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RESUMO

Nesse trabalho abordamos a termodinâmica de buracos negros utilizando o formalismo

da gravitação quântica euclidiana, que se baseia na formulação das integrais de

caminho da teoria quântica de campos. Apesar das diversas aplicações em física,

essa formulação apresenta alguns problemas referentes a definições matemáticas,

especialmente em relação à medida funcional das integrais de caminho. Na formulação

usual, as integrais não são invariantes por redefinições de campos, que são similares

a mudanças de coordenadas no espaço de configuração dos campos. Explorando

uma melhor definição da medida funcional, para garantir a invariância das integrais de

caminho, obtemos uma correção de um loop à ação efetiva do sistema considerado.

No contexto da termodinâmica de buracos negros, essa correção introduz um termo na

ação efetiva, similar à presence de uma constante cosmológica, a qual interpretamos

como uma pressão no buraco negro.

Palavras-chaves: Termodinâmica de buracos negros; gravitação quântica; medida

funcional; correção de um loop.



ABSTRACT

In this work, we study the thermodynamics of black holes using the formalism of Eu-

clidean quantum gravity. This formalism is based on the path integral formulation of

quantum field theory. Despite its wide applications in physics, this formulation presents

some issues related to the mathematical definitions, especially regarding the functional

measure of the path integrals. In the usual formulation, these integrals are not invariant

under field redefinitions, which play the role of coordinate transformations in the configu-

ration space of fields. Exploring a better definition of the functional measure, to render

the path integrals invariant, we obtain a one-loop correction to the effective action of

the system considered. In the context of black hole thermodynamics, this correction

introduces a term in the effective action similar to the presence of a cosmological

constant, which is interpreted as a pressure in the black hole.

Key-words: Black hole thermodynamics; quantum gravity; functional measure; one-loop

correction.
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CHAPTER 1

Introduction

The theory of general relativity has been remarkably successful in describing

the gravitational interaction. The other three fundamental interactions, namely the

electromagnetic, strong and weak interactions, are described by the standard model

of particle physics. While general relativity is formulated as a classical field theory, the

standard model is based on quantum field theory. To address this asymmetry in the

theoretical treatment of the fundamental interactions, physicists have been pursuing the

development of a quantum theory of gravity.

General relativity successfully explained numerous gravitational phenomena,

ranging from the dynamics of planetary motion within solar system to emission of gravi-

tational waves by astronomical objects and the formation of galaxies [1]. This theory

radically transformed our understanding about space, time and gravity. In general rela-

tivity, space and time are unified into a four-dimensional construct known as spacetime,

and gravity emerges as a manifestation of the curvature of this structure.

Despite its success, certain issues suggest that general relativity may be in-

complete. For instance, the theory predicts regions where the curvature of spacetime

becomes infinite, leading to the formation of singularities. Furthermore, the continued

collapse of matter is predicted to result in objects of infinite density, known as black

holes. These infinities are interpreted as breakdowns of general relativity, indicating the

need for a more fundamental theory to provide a proper description of gravity [2, 3].

The predictions of the standard model have demonstrated remarkable agree-

ment with the experimental data in particles physics [4]. This model is founded on

quantum field theories that describe elementary particles and their interactions. These
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quantum field theories are constructed using principles of quantum mechanics and

special relativity, excluding gravitational effects. However, according to the equivalence

principle in general relativity, gravity influences all forms of matter. Thus, incorporating

gravity into the study of elementary particles is essential for achieving a more precise

description of the fundamental laws of nature [5]. Consequently, the development of

a quantum theory of gravity is necessary to align gravity with the framework of the

standard model.

An initial step toward a quantum theory of gravity is the approach known

as quantum field theory in curved spacetimes. In this framework, gravity is treated

as a classical field, while the matter fields are subjected to quantization. Using this

treatment, Hawking predicted that black holes emit thermal radiation, a phenomenon

not accounted for by general relativity [6]. Within this approach, it is also possible to

derive an expression for the black hole entropy, showing it to be proportional to the area

of the event horizon. These relationship was first conjectured by Bekenstein in his study

of black hole thermodynamics [7]. These predictions suggest a fundamental connection

between gravitation, quantum mechanics and, thermodynamics [2].

Quantum field theories are generally formulated using two main approaches.

The first relies on operators and the canonical quantization of classical field theories. The

second approach is based on path integrals, which provide an immediate connection

to statistical mechanics through the imaginary time formalism. This connection allows

us to study the thermodynamic properties of quantum fields [8]. The application of this

formalism to the study of gravitation forms the basis of what is known as Euclidean

quantum gravity. Using this approach, Hawking and Gibbons successfully derived

the partition function for gravitational systems and reproduced the results previously

obtained by Hawking through the operator formalism [9].

Although the path integral formulation is well-stablished and is widely employed

across various areas of physics, the path integrals lack a rigorous mathematical def-

inition. One of the primary concerns relates to the functional measure, which is not

invariant under general field redefinitions [10, 11]. This is similar to the laws of physics

depending on a preferred class of coordinate systems, a highly undesirable feature.

To address this issue, the functional measure can be modified to ensure invariance

under general field redefinitions. Such modification may introduce one-loop contributions

to the effective action of the theory. This approach can be employed to give a better

definition to the path integral formalism and open pathways to explore new physics, from

extensions of the standard model to quantum gravity [12–14].

With these considerations in mind, the aim of this thesis is to investigate one-

loop contributions to the partition function of gravitational systems. These contribution

arise from the modification of the functional measure, ensuring its invariance under
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general field redefinitions. We are particularly interested in obtaining modifications of

the usual thermodynamic quantities of black holes due to quantum effects. To provide a

comprehensive introduction to the subject of black hole thermodynamics, this thesis is

organized in several chapters, covering the necessary material for a clear understanding

of the central topic.

In Chapter 2, we construct the theory of general relativity from basic assump-

tions. To motivate the mathematical treatment adopted, we begin with a brief review

of the evolution of the concepts of space and time, from classical to modern physics.

Subsequently, introduce the mathematical foundations of manifolds and its application

to obtain the Einstein’s field equations.

Chapter 3 is devoted to a general introduction to quantum field theory. We

begin with a conceptual discussion of quantum fields, followed by a review of key topics

from classical and quantum physics. These reviews aim to provide a foundation for an

accessible introduction to the path integral formulation of quantum field theory. The

issues related to the functional measure are addressed, and we introduce the topic of

statistical field theory.

Chapter 4 focuses on the study of black hole thermodynamics. The first section

offers a concise review of black hole physics. subsequently, tools from statistical field

theory are employed to study black hole thermodynamics.

In Chapter 5, we extend the calculations from Chapter 4 by including the one-

loop contributions arising from modifications to the functional measure.

Finally, in chapter 6, we present our conclusions and outline potential directions

for future work.
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CHAPTER 2

General Relativity

This chapter is devoted to the presentation of the theory of general relativity.

We start by discussing the concepts of space and time in classical physics and how they

evolved to give origin to the idea of spacetime. In order to formulate general relativity

as a geometrical theory of spacetime, we introduce the notion of manifolds and the

tools needed to study their geometry. The last part of the chapter is dedicated to the

derivation of the Einstein field equation. All the content presented in this chapter is

based on [2] unless otherwise stated.

2.1 Spacetime

In this section, we briefly discuss the concepts of space and time in physics, as

well as their evolution, from classical physics to their unification under a new structure

called spacetime in the twentieth century.

To study a physical problem in classical physics, such as the motion of material

bodies in space, we assume that the physical space has the same structure as the

Euclidean space R
3. That is, we postulate that to each position in space we can

associate a point x = (x1, x2, x3) in R
3, which allows us to define a coordinate system to

analyse the physical phenomenon of interest. We also postulate that there exists a real

parameter, called time and denoted by t, which parametrizes the dynamics of physical

systems, i.e., we can write the evolution of physical quantities as functions depending

on t. Effectively, what we do is similar to put three rigid rulers, mutually orthogonal and
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with coinciding origin, at some position in space, and use a clock to track the dynamics

of the system under study. We refer to individuals equipped with a method of measuring

distances and a method of measuring time intervals as observers. The observer’s clock

together with the coordinate system will be called frame of reference. Note that space

and time are assumed to exist on their own right. By saying this we mean that the time

parameter is independent of the position in space and evolves in the same way in all

points. Also, the structure of the space does not change as time passes. So, if it was

possible to put a clock at every position in space, all previously synchronized with each

other, they would always agree. Also, with the passing of time, the rulers used to define

positions would never stretch, bend, nor have any change.

Since each observer can define its frame of reference at its will, by choosing a

particular point to be the origin of the coordinate system and also choosing a particular

orientation of coordinate axes, we can ask if all observers will describe physical phe-

nomena in equivalent ways. That is, are the laws of physics the same for all observers?

The theory of Galilean relativity is concerned exactly with the way different observers

describe the same mechanical phenomena and the relation between their descriptions

[15]. In the Newton formulation of classical mechanics, it is assumed that there exist a

set of preferred frames of reference, called inertial frames. They constitute a special

class of frames of reference because Newton’s Laws of Motion hold in any inertial frame.

This motivates the statement of a key principle in Newtonian mechanics:

Restricted Principle of Special Relativity: All inertial frames are equivalent as

far as dynamical experiments are concerned.

The translation from the description of a particular inertial frame to any other is

done by means of a class of transformations called Galilean transformations. Consider

an inertial frame of reference S, which uses coordinates (x1, x2, x3) and time t, and a

second inertial frame of reference S ′, which uses coordinates (x′ 1, x′ 2, x′ 3) and time t′.

Let the x1 and x′ 1 axes be parallel and let S ′ travel with respect to S with velocity V in

the x1 direction. The Galilean transformations connecting S and S ′ are given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x′ 1 = x1 − V t, (|V| = V ),

x′ 2 = x2,

x′ 3 = x3,

t′ = t.

(2.1)

Differentiating the first expression with respect to t, and noting that t = t′, we have that a

particle moving with velocity u with respect to S will move with respect to S ′ with velocity

u′. The relation between these velocities is given by
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u′ = u− V, u = |u|, u′ = |u′|. (2.2)

Note that by the Restricted Principle of Special Relativity, the Newton Laws of Motion

are invariant under Galilean transformations. There is also a physical quantity invariant

under such transformations, namely, the spatial distance between to points. Hence,

given two points x, y ∈ R
3, their spatial distance D, defined by

D2 = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2, (2.3)

has the same value in all frames of reference. Since this quantity is observer indepen-

dent, it encodes information about the physical space, i.e., it says that the geometrical

structure of space is that of the Euclidean space R3. Therefore, to summarize, in classi-

cal physics we assume that space is immutable and has the structure of R3, and time is

a parameter t ∈ R. In Newton’s formulation of classical mechanics, spatial distances

and Newton’s Laws of Motion are invariant under Galilean transformations. Next, we

discuss the assumptions and principles used to construct the remaining two theories of

relativity and what they tell us about the geometrical structure of the physical space.

The departure from the idea that space is immutable and time is absolute has

its roots in Maxwell’s formulation of classical electromagnetism. In this formulation,

four equations give the relation between the electric and magnetic fields, and their

sources, namely, the electric charge distribution and the current density. It is possible to

manipulate this set of equations and derive the velocity of propagation of electromagnetic

waves [15]. Surprisingly, this velocity is precisely that of light and the conclusion drawn

from this fact is that light is a electromagnetic wave.

By the time of this discovery, the knowledge was that all wave phenomena

required a material medium for waves to propagate. Physicists were then induced to

postulate the existence of a material medium, named luminiferous ether, that would carry

electromagnetic waves. Then, it was expected that the absolute motion of bodies through

ether could be detected if experiments using light were performed. Such an experiment

was conceived by the physicists Michelson and Morley in 1881 and had the goal to

measure the speed with which Earth moves with respect to the ether. The outcome of

their experiment was that, if Earth is moving through ether, the value of the speed is

experimentally undetectable. To explain this result, two hypothesis were proposed by

Lorentz, Fitzgerald and Poincaré in 1985. They postulated that material bodies would

contract and clocks would slow down when through ether. The mathematical description

of these effects is given by the so-called Lorentz transformations. These effects would

affect any experimental apparatus conceived to measure the velocity of the Earth relative

to the ether so as to cancel the expected results, thus explaining the null outcomes
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of the Michaelson and Morley’s experiment. It is worth noting that these assumptions

had no physical basis, since their effects could not be verified experimentally, and were

postulated in order not to abandon the idea of the luminiferous ether.

The natural conclusion drawn from the Michelson-Morley experiment was that

light propagates with the same speed for all inertial observers, independently of their

relative motion, and that there is no luminiferous ether. This posed a inconsistency

between classical mechanics and electromagnetism, since it contradicts the Galilean

Relativity (equation (2.2)). The solution to this inconsistency would result in the next

theory of relativity, namely, the Special Theory of Relativity.

Starting from two postulates Einstein was able to solve the inconsistency pre-

sented previously. The first postulate is a generalization of the Restricted Principle of

Special Relativity to encompass other types of physical phenomena other than mechan-

ical ones. By noting that any performed experiment involves not only dynamics but also

other branches of physics, Einstein proposed an extension of this principle. The first

postulate is then stated as

First Postulate (Principle of Special Relativity): All inertial frames are equiva-

lent.

The second postulate adopted by Einstein is related to the outcome of the Michaelson-

Morley experiment, although Einstein was not aware of the experimental results.

Second Postulate (Constancy of the Velocity of Light): The velocity of light is

the same in all inertial frames.

Note that, differently from the two hypothesis proposed by Lorentz, Fitzgerald and

Poincaré, these postulates are based on physical grounds. One of the implications

of the second postulate is that the simultaneity of events is observer-dependent. If

two inertial observers are moving with respect to each other, two events that are

simultaneous to one observer will not be simultaneous to the other [16]. That is, each

observer will measure a different value for the time interval between these two events.

Thus, time is not absolute! Another consequence derived from this postulate is that one

inertial observer will see the ruler used by the other observer as being contracted due

to their relative motion. Therefore, two inertial observers moving with respect to each

other will measure different values for the time interval and spatial distance between the

same two events. Since these effects are not predicted by the Galilean transformations,

we have to find a more fundamental class of transformations connecting the description

of two different observers.
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By demanding that the speed of light have the same value for any two observers

we can derive the desired transformations. These transformations are precisely the

Lorentz transformations. The contraction of moving bodies and slowing down of moving

clocks come now as predictions, not as ad hoc hypothesis. Consider the same setup

used to enunciate the Galilean transformations between the inertial frames of reference

S and S ′. In this configuration, the Lorentz transformations are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t′ =
t− (V/c2)x1√

1− V 2

c2

, (|V| = V ),

x′ 1 =
x1 − V t√
1− V 2

c2

,

x′ 2 = x2,

x′ 3 = x3,

(2.4)

where c is the speed of light in vacuum. Just as spatial distances are invariant under

Galilean transformations, there is also a quantity that is invariant under Lorentz trans-

formations. From equations (2.4) we see that time intervals and spatial distances are

observer-dependent. Nonetheless, there is a certain combination of these quantities

that is invariant under these transformations. This fact gives us a hint that time and

space are somehow connected and motivates us to merge them together in a new

structure called spacetime. To do so, we assume that to each point in physical space

we can associate a point x = (x0, x1, x2, x3) ∈ R
4, with x0 = t the time coordinate and

x1, x2 and x3 the spatial coordinates. Hence, given two points x, y ∈ R
4, we define the

spacetime interval I between x and y by

I2 = −c2(x0 − y0)2 + (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2. (2.5)

This quantity has the same value for all inertial observers. Again, since this quantity is

observer-independent, it gives us information about our physical spacetime. Namely,

space and time are not separate quantities, but rather part of a more fundamental struc-

ture called the Minkowski space. We point out that not only the Galilean transformations

need to be replaced but also the Newton laws of motion. This can be motivated by

noting that the Lorentz transformations (2.4) become undefined for V = c. Also, if V > c,

the lengths and time instants become imaginary. Then, we may see c as a limiting speed

for all bodies. In Newtonian mechanics we do not have such a limit, and thus we must

replace Newton’s laws.

This new theory about the spacetime is called the Special Theory of Relativity

and its model of spacetime is called Minkowski spacetime. From the Lorentz transfor-
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mations (2.4) we see that different inertial observers, moving with respect to each other,

will measure different lengths and time intervals for the same two events. Thus, space

and time are not absolute, as it was believed in classical physics. The next and last

theory of relativity we shall discuss is the so-called General Theory of Relativity, which

takes gravitational effects into account and describe gravity as a consequence of the

geometrical structure of spacetime.

If we are to consider gravitational effects, we must deal with non-inertial frames

of reference. Since we cannot shield matter and energy from the influence of gravitation,

any physical system that we study is affected by gravity [15]. Thus, consider two frames

of reference S and S ′, with S an inertial one and S ′ describing a uniformly accelerated

motion with respect to S, with acceleration A. Let us examine a particle of mass m,

under the influence of an external gravitational field g and a force F of non-gravitational

origin, as measured by S. We assume that the particle moves in a small region of space,

such that the gravitational field is uniform in this region, and that its velocity is small

when compared to that of light. In this regime, we can use Newton’s laws of motion to

study the system. From Newton’s second law, with the vertical axis pointing upwards,

we find

ma = −mg + F, (2.6)

where a is the acceleration of the particle with respect to S. On the other hand, from the

Galilean law of composition of velocities we obtain that the acceleration a′ of the test

particle with respect to S ′ is given by

a′ = a−A, (2.7)

which allows us to write (2.6) as

m(a′ +A) = −mg + F. (2.8)

Note that in writing (2.6) we assumed the equivalence between inertial mass and gravi-

tational mass. In classical mechanics and special relativity, this equivalence comes from

experimental data. We shall see below that this equivalence is related to a fundamental

principle in general relativity and played a major role in its development. Now, if we con-

sider that S ′ is freely falling under the influence of the gravitational field, its acceleration

with respect to S is given by A = −g. For this case, (2.8) becomes

ma′ = F. (2.9)
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That is, for a freely falling frame of reference in a gravitational field, the effects of the

gravitational field over the particle disappear. Thus, mechanical experiments cannot

distinguish a free fall in a uniform gravitational field from a uniform motion in the absence

of gravity. Einstein took a step further and extended this conclusion to the other physical

laws. This culminated in the formulation of the following principle [16]

Equivalence Principle: In a sufficiently small container, so that the gravitational

field inside it can be taken to be uniform, in free fall in this gravitational field, the

laws of physics are the same as in an inertial frame of reference in the absence of

a gravitational field.

This principle implies that a body of gravitational mass m, freely falling in a uniform

gravitational field, will have inertial mass m, as pointed out previously. Also, in a freely

falling frame of reference, the laws of physics must reduce to those of special relativity

[3]. This means that locally the spacetime of General Relativity resembles the Minkowski

spacetime. Although this gives information about the local structure of spacetime, it

does not give any hint on its global structure. So, to choose a mathematical structure to

model the spacetime of general relativity, we require this structure to be locally similar

to flat space, but do not put any restriction on its global structure. This motivates us

to study the spacetime of general relativity as being a differentiable manifold. This is

because the vicinity of each point of a manifold can be identified with the Euclidean

space, even though the manifold as a whole may exhibit a non-Euclidean geometry.

The next section is devoted to present the theory of manifolds and their geometrical

properties.

Although our understanding about space and time has evolved and led to the

formulation of new theories to describe nature, the emergence of a new theory does not

imply that the previous are obsolete. Each theory has a specific range of validity, and

the choice of description for modelling a physical phenomenon depends on the level of

imprecision we are willing to accept.

2.2 Manifolds

We now introduce the concept of manifold and explore the essential aspects

required to describe gravitation as a consequence of spacetime geometry. Many of the

tools used to define manifolds in a rigorous manner are unnecessary for our purposes

here. So, next we present just a conceptual overview of the topic only.

Roughly speaking, a n-dimensional smooth manifold M is a set of points

where the neighbourhood of each point resembles R
n. For example, a continuous
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and differentiable curve is a one-dimensional manifold, a sphere is a two-dimensional

manifold, etc. But what we mean by saying that the vicinity of each point of M is similar

to R
n? To state this precisely, we definite the notion of smooth functions.

Definition 2.2.1. Let U ⊂ R
n and k ∈ N. A function f : U → R is said to be Ck at p ∈ U

if its partial derivatives
∂jf

∂xi1 · · · ∂xij (2.10)

exist and are continuous at p for all integers 0 ≤ j ≤ k . The function f is C∞ or smooth

at p ∈ U if it is Ck for all k ≥ 0.

