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RESUMO

Sistemas de engenharia modernos estão cada vez mais interconectados, formando redes
dinâmicas complexas. Garantir a passividade, uma propriedade essencial para a troca de
energia, é um desafio na identificação e modelagem de tais sistemas. À medida que as
redes se tornam mais complexas, as técnicas tradicionais de identificação frequentemente
falham em preservar a passividade do sistema, levando a modelos que violam as condições
de balanço de energia. Esta tese aborda o problema da identificação de módulos locais
dentro de uma rede dinâmica, garantindo a passividade ao longo de todo o processo
de identificação. A literatura existente ainda não apresentou um arcabouço capaz de
identificar diretamente sistemas passivos inseridos em redes dinâmicas. Essa limitação
motiva o desenvolvimento de um arcabouço de identificação consciente da passividade, que
integra restrições de passividade desde a etapa inicial da estimação. O principal objetivo
desta tese é desenvolver uma metodologia de identificação de sistemas no domínio da
frequência para sistemas interconectados, assegurando a preservação da passividade ao
longo do processo de estimação. Isso é alcançado por meio da incorporação de restrições
de passividade dentro da estrutura de identificação de sistemas. A metodologia proposta
neste trabalho segue uma abordagem em duas etapas: (i) uma estimação não paramétrica
da Função de Resposta em Frequência (FRF) é obtida para fornecer uma caracterização
inicial do sistema; e (ii) um método de identificação paramétrica refina essa estimação
enquanto incorpora restrições de passividade As principais técnicas utilizadas neste estudo
incluem um novo método de Ajuste Vetorial no Domínio da Frequência (FD-VF), que atua
como a ferramenta principal para identificação paramétrica, e estratégias de imposição
de passividade baseadas no Lema de Kalman-Yakubovich-Popov (KYP). A principal
contribuição da abordagem baseada em otimização utilizada é sua capacidade de garantir
que o modelo identificado permaneça passivo em cada iteração. A abordagem desenvolvida
incorpora condições de passividade desde a etapa de geração dos dados. Os resultados
demonstram que a metodologia desenvolvida identifica modelos passivos sem comprometer
a precisão da estimação. Estudos de caso comparativos mostram que a imposição de
passividade durante o processo de estimação leva à obtenção de modelos passivos a cada
iteração da identificação paramétrica.

Palavras Chave: identificação do sistema; redes dinâmicas; passividade; domínio da

frequência; sistemas lineares; passividade; Vector Fitting.



ABSTRACT

Modern engineering systems are increasingly interconnected, forming complex dynamic
networks. Ensuring passivity, an essential property for energy exchange, is a challenge in
system identification and modeling. As networks grow in complexity, traditional identifi-
cation techniques often fail to preserve system passivity, leading to models that violate
energy balance conditions. This thesis addresses the problem of identifying local modules
within a dynamic network while guaranteeing passivity throughout the identification
process. Existing literature has not yet presented a framework to directly identify passive
systems embedded in dynamic networks. This limitation motivates the development of
a passivity-aware identification framework that integrates passivity constraints from the
initial estimation stage. The main objective of this thesis is to develop a frequency-domain
system identification methodology for networked systems that ensures passivity preserva-
tion throughout the estimation process. This is achieved by integrating passivity constraints
into the system identification framework. The methodology proposed in this work follows a
two-stage approach: (i) a non-parametric estimation of the Frequency Response Function
(FRF) is obtained to provide an initial system characterization; and (ii) a parametric
identification method refines this estimation while incorporating passivity constraints.
The core techniques used in this study include a novel Frequency Domain Vector Fitting
(FD-VF), which serves as the primary tool for parametric identification, and passivity
enforcement strategies based on the Kalman-Yakubovich-Popov (KYP) Lemma. The key
contribution of the optimization-based approach used is its ability to ensure that the
identified model remains passive at every iteration. The developed approach incorporates
passivity conditions from the data generation stage onward. The results demonstrate that
the developed methodology identifies passive models while maintaining the estimation
accuracy. Comparative case studies illustrate that enforcing passivity during the estima-
tion process leads to the estimation of passive models in each iteration of the parametric
identification. This work contributes to the field of dynamic network identification by
addressing the challenge of passivity enforcement in dynamic network identification.

Keywords: system identification; dynamic network; frequency-domain; linear systems;

passivity; Vector Fitting.
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Nj represents the index set of internal variables that are directly linked to

wj, meaning that an index k belongs to Nj if and only if Gjk �= 0.



Nr denotes the set of indices of existing external signals in the network’s
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Tj denotes the set of indices of external variables that are correlated with
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functions.
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ε is the predictor error.
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H(q) refers to the filter of the process noise.

Rwiri
is the cross-correlation function.

φw is the spectral density of the signal w.
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1 Introduction

The rapid growth of interconnected systems in today’s technology poses significant challenges

for the analysis, modeling, and control of real-world systems. As these systems become larger

and more complex, the field of dynamic systems research is now shifting from examining

individual components to comprehensively understanding how systems interact with each

other. This paradigm shift is essential to navigate the intricacies of modern interconnected

systems. While significant strides have been made in enhancing model accuracy, particularly

in discerning the dynamics of distinct subsystems within a network, a noticeable gap persists

in ensuring the preservation of system’s fundamental properties, including the passivity,

in the resulting models. This thesis endeavors to address the following question: How

to guarantee that the estimated model maintains the system’s passivity property? The

subsections of this introductory chapter build on the understanding of dynamic networks

and their identifiable components.

1.1 Introduction

Increasing complexity and interconnectivity of systems is an evident trend in

many domains. Autonomous driving systems and decentralized control systems serve as

illustrative examples, which rely on a complex network of sensors, processors, and actuators

that operate together to control and respond to changing conditions. These systems share

a common characteristic: they are dynamic networks. Henceforth, dynamic networks can

be aptly characterized as an assembly of internal variables dynamically interconnected

within the network (DANKERS, 2014). Such networks entail structured interconnections

of dynamic systems, all driven by external excitation and disturbance signals.

Dynamic networks are everywhere. Whether we consider devices connected via the

internet, people in social media, automobiles in traffic, or many transportation applications,

they are all based on connecting systems together. As it became common to interconnect
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multiple subsystems, applications of dynamic networks are abundant in many fields.

Molecular interactions, chemical reactions, and population dynamics in both humans and

animals represent a mere subset of systems whose behavior can be effectively modeled

and analyzed using dynamic network frameworks. Within these frameworks, information

flows seamlessly between individual subsystems, undergoing continuous alterations as it

traverses the network’s intricate pathways.

Modern society exemplifies the ubiquity of dynamic networks. Consider the intricate

web of connections in a smart power grid, where power sources, loads, and control units

seamlessly interact to optimize energy distribution (ZHENG et al., 2021). Similar dynamics

govern the intricate flow of data and communication protocols in autonomous driving

systems, where vehicle-to-vehicle and vehicle-to-infrastructure interactions ensure safe and

efficient navigation (ZHENG et al., 2015). Even fundamental building blocks like distributed

control systems (RISTEVSKI; YUCELEN; MUSE, 2021) and the interconnected regions

of the human brain, facilitating cognitive functions (TELESFORD et al., 2011), operate

as dynamic networks. The ever-volatile terrain of the stock market (ALAMEER et al.,

2020) and even a simple electronic circuit, with its discrete components, further highlight

the universality of this concept.

Though many of these dynamic systems have been present for centuries, the pressing

need for their formal treatment has only intensified in recent years. This urgency stems from

the burgeoning complexity and scale of these systems, posing challenges in modeling and

parameter estimation. Notably, the proliferation of low-cost remote communication devices

within computer science (MICHAIL; SPIRAKIS, 2018) has further exacerbated this need.

This confluence of factors has propelled a concerted effort to establish a comprehensive

theory of dynamic networks, aiming to address the ever-growing demand for rigorous

frameworks to understand and manage these intricate systems.

At its core, a dynamic network is a collection of interconnected elements, each

representing a measurable aspect of a system. These elements, often called nodes, interact

with each other in ways that can change over time. For instance, a traffic network: each

car is a node, and the flow of traffic between them represents the interaction. These

16



interactions can be influenced by external factors, like a sudden downpour, or internal

factors, like a car changing lanes.

In other words, dynamic networks consist of interconnected nodes, each representing

an internal variable and exhibiting dynamic relationships with its neighbors. We assume

these nodes’ signals can be effectively measured using suitable devices. Previous research

(WILLEMS, 2008a) categorizes the nature of these interconnections based on the variables

they transmit. For example, thermal, electric, and mechanical interconnections represent

the flow of temperature/heat, voltage/current, and force/position, respectively. Dynamic

networks often contain disturbance sources, unmeasured but impactful on internal signal

values. Additionally, external signals, serving as excitations, further influence node behavior.

The dynamic relationships between nodes are effectively captured by a network of

interconnected systems, which we refer to as modules in this thesis. These modules act

as individual dynamic systems, typically described by transfer functions or other models

with a finite number of connection points. Notably, the nature of these interconnections

cuts across diverse domains, encompassing financial transactions, transmission lines, and

myriad other objects and systems. This breadth exemplifies the versatility of dynamic

networks in modeling real-world scenarios (WILLEMS, 2008b).

This work focuses on networks with dynamic interactions among internal elements,

aptly termed dynamic networks. Each internal variable exhibits dynamic relationships with

other variables within the network. The complexity is further amplified by unmeasured

disturbances, which influence the internal variable values through unobservable channels.

Additionally, external variables, introduced as probing signals, can shape the network’s

behavior and dynamics.

To succinctly capture the network’s structure and the conditional dependencies

among its variables, graph theory comes into play. Specifically, directed graphs provide a

convenient representation. A directed graph comprises directed edges connecting a pair of

nodes, thus delineating a direction of influence or interaction (ETESAMI; KIYAVASH,

2014). For each dynamic network, it is possible to associate a directed graph, where the

edges of this graph symbolize the modules within the dynamic network, and the vertices

17



represent the internal signals (ZHANG; MOORE; NEWMAN, 2016).

As dynamic networks grow in complexity, conventional approaches to model identi-

fication become impractical. While identifying an isolated subsystem may appear straight-

forward, doing so for a given module embedded within a network of interconnects presents

challenges, even when identification is attempted locally. This complexity stems from

the multitude of signals that interact with and alter measurements, obscuring the true

dynamics of individual modules (BAZANELLA et al., 2017; GEVERS; BAZANELLA;

SILVA, 2018). Furthermore, determining the essential variables to measure becomes a

daunting task, as inferring signal correlations within such intricate systems is far from

trivial.

System identification in dynamic networks falls into four main categories: full

network identification, local module identification, network topology identification and

identifiability, where in both full & local network identification the network interconnections

are assumed known. In full network identification, the objective is to unveil the dynamic

behavior of the entire system. Several scalable methods have been proposed for this purpose,

like those in Torres, Wingerden e Verhaegen (2015), Sarwar, Voulgaris e Salapaka (2010),

which efficiently handle the addition of new modules. Due to the inherent complexity

of large networks, full network identification typically emphasizes efficient numerical

implementations and addresses concerns like identifiability (recovering network parameters)

and optimal experimental conditions for precise parameter estimation, e.g., Hendrickx,

Gevers e Bazanella (2019), Weerts, Hof e Dankers (2018b). While common practice assumes

measurement of all nodes, studies like Bazanella et al. (2017) demonstrate successful

network identification from just a subset of measured signals, highlighting an exciting

avenue for further research.

In contrast, local module identification centers upon consistently estimating a

specific module within the network, given a particular configuration. Classical identification

methods often falter when faced with modules embedded in dynamic networks, yielding

inaccurate or inconsistent transfer function estimates. This challenge has spurred the

adaptation of closed-loop identification techniques for this purpose (RAMASWAMY;

18



BOTTEGAL; HOF, 2018; HOF et al., 2013). Notably, the versatile Predictor Error Method

(PEM) has seen numerous modifications for dynamic network applications (DANKERS;

HOF; BOMBOIS, 2014; WEERTS; HOF; DANKERS, 2018b; DANKERS et al., 2012).

Examples include adapted direct methods, which employ one-step ahead predictors to

identify a module based on input and output signals (HOF, 2006), and two-step methods,

which strive to decorrelate signals prior to predictor application, a technique transferable

from closed-loop identification (Van Den Hof; SCHRAMA, 1993; DANKERS; HOF;

BOMBOIS, 2014).

1.2 Motivation

Dynamic networks, encompassing diverse systems from power grids to control

systems, present a critical challenge in modern engineering. Accurately capturing their

complex behavior through dynamic network identification is vital for their control, analysis,

and ultimately, their safe and efficient operation.

The field of dynamic network identification is a rapidly evolving area, with various

methods emerging to address the challenge. Existing methods share some similarities with

established closed-loop system identification techniques, however, there is a need for a

comprehensive approach that fully utilizes this analogy has not been comprehensively

explored.

While advances in identification techniques have yielded significant progress, an

aspect remains largely unaddressed: passivity. This fundamental property assures stable

and predictable behavior in numerous physical systems. Without it, even the most accurate

model can lead to undesirable consequences. For example, an improperly modeled passive

power transformer in a grid, where instability could cascade, causing extensive disruptions.

Motivated by this critical gap, our research focuses on integrating passivity enforce-

ment into dynamic network identification. We seek to answer the following question: can

we accurately identify passive modules within a given dynamic network while

ensuring their passivity throughout the identification process?
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The potential impact of addressing this question is substantial. Our framework

not only promises stable and reliable models but also holds a deeper understanding and

improved control of interconnected systems. Imagine, for example, enhancing the resilience

of power grids, optimizing decentralized control systems, or gaining new insights into

biological networks.

Our approach tackles challenges in several key areas:

• Bridging theory and practice: We strive to develop robust and efficient numerical

implementation strategies, translating theoretical advancements into real-world

solutions.

• Expanding beyond existing methods: Exploring alternative frequency domain

system identification frameworks will broaden the applicability and deepen our

understanding of network dynamics.

• Guaranteeing model passivity: By incorporating passivity enforcement within

the identification algorithm, we ensure the stability of estimated models, particularly

for physical systems.

By addressing these challenges, we aspire to transform the field of dynamic network

modeling. Our research carries the potential to contribute to the control and operation of

interconnected systems, enhancing their stability, predictability, and resilience in the face

of ever-increasing complexity.

The next section delves into a comprehensive review of existing network identifica-

tion techniques, critically evaluating their strengths and limitations in the context of our

goal. This review will pave the way for introducing our novel passivity-enforced dynamic

network identification approach.

1.3 A Review of Network Identification Techniques

Network identification, or discerning the dynamics of a complex system from its

observable outputs, is a fundamental issue in a variety of fields. This vast research area
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can be categorized into four key areas of focus:

1. Network Topology Detection: In scenarios where the internal architecture is

unknown, this category tackles the crucial challenge of topology detection, recon-

structing the network’s interconnection structure; it could be based solely on its

outputs.

2. Full Network Identification: For systems where the overall behavior is paramount,

this category focuses on estimating the complete set of interactions between all

modules, reconstructing the full network dynamics.

3. Local Identification in Dynamic Networks: This category delves into the

identification of individual internal components (modules) within the network, aiming

to estimate their specific transfer functions and behavior.

4. Network Identifiability: In this research field, the aim is to comprehend the

circumstances under which a dynamic network can be identified, as well as to

determine the essential information required for detecting the topology of the network.

Note that the category 2 and 3 require knowledge of the underlying network topology.

This means knowing how the individual components are connected and interact. This thesis

and literature review will place particular emphasis on local identification. Understanding

the behavior of individual modules forms the foundational step for characterizing the larger

network, and it often carries direct practical value in fields like control and diagnosis.

While many applications in control and communication systems boast pre-defined

network topologies, fields like biology and economics often face the additional complexity

of unknown internal connections. This necessitates specialized techniques for not only

understanding the individual components but also piecing together the network’s topology.

The following subsections present a comprehensive review of the current state-of-

the-art in each of these four crucial areas, offering a roadmap for navigating the diverse

methodologies and insights within network identification research.

21



1.3.1 Network Topology Detection

Not all networks reveal their hidden blueprint readily. In many cases, the very

structure that governs their internal interactions remains veiled, posing a crucial challenge

to unraveling their functionalities. Here, the power of topology detection comes into play,

providing a tool for deciphering the network architecture.

This ability to map the intricate web of connections, revealing how local modules

interconnect and how the information flows within the network, lies at the heart of

understanding complex systems. As aptly recognized by Goncalves, Howes e Warnick

(2007), neither the order of elements nor the quest for minimal complexity can definitively

paint the picture of a network’s intricate architecture. This underscores the role of dedicated

topology detection algorithms in unveiling the hidden wiring diagram.

Many topology detection approaches capitalize on a key assumption: that within a

network, each internal variable exhibits a limited dependence on a few selected internal

variables (WAARDE; TESI; CAMLIBEL, 2021; COUTINO et al., 2020; SHAHRAMPOUR;

PRECIADO, 2015; COUTINO et al., 2021). This is a sparsity principle that translates into

the network landscape and to identifying connections that are truly necessary, revealing

the most impactful pathways of information flow.

While research focusing on networks built from simple single-input, single-output

(SISO) systems has laid the groundwork for topology detection (SHAHRAMPOUR; PRE-

CIADO, 2015; SUZUKI et al., 2013), it often falls short in capturing the complexity of

real-world systems. Here, the emergence of multi-input, multi-output (MIMO) hetero-

geneous networks paves the way for a more nuanced understanding. Entering MIMO

networks introduces complexity with increased dimensionality from multiple inputs and

outputs.

In numerous practical scenarios, achieving complete observability of a network

remains a challenging endeavor. To address this issue, the authors in (COUTINO et al.,

2020) extend subspace techniques from system identification to graph topology identifi-

cation. This work concentrates on inferring the network structure when only a partial
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subset of node measurements is accessible. The authors employ a dynamic system model

to represent the network, describing the evolution of node signals through a first-order

differential representation. Applying their subspace approach to networks with up to 50

nodes, the study yields compelling results, effectively revealing the hidden topology despite

the constraint of limited observations. Nevertheless, the authors appropriately recognize

the challenges associated with extending their approach to larger graphs. They highlight

the inherently ill-posed nature of topology detection, a foundational challenge demanding

meticulous consideration of scalability and robustness as networks increase in size and

complexity. Their study underscores the necessity for continued exploration of techniques

adept at navigating the complexities of partial observations and ensuring resilience in the

presence of uncertainty.

The exploration of topology detection extends beyond centralized approaches,

incorporating the effectiveness of distributed strategies. As exemplified by Morbidi e

Kibangou (2014), nodes within the network collaboratively contribute to the identification

process, employing local least-squares algorithms to estimate individual time series. This

collective effort weaves a tapestry of interconnected insights, unveiling the network’s

concealed architecture. In a different approach, Shahrampour e Preciado (2015) delves into

spectral analysis, showcasing that subtle patterns in power distribution within a network

can provide clues for topology identification.

