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RESUMO

O tempo é uma das grandezas mais estudadas pela humanidade, mas também uma
das mais enigmáticas. Na maior parte da Física, ele é tratado como um parâmetro
que mede a evolução de sistemas dinâmicos, e seu papel na mecânica quântica não
foge a essa abordagem. O objetivo deste trabalho é investigar a natureza do tempo
dentro da mecânica quântica, com o propósito de fornecer uma visão mais abrangente
sobre esse tema fundamental. Esta dissertação se concentra em duas principais linhas
de investigação. Na primeira, exploramos a possibilidade de tratar o tempo como um
observável. Para isso, analisamos a abordagem do operador de Aharonov-Bohm e o
mecanismo de Page-Wootters, avaliando a aplicabilidade de seus estados temporais
como marcadores de caminho em interferômetros quânticos. A partir dessa análise,
discutimos se o tempo pode, de fato, ser considerado um observável. Na segunda
linha de investigação, estudamos as correlações temporais. Abordamos o paradoxo
de Einstein-Podolsky-Rosen, o Teorema de Bell e o irrealismo de Bilobran-Angelo, e
posteriormente analisamos as correlações temporais no contexto do macrorealismo
de Leggett-Garg. Como contribuição original, propomos um quantificador de multi-
irrealismo, estendemos essa ferramenta para observáveis dinâmicos e comparamos
sua eficácia com um quantificador de correlações de Leggett-Garg.

Plavras-chaves: Operador tempo; irrealismo; macrorealismo; correlações.



ABSTRACT

Time is one of the most studied quantities by humanity, yet it remains one of the most
mysterious. In most of physics, time is treated merely as a parameter that measures
changes in dynamical systems. In quantum mechanics, its treatment is identical. The
objective of this work is to investigate the concept of time within quantum theory, with
the aim of providing a more comprehensive understanding of this highly relevant topic
within one of the greatest theories of physics. This work addresses two main lines of
investigation. In the first, we discuss the possibility of treating time as an observable.
To this end, we explore the Aharonov-Bohm operator approach and the Page-Wootters
mechanism, and we propose the applicability of their temporal states as path markers
in quantum interferometers, arguing whether time is an observable or not. In the second
part, we address temporal correlations. For this, we discuss the Einstein-Podolsky-
Rosen paradox, Bell’s theorem, and the Bilobran-Angelo irrealism. Subsequently, we
examine temporal correlations in the context of Leggett-Garg macrorealism. We also
propose the existence of a multi-irrealism quantifier, extend this tool to dynamical
observables, and compare this new tool with a Leggett-Garg correlation quantifier.

Key-words: Time operator; irrealism; macrorealism; correlations.
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CHAPTER 1

Introduction

A cornerstone in the philosophy of science is "The Structure of Scientific Rev-
olutions" [1], by Thomas Kuhn, in which he describes how science has developed
throughout human history. In this seminal book, the author defines the concept of
paradigms, which are a set of practices, theories, methods, and standards shared by
a scientific community that define legitimate work in a field, such as the Newtonian
mechanics or the theory of electromagnetism.

After the establishment of new paradigms, the period of normal science begins,
during which scientists work within these paradigms, solving problems using established
methods. However, some anomalies arise in theoretical discussions or experiments
and cannot be explained by the paradigms. Initially, these anomalies are often ignored
or treated as errors. When they start to accumulate and resist solutions, the scientific
community enters in a period of crisis. This crisis paves the way for the development
of new paradigms that can better explain experimental results and theoretical conflicts.
The combination of these new paradigms leads to the development of new theories,
marking the beginning of a scientific revolution.

The scientific community was in a period of crisis in the early 20th century,
which marked the beginning of a scientific revolution known as the Einsteinian revolution.
During this period, a significant number of anomalies were observed, one of the most
intriguing being the double-slit experiment with matter performed in 1927 by Davisson
and Germer [2] and independently by George Paget Thomson and his assistant Alexan-
der Reid [3]. In the original version of the experiment performed in 1804, Thomas Young
positioned a double-slit apparatus in front of a film [4]. By directing a light beam toward
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the apparatus, he observed on the film an interference pattern, indicating that light
exhibits wave like behavior. Decades later, this experiment was extended to electrons,
and experimentalists observed the same interference pattern that Young had described.
This result was unexpected, as particles were not thought to exhibit self-interference.
Furthermore, any attempt to determine which slit the particle passed through resulted
in the destruction of the interference pattern. (A variation of this experiment will be
revisited in Chapter 3.)

This anomaly indicated that physicists needed to propose new paradigms. They
posited that, in the microscopic world, a physical system is described by wave functions,
which can interfere with themselves and possess a probabilistic interpretation. Further-
more, they established that upon any measurement, the wave function collapses into a
unique state, and that the act of measurement introduces uncertainty. Specifically, the
precision in determining the slit through which a particle passes disrupts the interference
pattern. These new paradigms, along with many others, collectively formed what is now
known as the theory of quantum mechanics.

Despite quantum mechanics being one of the most prolific scientific theories
in human history, capable of predicting phenomena and effects previously unknown,
many physicists criticized its fundamentally probabilistic interpretation of nature. Among
many critical works, one of the most influential was authored by Einstein, Podolsky, and
Rosen (EPR), entitled “Can Quantum-Mechanical Description of Physical Reality Be
Considered Complete?” [5]. In this paper, the authors introduce the concept of elements
of reality, which states that if it is possible to determine the value of a physical quantity
with probability equal to unity, then this quantity represents an element of reality. They
further define that a theory is considered complete if every element of reality has a
corresponding counterpart in the theory.

For example, if the position of a particle is well defined, then the position repre-
sents a element of reality. But, it is a well known fact that two incompatible observables,
such as position and momentum, cannot be measured simultaneously with arbitrary
uncertainty. This means that, in this example, while the position is an element of reality,
the momentum is not. Consequently, they proposed two alternatives: either quantum
mechanics is an incomplete theory, or it is impossible for two incompatible physical quan-
tities to simultaneously represent elements of reality. Using a thought experiment, they
argue that the second alternative is possible, leading them to conclude that quantum
mechanics must be incomplete.

In response to the EPR paper, Niels Bohr published the homonymous article
“Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”
[6]. In this work, Bohr argues that it is not possible to determine whether a physical
quantity represents an element of reality prior to measurement. This implies that physi-
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cal quantities are not well-defined before the experimental procedure. Regarding the
discussion on the completeness of quantum mechanics, Bohr contends that the EPR
argument attempts to simultaneously address two complementary physical quantities,
which is prohibited by the principle of complementarity.

The EPR paper sparked heated debates within the scientific community re-
garding the completeness of quantum mechanics in describing reality. One possibility
that emerged was the supplementation of hidden variables into quantum mechanics
[7], aiming to restore its deterministic nature. The notion of determinism is closely tied
to the concept of realism. A system satisfies realism if it is possible to determine a
physical quantity with infinite precision without disturbing the system [8]. The EPR paper
specifically adopted the notion of local realism, where the reality of a physical quantity
is well-defined and cannot be influenced by actions performed at a distance.

Inspired by the debate initiated by EPR and Bohr, Bell demonstrated that any
theory of local hidden variables is incompatible with quantum mechanics [9]. This result
implies that quantum mechanics is a complete theory but not a local one, contrary to
what EPR had proposed. A few years later, Clauser, Horne, Shimony, and Holt (CHSH)
refined Bell’s work and introduced the CHSH inequality [10], which served the same
purpose as Bell’s theorem but was better suited for experimental verification.

Many works on realism were published following the EPR paper. Leggett and
Garg [11], inspired by the CHSH inequality, proposed a similar inequality; however,
instead of using different observables, they considered a single dynamical observable
evaluated at different instants of time. They defined certain assumptions about how
macroscopic systems should behave. If a system does not adhere to these assumptions,
their inequality is violated. In a separate discussion, Bilobran and Angelo (BA) redefined
the concept of elements of reality and proposed an irreality quantifier, which can be
used to determine whether a physical quantity represents an element of reality in the
BA framework or not [12]. Both topics will be discussed in details in Chapter 4.

Until now, we have discussed the problems of locality and determinism in
quantum mechanics. But there is a different problem, which is not as discussed as
the other two: time. Time is one of the most fundamental concepts in physics, but yet
not properly defined. In most cases, the treatment of time in quantum mechanics is
the same as in classical mechanics, it is a parameter that represents changes in a
physical system. In fact, a parameter in physics is a scalar, variable or constant, that is
sharply defined for any kind of measurement made in a system, such as mass, charge
or time. An unique application of the parameter time in quantum mechanics is seen
in the time-energy uncertainty relation, where it is possible to define the time scale
over which a system undergoes significant changes. A different approach to the same
concept is seen in the Mandelstam-Tamm uncertainty relation, which will be derived
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and interpreted in chapter 3.

Another interesting discussion about time in physics is the arrow of time, which
state that time is asymmetric, i.e. time flows in only one direction and the cause comes
before the consequence. The direction of the time flow is expressed by the second law
of thermodynamics, which states that the entropy of closed systems tend to increase
with time. In quantum mechanics, the arrow of time states that future observations made
on a system do not interfere with previous one, meaning that the collapse of the wave
function cannot interfere with the preparation of a system.

In the time-energy uncertainty principle and the arrow of time, time is treated
as a parameter. But this kind of time is not seen in another great physical theory, the
general relativity. In general relativity, space and time are unified into a single four-
dimensional continuum called spacetime. But in quantum mechanics, only space is
treated as a physical quantity, with its unique operator, and can be measured, while
time is treated as a parameter and it is measured indirectly by the evolution of a system.
This suggests that, if quantum mechanics and relativity are consistent with each other,
than time should also be treated as a physical quantity.

In the past few decades, more and more physicists have seen the quantization
of time as a path to the development of quantum gravity, making it a more relevant topic.
One of the first problems with the quantization of time was stated by Pauli [13]. He says
that a self-adjoint operator and a bounded Hamiltonian cannot satisfy the canonical
commutation relation. This is called the Pauli objection. Aharonov and Bohm constructed
a time operator that satisfy this objection [14], while Page and Wootters bypass it by
using external quantum clocks [15]. Furthermore, in the formalism proposed by Dias and
Parisio, the authors treats time equivalently as space, resulting in the time probability
for a quantum state to collapse [16]. More recently, Arlans and Beims presented an
approach to treat the quantization of time that allows for predicting times of flight
and tunneling times in a spacetime-symmetric extension of non-relativistic quantum
mechanics [17]. Some of this topics will be discussed in chapter 4.

Our objective in this work it to create a complete discussion about time in
quantum mechanics, approaching the concept of time observable and time correlations.
The question that we want to answer in the first part of our work is, if time is indeed a
physical quantity with a proper operator acting on a Hilbert space, then different time of
flights in interferometers can be used to create which way information? To do so, we will
show how which way information is created and also a possible experiment to test this
hypothesis. In the second part, we will discuss time correlations in quantum systems,
first revising the concept in the macrorealism scenario, and then developing a irreality
quantifier for different times and compare it numerically with a macrorealism quantifier.

This work is divided as follows: In Chapter 2, we will introduce important physi-



CHAPTER 1. INTRODUCTION 13

cal concepts and mathematical tools that will be used throughout this work. In Chapter
3, we will discuss the possibility of use different time of flights as which way informa-
tion. To do so, we will show two approaches of time observables in the literature: the
Aharonov-Bohm time operator and the Page-Wootters mechanism. After this, we will
revise the complementary principle and show how which way information is created in
interferometers. With this, we discuss the hypothesis of time as which way information
and show a possible experiment to prove the hypothesis. In Chapter 4, we will discuss
the concept of time correlations. First, we need to understand the EPR paradox and
how Bell showed the impossibility of local realism in quantum mechanics. We will also
explore the concept of the irreality quantifier, which underpins the discussion in the EPR
paper. Following this, we will revise the concept of macrorealism, which defines how
macroscopic objects should behave. In the final section, we will introduce a new irreality
quantifier called multi-irreality, extend this mathematical tool for dynamical observables
and compare it with a quantifier of the Leggett-Garg correlator.
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CHAPTER 2

Theoretical Foundations of Quantum Mechanics

2.1 Stern-Gerlach Experiment

The Stern-Gerlach (SG) experiment was first introduced by Otto Stern in 1921
and later reproduced by him and Walther Gerlach in 1922 [18]. This experiment was
able to demonstrate not only the existence of a new physical quantity called spin, but
also to clarify several fundamental concepts of quantum mechanics that were being
discussed and theorized by physicists at the time.

The experiment proceeds as follows: First, silver atoms are heated in an oven
with a small hole in its surface. The atoms are then collimated into a beam and subjected
to an inhomogeneous magnetic field, known as the SG apparatus. After passing through
the magnetic field, the atoms collapse on a glass plate, where the force exerted on the
particles by the field can be inferred from the distance between the end of the magnetic
field and the points on the plate where the atoms are collapsed.

Classically, the deflection of the atom’s trajectory is caused by the force associ-
ated with the interaction between the magnetic field �B and the magnetic moment of the
silver atoms �μ:

Fz =
∂

∂z
( �B · �μ) ≈ μz

∂Bz

∂z
, (2.1)

where it is assumed that the magnetic moment �μ is homogeneous and it is taken into
account only the z component of the magnetic field and the force experienced by the
atom.

In the first case, without a magnetic field, the particle did not experience any



CHAPTER 2. THEORETICAL FOUNDATIONS OF QUANTUM MECHANICS 15

Figure 1 – The plates of the Stern-Gerlach experiment. In (a) there is no external magnetic field,
and the collapse of the atoms form a line. In (b) there is a inhomogeneous magnetic
field, and the collapse of the atoms split in two lines. Picture taken from [18].

deflection in its trajectory since the force is null. As a result, the image on the plate after
passing through the apparatus was a line parallel to the direction of the field, caused by
the various possible trajectories of the particle. In the second case, an inhomogeneous
magnetic field is applied. The physicists expected the result to be the same as in the
first case, since the atomic theory of that time did not predict a magnetic moment for
the atom. However, instead of a line, they observed a split of the line on the plate: one
above and one below the center (Figure 1).

The fact that the atoms were deflected in the presence of an inhomogeneous
magnetic field was in complete disagreement with the physics of that time. First, atoms
were not expected to have an intrinsic magnetic moment, and second, since only two
lines were observed on the plate after passing through the apparatus, the intrinsic
magnetic moment of atoms could only have two possible values in the direction of the
magnetic field.

To solve this problem, it was proposed that electrons had an intrinsic magnetic
moment called spin. In the case of silver atoms, which have 47 electrons in their
structure, the net spin of the atom is equal to the spin of the unpaired electron. Not
only that, but it was also proposed that the spin component in the direction of the field
can only have two values: �/2 and −�/2, where these values were determined by the
length of the deflections observed in the experiment, and � = h/2π is the reduced
Planck constant. The positive value of spin is observed when the atom is in the Sz; +
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configuration, and the negative value is observed when it is in the Sz;− configuration.

2.1.1 Sequential Stern-Gerlach Experiment

Figure 2 – Diagram of the sequential SG experiment. In (a), a beam of atoms is polarized,
selecting those with the Sz; + configuration, and is polarized again in the same
direction, resulting in a beam with the same configuration. In (b), the first step is
repeated, followed by polarization in the Sx direction, starting with the beam in the
Sz; + configuration. This produces two beams, each with one of the two possible
configurations. In (c), both steps from the previous case are repeated, followed by
polarization in the Sz direction with the beam in the Sx; + configuration, resulting in
two beams, each with one of the two possible configurations.

Having introduced the SG experiment, we now present the sequential SG
experiment [19], as illustrated in Figure 2. In case (a), a similar experiment to the one in
the previous section is performed, but the atoms with the Sz;− configuration are blocked.
This results in a polarized beam of atoms in the Sz; + configuration. Subsequently,
another SG apparatus is used, aligned in the same direction. As expected, the beam
maintains the Sz; + configuration.

