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RESUMO

Este trabalho aborda três questões fundacionais da mecânica quântica: realismo, classicalidade

e medição. Utilizando a estrutura de teorias probabilísticas generalizadas (GPT), é proposto

um critério de realismo independente de teoria. Fundamentado na premissa de que, em teorias

realistas, medições revelam elementos preexistentes da realidade sem perturbar o estado físico,

este critério generaliza a noção de realismo de Bilobran-Angelo (BA), ao qual se reduz no

contexto da mecânica quântica. Duas medidas de desvio do realismo são introduzidas: a ro-

bustez de irrealismo, que quantifica a mistura mínima necessária para que um estado perca suas

propriedades de irrealismo, e a divergência de realismo, que mede os desvios entre as probabili-

dades de um estado e seu correspondente após uma medição não seletiva. Uma análise numérica

demonstra a compatibilidade qualitativa entre essas medidas e o quantificador de irrealismo

de BA. A partir disso, um critério de classicalidade baseado em realismo também é proposto,

fundamentado em teorias simpliciais e contextualizado na mecânica quântica em cenários

envolvendo o estado completamente misto. Um modelo simplificado de medições sequenciais

não seletivas em pares de observáveis não comutantes é analisado como uma representação de

monitoramento ambiental contínuo, demonstrando que um regime operacionalmente clássico

pode emergir com apenas dois graus de liberdade no ambiente. Adicionalmente, uma medida

de classicalidade baseada em realismo é introduzida, com estudos de caso realizados para qubits

e qutrits. Por fim, o problema da medição é explorado dentro de uma estrutura relacional

inspirada no cenário do amigo de Wigner. Um arranjo experimental mínimo é proposto, envol-

vendo um agente, um sistema e um laboratório, juntamente com postulados que enfatizam o

papel do agente como um sumidouro de informação. Essa interpretação destaca a estrutura

hierárquica dos privilégios informacionais na medição, o descarte de sistemas medidos e as

bases conceituais do processo de medição. A segunda lei da termodinâmica é reinterpretada

como o aumento de termos de entropia local. Além disso, o paradoxo do amigo de Wigner

é reformulado através de um experimento mental modificado, chamado “amigo de Wigner

flutuante,” que introduz um regime informacional completamente simétrico, onde todas as

todos os observadores concordam em suas descrições. O problema da medição é então avaliado

sob esta estrutura.

Palavras-chaves: problema da medição. realismo. informação. emaranhamento. amigo de

wigner. classicalidade.



ABSTRACT

This work addresses three foundational issues in quantum mechanics: realism, classicality,

and measurement. Using the framework of generalized probabilistic theories (GPT), a novel

theory-independent criterion for realism is devised. Grounded in the premise that, in realist

theories, measurements reveal preexisting elements of reality without disturbing the physical

state, this criterion generalizes the Bilobran-Angelo (BA) notion of realism, to which it reduces

in the quantum mechanical context. Two measures of deviation from realism are introduced:

robustness of irrealism, which quantifies the minimal mixing required for a state to lose

its irrealism properties, and the divergence of realism, which measures deviations for the

probabilities of a state and its post nonselective measurement counterpart. A numerical analysis

demonstrates qualitative compatibility between these measures and BA’s irrealism quantifier.

Building on this, a realism-based classicality criterion is proposed, rooted in simplicial theories

and contextualized in quantum mechanics as scenarios involving the completely mixed state. A

toy model of sequential pairwise nonselective measurements on noncommuting observables is

analyzed as a simplified representation of continuous environmental monitoring, demonstrating

that an operationally classical regime can emerge with only two environmental degrees of

freedom. Additionally, a measure of realism-based classicality is introduced, with case studies

conducted for qubits and qutrits. Finally, the measurement problem is explored within a

relational framework inspired by the Wigner’s friend scenario. A minimal experimental setup

is proposed, involving an agent, a system, and a laboratory, alongside postulates emphasizing

the agent’s role as an information sink. This interpretation highlights the hierarchical structure

of informational privileges in measurement protocols, the discarding of measured systems, and

the conceptual foundation of the measurement process. The second law of thermodynamics is

reinterpreted as the increase of local entropy terms. Furthermore, the Wigner’s friend paradox

is reframed through a modified thought experiment, the floating Wigner’s friend, which

introduces a completely symmetric informational regimen where all observable descriptions

are concordant. The measurement problem is subsequently evaluated under this framework.

Key-words: measurement problem. realism. information. entanglement. wigner’s friend. clas-

sicality.
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1 INTRODUCTION

Within every body of knowledge lie the seeds for its own sublation. Knowledge arises

from questions, and just as a question that interrogates everything is inconceivable, so too

is knowledge that resolves everything. Indeed, well-framed questions drive the acquisition

of knowledge, and robust knowledge, in turn, fosters new questions. The empirical success

of quantum mechanics elevates it to a status of fundamental knowledge. Consequently, the

questions it implies are nothing short of fundamental.

Thomas Kuhn’s seminal work, The Structure of Scientific Revolutions [1], resonates

with this idea. According to Kuhn, every scientific discipline relies on the establishment of a

paradigm—a set of theories, methods, and assumptions that underpin the normal functioning

of science. However, the emergence of a paradigm invariably gives rise to anomalies: questions

that the current framework cannot adequately address. During periods of normal science, a

field can progress effectively despite the presence of such anomalies. As the field matures,

however, these unanswered questions become increasingly pressing. If they are resolved, the

paradigm is reinforced. If not, the field enters a period of scientific crisis.

Classical physics, the preceding scientific paradigm, revealed its limitations through

anomalies such as the ultraviolet catastrophe [2], the failure to detect the luminiferous aether [3],

Mercury’s anomalous orbital precession [4], and the photoelectric effect [5]. These unresolved

problems ushered science into a period of crisis, ultimately culminating in a scientific revolution.

The outcomes of this revolution were the development of relativity and quantum mechanics.

Some of the anomalies in quantum mechanics were recognized by the very pioneers

of the theory. Einstein initiated the inquiry into the question of realism in his celebrated “EPR

paper” [6]. The contrast between quantum mechanics and classical intuition was highlighted

by Schrödinger through his famous cat-based thought experiment [7]. The role of measurement

and the observer was further explored by Wigner in his thought-provoking paradox [8].

These three foundational issues—realism, classicality, and measurement—are the

anomalies that this work seeks to address.

The problem of realism in quantum mechanics questions whether physical properties

of a system have well-defined values independently of observation. Einstein, Podolsky, and

Rosen (EPR) introduced the concept of "elements of reality" in 1935 [9], arguing that if a

physical property can be predicted with certainty without disturbing the system, it must have

an element of reality assigned to it. This view, however, was challenged by Bell in 1964 [10],

who demonstrated that quantum predictions are incompatible with theories of local hidden

variables—a result experimentally verified in numerous loophole-free tests [11–16]. Later

developments of the concept of realism, such as those proposed by Fine in Ref. [17], introduced
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an approach based on joint probability distributions assigned to measurements of different

observables. The probabilistic profile of the joint measurability of non-commuting observables

contrasts with this definition, underscoring a fundamental clash between incompatibility and

realism.

The problem of classicality, or the quantum-to-classical transition, concerns how

classical mechanics emerges as an effective description from the universal framework of quan-

tum mechanics. This transition assumes that quantum mechanics is fundamental and must

recover classical physics in certain limits, such as those involving large, isolated systems.

Early investigations of this issue include Bohr’s emphasis on the role of measurement and

complementarity [18], and Ehrenfest’s demonstration that the expectation values of quantum

observables approximate classical behavior for large objects [19]. More recent advances center

on the decoherence program [20–23], where classicality emerges through interactions with

an environment, which suppresses quantum interference and encodes system properties re-

dundantly in pointer states. Zurek’s quantum Darwinism [24–27] builds on this framework,

proposing that objectivity arises when multiple observers independently access environmental

fragments and agree on the system’s properties.

The measurement problem is one of the most emblematic challenges in the foundations

of quantum mechanics. Its symbolic exposition is often attributed to the thought experiment

proposed by Wigner in Ref.[8], where conflicting descriptions of physical states arise when

measurements are performed within isolated systems. Brukner provides a more structured

framing of the problem, dividing it into two key questions [28]: the "small measurement prob-

lem", which asks why a specific outcome occurs in a measurement, and the "big measurement

problem", which seeks to define what constitutes a measurement. This conundrum has been

central to debates on the interpretation of quantum mechanics and has inspired significant

contributions from various perspectives, including the Copenhagen interpretation [18], the

many-worlds interpretation [29], and the consistent histories approach [30].

These three problems are addressed in sequence within the structure of this work:

Chapter 2 lays out the theoretical foundations; Chapter 3 addresses realism; Chapter 4 focuses

on classicality; and Chapter 5 examines the measurement problem.

Chapter 2 introduces the foundational formalism of density operator quantum me-

chanics, classical information theory, and quantum information theory. It is presented in a

narrative style to cultivate an operational intuition behind the formalism. Specifically, experi-

mental protocols are framed in terms of three entities: the agent, the system, and the laboratory.

These protocols are further structured into three distinct phases: preparation, evolution, and

measurement. This operational framework serves as a unifying structure throughout this work

and is further developed in detail in Chapter 5.

Chapter 3 draws significant inspiration from the realism criterion introduced by

Bilobran and Angelo (BA) [31]. This framework is particularly appealing due to its operational
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meaning and its inclusion of a quantifier for the violation of realism. Axiomatized in Ref. [32],

the BA criterion has enabled advancements in resource theories [33], the development of

novel notions of nonlocality [34–36], and contributions to quantum foundations [37–39], all

supported by experimental investigations [40, 41]. A distinguishing feature of this criterion is

its capacity to diagnose the presence of elements of reality not solely through the quantum

state, but primarily by analyzing how the information encoded in the state is affected by

measurements.

Our main focus in this chapter is to establish a theory-independent notion of realism.

By generalizing this concept beyond the context of quantum mechanics, we aim to gain deeper

insight into the nature of realism itself and explore its relationship with various physical

theories. This endeavor is facilitated by the framework of generalized probabilistic theories

(GPTs) [42–44], which provide a formalism for characterizing the operational aspects of any

physical theory.

There, we propose a theory-independent realism criterion based on the premise that, in

realist theories, measurements merely reveal preexisting elements of reality without disturbing

the physical state. We demonstrate that this criterion effectively generalizes the BA criterion,

recovering it within the framework of quantum mechanics. Additionally, we examine its

relationship with Fine’s criterion and its implications for the validity of Bayes’ rule.

Two measures of deviation from this criterion are introduced. The first leverages the

concept of robustness, quantifying the minimal amount of mixing required for a system to lose

its irrealism for a physical property. The second utilizes the Kullback-Leibler divergence [45] to

measure how the probabilities assigned to measurement outcomes for a given state deviate from

those of a state that is realist with respect to a specific physical property. Numerical studies of

these quantities are conducted and compared with the BA irrealism quantifier, revealing both

qualitative and quantitative similarities.

We then explore the conditions for classicality in a theory-independent context and

examine their relationship with our notion of realism. This leads to the proposal of a criterion

for realism-based classicality, grounded in the concept of simplicial theories. In the context of

quantum mechanics, this criterion corresponds to scenarios where the only available state is

the completely mixed state.

Chapter 4 builds from this premise, presenting a mechanism based on sequential nons-

elective measurements on two noncommuting observables as a simplified model of continuous

environmental monitoring. Each measurement represents an entangling interaction with an

environmental degree of freedom, followed by the discarding of that component. Repeated

cycles of interaction and discard simulate continuous monitoring, and we demonstrate that

this process is sufficient for the emergence of a realism-based notion of classicality with only

two environmental degrees of freedom.
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The results of this chapter are framed within the generalized Bloch sphere formal-

ism [46, 47], which maps density operators onto an Euclidean vector space, similar to the

standard treatment of a qubit. This formalism is reviewed, and the BA criterion is reinterpreted

through its framework.

We investigate the relationship between irrealism and information, deriving a strict

bound for a realism-based notion of classicality. An approximation is developed for sequential

measurements involving observables that are only slightly noncommuting, allowing us to

analyze the emergence of realism in this context. This framework is applied to states of

arbitrary dimension, broadening its applicability.

A measure of realism-based classicality, termed the volume of irrealism, is introduced.

This measure facilitates the computation of the average irrealism for any observable given

a quantum state, enabling a context-independent quantification of irrealism. Furthermore, a

variation of this measure provides a means to assign a classicality measure to specific classes of

observables. The results of this chapter are illustrated and validated through analyses of qubits

and qutrits.

Chapter 5 focuses on the concept of measurement, the fundamental process underlying

all preceding discussions. Given the highly conceptual nature of the measurement problem, this

chapter adopts a bottom-to-top approach, beginning with a review of the most fundamental

assumptions underlying physics. The Wigner’s friend scenario serves as a central theme,

guiding the introduction of a relational framework for quantum mechanics

We propose an interpretation in which a minimal experimental setup necessitates the

three entities introduced in Chapter 2: the agent, the system, and the laboratory. A series of

postulates are presented to support a perspective where all physical descriptions must be made

by an agent, who is, in turn, considered a physical system from the perspective of another

agent.

A notion is proposed wherein an agent functions as an information sink during

the process of information acquisition, leading to a reinterpretation of the second law of

thermodynamics. Specifically, this reinterpretation frames the second law as the increase of

local entropy within this context.

A distinctive feature of quantum mechanical measurement protocols is postulated: the

inevitable discarding of the measured system. This postulate prompts discussions regarding

the hierarchical structure of informational privileges among different agents.

The implications of this hierarchy are examined within the traditional Wigner’s friend

scenario, as well as a modified version proposed by us: the floating Wigner’s friend. This new

thought experiment introduces a stronger version of the Wigner’s friend paradox and offers a

resolution by envisioning a scenario of complete symmetry between the agents.

The chapter concludes with an analysis of the measurement problem within the frame-



5

work developed herein. A third question regarding the measurement problem is introduced,

addressing whether it arises intrinsically from the formalism of quantum mechanics or is

primarily an interpretational issue.

Before starting, a brief note from the author: I believe that isolating content from

form is never fully possible. Even in scientific contexts, the development of new notations

has often driven progress. In physics, Feynman diagrams serve as a prime example, while

in computer science, many programming languages are isomorphic, yet each has facilitated

unique advancements. As Leslie Lamport, the pioneer of LaTeX, aptly stated: “If you’re thinking

without writing, you only think you’re thinking.” This work reflects a structured ordering of

my thoughts as I explore the subjects at hand. Consequently, each chapter adopts its own tone:

Chapter 2 is playful; Chapter 3 is abstract; Chapter 4 is laborious; and Chapter 5 is conceptual.

Although this structure may lack the cross-referential capabilities of a more encyclopedic

approach, I hope for a trade-off that maximizes the potential for insight. With this spirit in

mind, we begin.
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2 THEORETICAL FOUNDATIONS

Whenever we learn a physical theory, we usually are exposed to it by one of two

different approaches: the historical or the axiomatic. The historical approach has the advantage

of reminding us that physics is a human endeavor, made by actual people who lived under

particular circumstances, and it sheds light over the contingencies permeating its formalism

and conventions. The axiomatic approach is effective at being concise and direct; it also allows

us to grasp the most recent development of the theory and to correlate its corpus with different

physical theories which can share similarities. In this session, we are going to talk about

quantum mechanics, information theory, and quantum information theory yet by another

approach. At the expense of rigor, we will try to present those frameworks as they stem from

the physical intuition of the experimental setting. Any rigor lost, however, may be retrieved by

consulting Refs. [48], [49], and [50], the main sources informing this session.

2.1 QUANTUM MECHANICS

A physical theory is considered successful whenever it can predict correctly, given the

uncertainty of the measurement apparatuses, the outcomes of measurements for a particular

experiment. Let us break down this process into some of its constituent parts.

There are many ways to conceptualize what an experiment is. One particularly in-

sightful way, we argue, is to understand it as a dynamic process happening between three

entities:

1. The system is a part of the universe whose properties are being investigated;

2. The laboratory is composed by many other systems whose properties are determined a

priori;

3. The agent is that which investigates or determines the properties of physical systems.

2.1.1 Preparation

No experimental process simply occurs ab nihilo; it arises from a particular scenario

that can be framed as a previous experimental setting.

Consider an experimentalist—here embodying the agent—who wants to investigate

the behavior of a beam of silver atoms traveling perpendicularly through an inhomogeneous

magnetic field. She begins by taking a small piece of pure silver and placing it inside an oven to

heat it. The silver is a small metallic sphere, and she knows it is silver because it was labeled in

the container from which it was taken. That label reflects the result of a prior experiment that
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determined the chemical composition of the object. Thus, the experiment being performed is

enabled by the outcomes of previous experiments.

The agent characterizes the system through its preparation—a protocol by which

a part of the universe, whose characteristics are already determined to a certain degree, is

isolated and then subjected to a particular context in the laboratory. The language used for

this characterization is that of a physical theory—in this case, quantum mechanics. The role

of the physical theory is to assign the system a mathematical counterpart, encapsulating all

the information about the preparation necessary for predicting the relevant outcomes of the

experiment.

One way to represent a system is by assigning it a vector in a vector space. This

approach is already familiar from classical mechanics, where a system is characterized by a

vector in the phase space. In the context of quantum mechanics, however, the vector is not

assigned to a phase space but to a Hilbert space—a vector space equipped with an inner product.

This vector is typically expressed as a complex column vector, denoted by |𝜓 〉.
An alternative formulation of quantum mechanics employs a density operator to

represent a system (or, equivalently, to characterize a preparation). Formally, the density

operator is a positive semi-definite Hermitian operator with trace one, acting on a Hilbert

space. A simple connection between this formulation and the state vector formalism arises by

noting that a state described by the state vector |𝜓 〉 can be equivalently represented by the

density operator |𝜓 〉 〈𝜓 |, usually denoted as 𝜌 , where 〈𝜓 | is the Hermitian conjugate (transposed

complex conjugate) of |𝜓 〉.
When an experimental setting is conceptualized as a dynamic process involving the

agent—where the agent is responsible for assigning a mathematical representation to the

system—it is crucial for our physical theory to provide tools that describe not only the system

itself but also the manner in which the agent characterizes it. This is where the density operator

formalism surpasses the state vector formalism: it allows the incorporation of the agent’s

subjective uncertainty regarding the preparation.

Suppose that, in a particular protocol for the preparation of a physical state, one of

the steps involves the experimentalist preparing two distinct physical systems, |𝜓 〉 and |𝜙〉.
Now suppose that, in the next step, she mixes these systems and retrieves only one of them,

without knowing which one it is. Using the state vector formalism, the experimentalist must

work in parallel with two different scenarios, considering both possibilities: returning |𝜓 〉 or
|𝜙〉. However, with the density operator formalism, she can incorporate her ignorance about

which system was retrieved directly into the description of the state itself, assigning a density

operator 𝜌 = 1
2 ( |𝜓 〉 〈𝜓 | + |𝜙〉 〈𝜙 |).

More generally, for a quantum system that could be in states |𝜓𝑖〉 with probabilities 𝑝𝑖 ,
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the density operator assigned to the set {𝑝𝑖, |𝜓𝑖〉} is given by:

𝜌 ≔

∑
𝑖

𝑝𝑖 |𝜓𝑖〉 〈𝜓𝑖 | . (2.1)

Whenever the probability distribution is such that any 𝑝𝑖 = 1, that is, whenever there is no

uncertainty about the composition of the system, it is possible to write 𝜌 = |Ψ〉 〈Ψ|, and the

state is identified as pure. Otherwise, it is mixed. For a state of maximum uncertainty, that is, a

state composed only of equiprobable states, 𝜌 = �/𝑑 , where 𝑑 is the dimension of the Hilbert

space over which 𝜌 acts, and the state is said to be completely mixed.

A simple criterion distinguishes pure and mixed states: a state is pure iff Tr (𝜌2) = 1

and mixed iff Tr (𝜌2) < 1. Completely mixed states are characterized by Tr (𝜌2) = 1/𝑑 , where
𝑑 is the dimension of the Hilbert space.

An apparent trade-off for incorporating the agent’s uncertainty into the description

of the system is the fact that, for a given mixed state, there are infinitely many different

probabilistic distributions of pure states that result in the same density operator 𝜌 . Does this

non-uniqueness of the density operator representation imply a loss of information? We shall

see that predictions for measurement outcomes depend solely on the density operator. Thus,

if two systems yield the same density operator, they are completely indistinguishable by any

experimental procedures. Consequently, no information is lost: the density operator fully

answers every question it was designed to address.

Now suppose the experimentalist, while following the protocol for preparing the

system under investigation, produces two or more distinct quantum systems, 𝜌A, 𝜌B, . . . , 𝜌N .
If she wishes to describe these systems as a joint composite system, the procedure inherent

to the density operator formalism prescribes that the resulting state is given by 𝜌AB ...N =

𝜌A ⊗ 𝜌B ⊗ · · · ⊗ 𝜌N , where ⊗ denotes the Kronecker product. The resulting density operator

acts on the composite Hilbert space H = HA ⊗ HB ⊗ · · · ⊗ HN .

If, on the other hand, she wishes to discard a subsystem of the joint composite system,

or if she is compelled to do so because the subsystem has become inaccessible, the formalism

provides her with the appropriate descriptive tool. For a bipartite system composed of two

partitions,A andB, represented as 𝜌AB , the reduced density operator resulting from discarding

partition B is given by

𝜌A = Tr B(𝜌AB), (2.2)

where Tr B denotes the partial trace over partition B, defined as

Tr B (|𝑎𝑖〉 〈𝑎𝑗 | ⊗ |𝑏𝑖〉 〈𝑏 𝑗 |) ≔ |𝑎𝑖〉 〈𝑎𝑗 | 〈𝑏 𝑗 |𝑏𝑖〉 , (2.3)

with |𝑎𝑖〉, |𝑎𝑗 〉 and |𝑏𝑖〉, |𝑏 𝑗 〉 being vectors from partitions A and B, respectively. The definition

is analogous for the case where partition A is "traced out," and the extension to multipartite

systems is straightforward.
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In our original scenario, removing a piece of silver from the shelf and placing it

inside the oven can be metaphorically understood as “tracing out” the room from the composite

system composed of the silver and its environment. More generally, at the end of an experiment,

defining a system for the subsequent protocol involves effectively tracing out all other systems,

thereby eliminating any correlations that may have been established with the system of interest.

2.1.2 Evolution

With the system prepared and its corresponding density operator assigned, the ex-

perimentalist proceeds with the experiment. She activates the magnets and heats the oven,

vaporizing the small piece of silver. Through a precisely aligned aperture, the resulting atomic

beam is emitted and propagates through the magnetic field.

Initially, her task was to follow a well-defined protocol to isolate a part of the universe,

whether by combining, discarding, mixing, or purifying subsystems, until the system of interest

was properly prepared. Now, to investigate its properties, she must subject the system to

various controlled conditions and observe its responses. After all, the attributes of a system

only acquire meaning in relation to something else. The laboratory, with its controlled and

well-defined environment, provides the ideal setting for such investigations. Understanding

the system ultimately means understanding how it interacts and behaves within the laboratory

context.

The way a system evolves over time under specific circumstances—its motion in-

fluenced by particular factors—is the focus of what is referred to as mechanics. In classical

mechanics, several formalisms describe the motion of physical systems, most notably Newto-

nian, Lagrangian, and Hamiltonian mechanics. In quantum mechanics, an analogous concept is

employed: an operator called the Hamiltonian, denoted by𝐻 . Similar to its classical counterpart

(in cases where the constraints are time-invariant and the potential energy is independent of

velocity), the Hamiltonian represents the total energy of the system:

𝐻 = 𝑇 +𝑉 . (2.4)

The Hamiltonian serves as the generator of time evolution and consists of two components.

The term𝑇 , representing the kinetic energy, encodes the system’s evolution relative to a chosen

spatial basis. The term 𝑉 , representing the potential energy, describes the system’s interaction

with other systems.

The specific way in which the Hamiltonian generates time evolution depends on a

fundamental choice within the formalism of quantum mechanics. We can either describe the

state as evolving in time or consider the quantities we measure to evolve in time. Each choice

defines a “representation”: the former corresponds to Schrödinger’s representation, while the

latter corresponds to Heisenberg’s representation. Both are mathematically equivalent.
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In this chapter, we adopt the Schrödinger representation and postulate that a quantum

state, represented by a state vector, evolves in time according to the Hamiltonian as described

by the Schrödinger equation:

𝑖ℏ
𝜕

𝜕𝑡
|𝜓 〉 = 𝐻 |𝜓 〉 , (2.5)

where ℏ is the reduced Planck constant.

To see how this principle fits under the density operator formalism, let us consider a

pure state 𝜌 = |𝜓 〉 〈𝜓 |. Taking the time derivative and applying the product rule, we obtain:

𝜕𝜌

𝜕𝑡
=

𝜕 |𝜓 〉
𝜕𝑡

〈𝜓 | + |𝜓 〉 𝜕 〈𝜓 |
𝜕𝑡

. (2.6)

Using Eq. (2.5) and noting that the time derivative of 〈𝜓 |, being the complex conjugate, intro-

duces a minus sign, we find:

𝑖ℏ
𝜕𝜌

𝜕𝑡
= [𝐻, 𝜌] . (2.7)

The term [𝐻, 𝜌] is called the commutator of 𝐻 and 𝜌 , which is defined as

[𝐴, 𝐵] ≔ 𝐴𝐵 − 𝐵𝐴 (2.8)

where 𝐴 and 𝐵 are arbitrary operators. The identity in Eq. (2.7) is known as the Liouville-von

Neumann equation.

Since the commutator is the quantum counterpart for the Poisson brackets in classical

mechanics, it is no coincidence that the Liouville-von Neumann equation is so named. In

classical mechanics, for a system with coordinates 𝑞 and conjugate momenta 𝑝 , the phase space

distribution 𝜌 (𝑝, 𝑞) represents the density of microstates per unit volume in the phase space.

Liouville’s theorem asserts that
𝜕𝜌

𝜕𝑡
= −{𝜌, 𝐻 }, (2.9)

where {𝜌, 𝐻 } is the Poisson bracket with the Hamiltonian 𝐻 . This theorem ensures that the

phase space volume of a classical system is conserved under Hamiltonian evolution.

In quantum mechanics, the density operator serves as the analogue of the classical

phase space distribution. Because the density operator encapsulates all probabilities associ-

ated with measurements, and these probabilities must remain conserved (summing to one

by definition), the evolution of a closed quantum system must preserve the trace and other

defining properties of the density operator. This is achieved through unitary evolution, which

is a hallmark of quantum mechanics and ensures the conservation of all information about the

quantum state.

More formally, an operator 𝑈 is said to be unitary iff 𝑈 †𝑈 = 𝑈𝑈 † = 1 where 𝑈 † is
the transpose complex conjugate of𝑈 . For a time-independent Hamiltonian, the solution of

Eq. (2.7) is given by

𝜌 (𝑡) = 𝑒−
𝑖
ℏ
𝐻†𝑡 𝜌 (0)𝑒 𝑖

ℏ
𝐻𝑡 . (2.10)
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and 𝑒−
𝑖
ℏ
𝐻𝑡 is referred to as the time evolution operator. Since this evolution must be unitary,

the process is expected to be reversible. Rewriting the initial state as

𝜌 (0) = 𝑒−
𝑖
ℏ
𝐻 ′†𝑡 𝜌 (𝑡)𝑒 𝑖

ℏ
𝐻 ′𝑡 (2.11)

and comparing this expression with the forward evolution equation, we find that reversibility

requires 𝐻 ′ = −𝐻 . Additionally, the unitarity of 𝑒−
𝑖
ℏ
𝐻𝑡 implies that 𝐻 must be Hermitian, since

Hermiticity ensures the unitarity of the exponential operator.

In the previous discussion, the laboratory was traced out of the system, leaving the

system characterized solely by its density operator. However, as the system evolves in time, it

interacts with the laboratory, with the interaction governed by the Hamiltonian. Despite this

interaction, the system was referred to as “closed”, a condition necessary for the unitarity of its

evolution. This raises a fundamental question: can the system truly be considered closed if it is

influenced by an external entity? To clarify, a system is defined as “closed” if it is not “open”.

An open system, in turn, is one that interacts with other systems whose properties are not

fully known, such that their interactions cannot be accurately incorporated into the system’s

Hamiltonian.

This discussion naturally leads to the introduction of another entity in the dynamics:

the environment. The environment consists of many systems, but unlike the laboratory, the

properties of these systems are not known to the agent. When the effects of the environment on

the system are of such a nature, they are collectively referred to as noise. As a system becomes

increasingly subjected to noise, its state transitions from being pure to mixed. This process can

be expressed as follows:

𝜌 (0) = |𝜓𝑖〉 〈𝜓𝑖 | → 𝜌 (𝑡) =
∑

𝑖

𝑝𝑖 |𝜓𝑖〉 〈𝜓𝑖 | . (2.12)

where 𝜌 (0) represents the initial pure state, and 𝜌 (𝑡) represents the mixed state resulting from

the influence of noise. In essence, noise introduces randomness into the system. For the agent,

it transforms what is known into what is unknown.

To eliminate this uncertainty, suppose an idealized scenario in which the environment

is fully characterized and represented by a pure density operator. By redefining the system of

interest to include both the system and the environment, the joint state evolves under a fully

determined Hamiltonian controlled entirely by the laboratory settings, resulting in unitary

evolution. Mathematically, let |𝜓 〉 denote the vector state of the system and |𝜖〉 the vector state
of the fully determined environment. The joint state is then represented by 𝜌 = |Ψ〉 〈Ψ|, where
|Ψ〉 = |𝜓 〉 ⊗ |𝜖〉. The evolution of this state is expressed as:

𝜌 (0) = |Ψ〉 〈Ψ| −→ 𝜌 (𝑡) = 𝑒−
𝑖
ℏ
𝐻𝑡 |Ψ〉 〈Ψ| 𝑒 𝑖

ℏ
𝐻𝑡 . (2.13)

If the initial state is pure, 𝜌 (0) = |Ψ〉 〈Ψ|, with |Ψ〉 = |𝜓 〉 ⊗ |𝜖〉, the state remains pure

throughout the evolution. However, if we trace out the environmental degrees of freedom, E,
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from 𝜌 (𝑡), the reduced density matrix of the system is generally mixed:

𝜌𝑆 (𝑡) = TrE [𝜌 (𝑡)] = TrE
[
𝑒−

𝑖
ℏ
𝐻𝑡 |Ψ〉 〈Ψ| 𝑒 𝑖

ℏ
𝐻𝑡

]
. (2.14)

This demonstrates that, while the joint system-environment evolution is unitary,

simply disregarding (tracing out) part of the composite system results in a mixed state for the

subsystem. As will be discussed, this phenomenon of loss of coherence is a direct consequence

of the entanglement between the system and the environment.