Then, given a manifold M , it is possible to find invertible C∞ maps ψα : Oα → Uα that

map any open subset Oα ⊂ M into open subsets Uα ∈ R
n. That is, we can identify

the neighbourhood of each point of the manifold with a portion of the Euclidean space.

This is a desirable feature, since we need a vector space structure to define directional

derivatives, line integrals, and other operations that are employed in defining physical

quantities. The functions ψα are called charts or coordinate systems. From now on we

shall refer to a smooth manifold simply as manifold.

We can adopt two different approaches to study manifolds. One of them is the

extrinsic view, in which we study a n-dimensional manifold as a subset of a higher

dimensional structure. An example of this is to consider a two-dimensional sphere,

denoted by S2, as being a subset of R3. The other approach, called the intrinsic view,

considers manifolds on their own right and not as being subsets of other structures. In

this formulation we do not make any reference to structures other than the manifold

itself when performing calculations. As discussed previously, the Equivalence Principle

tells us that locally the spacetime looks like the Minkowski space R
4. Thus, we treat

spacetime as being a four-dimensional manifold. We shall adopt the intrinsic view when

studying spacetime, since spacetime is not embedded in a higher dimensional space,

as far as we know. Next, we introduce the tools needed to study manifolds in the intrinsic

view.

2.2.1 Vectors

When considering a curved manifold, such as a sphere, we are faced with an

apparent difficulty in studying calculus. If we take two points p, q ∈ S2, the vector sum

of their position vectors does not lie in the sphere and then S2 has not a vector space

structure. Then, what is the strategy to study calculus on curved manifolds? Here the

notion of tangent space comes to help us. In multivariable calculus the tangent space at

a point p ∈ R
n is defined to be the set of all vectors with origin in p [17].
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Consider a line through p = (p1, . . . , pn), with direction v = (v1, . . . , vn) and

parametrization

c(t) = p+ tv, t ∈ I ⊂ R. (2.11)

Let f : R3 → R be a smooth function in the neighbourhood of the point p ∈ R
3 and v a

vector tangent to p. The directional derivative of f in the direction of v at p, denoted by

Dvf , is defined to be

Dvf =
d

dt
f(c(t))

∣∣∣∣∣
t=0

. (2.12)

By the chain rule, we obtain

Dvf =
n∑

μ=1

dcμ

dt
(0)

∂f

∂xμ
(p)

=
n∑

μ=1

vμ
∂f

∂xμ
(p).

(2.13)

To each v ∈ R
n there corresponds a unique directional derivative Dv, and the converse

is also true. Then, we can associate a tangent vector v ∈ R
3 with the operator Dv, given

by

Dv =
n∑

μ=1

vμ
∂

∂xμ

∣∣∣∣∣
p

, (2.14)

acting on f : R3 → R. This gives the motivation to define the tangent vectors to a

manifold M at p ∈ M as certain operators acting on functions g : M → R. In doing

so, we define the tangent vectors in terms of functions and points on the manifold,

without mentioning objects and structures external to the manifold itself. This connects

exactly with the idea of the intrinsic view approach. Since derivative operators satisfy

the linearity property and Leibniz rule (product rule), we require that the tangent vectors

obey these same rules.

Definition 2.2.2. Let M be a manifold and F the set of C∞ functions f :M → R. The

tangent space at p ∈M , denoted by TpM , is the set of all maps v : F → R that satisfy

the following rules:

(1) Linearity: v(af + bg) = av(f) + bv(g), ∀ f, g ∈ F and a, b ∈ R;

(2) Leibniz rule: v(fg) = f(p)v(g) + g(p)v(f), f, g ∈ F.
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The elements of TpM are called tangent vectors or contravariant vectors.

Given that M is a smooth manifold of dimension n ∈ N, TpM has the structure

of a vector space of dimension n. Thus, we are allowed to introduce a basis {Xμ}nμ=1 in

the tangent space and write a tangent vector v as a linear combination of these basis

vectors

v =
n∑

μ=1

vμXμ. (2.15)

In the case of multivariable calculus, we have expanded the directional derivative

operator Dv as a linear combination of partial derivatives {∂/∂xμ}nμ=1 evaluated at p.

This set constitutes the so called coordinate basis. Thus, the basis are dependent on the

chart ψ (coordinate system) we adopt. Had we chosen another chart ψ′, we would have

a different basis {X ′
ν}nν=1. In other words, this amounts to choose a set of coordinates

{xμ}nμ=1 or another set of coordinates {x′ν}nν=1. Using the chain rule, we can find that

the relation between the old basis and this new basis is given by

Xμ =
n∑

ν=1

∂x′ν

∂xμ
X ′

ν , (2.16)

Comparison of equations (2.15) and (2.16) gives the relation between the components

of vector v in the two basis

v′ν =
n∑

μ=1

vμ
∂x′ν

∂xμ
. (2.17)

Equation (2.17) is known as the vector transformation law.

In multivariable calculus we define that a parametric curve g : I ⊂ R → R
n

is smooth or C∞ when its derivatives of all orders exist and are continuous for all

t ∈ I. Since we are going to study calculus on manifolds, we shall define the notion of

smoothness for functions defined on a manifold in a similar manner.

Definition 2.2.3. A smooth curve on a manifold M is a C∞ map γ : I ⊂ R →M .

Given that a smooth curve γ : I ⊂ R → M is a one-dimensional manifold, we can

construct the tangent space at each point of γ by associating a tangent vector at each

of its points as follows.
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Definition 2.2.4. Let M be a manifold, γ : I ⊂ R →M a smooth curve and f ∈ F. The

tangent vector T (f) to γ at the point p ∈M is the vector

T (f) =
d

dt
(f ◦ γ)

∣∣∣∣∣
p

. (2.18)

Since we can map all points of a manifold M on R
n by using its charts, we can map a

curve γ : I ⊂ R →M on a curve (x1(t), x2(t), . . . , xn(t)) in R
n. Then, we have that the

components of the tangent vector to γ are given by

T μ =
dxμ

dt
(2.19)

in any coordinate basis.

We can associate a vector to each point p of a manifold M , giving rise to the

notion of vector field. That is, to each point p ∈M we can associate a vector v ∈ TpM .

From the definition of tangent vectors, given a smooth function f ∈ F, v(f) is a number

for all p ∈M . Thus, v(f) is a function on M and we can use this fact to define the notion

of smoothness for vector fields.

Definition 2.2.5. Let M be a manifold and v a vector field on M . The vector field v is

said to be smooth if the function v(f) is smooth for each f ∈ F. The set of all smooth

vector fields on M is denoted by X(M).

Given a basis, we can express a vector v in terms of its components vμ with respect to

that basis. It follows that a vector field v is smooth if and only if its components vμ are

smooth functions.

In order to study the geometry of manifolds, we need another class of math-

ematical objects called tensors. Next, we introduce them and their application in the

study of manifolds geometry.

2.2.2 Tensors

In linear algebra, given two vector spaces U and V , a linear transformation T

is a function T : U → V satisfying some axioms. In the case where V = R, we call T

a linear functional that maps a vector u ∈ U to a number in T (u) ∈ R. The concept of

tensors is a generalization of linear functionals to take several vectors, possibly from

different vector spaces, and map them in a certain number in R.
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Definition 2.2.6. Let V be a finite-dimensional vector space and V ∗ its dual vector

space. A tensor of type (k, l) is a multilinear map

T : V ∗ × V ∗ × · · · × V ∗︸ ︷︷ ︸
k copies of V ∗

×V × V × · · · × V︸ ︷︷ ︸
l copies of V

→ R. (2.20)

To put it in words, a tensor of type (k, l) is function that takes as input k dual

vectors and l vectors, and produces a real number. We shall denote the set of all tensors

of type (k, l) by T(k, l). Since tensors are multilinear maps, the sum of two tensors is a

tensor. Also, a tensor multiplied by a scalar is a tensor. Thus, we have that T(k, l) has

the structure of a vector space. From the definition, a tensor of type (1, 0) it is a map

T : V ∗ → R, which is exactly a element of V , that is, a vector. Similarly, a tensor of type

(0, 1) is a map U : V → R, i.e., a element of V ∗ or a dual vector.

There are a few ways we can construct tensors out of other tensors. Since

tensors are multilinear maps, the sum of two tensors of the same type and the product

of a tensor by a scalar gives another tensor. We can also define two new operations to

build new tensors. The first operation is the following:

Definition 2.2.7. Let T ∈ T(k, l). The contraction of T with respect to the ith dual vector

and jth vector is a map C : T(k, l) → T(k − 1, l − 1) defined by

C(T ) =
n∑

σ=1

T (. . . , v∗
σ

, . . . ; . . . , vσ, . . .), (2.21)

where {vσ}nσ=1 is a basis of V and {v∗σ}nσ=1 its dual basis.

The second operation is defined as follows:

Definition 2.2.8. Let T ∈ T(k, l) and Let U ∈ T(k′, l′). The outer product of T and U ,

denoted by T ⊗ U , is a tensor of type (k + k′, l + l′), defined by

T ⊗ U(v∗ 1, . . . , v∗ k+k′ ; v1, . . . , vl+l′) =

= T (v∗ 1, . . . , v∗ k; v1, . . . , vl)U(v
∗ k+1, . . . , v∗ k+k′ ; vl+1, . . . , vl+l′).

The outer product of tensors is also referred to as tensor product. Thus, we can take

outer products of vectors and dual vectors to build tensors. From the definition, the

tensor product of two vectors is a tensor of type (2, 0), the tensor product of a vector and

a dual vector results in a tensor of type (1, 1), and so on. Let V be a n-dimensional vector

space and consider a basis {vμ}nμ=1 of V and {v∗ ν}nν=1 its dual basis. Then, a basis for

T(k, l) is given by the set {vμ1
⊗· · ·⊗ vμk

⊗ v∗ ν1 ⊗· · ·⊗ v∗ νl} with μj, νj = 1, . . . , n. Thus,

we can write every tensor T ∈ T(k, l) as a linear combination

T =
n∑

μ1=1

· · ·
n∑

μk=1

n∑
ν1=1

· · ·
n∑

νl=1

T μ1 ···μk
ν1 ··· νl

vμ1
⊗ · · · ⊗ v∗ νl . (2.22)
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The coefficients T μ1 ···μk
ν1 ··· νl

are called the components of T with respect to the basis

{vμ}nμ=1. Note that the superscripts are associated with the vectors of the basis and

the subscripts are associated with the dual vectors of the basis. That is, we have k

superscripts μj because the elements of the basis are made of a product of k vectors

vμj
. Similarly, we have l subscripts because the elements of the product basis are made

of a product of l dual vectors v∗ νj . This notation shows explicitly that the tensor T is of

type (k, l). It is worth to bear in mind that, had we chosen a different basis, the values

of the components T μ1 ···μk
ν1 ··· νl

would be different. Despite that, the tensor itself is

basis-independent and is defined by its action on vectors and dual vectors. To avoid this

basis-dependence we introduce below a special notation for tensors that also explicitly

shows the type of the tensor.

Consider a tensor T ∈ T(k, l), with components T μ1 ···μk
ν1 ··· νl

, and a tensor

U ∈ T(k′, l′), with components Uμ1 ···μk′

ν1 ··· νl′ . The contraction of T has components

given by

(C(T ))μ1···μk−1

ν1···νl−1
=

n∑
σ=1

T μ1 ···σ···μk−1

ν1 ···σ··· νl−1
. (2.23)

Now, let V = T ⊗ U . Then, its components are given by

V
μ1···μk+k′

ν1···νl+l′
= T μ1 ···μk

ν1 ··· νl
U

μk+1 ···μk+k′

νl+1 ··· νl+l′
. (2.24)

When introducing tensors we have considered an arbitrary vector space V .

Next, we will be concerned with the case where V = TpM . Then, to construct tensors,

we need the dual vector space of TpM .

Definition 2.2.9. Let M be a manifold and TpM the tangent space at p ∈ M . The

cotangent space at p ∈ M , denoted by T ∗
pM , is the dual vector space of TpM . The

elements of T ∗
pM are called cotangent vectors or covariant vectors.

The coordinate basis of TpM is denoted by {∂/∂xμ}nμ=1 and we denote the basis of T ∗
p

by {dxμ}nμ=1. Since {dxμ}nμ=1 is the dual basis of the coordinate basis {∂/∂xμ}nμ=1, we

have

dxμ
(

∂

∂xν

)
= δμν . (2.25)

When changing between coordinate systems {xμ}nμ=1 and {x′ν}nν=1, the components v′ν

of a vector in the new basis are related to its components vμ in the original basis by

v′ν =
n∑

μ=1

vμ
∂x′ν

∂xμ
, (2.26)
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where

δμν =

⎧⎨⎩0, μ �= ν,

1, μ = ν,
(2.27)

is the Kronecker delta.

Let ωμ denote the components of ω ∈ T ∗
pM . Under the same coordinate trans-

formation, the components of ω in the new basis are given by

ω′
ν =

n∑
μ=1

ωμ
∂xμ

∂x′ν
. (2.28)

Using the transformation laws (2.17) and (2.28) in the expansion (2.22) of a tensor

T ∈ T(k, l), we obtain the transformation law for tensors components

T
′ μ1···μk

ν1···νl
=

n∑
μ1=1

· · ·
n∑

μk=1

n∑
ν1=1

· · ·
n∑

νl=1

T λ1···λk
ρ1···ρl

∂x′μ1

∂xλ1
· · · ∂x

′μk

∂xλk

∂xρ1

∂x′ν1
· · · ∂x

ρl

∂x′νl
. (2.29)

This equation is known as tensor transformation law. Writing tensorial equations in terms

of its components makes the notation cumbersome due to the appearance of many

summation symbols. In order to simplify the notation we adopt the Einstein summation

convention, which allows us to write the equations without the summation symbols.

Consider a vector space V of dimension dimV = n and v ∈ V . Given a basis {eμ}nμ=1,

we can write the vector v as

v =
n∑

μ=1

vμeμ. (2.30)

Note that the summation is performed over the index μ, which appears as an upper

index in the components vμ and as a subscript in the elements of the basis eμ. Thus,

when the same index appears as an upper and lower index, the summation is implied.

That is, we adopt the convention in which

vμeμ =
n∑

μ=1

vμeμ. (2.31)

As another example, consider again the vector v and a matrix M , with elements Mμν ,

μ, ν = 1, . . . , n. From the matrix multiplication formula, we have that the vector u =Mv

has components
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uμ =
n∑

ν=1

Mμνv
ν , (2.32)

or, adopting the summation convention,

uμ =Mμνv
ν . (2.33)

Note that, when we sum over an index (right-hand side of equation (2.32)), the result

(left-hand side) does not depend on that index. To avoid confusions concerning this

convention, a repeated index must appear only twice in each term.

We have already introduced the concept of (contravariant) vector fields as the

association of a vector v ∈ TpM to each point of a manifold M . Similarly, we define the

notion of covariant vector field as being the association of a covariant vector ω ∈ T ∗
pM to

each point p ∈M . We can go further and define the notion of tensor field by associating

a tensor T ∈ T(k, l) to each point p ∈ M . Given these definitions, we establish the

notion of smoothness for these fields. This can be done noting that ω(v), v ∈ TpM , is a

function on R, since the covariant vector is map ω : TpM → R.

Definition 2.2.10. Let M be a manifold and ω a covariant vector field on M . The

covariant field ω is said to be smooth if the function ω(v) is smooth for each v ∈ X(M).

We denote the set of all smooth covariant fields on M by X
∗(M).

Also, given a tensor T ∈ T(k, l), from the definition of tensors we have that the quantity

T (ω1, . . . , ωk, v1, . . . , , vl), ωi ∈ T ∗
pM ∀ i = 1, . . . , k and vj ∈ TpM ∀ j = 1, . . . , l, is also

a function on R.

Definition 2.2.11. Let M be a manifold and T a tensor field on M . The tensor field

T is said to be smooth if the function T (ω1, . . . , ωk, v1, . . . , , vl) is smooth for each

vj ∈ X(M) ∀ j = 1, . . . , l and ωi ∈ X
∗(M) ∀ i = 1, . . . , k.

Now we introduce a notation that allows us to write tensorial equations in a

basis-independent way. This notation, called abstract index notation is similar to the

notation used to denote the components of the tensor T in equation (2.22) using Greek

superscripts and subscripts. In this notation, given a tensor T ∈ T(k, l) we attach to it k

contravariant indices and l covariant indices using latin letters, resulting in T a1···ak
b1···bl

.

We reserve Greek indices to denote the components of tensors. Thus, T μ
νλ denotes

the components of T a
bc . Since vectors are tensors of type (1, 0), we denote a vector v

by va. Similarly, since dual vectors are tensors of type (0, 1), we denote them as ωa. A

tensor T of type (0, 2) is written as Tab. If we also consider two vectors va and wa, the

number T (v, w) is written as Tabvawb. Note that the index a is related to the first position,
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occupied by v, and the index b is related to the position occupied by the vector w. Thus,

had we written Tabw
bva, we would still know that this represents the number T (v, w).

Had we considered the number T (w, v), in the abstract index notation this would be

written as Tabw
avb. Note that we can write this as Tbaw

bva or Tbavawb, since the first

index of the tensor T is the same of the vector w and the second index of T is related

to the index of v, thus defining in an unequivocal way the order in which the vectors

are taken by the tensor T . It is important to note that, in general, T (v, w) and T (w, v)

are different numbers. Or, in index notation, Tabvawb �= Tbav
awb. If we have the case

where T (v, w) = T (w, v) for any vectors v and w, then Tabv
awb = Tbav

awb and as a

consequence Tab = Tba. In this case, we call Tab a symmetric tensor. In the situation

in which Tab = −Tba, we call Tab an antisymmetric tensor. We remark that in Tabva the

summation convention is not implied, since the indices are present only to remind us the

type of tensors we are dealing with. The convention only applies when all the indices

are Greek.

Given a tensor Tab, we define the notations

T(ab) =
1

2!
(Tab + Tba) ,

T[ab] =
1

2!
(Tab − Tba) .

(2.34)

Note that T(ab) gives the symmetric part of the tensor Tab and T[ab] its antisymmetric part.

Similarly, given a tensor Tabc of type, (0, 3), we define

T(abc) =
1

3!
(Tabc + Tacb + Tbac + Tbca + Tcab + Tcba) ,

T[abc] =
1

3!
(Tabc − Tacb − Tbac + Tbca + Tcab − Tcba) .

(2.35)

Note that in defining the antisymmetric part of Tabc, in the right-hand side there appears

all possible permutations of the indices abc, but with a minus sign for the terms of odd

permutation. The same happened in defining T[ab], but in this case we only had two

possible permutations of ab. The same definitions can be extended to tensors of any

type. To symmetrize a tensor Ta1···al means to take its symmetric part. Analogously,

to antisymmetrize a tensor means to take its antisymmetric part. In doing so, we

may specify in which indices we are symmetrizing or antisymmetrizing. For example,

given a tensor Tabcd, symmetrizing over the indices a and b gives us Tabcd + Tbacd, and

antisymmetrizing over a and c gives Tabcd − Tcbad.

Using the abstract index notation, we can write the operations introduced before

in a clearer way. Given a tensor T a
bc , the contraction of the indices a and b is denoted
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by T a
ac . Given also another tensor Sa

b , the outer product of T a
bc and Sa

b is denoted by

T a
bcS

d
e (we omit the ⊗ symbol), which corresponds exactly to a tensor of type (2, 3) as

should be by the definition of outer product of tensors.

As a first example of a tensor used in physics, we introduce the notion of a

metric. This object allows us to define a inner product on the tangent space TpM .

Definition 2.2.12. Let M be a manifold and p ∈ M . A metric on M is a linear map

g : TpM × TpM → R such that it is

1. symmetric: g(v1, v2) = g(v2, v1) ∀ v1, v2 ∈ TpM , and;

2. nondegenerate: g(v, v1) = 0 ∀ v ∈ TpM ⇐⇒ v1 = 0.

We may expand g in the dual coordinate basis {dxμ}nμ=1 as

g =
n∑

μ=1

n∑
ν=1

gμν dx
μ ⊗ dxν . (2.36)

Considering the expansion of tangent vectors in the coordinate basis

u =
n∑

μ=1

uμ
∂

∂xμ
,

v =
n∑

ν=1

vν
∂

∂xν
,

(2.37)

we have

g(u, v) =
n∑

μ=1

n∑
ν=1

gμνdx
μ

(
n∑

σ=1

uσ
∂

∂xσ

)
⊗ dxν

(
n∑

λ=1

vλ
∂

∂xλ

)
. (2.38)

Using the fact that the maps dxμ are linear and the relation (2.25), we obtain

g(u, v) =
n∑

μ=1

n∑
ν=1

gμνu
μvν , (2.39)

which provides an inner product between the vectors u, v ∈ TpM . From this formula, we

define the infinitesimal line element ds by

ds2 =
n∑

μ=1

n∑
ν=1

gμν dr
μdrν . (2.40)
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where dra is an infinitesimal displacement vector.