In case (b), the same polarized beam of atoms in the Sz; + configuration is
used. However, in the second interaction, a SG apparatus aligned along the orthogonal
direction (the x-axis) is employed. The observation reveals two emerging beams from
the apparatus. This result is unexpected, as the initial beam was polarized in the Sz; +

configuration, yet two beams with the Sx; + and Sx;− configurations are now present.
This outcome challenges the initial assumption that the polarized beam would not
interact with the second apparatus in this manner, prompting a reevaluation of the
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notion that spin behaves as an intrinsic magnetic moment similar to that in classical
electromagnetism.

In case (c), the same configuration as in the previous experiment is repeated,
but the Sx;− beam is blocked, leaving only atoms with the Sx; + configuration. This beam
is then directed into an SG apparatus aligned along the z-axis. The observation reveals
that the beam splits into two paths. Given that the atoms were previously polarized,
it is puzzling that they now exhibit two possible spin configurations along the z-axis.
This suggests that sequential polarization of spin in orthogonal directions may erase
prior information about the spin state. A more detailed discussion of this experiment will
follow in subsequent sections.

2.2 Postulates of Quantum Mechanics

There are multiple ways to discuss the fundamentals of quantum mechanics. In
this work, we apply a unique approach, in which we define the postulates of quantum
mechanics as presented in [20], with minor modifications accompanied by necessary
comments. We will also present the applications of these postulates in the SG experi-
ment previously discussed in the last section. The first postulate goes as follows:

Postulate 1: At a fixed time t0, the state of an isolated physical system is defined
by specifying a ket |ψ(t0)〉 belonging to the state space H.

Hilbert spaces H are complex vector spaces. The elements of this space are rep-
resented as state vectors, written as kets |ψ〉 in the Dirac notation [21], along with
their dual counterparts, the bra states 〈ψ|. The Hilbert space is equipped with an inner
product, denoted as 〈ψ|ψ〉. The norm of a state is defined as ‖ |ψ〉 ‖ =

√
〈ψ|ψ〉.

Given that a linear combination of states also constitutes a valid state, it follows
that a system can exist in more than one state simultaneously. This phenomenon is
described by the superposition principle. By the result observed in the SG experiment in
(a), the state of the system in an instant t0 previous to any observation is expressed as
|ψ(t0)〉 = 1√

2
(|+, z〉+ |−, z〉), where |+, z〉 represents atoms with the Sz; + configuration,

and |−, z〉 represents atoms with the Sz;− configuration. The constant 1√
2

is chosen to
ensure that the state |ψ(t0)〉 is properly normalized (‖ |ψ〉 ‖ = 1).

Composite system postulate: The Hilbert space of a composite system is the Hilbert
space tensor product of the state spaces associated with the component systems. For
a non-relativistic system consisting of a finite number of distinguishable particles, the
component systems are the individual particles.
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For two atoms, A and B, interacting with each other, with theirs respective Hilbert
spaces HA = {|an〉} and HB = {|bm〉}, the total Hilbert space of the system is given by
HT = HA ⊗HB = {|an〉 ⊗ |bm〉}. A general state in the space HT is

|ψ〉 =
∑
n,m

cnm |an〉 ⊗ |bm〉 . (2.2)

The state |ψ〉 is entangled if the states are not separable, i.e. cnm �= cncm. An example
of an entangled state for spin systems is the singlet state

|ψ〉 = 1√
2
(|+, z〉A |−, z〉B − |−, z〉A |+, z〉B). (2.3)

Since the state |ψ〉 cannot be expressed as a product state, the state is entangled.

In the case of composite systems, it is also necessary to redefine the oper-
ators acting on the subsystems. Given operators A : HA → HA and B : HB → HB,
the corresponding operators for the composite space are A ⊗ 1B : HT → HT and
1A ⊗B : HT → HT , where 1A and 1B denote the identity operators on the spaces HA

and HB, respectively

Postulate 2.a: Every measurable physical quantity A is described by a Hermitian
operator A acting in the state space H. This operator is an observable, meaning that its
eigenstates form a basis for H. The result of measuring a physical quantity A must be
one of the eigenvalues of the corresponding observable A.

All operators associated with physical quantities need to be Hermitian (A = A†), oth-
erwise their eigenvalues could be complex. Operators can be written by their spectral
decomposition

A =
∑
n

an |an〉 〈an| =
∑
n

anΛan , (2.4)

where |an〉 are the eigenstates of A and an their respective eigenvalue. The contrac-
tions Λan are called projection operators, or simply projectors, and they satisfy the
completeness relation (

∑
n Λan = 1) and pairwise orthogonality (ΛanΛam = Λanδnm).

In the SG experiment, the possible outcomes of a measurement are �

2
and −�

2
.

Then, the operator associated with the spin in the z-direction Sz is

Sz =
�

2
|+, z〉 〈+, z| − �

2
|−, z〉 〈−, z| . (2.5)

An important tool we will use in this work is the trace of an operator. For an
operator A, its trace is given by

Tr[A] =
∑
n

〈an|A |an〉 , (2.6)
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which is the sum of the diagonal elements of A.

Postulate 2.b: When the physical quantity A is measured on a system in a normalized
state |ψ〉, the probability of obtaining an eigenvalue of the corresponding observable
A is given by the amplitude squared of the appropriate wave function (projection onto
corresponding eigenstate):

P (an) = | 〈an|ψ〉 |2. (2.7)

Given that the state of a spin system is

|ψ〉 = 1√
2
(|+, z〉+ |−, z〉), (2.8)

the probability of observing one of the two possible outcomes is

Pz(+) = | 〈+, z|ψ〉 |2 = 1

2
, Pz(−) = | 〈−, z|ψ〉 |2 = 1

2
, (2.9)

which is exactly what is observed in the SG experiment.

Another important quantity is the expectation value, generally defined as
〈ψ|A |ψ〉 = Tr[Aρ] = 〈A〉. Similarly to the expectation values in probability theory, this
quantity represents the average of all possible outcomes weighted by their respective
probabilities. For the state in (2.8), the expectation value 〈Sz〉 is

〈Sz〉 = 〈ψ|
(
�

2
|+, z〉 〈+, z| − �

2
|−, z〉 〈−, z|

)
|ψ〉 (2.10)

or
〈Sz〉 =

�

2

(
| 〈+, z|ψ〉 |2 − | 〈−, z|ψ〉 |2

)
= 0 (2.11)

The result 〈Sz〉 = 0 means that all possible outcomes have the same probability of being
observed.

Postulate 2.c: If the measurement of the physical quantity A on the system in the
state |ψ〉 gives the result an, then the state of the system immediately after the mea-
surement is the normalized projection of |ψ〉 onto the eigensubspace associated with
an:

|ψ′〉 = Λan |ψ〉√
〈ψ|Λan |ψ〉

. (2.12)

Given the experiment in Figure 2, in case (a), the state after the first selective measure-
ment is

|ψ′〉 = Λz,+ |ψ〉√
〈ψ|Λz,+ |ψ〉

= |z,+〉 , (2.13)
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where Λz,+ = |z,+〉 〈z,+|. The expectation value of the observable Sz after the second
measurement is 〈ψ′|Sz |ψ′〉 = 1. This result is expected, as the system has already been
measured, and its state is known with certainty.

In case (b), the projected state remains |ψ′〉 = |z,+〉. However, a measurement
of the observable Sx is now performed. The apparatus yields two possible outcomes,
indicating that the state |z,+〉 can be expressed as a superposition of the eigenstates
of Sx:

|z,+〉 = 1√
2
(|x,+〉+ |x,−〉), (2.14)

and since |z,+〉 and |z,−〉 must be orthogonal,

|z,−〉 = 1√
2
(|x,+〉 − |x,−〉). (2.15)

In case (c), a measurement of the observable Sz is performed for the system in the
state |x,+〉. The expectation value for this state is 〈Sz〉 = 0, which is consistent with the
experimental observations.

The result of the experiment is counterintuitive from the perspective of classical
physics. Although a projective measurement of the observable Sz has been performed,
the information about the spin in that direction is not preserved. This implies that the
measurement of one observable erases all prior information about another incompatible
observable. In other words, it is impossible to simultaneously determine the precise
values of two incompatible observables. Two observables are said to be incompatible
when

[A,B] = AB − BA �= 0, (2.16)

where [A,B] is called commutator. A more intuitive way to look at this is through the
uncertainty relation. For any two observables A and B, the product of their uncertainties
must satisfy the inequality

〈(ΔA)2〉〈(ΔB)2〉 ≥ 1

4
|〈[A,B]〉|2. (2.17)

where 〈(ΔA)2〉 = 〈A2〉 − 〈A〉2 is referred to as the dispersion of the observable A. This
quantity represents the uncertainty associated with the physical quantity for a given state.
For the state |+, z〉, the dispersion of the observable Sz is 〈(ΔSz)

2〉 = 0, as expected,
since the system is in a well-defined eigenstate of Sz. In contrast, for the observable
Sx, the dispersion is 〈(ΔSx)

2〉 = �

4
, which is non-zero. This indicates that the system

cannot be described by a well-defined eigenstate of Sx, and the value of this observable
remains uncertain.

Postulate 3: The time evolution of the state vector |ψ(t)〉S is governed by the Schrödinger
equation, where H is the operator associated with the total energy of the system (called
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the Hamiltonian):

i�
d

dt
|ψ(t)〉S = H |ψ(t)〉S , (2.18)

where the subscript S in |ψ(t)〉S means the state is in the Schrödinger picture.

The Hamiltonian in quantum mechanics is defined similarly to the one in classical
mechanics, given by the sum of the kinetic energy and potential energy

H =
P 2

2m
+ V, (2.19)

where P is the momentum operator and V is the potential energy. The solution of the
Schrödinger equation gives the time-dependent state

|ψ(t)〉S = U(t) |ψ(t0)〉S , (2.20)

where the operator U(t) = e
−i
�
H(t−t0) is called the unitary time evolution operator.

When the time dependence of the dynamical system is in the state, the state is in
the Schrödinger picture.

A different way to describe the time evolution of a system is given by the
Heisenberg picture, where, in this case, the observables evolve in time and the ket state
is stationary. An observable A in the Heisenberg picture is given by

AH(t) = U †(t)ASU(t) =
∑
n

anU
†(t)ΛanU(t) =

∑
n

anΛ
H
an(t), (2.21)

where the subscript S in AS = AH(t0) means the operator is in the Schrödinger repre-
sentation and ΛH

an(t) = |an(t)〉 〈an(t)| are the projectors in the Heisenberg representation.
This means that in the Schrödinger picture, the ket basis remain unchanged and the ket
state evolves in time. In the Heisenberg picture, the ket state remains unchanged and
the ket basis evolve in time in the opposite direction.

Taking the time derivative of the first two terms in equation (2.21)

d

dt
AH(t) =

i

�
HU †(t)ASU(t)− i

�
HU †(t)ASU(t), (2.22)

d

dt
AH(t) =

i

�
[H,AH(t)]. (2.23)

This equation is called the Heisenberg equation of motion, which, similarly to the
Schrödinger equation, governs the time evolution of an observable. An example of time
evolution in a spin system will be given in the last section of this chapter.

2.2.1 Density Operator

Until now, the discussion has focused on the quantum mechanics of individual
systems, described by their state |ψ〉. To describe an ensemble of systems, the density
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operator must be introduced. Consider an ensemble of systems with possible states
|ψn〉, where pn represents the probability of the system being in the state |ψn〉. The
density operator ρ is then defined as

ρ =
∑
i

pi |ψi〉 〈ψi| =
∑
i

piρi, (2.24)

which satisfy the following properties:

• Hermitian: ρ = ρ†.

• Unitary trace: Tr[ρ] = 1.

• Positive semidefinite: 〈ψ| ρ |ψ〉 ≥ 0.

It is important to note that the probability pi is associated with the lack of information
about the system, analogous to the situation in classical physical systems. When the
entire ensemble is in a single state |ψi〉 (i.e., pi = 1), the density operator describes
a pure state. Conversely, when the ensemble consists of subsystems in different con-
figurations, the density operator represents a mixed state. As an example, consider a
pure ensemble prepared in the state |ψ〉 = 1√

2
(|z,+〉+ |z,−〉). In this case, the density

operator is given by

ρp = |ψ〉 〈ψ| = 1

2
(|z,+〉 〈z,+|+ |z,+〉 〈z,−|+ |z,−〉 〈z,+|+ |z,−〉 〈z,−|). (2.25)

Now, consider an ensemble in which half of the systems are in the state |z,+〉 and the
other half are in the state |z,−〉. The density operator for this ensemble is given by

ρm =
1

2
(|z,+〉 〈z,+|+ |z,−〉 〈z,−|), (2.26)

which is clearly different from ρp. A useful criterion to determine whether a state is
mixed is to compute the trace of its square. For any mixed state, the condition Tr[ρ2] < 1

holds, whereas for a pure state, Tr[ρ2] = 1 is satisfied. In the case of a maximally mixed
state, ρmm = 1

d
, where d = dim(H) and ρmm ∈ H, the trace of its square is given by

Tr[ρ2mm] = 1/d.

The density operator also satisfies the postulates of quantum mechanics. The
probability of observing the outcome an of a density operator ρi is

Pi(an) = 〈an| ρi |an〉 , (2.27)

so the probability P (an) for the whole ensemble is the sum of the probabilities Pi(an)

weighted by pi

P (an) =
∑
i

pi Pi(an) = Tr[Λanρ]. (2.28)
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The expectation value of an observable A can also be defined. By definition, it is given
by

〈A〉 =
∑
n

anP (an) = Tr

[
ρ
∑
n

anΛan

]
= Tr[Aρ]. (2.29)

The density operator right after a measurement is

ρ′ =
ΛanρΛan

Tr[Λanρ]
. (2.30)

In the case where a measurement is performed but no information about the outcomes
is available, the resulting state is described by a completely positive trace-preserving
(CPTP) map:

ΦA(ρ) =
∑
n

ΛanρΛan . (2.31)

The completely positive condition means that if this map (2.31) acts only on one part of
the joint density operator, i.e.,

ΦA(ρAB) =
∑
n

(Λan ⊗ 1B)ρAB(Λan ⊗ 1B), (2.32)

then the resulting map must still be a density operator.

The density operator formalism is particularly useful for describing compound
systems. For a bipartite system HT = HA⊗HB, with respective bases {|an〉} and {|bm〉},
the density operator of the ensemble is denoted by ρAB. If the partial trace is taken with
respect to the partition HB, then

TrB(ρAB) =
∑
m

〈bm| ρAB |bm〉 = ρA. (2.33)

This result implies that for a bipartite system, the partial trace can be used to focus
exclusively on the subsystem of interest.

The time evolution of density operators can now be defined. If the states |ψi〉 in
ρi evolve in time as |ψi(t)〉, the time-dependent density operator is given by

ρ(t) =
∑
i

pi |ψi(t)〉 〈ψi(t)| . (2.34)

From the fact that |ψi(t)〉 satisfies the Schrödinger equation, it follows that

ρ̇(t) =
i

�

[
−H

∑
i

pi |ψi(t)〉 〈ψi(t)|+
∑
i

pi |ψi(t)〉 〈ψi(t)| H
]
, (2.35)

or
ρ̇(t) = − i

�
[H, ρ(t)], (2.36)

which is similar to the Heisenberg equation in (2.23), but with the opposite sign. This
is called the von Neumann equation, and similarly to the other equations of motion, it
governs the time evolution of the density operator.
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2.2.2 Information Theory

In information theory, a fundamental concept is the quantification of information
gained after measuring an event. Consider an unbiased coin toss. After the coin is
tossed, a measurement is performed to determine the outcome, thereby acquiring
information about the state of the system.

