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RESUMO 

 

Própolis, uma substância resinosa produzida por abelhas, é rica em compostos 
bioativos, como flavonoides e ácidos fenólicos, que contribuem para suas 
propriedades terapêuticas bem documentadas, incluindo efeitos antibacterianos 
e anti-inflamatórios. O interesse recente em própolis aumentou devido à 
identificação de novos compostos bioativos e avanços em técnicas de 
extração, que aumentaram sua aplicabilidade nas indústrias farmacêutica, 
agrícola e cosmética. Esta dissertação explora a extração de compostos 
bioativos de própolis marrom usando extração líquida pressurizada (PLE) em 
um sistema de fluxo semicontínuo. O estudo investiga o impacto da 
concentração de etanol, temperatura e pH na eficiência da extração, revelando 
condições ótimas para recuperar compostos fenólicos (90 °C, pH 7), 
flavonoides (120 °C) e açúcares (90 °C, pH 2). Além disso, a atividade 
antioxidante dos extratos foi avaliada, demonstrando bioatividade significativa, 
particularmente em ensaios DPPH e FRAP. As descobertas destacam a 
eficácia do PLE na recuperação seletiva de diferentes compostos bioativos, 
oferecendo um método sustentável com aplicações em vários setores. Além 
disso, a dissertação discute a crescente integração de própolis, extratos 
naturais e nanopartículas de prata (AgNPs) em aplicações industriais 
inovadoras. O potencial desses materiais, incluindo seu papel na medicina 
personalizada, tratamentos antimicrobianos e eletrônica avançada, é 
examinado, enfatizando seu impacto transformador nos setores de saúde, 
segurança alimentar e meio ambiente. Uma análise bibliométrica das 
tendências de pesquisa de 2010 a 2024 ressalta ainda mais a crescente 
relevância desses materiais no tratamento de preocupações globais de saúde e 
no avanço de soluções terapêuticas sustentáveis. 
 

Palavras-chave: Hidrólise; Água subcrítica; Ácidos orgânicos; Atividade 
antioxidante; Análise bibliométrica; Nanotecnologia; Compostos bioativos. 



ABSTRACT 
 

Propolis, a resinous substance produced by bees, is rich in bioactive 
compounds such as flavonoids and phenolic acids, which contribute to its well-
documented therapeutic properties, including antibacterial and anti-
inflammatory effects. Recent interest in propolis has surged due to the 
identification of novel bioactive compounds and advancements in extraction 
techniques, which have enhanced its applicability in the pharmaceutical, 
agricultural, and cosmetic industries. This dissertation explores the extraction of 
bioactive compounds from brown propolis using pressurized liquid extraction 
(PLE) in a semi-continuous flow system. The study investigates the impact of 
ethanol concentration, temperature, and pH on extraction efficiency, revealing 
optimal conditions for recovering phenolic compounds (90 °C, pH 7), flavonoids 
(120 °C), and sugars (90 °C, pH 2). Additionally, the antioxidant activity of the 
extracts was evaluated, demonstrating significant bioactivity, particularly in 
DPPH and FRAP assays. The findings highlight the effectiveness of PLE in 
selectively recovering different bioactive compounds, offering a sustainable 
method with applications in various sectors. Furthermore, the dissertation 
discusses the growing integration of propolis, natural extracts, and silver 
nanoparticles (AgNPs) in innovative industrial applications. The potential of 
these materials, including their role in personalized medicine, antimicrobial 
treatments, and advanced electronics, is examined, emphasizing their 
transformative impact on the healthcare, food safety, and environmental 
sectors. A bibliometric analysis of research trends from 2010 to 2024 further 
underscores the increasing relevance of these materials in addressing global 
health concerns and advancing sustainable therapeutic solutions. 
 
Keywords: Hydrolysis; Subcritical water; Organic acids; Antioxidant activity; 
Bibliometric Analysis, Nanotechnology, Bioactive compounds 
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                                                 CHAPTER I 
 

INTRODUÇÃO GERAL, OBJETIVOS E ESTRUTURA DA DISSERTAÇÃO 
 

1.1 INTRODUÇÃO GERAL 
 

 
A crescente busca por soluções sustentáveis e tecnologicamente 

avançadas tem impulsionado o desenvolvimento de novos métodos de 

extração e aplicação de compostos bioativos naturais. Nesse contexto, a 

própolis tem se destacado como um material de grande interesse científico e 

industrial devido à sua rica composição química, que inclui flavonoides e ácidos 

fenólicos. Esses compostos conferem à própolis diversas propriedades 

terapêuticas, como atividades antibacteriana, anti-inflamatória e antioxidante, 

tornando-a um ingrediente promissor para as indústrias farmacêutica, agrícola 

e cosmética (Bankova et al., 2021; Beserra et al., 2020). 

Nos últimos anos, avanços significativos na biotecnologia têm permitido 

a otimização de técnicas de extração, visando maior eficiência na obtenção de 

compostos bioativos e a redução do impacto ambiental dos processos 

industriais. Métodos convencionais, como a maceração, apresentam limitações 

quanto ao tempo de extração e à degradação de compostos sensíveis ao calor 

(Chua & Rahaman, 2021). Por outro lado, técnicas inovadoras, como a 

extração líquida pressurizada (PLE), vêm se destacando por possibilitarem a 

extração seletiva de componentes bioativos de maneira mais eficiente e 

sustentável, sem a necessidade de grandes quantidades de solventes 

orgânicos (Perino-Issartier et al, 2011). 

Além dos avanços na extração, a integração da própolis com a 

nanotecnologia tem aberto novas possibilidades para aplicações industriais. 

Em especial, a síntese de nanopartículas de prata (AgNPs) a partir de extratos 

naturais tem se mostrado uma alternativa promissora para o desenvolvimento 

de materiais com propriedades antimicrobianas e antioxidantes aprimoradas 

(Hernández-Morales et al., 2020). As AgNPs apresentam ampla aplicabilidade, 
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desde formulações farmacêuticas e biomédicas até o uso em embalagens 

ativas para a conservação de alimentos e na remediação ambiental (Rai, 

Yadav, & Gade, 2009). A combinação da biotecnologia com a nanotecnologia 

possibilita, assim, a criação de produtos inovadores, capazes de aliar eficácia 

terapêutica e sustentabilidade. 

Dessa forma, compreender os mecanismos de extração dos compostos 

bioativos da própolis e suas possíveis aplicações no desenvolvimento de 

materiais avançados é essencial para expandir seu potencial de uso. A análise 

dos fatores que influenciam a extração, como temperatura, pH e solventes 

utilizados, permite aprimorar a recuperação seletiva de compostos de 

interesse, contribuindo para a formulação de novos produtos com valor 

agregado (Kim, et al., 2020). Paralelamente, a caracterização das 

nanopartículas obtidas a partir da própolis possibilita avaliar suas propriedades 

estruturais e funcionais, ampliando suas aplicações em diversas áreas 

estratégicas, como saúde, segurança alimentar e meio ambiente (Gutiérrez et 

al., 2022)  

 

1.2 OBJETIVOS  

 

1.2.1 Objetivos gerais 

 

O objetivo geral deste trabalho foi avaliar o uso de um processo 

hidrotérmico de alta pressão semicontínuo para a recuperação de produtos de 

valor agregado da própolis bruta e obtenção de um extrato/hidrolisado com alta 

quantidade desses compostos. 

 

1.2.2 Objetivos específicos 

 

 Realizar análise bibliométrica dos últimos 14 anos afim de verificar as 

áreas de estudos utilizando própolis menos explorados e possibilidades 

de utilização; 
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 Estudar parâmetros operacionais de extração e hidrólise da própolis em 

reator com água subcrítica na pressão 200 bar e fluxo 5 mL/min, 

variando concentração de solvente (0 a 80%), temperatura (60 a 120 ºC) 

e pH (2 a 12); 

 Caracterizar os extratos e hidrolizados quanto a cor, concentração de 

compostos bioativos, açúcares, inibidores e ácidos orgânicos. 

 

1.3 ESTRUTURA DA DISSERTAÇÃO 

 

Esta dissertação está organizada em capítulos, sendo que cada um 

deles aborda o tema central de cada estudo, os quais resultam em artigos 

submetidos em revistas científicas na área de Engenharia de Alimentos. 

Capítulo 1: Estrutura da dissertação. 

Capítulo 2: Esta seção apresenta o artigo intitulado "Exploring methods 

for propolis extract production and its application in silver nanoparticle 

synthesis: a comprehensive review", no qual foi realizada revisão bibliográfica, 

onde se explora o tema central do trabalho. A própolis, uma substância 

resinosa com composição química rica em flavonoides e ácidos fenólicos, tem 

sido amplamente valorizada por suas propriedades terapêuticas bem 

documentadas, como atividade antibacteriana e anti-inflamatória. Além disso, o 

interesse crescente por soluções naturais e inovadoras nas indústrias 

farmacêutica, agrícola e cosmética tem dado destaque à própolis e a 

substâncias como as nanopartículas de prata (AgNPs) e extratos naturais. Esta 

revisão oferece uma visão geral do estudo e estabelece as bases para a 

análise das aplicações de própolis e outros compostos bioativos em diversos 

setores. 

Capítulo 3: Apresenta o artigo intitulado "Enhanced Extraction Of 

Bioactive Compounds From Brown Propolis: Employing Pressurized Liquid 

Extraction In Semi-Continuous Flow-Through System", no qual se investigou a 

influência da concentração de etanol, temperatura e pH na eficiência da 

especificação de produtos bioativos da própolis marrom, utilizando extração 

com líquido pressurizado (PLE) em um sistema de fluxo semicontínuo. O 
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estudo analisou a recuperação de compostos fenólicos, flavonoides, açúcares 

e ácidos orgânicos, além dos efeitos das condições de extração nas 

propriedades colorimétricas e na atividade antioxidante dos extratos obtidos. 

