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RESUMO

Desde 1935, quando Einstein, Podolsky e Rosen clamaram a incompletude da mecânica
quântica recorrendo à hipótese de realismo local, houveram inúmeros debates sobre
as verdadeiras implicações dessa conclusão. Neste trabalho, investigamos teorica-
mente um apagador quântico modificado que é capaz de correlacionar operações
em um laboratório com alterações no realismo de observáveis em outro laboratório
causalmente desconectado. A suspeita natural sobre o que está por trás desse fenô-
meno é o emaranhamento. Ao controlar o emaranhamento inicial do estado analisado,
nós examinamos o papel desse recurso quântico nesse fenômeno. Nós provamos que,
mesmo com um estado inicialmente separável, a correlação entre o apagamento de
realidade e as operações remotas se mantém. Além disso, nosso estudo revela que
a discórdia quântica também é irrelevante para o fenômeno observado. No entanto, a
irrealidade inicial e a não-localidade baseada no realismo são necessárias, embora não
suficientes. Além disso, demonstramos que, para os casos analisados neste trabalho, a
discórdia quântica da medição de σz desempenha um papel fundamental, mostrando
que o fenômeno pode ocorrer mesmo para estados inicialmente clássicos-clássicos.
Nossos resultados fornecem uma compreensão mais profunda de como as correlações
quânticas contribuem para a quebra do realismo local e como as operações remotas
influenciam esse processo. Ademais, ao contrário dos cenários do tipo Bell, onde as
correlações dizem respeito aos resultados dos observáveis, o experimento considerado
correlaciona operações com aspectos ontológicos. Ao empregar um critério de realismo
independente de variáveis ocultas realistas locais, nosso trabalho demonstra que a
realidade, em geral, não possui um conteúdo local.

Palavras-chaves: Realismo local; Irrealismo; Recursos quânticos; Emaranhamento;
Discórdia quântica; Não localidade.



ABSTRACT

Since 1935, when Einstein, Podolsky, and Rosen claimed the incompleteness of quan-
tum mechanics by resorting to the hypothesis of local realism, there have been numerous
debates regarding the true implications of this conclusion. In this work, we theoretically
investigate a modified quantum eraser that is capable of correlating operations in one
laboratory with changes in the realism of observables in another causally disconnected
laboratory. The natural suspicion of what lies behind this phenomenon is entanglement.
By controlling the initial entanglement of the analyzed state, we examine the role of this
quantum resource in the phenomenon. We prove that even with an initially separable
state, the correlation remains between the reality erasure and the remote operations.
Furthermore, our study reveals that quantum discord is also irrelevant to the observed
phenomenon. However, the initial irreality and realism-based nonlocality are necessary,
although not sufficient. Additionally, we demonstrated that, for the cases analyzed in this
work, the quantum discord of the measurement of σz plays a fundamental role, showing
that the phenomenon can occur even for initially classical-classical states. Our results
provide deeper insights into how quantum correlations contribute to the breakdown
of local realism and how remote operations influence this process. Moreover, unlike
Bell-type scenarios, where the correlations concern the outcomes of observables, the
considered experiment correlates operations with ontological aspects. By employing a
realism criterion independent of local realistic hidden variables, our work demonstrates
that reality, in general, does not have a local content.

Key-words: Local realism; Irrealism; Quantum resources; Entanglement; Quantum
discord; Nonlocality.
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CHAPTER 1

Introduction

The beginning of the twentieth century was profoundly important for the foun-
dations of physics. Trying to explain some experimental data concerning the thermal
radiation of bodies, in 1900 Planck proposed the elementary quantum of action �,
“one of the most significant and momentous contributions ever made in the history of
physics", according to Jammer [1], and initiated the development of quantum theory. In
the following years, physicists like Planck, Einstein, Bohr, Sommerfeld, de Broglie, Pauli,
and others explored the quantum idea, leading to theoretical results with a high degree
of agreement with experiments. Quantum theory achieved its peak of development
with Heisenberg, Schrödinger, Born, Jordan, and Dirac, and then became known as
Quantum Mechanics (QM). Since its inception, QM has dealt with many principles
that contradicted those of classical physics. For example, while in classical physics
particle-like and wavelike behaviors are mutually exclusive1, Bohr argued that they are
complementary in QM. Beyond that, even the notion of trajectory is lost in QM, due to
Heisenberg’s uncertainty principle.

After the establishment of a pragmatic view of QM in the 1930s, many criticisms
to the orthodox interpretation of QM emerged, attempting to “fix" the aspects that fall
outside the traditional classical interpretation and bring QM closer to Classical Mechan-
ics (CM). Probably the most important paper published in this era was that of Einstein,
Podolsky, and Rosen (EPR) in 1935 [2], where the authors claimed the correctness and
incompleteness of QM, since it explained the experimental data and was not compatible
1 For example, in the classical description of light, Newton argued in favor of its particle-like behavior,

while Huygens supported its wave-like nature.
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with notions such as locality and local realism. According to the modern form of EPR
arguments, if two systems A and B are space-like separated, measurements in A

cannot immediately influence the system B, and the reality described by each system
is completely local, i.e., they can only be affected by events inside their light cones.
Moreover, by their realism criterion, they concluded that QM was unable to assign
elements of reality to all observables simultaneously. Since QM allows certain kinds of
descriptions that are not in agreement with this hypothesis, EPR claimed that, although
QM is a correct theory, it is incomplete. Bohr, the most important physicist behind the
orthodox interpretation of QM, immediately responded EPR [3], attempting to convince
them that the elements of reality observed depend on the experimental setup.

Other criticisms of the orthodox interpretation of QM also emerged in the
literature, such as those made by Schrödinger [4, 5], when the term entanglement
entered the realm of physics. Entanglement is one of the most important features of QM,
and it has been profoundly studied throughout the years [6], marking the beginning of
quantum resource theory [7]. Essentially, a quantum resource is a property of quantum
systems that enables tasks that are impossible to perform with classical systems. Since
the advent of entanglement, many different quantum resources has been explored, such
as Bell-nonlocality [8], quantum steering [9], quantum discord [10–12], irrealism [13],
and realism-based nonlocality [14, 15].

Regarding the tasks that can be performed using quantum resources, there are
the cryptographic processes and quantum communication [8], and quantum teleportation
[16]. Additionally, there are also experiments of foundational interest, such as the
quantum eraser [17–24], which can correlate path-information of a photon with particle-
like or wavelike behavior. By doing a modification in the standard model of a quantum
eraser, the authors in [25] proposed an experimental setup that is capable of correlating
choices with elements of reality, against the central point in EPR’s paper. By using a
modern approach of realism [13], the authors showed that the correlation occurs even
without any retrodiction hypothesis. Indeed, the experiment was performed in [26], and
the same conclusions were reached, confirming the phenomenon. These works provide
strong arguments against the notion of local realism introduced by EPR, since the
theoretical analysis does not need to consider the distance between the systems, and
the experimental verification was conducted in two laboratories space-like separated.
Thus, according to this conclusion, the notion of realism is not local.

The phenomenon of correlation of choices and elements of reality was stud-
ied for the case of pure states, where quantum resources overlap with each other.
Consequently, it was not possible to determine which quantum resource (if any) was
responsible for the phenomenon. Although the initial entanglement was controlled and
its absence implied the non-occurrence of the phenomenon for that case, it was not
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possible to conclude that it was responsible for it. Therefore, this is precisely the focus
of study in this work.

The present master’s thesis focuses on exploring the quantum resource (if any)
responsible for the occurrence of the aforementioned phenomenon and to determine
whether classical correlations alone are sufficient to establish such a correlation. The
approach taken here involved extending the original work with a more general state,
including noise in the system, to explore the true role of entanglement in the initial
system. Beyond that, exploring the limits of the conclusions for the previous case, general
separable systems were also considered to investigate the role of quantum discord and
realism-based nonlocality. The calculations were carried out analytically throughout the
text, with computational support used when necessary to aid in interpreting the results.

This work is organized as follows: Chapter 2 discusses QM as a whole, since
its historical development to the main ideas proposed by EPR. This chapter covers the
beginning of the theory in Section 2.1, its mathematical description in modern notation
in Section 2.2, and its philosophical aspects, such as interpretations and its criticisms, in
Section 2.3. Chapter 3 introduces the basic concepts used throughout the text. Section
3.1 focuses on the study of the entropies used in classical and quantum information
theory, such as Shannon and von Neumann entropies. Section 3.2 briefly discusses
how to represent a quantum state in the Bloch representation, which will be useful for
future chapters. Section 3.3 introduces the idea of quantum resources, along with the
main quantum resources used in this work. Finally, Section 3.4 presents the setup of
a Mach-Zehnder Interferometer and describes quantum systems within it. Chapter 4
introduces the standard quantum eraser in Section 4.1, and Section 4.2 reviews the
papers that introduced the phenomenon studied in this work. The original contributions
of this master’s thesis are discussed in Chapter 5, where Werner states are applied
to the experimental setup in Section 5.1, and Section 5.2 explore general separable
states in the modified quantum eraser. Both Sections 5.1 and 5.2 analyze the role of
the quantum resources relevant to each case. Section 5.3 presents final remarks on
the study, offering new insights into the analysis of the problem, and concluding the
evaluation of the resources. Finally, Chapter 6 summarizes the conclusions based on
the development presented in this work.
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CHAPTER 2

Quantum Mechanics and its Foundations

The goal of this chapter is to introduce the mathematical framework and philo-
sophical aspects underlying the foundations of Quantum Mechanics. The discussion
spans from the beginning of Quantum Theory, with Max Planck’s introduction of the
quantum postulate, to the seminal work of Einstein, Podolsky, and Rosen, as well as
modern notions of realism. The mathematical and conceptual development of Quantum
Mechanics will be presented, as much as possible, from a historical perspective, based
on Max Jammer’s books [1, 27], source of all quotes in this chapter (except for those with
explicit references). Section 2.1 provides a brief review of the origins of quantum physics
and quantum mechanics, although it is not essential to understand the main results
of this work. Section 2.2 covers the mathematical framework of quantum mechanics,
particularly from the perspective of density operators. Section 2.3 explores the ortho-
dox interpretation of quantum mechanics, known as the Copenhagen Interpretation,
alongside its criticisms and philosophical implications concerning realism in quantum
theory.

2.1 The Birth of Quantum Mechanics

This section begins by addressing the historical context of the late nineteenth
century. By then, what is now known as "Classical Physics" was unable to account
for certain experimental results. One such issue was the "ultraviolet catastrophe,"
which arose in the study of thermal radiation from bodies. Experimental observations
provided key results that any theoretical explanation needed to address, such as
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Wien’s displacement law, which relates the wavelength of maximum radiance to a
body’s temperature, and Stefan’s law, which describes the radiance’s dependence on
temperature. Additionally, the shape of the radiance curve as a function of wavelength
or frequency was well known.

The classical explanation proposed by Lord Rayleigh and Jeans, commonly
called the Rayleigh-Jeans blackbody model, agreed with experimental data at low
frequencies but predicted diverging radiance at high frequencies, leading to a significant
disagreement between theory and experiment.

In this context, at the end of 1900, Max Planck, inspired by Rubens and Kurl-
baum’s experiments on radiance at low and high frequencies, approached the problem
from a thermodynamic perspective. He successfully derived the correct spectral radi-
ance law, which complied with Wien’s displacement law and Stefan’s law, though initially
using interpolations and lacking formal hypotheses. To formalize what he described as
a "lucky guess," Planck turned to Boltzmann’s probabilistic conception of entropy for
an explanation. After meticulous calculations, he deduced a general radiance formula
which matched the earlier results, now known as Planck’s law of radiation, only if the
equipartition theorem was revised, assuming the energy of vibrational modes followed
the form ε = nhν, where n is the vibrational mode, ε is the energy of the vibrational
mode n, h is Planck’s constant and ν is the frequency. This marked the introduction of
the quantum of energy.

Planck presented his results on December 14, 1900, at a meeting of the German
Physical Society a date often regarded as the birth of Quantum Theory. In a letter to
R. W. Wood, Planck admitted that this explanation was "an act of desperation," as "a
theoretical explanation had to be supplied, at all costs, whatever the price." Indeed,
he remained skeptical of his own hypothesis and repeatedly tried alternative ways to
incorporate the constant h into his framework.

The discussion of the concept of quantum advanced significantly with Einstein’s
seminal work [28] "On a Heuristic Viewpoint Concerning the Production and Transfor-
mation of Light." In this paper, Einstein concluded that light "behaves as if it consisted
of independent energy quanta," with ε = hν (in modern notation), aligning with Planck’s
hypothesis. He proposed that radiation behaves as though it consists of a finite number
of localized energy quanta, later termed photons. At that time, the wavelike nature
of light was widely accepted due to extensive experimental evidence. However, as
Young noted in 1807, although experiments supported wave models, "it is allowed on all
sides, that light either consists in the emission of very minute particles from luminous
substances." The validity of Einstein’s argument was solidified by his explanation of
the photoelectric effect, also presented in the same paper, solving a problem that had
persisted since Hertz’s discovery in 1887.
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During this period, the concept of quanta was largely confined to heat theory,
even though it had been used to explain the photoelectric effect. Nevertheless, Arthur
Erich Haas was the first to link the concept of quanta to the atom. In a 1910 paper,
Haas combined Thomson’s atomic model with the theory of line spectra. Despite the
novelty of his work, it was ridiculed and quickly dismissed after Rutherford introduced his
atomic model in 1911. However, Haas’s hypothesis gained recognition from Lorentz at
the Solvay Conference in 1911 and later by Niels Bohr, who incorporated the quantum
concept into his atomic model. Bohr successfully unified the experimental results related
to the hydrogen atom into a single model, based on the hypothesis that quanta were
indeed fundamental to atomic structure.

Bohr’s 1913 atomic model is often regarded as a set of theoretical hypotheses
that explained experimental observations without delving into their deeper physical
origins. Bohr was likely the first to explore atomic stability from a quantum perspective.
As Jammer observed, "In contrast to his predecessors who related Planck’s constant h to
atomic models with the purpose of finding a mechanical or electromagnetic interpretation
of h, Bohr recognized that Planck’s constant should be applied to Rutherford’s model
not in order to elucidate the physical significance of the former, but rather to account
for the stability of the latter." Bohr’s model, together with its connection to Rydberg’s
series, shifted the focus of quantum theory toward discrete spectra, yielding significant
advances.

In 1915, Sommerfeld, who shared Bohr’s view of using Planck’s constant to
explain atomic stability, generalized Bohr’s model. He proposed quantizing all canonical
variables of a system, subject to what are now known as the Sommerfeld conditions. This
approach introduced the azimuthal quantum number l, associated with orbital angular
momentum, and provided the first explanation of the fine structure of the hydrogen
atom.

By the time of Sommerfeld’s model, Quantum Theory could explain many
experimental results available at the time. The next step was to formalize these findings
into fundamental principles. Two principles were particularly important to the conceptual
development of this era: the Adiabatic Principle and the Correspondence Principle. The
Adiabatic Principle1, as demonstrated by Ehrenfest, formalized quantization conditions,
while the Correspondence Principle2, as explained by Bohr, connected the quantum
theory’s limits with Maxwell’s electromagnetic theory. Both principles were fundamental
to the new physics of the twentieth century. Although Bohr, as noted earlier, refused
from offering a classical interpretation of Planck’s constant, he extensively used the
1 Adiabatic Principle in this context means that if a quantum system evolves slowly, its quantum numbers

remain unchanged [1].
2 The Correspondence Principle establishes quantum theory must recover classical theory in the limit of

of large quantum numbers [1].
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Correspondence Principle to bridge Quantum Theory and Classical Electrodynamics.
At this stage, Bohr was not yet prepared to fully embrace the quantum nature of reality.

During the early development of quantum theory, before the quantum hypoth-
esis, another significant event occurred: the discovery of the Zeeman Effect. This
phenomenon laid the groundwork for the conceptual development of what would later
be known as spin. The first to suggest a connection between magnetic effects and
light was Michael Faraday in 1845. Unfortunately for Faraday, this connection remained
speculative. It was only in 1896 that Pieter Zeeman observed the separation of the
spectral lines of sodium under the influence of a magnetic field. According to Zeeman,
his experiment was inspired by the idea that, "if Faraday thought of the possibility of the
above-mentioned relation (light-magnetism), perhaps it might be worthwhile to try the
experiment again with the excellent auxiliaries of spectroscopy of the present time."

Thanks to Lorentz, Larmor, and Zeeman, and aided by the discovery of the
electron by J. J. Thomson in 1897, the Zeeman Effect could be explained within the
framework of classical electromagnetic theory. However, this explanation only accounted
for the triplet splitting of spectral lines. In December 1897, Preston observed, "It is
interesting to notice that the two lines of sodium and the blue line 4800 of cadmium do
not belong to the class which show as triplets. In fact, the blue cadmium line belongs
to the weak-middled quartet class, while one of the D lines shows as a sextet of fine
bright lines [...]." This observation, quickly confirmed by Cornu, became known as the
Anomalous Zeeman Effect (AZE). Despite Lorentz’s attempts in 1898 to extend his
theory to explain the AZE, the phenomenon remained an unsolved problem until the
end of the "Old Quantum Theory" in 1925.

Following Bohr’s groundbreaking contributions to atomic theory, the normal
Zeeman Effect was elegantly explained by Sommerfeld (who introduced the azimuthal
and magnetic quantum numbers) and Debye using the new concepts of atomic theory.
However, the AZE persisted as a problem. As Sommerfeld remarked, "In the present
state of quantum treatment, the Zeeman Effect achieves just as much as Lorentz’s
theory, but not more. It can account for the normal triplet... but hitherto it has not been
able to explain the complicated Zeeman types." Even Sommerfeld’s relativistic treatment
failed in addressing the AZE.

With the advances in spectral analysis available from 1923 onward, studies
of spectral line multiplicities increased significantly. This period saw the introduction
and establishment of selection rules for n, l, and m. Nevertheless, as is now known, a
crucial development in quantum theory was still needed: the concept of spin. Attempting
to explain the AZE, Sommerfeld and Landé proposed the "magnetic-core hypothesis."
According to this hypothesis, the "atomic core" possesses angular momentum in s

units of � and a corresponding magnetic moment. Using this idea, they showed that
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the valence (optical) electron experienced an internal Zeeman Effect, allowing for the
interpretation of the AZE. This explanation appeared consistent with the experimental
results obtained by Stern and Gerlach in 1921, which were interpreted as evidence of
"space quantization," an idea introduced by Sommerfeld some years before. However,
deeper analysis soon revealed mistakes in this explanation.

In the fall of 1924, Wolfgang Pauli identified a discrepancy between Landé’s
theory and experimental results. From the perspective of relativity, the magnetic-core
hypothesis predicted that the Zeeman Effect would depend on the atomic number,
contradicting experimental findings. This led Pauli to state, "In particular, the angular
momenta of alkali atoms and their energy changes in an external magnetic field have to
be considered as due essentially to the exclusive action of the optical electron, which
also has to be regarded as the source of the magnetomechanical anomaly. The doublet
structure of the alkali spectra, as well as the deviation from Larmor’s theorem, are due,
according to this view, to a peculiar, classically indescribable two-valuedness in the
quantum-theoretic properties of the optical electron." It was at this moment in history
that the concept of spin truly began to emerge.

At the same time that Pauli was formulating his arguments against the magnetic-
core hypothesis, Edmund C. Stoner presented his theory of electron distribution across
the energy levels of the atom. Building on this, and alongside Bohr’s advancements
in understanding these distributions, Pauli developed a groundbreaking explanation
by assuming two hypotheses. The first was the existence of an additional quantum
number, now denoted as ms, to characterize each allowed orbit in the atom. The second
was a prohibition principle, which Pauli articulated as: "There never exist two or more
equivalent electrons in an atom which, in strong fields, agree in all quantum numbers."
This statement is now famously known as Pauli’s Exclusion Principle.

Although Pauli’s approach succeeded in explaining the observed phenomena,
the new quantum number lacked a fundamental explanation. Pauli himself admitted that
"no deeper motivation of the rule can be provided." The notion of the electron’s spin,
initially conceptualized as an "electron spinning" (a view that is known to be outdated),
first appeared with Kronig in January 1925, although Compton had briefly mentioned a
similar idea in 1921. However, Pauli quickly dismissed Kronig’s idea. Later that same
year, in November, Uhlenbeck and Goudsmit independently proposed the same concept.
While Bohr, one of the era’s most influential physicists, accepted these ideas, Pauli
initially remained skeptical, primarily due to the theoretical issues they introduced.

By the spring of 1926, when Thomas resolved these apparent problems, Pauli
conceded: "Although at first I strongly doubted the correctness of this idea because of its
classical mechanical character, I was finally converted to it by Thomas’s calculations on
the magnitude of doublet splitting. On the other hand, my earlier doubts, as well as the
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cautious expression ‘classically not describable two-valuedness,’ were partially validated
during later developments. Bohr demonstrated, on the basis of wave mechanics, that
electron spin cannot be measured by classically describable experiments and must
therefore be considered an essentially quantum-mechanical property of the electron."

At this point, quantum theory had achieved significant success in explaining
many experimental results. Bohr’s atomic model, combined with the introduction of new
ideas, suggested that the theory was converging toward a general description of nature,
supported by well-defined principles. While the narrative of spin’s discovery progressed,
another enduring discussion, the wave-particle duality, continued to unfold, eventually
leading to the emergence of quantum mechanics, as formulated by Born and others.

The wave-particle duality debate intensified after Planck introduced the quantum
and Einstein proposed the photon. These ideas challenged the classical understanding
of light as purely wavelike, as described by classical electrodynamics. Einstein’s 1905
photon hypothesis successfully explained light-matter interactions, but it was Arthur
Compton’s 1921 experiment that firmly established the particle-like behavior of light.
By 1923, Compton resolved the failure of Thomson’s theory of x-ray scattering for
short wavelengths using the photon concept. He wrote, "The present theory depends
essentially upon the assumption that each electron which is effective in the scattering
scatters a complete quantum. It involves also the hypothesis that the quanta of radia-
tion are received from definite directions and are scattered in definite directions. The
experimental support of the theory indicates very convincingly that a radiation quantum
carries with it directed momentum as well as energy."

Though initially met with skepticism, Compton’s theory gained widespread
acceptance after extensive debate, solidifying its status by late 1924. Between 1921
and 1924, much attention focused on the particle-like behavior of x-rays. This behavior
proved equally useful in explaining other optical phenomena, further reinforcing the
photon hypothesis.

In parallel with these developments, Maurice de Broglie played an active role
in x-ray studies and spectroscopy. Maurice profoundly influenced his younger brother,
Louis de Broglie (often referred to simply as de Broglie). As Louis later recalled: "I had
long discussions with my brother on the interpretation of his beautiful experiments on
the photoelectric effect and corpuscular spectra... These long conversations with my
brother about the properties of x-rays... led me to profound meditations on the need of
always associating the aspect of waves with that of particles." Indeed, Louis de Broglie
became a central figure in advancing the discussion of wave-particle duality.

At the end of the summer of 1923, de Broglie’s concept of the "phase wave"
began to take shape. According to Max Jammer, the paper published at that time can
be considered the birth of wave mechanics [29]. Drawing on Hamiltonian mechanics
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and optical-mechanical analogies, de Broglie concluded that "a stream of electrons
passing through a sufficiently narrow hole should also exhibit diffraction phenomena."
He proposed that the phase wave guided the particles, thus reconciling the wave-
particle duality. Furthermore, de Broglie argued that just as radiation exhibits particle-like
behavior, material bodies exhibit wavelike behavior.

On November 29, 1924, de Broglie presented his doctoral thesis, which ex-
panded on his earlier published works. In particular, he explored the optical-mechanical
analogy using his phase waves and the concept of electron interference. Regarding
this, Einstein remarked, "I shall discuss this interpretation in greater detail because I
believe that it involves more than merely an analogy." What was missing to transform
this concept from a mere analogy into a true theory was experimental verification of
electron diffraction or interference. On this matter, two students of Born, James Franck
and Walter Elsasser, had been studying Clinton Joseph Davisson’s experiments from
1919 on the scattering of electrons by metals. They noticed that electron diffraction
effects were already visible in Davisson’s results. Franck and Elsasser calculated the
wavelength corresponding to the observed patterns and found excellent agreement with
de Broglie’s relation λ = h/p. Subsequent experimental verifications confirmed these
findings.

However, as this section aims to present the foundations of what is now called
Quantum Mechanics, two other significant achievements of early 20th-century physics
must be discussed: matrix mechanics and wave mechanics.

Before 1925, quantum theory largely relied on Bohr’s ideas and, most notably,
the correspondence principle. Essentially, quantum problems were first solved classically
and then translated into the "quantum realm" using quantization hypotheses. However,
there was no logical or consistent formalism for these translations. As Max Jammer
observed, solving quantum problems was "a matter of skillful guessing and intuition
rather than deductive and systematic reasoning."

In 1925, Werner Heisenberg abandoned the classical description in favor of a
new framework based on observable magnitudes. Heisenberg later stated that his theory
was inspired by Einstein’s theory of relativity. The critical point in Heisenberg’s theory
was the rejection of the classical notion that both position and momentum were directly
observable. This hypothesis was motivated by the inability to measure these quantities
experimentally and the failure of previous theories that treated them as observables. In
summary, Heisenberg replaced kinematic variables with optical quantities.

Unlike Bohr’s approach, Heisenberg managed to formally incorporate the corre-
spondence principle into his new theory, providing a more general method for addressing
quantum problems. Heisenberg first sent his paper to Pauli in May 1925, who encour-
aged him to submit it to Born. Born received the paper in July, and it was submitted
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to the editor of Zeitschrift für Physik [30] on July 29, 1925. This paper introduced the
abstract notions now known as "Heisenberg’s multiplication rule," which Born recognized
as matrix multiplication.

Following this, Born and Jordan initiated a crucial collaboration to mathemati-
cally formalize Heisenberg’s ideas. Their collaboration led to the first use of the term
"Quantum Mechanics" in their paper "On Quantum Mechanics" [31], first published on
September 27, 1925. Soon after, Born identified certain weaknesses in their formulation,
prompting further development of the mathematical tools used in physics. Born and
Norbert Wiener introduced operators into Quantum Mechanics, an idea that Wiener
developed and that gained the approval of David Hilbert, one of the most influential
mathematicians of the time. Alongside these developments, while Wiener contributed
operator-based calculations, Paul Dirac devised an algebraic algorithm equivalent to
other descriptions.

Initially, the matrix mechanics developed by Heisenberg, Born, and Jordan
faced rejection from experimental physicists but attracted the interest of those with
philosophical inclinations. Bohr remarked, "The whole apparatus of quantum mechanics
can be regarded as a precise formulation of the tendencies embodied in the correspon-
dence principle," and expressed hope with the statement, "It is to be hoped that a new
era of mutual stimulation of mechanics and mathematics has commenced." The initial
resistance to matrix mechanics was partly due to its reliance on advanced mathematics
unfamiliar to most physicists at the time.

Before Quantum Mechanics, physics was dominated by functions and differential
equations, making calculus the primary mathematical tool. However, the algebraic
structure of Quantum Mechanics, represented primarily by matrices, was a departure
from this tradition and was not commonly taught in physics courses. The turning point
for Quantum Mechanics came with Erwin Schrödinger’s seminal work on the wave
equation, which provided a more accessible and widely accepted framework.

As mentioned earlier, by 1925, de Broglie’s ideas about wave-particle duality
were no longer mere hypotheses. Stronger verification came in subsequent years,
culminating in the 1937 Nobel Prize in Physics for Davisson and George Thomson,
awarded for their demonstration of electron interference patterns. Given the fundamental
role of waves in nature, it was expected that such waves would obey an equation.
Drawing on established principles of physics, this wave theory was anticipated to
generalize classical mechanics, reducing to the latter in appropriate limits. Several
physicists attempted to develop this wave theory, including E. Madelung, who searched
for a "wave theory of atomic levels." However, it was Schrödinger who succeeded
in constructing the theory. Schrödinger’s background in areas such as the physics
of continuous media, eigenvalue problems, and acoustics, as well as his interest in
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philosophy, uniquely prepared him for this accomplishment.