An intuitive approach to quantifying information is to define it as the inverse of
the probability: I(x) = 1

p(x)
, where I(x) represents the information associated with the

probability p(x) of an event x [22]. For independent events, it is natural to expect that
the joint information should be additive, i.e., I(x, y) = I(x) + I(y). However, since the
joint probability of independent events is p(x, y) = p(x)p(y), the joint information would
instead satisfy I(x, y) = 1

p(x,y)
= 1

p(x)p(y)
�= 1

p(x)
+ 1

p(y)
. To ensure the additivity of joint

information, a logarithmic function can be introduced, allowing the information I(x) to
be redefined as

I(x) := logb

(
1

p(x)

)
= − logb p(x). (2.37)

The base b of the logarithm determines the scale of information. When b = 2, the unit of
information is referred to as a bit. In the case of an unbiased coin toss, for any possible
outcome, the information gained is I = − log2

(
1

1/2

)
= 1, indicating that one bit of

information is acquired after the measurement.

For a random variable X with possible outcomes xn, the mean averaged value
for the random variable is

H(X) =
∑
p

p(xp)I(xp) = −
∑
p

p(xp) logb p(xp). (2.38)

This quantity is known as the Shannon entropy [23]. It quantifies the amount of infor-
mation gained from any observation made on the system. Conversely, the entropy also
represents the uncertainty about the system prior to any measurement. For the case of
an unbiased coin, H(X) = 1, indicating that the uncertainty is maximized before any
measurement is performed. In contrast, for a biased coin that always results in heads,
for example, H(X) = 0, reflecting the absence of uncertainty about the outcome, as
only one result is possible. In the case of the biased coin, the limit limx→0 x log2 x = 0

has been used.

The Shannon entropy satisfy the following definitions:

• Binary entropy: The entropy of the two-outcome random variable X is given by

Hbin(X) := −p logb p− (1− p) logb (1− p), (2.39)

where p and (1− p) are the probabilities of the two possible outcomes.
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• Conditional Entropy: after the knowing of Y , that is, in possession of the information
H(Y ), the remaining uncertainty about the pair (X, Y ) reduces to

H(X|Y ) = H(X, Y )−H(Y ), (2.40)

where H(X, Y ) =
∑

n,m p(xn, ym) logb p(xn, ym) is the joint Shannon entropy.

In quantum mechanics, the uncertainty of a system can be quantified in a
manner analogous to the Shannon entropy, known as the von Neumann entropy [24].
Consider a system described by the density operator ρ. The von Neumann entropy for
this ensemble is defined as

S(ρ) := −Tr[ρ logb ρ]. (2.41)

Diagonalizing the operator ρ in an orthonormal basis, the von Neumann entropy be-
comes

S(ρ) = −
∑
n

λn logb λn, (2.42)

where λn are the eigenvalues of the density operator ρ. The von Neumann entropy must
satisfy the following properties:

• Non-negative: S(ρ) ≥ 0.

• Invariant under unitary transformation: S(UρU †) = S(ρ).

• Maximum value: S(ρ) = logb d, for maximally mixed ensembles ρ = 1
d
.

• Minimum Value: S(ρ) = 0, if and only if the ensemble is pure.

• Subadditivity for a bipartite ensemble: S(ρAB) ≤ S(ρA) + S(ρB) with equality only
when ρAB = ρA ⊗ ρB.

Another important property is the non-decreasing nature of entropy under
projective measurements. If a non-revealed measurement of a physical quantity A is
performed, resulting in the state ΦA(ρ), then

S(ΦA(ρ)) ≥ S(ρ), (2.43)

where ΦA(ρ) =
∑

n ΛanρΛan .

Similarly to the classical case, the von Neumann entropy satisfy the following
definitions:

• Quantum binary entropy: for an ensemble ρ with only two eigenvalues λ± that
satisfy the relation λ+ = 1− λ−, the entropy is given by

S(ρ) = −λ+ log2 λ+ − (1− λ+) log2 (1− λ+). (2.44)
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• Quantum conditional entropy: for a bipartite system ρAB, the conditional entropy of
the subsystem ρA given ρB is

S(A|B) = S(ρAB)− S(ρB). (2.45)

When there is no correlation between the subsystems S(A|B) = S(ρA).

2.2.3 Probability Theory

The study of probability originated during the Renaissance era, motivated by
the analysis of games of chance, such as calculating the likelihood of a specific outcome
when rolling a die. In modern science, probabilistic methods are applied across diverse
fields, including economics, chemistry, and physics. Given that quantum mechanics
is fundamentally a probabilistic theory, a rigorous understanding of these concepts is
essential for their application to quantum systems.

A rigorous foundation for probability theory was established in Andrey Kol-
mogorov’s "Foundations of the Theory of Probability" [25], where the classical axioms
of probability were first formally presented. This work systematized the mathematical
framework that underlies both theoretical developments and practical applications in the
field.

Before presenting these axioms, it is necessary to understand the concept of a
measure space (Ω,F , P ). In this framework, Ω represents the sample space containing
all possible outcomes of an experiment. For a fair coin toss, the sample space is Ω =

{H,T}, where H represents "heads" and T represents "tails". The σ-algebra F contains
all measurable events, which for the coin toss example is F = {∅, {H}, {T}, {H, T}}.
This mathematical structure provides the foundation for defining probability measures
on discrete sample spaces.

The probability function P maps events to real numbers in the interval [0, 1].
There exist two predominant interpretations of probability in the literature. The frequentist
interpretation defines probability as the limiting frequency of an event occurring in
repeated experiments. In contrast, the Bayesian interpretation treats probability as a
subjective degree of belief about an event [26]. These complementary perspectives
both contribute to the rigorous foundation of probability theory and will be utilized in
defining probability measures throughout this work.

Having established the definition of a measure space, we now present Kol-
mogorov’s axioms of probability theory:

• Non-Negativity: For any event E ∈ F ,

P (E) ≥ 0. (2.46)
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This implies that all probabilities must be non-negative. In the case of a fair coin, the
probability measure satisfies P ({H}) = P ({T}) = 1

2
, P (∅) = 0, and P ({H, T}) = 1.

• Unit Measure: The probability of the entire sample space Ω is 1,

P (Ω) = 1. (2.47)

The unit measure axiom states that the probability measure must account for all possible
outcomes. In the case of a coin toss, this implies that exactly one of the two possible
outcomes must occur with certainty.

• Countable Additivity: For a countable sequence of mutually exclusive (disjoint)
events E1, E2, ...,

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei), (2.48)

where Ei ∩ Ej = ∅ for i �= j.

The countable additivity axiom states that the probability of a union of mutually exclusive
events equals the sum of their individual probabilities. For a honest coin, the disjoint
events {H} and {T} satisfy

P ({H} ∪ {T}) = P ({H}) + P ({T}) = 1. (2.49)

A direct consequence of this axiom is that for any event space consisting of mutually
exclusive events, the union of all events equals the sample space:

P

( ∞⋃
i=1

Ei

)
= P (Ω). (2.50)

Combining this with the unit measure axiom and countable additivity (2.48) yields

∞∑
i=1

P (Ei) = 1. (2.51)

It is noteworthy that quantum mechanical probabilities also satisfy Kolmogorov’s
axioms. Recall that the positivity condition 〈an| ρ |an〉 ≥ 0 holds, and the probability of
measuring outcome an is given by:

P (an) = Tr[Λanρ] = 〈an| ρ |an〉 ≥ 0. (2.52)

It is straightforward to verify that the non-negativity axiom is satisfied. By employing
the unit trace property, one can also demonstrate that quantum probabilities comply
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with the unit measure axiom. The probability associated with any observable outcome
corresponds to the sum of all individual probabilities.

∑
n

P (an) =
∑
n

Tr[Λanρ] = Tr

[
ρ
∑
n

Λan

]
= Tr[ρ1] = Tr[ρ] = 1. (2.53)

The linearity of the trace property is employed in this context. Finally, the countable
additivity axiom can be demonstrated by invoking the linearity of the trace. Considering
an orthonormal set of projectors representing disjoint outcomes, the probability of
disjoint events is expressed as

P

( ∞⋃
i=1

Ei

)
= P

( ∞⊕
n=1

Λan

)
, (2.54)

where
⊕

n=1 Λan represents the sum of the subsets of the projectors. Expanding (2.54)

P

(⊕
n=1

Λan

)
= Tr

[
ρ
∑
n

Λan

]
=
∑
n

Tr[Λanρ] =
∑
n

P (an), (2.55)

thus showing that the three Kolmogorov axioms of the probability theory are satisfied by
the quantum theory.

The probability functions presented thus far refer to single events involving a
single measurement. However, there are situations in which it is necessary to compute
the probability of two or more events. To address this, three important probability
functions will be introduced in this context: the joint probability, the marginal probability,
and the conditional probability (for further details, see [27]). Before proceeding, it is
necessary to define the concept of a random variable.

A random variable is a mathematical construct used to quantify random phenom-
ena within the framework of probability theory. Denoting a random variable by the capital
letter X, its domain corresponds to the sample space of the system under consideration,
Ω = {x}, and its range associates each outcome with a numerical value. By convention,
outcomes are denoted by lowercase letters, so the probability of observing a specific
outcome x is represented as P (X = x).

When two events occur and it is necessary to describe the probability of both
events happening together, the joint probability is used. For two systems with different
random variables X = x and Y = y, their joint probability is written as P (X = x, Y = y).
In the case where these random variables are independent of one another, the joint
probability is given by the product of the individual probabilities of each random variable.

P (X = x, Y = y) = P (X = x)P (Y = y). (2.56)

As an example, for two honest coins, the probability of measuring heads in both of them
is

P (X = 1, Y = 1) = P (X = 1)P (Y = 1) =
1

2

1

2
=

1

4
. (2.57)
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Similarly to the individual probabilities, the joint probabilities must be positive and sum
up to one ∑

x,y

P (X = x, Y = y) = 1, (2.58)

where the sum is taken over all possible events of X and Y . Using the joint probability,
it is also possible to describe the individual behaviour of one of the random variables
through the marginal probability. For independent random variables X and Y , the
individual probability of X = x is

P (X = x) =
∑
y

P (X = x, Y = y). (2.59)

Given that the probability function P (Y = y) satisfy the Kolmogorov axioms, then

P (X = x) = P (X = x)
∑
y

P (Y = y) = P (X = x), (2.60)

where
∑

y P (Y = y) = 1. It is important to emphasize that the marginal probability can
only be used for random variables that are independent of one another. In cases where
the random variables are correlated, the probabilities of the events must be defined
using conditional probabilities.

Imagine a professor who eats lunch at a restaurant near the physics department.
The menu of the day is either chicken or steak, each with a 50% probability. When the
menu is chicken, there’s a 70% chance he eats cake for dessert and a 30% chance he
eats fruit. When the menu is steak, there’s a 20% chance he eats cake and an 80%
chance he eats fruit. In this case, the choice of dessert is probabilistically dependent on
the menu: knowing whether the menu is chicken or steak changes the probability of the
dessert. Thus, the menu and the dessert are correlated events.

For two dependent random variables X and Y , the conditional probability of the
event X = x given that Y = y was measured is

lP (X = x|Y = y) =
P (X = x, Y = y)

P (y = y)
. (2.61)

In the expression (2.61), the joint probability is not factorizable, since the events are
correlated. Isolating the joint probability and rewriting the conditional probability for the
event Y = y given that X = x was measured, one can deduce the Bayes rule

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)

P (X = x)
. (2.62)

The Bayes rule can be really useful when one wants to determine a conditional proba-
bility, but only knows in the reverse order.



CHAPTER 2. THEORETICAL FOUNDATIONS OF QUANTUM MECHANICS 30

2.3 Qubit Formalism

The spin 1/2 system, or simply a qubit, is extremely useful for discussing
quantum mechanics in all subjects, as we have shown so far. Because of this, we need
to make a more profound discussion on this subject. The spin operators are Sn = �

2
σn,

where n is a given direction. The Pauli matrices σn in three orthogonal directions are
written as

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
, (2.63)

with the respective eigenstates

|x,+〉 = 1√
2

(
1

1

)
, |x,−〉 = 1√

2

(
1

−1

)
, (2.64)

|y,+〉 = 1√
2

(
1

i

)
, |y,−〉 = 1√

2

(
1

−i

)
, (2.65)

|z,+〉 =
(
1

0

)
, |z,−〉 =

(
0

1

)
. (2.66)

The kets |n,+〉 are the eigenstates associated with the positive eigenvalues (+1) and the
|n,−〉 are the ones associated with the negative eigenvalues (−1). The Pauli matrices
are involutory (σ2

n = 1), traceless (Tr[σn] = 0), Hermitian (σn = σ†
i ) and satisfy the

following commutation relation

[σi, σj] = 2i εijk σk, (2.67)

where εijk is the Levi-Civita symbol. There are cases where observations are not
made along one of the three orthogonal directions x, y, or z, but rather along a linear
combination of them. For such cases, the projection of a given unit vector r̂ onto the
Pauli vector �σ is used, resulting in the following operator

σr̂ = (rx x̂+ ry ŷ + rz ẑ) · (σx x̂+ σy ŷ + σz ẑ) = r̂ · �σ, (2.68)

or in the matrix representation

σr̂ =

(
rz rx − iry

rx + iry −rz

)
. (2.69)

As demonstrated, the Pauli vector provides a mapping mechanism from a vector basis (r̂)
to a Pauli matrix basis. This mapping preserves all the properties of the Pauli matrices.

There are two key identities involving Pauli vectors that are relevant to this work.
The first is the product of two Pauli vectors in different directions. Consider two distinct
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unit vectors â = (a1, a2, a3) and b̂ = (b1, b2, b3). The product of the Pauli matrices in these
directions is given by

(â ·�σ)(b̂ ·�σ) =
[
a1b1 + a2b2 + a3a3 − i(a2b1 − a1b2) a3b1 − a1b3 − i(a3b2 − a2b3)

−a3b1 + a1b3 − i(a3b2 − a2b3) a1b1 + a2b2 + a3a3 + i(a2b1 − a1b2)

]
.

(2.70)
The first three elements in the diagonal of this matrix are simply the dot product of the
vectors â · b̂. From this, this matrix can be rewritten as

(â·�σ)(b̂·�σ) = (â·b̂)1+i

[
−(a2b1 − a1b2) −i(a3b1 − a1b3)− (a3b2 − a2b3)

−i(−a3b1 + a1b3)− (a3b2 − a2b3) (a2b1 − a1b2)

]
.

(2.71)
It is easy to see that the elements in the second matrix are the components of the vector
â× b̂ and the similarity to the matrix of (2.69) becomes much clear. From this, we will
have the final form of the product of two Pauli matrices in different directions

(â · �σ)(b̂ · �σ) = (â · b̂)1 + i(â× b̂) · �σ. (2.72)

An interesting application of the equation (2.72) is in the commutator of spin operators
in different directions. For two unity vectors â and b̂, the spin operators â · �σ and b̂ · �σ
have the following commutator

[â · �σ, b̂ · �σ] = (â · b̂)1 + i(â× b̂) · �σ − (â · b̂)1 − i(b̂× â) · �σ
[â · �σ, b̂ · �σ] = 2i(â× b̂) · �σ. (2.73)

If the vectors â and b̂ are orthogonal to each other, then the relation in (2.73) returns to
(2.67). A relation that will be used is the norm of the commutation relation of the Pauli
vectors. The squared norm of an operator A is given by

||A||2 = Tr[A†A]. (2.74)

Having that the product of the commutator (2.73) and its dagger is

[â · �σ, b̂ · �σ]†[â · �σ, b̂ · �σ] = [4− 4(â · b̂)2]12, (2.75)

where we used the identity (�a×�b) · (�c× �d) = (�c ·�a)(�b · �d)− (�b ·�c)(�a · �d). If A = [â · �σ, b̂ · �σ],
the norm of the commutator becomes

||[â · �σ, b̂ · �σ]||2 = 8− 8(â · b̂)2. (2.76)

The second important identity is the complex exponential of the Pauli matrix. Suppose a
Pauli matrix given by �θ · �σ, where �θ = θn̂. Then, the Taylor series for this exponential
function will be

eiθ(n̂·�σ) =
∞∑
k=0

ik[θ(n̂ · �σ)k]
k!

=
∞∑
p=0

(−1)p[θ(n̂ · �σ)2p]
(2p)!