Capítulo 4: Considerações finais e perspectivas futuras. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15 
 

Referências 

 
Bankova, V., Popova, M., & Trusheva, B. (2021). New emerging trends in 
propolis research: From plant origin to clinical trials. Journal of 
Ethnopharmacology, 248, 112350. 
 
Beserra, F. P., Gushiken, L. F. S., Hussni, C. A., Ribeiro, V. P., Bonamin, F., 
Jackson, C. J., Pellizzon, C. H., & Bastos, J. K. (2020). Artepillin C, a phenolic 
compound from Brazilian green propolis, as an innovative wound healing agent: 
A review of the literature. Journal of Ethnopharmacology, 258, 112897. 
 
Chua, L. S., & Rahaman, N. L. A. (2021). A review on extraction methods and 
chemical composition of propolis. International Journal of Molecular Sciences, 
22(6), 2870. 
 
Gutiérrez, M. M., Aboy, A. L., & Ranalli, N. (2022). Advances in the 
characterization of silver nanoparticles synthesized using natural extracts and 
their applications in nanomedicine. Journal of Nanoparticle Research, 24, 67. 
 
Hernández-Morales, L., González-Sánchez, F., Morales-Luckie, R. A., & Pérez, 
R. (2020). Green synthesis of silver nanoparticles using natural extracts: A 
review. Materials Science & Engineering C, 111, 110852. 
 
Kim, J., Lee, J., Jo, S., & Kang, S. (2020). Optimization of pressurized liquid 
extraction of phenolic compounds from propolis using response surface 
methodology. Journal of Industrial and Engineering Chemistry, 85, 177-186. 
 
Perino-Issartier, S., Abert-Vian, M., & Chemat, F. (2011). Solvent-free 
microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae 
rhamnoides) food by-products. Food Chemistry, 125(4), 1380-1386. 
 
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation 
of antimicrobials. Biotechnology Advances, 27(1), 76-83. 

 
 

 

 

 

 



16 
 

                                                 CHAPTER II 
Article published in the journal European Food Research and Technology, April 2025. 

https://doi.org/10.1007/s00217-025-04712-2 

 
EXPLORING METHODS FOR PROPOLIS EXTRACT PRODUCTION AND ITS 

APPLICATION IN SILVER NANOPARTICLE SYNTHESIS: A 
COMPREHENSIVE REVIEW 

 

 

ABSTRACT 
 

Propolis, a resinous substance collected by bees from plant sources, has a 
diverse chemical composition rich in flavonoids and phenolic acids, which 
contribute to its well-documented therapeutic effects, including antibacterial and 
anti-inflammatory properties. Historically esteemed in traditional medicine, 
propolis is currently experiencing a resurgence of interest due to the recent 
identification of novel bioactive compounds and advancements in extraction 
techniques that enhance its utility in pharmaceutical and cosmetic products. The 
distinctive interactions of propolis with the human body suggest its potential as 
an agent for the prevention and treatment of infection and inflammation. The 
pursuit of natural and innovative solutions across a range of sectors, particularly 
in the pharmaceutical, agricultural, and cosmetic industries, has garnered 
significant interest in substances such as propolis, natural extracts, and silver 
nanoparticles (AgNPs). This review provides an overview of the key aspects of 
propolis, natural extracts, and silver nanoparticles (AgNPs), including their 
production, benefits, and applications across diverse sectors. A bibliometric 
analysis spanning the period from 2010 to 2024 reveals a growing interest in 
these areas, as evidenced by trends in publication and the emergence of key 
words. This underscores the relevance of these studies in addressing global 
health concerns. The analysis reveals a vast and evolving research landscape, 
with notable contributions to sustainable therapeutic options and innovative 
applications. It also portends a promising outlook for future exploitation in 
improving efficacy and safety across various sectors, particularly in health, food 
safety, and environmental applications. The emergence of new trends suggests 
a trajectory towards greater integration of natural substances with advanced 
technologies, which could facilitate advancements in the medical and 
agricultural fields. 

 
Keywords: Bibliometric Analysis, Nanotechnology, Bioactive compounds, 
Antimicrobial, Antioxidant, and Antifungal. 
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1 INTRODUCTION 
 

The growing demand for natural and innovative solutions in the 

pharmaceutical, agricultural, cosmetic, and food industries has increased 

interest in propolis, natural extracts, and silver nanoparticles (AgNPs). Derived 

from natural sources and enhanced through technological advancements, these 

materials offer a wide range of therapeutic and functional benefits, which are 

well-documented in scientific literature. Propolis, a resinous substance collected 

by bees from various plant sources, is distinguished by its unique chemical 

composition, primarily consisting of flavonoids, terpenoids, and phenolic acids. 

These compounds contribute to its antibacterial, anti-inflammatory, and 

antioxidant properties, making propolis a valuable component of traditional 

medicine for centuries [1,2]. Beyond its conventional applications, recent 

discoveries of new bioactive compounds and technological advancements have 

expanded its potential use in pharmaceuticals and cosmetics. Studies suggest 

that propolis interacts with biological systems in ways that may help prevent 

infections, reduce inflammation, and even combat certain types of cancer. The 

chemical diversity of propolis depends on the plant sources used by bees, 

resulting in variations in color and bioactivity [1,3].  

Research on natural extracts derived from plants, animals, and 

microorganisms has also yielded promising results across multiple industries. 

These extracts are rich in bioactive compounds such as polyphenols, terpenes, 

and alkaloids, which exhibit therapeutic, antioxidant, and antimicrobial activities. 

The use of natural extracts in medicine dates back centuries and remains highly 

valued, especially as consumer demand for safer and more sustainable 

products continues to grow. Advances in extraction technologies have further 

enabled the incorporation of these compounds into cosmetics, food, and 

pharmaceuticals [4]. 

Alongside the use of propolis and natural extracts, nanotechnology has 

revolutionized the application of natural substances in medicine and other fields. 

AgNPs, in particular, have emerged as one of the most promising innovations 

due to their potent antibacterial properties. These nanoparticles have 
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demonstrated significant efficacy against infections, including antibiotic-resistant 

strains, one of modern medicine's most pressing challenges. Their applications 

extend beyond healthcare to agriculture and cosmetics, reflecting their 

versatility and effectiveness in various fields [5,6].    

 In agriculture, AgNPs have shown potential in enhancing plant resistance 

to pathogens and environmental stress. The development of controlled-release 

nanoparticle systems in pesticides and fertilizers could revolutionize agricultural 

practices by improving efficiency while minimizing environmental impact. Such 

advancements align with the growing demand for sustainable and safer food 

production, addressing the challenges posed by excessive chemical use in 

farming [7].  

The increasing significance of propolis, natural extracts, and AgNPs 

highlights their potential in developing more effective and sustainable 

therapeutic solutions. The integration of natural substances with emerging 

technologies, such as nanotechnology, creates new opportunities for innovative, 

multifunctional treatments. For example, the combination of propolis and AgNPs 

could enhance their antibacterial and antioxidant properties, leading to 

therapeutic solutions that merge traditional knowledge with modern scientific 

advancements [8,9]. 

While previous reviews have addressed the individual properties and 

applications of propolis and AgNPs, this study provides a novel perspective by 

focusing on the synergistic effects when these two materials are combined. This 

approach adds new insights into their potential to enhance bioactive properties, 

particularly in antimicrobial, antioxidant, and anti-inflammatory applications. 

Additionally, the review examines different extraction methods and applications 

of AgNPs, highlighting recent technological advancements that may not have 

been fully explored in earlier works. By addressing the intersection of natural 

extracts and nanotechnology, this review emphasizes the cutting-edge 

developments in both fields and their future potential in sustainable and 

multifunctional therapeutic solutions. 

Given the growing demand for sustainable and eco-friendly alternatives, 

particularly in the fight against antimicrobial resistance, the relevance of this 
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research is more pronounced than ever. This study aims to provide a 

comprehensive overview of the production, characterization, and applications of 

propolis and AgNPs, with an emphasis on their bioactive properties and 

emerging industrial uses. 

 

2 METHODOLOGY FOR LITERATURE SEARCH AND BIBLIOMETRIC 
ANALYSIS  

 

The bibliographic search was conducted on the Science Citation Index 

Expanded (SCI-E) platform - Clarivate Analytics' ISI - Web of Science©, using 

the advanced search and following search logic: TS = (("propolis") AND 

("extraction" OR "nanoparticle")). TS is a search operator that allows searching 

by topic, encompassing specific terms in the article title, abstract, and 

keywords. The approach chosen was to search for "propolis" in general without 

restricting it to "brown propolis" due to the low number of publications focused 

exclusively on this type. It was decided to include all propolis to overcome this 

limitation and obtain a more comprehensive view of the research landscape. 

This strategy enabled it to get broader and more relevant insights, which can be 

directly applied to the study of brown propolis. The keywords were chosen to 

cover research related to propolis, considering both the extraction processes 

and the development of nanoparticles. Additionally, keywords plus were 

excluded, limiting the search to terms in the title, abstract, and author keywords. 