To contrast this with a classical scenario, consider two deterministic systems evolving

jointly under awell-defined classical Hamiltonian. If one of the systems is ignored, the remaining

system does not become “mixed” in the quantum sense but retains its deterministic evolution.

Lack of ignorance about the joint system implies lack of ignorance about each subsystem.

This key distinction highlights the unique feature of quantum mechanics known as

the purification property: any mixed quantum state can always be represented as a reduced

state of a pure state in a larger system. This result is formalized by the purification theorem, or

Schrödinger–HJW theorem, which ensures that a mixed state 𝜌𝑆 can always be extended to a

pure state 𝜌 = |Ψ〉 〈Ψ| in a higher-dimensional Hilbert space [51].

By preparing the system, a density operator was assigned to it. Throughout its evolu-

tion in the experimental setup, previous knowledge about the laboratory allowed the description

of a logically reversible process by means of a Hamiltonian. This last process can be entirely

carried out mentally by the agent: the parameters are set and the system evolves accordingly.

For the last step, a description cannot be given irrespectively of the agent’s action.

This is the one that interests us the most: when information acquisition ensues.

2.1.3 Measurement

The experimentalist cannot have access to magnetic momenta degrees of freedom of

each particle directly, but only to infer them indirectly from phenomena she can apprehend

with her senses.

Different magnetic momenta prescribe different trajectories along the field, and these

trajectories lead each atom to a particular location. Previous knowledge of these causal relations

allows the knowledge of the position of each atom to convey information about their magnetic

momenta. Because of that, the laboratory is equipped with a series of detectors aligned in

parallel with the magnetic field such that they can provide the information of how much each

atom was deflected. Each sensor, when it interacts with the atom, produces a signal that is

amplified and converted into some kind of signal that will be displayed on a screen. The agent

then reads the screen and knows the position of the atoms.

Ultimately, the experimentalist’s sensory experience delineates her bound for infor-

mation acquisition. That which lies beyond her senses can only be accessed via a translation
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into elements of her phenomenology. That mediation is done by the measurement apparatus,

and its language is that of physical properties, or observables. She knows the position and

magnetic momentum of an atom by experiencing a number on the display.

A density operator describes her state of knowledge about a physical system, that is

formulated in terms of its physical properties, which are then dependent on what measurement

apparatuses can determine. The density operator thus conveys the probabilities assigned to

that which the measurement apparatus measures.

To determine these probabilities, we first construct the mathematical representation

of observables. In the state vector formalism, observables are represented by self-adjoint

operators, where the eigenvalues correspond to the possible outcomes of ameasurement, and the

associated eigenvectors represent the vector states assigned to each outcome. Mathematically,

this is expressed as:

𝐴 |𝜓𝑎〉 = 𝑎 |𝜓𝑎〉 , (2.15)

where 𝐴 represents the physical quantity being measured. According to the Born rule, for an

arbitrary vector state |𝜓 〉, the probability of obtaining the outcome 𝑎 in a measurement of 𝐴 is

given by:

𝑝 (𝑎) = | 〈𝜓𝑎 |𝜓 〉 |2. (2.16)

Since probabilities must sum to unity, the eigenvectors satisfy the completeness relation:∑
𝑎

|𝜓𝑎〉 〈𝜓𝑎 | = 1. (2.17)

Using this identity, we can multiply both sides of Eq. (2.15) by 〈𝜓𝑎 | and sum over all 𝑎, yielding

an alternative expression for the observable 𝐴:

𝐴 =

∑
𝑎

𝑎𝐴𝑎, (2.18)

where 𝐴𝑎 = |𝜓𝑎〉 〈𝜓𝑎 | is the projection operator associated with the outcome 𝑎. For measure-

ments where the outcomes are mutually exclusive, the eigenvectors satisfy the orthogonality

condition 〈𝜓𝑎 |𝜓𝑎′ 〉 = 𝛿𝑎𝑎′ , which characterizes a projective measurement. When considering

an ensemble of many identical systems, one can compute the average value of the possible

outcomes for a given observable, its expectation value:

〈𝐴〉𝜓 = 〈𝜓 |𝐴 |𝜓 〉 . (2.19)

In density operator formalism, Born rule becomes

𝑝 (𝑎) = Tr (𝜌𝐴𝑎), (2.20)

and the expectation value is given by

〈𝐴〉𝜌 = Tr (𝜌𝐴) . (2.21)
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.

This allows a way of viewing quantum mechanics as a generalization of probability

theory that replaces classical probabilities {𝑝𝑎} with complex amplitudes {𝜓𝑎}, subject to the

normalization condition
∑

𝑎 | 〈𝜓𝑎 |𝜓 〉 |2 = ∑
𝑎 |𝜓𝑎 |2 = 1. In classical probability, the normalization∑

𝑎 𝑝𝑎 = 1 is preserved by stochastic matrices, which are non-negative matrices with columns

summing to 1. In quantum mechanics, analogous transformations are governed by unitary

matrices𝑈 , which preserve the quadratic norm
∑

𝑎 |𝜓𝑎 |2, a property intrinsic to the Hilbert space
structure of quantum theory. To appreciate this difference, let us proceed with the narrative.

The silver atom contains 47 electrons, with 46 forming a symmetric electron cloud. The

magnetic moment of the atom arises primarily from the spin of the 47th electron. Classically,

one might expect the magnetic moment to align in any arbitrary direction, leading to the

deflection of the atomic beam in such a way that the detection pattern on the detector wall

forms a continuous normal distribution. However, experimental results reveal a starkly different

behavior: the atoms strike the detector in only two discrete spots, as if the spin of the 47th

electron can only orient itself parallel or antiparallel to the applied magnetic field.

This observation, along with considerations of the magnitudes of relevant physical

quantities—such as the distance traveled by the atoms, the degree of their deflection, and the

strength of the magnetic field—motivates the construction of the operator 𝑆𝑧 , representing

the spin component in the 𝑧-direction (aligned with the magnetic field). Mathematically, it is

expressed as:

𝑆𝑧 =
ℏ

2
( |𝑆𝑧 ;+〉 〈𝑆𝑧 ;+| − |𝑆𝑧 ;−〉 〈𝑆𝑧 ;−|) . (2.22)

Suppose the experimentalist selects only the atoms that are deflected upward and

then subjects them to another magnetic field, this time oriented along the 𝑥-axis. One way to

conceptualize this scenario is that, by selecting atoms with a specific property, she is effectively

preparing a new quantum state described by a density operator, as if a new experiment is

beginning. This preparation protocol is made possible because now she knows that every

selected atom has a well-defined spin state. It was measured.

When the selected atoms, described by 𝜌 = |𝑆𝑧 ;+〉 〈𝑆𝑧 ;+|, pass through a magnetic

field oriented along the 𝑥-axis, the beam splits again into two distinct components, deflected

fully to the left or right. Similar to 𝑆𝑧 , the spin operator along the 𝑥-axis, 𝑆𝑥 , is defined as:

𝑆𝑥 =
ℏ

2

( |𝑆𝑥 ;+〉 〈𝑆𝑥 ;+| − |𝑆𝑥 ;−〉 〈𝑆𝑥 ;−|
)
. (2.23)

The experimentalist then selects only the atoms deflected to the right, corresponding

to the state |𝑆𝑥 ;+〉. Intuitively, one might expect that passing these atoms through a second

magnetic field aligned along the 𝑧-axis would result in a single beam deflected upward, since

the atoms were initially prepared in the state |𝑆𝑧 ;+〉. Under the assumption that the magnetic

fields alone do not alter the spin orientation, the property of being in |𝑆𝑧 ;+〉 should remain
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unchanged. However, when the atoms pass through the 𝑧-aligned field, the beam splits into

two components, deflected both upward and downward. Why does this occur?

To minimize the effects of environmental noise and ensure reliable results, the ex-

periment requires a well-controlled laboratory setup. Even under ideal conditions, the results

persist: measuring 𝑆𝑥 appears to erase any information about 𝑆𝑧 . Selecting atoms deflected

downward in the initial 𝑆𝑧 measurement confirms this observation. After selecting atoms based

on an 𝑆𝑥 outcome, it becomes impossible to infer the prior 𝑆𝑧 measurement. Thus, measuring

𝑆𝑥 is an irreversible process.

Through systematic investigation, the experimentalist concludes that preparing the

state |𝑆𝑧 ;+〉 leads to 𝑆𝑥 outcomes consistent with:

|𝑆𝑧 ;+〉 = 1√
2
( |𝑆𝑥 ;+〉 + |𝑆𝑥 ;−〉). (2.24)

This demonstrates that a pure state representing a definite outcome in one basis can be expressed

as a sum of eigenstates in another basis. Such a representation is what defines superposition.

By considering that the outcomes of the same observable are mutually exclusive,

implying orthogonality, the experimentalist constructs the 𝑆𝑧 and 𝑆𝑥 operators and relates

them by defining a unitary matrix that transforms vectors from one basis to another. This

approach provides matrix representations for both observables in a chosen basis, such as 𝑆𝑧 .

This mathematical framework highlights another fundamental aspect of quantum mechanics,

closely tied to superposition: incompatibility.

From a practical perspective, she observes that the order of measurements is crucial.

Since measuring 𝑆𝑥 erases information about the state with respect to 𝑆𝑧 , it becomes clear that

to obtain a definite outcome for 𝑆𝑧 , this observable must be measured last. Thus, the sequence

of measurements directly impacts the results.

In the formalism of quantum mechanics, the product of 𝑆𝑧 and 𝑆𝑥 differs from its

reverse, as expressed using the commutator:

[𝑆𝑧, 𝑆𝑥 ] ≠ 0. (2.25)

Two observables 𝐴 and 𝐵 are incompatible iff their commutator is nonzero. This result applies

to any two observables that do not share a common set of eigenvectors. In such cases, once a

measurement is performed, the post-measurement state vector in the basis of the incompatible

observable is in a superposition state. When a state described by a superposition is measured,

the outcome is inherently probabilistic.

This is captured by the Heisenberg uncertainty principle, expressed as:

Δ(𝐴)Δ(𝐵) ≥ |〈𝜓 | [𝐴, 𝐵] |𝜓 〉|
2

. (2.26)
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This principle states that for an ensemble of identical systems described by |𝜓 〉, if measurements

of 𝐴 are performed on some systems and 𝐵 on others, the standard deviations Δ(𝐴) and Δ(𝐵)
must satisfy the inequality (2.26).

The mathematical representation of measurement in quantum mechanics is given by

the following postulate: let {𝑀𝑚} be a collection of measurement operators, where𝑚 labels

the possible outcomes, and these operators satisfy the completeness relation
∑

𝑚 𝑀†
𝑚𝑀𝑚 = �.

If, immediately before the measurement, the system is described by the state vector |𝜓 〉, then
for a measurement where the outcome𝑚 occurs, the state of the system immediately after the

measurement is:
𝑀𝑚 |𝜓 〉√

〈𝜓 |𝑀†
𝑚𝑀𝑚 |𝜓 〉

. (2.27)

In the density operator formalism,

Measurement postulate. Given a set of measurement operators {𝑀𝑚}, if 𝜌 describes the state of

a quantum system immediately before a measurement, then upon obtaining an outcome𝑚, the

state of the system becomes

𝑀𝑚𝜌𝑀†
𝑚

Tr (𝑀†
𝑚𝑀𝑚𝜌)

. (2.28)

Before proceeding, let us briefly revisit the double-slit experiment to illustrate some

consequences of the measurement postulate. In this setup, the experimentalist directs a field-

emission electron gun at a barrier with two slits and places a screen with detectors behind it. As

the electrons are emitted, their initially localized wavefunction spreads due to the uncertainty

in their momentum. Upon encountering the barrier, the wavefunction is spatially divided by

the slits. At this stage, the state of the electrons is described by:

𝜌 = |𝜓 〉 〈𝜓 | , where |𝜓 〉 = 1√
2
( |𝜓1〉 + |𝜓2〉), (2.29)

where |𝜓1〉 and |𝜓2〉 represent the state vectors corresponding to the electron passing through

slit 1 and slit 2, respectively.

The probability distribution for the electrons’ positions on the detection screen is

determined from the density operator via:

𝑝 (𝑥) = Tr (𝜌𝑀𝑥 ), 𝑀𝑥 = |𝑥〉 〈𝑥 | , (2.30)

where 𝑀𝑥 are the measurement operators associated with detecting the particle at position

𝑥 on the screen. This distribution produces the characteristic interference pattern observed

on the screen. The interference arises due to the off-diagonal (coherence) terms in the density

operator:

𝜌 =
1

2
( |𝜓1〉 〈𝜓1 | + |𝜓2〉 〈𝜓2 | + |𝜓1〉 〈𝜓2 | + |𝜓2〉 〈𝜓1 |) , (2.31)

which encode the phase information responsible for the interference fringes.



17

To further probe the system, the experimentalist places electromagnetic sensors near

the slits to detect the passage of each electron. These sensors perform a measurement that

determines which slit the electron traverses. The measurement operators corresponding to this

process are:

𝑀1 = |𝜓1〉 〈𝜓1 | , 𝑀2 = |𝜓2〉 〈𝜓2 | . (2.32)

After the measurement, the state of the system is updated according to the measurement

postulate. The new density operator becomes:

𝜌′
=

∑
𝑖=1,2

𝑀𝑖𝜌𝑀†
𝑖 =

1

2
( |𝜓1〉 〈𝜓1 | + |𝜓2〉 〈𝜓2 |) . (2.33)

In this post-measurement state, the off-diagonal terms in 𝜌 vanish, indicating the loss

of coherence between |𝜓1〉 and |𝜓2〉. Consequently, the interference pattern disappears. The

resulting probability distribution on the screen is now:

𝑝 (𝑥) = Tr (𝜌′𝑀𝑥 ) = 1

2

( |𝜓1(𝑥) |2 + |𝜓2(𝑥) |2
)
, (2.34)

which corresponds to a classical mixture of probabilities. This reflects the destruction of

quantum coherence due to themeasurement, a key feature of the quantum-to-classical transition

induced by decoherence.

As mentioned, the fundamental aspect of a measurement process is acquisition of

information. To explore this concept, we proceed by introducing key principles of information

theory.

2.2 CLASSICAL INFORMATION THEORY

The characterization of the agent has received little attention thus far.While addressing

this is among our goals, it is prudent to begin with well-defined physical processes, avoiding

initial engagement with concepts lacking clear mathematical formulation, such as subjectivity.

In the measurement process, the agent acquires information by observing the outcome

displayed on the apparatus. But what do we mean by information? Is it tied to truth? Does

it exist independently, or does it require a counterpart that it describes? Is information an

ontological entity, or is it merely an abstraction to facilitate calculations? The concept of

information, like any other, admits various definitions depending on its context. Here, we adopt

a pragmatic approach, defining information as that which resolves uncertainty.

2.2.1 Information entropy

This definition enables a quantitative perspective: resolving a highly uncertain sit-

uation conveys more information than resolving one with low uncertainty. Conversely, no

information is gained from what is already certain. Thus, information is intrinsically linked to
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uncertainty, an idea well-formulated within probability theory. Building on this foundation,

information theory provides a rigorous framework to quantify uncertainty through information

entropy.

Claude Shannon laid the groundwork for classical information theory in his seminal

1948 paper, A Mathematical Theory of Communication [52] (later renamed The Mathematical

Theory of Communication in recognition of its generality). In this work, Shannon introduced the

concept of information entropy, establishing the basis for the quantitative study of information.

A random variable 𝑋 is defined by a set {𝑥𝑖, 𝑝𝑖}, where 𝑥𝑖 are the possible outcomes

and 𝑝𝑖 are the corresponding probabilities. When measuring 𝑋 , the outcome 𝑥𝑖 occurs with

probability 𝑝𝑖 . Information entropy quantifies the average amount of information gained when

the value of 𝑋 is observed. Alternatively, it measures the uncertainty of 𝑋 prior to observation.

The mathematical form of information entropy can be derived by considering a

function 𝐻 of a random variable 𝑋 that satisfies the following conditions:

1. 𝐻 (𝑋 ) depends only on the probabilities {𝑝𝑖}, so 𝐻 (𝑋 ) = 𝐻 ({𝑝𝑖});

2. 𝐻 is a smooth function;

3. For independent events with probabilities 𝑝𝑖 and 𝑝 𝑗 , 𝐻 (𝑝𝑖𝑝 𝑗 ) = 𝐻 (𝑝𝑖) + 𝐻 (𝑝 𝑗 ).

A function satisfying these conditions is 𝐻 (𝑋 ) = −𝑘
∑

𝑖 𝑝𝑖 log𝑝𝑖 , where 𝑘 is a positive constant.

This expression defines the information entropy, up to a scaling factor.

Building on the previous developments, we can derive the same function by considering

a mathematical formulation motivated by an experimental context. This approach aligns closely

with Shannon’s original work in [52]. In his seminal paper, Shannon addressed two fundamental

questions:

1. How much can a message be compressed without losing information? Equivalently, how

can we quantify the redundancy in a message?

2. At what rate can information be transmitted over a noisy channel without loss? In other

words, howmuch redundancy must be added to protect the message’s information during

communication through a noisy channel?

Here, we focus on the first question, so we need a representation of the concept

of a message. A message can be modeled as a string of 𝑛 letters drawn from an alphabet

{𝑎1, 𝑎2, . . . , 𝑎𝑘}. Assuming that the occurrence of each letter is statistically independent of the

others, we can assign probabilities 𝑝 (𝑎𝑗 ) to each letter such that:

𝑘∑
𝑗=1

𝑝 (𝑎𝑗 ) = 1. (2.35)
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Consider a message written in a binary alphabet, {𝑎1, 𝑎2}, where the probabilities of
occurrence are 𝑝 (𝑎1) = 𝑝 and 𝑝 (𝑎2) = 1−𝑝 . For a long message of length𝑛 
 1, the occurrences

of 𝑎1 and 𝑎2 are approximately 𝑝𝑛 and (1 − 𝑝)𝑛, respectively. The number of distinct strings

with this composition corresponds to the permutations of these occurrences, given by
( 𝑛
𝑛𝑝

)
.

Using the Stirling approximation, log𝑛! ≈ 𝑛 log𝑛 − 𝑛, we compute:

log

(
𝑛

𝑛𝑝

)
= log

𝑛!

(𝑛𝑝)![𝑛(1 − 𝑝)]!
≈ 𝑛 log𝑛 − 𝑛 − [

𝑛𝑝 log𝑛𝑝 − 𝑛𝑝 + 𝑛(1 − 𝑝) log𝑛(1 − 𝑝) − 𝑛(1 − 𝑝)] . (2.36)

Simplifying, we find:

log

(
𝑛

𝑛𝑝

)
≈ 𝑛𝐻 (𝑝), (2.37)

where 𝐻 (𝑝) ≔ −𝑝 log𝑝 − (1 − 𝑝) log(1 − 𝑝) is the binary entropy function. Taking log to base

2, the number of possible strings is 2𝑛𝐻 (𝑝) , establishing a direct relation between the binary

alphabet and bits.

If we compose a code block containing all the typical strings, the code block will have

2𝑛𝐻 (𝑝) entries. Each entry can be identified by a tag, which is a string of length 𝑛𝐻 (𝑝). By
employing this approach, instead of transmitting the full message of length 𝑛, we may reference

the message in the code block by its corresponding tag.

Since 0 ≤ 𝐻 (𝑝) ≤ 1, with 𝐻 (𝑝) = 1 only when all letters occur with equal frequency

(i.e., 𝑝 = 1/2 for the binary alphabet), the tag will generally be shorter than the original message.

Using this strategy, storing the tag instead of the full message reduces the required

physical resources for memory, effectively compressing the message without any loss of

information. Shannon demonstrated that any further attempt at compression beyond this limit

would result in an irretrievable loss of information.

It is straightforward to generalize the binary alphabet to an alphabet with 𝑘 symbols.

For an alphabet where the probability assigned to a symbol 𝑥 is 𝑝𝑥 ≔ 𝑝 (𝑥), a very long message

of length 𝑛 will have each symbol occurring approximately 𝑛𝑝𝑥 times. The number of possible

strings is given by:
𝑛!∏

𝑥 (𝑛𝑝𝑥 )! ≈ 2𝑛𝐻 (𝑋 ), (2.38)

where

𝐻 (𝑋 ) ≔ −
∑
𝑥

𝑝𝑥 log𝑝𝑥 (2.39)

is the information entropy of the ensemble {𝑥, 𝑝𝑥 }.
This result reveals that the amount of information required to encode a message

from an arbitrary alphabet is 𝑛𝐻 (𝑋 ), which provides a lower bound for any compression

protocol. In this way, we address the first question posed by Shannon regarding the limits of

data compression.
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To make this concept explicit, consider an example from [48]. Imagine an information

source 𝑋 emitting symbols 𝛼 , 𝛽 , 𝛾 , and 𝛿 with probabilities assigned to their occurrence given

by 1/2, 1/4, 1/8, and 1/8, respectively. Instead of allocating the same number of bits to represent

each symbol, we can assign shorter bit strings to the more frequent symbols. For example:

𝛼 ↦→ 0, 𝛽 ↦→ 10, 𝛾 ↦→ 110, 𝛿 ↦→ 111.

With this encoding, the average length of a compressed symbol is

1

2
· 1 + 1

4
· 2 + 1

8
· 3 + 1

8
· 3 = 7

4
. (2.40)

Remarkably, this matches the Shannon entropy for the source:

𝐻 (𝑋 ) = −1
2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

8
log

1

8

=
7

4
. (2.41)

Thus, the average length of a message composed of 𝑛 symbols emitted by this source can

be stored in 𝑛𝐻 (𝑋 ) bits. Any further attempt to compress the message would result in an

irreversible loss of information.

Let us illustrate why an encoding like 𝛼 ↦→ 0, 𝛽 ↦→ 1, 𝛾 ↦→ 10, and 𝛿 ↦→ 11 would

not yield better compression. Consider the average length of a compressed symbol under this

scheme. The calculation gives

1

2
· 1 + 1

4
· 1 + 1

8
· 2 + 1

8
· 2 = 5

4
. (2.42)

While this average length is smaller than 7
4 , the encoding fails to uniquely identify each symbol

in all cases, as it does not satisfy the prefix property (i.e., no code is a prefix of another). For

instance, the string “101” could ambiguously decode to either 𝛽𝛼𝛽 or 𝛾𝛽 . This ambiguity makes

the encoding nonviable, highlighting the necessity of prefix-free codes, such as those used in

Huffman [53] coding, to achieve optimal compression without loss of information.

To avoid issues of mathematical indefiniteness in cases where 𝑝𝑖 = 0, we define

0 log 0 ≡ 0. From this point onward, we will use the natural logarithm (base 𝑒) in the definition

of 𝐻 (𝑋 ). It is straightforward to verify that 𝐻 (𝑋 ) is non-negative and that, for 𝑑 possible

outcomes of the random variable𝑋 , the entropy𝐻 (𝑋 ) achieves its maximum value, log𝑑 , when

all outcomes are equiprobable.

2.2.2 Quantities and properties

Based on Shannon entropy we can define additional entropic measures, analogous

to how joint probability, 𝑝 (𝑎, 𝑏), and conditional probability, 𝑝 (𝑎 |𝑏), are defined in probability

theory. These measures will be extensively used throughout this work, and further details can

be found in [48].
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Figure 1 – Measures of entropy and their relationships illustrated in a Venn diagram. Original figure
adapted from [54].

• Joint entropy: Given two random variables 𝑋 and 𝑌 , the total uncertainty associated with

them is defined as:

𝐻 (𝑋,𝑌 ) ≔ −
∑
𝑥,𝑦

𝑝 (𝑥,𝑦) log𝑝 (𝑥,𝑦). (2.43)

The generalization of joint entropy to an arbitrary set of random variables is straightfor-

ward.

• Conditional entropy: The remaining uncertainty about 𝑋 after knowing the outcome of 𝑌

is given by:

𝐻 (𝑋 |𝑌 ) ≔ 𝐻 (𝑋,𝑌 ) − 𝐻 (𝑌 ), (2.44)

which represents the entropy of 𝑋 conditioned on the knowledge of 𝑌 .

• Mutual information: The total information shared between 𝑋 and 𝑌 is defined as:

𝐼 (𝑋 ;𝑌 ) ≔ 𝐻 (𝑋 ) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 ). (2.45)

Since the sum of 𝐻 (𝑋 ) and 𝐻 (𝑌 ) includes their mutual information twice, we subtract

their joint entropy to obtain 𝐼 (𝑋 ;𝑌 ). Substituting (2.44) into (2.45), we find:

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ). (2.46)

Fig. 1 provides a visual representation to facilitate a clearer understanding of how

these quantities are constructed. This understanding is further enriched by considering their

properties, such as those listed and explained below.

1. 𝐻 (𝑋,𝑌 ) and 𝐼 (𝑋 ;𝑌 ) are symmetric, meaning their values remain unchanged if 𝑋 and

𝑌 are permuted. For the joint entropy, this symmetry reflects the fact that the total

uncertainty about two random variables does not depend on their order. For mutual
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information, the symmetry indicates that the amount of information gained about 𝑋

from knowing 𝑌 is equal to the amount gained about 𝑌 from knowing 𝑋 .

2. 𝐻 (𝑋,𝑌 ) ≥ 𝐻 (𝑋 ), with equality holding iff 𝑌 = 𝑓 (𝑋 ), i.e., when 𝑌 is a deterministic

function of 𝑋 . This inequality implies that the uncertainty about a pair of variables

cannot be smaller than the uncertainty about either variable individually. When 𝑌 is

fully determined by 𝑋 , there is no additional uncertainty contributed by 𝑌 .

3. 𝐻 (𝑌 |𝑋 ) ≥ 0, which implies 𝐼 (𝑋 ;𝑌 ) ≤ 𝐻 (𝑌 ). Equality holds iff 𝑌 = 𝑓 (𝑋 ). This property
indicates that the uncertainty about 𝑌 given 𝑋 cannot be negative, meaning 𝐼 (𝑋 ;𝑌 ),
the mutual information shared between 𝑋 and 𝑌 , is limited by the total uncertainty of

𝑌 . When 𝑌 is a deterministic function of 𝑋 , 𝐻 (𝑌 |𝑋 ) = 0, and the mutual information

𝐼 (𝑋 ;𝑌 ) reaches its maximum value of 𝐻 (𝑌 ).

4. 𝐻 (𝑌 |𝑋 ) ≤ 𝐻 (𝑌 ), leading to 𝐼 (𝑋 ;𝑌 ) ≥ 0. Equality holds iff 𝑋 and 𝑌 are independent.

This property shows that knowing 𝑋 can only decrease or maintain the uncertainty

about 𝑌 , never increase it. When 𝑋 and 𝑌 are independent, knowing 𝑋 provides no new

information about 𝑌 , making the conditional entropy equal to the original entropy.

5. 𝐻 (𝑋 |𝑌, 𝑍 ) ≥ 𝐻 (𝑋 |𝑌 ), meaning that the conditional entropy of 𝑋 given both 𝑌 and 𝑍

cannot be smaller than the conditional entropy of 𝑋 given 𝑌 alone. This reflects the

intuitive idea that adding more conditioning variables cannot reduce the uncertainty

beyond what is conditioned on fewer variables.

6. Subadditivity: 𝐻 (𝑋,𝑌 ) ≤ 𝐻 (𝑋 ) +𝐻 (𝑌 ). Equality holds iff 𝑋 and 𝑌 are independent. This

property shows that the total uncertainty about a pair of variables is less than or equal

to the sum of their individual uncertainties, with equality occurring when there is no

correlation between the variables.

7. Strong subadditivity: 𝐻 (𝑋,𝑌, 𝑍 ) + 𝐻 (𝑌 ) ≤ 𝐻 (𝑋,𝑌 ) + 𝐻 (𝑌, 𝑍 ). Equality holds iff 𝑋 →
𝑌 → 𝑍 forms a Markov chain. This inequality highlights the interdependence of three

random variables, ensuring that the uncertainty relations are consistent with causality

in a Markov chain structure.

As mentioned earlier, information theory provides tools for establishing a notion of

distance between probability distributions. One such notion is given by the relative entropy, also

known as the Kullback–Leibler (KL) divergence [45], which measures the difference between

two probability distributions 𝑝 (𝑥) and 𝑞(𝑥), both defined over the same index set 𝑥 . It is defined

as:

D (𝑝 ‖𝑞) ≔
∑
𝑥

𝑝 (𝑥) log 𝑝 (𝑥)
𝑞(𝑥) = −𝐻 (𝑋 ) −

∑
𝑥

𝑝 (𝑥) log𝑞(𝑥). (2.47)

Here, we adopt the conventions 0 log 0 ≡ 0 and 𝑝 (𝑥) log 0 ≡ +∞ if 𝑝 (𝑥) > 0.
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The KL divergence can be regarded as a measure of “distance” between distributions,

as it satisfies non-negativity: D (𝑝 ‖𝑞) ≥ 0, with equality if and only if 𝑝 (𝑥) = 𝑞(𝑥) for all 𝑥 .
This property follows from Gibbs’ inequality, which states that for any probability distributions

𝑝 (𝑥) and 𝑞(𝑥): ∑
𝑥

𝑝 (𝑥) log 𝑝 (𝑥)
𝑞(𝑥) ≥ 0. (2.48)

However, a limitation of KL divergence is that it cannot be considered a true metric,

as it is not symmetric; that is, in general, D (𝑝 ‖𝑞) ≠ D (𝑞‖𝑝).
This framework enables the experimentalist to systematically account for all the infor-

mation obtained from the experiment, as recorded by the measurement apparatus. Additionally,

it provides tools for addressing protocols that can be described entirely in classical terms, such

as the random selection of one quantum system from a collection. However, not all aspects of

the experiment can be described classically.

