−m+1−β+p−j−α〈x〉−α+s− sσ
p−1+r(1−σ)− p−j

p−1σ−β . (3.32)

By a simple computation, the exponent in 〈ξ〉 is p−m− α− β. About the exponent in 〈x〉, note
that

−α+ s− sσ

p− 1︸ ︷︷ ︸
<0

+ r(1− σ)︸ ︷︷ ︸
<r

−p− j

p− 1
σ − β ≤ −σ + (s− α)︸ ︷︷ ︸

s≤α

+(r− β)︸ ︷︷ ︸
r≤β

≤ −p− j

p− 1
σ.

Hence

|I [j](α,β)(x, ξ)| ≤ Cα,β〈ξ〉p−m−j+1−α−β〈x〉− p−j
p−1σ, (3.33)

which implies that I
[j]
(α,β) ∈ SG

p−m−j+1−α−β,− p−j
p−1σ

μ (R2).

Case 2: Assume that ∂β1

ξ λp−k1
, with k1 ≥ m, appears in I

[j]
(α,β).

Here we need to present more details in the computations, because this case is a little bit trickier

than the previous one. By using estimates (iii) and (iv) of Lemma 3.3 and k1 ≥ m,∣∣∣(∂β1

ξ λp−k1
· · · ∂βr

ξ λp−kr

)
(x, ξ)

∣∣∣
≤ Cβ+1(β!)μ 〈ξ〉1−k1−β1〈x〉1− p−k1

p−1 σ︸ ︷︷ ︸
from (iii)

〈ξ〉−β2〈x〉 p−k2
p−1 (1−σ) · · · 〈ξ〉−βr〈x〉 p−kr

p−1 (1−σ)︸ ︷︷ ︸
from (iv)

≤ Cβ+1(β!)μ〈ξ〉1−m−β〈x〉1− p−k1
p−1 σ+

p−k2
p−1 (1−σ)+···+ p−kr

p−1 (1−σ). (3.34)

By hypothesis and the fact that j ≥ 1,

∣∣Dβ
xap−j(t, x)ξ

p−j
∣∣ ≤ Cβ(β!)s0〈ξ〉p−j〈x〉− p−j

p−1σ−β . (3.35)
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By using (v) of Lemma 3.3 and 1 ≤ k̃a ≤ p− 1, for each 1 ≤ a ≤ s, we obtain∣∣∣(Dα1
x λp−k̃1

· · ·Dαs
x λp−k̃s

)
(x, ξ)

∣∣∣
≤ Cα+1(α!)μ〈ξ〉1−k̃1+1−k̃2+···+1−k̃s〈x〉− p−k̃1

p−1 σ−α1+1−···− p−k̃s
p−1 σ−αs+1

= Cα+1(α!)μ〈ξ〉s
all k̃a≥1︷ ︸︸ ︷

−k̃1 − · · · − k̃s〈x〉−α+s− sp

all k̃a≤p−1︷ ︸︸ ︷
−k̃1 − · · · − k̃s

p−1 σ

≤ Cα+1(α!)μ〈ξ〉s−s〈x〉
−α+s

≤0︷ ︸︸ ︷
−sp− s(p− 1)

p− 1
σ

≤ Cα+1(α!)μ〈x〉−α+s. (3.36)

It follows from (3.34), (3.35) and (3.36) that

|I [j](α,β)(x, ξ)| ≤ Cαβ〈ξ〉1−m−β+p−j−α〈x〉1− p−k1
p−1 σ+

p−k2
p−1 (1−σ)+···+ p−kr

p−1 (1−σ)−β− p−j
p−1σ−α+s.

Now we perform some computations on the exponents. Since ka ≥ 1, for each 2 ≤ a ≤ r, we

obtain

1− p− k1
p− 1

σ +
p− k2
p− 1

(1− σ) + · · ·+ p− kr
p− 1

(1− σ)− β − p− j

p− 1
σ − α+ s

≤ 1− p− k1
p− 1

σ +
p(r− 1)− (r− 1)

p− 1
(1− σ)− α− β − p− j

p− 1
σ + s

= 1− p− k1
p− 1

σ + (r− 1)(1− σ)− β − p− j

p− 1
σ+s− α︸ ︷︷ ︸

≤0

≤ 1− p− k1
p− 1

σ + (r− 1)(1− σ)︸ ︷︷ ︸
≤r−1

−β − p− j

p− 1
σ

≤ 1− p− k1
p− 1

σ︸ ︷︷ ︸
≤1

+r− 1− β − p− j

p− 1
σ

≤ −p− j

p− 1
σ + 1− 1−β + r︸ ︷︷ ︸

≤0

≤ −p− j

p− 1
σ.

Hence

|I [j](α,β)(x, ξ)| ≤ Cαβ〈ξ〉p−m−j+1−α−β〈x〉− p−j
p−1σ.

From (3.26) and the above discussion it follows that

eΛ ◦ (iap−j(t, x)D
p−j
x ) ◦ R{e−Λ} = iap−j(t, x)D

p−j
x + op

(
p−j∑
m=2

c
[j]
p−m

)
+ r0(t, x,D) + r∞(t, x,D),

where r0 has order zero, r∞ is regularizing and c
[j]
p−m has order p − j −m + 1 with respect to ξ,

− p−j
p−1σ with respect to x and depends only on λp−1, ..., λp−m+1. By composing with the Neumann
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series and using similar arguments as in the conjugation of the leading term, the previous structure

of the composition does not change, which means that

eΛ(x,D)◦(iap−j(t, x)D
p−j
x )◦(eΛ(x,D))−1 = iap−j(t, x)D

p−j
x +op

⎛
⎝

p−1∑
m=2

d
[j]
p−m

⎞
⎠+r0(t, x,D)+r∞(t, x,D), (3.37)

with d
[j]
p−m of order p− j−m+1 with respect to ξ and − p−j

p−1σ with respect to x, depending only

on λp−1, ..., λp−m+1, r0 and r∞ new terms with the same properties as before.

� The conjugation of ia0(t, x). For this term, the conjugation is given by

eΛ ◦ (ia0(t, x)) ◦ (eΛ)−1 = r0(t, x,D) + r∞(t, x,D), (3.38)

where r0 has order zero and r∞ is a regularizing term.

Finally, let us gather all the previous computations. It follows that

eΛ ◦ (iP ) ◦ (eΛ)−1 = ∂t + eΛ ◦ (iap(t)Dp
x) ◦ (eΛ)−1 +

p−1∑
j=1

eΛ ◦ (iap−j(t, x)D
p−j
x ) ◦ (eΛ)−1

+ eΛ ◦ (ia0(t, x)) ◦ (eΛ)−1

= ∂t + iap(t)D
p
x − op (∂ξap(t)ξ

p∂xΛ) + op

(
ap(t)

p−1∑
m=2

cp−m

)

+

p−1∑
j=1

iap−j(t, x)D
p−j
x + op

⎛⎝p−1∑
j=1

p−j∑
m=2

d
[j]
p−m

⎞⎠+ (r0 + r∞)(t, x,D). (3.39)

Now we define

dp−j(t, x, ξ) := ap(t)cp−j(x, ξ) +
∑

h+m=j+1

d
[h]
p−m(x, ξ), j = 2, ..., p− 1,

which has ξ-order p − j, x-order − p−j
p−1σ and depends only on λp−1, ..., λp−j+1. Hence we can rewrite

(3.39) as

eΛ(x,D) ◦ (iP ) ◦ (eΛ(x,D))−1 = ∂t + iap(t)D
p
x +

p−1∑
j=1

iap−j(t, x)D
p−j
x

− op(∂ξap(t)ξ
p∂xλp−1)− · · · − op(∂ξap(t)ξ

p∂xλ1)

+ op

⎛⎝p−1∑
j=2

dp−j

⎞⎠+ (r0 + r∞)(t, x,D), (3.40)

where r0 is a zero order term, r∞ is regularizing, and dp−j has ξ-order p−j, x-order − p−j
p−1σ and depends

only on λp−1, ..., λp−j+1.

In order to perform the next conjugation, let us improve (3.40). Essentially we must put the
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terms level by level according to the ξ-order. Namely

eΛ(x,D) ◦ (iP ) ◦ (eΛ(x,D))−1 = ∂t + ap(t)D
p
x

+ iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1)

+ iap−2(t, x)D
p−2
x − op(∂ξap(t)ξ

p∂xλp−2) + op(dp−2)

+ · · ·
+ ia2(t, x)D

2
x − op(∂ξap(t)ξ

p∂xλ2) + op(d2)

+ ia1(t, x)Dx − op(∂ξap(t)ξ
p∂xλ1) + op(d1)

+ (r0 + r∞)(t, x,D), (3.41)

where dp−j , j = 2, ..., p− 1, r0 and r∞ are as described previously.

3.5.2 Conjugation of eΛ(iP )(eΛ)−1 by eΛK,ρ′

For some K > 0 and ρ′ < ρ, we consider the operator eΛK,ρ′ (t,D), where

ΛK,ρ′(t, ξ) := K(T − t)〈ξ〉(p−1)(1−σ)
h + ρ′〈ξ〉1/θh . (3.42)

is a symbol of order 1/θ, since (p− 1)(1− σ) < 1/θ by assumption.

� Conjugation of ∂t. For this term we get

eΛK,ρ′ (t,D) ◦ ∂t ◦ e−ΛK,ρ′ (t,D) = ∂t +K〈Dx〉(p−1)(1−σ)
h .

� Conjugation of iap(t)D
p
x. Since ap(t) does not depend on x, the conjugation is simply given by

eΛK,ρ′ (t,D) ◦ (iap(t)Dp
x) ◦ e−ΛK,ρ′ (t,D) = iap(t)D

p
x.

� Conjugation of iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1). We have that

eΛK,ρ′ (t,D) ◦ (iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1)
) ◦ e−ΛK,ρ′ (t,D)

= iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1) +A
[p−1]
K,ρ′ (t, x,D),

with A
[p−1]
K,ρ′ (t, x,D) a remainder term whose symbol satisfies∣∣∣∂α

ξ ∂
β
xA

[p−1]
K,ρ′ (t, x, ξ)

∣∣∣ ≤ CT,K,ρ′,Mp−1〈ξ〉p−2+ 1
θ

h 〈x〉−σ−1, (3.43)

for all α, β ∈ N0, t ∈ [0, T ] and x, ξ ∈ R.

� Conjugation of iap−j(t, x)D
p−j
x − op(∂ξap(t)ξ

p∂xλp−j) + op(dp−j), j = 2, ..., p− 1.

eΛK,ρ′ (t,D) ◦ (iap−j(t, x)D
p−j
x − op(∂ξap(t)ξ

p∂xλp−j) + op(dp−j)
) ◦ e−ΛK,ρ′ (t,D)

= iap−j(t, x)D
p−j
x − op(∂ξap(t)ξ

p∂xλp−j) + op(dp−j) +A
[p−j]
K,ρ′ (t, x,D),
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with A
[p−j]
K,ρ′ (t, x,D) a remainder term whose symbol satisfies∣∣∣∂α

ξ ∂
β
xA

[p−j]
K,ρ′ (t, x, ξ)

∣∣∣ ≤ CT,K,ρ′,Mp−1,...,Mp−j
〈ξ〉p−j−1+ 1

θ

h 〈x〉− p−j
p−1σ, (3.44)

for all α, β ∈ N0, t ∈ [0, T ] and x, ξ ∈ R.

Gathering all these computations, we get

QΛ,K,ρ′(t, x,D) ◦ (iP ) ◦ (QΛ,K,ρ′(t, x,D))−1

= eΛK,ρ′ (t,D) ◦ eΛ(x,D) ◦ (iP ) ◦ (eΛ(x,D))−1 ◦ e−ΛK,ρ′ (t,D) = ∂t + iap(t)D
p
x

+ iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1) +A
[p−1]
K,ρ′ (t, x,D)

+ iap−2(t, x)D
p−2
x − op(∂ξap(t)ξ

p∂xλp−2) + op(dp−2) +A
[p−2]
K,ρ′ (t, x,D)

+ · · ·
+ ia2(t, x)D

2
x − op(∂ξap(t)ξ

p∂xλ2) + op(d2) +A
[2]
K,ρ′(t, x,D)

+ ia1(t, x)Dx − op(∂ξap(t)ξ
p∂xλ1) + op(d1) +A

[1]
K,ρ′(t, x,D)

+ K〈Dx〉(p−1)(1−σ)
h + (r0 + r∞)(t, x,D), (3.45)

where A
[p−j]
K,ρ′ is a remainder term depending on Mp−1, ...,Mp−j satisfying (3.43) and (3.44), for j =

2, ..., p− 1.

3.6 Estimates from below for the real parts

This section is devoted to prove some estimates from below for the real parts of the lower

order terms of

PΛ,K,ρ′ := QΛ,K,ρ′ ◦ iP ◦ (QΛ,K,ρ′)−1,

intending to apply to these terms the sharp G̊arding Theorem 2.10 and finally to achieve a well-posedness

result for the Cauchy problem (3.5). For each j = 1, ..., p− 1, by the definition of λp−j it follows that

−∂ξξ
p∂xλp−j(x, ξ) = −pξp−1Mp−jω

(
ξ

h

)
〈ξ〉1−j

h 〈x〉− p−j
p−1σψ

(
〈x〉

〈ξ〉p−1
h

)
.

By the definition of ω and provided that |ξ| > 2h we can rewrite the above expression as

−∂ξξ
p∂xλp−j(x, ξ) = p|ξ|p−1Mp−j〈ξ〉1−j

h 〈x〉− p−j
p−1σψ

(
〈x〉

〈ξ〉p−1
h

)
= p|ξ|p−1Mp−j〈ξ〉1−j

h 〈x〉− p−j
p−1σ

− p|ξ|p−1Mp−j〈ξ〉1−j
h 〈x〉− p−j

p−1σ

[
1− ψ

(
〈x〉

〈ξ〉p−1
h

)]
.
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The first term p|ξ|p−1Mp−j〈ξ〉1−j
h 〈x〉− p−j

p−1σ has order p − j in ξ and − p−j
p−1σ in x. For the term

p|ξ|p−1Mp−j〈ξ〉1−j
h 〈x〉− p−j

p−1σ
[
1− ψ

(
〈x〉

〈ξ〉p−1
h

)]
, let us make some considerations: first of all, since

ψ(y) =

⎧⎨⎩ 1, |y| ≤ 1
2

0, |y| ≥ 1

it follows that 1 − ψ
(
〈x〉/〈ξ〉p−1

h

)
is supported for 2〈x〉 ≥ 〈ξ〉p−1

h . From this, for each j = 1, ..., p − 1,

we have

〈x〉− p−j
p−1σ ≤ 2〈ξ〉−(p−j)σ

h ,

hence

〈ξ〉1−j
h 〈x〉− p−j

p−1σ ≤ 2〈ξ〉1−j−(p−j)σ
h .

Therefore, p|ξ|p−1Mp−j〈ξ〉1−j
h 〈x〉− p−j

p−1σ
[
1− ψ

(
〈x〉

〈ξ〉p−1
h

)]
has order less than or equal to (p − 1)(1 − σ)

in ξ and order zero in x, for each j = 1, ..., p− 1, and then the sum of these terms still have order less

than or equal to (p− 1)(1− σ) in ξ and zero in x. It follows that

p−1∑
j=1

op(−∂ξap(t)ξ
p∂xλp−j(x, ξ)) =

p−1∑
j=1

pMp−jap(t)|ξ|p−1〈ξ〉1−j
h 〈x〉− p−j

p−1σ −B[(p−1)(1−σ)](t, x,D),

where

B[(p−1)(1−σ)](t, x, ξ) :=

p−1∑
j=1

pap(t)|ξ|p−1Mp−j〈ξ〉1−j
h 〈x〉− p−j

p−1σ

[
1− ψ

(
〈x〉

〈ξ〉p−1
h

)]
, (3.46)

that is, B[(p−1)(1−σ)] has order less than or equal to (p− 1)(1− σ) in ξ, order zero in x and it depends

on Mp−1, ...,M1. Finally, we can write (3.45) as

QΛ,K,ρ′(t, x,D) ◦ (iP ) ◦ (QΛ,K,ρ′(t, x,D))−1 = ∂t + iap(t)D
p
x

+ iap−1(t, x)D
p−1
x + op

(
pMp−1ap(t)|ξ|p−1〈x〉−σ

)
+A

[p−1]
K,ρ′ (t, x,D)

+ iap−2(t, x)D
p−2
x + op

(
pMp−2ap(t)|ξ|p−1〈ξ〉−1

h 〈x〉− p−2
p−1σ
)
+ op(dp−2) +A

[p−2]
K,ρ′ (t, x,D)

+ · · ·
+ ia2(t, x)D

2
x + op

(
pM2ap(t)|ξ|p−1〈ξ〉−p+3

h 〈x〉− 2
p−1σ
)
+ op(d2) +A

[2]
K,ρ′(t, x,D)

+ ia1(t, x)Dx + op
(
pM1ap(t)|ξ|p−1〈ξ〉−p+2

h 〈x〉− 1
p−1σ
)
+ op(d1) +A

[1]
K,ρ′(t, x,D)

+ K〈Dx〉(p−1)(1−σ)
h −B[(p−1)(1−σ)](t, x,D) + (r0 + r∞)(t, x,D), (3.47)

with dp−m, m = 2, ..., p− 1, A
[p−j]
K,ρ′ , j = 1, ..., p− 1, r0, r∞ and B[(p−1)(1−σ)] as described previously.