Two filters were applied to the search: the timespan from 2010 to 2024 (up to 

August 25th) and the document type, including only experimental and review 

articles. Figure 1 illustrates the steps taken in the search process, which 

resulted in 493 documents, including 448 articles and 45 reviews. The 

systematic search enabled an analysis of publication patterns and research 

themes that received significant attention. 
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Figure 1. The methodological steps involved in conducting the bibliometric analysis. 

 

The VOSviewer© software was used to investigate networks related to 

keywords and citations among studies from different countries. Bibliometrics 

was employed to construct a thematic map to visualize the most frequently used 

keywords and to create a figure highlighting the countries most actively involved 

in research, showing their interconnections through citations of relevant works. 

The Web of Science (WoS) is widely used in bibliometric analyses. Still, it has 

some limitations, such as its restricted coverage of high-impact journals and the 

predominance of texts only in English. 

 

2.1 PUBLICATION EVOLUTION 

 

As observed in Figure 2, there is a clear and continuous trend in the 

growth of propolis-related research over the years evaluated. The early years 

show some irregularity in publication numbers, followed by a significant 

increase in 2019, with 52 publications. A decline is noted in 2020, mainly 

reflecting broader trends in scientific research, likely influenced by the COVID-

19 pandemic. However, the number of publications rebounded in the 
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subsequent years. For 2024, with data collected up to August, there are already 

35 publications, indicating a likely increase in the coming months as the year 

progresses. This continuous trend in the growth of propolis-related research is a 

testament to the field's sustained effort and exploration of emerging and 

innovative applications rather than a singular spike of interest. 

 

 
Figure 2. Annual evolution of scientific publications on propolis extraction and 

nanoparticle production over the past 14 years. (*) = Search carried out until August 

2024. 

 

2.2. KEYWORD ANALYSIS 

Figure 3 presents a network map that groups authors' most frequently 

used keywords into seven clusters (Table 1). These clusters are organized 

based on their relevance and the connections between them. A total of 55 

keywords, each with a minimum of five occurrences, were selected for 

inclusion. The network map shows the clusters and their interconnections. The 

red cluster (Number. 1) highlights properties associated with propolis, such as 

anti-inflammatory, antibacterial, anticancer, antimicrobial, and antioxidant. 

These themes are also reinforced in the green cluster (Number. 2), including 

terms like antibacterial, antifungal, and antioxidant activity. Additionally, 

classifications such as green and red propolis and techniques like ultrasound-

assisted extraction, which indicate widely used extraction methods for propolis, 

appear. Other extraction techniques mentioned include maceration in cluster 
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number seven and supercritical extraction in cluster Number. 5. The network 

map also features keywords related to compound identification techniques, 

such as HPLC, GC-MS, and mass spectrometry, as well as experimental 

designs, such as central composite design. Furthermore, it mentions using 

alternative solvents for extraction, such as natural deep eutectic solvents. 

 

 
Figure 3. Classifying frequently employed keywords by authors into clusters. The area 

of the circle represents the frequency of term occurrence, while the connections 

indicate the co-occurrence of related terms. 

 
Table 1. Clusters of critical terms identified using Vosviewer software. 

Cluster Citations Keywords on VOSviewer Network 

1 14 

Anti-inflammatory, antibacterial, anticancer, antimicrobial, 
antioxidant, chemical composition, chitosan, cytotoxicity, 

dentistry, nanoparticle, nanoparticles, nanotechnology, natural 
product, and propolis. 

2 9 
Antibacterial activity, antifungal activity, antioxidant activity, Apis 

mellifera, bioactive compounds, green propolis, natural 
products, red propolis, and ultrasound-assisted extraction. 
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Additionally, Table 2 ranks the authors' ten most frequently used 

keywords. Besides terms such as "propolis" and "extraction," which are derived 

from the search logic applied, there is notable interest in compounds to be 

extracted, such as flavonoids and polyphenols, as well as their antioxidant and 

antimicrobial effects. The absence of terms related to nanoparticles in the 

ranking indicates a significant gap in current research in this application field, 

representing an opportunity for future studies. Generally, the intense focus on 

extraction studies often paves the way for subsequent research on the 

application of extracts, whether in the form of nanoparticles or other modalities, 

potentially sparking interest in areas such as food, cosmetics, and 

pharmaceuticals. 

 

Table 2. 10 most commonly used keywords in the field are ranked by their frequency of 
occurrence. 

Table 1. Continued  

3 9 Bee pollen, chrysin, flavonoids, HPLC, mass spectrometry, 
phenolic, phenolic acids, polyphenols, and stingless bees. 

4 8 Antioxidant capacity, GS-MS, MS, PCA, phenolics, propolis 
extract, quercetin, and stingless bee. 

5 6 Antioxidants, artepillin c, Brazilian propolis, honey, phenolic 
compounds, and supercritical extraction. 

6 5 
Antimicrobial activity, central composite design, natural deep 
eutectic solvents, response surface methodology, and total 

flavonoids 
7 4 Extraction, maceration, poplar-type propolis, and ultrasound. 

Ranking Keywords Occurrences Total link 
strength 

1 Propolis 202 252 
2 Antioxidant activity 51 91 
3 Flavonoids 36 69 
4 Phenolics compounds 34 60 
5 Extraction 32 59 
6 Antimicrobial activity 32 52 
7 Antioxidant 29 56 
8 Polyphenols 20 33 
9 Honey 17 17 

10 Phenolics 15 22 
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Figure 4 presents a quadrant map that organizes keywords into groups 

based on relevance and development. These groups are classified as motor, 

basic, niche, and emerging or declining themes. Motor themes are highly 

relevant and developed, defining the field of study more precisely. These 

groups include keywords related to propolis's properties, such as antioxidant, 

antimicrobial, antibacterial, and antifungal activities, as well as commonly 

extracted compounds like flavonoids and phenolic compounds. Terms like 

"green propolis" and "red propolis" also appear, indicating the most studied 

topics. Basic themes are highly relevant but less developed. These themes 

have the potential to evolve into motor themes as research progresses. 

Keywords like "Brazilian propolis" and "artepillin C" (an active compound found 

in green propolis, known for its anti-inflammatory, antioxidant, antimicrobial, 

immunomodulatory, and gastroprotective properties Beserra, Gushiken, Hussni, 

Ribeiro, Bonamin, Jackson, Pellizzon e Bastos (2020) [[10]] are present. 

Additionally, terms synonymous with those already found among motor themes 

are included. Niche terms are those with advanced development but lower 

overall relevance, essential for specialized areas of study. These terms are 

predominant in more focused research groups, focusing intensely on specific 

subfields. In the current context, terms like "nanoparticles," "cytotoxicity," and 

"dentistry" exemplify these specialized fields. Finally, emerging or declining 
themes include terms that are decreasing in usage frequency, suggesting a 

possible decline, or those that are beginning to gain relevance and may grow in 

the coming years. Examples include "nanoparticles," "nanotechnology," and 

"quercetin." Understanding the growth in nanoparticle research, we can infer 

that their presence in this quadrant indicates an emerging theme. This trend 

highlights the increasing interest in nanotechnology applications for enhancing 

bioavailability, targeted delivery, and stability of bioactive compounds like 

quercetin. The growing focus on these topics suggests promising opportunities 

for future research and potential industrial applications, particularly in food 

technology, pharmaceuticals, and biotechnology. 
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Figure 4. A thematic overview of frequently employed keywords. The classification of 

keywords based on Development Degree (Density) on the Y-axis and Relevance 

Degree (Centrality) on the X-axis allows for identifying research trends and priorities in 

the field. 

 

2.3. STUDY OF RESEARCH AREAS, AFFILIATIONS, COUNTRIES, AND 

JOURNALS 

The ranking of the top 10 study areas, affiliations, countries, and journals 

is presented in Table 3. Chemistry (29.006%) has the highest number of 

publications, followed by Food Science Technology (23.732%). These fields 

highlight chemistry's central importance in the analysis and extraction of 

propolis compounds. At the same time, food science and technology reflect the 

growing interest in food preservation and innovation applications. Other 

significant fields, such as Pharmacology, Pharmacy and Biochemistry, and 

Molecular Biology, indicate a diversification of research exploring both the 

therapeutic effects of propolis and its biotechnological applications. The top 

affiliations and countries in the ranking point to the dominance of specific 

institutions and regions that lead scientific production in this domain, driving 

continuous and significant advancements. Many Brazilian universities are 
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represented, reflecting Brazil’s leadership, which accounts for 21.095% of the 

publications. The most prominent journal in this field is the Journal of Apicultural 

Research (3.854%), which is fitting given its focus on beekeeping, followed by 

Molecules (3.245%), demonstrating a strong interest in obtaining compounds 

from propolis. 

Figure 5 presents a world map highlighting the countries with the highest 

number of publications and their level of interaction. This visual representation 

identifies geographical areas with the most significant scientific activity related 

to propolis, particularly in extraction and nanoparticle studies. The map 

illustrates how different regions contribute to the field and their collaborative 

dynamics, providing insight into global research trends and concentrations. 

 

 
Figure 5. Insights at the country level, collaborative dynamics, and international 

partnerships in global propolis research over the past years. 

 
Table 3. Top 10 study areas, affiliations, countries, journals, and authors in propolis 

research over the past 14 years, based on the quantity and impact of publications. 