In 1926, Schrödinger was invited by Debye to give a colloquium at the Technical
University of Zurich on de Broglie’s ideas. Debye later remarked: "The preparation for
that talk really got him started. Only a few months passed between the talk and his
publications." Debye’s choice was deliberate, as Schrödinger, already interested in
statistical mechanics, had been profoundly influenced by Einstein’s 1925 paper on the
quantum theory of an ideal gas, which underscored the meaning of de Broglie’s ideas.

Following insights from de Broglie’s 1924 thesis, Schrödinger published his
seminal four-part work, "Quantization as a Problem of Proper Values," (chapters 1,2,
5 and 6 of [32]) in 1926. In the first part, published on January 27, he introduced
the now-famous time-independent Schrödinger equation, reinterpreting Sommerfeld’s
quantization rule as a wave-theoretic eigenvalue problem. This paper also featured the
first solution of the hydrogen atom using his formalism and introduced the symbol ψ
for the wave function. The second part, published on February 23, elaborated on key
concepts indispensable to "undulatory mechanics" (as it was called at the time), such as
Hamilton’s optical-mechanical analogy. Schrödinger applied his formalism to problems
like the harmonic oscillator and the rigid rotator, finding full agreement with Heisenberg’s
theory for Planck’s oscillator.

The third part, published on May 10, addressed time-independent perturbation
theory and its application to the Stark effect in hydrogen, yielding results in good
agreement with experimental data. The fourth part, published on June 21, introduced
the time-dependent Schrödinger equation. Initially, Schrödinger required ψ to be real.
However, the time-dependent equation seemed a diffusion equation with an imaginary
diffusion coefficient, prompting him to accept that ψ must generally be a complex-valued
function. Schrödinger concluded this part by discussing the physical significance of ψ,
stating "The ψ function is to do no more and no less than provide a survey and mastery
of these fluctuations via a single differential equation. It has repeatedly been pointed out
that the ψ function itself cannot and may not in general be interpreted directly in terms
of three-dimensional space — despite the one-electron problem suggesting otherwise
— because it is, in general, a function in configuration space rather than real space."

The importance of Schrödinger’s contributions to modern physics is difficult to
overstate. As Jammer noted, the 1926 papers were "undoubtedly one of the most influ-
ential contributions ever made in the history of science." Unlike Heisenberg’s formalism,
which relied on less familiar mathematical tools, Schrödinger’s wave mechanics was
rooted in calculus, facilitating its acceptance among physicists.

In conclusion, the quantum concepts developed between 1900 and 1913 were
largely grounded in classical mechanics, relying on analogies with macroscopic phe-
nomena. Bohr’s 1913 atomic theory marked a turning point, highlighting key differ-
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ences between microscopic and macroscopic systems. This philosophical shift culmi-
nated in Heisenberg’s matrix mechanics, which focused on measurable quantities, and
Schrödinger’s wave mechanics. Together, these form the mathematical foundations of
Quantum Mechanics, which were further formalized in subsequent years.

2.2 Mathematical Foundations and the Postulates of

Quantum Mechanics

The mathematical foundations of QM, as discussed earlier, were primarily
established by Heisenberg and Schrödinger between 1925 and 1926. However, debates
regarding the physical interpretation of the mathematical objects used in the theory
persisted. Heisenberg focused on understanding observable quantities through the
notion of operators and their evolution (as it is known today), while Schrödinger drew on
de Broglie’s ideas, developing a theory based on wave functions. Although both theories
aligned with experimental results, they were rooted in complementary views of nature.

Before the publication of the third part of “Quantization as a Problem of Proper
Values," Schrödinger demonstrated that his formalism led to the same fundamental
assumptions as Heisenberg’s. This led him to conclude that the two theories were
equivalent. However, from a formal perspective, this equivalence was not immediately
obvious. Stronger proofs of equivalence were provided in the following months by
Wolfgang Pauli and Carl Eckart, and it was only in 1929 that John von Neumann
presented a rigorous mathematical proof of their equivalence [33].

Once Quantum Mechanics was established as a mathematical theory, it became
necessary to address its physical interpretation, particularly the meaning of the wave
function. Schrödinger initially proposed that ψψ∗ represented a “weight function" for
the charge density of an electron. However, this interpretation was quickly shown to
be incorrect. Alternatively, while studying electron scattering, Born derived an equation
that could only be understood in the particle picture if ψψ∗ were interpreted as a
probability density, as will be discussed further later in this section. This marked the
formal introduction of probabilistic concepts into Quantum Mechanics. Although other
interpretations of ψ were proposed, Born’s approach became the standard, forming
a core part of the Copenhagen Interpretation of Quantum Mechanics, which will be
discussed in Section 2.3.

In addition to Schrödinger’s theory and the interpretations of the wave function,
it was noted in the previous section that Born, Jordan, Heisenberg and Dirac [31, 34,
35] were instrumental in developing the algebraic formulation of Quantum Mechanics.
They introduced an algebraic algorithm to address quantum problems and developed
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the transformation theory, which describes transformations in Quantum Mechanics that
preserve the invariance of empirically significant formulas. These formulations were
crucial for the mathematical foundations of Quantum Mechanics, as they unified all
known quantum-mechanical formalisms into a single framework.

Building on the work of Born, Jordan, Heisenberg and Dirac, David Hilbert,
together with his assistants L. W. Nordheim and von Neumann, began exploring the
mathematical foundations of Quantum Theory. They rederived previously known results
using a novel approach grounded in pure mathematics. This work led von Neumann to
recognize the possibility of establishing a new, more formal, and rigorous framework
for QM. Between 1927 and 1929, he developed a formalism based on Hilbert spaces,
which will be discussed in this section. In 1932, von Neumann published his seminal
book on the mathematical foundations of QM [33], one of the most significant works in
the field.

This section presents the formalism of QM in its most modern form, provided by
the references [33, 36–38], encompassing all the previous descriptions. It should be
noted that since von Neumann’s contributions, the mathematics underlying Quantum
Theory has been developed in increasingly sophisticated ways. The purpose here is
not to present the formalism in its most abstract or rigorous form, but rather to maintain
sufficient formality to preserve the theory’s generality and completeness. Additionally, as
the Quantum Mechanical formalism constitutes an entire theory, including many aspects
that are beyond the scope of this work, only the concepts essential for understanding
the topics at hand will be discussed.

The postulates of Quantum Mechanics will now be introduced, with comments
provided at appropriate points, including discussions of the underlying mathematics and
relevant historical notes.

For Postulate 1, it will be necessary to introduce key concepts such as Hilbert
spaces and operators. The goal of these discussions is not to assume that the reader
has no prior knowledge but to ensure a clear understanding of the concepts of linear
algebra as they are translated into the language of Quantum Mechanics. To begin, let
us define the Hilbert space.

• Hilbert Space: A complex vector space is called a Hilbert space if it is a Banach
space (i.e., a vector space with metric and every Cauchy sequence in the space
converges to an element within the space) where the norm is induced from a
hermitian inner product (see ref. [39] for mathematical details).

Hilbert spaces are the fundamental mathematical structure required to study
Quantum Mechanics. With the definition established, the discussion about their elements
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can now begin. Using Dirac’s notation (introduced by him in 1939), the elements of a
Hilbert space are denoted by |ψ〉 ∈ H, and their Hermitian conjugates are vectors in the
dual space3 H∗, written as 〈ψ| ∈ H∗. The inner product mentioned above is defined as

〈·|·〉 : H∗ ×H → C.

With the inner product, it becomes possible to discuss orthogonal and orthonor-
mal vectors. Furthermore, the structure of a vector space allows the exploration of
possible bases for such spaces. If {|ui〉} is a complete orthonormal basis for H, every
element |ψ〉 ∈ H can be expressed as |ψ〉 = ∑

i ai |ui〉, where ai are the projections of
the original vector onto the basis vectors |ui〉. Using the inner product, these projections
can be written as ai = 〈ui|ψ〉. Consequently, one can conclude that

|ψ〉 =
∑
i

〈ui|ψ〉 |ui〉 =
(∑

i

|ui〉 〈ui|
)
|ψ〉 ⇒ 11 =

∑
i

|ui〉 〈ui| ,

where 11 is the identity operator. The above equation highlights the structure necessary
to understand operators.

A linear operator A : H → H is defined as

A |ψ〉 = |ψ′〉 ,
A
(∑

a

a |ψa〉
)
=

∑
a

a
(
A |ψa〉

)
,

and A† : H∗ → H∗ is the Hermitian conjugate of the operator A. An operator A is said to
be Hermitian if A = A†.

The spectrum4 of an operator can now be defined. Let A be an operator in a
Hilbert space H. The spectrum of A is given by

σ(A) = {a ∈ C | det(A− a · 11) = 0}.

In other words, the spectrum of an operator is the set of its eigenvalues. Using the
spectrum, the spectral decomposition of an operator can be written as

A =
∑
n

anPn,

where Pn are projectors (Hermitian and idempotent operators) associated with the
eigenvalues an.

As a final remark before stating the first postulate, it is important to note that
eigenvalues can be degenerate. In such cases, the projectors Pn must account for this
3 For the case of Hilbert spaces, the dual space is isomorphic to the Hilbert space itself, so that H ∼ H∗.
4 Formally, this is the pure point spectrum. For more details about the spectral theorem, see ref. [40].
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degeneracy. The most general form of the spectral decomposition, including degenerate
eigenvalues, is given by

A =
∑
n

an

( gn∑
i=1

P (i)
n

)
,

where P
(i)
n =

∣∣∣u(i)
n

〉〈
u
(i)
n

∣∣∣ are the orthogonal projectors associated with the eigenvalue

an, which has degeneracy gn. These projectors satisfy the conditions P
(i)
n P

(j)
m = δnmδij

and
∑

n

∑gn
i=1 P

(i)
n = 11.

With these definitions in place, we are now ready to present the first postulate
of Quantum Mechanics.

• Postulate 1: The state describing the degrees of freedom of a physical system
at a time t0 is completely described by the density operator ρ acting on a Hilbert
space H.

The density operator, written in its spectral decomposition as ρ =
∑

i piPi, is a
Hermitian and positive semidefinite operator, meaning its eigenvalues pi are always real
and non-negative, representing the population of each pure state Pi = |ψi〉 〈ψi|, which
are the eigenstates of ρ. Additionally, ρ must have unit trace, i.e., it satisfies tr ρ = 1.
These conditions allow for the description of any physical system in Quantum Mechanics.
As will be discussed later, the general characterization of a quantum state lies in the
properties of ρ. It is also worth noting that, unlike Classical Mechanics, the description of
a physical system in Quantum Mechanics is inherently abstract. This abstraction played
a significant role in the challenges physicists of the last century faced when trying to
understand its meaning.

To correctly understand Postulate 2, it is necessary to define an observable.
Consider that A : H → H is a Hermitian operator. Furthermore, assume that the set
of eigenvectors of A forms a complete basis of H. If both conditions are satisfied, the
operator A is called an observable. Note that the requirement for A to be Hermitian
ensures that its eigenvalues are real numbers. With this definition in place, the second
postulate can be stated:

• Postulate 2: Every measurable physical quantity A is described by an observ-
able A acting on a Hilbert space H, and the only possible outcomes of such
measurements are the eigenvalues of A.

This postulate is fundamental to understanding the theory. As mentioned earlier,
Quantum Theory began with Planck’s concept of the quantum of energy. The term
"quantum" itself arose because of quantization; in other words, the continuum notion of
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energy failed to explain experimental results. The development of the theory reached
its maturity through the works of Born, Jordan, Dirac, and von Neumann, culminating
in the establishment of Postulate 2. This postulate naturally incorporates the idea of
quantization as a consequence of finite-dimensional vector spaces. Although it can
be generalized to infinite-dimensional spaces, this work focuses solely on the finite-
dimensional case.

Regarding the eigenbasis of an observable A, it is important to discuss orthog-
onality. Suppose {|ain〉} is the eigenbasis of A, and A

∣∣ai,jn,m〉 = an,m
∣∣ai,jn,m〉. Then, using

the fact that A is an observable, it follows that (an − am) 〈ajm|ain〉 = 0. Thus, if an �= am,
it must hold that 〈ain|ajm〉 = 0. In other words, eigenvectors corresponding to distinct
eigenvalues are orthogonal.

A clarification regarding Postulate 2 is worth analyzing. Consider that a physical
state is described by ρ =

∑
i piPi and that a physical quantity A is described by

A =
∑

i aiAi, where Ai are the projectors associated with the eigenvectors ai of the
observable A. With this information, how can one describe the final state after measuring
A on the state ρ? The answer to this question is provided by the third postulate.

• Postulate 3: If a physical state is described by ρ and a measurement of the quantity
A, represented by an observable A, is performed on ρ yielding an outcome an, the
state ρ collapses to the final state

ρ 	−→ ρan =
AnρAn

tr(Anρ)
, (2.1)

where An =
∑gn

i |ain〉 〈ain| are the projectors of A.

This postulate will be thoroughly discussed in the next section because it
represents a significant departure from Classical Mechanics, as emphasized by Einstein
and his collaborators. For now, it is essential to highlight the notion of state preparation
and the concept of a complete set of commuting observables.

Suppose a physical system is described by a density operator ρ, which is
defined in a multi-partite Hilbert space,

ρ : H1 ⊗H2 ⊗ · · · ⊗ HN → H1 ⊗H2 ⊗ · · · ⊗ HN . (2.2)

The goal is to obtain a specific eigenstate of ρ to prepare the system for an experiment.
The general form of ρ in this scenario is

ρ =
∑
ijk···

pijk··· |ai, bj, ck, · · ·〉 〈ai, bj, ck, · · ·| , (2.3)

where |ai, bj, ck, · · ·〉 = |ai〉 ⊗ |bj〉 ⊗ |ck〉 · · · is an eigenbasis for the product space.
By postulate 3, it is possible to prepare the state via collapse, i.e., by measuring an
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observable A in the Hilbert space H1 while leaving the others unchanged5. If the
measurement outcome is a1, the resulting state is

ρa1 =
(A1 ⊗ 112,3,···)ρ(A1 ⊗ 112,3,···)

tr
(
(A1 ⊗ 112,3,···)ρ

) = |a1〉 〈a1| ⊗
∑
jk···

p′jk··· |bj, ck, · · ·〉 〈bj, ck, · · ·| ,

where p′jk··· = p1jk/
(∑

jk··· p1jk···
)

. Here, the measurement of A isolates the state |a1〉 〈a1|,
but the remaining terms are still in a superposition and not yet factorizable. The process
can continue with measurements B, C, and so on, selecting the eigenvalues b1, c1, and
so on, ultimately leading to

ρ
a1,b1,c1,···−−−−−→ |a1〉 〈a1| ⊗ |b1〉 〈b1| ⊗ |c1〉 〈c1| ⊗ · · · ,

producing a fully prepared state where each Hilbert space has an eigenstate of the
respective measured observable.

Concluding the first part of this discussion concerning the preparation of a
state, it is worth mentioning the commutator of two observables. For generic operators
A and B, the commutator is defined as [A,B] = AB − BA. Essentially, if [A,B] = 0,
the operators are said to commute. In the previous case, each operator was defined
in separated Hilbert spaces. Hence, it becomes trivial noting that [A ⊗ 11, 11 ⊗ B] =

(A11)⊗ (11B)− (11A)⊗ (B11) = 0, and it happens to every two observables defined on
different Hilbert spaces. Therefore, in order to prepare the previous state, the set of
observables {A1 ⊗ 112,3,···, B2 ⊗ 111,3,···, C3 ⊗ 111,2,4,···, · · · } was assumed. If there are no
degeneracies, this constitutes a Complete Set of Commuting Observables (CSCO),
which is necessary for state preparation.

However, it is yet possible to prepare a state with measurements in a single
Hilbert space. Suppose the system is described by ρ =

∑
n pn |ψn〉 〈ψn|. As previously

mentioned it is necessary to measure observables acting on ρ. Thus, suppose that
A =

∑
n an

∑gn
i |ain〉 〈ain| is measured and the eigenvalue a1 is obtained, which is g1

degenerated. In such case, the state collapses to

ρ
a1−→ ρa1 =

A1ρA1

tr(A1ρ)
=

∑
n pn |ψg1

n 〉 〈ψg1
n |∑

n pn||ψg1
n ||2 , (2.4)

where |ψg1
n 〉 = ∑g1

i 〈ai1|ψn〉 |ai1〉 is the projection of |ψn〉 in the subspace generated by
{|ai1〉} and ||ψg1

n ||2 = | 〈ai1|ψn〉 |2. Then, note that the state is not yet an eigenstate of A,
once it has g1 possible states with the same eigenvalue. Consider now that a second
observable is measured, say B. Also, suppose that the eigenvalue b1 was obtained,
which is h1 ≤ g1 degenerated. Hence, the final state is

ρa1
b1−→ ρa1,b1 =

∑
n pn

∣∣ψh1
n

〉 〈
ψh1
n

∣∣∑
n ||ψh1

n ||2 , (2.5)

5 By “unchanged," I mean that the operators acting on all Hilbert spaces except H1 are the identity
operator 11.
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where
∣∣ψh1

n

〉
=

∑h1

i 〈bi1|ψg1
n 〉 |bi1〉 is analogous to the previous state. There is a particularly

notable detail to address here. By postulate 3, the state collapses after a measurement of
an observable, but now it does not produces an eigenstate of the measured observable.
Hence, how is it possible to decrease the degree of degeneracy without losing the
information of the first measurement? For example, suppose that g1 = h1 = 1, so that
ρa1 = |a1〉 〈a1| and ρa1,b1 = |b1〉 〈b1|. In that case, note that if the bases {|ai〉} and {|bi〉}
are mutually unbiased bases (MUB)6, the second measurement destroys the information
of the first measurement, in the sense that it is not possible to recover the previous state.
However, if the bases are the same, in other words, if both A and B can be expressed
by the same eigenbasis (A and B are commuting observables), it is true that ρa1 = ρa1,b1 .
Thus, the collapse do not destroys the information of the first measurement, and it is
possible to prepare a state. To decrease the degree of degeneracy, the idea is to choose
a set of observables that further refine the state, continuing until the final state becomes
a pure state. When this has been achieved, the set of observables is called a CSCO, as
previously discussed.

To conclude this discussion, it is important to clarify the relation between two
observables sharing the same eigenbasis and their commutation relation. For this
purpose, the following theorem is helpful.

• Theorem 2.1. If A and B are observables in a Hilbert space, and [A,B] = 0,
it is possible to construct an orthonormal eigenbasis that is common to both
observables.

• Proof : Firstly, suppose that [A,B] = 0 and A |ain〉 = an |ain〉. So, it is possible to
write that 〈ajm| [A,B] |ain〉 = (am − an) 〈ajm|B |ain〉 = 0, and if an �= am, the matrix
representation of B in the eigenbasis of A is diagonal, or 〈ajm|B |ain〉 = 0. Hence,
considering just one eigenvalue of A, it is possible to diagonalize the observable B

in such subspace. If B |bin〉 = bn |bin〉, and since {|ain〉} is a basis of this subspace, it
is possible to write |bin〉 =

∑gn
j cj |ajn〉. However, with this description, it is possible

to note that A |bin〉 = an |bin〉, and {|bin〉} is an eigenbasis of A and B.

On the other hand, consider that AB
∣∣bi,jn,m〉 = anbm

∣∣bi,jn,m〉, so that [A,B]
∣∣bi,jn,m〉 =

(anbm−bman)
∣∣bi,jn,m〉. Hence, as an,m are real numbers, the previous condition leads

to [A,B] = 0.

The preceding postulates pertain to the description of physical states, the
possible outcomes of measuring an observable, and the collapse of the state. However,
it is important to note that all the states considered so far are fixed in time. The next
postulate addresses the time evolution of a state.
6 A pair of bases {|ai〉} and {|bi〉} are said to be MUB iff | 〈ai|bj〉 |2 = 1/d, with i, j ∈ {1, 2, · · · , d}, and d

is the dimension of the Hilbert space considered.
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• Postulate 4: If a physical state is described by a density operator ρ in a time t0,
and H is the Hamiltonian operator acting on ρ, the evolution of the state to a time
t > t0 is described by the Liouville-von Neumann’s equation

i�∂tρ = [H(t), ρ]. (2.6)

The above equation is a generalization of the Schrödinger’s equation. Indeed, for a pure
state ρ = |ψ〉 〈ψ|, (2.6) leads to i�∂t |ψ〉 = H(t) |ψ〉.

This work focuses on discrete cases, however it is worth giving a brief context
to introduce the next postulate. In 1926, when Schrödinger introduced his equation,
he developed this formalism in terms of wave functions, now written as ψ(x) = 〈x|ψ〉.
This correspondence is uniquely guaranteed by Riesz representation theorem (for more
details, see reference [39]), with x being a continuous variable. Schrödinger initially
interpreted the wave function as a “weight" function, so that it was possible to describe
the charge density of an electron. However, such an interpretation was quickly shown
to be erroneous by Heisenberg and Born, with evidence coming from experiments
with diffraction of electrons. It was precisely the study of this phenomenon that led to
a new interpretation of the wave function proposed by Born. In his own words about
Schrödinger’s interpretation, Born said, “On this point I could not follow him. This was
connected with the fact that my Institute and that of James Franck were housed in the
same building of Göttingen University. Every experiment by Franck and his assistants
on electron collisions (of the first and second kind) appeared to me as a new proof of
the corpuscular nature of the electron".

In July of 1926, while studying electron-atom collisions, Born developed what
is known as “Born’s approximation". In this work, Born analyzed the hypothesis of a
corpuscular interpretation and concluded that for such an interpretation, |ψ(x)|2 should
measure the probability of the event [41]. This interpretation of the wave function is
summarized in the following postulate.

• Postulate 5: If a measurement of a physical quantity A, described by an observ-
able A, is made on a physical state described by ρ, the probability of obtaining the
result an is given by the Born’s rule

p(an) = tr(Anρ),

with An =
∑gn

i |ain〉 〈ain| being the projectors of the observable A.

Further details about this postulate will be discussed in the next section.



CHAPTER 2. QUANTUM MECHANICS AND ITS FOUNDATIONS 33

2.3 Interpretations and Philosophical Aspects of Quan-

tum Mechanics

This section is structured as follows. Subsection 2.3.1 introduces the Copen-
hagen Interpretation, providing its historical context and addressing concepts not cov-
ered in the previous sections. Subsection 2.3.2 discusses criticisms to the Copenhagen
Interpretation, including the EPR arguments, which are of great significance for Subsec-
tion 2.3.3, where the concept of realism in quantum theory is explored.

2.3.1 Copenhagen Interpretation

The postulates of Quantum Mechanics presented in the previous section were
described using a modern approach, often aligned with the “orthodox" interpretation,
known as the Copenhagen Interpretation. This interpretation was mainly developed
by Niels Bohr and his collaborators, including Heisenberg and Pauli. The following
paragraphs will further explore this interpretation, setting the stage for the scenario
of physics in the late 1920s. To achieve this, two fundamental principles of Quantum
Mechanics need to be introduced.

In September of 1926, Schrödinger delivered lectures in Copenhagen, at Bohr’s
institute, on wave mechanics, and attacked Bohr’s view of the “quantum jumps", which
refers to the collapse of the wave function. It is interesting to note that these debates
were so intense that Schrödinger once said “If one has to stick to this damned quantum
jumping, then I regret having ever been involved in this thing", and Bohr answered
“But we others are very grateful to you that you were, since your work did so much to
promote this theory". Heisenberg, reflecting on these debates, recognized that the core
of this conflict lay in interpreting the quantum formalism, which was in its early stages.
Inspired by Einstein’s ideas of questioning the meaning of things in nature, instead of
questioning “how nature can be described by a mathematical scheme?", Heisenberg
said “Well, is it not so that I find in nature situations which can be described by quantum
mechanics?". In a letter to Pauli in October of 1926, Heisenberg already understood
some central points of his famous uncertainty principle, writing “[...] meaningless to
speak of the place of a particle with definite velocity", and then “But if one does not take
it too seriously with the accuracy in using the notions of velocity and position, then it
may well make sense". On February 23, 1927, Heisenberg consolidated his thoughts
on these problems in a letter to Pauli, who quickly encouraged him to publish them. The
final manuscript was read by Pauli and Bohr, and submitted to the Zeitschrift für Physik
at the end of March of 1927 [42].



CHAPTER 2. QUANTUM MECHANICS AND ITS FOUNDATIONS 34

It is essential to acknowledge others who noticed these interpretative nuances
before Heisenberg’s publication. As mentioned in Section 2.1, Dirac and Jordan were
fundamental to the mathematical development of quantum formalism, and both noticed
this peculiarity. Dirac, referring to conjugated variables once said “One cannot answer
any question on quantum theory, which refers to numerical values for both q and p. One
would expect, however, to be able to answer questions in which only q or only p are
given numerical values, or, more generally, when any set of constraints of integration ξ

that commute with one another are give numerical values". Jordan concluded a similar
thing when declared “for a given value of q all values of p are equally possible". With
these mentions, it will now be discussed the uncertainty relations by using the modern
notation and formalism.

Suppose that ρ : H → H is a density operator and A : H → H and B : H → H
are observables. In such case, it is possible to define the expectation value of the
observables in the state ρ as 〈A〉 = tr(Aρ) and 〈B〉 = tr(Bρ). By defining ΔA = A−〈A〉,
one can write 〈(ΔA)2〉 = 〈A2〉 − 〈A〉2 ≡ σ2

A, which is identified as the dispersion of the
observable A, and the same applies to the observable B. Now, consider the two states
α = (ΔA)ρ and β = (ΔB)ρ. In such case, it is possible to define an hermitian inner
product (that use to be the standard hermitian inner product for operators) as

〈·, ·〉 : H×H → C

(α, β) 	−→ tr
(
α†β

)
.

Since it has the formal structure of an inner product, Cauchy-Schwarz inequality can
be used, and then 〈α, α〉〈β, β〉 ≥ |〈α, β〉|2. Using such result and the above definition of
inner product, one can obtain that

σ2
Aσ

2
B ≥ |〈ΔAΔB〉|2.

Analyzing the second term, one can write ΔAΔB = 1
2
([A,B] + {ΔA,ΔB}), with [A,B]

being the commutator between the observables and {ΔA,ΔB} = ΔAΔB + ΔBΔA

being the anti-commutator of ΔA and ΔB. Since the anti-commutator is an hermitian
operator and the commutator is a purely imaginary one (due to [A,B]† = −[A,B]), it is
possible to state that |〈ΔAΔB〉|2 = 1

2
(|〈[A,B]〉|2 + |〈{ΔA,ΔB}〉|2). Therefore, by using

Cauchy-Schwarz inequality strengthening the inequality, it is possible to state that

σ2
Aσ

2
B ≥ 1

4
|〈[A,B]〉|2, (2.7)

which is the Uncertainty Principle obtained by Robertson in 1929 [43]. One of the
inequalities obtained by Heisenberg in 1927 concerns the operators of position and
momentum. Since for these canonical variables the commutation relation is written as
[q, pq] = i�, Heisenberg uncertainty principle is written as

σqσpq ≥
�

2
, (2.8)



CHAPTER 2. QUANTUM MECHANICS AND ITS FOUNDATIONS 35

where σj is the uncertainty of the observable j. The another uncertainty relation obtained
by Heisenberg is σtσE ≥ �/2 concerning time and energy.7

Due to the importance of this principle to the Copenhagen Interpretation as well
as to the Philosophy of Physics, it is worth discussing some of its fundamental aspects.
The Eq. (2.7) essentially establishes a lower bound for the product of uncertainties of
two observables. Thus, it is not possible to simultaneously obtain well-defined values
for two noncommuting observables measurements, such as position and momentum.
This conclusion conflicts with Classical Mechanics and the notion of trajectory, or even
determinism. In Heisenberg’s words, “[...] in the strong formulation of the causal law ‘If
we know exactly the present, we can predict the future’ it is not the conclusion but rather
the premise which is false. We cannot know, as a matter of principle, the present in all
its details". This conclusion had a profound impact on the philosophy of science [1, 27,
44], as pointed by Jammer: “modern philosophy, as Schlick later admitted, was taken by
surprise since even the mere possibility of such a solution had never been anticipated
in spite of the profusion of discussions on this problem for generations". In his paper’s
conclusion, Heisenberg says “In view of the intimate connection between the statistical
character of quantum theory and the imprecision of all perception it may be suggested
that behind the statistical universe of perception there lies hidden a ‘real’ world ruled by
causality. Such speculations seem to us - and this we stress with emphasis - useless and
meaningless. For physics has to confine itself to the formal description of the relations
among perceptions". It is fair to say that this last statement was in great agreement with
Bohr’s view and, for sure, was fundamental to the establishment of the Copenhagen
Interpretation.