� Estimates for level (p− 1). Let

ãp−1(t, x,Dx) := iap−1(t, x)D
p−1
x + op

(
pMp−1ap(t)|ξ|p−1〈x〉−σ

)
+A

[p−1]
K,ρ′ (t, x,D).
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We have that

Re ãp−1(t, x, ξ) = −Im ap−1(t, x)ξ
p−1 + pMp−1ap(t)|ξ|p−1〈x〉−σ +Re A

[p−1]
K,ρ′ (t, x, ξ). (3.48)

By the assumption (ii) in Theorem 3.1 we obtain

|Im ap−1(t, x)ξ
p−1| ≤ Cap−1

〈x〉−σ|ξ|p−1,

and from (3.43),

|Re A
[p−1]
K,ρ′ (t, x, ξ)| ≤ CT,K,ρ′,Mp−1〈ξ〉p−1−1+ 1

θ

h 〈x〉−σ

≤ CT,K,ρ′,Mp−1
〈ξ〉p−1

h h−1+ 1
θ 〈x〉−σ.

Moreover, |ξ| ≥ 2h implies that there exists C > 0 independent of h such that 〈ξ〉p−1
h ≥ C|ξ|p−1.

Therefore we can estimate in (3.48)

Re ãp−1(t, x, ξ) ≥
(
−Cap−1

+ pMp−1Cap
− CT,K,ρ′,Mp−1

h−1+ 1
θ

)
〈x〉−σ|ξ|p−1. (3.49)

Now we can choose the real number Mp−1 such that −Cap−1
+pMp−1Cap

≥ 1, which is equivalent

to

Mp−1 ≥ 1 + Cap−1

pCap

,

and then we choose h large enough such that

CT,K,ρ′,Mp−1h
−1+ 1

θ ≤ 1

2
.

By these choices of Mp−1 and h depending only on Mp−1, it follows that

Re ãp−1(t, x, ξ) ≥ 1

2
〈x〉−σ|ξ|p−1, |ξ| ≥ 2h,

By Theorem 2.10, the operator ãp−1(t, x,D) can be decomposed as

ãp−1(t, x,D) = Q
[p−1]
+ (t, x,D) + r̃[p−2](t, x,D), (3.50)

whereRe
(
Q

[p−1]
+ (t, x,D)u, u

)
L2

≥ 0, u ∈ L2(R), and r̃[p−2](t, x, ξ) ∈ SGp−2,−1−σ
μ′ (R2), t ∈ [0, T ],

depends only on Mp−1 and h. We point that, the term r̃[p−2](t, x,D) will be put together with

the terms of order p− 2 in (3.47).

� Estimates for level (p− 2). Let

ãp−2(t, x,D) := iap−2(t, x)D
p−2
x + op

(
pMp−2ap(t)|ξ|p−1〈ξ〉−1

h 〈x〉− p−2
p−1σ
)

+ A
[p−2]
K,ρ′ (t, x,D) + dp−2(t, x,D) + r̃[p−2](t, x,D),
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hence

Re ãp−2(t, x, ξ) = −Im ap−2(t, x)ξ
p−2 + pMp−2ap(t)|ξ|p−1〈ξ〉−1

h 〈x〉− p−2
p−1σ

+ Re A
[p−2]
K,ρ′ (t, x, ξ) +Re dp−2(t, x, ξ) + r̃[p−2](t, x, ξ). (3.51)

Since dp−2 and r̃[p−2] depends only on Mp−1 and satisfy

|Re dp−2(t, x, ξ) +Re r̃[p−2](t, x, ξ)| ≤ CMp−1
〈ξ〉p−2

h 〈x〉− p−2
p−1σ,

by similar arguments and estimates that we have used in level (p− 1), we estimate (3.51) as

Re ãp−2(t, x, ξ)

≥
(
−Cap−2

+ pMp−2Cap
− CMp−1

− CT,K,ρ′,Mp−1,Mp−2
h−1+ 1

θ

)
|ξ|p−2〈x〉− p−2

p−1σ. (3.52)

Now, picking Mp−2 such that −Cap−2 + pMp−2Cap − CMp−1 ≥ 1, we obtain

Mp−2 ≥ 1 + Cap−2 + CMp−1

pCap

depending only on Mp−1. Also, we can choose h large enough such that

CT,K,ρ′,Mp−1,Mp−2
h−1+ 1

θ ≤ 1

2

depending only on Mp−1 and Mp−2. Therefore

Re ãp−2(t, x, ξ) ≥ 1

2
〈x〉− p−2

p−1σ|ξ|p−2, |ξ| ≥ 2h.

Again by Theorem 2.10, it follows that

ãp−2 = Q
[p−2]
+ (t, x,D) + r̃[p−3](t, x,D), (3.53)

with Re
(
Q

[p−2]
+ (t, x,D)u, u

)
L2

≥ 0, u ∈ L2(R), and r̃[p−3](t, x, ξ) ∈ SG
p−3,− p−2

p−1σ−1

μ′ (R2), t ∈
[0, T ], depends only on Mp−1,Mp−2, and h.

� Estimates for a generic level (p− j), j ≥ 2. We call

ãp−j(t, x,D) := iap−j(t, x)D
p−j
x + op

(
pMp−jap(t)|ξ|p−1〈ξ〉1−j

h 〈x〉− p−j
p−1σ
)

+ A
[p−j]
K,ρ′ (t, x,D) + dp−j(t, x,D) + r̃[p−j](t, x,D).

By similar arguments as in the previous steps, we get

Re ãp−j(t, x, ξ)

≥
(
−Cap−j + pMp−jCap − CMp−1,...,Mp−j+1 − CT,K,ρ′,Mp−1,...,Mp−jh

−1+ 1
θ

)
× |ξ|p−j〈x〉− p−j

p−1σ. (3.54)
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By choosing Mp−j such that −Cap−j
+ pMp−jCap

− CMp−1,...,Mp−j+1
≥ 1, we obtain

Mp−j ≥
1 + Cap−j + CMp−1,...,Mp−j+1

pCap

depending on Mp−1, ...,Mp−j+1. At this point, we choose h large enough such that

CT,K,ρ′,Mp−1,...,Mp−j
h−1+ 1

θ ≤ 1

2

depending on Mp−1, ...,Mp−j . Hence

Re ãp−j(t, x, ξ) ≥ 1

2
〈x〉− p−j

p−1σ|ξ|p−j , |ξ| ≥ 2h.

By Theorem 2.10

ãp−j(t, x,D) = Q
[p−j]
+ (t, x,D) + r̃[p−j−1](t, x,D), (3.55)

where

Re
(
Q

[p−j]
+ (t, x,D)u, u

)
L2

≥ 0, u ∈ L2(R),

and r̃[p−j−1](t, x, ξ) ∈ SG
p−j−1,−1− p−j

p−1σ

μ′ (R2) depends on Mp−1, ...,Mp−j+1, h.

At this point, after we choose all the parameters Mp−1, ...,M1 and h, we have

QΛ,K,ρ′(t, x,D) ◦ (iP ) ◦ (QΛ,K,ρ′(t, x,D))−1 = ∂t + iap(t)D
p
x

+ Q
[p−1]
+ (t, x,D) +Q

[p−2]
+ (t, x,D) + · · ·+Q

[2]
+ (t, x,D) +Q

[1]
+ (t, x,D)

+ K〈Dx〉(p−1)(1−σ)
h −B[(p−1)(1−σ)](t, x,D) + (r0 + r∞)(t, x,D).

Now we can choose K ≥ K0(Mp−1, ...,M1) large enough such that

Re
(
K〈ξ〉(p−1)(1−σ)

h −B[(p−1)(1−σ)](t, x, ξ)
)
≥ 0, (3.56)

and by applying Theorem 2.10 once more we obtain

PΛ,K,ρ′ = QΛ,K,ρ′(t, x,D) ◦ (iP ) ◦ (QΛ,K,ρ′(t, x,D))−1 = ∂t + iap(t)D
p
x

+

p−1∑
j=1

Q
[p−j]
+ (t, x,D) +Q

[(p−1)(1−σ)]
+ (t, x,D) + (r0 + r∞)(t, x,D). (3.57)

Summing up, for ρ′ small enough, choosing, in order, Mp−1, ...,M1,K and h large enough, precisely

CT,K,ρ′,Mp−1,...,M1h
−1+ 1

θ ≤ 1

2
and h > h0

enlarging the parameter h0 given in Proposition 3.2 if necessary, we obtain that formula (3.57) holds.

By these estimates, we can assert the next proposition.
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Proposition 3.3. Suppose ρ′ > 0 sufficiently small. There exist Mp−1, ...,M1 > 0, K > 0 and h0 =

h0(K,Mp−1, ...,M1, T, ρ
′) > 0 such that for every h > h0 the Cauchy problem associated to the conjugated

operator PΛ,K,ρ′ is well-posed in Hm(R). More precisely, for any Cauchy data f̃ ∈ C([0, T ];Hm(R))

and g̃ ∈ Hm(R), there exists a unique solution v ∈ C([0, T ];Hm(R)) ∩ C1([0, T ];Hm−p(R)) such that

the following energy estimates holds

‖v(t)‖2Hm ≤ C

(
‖g̃‖2Hm +

∫ t

0

‖f̃(τ)‖2Hmdτ

)
, t ∈ [0, T ].

Proof. First of all, let us consider the choices of the constants which give us the decompositions in (3.50),

(3.55) and that turns the inequality (3.56) true. By Leibniz formula and the identity z + z = 2Re z,

we obtain
d

dt
‖v(t)‖2L2 = 2 Re (∂tv(t), v(t))L2 .

From this and (3.57), it follows that

d

dt
‖v(t)‖2L2 = 2Re (PΛ,K,ρ′(t, x,D)v(t), v(t))L2 − 2Re (iap(t)D

p
xv(t), v(t))L2

− 2Re

⎛⎝p−1∑
j=1

Q
[p−j]
+ (t, x,D)v(t), v(t)

⎞⎠
L2

− 2Re
(
Q

[(p−1)(1−σ)]
+ (t, x,D)v(t), v(t)

)
L2

− 2Re (r0(t, x,D)v(t), v(t))L2

≤ 2‖PΛ,K,ρ′v(t)‖L2‖v(t)‖L2 + 2‖r0v(t)‖L2‖v(t)‖L2 , (3.58)

where, in order to obtain this inequality, we have used the Cauchy-Schwarz inequality in the first and

last terms and that

Re (iap(t)D
p
xv(t), v(t))L2 = 0, Re

(
Q

[p−j]
+ v(t), v(t)

)
L2

≥ 0 and Re
(
Q

[(p−1)(1−σ)]
+ v(t), v(t)

)
L2

≥ 0.

By the inequality 2ab ≤ a2 + b2, for a, b ∈ R, and since r0 has order zero, we still can estimate in (3.58)

d

dt
‖v(t)‖2L2 ≤ C ′ (‖v(t)‖2L2 + ‖PΛ,K,ρ′v(t)‖2L2

)
.

Finally, by using Gronwall inequality and taking to account that eC
′t ≤ eC

′T =: C, for t ∈ [0, T ], we get

the energy estimate

‖v(t)‖2L2 ≤ C

(
‖v(0)‖2L2 +

∫ t

0

‖PΛ,K,ρ′v(τ)‖2L2dτ

)
,

which implies the well-posedness in Hm(R), by the standard energy method.

3.7 Proof of Theorem 3.1

Given θ > 1 satisfying the hypothesis of Theorem 3.1, m ∈ R, ρ > 0, take the initial data

f ∈ C
(
[0, T ];Hm

ρ;θ(R)
)

and g ∈ Hm
ρ;θ(R).
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Set the positive constants Mp−1, ...,M1,K, h0 for which Proposition 3.3 holds and ρ′ ∈ (0, ρ). We know

that both symbols Λ and K(T − t)〈·〉(p−1)(1−σ)
h have order (p − 1)(1− σ) < 1/θ, hence by Proposition

3.1 it follows that

fΛ,K,ρ′ := QΛ,K,ρ′(t, x,D)f ∈ C ([0, T ];Hm(R))

gΛ,K,ρ′ := QΛ,K,ρ′(t, x,D)g ∈ Hm(R),

for ρ′ < ρ. By Proposition 3.3, there exists a unique solution v ∈ C ([0, T ];Hm(R)) to the Cauchy

problem ⎧⎨⎩ PΛ,K,ρ′v(t, x) = fΛ,K,ρ′(t, x)

v(0, x) = gΛ,K,ρ′(x)
, (t, x) ∈ [0, T ]× R,

satisfying the energy estimate

‖v(t)‖2Hm ≤ C

(
‖gΛ,K,ρ′‖2Hm +

∫ t

0

‖fΛ,K,ρ′(τ)‖2Hmdτ

)
, t ∈ [0, T ]. (3.59)

By setting u := (QΛ,K,ρ′(t, x,D))
−1

v, we obtain a solution for the original Cauchy problem

(3.2), namely ⎧⎨⎩ Pu(t, x) = f(t, x)

u(0, x) = g(x)
, (t, x) ∈ [0, T ]× R.

The next step is to figure out which space the solution u belongs to. Notice that

QΛ,K,ρ′(t, x,D) = eΛK,ρ′ (t,D) ◦ eΛ(x,D) ⇒ (QΛ,K,ρ′(t, x,D))
−1

=
(
eΛ(x,D)

)−1 ◦ (eΛK,ρ′ (t,D)
)−1

,

and then by the definitions of ΛK,ρ′ and Λ, and by Lemma 3.2 we may write

u(t, x) = R
(
e−Λ(x,D)

)∑
j

(−r(x,D))je−K(T−t)〈D〉(p−1)(1−σ)
h e−ρ′〈D〉

1
θ
h v(t, x), v ∈ Hm(R),

but v ∈ Hm(R) implies that e−ρ′〈D〉
1
θ
h v =: u1 ∈ Hm

ρ′;θ(R), hence

u(t, x) = R
(
e−Λ(x,D)

)∑
j

(−r(x,D))je−K(T−t)〈D〉(p−1)(1−σ)
h u1, u1 ∈ Hm

ρ′;θ(R).

Notice that, for every δ1 > 0, we have

e−K(T−t)〈D〉(p−1)(1−σ)
h u1 = e−K(T−t)〈D〉(p−1)(1−σ)

h e−δ1〈D〉
1
θ
h︸ ︷︷ ︸

order zero

eδ1〈D〉
1
θ
h u1 =: u2 ∈ Hm

ρ′−δ1;θ(R),

and since
∑

j(−r(x,D))j has order zero, u3 :=
∑

j(−r(x,D))ju2 ∈ Hm
ρ′−δ1;θ

(R), which allows us to

write

u(t, x) = R
(
e−Λ(x,D)

)∑
j

(−r(x,D))ju2 = R
(
e−Λ(x,D)

)
u3, u3 ∈ Hm

ρ′−δ1;θ(R).

By Proposition 3.1, we have that R
(
e−Λ(x,D)

)
maps Hm

ρ;θ(R) into Hm
ρ−δ2;θ

(R), for any δ2 > 0, and we

can assert that u(t, ·) ∈ Hm
ρ′−δ;θ(R) for all δ > 0, t ∈ [0, T ]. Notice that the solution is less regular than
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the Cauchy data, in the sense that it exhibits a loss in the coefficient of the exponential weight. If we

set ρ̃ := ρ′ − δ, it follows from (3.59) that

‖u(t)‖2Hm
ρ̃;θ

= ‖ (QΛ,K,ρ′(t, ·, D))
−1

v(t)‖2Hm
ρ̃;θ

≤ C1‖v(t)‖2Hm

≤ C2

(
‖gΛ,K,ρ′‖2Hm +

∫ t

0

‖fΛ,K,ρ′(τ)‖2Hmdτ

)
≤ C3

(
‖g‖2Hm

ρ;θ
+

∫ t

0

‖f(τ)‖2Hm
ρ;θ

dτ

)
, t ∈ [0, T ]. (3.60)

The conclusion here is: if we take the data f ∈ C
(
[0, T ];Hm

ρ;θ(R)
)
and g ∈ Hm

ρ;θ(R), for some m ∈ R

and ρ > 0, then we find a solution u for the Cauchy problem associated with the operator P with initial

data f and g which satisfies

u ∈ C
(
[0, T ];Hm

ρ̃;θ(R)
)
, ρ̃ < ρ.

To prove the uniqueness of the solution, let consider u1, u2 ∈ C
(
[0, T ];Hm

ρ̃;θ(R)
)
such that⎧⎨⎩ Puj = f

uj(0) = g
, j = 1, 2.

By shrinking ρ′ if necessary, we can find new parameters M ′
p−1, ...,M

′
1 > 0, K ′ > 0 and h′

0 > 0 in order

to apply Proposition 3.3 again and obtain that the Cauchy problem associated with the conjugated

operator

PΛ′,K′,ρ′ := QΛ′,K′,ρ′ ◦ (iP ) ◦Q−1
Λ′,K′,ρ′

is well-posed in Hm(R), where QΛ′,K′,ρ′ comes from the new choice of parameters. Proposition 3.3

allows us to conclude that QΛ′,K′,ρ′f, QΛ′,K′,ρ′g, QΛ′,K′,ρ′uj ∈ Hm(R) and satisfy⎧⎨⎩ PΛ′,K′,ρ′QΛ′,K′,ρ′uj = QΛ′,K′,ρ′f

QΛ′,K′,ρ′uj(0) = QΛ′,K′,ρ′g
, j = 1, 2,

hence QΛ′,K′,ρ′u1 = QΛ′,K′,ρ′u2, which implies that u1 = u2. This concludes the proof.

Remark 3.5. In Theorem 3.1 we assumed that ap depends only on t. In the H∞−setting it is

possible to allow also a dependence on x in ap assuming a suitable decay for |x| → ∞ as for the

other coefficients, cf. [12, Section 4]. In the Gevrey setting, this is difficult since in the conjugation

eK(T−t)〈D〉1/θh iap(t, x)D
p
xe

−K(T−t)〈D〉1/θh it gives

iap(t, x)D
p
x + op

(
K(T − t)∂ξ〈ξ〉

1
θ

h ∂xap(t, x)ξ
p
)
+ l.o.t.

and the second term behaves like 〈ξ〉p−1+ 1
θ

h , that is of order strictly greater than p− 1 and it cannot be

compared with other terms as we did in Section 3.6.
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Remark 3.6. In this final remark, we observe that we could prove a slightly more general version of

Theorem 3.1, which is a kind of sufficiency counterpart for the main theorem in [7]. More to the point,

we may consider the following hypotheses on the decay of the coefficients ap−j(t, x), j = 1, . . . , p− 1:

|∂β
xap−j(t, x)| ≤ Cβ+1

p−j β!
θ0〈x〉−σpj

−β , (3.61)

for some 1 < θ0 and σp−j ∈ (0, 1). Then the condition θ0 ≤ θ < 1
(p−1)(1−σ) for H∞

θ (R) well-posedness

of (3.2) would be:

Ξ <
1

θ
, (3.62)

where Ξ is given by (6). In the next lines, we shall explain how to obtain this improvement using the

ideas developed in this thesis.