Ranking Research areas Number %1 
1st Chemistry 143 29.006 
2nd Food Science Technology 117 23.732 
3rd Pharmacology Pharmacy 66 13.387 
4th Biochemistry Molecular Biology 63 12.779 
5th Science Technology Other Topics 46 9.331 
6th Engineering 34 6.897 
7th Agriculture 32 6.491 
8th Entomology 24 4.868 
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Additionally, Figure 6 depicts the relationships and collaborations 

between countries through a network map considering the co-occurrence of the 

countries and citations. From this map, three main clusters can be identified: 

Table 3. Continued   
9th Materials Science 21 4.260 
10th Dentistry Oral Surgery Medicine 17 3.448 

Ranking Affiliations Number %1 
1st Universidade de Sao Paulo 20 4.057 
2nd Universidade Estadual de Campinas 18 3.651 
3rd Egyptian Knowledge Bank Ekb 15 3.043 
4th Universidade Federal da Bahia 13 2.637 
5th Jiangsu University 9 1.826 
6th Universidade Tiradentes 9 1.826 
7th University of Zagreb 9 1.826 
8th Chinese Academy of Agricultural Sciences 8 1.623 
9th Universidade Estadual de Maringa 8 1.623 

10th Universidade Tecnologica Federal do 
Parana 8 1.623 

Ranking Countries Number %1 
1st Brazil 104 21.095 
2nd Peoples’r China 59 11.968 
3rd Turkey 34 6.897 
4th Iran 28 5.680 
5th India 26 5.274 
6th USA 26 5.274 
7th Poland 24 4.868 
8th Italy 21 4.260 
9th Malaysia 21 4.260 
10th Spain 20 4.057 

Ranking Journals Number %1 
1st Journal of Apicultural Research 19 3.854 
2nd Molecules 16 3.245 
3rd Plos One 12 2.434 
4th Food Chemistry 9 1.826 
5th Antioxidants 7 1.420 
6th Food Analytical Methods 7 1.420 
7th LWT Food Science and Technology 7 1.420 
8th Chemistry Biodiversity 6 1.217 
9th Foods 6 1.217 

10th Journal of Food Processing and 
Preservation 6 1.217 
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 Cluster 1: Australia, Brazil, Bulgaria, Chile, England, Greece, Hungary, 

Ireland, Mexico, the People's Republic of China, Portugal, Romania, 

Taiwan, Thailand, and the USA.  

 Cluster 2: Algeria, Argentina, Croatia, Indonesia, Italy, Lithuania, Poland, 

Slovakia, and Turkey.  

 Cluster 3: Egypt, Germany, India, Iran, Malaysia, Saudi Arabia, 

Slovenia, and Spain.  

The network map illustrates how these countries are interconnected 

through collaborative research efforts and citation practices, highlighting 

regional patterns and global research dynamics. 

 
Figure 6. Co-occurrence network map between countries and citations in the study of 

propolis in extraction and nanoparticles. The circumference indicates the occurrence of 

publications, and the connections represent partnerships. 

 

3. PROPOLIS AND NATURAL EXTRACTS  
Propolis, also known as bee glue, is a resinous material produced by 

bees from wax and plant exudates used to seal openings and cracks in hives 

[11,12]. Its typical composition includes approximately 10% volatile substances, 

50 to 55% resin, 30 to 40% beeswax, 10% essential oils, and 5 to 10% pollen, 

along with other substances in smaller proportions [11]. The composition of 

propolis is influenced by various factors, such as the plant source, season, 
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climate, bee species, and collection methods [13]. More than 300 compounds 

have been identified in propolis, including phenolic acids, flavonoids like 

flavones, flavanones, and flavanols, terpenes, aldehydes, aromatic alcohols, 

fatty acids, and stilbenes [12,14]. In general, propolis exhibits various bioactive 

properties, such as antibacterial [15] antifungal [16], anti- inflammatory [17], 

wound healing [18], antitumor [19], antiparasitic [19], and antioxidant [17] 

activities. 

As the chemical composition of propolis largely depends on the flora 

surrounding the hives, propolis produced in specific geographic zones shows 

similarities in its composition. Temperate zone propolis is rich in flavonoids, 

phenolic acid esters, and compounds absent in tropical propolis. Tropical 

propolis contains prenylated coumaric acids, flavonoids, benzophenones, 

lignans, and terpenes, while propolis from cold regions and high altitudes 

contains phenolic glycerides and other acid combinations [20]. Mediterranean 

propolis is characterized by high concentrations of diterpenoids [21]. Due to the 

wide variety of propolis types and their different characteristics, chemical 

characterization is essential to identify the present compounds, as they can vary 

significantly depending on various factors. 

Despite its diverse bioactive potential, the bioavailability of propolis and 

its key compounds remains a challenge. The poor solubility, low absorption rate, 

and rapid metabolism of its polyphenolic constituents can limit its effectiveness 

when consumed orally. Several factors influence its bioavailability, including the 

extraction method used and the formulation in which it is administered. Alcoholic 

extracts generally exhibit higher bioavailability compared to aqueous extracts 

due to the improved solubility of polyphenols in ethanol. Additionally, some 

flavonoids undergo extensive first-pass metabolism in the gastrointestinal tract 

and liver, altering their systemic availability and potentially modifying their 

biological effects. To address these limitations, recent advancements in 

nanotechnology have introduced innovative delivery systems such as 

nanoparticles, liposomes, and solid dispersions, enhancing the solubility, 

stability, and intestinal permeability of propolis bioactives. Encapsulation using 

biopolymeric matrices, such as chitosan or alginate, has also shown promise in 
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prolonging compound release and increasing bioefficacy. These strategies not 

only improve absorption but also ensure sustained therapeutic activity, 

maximizing the health benefits of propolis [22–24]. 

While propolis is generally recognized as safe, some adverse effects and 

potential toxicity have been reported, particularly in individuals with allergies or 

sensitivities to bee products. Allergic reactions, including dermatitis, oral 

mucositis, and respiratory symptoms, have been observed, especially in 

individuals with a history of hypersensitivity to pollen or bee venom. Prolonged 

or excessive use of propolis may also lead to hepatotoxicity or nephrotoxicity 

due to the accumulation of bioactive compounds such as flavonoids and 

cinnamic acid derivatives, which can exert cytotoxic effects at high 

concentrations. Additionally, certain components of propolis, such as caffeic 

acid phenethyl ester, have been associated with DNA damage and genotoxicity 

in some in vitro studies, although further research is needed to confirm their 

long-term safety in humans. Quality control and standardization are essential to 

minimize the risk of adverse effects, as variations in chemical composition 

between different types of propolis can influence both efficacy and toxicity. 

Individuals with pre-existing conditions, pregnant women, and those taking 

medications should consult a healthcare professional before using propolis to 

avoid potential interactions or side effects [23,25,26]. 

There are various classifications for the different types of propolis based 

on either the plant of origin or the color. In Brazil, the main classification is by 

color, resulting in categories of green, red, brown, yellow, and black propolis 

[27]. Table 4 presents the classification by color, some identified compounds, 

and their biological activities. Green propolis is one of the most studied, 

characterized, and used due to its pharmaceutical properties, most related to 

Artepillin C, its main phytochemical marker [28]. It has a deep green color, 

resulting from the resin source used by the bees, mainly Baccharis 

dracunculifolia [29]. While Brazilian green propolis contains prenylated p-

coumaric acid and diterpenic acids, the European version is rich in phenolic 

compounds such as flavonoid aglycones, hydroxycinnamic acids, and their 



31 
 

esters [30], highlighting the significant influence of geographic factors on 

propolis production. 

Red propolis can be derived from the plant Dalbergia ecastophyllum (L.) 

Taub. (Fabaceae), rich in isoflavonoids, pterocarpans, and chalcones, or 

Symphonia globulifera Lf, Clusiaceae, which is rich in polyprenylated 

benzophenones [31]. It usually has a bright red color [32]. Brown propolis is 

obtained from various sources, such as Luehea sp. (Malvaceae), Piptadenia 

falcata Benth (Fabaceae), Tabebuia spp. (Bignoniaceae), Tabebuia caraiba 

(Mart.) Bureau (Bignoniaceae), Vernonia spp. (Asteraceae), and Cecropia 

pachystachya Trécul (Urticaceae) [33]. Due to the wide variety of sources, 

brown propolis exhibits different chemical profiles, resulting in varied 

compositions andiological activities [33,34]. 

On the other hand, yellow propolis has not been extensively studied, 

leaving gaps in its characteristics, such as the plant of origin, which has not yet 

been determined [35]. It has low concentrations of phenolic compounds, with 

ursadienol, lupenone, oleanone, and betulin as its main constituents, along with 

lanosterol and cycloartenol [35]. Finally, black propolis contains 

polyisoprenylated benzophenones, such as xanthochymol, with a chemical 

composition similar to Venezuelan and Cuban propolis, as they all have Clusia 

species as their plant source [35]. This type of propolis can also be obtained 

from Mimosa hostilis Benth [36] and, in Europe, from Populus nigra L. [37]. 

The extraction methods for obtaining propolis extracts can be divided into 

classical and modern methods [38] and are presented in Figure 7. The most 

common classical method is simple maceration, which involves adding a 

solvent to the solid sample, followed by a resting period. After this time, the 

mixture is filtered, and the obtained liquid is used to determine the bioactive 

compounds, with applications in the pharmaceutical, cosmetic, and food 

industries [39,40]. In studies using this method, a mixture of ethanol and water 

in the proportion of 70 to 80% ethanol is the most common solvent [41]. 

However, maceration has disadvantages, such as long extraction periods, large 

amounts of solvent use and the need for subsequent evaporation [42]. 
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Figure 7. Propolis extraction: processes, bioactive compounds, and biological benefits. 