For information theory to be truly comprehensive—such that every element of the

experimental setting has an informational counterpart—it is necessary to integrate information

theory with quantum mechanics.

2.3 QUANTUM INFORMATION THEORY

The interface of the measurement apparatus, where the measurement outcomes are

displayed, is a classical object. Quantum features, such as a superposition of different outcomes

on the screen, are typically absent. However, the actual quantum system under investigation

exhibits such behavior. How, then, should we quantify the information associated with systems

of this nature?

In this section, we will base our discussion on the sources [48], [55], and [56]. Following

the same approach used to derive the entropy of information, let us now consider a similar

scenario where the source of information is explicitly a quantum system.

2.3.1 Quantum information entropy

Information from a quantum system is obtained exclusively throughmeasurements.We

assume that a message of 𝑛 letters is generated from the outcomes of measurements performed

on a quantum system described by a mixed state 𝜌 . In one arrangement, the letters correspond

to the outcomes of measurements of an observable 𝐴 =
∑

𝑎 𝑎 |𝑎〉 〈𝑎 |, with probabilities 𝑝 (𝑎) =
Tr ( |𝑎〉 〈𝑎 | 𝜌).

The entropy of information for the set of letters 𝑎 arises naturally when 𝜌 is expressed

in diagonal form. Representing 𝜌 in an orthonormal basis {|𝑎〉}, we have 𝜌 =
∑

𝑎 𝜆𝑎 |𝑎〉 〈𝑎 |,
where the coefficients 𝜆𝑎 correspond to the probabilities assigned to each letter 𝑎. The entropy
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of this distribution is:

𝑆 (𝜌) = −
∑

𝑎

𝜆𝑎 log 𝜆𝑎, (2.49)

which represents 𝐻 (𝐴) for the ensemble 𝐴 = {𝑎, 𝜆𝑎}.
Eq. (2.49) is equal to −Tr (𝜌 ln 𝜌) because the trace operation is basis-independent.

This latter expression provides a general formulation for the quantum entropy of information,

known as the von Neumann entropy, named after John von Neumann [57]. It is defined as:

𝑆 (𝜌) ≔ −Tr (𝜌 ln 𝜌). (2.50)

When measuring a particular observable𝐴 in a state 𝜌 , where 𝜌 can be diagonalized in

the basis of𝐴, the entropy of information is given by𝐻 (𝐴). However, complications arise when

measuring an observable 𝐵 for which 𝜌 cannot be diagonalized in the basis {|𝑏〉}. Similarly,

challenges occur when 𝜌 represents an ensemble of states {𝜌𝑖} that do not commute with each

other. In such cases, we can still compute the von Neumann entropy using the expression in

Eq. (2.50), but there is no corresponding Shannon entropy expression like in Eq. (2.49). In these

scenarios, the von Neumann entropy remains well-defined, but a direct interpretation as a

Shannon entropy is no longer valid.

This reasoning suggests that, although the von Neumann entropy was derived as a

particular quantum analog of the Shannon entropy, it can be viewed as a generalization of

the latter. One might even be tempted to claim that quantum information is inherently more

general than classical information. However, making such a claim would require distinguishing

between different “types” of information, which would necessitate significantly expanding

our definition of information to a more complex framework. To remain grounded, it is more

prudent to state that the von Neumann entropy exhibits distinct features compared to the

Shannon entropy, reflecting the unique characteristics of quantum systems.

2.3.2 Quantities and properties

But how different are they? The differences between the von Neumann entropy and

the Shannon entropy become evident when comparing their properties. To study the properties

of the von Neumann entropy, we must first introduce additional quantum entropic measures,

just as we did for its classical counterpart. Fortunately, these definitions extend far beyond this

discussion and will reappear frequently throughout this work. We now introduce:

• Quantum joint entropy: The total uncertainty of a composite system consisting of two

partitions, A and B, is given by:

𝑆 (𝜌AB) ≔ −Tr (𝜌AB ln 𝜌AB), (2.51)

where 𝜌AB is the density matrix of the composite system. This measure extends the

concept of joint entropy to quantum systems.
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• Quantum conditional entropy: The remaining uncertainty about the state of partition A
given knowledge of partition B is defined as:

𝑆 (𝜌A|𝜌B) ≔ 𝑆 (𝜌AB) − 𝑆 (𝜌B). (2.52)

This is the quantum analog of conditional entropy in classical information theory.

• Quantum mutual information: The total information shared between partitions A and B
is given by:

𝐼A:B (𝜌) ≔ 𝑆 (𝜌A) + 𝑆 (𝜌B) − 𝑆 (𝜌AB)
= 𝑆 (𝜌A) − 𝑆 (𝜌A|𝜌B) = 𝑆 (𝜌B) − 𝑆 (𝜌B |𝜌A). (2.53)

This quantity quantifies the correlation between the two partitions, capturing both

quantum and classical contributions to the shared information.

With these definitions established, we are now prepared to proceed and list several

key properties of the von Neumann entropy:

1. Non-negativity: The von Neumann entropy is always greater than or equal to zero,

𝑆 (𝜌) ≥ 0, with equality holding iff 𝜌 is a pure state. A pure state represents maximal

knowledge (minimal ignorance) about the quantum system, as it is described by a single

state vector.

2. Maximum value: The entropy attains its maximum value of log𝑑 , where𝑑 is the dimension

of the Hilbert space on which 𝜌 acts, 𝑆 (𝜌) ≤ log𝑑 . Equality holds iff 𝜌 is a completely

mixed state, 𝜌 = �/𝑑 . In this case, the state represents minimal knowledge (maximal

ignorance) about the system, as all pure states are equally probable.

3. Invariance under unitary transformations: The entropy remains invariant under unitary

transformations, 𝑆 (𝑈 𝜌𝑈 †) = 𝑆 (𝜌), where𝑈 is a unitary operator. This invariance reflects

the fact that unitary transformations preserve the eigenvalues of 𝜌 , and thus its entropy.

4. Non-decreasing under projective measurements: The entropy may increase but never

decrease as a result of a projective measurement. Let 𝐴𝑎 be a complete set of orthogonal

projectors defining the observable 𝐴 =
∑

𝑎 𝑎𝐴𝑎 . After a measurement of 𝐴, the post-

measurement state is

Φ𝐴 (𝜌) =
∑

𝑎

𝐴𝑎𝜌𝐴𝑎. (2.54)

The entropy satisfies:

𝑆 (Φ𝐴 (𝜌)) ≥ 𝑆 (𝜌), (2.55)

with equality holding iff the measurement does not disturb the state, i.e., Φ𝐴 (𝜌) = 𝜌 .

This property reflects the irreversibility of information loss during measurement.
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5. Symmetry of entanglement for pure states: For a pure composite system 𝜌AB , the entropies
of the reduced states are equal:

𝑆 (𝜌A) = 𝑆 (𝜌B). (2.56)

This reflects the symmetry of entanglement in a pure bipartite system, where the entropy

of one subsystem equals the entropy of the other.

6. Additivity of entropy for product states: The entropy of a product state, 𝜌 ⊗ 𝜎 , is additive:

𝑆 (𝜌 ⊗ 𝜎) = 𝑆 (𝜌) + 𝑆 (𝜎). (2.57)

This property holds because the eigenvalues of the composite state are the products of

the eigenvalues of the individual states, and the logarithm of a product separates into a

sum.

7. Schumacher’s decomposition rule: For states 𝜌𝑖 supported on orthogonal subspaces with

associated probabilities 𝑝𝑖 , the entropy satisfies:

𝑆

(∑
𝑖

𝑝𝑖𝜌𝑖

)
= 𝐻 (𝑝𝑖) +

∑
𝑖

𝑝𝑖𝑆 (𝜌𝑖). (2.58)

Here, 𝐻 (𝑝𝑖) is the classical Shannon entropy of the probabilities 𝑝𝑖 , representing the

uncertainty in choosing the subspace, while
∑

𝑖 𝑝𝑖𝑆 (𝜌𝑖) captures the average quantum
uncertainty within each subspace.

8. Joint entropy theorem: For orthogonal states |𝑖〉 in partition A, density operators 𝜌𝑖 in

partition B, and probabilities 𝑝𝑖 , the joint entropy satisfies:

𝑆

(∑
𝑖

𝑝𝑖 |𝑖〉 〈𝑖 | ⊗ 𝜌𝑖

)
= 𝐻 (𝑝𝑖) +

∑
𝑖

𝑝𝑖𝑆 (𝜌𝑖). (2.59)

This theorem generalizes the previous property to the case of a composite system, where

A and B jointly contribute to the total entropy.

9. Concavity of entropy: The entropy of a mixture of states 𝜌𝑖 is greater than or equal to the

weighted average entropy of the individual states:

𝑆

(∑
𝑖

𝑝𝑖𝜌𝑖

)
≥

∑
𝑖

𝑝𝑖𝑆 (𝜌𝑖). (2.60)

This property highlights the fact that mixing increases uncertainty. Equality holds iff

the states 𝜌𝑖 are identical.

10. Subadditivity: For a bipartite quantum state 𝜌AB , the entropy satisfies:

𝑆 (𝜌AB) ≤ 𝑆 (𝜌A) + 𝑆 (𝜌B). (2.61)

Equality holds iff 𝜌AB = 𝜌A ⊗ 𝜌B , meaning there is no correlation (quantum or classical)

between the two partitions.
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11. Araki–Lieb inequality: The entropy of a bipartite quantum system is bounded below by

the absolute difference of the entropies of its subsystems:

𝑆 (𝜌AB) ≥ |𝑆 (𝜌A) − 𝑆 (𝜌B)|. (2.62)

It implies that information about one subsystem places constraints on the entropy of the

other, reflecting the interdependence of the subsystems.

12. Strong subadditivity: For a tripartite quantum state 𝜌ABC , the entropy satisfies:

𝑆 (𝜌ABC) ≤ 𝑆 (𝜌AB) + 𝑆 (𝜌BC) − 𝑆 (𝜌B). (2.63)

This shows that the total uncertainty cannot exceed the combined contributions of

AB and BC after accounting for the “shared” contribution of B. The term 𝑆 (𝜌B) pre-
vents double-counting the uncertainty associated with B, ensuring that any correlations

spanning ABC are consistent with the overlapping pairs AB and BC.

As with the Shannon entropy, we can define an entropy-like measure to quantify the

“distance” between two density operators. The quantum analogue of classical relative entropy

is the quantum relative entropy. For density operators 𝜌 and 𝜎 , it is defined as:

𝑆 (𝜌 ‖𝜎) ≔ Tr (𝜌 log 𝜌) − Tr (𝜌 log𝜎). (2.64)

This quantity is finite as long as the support of 𝜌 lies within the support of 𝜎 . If there

is a non-trivial intersection between the kernel of 𝜎 and the support of 𝜌 , the quantum relative

entropy is defined to be +∞.

The quantum relative entropy is non-negative, a result known as Klein’s inequality:

𝑆 (𝜌 ‖𝜎) ≥ 0, (2.65)

with equality holding iff 𝜌 = 𝜎 . Note that the quantum relative entropy is not symmetric,

meaning 𝑆 (𝜌 ‖𝜎) ≠ 𝑆 (𝜎 ‖𝜌) in general.

We can now highlight a key difference between the Shannon entropy and the von

Neumann entropy. For classical random variables 𝑋 and 𝑌 , the joint entropy always satisfies

𝐻 (𝑋,𝑌 ) ≥ 𝐻 (𝑋 ). However, this does not generally hold for the von Neumann entropy in

quantum systems. In particular, 𝑆 (𝜌AB) is not necessarily greater than or equal to 𝑆 (𝜌A).
To illustrate this, consider a bipartite system with partitions A and B, described by

the pure state:

𝜌AB = |𝜓 〉 〈𝜓 | , where |𝜓 〉 = 1√
2
( |00〉 + |11〉). (2.66)

Since the state is pure, the von Neumann entropy of the composite system is zero: 𝑆 (𝜌AB) = 0,

indicating maximal knowledge of the system. However, if we trace out partition B, the reduced

state of A becomes:

𝜌A = Tr B (𝜌AB) = 1

2
|0〉 〈0| + 1

2
|1〉 〈1| , (2.67)
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which is a mixed state with von Neumann entropy 𝑆 (𝜌A) = log 2. This discrepancy arises from

the entanglement between A and B in the state 𝜌AB . But what exactly is entanglement?

2.3.3 Entanglement

For bipartite pure states, entanglement is present in any system whose state vector

cannot be expressed as a product state, |𝜓 〉 ≠ |𝜓A〉 ⊗ |𝜓B〉. States that can be written in this

form are separable, meaning the partitions are independent. Entanglement represents a form

of correlation that arises when two subsystems are connected in such a way that they cannot

be treated independently, often resulting from interactions between the subsystems.

To illustrate the concept, we first consider classical correlations. Imagine someone

buys a pair of socks, where the only available colors are blue and red. This person gives one sock

to Alice and the other to Bob, her friend. Later, Alice travels to Saturn and, at a predetermined

time, opens her bag. If she finds a red sock, she instantly knows that Bob’s sock must also be

red. This is because the pair of socks is correlated: the color of one sock determines the color

of the other. Such classical correlations arise from the way the socks were paired and exist

regardless of the physical distance between Alice and Bob.

Now, suppose a similar experiment is performed, but instead of socks, Alice and Bob

share two spin-1/2 particles prepared in a state with total angular momentum zero. This

bipartite state can be represented as:

|𝜓 〉 = 1√
2
( |01〉 − |10〉), (2.68)

where |01〉 and |10〉 denote the spins of Alice’s and Bob’s particles, respectively. Both particles

are in superposition states.

At a predetermined time, Alice measures her particle in the basis {|0〉 , |1〉}. Upon
measurement, the wave function of the entire system collapses: if Alice observes spin 0, the

system collapses to |01〉, and Bob’s particle is in the state |1〉. If Alice observes spin 1, the

system collapses to |10〉, and Bob’s particle is in the state |0〉.
While this resembles the classical correlation described earlier, there is a critical

difference: in the quantum case, Bob’s particle was also in a superposition state before Alice’s

measurement. Alice’s measurement collapses the entire wave function, altering the state of the

system and, consequently, the probabilistic predictions for Bob’s particle. This phenomenon

arises because the two particles share entanglement, as the state |𝜓 〉 cannot be expressed as a

product state.

This intriguing feature of quantum mechanics was first brought to prominence in the

seminal 1935 paper by Einstein, Podolsky, and Rosen (EPR), titled Can Quantum-Mechanical

Description of Physical Reality Be Considered Complete? [6]. In this work, the authors highlighted

what they viewed as the absurdity of entanglement, famously dubbing it “spooky action at
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a distance”. Their critique stemmed from their tacit assumption of locality throughout their

reasoning.

Locality, in this context, refers to the principle that entities in a physical theory can

influence only their immediate surroundings, with such influence propagating at most at the

speed of light in a vacuum, 𝑐 . This requirement forbids causal relationships between events

that are spacelike separated. The EPR argument proposed that if Alice’s measurement cannot

causally affect Bob’s particle, then quantum mechanics must be incomplete. In their view, there

must exist elements of physical reality not accounted for in the theory. These missing elements,

often called hidden variables, would allow for a more complete theory that restores locality.

John Bell demonstrated that the EPR proposal of supplementing quantum mechanics

with hidden local variables is not viable. More precisely, Bell proved in his seminal 1964

paper, On the Einstein Podolsky Rosen Paradox [10], that the predictions of quantum mechanics

are fundamentally incompatible with any hidden local variable theory. Bell’s theorem has

since been supported by numerous experimental tests employing a wide variety of strategies,

including [11–15, 58, 59].

In our example, Alice’s measurement caused Bob’s state to conform to it. As a result,

the probabilities assigned to Bob’s measurement outcomes may change depending on Alice’s

measurement. Thus, the probabilities of Alice’s outcomes 𝑎 from measuring 𝐴 cannot generally

be considered independent of Bob’s outcomes 𝑏 from measuring 𝐵. Mathematically:

𝑝 (𝑎, 𝑏 |𝐴, 𝐵) ≠ 𝑝 (𝑎 |𝐴)𝑝 (𝑏 |𝐵), (2.69)

since, for independent probabilities, the joint probability would factorize.

Bell hypothesized that by introducing general local hidden variables 𝜆, representing

underlying local physical quantities, it might be possible to describe the statistical profiles of

Alice’s and Bob’s measurements independently. This is expressed as:

𝑝 (𝑎, 𝑏 |𝐴, 𝐵, 𝜆) =
∫

𝜆

𝑝 (𝜆)𝑝 (𝑎 |𝐴, 𝜆)𝑝 (𝑏 |𝐵, 𝜆) 𝑑𝜆. (2.70)

However, Bell demonstrated that the predictions of quantum mechanics are incompatible with

this expression. Specifically, quantum states with entanglement violate this requirement, while

product states satisfy it. For product states:

𝑝 (𝑎, 𝑏 |𝐴, 𝐵) = Tr
((𝐴𝑎 ⊗ 𝐵𝑏) |Ψ〉 〈Ψ|

)
= 𝑝 (𝑎 |𝐴)𝑝 (𝑏 |𝐵), (2.71)

where |Ψ〉 is a product state.
Most empirical validations of Bell’s theorem do not follow Bell’s original argument

directly but instead rely on a result derived from it: the CHSH inequality. This inequality,

proposed in 1969 by John Clauser, Michael Horne, Abner Shimony, and Richard Holt [60], states

that if the predictions of a theory for a pure state are compatible with Eq. (2.70), then:

𝑆 = 〈𝑎0𝑏0〉 + 〈𝑎0𝑏1〉 + 〈𝑎1𝑏0〉 − 〈𝑎1𝑏1〉 ≤ 2, (2.72)
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where 〈𝑎𝑖𝑏 𝑗 〉 represents the expectation value of the joint outcomes for measurements 𝑎𝑖 and

𝑏 𝑗 on the subsystems.

For a pair of maximally entangled particles, the CHSH parameter reaches 𝑆 = 2
√
2,

violating the inequality. Such states exhibit Bell nonlocality, a distinct quantum resource. Various

methodologies have been developed to quantify Bell nonlocality for pure and mixed states [61–

69]. This remains a complex topic, as different quantification methods often yield varying

results. Additionally, puzzling features arise, such as the fact that maximally entangled states

do not necessarily exhibit maximal Bell nonlocality [70–73]. Returning to entanglement itself,

we should first clarify what is meant by maximally entangled states.

A clear criterion exists for diagnosing entanglement in pure bipartite states, even

though determining whether a state can be written as a product state is generally nontrivial.

When this task is challenging, various methodologies can quantify the amount of entanglement

in a state using entropy-based measures. These measures must satisfy specific criteria, as

outlined in [74]. One widely used measure is:

• Entropy of entanglement: The entanglement between partitions A and B for a pure

bipartite state 𝜌 inH = HA ⊗ HB is given by:

𝐸 (𝜌) = 𝑆 (𝜌A), (2.73)

where 𝜌A = Tr B (𝜌) and, for pure states, 𝑆 (𝜌A) = 𝑆 (𝜌B).

For a maximally entangled state, tracing out one partition leaves the other in a com-

pletely mixed state. In this case, 𝑆 (𝜌A) (or equivalently 𝑆 (𝜌B)) is maximal, indicating maximal

entanglement.

Another particularly useful tool for analyzing the entanglement properties of a state

is the Schmidt decomposition. For any bipartite state |𝜓 〉, there exist orthonormal states {|𝑖A〉}
and {|𝑖B〉} for the partitions A and B such that:

|𝜓 〉 =
∑

𝑖

√
𝜆𝑖 |𝑖A〉 |𝑖B〉 , (2.74)

where {𝜆𝑖} are real, non-negative coefficients satisfying
∑

𝑖 𝜆𝑖 = 1.

The number of nonzero coefficients 𝜆𝑖 is the Schmidt rank (or Schmidt number) of the

state. A state is separable, i.e., unentangled, if and only if the Schmidt rank is 1. In this case,

𝜆1 = 1, and the state can be written as a product state. A state is entangled if the Schmidt rank

is greater than 1. The state is maximally entangled if all the 𝜆𝑖 are equal.

For example, the following states, with Schmidt rank 2, are maximally entangled:

|Φ±〉 = 1√
2
( |00〉 ± |11〉), |Ψ±〉 = 1√

2
( |01〉 ± |10〉). (2.75)
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These states, known as Bell states, form a maximally entangled basis for two qubits.

Entanglement research also extends to mixed states, but this case is significantly more

complex. A straightforward diagnostic criterion exists, again through negation: a bipartite

mixed state is not entangled iff it can be written as a separable state. Separable states are those

that admit a convex sum representation of the form:

𝜌𝑠𝑒𝑝 =

∑
𝑖

𝑝𝑖𝜌
A
𝑖 ⊗ 𝜌B

𝑖 , (2.76)

where {𝜌A
𝑖 } and {𝜌B

𝑖 } are local states in partitionsA andB, and {𝑝𝑖} are probabilities satisfying∑
𝑖 𝑝𝑖 = 1.

A key subtlety arises here: unlike in the pure state case, separable mixed states can

still exhibit correlations between measurements in A and B. These are classical correlations,

akin to the sock-pair example discussed earlier. For such states, the outcomes of measurements

on A and B may be correlated such that:

Tr (𝐴 ⊗ 𝐵𝜌𝑠𝑒𝑝) ≠ Tr (𝐴 ⊗ �B𝜌𝑠𝑒𝑝)Tr (�A ⊗ 𝐵𝜌𝑠𝑒𝑝), (2.77)

where 𝐴 and 𝐵 are observables on A and B, respectively.

However, even with such correlations, separable states respect the locality condition

expressed in Eq. (2.70). If hidden variables are introduced to account for subjective ignorance,

these correlations can be explained without invoking entanglement.

This brings us to another subtlety. For the requirement in Eq. (2.70) to be violated, the

state cannot be of the form 𝜌𝑠𝑒𝑝 . Thus, Bell nonlocal mixed states are necessarily entangled.

However, as shown in [75], the converse is not true: there exist entangled states that are Bell

local. This implies that the set of entangled states is a strict superset of the set of Bell nonlocal

states.

Quantifying entanglement in mixed states is also a challenging task, with current

tools often limited to specific classes of states, particularly in low-dimensional systems. For

higher-dimensional states, practical quantifiers remain largely unavailable. In simpler cases,

such as bipartite two-qubit systems, measures like concurrence provide a useful tool. For a

bipartite two-qubit state 𝜌 , the concurrence is defined as:

• Concurrence:

𝐶 (𝜌) = max{0,
√

𝜆1 −
√

𝜆2 −
√

𝜆3 −
√

𝜆4}, (2.78)

where 𝜆𝑖 are the eigenvalues, in decreasing order, of the matrix 𝜌𝜌 , with:

𝜌 = (𝜎𝑦 ⊗ 𝜎𝑦)𝜌∗(𝜎𝑦 ⊗ 𝜎𝑦), (2.79)

𝜌∗ is the complex conjugate of 𝜌 , and 𝜎𝑦 is the Pauli 𝑦 operator.
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With the ability to diagnose and quantify entanglement for pure and mixed states, it is

natural to consider how entanglement may arise or behave in the dynamics of an experimental

setting. Suppose our experimentalist prepares a bipartite system with partitions A and B,

initially described by the product state:

|Ψ〉 = |𝜓A〉 ⊗ |𝜓B〉 , (2.80)

where |𝜓A〉 and |𝜓B〉 are the quantum states of partitions A and B, respectively. If these

partitions are allowed to interact, their evolution, described by Eq. (2.13), may, in general, result

in a final state that exhibits entanglement.

Conversely, if the partitions of the bipartite state do not interact—either directly or

indirectly—and only local operations are performed on one of the partitions, such as measure-

ments, appending ancillary systems, or applying quantum channels, entanglement cannot be

generated. Similarly, if the experimentalist responsible for partitionA transmits information to

the experimentalist managing partition B through a classical medium, such as a text message

sent via a classical communication channel, no new entanglement will arise. In summary,

entanglement cannot be created through LOCC (local operations and classical communication).

2.3.4 Qubit

Returning to the origins of information theory—quantifying the resources required

to store information—we have explored the allocation of bits for messages characterized by

specific information entropy. In quantum systems, the carrier of information must also be

characterized: this is the qubit.

A qubit encodes information in any two-level quantum system, such as a spin-1/2
particle or the orthogonal polarizations of a photon. It is represented by a state vector in a

two-dimensional Hilbert space spanned by two orthonormal basis vectors, |0〉 and |1〉:

|𝜓 〉 = 𝑎 |0〉 + 𝑏 |1〉 , 𝑎, 𝑏 ∈ C, |𝑎 |2 + |𝑏 |2 = 1. (2.81)

Unlike a classical bit, which represents information probabilistically as 0 or 1 (e.g.,

𝜌classical = diag(𝑝, 1−𝑝) for probabilities 𝑝 and 1−𝑝), a qubit can exist in coherent superpositions

of these states. This coherence is reflected in the off-diagonal elements of the qubit’s density

matrix:

𝜌pure = |𝜓 〉 〈𝜓 | =
[
|𝑎 |2 𝑎𝑏∗

𝑎∗𝑏 |𝑏 |2

]
. (2.82)

A common parametrization of |𝜓 〉 employs angles 𝜃 ∈ [0, 2𝜋) and 𝜙 ∈ [0, 𝜋], rewriting
it as:

|𝜓 〉 = cos
𝜙

2
|0〉 + sin

𝜙

2
𝑒𝑖𝜃 |1〉 . (2.83)

This allows the qubit to be visualized geometrically on the Bloch sphere (see Fig. 2).
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Figure 2 – Bloch sphere. |𝜓 〉 represents the qubit according to Eq. (2.83), corresponding to a point in
the sphere with azimuthal and polar angles 𝜃 and 𝜙 . Original image at [32]

.

The Bloch sphere representation can also be introduced using the density operator

formalism. A qubit’s density operator is given by

𝜌 =
1

2
(� + �𝑟 · �𝜎) , (2.84)

where � is the 2 × 2 identity matrix, �𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) is the vector of Pauli matrices, and

�𝑟 = (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) is the Bloch vector. The Bloch vector �𝑟 satisfies ‖�𝑟 ‖ ≤ 1, with ‖�𝑟 ‖ = 1 for pure

states and ‖�𝑟 ‖ < 1 for mixed states.

In this representation, pure states correspond to points on the sphere’s surface, with

�𝑟 indicating the direction of the state on the sphere. Mixed states are represented by points

inside the sphere, with the maximally mixed state, 𝜌 = �/2, located at the origin �𝑟 = 0.

Since any𝑑-dimensional quantum system, where𝑑 = 2𝑛 , can be represented by𝑛 qubits,

the qubit serves as the fundamental unit of quantum information theory and a cornerstone of

quantum mechanics. For instance, a single qubit suffices to describe the state of a two-level

system, such as the spin-up and spin-down states of an electron or the horizontal and vertical

polarizations of a photon. Similarly, two qubits can describe a four-level system, such as the

combined spin states of two entangled electrons: |00〉, |01〉, |10〉, and |11〉.
Although a three-level system (a qutrit) cannot be represented by a single qubit due

to the dimensional mismatch, it can be embedded into the Hilbert space of two qubits. For

example, the three basis states |0〉, |1〉, and |2〉 of the qutrit can be mapped to three of the four

available two-qubit states: |00〉, |01〉, and |10〉. The fourth two-qubit state, |11〉, remains unused

in this mapping. While this representation is redundant, it allows the qutrit to be modeled

within a framework where qubits are the fundamental unit.

Having moved from the general framework of quantum mechanics to its most funda-

mental symbolic unit, we now turn to deeper questions surrounding the nature of measurement,
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classicality, and, more immediately, realism.
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3 REALISM

Scientific knowledge is typically assumed to be about the nature of the world, going

far beyond the mere appearance of things. It tells us about what can be apprehended directly

by our senses, but it also tells us about subatomic particles or how light bends in gravitational

fields. It tells us about what is directly influencing us, but it also tells us about how nature

was way before and beyond human existence. To say that science gives us knowledge not only

about what is directly observed but also about what is lying behind the appearances is, in broad

terms, what scientific realism is about.

If we try to be really cautious about this idea, we will soon be embarking on an old and

complicated philosophical enterprise. Trying to specify what we really mean by “world” touches

complicated topics in ontology. If we discuss in detail the way by which we may acquire data

from the world and how to construct knowledge from those data, we will discuss epistemology.

We can, however, evocate a concept that synthesizes some relevant aspects of these questions

in the sphere of Philosophy of Science. Alan Chalmers calls it global anti-realism in [76].

Philosophy of Language inherited us a fascinating problem: there is a circular relation

of meaning and experience [77]. A description of the world, done through language, can only

have meaning if it finds reflection in experience. Conversely, it is not possible to abstract any

particular experience of the world independently of the way it is described through language.

The perception and description of the world are then inextricably linked. This precludes any

direct contact with reality or communication of it independently of the language by which we

formulate our physical theories. A radical consideration of this idea is the global anti-realist

stance.

Chalmers argues that no serious contemporary philosopher holds the view that we

can come face-to-face with reality. However, this fact does not condemn science as a futile

endeavor. Neither could we deny the practicality of it. In fact, science is absolutely pragmatic.

So should we be when dealing with it, including when concepts as abstract as realism are

brought to the discussion.

Investigating a metaphysical concept within the confines of a physical theory demands

proposing a definition for it in terms of the theory’s structure. Subsequently, the consistency

of the definition with the predictions made by the theory is analyzed. We start with the earliest

definition of realism for quantum mechanics, introduce BA’s criterion, and then we generalize

it to a definition that may be incorporated and thus investigated within any physical theory.



36

3.1 BILOBRAN AND ANGELO’S CRITERION OF REALISM

Physics’ seminal definition of realism was published in 1935 by EPR [9], referencing

the concept of

• Element of reality: “If, without in any way disturbing a system, we can predict with

certainty (i.e., with probability equal to unity) the value of a physical quantity, then there

exists an element of reality corresponding to that quantity.”