Heisenberg’s uncertainty relations were fundamental for Bohr to conclude his
own view about the wave-particle duality. Indeed, from July, 1925 to September, 1927,
Bohr investigated the implications of wave-particle duality by himself. Heisenberg’s
publication came as a confirmation of some ideas he had already established on his
own, which is also the reason why he was a strong advocate of this view. For him, in
contrast with Heisenberg, it was not the formalism that must be the priority to reach
an interpretation of the theory, but the logic. In order to unify the characteristics of
both waves and particles, which are mutually exclusive, Bohr concluded that a new
logical instrument was needed, what is known as complementarity. Such an idea leads
to his famous Complementarity Principle of Quantum Mechanics [45, 46], which is:
wave-picture and particle-picture are not contradictory behaviors, but complementary.
It is necessary to take both behaviors into account for a complete description of the
7 There is no direct correspondence between the previous development of the uncertainty relations

and this one, because time is not an observable in Quantum Mechanics. Indeed, Heisenberg did not
use that kind of procedure. Instead, he analyzed the experiments available at that time and made
hypotheses about the observable quantities. For the time-energy uncertainty relation, he analyzed the
Stern-Gerlach experiment.
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system. The picture arises from the nature of the experiment that is able to bring up
only one complementary aspect. According to Bohr, the uncertainty relations were, in
Jammer’s words, the “price" for violating the rigorous exclusion of notions. For further
discussions on this principle and its updating, see [47].

Although Bohr’s principle was known to be from 1928, it was discussed in the
International Congress of Physics in Como, in September of 1927, and in the 5th Solvay
Conference, in October, 1927, on electrons and photons. Historically, it is often seen as
the moment when the Copenhagen Interpretation was established. The name reflects
Bohr’s prominent role in its development, as well as the contributions of others physicists
working with him in Copenhagen.

The Copenhagen Interpretation is strongly based on the concepts of proba-
bilities and the collapse, as presented in earlier. To fully grasp its foundations, it is
instructive to follow the approach suggested by Primas [48] and reviewed by Omnès
[49]. According to them, Copenhagen Interpretation can be summarized as follows. First,
the theory deals with individual objects, and all that is possible to obtain are probabilities
associated with measurements. The probability involved in Quantum Theory is intrinsic,
that is, it does not reflect the ignorance of the observer, but rather a fundamental aspect
of the description of nature. Concerning the description of a system, it is common to
admit Heisenberg’s view that there is a frontier separating the quantum world to the
classical world. However, it is worth noting that, for Bohr, there is no quantum world,
and nothing can be explicitly obtained of an atomic system from classical observations.
Following these ideas, the observational means must be described in terms of classical
physics, and the act of observation is an irreversible event. This irreversibility is due to
the collapse occurred when a measurement was performed, and such collapse is not
describable by quantum dynamics, but is a new type of physical law. In order to make
correct assumptions of the system, only the results of a measurement can be taken to
be true, i.e., it is meaningless to say what is happening to a system between the time
it is prepared and measured. As a measurement reveals one of the complementary
aspects of a system, the complementary principle holds for the interpretation. And the
last fundamental aspect of the interpretation is that pure quantum states are objective,
but not real. Objective means that the states deal with intrinsic properties of the system,
and according to Heisenberg, a pure state represents the potentially possible in an
objective way. The discussion concerning realism is left to the last part of this section.

Concluding the overview of the Copenhagen Interpretation, Primas [48] pointed
out “there is no uniform opinion of what the Copenhagen Interpretation should be". The
points presented here are those which “survived" over time, that is, that are constantly
assumed by the proponents of such interpretation. However, as will be presented in the
next part of this section, there are many criticisms to this interpretation.
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2.3.2 Criticism to the Copenhagen Interpretation and EPR argu-
ments

The Copenhagen Interpretation has been criticized since its advent, mainly
because it understands the nature very differently from the classical perspective. In
other words, the materialistic philosophy of classical physics is abandoned, and the
notion of the observer is fundamental to the understanding of quantum theory. Naturally,
this disruption of the traditional philosophy of the natural sciences led to new attempts of
reconciliation between quantum and classical theories. Heisenberg, in his text “Criticism
and Counterproposals to the Copenhagen Interpretation of Quantum Theory" (chapter
VIII of the reference [50]), categorized these attempts in three groups, which will be
discussed below.

The first group of criticisms tries to change the language, that is, the philosophy,
of this interpretation to align it more closely with classical physics. As Heisenberg
mentioned, “their interpretations cannot be refuted by experiment, since they only
repeat the Copenhagen Interpretation in a different language". One of the most relevant
counterproposals that Heisenberg puts in this group is that made by David Bohm [51,
52], using the idea of hidden variables. Basically, this interpretation considers a new
approach to Quantum Mechanics, in terms of the new “hidden content" coded in these
hidden variables. With this approach, Bohm could show that it is possible to speak
about trajectories and the particles are objectively real, i.e., quantum particles are
like the classical particles in Newtonian mechanics. However, Bohm’s work leads to
some questions since it deals with waves in the configuration space. Following Bohm’s
ideas, Heisenberg asks “What does it mean to call waves in the configuration space
‘real’?" Moreover, the theory breaks the symmetry between position and momentum,
and Heisenberg expresses his dissatisfaction, concluding that Bohm’s theory cannot be
considered as an improvement of Copenhagen Interpretation. In the mentioned text,
the author discusses more attempts at changing the philosophy of the interpretation,
but the purpose here is not to deepen so much in the subject, but just to give some
examples of these attempts. For more details, it is strongly recommended to read the
original text [50].

The second group of criticisms understands that Copenhagen Interpretation is
the correct one if the experimental data is always correct, and tries to change the theory
itself, in order to arrive at a different philosophical interpretation. To exemplify this group,
Heisenberg mentioned Janossy and his work attacking the idea of the wave function
collapse [53], where he introduced the damping terms, which make the interference
terms disappear after a finite time. However, as pointed out by Heisenberg and Janossy
himself, even if this corresponds to reality, there are many alarming consequences of
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such an interpretation, such as waves propagating faster than the speed of light. Hence,
in Heisenberg’s words, “we should hardly be ready to sacrifice the simplicity of quantum
theory for this kind of view until we are compelled by experiments to do so".

Finally, concerning the third group of criticisms to the Copenhagen Interpreta-
tion, which will be more discussed in this work, there are those who have a general
dissatisfaction with the philosophical conclusions concerning quantum theory and, as
pointed by Heisenberg, do not try to give a better explanation of the facts. In such group,
Heisenberg mentioned von Laue, Schrödinger and Einstein, and the latter plays an
important role to the the criticisms mentioned previously, mainly because historically this
is the first group of criticisms, and the Einstein-Bohr debates concerning the foundations
of quantum physics [46] were very famous in the first half of the twentieth century.
Heisenberg cited Schrödinger’s work “Are there quantum jumps?" [54] as part of the
criticisms present in this group. However, as time has shown, probably the most influen-
tial article against the Copenhagen Interpretation was published in 1935, by Einstein,
Boris Podolsky, and Nathan Rosen (EPR) [2], where the authors argued against the
completeness of quantum theory. In order to understand their arguments, it is worth
discussing more details of this work.

In 1935, physicists were used to interpret their results using the orthodox
interpretation. However, as discussed in the section of the Copenhagen Interpretation,
such a set of ideas is completely disruptive from classical ones. It was in this context
that EPR published their seminal paper entitled “Can Quantum-Mechanical Description
of Physical Reality Be Considered Complete?" [2]. According to them, by using some
reasonable criterion to decide whether a physical theory is correct and complete, they
argued in favor of the correctness and incompleteness of quantum theory. The original
paper discusses their arguments through an analysis of the position and momentum
of two different systems that interacted in the past. However, in order to be more
comprehensive and already establish some notation that will be used in the next
chapters, this discussion will be made as discussed by David Bohm [55], in 1957, using
the concept of spin.

To start the discussion, according to EPR a physical theory is considered
correct depending on the degree of agreement between theory and experiment. For
such a case, the authors have no concerns with quantum theory, as its agreement with
experimental data within its validity regime is great. Thus, they quickly concluded that
quantum theory is indeed a correct theory. However, the authors also introduced their
criterion for a complete theory, which is: every element of the physical reality must have
a counterpart in the physical theory. By element of physical reality they mean: if,
without any way disturbing the system, we can predict with certainty (i. e. with probability
equals to unity) the value of a physical quantity, then there is an element of physical
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reality corresponding to this physical quantity. For such criterion, they found issues in
their view with the completeness of quantum theory.

To illustrate their argument, consider the existence of two laboratories that are
far from each other, i. e. they are outside of the light cone of each other, say A for Alice’s
laboratory and B for Bob’s one. Both experimentalists, in their respective laboratories,
receive a spin-1

2
particle that previously interacted with the other particle in a correlation

source. This source prepared the global system in a singlet state, that is, a pure state
described by

|ψS〉AB =
1√
2
(|01〉 − |10〉), (2.9)

where |0〉 and |1〉 are the states for spin up and down, respectively, in z direction in the
computational basis. In this context, the EPR arguments are as follows. Consider that
Alice chooses to measure the z direction of spin of her particle, establishing an element
of reality. In such a case, she could infer what is the result of the same measurement
made by Bob, since the global state is well defined and there is a constraint for the total
spin. Hence, Alice could obtain the outcome of a measurement in Bob’s laboratory for
the same direction without perturbing Bob’s system, and EPR would say that there is an
element of physical reality corresponding to the z direction of spin for Bob’s particle.

For instance, if Alice measures �/2 for her particle, then −�/2 is the measure-
ment outcome in Bob’s laboratory. Using the same argument, it is possible to state that
Alice does not need to choose measuring the z direction of spin, she could measure
any other direction, and, by symmetry properties of the singlet state, the same conclu-
sions would be reached. Therefore, EPR argued that, since it is possible to obtain the
elements of reality for any direction of Bob’s spin, and measurements made in Alice’s
site cannot disturb Bob’s system since they are spatially separated, Bob’s state must be
well defined, and the theory is incomplete. The incompleteness came since quantum
mechanics does not predict these simultaneous values of spin for any direction because
they are incompatible observables. In this point, it is worth noting that EPR’s conclusion
has its foundational basis on the idea that spin exists as a well-defined property of the
system.

2.3.3 Realism in Quantum Theory

EPR’s arguments had a profound influence on the development of quantum
mechanics, particularly in its philosophical aspects. As shown earlier, their arguments
are deeply based on a criterion of realism in a physical theory. To better understand this
concept and its implications to quantum theory, this subsection is dedicated to discuss
this topic in detail.
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Considering EPR’s notion of physical reality, it is noted that CM is completely
realistic, since it is governed by deterministic equations. Beyond that, even when
relativity is considered, the notion of realism is maintained. This context provides insight
into Einstein’s perspective and critiques of QM. The development of QM was completely
different from that of classical theories. While relativity was primarily developed by
Einstein and a few other great physicists and mathematicians, based on physical and
mathematical principles and later experimentally verified, QM was developed from
a multitude of experimental data that lacked a theoretical explanation. In a way, the
origin of quantum theories was not necessarily based on immutable principles of
classical physics, as previously discussed in this chapter. To develop a theory that was
so consistent with what was being observed experimentally, a departure from well-
established concepts of classical physics was required. This abandonment of classical
notions led to the emergence of ideas that deviate from common sense when viewed
from the perspective of Classical Physics.

In the context of the realism present in a physical theory, Heisenberg mentioned
[50] Einstein’s concerns and said “When Einstein has criticized quantum theory he
has done so from the basis of dogmatic realism. This is a very natural attitude. Every
scientist who does research work feels that he is looking for something that is objectively
true. His statements are not meant to depend upon the conditions under which they
can be verified. Especially in physics the fact that we can explain nature by simple
mathematical laws tells us that here we have met some genuine feature of reality, not
something that we have - in any meaning of the word - invented ourselves. This is
the situation which Einstein had in mind when he took dogmatic realism as the basis
for natural science". And he continues “But quantum theory is in itself an example for
the possibility of explaining nature by means of simple mathematical laws without this
basis. These laws may perhaps not seem quite simple when one compares them with
Newtonian mechanics. But, judging from the enormous complexity of the phenomena
which are to be explained (for instance, the line spectra of complicated atoms), the
mathematical scheme of quantum theory is comparatively simple. Natural science is
actually possible without the basis of dogmatic realism".

To explore a peculiarity in EPR’s criterion of realism, let some examples be
considered. First, consider the case of a pure eigenstate of the observable A, |ψ〉 = |a〉.
This state is such that A |a〉 = a |a〉, that is, there is an element of reality for the
observable A. This is generalized to any state similar to this one: every state that is
described by one eigenvector of some observable has an element of reality associated
with this observable. Furthermore, in case the state being a linear combination of
eigenvectors of an observable, that is, in case the state being in a superposition,
there is no element of reality associated with that observable. Both of these cases are
contemplated in EPR’s criterion, i.e., are natural conclusions in light of their criterion.
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Figure 1 – The figure illustrates the protocol on which the BA-realism criterion is based. The
scheme in (a) represents a preparation, understood as an ensemble of identically pre-
pared systems, that is submitted to a tomography process and is uniquely determined
to be described by a density operator ρ. The scheme in (b) is similar to (a), but with
the addition of an agent measuring an observable A before the tomography process.
Since the measurement results remain unknown, the best possible description after
tomography is given ΦA(ρ).

However, let another case be considered. Suppose now that a state is described by the
density operator ρ =

∑
i pi |ai〉 〈ai|. Such a case is just a mixture of realistic states of the

observable A and can be used to describe an ensemble of classical particles. According
to EPR’s views, this should be an example of a realistic state, since it describes a
classical mixture of realistic states for momentum. However, considering just their
criterion of realism, such a state is not realistic8. Hence, in order to generalize EPR’s
criterion and establish this concept to those types of physical states, Bilobran and
Angelo introduced their criterion of realism in 2015 [13], which will be explained in the
following paragraphs.

The Bilobran-Angelo criterion of realism (BA-realism) was formulated based
on a protocol using the non-selective measurements map. In order to introduce this
criterion, suppose the existence of a physical state of N parts. Then, such a state
is submitted to a protocol of tomography to be completely determined, that is, to be
described as the state ρ. The protocol of tomography is done by an experimentalist
using different measurements in an ensemble of this physical state, so that it is possible
to state that the complete description of the system is given by ρ. Now, to make the
point of the criterion clear, suppose the existence of an unknown external agent who
measures some generic observable A =

∑
k akAk in the same preparation in the first

Hilbert space, but before the tomography process. In such a case, as the external agent
8 Indeed, EPR never used the term “realistic state". However, the terminology here refers to the states

that satisty a realism criterion for a given observable.
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is performing measurements in the system, by using the collapse of the state, it is
possible to state that the final description after each measurement will be described by
an eigenstate of A in the correspondent Hilbert space, that is, Ak for some k ∈ N in H1.
Hence, the best description to be known after the process of tomography is given by

ΦA(ρ) =
∑
k

(Ak ⊗ 112···N)ρ(Ak ⊗ 112···N) =
∑
k

pakAk ⊗ ρ2|ak , (2.10)

where pak = tr(Ak ⊗ 112···N)ρ(Ak⊗112···N ) are the probabilities of obtaining the eigenvalue
ak for the measurement A in the state ρ, and ρ2|ak = tr1[(Ak ⊗ 112···N )ρ(Ak ⊗ 112···N )]/pak ∈
H2 ⊗ · · · ⊗ HN is the collapsed state for the other (multi)partition conditioned to the
measurement outcome ak. Finally, with this information, it is possible to define the
BA-realism criterion.

• BA-Realism: An observable A =
∑

k akAk, with projectors Ak, acting on the
Hilbert space H1, is said to be real to a given preparation ρ ∈ H1 ⊗ · · · ⊗ HN iff

ΦA(ρ) = ρ. (2.11)

The above criterion is based on the idea that the measurement establishes an
element of reality in the state. Then, when there is an agent, the elements of reality
are guaranteed. If in the case without an agent we arrive at a tomography identical to
that of the case with the agent, then the first case already has an element of reality
established. Eq. (2.11) can also be interpreted in another way, without mentioning the
protocol with the unknown external agent. A realistic state is one for which the effect of
the measurement is merely to reveal an already established element of reality. Thus, if
the measurement is non-revealed, the original state of knowledge should be recovered.
Classical statistical mechanics meets this criterion perfectly. To exemplify the case of
a classical state, consider the previous state that was not in agreement with EPR’s
criterion, that is, ρ =

∑
i pi |ai〉 〈ai|. In such case, consider that the unknown external

agent is measuring the observable A, so that

ΦA(ρ) =
∑
k

AkρAk =
∑
ik

pi |ak〉 〈ak|ai〉 〈ai|ak〉 〈ak| =
∑
i

pi |ai〉 〈ai| = ρ.

Thus, the initial state is indeed realistic with respect to A, contrary to what the EPR
criterion established.

One significant advantage of the BA-realism criterion is that it is well-defined
and analytical, in the sense that not only works to every physical state, but also allows
quantification of the amount of irrealism within a state, i.e, a quantifier of the amount of
violation of realism. This quantifier will be further discussed in the next chapter when
the concept of Irreality is introduced.
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Before concluding this chapter, it is worth discussing some important topics
related to the subject. First, inspired by EPR’s criteria for a complete physical theory
and realism, Bell explored these hypotheses for a generic probability theory [56–58]
and developed the first form of a Bell inequality, later explored upon by others [59].
Essentially, Bell assumed that the joint probability of outcomes a and b for measurements
x and y, respectively, can be expressed as

p(a, b|x, y) =
∑
λ

p(a|λ, x)p(b|λ, y)p(λ). (2.12)

The discussion concerns the same scenario as that considered to explain the EPR
arguments: Alice (who measures x) and Bob (who measures y) are located in space-like
separated laboratories. The idea behind Eq. (2.12) is that, even if it is not possible to write
p(a, b|x, y) as a product of individual probabilities depending solely on the respective
laboratories (locality), the knowledge of λ, the set of hidden variables, enables such a
factorization, as shown in the above equation. Therefore, λ encapsulates the knowledge
necessary to restore locality. Eq. (2.12) is known as Bell’s hypothesis or Local Causality
hypothesis, and there is still a debate regarding its underlying assumptions. However,
as shown in [60], Eq. (2.12) can be derived from three primitive hypotheses: realistic
hidden variables, non-superdeterminism, and locality9. Thus, by writing expectation
values of the joint outcomes 〈axby〉, for x, y ∈ {0, 1}, as

〈axby〉 =
∑
ab

ab p(a, b|x, y),

one can calculate the quantity10

S = 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉.

If Eq. (2.12) holds, then S ≤ 2 for a, b ∈ {−1, 1}. However, for the state in Eq. (2.9),
S = 2

√
2 > 2, so that QM does not satisfy Eq. (2.12). Through this procedure, Bell

demonstrated that QM is incompatible with EPR premises, and it was later experimen-
tally verified as a fact [61–66], culminating in the Nobel Prize in Physics in 2022. These
works actively shown and explored the concept of nonlocality in quantum theory, which
is, even when the theory is supplemented with hidden variables, it still exhibits the
characteristic that the outcome joint probability is not separable, and a measurement in
one laboratory affects (in principle) the state in the other laboratory (for a more detailed
discussion see reference [60]).

In the following years after the publication of the EPR paper, alongside Bell’s
works and some misinterpretations of Einstein’s ideas, it became widely believed that
9 for more details on each of these assumptions (which are not unique), the reader is encouraged to

consult [60].
10 The present discussion concerns the Bell inequality proposed in [59], and it is not the original

formulation by Bell.
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Einstein opposed the probabilistic nature of QM. However, as Bell mentions in [58],
Einstein himself admitted that this was not the case. What truly troubled him was, as
mentioned by Bell, "what he could not accept was that an intervention at one place
could influence, immediately, affairs at the other", that is, the concept of nonlocality.
In other words, even for systems outside the light cone of each other, there would
still be a disturbance in the elements of reality. What Einstein believed to be the
foremost requirement for any physical theory was the hypothesis of local realism: the
idea that elements of reality are influenced solely by local events connected through
timelike intervals. The locality hypothesis in this context was extensively explored by
Bell within the framework of hidden variables [56–59]. The connection between Bell’s
hypothesis and realism is explored in [60], and [67] establishes an equivalence between
the existence of deterministic hidden variable models, well-defined joint probability
distributions for noncommunting observables, and the non-violation of Bell’s inequality.
Regarding more recent and fundamental developments on the topic of realism, the
reader is encouraged to explore works such as [68], where an axiomatization of the
concept of realism is discussed, and [69], that analyzes the realism from a perspective
independent of any specific theoretical framework, thereby treating it as a theory-
independent concept.
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CHAPTER 3

Concepts of Quantum Information Theory

While the last chapter introduced the quantum mechanical framework and
philosophical aspects of quantum mechanics, the goal of this chapter is to present
some preliminary concepts of quantum information theory [38], as well as basic notions
of optical devices and optical setups. Section 3.1 discusses the Shannon and von
Neumann entropies, and establish some important theorems to be used throughout
this work. Section 3.2 discusses some useful quantum resources for this work, namely,
Irreality, Entanglement, Quantum Discord, and Realism-based Nonlocality. Section 3.3
introduces the important optical devices for the development of this work and some
setups, such as the Mach-Zehnder interferometer and quantum erasers. Therefore, to
the reader is given the freedom to skip sections as desired to avoid fatigue.

3.1 Shannon Entropy and von Neumann Entropy

The notion of Entropy was introduced in the nineteenth century through a
thermodynamical approach, mainly due to the work of Sadi Carnot and Rudolf Clausius,
in the context of thermal machines. Later, some of the greatest scientists of all time,
say James Clerk Maxwell, Ludwig Boltzmann, and Josiah Willard Gibbs, turned their
attention to this concept and established the statistical foundations of Entropy [70].
According to their works, entropy can be understood as a measure of how much
disorder, or how much uncertainty, there is in a physical system.

In the first half of the twentieth century, while working at Bell Labs, Claude
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Elwood Shannon developed what is usually known as information theory [71]. Basically,
Shannon was studying how to mathematically formulate the notion of information of a
random variable X. In order to obtain a mathematical formulation, it is expected that
the information of a random variable X, say I(X), is expected to satisfy some basic
conditions, such as

1. I(X) must be a function only of the probability distribution of X, that is, I(X) =

I(p(X)) = I(p);

2. As it must be possible to study the change of information, it is reasonable to
assume that I(p(X)) is a smooth function of the probability;

3. The information gained when two independent events occur with individual proba-
bilities p1 and p2 is the sum of the information gained from each event alone, that
is, I(p1p2) = I(p1) + I(p2).

From these assumptions, it is possible to take the derivative as follows

∂

∂p1
I(p1p2) = p2I ′(p1p2) = I ′(p1),

∂

∂p2
I(p1p2) = p1I ′(p1p2) = I ′(p2),

so that p1I ′(p1) = p2I ′(p2), or even I ′(p) = c/p, with c ∈ R. Hence,

I(p) = k log p, (3.1)

with k ∈ R. The physical meaning of I(p) is the amount of information provided by
the occurrence of an event with a probability p of happening. Therefore, it represents
the information gained when the content of X is learned, or, from a complementary
perspective, is the amount of uncertainty about X before knowing its content.

From previous discussion, Shannon introduced his concept of Entropy, nowa-
days known as Shannon Entropy, as being the amount, in average, of information gained
when the value of a random variable is learned, that is, considering that X is a discrete
random variable,

〈I(p)〉 = k
∑
x∈ΩX

px log px,

with ΩX being the set of possible outcomes of X. By analogy with the thermodynamical
notion of entropy, this quantity cannot be negative. However, px ≤ 1 for any x ∈ ΩX ,
so that, by definition, k ≡ −1, and Shannon Entropy of a random variable X, with
probability distribution p(X), H(X), is written as

H(X) = −
∑
x∈ΩX

px log px. (3.2)
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It is worth noting that it is very common to have random variables with just two
outcomes, and this is the case of this work. In such case, the entropy is said the binary
entropy, which is

h(p) ≡ −p log p− (1− p) log(1− p), (3.3)

and log = log2, so that the entropy is measured in bits, and results in a number between
0 and 1. Another important convention is that, as probability distribution allows px = 0

for some x ∈ ΩX , it is defined that 0 log 0 ≡ limx→0 x log x = 0.

One property of particular interest of entropy is how it behaves when there is a
convex combination of probabilities, that is, how H(αp1 + (1− α)p2) is related with the
individual entropies of p1 and p2. For such a case, the theorem below is considered.

• Theorem 3.1. Shannon entropy is a concave function of probabilities, and for
binary entropy it is true that

h(αp1 + (1− α)p2) ≥ αh(p1) + (1− α)h(p2). (3.4)

• Proof. Considering the expression for Shannon Entropy in (3.2), it is possible to
state that

∂2

∂p2i
H(p1, · · · , pn) = − 1

pi
,

∂2

∂pi∂pj
H(p1, · · · , pn) = 0.

Hence, the Hessian matrix of H(p1, · · · , pn) has all its eigenvalues negative, since
pi ≥ 0 for all i, and H(p1, · · · , pn) is a concave function. Considering now the case
of the binary entropy, as this is also a Shannon Entropy, it is concave, but it is a
single-variable function, so that h′′(p) ≥ 0. As h(p) is analytical, Taylor series is
defined for that, and by using the mean-value form of the expansion, it is possible
to state that

h(p) = h(p0) + h′(p0)(p− p0) +
h′′(p∗)

2
(p− p0)

2,

with p0 ≤ p∗ ≤ p. As h(p) is a concave function,

h(p) ≤ h(p0) + h′(p0)(p− p0).

Assuming p0 = αp1 + (1− α)p2,

h(p1) ≤ h(αp1 + (1− α)p2) + h′(αp1 + (1− α)p2)((1− α)(p1 − p2)),

h(p2) ≤ h(αp1 + (1− α)p2) + h′(αp1 + (1− α)p2)(α(p2 − p1)),

and finally
αh(p1) + (1− α)h(p2) ≤ h(αp1 + (1− α)p2),

as stated by the theorem.
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From the previous theorem, since H(X) is a concave function, it admits a
maximum value. Hence, considering the case of H(X) = H(p1, p2, · · · , pd), with d

representing the number of possible outcomes of the random variable X, the maximum
value of H is obtained for

∂

∂pi
H(p1, p2, · · · , pd) = f(pi) = 0

for all i ∈ ΩX and f(pi) being a function only of the pi considered. Since this equation
must hold for all pi, it is straightforward that all the probabilities must be equal. Hence,
the probability summation condition leads to pi = 1/d, for any i ∈ ΩX . Using this result
in the definition of the Shannon Entropy, it is possible to state the following condition of
the image of the function

0 ≤ H(X) ≤ log d. (3.5)

Within the context of entropies, it is worth to introduce the concepts of Relative
and Conditional Entropy, and Mutual Information. Considering, firstly, the case of Relative
Entropy, it measures the closeness of two probability distributions, p(x) and q(x). For
these distributions, the Relative Entropy is defined as

H(p(x)||q(x)) ≡
∑
x∈ΩX

p(x) log
p(x)

q(x)
= −

∑
x∈ΩX

p(x) log q(x)−H(p(X)). (3.6)

An important result of the relative entropy is that it is non-negative. To achieve such
result, consider that elnx ≥ 1 + ln x, so that ln x ≤ x− 1, and ln x = log x ln 2. Therefore,
it is possible to conclude that

H(p(x)||q(x)) = −
∑
x∈ΩX

p(x) log
q(x)

p(x)

≥ 1

ln 2

∑
x∈ΩX

p(x)
(
1− q(x)

p(x)

)

=
1

ln 2

∑
x∈ΩX

(p(x)− q(x)) = 0

∴ H(p(x)||q(x)) ≥ 0. (3.7)

From the above development, it is straightforward to see that the equality holds if, and
only if, p(x) = q(x).