While linear systems have often taken center stage in topology detection research,

the tapestry of real-world systems often exhibits a nonlinear character. Venturing into

this realm, (WANG et al., 2011) and (SHEN; BAINGANA; GIANNAKIS, 2017) explore

the potential for topology detection within nonlinear systems. The intricacies of nonlinear

dynamics often necessitate careful consideration of model assumptions and identification

methods, and the pursuit of rigorous guarantees regarding identification accuracy remains

a vital area for further exploration.

In the work Shi, Bottegal e Hof (2019), the authors introduce a Bayesian model

selection approach to identify the connectivity of networks composed of transfer functions.

The algorithm integrates a Bayesian measure and a forward-backward search algorithm.
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By representing the impulse responses of network modules as Gaussian processes, the

authors estimate hyper-parameters through marginal likelihood maximization using the

expectation-maximization algorithm, contributing to the acquisition of the Bayesian

measure.

Recent contributions on the field highlight the limitations of relying on the linear

independence condition (LIC), which has been widely used in the past decade. In Zhu et

al. (2021), the authors introduce a regulation mechanism and constructing an auxiliary

network with isolated nodes, the authors achieve successful topology identification through

outer synchronization. This approach mitigates the risk of identification failure due to

network synchronization and eliminates the need to verify the LIC.

1.3.2 Full Network Identification

Within the intricate framework of a network’s interconnected modules, each compo-

nent harbors distinctive insights into the entire system’s behavior. Systematically discerning

the dynamics of individual modules provides invaluable insights into the fundamental

building blocks that contribute to the network’s overall character. However, to fully com-

prehend the orchestration of interactions that govern the collective behavior of the network,

it becomes imperative to embrace the inherent complexity of the entire system. While the

identification of individual modules provides a focused examination of specific components,

the pursuit of full network identification encourages a broader perspective. This marks the

initiation of the pursuit for full network identification.

As networks extend in size, the intricate interconnection of modules poses a

significant challenge for conventional identification methods. The exponential growth in

complexity with increasing network size necessitates a delicate trade-off between precision

and computational efficiency.

To address this computational challenge, researchers often resort to carefully crafted

assumptions, providing a level of simplification while preserving essential network charac-

teristics. These assumptions serve as foundational principles, facilitating the development

of numerically efficient algorithms capable of extracting insights from large-scale systems.
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One prevalent strategy involves assuming a network composed of identical modules (ALI et

al., 2011; MASSIONI; VERHAEGEN, 2009) significantly reducing computational overhead

by leveraging inherent simplification in the system’s structure.

Another approach focuses on networks where modules primarily interact with

their immediate neighbors (HABER; VERHAEGEN, 2013; CHEN et al., 2019). This

assumption, frequently observed in physical and biological systems, allows the development

of algorithms that exploit the locality of interactions, mitigating computational complexity

while capturing essential network dynamics.

Although these assumptions offer valuable tools for large-scale network identification,

it is imperative to acknowledge their limitations. Future research endeavors should aim

to bridge the gap between accuracy and scalability, developing techniques capable of

embracing the full complexity of real-world networks without succumbing to computational

constraints.

While the Prediction Error Method (PEM) holds the potential for full network

identification, its application often encounters the obstacle of non-convex optimization

problems. To overcome these challenges, researchers have explored various extensions and

modifications to the traditional PEM framework (DANKERS et al., 2016; HOF et al.,

2013; DANKERS et al., 2012).

One promising approach, proposed by Weerts, Hof e Dankers (2018b), involves

incorporating rank-reduced process noise into PEM. This technique leverages the as-

sumption that not all nodes within a network require individual measurement, as the

number of independent white noise signals may be less than the total number of nodes.

By acknowledging this inherent sparsity, the method reduces computational complexity

and facilitates identification of networks with limited observability.

In addition to PEM-based techniques, alternative approaches have emerged to

tackle full network identification. Zorzi e Chiuso (2017) demonstrate the efficacy of

constructing sparse plus low-rank dynamic models, offering a powerful tool for capturing the

interconnected dynamics of complex systems while maintaining computational tractability.
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The quest for efficient and accurate full network identification techniques remains

an active research area. Further exploration of optimization algorithms, model assumptions,

and alternative identification frameworks holds the key to unlocking a deeper understanding

of large-scale interconnected systems, paving the way for unprecedented insights and

transformative applications.

1.3.3 Local Identification in Dynamic Networks

Shifting our focus, we turn to the intricate realm of single module identification

within dynamic networks. This area delves into the challenge of isolating and understanding

the behavior of individual components, a crucial step towards deciphering the complex

symphony of interconnected dynamics. While many studies hinge on complete knowledge of

the network’s topology, work by Gevers, Bazanella e Silva (2018) has revealed a fascinating

twist: only local topological information is necessary to identify a single module. This

discovery opens up exciting possibilities for analyzing complex systems even when their

full blueprint remains concealed.

To isolate the dynamics of a single module within the intricate web of network

interactions, one often turns to the art of adaptation. By carefully tailoring closed-loop

identification techniques, originally designed for traditional control systems, a path is

forged towards understanding individual components within interconnected environments.

The PEM proves its versatility once again in the context of dynamic networks. Researchers

have successfully harnessed it to estimate individual transfer functions within these complex

systems (DANKERS et al., 2016; HOF et al., 2013). However, this journey isn’t without

its challenges. The interconnected nature of dynamic networks often presents obstacles,

even when focusing on a single module. The intricate presence of feedback loops, woven

throughout the system’s structure, can introduce complexities that challenge traditional

identification methods. Reports frequently highlight the potential for issues arising due to

this intricate interplay of interactions (HOF et al., 2013; DANKERS et al., 2014).

To enhance PEM’s resilience amidst the complexities of dynamic networks, re-

searchers have embarked on a journey of methodological refinement. One notable example
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comes from Dankers et al. (2014), who extended the errors-in-variables (EIV) framework—a

technique designed to handle uncertainties in both model inputs and outputs—to the

realm of discrete-time network identification.

While PEM has enjoyed widespread exploration in the field of single module

identification, a recent wave of research is venturing beyond its confines. Alternative

methods with unique strengths are emerging, offering researchers a broader toolkit for

deciphering the dynamics of individual components within dynamic networks.

• Weighted Null-Space Fitting (WNSF): Fonken, Ferizbegovic e Hjalmarsson

(2020) present WNSF, a technique that leverages the null space of the network transfer

function matrix to identify individual modules. This approach offers promising results,

showcasing performance comparable to PEM in both simulations and real-world

data applications.

• Regularized Kernel-Based Methods: Ramaswamy, Bottegal e Hof (2021) intro-

duce regularized kernel-based methods, harnessing the flexibility of non-parametric

kernels to capture complex system dynamics. Their work demonstrates the potential

of these methods to achieve performance on par with PEM, highlighting their ability

to adapt to diverse network structures.

• Subspace Methods: Traditional subspace techniques, revisited and refined for the

challenging setting of dynamic networks, are also showing promise. As demonstrated

in works like (HABER; VERHAEGEN, 2014), these methods can effectively identify

individual modules, offering a valuable addition to the available toolset.

• Bayesian Refinement: Everitt, Bottegal e Hjalmarsson (2018) take a distinct

approach, employing a Bayesian framework to estimate individual modules. This

probabilistic perspective helps to tackle challenges like parameter reduction and

sensitivity variations. Notably, the use of a marginal likelihood estimator allows

for efficient and robust parameter estimation, showcasing the potential of Bayesian

methods in this domain. Also in Rajagopal, Ramaswamy e Hof (2020), the authors

address the challenge of identifying a module within a dynamic network disrupted
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by colored process noise sources. They extend the Empirical Bayes Direct Method to

handle MIMO setups, avoiding the need for model order selection for each module

and mitigating the estimation of a large number of parameters. Parameters are

obtained by maximizing the marginal likelihood using the Empirical Bayes approach,

facilitated by the Expectation Maximization algorithm for computational efficiency.

While most research in network identification has unfolded within the realm of

discrete-time (DT) models, a growing appreciation for the subtleties of continuous-time

dynamics is emerging. This shift in perspective acknowledges that many real-world systems

inherently evolve in continuous-time (CT), and their accurate representation calls for

methods that directly embrace this continuous nature.

(DANKERS; HOF; BOMBOIS, 2014) and (HOF et al., 2013) explore both direct

and indirect approaches to continuous-time module identification. Each path offers distinct

advantages and considerations:

• Indirect CT Methods: These techniques first construct a discrete-time model

and then meticulously translate it into an equivalent continuous-time representation.

This approach often leverages the extensive toolkit of discrete-time identification

methods, providing a bridge between well-established techniques and the continuous

domain.

• Direct CT Methods: In contrast, direct methods seek to estimate continuous-time

models directly from observed data. This approach eliminates the potential for

distortions or information loss that might occur during discrete-time approximations,

striving for a more faithful representation of the underlying continuous-time dynamics.

Dankers, Hof e Bombois (2014) further delve into the practical realities of data

acquisition and its potential impact on continuous-time identification. They acknowledge

the presence of Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters

(DACs) in many experimental setups, carefully examining the effects of aliasing and
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intersample behavior. These distortions, if unaddressed, can introduce artifacts into the

identified models, potentially obscuring the true underlying dynamics.

Building upon the discussion of continuous-time identification, let’s delve into a

nuanced category of dynamic networks: systems characterized by diffusive couplings. These

undirected interconnections, where signals flow bidirectionally between nodes, closely

mirror the behavior of many physical systems.

Physical systems often evolve continuously, with forces and interactions play-

ing out in a seamless temporal flow. Diffusive couplings, with their inherent two-way

communication, offer a natural language for representing these dynamics. Think of a

mass-spring-damper system, where vibrations ripple through interconnected components,

continuously influencing and responding to each other’s movements. Such intricate inter-

play demands a continuous-time perspective to faithfully capture the nuances of real-world

behavior.

Typically, physical systems described by diffusive couplings are represented by

vector difference equations of maximum second order (KIVITS; Van den Hof, 2023). The

identification process for these models poses a unique challenge. Traditional identification

approaches often involve converting differential equations into state-space models, followed

by applying matrix manipulations or eigenvalue decompositions (KIVITS; HOF, 2019;

KIVITS; HOF, 2022). While these techniques effectively extract model parameters, they

often come at a cost: erasing the inherent network structure embedded within the original

equations. This disconnect between model parameters and their spatial arrangement within

the system poses a significant barrier to gaining a holistic understanding of the physical

processes at play.

The quest for identification methods that not only capture the continuous-time

dynamics of physical systems but also preserve the vital information encoded within

their diffusive couplings remains an active research frontier. Exploring novel techniques

that bridge the gap between mathematical rigor and physical plausibility has been little

discussed by researchers in the area. Many questions posed for traditional dynamic network

identification are open questions when it comes to diffusive couplings.
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The preceding investigations have provided a comprehensive examination of time-

domain identification; however, an equally significant dimension awaits exploration in the

frequency domain. This relatively unexplored realm presents promising opportunities for

dynamic network identification, forming the focus of the ensuing discussion in this section.

The pioneering work of (RAMASWAMY et al., 2022) stands as a testament to

its promise. Their semi-parametric approach breaks with tradition, offering a crucial

advantage: minimal dependence on prior knowledge. The approach is two-folded: the

first step estimates a non-parametric Frequency Response Functions (FRFs); this initial

mapping reveals the system’s fundamental behavior without imposing any preconceived

model structures. The second step focuses on the module of interest, applying a parametric

frequency domain estimator to refine its representation. This targeted refinement grants

a clearer, more interpretable model for the module while preserving the insights gained

from the non-parametric analysis. Given the developed semi-parametric approach, there

is no need to pre-specify the number of poles and zeros for each module, what poses a

significant boon when juggling multiple modules. However, this freedom comes at a cost –

non-parametric estimates can often carry the burden of higher variance.

This semi-parametric approach offers two compelling advantages:

• Scalability to Large Networks: Unlike many time-domain techniques, its com-

plexity remains unburdened by the network’s size. The first step scales only with the

number of local modules to be estimated, while the second step isolates the target

module, elegantly sidestepping the intricacies of full network identification.

• Model Flexibility: By combining non-parametric and parametric steps, the method

allows for adaptive model structures, accommodating a wide range of network

dynamics without requiring extensive prior knowledge.

Notably, this approach deviates from the traditional Prediction Error Method

(PEM) used in time-domain techniques, instead embracing a distinct cost function based

on the 2-norm. This shift in optimization strategy reflects the unique nature of frequency-

domain data and the nuances of semi-parametric model fitting.
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A recent frequency-domain algorithm is discussed in Rodrigues et al. (2024), where

the authors address the challenge of ensuring passivity, a key property in energy-based

systems—during system identification. Their approach first employs the Indirect Local

Polynomial Method (iLPM) to obtain a non-parametric frequency response estimate. This

estimate is then refined using a modified version of Vector Fitting, termed Passive Vector

Fitting (PVF), which integrates passivity constraints directly into the model estimation

process via Linear Matrix Inequalities (LMIs). The proposed method ensures that the

final identified model adheres to energy conservation principles, avoiding the need for post-

processing passivity enforcement. Through numerical simulations on multi-node network

systems, the authors demonstrate the effectiveness of their technique in providing accurate

and consistent passive models, making it particularly relevant for applications in control

systems and electrical networks.

Another research has also employed a semi-parametric approach to estimate local

modules in dynamic networks (RODRIGUES et al., 2023). In this paper an indirect Local

Polynomial Method (LPM) is used to estimate the frequency response function of the

target module. The curve is then smoothed through the Instrumental Variables Vector

Fitting (IVVF) parametric estimator. The conference paper shows that the method is

effective and can be used to identify local modules in complex dynamic networks.

1.3.4 Network Identifiability

Network identifiability plays a crucial role across various network identification

studies, ensuring the validity and uniqueness of reconstructed network structures or

individual module parameters. This section explores recent advancements in understanding

and overcoming identifiability challenges in different network contexts.

• Guaranteeing Identifiability in Network Topology Detection

Traditionally, accurate network topology detection relied heavily on the assumption

of network identifiability. However, real-world networks often violate this assumption,

leading to misleading results. To address this challenge, the work of Waarde, Tesi
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e Camlibel (2021) provides rigorous identifiability conditions and a sophisticated

algorithm based on the generalized Sylvester equation. This approach significantly

enhances the reliability of network topology detection by ensuring identifiability

before proceeding with reconstruction.

• Overcoming Partial Measurement in Local Module Identification

Local module identification aims to isolate and understand the behavior of individual

components within a network. However, limitations in measurements and excitations

are often encountered. Shi, Cheng e Hof (2021) tackle this challenge by developing

less stringent identifiability conditions that leverage unmeasured noise signals. Ad-

ditionally, they propose graph-based verifications to assess identifiability based on

network topology. These advancements enable strategizing excitation and measure-

ment selection to guarantee module uniqueness, even with partial information.

• Identifiability in Diffusively Coupled Networks

Kivits e Van den Hof (2023) address the identifiability challenge in diffusively

coupled networks, which model symmetric interactions in systems like electrical

circuits. Existing methods often struggle with higher-order networks due to complex

state-space models. The work in (KIVITS; Van den Hof, 2023) presents generalized

identifiability conditions applicable even with three-polynomial matrix fractions.

This significantly improves our understanding of identifiability in diffusively coupled

networks with limited observations.

1.4 Statement of the Problem

Despite a burgeoning body of research, the area of dynamic network identification

remains a dynamic jigsaw puzzle itself, characterized by exciting advancements scattered

within a framework that yearns for greater cohesion. While individual publications tackle

specific challenges - from achieving consistent module estimates to boosting their accuracy

- a unified theoretical foundation still awaits construction.
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Moving forward, the field demands a shift from isolated pieces to a comprehensive

picture. Beyond general model properties, specific considerations arise for physical systems.

The passivity property, a crucial characteristic for many physical networks, deserves in-

depth investigation within the context of module identification. Devising strategies to

preserve and evaluate this property in identified models would significantly enhance their

relevance and interpretability in interconnected systems context.

This thesis focuses on identifying passive modules of passive systems embedded

in a dynamic network. Passivity enforcement has received little attention in the field of

dynamic networks which is somewhat unjustified given its appealing algebraic closure

property. On the other hand, the topic has been broadly explored in other realms such as

power systems, microelectronics and RF contexts, see (GRIVET-TALOCIA; GUSTAVSEN,

2016). However, in these other research areas passivity is dealt with separately so that each

device is enforced passive and then interconnected which is not quite the dynamic network

context. The proposed approach tackles passive macromodeling within a dynamic network

context from the very first step: measurement. Despite the differences, the advantages

of considering passivity enforcement remain the same: numerical simulations are stable,

energy balances are preserved and the model is consistent based on the energy balance

conditions. As a consequence, addressing this question to the problem is a major concern

to dynamic network analysis. Incorporating these estimators into the passivity framework

in a integrated manner represents an innovative approach per se.

While existing literature offers diverse methods for dynamic network identification,

as the ones herein presented, remarkably none delve into the crucial aspect of passivity

enforcement. This property is surprisingly neglected despite its inherent benefits. While

explored in contexts like power systems and microelectronics, passivity is typically analyzed

on individual devices before interconnection, deviating from the dynamic network setting.

This thesis boldly steps into this uncharted territory, aiming to address passivity

enforcement directly within the context of dynamic networks, right from the initial

measurement stage. Initially focusing on the case where the interconnection structure is

known. This simplification facilitates initial analysis and allows passivity results to be
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readily extended to the unknown topology case later. While both scenarios exhibit some

similarities from a passivity analysis standpoint, practical implementation in unknown

topology scenarios may introduce additional challenges, particularly in topology detection.

Closed-loop identification methods are chosen as the initial framework due to their

natural fit with the inherent feedback loops prevalent in dynamic networks. Furthermore,

any dynamic network can be theoretically modelled as a single multi-variable feedback

loop. However, applying closed-loop techniques requires careful consideration of certain

assumptions like noiseless predictor inputs and zero-order-hold signals, which may not

hold true in all dynamic network settings. This motivates further investigation and

potentially exploring alternative identification approaches not limited by these assumptions,

as discussed in (DANKERS, 2014).

The main motivating question for the research presented in this thesis

is: how to consistently identify a particular passive module

for a passive system that is embedded in a dynamic network?

Unlike traditional MIMO identification that aims to reconstruct the entire network,

our focus is on identifying a smaller subset of transfer functions within a dynamic network,

specifically targeting passive systems. This targeted approach allows for considerably

relaxed identification conditions compared to full MIMO network identification. By focusing

on local identification of passive systems, we can relax several strict assumptions often

required in MIMO approaches. There is no need to:

• Measure all internal variables: References (GHALEBI et al., 2018; HENDRICKX;

GEVERS; BAZANELLA, 2019) highlights the reduced need for internal measure-

ments in our approach.