This concept incorporates the assumption that the role of a physical theory is to describe an

objective reality.

Physical theories represent physical states through physical properties, conceptualized

bymeasurement protocols. EPR argued that a successful physical theory should correctly predict

the statistics described by the measurements (correctness) and find correspondence between

every physical property defined by the theory and the elements of reality (completeness).

This correspondence gives the backbone of their criterion of realism, described by a

Boolean variable that is either true or false, that discriminates a physical property real or not

depending on its correspondence to its element of reality. The truth value of this correspondence

is determined by the conjunction of two propositions: that it is possible to predict with certainty

the outcome of a measurement of this physical property, and that it is possible to perform a

maximally informative measurement of this physical property without disturbing the system.

For example, consider that a spin 1/2 particle was prepared by a measurement of the

observable 𝑆𝑧 which yielded the outcome ℏ/2. The post-measurement vector state is |𝜓 〉 = |𝑆𝑧 ;+〉.
Once the theory predicts that any further measurement of 𝑆𝑧 would return the same outcome,

ℏ/2, with certainty and without changing the vector state of the system, EPR’s criterion states

that there exists an element of reality corresponding to 𝑆𝑧 . If, on the other hand, we chose to

measure 𝑆𝑥 , in this basis the state is written as |𝜓 〉 = 1√
2
( |𝑆𝑥 ;−〉 + |𝑆𝑥 ;+〉) and we cannot predict

the outcome of the measurement with certainty, nor render the state undisturbed after the

measurement. Therefore, no element of reality is assigned to 𝑆𝑥 for this system.

EPR’s criterion was devised to investigate the first hints of nonclassical phenomena,

specifically nonlocality, predicted by state vector quantum mechanics. Indeed, for nonlocality

to manifest, superposition is mandatory, and the criterion is sensible to that. But once it was

defined for state vector quantum mechanics, its direct application on mixed states would lead

to divisive accounts.

Consider a statistical mixture between two states: |𝑆𝑧 ;+〉 and |𝑆𝑧 ;−〉. That is, a mixed

state 𝜌 = 𝑝1 |𝑆𝑧 ;+〉 〈𝑆𝑧 ;+| + 𝑝2 |𝑆𝑧 ;−〉 〈𝑆𝑧 ;−| with 𝑝1 ≠ 1, 𝑝2 ≠ 1 and 𝑝1 + 𝑝2 = 1. One could

argue that because it is impossible to predict the result of a projective measurement of 𝑆𝑧 , there

is no corresponding element of reality to it. But one could also say that the corresponding

elements of reality are there, they are just obscured by subjective ignorance.
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After Bell’s work showing the incompatibility of the predictions of quantummechanics

with the assumption of local hidden variables [10], realism can be understood not just as a piece

of argument to unravel nonclassical properties of the theory, but as a nonclassical feature of

the theory itself. The quantum mechanics interpretability problem derives from its nonclassical

aspects and how they relate. A clear definition of realism adds another piece to the puzzle.

However, EPR’s criterion indefiniteness for mixed states, makes it unfit to explore nonclassical

aspects of density operator quantum mechanics, like purification.

Bilobran and Angelo’s realism criterion [31] fills this gap, generalizing EPR’s criterion,

as long as the following premise is accepted: if a projective measurement of a discrete spectrum

observable 𝐴 =
∑

𝑎 𝑎𝐴𝑎 is performed over a quantum state, there is an element of reality

corresponding to 𝐴 even if the outcome of the measurement was not revealed.

The implementation of this rationale allows for a refinement on EPR’s criterion that

assesses the realism of an observable through a positive-valued real number, rooted on an

experimental protocol well defined for mixed states.

The experimental protocol defines a procedure in which one investigates whether a

preparation has already established realism for an observable 𝐴. To this end, a source prepares

two large sets of copies of the same physical state. Upon immediate subjecting of the first set

to quantum tomography, it is determined that the best description of each copy is given by

the density operator 𝜌 . The second set, on the other hand, prior to undergoing tomography,

has each of its copies intercepted by an agent that performs a projective measurement of

an observable 𝐴—which, by hypothesis, establishes its realism—whose outcome they make

inaccessible. For those copies, the description is Φ𝐴 (𝜌). This is illustrated in Figure 3.

For generality, we assume that each copy given by the source is bipartite, and the

nonselective (i.e unreavealed) measurement is performed over one of the partitions. The

intercepting action of the agent can be modeled by a completely positive trace-preserving map

we call “unrevealed measurement”, acting over a state 𝜌 like

Φ𝐴 (𝜌) ≔
∑

𝑎

(𝐴𝑎 ⊗ �B) 𝜌 (𝐴𝑎 ⊗ �B) =
∑

𝑎

𝑝𝑎𝐴𝑎 ⊗ 𝜌B|𝑎, (3.1)

where 𝑝𝑎 = Tr[(𝐴𝑎 ⊗ �B)𝜌], 𝜌B|𝑎 = TrA[(𝐴𝑎 ⊗ �B)𝜌]/𝑝𝑎 , and A and B the first and second

partitions of the system. The quantity 𝑝𝑎 corresponds to the probability of obtaining the result

𝑎 after measuring 𝐴 in partition A. The state 𝜌B|𝑎 gives the state system’s part B conditioned

on the outcome 𝑎.

Because the map Φ𝐴 determines a state of realism for 𝐴, the criterion determines: the

observable 𝐴 is real for the state 𝜌 iff :

𝜌 = Φ𝐴 (𝜌). (3.2)

Whenever this condition holds, 𝐴 was already real for 𝜌 a priori, meaning that Φ𝐴’s action

leaves the preparation undisturbed.
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Figure 3 – A source on the left prepares infinitely many copies of a quantum state, which are subse-
quently sent to a quantum tomography procedure. The tomography assigns the description
𝜌 to the state. On the right, the same source prepares identical copies of the quantum state,
but these are intercepted, and the observable 𝐴 is measured without revealing the measure-
ment outcome. The quantum tomography then assigns the description Φ𝐴 (𝜌) to these states.
Original figure in Ref. [32].

As an illustration, consider the subjection of the pure state 𝜌 = |𝑆𝑧 ;+〉 〈𝑆𝑧 ;+| to the

unrevealed measurement protocol of 𝑆𝑧 . The formalism predicts 𝜌 = Φ𝑆𝑧 (𝜌), accusing realism
of 𝑆𝑧 and thus agreeing with the EPR’s criterion. Now, for the mixed state 𝜌 = 𝑝1 |𝑆𝑧 ;+〉 〈𝑆𝑧 ;+| +
𝑝2 |𝑆𝑧 ;−〉 〈𝑆𝑧 ;−|, 𝜌 = Φ𝑆𝑧 (𝜌) follows as well, accusing the realism of 𝑆𝑧 . BA’s criterion thereby

conceives statistical mixtures of states of realism as a state of realism, extending EPR’ criterion.

It is also worthwhile to mention thatΦ𝐴 is a completely positive trace-preserving unital

map [31]. Complete positivity ensures its mapping of positive operators into positive operators

whose normalization is guaranteed by the trace-preserving property. Unitality implies that

Φ𝐴 (�/𝑑) = �/𝑑 , so that completely mixed states are mapped onto themselves.

Furthermore, by definition, if Φ𝐴 (𝜌) is a state of 𝐴-realism (i.e. 𝐴 is real for 𝜌), and

thus

Φ𝐴 (Φ𝐴 (𝜌)) = Φ𝐴 (𝜌), (3.3)

such thatΦ𝐴 is idempotent. This property is merely a consequence of the definition of projectors:

𝐴𝑎𝐴𝑎′ = 𝐴𝑎𝛿𝑎𝑎′ .

A particularly relevant insight about the quantity Φ𝐴 (𝜌) is given by its relation to the

Stinespring dilation theorem [78]. In short, the theorem states that any completely positive

trace-preserving map (CPTP) can be realized as a unitary transformation acting on a larger

Hilbert space followed by a partial trace. Mathematically,

Φ𝐴 (𝜌) = Tr E [𝑈 (𝜌 ⊗ |𝑒0〉 〈𝑒0 |)𝑈 †] . (3.4)
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𝑈 is an unitary map acting overH ⊗HE , withHE being an ancillary space, and |𝑒0〉 ∈ HE is a

vector in this space. This connection enables the interpretation of a nonselective measurement

as a process carried out by an environment E. Represented by the state |𝑒0〉 〈𝑒0 |, the environment

captures information about 𝜌 during a dynamic interaction and is subsequently discarded.

The deviation of this realism criterion is quantified by an entropic difference, comput-

ing the irrealism of 𝐴 for 𝜌 :

ℑ𝐴 (𝜌) ≔ 𝑆 (Φ𝐴 (𝜌)) − 𝑆 (𝜌). (3.5)

That is, BA’s criterion quantifies the irrealism (or realism, conversely), in terms of a real number.

An equivalent mathematical formulation is facilitated by the quantum relative entropy

(Eq. (2.64)):

ℑ𝐴 (𝜌) = 𝑆 (𝜌 | |Φ𝐴 (𝜌)), (3.6)

such that, together with Klein’s inequality (Eq. (2.65)), irrealism’s nonnegativity is guaranteed:

ℑ𝐴 (𝜌) ≥ 0, (3.7)

with equality holding iff 𝜌 = Φ𝐴 (𝜌). This excludes the possibility of negative irrealism. More-

over, the conjunction of (3.6) and the monotonicity of the relative entropy implies that ℑ𝐴 (𝜌)
does not increase under CPTP maps. Thus, subjecting a state 𝜌 to quantum channels cannot

increase the irrealism of an observable 𝐴. This is expressed by

ℑ𝐴 (𝜌) = 𝑆 (𝜌 | |Φ𝐴 (𝜌)) ≥ 𝑆 (C(𝜌) | |Φ𝐴 (C(𝜌))) = ℑ𝐴 (C(𝜌)), (3.8)

where C is a CPTP map.

It is noteworthy that, while for single-partite systems irreality reduces to a measure

of coherence, for bipartite systems the following decomposition holds:

ℑ𝐴 (𝜌) = ℑ𝐴 (𝜌A) + 𝐷𝐴 (𝜌), (3.9)

with 𝐷𝐴 (𝜌) ≔ 𝐼A:B (𝜌) − 𝐼A:B (Φ𝐴 (𝜌)) being called the nonminimized one-way quantum

discord. We should thus deem the degree of realism of 𝐴 sensible to both the coherence of the

reduced state 𝜌A , understood as local coherence, and the quantum correlations attributed to

measurements of 𝐴.

Realism’s responsiveness to quantum correlations suggests a connection with nonlo-

cality that is encapsulated by a quantifier called realism-based nonlocality, firstly introduced

in [34]. BA considered changes in the realism status of an observable 𝐴 acting on HA upon a

measurement of an observable 𝐵 acting onHB conducted in a remote location given a bipartite

state 𝜌 . For the context {𝐴, 𝐵, 𝜌}, they defined a contextual realism-based nonlocality as

𝜂𝐴𝐵 (𝜌) := ℑ𝐴 (𝜌) − ℑ𝐴 (Φ𝐵 (𝜌)). (3.10)
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This nonnegative quantity is symmetrical upon permutations 𝐴 � 𝐵, vanishes only for states

of realism for 𝐴 or 𝐵 and uncorrelated states 𝜌 = 𝜌A ⊗ 𝜌B . The context dependency is disposed

by defining

𝑁rb(𝜌) := max
𝐴,𝐵

𝜂𝐴𝐵 (𝜌), (3.11)

realism-based nonlocality. Also nonnegative, its zero conditions carry from its contextual

analogue, vanishing for uncorrelated states, and it is a nonanomalous measure of nonlocality,

discriminating maximally entangled states as maximally nonlocal states. Although reducing to

entanglement and Bell nonlocality for pure states, when considering mixed states this quantity

determines a quantumness measure that is responsive to features others are not, delineating a

strict superset of entangled and Bell nonlocal states.

Further relations between irrealism and quantumness are highlighted in [79] with

the authors investigating incompatibility. They define context incompatibility as a resource

for safety testing tasks of quantum channel communications. Given a context � ≔ {𝜌,𝐴, 𝐵},
context incompatibility is quantified by

ℐC ≔ 𝐼 (Φ𝐴 (𝜌)) − 𝐼 (Φ𝐵𝐴 (𝜌)) = ℑ𝐵 (Φ𝐴 (𝜌)), (3.12)

such that 𝐼 (𝜌) ≔ ln𝑑 − 𝑆 (𝜌) is the information of a state 𝜌 acting on a 𝑑-dimensional Hilbert

space, and Φ𝐵𝐴 (𝜌) = Φ𝐵 (Φ𝐴 (𝜌)). Vanishing for maximally mixed states, it is otherwise respon-

sive to the commutation relation between 𝐴 and 𝐵, vanishing if [𝐴, 𝐵] = 0 (∀𝜌). Considering
the case where 𝐴 and 𝐵 act on the same partition, the last term of (3.12) can be understood as

an assessment of 𝐵 coherence in a 𝐴-incoherent state Φ𝐴 (𝜌).
We believe that this exposition highlights the pervasiveness of the concept of realism

in quantum mechanics by showcasing its interconnectedness with the distinctive features of

the theory. To further expand our understanding of realism per se, we elevate it to a theory-

independent status. So, we briefly introduce a framework that facilitates this task, exposing the

minimal amount necessary of it for the follow-up discussion.

3.2 GENERALIZED PROBABILISTIC THEORIES

Physical theories are subject to the particularities of historical moments in physics.

These include previous knowledge accumulation, the purpose the field is serving, limitations

in technological development, what is deemed as an acceptable way of thinking, among others.

Those constraints impose at least some commonalities across every theory of such a period. One

research program dedicated to abstracting those commonalities into a general mathematical

framework is called generalized probabilistic theories (GPT).

GPT was a term crafted by Barret in 2007 [42], but its earliest ideas date back to 1947,

with Segal’s work [43]. The framework, which enables the characterization of the operational

aspects of any physical theory, currently has several different formulations.
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One possible construction of GPT employs category theory [80, 81] or, more specifically,

symmetric monoidal categories to develop GPT from process theories [82, 83]. Process theories

allow for a rigorous treatment of physical processes in terms of pictorial descriptions. This could

be seen as a “top-to-bottom” approach. A “bottom-to-top” construction is made by directly

defining the building blocks of arbitrary theories. This approach was taken by Plávala in [44],

the work on which this session is largely based.

The main so-called building blocks for this construction of GPT are given by three

objects: state spaces, effect algebras and channels. State spaces generalize the set of all possible

density operators in quantum mechanics. Effect algebras generalized the positive operator

valued measurements (POVM). Channels generalize quantum channels.

It is always possible to specify the state of a physical system in a physical theory by

means of a preparation procedure — a set of instructions to be followed at the beginning of

an experiment. Another way of characterizing a physical state, other than specifying how it

was prepared, is through the specification of its properties. The properties of a physical state

may be known by getting answers to questions which could be made about the system in the

experiment. And each question can be structured as a series of “yes/no” questions. If every

question about two states has equal answers, the preparation procedures leading to each state

are equivalent, and the states are the same.

The set of equivalent classes of preparation procedures is called state space. Axiomat-

ically, its description is given in terms of a set of points 𝒦 forming a subset of a real and

finite-dimensional vector space with Euclidian topology. In addition, this subset is convex,

bounded, and closed.

Each point in this vector space represents set of every possible instructions leading to

the preparation of an identical physical state. To incorporate states characterized by subjective

ignorance about the preparation, we require convexity. To clarify, suppose we are unsure if a

particular state was prepared according to a particular protocol, leading to the state 𝑥 or to

another protocol leading to 𝑦. The probabilities of having 𝑥 or 𝑦 are then given by 𝑝 and 1 − 𝑝 ,

respectively. For the state 𝑝𝑥 + (1 − 𝑝)𝑦 to be part of the state space, regardless of the value of

𝑝 , the space must be convex.

Just as many preparations can lead to the same state, thereby defining equivalent

preparations, many sets of questions can characterize states equivalently. We call this set of

equivalence classes of all possible “yes/no” questions effect algebra. This construction of state

space and effect algebra highlights their duality: a state can be characterized by its preparation

or its properties.

Formally, an effect algebra over a state space 𝒦, ℱ(𝒦), is simply the set of all affine

functions 𝑓 : 𝒦 → [0, 1]. Each function 𝑓 can be understood as a question about a physical

state in𝐾 whose answer goes from “yes” (1) to “no” (0) but could also be of a probabilistic nature.



42

For example, if we ask whether a coin is showing heads or tails, we may receive the answer

1/2 when there is lack of knowledge, indicating a probability of 50%. The affine requirement is

clarified if we consider a state of the kind 𝑝𝑥 + (1 − 𝑝)𝑦. Consistency with the conservation

of probability demands 𝑓 (𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑝 𝑓 (𝑥) + (1 − 𝑝) 𝑓 (𝑦). “Mixed” questions are also

permitted. For example: “is the coin state heads or tails with 50% of chance each?”.

The coin example can be illustrated by representing it in a bi-dimensional real Euclidian

vector space. The nature of this system, as conceived through classical physics, determines that

each possible state is mutually exclusive. We implement this by assigning orthogonal vectors

to each pure state. One possible construction is to assign 𝐻 (heads) with the vector (1, 0) and𝑇

(tails) with (0, 1). The state space is defined by the convex hull of these points: it determines a

1-simplex, a line segment whose extremities are (1, 0) and (0, 1).
The effect algebra can be represented in the same space. We can assign to (1, 0)

the equivalent questions to “is it 𝐻?” and proceed similarly to the corresponding equivalent

questions for 𝑇 . We also implement the “null” and “identity” questions: the former always

returns “no” and the latter always returns “yes”. Respectively, they can be put in (0, 0) and
(1, 1). We end up with a square representing the effect space.

It is also possible to append a list of instructions at the end of a preparation or,

equivalently, to prepend it at the beginning of a “yes/no” question. By doing this, we are able

to transform the state already inside the experimental setting. This is the rationale for channel.

A channel 𝒞 is simply an affine map such that, for two states spaces 𝒦1 and 𝒦2 we have

𝒞 : 𝒦1 → 𝒦2. For the coin, an example of a channel is the operation of flipping the coin. It

maps the states (1, 0) → (0, 1) and (0, 1) → (1, 0).
This formalism allows for the conception of realism in an arbitrary theory context.

3.3 THEORY-INDEPENDENT REALISM

In a theory where a physical property is real — possessing a definite value independent

of observation —, a measurement simply serves to disclose the pre-existing element of reality,

without affecting it. If the result of a measurement is lost or remains inaccessible, the state of

knowledge remains unchanged from before the measurement. Therefore, if the outcome of

that measurement is inaccessible, the measurement is innocuous: it neither disturbs the system

nor conveys information about it. This principle forms the foundation of the criterion we are

about to introduce.

To apply this principle, we consider a generic state 𝜖 within a state space 𝒦 of

dimension 𝑑 . Physical properties X = {𝑥𝑖}𝑑𝑖=1 and Y = {𝑦𝑗 }𝑑𝑗=1 are defined by their set of

possible outcomes. In terms of effects, each possible outcome is understood by the relation

𝑓𝑥𝑖 (𝜖) = 𝑝𝜖 (𝑥𝑖).
We require, as the criterion of realism, that the probabilities assigned to any outcome
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𝑥𝑖 resulting from the measurement of any property X on a state 𝜖 must remain unchanged

when an unrevealed measurement of Y was conducted beforehand. Explicitly, we formulate

the core of this chapter by:

Criterion of realism. A physical property Y is real for a state 𝜖 if and only if

𝑝𝜖 (𝑥𝑖) = 𝑝ΦY (𝜖) (𝑥𝑖)
(
∀X = {𝑥𝑖}𝑑𝑖=1

)
. (3.13)

The subscript ΦY(𝜖) appearing in the right-hand term of Eq. (3.13) denotes the state

𝜖 after undergoing an unrevealed measurement of Y. This term is represented in terms of

conditional probabilities as follows:

𝑝ΦY (𝜖) (𝑥𝑖) ≔
∑

𝑗

𝑝𝜖 (𝑥𝑖 |𝑦𝑗 ) 𝑝𝜖 (𝑦𝑗 ) . (3.14)

It is important to note that, depending on the particularities of a theory, knowing

𝑦𝑗 may change the state 𝜖 . The conditional probability notation is meant to indicate that 𝜖

represents the original state prior to the information obtained through a precise measurement

of Y.

Criterion (3.13) does not require every physical state 𝜖 to satisfy it. When all states in

a given physical theory comply with this criterion, the theory is classified as realist. If only a

subset of states 𝜖 satisfies the criterion, those states are referred to as Y-realist.

By presupposing that, when consideringY-realist states, joint probability distributions

𝑝 (𝑥𝑖,𝑦𝑗 ) exist for all X, our criterion is seen through a perspective that resonates with Fine’s

approach to determinism [17]. This assumption implies that 𝑝 (𝑥𝑖,𝑦𝑗 ) is well-defined irrespective
of the order in whichX andY are measured. If the standard definition of conditional probability

is also valid, we can express the joint probability as

𝑝 (𝑥𝑖,𝑦𝑗 ) = 𝑝𝜖 (𝑥𝑖 |𝑦𝑗 ) 𝑝𝜖 (𝑦𝑗 ) = 𝑝𝜖 (𝑦𝑗 |𝑥𝑖) 𝑝𝜖 (𝑥𝑖), (3.15)

Bayes’ rule. Given that the conditional probabilities satisfy
∑

𝑗 𝑝𝜖 (𝑦𝑗 |𝑥𝑖) = 1, we plug (3.15) into

definition (3.14) and retrieve the realism criterion:

𝑝ΦY (𝜖) (𝑥𝑖) ≔
∑

𝑗

𝑝𝜖 (𝑥𝑖 |𝑦𝑗 ) 𝑝𝜖 (𝑦𝑗 )

=

∑
𝑗

𝑝𝜖 (𝑦𝑗 |𝑥𝑖) 𝑝𝜖 (𝑥𝑖)

= 𝑝𝜖 (𝑥𝑖). (3.16)

Let 𝒞 denote the state space containing generic states 𝜖 , and let 𝒞Y represent the

subset of Y-realist states. While 𝒞 is convex by construction, it remains to be shown that 𝒞Y
also possesses this property. Convexity of 𝒞Y can be established by proving that any convex

combination of two Y-realist states also belongs to 𝒞Y .
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Consider a one-parameter state 𝜖′
𝜆
= (1 − 𝜆)𝜖′1 + 𝜆𝜖′2, where 𝜆 ∈ [0, 1] and 𝜖′1, 𝜖

′
2 ∈ 𝒞Y .

To show that 𝜖′
𝜆
∈ 𝒞Y , suppose a binary random variable Λ with probabilities (1 − 𝜆) and 𝜆.

Depending on the outcome of Λ, a rule is applied such that the observable X is measured either

in 𝜖′1 or 𝜖′2. The resulting probabilistic profile for this scenario is expressed as

𝑝𝜖′
𝜆
(𝑥𝑖) = 𝑝 (1−𝜆)𝜖′1+𝜆𝜖′2 (𝑥𝑖). (3.17)

Since 𝜖′1 and 𝜖′2 are Y-realist states, we can write:

𝑝 (1−𝜆)𝜖′1+𝜆𝜖′2 (𝑥𝑖) = 𝑝 (1−𝜆)ΦY (𝜖′1)+𝜆ΦY (𝜖′2) (𝑥𝑖). (3.18)

The right-hand side of this equation corresponds to the preparation and mixing of two ensem-

bles, one of 𝜖′1 and the other of 𝜖′2, with relative populations (1 − 𝜆) and 𝜆, respectively. In this

process, Y is measured first, and X is measured second on a randomly selected state from the

mixed ensemble 𝜖′
𝜆
. Thus, we have:

𝑝 (1−𝜆)ΦY (𝜖′1)+𝜆ΦY (𝜖′2) (𝑥𝑖) = 𝑝ΦY (𝜖′
𝜆
) (𝑥𝑖). (3.19)

This final equality reflects the fact that Φ is an affine map, ensuring that the mapping

preserves convex combinations. Connecting this result with the previous equations completes

the proof that 𝜖′
𝜆
∈ 𝒞Y , establishing the convexity of 𝒞Y .

Classical mechanics provides the most straightforward example of a realist theory. In

this case, the state space 𝒞 corresponds to a 2𝑛-dimensional phase space, where 𝑛 represents

the number of dimensions for position and momentum. A state 𝜖 within this space is a single

point, fully specifying the configuration of a physical system. Realism in this framework is

evident, as the set of Y-realist states coincides with the entire phase space, meaning 𝒞 = 𝒞Y
for any observable Y.

This conclusion remains unchanged in classical statistical mechanics, where classical

mechanics is extended to incorporate subjective uncertainties and governed by Liouville’s

equation. For any generalized coordinate 𝑞𝑖 and its conjugate momentum 𝜋𝑗 , it is possible to

define a joint probability distribution P(𝑞𝑖, 𝜋𝑗 ) 𝑑𝑞𝑖𝑑𝜋𝑗 . As outlined earlier, this joint probability

satisfies the realism criterion given in Eq. (3.13), further reinforcing the compatibility of classical

statistical mechanics with realist principles.

In the framework of quantum mechanics, the expressions for the left-hand and right-

hand sides of the realism criterion in Eq. (3.13) translate into:

𝑝𝜖 (𝑥𝑖)
QM−−→ Tr [𝑋𝑖𝜌], (3.20)

𝑝ΦY (𝜖) (𝑥𝑖)
QM−−→ Tr [𝑋𝑖ΦY(𝜌)], (3.21)

where 𝜌 is the density operator representing the state 𝜖 , and 𝑋 =
∑

𝑖 𝑥𝑖𝑋𝑖 is the observable

associated with the physical property X. Here, 𝑋𝑖 are the projectors corresponding to the

measurement outcomes 𝑥𝑖 , and ΦY is defined as in Eq. (3.1).
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Substituting these expressions into Eq. (3.13), the criterion becomes:

Tr [𝑋𝑖𝜌] = Tr [𝑋𝑖ΦY(𝜌)] . (3.22)

Using the linearity of the trace, this equation can be rewritten as

Tr [𝑋𝑖ΦY(𝜌)] − Tr [𝑋𝑖𝜌] = 0

Tr [𝑋𝑖 (Φ𝑌 (𝜌) − 𝜌)] = 0. (3.23)

It is straightforward to see that 𝜌 being a state of 𝑌 -realism, according to BA criterion (Eq.

(3.2)), provides a sufficient condition for the above equation to hold:

Tr [𝑋𝑖 (Φ𝑌 (𝜌) − 𝜌)] = Tr [𝑋𝑖 (𝜌 − 𝜌)]
= 0. (3.24)

That this condition is also necessary is a consequence of the duality between state spaces and

effect algebra. That is, as established in [44], given a state space 𝒦, one can construct the

corresponding effect algebra 𝐸 (𝒦), and conversely, the effect algebra can be used to reconstruct
the state space. The proof provided below illustrates a specific instance of this duality, relying

solely on the formalism of quantum mechanics 1.

We start by representing Eq. (3.23) in terms of the generalized Bloch sphere formalism:

Tr [𝑋𝑖 (ΦY(𝜌�𝑟 ) − 𝜌�𝑟 )] = 0. (3.25)

Using Eqs. (4.1) for 𝜌�𝑟 , (4.15) for 𝑋𝑖 , and (4.24) for ΦY(𝜌�𝑟 ), with �𝑢 ≔ 𝑃𝑋 �𝑟 , we have:

Tr

[
1

𝑑

(
� +𝐶𝑑 �𝑥𝑖 · �Λ

) (
1

𝑑
(� +𝐶𝑑 �𝑢 · �Λ) − 1

𝑑
(� +𝐶𝑑�𝑟 · �Λ)

)]
= 0. (3.26)

Simplifying the term inside the second parentheses:

ΦY(𝜌�𝑟 ) − 𝜌�𝑟 =
1

𝑑

(
� +𝐶𝑑 �𝑢 · �Λ

)
− 1

𝑑

(
� +𝐶𝑑�𝑟 · �Λ

)
,

=
1

𝑑
𝐶𝑑 (�𝑢 − �𝑟 ) · �Λ. (3.27)

Substituting this back, the trace becomes:

Tr

[
1

𝑑

(
� +𝐶𝑑 �𝑥𝑖 · �Λ

) 1

𝑑
𝐶𝑑 (�𝑢 − �𝑟 ) · �Λ

]
= 0. (3.28)

Expanding the product inside the trace:

Tr

[
1

𝑑2

(
� ·𝐶𝑑 (�𝑢 − �𝑟 ) · �Λ

)
+ 1

𝑑2
𝐶2

𝑑

(
( �𝑥𝑖 · �Λ) · (�𝑢 − �𝑟 ) · �Λ

)]
= 0. (3.29)

1 For this proof, we employ the generalized Bloch sphere formalism, which will be introduced in the next chapter.
If the reader is not familiar with it, they can read the review we provide before proceeding or skip this proof
to come back later if so they wish.
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The first term vanishes because Tr [� · �Λ] = 0. Therefore, we are left with:

1

𝑑2
𝐶2

𝑑Tr
[
( �𝑥𝑖 · �Λ) · (�𝑢 − �𝑟 ) · �Λ

]
= 0. (3.30)

Now let �𝑣 ≔ �𝑟 − �𝑢, so the equation becomes:

Tr
[
( �𝑥𝑖 · �Λ) (�𝑣 · �Λ)

]
= 0. (3.31)

Given Eq. (4.21), multiplying this equation by 𝑥𝑖 and summing over 𝑖 gives:

Tr
[
( �𝑥 · �Λ) (�𝑣 · �Λ)

]
= 0. (3.32)

Lastly, using the identity Tr [(�𝑟1 · �Λ) (�𝑟2 · �Λ)] = 2(�𝑟1 · �𝑟2), we obtain:

�𝑥 · �𝑣 = 0. (3.33)

This condition must be true for any observable 𝑋 , represented by its associated vector �𝑥 . The
only way this holds universally is if �𝑣 = �0, which implies �𝑟 = �𝑢. Consequently, this leads to Eq.