To prove the sufficiency of (3.62) under (3.61), we just need to consider a slightly different

change of variables (cf. Section 3.3):

λp−j(x, ξ) = Mp−jw(ξh
−1)〈ξ〉−(j−1)

h

∫ x

0

〈y〉−σp−jψ

(
〈y〉

〈ξ〉p−1
h

)
dy, j = 1, . . . , p− 1,

and

ΛK,ρ′(t, ξ) = K(T − t)〈ξ〉Ξh + ρ′〈ξ〉 1
θ

h .

Arguing as in Lemma 3.1, one gets that

Λ =

p−1∑
j=1

λp−j ∈ SΞ
μ(R

2) ∩ SG0,Θ
μ (R2),

where

Θ := max
1≤j≤p−1

{
(1− σp−j)− j − 1

p− 1

}
.

Thus, we still have that eρ
′〈ξ〉

1
θ
h is the leading part of the operator

QΛ,K,ρ′(t, x,D) = eΛK,ρ′ (t,D) ◦ eΛ(x,D).

So, due to the hypotheses Ξ < 1
θ , 1 < θ0 ≤ θ and (3.61), one can still run the change of variable

argument and conclude H∞
θ (R) well-posedness for (3.2). Of course the proof of the result described in

this remark is even more technical than the proof of Theorem 3.1. For this reason, we decided to present

a simpler result and leave the details of this more general version to the interested reader.

Remark 3.7. Theorem 1 in [7] shows that if θ > 1
(p−1)(1−σ) , the Cauchy problem (3.2) is not well-posed

in H∞
θ (R). In critical case θ = 1

(p−1)(1−σ) by modifying the terms of the change of variable it should be

possible to show local in time well-posedness. We do not treat this case in detail for our Cauchy problem

but just refer to similar situations, cf. for instance [17, Remark 8].
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3.8 Well-posedness in projective Gevrey spaces

In this section, we study the same Cauchy problem (3.2), but now we aim to obtain a well-

posedness result in projective Gevrey spaces H∞
θ (Rn). Also we point out that, for this case, it is

necessary a slightly change on the hypotheses on the coefficients of the operator P (t, x,Dt, Dx). The

second main result of this work is given in the following.

Theorem 3.3. Let θ0 > 1 and σ ∈
(

p−2
p−1 , 1

)
such that θ0 < 1

(p−1)(1−σ) . Let P be an operator of the

type (3.1) whose coefficients satisfy the following assumptions:

(i) ap ∈ C([0, T ];R) and there exists Cap
> 0 such that |ap(t)| ≥ Cap

, for all t ∈ [0, T ].

(ii) For every A > 0 there exists CA,ap−j > 0 such that |∂β
xap−j(t, x)| ≤ CA,ap−jA

ββ!θ0〈x〉− p−j
p−1σ−β,

for all j = 1, ..., p− 1 and for β ∈ N0, (t, x) ∈ [0, T ]× R.

If θ > 1 is such that θ0 ≤ θ < 1
(p−1)(1−σ) , the data f ∈ C

(
[0, T ];Hm

ρ;θ(R)
)
and the data g ∈ Hm

ρ;θ(R),

with m ∈ R and ρ > 0, then the Cauchy problem (3.2) admits a unique solution u ∈ C1
(
[0, T ];Hm

ρ̃;θ(R)
)

for every ρ̃ ∈ (0, ρ) and the solution satisfies the energy estimate

‖u(t)‖2Hm
ρ̃;θ

≤ C

(
‖g‖2Hm

ρ;θ
+

∫ t

0

‖f(τ)‖2Hm
ρ;θ

dτ

)
, (3.63)

for all t ∈ [0, T ] and for some constant C > 0. In particular, for θ ∈
[
s0,

1
(p−1)(1−σ)

)
the Cauchy

problem (3.2) is well-posed in H∞
θ (R).

To prove Theorem 3.3 we will proceed in a very similar way as we have done in Theorem 3.1

with the necessary adjustments. Let us consider the functions λp−k(x, ξ) given by (3.6) and ΛK,ρ′(t, ξ)

given by (3.42) which will be employed in the change of variable, where the parameters K > 0, ρ′ ∈ (0, ρ)

will be chosen later in a suitable way.

We observe that under the condition (ii) of Theorem 3.3, the symbol ap−j(t, x)ξ
p−j belongs

to C

(
[0, T ];ΓG

p−j,− p−j
p−1σ

θ0
(R2n)

)
which is contained in C

(
[0, T ];ΓGp−j

θ0
(R2n)

)
. Then we can use the

following results to deal with the related operators.

Proposition 3.4. If p is a symbol of Γ̃m
θ (R2n), then the operator p(x,D) maps continuously Hm′

ρ;θ(R
n)

into Hm′−m
ρ;θ (Rn) for every m′, ρ ∈ R.

If p ∈ Γm
θ (R2n) and q ∈ Γm′

θ (R2n), by Proposition 6.4 of [34] the operator p(x,D)q(x,D) is a

pseudo-differential operator with symbol s given by

s(x, ξ) =
∑

|α|<N

1

α!
∂α
ξ p(x, ξ)D

α
x q(x, ξ) + rN (x, ξ),

for all N ≥ 1, where rN ∈ Γm+m′−N
θ (R2n).
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And now we have the following conjugation theorem, cf. Theorem 2.9 [5], which is a reformu-

lation of Theorem 3.2 for symbols in Γm
θ (R2n).

Theorem 3.4. Let p be a symbol in Γm
θ (R2n) and Φ satisfying (3.11) and (3.12), and μ < θ < κ. Then

there exists h0 = h0(CΦ) > 1 such that if h ≥ h0, then

eΦ(x,D)p(x,D) R(e−Φ(x,D)) = p(x,D) + op

⎛⎝ ∑
1≤|α+β|<N

1

α!β!
∂α
ξ {∂β

ξ e
Φ(x,ξ)Dβ

xp(x, ξ)D
α
x e

−Φ(x,ξ)}
⎞⎠

+ rN (x,D) + r∞(x,D), (3.64)

where rN and r∞ satisfy, respectively, the following conditions: there exists c′ = c′(Φ) > 0 and for every

A > 0 there exists CA > 0 such that

|∂α
ξ ∂

β
x rN (x, ξ)| ≤ CAA

|α+β|+2N (α!β!)θN !2θ−1〈ξ〉m−(1− 1
κ )N−|α|

h , (3.65)

and

|∂α
ξ ∂

β
x r∞(x, ξ)| ≤ CAA

|α+β|+2N (α!β!)θN !2θ−1e−c′〈ξ〉
1
κ
h . (3.66)

Proof. Check [34, Theorem 6.9].

Remark 3.8. Concerning the remainder terms rN and r∞ appearing in the latter result, we can point

that:

� By choosing N large enough depending on κ, we notice that m− (1− 1
κ )N shrinks, hence rN can

be considered as a symbol of order zero.

� The operator corresponding to r∞ has regularizing properties on Gevrey classes. In other words, it

maps (Gθ
0)

′(Rn) into Gθ(Rn). However, for our goals we shall consider r∞ as a symbol of Γ̃0
θ(R

2n).

� In the computations of Subsection 3.8.1, if N is sufficiently large, the remainder rN + r∞ can be

considered as a symbol of Γ̃0
θ(R

2n).

� Since we are dealing now with projective Gevrey regular symbols p, it is possible to conclude that

the remainders rN and r∞ satisfy estimates like (3.65) and (3.66).

We shall apply Theorem 3.4 to Φ = Λ, where Λ is defined by (3.9). In fact, it is immediate to

verify that Λ satisfies the assumptions of Theorem 3.4.

The next result (we are considering the particular case of symbols in R
2) is used to perform

conjugations with operators eΛK,ρ′ (x,D), where ΛK,ρ′ is given by (3.42) for some K > 0 and ρ′ ∈ (0, ρ)

(where ρ > 0 is the same as in the statement of Theorem 3.3). Compared to the latter result we have

a small difference in the sense that the conjugation now can be performed for every ρ′ > 0, since the

symbol of the operator satisfies projective Gevrey estimates.
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Proposition 3.5. If p ∈ Γ̃m
θ (R2), then we can write

eΛK,ρ′ (t,D)p(x,D)e−ΛK,ρ′ (t,D) = op

(∑
α<N

1

α!
∂α
ξ e

ΛK,ρ′ (t,ξ)Dα
xp(x, ξ)e

−ΛK,ρ′ (x,ξ)

)
+ rN (t, x,D),

where rN satisfies the following condition: for every A > 0 there exists CK,ρ′,A,N > 0 such that

|∂α
ξ ∂

β
x rN (t, x, ξ)| ≤ |‖p‖|ACK,ρ′,A,NAα+β〈ξ〉m−N(1− 1

θ )

h .

3.8.1 Conjugation of the operator

Now we are ready to perform the conjugation for the projective case, that is, let us obtain

a suitable representation for PΛ,K,ρ′ := QΛ,K,ρ′(iP )Q−1
Λ,K,ρ′ . The reader must have in mind that some

details in the computations will be omitted since they follow the same ideas as in the inductive case, so

it can be checked in Section 3.5.1.

Conjugation of iP by eΛ

The goal here is to perform the conjugation of iP by the operator eΛ(x,D) for Λ =
∑p−1

k=1 λp−k.

Since iP (t, x,Dt, Dx) = ∂t + iap(t)D
p
x + iap−1(t, x)D

p−1
x + · · · + ia1(t, x)Dx + ia0(t, x), let us split the

computations term by term.

� The conjugation of ∂t. It is trivially given by

eΛ(x,D) ◦ ∂t ◦ (eΛ(x,D))−1 = ∂t.

� The conjugation of iap(t)D
p
x. We notice that iap(t)D

p
x does not depend on x, hence we can use

Theorem 3.4 to obtain

eΛ(x,D) ◦ (iap(t)Dp
x) ◦ R(e−Λ(x,D)) = iap(t)D

p
x + iop

⎛⎝ ∑
1≤α<p

1

α!
∂α
ξ

(
eΛap(t)ξ

pDα
x e

−Λ
)⎞⎠

+ rp(t, x,D) + r∞(t, x,D), (3.67)

where rp ∈ Γ0θ(R
2) and r∞ satisfies an estimate like (3.66). As in (3.21), (3.67) becomes

eΛ(x,D) ◦ (iap(t)Dp
x) ◦ R(e−Λ(x,D)) = iap(t)D

p
x + iop (∂ξ{ap(t)ξpDx(−Λ)})

+ iap(t)c−2(x,D) + · · ·+ iap(t)c−p(x,D)

+ r∞(t, x,D),

where c−m ∈ SG
p−m,− p−m+1

p−1 σ
μ (R2) and depends only on λp−1, ..., λp−m+1, for each m = 2, ..., p.

Now, composing with the Neumann series, it follows that

eΛ(x,D) ◦ (iap(t)Dp
x) ◦ (eΛ(x,D))−1 = iap(t)D

p
x − op

(
∂ξap(t)ξ

p∂xΛ + ap(t)

p−1∑
m=2

cp−m

)
+ r̃0(t, x,D), (3.68)
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with r̃0 ∈ C
(
[0, T ]; Γ̃0

θ(R
2)
)
and cp−m of order p−m with respect to ξ and −p−m+1

p−1 σ with respect

to x depending only on λp−1, ..., λp−(m−1), for each m = 2, ..., p− 1.

From now on, symbols of C
(
[0, T ], Γ̃0

θ(R
2)
)
are denoted by r̃0.

� Conjugation of iap−j(t, x)D
p−j
x , j = 1, ..., p− 1. For N ∈ N sufficiently large to be chosen later,

by Theorem 3.4 we get

eΛ(x,D) ◦ (iap−j(t, x)D
p−j
x ) ◦ R(e−Λ(x,D))

= iap−j(t, x)D
p−j
x + op

⎛⎝ ∑
1≤α+β<N

1

α!β!
∂α
ξ

(
∂β
ξ e

Λ · iDβ
xap−j(t, x)ξ

p−jDα
x e

−Λ
)⎞⎠

+ r̃0(t, x,D). (3.69)

By analogous arguments as used to the conjugation of the inductive case, (3.69) turns into

eΛ ◦ (iap−j(t, x)D
p−j
x ) ◦ R(e−Λ) = iap−j(t, x)D

p−j
x + op

(
p−j∑
m=2

c
[j]
p−m

)
+ r̃0(t, x,D),

where c
[j]
p−m ∈ ΓG

p−j−(m−1),− p−j
p−1σ

θ (R2) and depends only on λp−1, ..., λp−(m−1). And now com-

posing with the Neumann series, we keep the structure of the above expression in the following

way

eΛ(x,D) ◦ (iap−jD
p−j
x ) ◦ (eΛ(x,D))−1

= iap−j(t, x)D
p
x + op

(
p−1∑
m=2

d
[j]
p−m

)
+ r̃0(t, x,D), (3.70)

with d
[j]
p−m ∈ ΓG

p−j−(m−1),− p−j
p−1σ

θ (R2) depending only on λp−1, ..., λp−(m−1).

� Conjugation of ia0(t, x). We have that

eΛ(x,D) ◦ (ia0(t, x)) ◦ (eΛ(x,D)) = r̃0(t, x,D). (3.71)

Now, putting all these computations together and arguing like in the inductive case, we have

eΛ(x,D) ◦ (iP ) ◦ (eΛ(x,D))−1 = ∂t + ap(t)D
p
x

+ iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1)

+ iap−2(t, x)D
p−2
x − op(∂ξap(t)ξ

p∂xλp−2) + op(dp−2)

+ · · ·
+ ia2(t, x)D

2
x − op(∂ξap(t)ξ

p∂xλ2) + op(d2)

+ ia1(t, x)Dx − op(∂ξap(t)ξ
p∂xλ1) + op(d1)

+ r̃0(t, x,D), (3.72)
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with dp−j of order p−j with respect to ξ and− p−j
p−1σ with respect to x, depending only on λp−1, ..., λp−(j−1),

for every j = 2, ..., p− 1.

Conjugation of eΛ(iP )(eΛ)−1 by eΛK,ρ′

Before we start with the conjugation, just recall that eΛK,ρ′ (t,D) is such that

ΛK,ρ′(t, x, ξ) = K(T − t)〈ξ〉(p−1)(1−σ)
h + ρ′〈ξ〉1/θh ,

for some K > 0 and ρ′ < ρ, and it is a symbol of order 1/θ, since (p−1)(1−σ) < 1/θ by assumption. In

the projective case, we shall conjugate operators with symbols of Gevrey regularity θ > 1 with Gevrey

constant A > 0 which can be taken arbitrarily small. We notice that, to perform this conjugation in the

inductive case, we had to consider ρ′ small enough to apply Theorem 3.2. However, in the projective

setting, no assumptions appear on ρ′ in Theorem 3.4 neither in Proposition 3.5, since A can be chosen as

small as we want. Summing up, we can choose ρ′ ∈ (0, ρ) arbitrarily and then perform the conjugation.

� Conjugation of ∂t. For this term we get

eΛK,ρ′ (t,D) ◦ ∂t ◦ e−ΛK,ρ′ (t,D) = ∂t +K〈Dx〉(p−1)(1−σ)
h .

� Conjugation of iap(t)D
p
x. Since ap(t) does not depend on x, the conjugation is simply given by

eΛK,ρ′ (t,D) ◦ (iap(t)Dp
x) ◦ e−ΛK,ρ′ (t,D) = iap(t)D

p
x.

� Conjugation of iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1). We have that

eΛK,ρ′ (t,D) ◦ (iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1)
) ◦ e−ΛK,ρ′ (t,D)

= iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1) +A
[p−1]
K,ρ′ (t, x,D),

with A
[p−1]
K,ρ′ (t, x,D) a remainder term whose symbol satisfies: for any A > 0, there exists

CA,T,K,ρ′,Mp−1 > 0

such that ∣∣∣∂α
ξ ∂

β
xA

[p−1]
K,ρ′ (t, x, ξ)

∣∣∣ ≤ CA,T,K,ρ′,Mp−1
Aα+β(α!β!)θ〈ξ〉p−2+ 1

θ

h 〈x〉−σ−1, (3.73)

for all α, β ∈ N0, t ∈ [0, T ] and x, ξ ∈ R.

� Conjugation of iap−j(t, x)D
p−j
x − op(∂ξap(t)ξ

p∂xλp−j) + op(dp−j), j = 2, ..., p− 1. For each j,

we have

eΛK,ρ′ (t,D) ◦ (iap−j(t, x)D
p−j
x − op(∂ξap(t)ξ

p∂xλp−j) + op(dp−j)
) ◦ e−ΛK,ρ′ (t,D)

= iap−j(t, x)D
p−j
x − op(∂ξap(t)ξ

p∂xλp−j) + op(dp−j) +A
[p−j]
K,ρ′ (t, x,D),
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with A
[p−j]
K,ρ′ (t, x,D) a remainder term whose symbol satisfies: for any A > 0, there exists

CA,T,K,ρ′,Mp−1,...,Mp−j
> 0

such that∣∣∣∂α
ξ ∂

β
xA

[p−j]
K,ρ′ (t, x, ξ)

∣∣∣ ≤ CA,T,K,ρ′,Mp−1,...,Mp−j
Aα+β(α!β!)θ〈ξ〉p−j−1+ 1

θ

h 〈x〉− p−j
p−1σ, (3.74)

for all α, β ∈ N0, t ∈ [0, T ] and x, ξ ∈ R.