• Ensure external variables at every node: References (SHI; CHENG; HOF, 2021;
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MAPURUNGA; BAZANELLA, 2021b) demonstrate that local methods allows some

nodes without external variables.

This targeted approach aligns with a distributed/local identification strategy

compared to a centralized/global view inherent to traditional MIMO system identification.

Only local measurements are required to identify a specific passive module within the

dynamic network.

1.4.1 Objectives

This thesis aims at adding light on the hidden dynamics of individual modules

within complex networks. The primary goal of this thesis is to reliably identify passive

models for passive modules embedded within a dynamic network, with a focus on passive

estimation. The specific objectives are:

Objective 1: Develop specialized formulation for passivity enforcement in the context of discrete-

time network systems.

Objective 2: Design and implement a FD-VF algorithm for efficient and accurate module identifi-

cation in dynamic networks.

Objective 3: Integrate passivity enforcement as a built-in procedure within the FD-VF algorithm,

leveraging the KYP lemma to guarantee the passivity of estimated models at each

step of the algorithm.

These objectives contribute to the field of dynamic network identification by

providing researchers with a powerful toolkit for approximating model properties to their

real-systems in the context of interconnected systems and paving the way for a plethora of

exciting applications.

1.5 Thesis Layout

• Chapter 2. Dynamic Network Modeling and Identifiability
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Provides a thorough grounding in dynamic network modeling and identifiability,

focusing on physical systems within this framework. It outlines key definitions,

identifiability conditions, and a practical toolbox for real-world implementation.

• Chapter 3. Network Identification

Explores network identification, delving into direct and indirect methods for local

module identification. It highlights the Predictor Error Method and introduces

the projection indirect approach, showcasing their application through practical

examples.

• Chapter 4. System Dissipativity and Passivity

Elucidates concepts related to dissipativity and passivity in dynamic network systems.

It examines various strategies for enforcing passivity, laying the groundwork for

subsequent analysis.

• Chapter 5. Frequency Domain Identification

Presents a Frequency Domain identification method employing a nonparametric step

followed by a parametric step. This chapter offers a complex case study illustrating

the practical application and efficacy of the proposed approach in a real-world

scenario.

• Chapter 6. Conclusions

Synthesizes the key findings and insights gleaned from the research, consolidating

knowledge acquired on dynamic network modeling, identifiability, dissipativity, pas-

sivity, and both time- and frequency-domain identification. This concluding chapter

not only summarizes contributions but also provides a comprehensive perspective on

the current state of the research within this domain.

——————————————–

36



2 Dynamic Network Models and Modeling

Imagine navigating a bustling city, its streets forming a intricate network of connections.

Imagine untangling the hidden patterns within a flock of birds in flight, their movements

governed by an unseen choreography. This, in essence, is the power of dynamic network

models. The primary question addressed in the present chapter is: how do we capture the

dynamic essence of dynamic networks? This is where models come in. Think of them as

simplified maps, highlighting the crucial pathways and interactions within a system while

filtering out unnecessary details. Just like traditional models, dynamic network models

feature internal and external variables, representing the system’s own workings and its

interactions with the outside world. Importantly, they also account for the ever-present

noise – the unpredictable fluctuations that inject an extra layer of complexity into real-world

systems. This chapter delves into the world of dynamic network models, providing you with

the essential tools to decipher the intricate dance of interactions within complex systems.

2.1 Introduction

Linear system theory offers a variety of model representations, including state-

space, transfer function, and impulse response. These fundamental models serve as building

blocks for constructing complex, structured models that analyze interconnected systems,

or networks.

Building on these fundamental models, dynamic networks offer a powerful framework

for analyzing interconnected systems. While traditional closed-loop models provide compact

transfer functions for individual or multiple subsystems, they lack information on how

these subsystems interact within the network. This "structural information" is crucial for

comprehensive network analysis. Understanding, analyzing, and controlling these intricate

structures become challenging without proper models. In fact, operating, designing, or

maintaining such systems would be impossible without an appropriate representation.
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This underscores the inherent significance of delving deeper into the concept of a model

for dynamic networks.

This chapter establishes the fundamental framework of dynamic network models.

We formally define a dynamic network model, highlighting its similarities to closed-loop

models through shared internal, external, and noise variables. Furthermore, we show

that the dynamic network model can be viewed as a natural extension of its closed-loop

counterpart. To illuminate this interconnections, we initially provide a graph representation

that visually captures the structure of a dynamic network.

2.2 Graph Theory concepts

This section provides a concise review of the essential definitions in graph theory,

with examples to illustrate each concept.

A graph G is an ordered pair (V (G), E(G)) consisting of a nonempty set V (G) of

vertices and a set E(G) of edges that associates pairs of vertices, thus the elements of E

are 2-element subsets of V (BONDY; MURTY, 1982).

Consider the following example of a graph H, as ilustrated in Figure 1.

Example 2-3.

H = (V (H), E(H))

where

V (H) = {1, 2, 3, 4, 5, 6, 7, 8}

E(H) = {{1, 2} , {1, 5} , {2, 3} , {2, 4} , {4, 6} , {6, 7} , {7, 8}}

(2.1)

The number of vertices of a graph is its order. A graph is finite if both its vertex

set and edge set are finite. An infinite graph would have an infinite order (BONDY;

MURTY, 1982). Unless otherwise stated, the graphs we consider in this thesis are all

finite. Furthermore, we call a graph with just one vertex trivial, i.e., a graph of order 1

(DIESTEL, 2017).
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Figure 1 – Diagram of graph H.

A graph with multiple edges, or simply multigraph, is a special case when two

vertices are linked by more than one edge, as shown in Figure 2. Graphs withtout multiple

edges are called simple graphs.

Figure 2 – Multigraph (with multiple edges).

In all the aforementioned examples, the edges were not directed. In Figure 3,

however, the directions of the one-way edges are being indicated by arrows. Graphs with

such characteristic are called directed graphs, or simply digraphs.

We often refer to a walk as a way of getting from one vertex to another. It consists of

a sequence of edges that leads from vertex i, for i = 1, 2, . . . , V , to vertex j, j = 1, 2, . . . , V ,

where V is the number of vertexes in the graph. For example, consider the graph in Figure

3, 1 → 2 → 4 is a walk of length 2. Likewise, 1 → 3 → 1 → 4 is a walk of length 3.
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Figure 3 – Digraph.

2.2.1 Adjacency and Incidence Matrices

While a graph can be intuitively represented by a diagram of points connected

by lines, this approach becomes impractical for large graphs. Instead, matrices offer an

efficient and structured way to represent graph information.

We define the network’s topology using a directed graph, which specifies both the

locations and the causal directions of module transfers within the network. This directed

graph can be represented by an adjacency matrix, as outlined below.

Consider a directed graph G with vertex set V = {v1, v2, . . . , vn}. The adjacency

matrix A = (aij)n×n is defined as in (2.2), where each entry aij indicates whether there is

a directed edge from vertex vi to vertex vj:

aij :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (vi, vj) ∈ E,

0 otherwise.

(2.2)

Here, E represents the set of directed edges in G.

If the edges of G are also labeled as E = {e1, e2, . . . , em}, we can construct the

incidence matrix M = (mij)n×m, which is defined as in (2.3). For each vertex vi and edge

ej, the incidence matrix M records the relationship between vertices and edges as follows:

mij :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if vi is the start or end of edge ej,

0 otherwise.

(2.3)
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Consider a directed graph with an adjacency matrix A. For k ≥ 1, the entry [Ak]ji

represents the number of distinct paths of length k from node i to node j.

Example 2-4.

Consider, for example, the graph in Figure 4, which is the same as Figure 3, but

with the edges enumerated. Its adjacency matrix is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

1 0 0 0

1 0 0 0

1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.4)

Its incidence matrix is

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1

1 1 0 0 0 0

0 0 1 1 0 1

0 1 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.5)

Note that the information provided by both adjacency and incidence matrices are

sufficient to characterize the topology of the graph.

Figure 4 – Graph of Example 2-4.

The rich toolbox of theorems and concepts within graph theory provides valuable

insights into network dynamics. For instance, topological properties of the graph, such as
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connectivity and the presence of loops, can reveal inherent network characteristics like

identifiability (the ability to uniquely determine internal states based on observations).

Furthermore, graph coloring techniques, when applied with specific constraints, can aid in

identifying network behavior and controllability.

However, it’s important to recognize that while network interconnections are often

visualized as direct "paths", the underlying physical reality may be more intricate. Physical

laws govern the relationships between variables, not merely the fact that they share

information. This raises a question: How can we rigorously model interconnected systems

while faithfully representing their underlying physical principles?

This section illustrates how to derive models for interconnected systems, considering:

• Individual subsystem models.

• Interconnection structure (captured by the graph).

• The nature of interconnections (physical relationships between variables).

2.2.2 Electrical Circuits - An RLC example

Electrical circuits, consisting of interconnected components like resistors, capacitors,

and inductors, provide an illustrative example of the link between graphs and dynamic net-

works. Each component within the circuit can be modeled as a "node" in the corresponding

graph, with its internal voltages and currents represented as the node’s variables.

The terms "network" and "circuit" are often used interchangeably, reflecting their

shared concept of interconnected elements (as noted in (DESOER; KUH, 1969)). However,

the term "network" often carries an implicit connotation of complexity, typically referring

to circuits with a large number of components.

Similar to many other systems, an electrical circuit can be analyzed effectively as a

dynamic network due to the interconnected nature of its individual components. These

components, such as resistors, inductors, and capacitors, become the nodes in the graph

representation, as shown in Figure 5.
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Figure 5 – An electrical circuit represented by a graphical network.

The connections between these components translate to "edges" in the graph.

This graphical network representation allows us to model the entire circuit’s behavior

by leveraging individual component models and their interactions captured by the edge

connections. By applying the principles of graph theory and network analysis, we can

then extract valuable insights into the circuit’s dynamics, such as current flow, voltage

distribution, and overall circuit response.

2.2.3 Control Systems

Control systems, ubiquitous in various engineering applications, offer a prime

example of leveraging graphs to represent their interconnected dynamics. These systems

maintain a desired state (output) of a process by manipulating its inputs through feedback

mechanisms.

Consider the example depicted in Figure 6 where G21 is the controller, G32 and G23

are systems and G14 is a sensor. The graph representation translate all dynamic systems

as directed edges and all summation points as the network’s nodes.

This graphical approach complements traditional control system analysis techniques,

providing a tool for engineers to design, analyze, and optimize control systems across

diverse applications.
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Figure 6 – A control system (dynamic network) represented as a digraph: a. Graph visual-
ization; and b. Transfer function representation.

2.2.4 Electrical Circuits- An RC example

Figure 7 illustrates an RC electrical circuit that can be modeled as a dynamic

network. In this setup, the system’s internal signals correspond to the voltages across

capacitors, labeled V1, V2, and V3, while the external input signal is the applied voltage u.

In the circuit representation shown in Figure 7, each node represents a capacitor

voltage, and the connections between nodes are the physical components of the circuit:

the voltage source, resistors, and capacitors. In the dynamic network form, as shown in

Figure 8, the nodes continue to represent the capacitor voltages; however, the connections

between nodes are now described by transfer functions.
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G1(s) = R2

sR1R2C1 + R1 + R2
,

G12(s) = R1

sR1R2C1 + R1 + R2
,

G21(s) = R3

sR3R3C2 + R2 + R3
,

G23(s) = R2

sR2R3C2 + R2 + R3
,

G32(s) = 1
sR3C3 + 1 .

(2.6)

This example ilustrated how an RC electrical circuit (in Figure 7), where each

node represents the voltage across a capacitor, and the interconnections correspond to the

resistors, capacitors, and the voltage source can be transformed into a dynamic network

model (Figure 8), where the nodes continue to represent the capacitor voltages, but the

interconnections are now described by continuous-time transfer functions.

In what follows, we intend to show that the dynamic network in Figure 7 can be

represented either using a directed graph or undirected graph.

To further illustrate the abstraction, Figure 9 presents the directed graph rep-

resentation of the circuit. In this graph, each node still represents a capacitor voltage,

Figure 7 – Schematic of an RC electrical circuit with nodes representing capacitor voltages.
Adapted from (MELO, 2022).
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Figure 8 – Dynamic network representation of the RC circuit, where nodes denote capacitor
voltages.
Adapted from (MELO, 2022).

and the edges indicate dependencies between nodes, reflecting the influence of transfer

functions between each pair of connected nodes. This transformation allows for a simplified

visualization of the network’s structure, focusing on the relational dependencies between

internal signals.

Figure 9 – Directed graph representation of the RC circuit.

The undirected graph of the dynamic network without the input signal is shown in

Figure 10. Please note that the signals flow both ways in the nodes of the dynamic network,

as it happens in the electrical circuit of Figure 7. We use the notation in (DORFLER;

BULLO, 2013) to represent the reference/ground point in the electrical circuit into its

graphical representation.

Figure 10 – Undirected graph representation of the RC circuit.
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2.3 Module Representation for Dynamic Networks

The concept of module representation offers a distinct perspective on analyzing

dynamic networks. It focuses on the causal dependencies existing between internal signals

within the network. This section explores three prevalent models built upon this represen-

tation, each distinguished by its assumptions regarding available signals and the presence

of noise.

We consider a dynamic network comprised of interconnected nodes. Each node

represents a scalar, measurable internal signal denoted as wl(t), where l ∈ {1, 2, ...L} and

L is the total number of nodes. The dynamics of each node’s signal are defined based on

existing signals within the network.

A Linear Dynamical Graph (LDG) operates under the assumption that no external

input signals are directly measurable (YEUNG et al., 2011). It envisions the network as

a stochastic linear system driven by unknown process noise. Mathematically, LDGs are

represented by Equation (2.7), where:

• wj(t) denotes the signal of node j at time t.

• vj(t) represents the process noise affecting node j.

• Gji(q) is the transfer function characterizing the dynamic relationship from node i

to node j 1. A non-zero value for Gji(q) indicates the presence of a module (or edge)

connecting nodes j and i.

wj(t) =
∑

i∈Nj

Gji(q)wi(t) + vj(t) (2.7)

with q−1 the forward/backward operator, i.e., q−1uj(t) = uj(t − 1), Gji(q) the proper

rational transfer function between nodes j and i, and Nj denotes the set of indices of node

signals wk, k �= j for which Gjk are nonzero.
1 Moving forward we will keep the notation herein adopted for Gji being the transfer function from node

i to note j.
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Figure 11 – A basic linear dynamical graph structure.

The noise vector associated with the internal variable vector w =
[
w1 · · · wL

]T

is denoted by v =
[
v1 · · · vL

]T

. This noise vector is modeled as a stationary stochastic

process with a rational spectral density. Consequently, there exists a p-dimensional white

noise process e =
[
e1 · · · ep

]T

, where p ≤ L, with covariance matrix Σ > 0, such that

v(t) = H(q)e(t). (2.8)

where H(q) is a diagonal matrix. In addition, we can define the external signals vector

r =
[
r1 · · · rL

]T

.

The Dynamical Structure Function (DSF) builds upon Linear Dynamic Graphs

(LDGs) by factoring in the impact of known external signals, denoted rj(t), on node

dynamics (GONCALVES; HOWES; WARNICK, 2007). These external signals are scaled

by elements from the system matrices, Gji(q) and Rji(q), which themselves may represent

dynamic transfer functions (BAZANELLA et al., 2017). The DSF is mathematically

defined by Equation (2.9):

wj(t) =
∑

i∈Nj

Gji(q)wi(t) +
∑

i∈Nr

Rji(q)ri(t), (2.9)

where Nr is the set indices of existing external signals in the network nodes.

DSFs can also be expressed in a compact matrix form, as shown in Equations (2.10)

and (2.11). This form explicitly highlights the interactions between nodes and the impact
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of external inputs.

w = Gw + Rr, (2.10)

where we omit the time dependency for convenience. Alternatively, ?? can be written as,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(t)

w2(t)
...

wL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 G12(q) · · · G1L(q)

G21(q) 0 · · · G2L(q)
... . . . . . . ...

GL1(q) GL2(q) · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(t)

w2(t)
...

wL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11(q) R12(q) · · · R1L(q)

R21(q) R22(q) · · · R2L(q)
... . . . . . . ...

RL1(q) RL2(q) · · · RLL(q)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1(t)

r2(t)
...

rL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.11)

2.3.1 General Module Representation

This subsection introduces a specialized variant of the DSF model (GONCALVES;

HOWES; WARNICK, 2007), frequently employed to describe input-output relationships

within dynamic networks (KIVITS; HOF, 2018; DANKERS et al., 2016). This variant

is characterized by the presence of a process noise vj(t), incorporated into each node’s

equation. This term captures the influence of internal disturbances within the network. In

addition, R is an identity matrix.

Equation (2.12) formalizes this specialized model:

wj(t) =
∑

i∈Nj

Gji(q)wi(t) + rj(t) + vj(t), (2.12)

In matrix notation, the dynamic network can be represented as

w(t) = G(q)w(t) + r(t) + H(q)e(t),

where w(t) is the vector of internal variables, G(q) represents the network dynamics, and

H(q) a diagonal matrix that models the effect of noise e(t) on the system.

This generalized model exhibits adaptability by accommodating vector-valued

signal handling through appropriately sized transfer functions, as detailed in (HOF et

al., 2013). It’s important to note that the following equation presents a single matrix

formulation applicable to all measured nodes, simplifying the external signal r(t) and v(t).
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This formulation is mathematically equivalent to Equation (2.12).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(t)

w2(t)
...

wL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 G12(q) · · · G1L(q)

G21(q) 0 · · · G2L(q)
... . . . . . . ...

GL1(q) GL2(q) · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(t)

w2(t)
...

wL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1(t)

r2(t)
...

rL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(t)

v2(t)
...

vL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.13)

or, equivalently

w = Gw + r + v, (2.14)

w = (I − G)−1(r + v). (2.15)

The topology of the network is embedded in the matrix G.

The dynamic network description presented in this section considers the following

properties.

• Direct Connections: The set of Nj defines the nodes directly influencing node j

(wk). Non-zero transfer functions, Gjk, signify these connections.

• Proper Transfer Functions: Gji functions are all proper. Zero values for specific

Gji indicate no direct connection from node j to node i.

• Absence of Self-Loops: No node directly influences itself, as denoted by Gjj = 0

for all nodes.

• Well-Posed Network: All transfer functions are proper, and the determinant of

the identity matrix minus the overall transfer matrix det(I-G) is non-zero. This

ensures the network’s mathematical solvability.

• Known Network Topology: We possess complete knowledge of the network’s

connection structure. This means it is known which Gij are zero and which are

non-zero.

The following example illustrates the graphical representation of a network equation.