(3.2), completing the proof.

This proof demonstrates the equivalence between our realism criterion and the one pro-

posed by BA within the framework of quantum mechanics, thereby validating our formulation

as a legitimate generalization of their approach.

We are ready for the next step, by which we quantify irrealism.

3.4 QUANTIFYING IRREALISM

In physical theories, when two states fall outside 𝒞Y , indicating a violation of the

realism criterion in Eq. (3.13) for a given property Y, it becomes important to assess the extent

of this violation. This motivates the need for a framework to quantify irrealism, which we

define as the complement of realism. To this end, we propose two distinct methodologies for

measuring irrealism, providing a systematic way to compare the degrees of violation exhibited

by different states.

The irrealism measure introduced by BA, Eq. (3.5), is fundamentally based on von

Neumann entropy, a quantity that is inherently tied to the formalism of quantum mechanics.

While this makes it a powerful tool within quantum theory, it also limits its applicability to

broader contexts.

To bridge this gap, we develop irrealism measures that extend beyond the quantum

domain while remaining consistent with BA’s formulation in the quantum mechanical limit. A

comparison between our definitions and BA’s will elucidate their similarities, differences, and

the potential for broader applicability, reinforcing the validity of our generalized approach.
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3.4.1 Robustness of irrealism

For our first methodology, we adopt the standard approach of robustness under state

perturbation. Robustness measures how much a state must be perturbed, or “mixed” with

another state, to satisfy a given criterion.

The robustness of irrealism is based on a simple physical intuition: suppose that you

have a state 𝜖 and complete access to any other state 𝜖′. The robustness RY(𝜖) tells you the

smallest fraction 𝜂 of 𝜖′ that must be mixed with 𝜖 to form the perturbed state

𝜖𝜂 = (1 − 𝜂)𝜖 + 𝜂𝜖′, (3.34)

such that 𝜖𝜂 ∈ 𝒞Y , making it a realist state for the property Y. In essence, robustness quan-

tifies the minimum amount of mixing required to eliminate the irrealism of a given state.

Mathematically, it is expressed as:

RY(𝜖) ≔ min
𝜖′

{
𝜂 ∈ [0, 1]

�� (1 − 𝜂)𝜖 + 𝜂𝜖′ ∈ 𝒞Y
}
. (3.35)

This measure leverages the convex structure of the state spaces 𝒞 and 𝒞Y , which is

particularly useful because it avoids reliance on a specific metric for these spaces. Instead, it

provides a generalizable way to quantify irrealism, satisfying desirable properties for such a

measure.

Notably, the robustness of irrealism satisfies the condition RY(𝜖) ≥ 0, with equality

holding if and only if Y is an element of reality for the state, i.e., 𝜖 ∈ 𝒞Y . This ensures that the
measure is zero only for states that already satisfy the realism criterion.

It is important to note that the state 𝜖′ used in the perturbation must belong to the

broader state space 𝒞 rather than the subset 𝒞Y . If 𝜖′ were restricted to 𝒞Y , and dim(𝒞Y) <
dim(𝒞), the measure RY(𝜖) would always be zero. This would render the robustness measure

meaningless for distinguishing states based on their irrealism, as it would fail to capture any

relevant information about how far a state lies from satisfying the realism criterion.

Despite its generality, a geometrical intuition is close at hand. Let 𝜂 correspond to the

minimized quantity defining, for a state 𝜖 , RY(𝜖) = 𝜂 and the corresponding Y-realist state

𝜖𝜂 = (1 − 𝜂)𝜖 + 𝜂𝜖′. Together with an appropriate metric, we can express 𝜂 as

𝜂 =
| |𝜖𝜂 − 𝜖 | |
| |𝜖′ − 𝜖 | | . (3.36)

By minimizing 𝜂 while sweeping through every 𝜖′, one finds the smallest distance | |𝜖𝜂 − 𝜖 | |
relative to | |𝜖′ − 𝜖 | |, subject to the constraint 𝜖𝜂 ∈ 𝒞Y .

This process is illustrated by a case study, where we calculated the robustness of

irrealism of the spin observable in the 𝑧 direction, 𝑆𝑧 , for a single qubit, given by:

𝜌 =
1

2
(� + �𝜌 · �𝜎), (3.37)
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with �𝜌 = (𝑥,𝑦, 𝑧) ∈ �3.

The concept of irrealism as defined in Eq. (3.5) was shown to be equivalent to coherence

for single qubit systems [31]. This equivalence also extends to the robustness of irrealism.

Notably, our results for this scenario align with those presented in [84].

Computations such as those involved in this case study are mediated by semidefinite

programming (SDP) algorithms, designed to handle optimizations involving linear operators

subject to the constraint of positive semidefiniteness. However, the symmetries involved in the

qubit case allow simpler methods to be employed. By recognizing that the set 𝒞𝑆𝑧 describes a

vertical line in the Bloch sphere, going from (0, 0,−1) to (0, 0, 1), we can drastically reduce the

number of states 𝜌′ in the computation, such that 𝜌𝜂 = (1 − 𝜂)𝜌 + 𝜂𝜌′ ∈ 𝒞𝑆𝑧 for some 𝜂.

More specifically, given a vector �𝜌 = (𝑥,𝑦, 𝑧), the set of vectors �𝜌′ = (𝑥′, 𝑦′, 𝑧′) ∈ R3

corresponding to the operators 𝜌′ that are eligible describe a 2-dimensional shape within the

Bloch sphere. To construct this set, we take the point (𝑥,𝑦, 𝑧) and consider all rays that originate
from it and intersect 𝒞𝑆𝑧 , which lies along the vertical axis. The portion of each ray before it

reaches 𝒞𝑆𝑧 is discarded, leaving only the section beyond the intersection. The resulting shape

is a semicircle with 𝒞𝑆𝑧 as its diameter, and the arc lies on the surface of the Bloch sphere,

oriented in the −𝑥,−𝑦 direction.

Further computational analysis reveals that 𝜂 is inversely proportional to the distance

between the coordinates (𝑥′, 𝑦′, 𝑧′) and the set 𝒞𝑆𝑧 . In other words, for any given �𝜌 = (𝑥,𝑦, 𝑧),
the optimal �𝜌′ always lies along the “equator” of the Bloch sphere, oriented in the −𝑥,−𝑦

direction. Precisely, given the state 𝜌 with �𝜌 = (𝑥,𝑦, 𝑧), the state 𝜌′ with �𝜌′ = (𝑥′, 𝑦′, 𝑧′) that
yields R𝑆𝑧 (𝜌) = 𝜂 is given by the coordinates

𝑥′
= − 𝑥√

𝑥2 + 𝑦2
≕ 𝑥, 𝑦′

= − 𝑦√
𝑥2 + 𝑦2

≕ 𝑦, 𝑧′ = 0. (3.38)

Once the ray that goes from (𝑥,𝑦, 𝑧) to (𝑥,𝑦, 0) is intercepted by 𝒞𝑆𝑧 at a single point, this

result, illustrated in Figure 4, fully characterizes R𝑆𝑧 (𝜌).
As exposed in Eq. (3.36), the parameter 𝜂 can be interpreted geometrically as the ratio

between | | �𝜌𝜂 − �𝜌′| |, where �𝜌𝜂 represents the vector corresponding to 𝜌𝜂 , and | | �𝜌 − �𝜌′| |. Using
this geometric relationship, the expression for the robustness of irrealism is straightforwardly

derived as:

R𝑆𝑧 (𝜌) = 𝜂 =
| |𝑧 × �𝜌 | |

1 + ||𝑧 × �𝜌 | | , (3.39)

where | |𝑧× �𝜌 | | = 𝑟 sin𝜃 , with 𝑟 being the radius and 𝜃 the polar angle in the spherical coordinate

representation of the vector �𝜌 .
Using Eq. (3.39), we can see that, indeed, every 𝑆𝑧-realist state shows null robustness of

irrealism, once | |𝑧 × �𝜌 | | = 0 for those cases. Eigenstates of observables maximally incompatible

with 𝑆𝑧 — represented along the equator of the Bloch sphere —, in turn, account forR𝑆𝑧 (𝜌) = 1/2,
because | |𝑧 × �𝜌 | | = 1. Given a single qubit system, Eq. (3.39) determines 0 ≤ R𝑆𝑧 (𝜌) ≤ 1/2.
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Figure 4 – Bloch sphere representation of the robustness of irrealism for 𝑆𝑧 in a qubit system. The
extended vertical axis illustrates the set of states 𝒞𝑆

�̂�
. The three colored arrows represent

the vectors parametrizing the states in Eq. (3.35) after minimizing 𝜂 with respect to 𝜌 ′. For
𝜌 = 1

2 ( + �𝜌 · �𝜎), where �𝜌 = (𝑥,𝑦, 𝑧) ∈ R3, the robustness R𝑆
�̂�
(𝜌) = 𝜂 [see Eq. (3.39)] is

achieved with 𝜌 ′ = 1
2 ( + �𝜌 ′ · �𝜎), where �𝜌 ′ = (𝑥,𝑦, 0) ∈ R3.

For a generic spin observable 𝑆�̂� , the robustness of irrealism can still be expressed

using Eq. (3.39) after a basis rotation that aligns 𝑧 with �̂�.

To prove Eq. (3.39), we notice that the Bloch vector corresponding to 𝜌𝜂 is:

�𝜌𝜂 = (1 − 𝜂) �𝜌 + 𝜂 �𝜌′, (3.40)

and that for 𝜌𝜂 ∈ 𝒞𝑆𝑧 , it must lie on the vertical axis of the Bloch sphere, i.e., ( �𝜌𝜂)𝑥 = 0 and

( �𝜌𝜂)𝑦 = 0. Substituting �𝜌′ = (𝑥,𝑦, 0) into �𝜌𝜂 , we find

( �𝜌𝜂)𝑥 = (1 − 𝜂)𝑥 − 𝜂
𝑥√

𝑥2 + 𝑦2
= 0, (3.41)

( �𝜌𝜂)𝑦 = (1 − 𝜂)𝑦 − 𝜂
𝑦√

𝑥2 + 𝑦2
= 0. (3.42)

Factoring 𝑥 and 𝑦, this gives

1 − 𝜂 = 𝜂
1√

𝑥2 + 𝑦2
, (3.43)

which simplifies to:

𝜂 =

√
𝑥2 + 𝑦2

1 +
√

𝑥2 + 𝑦2
. (3.44)

By recognizing that | |𝑧 × �𝜌 | | =
√

𝑥2 + 𝑦2 represents the distance from �𝜌 to the vertical axis 𝒞𝑆𝑧 ,

the proof is complete.

A comparison between the BA’s irreality defined in Eq. (3.5) and the robustness of

irrealism was conducted numerically. Figure 5 shows the irrealism of 𝑆𝑧 for a pure qubit state

as the polar angle 𝜃 varies from 0 to 𝜋 in the Bloch sphere. The robustness of irrealism was

normalized to match the absolute maximum value of the irreality for a direct comparison.
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Figure 5 – Graph of ℑ𝑆
�̂�
(𝜌), R𝑆

�̂�
(𝜌), and I𝑆

�̂�
(𝜌) for a pure qubit state as the polar angle 𝜃 ∈ [0, 𝜋].

Both measures reach zero and attain their maximum at the same points. Additionally, the

parametric curve in Fig. 6 confirms a monotonic relationship between the two, highlighting

their conceptual alignment.

3.4.2 Divergence of realism

The second method for defining a theory-independent irrealism quantifier emerges

naturally from the structure of the definition in Eq. (3.5). This method involves quantifying the

divergence between the left- and right-hand terms in the BA irrealism criterion. To formalize

this, we adopt the Kullback-Leibler (KL) divergence, Eq. (2.47), a widely recognized and well-

established measure of statistical distance between probability distributions.

The realism criterion applies to any physical property X, allowing us to determine the

degree of realism violation by identifying the property that maximizes the divergence between

the associated probability distributions. This leads to the following quantifier for the irreality

of Y in a given physical state 𝜖 :

IY(𝜖) = max
X

D
(
𝑃X

𝜖

���𝑃X
ΦY (𝜖)

)
, (3.45)

where IY(𝜖) is referred to as the divergence of realism of Y for the state 𝜖 .

In the notation of this chapter, the KL divergence is defined for two discrete probability

distributions 𝑃X
𝜖 = {𝑝𝜖 (𝑥𝑖)}𝑑𝑖=1 and 𝑄X

𝜖 = {𝑞𝜖 (𝑥𝑖)}𝑑𝑖=1 as:

D
(
𝑃X

𝜖

���𝑄X
𝜖

)
≔

𝑑∑
𝑖=1

𝑝𝜖 (𝑥𝑖) log
[
𝑝𝜖 (𝑥𝑖)
𝑞𝜖 (𝑥𝑖)

]
. (3.46)

This divergence is non-negative by definition, reflecting the Gibbs inequality, and

equals zero if and only if 𝑃X
𝜖 and 𝑄X

𝜖 are identical. In the present context, IY(𝜖) inherits these
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properties, ensuring it is non-negative and vanishes only when the realism criterion in Eq. (3.13)

is satisfied. Specifically, IY(𝜖) = 0 iff 𝜖 ∈ 𝒞Y .

While the robustness of irrealism relies on the convex geometric structure of state

spaces and physical intuition, the divergence of realism is grounded exclusively in classical

probability theory. In the context of quantum mechanics, Eq. (3.45) can be reformulated as:

I𝑌 (𝜌) = max
𝑋

𝑆
(
Φ𝑋 (𝜌) | |Φ𝑋,𝑌 (𝜌)

)
, (3.47)

where Φ𝑋,𝑌 (𝜌) = Φ𝑋

(
Φ𝑌 (𝜌)

)
denotes the successive application of the nonselective measure-

ment state mappings associated with the observables 𝑋 and 𝑌 .

To derive Eq. (3.47), consider that for any Hermitian operator 𝐴 with orthonormal

eigenbasis |𝑎〉 and eigenvalues 𝑎, the action of a generic function 𝑓 is given by:

𝑓 (𝐴) |𝑎〉 = 𝑓 (𝑎) |𝑎〉 . (3.48)

Additionally, notice that the post nonselective states can be expressed as:

Φ𝑋 (𝜌) =
∑

𝑖

𝑝𝜌 (𝑥𝑖)𝑋𝑖, Φ𝑋,𝑌 (𝜌) =
∑

𝑖

𝑝Φ𝑌 (𝜌) (𝑥𝑖)𝑋𝑖, (3.49)

highlighting the fact that such states commute, by sharing the same set of eigenvectors. Using

this commutativity property, and 𝑋𝑖 = |𝑥𝑖〉 〈𝑥𝑖 |, we work through the quantum relative entropy

as follows:

𝑆
(
Φ𝑋 (𝜌) | |Φ𝑋,𝑌 (𝜌)

)
= Tr

[
Φ𝑋 (𝜌) logΦ𝑋 (𝜌)

] − Tr
[
Φ𝑋 (𝜌) logΦ𝑋,𝑌 (𝜌)

]
= Tr

[( ∑
𝑖

𝑝𝜌 (𝑥𝑖) |𝑥𝑖〉 〈𝑥𝑖 |
)
log

( ∑
𝑗

𝑝𝜌 (𝑥 𝑗 ) |𝑥 𝑗 〉 〈𝑥 𝑗 |
)]

− Tr

[( ∑
𝑖

𝑝𝜌 (𝑥𝑖) |𝑥𝑖〉 〈𝑥𝑖 |
)
log

( ∑
𝑗

𝑝Φ𝑌 (𝜌) (𝑥 𝑗 ) |𝑥 𝑗 〉 〈𝑥 𝑗 |
)]

=

∑
𝑖

𝑝𝜌 (𝑥𝑖) 〈𝑥𝑖 | log
( ∑

𝑗

𝑝𝜌 (𝑥 𝑗 ) |𝑥 𝑗 〉 〈𝑥 𝑗 |
)
|𝑥𝑖〉

−
∑

𝑖

𝑝𝜌 (𝑥𝑖) 〈𝑥𝑖 | log
( ∑

𝑗

𝑝Φ𝑌 (𝜌) (𝑥 𝑗 ) |𝑥 𝑗 〉 〈𝑥 𝑗 |
)
|𝑥𝑖〉

=

∑
𝑖

𝑝𝜌 (𝑥𝑖) log𝑝𝜌 (𝑥𝑖) −
∑

𝑖

𝑝𝜌 (𝑥𝑖) log𝑝Φ𝑌 (𝜌) (𝑥𝑖)

=

∑
𝑖

𝑝𝜌 (𝑥𝑖) log
[

𝑝𝜌 (𝑥𝑖)
𝑝Φ𝑌 (𝜌) (𝑥𝑖)

]
= D (

𝑃𝑋
𝜌

���𝑃𝑋
Φ𝑌 (𝜌)

)
. (3.50)

Like this, the equality of the arguments inside the maximization functions ensures the equiva-

lence between Eqs. (3.45) and (3.47). This derivation follows the proof originally developed in

Ref. [85].
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Figure 6 – Three parametric graphs are presented for a pure qubit state, with the polar angle 𝜃 ∈ [0, 𝜋].
The top graph displays ℑ𝑆

�̂�
(𝜌) against R𝑆

�̂�
(𝜌), the middle ℑ𝑆

�̂�
(𝜌) against I𝑆

�̂�
(𝜌), and the

bottom R𝑆
�̂�
(𝜌) against I𝑆

�̂�
(𝜌).

Eq. (3.47) was used for a case study of qubits, following the same parameters as before.

Its results are illustrated in Figs. 5 and 6, exhibiting a behavior similar to that of R𝑆𝑧 (𝜌), and
I𝑆𝑧 (𝜌). Specifically, its peak and vanishing points are coincident. Notably, the apparent plateau

observed in I𝑆𝑧 (𝜌) in Fig. 5 is not a true plateau. Instead, it represents a region where the

absolute value of the slope gradually approaches zero, with the slope reaching zero only at the

peak.

Furthermore, the monotonic relationships observed in Fig. 6 among the irrealism quan-

tifiers ℑ𝑆𝑧 (𝜌), R𝑆𝑧 (𝜌), and I𝑆𝑧 (𝜌) suggest that these measures may be qualitatively equivalent,

highlighting their consistency in capturing the degree of realism violations.

3.5 REALISM AND CLASSICALITY

Generalized probabilistic theories (GPT) readily accommodate not just full-fledged

physical theories but also their sub-theories. A sub-theory may comprise, for instance, a single

system with only a subset of possible states and operations. The coin example illustrates this

idea: it can be regarded as a sub-theory of classical mechanics containing a one-dimensional

state space (the line segment between (1, 0) and (0, 1)) and a single flipping operation.

The coin sub-theory is trivially realist because there is only one physical property

available,X = {𝐻,𝑇 }. More generally, any sub-theory of classical mechanics is also determined

to be a realist theory. This follows naturally, as classical sub-theories inherit their realism from

classical mechanics, which is the paradigmatic realist theory.
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Classical theories also possess another hallmark: classicality. Among the many defini-

tions of classicality suitable for quantum contexts, a widely accepted theory-agnostic criterion

is that a theory is classical if its state space is a simplex. Concretely, a set of states is simplicial

if every mixed state 𝜔 has a unique convex decomposition into pure states. Formally, if

𝜔 =

∑
𝑖

𝑝𝑖𝜔𝑖 with
∑

𝑖

𝑝𝑖 = 1, 𝑝𝑖 ≥ 0, (3.51)

then {𝜔𝑖} and {𝑝𝑖} must be unique. Quantum mechanics stands in contrast: a given mixed state

on the Bloch sphere admits infinitely many such decompositions.

Due to the duality between state spaces and effect algebras in GPT, classical (simplicial)

state spaces are paired with hypercubic effect algebras. For instance, the one-dimensional

simplicial state space [0, 1] for a coin corresponds to a square [0, 1]2 for the effect algebra (after
including the null and identity effects). In such a hypercubic effect algebra, there always exists a

single effect that fully characterizes the state —meaning one yes/no question suffices to pinpoint

the system’s condition. Quantum-mechanical states, however, generally demand tomography

via multiple measurements on many copies of the system, since any single measurement

disturbs the state and yields incomplete information.

In Ref. [86], Schmidt shows that any simplicial theory implies macrorrealism [87],

while D’Ariano demonstrates in Ref. [88] that respecting “information without disturbance” also

forces a simplicial state space. Consequently, every simplicial theory — hence every classical

theory — is necessarily a realist theory.

One might then ask: is there a classical sub-theory embedded in quantum mechanics?

The answer is yes, and an especially relevant example is the trivial sub-theory containing

only a single — completely mixed — state. Its corresponding effect space reduces to a line. In

other words, no measurements are available to distinguish any further structure, and no richer

geometry emerges. Operationally, this amounts to complete ignorance about the system — no

accessible measurement can alter or reveal the state. Under these circumstances, one obtains a

sub-theory that is both trivially classical (the state space is a single point) and trivially realist

(no nontrivial observables exist to disturb or reveal otherwise).

In the chapter to follow, we use this kind of construction to propose a general notion

of realism-based classicality in the quantum context, showing how a classical description may

effectively emerge under appropriate operational constraints.
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4 CLASSICALITY

Quantum mechanics is not rendered non-classical solely due to its counterintuitive

aspects. Classical theories also contain elements that challenge our explanatory intuition, such

as the principle of least action in Hamiltonian mechanics or the nature of entropy in classical

statistical mechanics.

From an operational perspective, quantum mechanics describes physical systems that

can perform tasks strictly forbidden within a classical framework. When quantum features that

distinguish these systems from classical ones are suppressed, the resulting behavior effectively

restores an operationally classical regime.

This idea motivates the quantum-to-classical paradigms which involve decoher-

ence [20–23]—without complex amplitudes, a system’s probabilistic profile evolves classically.

When discussing the BA irrealism notion in Eq. (3.5), we noted that for single-partite

systems, it reduces to a measure of coherence. Indeed, coherence can be understood in terms

of irrealism: realism dictates decoherence.

Furthermore, irrealism is fundamentally essential for the manifestation of quantum

behavior, such as coherence, as formalized by other quantumness markers. In Ref. [79], it is

demonstrated that, without irrealism, a notion of incompatibility cannot emerge (see Eq. (3.12)).

Nonlocal features—such as symmetrical discord [89], discord [90], entanglement [91], steer-

ing [92], and Bell nonlocality [75]—also vanish without irrealism [34], as realism-based nonlo-

cality (Eq. (3.11)) reduces to zero.

We now introduce and analyze a realism-based classicality notion. Its mathematical

structure is developed, and specific cases are investigated. To avoid fragmenting the conceptual

discussion across walls of equations, the results are interpreted in the final section of this

chapter.

4.1 GENERALIZED BLOCH SPHERE

In statistical quantum mechanics, preparations are represented by density operators,

which are inherently abstract entities. These mathematical objects are algebraically well-

behaved due to their properties: they are Hermitian, positive semidefinite, and have unit trace.

However, envisioning them geometrically to gain intuition is far from straightforward.

In contrast, other physical theories, such as classical mechanics, naturally conceive

states as real-valued vectors in a Euclidean vector space, making themmore intuitive to visualize.

Statistical quantum mechanics can adopt a similar geometric framework by establishing an

isomorphism between the space of density operators and real-valued vectors. For a two-
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dimensional system, this correspondence gives rise to the Bloch sphere.

The generalized Bloch sphere representation is comprehensively introduced in Refs. [46,

47]. Here, we focus on the essential aspects needed to understand the results presented in this

chapter.

4.1.1 Density operators

A density operator 𝜌 of dimension 𝑑 has 𝑑 real numbers in its diagonal and 𝑑 (𝑑 − 1)
complex numbers off the diagonal. Because 𝜌† = 𝜌 , the off-diagonal terms are given by 𝑑 (𝑑 − 1)
real numbers and, since Tr [𝜌] = 1, the diagonal requires 𝑑 − 1 real numbers. This suggests

representing 𝜌 by a 𝑑 (𝑑 − 1) + 𝑑 − 1 = 𝑑2 − 1 dimensional real-valued vector �𝑟 .
A possible formulation is as follows:

𝜌�𝑟 =
1

𝑑

(
� +𝐶𝑑�𝑟 · �Λ

)
, (4.1)

which generalizes Eq. (2.84). We define an orthonormal basis {𝑒𝑖}𝑑2−1
𝑖=1 in �𝑑2−1 such that �𝑟 =∑𝑑2−1

𝑖=1 𝑟𝑖𝑒𝑖 and �Λ =
∑𝑑2−1

𝑖=1 Λ𝑖𝑒𝑖 is a matrix-valued vector. By taking Λ𝑖 Hermitian, the same

property is secured for 𝜌 . Trace 1 is secured once we require Λ𝑖 to be traceless. Furthermore,

generalizing the construction of the Pauli matrices, we use the Hilbert-Schmidt norm and

impose the normalization condition Tr (Λ𝑖Λ 𝑗 ) = 2𝛿𝑖 𝑗 . With that, we calculate:

Tr
[(
�𝑟1 · �Λ

) (
�𝑟2 · �Λ

)]
= Tr

[∑
𝑖, 𝑗

𝑟1,𝑖𝑟2, 𝑗Λ𝑖Λ 𝑗

]
=

∑
𝑖, 𝑗

𝑟1,𝑖𝑟2, 𝑗 Tr[Λ𝑖Λ 𝑗 ]

=

∑
𝑖

𝑟1,𝑖𝑟2,𝑖 · 2

= 2(�𝑟1 · �𝑟2). (4.2)

Now, by demanding that pure states have | |�𝑟 | | = 1, and using the equation above, we have

Tr [𝜌2
�𝑟 ] =

1

𝑑2
Tr

[
� + 2𝐶𝑑�𝑟 · �Λ +𝐶2

𝑑 (�𝑟 · �Λ)2
]

=
1

𝑑2

(
Tr [�] +𝐶2

𝑑Tr
[
(�𝑟 · �Λ)2

] )
=
1

𝑑
+ 2𝐶2

𝑑

𝑑2
= 1. (4.3)

Solving for 𝐶𝑑 , we get

𝐶𝑑 =

√
𝑑 (𝑑 − 1)

2
. (4.4)
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The relation between the purity of the system and the norm | |�𝑟 | | is close at hand. Using the

equation above:

Tr [𝜌2
�𝑟 ] =

1

𝑑2

(
Tr [�] + 𝑑 (𝑑 − 1)

2
Tr

[
(�𝑟 · �Λ)2

] )
=
1

𝑑
+ 𝑑 − 1

𝑑
| |�𝑟 | |, (4.5)

which ascertains completely mixed states, Tr [𝜌2] = 1/𝑑 , giving | |�𝑟 | | = 0.