Gathering all these computations, we get

QΛ,K,ρ′(t, x,D) ◦ (iP ) ◦ (QΛ,K,ρ′(t, x,D))−1

= eΛK,ρ′ (t,D) ◦ eΛ(x,D) ◦ (iP ) ◦ (eΛ(x,D))−1 ◦ e−ΛK,ρ′ (t,D) = ∂t + iap(t)D
p
x

+ iap−1(t, x)D
p−1
x − op(∂ξap(t)ξ

p∂xλp−1) +A
[p−1]
K,ρ′ (t, x,D)

+ iap−2(t, x)D
p−2
x − op(∂ξap(t)ξ

p∂xλp−2) + op(dp−2) +A
[p−2]
K,ρ′ (t, x,D)

+ · · ·
+ ia2(t, x)D

2
x − op(∂ξap(t)ξ

p∂xλ2) + op(d2) +A
[2]
K,ρ′(t, x,D)

+ ia1(t, x)Dx − op(∂ξap(t)ξ
p∂xλ1) + op(d1) +A

[1]
K,ρ′(t, x,D)

+ K〈Dx〉(p−1)(1−σ)
h + r̃0(t, x,D), (3.75)

where A
[p−j]
K,ρ′ is a remainder term depending on Mp−1, ...,Mp−j satisfying (3.73) for j = 1 and (3.74)

for j = 2, ..., p− 1, and r̃0 is a projective symbol of order zero.

3.8.2 Lower bound estimates for the real parts

At this moment, we do not intend to repeat all the computations to obtain the desired esti-

mates. For this reason, we recommend that the reader checks Section 3.6 for more details. The operator

given in (3.75) can be rewritten as

PΛ,K,ρ′(t, x,D) := QΛ,K,ρ′(t, x,D) ◦ (iP ) ◦ (QΛ,K,ρ′(t, x,D))−1

= ∂t + iap(t)D
p
x

+ iap−1(t, x)D
p−1
x + op

(
pMp−1ap(t)|ξ|p−1〈x〉−σ

)
+A

[p−1]
K,ρ′ (t, x,D)

+ iap−2(t, x)D
p−2
x + op

(
pMp−2ap(t)|ξ|p−1〈ξ〉−1

h 〈x〉− p−2
p−1σ
)
+ op(dp−2) +A

[p−2]
K,ρ′ (t, x,D)

+ · · ·
+ ia2(t, x)D

2
x + op

(
pM2ap(t)|ξ|p−1〈ξ〉−p+3

h 〈x〉− 2
p−1σ
)
+ op(d2) +A

[2]
K,ρ′(t, x,D)

+ ia1(t, x)Dx + op
(
pM1ap(t)|ξ|p−1〈ξ〉−p+2

h 〈x〉− 1
p−1σ
)
+ op(d1) +A

[1]
K,ρ′(t, x,D)

+ K〈Dx〉(p−1)(1−σ)
h −B[(p−1)(1−σ)](t, x,D) + r̃0(t, x,D), (3.76)
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with dp−m, m = 2, ..., p− 1, A
[p−j]
K,ρ′ , j = 1, ..., p− 1, as described previously, r̃0 ∈ C

(
[0, T ], Γ̃0

θ(R
2)
)
and

B[(p−1)(1−σ)](t, x, ξ) :=

p−1∑
j=1

pap(t)|ξ|p−1Mp−j〈ξ〉1−j
h 〈x〉− p−j

p−1σ

[
1− ψ

(
〈x〉

〈ξ〉p−1
h

)]

has order less than or equal to (p−1)(1−σ) in ξ, order zero in x and it depends on Mp−1, ...,M1. Next,

we shall fix A = 1 in the estimates and omit the dependence on A in the constants. And now we are

ready to obtain the desired estimates from below. We summarize the estimates for each level in the

following:

� Estimates for level (p− 1). Set

ãp−1(t, x,Dx) := iap−1(t, x)D
p−1
x + op

(
pMp−1ap(t)|ξ|p−1〈x〉−σ

)
+A

[p−1]
K,ρ′ (t, x,D).

Then

Re ãp−1(t, x, ξ) ≥ 1
2

−σ|ξ|p−1, |ξ| ≥ 2h,

ãp−1(t, x,D) = Q
[p−1]
+ (t, x,D) + r̃[p−2](t, x,D),

Re
(
Q

[p−1]
+ (t, x,D)u, u

)
L2

≥ 0, u ∈ L2(R), and

r̃[p−2](t, x, ξ) ∈ SGp−2,−1−σ
μ′ (R2), t ∈ [0, T ] dep. on Mp−1, h.

� Estimates for a generic level (p− j), j ≥ 2. We set

ãp−j(t, x,D) := iap−j(t, x)D
p−j
x + op

(
pMp−jap(t)|ξ|p−1〈ξ〉1−j

h 〈x〉− p−j
p−1σ
)

+ A
[p−j]
K,ρ′ (t, x,D) + dp−j(t, x,D) + r̃[p−j](t, x,D).

Then

Re ãp−j(t, x, ξ) ≥ 1
2 〈x〉−

p−j
p−1σ|ξ|p−j , |ξ| ≥ R,

ãp−j(t, x,D) = Q
[p−j]
+ (t, x,D) + r̃[p−j−1](t, x,D),

Re
(
Q

[p−j]
+ (t, x,D)u, u

)
L2

≥ 0, u ∈ L2(R), and

r̃[p−j−1](t, x, ξ) ∈ SG
p−j−1,−1− p−j

p−1σ

μ′ (R2) dep. on Mp−1, ...,Mp−(j−1), h.

At this point, after the choice of all the parameters Mp−1, ...,M1 and h, our conjugation can

be expressed as

PΛ,K,ρ′ = ∂t + iap(t)D
p
x

+ Q
[p−1]
+ (t, x,D) +Q

[p−2]
+ (t, x,D) + · · ·+Q

[2]
+ (t, x,D) +Q

[1]
+ (t, x,D)

+ K〈Dx〉(p−1)(1−σ)
h −B[(p−1)(1−σ)](t, x,D) + r̃0(t, x,D).

Now, recalling the definition of B[(p−1)(1−σ)] in (3.46) we can chooseK ≥ K0(Mp−1, ...,M1) large enough

such that

Re
(
K〈ξ〉(p−1)(1−σ)

h −B[(p−1)(1−σ)](t, x, ξ)
)
≥ 0,
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and by applying Theorem 2.10 once more we obtain

PΛ,K,ρ′ = ∂t + iap(t)D
p
x +

p−1∑
j=1

Q
[p−j]
+ (t, x,D)

+ Q
[(p−1)(1−σ)]
+ (t, x,D) + r̃0(t, x,D). (3.77)

Summing up, for ρ′ small enough, choosing, in order, Mp−1, ...,M1,K and h large enough, precisely

CT,K,ρ′,Mp−1,...,M1
h−1+ 1

θ ≤ 1

2
and h > h0

enlarging the parameter h0 given in Proposition 3.2 if necessary, we obtain that formula (3.77) holds.

Now we are ready to prove Theorem 3.3.

3.8.3 Proof of Theorem 3.3

Given θ > 1 satisfying the hypothesis of Theorem 3.1, m ∈ R, ρ > 0, take the initial data

f ∈ C
(
[0, T ];Hm

ρ;θ(R)
)

and g ∈ Hm
ρ;θ(R).

Set the positive constants Mp−1, ...,M1,K, h0 for which Proposition 3.3 holds and ρ′ ∈ (0, ρ). We know

that both symbols Λ and K(T − t)〈·〉(p−1)(1−σ)
h have order (p − 1)(1− σ) < 1/θ, hence by Proposition

3.1 it follows that

fΛ,K,ρ′ := QΛ,K,ρ′(t, x,D)f ∈ C ([0, T ];Hm(R))

gΛ,K,ρ′ := QΛ,K,ρ′(t, x,D)g ∈ Hm(R),

for ρ′ < ρ. By Proposition 3.3, we have well-posedness in Sobolev spaces Hm(R) for the Cauchy problem

associated with the operator PΛ,K,ρ′ = QΛ,K,ρ′ ◦ (iP ) ◦ Q−1
Λ,K,ρ′ given by (3.57), that is, there exists a

unique solution v ∈ C ([0, T ];Hm(R)) to the Cauchy problem⎧⎨⎩ PΛ,K,ρ′v(t, x) = fΛ,K,ρ′(t, x)

v(0, x) = gΛ,K,ρ′(x)
, (t, x) ∈ [0, T ]× R,

satisfying the energy estimate

‖v(t)‖2Hm ≤ C

(
‖gΛ,K,ρ′‖2Hm +

∫ t

0

‖fΛ,K,ρ′(τ)‖2Hmdτ

)
, t ∈ [0, T ]. (3.78)

By setting u := (QΛ,K,ρ′(t, x,D))
−1

v, we obtain a solution for the original Cauchy problem

(3.2), namely ⎧⎨⎩ Pu(t, x) = f(t, x)

u(0, x) = g(x)
, (t, x) ∈ [0, T ]× R.
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As before,

u(t, x) = R
(
e−Λ(x,D)

)∑
j

(−r(x,D))je−K(T−t)〈D〉(p−1)(1−σ)
h e−ρ′〈D〉

1
θ
h v(t, x), v ∈ Hm(R),

but v ∈ Hm(R) implies that e−ρ′〈D〉
1
θ
h v =: u1 ∈ Hm

ρ′;θ(R), hence

u(t, x) = R
(
e−Λ(x,D)

)∑
j

(−r(x,D))je−K(T−t)〈D〉(p−1)(1−σ)
h u1, u1 ∈ Hm

ρ′;θ(R).

Notice that, for every δ1 > 0, we have

e−K(T−t)〈D〉(p−1)(1−σ)
h u1 = e−K(T−t)〈D〉(p−1)(1−σ)

h e−δ1〈D〉
1
θ
h︸ ︷︷ ︸

order zero

eδ1〈D〉
1
θ
h u1 =: u2 ∈ Hm

ρ′−δ1;θ(R),

and since
∑

j(−r(x,D))j has order zero, u3 :=
∑

j(−r(x,D))ju2 ∈ Hm
ρ′−δ1;θ

(R), which allows us to

write

u(t, x) = R
(
e−Λ(x,D)

)∑
j

(−r(x,D))ju2 = R
(
e−Λ(x,D)

)
u3, u3 ∈ Hm

ρ′−δ1;θ(R).

By Proposition 3.1, we have that R
(
e−Λ(x,D)

)
maps Hm

ρ;θ(R) into Hm
ρ−δ2;θ

(R), for every δ2 > 0, and

we can assert that u(t, ·) ∈ Hm
ρ′−δ;θ(R) for all δ > 0, t ∈ [0, T ]. If we set ρ̃ := ρ′ − δ, it follows from

(3.78) that

‖u(t)‖2Hm
ρ̃;θ

= ‖ (QΛ,K,ρ′(t, ·, D))
−1

v(t)‖2Hm
ρ̃;θ

≤ C1‖v(t)‖2Hm

≤ C2

(
‖gΛ,K,ρ′‖2Hm +

∫ t

0

‖fΛ,K,ρ′(τ)‖2Hmdτ

)
≤ C3

(
‖g‖2Hm

ρ;θ
+

∫ t

0

‖f(τ)‖2Hm
ρ;θ

dτ

)
, t ∈ [0, T ]. (3.79)

To conclude, we notice that if the data f and g are valued in Hm
ρ;θ(R) for all ρ > 0, then the solution

belongs to Hm
ρ′′;θ(R), for every ρ′′ ∈ (0, ρ), which means that

u ∈ C ([0, T ];H∞
θ (R)) .

The uniqueness follows as in the proof of Theorem 3.1.
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Chapter 4

CAUCHY PROBLEM FOR p-EVOLUTION OPERATORS

WITH DATA IN GELFAND-SHILOV SPACES

4.1 Gelfand-Shilov well-posedness and main result

In this chapter, we shall consider the same p-evolution operator given by (3.1) as in Chapter

3, for p ≥ 2, that is,

P (t, x,Dt, Dx) = Dt + ap(t)D
p
x +

p∑
j=1

ap−j(t, x)D
p−j
x , (t, x) ∈ [0, T ]× R.

Our goal is to study the same Cauchy problem⎧⎨⎩ P (t, x,Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ [0, T ]× R

u(0, x) = g(x), x ∈ R

, (4.1)

except that now the data f and g will be considered in Gelfand-Shilov-Sobolev spaces, that is, f ∈
C
(
[0, T ];H0

(ρ1,ρ2);s,θ
(R)
)
and g ∈ H0

(ρ1,ρ2);s,θ
(R), where

H0
(ρ1,ρ2);s,θ

(R) = {u ∈ S ′(R) : eρ2〈x〉1/seρ1〈D〉1/θu ∈ L2(R)}.

In Gelfand-Shilov setting, we also have the definition of well-posedness.

Definition 4.1. We say that the Cauchy problem (4.1) is well-posed in Sθs(R) when, for any given

m ∈ R
2, ρ = (ρ1, ρ2), ρ1ρ2 > 0, there exists ρ̃ = (ρ̃1, ρ̃2), ρ̃1, ρ̃2 > 0 and a constant C := C(ρ, T ) > 0

such that, for all f ∈ C
(
[0, T ];Hm

ρ;s,θ(R)
)

and g ∈ Hm
ρ;s,θ(R), there exists a unique solution u ∈

C1
(
[0, T ];Hm

ρ̃;s,θ(R)
)
and the following energy estimate holds

‖u(t, ·)‖Hm
ρ̃;s,θ

≤ C

(
‖g‖2Hm

ρ;s,θ
+

∫ t

0

‖f(τ, ·)‖2Hm
ρ;s,θ

dτ

)
.

It is easy to verify, eventually conjugating our operator by 〈x〉m2〈D〉m1 , that we can replace

m ∈ R
2 by (0, 0) in Definition 4.1. The first main result that will be proved in this chapter, is stated in

the following.

Theorem 4.1. Let θ0 > 1 and σ ∈
(

p−2
p−1 , 1

)
such that θ0 < 1

(p−1)(1−σ) . Let P be an operator of the

type (3.1) whose coefficients satisfy the following assumptions:
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(i) ap ∈ C ([0, T ];R) and there exists Cap
> 0 such that |ap(t)| ≥ Cap

, for all t ∈ [0, T ].

(ii) |∂β
xap−j(t, x)| ≤ Cβ+1

ap−j
β!θ0〈x〉− p−j

p−1σ−β, for some Cap−j > 0, j = 1, ..., p − 1 and for all β ∈ N0,

(t, x) ∈ [0, T ]× R.

Let s, θ > 1 such that (p − 1)θ < min
{

1
1−σ , s

}
and θ ≥ θ0, and let f ∈ C

(
[0, T ];H0

ρ;s,θ(R)
)

and

g ∈ H0
ρ;s,θ(R), for some ρ = (ρ1, ρ2) ∈ R

2 with ρ1, ρ2 > 0. Then there exists a unique solution

u ∈ C1
(
[0, T ];H0

(ρ̃1,δ);s,θ
(R)
)

of (4.1) for some ρ̃1 ∈ (0, ρ1), δ ∈ (0, ρ2) and it satisfies the energy

estimate

‖u(t)‖2H0
(ρ̃1,δ);s,θ

≤ C

(
‖g‖2H0

ρ;s,θ
+

∫ t

0

‖f(τ)‖2H0
ρ;s,θ

dτ

)
, (4.2)

for all t ∈ [0, T ] and for some constant C > 0. In particular, the Cauchy problem (4.1) is well-posed in

Sθs(R).

By similar reasons as we have discussed in Chapter 3, the proof of Theorem 4.1 cannot be

achieved in a straight way. Then we need to work in a strategy to conjugate the operator P , which

means that a change of variable must be done in the original Cauchy problem. Essentially, it is sufficient

to add a new term to the change of variable used before.

As a matter of fact, the Cauchy problem (4.1) has the data f ang g in Gelfand-Shilov-Sobolev

spaces, namely

f(t), g ∈ H0
(ρ1,ρ2);s,θ

(R), t ∈ [0, T ].

The idea is to multiply f and g and to conjugate P by the term eδ〈x〉
1/s

, with δ ∈ (0, ρ2) to be chosen

later. Notice that this change of variable pulls back the data f and g to some Gevrey-Sobolev space (of

course, the coefficients of the conjugated operator Pδ := eδ〈x〉
1/s

Pe−δ〈x〉1/s should preserve the properties

of the coefficients ap−j of P ) and this will give us an auxiliary Cauchy problem whose data will be in

some Gevrey-Sobolev classes, that is,

eδ〈x〉
1/s

f(t), eδ〈x〉
1/s

g ∈ H0
ρ1;θ(R).

Indeed, the auxiliary Cauchy problem becomes⎧⎨⎩ Pδ(t, x,Dt, Dx)v(t, x) = eδ〈x〉
1/s

f(t, x)

v(0, x) = eδ〈x〉
1/s

g(x)
, (t, x) ∈ [0, T ]× R. (4.3)

Once we conclude that this conjecture works, the next step is simply apply Theorem 3.1 to the Cauchy

problem (4.3), provided that θ ∈
[
θ0,min

{
1

(p−1)(1−σ) , s
})

, and then the proof of Theorem 4.1 is a

consequence of it.
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4.2 Conjugation of P by eδ〈x〉
1/s

After all the previous, let us perform the conjugation of the operator P (t, x,Dt, Dx) by eδ〈x〉
1/s

and its inverse, where δ ∈ (0, ρ2). As before, the conjugation will be made term-by-term, and the next

steps are dedicated to this purpose.

� The conjugation of Dt. Since eδ〈x〉
1/s

does not depend on t, the conjugation is trivially given

by

eδ〈x〉
1/s ◦Dt ◦ e−δ〈x〉1/s = Dt.