This will showcase how the graphical structure aligns with the mathematical description.
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2.3.2 A continuous-time representation

The continuous-time counterpart of the module representation has been presented

in Dankers, Hof e Bombois (2014). It can be mathematically written similiarly to (2.12),

with the following differences

• t is now a continuous-time variable;

• Gij is now a proper continuous-time transfer function;

• the forward/backward operator becomes a differential operator, i.e. puj(t) = d
dt

uj(t).

wj(t) =
∑

i∈Nj

Gji(p)wi(t) + rj(t) + vj(t). (2.16)

The set of nodes and edges Nj and the signals rj and vj have the usual definition.

Likewise, it is also assumed that the following matrix equations are well-posed.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(t)

w2(t)
...

wL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 G12(p) · · · G1L(p)

G21(p) 0 · · · G2L(p)
... . . . . . . ...

GL1(p) GL2(p) · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(t)

w2(t)
...

wL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1(t)

r2(t)
...

rL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(t)

v2(t)
...

vL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.17)

Equivalently, in the matrix form

w = Gw + r + v. (2.18)

Equations (2.17) and (2.18) define a continuous-time dynamic network.

We’ll make it explicit whenever t refers to a continuous-time (CT) variable in this

document. We shall omit the discrete-time (DT) specification whenever it is not essential

because the majority of the content refers to DT variables.

2.4 Network Identifiability

In this section, we formally define the concept of network identifiability within the

context of dynamic networks. Identifiability establishes the conditions under which the

51



network structure, including individual modules and their connections, can be uniquely

recovered from measured data. These conditions guide the design of experiments, specifying

which nodes require excitation (external influence) and measurement. Two fundamen-

tal aspects of identifiability are explored: local module identifiability and path-based

identifiability.

Local identifiability focuses on the ability to uniquely determine the dynamics

of a single module based solely on the measured data. This typically requires exciting

all incoming nodes to the module and measuring the outgoing node. By doing so, the

influence of other modules on the target module is fully accounted for, enabling the unique

characterization of its internal dynamics (WEERTS; DANKERS; Van den Hof, 2015;

WEERTS; HOF; DANKERS, 2018a).

Path-based identifiability focuses on reconstructing the connections between mod-

ules within a network. It transcends local identifiability by strategically selecting nodes

for excitation and measurement along specific paths. This selection ensures the isolation

and distinction of each traversed module’s influence. By adhering to these conditions, re-

searchers can design experiments that guarantee the unique identification of inter-modular

connections, leading to a comprehensive understanding of the network’s architecture.

Notably, path-based identifiability leverages the concept of generic rank, considering all

feasible parameter configurations within the model class (excluding only a set of measure

zero). This stricter definition ensures the identified connections hold true for almost all

possible parameter values within the network (WEERTS; DANKERS; Van den Hof, 2015;

BAZANELLA et al., 2017).

2.4.1 Some background on power spectra

Defining the network’s open-loop response, the data’s spectral density allows us to

characterize the information embedded within the data.

The network transfer function that maps the external signals r(t) and e(t) into the
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node signals (input) w is given by:

T(q) = [Twr(q) Twe(q)], (2.19)

Twr(q) = (I − G(q))−1R(q), (2.20)

and

Twe(q) = (I − G(q))−1H(q). (2.21)

Where the notation T(q) = (I − G(q))−1U(q) with

U(q) = [H(q) R(q)] (2.22)

is also used. This is also know as the open-loop response of the network corresponding

with

w(t) = Twr(q)r(t) + Twe(q)e(t). (2.23)

Nodes w(t) can be represented as a spectral density in the following way:

φw(ω) = Twr(ω)φr(ω)TT
wr(ω) + φv(ω). (2.24)

2.4.2 Conditions for a local module identification

Methods for identifying network structure from data often rely on additional

assumptions to infer connections and dynamics. However, the validity of these assumptions

in ensuring a unique network solution is often uncertain, as they may lack rigorous

characterization. For instance, the commonly used sparsity assumption suggests that the

simplest network, which best explains the observed behavior, is likely to represent the

real system (HAYDEN et al., 2016). While this assumption is intuitively appealing, it has

limitations: we can demonstrate that any input-output behavior could also be produced

by a completely disconnected network structure, thus challenging the reliability of sparsity

as a sole assumption.

Building on this, Weerts, Dankers e Van den Hof (2015) propose relaxing some

of the stringent conditions imposed by previous network identification methods. Earlier

approaches to network identification, such as those based on prediction error methods and
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topology reconstruction, typically required extensive prior knowledge of the entire network

structure or strong assumptions like uncorrelated noise at each node. These methods also

often relied on specific excitation conditions across all modules to uniquely determine

the full network structure. The approach in (WEERTS; DANKERS; Van den Hof, 2015),

however, introduces a more flexible framework that allows for the identification of a

single module within a network, even if the dynamics of other modules remain unknown.

This innovation enables targeted identification of specific components without needing to

reconstruct the entire network, thus expanding the applicability of identification methods

to more complex and partially known networks.

In Weerts, Dankers e Van den Hof (2015), identifiability concepts are presented for

the dynamic network case. In this thesis, we are interested in guaranteeing that a local

module, or set of modules, can be identified based on data from the network measurements.

This section delves into a definition and provides relaxed conditions to explore how a

single module can be uniquely estimated in a dynamic network.

While identifiability traditionally focuses on distinguishing a single model Gji from

others, a stronger concept exists: local network identifiability of the entire model matrix G.

This property ensures all models in G can be obtained based on data features obtainable

from its underlying properties. This is advantageous because, in practice, the true model

Gji is often unknown. This concept builds upon previous work on identifiability at a

specific model level (GONCALVES; WARNICK, 2008).

The notion of network identifiability in dynamic networks ensures that the dynamics

and structure of a network can be uniquely determined based on measured data. This

property is crucial when identifying network topology and individual modules, as it guar-

antees that the identified model represents the true network configuration. In this context,

network identifiability extends classical system identifiability concepts by considering the

complexity of interconnected modules, correlated disturbances, and structured excitation

sources.

To formalize network identifiability, let us consider a network model matrix G,

which is defined over a set of parameters θ, where θ conveys the parameters of a given

54



transfer fucntion. For the network model to be identifiable, it must be possible to uniquely

determine each transfer function Gji based on the data, including both excitation signals

and noise properties.

This identifiability condition states that if two models G0 and Gji generate the

same open-loop behavior φw, for a given φr, as represented by the transfer function Twr

and the spectral density φv, then they must be identical, ensuring a unique mapping from

the model matrix G to the underlying network structure.

This identifiability condition we evaluate in this thesis is influenced by the following

factors:

• Excitation Signal Requirements: Adequate external signals must be applied at

specific points in the network to ensure that each module’s dynamics are distinguish-

able. This requirement, often referred to as data informativity, is crucial to separate

the influence of individual modules.

• Disturbance Modeling: The network disturbance v(t), driven by a reduced-rank

white noise process e(t), requires proper modeling.

• Structural Prior Knowledge: Certain network identification approaches may

require structural assumptions, such as knowing which nodes are connected, to

simplify the identification task. For example, Hof et al. (2013) developed methods

based on predictor input selection, which utilize known module interconnections.

These identifiability concepts allow us to assess whether a specific module or

the entire network can be consistently identified from measured data, considering both

excitation and disturbance characteristics. For example, in (WEERTS; DANKERS; HOF,

2015) the authors showed that network identifiability depends not only on excitation and

noise placement but also on the uniqueness properties of the network’s parametrization

and topology.

Thus, G is globally identifiable if the items above holds for all Gji, guaranteeing

that the network dynamics can be reconstructed without ambiguity from the available
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data.

In this thesis, we apply the identifiability concepts presented in Weerts, Dankers e

Hof (2015), which satisfy the aforementioned described factors. The identifiability analysis

is made in the basis of a toolbox for dynamic network identification (Van den Hof,

www.sysdynet.net, 2023), where local identifiability conditions are verified.

To apply the identifiability framework described in Weerts, Dankers e Hof (2015),

the following outlined steps should hold 2.

Formulate the Network Model

• Define the transfer function matrices G(q), H(q), and R(q) to describe the system’s

internal dynamics, noise, and external excitation inputs.

• Verify which nodes are influenced by external excitations and disturbances.

Check Identifiability Conditions

• Ensure that the transfer function matrix G(q) is fully parameterized or satisfies

structural constraints that guarantee unique identification.

• Verify that each node has independent excitation using the theoretical conditions.

Construct the Predictor Model

• Define the one-step-ahead predictor equation (WEERTS; DANKERS; HOF, 2015):

ŵ(t|t − 1) = [I − H−1(q)(I − G(q))]w(t) + H−1(q)R(q)r(t). (2.25)

• Compute the matrix T (q, θ) from measured data.

Analyze Identifiability

• Check whether the estimated T (q, θ) uniquely maps to a single model structure.

• If multiple models fit the observed data, the network might not be identifiable.
2 These steps are outlined in depth in (WEERTS; DANKERS; HOF, 2015).
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Use Excitation Design for Robust Identification

• If identifiability is not guaranteed, adjust the experimental setup by:

– Placing additional excitation sources in strategic nodes.

– Introducing structural constraints based on prior system knowledge.

By following these steps, the network identifiability framework can be effectively

applied to ensure that the estimated model is unique and accurately represents the

underlying dynamic system.

2.4.3 Summarizing Network Identifiability

For network identification to be successful, the network itself needs to be identifiable.

In simpler terms, we need to ensure that the network’s dynamic properties can be uniquely

determined from the collected data.

Network identifiability is a multifaceted concept, as highlighted by (SHI; CHENG;

HOF, 2021). It refers to the ability to distinguish between different network models within a

set of candidate models based solely on the measurement data. Additionally, as emphasized

by Mapurunga e Bazanella (2021a), identifiability depends on several factors beyond just

the experimental setup. These factors include:

• Excitation Signal Richness: The quality and design of the input signals used to

excite the network can significantly impact identifiability.

• Model Set Parametrization: The chosen model structure (e.g., transfer functions,

state-space models) can influence identifiability.

• Data Generating System: The inherent properties of the system that generated

the data play a role in identifiability.

The first perspective focuses on the practicalities of data collection and designing

effective experiments. Here, the goal is to determine which nodes within the network
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should be excited with input signals and which ones need to be measured to obtain the

most accurate parameter estimates during identification (MAPURUNGA; BAZANELLA,

2021b). This concept is crucial for designing efficient experiments and is independent of

the specific identification method chosen.

The second perspective takes a more theoretical approach, looking at identifiability

from the standpoint of the network model set itself. This set is defined by the parameterized

transfer matrices of the network, as discussed in (WEERTS; DANKERS; HOF, 2015;

WEERTS; HOF; DANKERS, 2018a). Here, the focus is on whether the chosen model

structure allows for a unique set of parameters to be recovered from the data. In other

words, this definition emphasizes the ability to distinguish between different network

models based solely on their mathematical representations (transfer functions).

This distinction between the two perspectives is important. The first perspective

focuses on designing experiments that will yield the most accurate data, while the second

perspective focuses on the mathematical properties of the network models themselves.

Both perspectives are crucial for successful network identification.

Since this thesis centers on identifying individual modules within a network, a more

in-depth discussion on network identifiability in this context can be found in (MAPU-

RUNGA; BAZANELLA, 2021a).

2.5 Closing Remarks

This chapter has established a foundation for the analysis of dynamic network

models. We commenced by formally defining dynamic networks and emphasizing the

significance of mathematical models in elucidating their intricate temporal characteristics.

Subsequently, we explored the fundamental building block of network representation:

graphs. Graph theory provides a powerful visual and mathematical tool for analyzing the

interconnected nature of complex systems.

Following this, we delved deeper into the nexus between graphs and dynamic

networks. We established how graph theory equips us with essential tools to analyze network
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dynamics, such as identifiability. We further explored the construction of dynamic network

models by considering the constituent subsystem models, the network’s interconnection

structure, and the underlying physical relationships between system variables.

Electrical circuits and power systems served as illuminating examples of how graphs

can effectively model real-world dynamic networks. The chapter then proceeded to explore

three prominent model representations built upon the concept of module interaction: Linear

Dynamical Graphs (LDGs), Dynamical Structure Functions (DSFs), and a generalized

variant of the DSF model. These models provide a framework for analyzing and predicting

network behavior under varying assumptions regarding the availability of signals and the

presence of noise.

By attaining an understanding of these core concepts and models, we can effec-

tively analyze and control complex dynamic networks. This knowledge has far-reaching

implications for advancements in various disciplines, including engineering, biology, and

the social sciences. The insights gleaned from this chapter serve as a springboard for

further exploration into the fascinating realm of dynamic network analysis and its diverse

applications.

Moving forward, the subsequent chapters will primarily adopt the discrete-time

version of the standard network structure presented in equation (2.13). This framework

assumes a network comprising L nodes. Notably, the network identification procedure to

be introduced in Chapter 5 caters specifically to discrete-time models embedded within

this type of network representation.

While the focus rests on discrete-time models, acknowledging the importance of

continuous-time systems is crucial. Many physical systems often find natural descriptions

as continuous-time networks. Additionally, the underlying physical characteristics of

the system under study frequently have a close connection to continuous-time transfer

functions. Notably, estimating physical system parameters sometimes involves identifying

a continuous-time transfer function within a continuous-time network model.

59



3 Dynamic Network Identification

Extracting a mathematical model that captures the essence of dynamic networks poses a

significant challenge. This chapter delves into the realm of network identification, exploring

techniques to unveil the hidden dynamics that govern these interconnected systems. We’ll

navigate the complexities arising from feedback loops, noise, and the sheer number of

interacting elements. By exploring established methods, this chapter equips you with the

tools to undestand passive identification in dynamic networks, paving the way for their

effective analysis and control.

3.1 Introduction

Extracting a mathematical model from real-world data is a challenging task, prone

to errors at various stages. Most system identification methods focus on systems operating

in either open-loop (no feedback) or closed-loop (with feedback) configurations. While

closed-loop systems introduce complexities due to feedback, network identification presents

an even greater challenge. Networks, by their very nature, can contain multiple loops,

leading to strong correlations between signals, the presence of algebraic loops (circular

dependencies), and noise corrupting both inputs and outputs.

Figure 12, adapted from (LJUNG, 1999), illustrates a typical system identification

process. It involves three main steps: data acquisition, model selection and parameter

estimation & validation. Data acquisition focuses on gathering measurements from the

system. This may involve designing an experiment to excite the system with specific inputs

and measure relevant outputs.

The second step involves choosing a model structure (e.g., state-space, transfer

function) and an estimation algorithm. This step requires the user to select a model that

can effectively map past inputs and outputs to the current system behavior. Additionally,

an estimation method is needed to determine the model’s parameters. A common approach

60



Figure 12 – A generic system identification flowchart.

is to minimize the sum of squared prediction errors between the model’s output and the

actual system output (LJUNG, 1999). Finally, the validation step assesses the obtained

model’s performance. Key aspects include evaluating the model’s accuracy, potential biases,

and output variance.

Traditional system identification methods primarily target open-loop or closed-

loop systems. This chapter ventures beyond these established techniques to explore the

identification of individual modules embedded within dynamic networks. A critical challenge

in network identification lies in determining suitable experimental conditions. This involves
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identifying which network nodes require excitation (input signals) and which ones need

measurement to ensure the network’s parameters are identifiable. Section 2.4.2 addressed

this crucial aspect.

Building upon the foundation of closed-loop system identification, this chapter

introduces two key approaches for network identification:

• The Direct Method (presented in Section 3.3)

• The Two-Stage Method (introduced in Section 3.4)

3.1.1 Data Generating System

To analyze the properties of identification methods, we will assume the data

originates from a dynamic network, as introduced in Chapter 2. This framework allows us

to explore how well different identification techniques perform under controlled conditions.

Consider a network with internal variables denoted by w1(t), w2(t), · · · , wL(t). We

use the superscript 0 to denote the transfer function of the true underlying system (data

generating system) as G0. These internal variables are related through the following

equation (Equation 3.1):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(t)

w2(t)
...

wL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 G0
12(q) · · · G0

1L(q)

G0
21(q) 0 · · · G0

2L(q)
... . . . . . . ...

G0
L1(q) G0

L2(q) · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(t)

w2(t)
...

wL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1(t)

r2(t)
...

rL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(t)

v2(t)
...

vL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.1)

or, given a single internal variable defined as

wj(t) =
∑

i∈Nj

G0
ji(q)wi(t) + rj(t) + vj(t). (3.2)

The data generating system also satisfy the following assumptions.

• Nj denotes the set of indices of node signals wi, i �= j for which G0
ji are nonzero, i.e.,

the set of measured variables with direct causal connections.
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• G0
ij are proper transfer functions. Absence of G0

ij corresponds to G0
ij = 0, indicating

that there is no direct link from wj to wi.

• The dynamic network has no self loops, or, G0
jj = 0.

• The network is well posed, meaning all transfer functions are proper and det(I−G0) �=

0.

• The topology of the network is known, i.e., one knows which G0
ij are zero.

Embedded models within the network are parameterized as linear, discrete-time

transfer functions of the form shown in Equation 3.3:

G0
ji(q) = B(q)

A(q) = b1q
−1 + b2q

−2 + · · · + bnb
q−nb

1 + a1q−1 + a2q−2 + · · · + anaq−na
, (3.3)

where na and nb represent the orders of the denominator and numerator, respectively.

Therefore, the following parameter vector can be defined:

θ0 = [b1 b2 · · · bnb
a1 a2 · · · ana ] . (3.4)

Equivalently, we consider the error model as

Hj(q, θj) = c0 + c1q
−1 + c2q

−2 + · · · + cncq
−nc

1 + d1q−1 + d2q−2 + · · · + dnd
q−nd

, (3.5)

where nd and nc represent the orders of the denominator and numerator, respectively.

3.2 System Identification Framework

In this section, we shift the attention from data generating system and related

themes to a parametric identification structure that is based on solving a minimization

problem. The objective is to estimate the parameters of a given model by minimizing its

prediction error.

In system identification, a crucial aspect lies in the model’s ability to predict the

system’s behavior (LJUNG, 1981; GEVERS et al., 2003; WEERTS; HOF; DANKERS,

2018b). Therefore, a logical criterion for evaluating model quality is its prediction ability
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(BOSCH; KLAUW, 1994). Prediction Error Methods (PEMs) offer a way to assess this

ability by calculating the difference between measured and predicted outputs. Essentially,

PEMs evaluate candidate models based on how well they can predict future behavior.

We will now formally define the concept of PEMs and introduce some notation.

For a more in-depth treatment of this material, refer to (LJUNG, 1999; AGUIRRE, 2015).

3.2.1 Prediction Error Methods

This section focuses on one-step-ahead predictor models. Let wj(t) denote the

internal variable to be predicted, and wi(t) denotes the internal variable that will be used

to predict wj(t). Recalling the relationship between these variables:

wj(t) =
∑

i∈Nj

Gji(q, θ)wi(t) + rj(t) + vj(t).