+
∞∑
q=0

(−1)q[θ(n̂ · �σ)2q+1]

(2q + 1)!
. (2.77)
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Remembering the Taylor series expansion for the cosine and sine functions and invoking
the involutionary property of the Pauli matrices

eiθ(n̂·�σ) = 1 cos θ + i(n̂ · �σ) sin θ. (2.78)

Now, let us propose an example of a dynamical system for the qubit. Consider
a qubit interacting with a homogeneous magnetic field �B = Bĥ. The Hamiltonian for this
system is given by H = −�S · �B = �

2
ω(ĥ · �σ), where ω = − eB

me
is the Larmor frequency.

The time evolution of the spin operator in the n̂ direction, Sn, is described by

Sn̂(t) = U †(t)SnU(t), (2.79)

Sn̂(τ) =
�

2
e

iĥ·στ
2 (n̂ · �σ)e−iĥ·στ

2 , (2.80)

where we introduced the normalized time τ = ωt. With the identity (2.78), we have

Sn̂(τ) =
�

2

[
1 cos

(τ
2

)
+ i(ĥ · �σ) sin

(τ
2

)]
(n̂ · �σ)

[
1 cos

(τ
2

)
− i(ĥ · �σ) sin

(τ
2

)]
, (2.81)

Sn̂(τ) =
�

2

[
cos2

(τ
2

)
(n̂ · �σ)− i sin

(τ
2

)
cos

(τ
2

)
(n̂ · �σ)(ĥ · �σ)

+ i sin
(τ
2

)
(ĥ · �σ)(n̂ · �σ) + sin2

(τ
2

)
(ĥ · �σ)(n̂ · �σ)(ĥ · �σ)

]
. (2.82)

With (2.72), we have the final form of the spin operator in a general direction in the
Heisenberg picture:

Sn̂(τ) =
�

2
{cos τ n̂+ sin τ(n̂× ĥ) + [1− cos τ ](ĥ · n̂)ĥ} · �σ, (2.83)

Sn̂(τ) =
�

2
m̂(τ) · �σ, (2.84)

where
m̂(τ) = {cos τ n̂+ sin τ(n̂× ĥ) + [1− cos τ ](ĥ · n̂)ĥ}. (2.85)

In the case where n̂ ‖ ĥ, the observable becomes Sn(τ) = n̂ · �σ, which is expected since
the precession process occur only in the plane perpendicular from ĥ and the operator
will be stationary. If n̂⊥ĥ, then Sn(τ) =

�

2
[cos τ n̂ + sin τ v̂] · �σ where v̂⊥ĥ and v̂⊥n̂. If

ĥ = ẑ and n̂ = x̂, then v̂ = ŷ and the observable becomes Sx = �

2
cos τ σx, which is a

well known result for the spin precessing dynamics.

2.3.1 Bloch Representation

Since qubits are two-level systems, a general state for a given direction r̂ can
be written as the superposition of the two possible states |ψ〉 = 1√

2
(|r̂,+〉+ |r̂,−〉). But

we can also describe the system for every possible direction using one state by the
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Bloch representation, in which the possible states are points in the surface of a sphere
centered at the origin (Figure 3 (a)). In this representation, the state |ψ〉 becomes

|ψ〉 = cos (θ/2) |z,+〉+ eiφ sin (θ/2) |z,+〉 , (2.86)

where the angles θ ∈ [0, π] and φ ∈ [0, 2π] are the components of a vector in spherical
coordinates. The possible choices of the angles that give the eigenstates of the Pauli
matrices are shown in the Figure 3 (b).

Figure 3 – (a) Diagram of the Bloch sphere. Font: Wikipedia1. (b) Table of the possible values of
θ and φ with theirs respective state.

The pure density operator associated with the state in (2.86) is

ρr̂ = |ψ〉 〈ψ| (2.87)

=

(
cos2 (θ/2) sin (θ/2) cos (θ/2)e−iφ

sin (θ/2) cos (θ/2)eiφ sin2 (θ/2)

)

=

(
1+cos θ

2
e−iφ sin θ

2
eiφ sin θ

2
1+sin θ

2

)

=
1

2

[(
1 0

0 1

)
+ sin θ cosφ

(
0 1

1 0

)
+ sin θ sinφ

(
0 −i

i 0

)
+ cos θ

(
0 −i

i 0

)]

=
1 + r̂ · �σ

2
, (2.88)

with the vector unity r̂ = (sin θ cosφ, sin θ sinφ, cos θ). The purity of the state can be easily
demonstrated since

ρ2r̂ =
1 + 2r̂ · �σ + (r̂ · �σ)2

4
=

1 + r̂ · �σ
2

, (2.89)
1 Available at: https://en.wikipedia.org/wiki/Bloch_sphere. Accessed: February 10th, 2025.
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and with the traceless property, Tr[ρ2r̂] = 1, as expected. In the case where we want to
define a mixed state in the Bloch sphere, it is possible to change the unit vector r̂ to the
vector �r = (sin θ cosφ r, sin θ sinφ r, cos θ r), giving the state

ρ�r =
1 + �r · �σ

2
, (2.90)

with the following eigenvalues

λ± =
1

2
(1± ‖�r‖). (2.91)

The square of the state ρ�r is

ρ2�r =
1 + 2�r · �σ + (�r · �σ)2

4
=

1 + 2�r · �σ + 1‖�r‖2
4

, (2.92)

with trace Tr[ρ2�r] =
1
2
(1 + r2), where ‖�r‖ = r and 0 ≤ r ≤ 1, so ρ�r is positive-semidefinite.

The trace Tr[ρ2�r] indicates that in the Bloch representation, the pure states are located
on the outer shell of the sphere, while the mixed ones are in the inner volume.

In cases where no prior information about the system is available, multiple
observations of the physical quantities characterizing the system can be performed to
reconstruct the density operator. This process is known as state tomography [28]. For a
spin system, this reconstruction can be achieved by measuring the components of the
spin vector, such that

〈Sx〉 = Tr[Sxρr] =
�

2
rx (2.93a)

〈Sy〉 = Tr[Syρr] =
�

2
ry (2.93b)

〈Sz〉 = Tr[Szρr] =
�

2
rz, (2.93c)

where the terms rx, ry, and rz are the components of the vector �r from the state ρ�r.
After numerous observations, the components of the vector will become better defined,
and we will be able to reconstruct the state. This discussion will be explored in future
chapters.
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CHAPTER 3

Time as Which Way Information

3.1 Time-Energy Uncertainty Principle

Time can be a difficult subject to define in physics. In [29, 30], Paul Busch says
that in physics there exist three possible kinds of time : external time, intrinsic time, and
observable time.

The external time is the period which intermediates changes in some dynamical
system measured by external equipment that does not have any interaction with the
system itself. External time is sharply defined for all experiments and does not have any
uncertainty interpretation. This kind of time is the one seen in classical physics.

The intrinsic time is associated with the evolution of some dynamical variable,
which marks the passage of time by the change of its states, like the angle of a pendulum
or the position a free particle. An interesting application of this kind of time is in the
Mandelstam-Tamm relation [31, 32] (the observable time will be discussed in the next
section).

Consider a classical dynamical variable C = C(t), which serves as a measure
of time, analogous to the pointers of a clock. If ΔC represents the uncertainty in C over
a time interval Δt, then

ΔC =

∣∣∣∣dCdt
∣∣∣∣Δt. (3.1)

To apply this identity to the quantum case, the dynamical variable C(t) is promoted to
an operator, C(t) → C(t). It is important to note that the time dependence in C(t) arises
from the time evolution generated by the Hamiltonian H, rather than any implicit time
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dependence. By the correspondence principle, the classical variable is replaced with
the expectation value of the corresponding observable, such that

ΔC =

∣∣∣∣d〈C〉
dt

∣∣∣∣Δt(C). (3.2)

The quantity ΔC is the dispersion of the observable C and Δt(C) a period of time. An
interpretation for this equation is that, with an increase in the time scale over which an
observation is made, the uncertainty of the physical observable will also increase. Using
the generalized Ehrenfest theorem [33]

i�
d〈C〉
dt

= 〈[C,H]〉. (3.3)

Substituting (3.3) into (3.2)

ΔC =
1

�
|〈[C,H]〉|Δt(C). (3.4)

Applying this result to (2.17) for A = C and B = H, the Mandelstam-Tamm uncertainty
relation is obtained:

ΔEΔt(C) ≥ �

2
. (3.5)

where ΔE = 〈(ΔH)2〉. It is important to rephrase that, in this case, differently from
the uncertainty relation proposed in (2.17), the value of Δt(C) does not represent
the dispersion of the observable, since time is not treated as a physical quantity. In
fact, Mandelstam-Tamm say that Δt(C) represents the amount of time it takes the
expectation value of any quantum observable C to change by one dispersion ΔC.

3.2 Observable Time

The time-energy uncertainty principle was initially proposed by Heisenberg [34],
where he defined that there was an operator for the observable time and another for the
energy, which is called the Hamiltonian. In his work, he did not take into account the
consequences of such a definition. Years later, Pauli argued that it is not possible for
a self-adjoint time operator to exist in conjunction with a Hamiltonian that has a lower
bound [13]. This became known as the Pauli objection, which is formally defined as:

• Pauli’s objection: Consider a physical system whose Hamiltonian H is bounded
from below. Then, it is not possible to construct a self-adjoint operator T such that

[T,H] = i�1. (3.6)

The hypothesis that the Hamiltonian is bounded from below means that there exists
a energy eigenstate |E0〉 with energy E0 such that E ≥ E0 where E represents all the
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possible energy levels allowed in the system. This hypothesis comes from what is seen
in nature, such as the quantized electromagnetic field, which do have a ground state.

Now, let us prove Pauli’s objection by contradiction. Suppose there exists a
self-adjoint operator T and a unitary operator Uλ = e−iλT , where λ ∈ R. The unitarity of
Uλ follows directly from the assumption that T is self-adjoint, i.e., T = T †. The expansion
of the commutator of the unitary operator Uλ and the Hamiltonian H yields [35]:

[Uλ, H] =
∑
k

(−iλ)k

k!
[T k, H] = −λUλ. (3.7)

Let |E〉 be an eigenstate of H. It is a direct consequence of the commutation relation
(3.7) that

HUλ |E〉 = (UλH − [Uλ, H]) |E〉 = (E + λ)Uλ |E〉 . (3.8)

This means that Uλ |E〉 is an eigenstate of H, which implies that the spectrum of
eigenvalues of H spans the entire real line. Consequently, the Hamiltonian does not
have a lower bound, thereby completing the proof.

In next two sections, we will show two approach of time as an observable. The
first is the Aharonov-Bohm time observable [14], which satisfy the Pauli objection. The
second is in the Page-Wootters mechanism [15], which bypasses the objection.

3.2.1 Aharonov-Bohm Time Operator

Let us consider a free particle with the Hamiltonian given by

H =
p2

2m
, (3.9)

where p is the momentum of the particle and m its mass. The interval of time it takes to
the particle positioned at x(t0 = 0) = x0 and velocity v = p

m
to travel to x = 0 is

t− t0 =
x− x0

v
→ t = −x0m

p
= −mx0p

−1. (3.10)

This is the time of arrival at the origin. If the time is negative, it means that the particle
already passed at the origin in the instant t = 0. Using the symmetrization rule in
equation (3.10)

T = −m

2
(P−1X +XP−1), (3.11)

where X and P are the position and momentum operator, respectively. This operator
is called the Aharonov-Bohm time operator, since it was first proposed by them in the
paper [14]. This operator is Hermitian

T † = −m

2
[(P−1X)† + (XP−1)†] = −m

2
[X†(P †)−1 + (P †)−1X†] = T, (3.12)
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and also satisfy the relation in (3.6) for the Hamiltonian of the free particle

[H,T ] = −1

4
([P 2, XP−1] + [P 2, P−1X])

= −1

4
(P 2XP−1 −XP−1P 2 + P 2P−1X − P−1XPP )

= −1

4
(P ([P,X] +XP )P−1 −XP + PX − P−1X([X,P ] + PX)P )

= −1

4
(P (−i�1 +XP )P−1 −XP + PX − P−1(i�1 + PX)P )

= −1

4
(−i�1 + PX −XP + PX − i�1 −XP )

= −1

4
(2[X,P ] + 2i�1)

= i�1,

(3.13)

where the canonical commutation relation [X,P ] = i�1 has been used. The spectrum of
eigenvalues of the Hamiltonian is

H |E〉 = E |E〉 → E =
p2

2m
. (3.14)

Having that p ∈ R, then E ≥ 0 and the Hamiltonian of the free particle has a lower
bound. Thus, by the Pauli objection the time operator T must not be self-adjoint.

The distinction between self-adjoint operators and Hermitian (or symmetric)
operators is only relevant for infinite-dimensional Hilbert spaces, which is the case
here. An operator is said to be Hermitian if D(T ) ⊂ D(T †) and T |φ〉 = T † |φ〉, where
D(T ) represents the eigensubspace of the operator T : H → H and {|φ〉} ∈ D(T ). An
operator is said to be self-adjoint if it is Hermitian and if D(T ) = D(T †) [36]. So, all
self-adjoint operators are Hermitian, but not all Hermitian operators are self-adjoint. A
direct consequence of the time operators not been self-adjoint is that its eigenstates will
not be orthogonal.

The objective now is to construct a POVM (positive operator-valued measure)
in R for the time operator T , enabling the computation of probabilities for time measure-
ments. To achieve this, it is necessary to define the eigenstates |t〉, such that

T |t〉 = t |t〉 , (3.15)

where t ∈ R. Rewriting (3.11) in the momentum representation and defining that
φt(p) = 〈p|t〉 is the wave function of the state |t〉 in the momentum representation

〈p|T |t〉 = tφt(p)

= − im

2
〈p|
(

d

dp

[
1

p

]
+

1

p

d

dp

)
|t〉

= − im

2

(
d

dp

[
φt(p)

p

]
+

1

p

dφt(p)

dp

)

=
im

2

(
φt(p)

p2
− 2

p

dφt(p)

dp

)
,

(3.16)
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which gives the following differential equation:

dφt(p)

dp
=

[
1

2p
+

ipt

m

]
φt(p). (3.17)

Due to the divergence at p = 0, this differential equation admits two families of eigen-
functions: one for p > 0 and another for p < 0. Introducing a constant α = ±1, where
α = 1 corresponds to the eigenfunction with p > 0 and α = −1 corresponds to the
eigenfunction with p < 0, the solutions to (3.17) are given by

φt,α(p) =
1√
2πm

Θ(αp)
√
|p|e ip2t

2m . (3.18)

where Θ(αp) is the Heaviside step function:

Θ(αp) =

⎧⎨
⎩1, if αp ≥ 0

0, if αp < 0.
(3.19)

It is important to note that the eigenfunctions φt,α(p) do not belong to the Hilbert space
of square-integrable functions, as they are not normalizable. However, similar to the
case of plane waves (wave functions of the position eigenstates in the momentum
representation), the state |t, α〉 can be associated with the wave functions φt,α(p), such
that

〈p|t, α〉 = φt,α(p) =
1√
2πm

Θ(αp)
√
|p|e ip2t

2m . (3.20)

But this analogy has a problem since the eigenstates of the time operator are not
orthogonal, in the sense they do not satisfy relations like

〈x|x′〉 = δ(x− x′) and 〈p|p′〉 = δ(p− p′). (3.21)

For the case where α �= α′, the inner product of |t, α〉 and |t′, α′〉 is

〈t, α|t′, α′〉 =
∫

dp 〈t, α|p〉 〈p|t′, α′〉 (3.22)

〈t, α|t′, α′〉 = 1

2πm

∫
dpΘ(p)Θ(−p)|p|e ip2(t′−t)

2m = 0. (3.23)

For the case where α = α′ = 1

〈t, α|t′, α〉 = 1

2πm

∫
dp Θ(p)|p|e ip2(t′−t)

2m =
1

2πm

∫ ∞

0

dp pe
ip2(t′−t)

2m . (3.24)

The last term in (3.24) corresponds to the Fourier transform of the Heaviside step
function. Thus, we obtain

〈t, α|t′, α〉 = 1

2
δ(t′ − t) +

i

2π(t′ − t)
. (3.25)
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Therefore, the eigenstates of the time operator do not form a orthogonal base in the
Hilbert space, which is expected, since we already stated that the time operator T is not
self-adjoint. But the operator |t, α〉 〈t, α| satisfy a completeness relation. Given that∑

α=±1

∫
dt 〈p′|t, α〉 〈t, α|p〉 = 1

2πm

∫
dt
√
|p|
√

|p′|Θ(αp)Θ(αp′)e
it(p2−(p′)2)

2m . (3.26)

Having the Dirac’s delta function integral representation

δ(x− x′) =
1

2π

∫
dteit(x−x′), (3.27)

we get
1

2πm

∫
dte

it(p2−(p′)2)
2m =

1

m
δ

(
p2

2m
− (p′)2

2m

)
. (3.28)

Using another Dirac’s delta property, which says that for a given function g(x) such that
g(xi) = 0 for i = 1, ..., n [37]

δ(g(x)) =
n∑

i=1

δ(x− xi)

|g′(xi)|
. (3.29)

Thus, we have

1

2πm

∫
dte

it(p2−(p′)2)
2m =

1

|p′|(δ(p− |p′|) + δ(p+ |p′|)). (3.30)

Using the relation

Θ(αp)Θ(αp′)(δ(p− |p′|) + δ(p+ |p′|)) = δ(p− p′), (3.31)

equation (3.26) becomes∑
α=±1

∫
dt 〈p′|t, α〉 〈t, α|p〉 =

∑
α=±1

1

2πm

√
|p|
√

|p′|Θ(αp)Θ(αp′)
∫

dt e
it(p2−(p′)2)

2m ,

=
√
|p|
√

|p| 1|p|δ(p− p′),

= δ(p− p′).