Given a metric g, in terms of an orthonormal basis of TpM , we can represent g

by the diagonal matrix

g = diag(−1, . . . , −1, +1, . . . , +1, 0, . . . , 0). (2.41)

The signature of g is the number of negative and positive eigenvalues of the metric [3]. If

all eigenvalues are positive, the metric is called Euclidean. If we have only one negative

eigenvalue, and all the others are positive, we call g a Lorentzian or pseudo-Riemannian

metric.

The Lorentzian metrics provide a way to classify smooth curves according to

their tangent vector field.

Definition 2.2.13. Let M be a manifold, g a Lorentzian metric on M , and γ : I ⊂ R →M

a smooth curve, with tangent field T . The curve γ is said to be

1. timelike, if g(T, T ) < 0;

2. null, if g(T, T ) = 0;

3. spacelike, if g(T, T ) > 0.

Since a metric g is a tensor of type (0, 2), we denote it by gab. If we apply gab to

a vector vb, we get gabvb, which is a dual vector. We associate gabvb with the dual vector

va. Thus, applying the metric to a vector, it "lowers" its index. We can also show that

there exists the inverse of the metric gab, which we denote by gab. Thus, gacgcb = δab.

The inverse metric constitutes a tensor of type (2, 0) and applying it to a dual vector

ωb results in a vector gabωb. We identify gabωb with ωa. We can also raise and lower the

indices of tensor, thus we have the following rules to manipulate indices

va = gabvb,

va = gabv
b,

T a
b = gacTcb = gbcT

ac.

(2.42)

The contraction of the two indices of Ra
b results in Ra

a and we shall denote it simply by

R, since the two indices "cancel out" and the result should not depend on them.

Having introduced the basics on manifolds and tensors, we are now able to

study the geometry of manifolds.
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2.3 Curvature

Intuitively, we are familiar to the concept of curvature and we have used it

informally up to this point in the text. In a qualitative way, we know that a two-dimensional

plane is flat, whereas a sphere is curved. To study the geometry of manifolds, however,

we need a quantitative definition of curvature. This section focuses on presenting the

mathematical concepts necessary to define curvature. One of the characterizations

of curvature is based on the concept of parallel transport of vectors and how this

process alters the original vector. Since this process involves analysing changes in the

transported vector, we begin with the definition of a derivative operator on manifold.

Definition 2.3.1. A derivative operator, denoted by ∇a, on a manifold M is a map

∇a : T(k, l) → T(k, l + 1) (2.43)

satisfying the following properties:

1. Linearity: ∀A, B ∈ T(k, l)andα, β ∈ R,

∇c

(
αAa1···ak

b1···bl
+ βBa1···ak

b1···bl

)
= α∇cA

a1···ak
b1···bl

+ β∇cB
a1···ak

b1···bl
. (2.44)

2. Leibniz rule: ∀A ∈ T(k, l)andB ∈ T(k′, l′),

∇e

(
Aa1···ak

b1···bl
B

c1···ck′
d1···dl′

)
=
(∇eA

a1···ak
b1···bl

)
B

c1···ck′
d1···dl′

+ Aa1···ak
b1···bl

(
∇eB

c1···ck′
d1···dl′

)
.

(2.45)

3. Commutativity with contraction: ∀A ∈ T(k, l),

∇d

(
Aa1···c···ak

b1···c···bl

)
= ∇dA

a1···c···ak
b1···c···bl

. (2.46)

4. Consistency with the notion of tangent vectors as directional derivatives on scalar

fields: ∀A ∈ T(k, l)andT a ∈ TpM ,

T (f) = T a∇af. (2.47)

5. Torsion free: ∀ f ∈ F,

∇a∇bf = ∇b∇af. (2.48)

Although we attach a subscript to the derivative operator ∇, this operator is not a dual

vector. We only adopt this practice to emphasize that the action of ∇ in a tensor of

type (k, l) results in a tensor of type (k, l + 1), that is, the resulting tensor has one more

subscript than the original tensor.
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We may ask, is always possible to define a derivative operator on a manifold

M? The answer is yes and we proceed as follows. Consider a manifold M and let

T a1···ak
b1···bl

∈ T(k, l) be a smooth tensor field on M . Let ψ be a coordinate system, with

associated bases {vμ}nμ=1 and {vμ}nμ=1, in which the tensor T a1···ak
b1···bl

has components

T μ1···μk
ν1···νl

. We define the derivative operator ∂a, called ordinary derivative, as the

derivative operator such that ∂cT
a1···ak

b1···bl
has components ∂(T μ1···μk

ν1···νl
)/∂xσ. Note

that the definition of an ordinary derivative depends on the coordinate system chosen,

since the components of ∂cT
a1···ak

b1···bl
are defined to be partial derivatives with respect

to the coordinates defined by ψ. Had we chosen another coordinate system, with

coordinates {x′μ}nμ=1, the partial derivatives would be different from the previous case.

We may also ask, if there is a relation between different derivative operators. To

investigate this question, consider two derivative operators ∇ and ∇̂. From condition (4)

of the derivative operator definition, we have that the tangent vector t to f ∈ F can be

written in terms of ∇a and also ∇̂a. From this we obtain

T a∇af = T a∇̂af

⇒ ∇af = ∇̂af.
(2.49)

That is, the action of any two derivative operators on a scalar field f must always

agree. Now we investigate if ∇ and ∇̂ agree or not when acting on tensor quantities.

Considering a scalar field f ∈ F and a dual vector field ωb, we have that

∇̂a(fωb)−∇a(fωb) = (∇̂a)ωb + f∇̂aωb − (∇af)ωb − f∇aωb, (2.50)

and using (2.49), we obtain

∇̂a(fωb)−∇a(fωb) = f(∇̂aωb −∇aωb). (2.51)

The quantities ∇aωb and ∇̂aωb depend on the value of ωb at a point p as well as how

ωb varies in the neighbourhood of p, since derivatives are related to rates of change.

However, the difference ∇̂aωb −∇aωb depends only on the value of ωb at p. Consider

another dual vector field ω′
b, such that ω′

b(p) = ωb(p). We can write the difference between

these two dual vector fields as

ω′
b − ωb =

n∑
j=1

gj ξ
j
b , (2.52)
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where gj are smooth functions, such that gj(p) = 0, and ξjb are a smooth dual vector

fields. Applying the operator (∇a − ∇̂a) to equation (2.52) gives

(∇̂a −∇a)(ω
′
b − ωb) =

n∑
j=1

(∇̂a −∇a)gj ξ
j
b

=
n∑

j=1

[
gj(∇̂ξjb −∇ξjb)

]
,

(2.53)

where relation (2.51) was used in the second equality. Evaluating this expression at p

and using the fact that gj(p) = 0, ∀ j = 1, . . . , n, we find that the right-hand side of (2.53)

vanishes. The result is then

(∇̂a −∇a)ω
′
b

∣∣∣
p
= (∇̂a −∇a)ωb

∣∣∣
p
. (2.54)

Thus, given any two smooth dual vector fields ωb and ω′
b, which agree on their value at

p ∈M , the action of the operator (∇̂a −∇a) on them give the same result. From this we

conclude that (∇̂a −∇a)ωb depends only on the value of ωb at p ∈M . Thus, the operator

(∇̂a −∇a) takes a dual vector ωb at p and maps it to the tensor (∇̂a −∇a)ωb of type (0, 2)

at p. This property characterizes a tensor field Cc
ab of type (1, 2), since a tensor of this

type maps the dual vector ωc into the tensor Cc
abωc of type (0, 2). Hence,

(∇̂a −∇a)ωb = Cc
abωc

⇒ ∇aωb = ∇̂aωb − Cc
abωc.

(2.55)

This gives the general relation between two derivative operators acting on dual vector

fields. Consider now the case where ωb = ∇bf , f ∈ F. From the relation (2.49) we have

ωb = ∇̂bf . Substitution of these two relations on (2.55) yields

∇a∇bf = ∇̂a∇̂bf − Cc
ab∇cf. (2.56)

Rewriting this equation with indices a and b exchanged, and using the property (5) of

the definition of derivative operators, gives

∇a∇bf = ∇̂a∇̂bf − Cc
ba∇cf. (2.57)

Subtracting one of this from equations from the other leads to the symmetry property of

Cc
ab under exchange of its lower indices
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Cc
ab = Cc

ba . (2.58)

To see the difference in the action of the derivative operators ∇ and ∇̂ in vector

fields, consider a dual vector field ωb and a vector field vb. Since f = ωbv
b is a scalar,

from the relation (2.49) we have

0 = (∇̂a −∇a)(ωbv
b)

= [(∇̂a −∇a)ωb]v
b + ωb(∇̂a −∇a)v

b,
(2.59)

and using (2.55), we obtain

(Cc
abωc)v

b + ωb(∇̂a −∇a)v
b = 0. (2.60)

Note that in the first term in the right-hand side both indices b and c are contracted. So,

we can substitute them by any other index we want. By exchanging b↔ c, we obtain

0 = (Cb
acωb)v

c + ωb(∇̂a −∇a)v
b

=
[
(∇̂a −∇a)v

b + Cb
acv

c
]
ωb.

(2.61)

This must be valid for any dual vector field ωb and therefore

∇av
b = ∇̂av

b + Cb
acv

c. (2.62)

Thus, the difference between the action of two derivative operators on vector fields is

also characterized by the tensor field Ca
bc . Following the same reasoning employed to

obtain (2.55) and (2.62) we can show that, for a smooth tensor field T a1···ak
b1···bl

, we have

the relation

∇aT
b1···bk

c1···cl
= ∇̂aT

b1···bk
c1···cl

+
k∑

i=1

Cbi
adT

b1···d···bk
c1···cl

−
l∑

i=1

Cd
aci
T b1···bk

c1···d···cl
. (2.63)

The choice of the tensor fields Ca
bc is made based on the physical system under study.

As an example, when considering electromagnetic interactions, the field Cc
ab is related

to the electromagnetic four-potential Aa(x).

If we take the operator ∇̂a to be the ordinary derivative ∂a, it is customary to

denote Cc
ab by Γc

ab and call it a Christoffel symbol. In this case, equation (2.62) become
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∇av
b = ∂av

b + Γb
acv

c. (2.64)

As defined here, Christoffel symbols are tensor fields associated with the ordinary

derivative operator ∂a. They are tensors in the sense that they are linear maps on

vectors. However, if we perform a coordinate transformation, we also change the

derivative operator ∂a to another derivative ∂′a. Then, the fields Γc
ab associated with

the derivative operator ∂a are different from the fields Γ
′ c
ab associated with ∂′a. This

implies that the components of Γc
ab will not be related to the components of Γ

′ c
ab by

the transformation law (2.29). We remark that in the literature it is common to introduce

tensors as certain mathematical objects that satisfy the transformation law (2.29). Then,

Christoffel symbols are usually said not to be tensors.

We can use the derivative operator ∇a, defined on a manifold M , to study how

quantities change as we move through M . A particular case of interest arises when we

examine how a vector field varies along a curve on M . To illustrate this, we introduce

the concept of parallel transport. Imagine moving a vector on a surface in any direction,

but without rotating it about any axis. First, we consider the case where the surface in

question is a plane (Figure 1(a)). We begin by placing a vector at a point p and moving it

through the plane, along a given trajectory, returning it to its starting point. In this case,

at the end of this process, the vector is parallel to its original configuration, regardless of

the trajectory followed on the plane. However, the result is different for a curved surface.

Now, consider a sphere and let us start with a vector tangent to its north pole a (Figure

1(b)). We move the vector along a trajectory, ensuring that it always remain tangent to

the sphere’s surface. The trajectory begins at the point a and follows a meridian until it

reaches the equator at the point b. After that, we move the vector along the equator to

point c. We then move the vector along another meridian, returning to the north pole a.

At the end of this process, we observe that the vector’s orientation differs from its initial

direction.

In both cases, the vectors we transported parallel to their respective surfaces,

however, a difference in the results arises due to the curvature of the sphere. Thus, we

can use parallel transport to characterize the curvature of a surface. First, we provide

the mathematical definition of parallel transport.

Definition 2.3.2. Let M be a manifold, γ : I ⊂ R → M a smooth curve on M , with

tangent field T a, a = 1, . . . , 4. A vector field va, defined along γ, is said to be parallelly

transported along the curve γ if

T a∇av
b
∣∣∣
γ(t)

= 0, ∀ t ∈ I. (2.65)

That is, a vector field is said to be parallely transported along a curve if its directional

derivative, in the direction of T a, is zero along the curve. This does not imply that all the
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(a) Parallel transport on a plane. (b) Parallel transport on a sphere.

Figure 1 – (a)The parallel transport of a vector along a closed curve on a plane does not alter
the vector direction. (b) In the case of a curved surface, the parallel transport changes
the vector’s direction.

vectors constituting va are parallel. For example, consider the vector field va to be the

one constructed by parallel transport along a meridian as in figure 1(b). Since we have

drawn the sphere and the vectors as lying in R
3, thus adopting the extrinsic view, we

observe that the vectors along the meridians are not parallel. However, we must keep in

mind that we are working from the intrinsic point of view. Thus, an individual living on

the surface of the sphere and standing at point a would observe that the vector field is

tangent to the surface. As this individual walks along the meridian, it would note that the

vector field remains tangent to the surface, and have not changed with respect to the

tangent vectors to the meridian. In this sense, parallelly transported vector fields are

the ones that most resemble a constant vector field when we are dealing with curved

manifolds. We can express equation (2.65) in terms of its components by choosing a

coordinate system and using equation (2.64). Thus, we obtain

0 = T a∇av
b

= T a
(
∂av

b + Γb
acv

c
) (2.66)

or, in terms of components,

0 = T μ

(
∂vν

∂xμ
+ Γν

μλv
λ

)
. (2.67)

Choosing a coordinate system amounts to map the curve γ(t) to a curve with com-

ponents xμ(t) in R
4, and thus the components of the tangent vector are given by

T μ = dxμ/dt. Then, we write equation (2.67) as
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0 =
dxμ

dt

∂vν

∂xμ
+ Γν

μλ

dxμ

dt
vλ. (2.68)

By the chain rule, observing that vb is defined along γ, that is, vν = vν(xμ(t)), we have

4∑
μ=1

dxμ

dt

∂vν

∂xμ
=
dvν

dt
, (2.69)

which allows us to write equation (2.68) as

dvν

dt
+ Γν

μλ

dxμ

dt
vλ = 0. (2.70)

We extend the definition of parallel transport to include the case of transporting

tensors along curves on a manifold.

Definition 2.3.3. Let M be a manifold, γ : I ⊂ R → M a smooth curve on M , with

tangent field ta, a = 1, . . . , 4. A tensor field T b1···bk
c1···cl

, defined along γ, is said to be

parallelly transported along the curve γ if

ta∇aT
b1···bk

c1···cl

∣∣∣
γ(s)

= 0, ∀ s ∈ I. (2.71)

We have seen that it is possible to define several distinct derivative operators on

a manifold M , and any two of them are related by the equation (2.63). We can narrow

down the possible choices of derivative operators on M by introducing a metric on our

manifold and by considering the parallel transport of vectors. If two vector fields, ua and

va, are both parallelly transported along a curve γ, the value of the inner product gabuavb

remains constant along γ. Thus, we require

T a∇a(gbcu
bvc) = 0, (2.72)

with ua and va satisfying equation (2.65). Using the Leibniz rule, we have

T aubvc∇agbc = 0. (2.73)

This equality hold for any curve γ and parallelly transported vector fields ua and va if

and only if

∇agbc = 0. (2.74)

This condition is known as metric compatibility and a derivative operator satisfying this

property is called a Levi-Civita connection. From now on, we impose this additional
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condition on our derivative operators. In fact, for a given metric gab, there exists a unique

derivative operator ∇a that satisfies this condition. Considering an arbitrary derivative

operator ∇̂a and using equation (2.63), we can write (2.74) as

0 = ∇agbc

= ∇̂agbc − Cd
abgdc − Cd

acgbd

⇒ ∇̂agbc = Cd
abgdc + Cd

acgbd.

Lowering indices using the metric, we get Cd
abgdc = Ccab and Cd

acgbd = Cbac . Thus, we

can express this equation as

Ccab + Cbac = ∇̂agbc. (2.75)

Rewriting this same equation, but with indices interchanged, gives

Ccba + Cabc = ∇̂bgac. (2.76)

Cbca + Cacb = ∇̂cgab. (2.77)

Adding equations (2.75) and (2.76), subtracting equation (2.77), and using the property

(2.58), we obtain the solution to Cc
ab

Cc
ab =

1

2
gcd

[
∇̂agbd + ∇̂bgad − ∇̂dgab

]
. (2.78)

This choice of Cc
ab solves the equation (2.74). Since ∇̂a and Cc

ab uniquely determines

∇a, we have that ∇a is unique.

As discussed before, in the case where we take the derivative operator ∇̂a to be

the ordinary derivative ∂a, the tensor fields Ca
bc are the Christoffel symbols Γa

bc. Using

equation (2.78) we have

Γc
ab =

1

2
gcd [∂agbd + ∂bgad − ∂dgab] , (2.79)

or, in terms of components,

Γλ
μν =

1

2

3∑
σ=0

gλσ
[
∂gνσ
∂xμ

+
∂gμσ
∂xν

− ∂gμν
∂xσ

]
. (2.80)

This formula provides a straightforward way to calculate the Christoffel symbols for a

given metric gab.



CHAPTER 2. GENERAL RELATIVITY 40

As discussed above, the parallel transport of a vector field along a closed curve,

in general, generates a vector field different from the original one. This failure of the

vector field to return to its initial configuration is related to the curvature of the space.

The curvature also causes the consecutive action of derivative operators ∇a and ∇b to

depend on the order in which the derivatives act on tensor quantities. In other words,

the actions of ∇a∇b and ∇b∇a on a tensor field yield different results. Similar to the

expression (2.55), we will show that this difference is characterized by a tensor field,

which we will use to describe the curvature of space. To do so, let M be a manifold, ∇a

a derivative operator on M . Consider the dual vector field ωa ∈ X
∗(M) and f ∈ F. The

consecutive application of ∇a on fωa gives

∇a∇b(fωc) = ∇a [(∇bf)ωc + f∇bωc]

= (∇a∇bf)ωc +∇bf∇aωc +∇af∇bωc + f∇a∇bωc.
(2.81)

Evaluating ∇b∇a(fωc) and subtracting the result from the above equation yields

(∇a∇b −∇b∇a)(fωc) = f(∇a∇b −∇b∇a)ωc. (2.82)

We have seen that, given two derivative operators ∇a and ∇̂a, and a covariant vector

field ωb, all defined on the manifold M , the difference (∇̂a − ∇a)ωb depends only on

the value of ωb at the point p ∈ M . Following the same reasoning, we can show that

the difference (∇a∇b − ∇b∇a)ωc at the point p ∈ M depends only on the value of ωc

at p ∈M . Therefore, (∇a∇b −∇b∇a) maps covariant vectors ωc at p to tensors of type

(0, 3) at p ∈M . This map thus characterizes a tensor of type (1, 3). We shall denote this

tensor field by R d
abc and we have

∇a∇bωc −∇b∇aωc = R d
abc ωd. (2.83)

The tensor R d
abc is called the Riemann curvature tensor. This expression shows how

the action of two covariant derivatives does no commute, due to the curvature of the

manifold M . Thus, the Riemann curvature tensor carries information about the curvature

of M . If we had M = R
n, the covariant derivatives would be the ordinary derivative

operators, which commute. In this case, from the above expression we would obtain

R d
abc = 0 (the zero tensor) indicating that the manifold has no curvature, or in other

words, the manifold is flat.

We can find a similar formula for the action of (∇a∇b −∇b∇a) on a vector fields

va. Since vaωa is a scalar, by equation (2.48) we have
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0 = (∇a∇b −∇b∇a)(v
cωc)

= ∇a [(∇bv
c)ωc + vc∇bωc]−∇b [(∇av

c)ωc + vc∇aωc]

= [(∇a∇b −∇b∇a)v
c]ωc + vc(∇a∇b −∇b∇a)ωc,

(2.84)

and using equation (2.83), we obtain

0 = (∇a∇b −∇b∇a)v
cωc + vcR d

abc ω
d

=
[
(∇a∇b −∇b∇a)v

d +R d
abc v

c
]
ωd.