� The conjugation of ap(t)D
p
x. First of all, the computation is made just with Dp

x (and then we

can put the factor ap(t) later). By using Leibniz formula, it can be computed

eδ〈x〉
1/s

Dp
xe

−δ〈x〉1/s = Dp
x + op

(
p∑

k=1

(k!)−1∂k
ξ ξ

peδ〈x〉
1/s

Dk
xe

−δ〈x〉1/s
)

= Dp
x + op

(
p∑

k=1

1

k!
· p!

(p− k)!
ξp−keδ〈x〉

1/s

Dk
xe

−δ〈x〉1/s
)

= Dp
x +

p∑
k=1

b
(δ)
p−k(x)D

p−k
x ,

where

b
(δ)
p−k(x) :=

(
p

k

)
eδ〈x〉

1/s

Dk
xe

−δ〈x〉1/s .

Now, let us check what happens with the terms b
(δ)
p−k. By Faà di Bruno formula, it follows that

eδ〈x〉
1/s

Dk
xe

−δ〈x〉1/s =
k∑

=1

1

!

∑
k1+···+k�=k

kν≥1

k!

k1! · · · k!
∏

ν=1

Dkν
x

(
−δ〈x〉1/s

)
.

Notice that, since |∂β
x 〈x〉m| ≤ Cββ!〈x〉m−β , we obtain the estimate∣∣∣∣∣

∏
ν=1

Dkν
x

(
−δ〈x〉1/s

)∣∣∣∣∣ = δ
∏

ν=1

∣∣∣Dkν
x 〈x〉1/s

∣∣∣ ≤ δ
∏

ν=1

Ckνkν !〈x〉 1
s−kν

= δCkk1! · · · k!〈x〉 �
s−k

≤ Ck+1
δ k1! · · · k!〈x〉k( 1

s−1).

Hence

|b(δ)p−k(x)| ≤
(
p

k

) k∑
=1

1

!

∑
k1+···+k�=k

kν≥1

k!

k1! · · · k!C
k+1
δ k1! · · · k!〈x〉k( 1

s−1)

=
p!

k!(p− k)!

k∑
=1

1

!

∑
k1+···+k�=k

kν≥1

k!Ck+1
δ 〈x〉k( 1

s−1),
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which gives us that b
(δ)
p−k ∼ 〈x〉k( 1

s−1). Similarly we obtain that

|Dβ
xb

(δ)
p−k(x)| ≤ C̃β+k+1β!〈x〉k( 1

s−1)−β , (4.4)

for all β ∈ N0. Therefore, the conjugation of ap(t)D
p
x is given by

eδ〈x〉
1/s

(ap(t)D
p
x)e

−δ〈x〉1/s = ap(t)D
p
x +

p∑
k=1

ã
(δ)
p−k(t, x)D

p−k
x ,

where ã
(δ)
p−k(t, x) = ap(t)b

(δ)
p−k(x) satisfy, for every k = 1, ..., p, the following estimate

sup
t∈[0,T ]

|Dβ
x ã

(δ)
p−k(x)| ≤ Cβ+1

1 β!〈x〉k( 1
s−1)−β . (4.5)

� The conjugation of ap−j(t, x)D
p−j
x , j = 1, ..., p− 1. At this moment, we need to be concerned

what happens with the lower order terms. For each j = 1, ..., p − 1, by using again the Leibniz

formula

eδ〈x〉
1/s

(ap−j(t, x)D
p−j
x )e−δ〈x〉1/s = ap−j(t, x)D

p−j
x

+ op

(
p−j∑
k=1

1

k!
ap−j(t, x)∂

k
ξ ξ

p−jeδ〈x〉
1/s

Dk
xe

−δ〈x〉1/s
)

= ap−j(t, x)D
p−j
x

+ op

(
p−j∑
k=1

(
p− j

k

)
ap−j(t, x)ξ

p−j−keδ〈x〉
1/s

Dk
xe

−δ〈x〉1/s
)

= ap−j(t, x)D
p−j
x +

p−j∑
k=1

ap−j(t, x)c
(δ)
p−j−k(x)D

p−j−k
x

where

c
(δ)
p−j−k(x) =

(
p− j

k

)
eδ〈x〉

1/s

Dk
xe

−δ〈x〉1/s .

By the same argument used before, it follows that c
(δ)
p−j−k satisfy (4.4), for every j = 1, ..., p − 1

and k = 1, ..., p− j.

� The conjugation of a0(t, x). It is simply given by

eδ〈x〉
1/s

a0(t, x)e
−δ〈x〉1/s = a0(t, x).

By the previous analysis, we can assert that the conjugated form of the operator P (t, x,Dt, Dx)

by eδ〈x〉
1/s

and its inverse can be written as

eδ〈x〉
1/s ◦ P ◦ e−δ〈x〉1/s = Dt + ap(t)D

p
x +

p−1∑
j=1

ap−j(t, x)D
p−j
x + a0(t, x)

+

p−1∑
k=1

ã
(δ)
p−k(t, x)D

p−k
x + ã

(δ)
0 (t, x) +

p−1∑
j=1

p−j∑
=1

ap−j(t, x)c
(δ)
p−j−(x)D

p−j−
x .
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Notice that the double sum in the last term can be expressed as (omitting the variables t and x for

simplicity)
p−1∑
j=1

ap−j

p−j∑
=1

c
(δ)
p−j−D

p−j−
x =

p∑
k=2

d
(δ)
p−kD

p−k
x ,

where

d
(δ)
p−k := c

(δ)
p−k

p∑
=k−1

ap−, k = 2, ..., p.

In particular, we have that d
(δ)
p−k satisfy (4.5). Hence

eδ〈x〉
1/s ◦ P ◦ e−δ〈x〉1/s = Dt + ap(t)D

p
x +

p−1∑
j=1

ap−j(t, x)D
p−j
x + a0(t, x)

+

p−1∑
k=1

ã
(δ)
p−k(t, x)D

p−k
x + ã

(δ)
0 (t, x)

+

p∑
k=2

d
(δ)
p−k(t, x)D

p−k
x

= Dt + ap(t)D
p
x + ap−1(t, x)D

p−1
x +

p−1∑
j=2

ap−j(t, x)D
p−j
x + a0(t, x)

+ ã
(δ)
p−1(t, x)D

p−1
x +

p−1∑
k=2

ã
(δ)
p−k(t, x)D

p−k
x + ã

(δ)
0 (t, x)

+

p−1∑
k=2

d
(δ)
p−k(t, x)D

p−k
x + d

(δ)
0 (t, x),

and finally

eδ〈x〉
1/s ◦ P ◦ e−δ〈x〉1/s = Dt + ap(t)D

p
x +
{
ap−1(t, x) + ã

(δ)
p−1(t, x)

}
Dp−1

x

+

p∑
j=2

{
ap−j(t, x) + ã

(δ)
p−j(t, x) + d

(δ)
p−j(t, x)

}
Dp−j

x

= Dt + iap(t)D
p
x +

p∑
j=1

a
(δ)
p−j(t, x)D

p−j
x (4.6)

where

a
(δ)
p−1(t, x) := ap−1(t, x) + ã

(δ)
p−1(t, x),

a
(δ)
p−j(t, x) := ap−j(t, x) + ã

(δ)
p−j(t, x) + d

(δ)
p−j(t, x), 2 ≤ j ≤ p,

From the previous estimates we obtain that a
(δ)
p−j satisfy the following estimate:

sup
t∈[0,T ]

(
|Dβ

x ã
(δ)
p−j(t, x)|+ |Dβ

xd
(δ)
p−j(t, x)|

)
≤ Cβ+1β!θ0〈x〉−j(1− 1

s )−β . (4.7)

78



4.3 Proof of Theorem 4.1

To prove Theorem 4.1 we want to apply Theorem 3.1 to the operator Pδ. So we need to show

that the operator Pδ satisfies the assumptions of Theorem 3.1. With this purpose we distinguish two

cases.

The case s ≥ 1
1−σ . In this case, the assumption of Theorem 4.1 reads as

θ <
1

(p− 1)(1− σ)
≤ s

p− 1
.

In this case we observe that the coefficients of Pδ satisfy the assumptions of Theorem 3.1, that is,

j

(
1− 1

s

)
≥ p− j

p− 1
σ, ∀j = 1, ..., p.

In fact, we notice that as j increases, the left-hand side of the above inequality increases and the right-

hand side decreases, so this inequality holds for all j = 1, ..., p if, and only if, it holds for j = 1, that

is, (
1− 1

s

)
≥ p− 1

p− 1
σ ⇔ 1− 1

s
≥ σ ⇔ s ≥ 1

1− σ
,

which is true. Hence we have

sup
t∈[0,T ]

|Dβ
xa

(δ)
p−j(t, x)| ≤ Cβ+1β!θ0〈x〉− p−j

p−1σ−β . (4.8)

Let us then consider the Cauchy problem (4.1) with data

f ∈ C
(
[0, T ];H0

ρ;s,θ(R)
)

and g ∈ H0
ρ;s,θ(R),

for ρ = (ρ1, ρ2), with ρ1, ρ2 > 0. If δ ∈ (0, ρ2), then

fδ := eδ〈x〉
1/s

f ∈ C
(
[0, T ];H0

(ρ1,ρ2−δ);s,θ(R)
)

and gδ := eδ〈x〉
1/s

g ∈ H0
(ρ1,ρ2−δ);s,θ(R),

because, if φ ∈ H0
ρ;s,θ(R), then

φ(ρ1,ρ2)(x) := eρ2〈x〉1/seρ1〈D〉1/θφ ∈ L2(R), (4.9)

and

e(ρ2−δ)〈x〉1/seρ1〈D〉1/θ eδ〈x〉
1/s

φ︸ ︷︷ ︸
:=φδ

= e(ρ2−δ)〈x〉1/seρ1〈D〉1/θeδ〈x〉
1/s
(
eρ2〈x〉1/seρ1〈D〉1/θ

)−1

eρ2〈x〉1/seρ1〈D〉1/θφ︸ ︷︷ ︸
=φ(ρ1,ρ2)

= e(ρ2−δ)〈x〉1/seρ1〈D〉1/θeδ〈x〉
1/s

e−ρ1〈D〉1/θe−ρ2〈x〉1/s︸ ︷︷ ︸
:=A(ρ1,ρ2,δ)

φ(ρ1,ρ2) ∈ L2(R),

since A(ρ1,ρ2,δ) has order zero and φ(ρ1,ρ2) ∈ L2(R), and this means that φδ ∈ H0
(ρ1,ρ2−δ);s,θ(R).

Since ρ2 − δ > 0, it follows that

fδ ∈ C
(
[0, T ];H0

ρ1;θ(R)
)

and gδ ∈ H0
ρ1;θ(R).
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Once we are considering θ ∈
[
θ0,min

{
1

(p−1)(1−σ) , s
})

, we obtain that the auxiliary Cauchy problem

given by (4.3) is well-posed in H∞
θ (R), that is, there exists a unique solution v ∈ C1

(
[0, T ];H0

ρ̃1;θ
(R)
)

of (4.3), with initial data fδ and gδ, satisfying

‖v(t, ·)‖H0
ρ̃1;θ

≤ C(ρ1, T )

(
‖gδ‖2H0

ρ1;θ
+

∫ t

0

‖fδ(τ, ·)‖2H0
ρ1;θ

dτ

)
, (4.10)

for some ρ̃1 ∈ (0, ρ1). Now we set u(t, x) := e−δ〈x〉1/sv(t, x). Notice that u ∈ C1
(
[0, T ];H(ρ̃1,δ);s,θ(R)

)
and it solves the Cauchy problem (4.1), because

u(0, x) = e−δ〈x〉1/sv(0, x) = e−δ〈x〉1/sgδ(x) = e−δ〈x〉1/seδ〈x〉
1/s

g(x) = g(x),

and Pδ(t, x,Dt, Dx)v(t, x) = fδ(t, x) implies that

eδ〈x〉
1/s

P (t, x,Dt, Dx) e
−δ〈x〉1/sv(t, x)︸ ︷︷ ︸

=u(t,x)

= eδ〈x〉
1/s

f(t, x) ⇒ P (t, x,Dt, Dx)u(t, x) = f(t, x).

Finally, we can use estimate (4.10) to obtain

‖u(t, ·)‖H0
(ρ̃1,δ);s,θ

≤ C(δ)‖v(t, ·)‖H0
ρ̃1;θ

≤ C(ρ1, δ, T )

(
‖gδ‖2H0

ρ1;θ
+

∫ t

0

‖fδ(τ, ·)‖2H0
ρ1;θ

dτ

)
≤ C(ρ1, δ, T )

(
‖g‖2H0

(ρ1,δ);s,θ
+

∫ t

0

‖f(τ, ·)‖2H0
(ρ1,δ);s,θ

dτ

)
≤ C(ρ1, δ, T )

(
‖g‖2H0

ρ;s,θ
+

∫ t

0

‖f(τ, ·)‖2H0
ρ;s,θ

dτ

)
,

where C(ρ1, δ, T ) is a positive constant depending on ρ1, δ and T .

To prove the uniqueness of the solution, let us consider two solutions

uj ∈ C1
(
[0, T ];H0

(ρ̃1,δ);s,θ
(R)
)
, j = 1, 2,

with δ < ρ2, for the Cauchy problem (4.1). By taking any δ̃ ∈ (0, δ), notice that

vj := eδ̃〈x〉
1/s

uj , j = 1, 2,

are solutions of (4.3), for δ replaced by δ̃, and also vj ∈ C1
(
[0, T ];H0

ρ̃1;θ
(R)
)
. The well-posedness in

H∞
θ (R) of (4.3) gives us v1 = v2, hence eδ̃〈x〉

1/s

u1 = eδ̃〈x〉
1/s

u2, which implies that u1 = u2.

The case s < 1
1−σ . Now the assumption of Theorem 4.1 becomes

θ0 ≤ θ <
s

p− 1
<

1

(p− 1)(1− σ)
.

In this case we observe that 〈x〉− p−j
p−1σ ≤ 〈x〉− p−j

p−1 (1− 1
s ) and 〈x〉−j(1− 1

s ) ≤ 〈x〉− p−j
p−1 (1− 1

s ), so we get

sup
t∈[0,T ]

|Dβ
xa

(δ)
p−j(t, x)| ≤ Cβ+1β!θ0〈x〉− p−j

p−1 (1− 1
s )−β .
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Then we can repeat the same argument used in the first case with σ replaced by 1 − 1
s . Notice that

1− 1
s ∈
(

p−2
p−1 , 1

)
since

1− 1

s
>

p− 2

p− 1
⇔ 1

s
<

1

p− 1
⇔ s > p− 1

which holds true since s
p−1 > θ > 1. Then in this case the Cauchy problem is well-posed in Sθs(R) for

θ0 ≤ θ < 1

(p−1)(1−1+ 1
s )

= s
p−1 = min

{
1

(p−1)(1−σ) ,
s

p−1

}
. This concludes the proof.

Remark 4.1. Under the assumptions of Theorem 3.3 for P (t, x,Dt, Dx), arguing as in the proof of

Theorem 4.1 we may prove a similar well-posedness result for the Cauchy problem with data in Σθ
s(R)

with minor modifications. We leave the details for the reader.

4.4 Ill-posedness results for model operators

In the previous section we have proved Theorem 4.1 under the assumption

(p− 1)θ < min

{
1

1− σ
, s

}
.

The aim of this section is to prove that if

(p− 1)θ > min

{
1

1− σ
, s

}
, (4.11)

then the Cauchy problem (4.1) is not well-posed in general for an operator P satisfying the conditions

(i) and (ii) of Theorem 4.1. With this purpose we distinguish two cases.

The case s ≤ 1
1−σ . In this case, (4.11) turns into the condition s < (p− 1)θ. Then we have

the following result.

Proposition 4.1. Let s, θ > 1 such that s < (p−1)θ. Then there exists g ∈ Sθs(R) such that the Cauchy

problem ⎧⎨⎩ (Dt +Dp
x)u = 0

u(0, x) = g(x)
, (t, x) ∈ [0, T ]× R, (4.12)

is not well-posed in Sθs(R).

Proof. The proof relies in the application of Theorem 1.2 in [10] which states that for every polynomial

q(ξ) of degree p with real coefficients and for every s, θ > 1 such that 1 < s < (p − 1)θ there exists

ϕ ∈ Ssθ(R) such that

eiq(ξ)ϕ(ξ) /∈ Ssθ(R). (4.13)
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Taking q(t, ξ) := tξp for fixed t > 0 and ϕ ∈ Ssθ(R) such that (4.13) holds and choosing g = F−1(ϕ) as

initial datum of (4.1), by elementary arguments we have that the solution of (4.1) is

ug(t, x) = F−1(eiξ
ptĝ(ξ)) = F−1(eiξ

ptϕ(ξ)) /∈ Sθs(R).

The operator Dt + Dp
x obviously satisfies the assumptions (i), (ii) for every σ ∈

(
p−2
p−1 , 1

)
.

Hence we are in the situation s ≤ 1
1−σ . Then we have proved that if s < (p− 1)θ, the Cauchy problem

(4.1) is not well-posed in general.

The case s > 1
1−σ . Now (4.11) turns into 1

1−σ < (p− 1)θ. Then we can prove the following

Theorem by considering the operator

M = Dt +Dp
x + i〈x〉−σDp−1

x . (4.14)

Theorem 4.2. Let M be the operator in (4.14), with σ ∈
(

p−2
p−1 , 1

)
. If the Cauchy problem⎧⎨⎩ Mu = 0

u(0, x) = g(x)
, (t, x) ∈ [0, T ]× R (4.15)

is well-posed in Sθs(R), then

max

{
1

(p− 1)θ
,
1

s

}
≥ 1− σ.