Eq. (4.1) shows how we can represent a linear operator acting on a 𝑑-dimensional

state space on the basis {�,Λ1, . . . ,Λ𝑑2−1}. This set gives the generators of the special unitary
group of degree 𝑑 , SU(𝑑), the Lie group of unitary 𝑑 × 𝑑 matrices of determinant 1. Once their

commutators, [Λ𝑖,Λ 𝑗 ], and anticommutators, {Λ𝑖,Λ 𝑗 } are also self-adjoint operators, they can

be expressed by the same basis. Generalizing the case for the Pauli matrices, one possible

formulation is like

[
Λ𝑖,Λ 𝑗

]
= 2𝑖

𝑑2−1∑
𝑘=1

𝑓𝑖 𝑗𝑘Λ𝑘, {Λ𝑖,Λ 𝑗 } = 4

𝑑
𝛿𝑖 𝑗 I + 2

𝑑2−1∑
𝑘=1

𝑔𝑖 𝑗𝑘Λ𝑘, (4.6)

with the first term for the anticommutator chosen to satisfy Tr [Λ2
𝑖 ] = 2. To determine the

structure constants 𝑓𝑖 𝑗𝑘 and 𝑑𝑖 𝑗𝑘 , we multiply both sides of the equations above by Λ𝑘 and take

the trace. Using the Hilbert-Schmidt norm Tr [Λ𝑖,Λ 𝑗 ] = 2𝛿𝑖, 𝑗 , the commutator gives:

Tr
[ [
Λ𝑖,Λ 𝑗

]
Λ𝑘

]
= Tr

⎡⎢⎢⎢⎢⎣2𝑖
𝑑2−1∑
𝑙=1

𝑓𝑖 𝑗𝑙Λ𝑙Λ𝑘

⎤⎥⎥⎥⎥⎦
= 2𝑖

𝑑2−1∑
𝑙=1

𝑓𝑖 𝑗𝑙Tr [Λ𝑙Λ𝑘]

= 2𝑖
𝑑2−1∑
𝑙=1

𝑓𝑖 𝑗𝑙2𝛿𝑙,𝑘

= 4𝑖 𝑓𝑖 𝑗𝑘, (4.7)

and the anticommutator:

Tr
[{Λ𝑖,Λ 𝑗 }Λ𝑘

]
= Tr

⎡⎢⎢⎢⎢⎣
4

𝑑
𝛿𝑖 𝑗Λ𝑘 + 2

𝑑2−1∑
𝑙=1

𝑔𝑖 𝑗𝑙Λ𝑙Λ𝑘

⎤⎥⎥⎥⎥⎦
=
4

𝑑
𝛿𝑖 𝑗Tr [Λ𝑘] + 2

𝑑2−1∑
𝑙=1

𝑔𝑖 𝑗𝑙Tr [Λ𝑙Λ𝑘]

= 2
𝑑2−1∑
𝑙=1

𝑔𝑖 𝑗𝑙2𝛿𝑙𝑘

= 4𝑔𝑖 𝑗𝑘 . (4.8)
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We obtain, then:

𝑓𝑖 𝑗𝑘 =
1

4𝑖
Tr

[ [
Λ𝑖,Λ 𝑗

]
Λ𝑘

]
, 𝑔𝑖 𝑗𝑘 =

1

4
Tr

[{Λ𝑖,Λ 𝑗 }Λ𝑘

]
. (4.9)

Given a (𝑑2 − 1)-dimensional vector �𝑟 corresponding to a 𝑑-dimensional density oper-

ator, Eq. (4.1) gives its full characterization upon a choice of the generators {�,Λ1, . . . ,Λ𝑑2−1}.
To do the converse, obtaining �𝑟 given 𝜌 , we start by calculating

𝜌�𝑟Λ 𝑗 =
1

𝑑

[
Λ 𝑗 +𝐶𝑑 (�𝑟 · Λ)Λ 𝑗

]
=
1

𝑑

(
Λ 𝑗 +𝐶𝑑

∑
𝑖

𝑟𝑖Λ𝑖Λ 𝑗

)
, (4.10)

notice that

Λ 𝑗 𝜌�𝑟 =
1

𝑑

(
Λ 𝑗 +𝐶𝑑

∑
𝑖

𝑟𝑖Λ 𝑗Λ𝑖

)
, (4.11)

and obtain the anticommutator function:

1

2
{𝜌�𝑟 ,Λ 𝑗 } = 1

2
(𝜌�𝑟Λ 𝑗 + Λ 𝑗 𝜌�𝑟 )

=
1

2𝑑

(
Λ 𝑗 +𝐶𝑑

∑
𝑖

𝑟𝑖Λ𝑖Λ 𝑗 + Λ 𝑗 +𝐶𝑑

∑
𝑖

𝑟𝑖Λ 𝑗Λ𝑖

)

=
1

𝑑

[
Λ 𝑗 + 𝐶𝑑

2

∑
𝑖

𝑟𝑖 (Λ𝑖Λ 𝑗 + Λ 𝑗Λ𝑖)
]

=
1

𝑑

[
Λ 𝑗 + 𝐶𝑑

2

∑
𝑖

𝑟𝑖{Λ𝑖,Λ 𝑗 }
]

=
1

𝑑

(
Λ 𝑗 + 2𝐶𝑑

𝑑

∑
𝑖

𝑟𝑖𝛿𝑖, 𝑗� +𝐶𝑑

∑
𝑖,𝑘

𝑟𝑖𝑔𝑖 𝑗𝑘Λ𝑘

)

=
1

𝑑

(
Λ 𝑗 + 2𝐶𝑑

𝑑
𝑟 𝑗� +𝐶𝑑

∑
𝑖,𝑘

𝑟𝑖𝑔𝑖 𝑗𝑘Λ𝑘

)
. (4.12)

Now, by taking the trace of the equation above, we obtain:

Tr

[
1

2
{𝜌�𝑟 ,Λ 𝑗 }

]
=
1

𝑑

(
Tr [Λ 𝑗 ] + 2𝐶𝑑

𝑑
𝑟 𝑗Tr [�] +𝐶𝑑

∑
𝑖,𝑘

𝑟𝑖𝑔𝑖 𝑗𝑘Tr [Λ 𝑗 ]
)

=
1

2

(
2𝐶𝑑

𝑑
𝑟 𝑗𝑑

)
=
2𝐶𝑑

𝑑
𝑟 𝑗 . (4.13)
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By substituting 𝑗 → 𝑖 , we solve for 𝑟𝑖 and, using Eq. (4.4), one gets

𝑟𝑖 =
𝑑

2𝐶𝑑
Tr

[
1

2
{𝜌�𝑟 ,Λ𝑖}

]
=

𝑑

2𝐶𝑑

1

2
(Tr [𝜌�𝑟Λ𝑖] + Tr [Λ𝑖𝜌�𝑟 ])

=
𝑑

2𝐶𝑑

1

2
(Tr [𝜌�𝑟Λ𝑖] + Tr [𝜌�𝑟Λ𝑖])

=
𝑑

2𝐶𝑑
Tr [𝜌�𝑟Λ𝑖]

=
𝑑

2

√
2

𝑑 (𝑑 − 1)Tr [𝜌�𝑟Λ𝑖]

=

√
𝑑

2(𝑑 − 1)Tr [𝜌�𝑟Λ𝑖] . (4.14)

Such equation determines the 𝑑2− 1 components of the vector �𝑟 upon the statistics given by the

measurements of a set of informationally complete observables, like Λ𝑖 , with 𝑖 = 1, 2, ..., 𝑑2 − 1.

This gives the means by which one can encode a density operator as a real vector �𝑟 in a real

ball 𝐵(�𝑑2−1) of radius 1.

4.1.2 Observables

Observables, given by projective operators, also find a fit in this framework. We recall

that an observable 𝐴 respects
∑

𝑖 𝐴𝑖 = � and Tr
(
𝐴𝑖𝐴𝑗

)
= 𝛿𝑖 𝑗 , where 𝐴𝑖 are the projectors. Once

projectors have the same structure as the eigenstates of the observable, we start by writing

𝐴𝑖 =
1

𝑑

(
� +𝐶𝑑𝑎𝑖 · �Λ

)
. (4.15)

The closure condition gives ∑
𝑖

𝐴𝑖 =
1

𝑑

∑
𝑖

[
� +𝐶𝑑𝑎𝑖 · �Λ

]
= � + 𝐶𝑑

𝑑

∑
𝑖

[
𝑎𝑖 · �Λ

]
= �, (4.16)

which, due to the orthogonality of the Λ𝑖 , implies∑
𝑖

𝑎𝑖 = �0. (4.17)

Now, for the orthogonality of the projectors, we have, taking 𝑖 ≠ 𝑗 :

Tr
(
𝐴𝑖𝐴𝑗

)
=

1

𝑑2
Tr

[
� +𝐶𝑑𝑎𝑖 · �Λ +𝐶𝑑𝑎𝑗 · �Λ +𝐶2

𝑑 (𝑎𝑖 · �Λ) (𝑎𝑗 · �Λ)
]

=
1

𝑑
+ 𝑑 − 1

𝑑
(𝑎𝑖 · 𝑎𝑗 ) = 0, (4.18)
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giving

𝑎𝑖 · 𝑎𝑗 =
𝛿𝑖 𝑗𝑑 − 1

𝑑 − 1
. (4.19)

Let 𝑎𝑖 be the eigenvalues of 𝐴. Since 𝐴 is traceless,
∑

𝑖 𝑎𝑖 = 0, and we express

𝐴 =

∑
𝑖

𝑎𝑖𝐴𝑖

=

∑
𝑖

𝑎𝑖

(
1

𝑑

(
� +𝐶𝑑𝑎𝑖 · �Λ

))

=
1

𝑑

(∑
𝑖

𝑎𝑖

)
� + 𝐶𝑑

𝑑

∑
𝑖

𝑎𝑖 𝑎𝑖 · �Λ

= �𝑎 · �Λ, (4.20)

using the definition:

�𝑎 ≔
𝐶𝑑

𝑑

∑
𝑖

𝑎𝑖𝑎𝑖 . (4.21)

The geometrical structure defined by Eq. (4.19) represents a simplex embedded within

the Bloch hypersphere. Recall that a simplex is the generalization of a triangle or tetrahedron,

serving as the simplest polytope in a given dimension. Each of the vectors 𝑎𝑖 touches the

hypersphere’s surface, and by taking the convex hull of these points, we obtain a regular

simplex whose center coincides with the hypersphere’s center, corresponding to the completely

mixed state. We denote the (𝑑 − 1)-dimensional simplex defined by the observable 𝐴 as �𝐴.

We now have enough tools to express the probability assigned to obtaining an outcome

𝑎𝑖 in a measurement, given the preparation of a state 𝜌�𝑟 . This formalism’s elegance is displayed

by accomplishing this through an expression of 𝑑 and the inner product 𝑎𝑖 · �𝑟 :

𝑝𝑎𝑖 = Tr[𝐴𝑖𝜌�𝑟 ]

= Tr

[
1

𝑑

(
� +𝐶𝑑𝑎𝑖 · �Λ

)
· 1
𝑑

(
� +𝐶𝑑�𝑟 · �Λ

)]
=

1

𝑑2
Tr

[
� +𝐶𝑑𝑎𝑖 · �Λ +𝐶𝑑�𝑟 · �Λ +𝐶2

𝑑 (𝑎𝑖 · �Λ) (�𝑟 · �Λ)
]

=
1

𝑑2

(
Tr[�] +𝐶2

𝑑 Tr[(𝑎𝑖 · �Λ) (�𝑟 · �Λ)]
)

=
1

𝑑2

(
𝑑 + 2𝐶2

𝑑 (𝑎𝑖 · �𝑟 )
)

=
1

𝑑

(
1 + 2𝐶2

𝑑

𝑑
(𝑎𝑖 · �𝑟 )

)

=
1

𝑑
[1 + (𝑑 − 1) (𝑎𝑖 · �𝑟 )] . (4.22)

A remarkable fact about this formalism is that only in the case 𝑑 = 2 is the Bloch ball

fully populated by vectors corresponding to valid density operators. To understand why this

occurs, consider a unit vector 𝑟𝜙 located between 𝑎𝑖 and 𝑎𝑗 , rotated relative to 𝑎𝑖 by an angle
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𝜙 . This vector can be expressed in terms of 𝑎𝑖 and 𝑎𝑗 using the spherical linear interpolation

function, yielding:

𝑟𝜙 =
sin (𝜃 − 𝜙)𝑎𝑖 + sin𝜙𝑎𝑗

sin𝜃
, (4.23)

where 𝜃 = arccos (𝑎𝑖 · 𝑎𝑗 ), as defined by Eq. (4.19). For cases where𝑑 > 2, a numerical evaluation

of 𝑝𝑎 𝑗
, performed by inserting 𝑟𝜙 into Eq. (4.22), returns negative probabilities for 𝜙 ∈ (0, 𝜃 ).

Indeed, using Eq. (4.1), one can see that the matrices defined by such vectors are not positive

semidefinite and, therefore, do not correspond to valid physical states.

This limitation arises because the matrices Λ𝑖 for 𝑑 > 2 are not rotationally invariant.

As a result, a simplex cannot simply be rotated within its own hyperplane without some vertices

corresponding to invalid physical states, as illustrated in the example above. It is physically

nonsensical to define an observable whose eigenstates are not valid quantum states.

Completely characterizing the region described by valid Bloch vectors within the

hypersphere is a highly nontrivial task. The characterization depends on the choice of the

generators of SU(𝑑), and the resulting shape is generally not spherical. Nevertheless, since any

mixture of two physical states must also correspond to a valid physical state, we can at least

confirm that the shape is convex.

A result presented in Ref. [93] shows that, within the unit-radius Bloch ball 𝐵(R𝑑2−1),
there exists a smaller ball 𝐵(R𝑑2−1), centered at the origin, that is fully populated by valid Bloch
vectors. This inscribed ball has a radius of 1/(𝑑 − 1) and corresponds to the ball inscribed in

every simplex representative of a basis. For 𝑑 = 2, this radius becomes 1, reflecting the familiar

geometry of the Bloch sphere for qubits.

We conclude this review by expressing the map Φ𝐴 for singlepartite states in terms of

real vectors. Using equations (4.15), (4.17), and (4.15), we obtain

Φ𝐴 (𝜌�𝑟 ) =
∑

𝑖

𝑝𝑎𝑖𝐴𝑖

=

∑
𝑖

1

𝑑2
[1 + (𝑑 − 1) (𝑎𝑖 · �𝑟 )]

(
� +𝐶𝑑𝑎𝑖 · �Λ

)
=

∑
𝑖

1

𝑑2

[
� + (𝑑 − 1) (𝑎𝑖 · �𝑟 )� +𝐶𝑑 (𝑎𝑖 · �Λ) + (𝑑 − 1)𝐶𝑑 (𝑎𝑖 · �𝑟 ) (𝑎𝑖 · �Λ)

]
=

1

𝑑2

[∑
𝑖

� +
∑

𝑖

(𝑑 − 1) (𝑎𝑖 · �𝑟 )� +
∑

𝑖

𝐶𝑑 (𝑎𝑖 · �Λ) +
∑

𝑖

(𝑑 − 1)𝐶𝑑 (𝑎𝑖 · �𝑟 ) (𝑎𝑖 · �Λ)
]

=
1

𝑑2

[
𝑑� + (𝑑 − 1)𝐶𝑑 (𝑎𝑖 · �𝑟 ) (𝑎𝑖 · �Λ)

]
=
1

𝑑
� + (𝑑 − 1)𝐶𝑑

𝑑2
(𝑎𝑖 · �𝑟 ) (𝑎𝑖 · �Λ)

=
1

𝑑
(� +𝐶𝑑𝑃𝐴�𝑟 · �Λ). (4.24)
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where we define

𝑃𝐴• ≔
𝑑 − 1

𝑑

∑
𝑖

(𝑎𝑖 · •)𝑎𝑖 . (4.25)

This result was first obtained in [79].

4.2 GEOMETRIC BA CRITERION

Once this has not been done in the literature before, let us inspect the behavior of the

map 𝑃𝐴 in detail. We verify that its action on a vector corresponding to 𝐴𝑖 is innocuous. Using

Eqs. (4.17) and (4.19),

𝑃𝐴𝑎𝑖 =
𝑑 − 1

𝑑

∑
𝑗

(𝑎𝑗 · 𝑎𝑖)𝑎𝑗

=
𝑑 − 1

𝑑

∑
𝑗

(
𝛿𝑖 𝑗𝑑 − 1

𝑑 − 1

)
𝑎𝑗

=
𝑑 − 1

𝑑

(
𝑎𝑖 − 1

𝑑 − 1

∑
𝑖≠ 𝑗

𝑎 𝑗

)

=
𝑑 − 1

𝑑

(
𝑎𝑖 + 𝑎𝑖

𝑑 − 1

)
= 𝑎𝑖 . (4.26)

This result allows the study of the case for a vector �𝑟𝐴 ∈ �𝐴, that is, �𝑟𝐴 =
∑

𝑖 𝑟𝑖𝑎𝑖 :

𝑃𝐴�𝑟𝐴 = 𝑃𝐴

∑
𝑖

𝑟𝑖𝑎𝑖

=

∑
𝑖

𝑟𝑖𝑃𝐴𝑎𝑖

=

∑
𝑖

𝑟𝑖𝑎𝑖

= �𝑟𝐴, (4.27)

revealing the same behavior and generalizing the previous result. It is straightforward to see

the idempotence for vectors within �𝐴:

𝑃2
𝐴�𝑟𝐴 ≡ 𝑃𝐴𝑃𝐴�𝑟𝐴

= 𝑃𝐴�𝑟𝐴

= �𝑟𝐴. (4.28)
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Now, for a generic rector �𝑟 , we obtain

𝑃𝐴𝑃𝐴�𝑟 = 𝑃𝐴
𝑑 − 1

𝑑

∑
𝑖

(𝑎𝑖 · �𝑟 )𝑎𝑖

=
𝑑 − 1

𝑑

∑
𝑖

(𝑎𝑖 · �𝑟 )𝑃𝐴𝑎𝑖

=
𝑑 − 1

𝑑

∑
𝑖

(𝑎𝑖 · �𝑟 )𝑎𝑖

= 𝑃𝐴�𝑟, (4.29)

revealing 𝑃𝐴 as an idempotent projector.

A result that will be particularly important for this chapter is that:

| |�𝑟 | | ≥ | |𝑃𝐴�𝑟 | |. (4.30)

To prove this, we start by considering that once the �𝐴 is contained in a 𝑑 − 1 dimensional

hypersurface while the Bloch hypersphere’s dimension is 𝑑2 − 1, there are always infinitely

many vectors within the hypersphere that are orthogonal to �𝐴. In other words, there are

infinitely many vectors �𝑟⊥ ∉ �𝐴 such that �𝑟⊥ · 𝑎𝑖 = 0 (∀𝑖). Now, we consider a vector �𝑟 with

| |�𝑟 | | ≤ 1 and write it like �𝑟 = �𝑟 ‖ + �𝑟⊥ such that �𝑟 ‖ · �𝑟⊥ = 0. An explicit construction of �𝑟 ‖ involves
using the Gram-Schmidt process to construct an orthonormal basis {𝑢𝑖}𝑑−1𝑖=1 from the basis

{𝑎𝑖}𝑑𝑖=1 such that

�𝑟 ‖ =
𝑑−1∑
𝑖=1

(𝑢𝑖 · �𝑟 )𝑢𝑖 . (4.31)

Continuing, we manipulate �𝑟 like

�𝑟 = 𝛼𝑟 ‖ + 𝛽𝑟⊥ (4.32)

with {𝛼, 𝛽} ∈ � so that we can write the norm

| |�𝑟 | | =
√

𝛼2 + 𝛽2. (4.33)

Then, using the linearity of 𝑃𝐴, we evaluate

𝑃𝐴�𝑟 = 𝛼𝑃𝐴𝑟 ‖ + 𝛽𝑃𝐴𝑟⊥

= 𝛼𝑟 ‖ . (4.34)

It is possible that 𝑟 ‖ ∉ �𝐴 by falling in the simplex hyperplane but beyond the simplex limits.

In cases like that, �𝑟 ‖ = 𝑘�𝑟𝐴, with 𝑘 ∈ �, so that Eq. (4.27) guarantees the result above, and we

have:

| |𝑃𝐴�𝑟 | | =
√

𝛼. (4.35)

Given that √
𝛼2 + 𝛽2 ≥ √

𝛼, (4.36)
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the inequality (4.30) is proven, showing that the action of 𝑃𝐴 never increases the norm of �𝑟 .
To make this more complete, we determine | |𝑃𝐴�𝑟 | |. Taking its squared form,

| |𝑃𝐴�𝑟 | |2 = 𝑃𝐴�𝑟 · 𝑃𝐴�𝑟

=

(
𝑑 − 1

𝑑

∑
𝑖

(𝑎𝑖 · �𝑟 )𝑎𝑖

)
·
(
𝑑 − 1

𝑑

∑
𝑗

(𝑎𝑗 · �𝑟 )𝑎𝑗

)

=

(
𝑑 − 1

𝑑

)2 ∑
𝑖

∑
𝑗

(𝑎𝑖 · �𝑟 ) (𝑎𝑗 · �𝑟 ) (𝑎𝑖 · 𝑎𝑗 ). (4.37)

Considering Eq. (4.19), we split the summations for 𝑖 = 𝑗 and 𝑖 ≠ 𝑗 arriving at

| |𝑃𝐴�𝑟 | |2 =
(
𝑑 − 1

𝑑

)2 (
𝑑∑

𝑖=1

(𝑎𝑖 · �𝑟 )2 − 1

𝑑 − 1

∑
𝑖≠ 𝑗

(𝑎𝑖 · �𝑟 ) (𝑎𝑗 · �𝑟 )
)

. (4.38)

Now, we take the square root of it:

| |𝑃𝐴�𝑟 | | =
√√√(

𝑑 − 1

𝑑

)2 (
𝑑∑

𝑖=1

(𝑎𝑖 · �𝑟 )2 − 1

𝑑 − 1

∑
𝑖≠ 𝑗

(𝑎𝑖 · �𝑟 ) (𝑎𝑗 · �𝑟 )
)
. (4.39)

Just as worthy of scrutiny is whether 𝑃𝐴 is an orthogonal map. The conditions to be

satisfied are 𝑃2
𝐴
= 𝑃𝐴 = 𝑃†

𝐴
. Since idempotence has already been proven, we must show that 𝑃𝐴

is self-adjoint. Let �𝑠 be a vector with the same dimension of �𝑟 and | |�𝑠 | | ≤ 1, if 𝑃𝐴 is self-adjoint,

it is symmetric with respect to the inner product: 𝑃𝐴�𝑟 · �𝑠 = �𝑟 · 𝑃𝐴�𝑠 . We check that:

𝑃𝐴�𝑟 · �𝑠 =
(
𝑑 − 1

𝑑

𝑑∑
𝑖=1

(𝑎𝑖 · �𝑟 )𝑎𝑖

)
· �𝑠

=
𝑑 − 1

𝑑

𝑑∑
𝑖=1

(𝑎𝑖 · �𝑟 ) (𝑎𝑖 · �𝑠)

= 𝑟 ·
(
𝑑 − 1

𝑑

𝑑∑
𝑖=1

(𝑎𝑖 · �𝑠)𝑎𝑖

)
= �𝑟 · 𝑃𝐴�𝑠, (4.40)

confirming the orthogonality. This implies that 𝑃𝐴 projects a generic vector in the closest point

possible of the plane of �𝐴, enabling the equation

(𝑃𝐴�𝑟 ) · (�𝑟 − 𝑃𝐴�𝑟 ) = 0. (4.41)

Once a nonselective measurement protocol should always retrieve a physical state, this result

gives a different way of testing if a given vector �𝑟 corresponds to a valid density operator: if

𝑃𝐴�𝑟 ∉ �𝐴 then �𝑟 does not correspond to a valid density operator.

We conclude this section by restating BA’s criterion in geometrical terms:

Geometric BA criterion for realism. 𝐴 is real for 𝜌�𝑟 iff

�𝑟 = 𝑃𝐴�𝑟 ⇐⇒ �𝑟 ∈ �𝐴. (4.42)
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4.3 EMERGENCE OF REALISM

A prototypical scenario illustrating the emergence of realism through measurements

of noncommuting observables involves sequential pairwise measurements. In this experimen-

tal protocol, two agents alternately perform nonselective measurements of noncommuting

observables 𝐴 and 𝐵. For example, Eva measures 𝐴 without recording the outcome, followed

by Eve measuring 𝐵, also without preserving the result. This procedure constitutes a proto-

col of pairwise measurements. By repeating these steps, we generate a sequence of pairwise

measurements. With that in mind, our main result in this session is stated:

Theorem. For any state 𝜌�𝑟 , there always exists a sufficiently large number of sequential pairwise

measurements of noncommuting observables 𝐴 and 𝐵 that can reduce the irrealism ℑ𝑋 of any

observable 𝑋 to an arbitrarily small value.

Proof.—For the first part of this proof, we start by examining the bound for the difference of von

Neumann entropies between two quantum states 𝜌 and 𝜎 of dimension 𝑑 defined by Fanne’s

inequality [94]:

|𝑆 (𝜌) − 𝑆 (𝜎) | ≤ 𝑇 ln (𝑑 − 1) + 𝐻bin(𝑇 ), (4.43)

with 𝑑 ∈ �≥2. Above, 𝐻bin(𝑇 ) = −𝑇 ln𝑇 − (1 −𝑇 ) ln (1 −𝑇 ) is Shannon’s binary entropy, and

the parameter 𝑇 is defined as

𝑇 = 𝑇 (𝜌, 𝜎) = 1

2
| |𝜌 − 𝜎 | |1, (4.44)

where | |𝜌 − 𝜎 | |1 is the trace distance between 𝜌 and 𝜎 , or the Schatten 1-norm.

Such norm is expressed by

| |𝑂 | |1 = Tr
√

𝑂†𝑂, (4.45)

with 𝑂 a generic operator. To clarify its meaning, taking 𝑂 Hermitian, we have:

| |𝑂 | |1 = Tr
√

𝑂†𝑂

= Tr
√

𝑂2

= Tr |𝑂 |
=

∑
𝑖

|𝑜𝑖 |, (4.46)

which is just the sum of the module of the eigenvalues 𝑜𝑖 of 𝑂 . In the case where 𝑂 is also

positive semidefinite, we have |𝑜𝑖 | = 𝑜𝑖 (∀𝑖). For our context, this implies

| |𝜌 − 𝜎 | |1 =
∑

𝑖

|𝜆𝑖 |, (4.47)

such that 𝜆𝑖 are the eigenvalues of 𝜌 − 𝜎 , allowing for the interpretation of the trace norm

as a measure of distinguishability between 𝜌 and 𝜎 . In fact, due to the unity trace of density
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operators, the equation above is bounded by 0 ≤ ||𝜌 − 𝜎 | |1 ≤ 2, with the first equality holding

iff 𝜌 = 𝜎 and the second holding iff 𝜌 and 𝜎 are orthogonal. This fact, together with Eq. (4.44),

allows the conclusion that 𝑇 ∈ [0, 1].
Resorting to computational methods, it can be graphically verified that𝐻bin(𝑇 ) ≤

√
2𝑇 .

Furthermore, since 𝑇 ≤ √
𝑇 , we derive

𝑇 ln (𝑑 − 1) + 𝐻bin(𝑇 ) ≤
√

𝑇 ln (𝑑 − 1) +
√
2𝑇

=

(√
2 + ln(𝑑 − 1)

) √
𝑇, (4.48)

which allows for a new bound:

|𝑆 (𝜌) − 𝑆 (𝜎) | ≤
(√

2 + ln(𝑑 − 1)
) √

𝑇 . (4.49)

To proceed, we introduce the Schatten 𝑝-norm,

| |𝑂 | |𝑝 =

(
Tr

[
(𝑂†𝑂) 𝑝

2

] ) 1
𝑝
, (4.50)

so that we can bring Hölder’s inequality:

| |𝑂𝑈 | |1 ≤ ||𝑂 | |𝑝 | |𝑈 | |𝑞, (4.51)

where 𝑈 is a generic operator with the same dimension of 𝑂 , 𝑝, 𝑞 ∈ [1,∞], and 1
𝑝
+ 1

𝑞
= 1. A

convenient result for this proof is given by setting 𝑝 = 𝑞 = 2 and𝑈 = �/𝑑 . Explicitly, Schatten’s
2-norm gives | |𝑂 | |2 =

√
Tr [𝑂†𝑂], and we evaluate

| |𝑈 | |2 =
√
Tr [𝑈 †𝑈 ]

=

√
1

𝑑2
Tr [�]

=
1√
𝑑

. (4.52)

This result, together with the specified parameters, gives the inequality

| |𝑂 | |1 ≤
√

𝑑 | |𝑂 | |2, (4.53)

enabling a final bound. From Eqs. (4.44) and (4.49) we rewrite

|𝑆 (𝜌) − 𝑆 (𝜎) | ≤
(√

2 + ln(𝑑 − 1)
) √

1

2
| |𝜌 − 𝜎 | |1

=

(
1 + ln(𝑑 − 1)

2

) √
| |𝜌 − 𝜎 | |1, (4.54)

such that with Eq. (4.53) we derive:

|𝑆 (𝜌) − 𝑆 (𝜎) | ≤ 𝑑1/4
(
1 + ln(𝑑 − 1)√

2

) √
| |𝜌 − 𝜎 | |2. (4.55)
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At this point, we bring the generalized Bloch sphere formalism to rewrite the last

bound obtained. First, we adjust the notation by taking 𝜌 → 𝜌�𝑟1 and 𝜎 → 𝜌�𝑟2 . Now, calculating

𝜌�𝑟1 − 𝜌�𝑟2 =
1

𝑑

(
� +𝐶𝑑�𝑟1 · �Λ

)
− 1

𝑑

(
� +𝐶𝑑�𝑟2 · �Λ

)
=
1

𝑑

[
� +𝐶𝑑�𝑟1 · �Λ − � −𝐶𝑑�𝑟2 · �Λ

]
=
1

𝑑

[
𝐶𝑑 (�𝑟1 − �𝑟2) · �Λ

]
=

𝐶𝑑

𝑑
(�𝑟1 − �𝑟2) · �Λ, (4.56)

allows to evaluate, together with Eqs. (4.2) and (4.4), the term:

| |𝜌�𝑟1 − 𝜌�𝑟2 | |2 =
√
Tr[(𝜌�𝑟1 − 𝜌�𝑟2)†(𝜌�𝑟1 − 𝜌�𝑟2)]

=

√√√
Tr

[(
𝐶𝑑

𝑑
(�𝑟1 − �𝑟2) · �Λ

)2]

=
𝐶𝑑

𝑑

√
Tr

[
(�𝑟1 − �𝑟2) · �Λ (�𝑟1 − �𝑟2) · �Λ

]
=

𝐶𝑑

𝑑

√
2 (�𝑟1 − �𝑟2) · (�𝑟1 − �𝑟2)

=

√
𝑑 − 1

𝑑
| |�𝑟1 − �𝑟2 | |. (4.57)

Now, we rewrite the bound,

|𝑆 (𝜌) − 𝑆 (𝜎) | ≤ 𝑑1/4
(
1 + ln(𝑑 − 1)√

2

) √
| |𝜌 − 𝜎 | |2

= 𝑑1/4
(
1 + ln(𝑑 − 1)√

2

) √√
𝑑 − 1

𝑑
| |�𝑟1 − �𝑟2 | |

= (𝑑 − 1)1/4
(
1 + ln(𝑑 − 1)√

2

) √
| |�𝑟1 − �𝑟2 | |, (4.58)

resulting in

|𝑆 (𝜌) − 𝑆 (𝜎) | ≤ 𝑔(𝑑)
√
| |�𝑟1 − �𝑟2 | |, (4.59)

with the definition of the monotonically increasing function

𝑔(𝑑) ≔ (𝑑 − 1)1/4
(
1 + ln(𝑑 − 1)√

2

)
. (4.60)

For the second part of this proof, we consider a scenario of sequential pairwise mea-

surements of the observables {𝐴, 𝐵}. Upon a nonselective measurement of 𝐴 = �𝑎 · �Λ over the

state 𝜌�𝑟 , the state Φ𝐴 (𝜌�𝑟 ) is obtained. Then, for the nonselective measurement of 𝐵 = �𝑏 · �Λ, a
similar mathematical structure holds, resulting in the state

Φ𝐵Φ𝐴 (𝜌�𝑟 ) =
1

𝑑

(
� +𝐶𝑑𝑃𝐵𝑃𝐴�𝑟 · �Λ

)
. (4.61)
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Upon inspection, the transition implied by this step in the sequence of measurements is given

in the Bloch formalism by �𝑟 → �𝑟1 ≡ 𝑃𝐵𝑃𝐴�𝑟 .
It follows from Eq. (4.30) that | |�𝑟 | | ≤ | |𝑃𝐴�𝑟 | | ≤ | |𝑃𝐴𝑃𝐵�𝑟 | |. With that in mind, we write

| |�𝑟 | | = 𝜖1 | |�𝑟 | | (4.62)

with 𝜖1 ∈ �[0,1] . Still from Eq. (4.30), one can verify that | |�𝑟 | | = | |�𝑟1 | | when | |�𝑟 | | = 0, the case for

maximally mixed states. Besides that, given the context {𝜌,𝐴, 𝐵}, the same equality happens

when 𝐴 and 𝐵 share the same simplex. In this circumstance, it holds that

[𝐴, 𝐵] = [𝐴, 𝜌] = [𝐵, 𝜌] = 0 =⇒ �𝑟 = �𝑟1, (4.63)

and for states such that | |�𝑟 | | ≠ 0, we have 𝜖1 = 1.