 

Another widely used classical method is Soxhlet extraction, which 

stands out for using smaller amounts of solvent and reducing extraction time 

compared to maceration [42]. Studies indicate that using absolute ethanol at 60 

°C for 4 to 6 h, in a 5:150 w/v ratio, offers the best results for the extraction of 

total phenolic compounds and flavonoids [39,43]. However, a disadvantage of 

this method is the need for high temperatures, which can lead to the 

degradation of thermosensitive compounds present in propolis, making it 

unsuitable in certain cases, depending on the type of propolis and the 

compounds of interest [39]. 

New extraction methodologies, known as modern methods, are 

increasingly being explored to obtain propolis extracts. Among them are 

supercritical fluid extraction [44], ultrasound-assisted extraction [45], high-

pressure extraction [46], and microwave-assisted extraction [41]. These 

techniques are promising as they offer advantages such as reduced extraction 

time, less need for solvent evaporation, greater stability of thermosensitive 

compounds, and higher yields. 

In addition to innovative techniques, the use of green and non-toxic 

solvents is also being studied. Currently, the most commonly used solvents 
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include water, methanol, ethanol, chloroform, dichloromethane, ether, and 

acetone [47]. Although hydroethanolic extracts are the most common form of 

commercial propolis, they have disadvantages, such as characteristic odor and 

taste, and are unsuitable for consumers intolerant to ethanol, children, and 

alcoholics [48]. 

The search for environmentally friendly solvents has been receiving 

increasing attention. Among the solvents studied, ionic liquids present high 

costs and significant toxicity potential [49], while deep eutectic solvents have 

shown satisfactory results, being cheaper and easier to synthesize [49,50]. 

Other green solvents under investigation include water in pressurized 

extractions and carbon dioxide in supercritical extractions, both facilitating the 

extraction of bioactive compounds and fitting the characteristics of green 

extractions [49]. 

Additionally, alternative solvents such as propylene glycol, honey 

brandy, mead [47], polyethylene glycol [51], glycerol, and vegetable oils are 

also being evaluated [52]. Finally, the development of extraction methods using 

alternative solvents to replace ethanol extracts represents a promising strategy 

for future commercial applications, broadening their use in industrial sectors 

such as food, cosmetic, and pharmaceutical industries. 

 

Table 4. Characteristics and biological activities of different types of propolis. 

Type of 
Propolis Region Main Compounds Biological Activities Reference 

Green 
Southeast 

Brazil, Europe, 
Taiwan 

Cinnamic, caffeic, ferulic, 
chlorogenic, isochlorogenic 

a,b,c, and Artepillin C 

Anti-obesity, anti-
inflammatory, 

gastroprotective, 
immunomodulatory, 

antibacterial, antiviral, 
anticancer 

[33,53] 

Red 
Brazil, Cuba, 
Venezuela, 

Mexico, China 

Flavonoids (Isoflavones, 
flavanones, 

dihydroflavonoids), 
medicarpin, vestitol, 

formononetin, isoliquiritigenin, 
and benzophenones 

Anti-obesity, 
antibacterial, anti-

inflammatory, 
anticancer, antifungal 

[33,53] 
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4. EXTRACTION METHODS FOR PRODUCTION OF PROPOLIS EXTRACTS 
 

A comparative analysis of traditional and modern extraction methods is 

essential to highlight their respective advantages and limitations. Traditional 

techniques, such as cold pressing and enzyme extraction, are widely used due 

to their simplicity, low cost, and environmentally friendly nature, as they often 

avoid the use of organic solvents. Additionally, they help preserve thermolabile 

bioactive compounds. However, these methods typically suffer from lower 

extraction efficiency, longer processing times, and incomplete recovery of target 

compounds, which can limit their industrial applicability. 

In contrast, modern extraction techniques, including supercritical CO  

extraction, ultrasound-assisted extraction, pressurized liquid extraction, and 

reverse micelle extraction, have been developed to overcome these limitations. 

These methods offer higher yields, improved selectivity, and faster processing 

times while reducing solvent consumption, making them more sustainable 

Table 4. Continued    

Brown 
Brazil, Cuba, 

Mexico, 
Europe 

p-Coumaric acid, drupanin, 
artepillin C, baccharin, 

isocupressic acid, dihydro-p-
coumaric acid, caffeic acid 

Antioxidant, 
antibacterial, anti-

inflammatory, 
cytotoxic, 

antileishmanial, 
antigenotoxic, anti-

mycoplasma 

[34] 

Yellow Brazil, Cuba 

Triterpenic alcohols, 
flavonoids, polymethoxylated, 
lanosterol, germanicol, lupeol, 

and cycloartenol 

Antimicrobial, 
antioxidant, anti-

inflammatory, 
anticancer 

[54,55] 

Black 
Brazil, Europe, 

Asia, North 
America 

Hydroxycinnamic acid (caffeic 
acid and phenethyl ester of 
caffeic acid) and flavonoids 

(apigenin, quercetin, 
pinocembrin, galangin, 

chrysin) 

Antioxidant, anti-
inflammatory, 
antimicrobial, 
antidiabetic, 
antitumor, 

neuroprotective, 
gastroprotective, 

immunomodulatory 

[17,36] 
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alternatives. Despite these advantages, modern extraction techniques often 

require specialized equipment, higher operational costs, and technical expertise 

to optimize parameters for maximum efficiency. Additionally, some methods still 

involve the use of organic solvents, which may pose environmental and safety 

concerns. 

The choice of an extraction method depends on several factors, 

including the nature of the bioactive compounds, cost-effectiveness, 

environmental impact, and scalability. Understanding these differences is 

crucial for selecting the most appropriate technique to maximize the extraction 

of valuable compounds from propolis. The following sections will provide an in-

depth discussion of each extraction method (Figure 8), their mechanisms, and 

their applications in obtaining bioactive compounds. 

 

Figure 8. Overview of different extraction methods for propolis extracts obtaining. 

 

4.1 SUPERCRITICAL CO2 EXTRACTION 

Supercritical carbon dioxide (CO ) extraction is considered a green 

extraction method because it offers economic and environmental benefits [48, 

49]. This technology has been widely used to recover natural products. 
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Supercritical fluids are obtained by raising the temperature and pressure above 

the critical point of the substances used [56]. The properties of a supercritical 

fluid combine characteristics of both liquids and gases, enhancing extraction 

efficiency compared to conventional solvents in terms of quality and quantity. 

Notable properties include low viscosity, a density close to a liquid, diffusion 

similar to that of a gas, and surface tension approaching zero [57,58]. Due to 

their high diffusivity, supercritical fluids easily penetrate solid materials, allowing 

for dissolution and making the substances accessible [59,60]. Furthermore, due 

to its near-zero surface tension, the supercritical fluid can easily penetrate 

materials with low porosity [61]. 

Supercritical CO  is the most widely used fluid due to its non-toxicity, 

ease of recovery, volatility, non-flammability, low critical temperature (31.1 ºC), 

and relatively low critical pressure (72.8 bar). These properties make it possible 

to recover CO  during the process, thus avoiding this greenhouse gas emission 

[55,56]. This prevents the thermal and chemical degradation of the compounds 

in the extracts, as CO  is easily removed by simply decompressing the 

extraction line [62,63].  This technology avoids the production of chemical 

solvent waste, which would otherwise need to be incinerated, a process that is 

both extremely dangerous and costly for the environment [64]. Another key 

sustainability aspect of supercritical CO  extraction is its energy efficiency. The 

process occurs at relatively low temperatures compared to other extraction 

methods, reducing energy demand and preventing thermal degradation of 

bioactive compounds [64]. Additionally, the selectivity of supercritical CO  

enables precise extraction, minimizing the need for extensive downstream 

purification steps and reducing waste generation [65]. 

Several studies have validated the use of supercritical CO  extraction 

technology for producing propolis extracts (Table 5). In one study, the authors 

identified the optimal operational conditions for obtaining extracts with high 

antioxidant potential from red propolis. Using supercritical CO  technology and 

ethanol as a cosolvent, they found that conditions of 50 °C and 450 bar, with an 

S/F ratio of 131 and ethanol at a concentration of 4% (w/w), were ideal for 

obtaining extracts rich in phenolic compounds and antioxidant activity [65]. 
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Another study evaluated extracts of green and red propolis obtained using 

ethanol, methanol, water, hexane, and supercritical CO  at 50 °C and 300 bar. 

The results showed that extracts obtained through supercritical CO  technology 

had the highest levels of flavonoids compared to those obtained with ethanol. 

This confirms that supercritical extraction tends to concentrate flavonoids, 

making it an effective method for fractionating these compounds. Flavonoids in 

propolis are present in higher quantities and exhibit significant biological activity 

[66]. 

 

4.2 ULTRASOUND ASSISTED EXTRACTION  

Ultrasound consists of longitudinal sound waves that can rarefy and 

compress the medium along their propagation path, creating a non-uniform 

pressure field. This causes the medium, which is initially uniformly distributed, to 

vibrate rapidly [67]. Ultrasound waves have a frequency greater than 20 kHz 

[68]. The use of ultrasound in a medium induces vibration and consequently 

transfers energy. In this medium, cavitation occurs, which, during the 

propagation of the waves, causes the rupture of cell walls, reduces particle size, 

and enhances mass transfer [69]. 

When ultrasound is used in a liquid medium, thousands of cavitation 

bubbles are formed due to the longitudinal propagation of the ultrasound waves. 

As the waves propagate, these cavitation bubbles are continuously stretched 

and compressed due to pressure variations until they implode, releasing 

significant energy. This implosion generates shock waves, which, when they 

collide, create high shear forces that rupture cell walls. This implosion process 

leads to an increase in temperature and pressure, which accelerates the 

internal diffusion of particles. It also controls particle size and distribution due to 

the generation of hydroxyl radicals, microjets, and high-speed collisions 

between particles [67]. 