(2.85)

This expression must be valid for any smooth dual vector field ωcc and then we conclude

that

∇a∇bv
c −∇b∇av

c = −R c
abd v

d. (2.86)

For the general case of a tensor field T c1···ck
d1···dl

of type (k, l), we have

(∇a∇b −∇b∇a)T
c1···ck

d1···dl
= −

k∑
i=1

R ci
abe T c1···e···ck

d1···dl
+

k∑
i=1

R e
abdi

T c1···ck
d1···e···dl

. (2.87)

We can derive a formula to evaluate the components of the Riemann tensor in

a coordinate basis. From equation (2.55), by using ∇̂a = ∂a and Ca
bc = Γa

bc, we find

∇bωc = ∂bωc − Γd
bcωd. (2.88)

Applying equation (2.63), we then have

∇a∇bωc = ∂a
(
∂bωc − Γd

bcωd

)− Γe
ab

(
∂eωc − Γd

ecωd

)− Γe
ac

(
∂bωe − Γd

beωd

)
. (2.89)

This equation allows us to express equation (2.83) as

R d
abc ωd =

[−(∂aΓ
d
bc) + (∂bΓ

d
ac) + Γe

acΓ
d
be − Γe

bcΓ
d
ae

]
ωd, (2.90)

where we have used the fact that the partial derivatives commute and the symmetry

of the Christoffel symbols in their lower indices. Since the dual field ωd is arbitrary, we

obtain
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R d
abc = −(∂aΓ

d
bc) + (∂bΓ

d
ac) + Γe

acΓ
d
be − Γe

bcΓ
d
ae. (2.91)

By choosing a coordinate basis, the components of the Riemann tensor are given by

R σ
μνρ = − ∂

∂xμ
Γσ

νρ +
∂

∂xν
Γσ

μρ + Γλ
μρΓ

σ
νλ − Γλ

νρΓ
σ
μλ. (2.92)

Next, we obtain some properties of the Riemann curvature tensor. Consider

equation (2.86) and exchange the indices a and b on both sides. This leads to the

symmetry property

R d
abc = −R d

bac . (2.93)

To obtain a second property, consider a dual vector field ωa and a derivative operator

∇a. For any ∇a and any ωa we have

(∇a∇b −∇b∇a)ωc − (∇a∇c −∇c∇a)ωb + (∇b∇c −∇c∇b)ωa = 0. (2.94)

This can be shown using equation (2.63), with ∇̂a = ∂a and Ca
bc = Γa

bc. Using equation

(2.87), the above equation yields

R d
abc −R d

acb +R d
bca = 0. (2.95)

For a derivative operator ∇a and a metric gab, such that ∇agbc = 0, we have

(∇a∇b −∇b∇a)gcd = 0. (2.96)

On the other hand, using (2.87), we can write this equation as

R e
abc ged +R e

abd gce = 0

⇒ Rabcd = −Rabdc,
(2.97)

where in the last line we have lowered the last index of R d
abc using the metric gab.

Combining equations (2.93), (2.95) and (2.97), we find

Rabcd = Rcdab. (2.98)

Consider now the quantity (∇a∇b − ∇b∇a)∇cωd. Using equation (2.87), this can be

written as
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(∇a∇b −∇b∇a)∇cωd = R e
abc ∇eωd +R e

abd ∇cωe. (2.99)

Using the same equation, the quantity ∇a(∇b∇cωd −∇c∇dωd) can be written as

∇a(∇b∇cωd −∇c∇dωd) = ∇aR
e

bcd ωe

= (∇aR
e

bcd )ωe +R e
bcd ∇aωe.

(2.100)

Antisymmetrization over indices a, b and c in equations (2.99) and (2.100) render the

left-hand side of both equations to be equal. Then, equality of the right-hand sides gives

(∇aR
e

bcd −∇aR
e

cbd −∇bR
e

acd +∇bR
e

cad −∇cR
e

bad +∇cR
e

abd )ωe = 0. (2.101)

Since this must hold for any ωa, we conclude that

∇aR
e

bcd −∇aR
e

cbd −∇bR
e

acd +∇bR
e

cad −∇cR
e

bad +∇cR
e

abd = 0. (2.102)

This identity is called the Bianchi identity.

Another useful tensor, also related to the curvature of space, can be obtained

from the Riemann tensor R d
abc . Contracting indices b and d, yields the Ricci tensor

Rac = R b
abc . (2.103)

From equation (2.98), we observe that Rab is a symmetric tensor. The scalar curvature

R is define to be the contraction of the two indices of the Ricci tensor. That is,

R = R a
a = gabRab. (2.104)

Contraction of indices a and e in the Bianchi identity (2.102), using properties

(2.93) and (2.98), leads to

∇aR
a

bcd +∇bRcd −∇cRbc = 0. (2.105)

Now, using the metric ged to raise the index d in the above equation, and contracting the

indices e and b, results in

∇aR
a
c +∇bR

b
c −∇cR = 0. (2.106)
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Note that the first two terms are equal, since the index of the derivative is contracted

with the upper index of R a
c . Thus, defining the Einstein tensor as

Gab = Rab − 1

2
Rgab, (2.107)

we can express equation (2.106) as

∇aGab = 0, (2.108)

where ∇a = gab∇b. The Einstein tensor is a key component in the Einstein field equation,

which relates the geometry of spacetime with its matter and energy distribution.

2.3.1 Geodesics

When dealing with curved manifolds, we may not able to draw a straight line

connecting two points of the manifold in such a way that this line lies entirely inside the

manifold. Consider again the two-dimensional sphere S2. Given two points p, q ∈ S2,

there are infinitely many curves on S2 connecting these points. We may ask, which of

these curves is the straightest? Such a curve is called a geodesics. Note that the curves

that most look like a straight line are those whose tangent vector field most closely

resembles a constant vector field. This idea connects to the concept of parallel transport

of vector fields and motivates the following definition:

Definition 2.3.4. Let M be a manifold, γ : I ⊂ R → M a smooth curve on M , with

tangent field T a, a = 1, . . . , 4. A geodesics is a curve γ such that

T a∇aT
b
∣∣∣
γ(t)

= 0, ∀ t ∈ I. (2.109)

We may write equation (2.109) in terms of its components. From equation (2.70), with

va = T a, we have

dT μ

dt
+ Γμ

νλ

dxν

dt
tλ = 0. (2.110)

Also, from equation (2.19), the tangent vector field has components

T μ(t) =
dxμ(t)

dt
. (2.111)

Thus, the geodesic equation, in a given coordinate basis, is written as

d2xμ

dt2
+ Γμ

νλ

dxν

dt

dxλ

dt
= 0. (2.112)
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Note that equation (2.112) represents a coupled system of second-order ordinary

differential equations for the functions xμ(t). From the theory of ordinary differential

equations, there always exists a unique solution to this system for any given initial

value of xμ and dxμ/dt. Hence, for a given point p ∈ M and any tangent vector field

T a ∈ X(M), there always exists a unique geodesics through p with tangent vector field

T a. The existence and uniqueness of geodesics allow us to use them to construct

coordinate systems on the manifold.

Consider two distinct geodesics, with tangent vector fields initially parallel

(Figure 2). Due to the curvature of the manifold, the geodesics may bend towards or

away from one another.

Figure 2 – Two geodesics, with tangent vector field T a and deviation vector Xa.

This provides another way to characterize the curvature of the manifold. Let γs(t) denote

a family of geodesics, where for each s ∈ R, the curve γs is a geodesic. Since the

parameter s ∈ R relates two nearby geodesics, the vector field Xa = (∂/∂s)a represents

the displacement toward a infinitely close geodesic and is called the deviation vector.

We can construct the vector fields T a and Xa to be orthogonal everywhere. Since T a

and Xa commute, we have

T b∇bX
a = Xb∇bT

a. (2.113)

Consider the quantity

va = T b∇bX
a, (2.114)

which gives the rate of change of Xa as we move along the geodesic. Thus, va is

interpreted as the relative velocity between two nearby geodesics. In a similar manner,

we interpret
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aa = T c∇cv
a (2.115)

as the relative acceleration of two nearby geodesics. Using equation (2.114), we find

aa = T c∇c(T
b∇bX

a), (2.116)

and with equation (2.113), this becomes

aa = T c∇c(X
b∇bT

a)

= (T c∇cX
b)(∇bT

a) +XbT c∇c∇bT
a.

(2.117)

Using the relation (2.87) to invert the order of the derivatives in the last term gives

aa = (T c∇cX
b)(∇bT

a) +XbT c∇b∇cT
a −R a

cbd X
bT cT d

= (T c∇cX
b)(∇bT

a) +XcT b∇c∇bT
a −R a

cbd X
bT cT d,

(2.118)

where we have made the substitution of indices b↔ c in the last term. We can rewrite

this equation as

aa = (T c∇cX
b)(∇bT

a) +XcT b∇c∇bT
a −R a

cbd X
bT cT d

= Xc∇c(T
b∇bT

a)−R a
cbd X

bT cT d,
(2.119)

and using equation (2.109), we find

aa = −R a
cbd T

cXbT d. (2.120)

This equation (2.120) is known as the geodesic deviation equation. In the next section

we shall use this equation to obtain the Einstein Field Equation.

2.4 Einstein Field Equation

The Einstein field equation is a non-linear partial differential equation for the

metric tensor gab of spacetime. This equation relates the geometry of spacetime to

the matter and energy distribution. In the previous section, we have developed the

mathematical framework used to describe the geometrical part. Now, we will explore

how to describe the matter and energy content. From now on we follow a unit system,

called the geometrized units system, in which the gravitational G constant and the speed

of light c are dimensionless and set to G = c = 1.
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2.4.1 Special Relativity

As previously discussed, in special Relativity there exists a special class of

observers, called inertial observers. These observers can define a coordinate system

using coordinates (x0, x1, x2, x3) ∈ R
4. Note that in the context of special and general

relativity, the components of tensor quantities are enumerated starting from 0. In any

inertial coordinate system, the spacetime interval I, defined by

I2 = −(x0 − x̄0)2 + (x1 − x̄1)2 + (x2 − x̄2)2 + (x3 − x̄3)2, (2.121)

has the same value. If we define the quantity ημν by

ημν =

⎧⎪⎪⎨⎪⎪⎩
−1, μ = ν = 0,

0, μ �= ν,

+1, μ = ν = 1, 2, 3,

(2.122)

we can write

I2 =
3∑

μ=0

3∑
ν=0

ημν(x
μ − x̄μ)(xν − x̄ν). (2.123)

This expression resembles equation (2.39) for the inner product, with uμ = vμ = (xμ−x̄μ).
We can represent the metric ηab by a square matrix, given by

ηab =

⎡⎢⎢⎢⎢⎣
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ . (2.124)

Then, ηab is a metric of Lorentzian signature. Since the components of this metric are

constant, using the ordinary partial derivative operator ∂a, we have

∂aηbc = 0, (2.125)

and ∂a is the derivative operator naturally associated with ηab. From equations (2.125)

and (2.80), the Christoffel symbols vanish. Consequently, from equation (2.92), the

Riemann curvature tensor also vanishes. In this case, we say that ηab is flat metric.

By the geodesic equation (2.112), we conclude that the geodesics of ηab are straight

lines. Since the trajectories of inertial observers are straight lines, we conclude that their

trajectories are timelike geodesics. This provides another way of stating that nothing can



CHAPTER 2. GENERAL RELATIVITY 48

travel faster than the speed of light in vacuum. Therefore, in the framework of special

relativity, spacetime has the manifold structure of R4, with a flat metric ηab of Lorentz

signature defined on it.

We now turn our attention to the motion of material particles. Since material

particles have mass m > 0, they travel along timelike curves wa. These curves can be

parametrized by the proper time τ , which is defined as

τ =

∫ √
−ηabT aT bds, (2.126)

where s ∈ R is an arbitrary parametrization of the curve, and T a = dwa/ds is the

tangent vector to the curve, when parametrized by s. The parametrization of wa can be

changed by using s = s(τ), leading to a reparametrized curve wa = wa(τ). With this

parametrization, the tangent vector ua to the timelike curve wa is called the 4-velocity of

the curve. The 4-velocity has unit lenght, since

ua =
dwa

dτ

=
dwa

ds

ds

dτ

= T a ds

dτ
.

(2.127)

From the definition (2.126), we obtain

ua = T a 1√
−ηbcT bT c

⇒ uaua = −T aTa
1

T bTb

= −1,

(2.128)

where we have lowered the index of T c using the metric ηbc. Since free particles move

along geodesics, their 4-velocity satisfy the geogesic equation

ua∂au
b = 0, (2.129)

in agreement with our previous discussion. Note that in the rest frame of a particle, with

trajectory wa, we have

dw1

dτ
=
dw2

dτ
=
dw3

dτ
= 0. (2.130)
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Using this together with uaua = −1 we conclude that in the rest frame of the particle,

the 4-velocity ua has components (1, 0, 0, 0) (in units where c = 1). We define the

4-momentum pa of a massive particle by

pa = mua. (2.131)

The energy of the particle, with 4-momentum pa = mua, as measured by an observer

with 4-velocity va, is defined to be

E = −pava. (2.132)

If the observer is at rest with respect to the particle, we have va = ua and then

E = −muaua = m, (2.133)

which is the formula E = mc2 for the rest energy of a massive particle. As defined in

equation (2.132), the energy is measured by an observer at the position of the particle.

Recall that the parallel transport of a vector in flat spacetime does not alter its orientation

or magnitude. Thus, we define the energy of a particle, as measured by an observer not

at the particle’s position, to be the same as measured by an observer at the site of the

particle, with both observers having parallel 4-velocities.

To describe continuous matter distributions in special relativity, we introduce

the stress-energy momentum tensor Tab, a symmetric tensor that encodes information

about the physical properties of matter, such as energy, pressure, and momentum. For

example, for an observer with 4-velocity va, the quantity Tabvavb represents the mass-

energy density of matter. A perfect fluid is defined as a continuous matter distribution

that can be fully characterized by its energy density ρ and pressure P [3]. The energy-

momentum tensor Tab for a perfect fluid is given by

Tab = ρuaub + P (ηab + uaub), (2.134)

where ua is the field representing the 4-velocity of the fluid. The equation of motion for a

perfect fluid, in the absence of external forces, is given by

∂aT
ab = 0. (2.135)

Substituting equation (2.134) in equation (2.135), and contracting with ub, gives
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0 = ub∂aT
ab

= −(∂aρ+ ∂aP )u
a + (ρ+ P )

[−(∂au
a) + uaub(∂au

b)
]
+ (∂aP )u

a.
(2.136)

From equation (2.128) we have

∂a(u
bub) = 0

⇒ub∂au
b = 0.

(2.137)

Then, the equation of motion (2.136) becomes

ua∂aρ+ (ρ+ P )∂au
a = 0. (2.138)

In the non-relativistic limit, the particles composing the fluid are expected to

move with speed |v| � 1. The pressure is associated with the random motion of the fluid

particles. In this limit, we expect that P � ρ [3]. Since ua has components (1, vx, vy, vz),

equation (2.138) can be expressed in terms of components as

0 = uμ∂μρ+ (ρ+ P )∂μu
μ

≈ uμ∂μρ+ ρ∂μu
μ

=
∂ρ

∂t
+

3∑
j=1

vj
∂ρ

∂xj
+ ρ

3∑
j=1

∂vj

∂xj
.

(2.139)

Using the nabla operator ∇ from vector calculus, we can write this equation as

0 =
∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v

=
∂ρ

∂t
+∇ · (ρv),

(2.140)

which is the continuity equation for ρ, where v is the usual velocity from mechanics.

In the next section, we present the description of physical quantities in the scope of

General Relativity.

2.4.2 General Relativity

In the discussion about the structure of spacetime, under the light of general

relativity, we pointed out that no body can be shielded from the gravitational influence.
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Thus, any observer measuring the properties of a test particle would move in the same

way as the test particle, since gravity would affect both in the same manner. As a result,

the observer cannot detect the action of gravity on the test particle.

To construct the theory of relativity that describes gravity, we assume that the

spacetime metric is not flat, differently from special relativity. In addition, we assume

that the trajectory of freely falling bodies in a gravitational field are the geodesics of the

spacetime metric. Thus, the motion of bodies under the influence of gravity alone will

be determined by the geometry of spacetime. In this way, we interpret the gravitational

influence as a consequence of the curvature of spacetime, rather than a force, as in

Newton’s theory of gravity.

We assume two guiding principles to formulate the laws of physics in curved

spacetime:

Principle of General Covariance: The laws of physics are invariant under coordi-

nate transformations and must be expressible in tensorial form.

Reduction to Special Relativity: The equations of General Relativity must reduce

to those of Special Relativity in the case where the metric gab is flat.

Tensorial equations hold in any coordinate system we choose. Also, all tensors satisfy

the transformation law (2.29), so every term in a tensorial equation transforms in the

same way under a coordinate transformation. This is the essence of covariance and

ensures that the equations retain the same form under coordinate transformations.

Therefore, it is desirable express physical laws in tensorial form, since coordinate

systems are a human construct and do not exist in nature. Adopting the Principle of

General Covariance guarantees that our equations will be valid, no matter the coordinate

system we choose.

The second principle we invoked is motivated by the Equivalence Principle,

which asserts that locally, the spacetime takes the same form as the Minkowski space-

time, and the laws of Special Relativity hold. Together, these two principles suggest that

we replace the metric ηab in the equations of Special Relativity by gab and the derivative

operator ∂a by ∇a, where ∇a the derivative operator associated with gab, satisfying

∇agab = 0. This procedure helps us to generalize the laws of physics from flat spacetime

to curved spacetimes.

Since we are considering the possibility that spacetime M is curved, the space-

time metric gab may not be flat, and the structure of spacetime M may differ from that of

R
4. However, since we are only considering these two modifications, we may continue

to describe physical quantities using tensors. Thus, the motion of particles will still be
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described by a timelike curve, and perfect fluids will be described in terms of a 4-velocity

ua, a density ρ and pressure P . Hence, similarly to special relativity, we define the

4-velocity ua of a particle as the unit vector tangent to its trajectory. A particle under the

influence of gravity alone satisfies the geodesic equation

ua∇au
b = 0. (2.141)

The 4-momentum pa of a particle is defined by

pa = mua. (2.142)

The energy of a particle with 4-velocity ua, measured by and observer with 4-velocity va

at the site of the particle, is given by

E = −pava. (2.143)

Here, we encounter an important difference from special relativity. Since spacetime is

curved and parallel transport is path-dependent, we lose the notion of parallel vectors at

different points in spacetime. Thus, we cannot define the energy of a particle as measure

by a distant observer. As before, we describe a perfect fluid using the energy-momentum

tensor Tab given by

Tab = ρuaub + P (gab + uaub), (2.144)

satisfying the equation of motion

∇aTab = 0. (2.145)

We now seek the equation that describes the relation between spacetime

geometry and matter distribution. To gain insight on the form of this equation, we

compare the description of tidal forces by Newtonian theory of gravity and general

relativity. In the Newtonian formulation, the gravitational field generated by a mass M

can be described in terms of a potential Φ, with the acceleration (force per unit mass) of

a particle of mass m immersed in this gravitational field given by the Newton’s Law of

Motion

d2r(t)

dt2
= −∇Φ, (2.146)
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where r(t) represent the position of the particle at time t. Now, consider two test particles

falling toward a spherical mass distribution M (figure 3). The separation between the

particles is described by a vector n.

Figure 3 – Two particles in the vicinity of a body of mass M , with the separation of the particles
given by the vector n.

As the particles fall towards the center of M , the norm of n decreases, and the

particles accelerate toward one another. We consider the case where the two particles

are infinitesimally close, so the potential at the position of the second particle is Φ(r+n).

We can approximate it at first order by the Taylor expansion around r as

Φ(r+ n) = Φ(r) +
3∑

j=1

∂Φ

∂xj

∣∣∣∣∣
r

nj. (2.147)

Then, the acceleration of the second particle is given by

d2

dt2
(r(t) + n(t)) = −∇Φ(r)−

3∑
j=1

∂(∇Φ)

∂xj

∣∣∣∣∣
r

nj

⇒
(
d2r(t)

dt2
+∇Φ(r)

)
= −

(
d2n(t)

dt2
+

3∑
j=1

∂(∇Φ)

∂xj

∣∣∣∣∣
r

nj

)
.

(2.148)

From equation (2.146), the left-hand side of this equation vanishes and we obtain

d2n(t)

dt2
= −

3∑
j=1

∂(∇Φ)

∂xj

∣∣∣∣∣
r

nj

= (−n · ∇)∇Φ(r).