Using the orthogonality relation 〈p′|p〉 = δ(p− p′), we identify the completeness relation
for the eigenstates of the time operator:∑

α=±1

∫ ∞

−∞
dt |t, α〉 〈t, α| = 1. (3.32)

Now, we are able to define the time POVM for the free particle1. For a time interval
Δt = (t1, t2), the operator T(Δt) is defined as the sum over all possible states of the free
particle within the interval Δt between t2 and t1, such that

T(Δt) =
∑
α=±1

∫ t2

t1

dt |t, α〉 〈t, α| . (3.33)

1 For more information about the time POVM, see [38].
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It can be observed that when t1 → −∞ and t2 → ∞, the completeness relation is
recovered, i.e., T → 1. Within the POVM formalism, the probability of detecting the
particle in the state |ψ〉 at x = 0 between the instants t1 and t2 is given by

P (Δt|x = 0) = 〈ψ|T(Δt) |ψ〉 =
∑
α=±1

∫ t2

t1

dt 〈ψ|t, α〉 〈t, α|ψ〉 =
∑
α=±1

∫ t2

t1

dt| 〈t, α|ψ〉 |2.

(3.34)
We can identify the Kijowski probability distribution [39] as

T (t) =
∑
α=±1

| 〈t, α|ψ〉 |2, (3.35)

or in the momentum representation

T (t|x = 0) =
∑
α=±1

1

2πm

∫
dpdp′ Θ(αp)Θ(αp′)φ∗

ψ(p)φψ(p
′)
√

|pp′|e it(p2−(p′)2)
2m , (3.36)

where φψ(p) is the wave function of the state |ψ〉 in the momentum representation.

It is important to notice that the distribution T (t|x = 0) admits t ∈ R. However,
the state |ψ〉 used to compute the Kijowski probability distribution is to be interpreted as
a Schrödinger picture state prepared at an instant t = λ. In this case, only the values
t > λ are taken into account, since it does not make sense to be able to detect the
particle before it was even prepared. But this gives a question: if λ = 0, how we can
interpret the meaning of the negative values of time of arrival?

To circumvent this problem, we will use the interpretation proposed in [40]: we
suppose that the particle was prepared in the far past λ → −∞ and have evolved without
any perturbation to state |ψ(t = 0)〉, which we have used to define the probabilities of
time of arrival. Obviously, in an experiment we will be able to only detect positive times
of arrival, but this gives a proper interpretation to the negative values of time in the
theory.

3.2.2 Page-Wootters Mechanism

The Page-Wootters mechanism (PWM) [15, 41] was proposed in 1983 and
has had a significant influence on the development of quantum gravity and discussions
regarding time as an observable. In these works, the authors argue that time emerges
from correlations (entanglement) between the system under observation and an external
clock (for an extensive review see [42]).

In the PWM, time is defined as "what is shown in the clock", meaning that any
dynamical system can be used to mark the passage of time. The most simple case of a
quantum clock is the free particle, where time is seen as the position of the particle. It is
important to point out that the physical definition of the quantum clock is not relevant,
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since one can consider the time Hilbert space HT as an abstract space with no physical
meaning.

The global Hilbert space is HTS = HT ⊗ HS, where HS is the Hilbert space
of the system. For the time Hilbert space, it is introduced the position operator T and
the conjugate momentum operator Ω, with [T,Ω] = i�1, and the energy of the clock is
associated with the operator Ω, which is a good approximation for massive and non-
relativistic particles [43]. The fact that T represents the time operator which describes
the evolution of a system can be enforced by imposing the following constraint equation,
namely by requiring that the only states |Ψ〉〉 of the joint Hilbert space HTS that represent
physically relevant situations are the ones that satisfy

(�Ω⊗ 1S + 1T ⊗H) |Ψ〉〉 = 0, (3.37)

where 1T ⊗ H is the Hamiltonian of the system acting on HS and the notation of the
state |Ψ〉〉 is used as a reminder that this state belongs to the bipartite space HTS. The
equation (3.37) can be interpreted as the Wheeler-DeWitt equation [44], which have
static eigenstates. However, the system and the clock evolve, in the sense that the
correlations (entanglement) between system and clock track the system evolution. The
solutions of (3.37) are

|Ψ〉〉 =
∫ ∞

−∞
dω |ω〉 |ψ(ω)〉 , (3.38)

where |ω〉 are the eigenstates of the operator Ω with eigenvalue ω and |ψ(ω)〉 the Fourier
transform of the system state |ψ(t)〉. Indeed, the solution of the equation (3.37) can be
rewritten as

|Ψ〉〉 =
∫ ∞

−∞
dt |t〉 |ψ(t)〉 , (3.39)

where |t〉 are the eigenstates of the operator T with eigenvalue t and |ψ(t)〉 is the
eigenstate of the system. With the state (3.39), the equation (3.37) in the position
representation becomes

〈t| (�Ω⊗ 1S + 1T ⊗H) |Ψ〉〉 = (−i�
∂

∂t
+H) |ψ(t)〉 = 0, (3.40)

where the momentum operator is written in the position representation 〈t|Ω = (−i ∂
∂t
) 〈t|.

This is clearly Schrödinger’s equation for the system S that evolves with respect clock
time t.

Before we finish this section, it is important to see that the Pauli objection do not
apply to the time operator in the PWM. Differently from the Aharonov-Bohm approach of
time observable, in the PWM the commutation relation for the time operator T and the
Hamiltonian of the system H is [T,H] = 0, since the operators T and H do not act in
the same Hilbert space. So, the time operator T can be self-adjoint and the Hamiltonian
of the system H can have a lower bound, bypassing the Pauli objection.
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3.3 Which Way Information

Niels Bohr, one of the most influential physicists of his time, proposed that
in nature all things comes in pairs, such as space-time or position and momentum,
and they cannot be observed simultaneously [45]. In modern quantum theory, this is
applicable in the uncertainty principle and in the wave-particle duality, which is explained
by what he called the complementary principle. A simple application of this concept can
be seen in the double slit experiment.

In the double-slit experiment, an unpolarized light beam is directed toward a
double-slit apparatus, with a film placed immediately behind the slits to record the final
position of the light. An interference pattern is observed on the film, resulting from the
diffraction of light, demonstrating its wave-like behavior. However, when a horizontal
polarizer is placed in front of one slit and a vertical polarizer in front of the other, the
film records two distinct points, indicating that the light exhibits particle-like behavior
with a well-defined trajectory. According to Bohr’s principle of complementarity, light
cannot simultaneously exhibit both wave-like and particle-like behaviors. The observed
behavior depends on the type of measurement performed.

Inspired by this, Englert [46] proposed that the information about the path that
the particle took and the visibility of the interference pattern must satisfy the following
inequality:

I2 + V2 ≤ 1, (3.41)

where I is associated with the path information, a particle behavior, and V is associated
with the visibility of the interference pattern, a wave behavior. The equation (3.41)
becomes an equality when the ensemble in the experiment is pure. What is interesting
about this inequality is the possibility of having both wave and particle qualities partially,
but always respecting the upper bound.

The quantity I represents the amount of information available about the path
taken by the particle in an interferometer or, equivalently, the information about which
slit the light beam passed through in the double-slit experiment. The visibility V of the
interference pattern is defined as

V =
Imax − Imin

Imax + Imin

, (3.42)

where Imax is the maximum intensity of the interference pattern and Imin is the minimum
intensity. For pure ensembles, the amount of which-way information I can be determined
by the relation I =

√
1− V2

In the next section, an insightful application of this concept to the Mach-Zehnder
interferometer will be presented. It will be shown that, to create which-way information,



CHAPTER 3. TIME AS WHICH WAY INFORMATION 44

it is necessary to entangle the spatial modes of the system with an additional degree of
freedom, such as the polarization of light.

3.3.1 Mach-Zehnder Interferometer

The Mach-Zehnder interferometer was proposed in the 19th century to study
the influence of gas compression on the refractive index [47]. The interferometer can
be constructed as follows: initially, a beam of unpolarized photons propagates along
the x-direction. The beam then encounters a beam splitter, BS1, which divides it into
two paths, A and B. These paths are reflected by mirrors, MA and MB, respectively,
and subsequently recombined at a second beam splitter, BS2. The resulting beams
are detected by two detectors, Dx and Dy. Two variations of this interferometer will
be discussed: one where the photons are initially separated by a BS1 (Figure 4) and
another where the photons are initially separated by a polarizing beam splitter PBS

Figure 5).

Figure 4 – Diagram of the Mach-Zehnder interferometer. BS1 is the first beam splitter, MA and
MB are mirrors, φ is the phase shifter and BS2 is the second beam splitter.

Photons traveling in the horizontal direction (x-direction) are defined to be in the
spatial mode |x〉, while those traveling in the vertical direction are in the spatial mode
|y〉 (y-direction). The action of the beam splitter is represented by the following matrix:

BS =
1√
2

(
1 i

i 1

)
, (3.43)
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and the action of the mirrors are defined as⎧⎨
⎩MA : |x〉 → i |y〉 ,
MB : |y〉 → i |x〉 .

(3.44)

The phase shifter φ will apply a phase into the spacial mode |x〉, such that φ |x〉 = eiφ |x〉.
If the initial state of the photon is given by the spatial mode |x〉, then the evolution of the
photon for the first configuration (Figure 4) of the Mach-Zander interferometer is

|ψin〉 = |x〉 BS1,MA,MB−−−−−−−→ i |y〉 − |x〉√
2

φ−→ i |y〉 − eiφ |x〉√
2

BS2−−→ i |y〉 (1− eiφ)− |x〉 (1 + eiφ)

2
,

(3.45)
or

|ψout〉 = eiφ[sin (φ/2) |y〉 − cos (φ/2) |x〉]. (3.46)

The probability of detection for each path is

P (x) = Tr[Dxρ] = cos2 (φ/2), (3.47)

P (y) = Tr[Dyρ] = sin2 (φ/2), (3.48)

here ρ = |ψout〉 〈ψout|, Dx = |x〉 〈x|, and Dy = |y〉 〈y|. In this type of interferometer, an
interference pattern, as observed in the double-slit experiment, is not directly visible.
However, the intensity of the interference can be quantified by the number of clicks
registered by one of the detectors, such that

I(φ) = Tr[Dxρ] = cos2 (φ/2). (3.49)

Then, the visibility V becomes

V =
max(cos2 (φ/2))−min(cos2 (φ/2))

max(cos2 (φ/2)) + min(cos2 (φ/2))
= 1. (3.50)

So, the which-way information for this case is I =
√
1− V2 = 0, where we took into

account that the ensemble is pure. This means that the photon behave purely as wave
independently from the phase φ, and we cannot predict the path each photon took in
the interferometer.

The experiment is now repeated, but instead of using a beam splitter initially, a
PBS is employed. This ensures that each path corresponds to a specific polarization.
Specifically, photons in path A are horizontally polarized (|H〉), while photons in path B

are vertically polarized (|V 〉). Using the same initial state |ψin〉 = |x〉, the time evolution
of the second Mach-Zehnder interferometer (Figure 5) is

|ψin〉 = |x〉 PBS−−−→ 1√
2
(|x〉 |H〉+ i |y〉 |V 〉) MA,MB ,φ−−−−−→ 1√

2
(i |y〉 |H〉 − eiφ |x〉 |V 〉)

BS2−−→ 1

2
[i |y〉 (|H〉 − eiφ |V 〉)− |x〉 (|H〉+ eiφ |V 〉).

(3.51)
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Figure 5 – Diagram of the Mach-Zehnder interferometer. PBS is the polarizing beam splitter,
MA and MB are mirrors, φ is the phase shifter and BS2 is the second beam splitter.

The final state after the second beam splitter BS2 is

|ψout〉 =
1

2
[i |y〉 (|H〉 − eiφ |V 〉)− |x〉 (|H〉+ eiφ |V 〉)], (3.52)

with the following detection probabilities:

P (x) = Tr[Dx ⊗ 1Pρ] =
1

2
, (3.53)

P (y) = Tr[Dy ⊗ 1Pρ] =
1

2
, (3.54)

where 1P is the identity matrix for the Hilbert space of the polarization states. In this
case, we do not observe any interference. Indeed, the visibility V for this experiment is

V =
max(1/2)−min(1/2)

max(1/2) + min(1/2)
= 0, (3.55)

and the which way information is I = 1. We can see that, since the spatial modes of
the photon are entangled with its own linear polarization, the photon are marked for
each path of the interferometer, making it behave purely as a particle and destroying
the visibility of the interference.

An important conclusion drawn from this experiment is that the creation of which-
way information requires the entanglement of the spatial modes of the interferometer
with states associated with the paths taken by the system. In this case, the spatial
modes were entangled with the linear polarization of light, where each polarization was
correlated with a distinct path.
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Indeed, in the first case of the Mach-Zehnder interferometer the beam of light is
unpolarized. Then, when we take into account the polarization of the photon, the final
state can be written as

|ψout〉 =
eiφ√
2
[sin (φ/2) |y〉 − cos (φ/2) |x〉](|H〉+ |V 〉). (3.56)

Since the states are separable, it is easy to see that the degrees of freedom are not
entangled. However, on the second configuration, the final state is

|ψout〉 =
1

2
[i |y〉 (|H〉 − eiφ |V 〉)− |x〉 (|H〉+ eiφ |V 〉)]. (3.57)

In this case, the states of the spatial modes and linear polarization are not separable,
meaning that the degrees of freedom are entangled.

3.4 Can Time Mark Photons?

In the previous sections, we have presented different approaches to time ob-
servables and demonstrated that the creation of which-way information destroys the
interference pattern in interferometers. We are now ready to pose the central question of
this chapter: Is a difference in time of flight sufficient to generate which-way information?

If time is indeed an observable, then it represents a degree of freedom. This
implies that, in interferometers where each path has a different time of flight, the states
corresponding to different time intervals should become entangled with the spatial
modes of the photons, thereby generating which-way information and destroying the
interference pattern.

To address this question, we will present an interferometer in which each path
has a distinct time of flight. Subsequently, we will conduct a theoretical discussion of the
results observed in the experiment.