The use of ultrasound can increase extraction efficiency and reduce 

processing time. Compared to other methods, ultrasound-assisted extraction is 

the best alternative, as it does not require several preparatory operations for its 

application [70]. One of the key sustainability advantages of UAE is its potential 



38 
 

to minimize the use of organic solvents [67]. By improving solvent penetration 

and accelerating compound diffusion, UAE allows for the use of smaller solvent 

volumes or even the replacement of toxic solvents with greener alternatives 

such as water or ethanol [70]. This significantly reduces solvent waste and 

environmental pollution while also lowering health risks associated with 

hazardous chemicals [69]. 

The use of this technique for obtaining propolis extracts has been 

explored. In one study, the authors evaluated ultrasound-assisted extraction to 

obtain propolis extracts from stingless bees (Table 5). They used aqueous and 

ethanolic media with varying pH levels (2, 6, and 9). The extraction parameters 

included a time of 15 min, a temperature of 70 °C, and a frequency of 40 kHz. 

The authors concluded that ethanolic extracts yielded higher amounts than 

aqueous extracts, although the difference was not statistically significant [71]. 

In another study, the authors compared different extraction methods for 

obtaining phenolic compounds from propolis, using double maceration (at room 

temperature with agitation for 24 h at 250 rpm), double microwave treatment (1 

min at 140 W), and double ultrasound-assisted extraction (15 min at 20 kHz). 

The authors concluded that ultrasonic extraction achieved a higher yield 

compared to both microwave extraction and maceration methods [41].  

 

4.3 PRESSURIZED LIQUID EXTRACTION (PLE)  

Pressurized liquid extraction (PLE) is performed at room temperature to 

200 °C and pressures between 10 and 15 MPa [72]. Furthermore, it is important 

to note that the pressure and temperature are always kept below the critical 

points to ensure that the solvent remains liquid during the extraction process. 

Under these conditions, the fluid exhibits significantly altered characteristics: the 

diffusion of the fluid is inversely proportional to its viscosity and surface tension. 

In other words, as diffusion increases, viscosity and surface tension decrease. 

This change facilitates the solvent's penetration into solid samples, reduces the 

interaction between the matrix and the compound of interest, and thus improves 

mass transfer [72,73]. These characteristics result in a faster extraction process 

with high yields and a low amount of solvent [74]. This facilitates the 
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development of methods that require less labor, thereby improving the 

reproducibility of extractions [75].  

The PLE technique is similar to other common extraction methods, such 

as the Soxhlet extraction. Still, it offers the advantages of a shorter process time 

and using a smaller amount of solvents [76]. One of the key sustainability 

benefits of PLE is its ability to use environmentally friendly solvents such as 

water or ethanol instead of toxic organic solvents [74]. This reduces the risk of 

chemical exposure, lowers hazardous waste production, and decreases the 

environmental impact associated with solvent disposal. Additionally, the closed-

loop system of PLE enables solvent recovery and reuse, further improving 

resource efficiency and reducing emissions [75]. 

The use of PLE technology to obtain propolis extracts has been 

relatively underexplored in the literature, and few studies have assessed the 

efficiency of this technique (Table 5). In one study, the authors evaluated 

propolis extracts from Anatolian producers obtained through PLE. Several 

parameters were assessed during the process, and the authors concluded that 

the most favorable PLE conditions were 40 °C, 1500 psi, with a solvent mixture 

of ethanol, water, and HCl (70:25:5, v/v/v), containing 0.1% tert-

butylhydroquinone, and using three extraction cycles with a cell capacity of 11 

mL. The compounds gallocatechin, catechin, epicatechin gallate, caffeic acid, 

chlorogenic acid, and myricetin were identified in all samples [77]. 

 

4.4 REVERSE MICELLE EXTRACTION 

The use of reverse micelles has advanced significantly in recent 

decades due to their versatile applications. Reverse micelles are formed by 

aggregates of surfactants arranged in an inverted orientation compared to a 

typical micelle. In a reverse micelle, the hydrophilic "head" of the surfactant 

comes into contact with the water inside the micelle core, while the hydrophobic 

"tail" interacts with the surrounding solvent. When water droplets are typically 

added to a reverse micelle solution, the surfactants arrange themselves into a 

spherical shape, creating a water reservoir within the sphere [78–80]. 
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In reverse micelle extraction, the hydrophobic chains of the surfactants 

face outward and interact with the organic solvent phase, while the hydrophilic 

core of the reverse micelle is used for solubilizing biomolecules such as 

proteins and metabolites. Essentially, reverse micelles create an aqueous 

microenvironment within a bulk organic solvent, which helps isolate the organic 

reactants and products of the proteins, keeping them in the organic phase 

[78,80]. The reverse micelle system shows great potential for the solubilization 

of various biomolecules between the organic and aqueous phases. Among its 

many applications, reverse micelle technology can be used for extracting fats, 

proteins, and food enzymes, as well as for drug delivery systems. It can also 

serve as a nanocarrier for functional ingredients or nutraceuticals [80,81]. 

Furthermore, this technology offers several advantages, including low cost due 

to the potential recovery of surfactants and non-polar solvents. Reverse 

micelles can also protection molecules from denaturation because the aqueous 

microenvironments they form closely resemble physiological conditions [82]. 

Compared to traditional solvent-based methods, reverse micelles reduces 

solvent consumption and the need for energy-intensive downstream purification 

steps, thereby lowering the overall environmental footprint. Additionally, the 

ability to use biocompatible and biodegradable surfactants enhances the eco-

friendliness of the process [80,81]. 

No studies were found in the literature using the reverse micelle method 

to obtain propolis extracts, suggesting that this extraction methodology could be 

explored in future research. 

 

4.5 ENZYME EXTRACTION 

Enzyme extraction is a viable alternative to conventional organic solvent 

extraction processes and pressing technologies, as it is efficient, sustainable, 

and environmentally friendly [83,84]. Enzyme extraction leverages the unique 

characteristics of enzymes to perform reactions with regioselectivity and 

specificity. Additionally, enzymes can conduct reactions under mild conditions, 

preserving the biological potential of the compounds present in the raw material 

[85]. The basic principle of enzyme extraction involves breaking down the cell 
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wall through hydrolysis, with the enzyme acting as a catalyst under optimal 

conditions to release intracellular components. The enzyme binds to its active 

site on the cell wall, facilitating maximum interaction. This interaction causes a 

conformational change in the enzyme, which leads to the disruption of cell wall 

bonds and the subsequent release of intracellular constituents [86]. 

The operational conditions for enzyme extraction technology are crucial 

and include factors such as temperature, extraction time, medium pH, enzyme 

concentration, and particle size. The applications of this technology are diverse 

and particularly useful for extracting heat-sensitive molecules such as flavors, 

pigments, and oils. Various enzymes are employed, including cellulases, 

glucoamylases, xylanases, amylases, papain, pectinase, and hemicellulose 

[87]. Enzyme extraction offers several advantages, including lower energy 

consumption, a higher extraction rate, and simpler recovery of the obtained 

products compared to conventional extraction methods [85]. One of the primary 

sustainability advantages of enzyme-assisted extraction is its ability to reduce 

the consumption of organic solvents, which are typically associated with 

environmental pollution and health risks [86]. In many cases, water or milder, 

less toxic solvents can be used in combination with enzymes, further minimizing 

the environmental impact of the process [87]. Additionally, enzymes are 

biodegradable, non-toxic, and often derived from renewable sources, 

contributing to the overall sustainability of the extraction process [85].  

The literature lacks studies using enzymatic extraction to obtain propolis 

extracts. As previously explained, this technology could be an excellent 

alternative for obtaining extracts rich in phenolic compounds. 

 

4.6 COLD PRESSING EXTRACTION 

Most traditional extraction methods are time-consuming, expensive, and 

can destroy heat-sensitive compounds. This highlights the advantage of cold-

press extraction, a mechanical technique that relies on applying pressure to the 

raw material [88]. Cold pressing can be performed using a screw press (for 

continuous pressing) or a hydraulic press (for batch pressing). It is a simple 

technology that does not require much energy or substantial investment [89,90]. 
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It is considered an environmentally friendly technique because it requires no 

organic solvents. Additionally, extracts obtained through cold pressing generally 

have better physicochemical qualities compared to those obtained using other 

extraction methods [91]. One of the primary sustainability advantages of cold 

pressing extraction is that it does not require the use of chemical solvents, 

which can pose environmental risks and require expensive disposal processes 

[88]. By avoiding chemicals, cold pressing eliminates the need for post-

extraction solvent recovery and waste treatment, reducing the generation of 

hazardous waste and lowering the environmental footprint of the process [91]. 

The main disadvantage of this method is the low yield of oil recovered 

from the raw material, although this can be improved with pre-treatments. Cold 

pressing has been used to obtain oils from various raw materials, such as 

peanuts, almonds, walnuts, cashews, and Brazil nut [89]. No studies were found 

in the literature that used cold pressing extraction to obtain propolis extracts. It 

is worth noting that this technique has significant potential and could be a 

valuable subject for future research.  
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5. APPLICATION OF PROPOLIS EXTRACTS 
Knowledge about propolis has advanced in recent years. Its anti-

inflammatory, pharmacological, and antimicrobial properties, etc. [3] have led to 

the study of numerous possible applications for this natural substance. In terms 

of products, propolis has been studied in the production of capsules, lotions, 

mouthwashes, food preservatives, etc., and its application (Figure 9) stands out 

in various fields, including medicine, dentistry, pharmaceuticals, cosmetics, the 

food industry and agriculture [96–99]. 