(2.149)

Thus, the acceleration of the particles toward one another is given by (−n ·∇)∇Φ and is

called the tidal acceleration. In terms of components, the tidal acceleration a is given by
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ai = −nj ∂2Φ

∂xj∂xi
. (2.150)

Writing in terms of tensors, we have

ab = −nc∂c∂
bΦ. (2.151)

On the other hand, if we view gravity as a consequence of the curvature of spacetime,

the trajectory of two infinitesimally close particles will be geodesics, and the relative

acceleration between them will be described by the geodesic deviation equation (2.120).

Then, we have

aa = −R a
cbd v

cxbvd, (2.152)

where va is the 4-velocity of the particles and xa their separation vector. These two

results for the relative acceleration suggest the correspondence

R a
cbd v

cvd ←→ ∂b∂
aΦ. (2.153)

Nonetheless, from Poisson’s equation, we have

∇2Φ = 4πρ, (2.154)

where ρ is the mass density of matter. As discussed before, in general relativity the

mass and energy properties of matter are described by the stress-energy tensor Tab
and we have the correspondence

Tabv
avb ←→ ρ, (2.155)

where va is the 4-velocity of the observer. Therefore, considering equation (2.154) and

the two correspondences (2.153) and (2.155), we are led to write

R a
cad v

cvd = 4πTcdv
cvd

⇒Rcd = 4πTcd.
(2.156)

On the other hand, we have defined the Einstein tensor in equation (2.107) which,

together with (2.156) becomes

Gab = 4π

(
Tab − 1

2
Tgab

)
. (2.157)
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From (2.108) and (2.145), with ∇a the derivative operator associated with gab, we obtain

0 = ∇aGab

⇒ 0 = ∇aTab − 1

2
∇aTgab

= −1

2
∇aTgab

= −1

2
∇bT.

(2.158)

This result suggests that ∇aT = 0, from which we can conclude that T is constant

throughout the universe. This is unphysical, since T = 0 in vacuum and T �= 0 in

the presence of matter. Equation (2.156) was postulated by Einstein, but due to this

unphysical conclusion, it was rejected. If, instead of equation (2.156), we consider

Gab = 8πTab, (2.159)

or, writing Gab explicitly,

Rab − 1

2
Rgab = 8πGTab (2.160)

the consistency between the identity (2.108) and the local conservation of energy given

by (2.145) is guaranteed. This equation is called the Einstein field equation and was

first presented by Einstein in 1915. Therefore, in the framework of general relativity, the

spacetime is a manifold M with a metric gab of Lorentzian signature defined on it. The

relation between the curvature of gab and the matter distribution in spacetime is given by

the Einstein field equation (2.160). We have restored the constant G to avoid possible

confusions on the next chapters.

We have shown that the components Γλ
μν of the Christoffel symbols depend on

the derivatives of gμν through equation (2.80). From equation (2.92), the components of

the Riemann tensor depend on derivatives of Γλ
μν . Then, the components R σ

μνρ depend

on second-order derivatives of gμν and we find that the components of Einstein field

equation are second-order partial differential equations for gμν . If this set of equations is

solvable, we can determine the metric gab and describe the geometry of spacetime for

a given Tab. As we shall see in the next chapter, even for the simplest cases, solving

equation (2.160) is not straightforward.
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CHAPTER 3

Quantum Field Theory

This chapter is dedicated to the presentation of quantum field theory. We

begin by introducing the notion of quantum fields in a conceptual way. To stablish the

foundations for the Lagrangian and Hamiltonian formulations of classical field theory,

we first review the fundamental principles of classical mechanics of point particles.

Following this, we introduce the procedure of canonical quantization and derive a path

integral representation for transition amplitudes in quantum mechanics. After reviewing

some topics of classical field theory, we apply the canonical quantization to systems

characterized by fields. Finally, imaginary time formalism is introduced and used to

derive the partition function for field theories.

3.1 What are Quantum Fields?

Light played a fundamental role in the revolution that physics underwent at the

beginning of the 20th century. Up to that time, classical physics thrived in explaining

the natural world. However, certain phenomena remained unexplained with the existing

knowledge. As discussed in the previous chapter, the constancy of the speed of light led

to the development of special relativity. This new theory transformed our understanding

of the macroscopic world, from the structure of space and time to the dynamics of

particles and bodies. Almost at the same time, a revolution occurred in the microscopic

domain, culminating in the development of quantum mechanics. The starting point was

the inconsistency between theory and experiment involving hot bodies and the emission

of electromagnetic radiation.
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The aspect of the electromagnetic radiation emitted by a hot body depends on

its temperature. As a piece of metal is heated, it first acquires a red coloration. If the

temperature continues to rise, the metal may turn yellow and eventually white. This

indicates that the color of predominant emission shifts to higher frequencies as the

temperature increases [16]. To study thermal radiation, a small hole can be made in the

wall of a heated oven or cavity at thermal equilibrium, allowing the radiation escaping

through the hole to be analysed. The walls of the cavity are composed by atoms, which

themselves consists of charged particles. These atoms can be modelled as charged

oscillators capable of absorbing and emitting electromagnetic radiation. Consequently,

the radiation inside the cavity attains thermal equilibrium through energy exchange with

the wall’s atoms.

Classically, the charged oscillators are assumed to oscillate at all frequencies,

emitting and absorbing radiation across the entire electromagnetic spectrum. For a given

temperature, the spectral distribution of the intensity of the radiation has a specific shape.

The classical physics prediction agrees with the experimental data at low frequencies.

However, at high frequencies, there is a significant discrepancy. The classical theory

predicts that the intensity increases as a power law with frequency, resulting in divergent

values for high frequencies. For this reason, this effect became known as the ultraviolet

catastrophe.

This inconsistency led Max Planck to postulate that an oscillator can only absorb

and emit energy in discrete amounts, corresponding to integer multiples of a "quantum"

of energy

E = hν, (3.1)

where ν is the frequency of the oscillator and h is the Planck constant. Planck’s postulate

enabled him to derive the correct expression for the intensity, successfully resolving

the ultraviolet catastrophe. Later, Einstein expanded on Planck’s idea, interpreting the

quantum of energy as evidence that light is composed of particles, called photons.

These ideas, along with subsequent developments led to the establishment of the

quantum theory.

In classical physics, when studying the dynamics of particles and rigid bodies,

we can characterize the system with a finite set of numbers, such as its coordinates

and velocity components [18]. In this case, the system is said to have a finite number

of degrees of freedom. The situation is rather different for systems composed of fields.

Fields are represented by continuous functions f(x, t), which assigns a certain value to

each point of space x at every instant of time t. The nature of f depends on the type of

field being described. For example, in classical electromagnetism, the electric E(x, t)
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and magnetic B(x, t) fields associate a vector with each point in space at any given

time. To fully characterize a system composed of fields, it is necessary to specify the

values of the fields at all points of space. Consequently, such systems are said to have

an infinite number of degrees of freedom.

Although the most common examples of fields are related to interactions, such

as the gravitational and electromagnetic ones, fields can also be used to describe

material systems. Consider a system of N equal masses m, connected by massless

stretchable strings with fixed endpoints. In the mechanical equilibrium, the tension T

in the strings is constant, and the masses are equally spaced at a distance Δx [19].

Assuming only small oscillations of the string, in the limit m→ 0 and Δx→ 0, provided

that the ratio m/Δx remains constant, we obtain a continuous string. In this case,

while the transversal displacement of each mass m is described by a coordinate qi(t),

i = 1, . . . , N , the transversal displacement of the continuous string at any point x is

represented by a function u(x, t). The study of systems characterized by a field φ(x, t),

within the framework of classical physics is known as classical field theory. To develop

a quantum description of fields, it is necessary to review some concepts of quantum

mechanics.

In classical physics, systems are characterized by coordinates and momenta.

On the other hand, in quantum mechanics, the state of the system is characterized by a

vector |ψ〉, called a ket, belonging to a Hilbert space E [20]. As a specific example, the

state of the quantum harmonic oscillator can be characterized by a set of kets {|n〉}n∈N,

where each state corresponds to a specific energy value En. The value En correspond

to (n+ 1/2) quanta of energy hν. The dynamics of the oscillator can be studied using

two operators, a and a†, which satisfy certain commutation relations. The application of

operator a† to the state |n〉 promotes the system to the state |n+ 1〉 and increases its

energy by hν. Similarly, the application of a to the state |n〉 demotes the system to the

state |n− 1〉 and the energy is decreased by a quantum. We remark that the value of

energy is bounded from below, and a |0〉 = 0. The operators a† and a can be interpreted

as creating or annihilating a quantum of energy, and thus raising or lowering the energy

of the systems. Hence, a† and a are called the ladder operators or raising and lowering

operators of the harmonic oscillator.

By studying the spontaneous emission of electromagnetic radiation by atoms,

Dirac obtained the quantum description of the electromagnetic interaction [21], thus

founding the quantum electrodynamics, the first quantum field theory. In his work,

Dirac expressed the vector potential A(x, t) as a Fourier series and demonstrated that

the coefficients ak(t) in the expansion satisfy the same commutation relation as the

ladder operators of harmonic oscillator. Consequently, the state of free electromagnetic

radiation can be characterized by integer numbers n1, n2, . . ., with nk representing the
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number of quanta in the normal mode k [22]. The operators a†k and ak are interpreted

as creating or annihilating a quantum, or a photon, in the mode k. These operators thus

provide quantum mechanical description of electromagnetic interaction.

This technique can also be applied to describe matter [23]. For bosons, the

procedure follows the same steps as for the electromagnetic field. However, for fermions,

the procedure must be adapted. In this case, each mode k can only accommodate

0 or 1 fermion, due to the Pauli exclusion principle. This can be achieved imposing

anticommutation relations on the creation and annihilation operators. This approach is

know as second quantization, because the fields being quantized are the wave functions

of particles from usual quantum mechanics, meaning the system was already quantized

once before.

Historically, this method of quantizing fields was the first to be developed, with

other methods emerging later. In section 3.5, we introduce the method of quantization

via path-integrals, which is more suitable for our purposes.

3.2 Classical Mechanics

Classical mechanics can be formulated in several different ways, with the

Newtonian, Lagrangian, and Hamiltonian formulations being some of the most well-

known. While all these formulations must lead to the same conclusions, since the

laws of nature are independent of the specific theoretical framework, each formalism

is better suited for different purposes. In this section, we shall review some concepts

of Lagrangian and Hamiltonian mechanics, as they are essential for understanding

quantum mechanics and field theories. Both Lagrangian and Hamiltonian mechanics

involve the use of functionals, which, roughly speaking, are functions of functions. Before

studying classical mechanics specifically, we first review some concepts of calculus of

variations

3.2.1 Calculus of Variations

The calculus of variations is a branch of mathematics concerned with finding

the extrema of functionals, which are typically defined by integrals, such as the action

(3.29) [19]. In calculus, finding the extrema of real-valued functions involves evaluating

derivatives to identify the points at which the function reaches a maximum or minimum.

In contrast, when dealing with functional, the tasks is not to find a point, but rather a

function that extremizes the functional.

Definition 3.2.1. Let F be the set of all integrable C2 functions f : R
3 → R and
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y : R → R be a C2 function. An integral functional is a map J : F → R, defined by

J [y] =

x2∫
x1

f(y(x), y′(x), x)dx, (3.2)

where y′(x) = dy(x)/dx.

Then, given a functional J [y], the problem of calculus of variations consists in finding the

function y, passing through the fixed points (x1, y1) and (x2, y2), that extremizes J [y].

We can reduce the problem of extremizing functionals to the problem of finding

the extrema of real functions. Let y(x) be the function that extremizes the functional J [y]

and consider the curve

ȳ(x) = y(x) + εη(x), (3.3)

with ε ∈ R and η(x) a C1 function such that η(x1) = η(x2) = 0. Given the functional J [y],

defined as in equation (3.2), we define the function

Φ(ε) = J [ȳ]

=

x2∫
x1

f(ȳ(x), ȳ′(x), x)dx.
(3.4)

By hypothesis, y gives a extremum of J and, by construction, ȳ = y for ε = 0. Thus, Φ(ε)

have an extremum for ε = 0. Hence, the condition of extremization of J by y(x) is

(
dΦ

dε

)
ε=0

= 0. (3.5)

Thus, from the definitions (3.2) and (3.4), we have

0 =

(
dΦ

dε

)
ε=0

=

x2∫
x1

(
∂f

∂ȳ

∂ȳ

∂ε
+
∂f

∂ȳ ′

∂ȳ′

∂ε

)
ε=0

dx.

(3.6)

From the definition (3.3) of ȳ, we have

∂ȳ

∂ε
= η(x),

∂ȳ′

∂ε
= η′(x).

(3.7)
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Substituting this in the previous integral, we obtain

x2∫
x1

(
∂f

∂y
η +

∂f

∂y′
η′
)
dx = 0, (3.8)

where we have set ε = 0, and consequently, ȳ = y. We can integrate the second term

by parts, to give

x2∫
x1

∂f

∂y′
η′dx =

(
∂f

∂y′
η

) ∣∣∣∣∣
x2

x1

−
x2∫

x1

η
d

dx

(
∂f

∂y ′

)
dx. (3.9)

The first term on the right-hand side vanishes, since by definition, η(x1) = η(x2) = 0.

With this result, equation (3.8) becomes

x2∫
x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx = 0. (3.10)

Apart from the fact that the function η vanishes at the endpoints, η is an arbitrary function.

So, the previous equality will hold for every η if and only if

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0. (3.11)

This equation is known as the Euler equation and provides a second-order differential

equation that can be solved to obtain the function y(x) that extremizes the functional

J [y].

Now, let us consider the general case where the functional J takes several

C2 functions yi, i = 1, . . . , n, each of which depend on multiple variables, i.e., yi =

yi(x
1, . . . , xm). We now consider a functional of the form

J [y1, . . . , yn] =

∫
Ω

f
(
y1, . . . , yn, ∂1y1, . . . , ∂my1, . . . , ∂1yn, . . . , ∂myn, x

1, . . . xm
)
dΩ,

(3.12)

where Ω is a volume in R
m and we have employed the notation

∂iyj =
∂yj
∂xi

, i = 1, . . . , n and j = 1, . . . , m. (3.13)

Proceeding as before, suppose that the n functions yi extremize J and define auxiliary

functions
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ȳi(x) = yi(x) + εηi(x), i = 1, . . . , n, (3.14)

where all the functions ηi are C1 and vanish at the boundary of the volume Ω. Then, for

Φ(ε) = J [ȳ1, . . . , ȳn], (3.15)

the condition for extremization of J is

(
dΦ

dε

)
ε=0

= 0. (3.16)

Evaluating the derivative for the functional defined as in (3.12), we obtain:

dΦ

dε
=

∫
Ω

df

dε
dmx

=

∫
Ω

[
n∑

i=1

(
∂f

∂yi
ηi +

m∑
j=1

∂f

∂(∂jyi)
∂jηi

)]
dΩ.

(3.17)

For fixed values of i and j, we integrate the second term in the brackets by parts and

obtain

∫
Ω

[
∂f

∂(∂jyi)
∂jηi

]
dΩ = −

∫
Ω

d

dxj

(
∂f

∂(∂jyi)

)
ηi dΩ (3.18)

where we already evaluated the first term of the integral on the boundary. Then we

obtain,

dΦ

dε
=

∫
Ω

[
n∑

i=1

(
∂f

∂yi
−

m∑
j=1

d

dxj

(
∂f

∂(∂jyi)

))]
ηi dΩ. (3.19)

Following the same reasoning as before, considering that each function ηi are indepen-

dent and arbitrary, we obtain the Euler equation for the general case

∂f

∂yi
−

m∑
j=1

d

dxj

(
∂f

∂(∂jyi)

)
= 0 i = 1, . . . , m. (3.20)

In the following section we are going to use equations (3.11) and (3.20) together with

Hamilton’s principle to obtain equations of motion for physical systems.

In physics, it is customary to use an alternative notation when dealing with

calculus of variations. The variation δy is defined by δy = εη, so that equation (3.3) is

expressed as
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ȳ = y + δy. (3.21)

The variation δJ of the functional J is defined from equation (3.8) by

δJ = εΦ′(0)

=

x2∫
x1

(
∂f

∂y
δy +

∂f

∂y′
δy′
)
dx.

(3.22)

Note that,

δy′ = εη′ = (εη)′ = (δy)′. (3.23)

Substituting this into the integral and performing an integration by parts leads to

δJ =

x2∫
x1

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
δy dx. (3.24)

The variation δy is arbitrary, except for the condition that it vanishes at the endpoints.

Therefore, the Euler equation follows from the condition δJ = 0.

3.2.2 Lagrangian Mechanics

In the Lagrangian formulation of classical mechanics, systems are character-

ized by a set of generalized coordinates {qi(t)}ni=1 and a set of generalized velocities

{q̇i(t)}ni=1, where q̇ = dq/dt [19]. Here, n is the minimum number of independent coordi-

nates needed to define the system’s configuration. These coordinates are referred to

as generalized because they may not correspond to the usual Euclidean coordinates

(x1, x2, x3) ∈ R
3. The space of all points (q1, . . . , qn) is called the configuration space of

the system. By knowing the trajectory of the system in the configuration space, we can

determine its trajectory in the usual space R
3. We shall categorize the systems in two

groups, based on the constraints between the coordinates used to describe the system.

If the relationship between the generalized coordinates can be written in the form

f(q1, . . . , qn, t) = 0, (3.25)

we say that the system is a holonomic system. Otherwise, the system is refered to as a

non-holonomic system. Consider the motion of a simple pendulum of mass m, with a
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rod of size l. The relation between the Cartesian coordinates x(t), y(t) of m obey the

relation

x2(t) + y2(t)− l2 = 0 (3.26)

and, hence, the system is holonomic. For the case of a particle confined to move inside

a sphere of radius R, the coordinates x(t), y(t), z(t) of the particle satisfy

x2(t) + y2(t) + z2(t)−R2 < 0, (3.27)

and, thus, the system is non-holonomic.

The main object in this formulation is the Lagrangian function L(q1, . . . , qn, q̇1, q̇n, t).

To simplify the notation, we write it as L(q, q̇, t). The Lagrangian is defined as

L(q, q̇, t) = T (q̇)− V (q), (3.28)

where T is the kinetic energy of the system and V the potential energy associated

with the forces acting on the system. The equations of motion follow from the following

principle:

Hamilton’s Principle: Let a holonomic mechanical system be described by the

Lagrangian L(q, q̇, t). The motion of the system from instant t1 to instant t2 is such

that the action, defined as

S =

t2∫
t1

L(q, q̇, t) dt, (3.29)

is stationary for fixed points q(t1) and q(t2).

That is, to find the trajectory of the system we must find the extremum of the action.

The action S has the same form as the functional J defined in (3.2) for the case

of a system characterized by a single generalized coordinate q(t). Therefore, the results

obtained for the condition of extremization of J apply to S with the replacements

f → L,

y → q,

x → t.

(3.30)

Performing these substitutions in equation (3.11), we find
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∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0, i = 1, . . . , n. (3.31)

This equation is called the Euler-Lagrange equation, and provides a differential equation

whose solution yields the coordinate q(t) that extremizes the action S[q]. According to

Hamilton’s principle, this function corresponds to the motion of the system.

An example of a system characterized by a single generalized coordinate q is a

simple pendulum with a rod of length l and mass m. The gravitational potential energy

V depends only on the y coordinate of the pendulum. We define the zero of potential

energy such that V (θ = 0) = 0.

The kinetic and the potential energies of the system are given by

⎧⎨⎩T =
1

2
mv2 =

1

2
ml2θ̇2,

V = mgl(1− cos θ).
(3.32)

Given T and V , we obtain the Lagrangian of the system, which depends on the single

generalized coordinate θ. We then find that the Euler-Lagrange equation of the system

is

θ̈ +
g

l
sin θ = 0, (3.33)

which is the differential equation of the simple harmonic oscillator.

In more general cases, the Lagrangian L may depend on several generalized

coordinates qi, i = 1, . . . , n. The action functional then takes the form

S[q1, . . . , qn] =

t2∫
t1

L(q1, . . . , qn, q̇1, . . . , q̇n, t)dt. (3.34)

Now, the action takes the same form of the functional defined in (3.12), with m = 1.

Then, we obtain a Euler-Lagrange equation for each coordinate, each of which similar

to equations in (3.20), and is given by

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0. (3.35)

The application of these equations follows the same steps as in the case of the simple

pendulum, once the form of L is known.

In the treatment presented here, the time t is the only independent variable.