Working with the general cases, after 𝑛 sequential pairwise measurements, the state

is given by

�𝑟𝑛 ≡ (𝑃𝐵𝑃𝐴)𝑛�𝑟, (4.64)

such that

| |�𝑟𝑛 | | =
(
Π

𝑛
𝑘=1𝜖𝑘

) | |�𝑟 | | (∀𝑛 ∈ �>0) . (4.65)

It is important to notice that once (𝑃𝐵𝑃𝐴)𝑛𝜌 ≤ 𝑃𝐵𝑃𝐴𝜌 , the operator 𝑃𝐵𝑃𝐴 is not idempotent and,

thus, nonorthogonal. Once 𝑃𝐴 is applied, the resulting state’s corresponding Bloch vector is of

the form �𝑟𝐴 =
∑

𝑖 𝑟𝑖𝑎𝑖 , and, after 𝑃𝐵’s action, of the form �𝑟𝐵 =
∑

𝑖 𝑟𝑖𝑏𝑖 . With the decreasing action

on the norm and the iterative projection over different simplexes, it also holds that 𝜖𝑘 ≥ 𝜖𝑘+1
whenever the conditions for | |�𝑟 | | = | |�𝑟1 | | are not met.

Turning to the definition of irrealism (Eq. (3.5)), we now consider the irrealism of a

generic observable 𝑋 = �𝑥 · �Λ:

ℑ𝑋 (𝜌�𝑟𝑛 ) = 𝑆
(
Φ𝑋 (𝜌�𝑟𝑛 )

) − 𝑆 (𝜌�𝑟𝑛 ), (4.66)

such that, relying on the bound (4.58), we can write

ℑ𝑋 (𝜌�𝑟𝑛 ) ≤ 𝑔(𝑑)
√
| |�𝑟𝑛 − 𝑃𝑋 �𝑟𝑛 | |

= 𝑔(𝑑)
√
| | (1 − 𝑃𝑋 )�𝑟𝑛 | |

= 𝑔(𝑑)
√
| | (1 − 𝑃𝑋 ) (𝑃𝐵𝑃𝐴)𝑛�𝑟 | |

= 𝑔(𝑑)
√

| | (1 − 𝑃𝑋 ) (𝑃𝐵𝑃𝐴)𝑛�𝑟 | |
| | (𝑃𝐵𝑃𝐴)𝑛�𝑟 | |

√
| | (𝑃𝐵𝑃𝐴)𝑛�𝑟 | |

= 𝑔(𝑑)
√
| | (1 − 𝑃𝑋 )𝑟𝐵 | |

√
| | (𝑃𝐵𝑃𝐴)𝑛�𝑟 | |, (4.67)

where we defined

𝑟𝐵 ≔ 𝑟𝑛 =
�𝑟𝑛

| |�𝑟𝑛 | | . (4.68)

Recall that the subindex 𝐵 is used once after 𝑃𝐴𝑃𝐵’s action, the resulting vector falls on �𝐵 .
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Bound (4.67) makes explicit that whenever �𝑟 = 0, irrealism for any 𝑋 vanishes, regard-

less of the choices on 𝐴, 𝐵, and 𝑋 , and regardless of the magnitude of 𝑛, justifying why fully

mixed states 𝜌 = �/𝑑 are termed classical states.

For cases where �𝑟 · 𝑎𝑖 = 0 (∀𝑖), rendering 𝑃𝐴�𝑟 = 0, we find ℑ𝑋 (𝜌�𝑟𝑛 ) = 0 even for 𝑛 = 1,

showing that a single measurement is sufficient for establishing classical realism.

Another instance worth mentioning is when [𝑋, 𝐵] = 0. Once, 𝑃𝐵 projects a vector

into �𝐵 , 𝐵 is always real for 𝜌�𝑟𝑛 , and for every 𝑋 commuting with 𝐵 we obtain ℑ𝑋 (𝜌�𝑟𝑛 ) = 0.

We finish this proof under the assumption that [𝐴, 𝐵] ≠ 0. Turning to the notation

𝜖𝑘 = O(𝜖), with 𝜖 ∈ �[0,1) , we argue that

| |�𝑟𝑛 | |
| |�𝑟 | | = Π

𝑛
𝑘=1𝜖𝑘

≤ O(𝜖𝑛)
= [O(𝜖)]𝑛. (4.69)

Now, we consider ℑ𝑋 (𝜌�𝑟𝑛 ) ≤ 𝛿 when 𝑛 ≥ [𝑛min], where [•] stands integer part of •. To find

𝑛𝑚𝑖𝑛 we plug Eq. (4.69) into Eq. (4.67):

𝛿 = 𝑔(𝑑)
√
| | (1 − 𝑃𝑋 )𝑟𝐵 | |

√
[O(𝜖)]𝑛𝑚𝑖𝑛 | |�𝑟 | |

= 𝑔(𝑑)
√
| |�𝑟 | | | | (1 − 𝑃𝑋 )𝑟𝐵 | | [O(𝜖)] 𝑛𝑚𝑖𝑛

2 , (4.70)

rearrange it like
𝛿

𝑔(𝑑)
√
| |�𝑟 | | | | (1 − 𝑃𝑋 )𝑟𝐵 | |

= [O(𝜖)] 𝑛𝑚𝑖𝑛
2 (4.71)

and take log • on both sides,

log

(
𝛿

𝑔(𝑑)
√
| |�𝑟 | | | | (1 − 𝑃𝑋 )𝑟𝐵 | |

)
= log

(
[O(𝜖)] 𝑛𝑚𝑖𝑛

2

)
=

𝑛min

2
log[O(𝜖)] . (4.72)

We solve for 𝑛min to arrive at our final expression:

𝑛min = 2

log

(
𝛿

𝑔(𝑑)
√
||�𝑟 | | | | (1−𝑃𝑋 )𝑟𝐵 | |

)
log[O(𝜖)] . (4.73)

The equation above guarantees that, given 𝛿 vanishingly small, with 𝑛min pairwise

sequential measurements of 𝐴 and 𝐵, such that [𝐴, 𝐵] ≠ 0, the irrealism of 𝑋 , ℑ𝑋 , becomes

smaller than 𝛿 , as we wanted to show. �

4.4 INFORMATION-IRREALISM BOUND

The proof above relied solely on bounds defined in terms of geometric entities, as

functions of vectors, projectors, and the function 𝑔(𝑑), without requiring entropy calculations.
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However, this approach comes at the cost of the bound not being strict. For those interested in a

more precise understanding of how ℑ𝑋 behaves when | |�𝑟𝑛 | | does not approach zero, alternative

bounds become useful.

We now proceed to derive a strict bound and analyze the sequential pairwise mea-

surement scenario under its constraints.

To express the von Neumann entropy of 𝜌�𝑟 in terms of �𝑟 , we recall that 𝑆 (𝜌) = 𝐻 (𝜆𝑖),
where 𝜆𝑖 are the eigenvalues of 𝜌 , and 𝐻 (𝜆𝑖) = −∑

𝑖 𝜆𝑖 log 𝜆𝑖 is the Shannon entropy. Since

𝜌 is Hermitian, it can always be represented in a purely diagonal form, and the bases that

diagonalize 𝜌 correspond to observables for which 𝜌 exhibits no coherence. Geometrically,

these observables, denoted by 𝑅, define simplexes within which �𝑟 lies. With the eigenvalues 𝜆𝑖

corresponding to the probabilities 𝑝𝑖 of obtaining the outcomes of an observable 𝑅 given 𝜌�𝑟 ,
we use Eq. (4.22) to obtain

𝑆 (𝜌�𝑟 ) = 𝐻 (𝑝𝑖) = 𝐻

(
1

𝑑
[1 + (𝑑 − 1)𝑟𝑖 · �𝑟 ]

)
, (4.74)

with vectors 𝑟𝑖 representing the projectors of 𝑅 in the Bloch sphere. Fully mixed states, with

�𝑟 = 0, cause {𝑝𝑖} = 1/𝑑 , maximizing the entropy:

𝑆
(
𝜌�0

)
= 𝐻

(
1

𝑑

)
= log𝑑. (4.75)

Pure states, �𝑟 = 𝑟 𝑗 , minimize it. Using Eq. (4.19):

𝑆
(
𝜌𝑟𝑖

)
= 𝐻

(
1

𝑑
[1 + (𝑑 − 1)𝑟𝑖 · 𝑟𝑖]

)
= log 1 +

∑
𝑖≠ 𝑗

(
1

𝑑

[
1 + (𝑑 − 1)𝑟𝑖 · 𝑟 𝑗

] )
log

(
1

𝑑

[
1 + (𝑑 − 1)𝑟𝑖 · 𝑟 𝑗

] )

=

∑
𝑖≠ 𝑗

(
1

𝑑

[
1 − 𝑑 − 1

𝑑 − 1

] )
log

(
1

𝑑

[
1 − 𝑑 − 1

𝑑 − 1

] )
= 0 log 0

≔ 0. (4.76)

Given a physical state, to assess the maximal irrealism assigned to any observable,

one maximizes Eq. (4.66) over every 𝑋 :

ℑ𝑋 (𝜌) ≤ max
{𝑋 }

ℑ𝑋 (𝜌) = log𝑑 − 𝑆 (𝜌) = 𝐼 (𝜌). (4.77)

This result demonstrates that the maximal irrealism associated with 𝜌 is bounded by the

information content of 𝜌 , providing a strict limit on irrealism. In terms of real vectors, this

becomes

ℑ𝑋 (𝜌�𝑟 ) ≤ log𝑑 − 𝐻

(
1

𝑑
[1 + (𝑑 − 1)𝑟𝑖 · �𝑟 ]

)
, (4.78)
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which, together with the Eq. (4.75), corroborates to the idea that the state �/𝑑 determines full

realism, once ℑ𝑋

(
𝜌�0

)
= 0 (∀𝑋 ).

Using Eqs. (4.24), (4.66) and (4.74), we display the exact value for ℑ𝑋 (𝜌�𝑟 ):

ℑ𝑋 (𝜌�𝑟 ) = 𝐻

(
1

𝑑
[1 + (𝑑 − 1)𝑥𝑖 · 𝑃𝑋 �𝑟 ]

)
− 𝐻

(
1

𝑑
[1 + (𝑑 − 1)𝑟𝑖 · �𝑟 ]

)
, (4.79)

with 𝑥𝑖 corresponding to the projectors 𝑋𝑖 . The exact value for ℑ𝑋

(
𝜌�𝑟𝑛

)
is enabled by this

equation simply by replacing �𝑟 → �𝑟𝑛 , as long as �𝑟𝑛 is characterized.

Determining (𝑃𝐵𝑃𝐴)𝑛 �𝑟 = �𝑟𝑛 given a context {𝜌�𝑟 , 𝐴, 𝐵} involves the study of a pattern

expressed by the following iterative process:

𝑃𝐴�𝑟 =
𝑑 − 1

𝑑

∑
𝑖

(𝑎𝑖 · �𝑟 )𝑎𝑖

𝑃𝐵𝑃𝐴�𝑟 = �𝑟1
(
𝑑 − 1

𝑑

)2 ∑
𝑗

∑
𝑖

(𝑎𝑖 · �𝑟 ) (𝑎𝑖 · 𝑏 𝑗 )𝑏 𝑗

𝑃𝐴�𝑟1 =
(
𝑑 − 1

𝑑

)3 ∑
𝑘

∑
𝑗

∑
𝑖

(𝑎𝑖 · �𝑟 ) (𝑎𝑖 · 𝑏 𝑗 ) (𝑏 𝑗 · 𝑎𝑘)𝑎𝑘

𝑃𝐵𝑃𝐴�𝑟1 = �𝑟2 =
(
𝑑 − 1

𝑑

)4 ∑
𝑙

∑
𝑘

∑
𝑗

∑
𝑖

(𝑎𝑖 · �𝑟 ) (𝑎𝑖 · 𝑏 𝑗 ) (𝑏 𝑗 · 𝑎𝑘) (𝑎𝑘 · 𝑏𝑙 )𝑏𝑙, (4.80)

and so on. One can verify that the analytic formula capturing this pattern is:

�𝑟𝑛 =

(
𝑑 − 1

𝑑

)2𝑘 ∑
𝑖1,𝑖2,...,𝑖2𝑘+1

(�𝑟 · 𝑎𝑖1)
(

𝑘∏
𝑗=1

(𝑎𝑖2𝑗−1 · 𝑏𝑖2𝑗 )
) (

𝑘−1∏
𝑗=1

(𝑎𝑖2𝑗+1 · 𝑏𝑖2𝑗 )
)
𝑏𝑖2𝑘+1 . (4.81)

Using Eq. (4.81), and the index swap 𝑖2𝑘+1 → 𝑙 , one writes

�𝑟𝑛 =

∑
𝑙

𝑟𝑛𝑙𝑏𝑙 , (4.82)

with

𝑟𝑛𝑙 ≔

(
𝑑 − 1

𝑑

)2𝑘 ∑
𝑖1,𝑖2,...,𝑖2𝑘+1

(�𝑟 · 𝑎𝑖1)
(

𝑘∏
𝑗=1

(𝑎𝑖2𝑗−1 · 𝑏𝑖2𝑗 )
) (

𝑘−1∏
𝑗=1

(𝑎𝑖2𝑗+1 · 𝑏𝑖2𝑗 )
)

. (4.83)

It is convenient to put Eq. (4.79) in the form:

ℑ𝑋 (𝜌�𝑟𝑛 ) = 𝐻

(
1

𝑑
[1 + (𝑑 − 1)𝑥𝑖 · 𝑃𝑋 �𝑟𝑛]

)
− 𝐻

(
1

𝑑
[1 + (𝑑 − 1)𝑟𝑖 · �𝑟𝑛]

)
= 𝐻

(
1

𝑑

[
1 + (𝑑 − 1)𝑥𝑖 · 𝑃𝑋

∑
𝑙

𝑟𝑛𝑙𝑏𝑙

])
− 𝐻

(
1

𝑑

[
1 + (𝑑 − 1)𝑏𝑖 ·

∑
𝑙

𝑟𝑛𝑙𝑏𝑙

])

= 𝐻

(
1

𝑑
+

(
𝑑 − 1

𝑑

)2 ∑
𝑙,𝑚

𝑟𝑛𝑙 (𝑏𝑙 · 𝑥𝑚) (𝑥𝑖 · 𝑥𝑚)
)
− 𝐻

(
1

𝑑
+ 𝑑 − 1

𝑑

∑
𝑙

𝑟𝑛𝑙 (𝑏𝑖 · 𝑏𝑙 )
)
, (4.84)
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Figure 7 – 2-section of the Bloch sphere for a 𝑑 = 3 system made parallel to the triangle simplex
determined by an observable. The contour in red corresponds to the set of states with
𝐼 (𝜌�𝑟 ) = 0.231049.

and its upper bound in the form:

ℑ𝑋 (𝜌�𝑟𝑛 ) ≤ 𝐼 (𝜌�𝑟𝑛 ) = log𝑑 − 𝐻

(
1

𝑑
+ 𝑑 − 1

𝑑

∑
𝑙

𝑟𝑛𝑙 (𝑏𝑖 · 𝑏𝑙 )
)

. (4.85)

A possibly misguided intuition inherited from the qubit scenario is that information is

simply a measure of purity. When 𝑑 = 2, the information is a function of Shannon’s binary

entropy. The probabilities 𝑝1 and 𝑝2 are fully determined by the purity Tr [𝜌2], mapped to the

norm | |�𝑟 | |, and the condition Tr [𝜌] = 1, which gives 𝑝2 = (1 − 𝑝1). For 𝑑 ≥ 3, such constraints

cannot fully determine the set of probabilities {𝑝𝑖}𝑑𝑖=1.
Figure 7 displays a 2-section of the qutrit 8-𝑑 hypersphere. The triangle corresponds to

the simplex determined by an observable, �𝑅 . We consider a state 𝜌�𝑟 with �𝑟 =
𝑟1
2 , corresponding

in the image to the point (0, 0.5) and evaluate its information: 𝐼 (𝜌�𝑟 ) = 0.231049. Then, within

the simplex we search for every other state with the same information value, finding the

contour displayed in red. Notice that if the information were completely determined by | |�𝑟 | |,
the shape in red would be described by a circle centered at the origin. Instead, we get a rounded

triangle shape, revealing that the information depends on | |�𝑟 | | together with the placement of

�𝑟 within the simplex. In the direction of the midpoints of the triangle’s edge, such as −𝑟1, we

obtain the minimal values for | |�𝑟 | |, here approximately 0.42. For sufficiently large | |�𝑟 | | values,
one cannot achieve a closed contour. The extreme case of pure states determines the triplet

{𝑟𝑖}𝑑𝑖=1 corresponding to 𝐼 (𝜌�𝑟 ) = log 3. A closed contour can be obtained only for states such

that | |�𝑟 | | ≤ 1/(𝑑 − 1) in the directions of the midpoints of �𝑅 .
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4.5 SLIGHTLY INCOMPATIBLE OBSERVABLES

It is true that, once the entities {𝜌�𝑟 , 𝐴, 𝐵, 𝑋 } are well-defined, so is ℑ𝑋 (𝜌�𝑟𝑛 ). Neverthe-
less, the plethora of indices, summations, products, inner products, Shannon entropies, and

similar constructs serve as a testament to the complexity and boldness required for explicit

calculations. To simplify the landscape, we proceed by investigating relevant scenarios that

allow for useful approximations, revealing insightful results.

One scenario of this kind is given by �𝑟 = | |�𝑟 | |𝑏1 and 𝑎 · 𝑏 = 1 − 𝜖 , such that 𝜖 << 1.

That is, we are considering a situation where our physical state is characterized by a density

operator with �𝑟 ∈ �𝐵 , and the pairwise sequential measurements performed with observables𝐴

and 𝐵 that are just slightly incompatible, [𝐴, 𝐵] << 1. Without loss of generality, this situation

allows the description of 𝑎1 rotated with respect to 𝑏1 by 𝜃 << 1.

Our first step is to investigate 𝑃𝐴�𝑟 in a scenario like this. Avoiding a shortage of

variables, we recycle 𝛼 and 𝛽 , and define

�𝑟 · 𝑎1 ≔ 𝛼 �𝑟 · 𝑎𝑖 ≔ 𝛽𝑖, (𝑖 ≠ 1). (4.86)

Given the structure
∑𝑑

𝑖=1 𝑎𝑖 = 0 (Eq. (4.17)), we can do

0 = �𝑟 ·
𝑑∑

𝑖=1

𝑎𝑖

=

𝑑∑
𝑖=1

(�𝑟 · 𝑎𝑖)

= 𝛼 +
𝑑∑

𝑖=2

(�𝑟 · 𝑎𝑖)

= 𝛼 +
𝑑∑

𝑖=2

𝛽𝑖, (4.87)

obtaining the relation

𝛼 = −
𝑑∑

𝑖=2

𝛽𝑖 . (4.88)

| |𝑃𝐴�𝑟 | |2, as obtained in Eq. (4.38), is:

| |𝑃𝐴�𝑟 | |2 =
(
𝑑 − 1

𝑑

)2 (
𝑑∑

𝑖=1

(𝑎𝑖 · �𝑟 )2 − 1

𝑑 − 1

∑
𝑖≠ 𝑗

(𝑎𝑖 · �𝑟 ) (𝑎𝑗 · �𝑟 )
)

. (4.89)

Informed by Eq. (4.88), we investigate both summations. The first one gives:

𝑑∑
𝑖=1

(𝑎𝑖 · �𝑟 )2 = (𝑎1 · �𝑟 )2 +
𝑑∑

𝑖=2

(𝑎𝑖 · �𝑟 )2

= 𝛼2 +
𝑑∑

𝑖=2

𝛽2
𝑖 . (4.90)
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As for the second one, we start by manipulating it like

∑
𝑖≠ 𝑗

(𝑎𝑖 · �𝑟 ) (𝑎𝑗 · �𝑟 ) =
(

𝑑∑
𝑖=1

(𝑎𝑖 · �𝑟 )
)2

−
𝑑∑

𝑖=1

(𝑎𝑖 · �𝑟 )2. (4.91)

Because the first term on the right-hand side is zero, we have:

∑
𝑖≠ 𝑗

(𝑎𝑖 · �𝑟 ) (𝑎𝑗 · �𝑟 ) = −𝛼2 −
𝑑∑

𝑖=2

𝛽2
𝑖 . (4.92)

Plugging Eqs. (4.90) and (4.92) into Eq. (4.89) gives

| |𝑃𝐴�𝑟 | |2 =
(
𝑑 − 1

𝑑

)2 [
𝛼2 +

𝑑∑
𝑖=2

𝛽2
𝑖 +

1

𝑑 − 1

(
𝛼2 +

𝑑∑
𝑖=2

𝛽2
𝑖

)]

=

(
𝑑 − 1

𝑑

)2 [(
1 + 1

𝑑 − 1

) (
𝛼2 +

𝑑∑
𝑖=2

𝛽2
𝑖

)]

=
𝑑 − 1

𝑑

(
𝛼2 +

𝑑∑
𝑖=2

𝛽2
𝑖

)
. (4.93)

As a sanity check, one may consider 𝛼 = 1 and 𝛽𝑖 = −1/(𝑑 − 1) to retrieve | |𝑃𝐴�𝑟 | |2 = 1.

The relation we defined between 𝑎1 and 𝑏1 is such that we obtain

�𝑟 · 𝑎1 = | |�𝑟 | |𝑏1 · 𝑎1
= | |�𝑟 | | cos𝜃 . (4.94)

Since 𝜃 << 0, a Taylor expansion gives the approximation up to the second order:

�𝑟 · 𝑎1 ≈ ||�𝑟 | |
(
1 − 𝜃 2

2

)
. (4.95)

To determine the correction terms for �𝑟 · 𝑎𝑖 with 𝑖 ≠ 1, we recycle the variable 𝛿 , set

�𝑟 · 𝑎𝑖 = | |�𝑟 | |
(
− 1

𝑑 − 1
+ 𝛿𝑖

)
, (𝑖 ≠ 1) (4.96)
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where we used Eq. (4.19), and, using Eq. (4.17), calculate:

0 = �𝑟 · 𝑎1 +
𝑑∑

𝑖=2

�𝑟 · 𝑎𝑖

≈ ||�𝑟 | |
(
1 − 𝜃 2

2

)
+

𝑑∑
𝑖=2

| |�𝑟 | |
(
− 1

𝑑 − 1
+ 𝛿𝑖

)

= | |�𝑟 | |
[
1 − 𝜃 2

2
+

𝑑∑
𝑖=2

(
− 1

𝑑 − 1
+ 𝛿𝑖

)]

= | |�𝑟 | |
(
1 − 𝜃 2

2
− 𝑑 − 1

𝑑 − 1
+

𝑑∑
𝑖=2

𝛿𝑖

)

= | |�𝑟 | |
(
−𝜃 2

2
+

𝑑∑
𝑖=2

𝛿𝑖

)

≈ ||�𝑟 | |
(
−𝜃 2

2
+ (𝑑 − 1)𝛿

)
, (4.97)

where we assumed in the last step equal corrections for every 𝑖 ≠ 1. Solving for 𝛿 , we get

𝛿 =
𝜃 2

2(𝑑 − 1) (4.98)

wielding, for 𝑖 ≠ 1:

�𝑟 · 𝑎𝑖 ≈ ||�𝑟 | |
[
− 1

𝑑 − 1
+ 𝜃 2

2(𝑑 − 1)
]

= | |�𝑟 | |
[

𝜃 2 − 2

2(𝑑 − 1)
]

. (4.99)

Given definitions (4.86) and the approximations we obtained in Eqs. (4.95) and (4.99),

we are in a good position to determine | |𝑃𝐴�𝑟 | |. We need to calculate 𝛼2 and 𝛽2 for that, then,

𝛼2
= (�𝑟 · 𝑎1)2

= | |�𝑟 | |2
(
2 − 𝜃 2

2

)2
= | |�𝑟 | |2 (2 − 𝜃 2)2

4
(4.100)

and

𝛽2
= (�𝑟 · 𝑎𝑖)2

= | |�𝑟 | |2
[

𝜃 2 − 2

2(𝑑 − 1)
]2

= | |�𝑟 | |2 (2 − 𝜃 2)2
4(𝑑 − 1)2 . (4.101)
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Substituting these terms in equation (4.93), gives

| |𝑃𝐴�𝑟 | |2 = 𝑑 − 1

𝑑

(
𝛼2 +

𝑑∑
𝑖=2

𝛽2
𝑖

)

=
𝑑 − 1

𝑑

(
| |�𝑟 | |2 (2 − 𝜃 2)2

4
+

𝑑∑
𝑖=2

| |�𝑟 | |2 (2 − 𝜃 2)2
4(𝑑 − 1)2

)

= | |�𝑟 | |2𝑑 − 1

4𝑑

(
(2 − 𝜃 2)2 + (2 − 𝜃 2)2

𝑑 − 1

)
= | |�𝑟 | |2 (2 − 𝜃 2)2

4
, (4.102)

such that

| |𝑃𝐴�𝑟 | | = | |�𝑟 | | 2 − 𝜃 2

2
. (4.103)

This result mirrors the fact that the mixing caused by the map Φ𝐴 does not depend on the

dimension of the system but on the commutation relations between 𝐴 and the observables 𝑅

such that �𝑟 ∈ �𝑅 .

To determine the direction where 𝑃𝐴�𝑟 falls within the hypersphere, we can calculate

directly, using the approximations we obtained, that

𝑃𝐴�𝑟 =

(
𝑑 − 1

𝑑

) 𝑑∑
𝑖=1

(𝑎𝑖 · �𝑟 )𝑎𝑖

=

(
𝑑 − 1

𝑑

) [
(𝑎1 · �𝑟 )𝑎1 +

𝑑∑
𝑖=2

(𝑎𝑖 · �𝑟 )𝑎𝑖

]

= | |�𝑟 | |
(
𝑑 − 1

𝑑

) (
2 − 𝜃 2

2
𝑎1 +

𝑑∑
𝑖=2

[
𝜃 2 − 2

2(𝑑 − 1)
]
𝑎𝑖

)

= | |�𝑟 | |
(
𝑑 − 1

𝑑

) (
2 − 𝜃 2

2
𝑎1 +

[
2 − 𝜃 2

2(𝑑 − 1)
]
𝑎1

)
= | |�𝑟 | |

(
𝑑 − 1

𝑑

) (
𝑑

𝑑 − 1

) (
2 − 𝜃 2

2

)
𝑎1

= | |�𝑟 | |
(
2 − 𝜃 2

2

)
𝑎1.

= | |𝑃𝐴�𝑟 | |𝑎1. (4.104)

This result confirms the norm we obtained before and ascertains that the symmetry relations

of the simplex cause the projected vector to fall along 𝑎1.

Calculating �𝑟𝑛 in this situation becomes easy. The sequential pairwise measurements
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give:

𝑃𝐴�𝑟 = | |�𝑟 | | 2 − 𝜃 2

2
𝑎1

𝑃𝐵𝑃𝐴�𝑟 = �𝑟1 | |�𝑟 | |
(
2 − 𝜃 2

2

)2
𝑏1

𝑃𝐴�𝑟1 = | |�𝑟 | |
(
2 − 𝜃 2

2

)3
𝑎1

𝑃𝐵𝑃𝐴�𝑟1 = �𝑟2 = | |�𝑟 | |
(
2 − 𝜃 2

2

)4
𝑏1, (4.105)

such that

�𝑟𝑛 = | |�𝑟 | |
(
2 − 𝜃 2

2

)2𝑛
𝑏1, (4.106)

and we find

| |�𝑟𝑛 | | = | |�𝑟 | |
(
2 − 𝜃 2

2

)2𝑛
. (4.107)

With that, using Eq. (4.74), we obtain the bound (4.78):

ℑ𝑋 (𝜌�𝑟𝑛 ) ≤ log𝑑 − 𝐻

(
1

𝑑

[
1 + (𝑑 − 1)𝑏𝑖 · �𝑟𝑛

] )
= log𝑑 − 𝐻

(
1

𝑑

[
1 + ||�𝑟𝑛 | | (𝑑 − 1)𝑏𝑖 · 𝑏1

] )
= log𝑑 +

(
1

𝑑
+ ||�𝑟𝑛 | |𝑑 − 1

𝑑

)
log

(
1

𝑑
+ ||�𝑟𝑛 | |𝑑 − 1

𝑑

)

+
𝑑∑

𝑖=2

(
1

𝑑

[
1 + ||�𝑟𝑛 | | (𝑑 − 1)𝑏𝑖 · 𝑏1

] )
log

(
1

𝑑

[
1 + ||�𝑟𝑛 | | (𝑑 − 1)𝑏𝑖 · 𝑏1

] )
= log𝑑 +

(
1

𝑑
+ ||�𝑟𝑛 | |𝑑 − 1

𝑑

)
log

(
1

𝑑
+ ||�𝑟𝑛 | |𝑑 − 1

𝑑

)
+ 𝑑 − 1

𝑑
(1 − ||�𝑟𝑛 | |) log

[
1

𝑑
(1 − ||�𝑟𝑛 | |)

]
.

(4.108)

Extreme cases are worth considering to check the consistency of our calculations in

this scenario. We start by taking �𝑟 = 𝑏1 and 𝑛 = 0. That is, the case where we consider the

information of a pure state of dimension 𝑑 . It suffices to introduce | |�𝑟𝑛 | | = 1 in the equation

above:

ℑ𝑋 (𝜌𝑏1
) ≤ log𝑑 +

(
1

𝑑
+ 𝑑 − 1

𝑑

)
log

(
1

𝑑
+ 𝑑 − 1

𝑑

)
+ 𝑑 − 1

𝑑
(1 − 1) log

[
1

𝑑
(1 − 1)

]
= log𝑑 + log 1 + 0 log 0

= log𝑑, (4.109)
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Figure 8 – Plots of the irrealism bound 𝐼 (𝜌�𝑟𝑛 ) as a function of the number 𝑛 of sequential pairwise

measurements for �𝑟 = 𝑏1, �𝑎 · �𝑏 = cos𝜃 with 𝜃 = 1°, and 𝑑 ∈ �≤5. Displayed on the left is a
linear plot and on the right is a logarithmic plot, following the same color legends.

as we expected. The other extreme case concerns 𝑛 → ∞, causing | |�𝑟𝑛 | | → 0. We obtain:

ℑ𝑋 (𝜌�0) ≤ log𝑑 + 1

𝑑
log

(
1

𝑑

)
+ 𝑑 − 1

𝑑
log

(
1

𝑑

)
= log𝑑 +

(
1

𝑑
+ 𝑑 − 1

𝑑

)
log

1

𝑑

= log𝑑 − log𝑑

= 0, (4.110)

also, as we expected.