 

 

Figure 9. Propolis extract applications. 

 
5.1 MEDICINE AND HEALTH 

Studies have linked propolis extract to significant health benefits, 

including anti-inflammatory, antifungal, antibacterial, antiviral, healing, and 

immunomodulatory [100–107]. It has been described in the literature as having 

the potential to activate the body's natural defenses. As a result, its use is 

increasing as its health benefits become more evident. Oral capsules containing 



 
 

47 
 

propolis, chewable tablets, drops, sprays, creams, mucoadhesive gels, 

lozenges, oral syrups, mouthwashes, and toothpaste are commercially available 

products [97]. 

In the medical field, as propolis compounds are known to reduce 

inflammation and impact platelet responses, their efficacy has been studied in 

the treatment of various infections and diseases, such as ulcers [108], 

respiratory tract infections [109,110], hypertension [111], and diabetes [112]. 

Propolis has been used to control inflammation in patients undergoing 

hemodialysis has been reported  [113–115]. Properties such as antithrombotic, 

antiplatelet, antioxidant, and others have also been reported [112]. 

In addition, there is growing interest in the dental field in using natural 

medicines, such as propolis, as alternative antimicrobial agents since there is 

an eminent concern about the global threat caused by antimicrobial resistance 

in individuals [116]. The antimicrobial efficacy of propolis against oral 

pathogenic microorganisms has been widely evaluated, with solid overall 

efficacy reported [117]. Propolis is a promising alternative antimicrobial agent, 

but it also has several biological activities [118] that make its use in the 

prevention or treatment of various dental diseases and oral conditions 

attractive. Laboratory and clinical studies in humans report various dental-

related applications, such as mouthwashes, toothpaste, and chewing gums 

containing natural propolis extract [97,119]. 

In addition to medical and dental applications, natural extracts are 

gaining ground in the pharmaceutical and cosmetics sectors. Studies report that 

propolis properties as an antiseptic, antifungal, bacteriostatic, astringent, 

anesthetic, anti-inflammatory, and antioxidant make the applications of this 

natural extract attractive as a cosmetic agent [120]. Its use as a cosmetic has 

been reported as beneficial when applied for hair health and growth [121], in 

healing skin wounds and cell regeneration [122], in reducing acne inflammation, 

and in sun protection [123,124]. 
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5.2 AGRICULTURE AND THE ENVIRONMENT 

As in medicine and pharmacology, research into the use of bioactive 

natural compounds and sustainable alternatives for agricultural pest control is 

increasing [125]. Natural extracts such as propolis, known for their therapeutic 

effects, are already used as pesticides, stimulants, and agricultural growth 

promoters. When used, they have no significant adverse impact on health and 

the environment [121–123]. The use of propolis in agriculture is still recent. Still, 

studies show the effectiveness of nanomaterials with propolis extract when 

used as an agricultural defense against some types of bacteria, fungi, and 

phytopathogenic diseases [126,127]. 

As demonstrated by research, this extract has been utilised as an 

herbicide against weeds and as an insecticide, proving effective against certain 

species of insects [128]. Its beneficial use in the post-harvest preservation of 

fruits and vegetables has been reported, with inactive biofilms resulting in 

greater utilisation of freshly harvested food [126,128]. 

Research has indicated the efficacy of employing aqueous propolis 

extract in preserving and protecting pine wood against fungi that cause rot 

(Coniophora puteana), with the application of the extract also resulting in a 

reduction in wood mass loss [129]. Furthermore, Corciovă et al. [130] 

demonstrated in their study that the synthesis of silver nanoparticles enhanced 

the antioxidant potential of propolis, and also reported positive effects of AgNPs 

coated with propolis in the photocatalytic process of malachite green dye under 

solar radiation. 

 

5.3 FOOD AND BEVERAGE 

 

Growing consumer interest in minimally processed foods without the 

addition of synthetic additives has led the food industry to adopt innovative 

approaches to food processing. These include using natural compounds as 

colorants, flavorings, and preservatives in foods because of their antioxidant 

properties [131,132]. These compounds are found in plants, edible vegetables, 

herbs, fruits, and spices [132]. 
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Due to the wide range of properties and safety of using propolis as a 

natural extract, its applications in the food industry are varied and make this 

extract an excellent natural food preservative that, like synthetic preservatives, 

its application aims to extend the shelf life and guarantee the safety of food [98]. 

Propolis extract can be applied directly to the food by dipping or adding to the 

composition, together with polymer-based coatings such as biofilms, or even 

incorporated into bio-packaging for food [133]. In all cases, the goal is to reduce 

pathogens and ensure safe food preservation. A reduction in the number of 

bacteria, yeasts, and fungi, such as Staphylococcus aureus and Listeria, was 

achieved in diverse types of foods, such as meat and fish, milk, fruit juices, 

fruits, and vegetables, when propolis extract was used [99]. Mahdavi-Roshan et 

al.  [134] added propolis extract to chicken breast marinade at different 

concentrations and studied the total yeast and mold counts, textural 

parameters, and sensory aspects under adequate refrigeration. They found a 

reduction in the microbial growth rate (Staphylococcus aureus and Escherichia 

coli) as the concentration of extract in the samples increased, and samples 

containing the extract showed less change in the quality parameters of texture 

and odor over the storage time. A study also showed a reduction in the 

deterioration of ground beef when ethanolic extract of propolis was added at 

different concentrations (3 to 7%) [135]. 

Chua et al. [136] added aqueous propolis extract to prepare jaboticaba 

juice and studied its degradation during storage at a controlled temperature. 

They demonstrated that the extract's performance was comparable to the 

commonly used chemical preservative, sodium benzoate, in preserving the 

quality of jaboticaba juice. In addition to the direct use of propolis extract in food 

products, studies show its application in coatings and packaging. Ezazi et al. 

[133] demonstrated that they developed an edible coating with chitosan and 

propolis extract in the formulation for coating fresh eggs. They found that in the 

eggs that received the optimized formulation, there was no detection of S. 

enteritidis on the shell and in the egg's contents, and there was high 

antibacterial activity against Salmonella enteritidis.  
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5.4 SYNTHESIS OF NANOPARTICLES 

 

Incorporating natural extracts into formulations can be technologically 

challenging, and the desired effects of using these compounds can be altered 

during formulation processing. This challenge also applies to propolis 

applications. In addition to the potential degradation of its active ingredients, 

there are factors such as its low solubility in water and sensory characteristics 

such as a strong odor and taste.  

As a result, creative technological solutions have been applied to 

overcome these challenges, such as the development of biofilms [137], 

microparticles, and nanoparticles [138], among others. Nanoparticles can be 

based on polymers, carbon, lipids, ceramics, or metals. Metallic nanoparticles 

can be made of silver, gold, copper, titanium, and other metals. AgNPs are one 

of the most capable due to good catalytic and conductive phenomena, which 

have proven to be particularly useful in photochemistry, biomedicine, and 

agriculture. In addition to their remarkable antimicrobial, antiviral, and 

biocompatible properties [138–140]. 

The synthesis of AgNPs can be chemical, physical, or green. The 

biosynthesis of green synthesis of AgNPs was developed using natural extracts 

as reducing and stabilizing agents [140]. Hernández-Morales et al. [141] report 

the development of green synthesis of silver particles using natural extract of 

dark and light chia seeds as a reducing and stabilizing agent. In their study, in 

addition to determining the optimal conditions for the formulation of the 

nanoparticles, they also observed the antimicrobial activities, which were found 

to be high against E. coli and S. aureus. 

A plethora of studies have been conducted in various domains to 

explore the green synthesis of silver nanoparticles doped with propolis, their 

applications, and the outcomes observed. Islam et al. [142] have documented 

how the properties of AgNPs doped with propolis have been found to facilitate 

the wound healing process in animal models. Additionally, there are reports of 

the efficacious utilization of occlusive dressings comprising silver nanoparticles 

and propolis [143]. In the domains of food and environment, AgNPs doped with 
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propolis extract have been the focus of research as edible coatings and 

insecticides [144–146]. 

 

6. SILVER NANOPARTICLE SYNTHESIS TECHNIQUES 
 

6.1 CHEMICAL REDUCTION METHOD 

 

The chemical reduction method is one of the most widely used 

techniques for synthesizing AgNPs due to its simplicity, efficiency, and ability to 

produce nanoparticles with controlled size and shape. In this process, a silver 

salt, typically silver nitrate (AgNO3), is reduced by a chemical reducing agent 

such as sodium borohydride (NaBH4), hydrazine, or ascorbic acid, resulting in 

the formation of metallic AgNPs. Stabilizing agents, like polyvinylpyrrolidone 

(PVP) or citrate, are often added to prevent aggregation and maintain 

nanoparticle stability. This method allows for fine-tuning of nanoparticle 

properties by adjusting the concentration of the reducing and stabilizing agents, 

reaction temperature, and pH. The versatility and effectiveness of the chemical 

reduction method make it a preferred choice for producing AgNPs for various 

applications, including medicine, electronics, and catalysis. 

Different compounds have been used as reduction agents in the 

literature. Khan et al. [147] synthesized AgNPs using aniline as a reducing and 

adsorbing agent in the presence of CT. UV-vis spectroscopy confirmed 

nanoparticle growth through a plasmon absorption band at 390–450 nm. 