However, as we will discuss later, the situation changes when we study relativistic field

theories, where space and time variables are treated on equal footing.
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3.2.3 Hamiltonian Mechanics

Hamilton’s formulation of mechanics is related to that of Lagrange and is ob-

tained by introducing the canonically conjugate momentum pi as an independent vari-

able, which is defined as

pi =
∂L

∂q̇i
, (3.36)

where L is the Lagrangian of the system and qi is a generalized coordinate. In this

formulation, the conjugate momenta replace the generalized velocities q̇i. Thus, the

systems are characterized by a set of generalized coordinates {qi}ni=1 and a set of

generalized momenta {pi}ni=1.

The central object in Hamiltonian mechanics is the Hamiltonian functionH(q, p, t),

where q denotes all coordinates and p all momenta. The function H is obtained from the

Lagrangian L by the Legendre transformation

H(q, p) =
n∑

i=1

piq̇i(p)− L(q, q̇(p)). (3.37)

The equations of motion of the system are obtained from the Hamilton equations,

defined as

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

.

(3.38)

We now recall the definition of Poisson brackets, which allows us to write

equations in a more compact form. Given two functions F (q, p, t) and G(q, p, t), the

Poisson bracket of F and G is defined as [19]

{F, G} =
n∑

i=1

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
. (3.39)

This allows us to write the total time derivative of a function A(q, p, t) as

dA

dt
= {A, H}+ ∂A

∂t
. (3.40)

From the definition of Poisson brackets, we have the following relations
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{qi, qj} = 0,

{pi, pj} = 0,

{qi, pj} = δij,

(3.41)

for all i, j = 1, . . . , n, where δij is the Kronecker delta.

3.3 Quantum Mechanics

In this section, we review key concepts of quantum mechanics essential for the

study of quantum fields and derive a path integral representation of transition amplitudes.

For simplicity, we restrict the discussion for one-dimensional systems.

3.3.1 Canonical Quantization

The Hamiltonian formalism provides a recipe to obtain the quantum description

of a system from its classical counterpart, when one exists [20]. The process, known as

canonical quantization, involves replacing

x→ X,

p→ P,

{· , ·} → 1

i�
[ · , · ],

(3.42)

where X and P are the position and momentum operators, respectively, and � is the

reduced Planck constant. The commutator [ · , · ] is defined by

[A,B] = AB − BA, (3.43)

for any operators A and B. With these substitutions, the classical Hamiltonian becomes

a Hermitian operator H(X, P, t), called the Hamiltonian operator.

In quantum mechanics, the relations (3.41) become

[Xi, Xj] = 0,

[Pi, Pj] = 0,

[Xi, Pj] = i�δij.

(3.44)
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Consider a one-dimensional system, with generalized coordinate x and momentum p. In

the context of classical mechanics, the products xp and px are equivalent. On the other

hand, from the last relation above we see that in quantum mechanics XP �= PX. Then,

if the classical Hamiltonian contains terms involving products of x and p, we must adopt

a symmetrization procedure to obtain the corresponding Hamiltonian operator. In the

example considered, the term xp must be replaced by (XP + PX)/2 when performing

the canonical quantization.

As mentioned before, in quantum mechanics, the state of the system is charac-

terized by a vector |ψ〉, called a ket, belonging to a Hilbert space E. Then, the operators

X, P and H are operators in the Hilbert space of the system. The eigenvectors or

eigenstates of these operators constitute bases for the Hilbert space [20].

To study the dynamics of quantum systems, we can adopt two different ap-

proaches. The first approach, known as the Schrödinger picture, treats the state kets

|ψ(t)〉 as time-dependent, while the operators do not carry any time dependence. We

add a label S to the kets in the Schrödinger picture to explicitly indicate the picture

we are using. In this approach, the time evolution of the system is governed by the

Schrödinger equation

H |ψ(t)〉S = i�
∂

∂t
|ψ(t)〉S . (3.45)

We restrict our discussion to time-independent Hamiltonians. In this situation, the

solution of Schrödinger equation is given by

|ψ(t)〉S = e−
i
�
H(t−t0) |ψ(t0)〉S , (3.46)

where |ψ(t0)〉S is the state ket of the system at a instant of time t0 < t. Thus, the

connection between the state ket |ψ(t0)〉S and |ψ(t)〉S is given by the operator

U(t, t0) = e−
i
�
H(t−t0), (3.47)

called the time evolution operator. Multiplying equation (3.46) on both sides by the

adjoint of U leads to

|ψ(t0)〉S = U †(t, t0) |ψ(t)〉S
= e

i
�
H(t−t0) |ψ(t)〉S ,

(3.48)

and thus we interpret U † as the operator that evolves the system backwards in time.

We label the eigenkets X and P by their corresponding eigenvalues, that is,
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X |x〉S = x |x〉S ,
P |p〉S = p |p〉S ,

(3.49)

and both sets of eigenstates {|x〉S}x∈R and {|p〉S}p∈R constitute an orthonormal basis

for the Hilbert space of the system. We remark that in the Schrödinger picture, the basis

kets do not carry time dependence.

The other approach we can adopt to study the dynamics of quantum systems is

known as the Heisenberg picture. In this approach, the state kets are time-independent

and the operators carry the time dependence. In this picture we will label the kets and

operators with a subscript H. Thus, if we know the system is in the state |ψ〉H at some

time t0, it will remain in this same state at all subsequent times. Note that this state

corresponds to |ψ(t0)〉S in the Schrödinger picture. From equation (3.48), we then have

|ψ〉H = e
i
�
H(t−t0) |ψ(t)〉S . (3.50)

An operator AH in the Heisenberg picture is related to AS in the Schrödinger picture by

AH(t) = e
i
�
H(t−t0)ASe

− i
�
H(t−t0) |ψ(t)〉S

= U †(t, t0)ASU(t, t0).
(3.51)

Using this relation, assuming that AS does not depend explicitly on time, we can show

that the operator AH(t) satisfies

d

dt
AH(t) = [AH(t), H]. (3.52)

This equation is known as the Heisenberg equation of motion. Particularly, the position

operator in the two pictures are related by

XH(t) = U †(t, t0)XSU(t, t0) (3.53)

and its eigenstates satisfy

XH(t) |x, t〉H = x |x, t〉H . (3.54)

From this, we see that the eigenstates in the two pictures are related by

|x, t〉H = U †(t, t0) |x〉S . (3.55)
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Since the sets of eigenstates {|x〉S}x∈R, {|p〉S}p∈R and {|x, t〉H}x∈R constitute orthonor-

mal bases of the Hilbert space of the system, they satisfy

S〈x|x′〉S = δ(x− x′),

H〈x, t|x′, t〉H = δ(x− x′),

S〈p|p′〉S = δ(p− p′),

(3.56)

and also

∫
dx |x〉S S〈x| = �,∫
dx |x, t〉H H〈x, t| = �,∫
dp |p〉S S〈p| = �,

(3.57)

which we call the completeness relations. The inner product between momentum

eigenkets and position eigenkets reads

S〈p|x〉S =
1√
2π�

e−
i
�
px. (3.58)

The Schrödinger and Heisenberg pictures are equivalent, and the dynamics

of a quantum system can be studied in either of these approaches. However, there

exists another formalism for studying the dynamics of the system, based on the classical

Hamiltonian, that does not rely on non-commuting operators. This formulation involves

path integrals, and we now turn our attention to this approach.

3.3.2 Path Integrals on Quantum Mechanics

In quantum mechanics, we are usually interested in evaluating probability

amplitudes of the form 〈f |i〉, where |i〉 represents the initial state of the system and |f〉
the final state. If we know |i〉 and the appropriate operators, we can solve the equation

of motion in either Schrödinger or Heisenberg pictures to determine the state of the

system at any given time t. However, we will use an alternative method, which expresses

transition amplitudes as path integrals.

We define the transition amplitude

F (xf , tf ; xi, ti) =H〈xf , tf |xi, ti〉H
= 〈xf | e− i

�
H(tf−ti) |xi〉 ,

(3.59)
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where we have dropped out the labels of basis kets in the Schrödinger picture. Here,

we assume that the Hamiltonian is given by

H(X, P ) =
P 2

2m
+ V (X). (3.60)

Let us divide the time interval tf − ti in N equal segments of length δt. In the

end we will be interested in taking the continuum limit δt → 0 and N → ∞. Then, we

have

δt =
tf − ti
N

, (3.61)

so any intermediate time tn can be expressed as

tn = ti + nδt, ti < tn < tf . (3.62)

We can introduce a completeness relation in the expression for F (xf , tf ; xi, ti)

for each intermediate time tn and we obtain

F (xf , tf ; xi, ti) =

∫
dxN−1 · · ·

∫
dx1H〈xf , tf |xN−1, tN−1〉H

H〈xN−1, tN−1|xN−2, tN−2〉H · · ·H〈x1, t1|xi, ti〉H

=
N−1∏
j=1

∫
dxj

N∏
k=1

H〈xk, tk|xk−1, tk−1〉H ,

(3.63)

where tf > tN−1 > tN−2 > · · · > t1 and we have identified ti = t0 and tf = tN . From

relation (3.55) and the definition (3.47) of the time evolution operator, any intermediate

term has the form

H〈xn, tn|xn−1, tn−1〉H = 〈xn| e− i
�
H(X,P )(tn−t0)e

i
�
H(tn−1−t0) |xn−1〉

= 〈xn| e− i
�
H(X,P )(tn−tn−1) |xn−1〉

= 〈xn| e− i
�
H(X,P )δt |xn−1〉 .

(3.64)

Inserting a completeness relation written in terms of momentum basis we obtain
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H〈xn, tn|xn−1, tn−1〉H =

∫
dp 〈xn| e− i

�
H(X,P )δt |p〉 〈p|xn−1〉

=

∫
dp 〈xn|p〉 〈p|xn−1〉 e− i

�
H(xn, p)δt

=

∫
dp

2π�
e

i
�
p(xn−xn−1)e−

i
�
H(xn, p)δt.

(3.65)

Using the explicit form of the Hamiltonian, we find

H〈xn, tn|xn−1, tn−1〉H =

∫
dp

2π�
exp

{
− i

�

[(
p2

2m
+ V (xn)

)
δt− p(xn − xn−1)

]}
= exp

[
− i

�
V (xn)δt

] ∫
dp

2π�
exp

[
− i

�

(
δt

2m
p2 − p(xn − xn−1)

)]
.

(3.66)

The integral can be evaluated using the Gaussian integral formula [4]

∞∫
−∞

dp exp

(
−1

2
ap2 + Jp

)
=

√
2π

a
exp

(
J2

2a

)
. (3.67)

Then, we obtain

H〈xn, tn|xn−1, tn−1〉H =

(
− im

2π�δt

)1/2

exp

{
i

�
δt

[
(xn − xn−1)

2

δt2
− V (xn)

]}
. (3.68)

Substitution of this result in equation (3.63) leads to

F (xf , tf ; xi, ti) =
N−1∏
j=1

∫
dxj

N∏
k=1

(
− im

2π�δt

)1/2

exp

{
i

�
δt

[
m

2

(xn − xn−1)
2

δt2
− V (xn)

]}

=

(
− im

2π�δt

)N/2 N−1∏
j=1

∫
dxj exp

{
i

�
δt

N∑
k=1

[
m

2

(xk − xk−1)
2

δt2
− V (xk)

]}
.

(3.69)

From usual calculus, in the limits δt → 0 and N → ∞, such that Nδt = tf − ti is fixed,

we have

xk − xk−1

δt
−→ ẋ(tn) and δt

N∑
k=1

f(tk) −→
tf∫

ti

dtf(t). (3.70)
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In this limit, the argument of the exponential becomes

δt
N∑
k=1

[
m

2

(xk − xk−1)
2

δt2
− V (xk)

]
−→

tf∫
ti

dt

(
1

2
mẋ2(t)− V (t)

)
, (3.71)

which we recognize as the action functional S of the system. Thus, we express the

transition amplitude (3.69) as

F (xf , tf ; xi, ti) =

∫
Dx e

i
�
S[x], (3.72)

where we have defined the notation

Dx = lim
δt→0
N→∞

(
− im

2π�δt

)N/2 N−1∏
j=1

dxj (3.73)

and we call Dx the functional measure. The integrations must be taken over all paths

x(t) satisfying the boundary conditions

x(ti) = xi and x(tf ) = xf . (3.74)

We point out that the factor

lim
δ→0
N→∞

(
− im

2π�δt

)N/2

(3.75)

is divergent, which can bring some issues. Therefore, the expression (3.72) gives the

desire result, allowing us to obtain the transition amplitude from the classical action.

In classical mechanics, from the Hamilton’s principle, the action determines

the path that the system follows. On the other hand, in quantum mechanics all paths

contribute to the transition amplitude. We remark that the expression for F (xf , tf ; xi, ti)

presents some issues. We note that the integrand is purely a phase factor, which has

the same modulus for all trajectories and we may have problems of convergence [24].

Also, in most cases we are not even able to perform the integration.

3.4 Classical Field Theory

In the previous sections, we studied systems characterized by a discrete set of

generalized coordinates. Now we turn to the study of systems characterized by fields. In
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this section, we present the Lagrangian and Hamiltonian formulations of classical field

theory, introducing the basic concepts that will be needed when studying quantum fields

later.

As briefly discussed in the beginning of the chapter, fields are a generalization

of the concept of coordinates, associating a certain value to each point x of space at a

given time t. Thus, fields are characterized by a continuous function, denoted by φ(x, t),

and play the role of generalized coordinates. In the discrete case, the generalized

coordinates qi(t) and generalized velocities q̇i(t) are a function of time only, and the

Lagrangian depends on q and its time derivative q̇. By analogy, since that our generalized

coordinates are functions of both time and space, we expect the Lagrangian to depend

on φ and its time and spacial derivatives φ̇ and ∇φ [25]. In relativistic theories, the time

is treated as just another coordinate in spacetime. So, from now on we write φ = φ(x),

where it is understood that x is a point in spacetime. The Lagrangian function of fields

must have a dependence of the form

L = L

[
φ, φ̇,

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

]
. (3.76)

Recalling the tensor notation used in the previous chapter, we have

(x0, x1, x2, x3) = (t, x, y, z) (3.77)

so that

∂μφ =
∂φ

∂xμ
, μ = 0, 1, 2, 3. (3.78)

Then, we express the dependence of the Lagrangian as L = L[φ, ∂μφ]. It is customary

to write the Lagrangian as

L[φ, ∂μφ] =

∫
d3xL[φ, ∂μφ], (3.79)

where L is the Lagrangian density, but we shall refer to it simply as the Lagrangian.

The action functional is then given by

S[φ] =

t2∫
t1

dt

∫
d3xL[φ, ∂μφ]

=

∫
d4xL[φ, ∂μφ],

(3.80)
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where d4x denotes the volume element in the Minkowski spacetime. The time interval of

for integration in the time variable is implicitly understood.

The equations of motion for fields also follow from the Hamilton’s principle,

which states that the field assume the configuration that extremizes the action. We see

that the action (3.80) has the same form as that of the function (3.12) with n = 1 and

m = 4. Then, from equation (3.20), the equation of motion for fields is given by

∂L

∂φ
− ∂μ

(
∂L

∂(∂μφ)

)
= 0. (3.81)

If our Lagrangian depend on several different fields φj, j = 1, . . . , n, then we would

have a Euler-Lagrange equation for each φj, just as in the discrete case.

The idea of a Hamiltonian formulation of field theory is completely analogous to

the case of discrete systems. Our goal is to obtain the Hamiltonian functional H from

the Lagrangian L. We begin by defining the Hamiltonian density H by

H =

∫
d3xH. (3.82)

In Hamiltonian mechanics, we defined the canonically conjugate momenta p to the

variable q, which replaced the generalized velocity as an independent variable. To apply

the Hamiltonian formulation to field theories, we need to define a "momentum" that is

canonically conjugate to our field variable φ(x, t) [4]. In analogy with the definition (3.36)

p, we define the canonically conjugate momentum (density) π by

π(x, t) =
∂L

∂φ̇(x, t)
. (3.83)

The Hamiltonian density is obtained from the Lagrangian density by

H[φ, π] = πφ̇[φ, π]−L[φ, φ̇[φ, π]], (3.84)

where φ̇ denotes the time derivative of φ. Although the Lagrangian may depend on all

derivatives ∂μπ, μ = 0, . . . , 3, the conjugate momentum is defined as the derivative of

L with respect to φ̇. In this way, the time coordinate is treated differently from the spatial

coordinates. Thus, the Hamiltonian formulation is not manifestly covariant, while the

Lagrangian formulation is. Therefore, field theories are usually presented in terms of

Lagrangians, so that the equations are expressed in a covariant form that is valid in any

inertial frame of reference.
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To develop quantum field theory from classical field theory, in a similar manner

to the canonical quantization of quantum mechanics, we introduce the Poisson brackets

for fields. The analogous of the relations (3.41) for fields are given by [24]

{φ(x, t), φ(x′, t)} = 0,

{π(x, t), π(x′, t)} = 0,

{φ(x, t), π(x′, t)} = i�δ(x− x′),

(3.85)

where δ(x− x) is the Dirac delta.

3.4.1 General Relativity as a Classical Field Theory

In the previous chapter we have derived the Einstein’s field equations making a

connection between the geodesic deviation and tidal acceleration of nearby particles

in a gravitational field. An alternative derivation can be done by formulating general

relativity as a classical field theory. In this formulation, the metric tensor gab(x) is treated

as the field variable and the Einstein’s field equations are the corresponding equations

of motion.

Since general relativity relates the geometry of spacetime to the matter dis-

tribution, the action for general relativity must contain a contribution SG[g] from the

gravitational field gab(x) and a contribution SM [φ, g], related to the matter fields, denoted

by φ. The gravitational action is given by

SG[g] = SEH [g] + SB[g]− S0, (3.86)

where SEH is the Einstein-Hilbert action, SB is a boundary term and S0 is a term that

does not alters the equations of motion. These terms are defined as

SEH [g] =
1

16πG

∫
Ω

d4x
√−gR,

SB[g] =
1

8πG

∮
∂Ω

d3y
√
hεK,

S0[h] =
1

8πG

∮
∂Ω

d3y
√
hεK0,

(3.87)

where, R is the Ricci scalar in the volume Ω, g is the determinant of the metric gab

defined in Ω, and h is the determinant of the metric defined on the boundary ∂Ω. The

quantities K and K0 are associated with the curvature of the boundary ∂Ω and will be
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discussed below. The parameter ε is equal to +1 where the surface ∂Ω is timelike and

-1 where ∂Ω is spacelike. We assume that ∂Ω is nowhere null.

If a matter field φ is present, the matter action has the form

SM [φ, g] =

∫
Ω

d4x
√−gL[φ, ∂μφ, gμν ], (3.88)

where L is the Lagrangian density describing φ. Note that the form of SM is similar

to the action of field theories, given in equation (3.80). The difference is that here we

have a factor
√−g in the integrand, which is present to ensure invariance under general

coordinate transformations.

The complete action functional is given by

S[g, φ] =

∫
Ω

dx4
√−g

(
R

16πG
+L

)
+

1

8πG

∮
∂Ω

dy3
√
hε(K −K0). (3.89)

The Einstein’s field equations (4.1) can be obtained from the variation of S with respect

to gμν , subjected to the condition δgμν = 0 on the boundary ∂Ω [3, 26]. In the presence

of a cosmological constant Λ, the complete action becomes

S[g, φ] =

∫
Ω

dx4
√−g

(
R

16πG
+L − 2Λ

)
+

1

8πG

∮
∂Ω

dy3
√
hε(K −K0). (3.90)

Since we are interested in vacuum solutions (R = L = 0), without a cosmologi-

cal constant, the first integral in equation (3.89) vanishes and we are left with

S[g] =
1

8πG

∮
∂Ω

dy3
√
hε(K −K0). (3.91)

The quantity K is the trace of the quantity Kab, called the extrinsic curvature, and is

obtained from

K =
1√−g∂μ

(√−g nμ
)
, (3.92)

where nμ denote the components of the unit normal vector to the surface ∂Ω. The

components nμ is given by

nμ = ε
∂μΦ

|gμν∂μΦ∂νΦ| , (3.93)

where Φ is the function that characterizes the surface. This is similar to the case of

multivariable calculus, where a surface is characterized by a function f(x1, . . . , xn) and

a vector normal to this surface is given by the gradient of f .
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We recall that to characterize the curvature of spacetime, we used the Riemann

tensor, which was obtained by considering the intrinsic approach in the study of mani-

folds. The situation is different for the surface ∂Ω, since it is embedded in spacetime.

Thus, we adopt the extrinsic approach and the extrinsic curvature of ∂Ω is characterized

by Kab.