3.4.1 Fizeau Interferometer

The Fizeau experiment was first introduced by Fizeau in 1851 [48], later refined
by Michelson and Morley in 1886 [49] and reproduced by Zeeman in 1914 [50]. It played
an important role in demonstrating that light does not obey the Galilean transformation
between two moving reference frames. Years later, this inspired Lorentz to describe
the light Doppler effect and, consequently, Einstein proposal of the special theory of
relativity.

The Fizeau interferometer can be defined as follows: first, a light beam is
generated at point S and divided into two beams by a lens at point L (figure 6). These
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beams are then collimated at point E by two slits, O1 and O2. Next, the beam passing
through slit O1 travels through tube A1, where water is moving in the same direction as
the light beam, while the beam passing through slit O2 travels through tube A2, where
water is moving in the opposite direction. After passing through the tubes, the beams
are recombined by the lens at point L’ and reflected by the mirror at point m, forcing
the beams to propagate through the tubes they have not yet traversed. This is done to
minimize errors caused by potential inhomogeneities in the water flow and pressure.
Finally, the beams collapse at surface S’ positioned in G, where we can observe the
interference pattern.

Figure 6 – Diagram of the Fizeau experiment. Picture took from [48].

At first glance, the speed of light by a Galilean transformation in each tube is

w± =
c0
n

± v, (3.58)

with c0 as the speed of light in vacuum, n is the refractive index of the water and v the
velocity of the water in the laboratory reference frame. The plus or minus sign depends if
the light travel in the same or opposite direction of the water current. But this experiment
showed that the speed of light in each tube was given by

w± =
c0
n

± v

(
1− 1

n2

)
. (3.59)

With the special theory of relativity, we can demonstrate the result obtained by Fizeau.
The velocity-addition formula is given by

w =
u+ v

1 + (uv
c20
)
, (3.60)

where u is the velocity of the object in the rest frame, v is the velocity of the moving
frame and w is the velocity of the object for the moving frame. Applying this formula to
the case of the Fizeau experiment

w =
c0
n
+ v

1 +
c0
n
v

c20

=
c0
n
+ v

1 + v
c0n

. (3.61)

Writing the difference of velocities w and c0
n

w − c0
n

=
c0
n
+ v

1 + v
c0n

− c0
n

=
c0
n
+ v − c0

n
(1 + v

c0n
)

1 + v
c0n

=
v(1− 1

n2 )

1 + v
con

(3.62)
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Defining that the velocity of the fluid v is much smaller that the speed of light c0
n

,

w − c0
n

≈ v

(
1− 1

n2

)
. (3.63)

Then, the speed of light in the cases where the light propagates in the same direction
as the fluid current (w+) and in the opposite direction (w−) is

w± =
c0
n

± v

(
1− 1

n2

)
, (3.64)

which is identical to what Fizeau saw in (3.59). It is important to say that, since the first
postulate of special relativity defines that the speed of light is constant in all referentials,
in this case what changes for each tube is the time of flight and w± represents the
effective speed of light. In 1898, Lorentz added the dispersion contribution, giving the
final definition of the Fizeau drag coefficient [51]

w± =
c0
n

± v

(
1− 1

n2
− λ

n

dn

dλ

)
, (3.65)

with λ as the wavelength of the light used in the experiment.

After the first application of the experiment by Fizeau, Michelson and Morley im-
proved the experimental procedure with technological advancements and then Zeeman
reproduced the Michelson and Morley experimental apparatus with light with different
wavelengths to confirm the dispersion contribution proposed by Lorentz. In the Zeeman
case, he initially made the experiment with the water current in the same direction for
both paths, generating a interference pattern in the film. Then, he positioned a wire
in front of the interference pattern so he could use it as a parameter. After this, he
made the water flow in different directions in each path and saw the displacement of the
interference pattern. The results are in Figure 7.

The interference pattern in the case (a) is caused by the differences in the
optical paths of the interferometer. The displacement of the fringes in the case (b) is
caused by the phase associated with the different time of flight of the optical paths.
Indeed, the time of flight for each path is

t+ =
2L

w+

=
1

108 − 10−3
s, (3.66)

t− =
2L

w−
=

1

108 + 10−3
s, (3.67)

where L is the length of the tubes. The difference of time of flight between the tubes is

δt =
4Lvn2

c2

(
1− 1

n2
− ω

n

dn

dω

)
≈ 10−19s, (3.68)

and the lateral displacement of the fringes is given by

Δ =
δtc

λ
=

4Lvn2

cλ

(
1− 1

n2
− ω

n

dn

dω

)
. (3.69)
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Figure 7 – Interference pattern for the water current in the same direction in each path (a) and
for the water current in different directions (b). λ is the wavelength of the light in Å, p
in the water pressure in kg/cm2 and Δ is the displacement of the fringes. The red
line represents the position of the wire. Figure taken from [50].

The lateral displacement Δ is caused by the increase in the relative phase between
the light beams, which moves the interference pattern. The lateral displacement is then
measured, and the Fizeau drag coefficient is experimentally determined.

3.4.2 Entanglement with Time

In the Fizeau experiment, we saw that the difference of time of flight of each
path was capable to generate lateral displacement of the fringes of the interference
pattern. In the theoretical description of the experiment, time is defined as a parameter.
If we take into account the quantum description of time given by the time operator, we
would expect the state of the system to be given by

|ψ〉 = 1√
2
(|x〉 |t+〉+ |y〉 |t−〉), (3.70)

where |x〉 and |y〉 are the spatial modes of the interferometer, |t+〉 and |t−〉 are the states
of time of flight for each tube. In this case, since the time of travel is entangled with the
spatial modes, time should works as which-way information and so we expected that
the visibility of the interference pattern to be reduced. But that is not what we see in
the Fizeau experiment, suggesting that the spatial modes of the interferometer are not
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entangled with time, or

|ψ〉 ≈ 1√
2
(|x〉+ |y〉) |t〉 . (3.71)

A criterion to determine entanglement in bipartite pure states is by the linear entropy of
the reduced state [52]

E(ρTS) = SL(ρS) = 1− Tr[ρ2S]. (3.72)

If the reduced state ρS is pure, then the linear entropy is SL(ρS) = 0. This means that it
is possible to assert if the subsystems are entangled based on the purity of the reduced
state. The total state of the system is

2ρTS = 2 |ψ〉 〈ψ| = |x〉 〈x| ⊗ |t+〉 〈t+|+ |y〉 〈y| ⊗ |t−〉 〈t−|+
|x〉 〈y| ⊗ |t+〉 〈t−|+ |y〉 〈x| ⊗ |t−〉 〈t+| .

(3.73)

The reduced state is

2TrT [ρTS] = 2ρS = |x〉 〈x|+ |y〉 〈y|+ |x〉 〈y| 〈t+|t−〉+ |y〉 〈x| 〈t−|t+〉 . (3.74)

The purity of the reduced state ρS will be

4Tr[ρ2S] = 2 + 2| 〈t+|t−〉 |2. (3.75)

or
Tr[ρ2S] =

1 + | 〈t+|t−〉 |2
2

. (3.76)

Supposing we can rewrite the term | 〈t+|t−〉 |2 as Gaussian wave packets, such that

| 〈t+|t−〉 |2 =
∣∣∣∣
∫

dτ 〈t+|τ〉 〈τ |t−〉
∣∣∣∣
2

∝
∣∣∣∣ exp

{
−(t− − t+)

2

8ΔT 2

}∣∣∣∣
2

, (3.77)

where ΔT is the width of the wave packets and |τ〉 are the eigenstates of a time operator.
By the exponential in (3.77), we can see that, since the spatial modes are not entangled
with the states of the time of flight, the argument of the exponential must go to zero,
making the state ρS to be pure. The problem is that the theoretical descriptions of time
observables in literature do not give us the magnitude of the dispersion of the time
operator, precluding the advance of this theoretical discussion. We conclude that the
Fizeau interferometer has the potential to determine if time is an observable in the theory
of quantum mechanics, but the parameters of the experiment must be manipulated in a
way that the quantum behavior of time is possible to be observed.
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CHAPTER 4

Irrealism and Macrorealism

4.1 EPR and Elements of Reality

In 1935, Einstein, Podolsky and Rosen published an article entitled "Can
Quantum-Mechanical Description of Physical Reality be Considered Complete" [5].
In this classical work, the authors discuss what it means to a theory to be correct and
complete, and also define something called "element of reality".

The authors argue that a physical theory is said to be correct if the theory
agrees with the experimental results, which is a satisfactory definition not only for
physical theories, but all natural sciences.

They define what it means to a theory to be complete and what is an element
of reality as follows

• Complete: Every element of reality must have a counterpart in the physical theory.

• Element of Reality : If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical quantity.

In the original work, the authors make an example with continuum variables. For the
sake of simplicity, we will make some examples using qubits. For a particle in the
positive eigenstate of Sz, |ψ〉 = |z,+〉, the probability of finding the particle in the |z,+〉
will be Pz(+) = 1. Now, if we have a state of the form |ψ〉 = 1√

2
(|z,+〉 + |z,−〉), the
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probability of finding the particle in the same state is Pz(+) = 1/2. As we can see
from these probabilities, there are cases in quantum mechanics where a physical
quantity can represent an element of reality. But does this mean the theory is complete?
Assuming the first system |ψ〉 = |z,+〉, the probability of finding the state in the positive
Sx eigenstate is Px(+) = 1/2, which is different from unity. This suggest that theirs
definition of a complete theory is not allowed in quantum mechanics.

This result exemplifies the non-commuting nature of spins in different directions.
In the sense of EPR, the spin in two different directions cannot have elements of reality
simultaneously. From this, the authors define two alternatives: (1) the description of
the physical reality given by the wave function is incomplete, or (2) physical quantities
assigned to incompatible observables cannot have simultaneous reality.

The theory of quantum mechanics presumes that (1) is false and, therefore, (2)
must be true. However, the authors show in a thought experiment that it is possible for
(2) be false, and by consequence (1) be true. We will show the experiment proposed
by D. Bohm [53] using a system with a discrete spectrum of outcomes instead of the
continuous one used by EPR.

A source creates a pair of entangled electron-positron, where one of them is
given to Bob, in the lab B, and the other to Alice, in lab A. The labs are space-like
separated. The state of this pair will be a singlet state:

|ψ〉 = 1√
2
(|+, z〉A |−, z〉B − |−, z〉A |+, z〉B), (4.1)

or
|ψ〉 = 1√

2
(|+, x〉A |−, x〉B − |−, x〉A |+, x〉B), (4.2)

where we used the identities of Sz eigenstates as a superposition of Sz eigenstates. If
Alice measures the Sx component with the +1 outcome (|+, z〉A), then Bob will observe
only the -1 outcome (|−, z〉B), making Sz an element of reality for Bob. If the same is
done for Sx by Alice, then Bob’s qubit will be in a well-defined state, and Sx will also be
an element of reality. As the labs A and B are space-like separated, the measurements
made by Alice should not be correlated with the ones made by Bob, in such a way
that we need to admit both wave functions resulting from the possible measurements
made by Alice as possible for Bob. From this, the authors say that Sz and Sx represent
simultaneously elements of reality for Bob, which makes (2) false, and so (1) true.

The authors hoped that this paradox could be resolved in a way that quantum
mechanics would satisfy the local causality hypotheses, i.e. the reality of a physical
quantity could not be changed by space-like separated events. This inspired physicist to
propose the "theory of hidden variables", which, as we will see in the following section,
is incompatible with quantum mechanics.
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4.1.1 Bell’s Theorem

In 1964, Bell published an article entitled "On the Einstein Podolsky Rosen
Paradox" [9], in which he demonstrated the incompatibility of quantum mechanics with
the theory of local hidden variables. As previously discussed, if quantum mechanics is
assumed to be a local theory, it must also be considered incomplete. To address this
incompleteness, some physicists proposed the existence of local hidden variables, which
would account for the correlations observed in measurements of space-like separated
systems.

A source creates two entangled qubits that are given each one to Alice and
Bob, who resides in space-like separated laboratories as in Figure 8. Alice make
numerous measurements of the physical quantity A with possible outcomes a and
Bob make measurements of the physical quantity B with outcomes b. The outcomes
may vary for each iteration. After the experiments, they will be able to compute the
probability distribution p(a, b|A,B) and show that this distribution is not factorizable
p(a, b|A,B) �= p(a|A)p(b|B), meaning that the outcomes {a, b} are statistically correlated.

Assuming that quantum mechanics is a local theory, there should not have any
correlation between the events, since Alice and Bob cannot instantaneously commu-
nicate with each other. For this, physicists proposed the existence of a local hidden
variable λ which was capable to make the probability of the outcomes independent from
the events, such that

p(a, b|A,B) =

∫
dλp(λ)p(a, b|A,B, λ), (4.3)

where p(λ) is the probability distribution of the hidden variable λ and the joint probability
on the left side of the equation is p(a, b|A,B, λ) = p(a|b, A,B, λ)p(b|A,B, λ), meaning
that the statistical correlation could be undone by the specification of the variable λ.

Now, we will make some assumptions so that the equation (4.3) is satisfied by
any deterministic and local theory. Cavalcanti and Wiseman [54] say that a system is
deterministic1 if and only if p(a, b|A,B, λ) ∈ {0, 1}, a ≡ a(A,B, λ) and b ≡ b(A,B, λ). A
consequence from this is the independence of the outcomes {a, b} from each other,
such that p(a|b, A,B, λ) = p(a|A,B, λ) and vice versa. If the theory is local, the possible
outcomes of the observables A and B should depend only on events occurring in the
vicinities of the laboratories. Thus, the conditional probabilities of the outcomes becomes
p(a|A,B, λ) = p(a|A, λ) and p(b|A,B, λ) = p(b|B, λ). With this, equation (4.3) can be
rewritten as

p(a, b|A,B) =

∫
dλp(λ)p(a|A, λ)p(b|B, λ). (4.4)

1 In this case, determinism and realism are the same concept, meaning that the outcomes of the
observables are well established even before any measurement.
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Figure 8 – Diagram of the CHSH experiment. Two entangled qubits are generated in G. Then,
they are separated between two labs, Alice and Bob. In these labs, two measurements
are made in each: A and A′ in Alice’s lab, and B and B′ in Bob’s lab. The probabilities
are sent to an external agent E, who calculates the correlation functions for those
probabilities.

A way to assert whether the system satisfies the condition in (4.4), is by the
Clauser-Horne-Shimony-Holt (CHSH) inequality [10]. Given that the correlation function
between two observables A and B is

CAB = 〈A⊗ B〉 =
∫
a

∫
b

da db p(a, b|A,B)ab. (4.5)

If the system is deterministic and local

CAB =

∫
λ

dλ p(λ)

∫
a

da p(a|A, λ)a
∫
b

db p(b|B, λ)b, (4.6)

or
CAB =

∫
λ

dλ p(λ)〈A〉λ〈B〉λ, (4.7)

and defining that both Alice and Bob may have two other possible observables A′ and
B′, respectively, we define a quantity called correlator S:

S = CAB + CA′B + CAB′ − CA′B′ . (4.8)

Substituting (4.7) in S

S =

∫
λ

dλ p(λ)[〈A〉λ(〈B〉λ + 〈B′〉λ) + 〈A′〉λ(〈B〉λ − 〈B′〉λ)]. (4.9)

As we said previously, the system is constituted by qubits, meanings that the possible
outcomes of the observables are +1 or −1. With this, it is possible to demonstrate that
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any system that satisfies the conditions of determinism and locality should satisfy the
following inequality

CAB + CA′B + CAB′ − CA′B′ ≤ 2. (4.10)

Let us make an example to elucidate how quantum mechanics violates the
inequality. Suppose the system is in the singlet state in (4.1). The correlation functions
for two spins A = â · �σ and B = b̂ · �σ is 〈AB〉 = −â · b̂. If Alice measures the qubit in
â = x̂ and â′ = ŷ directions, and Bob measures in b̂ = 1√

2
(x̂ + ŷ) and b̂′ = 1√

2
(x̂ − ŷ)

directions, the correlation functions will be 〈ab〉 = 〈ab′〉 = 〈a′b〉 = 1√
2

and 〈a′b′〉 = − 1√
2
.