Now, if s > 1
1−σ and (p − 1)θ > 1

1−σ , this yields 1 − σ > max
{

1
(p−1)θ ,

1
s

}
. Then Theorem

4.2 implies that the Cauchy problem (4.15) is not well-posed. Since M is of the form (3.1) and satisfies

conditions (i) and (ii) of Theorem 4.1 then we conclude that if (4.11) holds, then in general the Cauchy

problem (4.1) is ill-posed.

In view of the the considerations above, we devote the rest of this section to prove Proposition

4.2.

4.4.1 Proof of Theorem 4.2

Let us consider the Cauchy problem associated to the model operator M given by (4.14), that

is, ⎧⎨⎩ (Dt +Dp
x + i〈x〉−σDp−1

x )u(t, x) = 0

u(0, x) = g(x)
, (t, x) ∈ [0, T ]× R, (4.16)

where σ > 0. Our goal is to prove that, if the Cauchy problem (4.15) is well-posed in Sθs(R), then

1− σ > max
{

1
(p−1)θ ,

1
s

}
leads to a contradiction.

To keep the development of our work, we need to establish some notations, concepts and

results which were not mentioned before in the background chapters.
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Definition 4.2. For any m ∈ R, the set Sm
0,0(R) is defined as the space of all functions p ∈ C∞(R2)

satisfying: for all α, β ∈ N0, there exists a constant Cα,β > 0 such that

|∂α
ξ ∂

β
xp(x, ξ)| ≤ Cα,β〈ξ〉m.

The topology in Sm
0,0(R) é induced by the family of semi-norms

|p|(m)
 := max

α≤,β≤
sup
x,ξ∈R

|∂α
ξ ∂

β
xp(x, ξ)|〈ξ〉−m, p ∈ Sm

0,0(R),  ∈ N0.

Theorem 4.3 (Calderón-Vaillancourt). If p ∈ Sm
0,0(R) then, for all s ∈ R, there exist  := (s,m) ∈ N0

and C := Cs,m > 0 such that

‖p(x,D)u‖Hs(R) ≤ C|p|(m)
 ‖u‖Hs+m(R), ∀u ∈ Hs+m(R).

Besides, when m = s = 0, |p|(m)
 can be replaced by

max
α,β≤2

sup
x,ξ∈R

|∂α
ξ ∂

β
xp(x, ξ)|.

Proof. Check Theorem 1.6 of [37].

Now we consider the algebra properties of Sm
0,0(R) with respect to the composition of operators.

Let pj ∈ S
mj

0,0 (R), j = 1, 2, and define

q(x, ξ) = Os−
∫∫

e−iyηp1(x, ξ + η)p2(x+ y, ξ)dyd−η

= lim
ε→0

∫∫
e−iyηp1(x, ξ + η)p2(x+ y, ξ)e−ε2y2

e−ε2η2

dyd−η. (4.17)

We often write q(x, ξ) = p1(x, ξ) ◦ p2(x, ξ), but we need to have in mind that this means the expression

given in the right-hand side of (4.17). Therefore, we have the following result concerning the composition.

Theorem 4.4. Let pj ∈ S
mj

0,0 (R), j = 1, 2, and q defined by (4.17). Then q ∈ Sm1+m2
0,0 (R) and

q(x,D) = p1(x,D)p2(x,D). Moreover,

q(x, ξ) =
∑
α<N

1

α!
∂α
ξ p1(x, ξ)D

α
xp2(x, ξ) + rN (x, ξ), (4.18)

where

rN (x, ξ) = N

∫ 1

0

(1− ϑ)N−1

N !
Os−

∫∫
e−iyη∂N

ξ p1(x, ξ + ϑη)DN
x p2(x+ y, ξ)dyd−ηdϑ,

and the semi-norms of rN can be estimated in the following way: for any 0 ∈ N0, there exists 1 = 1(0)

such that

|rN |(m1+m2)
0

≤ C0 |∂N
ξ p1|(m1)

1
|∂N

x p2|(m2)
1

.
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Proof. For a proof of this result, we recommend to the reader [37], Lemma 2.4 and Theorem 1.4.

In order to obtain the desired contradiction mentioned in the first lines of this section, let us

define some essential elements. Let φ ∈ Gθ(R) satisfying

φ̂(ξ) = e−ρ0〈ξ〉1/θ , (4.19)

for some ρ0 > 0. Notice that φ ∈ Sθ1(R). In order to reach this conclusion, we need to prove that

φ(x) =
∫
eiξxφ̂(ξ)d−ξ satisfies |φ(x)| ≤ Ce−c|x|, for some positive constants C and c, due to Proposition

6.1.7 of [41]. Integration by parts leads us to

xβφ(x) = (−1)β
∫

eiξxDβ
ξ e

−ρ0〈x〉1/θd−ξ,

and Faà di Bruno formula together with some factorial inequalities imply the following estimate

|xβφ(x)| ≤
∫ ∣∣∣eiξxDβ

ξ e
−ρ0〈x〉1/θ

∣∣∣ d−ξ
=

∫ β∑
j=1

1

j!
e−ρ0〈ξ〉1/θ

∑
β1+···+βj=β

β�≥1

β!

β1! · · ·βj !

j∏
=1

∣∣∣∂β�

ξ

(
−ρ0〈ξ〉1/θ

)∣∣∣ d−ξ
≤ Cβ

ρ0
β!, ∀x ∈ R, β ∈ N0, (4.20)

hence φ ∈ Sθ1(R) ⊂ Sθs(R), for all s ≥ 1. Then, there exists ρ = (ρ1, ρ2), with ρ1, ρ2 > 0, such that

φ ∈ H0
ρ;s,θ(R), for all s ≥ 1.

Now let us consider a sequence (σk)k∈N0
of positive real numbers such that σk → ∞, as

k → ∞. Then we define the sequence of functions (φk)k∈N0
by setting

φk(x) := e−ρ24
1/sσ

p−1
s

k φ
(
x− 4σp−1

k

)
, k ∈ N0.

For each k ∈ N0, φk ∈ H0
ρ;s,θ(R) and satisfies

‖φk‖2H0
ρ;s,θ

=

∫ ∣∣∣eρ2〈x〉1/seρ1〈D〉1/θφk(x)
∣∣∣2 dx

=

∫
e2ρ2〈x〉1/s

∣∣∣eρ1〈D〉1/θφk(x)
∣∣∣2 dx

=

∫
e2ρ2〈x〉1/s

∣∣∣∣eρ1〈D〉1/θe−ρ24
1/sσ

p−1
s

k φ
(
x− 4σp−1

k

)∣∣∣∣2 dx
=

∫
e2ρ2〈x+4σp−1

k 〉1/se−2ρ24
1/sσ

p−1
s

k

∣∣∣eρ1〈D〉1/θφ(x)
∣∣∣2 dx

≤
∫

e2ρ2〈x〉1/s
∣∣∣eρ1〈D〉1/θφ(x)

∣∣∣2 dx
= ‖φ‖2H0

ρ;s,θ
= constant,

which means that the sequence
(
‖φk‖H0

ρ;s,θ

)
k∈N0

is uniformly bounded in k.
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By assuming that the Cauchy problem (4.15) is well-posed in Sθs(R), we can consider, for every

k ∈ N0,

uk ∈ C1
(
[0, T ];H0

ρ̃;s,θ(R)
)
,

where ρ̃ = (ρ̃1, ρ̃2), with ρ̃1, ρ̃2 > 0, the solution of (4.15) with initial datum φk, that is,⎧⎨⎩ Muk(t, x) = 0

uk(0, x) = φk(x)
.

The energy inequality gives us the estimate

‖uk(t, ·)‖L2 ≤ ‖uk(t, ·)‖H0
ρ̃;s,θ

≤ CT,ρ‖φk‖H0
ρ;s,θ

≤ CT,ρ‖φ‖H0
ρ;s,θ

. (4.21)

From the above inequality, it can be concluded that the sequence (‖uk(t)‖L2)k∈N0
is uniformly bounded

with respect to k ∈ N0 and t ∈ [0, T ].

Now we consider a Gevrey cut-off function h ∈ Gθh
0 (R), for θh > 1, such that h(x) = 1 for

|x| ≤ 1
2 and h(x) = 0 for |x| ≥ 1; besides, we assume that its Fourier transform satisfies ĥ(0) > 0 and

ĥ(ξ) ≥ 0 for all ξ ∈ R. By using the sequence (σk)k∈N0 , let us define the sequence of symbols

wk(x, ξ) = h

(
x− 4σp−1

k

σp−1
k

)
h

(
ξ − σk
1
4σk

)
. (4.22)

Remark 4.2. For each k, notice that wk(x, ξ) is a symbol localized around the bicharacteristic curve of

ξp passing through the point (0, σk) at some fixed time t. Indeed, it is also known as the Hamilton flow

generated by the operator Dt +Dp
x passing by a point (x0, ξ0) ∈ R

2, is the solution of⎧⎨⎩ x′(t) = pξ(t)p−1, x(0) = x0

ξ′(t) = 0, ξ(0) = ξ0
, (4.23)

that is, (x(t), ξ(t)) =
(
x0 + ptξp−1

0 , ξ0

)
.

Remark 4.3. On the support of wk, x is comparable with σp−1
k and ξ is comparable σk, because x ∈

supp wk(·, ξ) implies that ∣∣∣∣∣x− 4σp−1
k

σp−1
k

∣∣∣∣∣ ≤ 1 ⇐⇒ 3σp−1
k ≤ x ≤ 5σp−1

k ,

and ξ ∈ supp wk(x, ·) implies that∣∣∣∣ξ − σk
1
4σk

∣∣∣∣ ≤ 1 ⇐⇒ 3

4
σk ≤ ξ ≤ 5

4
σk,

for each k ∈ N0.

For some λ ∈ (0, 1) to be chosen later, let θ1 > 1 such that θh ≤ θ1 and, for each k ∈ N0, let

Nk :=
⌊
σ
λ/θ1
k

⌋
= max

{
α ∈ N0 : α ≤ σ

λ/θ1
k

}
. (4.24)
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For each k, we consider the energy Ek(t) given by

Ek(t) =
∑

α≤Nk,β≤Nk

1

(α!β!)θ1

∥∥∥w(αβ)
k (x,D)uk(t, x)

∥∥∥
L2

=
∑

α≤Nk,β≤Nk

Ek,α,β(t), (4.25)

where

w
(αβ)
k (x, ξ) = h(α)

(
x− 4σp−1

k

σp−1
k

)
h(β)

(
ξ − σk
1
4σk

)
.

From Remark 4.3 it can be easily established the next lemma which gives us an estimate for the norms

of wk.

Lemma 4.1. Let α, β, γ, δ,  ∈ N0. Then w
(αβ)
k ∈ S0

0,0(R
2) and satisfies the estimate

|∂δ
x∂

γ
ξw

(αβ)
k (x, ξ)|(0) ≤ Cα+β+γ+δ++1(α!β!γ!δ!!2)θhσ−γ

k σ
−δ(p−1)
k ,

for some constant C > 0 which does not depend on k, α, β, γ and δ.

We also need the two following propositions to prove the main result of this section. Proposi-

tion 4.2 has a simple proof, which will be done in the sequel. However, Proposition 4.3 requires a lot of

steps to be proved, so we will dedicate a particular subsection to prove it. In the sequel of this section

we shall give it as true and use it to prove Theorem 4.2.

Proposition 4.2. Suppose the Cauchy problem (4.15) is well-posed in Sθs(R). Then there exists C > 0

such that, for all t ∈ [0, T ] and k ∈ N0:

Ek,α,β(t) ≤ Cα+β+1(α!β!)θh−θ1 (4.26)

and

Ek(t) ≤ C. (4.27)

Proof. Since w
(αβ)
k ∈ S0

0,0(R
2), Calderón-Vaillancourt Theorem together with (4.21) and Lemma 4.1

implies that ∥∥∥w(αβ)
k (x,D)uk(t)

∥∥∥
L2

≤ C‖uk(t)‖L2 max
α,β≤2

sup
(x,ξ)∈R2

|∂α
ξ ∂

β
xwk(x, ξ)|

≤ Cα+β+1(α!β!)θh ,

hence by the definition of Ek,α,β(t), we have

Ek,α,β(t) =
1

(α!β!)θ1

∥∥∥w(αβ)
k (x,D)uk(t)

∥∥∥
L2

≤ Cα+β+1(α!β!)θh−θ1 .

Since θ1 > θh, we finally obtain (4.27), that is,

Ek(t) =
∑

α≤Nk,β≤Nk

Ek,α,β(t) ≤ C
∑

α,β∈N0

Cα+β(α!β!)θh−θ1 = constant.

86



Proposition 4.3. Let us suppose that the Cauchy problem (4.15) is well-posed in Sθs(R). Then there

exist positive constants C, c, c1 such that, for all t ∈ [0, T ] and all k sufficiently large, the inequality

∂tEk(t) ≥
(
c1σ

(p−1)(1−σ)
k − C

p∑
=1

σλ
k

σ
p(−1)
k

)
Ek(t)− CNk+1σC−cNk

k ,

holds.

Now we are ready to go on with the proof of Theorem 4.2 assuming that Proposition 4.3 holds

true.

Proof of Theorem 4.2. First of all, we set

Ak := c1σ
(p−1)(1−σ)
k − C

p∑
=1

σλ
k

σ
p(−1)
k

, Rk := CNk+1σC−cNk

k .

By Proposition 4.3, we have that

∂tEk(t) ≥ AkEk(t)−Rk. (4.28)

Picking λ < min{(p− 1)(1− σ), 1}, we notice that

(− 1) (λ− p)︸ ︷︷ ︸
<0

+λ < λ < (p− 1)(1− σ) ⇒ λ− p(− 1) < (p− 1)(1− σ),

so the leading term in Ak is the first one, hence for k sufficiently large we have

Ak ≥ c1
2
σ
(p−1)(1−σ)
k . (4.29)

From now on, let us consider k sufficiently large. Then, by using Gronwall’s inequality, if follows from

(4.28) that

Ek(t) ≥ eAkt

(
Ek(0)−Rk

∫ t

0

e−Akτdτ

)
.

Then, for any T ∗ ∈ [0, T ], by using (4.29), the above inequality turns into

Ek(T
∗) ≥ eT

∗ c1
2 σ

(p−1)(1−σ)
k (Ek(0)− T ∗Rk) . (4.30)

The next step is to estimate Rk and Ek(0). Since Nk =
⌊
σ
λ/θ1
k

⌋
, Rk can be estimated as

Rk ≤ Ce−cσ
λ/θ1
k . (4.31)

To obtain an estimate from below for Ek(0), we notice that, by definition of Ek(t), wk(x, ξ) and φk, if
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F denotes the Fourier transform, we get

Ek(0) ≥ ‖wk(x,D)φk‖L2(Rx)

=

∥∥∥∥∥h
(
x− 4σp−1

k

σp−1
k

)
h

(
D − 4σk

1
4σk

)
φk

∥∥∥∥∥
L2(Rx)

= e−ρ24
1/sσ

(p−1)/s
k

∥∥∥∥∥h
(
x− 4σp−1

k

σp−1
k

)
h

(
D − 4σk

1
4σk

)
φ(x− 4σp−1

k )

∥∥∥∥∥
L2(Rx)

= e−ρ24
1/sσ

(p−1)/s
k

∥∥∥∥∥F
[
h

(
x− 4σp−1

k

σp−1
k

)]
(ξ) ∗ h

(
ξ − σk
1
4σk

)
e−4iσp−1

k ξφ̂(ξ)

∥∥∥∥∥
L2(Rξ)

= e−ρ24
1/sσ

(p−1)/s
k σp−1

k

∥∥∥∥e−4iσp−1
k ξĥ

(
σp−1
k ξ
)
∗ h
(
ξ − σk
1
4σk

)
e−4iσp−1

k ξφ̂(ξ)

∥∥∥∥
L2(Rξ)

,

hence

E2
k(0) ≥ e−2ρ24

1/sσ
(p−1)/s
k σ

2(p−1)
k

∫
Rξ

∣∣∣∣∣
∫
Rη

ĥ
(
σp−1
k (ξ − η)

)
h

(
η − σk
1
4σk

)
φ̂(η)dη

∣∣∣∣∣
2

dξ.

Since ĥ(0) > 0 and ĥ(ξ) ≥ 0, for all ξ ∈ R, it will be possible to obtain estimates from below to E2
k(0)

performing a restriction in the integration domain. Set

G1,k :=

[
7

8
σk,

7

8
σk + σ−p

k

]
and G2,k :=

[
7

8
σk − σ−p

k ,
7

8
σk + σ−p

k

]
.

Notice that, if η ∈ G1,k then |η − σk| ≤ σk

8 , because

η ∈ G1,k ⇒ 7

8
σk ≤ η ≤ 7

8
σk + σ−p

k ⇒ −σk

8
≤ η − σk ≤ −σk

8
+ σ−p

k .

Also, if η ∈ G1,k and ξ ∈ G2,k, we notice that

σp−1
k |ξ − η| ≤ 2σ−1

k ,

because η ∈ G1,k implies that

−σ−p
k − 7

8
σk ≤ −η ≤ −7

8
σk, (4.32)

ξ ∈ G2,k implies that
7

8
σk − σ−p

k ≤ ξ ≤ 7

8
σk + σ−p

k , (4.33)

and from (4.32) and (4.33) we get

−2σ−p
k ≤ ξ − η ≤ σ−p

k ≤ 2σ−p
k ⇒ |ξ − η| ≤ 2σ−p

k ⇒ σp−1
k |ξ − η| ≤ 2σ−1

k .