The quantity K0 depends only on the metric hab and its variation with respect to

gab vanishes. Thus, this term does not affect the equations of motion and its presence

only alter the numerical value of the gravitational action. This term corresponds to the

extrinsic curvature of the boundary ∂Ω embedded in flat spacetime. Its purpose is to

cancel the divergence arising from K when the boundary is pushed to infinity. This

extrinsic curvature is defined as

K0 =
1√−η∂μ

(√−η nμ
)
, (3.94)

where η is the determinant of the metric ηab of flat spacetime.

3.5 Quantum Field Theory

In this section we present the basics of quantum field theory, which arises from

the combination of classical field theory, quantum mechanics, and special relativity.

Our main goal is to derive the analogue of expression (3.72) for systems described by

fields. This formulation, based on path integrals, facilitates the connection with statistical

mechanics and quantum field theory, since the partition function of a system can be

expressed in terms of a path integral.

3.5.1 Path Integral in Quantum Field Theory

The process of quantizing field theories is analogous to the canonical quantiza-

tion of non-relativistic quantum mechanics. Since the field φ plays the role of generalized

coordinates, the field quantization involves the promotion of φ to the Schrödinger picture

field operator Φ [4]. The counterparts of the eigenstates |x〉 are the eigenstates |φ〉 of

the operator Φ, which satisfy

Φ(x) |φ〉 = φ(x) |φ〉 . (3.95)

To avoid confusions between the field π(x) and the constant π, we always write the field’s

dependence on x. The analogue of momentum eigenstates |p〉 are the eigenstates of

the conjugate momentum field operator Π, which satisfy
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Π |π〉 = π(x) |π〉 . (3.96)

The inner product of |φ〉 and |π〉 is given by

〈π|φ〉 = exp

(
− i

�

∫
d3x π(x)φ(x)

)
, (3.97)

which is the analogous of 〈p|x〉 from quantum mechanics. The equivalent of expressions

(3.57) for the completeness relations for fields are

∫
Dφ |φ〉 〈φ| = �,∫
Dπ |π〉 〈π| = �,

(3.98)

where we have tacitly introduced the symbols Dφ and Dπ. We return to the meaning of

these in the future and for now, it is understood that the integration is performed over all

possible field configurations.

In quantum mechanics, an object of great interest is the vacuum to vacuum

transition amplitude Z = 〈0, tf |0, ti〉. From this quantity we can obtain the S-matrix of the

theory and then study particle scattering, thus making a connection with experimental

data [18]. This object can also be interpreted as a version of the partition function from

statistical mechanics, enabling us to study thermodynamic property of systems [8]. The

vacuum state is understood as the ground state of the theory, in which no particles are

present. Note that the two states that compose this amplitude are defined at different

times ti �= tf . Interaction disturb the vacuum and create excitations in the field |0, ti〉. By

evaluating Z, we can obtain the probability that these particles have been annihilated,

leaving a vacuum state at the time tf . Next, we will derive a path integral representation

of this object.

With the promotion of fields to operators, the Hamiltonian (density) of the theory

becomes an operator, which we assume to have the form

H =
1

2
Π2 +V(Φ). (3.99)

Then, we have all the ingredients to obtain the path integral representation of Z repeating

the steps performed to obtain the transition amplitude (3.72). By comparison, the vacuum

to vacuum transition amplitude is given by

Z =

∫
Dφ(x) eiS[φ(x)], (3.100)
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where S[φ] is the classical action functional for the field φ. The functional measure in

this case is given by

φ(x) = lim
δt→0
N→∞

(
− im

2π�δt

)N/2 N−1∏
j=1

dφ(xj). (3.101)

The integration is performed over all possible intermediate field configurations that

satisfy the boundary conditions. We can visualize this process by imagining our field as

being represented by a two-dimensional sheet (Figure 4). At each instant of time, the

field has a different configuration, and the transition from one configuration to another

occurs smoothly. Naturally, there are infinitely many intermediate configurations that

match the boundary conditions, and the integration takes all of them into account.

Figure 4 – Field configurations for a field with initial configuration described by |φi, ti〉 and final
configuration described by |φi, ti〉.

3.5.2 Quantum Field Theory at Finite Temperature

Now we make the connection of quantum field theory with statistical mechanics.

This allows us to study the thermodynamic properties of systems composed by fields.

This framework is known as statistical field theory.

When studying statistical mechanics, one of the main objects is the partition

function Z, defined by

Z(β) = tr exp(−βH), (3.102)
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where H is the Hamiltonian operator of the system and β = 1/(kBT ), with kB the

Boltzmann constant [18, 25]. We may evaluate the trace using a complete set of

eigenstates {|x〉}x∈R of the position operator X and obtain

Z(β) =

∫
dx 〈x| e−βH |x〉 . (3.103)

Once we have evaluated the partition function, we can obtain several thermodynamic

properties of the system, as the internal energy U and the entropy S through the

relations

U = −∂ lnZ
∂β

,

S = kB (lnZ + βU) .

(3.104)

To make the connection of statistical mechanics with quantum field theories, we

introduce the imaginary time formalism. We perform an analytical continuation of the

real time t to the imaginary time via

t→ −iτ, (3.105)

where τ ∈ R. With this transformation, called Wick rotation, we see that the spacetime

interval I becomes

I = τ 2 + x2 + y2 + z2 = gμνx
μxν (3.106)

and, as a consequence, all the eigenvalues of the metric tensor become positive, which

results in a Euclidean metric. For this reason, τ is often referred to as the Euclidean time.

With the introduction of the imaginary time, the transition amplitude F (xf , tf ; xi, ti),

defined in (3.59), becomes

F (xf , −iτf ; xi, −iτi) = 〈xf | e−H(τf−τi) |xi〉 . (3.107)

From equation (3.72), the path integral representation of this amplitude is

F (xf , −iτf ; xi, −iτi) =
∫

Dx e−SE [x], (3.108)

where SE is the Euclidean action, defined by SE[x] = −iS[x]. Using the expression

(3.107) we can express the partition function given in (3.103) as
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Z(β) =

∫
dxF (x, −iβ; x, 0)

=

∫
dx 〈x| e−βH |x〉 ,

(3.109)

so that we interpret the operator e−βH as a time evolution operator in imaginary time [8].

Therefore, we obtain a path integral representation of the partition function, given by

Z(β) =

∫
Dx e−SE [x] (3.110)

where the Euclidean action is given by

SE[x] =

β∫
0

dτ L[x, ẋ]. (3.111)

In the path integral in equation (3.110) we are assuming an integration over endpoints,

which is equivalent to taking the trace. Since the endpoints are labelled by the same

position x, the boundary conditions are now

x(τ + β) = x(τ) (3.112)

so the integration is performed over paths with period β.

The generalization of expression (3.110) for fields is given by

Z(β) =

∫
Dφ e−SE [φ], (3.113)

with the fields φ(t) satisfying the boundary conditions

φ(x, τ + β) = φ(x, τ). (3.114)

The introduction of imaginary time is not limited to establishing a connection

with statistical mechanics. It can be employed to facilitate certain calculations in quantum

field theory [18, 25]. After completing the necessary calculations, we can perform the

inverse rotation to return to Minkowski spacetime. However, in the case of statistical

field theory, we are not interested in performing the inverse transformation, since the

object of interest is the partition function itself. In the next chapter we will employ the

methods presented here to obtain the partition function for a black hole and study its

thermodynamic properties.
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3.5.3 Effective Action

As discussed before, the path integral formulation presents some issues and

one additional problem arises when studying field theories on curved spacetimes. The

functional measure, as defined in (3.101), is not invariant under general coordinate

transformations on the configuration space of fields. This is an undesirable feature,

because it renders the observables to be dependent on coordinate choices in the space

of fields. This motivates a modification in the definition of the functional measure, so

that it is invariant under such transformations.

In multivariable calculus, when performing a change of coordinates, the pres-

ence of the Jacobian ensures that the integration over some volume in space is inde-

pendent of the coordinate system chosen. In a similar manner, we shall introduce a

factor in the path integral that plays the role of a Jacobian and renders the path integral

to be invariant under coordinate changes in the configuration space of fields. Then, we

redefine the functional measure to be [10, 13]

dμ[φ] = Dφ
√

DetGij, (3.115)

where Dφ is the functional measure defined in (3.101) and DetGij denotes the functional

determinant of a metric Gij defined in the configuration-space. The definition of the

functional determinant will not be need here and we discuss this later. Here, the factor√
DetGij plays the role of the Jacobian for path integrals and ensures the invariance of

the integral under coordinate transformations in field space.

There is no general procedure to obtain Gij, so we must seek for metrics that

leave the path integral invariant. The general form of a metric Gij is given by

Gij = GIJ(φ(x))δ(x− x′), (3.116)

where GIJ is functional of the fields φ describing the system under study and δ(4)(x− x′)

denotes the Dirac delta in four dimensions. To explain the notation employed here, we

consider a specific example. For systems involving only the gravitational fields gμν , the

simplest metric GIJ(g) is the DeWitt metric, defined as [27]

GIJ(g) = Gμνρσ

=
1

2
(gμρgνσ + gμσgνρ − agμνgρσ) ,

(3.117)

where a ∈ R is a free parameter. For the value a = −1/2 (the case of 4 spacetime

dimensions), this metric is degenerate, so we must avoid it to guarantee that the metric
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tensor possesses an inverse. The index I of GIJ labels both the spacetime indices μν

and J labels ρσ. For other types of fields, such as scalar, fermionic, gauge, etc, the

indices I and J label other types of indices [14]. The inverse of GIJ = Gμνρσ is denoted

by GIJ = Gμνρσ, and have the form

Gμνρσ =
1

2
(gμρgνσ + gμσgνρ − agμνgρσ) . (3.118)

Using the identity gμσgσν = δμν , where δμν denotes the Kronecker delta, it can be easily

checked that

GμνρσGρσαβ =
1

2

(
δμαδ

ν
β + δμβδ

ν
α

)
. (3.119)

The identity in the space of fields, denoted �
μν
αβ, is given by [27]

�
μν
αβ =

1

2

(
δμαδ

ν
β + δμβδ

ν
α

)
. (3.120)

In the expression (3.116), the lower case index i labels the discrete index I of

GIJ together with the continuous label x of the Dirac delta δ(x− x′). To assert this, we

shall write i = (I, x). Similarly, the index j labels J and x and we write j = (J, x′).

For the case where Gij = �, we recover the functional measure (3.101) and

call Gij a trivial metric. We refer to a metric Gij, that is not the identity, as a non-trivial

metric.

We can write

√
DetGij = exp

(
1

2
ln DetGij

)
, (3.121)

so that the functional measure dμ[φ] defined in equation (3.115) can be written as

dμ[φ] = Dφ exp

(
1

2
ln DetGij

)
. (3.122)

With this redefinition of the functional measure, the partition function (3.113) becomes

Z(β) =

∫
dμ[φ] exp

(
−1

�
SE[φ]

)
=

∫
Dφ exp

(
−1

�
SE[φ]− 1

2
lnDetGij

)
=

∫
Dφ exp

[
−1

�

(
SE[φ]− �

2
lnDetGij

)]
,

(3.123)
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where we have recovered the constant �. We see that the Euclidean action SE describing

the system receives a correction due to the redefinition of the functional measure. This

is only one of the corrections that the action receives. Below we briefly discuss another

correction that arises from a perturbative treatment of gravity.

Going back to the evaluation of the term
√

DetGij, consider an operator Oij

defined as

Oij = OIJ(x, x
′). (3.124)

The operator OIJ has a dependence of the fields φ of the theory, but we omit the

dependence to simplify the notation. Using the relation

lnDetOij = Tr lnOij, (3.125)

where the functional trace Tr of Oij is defined by

TrOij =

∫
d4x

√−g trOIJ(x, x), (3.126)

where g is the determinant of the spacetime metric gab and trOIJ denotes the usual

trace, involving a summation over the elements of OIJ with I = J . Also, we have an

integration over x after setting x = x′. We note that from the definition (3.116) of Gij

contains a Dirac delta, so that

Tr lnGij = δ(4)(0)

∫
d4x

√−g tr lnGIJ . (3.127)

Due to the presence of δ(4)(0), a divergence shows up. To deal with this divergence, a

regularization procedure must be adopted to render this expression finite. This involves

the insertion of a cut-off λ, associated with the energy scale, and the adoption of a

Gaussian regularization, where [14, 28]

δ(4)(x) =
λ4

(2π)2
exp

(
−λ

2

2
x2
)
. (3.128)

Using this form of δ(4)(x), equation (3.127) becomes

Tr lnGij = ζ

∫
d4x

√−g tr lnGIJ , (3.129)

where
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ζ =
λ4

(2π)2
. (3.130)

This allows us to write the relation (3.125) as

lnDetGij = ζ

∫
d4x

√−g tr lnGIJ

= ζ

∫
d4x

√−g ln detGIJ ,

(3.131)

where we have used the identity ln detM = tr lnM , for some operator M , and det

denotes the usual matrix determinant [3].

In many branches of physics it is common to employ perturbative methods.

Such an approach allows to simplify the calculations and obtain approximate solutions

to a problem, when the exact solution cannot be obtained. Usually, we start by modelling

a simplified version of the physical system, to which we are able to obtain an exact

solution. Then, to obtain an approximate solution of the full problem, we consider some

kind of perturbation to the simplified model, that describes the effects that we have

neglected in first place [29].

The perturbative solution A to a problem is usually expressed as a power series

in some parameter ε, as

A = A0 + εA1 + ε2A2 + · · · , (3.132)

where A0 is the exact solution to the simplified version of the system, and the terms

εnAn, n = 1, 2, . . ., are called the nth order terms and are related to the perturbations

considered. The parameter ε must be such that this power series converge and a given

term is small when compared to the previous one.

As we have seen in the previous chapter, in general relativity, our main goal is to

solve Einstein’s field equations and obtain the metric tensor gab(x). The implementation

of perturbative methods in this case involves splitting the metric tensor as

gab(x) = ḡab(x) + hab(x), (3.133)

where, ḡab is a know solution to Einstein’s field equations and hab is a perturbation whose

components satisfy |hμν | << |ḡμν |, for μ, ν = 0, 1, 2, 3 [2, 3]. A specific example of this

treatment is given by the study of gravitational waves. In this case, ḡab is seen as a given

background and hab is the disturbance in this background, related to the propagation of

gravitational waves through spacetime [1, 30].
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Perturbative techniques are commonly employed in quantum field theory as

well and one of the main objects in this treatment is the effective action Seff [18, 25].

The effective action can be expanded in a power series, similar to the expansion (3.132)

as

Seff = S0 + �S1 + �
2S2 + · · · . (3.134)

Here, the reduced Planck’s constant � plays the role of the parameter ε and S0 is the

classical action. The expansion (3.134) is referred to as a loop expansion and the nth

term, called the n−loop term, is proportional to �
n, n ∈ N. Here we will be concerned

with one-loop corrections, thus we shall deal only with actions of the form

Seff = S0 + �S1. (3.135)

Looking back to the expression (3.123) we see that the correction to the action, with

origin in the functional measure, corresponds to a one-loop correction.

We are interested in studying quantum effects in gravitation. So, we may view

these effects as a deviation from the classical regime. In this way, we are motivated to

split the metric tensor gab as in expression (3.133), with ḡab representing a solution to

the Einstein’s field equations and hab a perturbation due to the quantum effects.

From the definitions (3.87), the Einstein-Hilbert action is of the form

SEH [g] =
1

16πG

∫
Ω

d4x
√−gR, (3.136)

where R is the Ricci scalar, which is obtained from the Riemann tensor R d
abc . We recall

that the components of R d
abc are given by

R σ
μνρ = − ∂

∂xμ
Γσ

νρ +
∂

∂xν
Γσ

μρ + Γλ
μρΓ

σ
νλ − Γλ

νρΓ
σ
μλ, (3.137)

where

Γλ
μν =

1

2
gλσ

[
∂gνσ
∂xμ

+
∂gμσ
∂xν

− ∂gμν
∂xσ

]
. (3.138)

Then, the Ricci scalar involves products of the metric tensor components gμν with itself

and also with its derivatives. Considering a splitting of gμν as in (3.133), we can expand

the R in a series, with each term proportional to some power of hμν . It can be shown

that, to first order in hμν , the action SEH is of the form

SEH [g] = SEH [ḡ] +
�

2
lnDetHij, (3.139)
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where

Hij = HIJ(φ)δ
(4)(x− x′) (3.140)

is an operator in the configuration space of fields φ [27, 28]. For the gravitational case,

HIJ is of the form

HIJ = KIJ�+ UIJ , (3.141)

or in terms of spacetime indices,

HIJ(g) = Hμνρσ

= Kμνρσ�+ Uμνρσ,
(3.142)

where � denotes de D’Alambertian operator and

Kμνρσ =
1

4
(gμρgνσ + gμσgνρ − gμνgρσ) . (3.143)

The form of Uμνρσ will not concern us, since it will appear only as a second order

contribution and we may discard it.

With the result (3.139), the gravitational action SG, defined in (3.86), receives a

one-loop correction and the result is the action S[g], given by

S[g] = SG[ḡ] +
�

2
lnDetHij. (3.144)

Performing a Wick rotation (see equations (3.105) and (3.108)), this action becomes

the Euclidean gravitational action SE[g], given by

SE[g] = SE
G [ḡ] +

�

2
lnDetHij, (3.145)

where SE
G [ḡ] is obtained from (3.86) after the Wick rotation. With SE[g], the partition

function (3.123), for the gravitational field, becomes

Z(β) =

∫
Dg exp

[
−�

2

(
SE
G [ḡ] +

�

2
lnDetHij − �

2
lnDetGij

)]
. (3.146)

Now that we have obtained the two corrections for the classical action, up to

one-loop, we see that the gravitational effective action Seff is given by
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Seff [g] = SE
G [ḡ] +

�

2
lnDetHij − �

2
lnDetGij. (3.147)

Previously, we have reinstated the constant �, so we could see explicitly that the

corrections correspond to a one-loop term. From now on, we adopt again a system of

units where � = c = 1.

Our task now is to evaluate the one-loop term in (3.147), which we denote by

S1, so that

S1 =
1

2
(lnDetHij − DetGij) . (3.148)

Using the property

(DetGij)
−1 = Det(Gij)

−1 = DetGij (3.149)

we can rewrite S1 as

S1 =
1

2
lnDet

(
GilHlj

)
. (3.150)

Here Gij denotes the inverse of the metric Gij and we have written the indices in

the product GilHlj to be consistent with the formula for the product of operators. This

product, is proportional to GILHLJ and to evaluate it, we rewrite HIJ as in expression

(3.141), obtaining

GILHLJ = GIL(KLJ�+ ULJ), (3.151)

or using the definitions (3.118) and (3.142),

GILHLJ = GμνρσHρσαβ

= Gμνρσ (Kρσαβ�+ Uρσαβ) .
(3.152)

It will be convenient to factor Kρσαβ in this expression. To do so, note that we can write

Kρσαβ = Kρσλγ�
λγ
αβ (3.153)

where �
λγ
αβ is defined in (3.120). Then, we can express GILHLJ as

GILHLJ = Gμνρσ
(
Kρσλγ�

λγ
αβ�+ Uρσαβ

)
= GμνρσKρσλγ

(
�
λγ
αβ�+KλγτξUτξαβ

)
,

(3.154)
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where Kλγτξ denotes the inverse of Kλγτξ. Using this result, together with the definitions

(3.116) and (3.140), we obtain

GilHil = GILHLJδ
4(x− x′)δ4(x− x′)

= GμνρσKρσλγ

(
�
λγ
αβ�+KλγτξUτξαβ

)
δ4(x− x′)δ4(x− x′)

(3.155)

so the action (3.150) is given by

S1 =
1

2
lnDet

[
GμνρσKρσλγ

(
�
λγ
αβ�+KλγτξUτξαβ

)
δ4(x− x′)δ4(x− x′)

]
. (3.156)

Using the property Det(AB) = Det(A)Det(B), this can be written as

S1 =
1

2
ln
{

Det
[
GμνρσKρσλγδ

(4)(x− x′)
]

Det
[(
�
λγ
αβ�+KλγτξUτξαβ

)
δ(4)(x− x′)

]}
=

1

2
lnDet

[
GμνρσKρσλγδ

(4)(x− x′)
]
+

1

2
lnDet

[(
�
λγ
αβ�+KλγτξUτξαβ

)
δ(4)(x− x′)

]
.