For the Relative Entropy it is also worth considering the relation between the
joint probability and individual probabilities, that is, H(p(x, y)||p(x)p(y)). For such a case,

H(p(x, y)||p(x)p(y)) =
∑
x∈ΩX
y∈ΩY

p(x, y) log
p(x, y)

p(x)p(y)
,
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and then

H(p(x, y)||p(x)p(y)) = −H(p(x, y))−
∑
x∈ΩX
y∈ΩY

p(x, y) log
(
p(x)p(y)

)

= −
∑
x∈ΩX

( ∑
y∈ΩY

p(x, y)
)
log p(x)−

∑
y∈ΩY

( ∑
x∈ΩX

p(x, y)
)
log p(y)

−H(p(x, y))

= −
∑
x∈ΩX

p(x) log p(x)−
∑
y∈ΩY

p(y) log p(y)−H(p(x, y))

= H(p(x)) +H(p(y))−H(p(x, y)).

By using (3.7),
H(p(x, y)) ≤ H(p(x)) +H(p(y)). (3.8)

Considering now the case of Conditional Entropy, for two random variables X

and Y , the Conditional Entropy H(X|Y ) measures how related is the information of X
to the information of Y , and is defined as

H(X|Y ) ≡ H(X, Y )−H(Y ). (3.9)

It is important that X, indeed, can be a set of random variables, such that the following
theorem holds.

• Theorem 3.2. Let {X1, · · · , Xn, Y } be a set of random variables. For such a case,
the following equation holds

H(X1, · · · , Xn|Y ) =
n∑

i=1

H(Xi|Y,Ωi−1), (3.10)

with Ωi−1 is the set with the first i− 1 variables Xi.

• Proof. By using definition (3.9), it is possible to state that

H(X1, · · · , Xn|Y ) = H(X1, · · · , Xn, Y )−H(Y )

= H(X1, · · · , Xn, Y )−H(X1, Y ) +
(
H(X1, Y )−H(Y )

)
= H(X1, · · · , Xn, Y )−H(X1, X2, Y ) +H(X2|X1, Y ) +H(X1|Y )

and so forth, so that, by induction,

H(X1, · · · , Xn|Y ) =
n∑

i=1

H(Xi|Y,Ωi−1),

as states the theorem.



CHAPTER 3. CONCEPTS OF QUANTUM INFORMATION THEORY 50

Following the definition of Condition Entropy, it is also useful to define the Mutual
Information of two random variables X and Y , I(X : Y ), that measures how much
information these variables have in common. Its definition is

I(X : Y ) ≡ H(X) +H(Y )−H(X, Y )

= H(X)−H(X|Y ) ≡ J (X : Y ).
(3.11)

A brief comment on this topic clarifies the reasoning supporting the definitions of
I(X : Y ) and J (X : Y ). Classically, these terms are equivalent. However, in the case
of quantum states, they differ and require greater attention. For that purpose, both
quantities are defined here for reference in the subsequent developments of the text.

Since the formalism and properties of Shannon entropy are established, it is
time to generalize its results to quantum theory. Shannon entropy deals with uncer-
tainty related to classical probabilistic theory. However, it has been shown in (2.2) that
quantum theory has its own rule to calculate probabilities, and this probability theory
is different from classical one, since it admits probabilistic amplitudes. The generaliza-
tion of Shannon entropy to quantum states, say ρ, is the von Neumann entropy, S(ρ),
introduced firstly in 1932 [33], and is defined as

S(ρ) = − tr(ρ log ρ). (3.12)

In summary, von Neumann entropy deals with density operators, different from Shannon
entropy that deals with probability functions. If {λi} is the set of eigenvalues of the
density operator ρ, it is possible to express (3.12) as

S(ρ) = −
∑
i

λi log λi. (3.13)

The above equation is precisely the Shannon entropy, since each λi is a
probability. In fact, the functional structures are the same. However, quantum me-
chanics allows different kinds of states, genuinely quantum, so that the entropies
represent different quantities. As an example, consider the state described by ρ =

p |0〉 〈0| + 1−p
2
(|0〉 + |1〉)(〈0| + 〈1|). In fact, the states |0〉 〈0| and 1

2
(|0〉 + |1〉)(〈0| + 〈1|)

are different, although not orthogonal. Hence, considering just the Shannon entropy
of the distributions p and 1 − p, it would be computed as H(p, 1 − p) = h(p), with h

being the binary entropy. Considering now the von Neumann entropy of this state, it
is necessary to consider the eigenvalues of ρ, that is, λ± = 1

2

(
1 ± √

1− 2p(1− p)
)
,

and so S(ρ) = h
(

1
2

(
1 +

√
1− 2p(1− p)

))
. The only cases when both entropies are

the same for this state are when p ∈ {0, 1}. This brief example is useful to visualize a
difference between these two entropies, and the fact that quantum states represent a
bigger set than the classical one. Indeed, Shannon entropy corresponds to a distribution
associated to a specific observable, while von Neumann entropy pertains to the state ρ,
which encodes the distributions of all observables.
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An important topic related to von Neumann entropy is the image of S(ρ), that
as well as H(X),

0 ≤ S(ρ) ≤ log d, (3.14)

with d being the dimension of the Hilbert space on which ρ acts. The bounds 0 and
log d are obtained for pure states and the identity state, respectively. The physical
interpretation of these cases is the same as the classical one, that is: for a pure state,
it is well defined, so that it has no uncertainty and, consequently, null entropy; for the
identity state, that is, ρ = 11/d, all probabilities are the same and it is the most random
state possible, so that the uncertainty is maximized, as well as the entropy of the state.

Following the procedure made previously for the Shannon entropy, it is possible
to define the Quantum Relative Entropy, which is

S(ρ||σ) ≡ tr(ρ log ρ)− tr(ρ log σ), (3.15)

and for this definition, the following theorem holds.

• Theorem 3.3. The Klein inequality states that

S(ρ||σ) ≥ 0, (3.16)

and the equality holds if, and only if, ρ = σ.

• Proof. Assuming that {|i〉} is the eigenbasis of ρ, with {pi} being the respective
set of eigenvalues, it is possible to write

S(ρ||σ) =
∑
i

pi log pi −
∑
i

pi 〈i| log σ |i〉 ,

and using that {|j〉} and {qj} are eigenbasis and the set of eigenvalues of σ,
respectively, defining Pij = 〈i|j〉 〈j|i〉, the above equation can be written as

S(ρ||σ) =
∑
i

pi

(
log pi −

∑
j

Pij log qj

)
.

As the logarithm is a strictly concave function, it is true that
∑

j Pij log qj ≤
log

(∑
j Pijqj

)
, and the equality holds only if, for each i, there exists some j

such that Pij = 1. With this result,

S(ρ||σ) ≥
∑
i

pi log
( pi∑

j Pijqj

)
, (3.17)

and the above equation is the same of the classical relative entropy, so that (3.7)
holds, and then

S(ρ||σ) ≥ 0.

Considering the equality in (3.17), the equality in (3.1) holds only when qi = pi for
all i, so that ρ and σ share the same eigenvalues, and thus ρ = σ, as states the
theorem.
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The above theorem is useful to prove some important results on von Neumann
entropy. Another important result is the consequence of doing projective measurements
in a physical state. On this topic, consider the next theorem.

• Theorem 3.4. Suppose {Pi} is a complete set of orthogonal projectors and ρ is a
density operator. By defining ρ′ =

∑
i PiρPi, the following inequality holds

S(ρ′) ≥ S(ρ). (3.18)

• Proof. By using the Klein Inequality for ρ and ρ′,

S(ρ||ρ′) = − tr(ρ log ρ′)− S(ρ) ≥ 0.

Analyzing the first term on the above equation,

− tr(ρ log ρ′) = − tr

(∑
i

Piρ log ρ
′
)

= − tr

(∑
i

Piρ log ρ
′Pi

)
,

but ρ′Pi = Piρ
′, so that log ρ′ commutes with Pi, and

− tr(ρ log ρ′) = − tr(PiρPi log ρ
′) = − tr(ρ′ log ρ′) = S(ρ′).

Hence,
S(ρ′) ≥ S(ρ),

as stated by the theorem.

The above theorem is, indeed, counterintuitive. Physically speaking, measuring an
observable with projectors Pi typically results in a more specific state, which would
reduce its entropy. However, when a complete measurement is performed, the resulting
state is always a mixed state, differing from the pre-measurement state, which could
have been a pure state with lower entropy.

Concerning the concavity of von Neumann entropy, it would be straightforward
that it is a concave function, since its definition can be made as the Shannon entropy of
the eigenvalues of a density state. Given that the eigenvalues establish a probability
distribution, Theorem 3.1 holds, and von Neumann entropy is a concave function.
However, some caution is necessary, since these entropies are not the same. To
establish the concavity of S(ρ), consider the following theorem.

• Theorem 3.5. Let ρ =
∑

i piρi be a density operator describing a system, and {pi}
be a probability distribution and ρi are density operators. Then

S(ρ) ≤
∑
i

piS(ρi) +H(pi), (3.19)

with equality if, and only if, the states ρi have support on orthogonal subspaces.
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• Proof. Suppose that ρi = |ψi〉 〈ψi| is a pure state in a Hilbert space HA, and
|ρ′〉 = √

pi |ψi, i〉 is defined in HA⊗HB, with {|i〉} being a orthonormal basis for HB.
Hence, ρ′ =

∑
ij

√
pipj |ψi〉 〈ψj|⊗|i〉 〈j|. Since ρ′ define a pure state, it is possible to

use the Schmidt’s decomposition in order to obtain the eigenvalues of the bipartite
state, and then, S(ρA) = S(ρB), with ρA = trB ρ′ and ρB = trA ρ′. However, ρA = ρ,
so that S(ρB) = S(ρ). If a projective measurement is made on HB, so that the
final state is written as ρf =

∑
i pi |ψi〉 〈ψi| ⊗ |i〉 〈i|, it is possible to state that the

description for HB is given by trA ρf =
∑

i pi |i〉 〈i|, and by using the theorem 3.4,

S
(∑

i

pi |i〉 〈i|
)
= H(pi) ≥ S(ρB) = S(ρ).

Since S(ρi) = 0 for each i, the theorem is proved for this case. Following the
above analysis, it is possible to note that the equality holds only if {|ψi〉} are all
orthogonal.

Considering the case of a mixed state, let ρi =
∑

j p
i
j

∣∣eij〉 〈eij∣∣ be the orthonormal
decomposition for the states ρi. Following the above result for pure states, that is,
with pi → pip

i
j,

S(ρ) ≤ H(pip
i
j) = −

∑
ij

pip
i
j log

(
pip

i
j

)
,

and noting that
∑

ij pip
i
j log

(
pip

i
j

)
=

∑
i pi log pi +

∑
i pi

∑
j p

i
j log p

i
j, the above

equation becomes
S(ρ) ≤ H(pi) +

∑
i

piS(ρi).

The equality holds from the same conditions for the pure state.

In order to establish the concavity of S(ρ), suppose that ρAB =
∑

i piρi ⊗ |i〉 〈i|,
with AB denoting the two Hilbert spaces HA and HB, consider the von Neumann entropy
for the joint state ρAB, so that, by Klein inequality,

S(ρAB||ρA ⊗ ρB) = −S(ρAB)− tr(ρAB log(ρA ⊗ ρB))

= −S(ρAB)− trB(trA(ρAB log ρA))− trA(trB(ρAB log ρA))

= −S(ρAB) + S(ρB) + S(ρA) ≥ 0

∴ S(ρAB) ≤ S(ρA) + S(ρB). (3.20)

Hence, for the ρAB defined before, the reduced states are ρA =
∑

i piρi and ρB =∑
i pi |i〉 〈i|, and thus, by applying (3.20) and theorem 3.5,

H(pi) +
∑
i

piS(ρi) ≤ S
(∑

i

piρi

)
+H(pi)

⇒ S
(∑

i

piρi

)
≥

∑
i

piS(ρi), (3.21)
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and S(ρ) is a concave function.

Up to now, it was possible to define all the analogous of Shannon entropies
for the case of von Neumann entropies. There are two more definitions to finish these
connections. The first is the Quantum Conditional Entropy, which is more difficult to
generalize, once it requires the information of at least one Hilbert space, which is
obtained with measurements, and such measurements disturbs the systems. In order
to define the quantum conditional entropy, let ρA|BB

i
≡ BB

i ρABBB
i / tr

(
BB

i ρAB
)

be the
state defined for HA ⊗ HB given that it was obtained an outcome labeled by i in a
measurement defined by the projector BB

i on HB, and the probability of obtain ρA|BB
i

for ρAB is given by pi = tr
(
BB

i ρAB
)
. Hence, the conditional entropy given the complete

measurement defined by the set {BB
i } is defined as

S(ρA|B) ≡
∑
i

piS(ρA|BB
i
). (3.22)

Following the definition (3.22), Quantum Mutual Information can be defined
analogous as (3.11). Indeed, Quantum Mutual Information represents the amount of
information shared bewteen two degrees of freedom described by the Hilbert spaces
HA and HB. In Eq. (3.11), the quantities I and J were defined. Both of these quantities
are extended to the quantum case, where they are defined as follows:

I(ρAB) = S(ρA) + S(ρB)− S(ρAB)

J[B](ρAB) = S(ρA)− S(ρA|B).
(3.23)

However, an important remark should be made at this point. Different from the classical
case, in the quantum case the quantities I and J are not necessarily equal. It happens
since measurements in quantum mechanics are perturbative. This difference will be
further explored in the next section when Quantum Discord comes to light. The inter-
pretations for these entropies are the same as the Shannon entropy, given the correct
considerations to quantum cases.

The last result to be shown in this section is the following theorem.

• Theorem 3.6. Von Neumann Entropy S(ρ) is invariant under unitary transforma-
tions.

• Proof. Let U be a unitary transformation such that U †U = 11. The transformed state
is ρ′ = UρU †, and then S(ρ′) = − tr(ρ′ log ρ′). Suppose that {λi} and {λ′

i} are the
set of eigenvalues of ρ and ρ′, respectively. Concerning the set {λ′

i}, each λ′
i is
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Figure 2 – On the left, a schematic representation of a vector in a Bloch sphere. On the right, an
example of the eigenstates of σn in a Bloch sphere.

obtained by the relation det(ρ′ − λ′
i11) = 0, or even

det(ρ′ − λi11) = det
(
UρU † − λ′

i11
)

= det
(
UρU † − λ′

iUU †)
= det(Uρ− λ′

iU) det
(
U †)

= det(U) det
(
U †) det(ρ− λ′

i11)

= det
(
UU †) det(ρ− λ′

i11) = det(ρ− λ′
i11)

so that {λ′
i} = {λi}, and S(ρ′) = S(ρ), concluding this proof.

3.2 Bloch states

This section is dedicated to introduce an important way of describing qubit
systems that will be important for the final analysis of this work. In short, when it comes
to qubits, they can be geometrically represented in what is called the Bloch sphere
(see Figure 2). A great advantage of this approach is that abstract algebraic entities in
a Hilbert space can be represented in the euclidean space R3. Generally speaking, a
qubit state can be written as

ρ =
11 + r · σ

2
, (3.24)

where σ = (σx, σy, σz) is the Pauli vector, with the components being the Pauli matrices,
and r is the vector that defines the physical state. For some geometrical intuition, Figure
2 illustrates a vector in a Bloch sphere and a representation of general eigenstates of
σn.
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Concerning the vector r, consider the trace of ρ2, that is,

tr ρ2 = tr
(1
4

(
11 + 2r · σ + (r · σ)2))

=
1

4

(
2 +

∑
ij

rirj tr
(
11δij + iεijkσk

))

=
1

2

(
1 + r2

)
,

where it was used that
σiσj = 11δij + iεijkσk, (3.25)

with εijk being the Levi-Civita symbol. The quantity tr ρ2 is defined as being the purity
P(ρ), so that if P(ρ) = 1, the state is pure, otherwise it is mixed. Then, by the above
equality, it is straightforward that r = 1 for pure states. In the case of r = 0, the state is
in the center of the sphere, which is the identity state, as illustrated in Figure 2.

For some visualization and gain of intuition, consider the example of the z-axis
in Figure 2, with r = zk, so that the state in (3.24) is written as

ρz =
11 + zσz

2
=

(1 + z) |0〉 〈0|+ (1− z) |1〉 〈1|
2

.

Hence, for |z| < 1, both |0〉 〈0| and |1〉 〈1| contribute for the description, so that the final
state is mixed. On the other hand, if |z| = 1, only one term contributes, and

ρz=1 = |0〉 〈0| , ρz=−1 = |1〉 〈1| ,

establishing pure states, as previously mentioned. Geometrically, if r is a vector that
defines a state and s is a line parallel to this vector, the eigenbasis of the state defined
by r is given by the states located at the intersection of the Bloch sphere’s surface
with the line s. This fact can be easily visualized using the axes of the Bloch sphere,
corresponding to the eigenbases of σx, σy and σz, with pure states occurring only when
r = 1, that is, when the states lie on the sphere’s surface.

Another interesting feature of Bloch spheres is the geometrical interpretation of
probabilities and expectation values. To visualize the expectation values, consider the
expectation value of n · σ, which is given by 〈n · σ〉 = tr

(
(n · σ)ρ), where ρ is given by

Eq. (3.24). Then,

〈n · σ〉 = tr
(n · σ + (n · σ)(r · σ)

2

)
= tr

(n · σ + (n · r)11 + i(n× r) · σ
2

)
= n · r,

(3.26)

where the identity (n · σ)(r · σ) = (n · r)11 + i(n× r) · σ and tr σ = 0 have been used.
In other words, the vector defining the state also determines the expectation values of
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each observable through its components. The interpretation of the probabilities follows a
similar logic. In this case, consider an eigenstate of σn, where the probability of obtaining
the eigenvalue 1 when measuring of σn is given by

p(1, σn) = tr

((11 + n · σ
2

)(11 + r · σ
2

))

=
1

4
tr
(
11 + n · σ + r · σ + (n · σ)(r · σ)

)
=

1

4
tr
(
11 + n · σ + r · σ + n · r11 + i(n× r) · σ

)
=

1 + n · r
2

.

(3.27)

Thus, the probability is also determined by the vector r.

As an example of the above description, consider the state given by

ρ = η |0〉 〈0|x + (1− η) |0〉 〈0|y , (3.28)

where the subscripts x and y denote the bases of σx and σy, respectively, and η ∈ R

with η ∈ [0, 1]. In the Bloch representation, this state can be rewritten as

ρ = η
(11 + x · σ

2

)
+ (1− η)

(11 + y · σ
2

)
=

11 +
(
ηx+ (1− η)y

) · σ
2

.

(3.29)

To determine whether the state in Eq. (3.28) is pure, we analyze the norm of the vector
rη ≡ ηx+ (1− η)y. Thus,

||rη|| = rη = η2 + (1− η)2, (3.30)

indicates that Eq. (3.28) represents a pure states only if η ∈ {0, 1}. For the cases where
η ∈ (0, 1), the vector rη is a convex combination of x and y, so that it is a vector inside
the Bloch sphere.

Additionally, the expectation value of σ = (σx, σy, σz) can be determined using
Eq. (3.26), so that

〈σ〉 = (x · rη,y · rη, z · rη)

= (η, 1− η, 0).
(3.31)

Regarding the probabilities, from Eq. (3.27), one can derive thaat{
p(0, σx) = (1 + η)/2,

p(1, σx) = (1− η)/2,

{
p(0, σy) = 1− η/2,

p(1, σy) = η/2,

{
p(0, σz) = 1/2,

p(1, σz) = 1/2.
(3.32)
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3.3 Quantum Resources

The goal of this section is to introduce some of the quantum resources used
in this work. However, before doing that, it is worth exploring a little bit of the theory of
quantum resources.

Broadly speaking, a resource is a feature that is used to accomplish some task.
In QM, a quantum resource is a characteristic of a quantum system employed primarily
to achieve tasks related to quantum computation. Although quantum computation is
usually thought as a better way of doing computation in comparison with classical one,
there is yet a debate concerning the real advantage of using quantum theory, instead of
classical theory [38]. One of the differences between such approaches is the availability
of resources. Quantum systems can be more explored, since they have a huge variety
of resources in comparison with classical.

Resource theory is a very well defined mathematical framework, and is formal-
ized for both classical and quantum resources. According to an important review of
the subject [7], a quantum resource theory requires mainly two important definitions:
free states, that are quantum states with no resource, and free operations, that are
operations made in states that never increase the amount of resource in the state.
However, in order to establish the idea of a resource, there has to be a task that cannot
be done if this resource is zero, and considering that the quantum resource is zero is to
consider, implicitly, the existence of a quantifier.

There are many examples of quantum resources. Probably the most famous
one is Entanglement, usually defined as the nonseparability of a state, that will be more
explored soon in this section. However, quantum resources theories can be used even to
explore the foundations of quantum mechanics, such as the example of Bell nonlocality,
that is indeed a quantum resource very used in communication and cryptography,
as it was reviewed by Brunner et al [8]. Other examples of quantum resources used
in quantum foundations and other studies are Contextuality, Incompatibility, Steering,
Quantum Correlations and others, all of them reviewed in [7].

Concerning all those mentioned types of quantum resources, it is appropriate
to introduce here what is known as the hierarchy of quantum resources. In particular,
one of them encompasses some of the resources mentioned earlier. This hierarchy is
given by

sE ⊂ sD ⊂ sDS ⊂ sNL, (3.33)

where si means the set possessing the quantum resource i, where E means entangle-
ment; D means one-way quantum discord; DS means symmetric quantum discord; NL
means realism-based nonlocality. The purpose of Eq. (3.33) is to show that, although
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quantum resources are generally employed for different tasks, they maintain a certain
ordering regarding the set of states that possess such resources. That is, the presence
of one resource does not necessarily exclude the presence of another.

This brief introduction has not the purpose of giving a profound knowledge on
the subject. For the interested reader, it is recommended to explore the cited papers to
gain a deeper understanding of the role of quantum resources in both technology and
quantum theory. In what follows, the quantum resources that are relevant to this work
will be explored.

3.3.1 Irreality

In Section 2.3.3 it was introduced the concept of realism in quantum physics. In
particular, this section will further explore the BA-realism, and for such discussion, it is
important to go deeper in this concept.

First, it is worth to recall that BA-realism encompasses the states of mix-
ture, different from EPR’s views. Indeed, as mentioned in section 2.3.3, given a state
ρ =

∑
i piAi, if Ai are the projectors associated to an observable A, then there is an

element of reality for A in the state ρ according to BA-realism criteria. Additionally, it
was previously mentioned that the protocol that the criteria was based is completely
dependent on the idea that a measurement always establishes an element of reality.
In other words, if a measurement is performed within a state, it will be realistic for the
measured observable after the collapse. Following this discussion, it is worth mentioning
that the map ΦA(ρ) is such that it preserves the pre-existing reality. In other words, if
ΦA(ρ) = ρ, then ΦA(ΦA(ρ)) = ΦA ◦ ΦA(ρ) = ρ.

By using the concept of Φ and noting that this map destroys the off-diagonal
elements, the authors Bilobran and Angelo defined the concept of Irreality [13] as being
the difference of the entropies of ΦA(ρ) and ρ for some observable. That is, the irreality
of an observable A is defined as

IA(ρ) ≡ S(ΦA(ρ))− S(ρ), (3.34)

with S being the von Neumann entropy. According to theorem 3.4 stated in the last
section, it is straightforward that IA(ρ) ≥ 0, and the equality holds if, and only if, the
state ρ is a mixture state of the projectors of the observable A, or simply an eigenstate
of A. In other words, the irreality is zero if, and only if, the state has an element of reality.

Irreality can also be described in terms of relative entropy, clarifying the fact
that irreality is a measure based on an “entropic distance." To achieve such description,
Eq. (3.34) is explicitly written as IA(ρ) = − tr(ΦA(ρ) log ΦA(ρ)) + tr(ρ log ρ). However,
the first term in this equation can be written differently if the properties of projectors are
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used, i.e, by using that
∑

a(Aa ⊗ 11B) = 11A ⊗ 11B and (Aa ⊗ 11B)
2 = Aa ⊗ 11B, and by

noting that [(Aa ⊗ 11B,ΦA(ρ)] = 0, the first term is written as

tr(ΦA(ρ) log ΦA(ρ)) = tr

(∑
a

(Aa ⊗ 11B)ρ(Aa ⊗ 11B) log ΦA(ρ)

)

= tr

(∑
a

(Aa ⊗ 11B)ρ log ΦA(ρ)(Aa ⊗ 11B)

)

= tr

(∑
a

(Aa ⊗ 11B)ρ log ΦA(ρ)

)
= tr ρ log ΦA(ρ),

so that the irreality can be written using the definition of relative entropy

IA(ρ) = S(ρ||ΦA(ρ)). (3.35)

This result reinforces the fact that the irreality is non-negative and is zero if, and only if,
ρ = ΦA(ρ), which is in agreement with theorem 3.3.

It is worth mentioning that the irreality is strongly state and observable depen-
dent. It means that for a given state ρ, it can be realistic for a given observable A, or
IA(ρ) = 0, although not for B, or IB(ρ) > 0, and vice-versa for another state σ, that is,
IA(σ) > 0 and IB(σ) = 0.

One last point that is worth noting is the description of I in terms of the irreality
of the reduced state. For such discussion, consider a physical state ρ ∈ H1 ⊗H2 and an
observable A : H1 → H1. Let ρ2 ≡ tr1 ρ be the reduced state in H1, so that ΦA(ρ2) = ρ2,
i.e, A has an element of reality for ρ2. Hence, in such case, the irreality of A in the state
ρ can be written as

IA(ρ) = S(ΦA(ρ))− S(ρ)

= S(ΦA(ρ))− S(ρ) +
(
S(ΦA(ρ1)− S(ΦA(ρ1)

)
+
(
S(ρ1)− S(ρ1)

)
+
(
S(ρ2)− S(ΦA(ρ2))

)
= S(ΦA(ρ1))− S(ρ1) +

(
S(ρ1) + S(ρ2)− S(ρ)

)
−

(
S(ΦA(ρ1)) + S(ΦA(ρ2))− S(ΦA(ρ))

)
∴ IA(ρ) = IA(ρ1) +D[A](ρ), (3.36)

with D[A](ρ) being a type of quantum discord (further discussion in the last part of this
section) associated with measurements of A. If D1(ρ) = minA D[A](ρ), then

IA(ρ)− IA(ρ1) ≥ D1(ρ). (3.37)

Thus, the above equation demonstrates that quantum correlations prevent irrealism
from being purely local, as the irrealism of A for ρ differs from that calculated for ρ1.
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3.3.2 Entanglement

Entanglement is probably the most important quantum resource in quantum
mechanics. Actually, quoting Schrödinger on entanglement, “I would not call one but
rather the characteristic trait of quantum mechanics" [4], in the same paper that he
introduced the term “entangled states", in 1935. The goal of this brief subsection is
to define quantum entanglement and present some of the quantifiers available for the
purpose of this work.

Entanglement is a correlation between two parts of the system, that usually
arises when these parts interact with each other [6]. An intelligent form of understanding
entanglement, in this sense, is to define the set of entangled states as being the set of
states that cannot be generated by performing Local Operations and Classical Commu-
nication (LOCC) [7]. By local operations it is understood the set of operations locally
performed over just one part of a composite system, whereas classical communication
is a method of broadcasting information through a classical device.

To establish a mathematical definition of entanglement, let ρ be a density
operator in a multipartite Hilbert space H =

⊗n
i Hi. If, for any bi-partition A and B,

it is possible to describe ρ =
∑

i piρ
A
i ⊗ ρBi , then the state ρ is said to be separable,

otherwise it is entangled. The first important comment on this subject is that A and
B can be any bi-partition, i.e, it is just required that HA ⊗ HB = H. Secondly, even
separable states, typically, contain quantum correlations, although not entanglement.
Hence, although entanglement is a kind of quantum correlation, it is not unique. Another
important point is the case of a pure state. For such case, pj = 1 and pi = 0 ∀i �= j, and
ρ = ρAj ⊗ ρBj . If both ρAj and ρBj represent projectors, say ρAj = |ψj〉 〈ψj| and ρBj = |φ〉 〈φ|,
then ρ = |ψjφj〉 〈ψjφj|, which is completely described by |Ψ〉 = |ψj〉 ⊗ |φj〉. Thus, if a
pure state is written as a tensor product of two pure states, it is separable, otherwise it
is entangled.