Consider vj(t) = Hj(q)ej(t), where ej(t) is a white noise process and H0
j (q) is a stable and

inversible transfer function. From the estimation perspective, both H0
j (q) and G0

ji(q) are

unknown transfer functions, and they are modeled using parametrized rational transfer

functions as

Gji(q, θji) = b1q
−1 + b2q

−2 + · · · + bnb
q−nb

1 + a1q−1 + a2q−2 + · · · + anyq−na
,

Hj(q, θj) = c0 + c1q
−1 + c2q

−2 + · · · + cncq
−nc

1 + d1q−1 + d2q−2 + · · · + dnd
q−nd

.

(3.6)

The corresponding parameter vectors are defined in Equation 3.7:

θji = [b1 b2 · · · bnb
a1 a2 · · · ana ] ,

θj = [c0 c1 c2 · · · cnc d1 d2 · · · dnd
] ,

θ = [θjk1 · · · θjkn θj] , {k1, · · · , kn} ∈ Dj.

(3.7)

where kj ∈ Dj denotes the parameters of the transfer functions that will be used to

predict the value of wj(t).

In (3.2), wj(t) is the measured process output at instant t, suppose that we have

complete knowledge of past samples (wj(t − 1), wj(t − 2), . . .) in addition to current and

past values of wi(t), i.e., (wi(t), wi(t − 1), wi(t − 2), . . .).
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The one-step-ahead predictor defined in (LJUNG, 1999) is defined as follows.

ŷ(t | t − 1, θ) = H−1(q, θ)G(q, θ)u(t) +
(
1 − H−1(q, θ)

)
y(t). (3.8)

Then it is defined the one-step-ahead predictor adapted to the dynamic network

case where u = wi and y = wj. The network equation expresses wj(t) as a sum of influences

from multiple nodes wi(t), meaning that instead of a single G(q, θ)u(t), we must sum over

all influencing nodes in Nj:

ŵj(t | t − 1, θ) = H−1
j (q, θ)

∑
i∈Nj

Gji(q, θ)wi(t) +
(
1 − H−1

j (q, θ)
)

wj(t). (3.9)

The network equation also contains the external variable rj(t), which is known and

does not need prediction. It is added as a direct term:

ŵj(t | t − 1, θ) =
∑

i∈Nj

H−1
j (q, θ)Gji(q, θ)wi(t) + rj(t) +

(
1 − H−1

j (q, θ)
)

wj(t). (3.10)

The prediction error is:

εj(t, θ) = wj(t) − ŵj(t|t − 1, θ). (3.11)

The identification criterion must select the model with the best predictive ability.

It is common to choose the model with the smallest sum of squared prediction errors

(LJUNG, 1999). The dynamic system parameters can be obtained by minimizing the

following cost function

VN(θ) = 1
N

N∑
t=1

εj(t, θ)2, (3.12)

therefore, the parameter estimates are given by

θ̂ = arg min
θ

VN(θ). (3.13)

Methods that determine the parameter vector based on the minimization of VN (θ)

are called Predictor Error Methods.

3.2.2 Statistical Properties of Estimators

The previous subsection introduced an estimator that minimizes a cost function

based on the squared errors between measured data and one-step-ahead predictions.
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This approach using Prediction Error Methods is attractive due to its straightforward

calculations and the resulting estimator’s ability to handle errors in the regression equation.

This is particularly beneficial when dealing with noisy data, a common scenario in real-world

applications.

In addition, throughout this work, it is assumed that the order of the model Gji is

equal to the order of the true data-generating system G0
ji. This assumption ensures that

the model is capable of accurately capturing the dynamics of the underlying system.

The term convergence refers to the behavior of an estimator as the sample size

grows. Convergence in probability ensures that, for any arbitrarily small positive number

ε > 0, the infimum that the estimate θ̂ deviates from the true parameter θ by no more

than ε approaches zero as N increases:

inf
(
‖θ̂ − θ0‖ < ε

)
→ 0 as N → ∞.

This form of convergence is distinct from other types, such as almost sure conver-

gence or mean square convergence, which are stronger but may not always be required for

consistency.

An essential property of estimators is their consistency. An estimator is consistent

if it provides parameter estimates that converge in probability to the true parameter

value as the number of data samples N approaches infinity. Specifically, for the estimated

transfer function Gji(q, θ̂), the parameter vector estimate θ̂ is consistent if:

θ̂
P−→ θ0 as N → ∞, (3.14)

where P−→ denotes convergence in probability. This ensures that:

Gji(q, θ̂) → Gji(q, θ0) as N → ∞. (3.15)

In simpler terms, a consistent estimator guarantees that the estimated parameter

vector θ̂ becomes arbitrarily close to the true value θ0 as more data is collected. However,

achieving consistency often depends on specific experimental conditions, such as sufficient

excitation of the system or accurate noise modeling (DANKERS, 2014).
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In practical situations, the number of data samples N is finite. This limitation

can introduce bias into otherwise consistent estimators. Bias is defined as the difference

between the expected value (average) of the estimator θ̂ and the true value θ0 of the

parameter vector:

b = E[θ̂] − θ0, (3.16)

where E[θ̂] is the mathematical expectation. Note that despite θ being deterministic, θ̂ is

a vector with stochastic variables, therefore the expected value is used because b is also

stochastic.

3.3 Direct Method

The direct method is a straightforward approach for system identification that

originated in the context of closed-loop systems. It leverages the predictor introduced in

Equation (3.10) to estimate the transfer function Gji by minimizing the cost function in

Equation (3.12). This method requires an input signal wi and an output signal wj.

The method can be readily applied to dynamic networks as well. The key aspect

lies in selecting the appropriate set of input signals for the predictor. While a simple

choice might be to use wi as the sole input, this can often lead to biased estimates. This

is because other variables with direct connections to the output wj can also influence its

value, as noted in (FORSSELL; LJUNG, 1999; HOF et al., 2012).

Under specific conditions, the direct method can provide a way to estimate the

module transfer function Gji(q) (DANKERS et al., 2012). These conditions are:

(i) Uncorrelated Noise:

there exists a noise model H(q) such that the filtered version of the process noise, or

vj(t) = H(q)ej(t), is uncorrelated to the input signal1;

(ii) True Parameter Vector:

there exists a parameter vector θ such that Gji(q, θ) = G0
ji(q);

1 The main point of preposition (i) is that if the (filtered) noise vj(t) is uncorrelated to the input signal
wi then consistent estimates of Gji(q) are possible.
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(iii) Loop Delays:

for the data generating system, every loop through wj has a delay, meaning that

every loop has at least one dynamic system in between nodes;

(iv) Positive Definite Excitation:

the spectral density of wj, denoted as φj, is positive definite for ω ∈ [−π, π] 2.

It is important to highlight that the direct method in the original closed-loop

framework ignores the existence of feedback, treating the data as though no feedback

loops are present (SöDERSTRöM; STOICA, 1989). In the context of dynamic networks,

Condition (iii) adapts this principle by restricting the loop delay requirement specifically

to the output signal being identified.

Example 3.1-

Consider the dynamic network depicted in Figure 13. Suppose we want to estimate

the transfer function G32 using the direct method. In this scenario, a possible choice would

be to use w2 as the input signal and w3 as the output signal for identification.

Under the condition that a delay is present in the loop (G32G23) and by the use of

an appropriate model set that includes accurate noise modeling, the transfer function G32

can be estimated.

Figure 13 – Dynamic network of Example 3.1.

2 The excitation condition (iv) is a rather generic condition for informative data (LJUNG, 1999).
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3.4 Two-Stage Method

This section introduces an indirect/projection method capable of estimating a

module transfer function within a dynamic network. The two-stage identification method,

originally proposed in (Van Den Hof; SCHRAMA, 1993) and revisited in (FORSSELL;

LJUNG, 1999), offers an advantage over the Direct Method by utilizing external variables

to achieve consistent identification.

The method leverages classical Prediction Error Methods (PEM) and standard

identification tools. The core idea lies in decorrelating the input signal and process

noise through an orthogonal projection in the first stage. Then, in the second stage, the

decorrelated input signal is used to estimate the module transfer function. This approach

allows for estimation without explicitly modeling the noise dynamics.

The method we present in this subsection was adapted to the dynamic network

identification case in Hof et al. (2013).

Consider estimating the module Gji based on the following variables: wi (input

signal), wj (output signal) and ri (external signal). Note that ri and wi are quasi-stationary

signals (LJUNG, 1999), such that the cross-correlation function

Rwiri
(τ) = E [wi(t)ri(t − τ)] (3.17)

is zero for τ < 0 and non-zero for τ ≥ 0. Given that

E [x(t)] = lim
N→∞

1
N

N∑
t=1

E [x(t)] , (3.18)

where E is the expectation operator.

Stage 1:

An initial set of external variables {rm} is selected with m ∈ Tj. Each of the

external variables in {rm} is correlated with wi.

We assume a proper MISO transfer function F 0
wirm

exists such that

wi(t) =
∑

m∈T j

F 0
wirm

(q)rm(t) + z(t), (3.19)
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where z(t) uncorrelated with all {rm} with m ∈ Tj. This equation allows us to decompose

the input signal wi(t) into two parts:

wi(t) = w
(rm)
i (t) + w

(⊥rm)
i (t). (3.20)

Here, w
(rm)
i represents the projection of wi onto the space spanned by all external signals

{rm}, and w
⊥(rm)
i = z(t) captures the part uncorrelated with the selected external variables.

If the set {rm} is sufficiently informative3, then F 0
wirm

(q) can be consistently

estimated based on the measured signals {rm} and wi. This leads to an estimated transfer

function F 0
wirm

(q), which can then be used to calculate the projection:

ŵ
(rm)
i (t) =

∑
m∈Tj

F̂wirm(q)rm(t) (3.21)

where F̂wiri
(q) is the estimated transfer function, providing an estimation of w

(rm)
i (t).

Stage 2:

In the second stage, the decorrelated input estimate ŵ
(ri)
i (t) is used as the input to

the predictor model. However, the predictor’s output needs a correction term (HOF et al.,

2013):

w̃j(t) = wj(t) −
∑

i∈Nj

G0
ji(q)wi(t) − rj(t) (3.22)

This corrected output, denoted by w̃j(t), removes the contributions from other

internal signals and the external reference signal rj(t).

The predictor model is adjusted to incorporate the decorrelated input signal and

the corrected output signal:

ŵj(t | t − 1, θ) =
∑

i∈Nj

H−1
j (q, θ)Gji(q, θ)ŵ(ri)

i (t) +
(
1 − H−1

j (q, θ)
)

w̃j(t). (3.23)

As a result, estimates of Gji(q) are obtained by minimizing the sum of prediction errors

(3.11).

This section presents two algorithmic approaches for the two-stage identification

method, originally described in (HOF et al., 2013). The key concept to remember is that
3 Sufficiently informative signals are inputs that excite all dynamics of the system, ensuring the identifia-

bility of the model parameters.
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limiting the predictor model to a Single-Input, Single-Output (SISO) format treats the

influence of all other inputs affecting the output signal wj as noise. This, in turn, can lead

to increased variance in the estimated parameters.

Two-stage SISO algorithm

1. Select External Variables: Choose a set of external signals, denoted by {rm},

that have a path to the input signal wi within the network.

2. Estimate Projected Input: Determine the projected component, w
(ri)
i (t), of the

input signal wi using the estimated transfer function ŵ
(ri)
i (t) obtained from Eq.

(3.21). his essentially isolates the contribution of the external variables to wi.

3. Construct Corrected Output: Construct the corrected output signal w̃j as in

(3.22). This step removes the influence of other internal inputs and the reference

signal from the measured output.

4. Estimate Transfer Function: Finally, estimate the transfer function Gji(q) on

the basis of a predictor model (3.23) with the prediction error (3.11).

The MISO (Multiple-Input, Single-Output) algorithm addresses the limitations

of the SISO approach by incorporating the effects of other relevant internal variables.

However, this comes at the cost of increased complexity due to the need for more models

and parameter estimates. Here’s a summary of the steps:

Two-stage MISO algorithm

1. Select External Variables: Similar to the SISO approach, select a set of external

signals {rm}, with paths to the input wi.

2. Identify Correlated Internal Variables: Determine the set of internal variables,

denoted by wi, that exhibit correlation with any of the external variables ri.

3. Estimate Projected Input: As in the SISO case, estimate the projected component

w
(rm)
i (t) of the input signals using the estimated transfer functions Fwirm(q) as shown

in (3.21).
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4. Construct Corrected Output: Construct the corrected output signal w̃j using

Eq. (3.22).

5. Estimate Transfer Function: Estimate the transfer function Gji(q) using a MISO

predictor model (Eq. 3.23) that minimizes the prediction error (Eq. 3.11).

The choice between the SISO and MISO algorithms depends on the specific

application and the desired balance between accuracy and complexity. The SISO approach

offers a simpler implementation but may suffer from higher variance in parameter estimates,

while the MISO approach can provide more accurate results at the expense of increased

computational cost.

3.5 Case Studies

This section showcases the two identification methods (Direct and Two-Stage)

through a practical example. We’ll demonstrate how these methods can be used to

estimate transfer functions within a closed-loop system.

The Coefficient of Variation

To compare the variances of parameter estimates from both methods, we’ll use the

Coefficient of Variation (CV). Let’s consider an estimated parameter x, with a mean of x̃

and variance of δx. The CV is defined as:

CV (x) = δx

x̃
100. (3.24)

The CV encompasses the relative variability of a parameter compared to its average

value. The same variance might have a different impact on the analysis of models depending

on the mean value.

3.5.1 A simple feedback

We begin by validating the techniques discussed in previous chapters using a

synthetic system designed to generate data. Since our focus is on closed-loop identification,
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Table 1 – Results for estimation of simple feedback modules using the direct method.

Model Parameter True Value Estimate Mean Estimate Variance
a1 -0.7 -0.7001 4 ×10−4

a2 -0.5 -0.5002 3.6 ×10−3

b1 1.0 1.0006 1 ×10−4

b2 0.3 0.3010 7×10−4

we’ll use a simple feedback case to illustrate the methodology. This closed-loop system

represents the simplest possible network example. This case study has been presented in

Rodrigues et al. (2022).

The closed-loop system generating data is shown in Figure 14. The external signal

r1 is zero-mean, normally distributed white noise with a unit variance. Notice that an

additional disturbance signal has been introduced at node 2. This disturbance is also

zero-mean Gaussian distributed random noise, but with a variance of 0,1.

Figure 14 – A simple feedback.

The module transfer functions G21 and G12 are defined as follows

G0
21(q) = b1

q + a1
= 1

q − 0.7 ,

G0
12(q) = b2

q + a2
= 0.3

q − 0.5 .

(3.25)

To verify that the two modules in the feedback system can be consistently estimated

using the direct method, we generated 500 samples for each experiment. We also performed

1000 identification experiments and computed the mean and variance of the estimated

parameters. The results are summarized in Table 1.
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Table 2 – Results for estimation of simple feedback modules using the two-stage method.

Model Parameter True Value Estimate Mean Estimate Variance
a1 -0.7 -0.6999 4 ×10−5

a2 -0.5 -0.5000 7 ×10−5

b1 1.0 1.0002 9 ×10−5

b2 0.3 0.2999 9 ×10−5

Figure 15 – Coefficient of Variation- a simple feedback.

For comparison, we used the two-stage method to estimate SISO models for the

modules in the feedback system. We employed the same dataset used for the direct method.

Table 2 shows the mean and variance of the estimates from the two-stage method. As you

can see, there’s a significant reduction in the variance of the estimates compared to the

direct method.

Figure 15 illustrates the CV comparison for both methods. The decrease in vari-

ability of the parameters is confirmed by the CV analysis. It is worth noting that the

parameters a2 and b2 presented a larger discrepancy between methods based on CV.

3.5.2 A dynamic network: example 1

This example explores a dynamic network scenario to illustrate the application of

network identification methods herein presented. This case study has been presented in
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Rodrigues et al. (2022).

Network Description: Consider the dynamic network represented in Figure 16.

The excitation signal r1 is white noise with mean 1 and variance 0.1 and the signals v2, v4

and v5 are white noise with mean 0 and variance 0.1. The measured signals are illustrated

in red in the image, they are: the nodal signals w1, w2, w3, w4 and w5 and the excitation

signal r1.

Figure 16 – A dynamic network with 5 nodes and 4 modules.

The module transfer functions are defined as follows

G0
21(q) = b1

q + a1
= 1

q − 0.7 ,

G0
43(q) = b2

q + a2
= 0.5

q − 0.4 ,

G0
34(q) = b3

q + a3
= 0.2

q − 0.9 ,

G0
15(q) = b4

q + a4
= 0.3

q − 0.5 .

(3.26)

Experiment Design: 500 samples are used per experiment, and 1000 identification

experiments were generated. Table 3 shows the mean and variance results of the parameter

estimation for the direct method and Table 4 shows the results for the two-stage method.

The comparison in relation to the CV of the estimates is shown in Figure 17. For

all model parameters, variances were reduced, as illustrated in Tables 3 and 4.

In this case study, it is worth noting that the direct method presented a biased

estimate for G0
34. This was reduced with the two-stage method, but there is still a bias in
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Table 3 – Results of the estimation of dynamic network modules using the direct method.

Parameter True value Mean Variância
a1 -0.7 -0.7046 1.2981 ×10−4

a2 -0.4 -0.3980 2.1834 ×10−4

a3 -0.9 -0.9014 6.3329 ×10−4

a4 -0.5 -0.4929 4.5200 ×10−4

b1 1.0 0.9997 3.1984 ×10−5

b2 0.5 0.4993 1.1392 ×10−4

b3 0.2 0.3022 3.0032 ×10−4

b4 0.3 0.2985 3.6816 ×10−3

Table 4 – Results of the estimation of dynamic network modules using the two-stage method.

Parameter True value Mean Variância
a1 -0.7 -0.7001 7.5513 ×10−5

a2 -0.4 -0.3999 3.8815 ×10−5

a3 -0.9 -0.9007 1.6921 ×10−4

a4 -0.5 -0.4993 5.3856 ×10−5

b1 1.0 1.0005 1.9081 ×10−5

b2 0.5 0.5002 8.3981 ×10−5

b3 0.2 0.2101 3.1684 ×10−4

b4 0.3 0.3003 3.0344 ×10−4

Figure 17 – Coefficient of Variation- a dynamic network example.

the b3 parameter. The literature indicates that a possible solution to mitigate such effects

is to add more excitation signals, for example, adding r2 in the Figure 16 network can

improve the estimates for the two-stage method.
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3.5.3 A dynamic network: example 2

In this part, a complex network with 5 nodes and 6 modules is simulated in order

to generate data to validate the methodology. The network topology is presented in Hof et

al. (2013).

Consider the dynamic network depicted in Figure 18. The objective of this case

study is to apply the direct method and the two-stage method to estimate SISO modules

(green boxes) of the network. The MISO modules (yellow boxes) estimate will be discussed

in the following sections of this chapter.

Figure 18 – A complex network example (HOF et al., 2013).