The correlator S will be S = 2
√
2, which violates the upper bound of the CHSH inequality.

This implies that quantum mechanics violates the definitions of determinism and locality.

Numerous experiments with loopholes [55, 56] and without loopholes [57–59]
have shown the violation of the CHSH inequalities, making it a cornerstone in the study
of the foundations of quantum mechanics.

4.2 Irrealism

In 2015, Bilobran and Angelo (BA) published a paper entitled "A Measure of
Physical Reality" [12], in which they proposed a new definition of elements of reality and
also defined a quantity called Irreality. Their new definition has been proven to be more
advantageous than the one proposed by EPR, as it can take into account mixed states.

We consider two laboratories, A and B, as illustrated in Figure 9. In the first lab-
oratory, the state of a system is prepared, and quantum state tomography is performed
by making numerous observations of the system. This allows for the reconstruction
of the state as ρ ∈ HT = HA ⊗HB ⊗ · · · ⊗ HN . In the second laboratory, a system is
prepared, and an external agent performs numerous non-revealed observations of a
physical quantity A, where A =

∑
n anΛan . Following this, quantum state tomography is

performed, resulting in the following completely positive trace-preserving (CPTP) map:

ΦA(ρ) =
∑
n

ΛanρΛan =
∑
n

p(an)Λan ⊗ TrA[ΛanρΛan ]

p(an)
, (4.11)

where p(an) = Tr[Λanρ] is the probability of the external agent obtaining the outcome an,
and TrA[ΛanρΛan ]/p(an) is the part of the state that remains untouched by the external
agent.

With this, the authors propose a new definition for elements of reality:

• BA element of reality : An observable A =
∑

n anΛan , with projectors Λan = |an〉 〈an|
acting on HA, is real for a preparation ρ ∈ HT = HA ⊗HB ⊗ ...⊗HN if and only if

ρ = ΦA(ρ). (4.12)
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Figure 9 – Diagram of the construction of the map. On the left, numerous states are prepared and
subjected to quantum state tomography, resulting in the reconstruction of the state ρ.
On the right, numerous states are also prepared, but an external agent E performs
non-revealed measurements of the observable A on the system. Subsequently, the
system undergoes quantum state tomography, and the state is reconstructed as
the map ΦA(ρ). If ΦA(ρ) = ρ, then the observable measured by the external agent
represents an element of reality.

To gain a better understanding of this definition, let us propose some examples. For a
pure state ρ = |an〉 〈an|, the state after a non-revealed measurement becomes

ΦA(ρ) =
∑
n

Λan |an〉 〈an|Λan = ρ, (4.13)

indicating that A is a BA element of reality. Since the state ρ = |an〉 〈an| is an eigenstate
of the operator A, it is also an EPR element of reality. Now, if we have a pure state like

ρ′ =
1

2
(|an〉 〈an|+ |am〉 〈am|+ |an〉 〈am|+ |am〉 〈an|), (4.14)

the map becomes ΦA(ρ
′) = 1

2
(|an〉 〈an| + |am〉 〈am|). In this case, the observable A

do not represent an BA element of reality but it is an EPR element of reality, since,
again, the state ρ′ represents an eigenstate of the operator A. Finally, for a mixed state
ρ′′ = 1

2
(|an〉 〈an|+ |am〉 〈am|), the map becomes

ΦA(ρ
′′) =

1

2
(|an〉 〈an|+ |am〉 〈am|), (4.15)

meaning that A is a BA element of reality for the state ρ′′. In the original EPR paper, the
authors do not discuss theirs definition of elements of reality for mixed states, maybe
because the definition they proposed is only applicable to pure states.
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It is interesting to notice that non-revealed measurements do not change a
maximally mixed state. Indeed, having ρmm = 1A

dA
, then the map becomes

ΦA(ρmm) =
∑
n

Λan

1A

dA
Λan =

1

dA

∑
n

Λan =
1A

dA
, (4.16)

where we have used the idempotent property of the projectors (Λ2
an = Λan) and the

completeness relation. Another interesting property is that sequential maps of the same
observable do not change the map:

ΦA(ΦA(ρ)) =
∑
n

∑
m

ΛanΛamρΛanΛam =
∑
n

ΛanρΛan = ΦA(ρ), (4.17)

where we have used the property of pairwise orthogonality of the projectors (ΛanΛam =

δnmΛan). Therefore, sequential maps of the same observable preserve the reality status
of the state.

Following the definition of BA elements of reality, the authors define a quantifier
for the irreality of an observable A:

IA(ρ) := S(ΦA(ρ))− S(ρ), (4.18)

where IA(ρ) is the irreality of the observable A given the state ρ, and S(ρ) is the
von Neumann entropy of the state ρ. The irreality is equal to the relative entropy
S(ρ||ΦA(ρ)) = Tr[ρ(log(ρ) − ρ log(ΦA(ρ)))] [60]. This means that the irreality IA(ρ) is
nonnegative:

IA(ρ) ≥ 0, (4.19)

and goes to zero if and only if (4.12) is satisfied.

4.2.1 Joint Irrealism

More recently, Caetano and Angelo (CA) [61] proposed the joint irrealism, which
can be used to detect if two observables represent joint elements of reality. Suppose we
do the same experiment made by BA, but this time we do two sequential non-revealed
measurements of two different observables A =

∑
n ΛanρΛan and B =

∑
m ΛbmρΛbm . In

this case, the external agent will produce the following map

ΦAB(ρ) = ΦA ◦ ΦB(ρ) =
∑
n,m

ΛbmΛanρΛanΛbm , (4.20)

where ΦA ◦ ΦB(ρ) represents the sequential map of the observables A and B. Inspired
by BA, CA proposed that two observables will be joint elements of reality for a state ρ if

ΦAB(ρ) = ΦBA(ρ) = ρ. (4.21)
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Whenever this condition is satisfied, we say that the observables A and B represent
joint elements of reality for the system ρ. In addition, given that ΦA(ρ) = ΦA(ΦA(ρ)),
when (4.21) is true ΦA ◦ ΦAB(ρ) = ΦA(ρ) = ΦAB(ρ) → ΦA(ρ) = ρ, which means that if
two observables represent joint elements of reality, then they also are BA elements of
reality individually.

Given this definition, the authors also define the Joint Irreality:

IAB(ρ) =
S(ΦAB(ρ)) + S(ΦBA(ρ))

2
− S(ρ). (4.22)

Since the von Neumann entropy is non-decreasing under CPTP maps, the joint irreality
is always semi-positive and goes to zero only if (4.21) is true. To prove this, let’s make
some addition and subtraction of the entropies S(ΦA(ρ)) and S(ΦB(ρ)) in (4.22). Thus,
the joint irreality becomes

IAB(ρ) =
IA(ρ) + IB(ρ) + IB(ΦA(ρ)) + IA(ΦB(ρ))

2
. (4.23)

The relative entropies in (4.23) are going to be zero only if their arguments are equal,
such that ρ = ΦA(ρ) = ΦB(ρ) = ΦAB(ρ) = ΦBA(ρ).

Another discussion the authors show in the same work is a comparison between
the joint irreality for the singlet state and the definition of simultaneous elements of reality
in the EPR paper. For two maximally incompatible observables A = X and B = X̄, the
joint irreality becomes

IX,X̄ = loga d− S(ρ), (4.24)

where d is the dimension of the Hilbert space where the observable acts. For the two
observables A = 1⊗ σz and B = 1⊗ σx, the joint irreality for the singlet state ρ = |ψ〉 〈ψ|
where |ψ〉 is the state in (4.1) is

I1⊗σz ,1⊗σx(ρ) = loga 4. (4.25)

The result in (4.25) is a completely different result from the EPR’s approach, in which the
observables σx and σy represented simultaneous elements of reality in Bob’s laboratory.

4.3 Macrorealism

One of the most renowned thought experiments in quantum mechanics is
Schrödinger’s cat. In this experiment, a cat is placed inside a box containing a flask of
poison, a hammer positioned to break the flask, a radioactive material, and a Geiger
counter. If the Geiger counter detects radiation—indicating the decay of the radioactive
material—the hammer is triggered, breaking the flask and killing the cat. However, since
atomic decay is a probabilistic event, the state of the cat (whether dead or alive) can
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only be determined upon observation of the system. Prior to observation, the system
must be described as being in a superposition of the states corresponding to a dead cat
and an alive cat [62].

Schrödinger presented this experiment to demonstrate how absurd the wave
function description of nature can be when applied to "macroscopically tangible and
visible things". Inspired by this, Leggett and Garg proposed a definition of how macro-
scopic objects should behave and also a test to determine whether they do exhibit this
behavior [11] (for an extensive review see [63]).

In 1985, Leggett and Garg published an article entitled "Quantum mechanics
versus macroscopic realism: Is the flux there when nobody looks?", where they discuss
the concept of "macrorealism". The authors define that a system is not macrorealistic if
it violates at least one of the following assumptions:

• A1. Macroscopic realism per se : A macroscopic system with two or more macro-
scopically distinct states available to it will at all times be in one or the other of
these states.

• A2. Non Invasive Mensurability : It is possible, in principle, to determine the state
of the system with arbitrarily small perturbation on its subsequent dynamics.

In more recent discussions, some authors have introduce a third assumption [64]:

• A3. Induction: The outcome of a measurement on the system cannot be affected
by what will or will not be measured on it later.

Following the assumptions, the authors define the Leggett-Garg inequalities (LGIs)

K3 = C12 + C23 − C13 ≤ 1, (4.26)

K4 = C12 + C23 + C34 − C14 ≤ 2, (4.27)

where Cij = 〈QiQj〉 are the two times correlation functions and Qi = Q(ti) is an
observable in the Heisenberg picture in the instant ti and t1 < t2 < t3 < t4. When the
upper limit of the inequalities is violated, the system do not satisfy macrorealism.

For any theory that obeys A1-3, the Schrödinger cat must be dead or alive in
every instant of time and the observation of the cat state do not interfere with the cat
itself. So, the definition of macrorealism is in tune with our perception of the macroscopic
world, but is in total disagreement with quantum mechanics.

Assumption A3 reflects such basic notions about causality and the arrow of
time, that it has been unchallenged in discussions about the LGIs. A1 also satisfies our
intuition about the macroscopic world, and has been accepted by many authors as a
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necessary assumption to the deduction of the LGIs. A2, on the other hand, can be a
little more problematic when we try to make a more profound discussion.

It can be argued that A2 agrees with A1, as the measurement of a system
should only reveal a pre-existing property of a macroscopic state. However, this poses
a challenge in quantum theory, where measurements are inherently invasive. To ad-
dress this issue, Leggett and Garg introduced the concept of negative measurements.
Suppose one aims to measure a macroscopic variable Q = ±1 by employing a detector
that interacts exclusively with the state corresponding to Q = +1. In this scenario, the
absence of a detector response allows one to infer the state of the system (Q = −1)
without direct interaction. This approach enables the determination of the system’s state
in a non-invasive manner.

Another, more significant issue is that a stubborn macrorealistic can argue that
it is impossible to formulate a scientific hypothesis assuming perfect measurements
that do not influence the experimental outcome. This is known as the clumsiness
loophole [65], and a stubborn macrorealistic can always invoke this argument to dismiss
experimental results demonstrating violations of the LGIs. Despite numerous attempts
to address the clumsiness loophole [66–70], it remains an unresolved challenge in the
context of macrorealism.

The LGIs have been verified in numerous experiments [71–73] and have proven
to be an excellent test for determining whether a system violates the assumptions of
macrorealism.

4.4 Leggett-Garg Inequalities

Similarly to the approach used for the CHSH inequality, a demonstration of the
LGI can be presented based on the assumptions of macrorealism. For a qubit with a
given time evolution, sequential observations of its spin are made at different instants
of time ti and tj, where ti < tj (Figure 10). This process is repeated as many times as
necessary. The joint probability of obtaining outcomes qi in the first observation Qi and
qj in the second observation Qj is

p(qi, qj|Qi, Qj, ε) = p(qi|Qi, Qj, ε)p(qi|qj, Qi, Qj, ε), (4.28)

where ε is hidden variable that represents a complete catalog specifying all properties of
the outcomes qi and qj and is not influenced by the time evolution of the system [74]. By
A1, the measurements should only reveal a pre-existing state, in a way that the possible
outcomes qi and qj are independent from one another

p(qi, qj|Qi, Qj, ε) = p(qi|Qi, Qj, ε)p(qj|Qi, Qj, ε). (4.29)
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Figure 10 – Diagram of the LG experiment. The observations of the physical quantity Q is made
in two different times ti and tj . Then, the joint probabilities for the possible outcomes
are gathered an the correlation functions Cij are constructed. This process is
repeated four times for different pairs of instants of time and then the correlator K4

is defined.

A2 says that a measurement Qi do not influence the subsequent dynamics of the
system, i.e. the future outcomes qj are independent from previous observations. With
this p(qj|Qi, Qj, ε) = p(qj|Qj, ε). By A3, previous measurements do not influence the
outcomes of the future ones, meaning that qi is independent from Qj. So, equation
(4.28) can be rewritten as

p(qi, qj|Qi, Qj, ε) = p(qi|Qi, ε)p(qj|Qj, ε). (4.30)

The authors define the two time correlation functions as

Cij = 〈QiQj〉 =
∫
qi

∫
qj

dqi dqj qiqj p(qi, qj|Qi, Qj). (4.31)

With the joint probability in (4.30), the correlation functions become

Cij =

∫
ε

dε p(ε) 〈Qi〉ε〈Qj〉ε, (4.32)

where p(ε) is the probability distribution of the hidden variable ε. In the case where four
measurements are made at different instants of time (t1 < t2 < t3 < t4), a fourth-order
correlator K4 is obtained. This correlator is defined similarly to the one in the CHSH
case for dichotomic observables

K4 = C12 + C23 + C34 − C14 < 2. (4.33)

This is called the Leggett-Garg inequality of the fourth order, and has the same limit as
the CHSH inequality and the same violation limit of K4 = 2

√
2.
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4.4.1 Leggett-Garg Inequalities Violations for a Qubit

In the original work, Leggett and Garg define the two time correlation functions
as the expectation value of the product of the operators in the Heisenberg picture in
different instants of times

Cij = 〈QiQj〉, (4.34)

but the operator QiQj will be Hermitian only when

QiQj = (QiQj)
† = Q†

jQ
†
i . (4.35)

Given that Qi and Qj are Hermitian

QiQj = QjQi → [Qi, Qj] = 0, (4.36)

which means that there are cases where the correlation function will be complex.
Because of this, Fritz [75] made the following proposition:

• Proposition: While a spatial correlator is given by the expectation value of the
tensor product of the observables, a temporal correlator is given by half the
expectation value of the anticommutator of the observables:

spatial : CAB = 〈A⊗B〉 → temporal : Cij =
1

2
〈{Qi, Qj}〉, (4.37)

which is always real. Now, consider a time evolution of a qubit such that the operators in
the Heisenberg picture are given by

σi = σH(τi) = m̂i · �σ, (4.38)

where the time evolution is encoded in the vector m̂i. Applying these operators in (4.37),
we have

Cij =
1

2
Tr[(m̂i · �σ)(m̂j · �σ)ρ+ (m̂j · �σ)(m̂i · �σ)ρ]. (4.39)

Remembering that

(m̂i · �σ)(m̂j · �σ) = (m̂i · m̂j)1 + i(m̂i × m̂j)�σ, (4.40)

then
Cij =

1

2
Tr[2(m̂i · m̂j)ρ] = (m̂i · m̂j)Tr[ρ] = m̂i · m̂j, (4.41)

which is independent of the initial state. In the case of a spin precessing, the time
evolution will be governed by the Hamiltonian H = 1

2
ωσĥ, where the subscript ĥ define

the direction of the external homogeneous field. In this case, the vector m̂i is

m̂i = cos τi n̂+ sin τi (n̂× ĥ) + [1− cos τi] (n̂ · ĥ), (4.42)
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where n̂ is the direction in which the spin is observed and τi = ωti is the normalized
time. Substituting (4.42) in (4.41), the correlation function become

Cij = cos τi cos τj + sin τi sin τj (n̂× ĥ)2 + (1− cos τi cos τj) (n̂ · ĥ)2. (4.43)

When n̂‖ĥ, the correlation functions will be Cij = 1 and the correlator of the third order
K3 = 1, which do not violate the inequality. This is expected since the spin do not evolve
in time and we will make sequential observations of the same spin component in every
instant, which are always independent. In the case where n̂ ⊥ ĥ, the correlation function
is Cij = cos (τj − τj), and the correlator becomes

K3 = cos (τ1 − τ2) + cos (τ2 − τ3)− cos (τ1 − τ3). (4.44)

For simplicity, the differences between sequential times can be defined as a fundamental
period τ0 = τi+1 − τi, such that the correlator is given by

K3 = 2 cos(τ0)− cos(2τ0), (4.45)

which is maximized at K3 = 3/2 when τ0 = π/3 + 2nπ for n = 0, 1, 2, ... .