If we pick (ξ, η) ∈ G2,k ×G1,k, then σp−1
k (ξ− η) is close to zero for k large enough, hence by the choices

of ĥ(0) > 0 and ĥ(ξ) ≥ 0, there exists a constant C > 0 such that

ĥ
(
σp−1
k (ξ − η)

)
> C.
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Furthermore, if η ∈ G1,k then h
(

η−σk
1
4σk

)
= 1. Finally, since η is comparable with σk in G1,k, it follows

from φ̂(η) = e−ρ0〈η〉1/θ that

φ̂(η) ≥ e−cρ0σ
1/θ
k ,

for a positive constant cρ0
depending on ρ0. Finally, we obtain

E2
k(0) ≥ e−2ρ24

1/sσ
(p−1)/s
k σ

2(p−1)
k

∫
G2,k

∣∣∣∣∣
∫
G1,k

Ce−cρ0σ
1/θ
k dη

∣∣∣∣∣
2

dξ

= Ce−2ρ24
1/sσ

(p−1)/s
k σ

−(p+2)
k e−2cρ0σ

1/θ
k

which implies that

Ek(0) ≥ Cσ
−(p+2)/2
k exp

(
−ρ24

1/sσ
(p−1)/s
k

)
exp
(
−cρ0σ

1/θ
k

)
≥ C exp

(
−c̃ρ0,ρ2σ

max{ p−1
s , 1θ}

k

)
. (4.34)

From (4.30), (4.31) and (4.34) we get

Ek(T
∗) ≥ C exp

(
T ∗ c1

2
σ
(p−1)(1−σ)
k

)[
σ
− p+2

2

k exp
(
−ρ24

1
s σ

p−1
s

k − cρ0σ
1
θ

k

)
− T ∗ exp

(
−cσ

λ
θ1

k

)]
≥ C1 exp

(c1
2
T ∗σ(p−1)(1−σ)

k

)[
exp

(
−c̃ρ0,ρ2

σ
max{ p−1

s , 1θ}
k

)
− T ∗ exp

(
−cσ

λ
θ1

k

)]
. (4.35)

for all T ∗ ∈ (0, T ], once λ < (p − 1)(1 − σ) and k is sufficiently large. Assume by contradiction that

max
{

1
(p−1)θ ,

1
s

}
< 1−σ, which is equivalent to max

{
1
θ ,

p−1
s

}
< (p−1)(1−σ), and take λ < (p−1)(1−σ).

Then, we can pick θ1 very close to 1 such that

λ

θ1
> max

{
1

θ
,
p− 1

s

}
.

It follows from (4.35) that

Ek(T
∗) ≥ C2 exp

(
c̃T ∗

2
σ
(p−1)(1−σ)
k

)
exp

(
−c′′σ

max{ 1
θ ,

p−1
s }

k

)
−→ ∞, as k → ∞,

since (p− 1)(1− σ) > max
{

1
θ ,

p−1
s

}
, which gives us a contradiction, due to Proposition 4.2.

4.4.2 Proof of Proposition 4.3

As we mentioned before, the proof of Proposition 4.3 is very long, so we will dedicate this

section to prove it.

Let us set

v
(αβ)
k (t, x) := w

(αβ)
k (x,D)uk(t, x).

By denoting [H,K] = HK −KH, for H,K operators, we can write

Mv
(αβ)
k = Mw

(αβ)
k uk

= w
(αβ)
k Muk︸ ︷︷ ︸

=0

+[M,w
(αβ)
k ]uk

= [M,w
(αβ)
k ]uk =: f

(αβ)
k .
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In order to obtain an estimate from below for ∂tEk, let us compute

‖v(αβ)k (t)‖L2(R)∂t‖v(αβ)k (t)‖L2(R) =

(∫
R

|v(αβ)k (t, x)|2dx
) 1

2

∂t

(∫
R

|v(αβ)k (t, x)|2dx
) 1

2

=

(∫
R

|v(αβ)k (t, x)|2dx
) 1

2

· 1
2

(∫
R

|v(αβ)k (t, x)|2dx
)− 1

2

× ∂t

∫
R

|v(αβ)k (t, x)|2dx

=
1

2
∂t

(
‖v(αβ)k (t)‖2L2(R)

)
= Re

(
∂tv

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

. (4.36)

The definition of M implies that ∂t = iM − iDp
x+ 〈x〉−σDp−1

x , hence we can rewrite (4.36) and estimate

from below

‖v(αβ)k (t)‖L2(R)∂t‖v(αβ)k (t)‖L2(R)

= Re
(
iMv

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

−Re
(
iDp

xv
(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)︸ ︷︷ ︸

purely imaginary

+ Re
(
〈x〉−σDp−1

x v
(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

≥ −‖f (αβ)
k (t)‖L2(R)‖v(αβ)k (t)‖L2(R) +Re

(
〈x〉−σDp−1

x v
(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

, (4.37)

and now we need to estimate:

1. Re
(
〈x〉−σDp−1

x v
(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

from below.

2. ‖f (αβ)
k (t)‖L2(R) from above.

Estimates from below to Re
(
〈x〉−σDp−1

x v
(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

Let χk and ψk cut-off functions defined by

χk(ξ) = h

(
ξ − σk
3
4σk

)
and ψk(x) = h

(
x− 4σp−1

k

3σp−1
k

)
, (4.38)

respectively. Recalling the definition of h, we notice that in the support of ψk(x)χk(ξ) we have

|ξ − σk| ≤ 3

4
σk ⇔ σk

4
≤ ξ ≤ 7σk

4

and

|x− 4σp−1
k | ≤ 3σp−1

k ⇔ σp−1
k ≤ x ≤ 7σp−1

k ,

for all k ∈ N0. From these inequalities, it follows that if (x, ξ) ∈ suppψk(x)χk(ξ) then

ξp−1 ≥ σp−1
k

4p−1
and 〈x〉−σ ≥ 7−σ〈σp−1

k 〉−σ,
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hence

ξp−1〈x〉−σ ≥ 7−σ

4p−1
〈σp−1

k 〉−σσp−1
k .

By setting Θ := 7−σ

4p−1 , let us consider a decomposition of the symbol of 〈x〉−σDp−1
x in the following way

〈x〉−σξp−1 = Θ〈σp−1
k 〉−σσp−1

k + 〈x〉−σξp−1−Θ〈σp−1
k 〉−σσp−1

k

= Θ〈σp−1
k 〉−σσp−1

k︸ ︷︷ ︸
=:I1,k

+
(
〈x〉−σξp−1 −Θ〈σp−1

k 〉−σσp−1
k

)
ψk(x)χk(ξ)︸ ︷︷ ︸

=:I2,k(x,ξ)

+
(
〈x〉−σξp−1 −Θ〈σp−1

k 〉−σσp−1
k

)
(1− ψk(x)χk(ξ))︸ ︷︷ ︸

=:I3,k(x,ξ)

= I1,k + I2,k(x, ξ) + I3,k(x, ξ).

In the following, we shall estimate each Re
(
I,k(x,D)v

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

,  ∈ {1, 2, 3}.

� Estimate of Re
(
I1,kv

(αβ)
k (t), v

(αβ
k (t)

)
L2(R)

. Since I1,k = Θ〈σp−1
k 〉−σσp−1

k , we get

Re
(
I1,kv

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

= Re
(
Θ〈σp−1

k 〉−σσp−1
k v

(αβ)
k (t), vαβk (t)

)
L2(R)

= Θ〈σp−1
k 〉−σσp−1

k ‖v(αβ)k (t)‖2L2(R)

≥ 2−
σ
2 Θσ

(p−1)(1−σ)
k ‖v(αβ)k (t)‖2L2(R). (4.39)

� Estimate of Re
(
I2,k(x,D)v

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

. Just recall that

I2,k(x, ξ) =
(
〈x〉−σξp−1 −Θ〈σp−1

k 〉−σσp−1
k

)
ψk(x)χk(ξ),

and this symbol belongs to SGp−1,−σ(R2) with uniform estimates with respect to k. Indeed, we

have that

|∂γ
ξ ∂

ν
xI2,k(x, ξ)| =

∣∣∣∂γ
ξ ∂

ν
x

[(
〈x〉−σξp−1 −Θ〈σp−1

k 〉−σσp−1
k

)
ψk(x)χk(ξ)

]∣∣∣
≤

∑
γ1+γ2=γ

ν1+ν2=ν

γ!ν!

γ1!γ2!ν1!ν2!

∣∣∣∂γ1

ξ ∂ν1
x

(
〈x〉−σξp−1 −Θ〈σp−1

k 〉σp−1
k

)∣∣∣
× |∂ν2

x ψk(x)||∂γ2

ξ χk(ξ)|.

Since h ∈ Gθh
0 (R), ψk and χk satisfy, respectively,

|∂ν2
x ψk(x)| =

∣∣∣∣∣∂ν2
x h

(
x− 4σp−1

k

3σp−1
k

)∣∣∣∣∣ ≤ Cν2+1ν2!
θhσ

−(p−1)ν2

k

and

|∂γ2

ξ χk(ξ)| =
∣∣∣∣∂γ2

ξ h

(
ξ − σk
3
4σk

)∣∣∣∣ ≤ Cγ2+1γ2!
θhσ−γ2

k .
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Now, by using the above inequalities and the fact that x is comparable with σp−1
k and ξ is com-

parable with σk on the support of ψk(x)χk(ξ), we can compute and estimate

|∂γ
ξ ∂

ν
xI2,k(x, ξ)|

≤
∑

γ1+γ2=γ

ν1+ν2=ν

γ!ν!

γ1!γ2!ν1!ν2!
Cγ1+ν1+1γ1!ν1!〈x〉−σ−ν1〈ξ〉p−1−γ1Cγ1+ν2+1γ2!

θhν2!
θhσ−γ2

k σ
−ν2(p−1)
k

≤ Cγ+ν+1(γ!ν!)θh〈ξ〉p−1−γ〈x〉−σ−ν .

Moreover, by the choice of Θ, we have that I2,k(x, ξ) ≥ 0, for all x, ξ ∈ R, then it follows by

Theorem 2.10 that

I2,k(x,D) = p2,k(x,D) + r2,k(x,D),

where p2,k(x,D) is a positive operator and r2,k ∈ SGp−2,−σ−1(R2). Once the semi-norms of I2,k

are uniformly bounded with respect to k, the same holds to the semi-norms of r2,k. In this way,

we have that

Re
(
I2,k(x,D)v

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

≥ Re
(
r2,k(x,D)v

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

= Re(r2,k〈x〉−σ+1︸ ︷︷ ︸
order p−2

〈x〉−σ−1v
(αβ)
k (t), v

(αβ)
k (t))L2(R)

≥ −C‖〈x〉−σ−1v
(αβ)
k (t)‖Hp−2(R)‖v(αβ)k (t)‖L2(R)

≥ −C‖v(αβ)k (t)‖L2(R)

p−2∑
=0

∥∥∥D
x

(
〈x〉−σ−1v

(αβ)
k (t)

)∥∥∥
L2(R)

.

To deal with the terms
∥∥∥D

x

(
〈x〉−σ−1v

(αβ)
k (t)

)∥∥∥
L2(R)

we need to use the Leibniz formula and write

D
x

(
〈x〉−σ−1v

(αβ)
k (t)

)
=

∑
′=0

(


′

)
D′

x 〈x〉−σ−1D−′
x v

(αβ)
k (t).

On the support of D−′
x v

(αβ)
k (t), x is comparable with σp−1

k , hence

∥∥∥D
x

(
〈x〉−σ−1v

(αβ)
k (t)

)∥∥∥
L2(R)

≤ C+1σ
−(p−1)(σ+1)
k

∑
′=0

!

(− ′)!
‖D−′

x v
(αβ)
k (t)‖L2(R).

Now, we need the following lemma to conclude the desired estimate. The proof follows readily

the same argument of the proof of Lemma 2 in [7], the only difference is that here we require

well-posedness in Sθs(R).

Lemma 4.2. If the Cauchy problem (4.15) is well-posed in Sθs(R), then for all N ∈ N, the following

estimate holds:

‖Dr
xv

(αβ)
k (t)‖L2(R) ≤ Cσr

k‖v(αβ)k (t)‖L2(R) + Cα+β+N+1(α!β!)θhN !2θh−1σr−N
k ,

for some positive constant C which does not depend on k.
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Applying Lemma 4.2 for N = Nk, the following estimate can be achieved∥∥∥D
x

(
〈x〉−σ−1v

(αβ)
k (t)

)∥∥∥
L2(R)

≤ Cσ
−(p−1)(σ+1)+
k ‖v(αβ)k ‖L2(R)

+ Cα+β+Nk+1(α!β!)θhNk!
2θh−1σ

−(p−1)(σ+1)
k σ−Nk

k .

Therefore, we conclude that

Re
(
I2,k(x,D)v

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

≥ −Cσ
−(p−1)σ−1
k ‖v(αβ)k (t)‖2L2(R) (4.40)

− Cα+β+Nk+1(α!β!)θhNk!
2θh−1σ

−(p−1)σ−Nk−1
k ‖v(αβ)k (t)‖L2(R).

� Estimate of Re
(
I3,k(x,D)v

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

. Recalling that

I3,k(x, ξ) =
(
〈x〉−σξp−1 −Θ〈σp−1

k 〉−σσp−1
k

)
(1− ψk(x)χk(ξ)),

due to the fact that the supports of w
(αβ)
k (x, ξ) and 1− ψk(x)χk(ξ) are disjoint, we may write

I3,k(x,D) ◦ w(αβ)
k (x,D) = R

(αβ)
k (x,D),

where

R
(αβ)
k (x, ξ) = Nk

∫ 1

0

(1− ϑ)Nk−1

Nk!
Os−

∫∫
e−iyη∂Nk

ξ I3,k(x, ξ + ϑη)DNk
x w

(αβ)
k (x+ y, ξ)dyd−ηdϑ.

The semi-norms of R
(αβ)
k can be estimated as: for each 0 ∈ N0, there exists 1 = 1(0) such that

|Rk|(0)0
≤ C(0)

Nk

Nk!
|∂Nk

ξ I3,k|(0)1
|∂Nk

x w
(αβ)
k |(0)1

.

From Lemma 4.1, we have that

|∂Nk
x w

(αβ)
k |(0)1

≤ C1+α+β+Nk+11!
2θh(α!β!Nk!)

θhσ
−Nk(p−1)
k .

Since σk → +∞, we can assume that Nk ≥ p, then

∂Nk

ξ I3,k(x, ξ) = −
∑

N1+N2=Nk
N1≤p−1

Nk!

N1!N2!
∂N1

ξ

(
〈x〉−σξp−1 −Θ〈σp−1

k 〉−σσp−1
k

)
ψk(x)∂

N2

ξ χk(ξ),

hence

|∂Nk

ξ I3,k(x, ξ)|(0)1
≤ C1+Nk+11!

2θhNk!
θhσp−1−Nk

k .

By gathering the previous estimates, we obtain

|R(αβ)
k |(0)0

≤ Cα+β+Nk+1(α!β!)θhNk!
2θh−1σ

p(1−Nk)−1
k ,

which provides that

‖I3,k(x,D)v
(αβ)
k (t)‖L2(R) ≤ Cα+β+Nk+1(α!β!)θhNk!

2θh−1σ
p(1−Nk)−1
k .
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Finally, we get

Re
(
I3,k(x,D)v

(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

≥ −Cα+β+Nk+1(α!β!)θhNk!
2θh−1σ

p(1−Nk)−1
k ‖v(αβ)k (t)‖L2(R).

(4.41)

From (4.39), (4.40) and (4.41), we obtain the following Lemma.

Lemma 4.3. If the Cauchy problem (4.15) is well-posed in Sθs(R), then for all k sufficiently large the

estimate

Re
(
〈x〉−σDp−1

x v
(αβ)
k (t), v

(αβ)
k (t)

)
L2(R)

≥ c1σ
(p−1)(1−σ)
k ‖v(αβ)k (t)‖2L2(R)

− Cα+β+Nk+1(α!β!)θhNk!
2θh−1σ

p(1−Nk)−1
k ‖vαβk (t)‖L2(R)

holds for some c1 > 0 independent of k, α, β and Nk.

Estimates from above of ‖f (αβ)
k (t)‖L2(R)

We know that

f
(αβ)
k = [M,w

(αβ)
k ]uk = [Dt +Dp

x, w
(αβ)
k ]uk + [i〈x〉−σDp−1

x , w
(αβ)
k ]uk,

so our goal is to estimate the above commutators.

� Estimate of [Dt +Dp
x, w

(αβ)
k ]uk. Since w

(αβ)
k does not depend on t, we have that

[Dt +Dp
x, w

(αβ)
k ]uk =

p∑
γ=1

(
p

γ

)
Dγ

xw
(αβ)
k Dp−γ

x uk, (4.42)

because

[Dt +Dp
x, w

(αβ)
k ]uk = [Dp

x, w
(αβ)
k ]uk

= Dp
x(w

(αβ)
k uk)− w

(αβ)
k Dp

xuk

=

p∑
γ=0

(
p

γ

)
Dγ

xw
(αβ)
k Dp−γ

x uk − w
(αβ)
k Dp

xuk

=

{
p∑

γ=1

(
p

γ

)
Dγ

xw
(αβ)
k Dp−γ

x + w
(αβ)
k Dp

x − w
(αβ)
k Dp

x

}
uk

=

{
p∑

γ=1

(
p

γ

)
Dγ

xw
(αβ)
k Dp−γ

x

}
uk.

To deal with the right-hand side of (4.42), we will need the identities:

f(x)D
xg(x) =

∑
j=0

(−1)j
(


j

)
D−j

x (g(x)Djf(x)), (4.43)

94



for f and g smooth functions,

p∑
γ=1

p−γ∑
j=0

cγ,jaγ+j =

p∑
=1

⎛⎝ ∑
q=1

cq,−q

⎞⎠ a

and

(−1)+1

!
=

∑
q=1

(−1)−q

q!(− q)!
.

Then (4.42) becomes

[Dt +Dp
x, w

(αβ)
k ]

=

p∑
γ=1

p−γ∑
j=0

(−1)jp!

γ!j!(p− γ − j)!

(
1

iσp−1
k

)γ+j

Dp−γ−j
x ◦ w((α++j)β)

k (x,D)

=

p∑
=1

⎛⎝ ∑
q=1

(−1)−q

q!(− q)!

⎞⎠ p!

(p− )!