Let us define the SISO module transfer functions parameters:

G0
32(q) = b1

q + a1
= 1

q − 0.7 ,

G0
54(q) = b2

q + a2
= 0.1

q − 0.2 ,

G0
45(q) = b3

q + a3
= 0.15

q − 0.2 ,

G0
15(q) = b4

q + a4
= 0.4

q − 0.6 .

(3.27)

Network Description: The external signal r1 is a zero mean normally distributed

white noise with variance equal to 1. Also the noise signals v2, v3 and v4 are zero mean

normally distributed white noise with variances 0.1. For the estimation procedure, the

data generating system considers the node signals w1, w2, w3, w4 and w5, and the external

signal r1.

77



Experiment Design: 500 samples are extracted and used in the identification

experiment. 1000 experiments are simulated and the information we display are the mean

of the estimates and the estimate variance as results of the procedure.

Initially, the direct method is used to estimate all SISO modules (G32, G15, G54,

G45). Table 5 shows the results of the identification concerning each parameter.

Table 5 – Results for estimation of modules in a dynamic network using the direct method.

Model Parameter True Value Estimate Mean Estimate Variance
a1 -0.7 -0.6994 1.1636 ×10−4

a2 -0.2 -0.1986 2.2200 ×10−3

a3 -0.2 -0.1998 5.9580 ×10−5

a4 -0.6 -0.5956 1.5400 ×10−2

b1 1.0 0.9999 7.2607 ×10−5

b2 0.1 0.1002 7.1000 ×10−3

b3 0.15 0.1479 5.3000 ×10−3

b4 0.4 0.4000 5.4100 ×10−3

Note that the estimation via the direct method is performed locally, as a consequence

it neglects the rest of the network signals. The method uses only the input/output signals

regarding the local module and discards the external signal r1. This may incur into biased

estimates of the modules parameters. However, Table 5 shows that consistent estimates

are possible, provided that the input node signal is sufficiently exciting.

In what follows, results of the two-stage method applied to estimate the same SISO

modules are given in Table 6.

Table 6 – Results for estimation of modules in a dynamic network using the two-stage
method.

Model Parameter True Value Estimate Mean Estimate Variance
a1 -0.7 -0.6998 8.0382 ×10−5

a2 -0.2 -0.1900 8.6217 ×10−5

a3 -0.2 -0.2000 1.8431 ×10−31

a4 -0.6 -0.5934 5.5400 ×10−3

b1 1.0 0.9994 2.2568 ×10−5

b2 0.1 0.1007 3.2941 ×10−5

b3 0.15 0.1500 3.6280 ×10−34

b4 0.4 0.3968 5.0846 ×10−4

On the other hand, the two-stage method relies on measured external signal r1 and
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a similar least squares criterion is applied. Consistent estimates are possible provided that

the input signal is sufficiently exciting.

Figure 19 illustrates the CV comparison for both methods. The decrease in vari-

ability of the parameters are also stated by the CV analysis. When comparing the results

using the direct and the two-stage methods, it is clear that there has been a decrease in

the variance of the estimates.

Figure 19 – Coefficient of Variation- a well-known dynamic network.

3.6 Closing Remarks

This chapter delved into the intricacies of network identification, exploring tech-

niques to unveil the hidden dynamics governing interconnected systems. We navigated

the complexities arising from feedback loops, noise, and the sheer number of interacting

elements. By equipping the reader with established methods for network identification,

this chapter paves the way for their effective analysis and control.

Summary of this chapter:

• Traditional system identification methods primarily target open-loop or closed-loop
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systems. Network identification presents a distinct challenge due to the presence of

multiple loops and the potential for algebraic loops.

• The Direct Method and Two-Stage Methods offer two key approaches for tackling

network identification.

• The success of network identification hinges on the concept of identifiability. This

refers to the ability to uniquely determine the network’s dynamic properties from

collected data.

• Prediction Error Methods offer a framework for evaluating model quality based on

their ability to predict future system behavior.

• The Direct Method leverages a predictor model to estimate the transfer function,

but may suffer from bias under certain conditions.

• The Two-Stage Method employs an external signal for decorrelating the input and

process noise, enabling consistent identification without explicit noise modeling.
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4 Dissipative and Passive Systems

In the realm of system identification, ensuring physical meaning and stability of identified

models is paramount. This chapter is intended to be a first step in order to bring light to

questions that were not well discussed in the dynamic network systems literature: how can

we identify a passive module from a passive system embedded in a dynamic network? how

the relationship between dissipativity and passivity impact on the system identification of

dynamic networks? We delve into the fundamental concepts of dissipativity and passivity,

which provide a framework for understanding a system’s energy exchange and storage

behavior.

4.1 Introduction

This chapter delves into the theoretical foundations of system dissipativity and

passivity. These concepts are fundamental for understanding the energy exchange and

storage behavior of dynamical systems. By incorporating passivity constraints into system

identification, we can ensure that the resulting models are energetically consistent and

stable.

Dissipativity is a fundamental property that characterizes a system’s interaction

with its environment in terms of energy. A dissipative system does not generate energy

but rather exchanges it with its surroundings. Passivity is a specific form of dissipativity,

requiring that the system’s stored energy does not increase indefinitely.

For linear time-invariant (LTI) systems, dissipativity can be related to mathemat-

ical concepts such as positive-realness and the bounded-real lemma (WILLEMS, 1972;

KOTTENSTETTE et al., 2014; GAWTHROP; BEVAN, 2007). These concepts provide

tools for analyzing and verifying the passivity of a given system model.

Incorporating dissipativity constraints into system identification ensures that the

resulting models are energetically consistent and stable. This is particularly important for
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systems where energy considerations are crucial, such as electrical networks, mechanical

systems, and control systems. By enforcing passivity, we can avoid obtaining models that

violate the laws of physics and may lead to unstable or non-realistic behavior. Additionally,

incorporating passivity constraints can improve the accuracy of system identification

algorithms.

Implications for System Identification

Enforcing passivity constraints in system identification can lead to several benefits:

• Stable Time-Domain Simulations: under any kind of interconnection and exci-

tation, which is a closure property.

• Improved Model Accuracy: Passivity constraints can help to ensure that the

identified model accurately reflects the physical behavior of the system.

• Stability: Passive models are inherently stable, which is crucial for many applica-

tions.

While incorporating passivity constraints into system identification offers significant

advantages, it also presents challenges. One of the main challenges is ensuring that the

identified model remains passive while maintaining accuracy. Developing efficient algorithms

for passivity enforcement remains an active area of research.

4.2 Dissipativity in Dynamic Networks

The characterization of dissipative systems involves formulating energy balance

inequalities, which require the definition of functions mapping energy exchange for a system

(WILLEMS, 1972). Two key functions are usually considered: a supply function Φ(·) and

a storage or Lyapunov function V (·). The supply function represents energy inputs and

outputs, while the storage function represents the energy stored within the system. The

power balance equation in (4.1) reflects the fundamental principle of physical systems which

cannot store more energy than it receives from external sources (GRIVET-TALOCIA;
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GUSTAVSEN, 2016):

V (x(t + 1)) − V (x(t)) ≤ Φ(u(t), y(t))1. (4.1)

The class of disipative LTI systems encompasses both passive and non-expansive

(contractive) LTI systems and dissipativity generalizes the concepts of stability and

causality (GRIVET-TALOCIA; GUSTAVSEN, 2016; TRIVERIO et al., 2007). Intuitively,

dissipative, passive and non-expansive systems entail these are formed out of energy

absorbing elements.

Evaluating a given system for compliance with dissipative behavior is a process

known as passivity assessment. Assuming an LTI system described by a SISO transfer

function G(z) with an input signal u and an output signal y, this property can be assessed

by the existence of a symmetric and positive-definite (P = PT > 0) such that:⎡⎢⎢⎣ AT PA − P AT Pb − cT

(AT Pb − cT )T bT Pb − (dT + d)

⎤⎥⎥⎦ 	 0 (4.2)

where the quadruple (A,b,c,d) is a state-space realization of G(z).

x(t + 1) = Ax(t) + bu(t), (4.3a)

y(t) = cx(t) + du(t), (4.3b)

where x(t) ∈ R
n is the state vector, u(t) ∈ R is the input vector, y(t) ∈ R is the output

vector, and the system matrix A ∈ R
n×n and vectors b ∈ R

n, c ∈ R
n, and d ∈ R.

As a sufficient and necessary condition, feasibility of the aforementioned LMI

corresponds to a dissipativity certificate for the quadruple (A,b,c,d). Unfeasibility of this

LMI indicates a non-dissipative system.

4.3 Passivity Assessment

Given the necessity to study the behavior of the energy in time-varying networks,

the term "passive element" comes as a clear formulation of elements that absorb energy.
1 Considering the sampling time as 1 for convenience.
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Passivity is a primal property of several physical systems, it qualifies the energy balance

of a system in an input-output sense. A system is said to be passive when it is not

capable of generating energy by itself. In other words, it can consume energy only from the

sources that excite it (GRIVET-TALOCIA; GUSTAVSEN, 2016; MAHANTA; YAMIN;

ZADEHGOL, 2017).

Generally, passive equipment only absorbs active power given any voltage excitation,

in any frequency range. In order to be physically consistent, electrically interconnected

models must satisfy causality, stability and passivity properties. Typically, the model is

subjected to a passivity enforcement stage with the intention to avoid further instability

in simulations (KUO, 1968; TRIVERIO et al., 2007).

The passivity property either can be assessed in data or in a model, and literature

shows a few formulations with different levels of details (BRUNE, 1931; WILLEMS, 1972;

RAISBECK, 1954). If one is interested in the passivity assessment in raw data, then the

techniques based on a model structure can not be employed. In Subsection 4.3.1, the sweep

method checks passivity over measured frequencies, and it is appropriate to verify the

property in raw data. Should a state-space realization be available, the evaluation of the

passivity can be made using Linear Matrix Inequalities (LMI), as discussed in Subsection

4.3.2. In fact, many other techniques are accessible and a broad discussion on passivity

assessment methods based on technical literature is delivered in (IHLENFELD, 2015).

Given the importance of the passivity property in some complex systems, especially

the ones composed by interconnected models, many authors direct their research to develop

techniques to ensure passivity in models as further discussed in (GRIVET-TALOCIA;

UBOLLI, 2008; GAO et al., 2005; IHLENFELD, 2015). There are available a few passivity

enforcement schemes for LTI lumped systems. Some are based on direct enforcement

of Positive Real Lemma (PRL) constraints via optimization, some others via discrete

frequency samples and there is also a class based on Hamiltonian eigenvalue perturbation.

All of them are intended to ensure the model’s dynamic to be strictly passive. This thesis

is focused on passivity enforcement via PRL using a Linear Matrix Inequality (LMI).
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4.3.1 Frequency sweeping assessment

In Triverio et al. (2007), a frequency sweep assessment is described for passive LTI

systems with G(z), a transfer function matrix, it is possible to define

G(z) + GH(z) 
 0 ⇔ λmin(G(z)) ≥ 0, ∀z, s.t. z = ejθ and θ = [0, π] (4.4)

where (·)H denotes an Hermitian matrix. G(z) is positive real if the following conditions

are satisfied.

1. G(z) is defined and analytic;

2. G(z∗) = G∗(z), where (·)∗ represents the complex conjugate.

3. Φ(z) = G(z) + GH(z) 
 0.

These three conditions are equivalent to a “positive resistivity”. As noted in

(TRIVERIO et al., 2007), condition (1) implies BIBO (Bounded-Input Bounded-Output)

stability, while condition (2) ensures that the system impulse response to be real. Condition

(3) is a generalization for the fact that any passive device has a positive real part.

As a result, a simple assessment for passivity, widely used in literature is:

Φ(z) 
 0 for all z, (4.5)

Should the inequality in (4.4) hold, passivity requires the matrix G(z) = Re[G(z)]

to be positive real. If all eigenvalues of G are strictly positive, so is the smallest one.

Consequently, the passivity criteria can take the even simpler form in (4.6).

eigmin(G(z)) > 0. (4.6)

Passivity is assessed only at sampled frequencies, which means violations may occur

between these sampled points. Therefore, even if passivity is violated at a specific sampled

frequency zk it does not necessarily imply that the assessment will indicate a violation at

a neighboring frequency ωk+k1 .
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4.3.2 LMI based assessment

The concept of passivity, fundamentally tied to the energy exchange properties of a

system, can be rigorously analyzed using Linear Matrix Inequalities (LMIs). By formulating

the passivity conditions as LMIs, we can leverage the power of convex optimization to

efficiently assess and enforce passivity.

The idea of the passivity assessment based on LMI arose from control systems

theory (KALMAN, 1964; KUO, 1966; KUO, 1968) where the authors state the relation

between positive realness of a transfer matrix and feasibility of a state-space realization.

The foundation of LMI-based passivity assessment lies in the energy balance of a

system. Recalling the balance expressed in the following equation:

V (x(t + 1)) − V (x(t)) ≤ Φ(u(t), y(t))

where:

• V (x(t)) is a storage function (often quadratic), representing the stored energy in the

system at time t.

• Φ(u(t), y(t)) is a supply function, representing the supplied power to the system.

For linear time-invariant (LTI) systems, these functions can be expressed in

quadratic forms, leading to conditions that can be cast as LMIs.

Φ(u, y) = yT Ly + uT Ru + yT Wu =

⎡⎢⎢⎣ y(t)

u(t)

⎤⎥⎥⎦
T ⎡⎢⎢⎣ L W

WT R

⎤⎥⎥⎦
⎡⎢⎢⎣ y(t)

u(t)

⎤⎥⎥⎦ (4.7)

The PRL establishes a direct link between the positive-realness of the transfer

function and the feasibility of certain LMIs. The following matrices are defined (L =

0, R = 0, W = I)

Φ(u, y) = yT 0y + uT 0u + yT Iu = yT u =

⎡⎢⎢⎣ y(t)

u(t)

⎤⎥⎥⎦
T ⎡⎢⎢⎣ 0 I

I 0

⎤⎥⎥⎦
⎡⎢⎢⎣ y(t)

u(t)

⎤⎥⎥⎦ (4.8)
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Considering a quadratic form for the storage/Lyapunov function, that is:

V (x) = xT Px

all functions involved in modeling the system’s energy balance or exchange are quadratic

forms. Note that the supply function depends on the input-output pair, while the storage

function depends on the system’s state. It’s crucial to ensure that the definitions of input,

output, and state variables are consistent with the units of the quantities they represent.

Given these specific choices, we can derive convenient matrix expressions to verify

the energy balance. Invoking the condition of a dissipative system, we can state:

x(t + 1)V (x(t)) ≤ Φ(y(t), u(t)) (4.9)

Both the left and right sides of the inequality are scalar expressions with vector

arguments and matrix parameters (under the aforementioned assumptions). Furthermore,

these scalar expressions aim to capture the concept of energy/power balance. In this sense,

it’s clear that both expressions represent power: x(t + 1)V (x(t)) as the rate of change of

stored energy in the states, and Φ(y(t), u(t)) as the net power injection into the system.

V (x(t + 1), u(t + 1)) − V (x(t), u(t)) ≤ Φ(y(t), u(t))
dV

dx

(
xT Px

)
≤ Φ(y(t), u(t))

(Ax + Bu)T Px + xT P(Ax + Bu) ≤ Φ(y(t), u(t))⎡⎢⎢⎣x(t)

u(t)

⎤⎥⎥⎦
T ⎡⎢⎢⎣AT P + PA PB

BT P 0

⎤⎥⎥⎦
⎡⎢⎢⎣x(t)

u(t)

⎤⎥⎥⎦ ≤ Φ(y(t), u(t))

(4.10)

In the previous step, we developed the balance equation based on the premise that

the system dynamics are governed by a state-space representation (LTI). Since in the

state-space representation, the output equation is a function of both the states and inputs,

we can eliminate the output vector.
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V (x(t + 1), u(t + 1)) − V (x(t), u(t)) ≤ Φ(y(t), u(t))

V (x(t + 1), u(t + 1)) − V (x(t), u(t)) ≤

⎡⎢⎢⎣y(t)

u(t)

⎤⎥⎥⎦
T ⎡⎢⎢⎣ L W

WT R

⎤⎥⎥⎦
⎡⎢⎢⎣y(t)

u(t)

⎤⎥⎥⎦

V (x(t + 1), u(t + 1)) − V (x(t), u(t)) ≤

⎡⎢⎢⎣Cx(t) + Du(t)

u(t)

⎤⎥⎥⎦
T ⎡⎢⎢⎣ L W

WT R

⎤⎥⎥⎦
⎡⎢⎢⎣Cx(t) + Du(t)

u(t)

⎤⎥⎥⎦

V (x(t + 1), u(t + 1)) − V (x(t), u(t)) ≤

⎡⎢⎢⎣x(t)

u(t)

⎤⎥⎥⎦
T ⎡⎢⎢⎣ CT LC CT LD + CT W

DT LC + WT C DT LD + DT W + WT D + R

⎤⎥⎥⎦
⎡⎢⎢⎣x(t)

u(t)

⎤⎥⎥⎦

V (x(t + 1), u(t + 1)) − V (x(t), u(t)) ≤

⎡⎢⎢⎣x(t)

u(t)

⎤⎥⎥⎦
T ⎡⎢⎢⎣ L̃ W̃

W̃T R̃

⎤⎥⎥⎦
⎡⎢⎢⎣x(t)

u(t)

⎤⎥⎥⎦
V (x(t + 1), u(t + 1)) − V (x(t), u(t)) ≤ Φ̃(x(t), u(t))

(4.11)

Depending on the choice of supply function (Positive Real or Bounded Real) and

the type of dynamics involved (Continuous Time or Discrete Time), the energy balance can

be expressed in different ways. In this thesis, we are particularly interested in analyzing

and enforcing the passivity of Discrete-Time Positive Real systems, therefore we achieve

the following equation. ⎡⎢⎢⎣ AT PA − P AT Pb − cT

(AT Pb − cT )T bT Pb − (dT + d)

⎤⎥⎥⎦ 	 0 (4.12)

4.4 Passivity Enforcement

Passivity, a fundamental property reflecting a system’s energy exchange behavior,

is crucial for ensuring the stability and physical realizability of identified models. Various

techniques have been proposed to enforce passivity, often involving post-processing steps

to modify non-passive models.
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In this thesis, we present a different approach to enforce passivity to local modules

in dynamic network. We do not treat passivity as a post-processing but, rather, we

incorporate the LMI in a convex optimization problem by treating certain system matrices

as free parameters for the parametric estimator in a way to iteratively refine the model to

ensure it adheres to the desired properties. This method leverages the power of convex

optimization to efficiently solve the optimization problem.

Key Considerations:

• Model Structure: The choice of model structure (e.g., state-space, transfer function)

can influence the effectiveness of passivity enforcement techniques.