We argue that the decrease in | |�𝑟 | | caused by 𝑃𝐴 does not depend on 𝑑 . As indicated by

Eq. (4.107), the same holds for the projector (𝑃𝐵𝑃𝐴)𝑛 . Information, in contrast, depends on the

dimension 𝑑 . As a consequence, in a sequential pairwise measurement scenario, the maximal

irrealism accessible to any observable 𝑋 will depend both on 𝑑 and 𝜃 , which corresponds to

the degree of noncommutability between 𝐴 and 𝐵.

To investigate this in more detail, we performed a numerical analysis where the

information bound was evaluated for pure systems, �𝑟 = 𝑏1, of dimension 𝑑 ∈ �≤5 and 𝑛 ∈
[0, 104]. Using the approximations obtained for only slightly incompatible observables, we

take �𝑎 · �𝑏 = cos𝜃 with 𝜃 = 1°. The results shown in Figure 8 suggest that higher-dimensional

systems display greater irrealism and irrealism resilience, once the curves do not intercept

each other. This fact can be visualized in the logarithmic plot, with the relative spreading of

the curves as 𝑛 increases.

In addition to the information bound of a higher-dimensional system being strictly

larger than that of a lower-dimensional one, we can also observe from the graph that the shapes

of their curves differ. Quantifying this difference involves taking Eq. (4.108), dividing it by log𝑑 ,

and then evaluating its limit as 𝑑 → ∞. Analyzing term by term, the first term approaches 1,
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Figure 9 – Plot of 𝐼 (𝜌�𝑟𝑛 )/log𝑑 as a function of the number 𝑛 of sequential pairwise measurements for

�𝑟 = 𝑏1 and �𝑎 · �𝑏 = cos𝜃 with 𝜃 = 1°. Pictured in orange and blue systems of 𝑑 = 2 and 𝑑 → ∞
respectively, the gray area represents the region covered by the curves for systems of every
other dimensionality.

while the second term tends to zero,

lim
𝑑→∞

(
1

𝑑
+ ||�𝑟𝑛 | |𝑑 − 1

𝑑

) log (
1
𝑑
+ ||�𝑟𝑛 | |𝑑−1𝑑

)
log𝑑

= lim
𝑑→∞

||�𝑟𝑛 | | log | |�𝑟𝑛 | |
log𝑑

= 0, (4.111)

and the third:

lim
𝑑→∞

𝑑 − 1

𝑑
(1 − ||�𝑟𝑛 | |)

log
[
1
𝑑
(1 − ||�𝑟𝑛 | |)

]
log𝑑

= lim
𝑑→∞

(1 − ||�𝑟𝑛 | |)
log

[
1−||�𝑟𝑛 | |

𝑑

]
log𝑑

= lim
𝑑→∞

(1 − ||�𝑟𝑛 | |)
− 1

𝑑
1
𝑑

= | |�𝑟𝑛 | | − 1, (4.112)

where we used L’Hôpital’s rule. Putting everything together, we obtain

lim
𝑑→∞

ℑ𝑋 (𝜌�𝑟𝑛 )
log𝑑

≤ lim
𝑑→∞

𝐼 (𝜌�𝑟𝑛 )
log𝑑

= | |�𝑟𝑛 | |. (4.113)

Figure 9 illustrates the results of this analysis. Regardless of the magnitude of 𝑑 , we

always obtain a monotonically decreasing function. We also verify that this function is convex,

but the degree of its convexity attenuates as 𝑑 increases, converging to the shape described by

the upper limit of the shaded region, which corresponds to the filling given by every 𝑑 ≥ 2.

4.6 VOLUME OF IRREALISM

While the information bound (Eq. (4.77) provides the maximal amount of information

an observable wields, it does not a priori specify how irrealism is distributed among all possible

observables. To address this, we introduce a new measure, which we call the volume of irrealism.
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Considering a quantum state 𝜌 , our aim is to determine the average irrealism associated

with all possible observables. To this end, we define the volume of irrealism as:

ℑ(𝜌) ≔ 1

𝑁

∫
𝑋

ℑ𝑋 (𝜌)𝑑𝑋 . (4.114)

Here, the measure 𝑑𝑋 is the Haar measure over the SU(𝑑) group, ensuring a uniform sampling

of observables in the space of all possible 𝑑-dimensional quantum observables, represented by

the integration domain. The normalization factor 𝑁 =
∫
𝑋

𝑑𝑋 corresponds to the total volume of

the SU(𝑑) group under the Haar measure. Consequently, ℑ(𝜌) quantifies the average irrealism
of the state 𝜌 across the entire space of observables, ensuring that the measure is unbiased and

mathematically well defined.

It is a direct consequence of Klein’s inequality (equation (2.65)) that ℑ𝑋 (𝜌) ≥ 0, with

equality holding iff 𝜌 = Φ𝑋 (𝜌). To guarantee ℑ(𝜌) = 0, it is necessary that ℑ𝑋 (𝜌) = 0 (∀𝑋 ). If
the domain includes at least two observables that do not commute, this condition is satisfied only

by 𝜌 = �/𝑑 . Thus, completely mixed states have zero volume of irrealism. Moreover, because

irrealism is always limited by information, we have the non-strict upper bound ℑ(𝜌) ≤ 𝐼 (𝜌).
In practice, ℑ(𝜌) can be approximated using Monte Carlo sampling. By randomly

generating 𝑁 observables 𝑋𝑖 , the integral can be approximated as:

ℑ(𝜌) ≈ 1

𝑁

𝑁∑
𝑖=1

ℑ𝑋𝑖
(𝜌). (4.115)

This approach is computationally efficient and provides a reasonable estimate of the integral

for a sufficiently large 𝑁 .

Expressing this quantity in the generalized Bloch sphere formalism, leads to the

equation

ℑ(𝜌�𝑟 ) =
1

𝑆

∫
𝑆

ℑ𝑋 (𝜌�𝑟 )𝑑Ω( �𝑥), (4.116)

where the integration domain 𝑆 corresponds to the region at the surface of the hypersphere

populated by the vectors �𝑥 . The normalization factor 𝑆 =
∫
𝑆
𝑑Ω( �𝑥) gives the area of this region,

and 𝑑Ω( �𝑥) gives one of its surface elements.

Using generalized spherical coordinates, we can define 𝜙1 ∈ [0, 2𝜋] and 𝜙𝑖 ∈ [0, 𝜋],
with 𝑖 ∈ {2, 3, .., 𝑑 − 1}, such that

𝑑Ω( �𝑥) =
𝑑−1∏
𝑖=1

sin𝑑−𝑖−1(𝜙𝑖)𝑑𝜙𝑖 . (4.117)

With this, we obtain

ℑ(𝜌�𝑟 ) =
1

𝑆

∫
𝑆

ℑ𝑋 (𝜌�𝑟 )
𝑑−1∏
𝑖=1

sin𝑑−𝑖−1(𝜙𝑖)𝑑𝜙𝑖 . (4.118)

One practical problemwe face with this definition is the necessity of characterization of

the region expressed by 𝑆 . Similarly to the problem of determining the region of the Bloch sphere
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populated by vectors corresponding to valid density operators, each vector �𝑥 should correspond

to a valid observable. Once the definition of irrealism is based upon projective measurements,

the eigenstates of the observables should also correspond to valid post-measurement states.

That is, the vector �𝑥 needs to correlate with a simplex �𝑋 whose vertices correlate to valid

physical states given the generators Λ𝑖 .

We also consider the situation where the domain of integration does not correspond

to all possible observables, but only to a specific class of possible observables {𝑋 ′}. Expressing

ℑ{𝑋 ′} (𝜌) ≔ 1

𝑁 ′

∫
𝑋 ′
ℑ𝑋 (𝜌)𝑑𝑋, (4.119)

with the domain of integration 𝑋 ′ ⊂ 𝑋 , and 𝑁 ′ =
∫
𝑋 ′ 𝑑𝑋 , we define the volume of irrealism

for observables of the class {𝑋 ′} given 𝜌 . Similarly to the situation presented above, if the set

{𝑋 ′} contains incompatible observables, we obtain ℑ{𝑋 ′} (𝜌) = 0 iff 𝜌 = �/𝑑 . The maximum

value for ℑ{𝑋 ′} (𝜌) occurs when 𝜌 is a pure and a state of reality for some observable that is

maximally incompatible with all observables in the set {𝑋 ′}, returning ℑ{𝑋 ′} (𝜌) = 𝐼 (𝜌) = log𝑑 .

4.7 CASE STUDIES

We proceed to investigate specific scenarios by fixing the dimension of the system.

Specifically, we set 𝑑 = 2 and 𝑑 = 3. The qubit, being the fundamental entity in quantum

information, illustrates the formalism and tools we developed so far in the scenario of the usual

Bloch sphere representation. Its simplicity allows for a didactic illustration. The qutrit situation

already showcases the particularities of a higher-dimensional system, while being still simple

enough to be computationally permissible for most of the analysis we are interested in.

4.7.1 Qubit analysis

Qubit systems are represented as 𝜌�𝑟 = 1
2 (� + �𝑟 · �𝜎), where the generators �Λ reduce

to the Pauli matrices �𝜎 , as previously exposed. Observables, written as 𝐴 = 𝑎 · �𝜎 , determine

one-dimensional simplexes: straight lines diametrically crossing the Bloch sphere. This is

clearly envisioned by recalling that the observables of the qubit system have two projectors

that determine vectors such that 𝑎1 ·𝑎2 = −1, according to the relation (4.19). Taking the convex

set generated by all the possible mixtures of those projectors, we end with the one-dimensional

simplex �𝐴.

Using the fact that 𝑎2 = −𝑎1, and setting the eigenvalues of the observables as 𝑎1 = 1

and 𝑎2 = −1, we use equation (4.21)

�𝑎 =
𝐶𝑑

𝑑
(𝑎1𝑎1 + 𝑎2𝑎2)

=
1

2
[𝑎1 − (−1)𝑎1]

= 𝑎1 (4.120)
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Using this result, the post unrevealed measurement state becomes, according to equation (4.25):

𝑃𝐴�𝑟 =
𝑑 − 1

𝑑

∑
𝑖

(𝑎𝑖 · �𝑟 )𝑎𝑖

=
1

2
[(𝑎1 · �𝑟 )𝑎1 + (𝑎2 · �𝑟 )𝑎2]

=
1

2
[(𝑎1 · �𝑟 )𝑎1 − (−𝑎1 · �𝑟 )𝑎1]

= (𝑎1 · �𝑟 )𝑎1
= (𝑎 · �𝑟 )𝑎, (4.121)

using the notation �𝑎 = 𝑎. With that, we obtain the sequence

𝑃𝐴�𝑟 = (𝑎 · �𝑟 )𝑎
𝑃𝐵𝑃𝐴�𝑟 = �𝑟1 (𝑎 · 𝑏) (𝑎 · �𝑟 )𝑏
𝑃𝐴�𝑟1 = (𝑎 · 𝑏)2(𝑎 · �𝑟 )𝑎
𝑃𝐵𝑃𝐴�𝑟1 = �𝑟2 = (𝑎 · 𝑏)3(𝑎 · �𝑟 )𝑏, (4.122)

such that

�𝑟𝑛 = (𝑎 · 𝑏)2𝑛−1(𝑎 · �𝑟 )𝑏. (4.123)

With this construction, 𝑃𝑋 ’s action on �𝑟𝑛 takes the form of

𝑃𝑋 �𝑟𝑛 = (𝑎 · 𝑏)2𝑛−1(𝑎 · �𝑟 ) (𝑏 · 𝑥)𝑥 . (4.124)

We now use the computationally verifiable inequality

𝐻bin

(
1 + 𝜇𝜆

2

)
− 𝐻bin

(
1 + 𝜆

2

)
≤ 𝜆2(1 − 𝜇4) log 2, (4.125)

where 𝐻bin(𝑝) = −𝑝 ln𝑝 − (1 − 𝑝) ln (1 − 𝑝) is the Shannon binary entropy, 𝜆 ∈ R[0,1] , and
𝜇 ∈ R[−1,1] . For 𝜇 = 0 and 𝜆 = 1, the upper bound becomes tight. Substituting 𝜇 = 0 and 𝜆 = 1

into the left-hand side:

𝐻bin

(
1 + 𝜇𝜆

2

)
− 𝐻bin

(
1 + 𝜆

2

)
= 𝐻bin

(
1 + 0 · 1

2

)
− 𝐻bin

(
1 + 1

2

)
= 𝐻bin

(
1

2

)
− 𝐻bin(1).

Since 𝐻bin
( 1
2

)
= −1

2 ln
1
2 − 1

2 ln
1
2 = ln 2 and 𝐻bin(1) = 0, we confirm:

𝐻bin

(
1 + 𝜇𝜆

2

)
− 𝐻bin

(
1 + 𝜆

2

)
= log 2. (4.126)

Using the above inequality, we calculate ℑ𝑋 (𝜌�𝑟𝑛 ) (Eq. (4.79)) explicitly. Recall that

ℑ𝑋 (𝜌�𝑟𝑛 ) = 𝐻bin

(
1 + ||𝑃𝑋 �𝑟𝑛 | |

2

)
− 𝐻bin

(
1 + ||�𝑟𝑛 | |

2

)
. (4.127)
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Using the inequality, we substitute 𝜆 = | |�𝑟𝑛 | | and 𝜇 =
| |𝑃𝑋 �𝑟𝑛 | |
| |�𝑟𝑛 | | :

ℑ𝑋 (𝜌�𝑟𝑛 ) ≤ ||�𝑟𝑛 | |2
(
1 −

( | |𝑃𝑋 �𝑟𝑛 | |
| |�𝑟𝑛 | |

)4)
log 2. (4.128)

Substituting 𝑃𝑋 �𝑟𝑛 = (𝑎 · 𝑏)2𝑛−1(𝑎 · �𝑟 ) (𝑏 · 𝑥)𝑥 and | |𝑃𝑋 �𝑟𝑛 | | = | (𝑏 · 𝑥) | (𝑎 · 𝑏)2𝑛−1 |𝑎 · �𝑟 |, we find:

| |�𝑟𝑛 | | = (𝑎 · 𝑏)2𝑛−1 |𝑎 · �𝑟 |, (4.129)

| |𝑃𝑋 �𝑟𝑛 | |
| |�𝑟𝑛 | | = 𝑏 · 𝑥 . (4.130)

Thus,

ℑ𝑋 (𝜌�𝑟𝑛 ) ≤
(
𝑎 · �𝑟 )2 (𝑎 · 𝑏)2(2𝑛−1) [

1 − (
𝑥 · 𝑏)4]

log 2. (4.131)

Since |𝑎 · 𝑏 | < 1 whenever [𝐴, 𝐵] ≠ 0, this formula supports our main result: for any

observable 𝑋 , we can always choose 𝑛 large enough such that irrealism is upper bounded by

arbitrarily small values.

For a system of dimension 𝑑 = 2, the volume of irrealism (Eq. (4.114)) takes the form

ℑ(𝜌�𝑟 ) =
1

4𝜋

∫
𝑆

ℑ𝑋 (𝜌�𝑟 ) 𝑑Ω( �𝑥), (4.132)

where 𝑆 is the surface area of the unit sphere in three dimensions, and 𝑑Ω(𝑥) represents one
of its surface elements.

To work through this integral, we use Eq. (4.127) and set | |𝑃𝑋 �𝑟 | | = |𝑥 · �𝑟 | = | |�𝑟 | | cos𝜃 .

The surface element in spherical coordinates is 𝑑Ω(𝑥) = sin𝜃 𝑑𝜃 𝑑𝜙 and, due to the integrand

independence on the azimuthal angle 𝜙 , the volume of irrealism simplifies to:

ℑ(𝜌�𝑟 ) =
1

2

∫ 𝜋

0
ℑ𝑋 (𝜌�𝑟 ) sin𝜃 𝑑𝜃 . (4.133)

The parity of the dot product allows us to further simplify the integral. We restrict the polar

angle 𝜃 to the range [0, 𝜋/2] and multiply the result by 2:

ℑ(𝜌�𝑟 ) =
∫ 𝜋/2

0
ℑ𝑋 (𝜌�𝑟 ) sin𝜃 𝑑𝜃 . (4.134)

Introducing the substitution 𝛼 = cos𝜃 , with 𝑑𝛼 = − sin𝜃 𝑑𝜃 , the limits of integration become

𝛼 ∈ [1, 0]. Finally, the integral becomes:

ℑ(𝜌�𝑟 ) =
∫ 1

0
𝐻bin

(
1 + ||�𝑟 | |𝛼

2

)
𝑑𝛼 − 𝐻bin

(
1 + ||�𝑟 | |

2

)
. (4.135)

The volume of irrealism for a qubit is thus a function of the norm of �𝑟 , establishing a

direct relationship between this quantity and the information of the qubit:

𝐼 (𝜌�𝑟 ) = log 2 − 𝐻bin

(
1 + ||�𝑟 | |

2

)
≥ ℑ𝑋 (𝜌�𝑟 ). (4.136)
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Figure 10 – Numerical results illustrating the information-irrealism boun 𝐼 (𝜌�𝑟𝑛 ) a function of 𝑛 and 𝜑

in a sequential pairwise measurements scenario. It was considered an initial state 𝑆𝑧 with
eigenvalue 1, 𝐴 = 𝑆�𝑧 cos𝜑 + 𝑆 �𝑥 sin𝜑 and 𝐵 = 𝑆�𝑧 , with 𝑎 · 𝑏 = cos𝜑 .

A parametric plot of ℑ(𝜌�𝑟 ) against 𝐼 (𝜌�𝑟 ) shows a straight line. From its slope we determine the

equation:

𝐼 (𝜌�𝑟 ) = (2 log 2)ℑ(𝜌�𝑟 ), (4.137)

such that 0 ≤ ℑ(𝜌�𝑟 ) ≤ 1/2. These bounds correspond to the completely mixed state and a pure

state, respectively.

A numerical analysis was performed to determine the information-irrealism bound of

𝜌�𝑟𝑛 , using 𝜌�𝑟 as the qubit eigenstate of 𝑆𝑧 with eigenvalue 1. The analysis considered 𝑛 ∈ N≤10
and 𝜑 ∈ [0, 𝜋/2] and the observables were taken as 𝐴 = 𝑆�𝑧 cos𝜑 + 𝑆 �𝑥 sin𝜑 and 𝐵 = 𝑆�𝑧 , yielding
𝑎 · 𝑏 = cos𝜑 .

The results, illustrated in Fig. 10, show that the information bound approaches zero

for small values of 𝑛 when 𝜑 > 𝜋/4, but it persists when 𝜑 � 1. Specifically, numerical analysis

reveals that achieving 𝐼 (𝜌�𝑟𝑛 ) < 0.001 for 𝜑 = 0.1◦ requires 𝑛 on the order of 106. However, as

𝑛 increases, the bound decreases more steeply as a function of 𝜑 . This behavior aligns with

the result demonstrated in Eq. (4.131), which shows that for sufficiently large 𝑛, the bound

approaches zero even when [𝐴, 𝐵] ≈ 0, corresponding here to small values of 𝜑 .

4.7.2 Qutrit analysis

When analyzing qutrits, we encounter distinctive features unique to systems with

𝑑 > 2. As previously mentioned, the surface of the generalized Bloch sphere is not entirely

populated by vectors corresponding to valid physical states. For qutrits, the Bloch hypersphere
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Figure 11 – Numerical results showcasing the behavior of the information-irrealism boun 𝐼 (𝜌�𝑟𝑛 ) in
a sequential pairwise measurement scenario for qutrits. The analysis considers an initial
state given by the eigenstate of 𝑆𝑧 with eigenvalue −1. The observables are parameterized
as 𝐴 = 𝑆�𝑧 cos𝜑 + 𝑆 �𝑥 sin𝜑 and 𝐵 = 𝑆�𝑧 , with their alignment described by 𝑎 · 𝑏 = cos𝜑 .

resides in 8 dimensions and is fully populated only when 𝑟 ≤ 1/2. Observables in this context

are characterized by triangles (simplexes) rather than straight lines, as in the qubit case.

Moreover, the condition �𝑎 · �𝑏 = 0 is not sufficient to ensure that two observables 𝐴

and 𝐵 are maximally incompatible. For instance, consider the 𝑑 = 3 spin observables 𝑆𝑧 and

𝑆𝑥 in the 𝑧 and 𝑥 directions, respectively. Let 𝑧𝑖 and 𝑥𝑖 represent the vectors corresponding to

their projectors. In this case, we find that 𝑧𝑖 · 𝑥 𝑗 ≠ 0 for 𝑖, 𝑗 ∈ {1, 2, 3}.
We examined how the information-irrealism bound of 𝜌�𝑟𝑛 evolves under sequential

measurements numerically. The state 𝜌�𝑟 was chosen as the eigenstate of 𝑆𝑧 with eigenvalue

−1, while the observables were parameterized as 𝐴 = 𝑆�𝑧 cos𝜑 + 𝑆 �𝑥 sin𝜑 and 𝐵 = 𝑆�𝑧 . For these
observables, the alignment parameter satisfies 𝑎 · 𝑏 = cos𝜑 . The ranges explored where, as

before, 𝑛 ≤ 10 and 𝜑 ∈ [0, 𝜋/2].
The results, shown in Fig. 11, indicate a behavior consistent with the qubit case: the

bound decreases as 𝜑 and 𝑛 increase, and for sufficiently large 𝑛, it approaches zero even when

[𝐴, 𝐵] ≈ 0, corresponding to small values of 𝜑 . However, unlike qubits, 𝜑 = 𝜋/2 does not

correspond to a mutually unbiased basis (MUB) for qutrits. For instance, when 𝑛 = 1, the bound

remains finite, with 𝐼 (𝜌�𝑟𝑛 ) ≈ 0.015.

Due to the lack of rotational invariance of the Gell-Mann matrices, the 3-𝑑 analogue

of Pauli matrices, explicit calculations of the volume of irrealism in its integral form, Eq. (4.114),

are inherently complex. In contrast, spin operators are rotationally invariant, allowing for a

more tractable case study of the volume of irrealism for spin observables given a qutrit state,
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Figure 12 – Ratio of the information 𝐼 (𝜌�𝑟 ) to the volume of irrealism for spin observables ℑ{𝑆
�̂�
} (𝜌�𝑟 ) as

a function of the Bloch vector norm | |�𝑟 | | in qutrit states.

denoted as ℑ{𝑆�̂�} (𝜌�𝑟 ), in accordance with Eq. (4.119).

Following a similar approach to the qubit case, we exploit the symmetries of the spin

observable scenario and derive an expression of the form:

ℑ{𝑆�̂�} (𝜌�𝑟 ) =
∫ 𝜋/2

0
ℑ𝑋 (𝜌�𝑟 ) sin𝜃 𝑑𝜃 . (4.138)

Originally, the integration is performed over a 2-dimensional projection of the 7-dimensional

hypersurface of the Bloch sphere. This reduction, expressed in the equation above, is made

possible by the symmetry of the spin observables, which enables the computation to be carried

out along a single curve within this projection.

Our analysis revealed an approximately proportional relationship between the infor-

mation and the volume of irrealism for spin observables:

𝐼 (𝜌�𝑟 ) ≈ (
√
3 log 3)ℑ{𝑆�̂�} (𝜌�𝑟 ). (4.139)

We evaluated the ratio 𝐼 (𝜌�𝑟 )/ℑ{𝑆�̂�} (𝜌�𝑟 ) as a function of | |�𝑟 | |, finding a concave dependence,

as illustrated in Fig. 12. Notably, the average availability of irrealism relative to the state’s

information is minimal when | |�𝑟 | | = 2/3. This value corresponds to the maximal norm for

a Bloch vector such that states with the same information trace a closed contour inside the

simplex �𝑅 (see Fig. 7).

4.8 REALISM-BASED CLASSICALITY

The main result of this chapter, formalized as a theorem, is built on a protocol of

sequential pairwise measurements. This scenario can be understood as a simplified model for a
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more general process. By considering Eq. (3.4), nonselective measurements can be reinterpreted

as a coupling between the system and an environmental degree of freedom, followed by the

tracing out (discard) of that environment.

Within this framework, we demonstrated that classical behavior can emerge without

requiring a dynamical interaction between the system and large environments. Each measure-

ment step reduces the modulus of the Bloch vector, leading to an asymptotic state 𝜌�𝑟𝑛 → �/𝑑
and vanishing irrealism ℑ𝑋 (𝜌�𝑟𝑛 ) → 0 as 𝑛 → ∞ (Eq. (4.73)). This result underscores that a

continuous coupling with an environment comprising just two degrees of freedom suffices for

the emergence of realism-based classicality.

For the special case of mutually unbiased observables (𝐴 and 𝐵 forming an MUB), a

single interaction (𝑛 = 1) is sufficient to achieve classical realism. In this regime, the Bloch

vector norm vanishes after one step, | |�𝑟1 | | = | |𝑃𝐵𝑃𝐴�𝑟 | | = 0, and the irrealism of any observable

also disappears, ℑ𝑋 (𝜌�𝑟1) = 0.

This efficiency contrasts with quantum Darwinism [24–27], which ties classicality

to objectivity by requiring redundant encoding of information across large environments. In

our case, when retrieving environmental fragments involved in the monitoring process, the

incompatibility between 𝐴 and 𝐵 implies that the encoded information may not be concordant.

The establishment of classicality through information leakage into the environment is

formalized using the strict information-irrealism bound, Eq. (4.78).

By applying this bound and considering the monitoring of slightly incompatible

observables, as described in Eq. (4.108), one can model a scenario where the monitoring is

performed by a slightly faulty measurement apparatus. In this case, each measurement projects

the system onto states corresponding to observables that are only approximately the same. The

relationship between the emergence of classicality and the system’s dimension is illustrated

in Fig. 9. As 𝑑 increases, the rate of classicality emergence slows but eventually stabilizes at a

lower bound, corresponding to the upper edge of the shaded region in the figure.

The mathematical formulation of the volume of irrealism, Eq. (4.114), can be directly

interpreted as the average entropic distance between a quantum state and its post-measurement

state after a nonselective measurement of a totally randomized observable. By averaging over

all possible observables, this measure provides a context-independent notion of irrealism for a

given state.

This interpretation also motivates a broader perspective: the volume of irrealism serves

as a direct quantifier of realism-based classicality. Pure states, which maximize the volume of

irrealism, exhibit the greatest capability for performing inherently quantum tasks. In contrast,

completely mixed states, with zero volume of irrealism, behave classically in any experimental

context.

When restricted to a specific class of observables, the volume of irrealism quantifies
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nonclassical behavior in experimental setups involving only a limited class of degrees of

freedom. This measure allows for a tailored assessment of quantum behavior in scenarios

where access to the full space of observables is constrained.

As demonstrated in the qutrit case study, this measure reveals a nonlinear relationship

between the classicality of certain observables and the total information available about the

state for 𝑑 > 2 dimension states. This analysis provides insights into the optimal level of mixing

required for tasks where nonclassical behavior plays a critical role, aiding in the design of

experimental protocols to harness quantum effects effectively.

The broader perspective outlined in this section enables a quantitative assessment of

the interplay between realism, classicality, and information. Pairwise sequential measurements

were employed as a model to conceptualize system-environment interactions, offering a clear

mathematical framework under the BA realism formalism. However, while this protocol pro-

vides a rigorous description, the measurement process per se remains conceptually challenging

to define.

The foundational questions surrounding the nature of measurement are addressed in

the next chapter.
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5 MEASUREMENT

Quantum mechanics poses a persistent conceptual challenge that resists definitive

description. Fundamental features such as wave-particle duality, superposition, entanglement,

indeterminacy, and uncertainty represent distinct aspects of this challenge, each depending on

the interpretative lens applied to the theory.

In the study of quantum foundations, three primary questions encapsulate this dif-

ficulty: the ontological versus epistemological status of the wave function [6], the nature of

locality [10], and the measurement problem [18]. Different approaches to these questions result

in a variety of interpretations of the theory.

Interpretations of a theory are not intrinsic components of the theory itself. Instead,

they serve as heuristic tools that help users develop an intuitive understanding of the framework.

For an interpretation to be meaningful, it must remain consistent with the empirical predictions

of the theory.

Any set of observations can support an infinite number of physical theories by intro-

ducing sufficient hidden variables or complex auxiliary assumptions. This inherent flexibility

means that identifying a single “true” theory is fundamentally unattainable. At best, philosoph-

ical considerations can rule out certain theories, but none of such theories can be definitively

disproven [95]. The same reasoning applies to the various interpretations of a theory.

Developing and evaluating an interpretation involves proposing a set of metaphysical

assumptions, such as locality, realism, or determinism. These assumptions must be clearly

expressed in the language of the theory, checked for consistency with the framework, and

evaluated for consistency with the empirical data. By formulating and testing these assumptions,

we can delineate a set of interpretations that remain consistent with the theory. Over time,

new insights or empirical evidence may further constrain this set, eliminating interpretations

that fail to align with the framework or observations.

As a result, numerous theories can explain the same set of observations, and each

theory can support multiple interpretations.

In classical contexts, such as the motion and dynamics of macroscopic objects, we

apply classical mechanics. From the perspective adopted in this work, classical mechanics

is best understood not as a specific physical theory but as a mathematical framework that

supports the construction of various physical theories. For example, Newtonian mechanics,

Lagrangian mechanics, and Hamiltonian mechanics are distinct theories derived from this

framework, each with its own interpretations suited to specific applications.

Similarly, as argued by Nielsen and Chuang in Ref. [48], quantum mechanics is not