Concerning the quantum resource feature of entanglement, it is necessary
to establish the free states and the free operations. Essentially, the free states for
entanglement are the separable states, as defined above, whereas the free operations
are the LOCC. However, as mentioned in the beginning of this section, a quantum
resource requires some task of interest and a quantifier. In the case of entanglement,
the most celebrate example of task is the quantum teleportation [16], and two important
quantifiers are going to be explored now.

Concerning pure states, a quite simple quantifier of entanglement is the von
Neumann entropy of the reduced state, i.e, if ρ is a pure state defined in H1 ⊗H2, then
the entanglement of ρ is defined as

E(ρ) := S(ρ1) = S(ρ2), (3.38)
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with ρ1 = tr2 ρ, and similarly for ρ2. As an example, consider the state defined by
|ψ〉 = |01〉 in the computational basis1, so that ρ = |ψ〉 〈ψ| = |01〉 〈01| = |0〉 〈0| ⊗ |1〉 〈1|.
Hence, tr1 ρ = ρ2 = |1〉 〈1|, and S(ρ2) = 0, concluding the fact that a pure state that is
separable is not entangled.

Another important example of pure states is to consider the singlet state in (2.9).
For such case, it is worth noting that this is a type of state that cannot be factorized
in a simple product state. Hence, there is entanglement is such state. However, it is
instructive to calculate the amount of entanglement, and in this case,

ρ =
1

2
(|01〉 〈01|+ |10〉 〈10| − |10〉 〈01| − |01〉 〈10|)

⇒ ρ2 = tr1 ρ =
1

2
(|0〉 〈0|+ |1〉 〈1|) = 11

2
.

Hence, ρ2 is the most entropic state, so that E(ρ) = 1, and the entanglement is max-
imized. The last two cases of interest exemplify exactly the point that, by using von
Neumann entropy of the reduced state as a quantifier of entanglement for pure states,
such function gave values between 0 and 1, and are always well-defined for the studied
states.

The above discussion is allowed only for pure states. The discussion concerning
mixed states is more complex. Indeed, the discussion of quantifiers for mixed states
is huge, with many quantifiers defined in the literature (for more details see reference
[6]). However, somehow these quantifiers are dependent on a sophisticated form of
extremization which, according to Wootters, “are difficult to handle analytically". Given
that, in 1997, Wootters defined the entanglement quantifier for qubits (two level systems)
called the Concurrence [72], based on the idea of entanglement of formation, which
can be understood as follows. Given a density operator ρ =

∑
i pi |ψi〉 〈ψi| defined in a

bipartite Hilbert space, the entanglement of each pure state ρi = |ψi〉 〈ψi| is given by the
von Neumann entropy of the subsystems. However, ρ is a mixture of many pure states,
so that the entanglement of formation is defined as the average entanglement of the
pure states of the decomposition, minimized over all decompositions of ρ:

E(ρ) = min
∑
i

piE(ρi). (3.39)

Wootters’ remarkable contribution was to prove that the above minimization can be
expressed as an explicit function of ρ, which is called Concurrence, and is defined as

C(ρ) = max{0,
√

λ1 −
√
λ2 −

√
λ3 −

√
λ4}, (3.40)

and λi are the eigenvalues, in decreasing order, of the non-Hermitian operator ρρ̃, and

ρ̃ := (σy ⊗ σy)ρ
∗(σy ⊗ σy), (3.41)

1 In the computational basis, |0〉 represents the eigenvector for the z−component of spin with eigenvalue
�/2, and |1〉 is the eigenvector for the z−component of spin with eigenvalue −�/2.
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with ρ∗ being the complex conjugated of ρ and σy the Pauli operator. It is worth noting
that the complex conjugate is taken in the standard computational basis for two qubits.
Thus, by the construction of (3.40), it can itself be used as an entanglement quantifier,
such that

E(ρ) = C(ρ). (3.42)

A very didatic example using the concept of concurrence can be done with the
Werner state, defined as

ρW =
1− η

4
11 + η |ψS〉 〈ψS| , (3.43)

with |ψS〉 being the singlet state defined in (2.9), η ∈ [0, 1] is a parameter that control
the convex combination between |ψS〉 and the identity state 11. It is known that |ψS〉 is
a maximally entangled state, while 11/4 is the classical state, with zero entanglement.
However, it is not clear to state how the mixture of these states affects the entanglement
of the final state. In order to understand that, let the concurrence be analyzed. Firstly,
the operator ρW ρ̃W must be written in the computational basis, so that

ρW ρ̃W =
(1− η

4

)2

(|00〉 〈00|+ |11〉 〈11|) +
[(1− η

4

)2

+
η2

4

]
(|01〉 〈01|+ |10〉 〈10|)

− η
(1 + η

4

)
(|01〉 〈10|+ |10〉 〈01|),

(3.44)

whose eigenvalues are λ1 =
(

1+3η
4

)2

and λ2 =
(

1−η
4

)2

, with λ2 being 3 times degener-
ated. Hence, by the definition of concurrence, the entanglement for the state in (3.43) is
written as

E(ρW ) = C(ρW ) =
1

2
max{0, 3η − 1}. (3.45)

By the above equation, the state ρW is entangled if η ∈ (1
3
, 1] and not entangled if

η ∈ [0, 1
3
]. It means that, depending of the mixture with the identity state (mixture with

noisy), even the most entangled state (the singlet state) can result in a separable one.

A noteworthy remark to conclude this subsection is that, as briefly mentioned
throughout the text, these methods of calculating entanglement are not unique. In fact,
the study of entanglement quantifiers is very extensive, and the reader is encouraged to
consult the following references [6, 73].

3.3.3 Quantum Discord

In brief, quantum discord was introduced earlier in this chapter but has not yet
been properly discussed. In the study of von Neumann entropy, in section 3.1, it was
introduced the concept of quantum mutual information, the quantum counterpart of
the classical mutual information. In such discussion, it is worth noting that, considering
the classical case, the mutual information could be expressed in two different ways,
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although has the same values, according to Eq. (3.11). However, as discussed in the
end of the mentioned section, quantum mutual information can also be expressed in
two different ways, according to Eq. (3.23), but these are not necessarily equal. Indeed,
as measurements in quantum mechanics induce perturbations in the state, the idea of
a conditional entropy must be seen with more caution, and such feature of quantum
theory implies that the quantities I and J are not necessarily equal.

Exploring the difference between the two forms of writing the quantum mutual
information, Ollivier and Zurek introduced the concept of quantum discord [10], which is
understood by the authors as “a measure of the information that cannot be extracted by
the reading of the state of the apparatus. Hence, quantum discord is a good indicator of
the quantum nature of the correlations". Independently of Ollivier and Zurek, Henderson
and Vedral explored the same difference in [11]. The first definition of quantum discord
of a measurement of the observable B on HB is simply

D[B](ρ) := I(ρ)− J[B](ρ). (3.46)

Such definition is asymmetric and depends on the observables of interest, so that it was
also proposed the one-way quantum discord, that is independent of the observable, as
being

DB(ρ) = min
B

D[B](ρ). (3.47)

As an example of calculation of the one-way quantum discord, let the Werner
state in (3.43) be considered again. Previously, it was calculated that there is a condition
for η such that ρW is entangled. Now, let the same state be analyzed by the point of view
of the one-way quantum discord. The optimal observable for such state is σz

2, so that
its eigenbasis already is the computational basis. Thus, by the definitions of I and J in
(3.23), and using Eq. (3.15), it is possible to calculate for ρW the following quantities

S(ρW ) = −
(1 + 3η

4

)
log

(1 + 3η

4

)
− 3

(1− η

4

)
log

(1− η

4

)
,

S(trA ρW ) = 1,

S(ρA|{σz}B) = −
(1 + η

2

)
log

(1 + η

2

)
−

(1− η

2

)
log

(1− η

2

)
.

(3.48)

As the eigenbasis of σz is the optimal one, just by the definitions of I and J , quantum
discord is written as DB(ρW ) = S(ρA|{σz}B) + S(trA ρW )− S(ρW ), so that

DB(ρW ) =
(1 + 3η

4

)
log(1 + 3η) +

(1− η

4

)
log(1− η)−

(1 + η

2

)
log(1 + η), (3.49)

according to [74].

Going even further in this discussion on quantum discord, in a work by Rulli and
Sarandy, they explored the asymmetry in the definition of Olivier and Zurek and defined
2 Indeed, since the singlet state is invariant under rotations, any direction of σ is optimal.
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the so called symmetric quantum discord [12]. To achieve such definition, let first the
one-way quantum discord be expressed in terms of the relative entropy. In order to do
so, Eq. (3.23) must be expressed in terms of relative entropy. I(ρAB) is already the own
definition of that, so that

I(ρAB) = S(ρAB||ρA ⊗ ρB). (3.50)

For J[B](ρAB), it is worth noting that

ΦB(ρAB) =
∑
i

piρA|Bi
⊗ Bi,

trA ΦB(ρAB) = ΦB(ρB) =
∑
i

piBi,

and by a direct application of theorem 3.5, the entropies are computated as

S(ΦB(ρAB)) = H(p) +
∑
i

piS(ρA|BB
i
),

S(ΦB(ρB)) = H(p),

so that J[B](ρAB) is written as

J[B](ρAB) = S(ΦAB(ρAB)||ρA ⊗ ΦB(ρB)). (3.51)

Hence, from (3.50) and (3.51), (3.47) can be written as

DB(ρAB) = min
{B}

(
S(ρAB||ρA ⊗ ρB)− S(ΦB(ρAB)||ρA ⊗ ΦB(ρB)

)
. (3.52)

Finally, by taking measurements in both spaces, the symmetric quantum discord is
defined as

DAB(ρ) = min
{A}⊗{B}

(I(ρ)− I(ΦAB(ρ))
)
, (3.53)

with ΦAB(ρ) being the extension of (2.10) for two measurements, i.e.,

ΦAB(ρ) =
∑
ij

[Ai ⊗ Bj]ρAB[Ai ⊗ Bj]. (3.54)

The name symmetric quantum discord is due to the symmetry involved in
the measurements in both Hilbert spaces of the state, while in the one-way quantum
discord only one of the Hilbert spaces is submitted to measurements. Additionally to
this discussion, it is worth mentioning that due to the symmetry of the singlet state, both
one-way and symmetric quantum discord are the same for the state in (3.43). Indeed,
the optimal observable still is σz for both Hilbert spaces, so that

ΦA(ρW ) = ΦB(ρW ) = ΦAB(ρW ) =
1− η

4
11 +

η

2

( |10〉 〈10|+ |01〉 〈01| ),
I(ρW ) = 2− S(ρW ),

I(ΦAB(ρW )) = 2− S(ΦAB(ρW )),

(3.55)
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so that, by using (3.53), the symmetric quantum discord can be written as

DAB(ρW ) =
(1 + 3η

4

)
log(1 + 3η) +

(1− η

4

)
log(1− η)−

(1 + η

2

)
log(1 + η)

= DB(ρW ).
(3.56)

At this point, it is important to delve into the nuances of entanglement and
quantum discord. As obtained in (3.45), the entanglement for the Werner state goes
to zero abruptly when η goes to 1/3. However, it does not occur in the case of the
one-way quantum discord. Indeed, according to Eq. (3.49), the one-way quantum
discord for Werner state is zero only when η is zero, and the behavior of the function
is smooth, differently from entanglement. This brief example illustrates an important
point regarding quantum correlations: although entanglement is “the characteristic" of
quantum mechanics, according to Schrödinger, it is not the only form of purely quantum
correlation. There are other forms of quantum correlations, encompassed by quantum
discord, that are considered in this smooth decay. Moreover, such conclusion is the
reason why the set of one-way quantum discordant states be bigger than the entangled
states, as given by Eq. (3.33). Additional details concerning theoretical and experimental
aspects of Quantum Discord can be seen in [75].

3.3.4 Realism-Based Nonlocality

The notion of nonlocality was briefly introduced in Section 2.3.3, that is, if a state
cannot be explained by a local model, it is said to be nonlocal. It was also mentioned its
relation with Bell inequalities and realism [60], and there are other works that study this
concept without mentioning any kind of inequality [76]. For a full review of the subject
see reference [8].

The idea of realism-based nonlocality was introduced in [13] and explored in
[14, 15, 77]. Suppose ρAB describes the global state of Alice and Bob, which are in
laboratories space-like separated so that they are outside of the light cone of each other.
According to [13], a measure of nonlocality can be written as

N (A,B|ρAB) := IA(ρAB)− IA(ΦB(ρAB)), (3.57)

and it quantifies how much the irreality in the observable A accessible in Alice’s site
changes due to measurements in B in Bob’s site. Since it quantifies how nonlocal were
the measurements based on the concept of irreality, (3.57) was defined as being the
realism-based nonlocality for the context {A,B, ρAB}. Additionally, the authors in [14]
explored this definition to define the context-independent realism-based nonlocality as
being

N (ρAB) = max
A,B

N (A,B|ρAB). (3.58)
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The above definition is motivated by three main reasons. First, it is expected
that the greater the change in irreality, the greater the nonlocality. Second, this definition
guarantees that if N (ρAB) = 0, there is no context where the irreality can change, and
for N (ρAB) > 0, there is at least one context {A,B, ρAB} where the irreality changes.
Hence, definition (3.58) provides necessary and sufficient conditions to analyze the
realism-based nonlocality. The third reason is that, according to [14], from the above
definition, maximally entangled states leads to maximally nonlocal states.

Before finishing this section, it is important to discuss a little about the hierarchy
of quantum resources in Eq. (3.33). From this equation, every entangled state has
one-way quantum discord, every one-way quantum discordant state has symmetric
quantum discord, and every symmetric discordant state has realism-based nonlocality,
But the converse is not true. Thus, there exist realism-based nonlocal states that are
not symmetric discordant, symmetric discordant states that are not one-way discordant,
and one-way discordant states that are not entangled. Understanding this hierarchy is
crucial for determining the appropriate quantum resources to be studied in this work.

3.4 Mach-Zehnder Interferometers

The purpose of this section is to introduce some basic concepts on how to
operate on quantum states in optical setups. Thus, some important optical devices
will be presented, along with how they are addressed within the quantum formalism,
as well as two examples that are quite illustrative from both physical and educational
perspective. This section serves as a direct introduction to the next chapter, where
a slightly more complex setup will be considered. The present analysis is based on
reference [78] and references therein.

The first subject of discussion in this section is the Mach-Zehnder Interferometer
(MZI) [79, 80]. This optical setup is illustrated in Figure 3 (a). Essentially, the MZI is
used to determine the phase shift variations between two collimated beams. Moreover,
it is possible to study the behavior of the photon in some situations with a single photon.
For the purpose of this work, it is considered that the photon enters in the MZI passing
through a Beam-Splitter (BS), that is responsible for controlling the probability of the
photon being transmitted or reflected. For both situations, the mirrors (M) are responsible
for guiding the photon until the next BS, that again will be the responsible for controlling
the probabilities of transmission and reflection. Here, the important point is that the
whole analysis is made collecting data from the detectors, so that is possible to study
the statistics of the problem. One of the arms of the interferometer has a phase shifter
(ϕ), responsible for changing the optical path from one arm to another.
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Figure 3 – (a) A schema of the usual Mach-Zehnder interferometer (MZI), and displays its main
optical devices, such as Beam-Splitters (BS), mirrors (M), a phase shift (ϕ) and
detectors of the path mode (D’s). (b) A schema of a MZI, however with a slightly
modification that are the path markers DA and DB in the horizontal and vertical path
modes, respectively.

Concerning the mathematical description, each optical device in the MZI is
described by an unitary operator, once there is no loss of information when the photon
passes through each of these devices. In order to construct the unitary operators, it is
important to understand the consequence of each device. First, suppose that the initial
state is given by |ψ0〉 = |0〉, that describes the horizontal path mode of the photon, as
illustrated in Figure 3 (a). After the BS, considering that the coefficients of transmission
and reflection are, respectively, T = cos θ and R = sin θ for θ ∈ [0, π

2
], the state is a

superposition of the path modes mediated by the probabilities associated to the BS.
Hence, the final state is |ψBS〉 = cos θ |0〉 + i sin θ |1〉. The associated phase i to the
reflected term is due to the phases of the electric field of the photon [81]. Otherwise, if
the initial state was |1〉, the final one would be cos θ |1〉+ i sin θ |0〉. Hence, by choosing
the computational basis in the order |0〉 , |1〉, the matrix representation of the BS is
written as

UBS(θ)
.
=

(
cos θ i sin θ

i sin θ cos θ

)
. (3.59)

Following the same rationale, the matrix representations for the M’s and ϕ in the spatial
mode 1 are

UM
.
=

(
0 i

i 0

)
, Uϕ(1)

.
=

(
1 0

0 eiϕ

)
. (3.60)

Since the mathematical description of the devices are done, let the state be
developed through the MZI. Considering that both BS are equal, the evolution of the
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state is as follows

|ψ0〉 = |0〉 ,
|ψ0〉 BS1−−→ |ψBS〉 = cos θ |0〉+ i sin θ |1〉 ,
|ψBS〉 M’s−→ |ψM〉 = − sin θ |0〉+ i cos θ |1〉 ,

|ψM〉 ϕ−→ |ψϕ〉 = − sin θ |0〉+ ieiϕ cos θ |1〉 ,
|ψϕ〉 BS2−−→ |ψf〉 = −(1 + eiϕ) sin θ cos θ |0〉+ i(eiϕ cos2 θ − sin2 θ) |1〉 .

(3.61)

The final state |ψf〉 is going to be analyzed in the detectors D0 and D1, so that the
probabilities distributions obtained at the end are given by

p(D0) = | 〈0|ψf〉 |2 = 2 sin2 θ cos2 θ(1 + 2 cosϕ),

p(D1) = | 〈1|ψf〉 |2 = sin4 θ + cos4 θ − 4 sin2 θ cos2 θ cosϕ.
(3.62)

The above result is interesting to study the behavior of the photon. Even if the initial
state is a well-defined path state, the probability distributions are sensitive to the relative
phase ϕ. Hence, it is fair interpreting the behavior of the photon as being wavelike.
Indeed, after the first BS, the best description to be given to the state is that of a wave.
However, it cannot be dismissed that this interpretation involves a form of retrodiction,
since the final interpretation concerns using the statistical results obtained after the MZI
to make assertions about the photon’s behavior within the MZI.

Now, consider a slight modification to the previously discussed MZI, as shown
in Figure 3 (b). In this case, in addition to the relative phase being introduced in one of
the interferometer arms, two nondestructive detectors (i.e., path markers) are placed in
the system, one in each arm of the interferometer. The purpose of these markers are, in
a way, to reveal the photon’s path, which will be analyzed through its entanglement with
these degrees of freedom. Since the markers are quantum systems that interact with the
photon, each one needs a state in a Hilbert space to be described. For such description,
let the initial state be |ψ0〉 = |0〉γ |0〉A |0〉B = |000〉γAB, with γ representing the path mode
of the photon, and A and B being the corresponding states of the path markers DA and
DB, respectively. The previous discussion on the mathematical description of the system
is the same, but now each optical device must be accounted in the corresponding Hilbert
space. In order to analyze the final state of this setup, consider that the path markers
‘click’ if the photon’s path coincides with the arm where the marker is placed, that is,

UDA
|000〉γAB = |010〉γAB , UDA

|100〉γAB = |100〉γAB ,

UDB
|000〉γAB = |000〉γAB , UDB

|100〉γAB = |101〉γAB .

With these definitions, also considering that both BS are equal, the evolution of the state
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is as follows

|ψ0〉 = |000〉γAB

|ψ0〉 BS1−−→ |ψBS〉 = (cos θ |0〉+ i sin θ |1〉)γ |00〉AB

|ψBS〉 D′s−−→ |ψD〉 = cos θ |010〉γAB + i sin θ |101〉γAB

|ψD〉 M′s−−→ |ψM〉 = i cos θ |110〉γAB − sin θ |001〉γAB

|ψM〉 ϕ−→ |ψϕ〉 = ieiϕ cos θ |110〉γAB − sin θ |001〉γAB

|ψϕ〉 BS2−−→ |ψf〉 = i |1〉γ
(
eiϕ cos2 θ |10〉AB − sin2 θ |01〉AB

)
− sin θ cos θ |0〉γ

( |01〉AB + eiϕ |10〉AB

)
,

(3.63)

so that the probability distributions obtained after the markers D1 and D2 being analyzed
are

p(D0) = trABγ

(
11AB ⊗ |0〉 〈0|γ |ψf〉 〈ψf |

)
= 2 sin2 θ cos2 θ,

p(D1) = trABγ

(
11AB ⊗ |1〉 〈1|γ |ψf〉 〈ψf |

)
= sin4 θ + cos4 θ.

(3.64)

Analyzing Eq. (3.64), although the initial state in the path mode is the same as
it was when (3.62) was obtained, it is clear that, when the path markers are considered,
the relative phase ϕ has no influence in the final description. This situation occurs here
due to the entanglement of the 3 degrees of freedom, generated in |ψD〉 in (3.63). Anal-
ogously to what was interpreted in the previous case, this situation can be interpreted
as if the photon had a particle-like behavior, since the relative phase is inconsequential
to the final probabilistic description.

As the reader may think, the two situations presented so far are very similar
to the double-slit experiment. The first case, illustrated in Figure 3 (a) represents the
standard experiment, with no detection of the electron in any slit. The conclusions of
the experiment are analogous to the one presented in that case, i.e, wavelike behavior
of the photon (or electron in the double-slit). When a marker is placed at the slit to
determine which one the electron passed through, the situation is analogous as when
the path markers were placed in the MZI to entangle the path of the photon, so that
the final conclusion is the same: particle-like behavior for the photon (or electron). This
brief example using MZI is very illustrative, since its calculations are quite easy and the
physics behind them is deep.
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CHAPTER 4

Correlation between Choices and Ontological Descriptions

This chapter is dedicated to introduce the quantum eraser experiment using the
same approach applied in the previous chapter to introduce the MZI. Additionally, this
chapter aims to discuss two fundamental papers for this work, which introduce the main
ideas addressed in the present study. The purpose of this brief chapter, therefore, is
to establish the foundations and the key questions to be analyzed in the next chapter,
which constitutes the original contribution of this study. This chapter is organized as
follows: Section 4.1 introduces the quantum eraser experiment, explaining its key
developments, conclusions, and physics. Section 4.2 reviews two important papers on
a modified version of the quantum eraser, presenting its main ideas, the theoretical and
experimental development as well as the establishment of the phenomenon of local
realism correlation.

4.1 Quantum Eraser

This section is dedicated to the study of a system that will be of fundamental
importance for the next chapter, the quantum eraser [17, 78, 82, 83]. A very simple setup
that works as a quantum eraser is illustrated in Figure 4. In this section, the well-known
experimentalists, Alice and Bob, return to each of their designated laboratories. The
setup of the quantum eraser is as follows. A pair of entangled photons is generated by
a nonlinear crystal of beta barium borate (BBO) and each photon is sent to a different,
spatially separated, laboratory, Alice’s and Bob’s one. The regions must be outside of
the lightcone of each other, ensuring that there is no causal communication via light



CHAPTER 4. CORRELATION BETWEEN CHOICES AND ONTOLOGICAL
DESCRIPTIONS 72

Figure 4 – A schema of an experimental optical setup used as a quantum eraser. The BBO
represents the crystal of beta barium borate that generates two photons that travel
to different laboratories, represented by Alice and Bob. In Alice’s laboratory, she
can choose whether or not to include quarter-wave plate (QWP), represented by
QWPin and QWPout, respectively. The photon then passes through a polarized beam-
splitter (PBSA) before being detected on the detectors Di,a, where i ∈ {0, 1}. In Bob’s
laboratory, there is a modified Mach-Zehnder Interferometer (MZI). PBSB represents
the polarized beam-splitter, after which the photon passes through a half-wave plate
(HWP), is reflected by mirrors (M), passes through a phase shift (ϕ), and then a
beam-splitter (BS), until it is detected by detectors Di,b, where i ∈ {0, 1}.

signals between the laboratories. Bob’s laboratory has a modified version of the MZI
presented before. The main differences is that the first BS is changed to a Polarized
Beam Splitter (PBS), that allows the transmission of the photon with polarization |0〉
and reflects the |1〉 polarization, and the inclusion of a Half Wave Plate (HWP), that
changes the linear polarization of the photon. On the other hand, Alice’s laboratory has
at maximum two components, which are a Quarter Wave Plate (QWP), responsible for
changing the linear polarization to circular polarization, that can be choosen whether it
is considered in the experiment, and a PBS as well as Bob’s laboratory. The whole point
of the quantum eraser is that the path information of Bob’s photon is erased depending
on Alice’s choice of putting the QWP.

In order to make the mathematical description of the quantum eraser, the initial
state must be defined. Then, as the BBO produces a pair of entangled photons, let the
initial state be written as

|ψ0〉 =
( 1√

2
(|01〉+ |10〉)

)
AB

⊗ |00〉ab . (4.1)

The convention for the polarization and path modes established here will be used
throughout this work. Uppercase letters are used for polarization Hilbert spaces, so
that A and B represent the polarizations of Alice’s and Bob’s photons, respectively;
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lowercase letters are used to specify the path modes of each photon, so that a and b

represent the path modes of Alice’s and Bob’s photon, respectively.

Applying the unitary operators corresponding to Bob’s laboratory, the evolution
of the state in (4.1) is as follows

|ψ0〉 PBSB−−−→ |ψPBSB
〉 = 1√

2
(i |0101〉+ |1000〉)ABab,

|ψPBSB
〉 HWP−−→ |ψHWP 〉 = 1√

2
(|01〉+ |10〉)Ab ⊗ |00〉Ba ,

|ψHWP 〉 M′s,ϕ−−−→ |ψϕ〉 = 1√
2
(i |11〉 − eiϕ |00〉)Ab ⊗ |00〉Ba ,

|ψϕ〉 BS−→ |ψBob〉 = 1

2

[
eiϕ |0〉 ⊗ (|0〉+ i |1〉) + |1〉 ⊗ (|0〉 − i |1〉)]

Ab
⊗ |00〉Ba .

(4.2)

Concerning Alice’s laboratory, she has two options to be performed, i.e, to include or not
the QWP in the experiment. Firstly, suppose that she decides to not include the QWP,
so that the final state that describes the situation is given by

|ψBob〉 PBSA−−−→ |ψout〉 = 1

2

[
eiϕ |000〉+ ieiϕ |001〉+ i |110〉+ |111〉 ]

Aab
⊗ |0〉B . (4.3)

On the other hand, if Alice chooses to include the QWP, with

UQWP |0〉A =
1√
2
(|0〉+ i |1〉)A,

UQWP |1〉A =
1√
2
(|0〉 − i |1〉)A,

(4.4)

the final state would be

|ψBob〉 QWP, PBSA−−−−−−→ |ψin〉 = 1√
2

[
cos

ϕ

2
|0000〉 − i sin

ϕ

2
|1100〉 − sin

ϕ

2
|0001〉

− i cos
ϕ

2
|1101〉 ]

AaBb
.

(4.5)

The central point of the quantum eraser is that the behavior of Bob’s photon varies
depending on Alice’s choice to consider or not the QWP alongside post-selection. To
illustrate this feature, consider the case without post-selection, i.e, let the probability
distribution of Bob’s laboratory be obtained without considering anything on Alice’s
laboratory. For such situation, both states |ψin〉 and |ψout〉 leads to

p(D0,b) = trABab

(
11ABa ⊗ |0〉 〈0|b |ψin〉 〈ψin|

)
= trABab

(
11ABa ⊗ |0〉 〈0|b |ψout〉 〈ψout|

)
=

1

2
,

p(D1,b) = trABab

(
11ABa ⊗ |1〉 〈1|b |ψin〉 〈ψin|

)
= trABab

(
11ABa ⊗ |1〉 〈1|b |ψout〉 〈ψout|

)
=

1

2
.