• Optimization Algorithm: The selection of a suitable convex optimization algo-

rithm is crucial for efficient and accurate passivity enforcement.

• Trade-offs: There may be trade-offs between the accuracy of the identified model

and the degree of passivity enforcement.

Frequency-domain methods, such as Vector Fitting (VF), have also been widely

used for passivity enforcement out of the dynamic network context. These techniques

involve fitting a rational function to the measured frequency response data while ensur-

ing that the resulting model satisfies passivity constraints, usually as a post-processing

strategy. Subspace-based methods offer an alternative approach to passivity enforcement

(RODRIGUES; IHLENFELD; OLIVEIRA, 2021). By incorporating passivity constraints

directly into the subspace identification algorithm, we can obtain a passive model without

the need for post-processing steps. This can lead to more efficient and accurate results.

4.5 Closing Remarks

This chapter has delved into the theoretical foundations of system dissipativity

and passivity. We have explored the concepts of energy exchange, storage, and their impli-

cations for system identification. By understanding the relationships between dissipativity,
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positive-realness, and bounded-realness, we can ensure that identified models are physically

meaningful and stable.

Dissipativity characterizes a system’s energy exchange behavior, while passivity is

a specific form of dissipativity that ensures the system’s stored energy does not increase

indefinitely.

Positive-realness and bounded-realness are properties closely related to dissipativity,

assessed using mathematical tools like the positive-real lemma and bounded-real lemma.

Incorporating passivity constraints into system identification ensures physically

meaningful and stable models. Various techniques, including convex optimization, frequency-

domain methods, and subspace-based approaches, can enforce passivity.
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5 Frequency Domain Passive System Identifi-

cation

This chapter explores the identification of passive systems in the frequency domain. One

consequence of system passivity is that it guarantees system stability. By leveraging a

two-stage approach, the methodology first estimates the Frequency Response Function

(FRF) using a non-parametric estimator and then refines the model using a parametric

identification technique with built-in passivity enforcement. The contribution introduced

in this chapter is the Passive Vector Fitting (PVF) method, which guarantees passivity

throughout the estimation process, unlike traditional approaches that impose it as a post-

processing step. These techniques provide a framework for modeling passive modules within

dynamic networks.

5.1 Introduction

This chapter presents a frequency-domain approach to identify passive local models

in dynamic networks by incorporating the Positive-Real Lemma (PRL) constraints into the

parametric identification stage. The methodology and some of the case studies presented

in this chapter were published in (RODRIGUES et al., 2024).

Existing literature applies a semi-parametric approach to estimate local modules in

the frequency domain (RAMASWAMY et al., 2022). In this thesis, this method was the

starting point to find a way to estimate passive models for passive modules in dynamic

network using a frequency-domain approach.

The methodology comprises two main stages: (i) a time-domain non-parametric

estimation of the Frequency Response Function (FRF) for the local module(s) of interest

using the indirect Local Polynomial Method (iLPM); and (ii) a parametric identification

that estimates a transfer function for the previously estimated FRF through an extension

of the frequency-domain Vector Fitting (VF) method, which directly estimates a passive
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model.

The second stage introduces a novel approach, referred to as Passive Vector Fitting

(PVF), which ensures passivity during the Sanathanan-Koerner iterations by constructing

a sequence of passive models. Unlike conventional VF, which typically enforces passivity

only through post-processing of a potentially non-passive model, PVF guarantees that

the final estimated model is inherently passive. This advance brings a passivity assurance

into the local module identification framework, addressing a challenge in dynamic network

identification.

5.1.1 A Brief Background and Notation

The problem of identifying passive systems in the frequency domain has received

significant attention due to its relevance in ensuring stability within interconnected systems.

Passivity, a property ensuring that the system does not produce energy, is typically

enforced by conditions derived from the Positive-Real Lemma (PRL). The PRL relates a

system’s transfer function to a positive-real criterion in the frequency domain, which is

key to ensuring that the estimated models comply with energy conservation laws. The

PVF method leverages this framework by enforcing passivity conditions directly in the

estimation process, thereby guaranteeing the model’s passivity.

The proposed two-stage approach achieves computational efficiency by decoupling

local module identification from the complexity of the entire network. This allows the

method’s complexity to depend primarily on the local environment—specifically, the

number of adjacent modules connected to the target—rather than on the network’s overall

size or intricacy.

5.1.2 Overview of the Approach

The first stage begins with an indirect estimation of the correlation between

excitation signals and node responses (HOF et al., 2013), reconstructing the node signals

based on the available excitation data. The goal is to isolate the frequency response of the

local module, minimizing external influence from adjacent modules. This stage utilizes
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the Local Polynomial Method (LPM), a non-parametric estimator that effectively reduces

spectral leakage errors that often occur when applying Fourier transform techniques to

non-periodic data (DANKERS; HOF, 2015). The LPM is particularly advantageous for

processing finite data sets, as it can accurately estimate the FRF even for signals that are

not periodic.

The combination of signal reconstruction and LPM constitutes the indirect Local

Polynomial Method (iLPM), which has been shown to yield robust FRF estimates for

specific modules in dynamic networks (RAMASWAMY et al., 2022). By avoiding the need

for a predefined model order in this initial stage, the iLPM approach allows for flexible

model selection in subsequent parametric estimation.

The second stage utilizes the estimated FRF as input for parametric identification,

wherein the PVF method is applied. Unlike standard VF, which requires post processing

of a non-passive model to enforce passivity, PVF ensures that passivity is preserved

throughout the Sanathanan-Koerner iterative process. This iterative approach constructs a

passive model at each step, resulting in a final model that is inherently passive. The PVF

algorithm, therefore, produces a parametric model for the local module represented by the

quadruple (A, b, c, c0), tailored for the target module G0
ji based on the network data.

The benefit of this approach is particularly notable for its computational efficiency.

By focusing on a local module within a dynamic network, the complexity of the PVF

method remains bounded by the local module’s neighborhood, rather than by the overall

network size. Thus, this method addresses a key challenge in network identification:

achieving accurate, passive model estimates without requiring global network information.

This chapter proceeds as follows: Section 5.2 details the non-parametric estimation

process; Section 5.3 describes the parametric identification method, including the imple-

mentation of PVF; Section 5.4 presents case studies to validate the approach; and Section

5.5 provides concluding remarks and insights on future directions.
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5.2 Non-parametric estimator

In this section, we introduce the Local Polynomial Method (LPM), a non-parametric

approach for estimating the Frequency Response Function (FRF) of a linear system. Non-

parametric estimation is particularly valuable for system identification when it is necessary

to obtain a high-quality FRF without assuming a parametric model structure. The

LPM, known for its effectiveness in reducing leakage errors associated with non-periodic

input signals, has proven advantageous over traditional Fourier Transform-based methods

(CSURCSIA, 2022; CSURCSIA; PEETERS; SCHOUKENS, 2020).

5.2.1 Overview of the Local Polynomial Method

The LPM estimates a FRF by utilizing a polynomial approximation within a

narrow frequency band around each frequency of interest. This approach effectively

mitigates spectral leakage- a common problem when analyzing finite-length data or non-

periodic signals by treating the FRF and the transient response as smooth functions of

frequency. The LPM, therefore, delivers more accurate frequency-domain estimates by

fitting a polynomial locally to each frequency band, reducing both variance and bias in

the estimation (CSURCSIA, 2022).

Consider a linear Single-Input Single-Output (SISO) discrete-time system G0(q)

with input u(t) and output y(t), where the system is subject to additive noise v(t) modeled

as a quasistationary process. The system can be described by:

y(t) = G0(q)u(t) + H0(q)e(t), (5.1)

where G0(q) is the transfer function of the system, H0(q) represents the noise model, and

e(t) is zero-mean white noise with variance σ2
e (CSURCSIA, 2022).

5.2.2 Frequency Domain Representation

In practice, we deal with a finite record of data, leading to transient terms in the

frequency domain representation of the output. Taking the Discrete Fourier Transform
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(DFT) of the input and output signals yields the following exact frequency-domain relation:

Y (k) = G0(Ωk)U(k) + TG(Ωk) + H0(Ωk)E(k) + TH(Ωk), (5.2)

where Y (k), U(k), and E(k) denote the DFTs of y(t), u(t), and e(t), respectively, at fre-

quency Ωk = ej2πk/N , with TG(Ωk) and TH(Ωk) representing the transient terms associated

with the system and noise models, respectively (CSURCSIA, 2022). These transients are

rational functions of the frequency variable and decay as the data record length increases,

but in finite records, they can introduce bias and error in FRF estimates.

5.2.3 Local Polynomial Approximation

The core idea of the LPM is to leverage the smoothness of both G0 and the transient

terms as functions of frequency. Within a narrow frequency window centered on Ωk, the

FRF and transient terms are approximated by a Taylor series expansion. For frequencies

Ωk+r in a neighborhood of Ωk, the FRF G0(Ωk) can be locally represented as:

Gk+r = Gk +
R∑

s=1
gs(k)rs + O

((
r

N

)R+1
)

, (5.3)

where gs(k) are the coefficients of the polynomial expansion, r represents the frequency

offset, and R is the polynomial order. Similarly, the transient terms can be expanded as:

Tk+r = Tk +
R∑

s=1
ts(k)rs + O

((
r

N

)R+1
)

. (5.4)

The estimation task thus reduces to solving for the coefficients

θk = [Gk, g1(k), . . . , gR(k); Tk, t1(k), . . . , tR(k)]T ,

which represent both the FRF and transient terms in a local polynomial form (CSURCSIA,

2022).

5.2.4 Least Squares Estimation

To estimate θk for each frequency Ωk, we set up a least squares problem using data

in a window centered on Ωk. Define the observed frequency-domain data vector Y k,n and
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input vector Uk,n as:

Y k,n = [Yk−n, Yk−n+1, . . . , Yk, . . . , Yk+n]T , (5.5)

Uk,n = [Uk−n, Uk−n+1, . . . , Uk, . . . , Uk+n]T . (5.6)

The local polynomial estimate θ̂k is obtained by solving:

θ̂k = arg min
θk

∥∥∥Y k,n − Kk,n(R, Uk,n)θk

∥∥∥2
, (5.7)

where Kk,n(R, Uk,n) is a matrix constructed based on the polynomial structure and

input data, incorporating the information on r for all frequencies in the window. This

least squares formulation allows the estimation of Gk with reduced leakage errors by

fitting the polynomial coefficients across the frequency window (CSURCSIA; PEETERS;

SCHOUKENS, 2020).

5.2.5 Practical Considerations and Performance

Choosing an appropriate polynomial order R and window width n is crucial for

achieving a good balance between bias and variance. A higher-order polynomial reduces

leakage errors by fitting the local FRF and transient more accurately but may increase

interpolation error if the window width n is too small. Typically, second-order polynomials

(i.e., R = 2) provide a reasonable balance between leakage reduction and computational

efficiency (CSURCSIA; PEETERS; SCHOUKENS, 2020).

Furthermore, the LPM performs well under noisy conditions as it averages noise

over multiple spectral lines within the frequency window. By incorporating additional

constraints between neighboring frequency intervals, enhanced versions of the LPM, such as

the Constrained LPM (LPMC), further reduce estimation variance by enforcing smoothness

across neighboring estimates (CSURCSIA; PEETERS; SCHOUKENS, 2020).

In summary, the LPM provides an effective non-parametric approach to FRF

estimation by locally approximating the system’s frequency response with polynomial

models, thereby reducing leakage errors and offering robustness against noise. This approach

is particularly well-suited for dynamic network applications where accurate non-parametric

estimates are needed to guide subsequent parametric modeling.
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5.2.6 Indirect LPM (iLPM)

We employ an indirect implementation of LPM. Traditionally, identifying a FRF

for a given system via LPM involves selecting a set of signals as predictor inputs and then

estimate a MISO model (CSURCSIA, 2022). Conversely, the indirect approach hereby

advocated entails the following steps (HOF et al., 2013):

1. Defining a MISO setup with wj as output and wk as inputs, wk ∈ Nj;

2. Defining for each wk a set of external excitation signals {rm}k, m ∈ R with a path

from rm to wk;

3. Estimating for each wk the transfer functions between {rm}k and the node wk.

It consists of a decomposition of node signals wk as wk = w
{rm}k

k + w
⊥{rm}k

k with

w
⊥{rm}k

k and rm uncorrelated so that the component of wk correlated with rm be

denoted w
{rm}k

k .

4. Reconstructing the MISO setup of step 1. only with all correlated components w
{rm}k

k

to be used for the target module’s FRF estimation.

In order to estimate a FRF using the iLPM, all components w
{rm}k

k are first pre-

processed by dividing it into overlapping segments of equal length. During this procedure,

a narrow sliding processing window is employed. Within each segment, a polynomial of

degree M is fitted to each w
{rm}k

k using a least square approach. The polynomial coefficients

are then used to compute the FRF of the MISO model from step 4. which includes the

target module Gji, using a Fast Fourier Transform (FFT).

The FRF of the target module obtained via the iLPM algorithm is denoted as

G̃ji(ωκ), where κ = 0, · · · , Nf , Nf is the number of frequency samples.

5.3 Passive Vector Fitting

The objective is to compute a passive parametric model Ğji(ω) so that Ğji(ω) ≈

G̃ji(ω) for all frequencies ω = ωκ in a least square sense. To achieve this objective,
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we implement modifications to the Vector Fitting (VF) algorithm to include passivity

conditions within the estimation process.

VF implementations are numerically robust implementations of the Sanathanan-

Koerner/Steiglitz-McBride iterations (SANATHANAN; KOERNER, 1963; STEIGLITZ;

MCBRIDE, 1965) in which the minimization of the non-linear objective function is

achieved iteratively via a sequence of linear least square problems. The modification

includes passivity conditions as constraints in each iteration and is discussed as follows.

The target passive model Ğji(ω) has the following structure:

Ğji(z) = N(z)
D(z) =

c0 +∑n
α=1

cα

z−pα

1 +∑n
α=1

c̃α

z−pα

(5.8)

where Ğji(z) is an n-th order transfer function parameterized by a set of poles {pα}n
α=1,

{cα}n
α=0 and {c̃α}n

α=1. Also, we henceforth denote θ and θ̃ the set of cα and c̃α, respectively.

Ğji(ω) admit a minimal state-space equivalence as in (4.3), namely {A, b, c, d}

such that:

N(z) =
(
(zIn − A)−1b 1

)
θ

D(z) = 1 +
(
(zIn − A)−1b

)
θ̃

The algorithm follows the subsequent steps.

5.3.0.1 Step 1

The algorithm initiates assigning an initial set of poles {pα}n
α=0. These poles are

typically defined as lightly damped poles with imaginary parts logarithmically spaced

along the frequency axis.

5.3.0.2 Step 2

Within each iteration, we seek to minimize the linearized version of the weighted

least square error (SANATHANAN; KOERNER, 1963) defined as following:

J(θ, θ̃) =
Nf∑
κ=1

W (zκ)2
∣∣∣N(zκ) − D(zκ)G̃ji(zκ)

∣∣∣2 , (5.9)
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where W (zκ) is a weighting function, defined as in (SCHUMACHER; OLIVEIRA, 2019),

to consider measurements with resonance peaks and exhibit significant variations in

magnitude. Then, the optimization problem which should be solved at each iteration is:

min
θ,θ̃,P

J(θ, θ̃)

s.t.

⎡⎢⎢⎣ AT PA − P AT Pb − cT

(AT Pb − c)T bT Pb − 2c0

⎤⎥⎥⎦ 	 0,

(5.10)

This guarantees that a sequence of passive models is obtained during the VF iterations.

Minimizing cost function (5.10) is equivalent to minimizing

J(θ, θ̃) =

∥∥∥∥∥∥∥∥M
⎡⎢⎢⎣θ

θ̃

⎤⎥⎥⎦− F

∥∥∥∥∥∥∥∥
2

, (5.11)

in which F =
[

Re(Fc)
Im(Fc)

]
and M =

⎡⎢⎢⎣ Re (Mc) 1 − Re (Mc)

Im (Mc) 1 − Im (Mc)

⎤⎥⎥⎦,

Fc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G̃ji(z1)

G̃ji(z2)
...

G̃ji(zN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Mc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W (z1)(z1In − A)−1b

W (z2)(z2In − A)−1b
...

W (zN)(zNIn − A)−1b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

superscript (·)c stands for a complex valued matrix and both Re(·) and Im(·) stand for its

real and imaginary parts, respectively. Equation (5.11) is

J(θ, θ̃) =

⎡⎢⎢⎣M

⎡⎢⎢⎣θ

θ̃

⎤⎥⎥⎦− F

⎤⎥⎥⎦
T ⎡⎢⎢⎣M

⎡⎢⎢⎣θ

θ̃

⎤⎥⎥⎦− F

⎤⎥⎥⎦ . (5.12)

Using the following QR decomposition M = QR with QT Q = I and after some algebra

we conclude that:

J(θ, θ̃) =
(

R

⎡⎢⎢⎣θ

θ̃

⎤⎥⎥⎦− QT F
)T(

R

⎡⎢⎢⎣θ

θ̃

⎤⎥⎥⎦− QT F
)

+ FT
(

I − QQT
)

F

or

J(θ, θ̃) = ET E + δ2,
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with E = R

⎡⎢⎢⎣θ

θ̃

⎤⎥⎥⎦− QT F and δ2 = GT

(
I − QQT

)
G.

Minimizing J(θ, θ̃) is equivalent to minimizing J(θ, θ̃) − δ2 = Jδ(θ, θ̃) = ET E. Using

Schur complements leads to an epigraph convex formulation and a standard Semi-Definite

Programming (SDP) problem results as in Equation (5.13). μ is an auxiliary optimization

variable introduced to reformulate the problem into a convex Semi-Definite Programming

problem using the epigraph form. In Equation (5.13), it serves as an upper bound on the

objective function.
min

c,c̃,P,μ
μ

s.t.

⎡⎢⎢⎣μ ET

E I

⎤⎥⎥⎦ 
 0

P � 0

μ 
 0⎡⎢⎢⎣ AT PA − P AT Pb − cT

(AT Pb − c)T bT Pb − 2c0

⎤⎥⎥⎦ 	 0

(5.13)

with A and b problem data previously derived via the Step 1 at first iteration or Step

3 otherwise. This problem can be solved to find the optimal pair [c, c̃]T with the CVX

solver (COELHO; PHILLIPS; SILVEIRA, 2004).

5.3.0.3 Step 3

On terminating each iteration, poles are updated using:

{p1, · · · , pn} = eig(A − bc̃), (5.14)

and them Step 2 is called.

The procedure is repeated recursively until convergence of (5.14)1. On completion

of the PVF algorithm, a passive model Ğji(z) is obtained as either a transfer function or

an equivalent minimal state-space realization.
1 For detailed insights into the convergence challenges associated with Vector Fitting, we recommend

consulting Chapter 7 of the reference book (GRIVET-TALOCIA; GUSTAVSEN, 2016).
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In summary, by adopting the approach hereby described accurate guaranteed

passive models for the target modules are obtained. The two stages leading to a passive

estimate are: (i) use of the iLPM to obtain a FRF for the local module(s) of interest;

(ii) use of the PVF to achieve a passive parametric description based on the FRF by

incorporating the PRL constraints into the optimization problem.