(
1

iσp−1
k

)

Dp−
x ◦ w((α+)β)

k (x,D)

=

p∑
=1

(−1)+1

(
p



)(
1

iσp−1
k

)

Dp−
x ◦ w((α+)β)

k (x,D).

By Lemma 4.2, we get∥∥∥[Dt +Dp
x, w

(αβ)
k ]uk

∥∥∥
L2(R)

≤ C

p∑
=1

(
p



)
1

σ
(p−1)
k

‖Dp−
x v

((α+)β)
k ‖L2(R)

≤ C

p∑
=1

1

σ
p(−1)
k

‖v((α+)β)
k ‖L2(R) + Cα+β+Nk+1(α!β!)θhNk!

2θh−1σp−1−Nk

k . (4.44)

� Estimate of [i〈x〉−σDp−1
x , w

(αβ)
k ]uk. Notice that the commutator can be written in the following

way:

[i〈x〉−σDp−1
x , w

(αβ)
k ] = i〈x〉−σ

p−1∑
γ=1

(
p− 1

γ

)
Dγ

xw
(αβ)
k (x,D)Dp−1−γ

x

− i

Nk−1∑
γ=1

1

γ!
Dγ

x〈x〉−σ∂γ
ξw

(αβ)
k (x,D)Dp−1

x + r
(αβ)
k (x,D), (4.45)

where the symbol of r
(αβ)
k (x,D) is

r
(αβ)
k (x, ξ) = −iNk

∫ 1

0

(1− ϑ)Nk−1

Nk!
Os−

∫∫
e−iyη∂Nk

ξ w
(αβ)
k (x, ξ + ϑη)DNk

x 〈x+ y〉−σξp−1dyd−ηdϑ.

In order to estimate r
(αβ)
k , we use the support properties of w

(αβ)
k and write

ξp−1 = (ξ + ϑη − ϑη)p−1 =

p−1∑
=0

(
p− 1



)
(ξ + ϑη)(−ϑη)p−1−.
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Now we deal with the oscillatory integral by using the above identity and integration by parts,

which lead us to

Os−
∫∫

e−iyη∂Nk

ξ w
(αβ)
k (x, ξ + ϑη)DNk

x 〈x+ y〉−σξp−1dyd−η

=

p−1∑
=0

(
p− 1



)
ϑp−1−

× Os−
∫∫

Dp−1−
y e−iyη∂Nk

ξ w
(αβ)
k (x, ξ + ϑη)(ξ + ϑη)DNk

x 〈x+ y〉−σdyd−η

=

p−1∑
=0

(
p− 1



)
(−ϑ)p−1−

× Os−
∫∫

e−iyη∂Nk

ξ w
(αβ)
k (x, ξ + ϑη)(ξ + ϑη)DNk+p−1−

x 〈x+ y〉−σdyd−η.

Hence we can estimate the semi-norms of r
(αβ)
k in the following way:

|r(αβ)k |(0)0
≤ CNk+p−1

Nk!

p−1∑
=0

|ξ∂Nk

ξ w
(αβ)
k |(0)1

|DNk+p−1−
x 〈x〉−σ|(0)1

≤ Cα+β+Nk+1(α!β!)θhNk!
2θh−1σp−1−Nk

k . (4.46)

By using Calderón-Vaillancourt Theorem and the well-posedness in Sθ
s (R), it can be concluded

that

‖r(αβ)k (x,D)uk‖L2(R) ≤ Cα+β+Nk+1(α!β!)θhNk!
2θh−1σp−1−Nk

k . (4.47)

In
∑Nk−1

γ=1
1
γ!D

γ
x〈x〉−σ∂γ

ξw
(αβ)
k (x,D)Dp−1

x , the formula (4.43) can be applied, that is,

Nk−1∑
γ=1

1

γ!
Dγ

x〈x〉−σ∂γ
ξw

(αβ)
k (x,D)Dp−1

x

=

Nk−1∑
γ=1

p−1∑
=0

1

γ!

(
p− 1



)(
4

σk

)γ
(

1

σp−1
k

)

Dγ
x〈x〉−σDp−1−

x ◦ w((α+)(β+γ))
k (x,D). (4.48)

Using the support ofDp−1−
x v

((α+)(β+γ))
k and the fact that |Dγ

x〈x〉−σ| ≤ Cγ+1γ!〈x〉−σ−γ , it follows

that

‖Dγ
x〈x〉−σDp−1−

x v
((α+)(β+γ))
k ‖L2(R) ≤ Cγ+1γ!σ

−(p−1)(σ+γ)
k ‖Dp−1−

x v
((α+)(β+γ))
k ‖L2(R).

By Lemma 4.2, with N = Nk − γ, we get

‖Dp−1−
x v

((α+)(β+γ))
k ‖L2(R) ≤ Cσp−1−

k ‖v((α+)(β+γ))
k ‖L2(R)

+ Cα++β+Nk+1 (α!β!!γ!)
θh (Nk − γ)2θh−1σp−1−−Nk+γ

k ,
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hence

‖Dγ
x〈x〉−σDp−1−

x v
((α+)(β+γ))
k ‖L2(R) ≤ Cγ+1γ!σ

−(σ+γ)
k σp−1−

k ‖v((α+)(β+γ))
k ‖L2(R)

+ Cγ+1γ!σ
−(p−1)(σ+γ)
k Cα++β+Nk+1(α!β!!γ!)θh(Nk − γ)!2θh−1σ

p−1−−(Nk−γ)
k

= Cγ+1γ!σ
−(p−1)(σ+γ)+p−1−
k ‖v((α+)(β+γ))

k ‖L2(R)

+ Cγ+1γ!σ
−(p−1)(σ+γ)
k Cα++β+Nk(α!β!!γ!)θh(Nk − γ)!2θh−1σ

p−1−−(Nk−γ)
k .

Now we can estimate∥∥∥∥∥
Nk−1∑
γ=1

1

γ!
Dγ

x〈x〉−σ∂γ
ξw

(αβ)
k (x,D)Dp−1

x uk

∥∥∥∥∥
L2(R)

≤
Nk−1∑
γ=1

p−1∑
=0

1

γ!

(
p− 1



)(
4

σk

)γ
(

1

σp−1
k

)

‖Dγ
x〈x〉−σDp−1−

x ◦ w((α+)(β+γ))
k (x,D)uk︸ ︷︷ ︸

=v
((α+�)(β+γ))
k

‖L2(R)

≤
Nk−1∑
γ=1

p−1∑
=0

1

γ!

(
p− 1



)
4γσ−γ

k σ
−(p−1)
k

{
Cγ+1γ!σ

−(p−1)(σ+γ)+p−1−
k ‖v((α+)(β+γ))

k ‖L2(R)

+ Cγ+1γ!σ
−(p−1)(σ+γ)
k Cα++β+Nk(α!β!!γ!)θh(Nk − γ)!2θh−1σ

p−1−−(Nk−γ)
k

}
≤ C

p−1∑
=0

Nk−1∑
γ=1

Cγσ
p−1−(p−1)σ−p(+γ)
k ‖v((α+)(β+γ))

k ‖L2(R)

+ Cα+β+Nk+1(α!β!)θhNk!
2θh−1σ

1−Nk−(p−1)σ
k . (4.49)

To estimate the first term of (4.45), we can write

p−1∑
γ=1

(
p− 1

γ

)
Dγ

xw
(αβ)
k (x,D)Dp−1−γ

x

=

p−1∑
=1

(−1)+1

(
p− 1



)
1

(iσp−1
k )

Dp−1−
x ◦ w((α+)β)

k (x,D),

and then, by using Lemma 4.2 once again, it follows that∥∥∥∥∥i〈x〉−σ

p−1∑
γ=1

(
p− 1

γ

)
Dγ

xw
(αβ)
k (x,D)Dp−1−γ

x uk

∥∥∥∥∥
L2(R)

=

∥∥∥∥∥i〈x〉−σ

p−1∑
=1

(−1)+1

(
p− 1



)
1

(iσp−1
k )

Dp−1−
x ◦ w((α+)β)

k (x,D)uk

∥∥∥∥∥
L2(R)

≤ C̃

p−1∑
=1

σ
−σ−(p−1)
k

{
Cσp−1−

k ‖v((α+)β))
k ‖L2(R) + Cα++β+Nk+1(α!β!)θhNk!

2θh−1σp−1−−Nk

k

}

≤ C

p−1∑
=1

σ
−(σ+p(−1)+1)
k ‖v((α+)β)

k ‖L2(R) + Cα+β+Nk+1(α!β!)θhNk!
2θh−1σp−1−σ−Nk

k . (4.50)
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From (4.47), (4.49) and (4.50), we get

∥∥∥[i〈x〉−σDp−1
x , w

(αβ)
k ]uk

∥∥∥
L2(R)

≤
∥∥∥∥∥i〈x〉−σ

p−1∑
γ=1

(
p− 1

γ

)
Dγ

xw
(αβ)
k (x,D)Dp−1−γ

x uk

∥∥∥∥∥
L2(R)

+

∥∥∥∥∥i
Nk−1∑
γ=1

1

γ!
Dγ

x〈x〉−σ∂γ
ξw

(αβ)
k (x,D)Dp−1

x uk

∥∥∥∥∥
L2(R)

+ ‖r(αβ)k (x,D)uk‖L2(R)

≤ C

p−1∑
=0

Nk−1∑
γ=1

Cγσ
p−1−(p−1)σ−p(γ+)
k ‖v((α+)(β+γ))

k ‖L2(R)

+ C

p−1∑
=1

σ
p(1−)−(σ+1)
k ‖v((α+)β)

k ‖L2(R)

+ Cα+β+Nk+1(α!β!)θhNk!
2θh−1σp−1−Nk

k . (4.51)

After all the previous computations, the inequalities (4.44) and (4.51) lead us to the next

result, which provides the desired estimate from above to f
(αβ)
k .

Lemma 4.4. Let suppose that the Cauchy problem (4.15) is well-posed in Sθs(R). Then

‖f (αβ)
k ‖L2(R) ≤ C

p∑
=1

1

σ
p(−1)
k

‖v((α+)β)
k ‖L2(R) + C

p−1∑
=0

Nk−1∑
γ=1

Cγσ
p−1−(p−1)σ−p(+γ)
k ‖v((α+)(β+γ))

k ‖L2(R)

+ Cα+β+Nk+1(α!β!)θhNk!
2θh−1σp−1−Nk

k ,

for some positive constant C which does not depend on k, α, β and Nk.

Finally, we are able to conclude the proof of Proposition 4.3.

Proof of Proposition 4.3. Inequality (4.37) can be combined with Lemmas 4.3 and 4.4 in order to obtain

that

∂t‖v(αβ)k ‖L2(R) ≥ −‖f (αβ)
k ‖L2(R) +Re

(
〈x〉−σDp−1

x v
(αβ)
k , v

(αβ)
k

)
L2(R)

‖v(αβ)k ‖−1
L2(R)

≥ c1σ
(p−1)(1−σ)
k ‖v(αβ)k ‖L2(R) − C

p∑
=1

1

σ
p(−1)
k

‖v((α+)β)
k ‖L2(R)

− C

p−1∑
=0

Nk−1∑
γ=1

Cγσ
p−1−(p−1)σ−p(+γ)
k ‖v((α+)(β+γ))

k ‖L2(R)

− Cα+β+Nk+1(α!β!)θhNk!
2θh−1σp−1−Nk

k .
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Then, by definition of Ek(t), it follows that

∂tEk(t) =
∑

α≤Nk,β≤Nk

1

(α!β!)θ1
∂t‖v(αβ)k (t, ·)‖L2(R)

≥
∑

α≤Nk,β≤Nk

1

(α!β!)θ1
c1σ

(p−1)(1−σ)
k ‖v(αβ)k ‖L2(R)

− C

p∑
=1

1

σ
p(−1)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+)β)

k ‖L2(R)

− C

p−1∑
=0

Nk−1∑
γ=1

Cγσ
p−1−(p−1)σ−p(+γ)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+)(β+γ))

k ‖L2(R)

−
∑

α≤Nk,β≤Nk

1

(α!β!)θ1
Cα+β+Nk+1(α!β!)θhNk!

2θh−1σp−1−Nk

k .

Now our task is to treat all the terms in the right-hand side of the above inequality. Starting with the

first one, we simply have∑
α≤Nk,β≤Nk

1

(α!β!)θ1
c1σ

(p−1)(1−σ)
k ‖v(αβ)k ‖L2(R) = c1σ

(p−1)(1−σ)
k Ek(t). (4.52)

To deal with the second term, just recall that Ek,α+,β(t) = (α+)!−θ1β!−θ1‖v((α+)β)
k (t)‖L2(R),

hence

p∑
=1

C

σ
p(−1)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+)β)

k ‖L2(R) =

p∑
=1

C

σ
p(−1)
k

∑
α≤Nk,β≤Nk

(α+ )!θ1

α!θ1
Ek,α+,β

≤
p∑

=1

CN θ1
k

σ
p(−1)
k

(
Ek +

Nk∑
α=Nk−+1

Ek,α+,β

)
.

From (4.26) in Proposition 4.2 it holds that

Ek,α+,β ≤ Cα+β++1((α+ )!β!)θh−θ1 ,

and, since α+  ≥ Nk and θh − θ1 ≤ 0, we obtain that

p∑
=1

C

σ
p(−1)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+)β)

k ‖L2(R) ≤
p∑

=1

CN θ1
k

σ
p(−1)
k

(
Ek + CNk+1Nk!

θh−θ1
)
.

The definition Nk = �σ
λ
θ1

k � and the inequality NNk

k ≤ eNkNk! allow us to estimate

p∑
=1

C

σ
p(−1)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+)β)

k ‖L2(R)

≤ C

p∑
=1

(σ
λ
θ1

k )θ1

σ
p(−1)
k

(
Ek + CNk+1eNk(θh−θ1)σ

λ
θ1

(θh−θ1)Nk

k

)

≤ C

p∑
=1

σλ
k

σ
p(−1)
k

Ek + CNk+1σC−cNk

k , (4.53)
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where, from now on, c is a positive constant independent from k.

In the third term, we employ the identity ‖v((α+)(β+γ))
k ‖L2(R) = ((α+)!(β+γ)!)θ1Ek,α+,β+γ ,

the estimate

(β + γ)!

β!
≤ (β + γ)γ ≤ (rNk)

γ ≤ rγ(σ
λ
θ1

k )γ , provided that β + γ ≤ rNk, r ∈ N,

and the fact that, if λ ∈ (0, 1), then for k sufficiently large it holds Cσλ−1
k < 1. Notice that

p−1∑
=0

Nk−1∑
γ=1

Cγσ
p−1−(p−1)σ−p(+γ)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θh
‖v((α+)(β+γ))

k ‖L2(R)

=

p−1∑
=0

Nk−1∑
γ=1

Cγσ
p−1−(p−1)σ−p(+γ)
k

∑
α≤Nk,β≤Nk

((α+ )!(β + γ)!)θ1

(α!β!)θ1
Ek,α+,β+γ

≤
p−1∑
=0

Nk−1∑
γ=1

∑
α≤Nk,β≤Nk

⎧⎪⎪⎨⎪⎪⎩
∑

α≤Nk−�

β≤Nk−γ

+
∑

α≤Nk,β≤Nk
α+>Nk or β+γ>Nk

⎫⎪⎪⎬⎪⎪⎭ (Cσλ−1
k )γσ

p−1−(p−1)σ−p(+γ)
k Ek,α+,β+γ

≤ Ek +

p−1∑
=0

Nk−1∑
γ=1

∑
α≤Nk,β≤Nk

α+>Nk or β+γ>Nk

Cα++β+γ+1((α+ )!(β + γ)!)θh−θ1

≤ Ek + CNk+1Nk!
θh−θ1 .

Since Nk = �σ
λ
θ1

k �, the above inequality turns into

p−1∑
=0

Nk−1∑
γ=1

Cγσ
p−1−(p−1)σ−p(+γ)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θh
‖v((α+)(β+γ))

k ‖L2(R) ≤ Ek + CNk+1σC−cNk

k , (4.54)

for all k sufficiently large, where C and c are positive constants which do not depend on k.

For the fourth and last term, by using definition of Nk = �σ
λ
θ1

k � and recalling that θh < θ1, it

can be concluded that∑
α≤Nk,β≤Nk

1

(α!β!)θ1
Cα+β+Nk+1(α!β!)θhNk!

2θh−1σp−1−Nk

k ≤ CNk+1σC−cNk

k . (4.55)

Therefore, gathering (4.52), (4.53), (4.54) and (4.55) the proof is concluded.
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4.5 Open problems and concluding remarks

In this last section we outline some possible improvements which could be done and some

open problems related to p−evolutions equations in Gevrey and Gelfand-Shilov spaces.

1. First of all, one important extension is the study of the Cauchy problem for a p−evolution operator

of the form (2) in arbitrary space dimension, that is for x ∈ R
n, n > 1. Essentially, the main

difficulty in this case is the definition of the functions λp−k appearing in the change of variable.

The only known results are for p = 2, see [24, 32]. In these papers, the functions λ2, λ1 are chosen

such that they satisfy suitable differential inequalities. The case p > 2 is completely unexplored.

2. The class of p−evolution equations defined in [39] is wider than the one given by operators of the

form (2). Namely, it includes equations of the form

Dm
t u+

pm∑
j=0

∑
|α|=j

ajα(t, x)D
α
xu = f(t, x), (t, x) ∈ [0, T ]× R

n,

for fixed m ≥ 1. In the thesis we treated the case m = 1. For the case m > 1, the only known

results in H∞ are for p = 2, cf. [11] and the Gevrey case is particularly involved since the

techniques used in [11] seem not to work in this setting.

3. Finally, it would be interesting to apply the results obtained here to the study of non-linear

p−evolution equations such as the ones mentioned in the introduction. This problem is highly

non-trivial and probably requires strong decay conditions on the coefficients of the lower order

terms in order to avoid the loss of regularity in the energy estimates and to make possible the

application of fixed point arguments.
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