(4.6)

Thus, there is no difference if post-selection is not considered.

Suppose now that post-selection is considered, i.e, the probability distribution
obtained by Bob is conditioned to the results obtained by Alice. It means that the
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relevant probability distribution to the problem is written as p(Di,b|Dj,a), and it reads as
the probability of the detector Di,b click at Bob’s laboratory given that the detector Dj,a

clicked at Alice’s laboratory. Then, when Alice’s detector clicks, the state collapses as
given by (2.1),

( |0〉 〈0| )
a
|ψout〉 = 1√

2
(|0〉+ i |1〉)b ⊗ |000〉AaB ,

( |1〉 〈1| )
a
|ψout〉 = 1√

2
(|0〉 − i |1〉)b ⊗ |110〉AaB ,( |0〉 〈0| )

a
|ψin〉 =

(
cos

ϕ

2
|0〉 − sin

ϕ

2
|1〉

)
b
⊗ |000〉AaB ,( |1〉 〈1| )

a
|ψin〉 =

(
sin

ϕ

2
|0〉 − cos

ϕ

2
|1〉

)
b
⊗ |110〉AaB ,

and the probability distribution obtained by Bob is given by (2.2), so that when the QWP
is not considered, the state (4.3) is used, and{

p(D0,b|D0,a) = p(D0,b|D1,a) = 1/2,

p(D1,b|D0,a) = p(D1,b|D1,a) = 1/2,
(4.7)

and when QWP is considered, the state (4.5) is used, and{
p(D0,b|D0,a) = cos2 ϕ

2
, p(D0,b|D1,a) = sin2 ϕ

2
,

p(D1,b|D0,a) = sin2 ϕ
2
, p(D1,b|D1,a) = cos2 ϕ

2
.

(4.8)

Thus, analyzing the above results, it is straightforward that when QWP is included
alongside post-selection, the probability distribution obtained by Bob is that of a wavelike
behavior, since the relative phase ϕ is relevant to the final description; on the other
hand, when QWP is not considered, the probability distribution is that of a particle-like
behavior, since the relative phase ϕ is inconsequential to the final description. The
idea of the quantum eraser, therefore, is that the presence of the QWP, when properly
analyzed, erases the path information of Bob’s photon.

4.2 Modified Quantum Eraser and the Ontological Cor-

relation

The setup for the quantum eraser was presented in the previous section, and it
was discussed that depending on Alice’s choice of putting the QWP in the experiment
alongside post-selection, the path-information of Bob’s photon could be erased. Explor-
ing the idea of this phenomenon and going further on EPR’s concept of local realism,
the authors in [25] proposed a modified version of the quantum eraser, which is adapted
and illustrated in Figure 5.
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Figure 5 – A modified version of the quantum eraser experiment in Figure 4. As before, the
BBO represents the crystal of beta barium borate that generates two photons that
travel to laboratories of Alice and Bob. In Alice’s laboratory, she can choose whether
or not to include quarter-wave plate (QWP), represented by QWPin and QWPout,
respectively. The photon then passes through a polarized beam-splitter (PBSA) before
being detected on the detectors Di,a, where i ∈ {0, 1}. In Bob’s laboratory, there is
a modified version of the Mach-Zehnder Interferometer (MZI). PBSB represents the
polarized beam-splitter, after which the photon passes through a half-wave plate
(HWP). The crucial difference from the previous quantum eraser is the introduction of
two degrees of freedom in Bob’s laboratory, named DoF 1 and DoF 2, each one in a
different arm of the interferometer. The photon is then reflected by mirrors (M) and
then passes through a beam-splitter (BS), until it is detected by detectors Di,b, where
i ∈ {0, 1}.

Comparing with the quantum eraser introduced in Figure 4, the difference
remains in the presence of the degrees of freedom1 DoF 1 and DoF 2. The idea of the
present setup is the following. The nonlinear crystal of beta barium borate produces
a pair of entangled photons that are sent to different laboratories, Alice and Bob. In
Alice’s laboratory, the procedure is the same as presented in the previous section, i.e.,
Alice can decide whether the QWP is considered in the experiment. On the other hand,
different from the previous case that Bob analyzes the path information of the photon,
now he is going to analyze the states of DoF 1 and DoF 2. The main difference in
such approach, although adding complexity to the experimental setup, is that the final
analysis is excluding the hypothesis of retro-inference, i.e., there will be no hypotheses
on the past behavior of the photon by measuring the probability distributions at a later
moment, as pointed out in [25]. However, the key point here is to utilize the entanglement
between the degrees of freedom to certify the photon’s wavelike behavior within the
1 In the original paper, these are two atoms, A1 and A2. However, it is enough to consider instead two

general degrees of freedom, mainly because of the practical implementation experimentally. Although
it is possible to use stimulated emission as a non-destructive detector, as shown in [84], the practical
use of general markers is preferable.
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MZI.

In a very similar way done in the analysis of the usual quantum eraser, it is
necessary to describe the Hilbert spaces for the photons’ polarizations, named HA

and HB; their path modes, named Ha and Hb; but it is also necessary to describe the
degrees of freedom DoF 1 and DoF 2, and the associated Hilbert spaces are named
Hd1 and Hd2, respectively. In order to achieve a higher degree of generality, the initial
state is written as

|ψ0〉 =
(
cos

θ

2
|01〉+ sin

θ

2
|10〉

)
AB

⊗ |0011〉abd1d2 , (4.9)

with θ ∈ [0, π
2
] controlling the initial entanglement of the polarizations. As well as men-

tioned in the case of the quantum eraser, the laboratories of Alice and Bob are said to
be spatially separated, thus ensuring that they cannot causally influence each other
during Alice’s procedures.

Since the background is established, the evolution of the state (4.9) throughout
Bob’s laboratory is as follows.

|ψ0〉 PBSB−−−→ |ψPBSB
〉 =

(
i cos

θ

2
|011〉+ sin

θ

2
|100〉

)
ABb

|011〉ad1d2
|ψPBSB

〉 HWP−−→ |ψHWP 〉 =
(
i cos

θ

2
|01〉+ sin

θ

2
|10〉

)
Ab

|0011〉Bad1d2
.

(4.10)

Now, when the photons interact with the degrees of freedom, they mark the path, and
then

|ψHWP 〉 DoF 1,2−−−−→ |ψd〉 =
(
i cos

θ

2
|0110〉+ sin

θ

2
|1001〉

)
Abd1d2

|00〉Ba

|ψd〉 M′s, BS−−−−→ |ψBob〉 =
(
cos

θ

2
|010ω+〉+ sin

θ

2
|101ω−〉

)
Ad1d2b

|00〉Ba ,

(4.11)

with |ω±〉 = 1√
2
(|0〉 ± i |1〉).

Concerning Alice’s laboratory, firstly let the analysis be done in the case when
the QWP is out of the experiment. In such case,

|ψBob〉 PBSA−−−→ |ψout〉 = cos
θ

2
|000ω+10〉AaBbd1d2

+ i sin
θ

2
|110ω−01〉AaBbd1d2

. (4.12)

Measurements of a and b post-selected on the detectors D0 on the above state re-
sult in the state described by Bob as being |ψPSout〉 = |0010〉Bbd1d2

. In this case, it
is straightforward that the final description has an element of reality for the degrees
of freedom, since their states are neither entangled nor in superposition. Hence, if
ΩBob

out := |ψPSout〉 〈ψPSout|, by BA-realism criteria in (2.11), it is true that Φdi(Ω
Bob
out ) = ΩBob

out

for any i ∈ {1, 2}, ensuring a realistic description of the degrees of freedom, so that

Idi(Ω
Bob
out ) = 0 (4.13)
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for any i ∈ {1, 2}.

Analyzing now the case when QWP is considered in the experiment, defining

|ζ±〉d1d2 = sin
θ

2
|01〉d1d2 ± cos

θ

2
|10〉d1d2 , (4.14)

the evolution in Alice’s laboratory is such that

|ψBob〉 QWPA−−−→ |ψQWP 〉 = 1

2

(
|0000ζ+〉 − i |0001ζ−〉 − i |1000ζ−〉 − |1001ζ+〉

)
AaBbd1d2

|ψQWP 〉 PBSA−−−→ |ψin〉 = 1

2

(
|0000ζ+〉 − i |0001ζ−〉+ i |1100ζ−〉 − i |1101ζ+〉

)
AaBbd1d2

.

(4.15)

As the previous case, measurements of a and b post-selected on the detectors D0

in the state |ψin〉 lead to the final description obtained by Bob, given by |ψPSin〉 =

|00〉Bb ⊗ |ζ+〉d1d2. Hence, since |ζ+〉 is defined in (4.14), the state that describe the
degrees of freedom are entangled in general, so that there is no element of reality for
them. Indeed, defining ΩBob

in = |ψPSin〉 〈ψPSin| and applying the definition of irreality in
(3.34),

Idi(Ω
Bob
in ) = − cos2

θ

2
log

(
cos2

θ

2

)
− sin2 θ

2
log

(
sin2 θ

2

)
, (4.16)

for any i ∈ {1, 2}, which is numerically equal to the amount of entanglement of the initial
state2, when analyzed by the von Neumann entropy of the reduced state.

Before finishing the theoretical discussion, it is worth noting that the authors
in [25] proved that there is no difference in the results if Alice’s unitary operations are
made before the interaction with DoF 1 and DoF 2, and the time of Alice’s actions plays
no relevant role in the final conclusions. Furthermore, they were able to simulate these
results in a quantum computer, corroborating their analytical results. Then, as shown by
the calculations of this section, Alice’s actions were sufficient to change the realism in
the degrees of freedom of Bob’s laboratory, and since their setups are outside of the
light cone of each other, it is fair to understand these results as being against the notion
of local realism, as introduced by EPR.

Following the theoretical discussion and motivated by the physics behind the
correlation established by the previous analysis, the authors in [26] were able to perform
an experiment to test the previous discussion. The experimental setup is very similar to
that in Figure 5. In such implementation, the degrees of freedom are managed by two
beam displacers, introducing two qubit systems into the description as needed. Different
from the first simulation of the problem, this experiment gives a stronger argument
against locality, since the laboratories of Alice and Bob are guaranteed space-like
separated.
2 Indeed, this observation led to the hypothesis that entanglement is the underlying cause of the

phenomenon.
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A slight modification of the experiment leads to a difference on the entanglement
observed in the system. In order to set a real experiment, the analysis was made so that
the final entanglement that (in certain way) destroys the elements of reality is tripartite,
different from the theoretical analysis given above that was a bipartite entanglement.
Since the irreality is of major importance in such analysis, and it is the same as observed
before, the foundations of the conclusions remain the same. The conclusions of the
experiment corroborate the theoretical analysis, so that the correlation between Alice’s
choices and the ontological description in Bob’s laboratory was indeed observed. This
result is of great importance for the analysis of the present work, and this paper provides
“strong evidence against local realism," quoting the authors.

The next step in the theoretical analysis, from the perspective of quantum
information theory and quantum resources theory, is to investigate whether a quantum
resource underlies this phenomenon. Naturally, since the final irrealism that establishes
the occurrence of the phenomenon is equal to the initial entanglement, the direct
hypothesis is that entanglement is the quantum resource responsible for it. Therefore,
this work is devoted to investigating this possibility and its implications, which are
presented in detail in the next chapter.
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CHAPTER 5

Investigation of the Quantum Resource for Local Realism

Erasure

This chapter represents the original contribution and the core of this study. In
this chapter, states with a higher degree of generality in the modified quantum eraser
experiment will be analyzed to investigate the quantum resources essential for the
phenomenon described in the previous chapter. Section 5.1 examines the occurrence
of the phenomenon in the context of post-selection choices, introducing a quantity that
aims to properly encapsulate the effect of post-selection. In Section 5.2, the Werner state
will be examined to introduce a fully symmetric state, enhancing the generality of the
analysis. This section will also delve into the dependencies of irreality on entanglement
and quantum discord. Section 5.3 focuses on states parameterized by the Bloch sphere,
aiming to uncover the true roles of quantum discord, and realism-based nonlocality in
the erasure of local realism. Finally, Section 5.4 presents final remarks related to the
problem, offering further insights into the findings.

5.1 The occurrence of the phenomenon

As presented in Chapter 4, the phenomenon analyzed in this work is the
influence of the QWP on the final descriptions of irreality for the degrees of freedom
DoF 1 and 2 in Bob’s laboratory. This section aims to define a criterion for identifying
the occurrence of this phenomenon. The motivation for this discussion lies in the impact
of post-selection on the final description.
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The approach developed in [25], reviewed in Section 4.2, along with the dis-
cussion of the quantum eraser in Section 4.1, highlights the fundamental role of post-
selection in shaping the final description of the problem. In particular, when Eqs. (4.13)
and (4.16) were derived, a specific post-selection was considered. Although in that case
the results were independent of the chosen post-selection, it is not trivial that this holds
for any class of states. Therefore, the goal of this discussion is to establish a criterion
that accounts for all possible post-selection choices, ensuring that the analysis does not
rely on a particular one.

To establish an analysis that avoids interpretative loopholes based on the
choice of post-selection, it is necessary to define a quantity that is both sensitive to the
presence of the phenomenon and non-selective, meaning it does not favor any particular
post-selection. Since Bob’s description depends on the post-selections determined by
his and Alice’s data, it is natural for this quantity to incorporate both Alice’s and Bob’s
choices, weighted by the probabilities associated with each possible post-selection.

Thus, considering the aforementioned points and selecting post-selections of
the type {Dk,a,Dl,b}, the reality description made by Bob becomes conditioned on each
post-selection, which is induced by the following state:

Ω
Bob|kl
in/out = trAa(ρin/out|kl)

= trAa

((
Mk

a ⊗M l
b ⊗ 11ABd1d2

)
ρin/out

(
Mk

a ⊗M l
b ⊗ 11ABd1d2

)
p
in/out
kl

)
,

(5.1)

where p
in/out
kl = tr

[
(Mk

a ⊗M l
b ⊗ 11ABd1d2)ρin/out

]
, and ρin/out are the final general descrip-

tions considering and not considering the QWP in the system, respectively. Therefore,
Eq. (5.1) refers to the Bob state conditioned on the post-selection {Dk,a,Dl,b}. The occur-
rence of the phenomenon is established when the presence of the QWP in the system
changes the final irreality for the degrees of freedom d1 and d2 for Bob’s description.
Thus, we propose the following quantity

δI := |Iin − Iout|, (5.2)

where Iin/out represents the irreality for the cases QWPin/out, and to take into account all
post-selections in each of the possible configurations, these terms are defined as

Iin/out :=
∑
kl

p
in/out
kl Idj(Ω

Bob|kl
in/out). (5.3)

This definition relates the quantities Iin/out to irrealities conditioned on the possible
post-selections, or even to the average value of the final irreality considering all the
possible post-selections. Thus, Eq. (5.2) can be written as

δI :=
∣∣∣∑

kl

(
pinklIdj

(
Ω

Bob|kl
in

)− poutkl Idj

(
Ω

Bob|kl
out

))∣∣∣. (5.4)
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Eq. (5.4) can be understood as the absolute value of the difference between the
average values of irreality with and without the QWP, based on the post-selections at
{Dk,a,Dl,b} for k, l ∈ {0, 1}. Therefore, δI quantifies how different the averages of such
descriptions are. Based on this, and assuming that averaging inherently removes the
hypothesis of a privileged post-selection, a nonzero difference in the averages serves as
a strong indication that the presence of the QWP indeed influenced the final description,
thereby establishing the occurrence of the phenomenon.

A noteworthy remark regarding the motivation that underlies the definition in Eq.
(5.3) is its connection to the non-signaling principle1. A crucial point in the description
of Eq. (5.3) is that it takes into account revealed post-selections, i.e., the post-selected
state is determined by the chosen detectors, meaning that both choices must be known.
In the case of non-revealed post-selections, the problem reduces to the use of the maps
Φ, so that Eq. (5.1) would return only the description of an average ensemble of the
form

∑
kl p

in/out
kl Ω

Bob|kl
in/out = trAa(ρin/out). Since the trace over Alice’s spaces is unable to

alter Bob’s description, due to the non-signaling principle, these states cannot exhibit
the phenomenon. Therefore, the approach taken in this work is to include all possible
post-selections in an unbiased manner, as proposed in Eq. (5.3).

The following sections explore different classes of states within the context of
the modified quantum eraser, and the analysis of the occurrence of the phenomenon
will be made by using the concept of δI.

5.2 Werner State in the Modified Quantum Eraser

This section generalizes the results of the previous chapter by using a Werner
state for the initial state of the photon’s polarizations. In such approach, the initial state
is given by

ρ0 =
(1− η

4
11 + η |ψθ〉 〈ψθ|

)
AB

⊗ |0011〉 〈0011|abd1d2 , (5.5)

with |ψθ〉 = cos θ
2
|01〉 + sin θ

2
|10〉. The only difference compared to (4.9) lies in the

polarization Hilbert spaces. The parameter η controls the mixing of the previously
considered pure state with the identity state. Specifically, when η = 1, we recover the
analysis presented in [25], while for η = 0 the initial state of polarization is the identity
itself. The above state is going to be submitted to the previous setup, i.e., that introduced
in Figure 5. The role of each component was also discussed in the previous chapters, so
that the evolution of the state in (5.5) throughout Bob’s laboratory can be now analyzed.
1 This principle states that information cannot be transmitted instantaneously between spatially sepa-

rated systems, i.e., systems that are spacelike separated.
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Firstly, after the PBS, the state changes to

ρPBSB
=

[1− η

4

(
11A ⊗ |00〉 〈00|Bb + 11B ⊗ |11〉 〈11|Ab

)
+ η

∣∣ψPBS
θ

〉 〈
ψPBS
θ

∣∣
ABb

]
⊗ |011〉 〈011|ad1d2 ,

(5.6)

with
∣∣ψPBS

θ

〉
ABb

= i cos θ
2
|011〉ABb + sin θ

2
|100〉ABb. The HWP is responsible to factorize

the Hilbert space related to Bob’s polarization, so that

ρHWPB
=

(1− η

4
11 + η

∣∣ψHWP
θ

〉 〈
ψHWP
θ

∣∣ )
Ab

⊗ |0011〉 〈0011|Bad1d2
, (5.7)

with
∣∣ψHWP

θ

〉
Ab

= i cos θ
2
|01〉Ab + sin θ

2
|10〉Ab. The above state then interacts with the

degrees of freedom DoF 1 and 2, and the state changes to

ρd =
[1− η

4
11⊗ ( |001〉 〈001|+ |110〉 〈110| )+ η

∣∣ψd
θ

〉 〈
ψd
θ

∣∣ ]
Abd1d2

⊗ |00〉 〈00|Ba , (5.8)

with
∣∣ψd

θ

〉
Abd1d2

= i cos θ
2
|0110〉Abd1d2

+ sin θ
2
|1001〉Abd1d2

. Such interaction leads to an
entanglement between the polarization of Alice’s photon, the path mode of Bob’s photon
and the degrees of freedom that mark the path. In principle, the state

∣∣ψd
θ

〉
has a

genuinely multipartite entanglement, although the global state in (5.8) is not properly
a Werner state, since the mixture is not made with the identity state. Finishing the
developent of the state in Bob’s laboratory, the final state after the mirrors and the last
BS is given by

ρBob =
[1− η

4
11⊗ ( |ω−01〉 〈ω−01|+ |ω+10〉 〈ω+10|

)
+ η

∣∣ψBob
θ

〉 〈
ψBob
θ

∣∣ ]
Abd1d2

⊗ |00〉 〈00|Ba ,

(5.9)

with |ω±〉 = 1√
2
(|0〉 ± i |1〉) and

∣∣ψBob
θ

〉
Abd1d2

= cos θ
2
|0ω+10〉Abd1d2

+ sin θ
2
|1ω−01〉Abd1d2

.

Concerning Alice’s choice of whether the QWP is considered or not in the
experiment, her choices are going to be analyzed as it was made in the previous
chapter. Considering first the case when the QWP is not considered, then the state in
(5.9) is submitted to a PBS in Alice’s site, so that the final state is given by

ρout =
[1− η

4

( |00ω−01〉 〈00ω−01|+ |00ω+10〉 〈00ω+10|
)
+ η

∣∣ψout
θ

〉 〈
ψout
θ

∣∣ ]
Aabd1d2

⊗ |0〉 〈0|B ,

(5.10)

with |ψout
θ 〉Aabd1d2

= cos θ
2
|00ω+10〉Aabd1d2

+ i sin θ
2
|11ω−01〉Aabd1d2

. After post-selecting the
above state in the detectors corresponding to |k〉a and |l〉b, the state is

ρout(Dk,a, Dl,b) =

(
Mk

a ⊗M l
b ⊗ 11ABd1d2

)
ρout

(
Mk

a ⊗M l
b ⊗ 11ABd1d2

)
tr
((
Mk

a ⊗M l
b ⊗ 11ABd1d2

)
ρout

)
=

(
1−η
4

( |01〉 〈01|+ |10〉 〈10| )+ η cos2 θ
2
|10〉 〈10|

1−η
2

+ η cos2 θ
2

)
d1d2

⊗ |0k0l〉 〈0k0l|AaBb ,
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for any k, l ∈ {0, 1}, so that the final description of Bob, ΩBob|kl
out ≡ ΩBob

out = trAa

(
ρout(Dk,a, Dl,b)

)
,

is given by

ΩBob
out = |0l〉 〈0l|Bb ⊗

(
1−η
4

( |01〉 〈01|+ |10〉 〈10| )+ η cos2 θ
2
|10〉 〈10|

1−η
2

+ η cos2 θ
2

)
d1d2

, (5.11)

that is, it does not depend on post-selection. The above equation is clearly a generaliza-
tion of the state |ψPSout〉 mentioned in the previous chapter. However, it is worth noting
that (5.11) is a diagonal state in the computational basis, and therefore a realistic state
for any d by BA-realism criterion. Thus, formally speaking,

Φdi(Ω
Bob
out ) = ΩBob

out ⇒ Idi(Ω
Bob
out ) = 0, (5.12)

for any i ∈ {1, 2}, and it is the same conclusion obtained previously.

Considering now the case in which the QWP is placed in the experiment, the
state in (5.9) is submitted to the QWP, so that the state changes to

ρQWP =
1

4

[
(1− η)

( |0ω−01〉 〈0ω−01|+ |0ω+10〉 〈0ω+10|+ |1ω−01〉 〈0ω−01|+

|1ω+10〉 〈1ω+10|
)
+ η|ψζ

θ〉〈ψζ
θ |
]
Abd1d2

⊗ |00〉 〈00|aB ,
(5.13)

with |ψζ
θ〉Abd1d2 = |00〉Ab |ζ+〉d1d2 − i |01〉Ab |ζ−〉d1d2 − i |10〉Ab |ζ−〉d1d2 − |11〉Ab |ζ+〉d1d2 . Then,

after the PBS in Alice’s site, the final state is given by

ρin =
1

4

[
(1− η)

( |00ω−01〉 〈00ω−01|+ |00ω+10〉 〈00ω+10|+ |11ω−01〉 〈11ω−01|+

|11ω+10〉 〈11ω+10|
)
+ η

∣∣ψin
θ

〉 〈
ψin
θ

∣∣ ]
Aabd1d2

⊗ |0〉 〈0|B ,
(5.14)

with |ψin
θ 〉Aabd1d2

= |000〉Aab |ζ+〉d1d2−i |110〉Aab |ζ−〉d1d2+|110〉Aab |ζ−〉d1d2−i |111〉Aab |ζ+〉d1d2 .
By following the same procedure as before, post-selecting on the detectors correspond-
ing to |k〉a and |l〉b, the state becomes

ρin(Dk,a, Dl,b) =

(
Mk

a ⊗M l
b ⊗ 11ABd1d2

)
ρin

(
Mk

a ⊗M l
b ⊗ 11ABd1d2

)
tr
((
Mk

a ⊗M l
b ⊗ 11ABd1d2

)
ρout

)
=

1

2

[
(1− η)

( |01〉 〈01|+ |10〉 〈10| )+ 2η |ζ+〉 〈ζ−|
]
d1d2

⊗ |0k0l〉 〈0k0l|AaBb ,

for any k, l ∈ {0, 1}, and the final description of Bob, ΩBob|kl
in ≡ ΩBob

in = trAa

(
ρin(Dk,a, Dl,b)

)
,

is
ΩBob

in = |00〉 〈00|Bb ⊗
(1− η

2

( |01〉 〈01|+ |10〉 〈10| )+ η |ζ+〉 〈ζ+|
)
d1d2

. (5.15)

Exactly as before, the above state is the generalization of the state |ψPSin〉 mentioned in
the previous chapter. In what follows, it is worth noting that |ζ+〉 〈ζ+| is not a diagonal
state in the computational basis, so there are off-diagonal elements, or coherence. For
such case, as BA-realism is based on the complete positive trace preserving (CPTP)
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map Φ, that destroys the off-diagonal elements, it is straightforward that ΩBob
in is not

realistic for the observables associated to the degrees of freedom DoF 1 and 2. Thus,
Φdi(Ω

Bob
in ) �= ΩBob

in , and Idi(Ω
Bob
in ) ≥ 0 for any i ∈ {1, 2}.

On the irreality of the state (5.15), recovering the concept of the binary entropy
in (3.3), Idi(Ω

Bob
in ) is written as

Idi(Ω
Bob
in ) = h

(
1− η

2
+ η sin2 θ

2

)
− h

(1− η

2

)
. (5.16)

If the previous limit is considered, i.e., when η = 1 (Figure 5, the above equation reduces
to the same result given in (4.16), as expected for a generalization. Another important
comment on Eq. (5.16) is that, as discussed in Chapter 3, the binary entropy is a
concave function, and its functional form is very well-known. By these premises, it is
possible to state that the Idi(Ω

Bob
in ) = 0 only when η sin2(θ/2) = 0, which means that the

irreality is zero if η = 0, θ = 0, or both2, corroborating the discussion of [25].

Before finishing this discussion, it is worth noting the strength of the argument of
the influence of post-selection. In the above discussion, concerning the Werner states,
it is clear that the results in Eqs. (5.12) and (5.16) are independent of the post-selection
chosen. Therefore, from the perspective of the quantity introduced in Eq. (5.4), the
presence of the phenomenon is indicated by

δI =
∣∣∣∑

kl

(
pinklIdi

(
Ω

Bob|kl
in

)− poutkl Idi

(
Ω

Bob|kl
out

))∣∣∣
=

∣∣∣∑
kl

(
pinklIdi

(
ΩBob

in

)− poutkl Idi

(
ΩBob

out

))∣∣∣
=

∣∣∣(Idi

(
ΩBob

in

)− Idi

(
ΩBob

out

))∑
kl

pinkl

∣∣∣
=

∣∣∣Idi

(
ΩBob

in

)− Idi

(
ΩBob

out

)∣∣∣.

(5.17)

This result would immediately represent the trivial way of quantifying the phenomenon.
However, from the construction proposed by Eqs. (5.2) and (5.3), it is clear that this
quantity is only consistent with the unbiased description of the problem when the results
do not effectively depend on post-selection. Moreover, from Eq. (5.12),

δI = Idi

(
ΩBob

in

)
. (5.18)

Therefore, indeed, the phenomenon occurs only when the final irreality for the QWPin

configuration is greater than zero. In what follows, the discussion on the role of entan-
glement and quantum discord for the occurrence of the phenomenon of local irreality
erasure will be presented.
2 Note that none of these cases are entangled. When η = 0, the polarization state becomes the identity

state, and when θ = 0, the identity state is mixed with a single ket rather than a superposition.
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5.2.1 The role of Entanglement

The goal of this subsection is to investigate the entanglement of the initial state,
and then to study whether it is necessary or not for the phenomenon occurring. In
subsection 3.2.2 it was discussed an example of calculating the entanglement for the
Werner state in (3.43). In this section, the concept of concurrence is recovered so that
the entanglement of (5.5) can be calculated as a function of η and θ, generalizing the
previous results.