5.4 Case studies

This section presents numerical simulations to demonstrate the practical applica-

tion of our proposed methodology. We use a benchmark case study of a network system

with complex interconnections, visualized in Figure 20 and previously analysed in (RA-

MASWAMY et al., 2022). All noise, external sources, and module specifications remain

unchanged, except for module G0
31, which is defined in this section. This specific modifica-

tion serves a crucial purpose: to illustrate the estimation of a passive model for a passive

system. This necessitates the original transfer function to be positive real. For the purpose

of statistical analysis in this section, the model order of the system to be estimated, G0
31,

is assumed to be known.

The dynamics embedded in the network are defined as follows, with a sampling

time of 0.01s:

G0
32 = 0.09q−1

1 + 0.5q−1 ;

G0
34 = 1.184q−1 − 0.647q−2 + 0.151q−3 − 0.082q−4

1 − 0.8q−1 + 0.279q−2 − 0.048q−3 + 0.01q−4 ;

G0
14 = G0

21 = 0.4q−1 − 0.5q−2

1 + 0.3q−1 ;

H0
1 = 1

1 + 0.2q−1 ;

G0
12 = G0

23 = 0.4q−1 + 0.5q−2

1 + 0.3q−1 ;

H0
2 = 1

1 + 0.3q−1 ;

H0
3 = 1 − 0.505q−1 + 0.155q−2 − 0.01q−3

1 − 0.729q−1 + 0.236q−2 − 0.019q−3 ;

H0
4 = 1.
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Figure 20 – Network example with 4 nodes, 3 reference signals and noise sources at each
node (RAMASWAMY et al., 2022).

5.4.1 A second-order passive model

We aim to estimate the following target module:

G0
31(z) = 0.1717z2 + 0.0202z − 0.1515

z2 − 1.771z + 0.8857 = G31(z, θ31). (5.15)

The MATLAB Toolbox for Dynamic Network Identification (beta version 0.1.0)

(Van den Hof, www.sysdynet.net, 2023) was employed to initially assess the identifiability

of the target module G0
31 based on the network’s topology. The toolbox confirmed that

G0
31 is identifiable. As established in (HENDRICKX; GEVERS; BAZANELLA, 2019) and

(BOMBOIS et al., 2023), for targets satisfying graphical identifiability conditions, ensuring

an informative excitation signal suffices. We conducted 100 independent Monte-Carlo

experiments in Simulink, each comprising 1300 samples. For each experiment, the data

is generated using known reference signals r1(t), r2(t) and r4(t) that are realizations of

independent white noise with variance of 0.1, also the noise sources e1(t), e2(t), e3(t) and

e4(t) have variance 0.05, 0.08, 1, 0.1 respectively. Each experiment yielded a parametric

state-space model for G0
31.

To facilitate parameter comparison independent of units or scale, we also employed

the Coefficient of Variation (CV) defined as:
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CV (x) = δx

x̃
· 100

where x represents a normally distributed random variable, δx its standard deviation,

and x̃ its mean.

We now discuss the parameterization choices for each stage of our approach.

iLPM: We proceed to estimate G0
31 as a MISO identification problem with three

inputs (w1, w2, w4) and one output (w3). For the iLPM, we opted for a second-degree

polynomial. This choice improves the smoothness of the non-parametric estimate across the

frequency range by providing broader bandwidth. However, it’s important to be mindful

of introducing bias through excessive bandwidth. Since the subsequent Vector Fitting step

also introduces some smoothing, this initial parameterization becomes less critical.

As shown in (RAMASWAMY et al., 2022), the minimum required number of

frequencies for this configuration is 12. We opted for a wider bandwidth of 24 frequencies

due to the presence of substantial noise. This reduces the impact of noise while minimizing

bias error.

Passive Vector Fitting: During the PVF step, a linear weighting procedure is

employed (see (SCHUMACHER; OLIVEIRA, 2019)) to estimate a passive second-order

model. We have empirically concluded that a maximum of 50 iterations is enough to reach

convergence.

The combined pole and residue estimates for G0
31 across all experiments are sum-

marized in Figures 21 and 22. In Figure 21, a boxplot of the parameters for the estimated

coefficients while in Figure 22, their coefficient of variation.

The experiment reveals c = [c1 c2] = [0.3243 −0.3036] suggesting dominant real

and imaginary components of the poles at a = 0.8855 and b = 0.3187.

Figure 23 showcases the frequency response curves for the data and the estimated

model for the iLPM step and for the PVF step. A particular experiment is depicted in

Figure 23 for which the RMSE between the Ğ31 curve and the data is 0.07682. Across 100
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Figure 21 – Boxplot of the parameters of Ĝ31, estimated via 'iLPM+IVVF'.

Figure 22 – Coefficient of Variation of the parameters of Ĝ31, estimated via 'iLPM+IVVF'.

experiments, the achieved RMSE error has mean and variance values 0.08634 and 0.0131,

respectively. This figure effectively demonstrates the efficacy of the proposeed methodology

in achieving passivity while preserving the desired system dynamics.

This case study successfully demonstrates the effectiveness of incorporating energy

consistency criteria into the developed approach for passive model estimation. By focusing

on the system matrices c and c0, our passive identification method ensures compliance

with energy balance principles while minimizing parameter deviations. Importantly, the
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Figure 23 – Frequency response diagram of data and estimated models (2nd order).

method proves successful in a complex 7-module network, highlighting its suitability for

systems with intricate structures and correlated input and output signals.

5.4.2 A third-order passive model

Building upon the previous case study, we now consider a modified network scenario

where the target module G0
31 is defined as a 3rd order transfer function, with a sampling

time of 0.01s:

G0
31(z) = 10−4(7.214z3 − 7.018z2 − 7.196z + 7.036)

z3 − 2.707z2 + 2.418z − 0.7107 = G31(z, θ31).

All other network module specifications remain unchanged from the previous case

study. The key objectives of this second case study are to demonstrate the ability of the

Passive Vector Fitting (PVF) method to estimate a 3rd order passive model for the target

module G0
31, and to analyze the estimation accuracy and the required compensation to

enforce passivity compared to the previous 2nd order case. Similar to the first case study,

we conducted 100 independent Monte-Carlo experiments, each with 1300 samples of data

generated using the same noise and reference signal specifications.
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Figure 24 – Frequency response diagram of data and estimated models (3rd order).

In the iLPM step, we increased the polynomial order to 3 to better capture the

higher order dynamics of the target module. The minimum required number of frequency

points was also increased to 18 to ensure sufficient bandwidth coverage.

During the PVF step, the algorithm was configured to estimate a 3rd order passive

state-space realization for G0
31. The maximum number of iterations was maintained at 50.

Estimation Accuracy: The average RMSE between the estimated 3rd order

passive model Ğ31 and the true 3rd order G0
31 across the 100 experiments was 0.001948,

with a variance of 0.0009276. Figure 24 illustrate the frequency response curves for the

data and the estimated models and, for that instance, the RMSE is 0.002439.

Passivity Enforcement: The analysis revealed that 92% of the 3rd order model

estimates required passivity enforcement, compared to 94% in the 2nd order case. The

overall compensation remained moderate, suggesting that the proposed PVF method can

effectively estimate passive models even for higher order target modules.

Figures 25 and 26 provides a visual representation of the parameter variations in

106



the estimated model.

Figure 25 – Boxplot of the parameters of Ĝ31, estimated via 'iLPM+IVVF'.

Figure 26 – Coefficient of Variation of the parameters of Ĝ31, estimated via 'iLPM+IVVF'.
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5.4.3 A 6-node example

To demonstrate the applicability and effectiveness of the proposed methodology,

this case study considers a dynamic network comprising six interconnected nodes. The

network is designed to reflect realistic complexities, including feedback loops, delayed

connections, and disturbances, providing a rigorous testbed for the methods developed in

this thesis. Each node represents a subsystem with unique dynamic characteristics, while

the edges correspond to transfer functions governing the interactions between nodes.

The network topology is represented by a directed graph, where the nodes are

labeled w1, w2, . . . , w6. Each edge is associated with a transfer function Gji(q), describing

the relationship between nodes wj (output) and wi (input). Feedback loops are present

between certain nodes.

External excitation signals r3, r5, r6 are applied at select nodes to ensure sufficient

excitation for identification. Additive noise vi(t) is introduced at each node to simulate

measurement disturbances, with noise modeled as a quasistationary process. The overall

system can be described in state-space form or using the network transfer matrix, depending

on the analysis focus.

We consider the 6-node network example as illustrated in Figure 27 with target

module G12. The dynamics embedded in the network are defined as follows, with a sampling

time of 0.01s:

G0
32 = 0.09q−1

1 + 0.5q−1 ;

G0
34 = 1.184q−1 − 0.647q−2 + 0.151q−3 − 0.082q−4

1 − 0.8q−1 + 0.279q−2 − 0.048q−3 + 0.01q−4 ;

G0
14 = G0

21 = 0.4q−1 − 0.5q−2

1 + 0.3q−1 ;

H0
1 = 1

1 + 0.2q−1 ;

G0
21 = G0

23 = G0
52 = G0

43 = 0.4q−1 + 0.5q−2

1 + 0.3q−1 ;

H0
2 = 1

1 + 0.3q−1 ;
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Figure 27 – 6-node example with target module G12.

G0
25 = 1 − 0.505q−1 + 0.155q−2 − 0.01q−3

1 − 0.729q−1 + 0.236q−2 − 0.019q−3 ;

G0
46 = 1.

We aim to estimate the following target module:

G0
12(z) = 0.1717z2 + 0.0202z − 0.1515

z2 − 1.771z + 0.8857 = G12(z, θ12). (5.16)

We conducted 100 independent Monte-Carlo experiments in Simulink, each com-

prising 1300 samples. For each experiment, the data is generated using known reference

signals r3(t), r5(t) and r6(t) that are realizations of independent white noise with variance

of 0.1, also the noise sources e1(t) and e2(t) have variance 0.05 and 0.1 respectively. Each

experiment yielded a parametric state-space model for G0
12.

Non-parametric Estimation Results: The first stage of the identification

process involves estimating the Frequency Response Function (FRF) for selected target

modules using the indirect Local Polynomial Method (iLPM). The input-output pairs for
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Figure 28 – Frequency response diagram of data and estimated target module G12.

the FRF estimation were carefully chosen based on the network topology to minimize the

influence of feedback and adjacent modules.

Figure 28 illustrates the FRF estimates for the target module G12. The results show

excellent agreement with the theoretical FRFs, demonstrating the accuracy of the iLPM

in handling non-periodic input signals and noisy environments. The method effectively

mitigated leakage errors, with a second-order polynomial approximation providing an

optimal balance between bias and variance. For this first step, we employ the same

parameters for the iLPM as described in Section 5.4.1.

Parametric Modeling with Passive Vector Fitting: Using the estimated

FRFs as input, the Passive Vector Fitting (PVF) algorithm was employed to derive passive

parametric models for the target modules. The Sanathanan-Koerner iterations ensured

that passivity constraints were satisfied throughout the fitting process.

Given that the target module is G12, the predictor model is constructed with input

w2 and output w1. Due to the presence of a parallel path connecting w2 to w1 via w3, w3

is included as an additional predictor input. Consequently, the predictor model is defined

as (w2, w3) → w1, which satisfies the necessary conditions for the consistent estimation of

G12.
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Figure 29 – Frequency response comparison of data and estimated passive target module
G12.

Figure 29 illustrates the comparison between the generated modules, namely the

FRF estimate and the passive model for G12. The average RMSE between the estimated

2nd order passive model Ğ12 and the true 2nd order G0
12 across the 100 experiments was

0.000984, with a variance of 0.000390. In Figure 29, the frequency response curves for the

data and the estimated models and, for that instance, the RMSE is 0.000892.

The combined pole and residue estimates for G0
12 across all experiments are summa-

rized in Figures 30 and 31. The experiment reveals c = [c1 c2] = [0.3401 −0.3102] suggesting

dominant real and imaginary components of the poles at a = 0.8801 and b = 0.3203.

This case study highlights the strengths of the proposed methodology in identifying

passive models within a complex dynamic network. The integration of the iLPM and PVF

ensured accurate FRF estimation and robust parametric modeling, even in the presence of

feedback, delays, and noise.

The results validate the scalability of the approach, as the computational complexity

remained manageable despite the increased number of nodes and connections. Furthermore,

the ability to guarantee passivity makes the method particularly suitable for real-world

applications where stability is critical.
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Figure 30 – Boxplot of the parameters of Ĝ12, estimated via 'iLPM+IVVF'.

Figure 31 – Coefficient of Variation of the parameters of Ĝ12, estimated via 'iLPM+IVVF'.

In conclusion, the 6-node example demonstrates the practical utility of the proposed

framework, setting the stage for its application to larger and more intricate networks in

future studies.
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5.5 Closing Remarks

This chapter introduced a novel frequency-domain approach for identifying passive

local modules in dynamic networks, addressing critical challenges in the realm of system

identification. By combining non-parametric and parametric estimation techniques, the

proposed methodology leverages the strengths of the indirect Local Polynomial Method

(iLPM) and the Passive Vector Fitting (PVF) algorithm to deliver accurate, passive models

while maintaining computational efficiency.

The key contributions of this chapter are summarized as follows:

• The non-parametric estimation stage, based on iLPM, provides reliable Frequency

Response Function (FRF) estimates. By addressing leakage errors inherent in Fourier

transform-based techniques, the iLPM ensures high accuracy even with finite data

records and non-periodic signals.

• The PVF algorithm introduced a systematic approach to enforce passivity throughout

the iterative fitting process, guaranteeing that the final parametric models comply

with energy-preservation principles. This advance eliminates the need for post-

processing corrections, making the method more robust and consistent.

• The two-stage framework demonstrated scalability by focusing on local module

identification, decoupling the complexity of individual module estimation from the

overall network structure. This approach simplifies the identification process while

ensuring high fidelity in dynamic networks.

The validation results, presented through detailed case studies, highlight the

effectiveness of the proposed methodology in handling complex network scenarios with

feedback loops, delays, and noise. The identified models not only matched the true dynamics

with high accuracy but also adhered to passivity constraints, reinforcing their stability

and practical applicability.
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6 Conclusion

This thesis has addressed the challenge of passivity enforcement in the identifi-

cation of dynamic network systems. By integrating a discrete-time formulation within a

comprehensive framework, it has significantly advanced the understanding and applica-

tion of passive system modeling, particularly for dynamic networks governed by internal

disturbances and external excitations. The following summarizes the key contributions

and findings of this research:

1. Passivity Enforcement Through Frequency Domain Techniques: The Fre-

quency Domain Vector Fitting (FD-VF) algorithm was designed and implemented to

ensure passivity in identified systems. By leveraging the Kalman-Yakubovich-Popov

(KYP) lemma, the proposed approach guarantees passivity at each iteration, pro-

viding stable and reliable models for physical systems. This innovation addresses a

critical gap in the literature, offering a systematic way to enforce passivity during

the modeling process.

2. Novel Methodology for Local Module Identification: The thesis presented

advancements in the two-stage approach to local module identification, combining

the indirect Local Polynomial Method (iLPM) for non-parametric estimation and

the Passive Vector Fitting (PVF) for parametric modeling. This approach minimizes

the complexity of identification by focusing on the local environment of the target

module rather than the entire network. The results demonstrated the effectiveness

of this methodology in identifying accurate and passive models from network data.

3. Validation Through Case Studies: The methods were validated using comprehen-

sive case studies, which highlighted their applicability and performance in real-world

scenarios. These studies demonstrated the robustness of the proposed algorithms in

handling various network complexities, including feedback loops, delays, and noise.
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6.1 Future Directions

While this thesis has addressed fundamental challenges in dynamic network identi-

fication, several avenues for future research remain open:

1. Extension to Diffusively Coupled Systems: Investigating the identification

and analysis of dynamic networks with diffusively coupled systems represents a

promising direction for future research. These systems, characterized by bi-directional

interactions between nodes are common in physical, biological, and social networks.

The development of tailored methodologies to accurately estimate the coupling

dynamics and analyze the passivity of such networks remains an open challenge.

2. Extension to Unknown Topologies: Developing methodologies to handle cases

where network topology is partially or entirely unknown.

3. Incorporation of Nonlinear Dynamics: Expanding the framework to accommo-

date nonlinear dynamic networks, which are prevalent in biological and chemical

systems.

4. Real-Time Applications: Adapting the proposed methods for real-time monitoring

and control of dynamic networks, particularly in power grids and autonomous systems.

Throughout this research, several key contributions have been made, culminating

in publications that reinforce the validity and impact of the proposed methodologies. The

following conference papers document some of the primary findings:

• Lucas F. M. Rodrigues; Ihlenfeld, Lucas; Souza, Wagner; and Oliveira, Gustavo.

"Sobre o Uso de Metodos de Predicao de Erro para Identificar Modulos em Redes

Dinamicas." Congresso Brasileiro de Automatica, 2022.

• Lucas F. M. Rodrigues; Souza, Wagner; and Oliveira, Gustavo. "Uma nova abordagem

de identificacao por subespacos com imposicao de modelos passivos." Congresso

Brasileiro de Automatica, 2022.
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• Lucas F. M. Rodrigues; Ihlenfeld, Lucas; Schumacher, Ricardo; and Oliveira, Gustavo.

"iLPM+IVVF: uma abordagem eficaz para identificar modulos em redes dinamicas."

Simposio Brasileiro de Automacao Inteligente, 2023.

Further advancements were presented in peer-reviewed journal articles, which

consolidate the theoretical foundations and experimental validations of the developed

techniques:

• Rodrigues, Lucas; Oliveira, Gustavo; Ihlenfeld, Lucas; Schumacher, Ricardo; and

Van den Hof, Paul. "Frequency domain identification of passive local modules in

linear dynamic networks." Systems and Control Letters (Elsevier), 2024.

• Schumacher, Ricardo; Oliveira, Gustavo; and Rodrigues, Lucas. "Enhancing rational

approximation of wideband resonant MIMO systems with frequency-domain data."

European Journal of Control (Elsevier), 2024.

These publications underscore the significance of the proposed methodologies

and their potential to impact real-world applications. Future research directions include

extending these techniques to nonlinear systems, improving computational efficiency, and

applying them to large-scale networked systems.

6.2 Closing Remarks

This thesis has laid a solid foundation for integrating passivity enforcement into

the identification of dynamic network systems. By bridging theoretical advancements

with practical applications, it offers valuable tools for analyzing and controlling complex

interconnected systems. The findings not only contribute to the existing body of knowledge

but also open new pathways for future research and innovation in the field of system

identification.
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