Figure 11 – The correlator K3 as a function of the period τ0. The blue line represents the upper
bound of the correlator, the green line the lower bound and the shadowed area are
the cases when the LGI is violated.

The plot of the correlator (4.45) as a function of τ0 is given in Figure 11. The
shadowed represents the cases where the correlator is violated, the blue line is the
upper bound and the green line is the lower bound. The periods where the correlator is
violated are τ0 ∈ (0, π/2) and τ0 ∈ (3π/2, 2π).
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Before we finish this section, it is interesting to compare the LGIs with the
commutation relation of the observables in the Heisenberg picture. Using the relation in
(2.76) for â = m̂i and b̂ = m̂j, the norm of the commutator becomes

||[m̂i · �σ, m̂j · �σ]||2 = 8− 8(m̂i · m̂j)
2 (4.46)

or

Cij =

(
1− ||[σi, σj]||2

8

)1/2

, (4.47)

where m̂i · �σ = σi and m̂j · �σ = σj. Substituting the correlation functions (4.47) in the
correlator K3, we have

K3 =

(
1− ||[σ1, σ2]||2

8

)1/2

+

(
1− ||[σ2, σ3]||2

8

)1/2

−
(
1− ||[σ1, σ3]||2

8

)1/2

. (4.48)

This result shows that the LGIs are directly associated with the norm of the commutator,
meaning that the LGIs are functions that measures the incompatibility of the spin
operators in the Heisenberg picture. This also answer why the correlation functions do
not depend on the initial state, differently from the correlator S in the CHSH scenario,
which is inherently dependent on the initial state.

4.5 Multi-Irrealism

In this section, inspired by the joint irrealism of CA, we will propose the multi-
irrealism for three observables and also introduce the notion of multi-irreality for different
temporal phases. After this, we will make a direct comparison with a correlator quantifier
inspired by the correlator K3 and discuss the similarities between them.

For three different observables A =
∑

n anΛan , B =
∑

m bmΛbn and C =
∑

l clΛcl ,
we can make a triple sequential map for the state ρ in the similar way it was done for
the joint irreality. In this case, the map becomes

ΦABC(ρ) =
∑
nml

ΛclΛbmΛanρΛanΛbmΛcl . (4.49)

In direct analogy to the CA joint irrealism, we define that the triple {A,B,C}
have multi-reality if

ΦABC(ρ) = ΦCAB(ρ) = ΦBCA(ρ) = ΦACB(ρ) = ΦBAC(ρ) = ΦCBA(ρ) = ρ. (4.50)

When this condition is satisfied, the observables are said to be multi-elements of reality
for the state ρ. Having that ΦA(ΦA(ρ)) = ΦA(ρ), when (4.50) is true, we can see that
ΦA ◦ ΦA(ΦBC(ρ)) = ΦA(ρ) → ΦABC(ρ) = ΦA(ρ), but ΦABC(ρ) = ρ so ΦA(ρ) = ρ. This



CHAPTER 4. IRREALISM AND MACROREALISM 66

process can be reproduced for the other two observables B and C. This means that if
A, B and C represents joint elements of reality, then they also represents elements of
reality individually in BA sense.

Similarly to CA, we define the multi-irreality as

IABC(ρ) =
∑
i,j,k

i �=j �=k

S(Φijk(ρ))

6
− S(ρ) ; i, j, k = {A,B,C}. (4.51)

which is always non-negative. Rewriting the multi-irreality by adding and subtracting
the entropy of the maps S(ΦA(ρ)), S(ΦB(ρ)) and S(ΦC(ρ)), the multi-irreality can be
rewritten in the form

IABC =
1

3
[IAB(ΦC(ρ)) + IBC(ΦA(ρ)) + IAC(ΦB(ρ)) + IA(ρ) + IB(ρ) + IC(ρ)]. (4.52)

With the identity

IAB(ρ) =
IA(ρ) + IB(ρ) + IA(ΦB(ρ)) + IB(ΦA(ρ))

2
, (4.53)

we can rewrite the first three terms of (4.52) as

IAB(ΦC(ρ)) =
IA(ΦC(ρ)) + IB(ΦC(ρ)) + IA(ΦBC(ρ)) + IB(ΦAC(ρ))

2
, (4.54)

IBC(ΦA(ρ)) =
IB(ΦA(ρ)) + IC(ΦA(ρ)) + IB(ΦCA(ρ)) + IC(ΦBA(ρ))

2
, (4.55)

IAC(ΦB(ρ)) =
IA(ΦB(ρ)) + IC(ΦB(ρ)) + IA(ΦCB(ρ)) + IC(ΦAB(ρ))

2
. (4.56)

Substituting the relation above in (4.52), we have

IABC(ρ) =
1

6

⎡
⎢⎢⎣2IA(ρ) + 2IB(ρ) + 2IC(ρ) +

∑
i,j
i �=j

Ii(Φj(ρ)) +
∑
i,j,k

i �=j �=k

Ii(Φjk(ρ))

⎤
⎥⎥⎦ . (4.57)

Since the BA irreality can be written as the relative entropies, we know that they are non-
negative and goes to zero only if the maps are equal to the state. As a consequence of
this, the multi-irreality is zero if ρ = Φi(ρ) = Φij(ρ) = Φijk(ρ), for i, j, k = {A,B,C}, which
corresponds to the definition of multi-irrealism in (4.50). Not only that, but this shows that
when the triple A,B,C have multi-reality, then the pairs will have joint-reality and they
will also have individual elements of reality, showing that the definition of multi-irrealism
is capable to supplement the definitions CA joint irrealism and BA irrealism.

Now, we will propose that, instead of using three different observables, we may
apply the multi irreality to the same physical quantity in three different instants of time,
such as A1, A2 and A3, given that Ai = AH(ti). At first, this may sound an absurd, since
there will be cases where the sequential map will be constructed in a sequence where
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the non-revealed measurement is made in future times before the previous one, such
as ΦA1A2A3(ρ). But, this can be resolved by defining the instant of time as a parameter
of some unitary transformation.

As an example, let us use the time evolution of the spin precessing dynamics.
This operator in t1 = 0 is σ1 = n̂ · �σ and for a time t2 = π/2 the spin will be σ2 =

[(n̂× ĥ) + (ĥ · n̂)ĥ] · �σ. In this case, we can see that time do not play the role of defining
a sequence of events, but it is just a parameter that represents some configuration for
the operator, in a way that we can make a observation of �σ2 and then �σ1.

Now we are ready to define the multi-irreality in time. For an observable in the
Heisenberg picture, such as Ai = AH(ti) =

∑
n anΛan(ti), the observable A will satisfy

multi-ireality in time if

Φ123(ρ) = Φ312(ρ) = Φ231(ρ) = Φ132(ρ) = Φ213(ρ) = Φ321(ρ) = ρ. (4.58)

With this, we extend the multi-irreality to different temporal phases as

I123(ρ) =
3∑

i,j,k=1
i �=j �=k

S(Φijk(ρ))

6
− S(ρ), (4.59)

which is zero if and only if the condition (4.58) is satisfied.

Our objective now is to compare the multi-irreality in time with the correlator
of Leggett-Garg and see if they share some aspects or if they are correlated. As an
example, we will apply both in the spin precessing dynamics.

To determine the multi-irreality, we will use the simplified irreality for a spin
system. Suppose we have a generic state ρ�r =

1±�r·�σ
2

, with eigenvalues λ± = 1±r
2

. We
can see that λ+ = 1− λ−, and therefore we can determine the entropy of the state ρ�r

by the quantum binary entropy. The state after a non-revealed measurement Φσn̂
in a

general direction n̂ is given by

Φσn̂
(ρ�r) =

1 + (n̂ · �r)n̂ · �σ
2

, (4.60)

with eigenvalues λ± = 1
2
(1± |n̂ · �r|). The entropy of the map can also be computed with

the binary quantum entropy. In the case of the multi-irreality, the sequential map for the
spin precessing m̂i · �σ in three different instants of time ti, tj and tk is

Φijk =
1 + (m̂i · �r)(m̂i · m̂j)(m̂j · m̂k)m̂k · �σ

2
, (4.61)

with eigenvalues

λijk,± =
1± |(m̂i · �r)(m̂i · m̂j)(m̂j · m̂k)|

2
. (4.62)

It is interesting to notice that the positive eigenvalues of the maps depend on the absolute
value of the two time correlation functions that we have in the LGIs (Cij = m̂i · m̂j), and
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the multi-irreality I123 will have a dependence of the correlation functions Cij. Indeed,
the entropy of the map Φijk is given by

S(Φijk) = −λijk,+ log2 λijk,+ − (1− λijk,+) log2 (1− λijk,+), (4.63)

where we use the bit scale of information. Substituting (4.62) in (4.63)

S(Φijk) = −
(
1 + |(m̂i · �r)CijCjk|

2

)
log2

(
1 + |(m̂i · �r)CijCjk|

2

)

−
(
1− 1 + |(m̂i · �r)CijCjk|

2

)
log2

(
1− 1 + |(m̂i · �r)CijCjk|

2

)
. (4.64)

And the entropy of the state ρ�r is

S(ρ�r) = −
(
1 + |n̂ · �r|

2

)
log2

(
1 + |n̂ · �r|

2

)

−
(
1− 1 + |n̂ · �r|

2

)
log2

(
1− 1 + |n̂ · �r|

2

)
. (4.65)

So, using the relations (4.64) and (4.65), we are able to compute the multi-irreality I123.

The direct comparison between the multi-irreality and the LGIs correlator can
be problematic, since the correlator K3 does not share the same domain as the multi-
irreality. The correlator has values −3 ≤ K3 ≤ 1 when the system is macrorealistic and
1 < K3 ≤ 3/2 when the system is not macrorealistic. However, we can manipulate the
domain of the violated correlator in such a way that it will have the same range as the
multi-irreality. Given that

1 < K3 ≤ 3/2, (4.66)

then
0 < 2(K3 − 1) ≤ 1. (4.67)

To discard the negative values, we define the correlator quantifier K ′
3 = max[0, 2(K3−1)].

When K ′
3 > 0, the system is not macrorealistic and when K ′

3 = 0, the system is
macrorealistic.
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Figure 12 – Compassion between I123 and K ′
3 for 106 values of the components of n̂(θn, φn),

ĥ(θh, φh), ρ�r(θr, φr, r) and the instants of time t1, t2, t3. (a) is for maximally mixed
states, (b) is for mixed states and (c) is for pure states.

In Figure 12, we compare K ′
3 with I123 for 106 values of the components of the

external magnetic field ĥ(φr, θr), the components of the observed spin n̂(φn, θn), the
components of the state ρ�r(φr, θr, r) and the instants of time t1, t2 and t3 for t1 < t2 < t3.

For maximally mixed states (Figure 12 (a)), multi-irreality is always zero, as
expected since the sequential maps do not change the state, and the correlator admits
all possible values. For mixed states (Figure 12 (b)), we see a reduction of the densities
of the dots when both the quantities comes to 1, but this could be caused by the way
the values were chosen. For pure states (Figure 12 (c)), we see that the quantities are
are limited, in a way that I123 ≥ K ′

3 and the equality holds in the extremes 1 and 0.
This shows that the violation of macrorealism is sufficient for multi-irrealism, but not
necessary. Indeed, we can see that when there is no violation of macrorealism (K ′

3 = 0),
the multi-irrealism is possible (I123 > 0). This is expected, since when the assumption
A2 is violated, violating macrorealism, multi-irrealism can occur, since the measurement
was invasive and could disturb the state of the system.
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CHAPTER 5

Conclusions

Time is one of the most fundamental concepts in physics, yet it remains incom-
pletely understood. The objective of this work is to advance the understanding of time in
quantum mechanics. To achieve this, we explore the properties and applications of time
observables, as well as investigate the temporal correlations that arise in dynamical
systems.

Initially, we reviewed the three possible types of time in physical theories: exter-
nal, intrinsic, and observable. The second type, intrinsic time, exhibits direct properties
in quantum theory, redefining the concept of the time-energy uncertainty relation. In the
section on observable time, we addressed the challenge of defining a time operator due
to Pauli’s objection and presented two approaches from the literature to circumvent this
issue: first, through a non-self-adjoint time operator, and second, by using an external
clock entangled with the system. In the same chapter, we revisited the complementarity
principle and demonstrated that creating which-way information requires entangling the
spatial modes of an interferometer with a degree of freedom of the system.

In the final section of Chapter 3, we explored an interesting application of the
time observable in interferometers. We concluded that if time is indeed an observable in
quantum mechanics, then the ket states corresponding to different times of flight should
be capable of becoming entangled with their respective spatial modes in interferometers.
This entanglement would create which-way information, thereby destroying interference
patterns. Then, we examined the Fizeau interferometer and argued that, if the time
of flight generates which-way information, this interferometer represents a promising
candidate for observing such a phenomenon.
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However, we also discussed that the theoretical description of this phenomenon
poses significant challenges. Specifically, the theory does not provide a clear framework
for measuring the dispersion of the time observable, which hinders further theoretical
exploration. In future work, we aim to apply this concept to matter-wave interferometers,
with the goal of employing different approaches to analyze the dispersion of time
observables and determine the scale at which time should exhibit its quantum behavior.

In the second part of our work, we conducted an extensive review of locality and
determinism in quantum mechanics, focusing on Bell’s theorem, the CHSH inequality,
the irrealism of BA, and Leggett-Garg macrorealism. An interesting result we obtained
in this section is that, for spin systems, the two-time correlation functions in the LGIs
are directly related to the norm of the commutator of the same spin operator in the
Heisenberg picture at two different instants of time. This implies that the LGIs essentially
serve as a function quantifying the degree of incompatibility between Heisenberg
operators at different times. Furthermore, this relationship explains why the LGIs, unlike
the CHSH inequality, do not depend on the initial state of the system.

In the final part of our work, we extended the definition of joint irrealism to three
physical quantities and introduced a new quantifier, which we termed multi-irreality. This
quantifier determines whether three observables represent multi-elements of reality for a
given system. We demonstrated that this new quantity complements previous definitions,
showing that if three observables represent multi-elements of reality, then their pairs
also represent CA joint elements of reality, as well as BA elements of reality individually.
In future work, we aim to further explore this concept by investigating potential imple-
mentations of multi-irreality and identifying relevant case studies. Additionally, we plan
to generalize this framework to n observables and examine its broader implications

In the same section, we extended the definition of multi-irreality to dynamical
observables and conducted a direct comparison with a correlator quantifier for the
Leggett-Garg inequalities. We observed certain tendencies, particularly in the case of
a pure state, where a violation of macrorealism is sufficient for multi-irrealism but not
necessary. In future works, we aim to deepen our understanding of the relationship
between these two quantities by investigating the correlation between them. Additionally,
we plan to study the states and systems that give rise to the frontier observed in the
case of pure states.
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