Starting from the state (5.5), it is straightforward that the interesting correlation
is within the state of polarizations, since the state |0011〉abd1d2 is separable. Thus, let the
polarization state be considered by its own right as being

ρAB =
1− η

4
11 + η |ψθ〉 〈ψθ| , (5.19)

with 11 being the identity operator in the bipartite Hilbert space HA ⊗ HB and |ψθ〉 =
cos θ

2
|01〉+ sin θ

2
|10〉 ∈ HA ⊗HB the state previously defined. Using the Eq. (3.41), the

state ρ̃AB is written as

ρ̃AB =
1− η

4
11 + η|ψ̃θ〉〈ψ̃θ|, (5.20)

with |ψ̃θ〉 = sin θ
2
|01〉+ cos θ

2
|10〉. Therefore, the state ρABρ̃AB is explicitly written in the

bipartite computational basis as

ρABρ̃AB =
(1− η

4

)2( |00〉 〈00|+ |11〉 〈11| )
+

[(1− η

4

)2

+ η
(1− η

4

)
+ 2η2 sin2 θ

2
cos2

θ

2

]( |01〉 〈01|+ |10〉 〈10| )

+ η sin θ

[(1− η

4
+ η sin2 θ

2

)
|10〉 〈01|+

(1− η

4
+ η cos2

θ

2

)
|01〉 〈10|

]
.

(5.21)

For the eigenvalues of the state in (5.21), it is worth noting that the diagonaliza-
tion is reduced to a 2× 2 matrix, since |00〉 and |11〉 are both eigenvectors with the same

eigenvalue λ0 =
(

1−η
4

)2

. Thus, it suffices to diagonalize the matrix representation of the
subspace spanned by the kets |01〉 and |10〉. Then, by defining the following functions

f(η, θ) =
(1− η

4

)2

+ η
(1− η

4

)
+ 2g2(η, θ),

g(η, θ) =
1

2
η sin θ,

(5.22)

the eigenvalues for the subspace mentioned are written as

λ±(η, θ) = f(η, θ)± 2|g(η, θ)|
√

f(η, θ)− g2(η, θ). (5.23)

In order to construct the concurrence function, it is necessary to organize the
square roots of the eigenvalues in decreasing order. Starting from Eq. (5.23), it is
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straightforward to check that λ+ ≥ λ−, so that
√

λ+ ≥ √
λ−, since both are nonnegative.

Beyond that, as λ+ can be written as λ0 increased by a non-negative term, it is true that
λ+ ≥ λ0, so that

√
λ+ ≥ √

λ0, and then the entanglement can be written as

E(ρAB) = max{0,
√

λ+ −
√
λ− − 2

√
λ0}

= max
{
0,

√
f(η, θ) + 2|g(η, θ)|

√
f(η, θ)− g2(η, θ)

−
√

f(η, θ)− 2|g(η, θ)|
√
f(η, θ)− g2(η, θ)− 1− η

2

}
.

(5.24)

The above result is the generalization of the Eq. (3.45). Indeed, some important cases
to analyze the validity of (5.24) are the following.

• Pure state: η = 1 ⇒ E(ρAB) = | sin θ|.

• Singlet state: η = 1, sin θ
2
= cos θ

2
= 1√

2
⇒ E(ρAB) = 1.

• Werner singlet state: sin θ
2
= cos θ

2
= 1√

2
⇒ E(ρAB) =

1
2
max{0, 3η − 1}.

As shown in the above result and Eq. (3.45), even when the the most entangled
state is mixed with the identity state there exist an interval of values of η such that
the mixed state is not entangled anymore. However, in order to make the point for
the discussion, it is important to study the real dependence of this interval with the
parameters η and θ. For such discussion, it suffices to analyze the function in (5.24),
and √

λ+ −
√
λ− ≥ 2

√
λ0 ⇒ E(ρAB) ≥ 0,

and by substituting (5.22) and (5.23) and manipulating the inequality, it is possible to
write that

4g2(η, θ) ≥
(1− η

2

)2

⇒ (4 sin2 θ − 1)η2 + 2η − 1 ≥ 0 ⇒ E(ρAB) ≥ 0. (5.25)

Solving for η, the solutions are given by η± = ±2| sin θ|−1

4 sin2 θ−1
. However, in order to satisfy the

inequality, and by using that θ ∈ [0, π
2
], the only solution with physical meaning is η+, so

that
η(θ) ≥ 2 sin θ − 1

4 sin2 θ − 1
⇒ E(ρAB) ≥ 0. (5.26)

Figure 6 provides an illustration of both irreality, given by (5.16), and entangle-
ment, given by (5.24). The Figure 6 clearly shows that Idi(Ω

Bob
in ) is zero only over the

axes, while E(ρAB) has an area over the η × θ plane delimitated by the equality in (5.26)
where the entanglement is identically zero. This analysis leads to the conclusion that, for
a state given by (5.19), even if the entanglement is zero, the irreality is not necessarily
zero. In other words, this generalization shows that the entanglement is not a necessary
quantum resource to establish the phenomenon.



CHAPTER 5. INVESTIGATION OF THE QUANTUM RESOURCE FOR LOCAL
REALISM ERASURE 87

Figure 6 – On the left, the figure shows the plot of Idi(Ω
in
Bob) as a function of η and θ. On the

right, the figure shows the plot of E(ρAB) as a function of η and θ. The black curve
on the right represents the values of η as a function of θ for which the entanglement
E(ρAB) is zero, as determined by the equality in (5.26). Both figures use the same
scale.

5.2.2 The role of Quantum Discord

Turning our attention to the role of quantum discord in establishing the phe-
nomenon of ontological correlation, it is important to present some initial results. In
section 3.2.3 it was shown that one-way and symmetric quantum discord are the same
for the Werner state when mixed with a singlet state. However, this is also the case
for the state (5.19). Let the one-way quantum discord be first calculated and then the
comparison with the symmetrical quantum discord will be made.

As provided by Eq. (3.47), it is necessary to calculate S(ρAB), S(ρB) and
S(ρA|{σn}B). The first two are simple, and are given by

S(ρAB) = −3
(1− η

4

)
log

(1− η

4

)
−

(1 + 3η

4

)
log

(1 + 3η

4

)
,

S(ρB) = h
(1− η

2
+ η sin2 θ

2

)
.

(5.27)

For the conditional entropy, it is necessary to take the average on each measurement,
so that the final description for a general observable σn, with eigenstates given by

|0〉n = cos
φ

2
|0〉+ eiϕ sin

φ

2
|1〉 ,

|1〉n = sin
φ

2
|0〉 − eiϕ cos

φ

2
|1〉 ,

is the following
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S(ρA|{σn}B) =−
(1− η

4
+ η sin2 φ

2
cos2

θ

2

)
log

(1− η

4
+ η sin2 φ

2
cos2

θ

2

)
−

(1− η

4
+ η cos2

φ

2
sin2 θ

2

)
log

(1− η

4
+ η cos2

φ

2
sin2 θ

2

)
−

(1− η

4
+ η cos2

φ

2
cos2

θ

2

)
log

(1− η

4
+ η cos2

φ

2
cos2

θ

2

)
−

(1− η

4
+ η sin2 φ

2
sin2 θ

2

)
log

(1− η

4
+ η sin2 φ

2
sin2 θ

2

)
− h

[1− η

2
+ η

(
sin2 φ

2
cos2

θ

2
+ cos2

φ

2
sin2 θ

2

)]
.

(5.28)

Since DB(ρAB) = minσn

(
S(ρA|{σn}B) + S(ρB)− S(ρAB)

)
, the minimization occurs when

S(ρA|{σn}B) is minimum. Taking the derivative of (5.28) with respect to φ,

dS(ρA|{σn}B)
dφ

=
η sinφ

2

(
cos2

θ

2
log

( 1−η
4

+ η sin2 φ
2
cos2 θ

2
1−η
4

+ η cos2 φ
2
cos2 θ

2

)
+

sin2 θ

2
log

( 1−η
4

+ η cos2 φ
2
sin2 θ

2
1−η
4

+ η sin2 φ
2
sin2 θ

2

))
.

(5.29)

Optimizing the above equation, the solutions for φ are both φ = 0 (minimum point)3 and
φ = π/2 (maximum point). Indeed, when φ = 0, then σn = σz, so that

S(ρA|{σz}B) =−
(1− η

4
+ η sin2 θ

2

)
log

(1− η

4
+ η sin2 θ

2

)
−

(1− η

4
+ η cos2

θ

2

)
log

(1− η

4
+ η cos2

θ

2

)
− 2

(1− η

4

)
log

(1− η

4

)
− h

(1− η

2
+ η sin2 θ

2

) (5.30)

is the minimized conditional entropy. Thus, from (3.47), (5.27) and (5.30), the one-way
quantum discord is given by

DB(ρAB) =
(1− η

4

)
log

(1− η

4

)
+
(1 + 3η

4

)
log

(1 + 3η

4

)
−

(1− η

4
+ η sin2 θ

2

)
log

(1− η

4
+ η sin2 θ

2

)
−

(1− η

4
+ η cos2

θ

2

)
log

(1− η

4
+ η cos2

θ

2

)
.

(5.31)

Now, following the definition of the symmetric quantum discord in (3.53), the
optimal observable is the same for the previous case by using the exact same argument.
Moreover, due to the form of the state in (5.19), it is true that ΦσA

z
(ρAB) = ΦσB

z
(ρAB) =

3 Indeed, this result was statistically verified.
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Figure 7 – On the left, the figure shows the plot of Idi(Ω
in
Bob) as a function of η and θ. On the

right, the figure shows the plot of DB(ρAB) as a function of η and θ. Both figures use
the same scale.

ΦσA
z σB

z
(ρAB), and

trA ρAB = ρB =
1− η

2
11B + η

(
cos2

θ

2
|1〉 〈1|+ sin2 θ

2
|0〉 〈0| )

B

= trA ΦσB
z
(ρAB) ≡ ΦσB

z
(ρB),

trB ρAB = ρA =
1− η

2
11A + η

(
cos2

θ

2
|0〉 〈0|+ sin2 θ

2
|1〉 〈1| )

A

= trB ΦσA
z
(ρAB) ≡ ΦσA

z
(ρA),

so that equal states have the same von Neumann entropy, and then the symmetric
quantum discord is simply written as

DAB(ρAB) = S(ΦAB(ρAB))− S(ρAB) +
(
S(ρA)− S(ΦσA

z
(ρA))

)︸ ︷︷ ︸+ (
S(ρB)− S(ΦσB

z
(ρB))

)︸ ︷︷ ︸
0 0

=
(1− η

4

)
log

(1− η

4

)
+
(1 + 3η

4

)
log

(1 + 3η

4

)
−

(1− η

4
+ η sin2 θ

2

)
log

(1− η

4
+ η sin2 θ

2

)
−

(1− η

4
+ η cos2

θ

2

)
log

(1− η

4
+ η cos2

θ

2

)
= DB(ρAB).

(5.32)

In order to verify the connection between irreality in (5.16) and the quantum
discord in (5.31) or (5.32), consider the cases where δI = Idi(Ω

Bob
in ) = 0. This equality

holds only if η sin2 θ
2
= 0, or, considering the domain of each variable, if η = 0 or if

θ = 0. Mathematically, η = 0 or θ = 0 ⇒ Idi(Ω
Bob
in ) = 0, and the phenomenon

does not occur. Now, considering the cases where quantum discord is null, that is,
when (5.31) is zero, the analysis is completely analogous to the previous case of
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Figure 8 – On the left, the figure shows the parametric plot of δI as a function of E(ρAB). On
the right, the figure shows the parametric plot of δI as a function of DB(ρAB). Each
graph consists of 106 points, each corresponding to a randomly generated set {η, θ}
via the method Mersenne Twister of Mathematica.

irreality, since 1+3η
4

= 1−η
4

+ η, and considering only the solutions in agreement within
the domain of each variable, (5.31) is zero when η = 0 or θ = 0, leading to the same
conclusions as those of irreality. Thus, η = 0 or θ = 0 ⇒ DB(ρAB) = 0. Therefore,
there is a perfect agreement between the non-zero quantum discord and the presence
of the phenomenon. Figure 7 illustrates both graphs of Idi(Ω

Bob
in ) and DB(ρAB) as

functions of η and θ, clearly showing that the agreement is complete, unlike the case
with entanglement. Furthermore, Figure 8 shows a statistical analysis between δI and
both E(ρAB) and DB(ρAB). In the case of entanglement, Figure 8 clearly shows that even
when entanglement is zero, δI can still be greater than zero. Moreover, the analysis of
the second graph establishes the following equivalence

δI > 0 ⇔ DB(ρAB) > 0, (5.33)

and there is an equivalence of the form δI ⇔ DB(ρAB).

This analysis suggests that discord is the quantum resource responsible for
the phenomenon. Therefore, it is necessary to study particular cases of discord by
considering a classical-quantum state and verifying whether eliminating discord is
sufficient to eliminate the correlation.

5.3 Bloch states in the Modified Quantum Eraser

This section delves deeper into the investigation initiated in the previous section.
Here, cases where the state is certainly not entangled and discord exists in only one
of the polarization spaces will be considered to examine the role of one-way quantum
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discord in the occurrence of the phenomenon. Thus, entanglement plays no role for the
considered cases in this section. Additionally, realism-based nonlocality is analyzed for
the same types of states. Section 5.3.1 considers one-way quantum discord solely in
Alice’s polarization, while Section 5.3.2 provides an analogous analysis for Bob.

5.3.1 Bloch state at Alice’s site

To begin with quantum discord on Alice’s Hilbert space of polarization, consider
the initial state given by

ρ0 =
[
η
(11 + r0 · σ

2

)
⊗ |0〉 〈0|+ (1− η)

(11 + r1 · σ
2

)
⊗ |1〉 〈1|

]
AB

⊗ |0011〉 〈0011|abd1d2 .
(5.34)

The above state is, then, consisted by a generic qubit state for Alice (not entangled)
and projectors for Bob, considering only the polarizations of the photons, and it is a
quantum-classical state. Thus, as made before for Werner state in (5.5), the state in
(5.34) must be evolved throughout the modified quantum eraser. However, as each
component in the experiment is conducted in the computational basis, considering that
ri = (xi, yi, zi), the above state can be rewritten explicitly in terms of the eigenbasis of
σz, so that it becomes

ρ0 =η
[(1 + z0

2

)
|000011〉 〈000011|+

(1− z0
2

)
|100011〉 〈100011|

+
(x0 + iy0

2

)
|000011〉 〈100011|+

(x0 − iy0
2

)
|100011〉 〈000011|

]
AaBbd1d2

+ (1− η)
[(1 + z1

2

)
|001011〉 〈001011|+

(1− z1
2

)
|101011〉 〈101011|

+
(x1 + iy1

2

)
|001011〉 〈101011|+

(x1 − iy1
2

)
|101011〉 〈001011|

]
AaBbd1d2

(5.35)

The evolution of ρ0 in Bob’s laboratory is as follows. First, after the PBS, the
state becomes

ρPBS =η
[(1 + z0

2

)
|000011〉 〈000011|+

(1− z0
2

)
|100011〉 〈100011|

+
(x0 + iy0

2

)
|000011〉 〈100011|+

(x0 − iy0
2

)
|100011〉 〈000011|

]
AaBbd1d2

+ (1− η)
[(1 + z1

2

)
|001111〉 〈001111|+

(1− z1
2

)
|101111〉 〈101111|

+
(x1 + iy1

2

)
|001111〉 〈101111|+

(x1 − iy1
2

)
|101111〉 〈001111|

]
AaBbd1d2

.

(5.36)
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Then, the HWP changes the polarization of the photon with |1〉b, so that

ρHWP =η
[(1 + z0

2

)
|000011〉 〈000011|+

(1− z0
2

)
|100011〉 〈100011|

+
(x0 + iy0

2

)
|000011〉 〈100011|+

(x0 − iy0
2

)
|100011〉 〈000011|

]
AaBbd1d2

+ (1− η)
[(1 + z1

2

)
|000111〉 〈000111|+

(1− z1
2

)
|100111〉 〈100111|

+
(x1 + iy1

2

)
|000111〉 〈100111|+

(x1 − iy1
2

)
|100111〉 〈000111|

]
AaBbd1d2

.

(5.37)

The above state is then submitted to the interaction with the degrees of freedom DoF 1
and 2, and

ρd =η
[(1 + z0

2

)
|000001〉 〈000001|+

(1− z0
2

)
|100001〉 〈100001|

+
(x0 + iy0

2

)
|000001〉 〈100001|+

(x0 − iy0
2

)
|100001〉 〈000001|

]
AaBbd1d2

+ (1− η)
[(1 + z1

2

)
|000110〉 〈000110|+

(1− z1
2

)
|100110〉 〈100110|

+
(x1 + iy1

2

)
|000110〉 〈100110|+

(x1 − iy1
2

)
|100110〉 〈000110|

]
AaBbd1d2

.

(5.38)

Finally, the above state passes through the mirrors and the BS, and then becomes

ρBob =η
[(1 + z0

2

)
|000ω−01〉 〈000ω−01|+

(1− z0
2

)
|100ω−01〉 〈100ω−01|

+
(x0 + iy0

2

)
|000ω−01〉 〈100ω−01|+

(x0 − iy0
2

)
|100ω−01〉 〈000ω−01|

]
AaBbd1d2

+ (1− η)
[(1 + z1

2

)
|000ω+10〉 〈000ω+10|+

(1− z1
2

)
|100ω+10〉 〈100ω+10|

+
(x1 + iy1

2

)
|000ω+10〉 〈100ω+10|+

(x1 − iy1
2

)
|100ω+10〉 〈000ω+10|

]
AaBbd1d2

.

(5.39)

Considering Alice’s choices, first suppose that she decided to now include the
QWP in the experiment, so that

ρout =η
[(1 + z0

2

)
|000ω−01〉 〈000ω−01|+

(1− z0
2

)
|110ω−01〉 〈110ω−01|

− i
(x0 + iy0

2

)
|000ω−01〉 〈110ω−01|+ i

(x0 − iy0
2

)
|110ω−01〉 〈000ω−01|

]
AaBbd1d2

+ (1− η)
[(1 + z1

2

)
|000ω+10〉 〈000ω+10|+

(1− z1
2

)
|110ω+10〉 〈110ω+10|

− i
(x1 + iy1

2

)
|000ω+10〉 〈110ω+10|+ i

(x1 − iy1
2

)
|110ω+10〉 〈000ω+10|

]
AaBbd1d2

.

(5.40)

The above state is symmetric regarding the choice of post-selection and is nonzero only
for post-selections of the type Dk,a and Dk,b. Thus, by analyzing Bob’s description, the
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final state is written as

ΩBob
out = Ω

Bob|kk
out = trAa

(
ρout(Dk,a,Dk,b)

)
= |0k〉 〈0k|Bb ⊗

η
(

1+z0
2

)
|01〉 〈01|d1d2 + (1− η)

(
1+z1
2

)
|10〉 〈10|d1d2

η
(

1+z0
2

)
+ (1− η)

(
1+z1
2

) .
(5.41)

The above state is clearly diagonal, i.e., the description correspondent to the degrees of
freedom DoF 1 and 2 is merely a statistical mixture, and therefore realistic. Mathemati-
cally,

Φdi(Ω
Bob
out ) = ΩBob

out ⇒ Idi(Ω
Bob
out ) = 0. (5.42)

Considering now the case where Alice decides to include the QWP in the
experiment, the state after the interaction with that becomes

ρQWP =η
[(1 + z0

2

)
|ω+00ω−01〉 〈ω+00ω−01|+

(1− z0
2

)
|ω−00ω−01〉 〈ω−00ω−01|

− i
(x0 + iy0

2

)
|ω+00ω−01〉 〈ω−00ω−01|+ i

(x0 − iy0
2

)
|ω−00ω−01〉 〈ω+00ω−01|

]
AaBbd1d2

+ (1− η)
[(1 + z1

2

)
|ω+00ω+10〉 〈ω+00ω+10|+

(1− z1
2

)
|ω−00ω+10〉 〈ω−00ω+10|

− i
(x1 + iy1

2

)
|ω+00ω+10〉 〈ω−00ω+10|+

(x1 − iy1
2

)
|ω−00ω+10〉 〈ω+00ω+10|

]
AaBbd1d2

.

(5.43)

Then, after the last PBS on Alice’s laboratory, the final description of the system is given
by

ρin = |0〉 〈0|B ⊗[
|00〉 〈00| ⊗

[
η
(1 + y0

2

)
|ω−01〉 〈ω−01|+ (1− η)

(1 + y1
2

)
|ω+10〉 〈ω+10|

]
+ |11〉 〈11| ⊗

[
η
(1− y0

2

)
|ω−01〉 〈ω−01|+ (1− η)

(1− y1
2

)
|ω+10〉 〈ω+10|

]
+ |10〉 〈10| ⊗

[
η
(−z0 + ix0

2

)
|ω−01〉 〈ω−01|+ (1− η)

(−z1 + ix1

2

)
|ω+10〉 〈ω+10|

]
− |01〉 〈01| ⊗

[
η
(z0 + ix0

2

)
|ω−01〉 〈ω−01|+ (1− η)

(z1 + ix1

2

)
|ω+10〉 〈ω+10|

]]
Aabd1d2

.

(5.44)

Choosing the post-selection on Dk,a and Dl,b, Bob’s description is

ΩBob
in = Ω

Bob|kl
in = trAa

(
ρin(Dk,a,Dl,b)

)
= |0l〉 〈0l|Bb ⊗

η
(

1+y0
2

)
|01〉 〈01|d1d2 + (1− η)

(
1+y1
2

)
|10〉 〈10|d1d2

η
(

1+y0
2

)
+ (1− η)

(
1+y1
2

) ,
(5.45)
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that is very similar to (5.41). Moreover, the state in (5.45) is realistic, since it is a
statistical mixture, so that the same conclusion as obtained in (5.42) are reached, that is

Φdi(Ω
Bob
in ) = ΩBob

in ⇒ Idi(Ω
Bob
in ) = 0. (5.46)

It is important to address one final point before concluding this discussion. Both
results in (5.42) and (5.46) are independent of the post-selection chosen due to the
form of the states (5.40) and (5.44). Beyond that, it is interesting that both results are
independent of the initial vectors ri, in the sense that every vector leads to a statistical
mixture.

From the perspective of δI, since the conclusions for both configurations are
independent of post-selection, Eq. (5.4) gives

δI = 0, (5.47)

and the phenomenon never occurs. Since the initial state in (5.34) may have one-way
quantum discord for Alice’s polarization in general, and even symmetric quantum discord,
it is possible to conclude here that neither is sufficient to establish the phenomenon in
study. Furthermore, since the result is independent of the vectors defining the initial
state, allowing one-way quantum discord on Alice’s site while Bob has classical states
will never lead to the phenomenon, independently of the quantum resources present in
the initial state.

5.3.2 Bloch state at Bob’s site

The study here is analogous to the one made in the previous subsection,
however with the following initial state.

ρ0 =
[
η |0〉 〈0| ⊗

(11 + r0 · σ
2

)
+ (1− η) |1〉 〈1| ⊗

(11 + r1 · σ
2

)]
AB

⊗ |0011〉 〈0011|abd1d2 .
(5.48)

The above state throughout the experimental setup in Figure 5 is evolved in a completely
analogous manner as made for the state (5.34). Then, in terms of the computational
basis, the evolution is as follows. First, in Bob’s laboratory, after the PBS the state
becomes
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ρPBS =η

[(1 + z0
2

)
|000011〉 〈000011|+

(1− z0
2

)
|001111〉 〈001111|

− i
(x0 + iy0

2

)
|000011〉 〈001111|+ i

(x0 − iy0
2

)
|001111〉 〈000011|

]
AaBbd1d2

+ (1− η)

[(1 + z1
2

)
|100011〉 〈100011|+

(1− z1
2

)
|101111〉 〈101111|

− i
(x1 + iy1

2

)
|100011〉 〈101111|+ i

(x1 − iy1
2

)
|101111〉 〈100011|

]
AaBbd1d2

.

(5.49)

After the HWP,

ρHWP =η

[(1 + z0
2

)
|000011〉 〈000011|+

(1− z0
2

)
|000111〉 〈000111|

− i
(x0 + iy0

2

)
|000011〉 〈000111|+ i

(x0 − iy0
2

)
|000111〉 〈000011|

]
AaBbd1d2

+ (1− η)

[(1 + z1
2

)
|100011〉 〈100011|+

(1− z1
2

)
|100111〉 〈100111|

− i
(x1 + iy1

2

)
|100011〉 〈100111|+ i

(x1 − iy1
2

)
|100111〉 〈100011|

]
AaBbd1d2

.

(5.50)

When the degrees of freedom DoF 1 and 2 are considered, the state becomes

ρd =η

[(1 + z0
2

)
|000001〉 〈000001|+

(1− z0
2

)
|000110〉 〈000110|

− i
(x0 + iy0

2

)
|000001〉 〈000110|+ i

(x0 − iy0
2

)
|000110〉 〈000001|

]
AaBbd1d2

+ (1− η)

[(1 + z1
2

)
|100001〉 〈100001|+

(1− z1
2

)
|100110〉 〈100110|

− i
(x1 + iy1

2

)
|100001〉 〈100110|+ i

(x1 − iy1
2

)
|100110〉 〈100001|

]
AaBbd1d2

.

(5.51)
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Then, the above state is submitted to the unitary correspondent to the mirrors and the
last BS, so that after Bob’s laboratory the state becomes

ρBob =η

[(1 + z0
2

)
|000ω−01〉 〈000ω−01|+

(1− z0
2

)
|000ω+10〉 〈000ω+10|

− i
(x0 + iy0

2

)
|000ω−01〉 〈000ω+10|+ i

(x0 − iy0
2

)
|000ω+10〉 〈000ω−01|

]
AaBbd1d2

+ (1− η)

[(1 + z1
2

)
|100ω−01〉 〈100ω−01|+

(1− z1
2

)
|100ω+10〉 〈100ω+10|

− i
(x1 + iy1

2

)
|100ω−01〉 〈100ω+10|+ i

(x1 − iy1
2

)
|100ω+10〉 〈100ω−01|

]
AaBbd1d2

.

(5.52)

Analyzing the case when Alice decides to not include the QWP in the experiment,
the final description, after the PBS in Alice’s laboratory, is given by

ρout =η |000〉 〈000|AaB ⊗
[(1 + z0

2

)
|ω−01〉 〈ω−01|+

(1− z0
2

)
|ω+10〉 〈ω+10|

+
(x0 + iy0

2

)
|ω−01〉 〈ω+10|+

(x0 − iy0
2

)
|ω+10〉 〈ω−01|

]
bd1d2

+ (1− η) |110〉 〈110|AaB ⊗
[(1 + z1

2

)
|ω−01〉 〈ω−01|+

(1− z1
2

)
|ω+10〉 〈ω+10|

+
(x1 + iy1

2

)
|ω−01〉 〈ω+10|+

(x1 − iy1
2

)
|ω+10〉 〈ω−01|

]
bd1d2

(5.53)

The state in (5.53) must be considered with some caution, since the choice of post-
selection is relevant for the final description. From (5.53), the post-selection chosen
by Bob is irrelevant. However, if Alice decides to post-select in D0,a, all the physics of
the problem lies on the properties of the state defined by r0, and it is analogous if she
chooses D1,a with r1. Moreover, the final form of the state is the same, so that if the
post-selection is taken into Dk,a by Alice and Dl,b by Bob, his final description is given by

Ω
Bob|k
out = trAa

(
ρout(Dk,a,Dl,b)

)
= |0l〉 〈0l|Bb ⊗

[(1 + zk
2

)
|01〉 〈01|+

(1− zk
2

)
|10〉 〈10|

+
(xk + iyk

2

)
|01〉 〈10|+

(xk − iyk
2

)
|10〉 〈01|

]
d1d2

,

(5.54)

for η ∈ (0, 1) and k, l ∈ {0, 1}. Therefore, there is another important point to discuss. As
the eigenbasis of the observables of the degrees of freedom DoF 1 and 2 are those
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of σz, the state in (5.54) is not realistic in general, since it is described by a generic rk.
Then, the irreality of dj for ΩBob|k

out is calculated as being

Idj(Ω
Bob|k
out ) = h

(1 + zk
2

)
− h

(1 + rk
2

)
, (5.55)

and clearly depends on Alice’s post-selection.