(3.157)

The second term in this expression provides subdominant contributions to S1, when

compared to the first term. Then, we will discard this term and our one-loop correction

is then given by

S1 =
1

2
lnDet

[
GμνρσKρσλγδ

4(x− x′)
]

=
ζ

2

∫
d4x

√−g ln detGIJ ,
(3.158)

where we have used the result (3.131) in the last equality. With the definitions (3.118)

and (3.143), we obtain

S1 =
ζ

2

∫
d4x

√−g ln det
[
1

8
(gμρgνσ + gμσgνρ − agμνgρσ) (gρλgσγ + gργgσλ − gρσgλγ)

]
=
ζ

2

∫
d4x

√−g ln det
[
1

8

(
2δμλδ

ν
γ + 2δμγ δ

ν
λ − 2δμσg

νσgλγ − aδργg
μνgρλ − aδρλg

μνgργ + gμνgλγ(g
ρσgρσ)

)]
(3.159)

which, with δμσg
νσ = gμν and gρσgρσ = 4, reads

S1 =
ζ

2

∫
d4x

√−g ln det
[
1

4

(
δμλδ

ν
γ + δμγ δ

ν
λ + (a− 1)gμνgλγ

)]
. (3.160)
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Note that the first two terms together are proportional to the identity �μν
λγ. Then, using

the matrix determinant lemma

det
[
�
μν
λγ + (a− 1)gμνgλγ = 1 + 4(a− 1)

]
(3.161)

together with the property det(aM) = an detM , for a ∈ R and M a n × n matrix, we

obtain

S1 =
ζ

2

∫
d4x

√−g ln
[
1 + 4(a− 1)

256

]
. (3.162)

Finally, the effect action (3.147), at one-loop level, is given by

Seff [g] = SE
G [ḡ] +

∫
d4x

√−gΛC , (3.163)

where we have defined

ΛC =
ζ

2
ln

[
1 + 4(a− 1)

256

]
. (3.164)

We remark that ΛC originated from the redefinition of the functional measure of

the path integral and by considering a perturbative expansion of the gravitational action.

The latter involved splitting the metric tensor gab in two parts, one being a classical

background ḡab and the other a perturbation hab, describing quantum effects. We also

have used the partition function, derived using the formalism of quantum field theory.

Thus, ΛC is a purely quantum effect, not predicted by the classical theory of general

relativity.

Note that we have tacitly assumed that, for the gravitational field, the partition

function has the same form as that obtained from the formalism of quantum field theory.

We observe that for gravitation, we are not able to obtain a path integral as we did in the

quantum mechanical case, so we assume that the formalism can be generalized to any

type of field [9, 27]. We shall discuss this issue in the future.

The missing part to obtain the effective action is the Euclidean gravitational

action SE
G [ḡ]. In the next chapter we will obtain SE

G [ḡ] for a specific metric ḡab and present

the basics of black hole thermodynamics.
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CHAPTER 4

Black Hole Thermodynamics

4.1 Schwarzschild Solution

As we have seen in chapter 2, according to the theory of general relativity,

gravitation is an effect of the curvature of spacetime. This curvature is related to the

matter distribution by the equation, given by

Rab − 1

2
Rgab = 8πGTab. (4.1)

Our goal is to derive the gab that solves this equation for a given energy-momentum

tensor Tab. The spacetime has four dimensions, so the metric tensor has sixteen

components, but only ten are independent, since gab is a symmetric tensor.

Taking the trace of equation (4.1), we obtain

R = −8πGT. (4.2)

Plugging this result in equation (4.1), we find

Rab = 8πG

(
Tab − 1

2
Tgab

)
. (4.3)

We are interested in the solution outside a body. In this region, we assume

that there is no matter distribution, so Tab = 0. From this we conclude that the vacuum

solutions follow from
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Rab = 0. (4.4)

Recall that the Ricci tensor Rab is defined by Rab = R c
acb , where R d

abc is the Riemann

tensor. We will be concerned with a solution of (4.4) describing the gravitational field for

a static and spherically symmetric black hole. The solution to this system is given by the

Schwarzschild metric, whose corresponding line element is given by [3]

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin2 φ2, (4.5)

in a spherical coordinate system (t, r, θ, φ). We note that the this line element is ill

defined for r = 0 and r = 2GM . The former represents a physical singularity, while the

latter is only an apparent singularity and can be removed by a coordinate change. The

Kruskal coordinate system is given by changing the coordinate r to a coordinate X and

the time t to a coordinate T , defined by

X =
( r

2GM
− 1

)1/2

er/4GM sinh

(
t

4GM

)
,

T =
( r

2GM
− 1

)1/2

er/4GM cosh

(
t

4GM

)
,

(4.6)

for 0 < r < 2GM , and

X =
(
1− r

2GM

)1/2

er/4GM cosh

(
t

4GM

)
,

T =
(
1− r

2GM

)1/2

er/4GM sinh

(
t

4GM

)
,

(4.7)

for r > 2GM . With these definitions, we have

X + T

X − T
= exp

(
t

2GM

)
. (4.8)

The quantity rS = 2GM is called the Schwarzschild radius, and corresponds to the

radius of the event horizon of the black hole.

4.2 Black Hole Thermodynamics

We are now interested in studying the thermodynamics of a Schwarzschild

black hole. To do so, we must compute the corresponding partition function and apply
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the usual relations from thermodynamics. In this discussion, we adopt the geometrized

system of units, in which G = c = � = 1.

The line element in Schwarzschild spacetime is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2, (4.9)

which, with the Wick rotation t = −iτ , becomes

ds2 =

(
1− 2M

r

)
dτ 2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2. (4.10)

Taking r → ∞, the metric becomes that of flat spacetime and have a Euclidean signature.

Then, for all the region r > 2M , the spacetime is Euclidean. However, in the region

r < 2M , the first two terms of ds2 become negative and, consequently, the metric

components g00 and g11 acquire a negative sign, so the spacetime is not Euclidean.

Thus, the two regions correspond to different manifolds. In this way, since the partition

function is defined on a Euclidean manifold, the region r < 2GM is excluded from the

spacetime of interest.

In the imaginary time formalism, the Euclidean time is cyclic and has period β.

To determine the value of β for the Euclidean Schwarzschild spacetime, we observe

that from the expression (4.8), it follows that τ has period β = 8πM .

To evaluate the action (3.91), we choose the boundary ∂Ω to be the timelike

hypersurface characterized by r = r0. Thus, our hypersurface Φ corresponds to the

coordinate restriction Φ(r) = 0 where

Φ(r) = r − r0. (4.11)

Let us evaluate the extrinsic curvatureK for the hypersurface embedded in the Euclidean

Schwarzschild spacetime. First, using the formula (3.93) for the unit normal vector to

∂Ω, the only component that does not vanish is n1, which is given by

n1 =

√
1− 2M

r0
. (4.12)

From (4.10) we can read off the components of the metric gab and obtain that its

determinant is equal to g = r4 sin2 θ. Then, using (3.92), the extrinsic curvature is given

by
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K =
1

r2 sin θ

∂

∂r

(
r2 sin θ

√
1− 2M

r

)∣∣∣∣∣
r=r0

=
2

r0

√
1− 2M

r0
+

2M

2r20

(√
1− 2M

r0

)−1

.

(4.13)

The evaluation of K0 is performed considering that ∂Ω is embedded in the Minkowski

spacetime. The line element for the Minkowski space, in Euclidean signature, for spheri-

cal coordinates, is given by [3]

ds2 = dτ 2 + dr2 + r2dθ2 + r2 sin2 θdφ2. (4.14)

From this we can read the components of the metric tensor ηab for Minkowski spacetime.

Thus, the determinant of this metric is given by η = r4 sin2 θ. Using formula (3.93), we

see that the only component of the unit normal vector that does not vanish is n1 = 1.

With this, from equation (3.94), we find

K0 =
1

r2 sin θ

∂

∂r

(
r2 sin θ

) ∣∣∣∣∣
r=r0

=
2

r0

(4.15)

The restriction of the line element (4.10) to this hypersurface is given by

ds2 =

(
1− 2M

r

)
dτ 2 + r2dθ2 + r2 sin2 θdφ2, (4.16)

from which we can read off the components of the metric hab induced in this hypersurface

and obtain that the determinant of hab is given by

h = r4 sin2 θ

(
1− 2M

r

)
. (4.17)

Then, we have all the ingredients needed to evaluate the action (3.91). Substituting all

of these and evaluating the integral, we obtain

IE[g] = β

⎡⎣r0
(
1−

√
1− 2M

r0

)
− M

2

(√
1− 2M

r0

)−1
⎤⎦ . (4.18)

We are interested in taking the limit r0 → ∞, and then we consider the expansion
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√
1− 2M

r0
= 1− M

r0
+O(r−2

0 ), (4.19)

where O(r−2
0 ) denotes the terms of order 2 in 1/r0 or higher. With this expansion, the

Euclidean action is given by

IE[g] = β

⎡⎣M − M

2

(√
1− 2M

r0

)−1

+O(r−1
0 )

⎤⎦ . (4.20)

Finally, taking the limit r0 → ∞, we obtain

IE[g] =
β2

16π
, (4.21)

where we have used β = 8πM . Now that we possess the Euclidean action for the

Schwarzschild spacetime, we turn our attention to obtain the corresponding partition

function.

By comparison with the partition function (3.113), we introduce the partition

function for the gravitational case, given by

Z(β) =

∫
Dge−IE , (4.22)

where Dg is the functional measure for the metric tensor. Differently from quantum field

theory, we are not able to derive this path integral and then we postulate that the integral

has this form. Furthermore, we may not be able to compute the path integral explicitly,

so we resort to approximations. We expect that the dominant contributions to the path

integral to come from the metrics gab which solve the classical field equations [9]. Thus,

we expand the metric as

gab = g̃ab + δgab, (4.23)

where g̃ab is the solution to the classical field equations and δgab is a perturbation. We

also expand the action as

I[g] = I[g̃] + I2[δg], (4.24)

where I[g̃] is the classical action and I2[δg] is quadratic in the perturbation δgab. With

this considerations, the partition function satisfies

lnZ[g] = −I[g̃] + ln

∫
D(δg)e−I2[δg] + . . . , (4.25)
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where the dots denote the higher order terms.

We have evaluated the action (4.21) considering the Schwarzschild solution to

Einstein’s field equations, which is a classical solution. Then, the leading contribution to

the partition function is given by

− lnZ(β) =
β2

16π
. (4.26)

Using the relations (3.104), we obtain that for the Schwarzschild black hole, the internal

energy U and the entropy S are given by

U =
β

8π
=M,

S =
β2

16π
= 4πr2S,

(4.27)

where we have used β = 8πM and rS = 2πM . Since rS is the radius of the event

horizon, we can express S in terms of the area of the event horizon as

S =
A

4
, (4.28)

which is the Bekenstein-Hawking formula for the entropy of a black hole. The relation

between entropy and the area of the event horizon of black holes was first conjectured

by Bekenstein, although he did not obtained a mathematical formula for it [7]. Later,

Hawking was able to derive this formula, studying quantum field theory in curved

spacetimes [6]. In SI units, the expressions given in (4.27) are given by

U = c2M,

S =
kBc

3

4G�
A,

(4.29)

where c is the speed of light, kB the Boltzmann’s constant, G the gravitational constant

and � the reduced Planck’s constant.

We remark that the calculations performed here considered the usual definition

of path integrals, without considering the correction coming from the definition of func-

tional measure. The consequences of this corrections to the thermodynamics of black

holes will be explored in the next chapter.
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CHAPTER 5

One-loop Corrections to Black Hole Thermodynamics

In this chapter we study a one-loop correction to the thermodynamics quantities

of a Schwarzschild black hole, with origin in the redefinition of the functional measure of

the path integral formulation. We discuss how this correction can be viewed as giving

rise a pressure in the system. This lead to the interpretation of the black hole mass as

the enthalpy of the system, rather than with the internal energy the system.

5.1 One-loop Correction

In chapter 3 we have presented the general formalism of quantum field theory,

using the path integral formalism. As we have discussed, the functional measure of the

path integral needs to be redefined, so the path integral is invariant under coordinate

transformations in the configuration space of fields. This redefinition introduces a one-

loop correction to the action of the system. Also, by considering a perturbative treatment

of the gravitational field, another contribution arises in the one-loop level. Combined

together, these contributions yields an Euclidean effective action Ieff of the system,

given by

Ieff [g] = IEG [ḡ] +
�

2
lnDetHij − �

2
lnDetGij. (5.1)

where IEG [ḡ] is the classical action for some background field ḡab. For the gravitational

case, considering the DeWitt metric
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GIJ =
1

2
(gμρgνσ + gμσgνρ − agμνgρσ) , (5.2)

the effective action becomes

Ieff [g] = IEG [ḡ] +

∫
d4x

√
ḡΛC , (5.3)

where

ΛC =
ζ

2
ln

[
1 + 4(a− 1)

256

]
. (5.4)

As we have seen, the Euclidean gravitational action IEG [ḡ] is given by

IEG [ḡ] = − 1

16πG

∫
Ω

d4x
√
ḡR +

1

8πG

∮
Ω

d3y
√
h(K −K0), (5.5)

where it is understood that the integration is taken considering an Euclidean signature.

Substituting this into (5.3), we obtain the effective action

Ieff [g] = − 1

16πG

∫
Ω

d4x
√
ḡR +

∫
d4x

√
ḡΛC +

1

8πG

∮
Ω

d3y
√
h(K −K0)

= −
∫
Ω

d4x
√
ḡ

(
R

16πG
− ΛC

)
+

1

8πG

∮
Ω

d3y
√
h(K −K0).

(5.6)

Thus, the one-loop correction introduces the constant ΛC in the effective action, just

as a cosmological constant would appear in the classical action (see equation (3.90)),

apart from a factor of 2 [3]. We shall then investigate the thermodynamics of a black

hole in the presence of a cosmological constant.

In the usual study of black hole thermodynamics, the cosmological constant Λ

is treated as a fixed parameter, typically taken to be zero. However, some treatments

take Λ to be a thermodynamic variable [31]. In this case, Λ is associated with a pressure

P in the system by the relation

P = − Λ

8πG
. (5.7)

The consideration of a pressure proportional to Λ alters some identifications we have

made in the last chapter, as we shall see below.

When a cosmological constant Λ is taken into account, it introduces the notion

of a vacuum energy. In the absence of matter, the only contribution to the energy

momentum tensor comes from Λ, giving origin to an energy density ρ,
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ρ =
Λ

8πG
. (5.8)

Then, ρ is a constant energy density throughout the spacetime. As we have seen, the

internal energy U of a black hole is associated with its mass M by U =M . Considering

that the black hole occupies a volume V , the total energy E in this volume is given by

E = U + ρV

=M − PV,
(5.9)

where we have used the definitions (5.7) and (5.8). From this, we obtain

M = E + PV, (5.10)

which is precisely the definition of the enthalpy function H(S, P ). This suggests that we

identify the mass M with an enthalpy, rather than with the internal energy. The definition

of the volume V is not know at first sight, but we will obtain an expression for it based

on thermodynamic relations.

In the presence of the cosmological constant, the line element ds is given by

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dθ2 + r2 sin2 dφ2, (5.11)

where rh = 8GM is the Schwarzschild radius and

f(r) = 1− 2GM

r
− Λ

3
r2. (5.12)

As in the purely Schwarzschild case, the event horizon radius rh is defined by f(rh) = 0,

Λ

3
r3h − rh + 2GM = 0. (5.13)

For the case Λ > 0, this equation has two solutions, corresponding to two distinct

event horizons each one with a distinct temperature and the system is not in thermal

equilibrium [31]. On the other hand, for Λ < 0, there is only one event horizon and the

system is in thermal equilibrium. Hence, we assume Λ < 0 in the following.

From the relation (5.13), we can determine the value of M in terms of rh, and

this gives

M =
rh
2G

(
1− Λ

3
r2h

)
. (5.14)
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The enthalpy H is a function of entropy S and pressure P , so in associating the

black hole mass M with H, we view M as a function

M = H(S, P ). (5.15)

So, we must rewrite the expression (5.14) in terms of S and P . Recalling that the entropy

S is given by

S =
πA

4�G

=
πr2h
�G

,

(5.16)

we invert this relation and obtain

rh
2G

=

(
�

4πG
S

)1/2

. (5.17)

Also, using the definition (5.7), we can write

1− Λ

3
r2h = 1 +

8�G2

3
SP. (5.18)

With relations (5.17) and (5.18) in equation (5.14), gives

M = H(S, P )

=

(
�

4πG

)1/2(
S1/2 +

8�G2

3
S3/2P

)
.

(5.19)

Now that we have obtained M as a function of entropy S and pressure P , we can employ

the usual relations from thermodynamics to evaluate some thermodynamic quantities

for this system. The temperature T can be obtained from the enthalpy function by

T =

(
∂H

∂S

)
P

, (5.20)

and the volume V is given by

V =

(
∂H

∂P

)
S

. (5.21)

Then, from equation (5.19), we find
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T =

(
�

16πG

)1/2 (
S−1/2 + 8�G2S1/2P

)
,

V =

(
�

16πG

)1/2
8�G2

3
S3/2.

(5.22)

Using (5.16) and (5.7), these are given by

T =
�

4πrh

(
1− Λr2h

)
,

V =
4πr3h
3

.

(5.23)

Then we see that the volume V occupied by the system is equal to the volume of a

sphere of radius rh.

Since we have considered the case where Λ < 0, the pressure P is positive

and, thus, exerted by the black hole on its surroundings. We also recall that the constant

ΛC depends on the cut-off λ, which is related to the energy scale adopted (see equation

(3.130)). Then, the value of P varies with the energy in the processes that the system

undergo and we may view it as a function P = P (ζ).

We remark that the cosmological constant ΛC has a purely quantum origin,

related to the redefinition of the functional measure of the path integral. This was

motivated by seeking a better definition of the path integral formulation of quantum

field theory, to cope with some of the issues that arise in this formalism. This being a

quantum effect, it can shed a new light in the pursue of a quantum theory of gravity.

Despite the fact that we have considered the particular study of thermodynamics of a

Schwarzschild black hole, the formalism is general and can be applied to any system.

The derivation of the constant ΛC was made considering a particular metric Gij

for the configuration space of fields, namely, the DeWitt metric. Since we do not have a

procedure to obtain the metric for the field space, there can be more possible metrics

that also render the path integral invariant. The adoption of other metrics could lead to

different results and we seek to investigate this in future works.

As a first speculation, we turn our attention to the question of singularity forma-

tions in spacetime. The theory of general relativity predicts that the formation of black

holes by the gravitational collapse of matter ultimately leads to a singularity, with all the

matter being concentrated in a single point. If we are allowed to view the pressure P (ζ)

as exerted by the matter composing the black hole, this pressure would counteract the

gravitational collapse of matter. Since ζ depends on the energy scale, it would vary as

the matter collapses, generating greater values of pressure as the matter is infalling. If ζ
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can attain higher enough values, this effect could prevent that all the matter to collapse

into a single point. In this case, this would prevent the formation of a singularity. At this

point, this remains only as a conjecture of the effects that P (ζ) may cause and the

formal investigation of such phenomena is yet to be done.
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CHAPTER 6

Conclusion

In this work we have presented the study of black hole thermodynamics using

the Euclidean quantum gravity approach. Such an approach is based on the path integral

formulation of quantum field theory. This approach provides a direct connection with

statistical mechanics and allows us to study the thermodynamic property of quantum

systems.

The path integral formulation of quantum field theory presents some mathe-

matical issues, such as the definition of functional measure. Since this measure is not

invariant under coordinate changes in the configuration space of fields, we explore a

redefinition of this object and investigate some of its consequences. This redefinition

involves the introduction of a metric in this field space, to render the path integral invari-

ant. In doing so, a term appears in the effective action of the system and can be viewed

as a one-loop correction.

There is no procedure to define a specific metric in the field space and, in

principle, any metric that renders the path integral invariant can be considered. For

purely gravitational systems, the simplest metric is given by the DeWitt metric. With

this metric, the effective action of the system receives a constant correction ΛC , which

plays the role of a cosmological constant. Although this corresponds to a cosmological

constant, it has a purely quantum origin and presents a new effect, not accounted by

general relativity.

For the special case of a Schwarzschild black hole, the constant ΛC alters the

internal energy by introducing a work-like term, leading to the interpretation of ΛC as

giving rise to a pressure in the system. Following the literature, this suggests that we
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identify the black hole mass with the enthalpy, rather than with the internal energy, as it

is usually done. At last, we speculate how this pressure could affect the gravitational

collapse of matter and the black hole formation, possibly counteracting the formation of

a singularity.

For future works, we aim to explore the implications of the one-loop correction

to other gravitational systems, such as more general black holes, and to the gravitational

collapse of matter. We also seek to study the question of black hole stability in the

presence of ΛC . As we have considered a specific metric in the configuration space,

we also aim to explore different metrics for the field space and their implications as well

as the effects of higher order corrections to the effective action.
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