It is worth calculating the cases when the irreality is zero. Due to the form of the
binary entropy, and as rk = (xk, yk, zk), the following conclusion is reached:

Idj(Ω
Bob|k
out )

{
= 0, if rk = zkk,

> 0, if rk > |zk|.
(5.56)

Considering now the case when Alice decides to include the QWP, (5.52) is
submitted to the unitary of the QWP, then becoming

ρQWP =η |ω+00〉 〈ω+00|AaB ⊗
[(1 + z0

2

)
|ω−01〉 〈ω−01|+

(1− z0
2

)
|ω+10〉 〈ω+10|

+
(x0 + iy0

2

)
|ω−01〉 〈ω+10|+

(x0 − iy0
2

)
|ω+10〉 〈ω−01|

]
bd1d2

+ (1− η) |ω−00〉 〈ω−00|AaB ⊗
[(1 + z1

2

)
|ω−01〉 〈ω−01|+

(1− z1
2

)
|ω+10〉 〈ω+10|

+
(x1 + iy1

2

)
|ω−01〉 〈ω+10|+

(x1 − iy1
2

)
|ω+10〉 〈ω−01|

]
bd1d2

,

(5.57)

and after the PBS in Alice’s laboratory, the final description is

ρin =
η

2

( |00〉 〈00|+ |11〉 〈11| − |10〉 〈10| − |01〉 〈01| )
Aa

⊗ |0〉 〈0|B ⊗[(1 + z0
2

)
|ω−01〉 〈ω−01|+

(1− z0
2

)
|ω+10〉 〈ω+10|

+
(x0 + iy0

2

)
|ω−01〉 〈ω+10|+

(x0 − iy0
2

)
|ω+10〉 〈ω−01|

]
bd1d2

+
1− η

2

( |00〉 〈00|+ |11〉 〈11|+ |10〉 〈10|+ |01〉 〈01| )
Aa

⊗ |0〉 〈0|B ⊗[(1 + z1
2

)
|ω−01〉 〈ω−01|+

(1− z1
2

)
|ω+10〉 〈ω+10|

+
(x1 + iy1

2

)
|ω−01〉 〈ω+10|+

(x1 − iy1
2

)
|ω+10〉 〈ω−01|

]
bd1d2

.

(5.58)

Interestingly, different from what occurred in (5.53), the post-selection chosen is not
relevant for the final description of the state (5.58). Thus, choosing the post-selection in
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Dk,a and Dl,b, Bob’s final description is given by

ΩBob
in = Ω

Bob|kl
in = trAa

(
ρin(Dk,a,Dl,b)

)
= |00〉 〈0l|Bb ⊗

{[
η
(1 + z0

2

)
+ (1− η)

(1 + z1
2

)]
|01〉 〈01|

+
[
η
(1− z0

2

)
+ (1− η)

(1− z1
2

)]
|10〉 〈10|

+
[
η
(x0 + iy0

2

)
+ (1− η)

(x1 + iy1
2

)]
|01〉 〈10|

+
[
η
(x0 − iy0

2

)
+ (1− η)

(x1 − iy1
2

)]
|10〉 〈01|

}
d1d2

.

(5.59)

The Eq. (5.59) has a very similar form as (5.54), the difference is that, in the
first, the vectors defining the initial state are combined convexly, whereas in the second,
the vectors are defined based on post-selection. Calculating the irreality of the state
(5.59), it is obtained that

Idj(Ω
Bob
in ) = h

(1 + |ηz0 + (1− η)z1|
2

)
− h

(1 + ||ηr0 + (1− η)r1||
2

)
. (5.60)

By the same analysis as that made before for I(ΩBob|k
out ), it is possible to investigate the

cases when Idj(Ω
Bob
in ), and due to the form of the binary entropy alongside the vectors,

Idj(Ω
Bob
in )

{
= 0, if rk = zkk, ∀k,
> 0, if ∃k | rk �= zkk.

(5.61)

One additional discussion to the irrealities is to indeed understand when the
phenomenon occurs. Regarding the present work, it is assumed that if there exists a
single case, for the same post-selection, where the irreality without the QWP and with
the QWP differ, i.e., the presence of the QWP influences the final ontological description,
the phenomenon is occurring. Analyzing its occurrence using δI, from Eq. (5.4), it is
necessary to obtain the probability distribution associated to each post-selection choice.
In the case of QWPout configuration, Eq. (5.53) provides

poutkl ≡ poutk =

{
η, if k = 0,

1− η, if k = 1.

Thus,∑
kl

poutkl Idj(Ω
Bob|kl
out ) =

∑
k

poutk Idj(Ω
Bob|k
out ) = ηIdj(Ω

Bob|0
out ) + (1− η)Idj(Ω

Bob|1
out ), (5.62)

where Eq. (5.54) was also used. Moreover, since it was shown that for the QWPin

configuration the results are independent of post-selection, one can write∑
kl

pinklIdj(Ω
Bob|kl
in ) = Idj(Ω

Bob
in )

∑
kl

pinkl = Idj(Ω
Bob
in ). (5.63)
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Therefore, from Eqs. (5.62) and (5.63),

δI = |Idj(Ω
Bob
in )− ηIdj(Ω

Bob|0
out )− (1− η)Idj(Ω

Bob|1
out )|. (5.64)

Eq. (5.64) can be analyzed by defining ΔIi := |Idj(Ω
Bob
in )− Idj(Ω

Bob|i
out )|, that is

an indicator of the phenomenon for a given post-selection4. Then,

δI ≤ ηΔI0 + (1− η)ΔI1, (5.65)

so that when the phenomenon does not occur for any post-selection, then δI = 0. The
case when the phenomenon never occurs for that situation is when both vectors defining
the initial state are parallel to k.

In what follows, let the initial one-way quantum discord be analyzed for the
two possible configurations in order to investigate its role for the presence of the
phenomenon.

The one-way quantum discord is going to be calculated from Eq. (3.52). How-
ever, the observable for that case will be free, that is, it is written as σn = n · σ.
Considering the state (5.48), it is necessary to calculate S(ρ0), S(trA ρ0), S(ΦσB

n
(ρ0)) and

S(ΦσB
n
(trA ρ0)). Before the von Neumann entropies, it is necessary calculating the term

ΦσB
n
(ρ0). For such, considering the Bloch representation for the projectors of σn,

Φσn

[1
2

(
11 + r · σ)] = 1

8

[(
11 + n · σ)(11 + r · σ)(11 + n · σ)

+
(
11− n · σ)(11 + r · σ)(11− n · σ)]

=
1

4

[
11 + r · σ + (n · σ)2 + (n · σ)(r · σ)(n · σ)

]
=

1

4

[
2 · 11 + r · σ + (n · σ)(n · r) + i

(
(n× r) · σ)(n · σ)

]
=

1

4

[
2 · 11 + r · σ + (n · σ)(n · r)− (

(n× r)× n
) · σ]

=
1

2

[
11 +

(
(n · r)n) · σ].

(5.66)

This result shows that the measurement of σn projects the vector r in the direction of n.
Thus, it follows that

ΦσB
n
(ρ0) =

[
η |0〉 〈0| ⊗

(11 + (
(n · r0)n

) · σ
2

)
+ (1− η) |1〉 〈1| ⊗

(11 + (
(n · r1)n

) · σ
2

)]
AB

⊗ |0011〉 〈0011|abd1d2 .
(5.67)

Therefore, from the above state, the necessary entropies are

S(ΦσB
n
(ρ0)) = h(η) + ηh

(1 + r0 · n
2

)
+ (1− η)h

(1 + r1 · n
2

)
,

S(trA ΦσB
n
(ρ0)) = h

(1 + (ηr0 + (1− η)r1) · n
2

)
,

(5.68)

4 Because of the structure of the state in (5.53), this quantity is well-defined only when η ∈ (0, 1).
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Figure 9 – The Figure illustrates the parametric plot of δI as a function of DB(ρ0). The
graph consists of 104 points, each corresponding to a randomly generated set
{η, x0, y0, z0, x1, y1, z1, θn, ϕn} via the method Mersenne Twister of Mathematica.

and from the initial state (5.48),

S(ρ0) = h(η) + ηh
(1 + r0

2

)
+ (1− η)h

(1 + r1
2

)
,

S(trA ρ0) = h
(1 + ||ηr0 + (1− η)r1||

2

)
.

(5.69)

Then, from (5.68) and (5.69), one-way quantum discord can be written as

DB(ρ0) =min
n

[
h
(1 + |ηr0 + (1− η)r1|

2

)
− h

(1 + (ηr0 + (1− η)r1) · n
2

)

+ η

(
h
(1 + r0 · n

2

)
− h

(1 + r0
2

))
+ (1− η)

(
h
(1 + r1 · n

2

)
− h

(1 + r1
2

))]
.

(5.70)

As previously discussed, it was concluded that the correlation between Alice’s
choices and Bob’s ontological description does not occur for (5.48) only when r0 = z0k

and r1 = z1k. Hence, in this situation the state is ρ0,z, and (5.70) becomes

DB(ρ0,z) =min
n

[
h
(1 + ηz0 + (1− η)z1

2

)
− h

(1 + (ηz0 + (1− η)z1)k · n
2

)

+ η

(
h
(1 + z0k · n

2

)
− h

(1 + z0
2

))
+ (1− η)

(
h
(1 + z1k · n

2

)
− h

(1 + z1
2

))]
,

and the minimization is reached for n = k, so that

DB(ρ0,z) = 0. (5.71)

On the other hand, as r0 and r1 are generic vectors, (5.70) is non-zero in general, since
there is no choice of n so that there is no perturbation in the initial state. However,
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there are other possibilities of having zero discord according to (5.70), which occur
when the vectors r0 and r1 are parallel. In this case, the minimization takes place
with the choice of an observable defined by n = ri. Nevertheless, for such cases the
phenomenon occurs, so that the one-way quantum discord is zero and even though the
phenomenon is observed. Moreover, since the absence of discrepancy between the
final irrealities depends solely on the z components of the vectors, there exist states
with zero symmetric quantum discord that still exhibit the phenomenon.

Resorting to computational methods, the parametric plot in Figure 9 shows the
dependence of δI, as written in (5.64), with DB(ρ0). From the plot, it is clear that even
when quantum discord is zero, there is still a non-zero value for δI, and the phenomenon
occurs. On the other hand, the non-occurrence of the phenomenon guarantees that the
one-way quantum discord is zero. In summary, one-way quantum discord, in the sense
of strictly quantum correlations, cannot be fundamental for this phenomenon.

5.3.3 The role of Realism-Based Nonlocality

As previously discussed in section 3.3.4, if entanglement and quantum discord
are zero, realism-based nonlocality is not necessarily zero. Then, the investigation
of this resource is of great importance for sake of completeness. Firstly, it is worth
mentioning that it was shown that both entanglement and one-way quantum discord
are not necessary for establishing the observed phenomenon discussed so far. This
is already a significant result, demonstrating that the set of initial states capable of
correlating elements of reality is vast.

Concerning realism-based nonlocality, it is necessary to investigate only one
case, which is that with Bloch states in Bob’s site, given by Eq. (5.48). The reason
for analyzing only this state is that it is separable, and therefore not entangled, while
the cases in which its discord is null are well-known. Thus, as the previous case
demonstrated that discord is not necessary for observing the phenomenon, it remains
to be determined what can be concluded regarding the realism-based nonlocality of
this state. Another important point to be mentioned is that, as discussed in subsection
3.3.4, if one single case occurs so that N (σA

n , σ
B
m|ρ) > 0, then N (ρ) > 0 and there is

realism-based nonlocality.

Considering a context given by {σA
n , σ

B
m, ρAB}, with

ρAB = η |0〉 〈0|A ⊗
(11 + r0 · σ

2

)
B
+ (1− η) |1〉 〈1|A ⊗

(11 + r1 · σ
2

)
B
, (5.72)
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we calculate

ΦσA
n
(ρAB) = η

(11 + (n · k)σn

2

)
A
⊗

(11 + r0 · σ
2

)
B

+ (1− η)
(11− (n · k)σn

2

)
A
⊗

(11 + r1 · σ
2

)
B
,

(5.73)

Then, choosing the eigenbasis of σn for HA, the above state becomes

ΦσA
m
(ρAB) =

1

4

[
11 +

(
η(1 + (n · k))r0 + (1− η)(1− (n · k))r1

) · σ + (2η − 1)(n · k)11
]
B

⊗ |0〉 〈0|nA +
1

4

[
11 +

(
η(1− (n · k))r0 + (1− η)(1 + (n · k))r1

) · σ
− (2η − 1)(n · k)11

]
B

⊗ |1〉 〈1|nA ,

(5.74)

where
|0〉 〈0|n =

11 + σn

2
, |1〉 〈1|n =

11− σn

2
. (5.75)

Therefore, the above state is diagonal if one considers the subspaces spanned by |0〉n
and |1〉n and the eigenvectors of the Bloch representation of each bracket. In other
words, the idea is that the identity state is diagonal in any basis, so that choosing the
eigenbasis of the states specified by the vectors η(1± (n · k))r0 + (1− η)(1∓ (n · k))r1,
say |r±

0η〉 for the first bracket and |r±
1η〉 for the second, the above state is diagonal in the

basis {∣∣0nr+
0η

〉
,
∣∣0nr−

0η

〉
,
∣∣1nr+

1η

〉
,
∣∣1nr−

1η

〉}AB, so that its eigenvalues are the own terms
as written in the Bloch representation, and thus

S
(
ΦσA

n
(ρAB)

)
= −1

4

[
1 + ||η(1 + (n · k))r0 + (1− η)(1− (n · k))r1||+ (2η − 1)(n · k)

]
· log

(
1

4

[
1 + ||η(1 + (n · k))r0 + (1− η)(1− (n · k))r1||+ (2η − 1)(n · k)

])

−1

4

[
1− ||η(1 + (n · k))r0 + (1− η)(1− (n · k))r1||+ (2η − 1)(n · k)

]
· log

(
1

4

[
1− ||η(1 + (n · k))r0 + (1− η)(1− (n · k))r1||+ (2η − 1)(n · k)

])

−1

4

[
1 + ||η(1− (n · k))r0 + (1− η)(1 + (n · k))r1|| − (2η − 1)(n · k)

]
· log

(
1

4

[
1 + ||η(1− (n · k))r0 + (1− η)(1 + (n · k))r1|| − (2η − 1)(n · k)

])

−1

4

[
1− ||η(1− (n · k))r0 + (1− η)(1 + (n · k))r1|| − (2η − 1)(n · k)

]
· log

(
1

4

[
1− ||η(1− (n · k))r0 + (1− η)(1 + (n · k))r1|| − (2η − 1)(n · k)

])
.

(5.76)
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For the calculation of ΦσB
m

(
ΦσA

n
(ρAB)

)
the procedure is similar to the previous

one. The difference is that when ΦσB
m

is applied, the state (5.73) becomes

ΦσB
m

(
ΦσA

n
(ρAB)

)
= η

(11 + (n · k)σn

2

)
A
⊗

(11 + (m · r0)σm

2

)
B
+

(1− η)
(11− (n · k)σn

2

)
A
⊗

(11 + (m · r1)σm

2

)
B
,

(5.77)

and the eigenvalues are obtained in a similar for of those in (5.74), but now the state
is diagonal in the basis {|0n0m〉 , |0n1m〉 , |1n0m〉 , |1n1m〉}AB, so that the von Neumann
entropy of the above state, S

(
ΦσB

m

(
ΦσA

n
(ρAB)

))
= S

(
ΦσB

mσA
n
(ρAB)

)
, is given by

S
(
ΦσB

mσA
n
(ρAB)

)
=−1

4

[
1 + |(η(1 + (n · k))r0 + (1− η)(1− (n · k))r1) ·m|+ (2η − 1)(n · k)

]
· log

(
1

4

[
1 + |(η(1 + (n · k))r0 + (1− η)(1− (n · k))r1) ·m|+ (2η − 1)(n · k)

])

−1

4

[
1− |(η(1 + (n · k))r0 + (1− η)(1− (n · k))r1) ·m|+ (2η − 1)(n · k)

]
· log

(
1

4

[
1− |(η(1 + (n · k))r0 + (1− η)(1− (n · k))r1) ·m|+ (2η − 1)(n · k)

])

−1

4

[
1 + |(η(1− (n · k))r0 + (1− η)(1 + (n · k))r1) ·m| − (2η − 1)(n · k)

]
· log

(
1

4

[
1 + |(η(1− (n · k))r0 + (1− η)(1 + (n · k))r1) ·m| − (2η − 1)(n · k)

])

−1

4

[
1− |(η(1− (n · k))r0 + (1− η)(1 + (n · k))r1) ·m| − (2η − 1)(n · k)

]
· log

(
1

4

[
1− |(η(1− (n · k))r0 + (1− η)(1 + (n · k))r1) ·m| − (2η − 1)(n · k)

])
.

(5.78)

From (5.76) and (5.78), the irreality for ΦσB
m

(
ΦA

σn
(ρAB)

)
is obtained.

For the calculation of IσB
m
(ρAB), from (5.66), ΦσB

m
(ρAB) is written as

ΦσB
m
(ρAB) = η |0〉 〈0|A ⊗

(11 + (m · r0)σm)

2

)
B
+ (1− η) |1〉 〈1|A ⊗

(11 + (m · r1)σm

2

)
B
,

(5.79)
so that

S(ΦσB
m
(ρAB)) = h(η) + ηh

(1 +m · r0
2

)
+ (1− η)h

(11 +m · r1
2

)
. (5.80)

From Eq. (5.69) and (5.80), the irreality for σB
m is

IσB
m
(ρAB) = η

[
h
(1 +m · r0

2

)
− h

(1 + r0
2

)]
+ (1− η)

[
h
(1 +m · r1

2

)
− h

(1 + r1
2

)]
.

(5.81)
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Figure 10 – The Figure illustrates the parametric plot of δI as a function of N (ρAB). The
graph consists of 104 points, each corresponding to a randomly generated set
{η, x0, y0, z0, x1, y1, z1, θn, ϕn, θm, ϕm} via the method Mersenne Twister of Mathe-
matica.

Note that if m = k, the above equation becomes IσB
z
(ρAB) = ηId(Ω

Bob|0
out ) + (1 −

η)Id(Ω
Bob|1
out ), with Id(Ω

Bob|k
out ) given in (5.55). Thus, from (3.58), (5.76), (5.78) and (5.81),

the realism-based nonlocality is given by

N (ρAB) = max
σA
n ,σB

m

[
η
[
h
(1 +m · r0

2

)
− h

(1 + r0
2

)]
+ (1− η)

[
h
(1 +m · r1

2

)

− h
(1 + r1

2

)]
− S

(
ΦσB

m

(
ΦσA

n
(ρAB)

))
+ S

(
ΦσA

n
(ρAB)

)]
.

(5.82)

The first point to be mention (as a sanity check for the calculations) is that, indeed, if
both vectors are in the k direction, N (ρAB) = 0, as expected. However, in order to truly
analyze the role of realism-based nonlocality it is necessary to resort to computational
methods. Figure 10 illustrates how δI depends on the presence of N (ρAB). Thus, it
is possible to note that N = 0 indeed guarantees the absence of the phenomenon.
However, the converse is not true, that is, the absence of the phenomenon does not
guarantees a local state in the sense of N = 0.

5.4 Final discussion

There are some important points to mention regarding the last results. As we
have shown, the conclusion of the previous analysis was that none of the presented
resources are fundamental for establishing the correlation. The first hypothesis to
understand this result is that some of the measurements within the process may remove
the dependence of the final state on the initial state. Moreover, since post-selection is



CHAPTER 5. INVESTIGATION OF THE QUANTUM RESOURCE FOR LOCAL
REALISM ERASURE 105

essential for the occurrence of the phenomenon, it could also contribute to eliminating
this dependence.

The case where both initial vectors r0 and r1 are parallel to k establishes a
classical-classical state in the eigenbasis of the observable chosen to measure the
degrees of freedom, i.e., the initial state is diagonal in this basis. It was shown that
for these types of states, the phenomenon does not occur. However, if the observable
chosen to measure the DoF is σn, the same conclusions would apply to vectors in
the n direction. Therefore, the off-diagonal elements in the space of Bob’s photon’s
polarization appear to be fundamental here. To deepen this discussion, the off-diagonal
elements of the initial state can be assessed by its irreality, given by

IσB
z
(ρAB) = ηId(Ω

Bob|0
out ) + (1− η)Id(Ω

Bob|1
out ). (5.83)

Regarding the description in terms of δI, for the case of Bloch states at Bob’s
site, Eq. (5.64) contains the same expression as Eq. (5.83). Moreover, due to the form
of the initial state and the final descriptions of irreality, given by Eqs. (5.55) and (5.60), it
is also possible to state that, for ρB = trA ρAB, where ρAB is defined in Eq. (5.72),

IσB
z
(ρB) = h

(1 + |ηz0 + (1− η)z1|
2

)
− h

(1 + ||ηr0 + (1− η)r1||
2

)
= Idj(Ω

Bob
in ).

(5.84)

Thus, since δI is written as the difference of the results in Eqs. (5.83) and (5.84), Eq.
(5.64) can be rewritten as

δI = |Idj(ρB)− IσB
z
(ρAB)|,

and from Eq. (3.36) we show that

δI = DσB
z
(ρAB). (5.85)

Thus, the quantity that indicates the occurrence of the phenomenon is the discord of
the σB

z measurement on Bob’s photon polarization, which is precisely the observable
chosen to measure the DoF.

It is important to highlight the role of classical-classical states. Revisiting the
earlier discussion, since the phenomenon’s occurrence is tied to the presence of discord
for the σB

z measurement, any initial state with off-diagonal elements in the σB
z basis leads

to δI > 0, establishing a deep connection with measurement incompatibility. In other
words, some classical-classical states result in δI > 0, indicating that the phenomenon
is fundamentally linked to discord-type correlations, in addition to the irreality of σB

z .

Figure 11 illustrates the behavior of δI when plotted as a function of IσB
z
(ρAB).

Thus, statistically speaking it is possible to conclude from the data in the mentioned
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Figure 11 – The Figure illustrates the parametric plot of δI as a function of IσB
z
(ρAB). The

graph consists of 106 points, each corresponding to a randomly generated set
{η, x0, y0, z0, x1, y1, z1} via the method Mersenne Twister of Mathematica.

Figure that IσB
z
(ρAB) ≥ δI, indeed establishing a condition of necessity of the initial

irreality of σB
z for the occurrence of the phenomenon. Moreover, from the data in Figures

9 and 10, the following chain of inequalities is shown to hold5:

N (ρAB) ≥ δI ≥ DB(ρAB). (5.86)

Thus, although it is not possible to establish an equivalence between these resources,
the above equation shows that δI is bounded by the realism-based nonlocality and the
minimized discord. Consequently, the phenomenon never occurs when N (ρAB) = 0.
Furthermore, Eq. (5.86) establishes that DB(ρ0) > 0 ⇒ δI > 0, although the converse
does not hold.

The previous discussion is easier understood when analyzed by the perspec-
tive of the result in Eq. (5.85). Indeed, as DB(ρAB) = minn DσB

n
(ρAB), it is clear that

DσB
z
(ρAB) ≥ DB(ρAB). Additionally, the relation between the discord of the measurement

and realism-based nonlocality is considered in the hierarchy of quantum resources,
with the latter representing a bigger set6. Then, the phenomenon occurs only when the
state ρAB does not have element of reality for σB

z and the map ΦσB
z

reduces correlations.
Indeed, these correlations are not genuinely quantum, since the discord of the measure-
ment is greater than the minimized discord in general, with the latter representing the
genuinely quantum correlations.

Recovering now the results of the analysis made with the Werner state, it was
shown by Eq. (5.33) that the minimized discord was fundamental. However, it does not
5 since DB(ρ0) = DB(ρAB).
6 That is, the set of states pursuing realism-based nonlocality is bigger than the discordant one.
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go against our conclusions on the previous case, since for the Werner state in (5.19),
Eq. (5.31) is precisely the discord of the measurement of σB

z . This is a particular case
where the discord of the measurement encodes the genuinely quantum correlations.

The case of local realism erasure also warrants discussion. Regarding the
discussion of Werner states, from Eq. (5.16), the only cases where there is no realism
erasure are when Idi(Ω

Bob
in ) = 0, i.e., when η = 0 or θ = 0. These cases align with the

last point mentioned in the previous discussion: if there are no off-diagonal elements
in the space of Bob’s photon’s polarization, there is no realism erasure. Regarding the
Bloch states, Section 5.3.1 demonstrated that a classical state of polarization in Bob’s
photon, as described in (5.34), is incapable of generating the phenomenon, and thus,
there is no realism erasure. On the other hand, for a general state of Bob’s polarization,
as given by (5.48), the only case where all the final irrealities are zero is when both
initial vectors are aligned with k, thereby establishing a classical state as before.
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CHAPTER 6

Conclusions

This work deepens the analysis of the experiment proposed in [25, 26], where
a modified version of a quantum eraser experiment was introduced. In this setup,
depending on Alice’s choice to insert a QWP into her optical arrangement, the elements
of reality associated with two general degrees of freedom in Bob’s laboratory are altered.
Thus, the aim of this work was to investigate the quantum resource responsible for this
phenomenon.

The approach considered in this work was to define an unbiased quantity
from the perspective of post-selection choices, named δI. Such quantity proved to be
reasonable in the detection of the phenomenon. Thus, the analysis of each quantum
resource for each class of states was done by comparing the presence of each of them
with the values of δI, so that it was possible to conclude the relation of necessity and
sufficiency of each of the analyzed quantum resources.

Firstly, we generalized the original results by introducing noise into the system
through a Werner state. This study not only recovered the original findings, but also pro-
vided new insights into the role of entanglement. While the original description focused
on pure states, where quantum resources overlap, our initial approach demonstrated
that entanglement is not essential for the occurrence of the phenomenon. However,
this approach established a one-to-one relationship between the phenomenon and the
presence of quantum discord, a measure of genuinely quantum correlations. To further
investigate the role of quantum discord in this context, the next step was to consider
separable states expressed in the Bloch representation.

For a class of states, which we call Bloch local states, surely not entangled, it
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has been shown that when Bob’s system is described by an eigenstate of σz, regardless
of Alice’s state, the phenomenon never occurs. On the other hand, if Bob’s system is
described by a Bloch state, the phenomenon generaly occurs. Moreover, even when
Bob state is nondiscordant, in the sense of possessing exclusively quantum correlations,
the phenomenon still happens, demonstrating that neither entanglement nor quantum
discord are essential for its occurrence.

Since entanglement and quantum discord are inconsequential for observing dis-
tinct final irrealities, realism-based nonlocality was the next quantum resource analyzed.
Our approach, that considered the quantity δI, demonstrated that the presence of the
phenomenon is upper bounded by realism-based nonlocality. Furthermore, a similar
behavior of δI with both N and IσB

z
was observed, so that the initial irreality for σB

z also
serves as an upper bound for δI. Consequently, the phenomenon cannot occur if N
and IσB

z
are zero, establishing that both these resources are necessary, although not

sufficient, for the occurrence of the phenomenon.

However, while the occurrence of the phenomenon is possible for nondiscordant
states in the sense discussed earlier (based on the analysis of Bloch states), it remains
deeply connected to the discord of the measurement of σB

z , establishing equality in
certain cases. In the case of the Werner state, the optimal measurement was precisely
σB
z , leading to an equivalence between the phenomenon and quantum discord. On the

other hand, for Bloch states, σB
z is not the optimal observable, resulting in a quantity

that accounts for both classical and quantum correlations. Thus, the phenomenon is
constrained to states exhibiting correlations (classical and/or quantum) and lacking
elements of reality for σB

z . Therefore, the studies conducted in this work suggest that
classical correlations and coherence in the σz-basis establish the phenomenon of local
realism erasure.

A promising direction for future work is to extend this analysis to general two-
qubit states. In this study, we examined two classes of states and derived general
conclusions for them. A natural next step is to consider an arbitrary two-qubit initial
state and investigate whether our conclusions hold in a broader context, potentially
identifying new cases beyond those covered in this work. Additionally, future research
could explore the conditions under which δI is not just equivalent to but exactly equal to
the discord of the measurement.
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