Transmition Electron Microspy (TEM) analysis revealed well-dispersed, 

spherical nanoparticles ranging from 10 to 30 nm. The formation rate initially 

increased with aniline concentration but later declined, although aniline 

concentration had no significant impact on the nanoparticles' shape or size 

distribution. Wang et al. [148] produced AgNPs by reducing silver nitrate with 

glucose in a PVP-containing solution, with sodium hydroxide used to accelerate 

the reaction. Optimal stability was achieved with a NaOH to AgNO3 mole ratio of 

1.4 to 1.6. TEM analysis showed better particle dispersion with increasing PVP, 

with individual colloidal particles forming when the PVP to AgNO3 weight ratio 



 
 

52 
 

was at least 1.5. X-Ray Diffraction Analysis (XRD) confirmed that the particles 

were pure silver when the reductant was sufficient and the mixing speed was 

slow. Suriati et al. [149] AgNPs were uniformly synthesized using a simple 

chemical reduction method involving trisodium citrate as a reducing agent and 

ascorbic acid as a surfactant. Characterization revealed AgNPs with sizes 

ranging from 35–80 nm, averaging 50 nm. The study showed that higher 

trisodium citrate concentrations led to smaller, more uniform quasi-spherical 

nanoparticles while increasing ascorbic acid concentrations resulted in larger, 

slightly polygonal particles. 

One of the best applications of AgNPs is antibacterial activity. Lee et al.  

[150] synthesized AgNPs by chemically reducing silver nitrate with sodium 

borohydride in water, using SDS as a stabilizer. The AgNPs exhibited 

antibacterial activity against both Gram-positive S. aureus and Gram-negative 

E. coli, with effectiveness influenced by the degree of particle aggregation. Kim 

et al. [151] tested the antimicrobial activity of AgNPs against yeast, E. coli, and 

S. aureus, revealing inhibitory solid effects on yeast and E. coli even at low 

concentrations. In contrast, the effects on S. aureus were milder. 

Characterization confirmed stable nanoparticles with defined shape and size 

distribution. The study also suggested that the growth inhibition of 

microorganisms by AgNPs might be linked to free-radical generation, 

highlighting their potential use in medical devices and antimicrobial control 

systems. Finally, Thiruvengadam and Bansod [152] AgNPs were synthesized 

using NaBH4 and ethanol as a reductant and stabilizer. Analysis revealed an 

average particle size of 18.31 nm, with a crystalline morphology and face-

centered cubic structure. These nanoparticles demonstrated antibacterial 

activity, producing inhibition zones of 19 mm against Bacillus subtilis and 17 

mm against Pseudomonas aeruginosa, highlighting their potential in medical 

applications. 
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6.2 RADIATION REDUCTION METHOD 

 

The radiation reduction method is an advanced technique for synthesizing 

AgNPs by utilizing high-energy radiation to reduce silver ions to metallic silver [153]. 

This method involves irradiating a silver precursor solution with radiation sources such 

as gamma rays, X-rays, or ultraviolet (UV) light. The energy from the radiation induces 

the reduction of silver ions and promotes the nucleation and growth of nanoparticles 

[154]. This approach offers precise particle size and morphology control by adjusting 

radiation parameters and conditions. It also minimizes the use of chemical reductants, 

making the process environmentally friendly [153]. The resulting AgNPs are typically 

well-dispersed, uniform in size, and exhibit enhanced properties suitable for various 

applications in catalysis, medicine, and electronics [155]. 

A wide range of radiation sources has been used in the literature to synthesize 

AgNPs. For instance, Shaheen et al. [156] highlighted the potent antimicrobial and 

anticancer properties of differently shaped AgNPs produced using ionizing radiation, 

demonstrating significant antifungal, antibacterial, antiviral, and cytotoxic effects 

against various pathogens and cancer cell lines. Saion et al. [157] successfully 

synthesized size-controlled, monodispersed AgNPs using a radiolytic method, where 

particle size is inversely correlated with radiation dose due to the dominance of 

nucleation over ion association. The resulting nanoparticles displayed sharp absorption 

spectra, with quantum physics calculations suggesting their absorption behavior may be 

linked to intra-band excitations of conduction electrons. Kang et al. [158] used e-beam 

treatment to obtain AgNPs, finding that lower e-beam energy produced smaller 

nanoparticles, while higher beam current and absorbed dose led to agglomeration. The 

dispersing agents like PVA effectively controlled particle size and uniformity, making 

this e-beam method ideal for applications in electronics, catalysts, and photonics due to 

its high productivity, chemical-free process, and eco-friendly nature. 

 

6.3 PRECIPITATION METHOD 

 

The precipitation method is widely used for the synthesis of AgNPs due 

to its simplicity, efficiency, and scalability [159]. In this process, silver ions (Ag+) 
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are reduced to form solid AgNPs, precipitating out of the solution. The method 

typically involves using a reducing agent, such as hydrazine or sodium 

borohydride, to convert Ag+ into AgNPs (Ag0). Various stabilizing agents or 

surfactants can be added to control the nanoparticles' size, shape, and 

dispersion, preventing them from agglomerating [160]. The precipitation method 

produces AgNPs with uniform morphology and size distribution, making it a 

valuable approach for applications in analysis, electronics, and medicine [161]. 

Dasaradhudu and Srinivasan [162] prepared Ag-NPs using the coprecipitation 

method with AgNO3 and trisodium citrate, resulting in nanoparticles with an 

average size of approximately 5.5 nm. The Ag-NPs have a zeta potential of -

44.6 mV, demonstrating high stability and mobility. These properties suggest 

that the synthesized Ag-NPs are suitable for applications in cancer treatments, 

including brain and breast cancer. Chou et al. [163] used continuous 

precipitation of AgNPs at room temperature using sodium borohydride as the 

reducing agent. The nanoparticles varied in size from 13 to 130 nm. Size control 

was effectively managed through the PVP/AgNO3 weight ratios ranging from 

0.05 to 1.5. Sobhani-Nasab et al. [160] utilized a precipitation method to 

synthesize AgO nanostructures from silver nitrate in aqueous solution. The AgO 

nanostructures exhibited ferromagnetic behavior, as shown by the hysteresis 

loop at room temperature. Additionally, the photocatalytic properties of the AgO 

nanoparticles were evaluated through the degradation of rhodamine-B under 

visible light. 

 

6.4 MICROEMULSION METHOD 

Microemulsion synthesis is an innovative and adaptable method for 

producing AgNPs with precise control over their size and morphology. This 

technique creates a microemulsion, a thermodynamically stable mixture of 

water, oil, and surfactants [164]. Silver ions are reduced to form nanoparticles 

within this microemulsion, with surfactants stabilizing the particles to prevent 

aggregation. The microemulsion's unique environment facilitates uniform 

nucleation and growth, resulting in highly monodisperse and well-defined 

AgNPs [165]. This method is particularly beneficial for catalysis, medicine, and 
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electronics application where high-quality, consistently sized nanoparticles are 

crucial [166].  

The most common microemulsion technique for AgNP synthesis is oil-

in-water based. Rivera-Rangel et al. [167] developed a green synthesis 

approach using a low-toxicity microemulsion system with castor oil and 

Geranium leaf extract, producing AgNPs ranging from 25 to 150 nm. This 

sustainable method has potential applications for other metals. Zhang et al. 

[168] used AgNO3 and hydrazine hydrate in separate microemulsions with 

dodecane and AOT, finding that increasing AgNO3 concentration accelerated 

nanoparticle growth. At the same time, a higher water-to-surfactant ratio led to 

larger particles and broader size distributions. These nanoparticles were 

spherical, stable, and low toxicity, suitable for direct antibacterial applications.  

A few authors had approached a different way to produce AgNPs using 

the reverse microemulsion technique. Nourafkan and Alamdari [169] explored 

the reverse microemulsion technique, using AgNO3 and hydrazine to synthesize 

spherical AgNPs with an average size of 7.1 nm. Surfactant hydrophile-lipophile 

balance and molecular structure significantly influenced nanoparticle 

morphology and size. Wani et al. [170] investigated inverse microemulsions with 

surfactants CTAB, Tergitol, and Triton X-100, producing nanoparticles in 

various shapes (spheres, cubes, discs) and sizes (8 to 40 nm) with distinct 

surface plasmon resonance peaks and excellent antimicrobial activity. 

Recent advancements include the use of ionic liquid microemulsions. 

Althobaiti et al. [171] synthesized extremely small, monodispersed AgNPs using 

benzyl alkyl imidazolium ionic liquids (BAIILs), demonstrating minimal 

agglomeration and potent antibacterial activity. Li et al. [172] developed a 

method for continuous, controllable AgNP synthesis using quaternary ionic 

liquid microemulsions, with sizes ranging from 2 to 13 nm, tunable by adjusting 

synthesis conditions. Patil et al. [173] introduced a one-phase method using 1-

(dodecyl) 2 amino-pyridinium bromide, producing uniform, monodispersed 

crystalline AgNPs with significant antibacterial effects. 
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6.5 LASER-ASSISTED SYNTHESIS METHOD 

 

Laser-assisted synthesis of AgNPs is an advanced technique that 

leverages the precision and energy of lasers to produce high-quality 

nanoparticles [174]. This method involves irradiating a silver precursor or target 

material with a laser, inducing nanoparticle formation through a combination of 

photothermal and photochemical effects [175]. The controlled energy input from 

the laser allows for precise manipulation of particle size, shape, and distribution, 

resulting in well-defined and uniform nanoparticles. This technique offers 

advantages such as high purity, reduced chemical waste, and the ability to tune 

nanoparticle properties for specific applications [176]. Laser-assisted synthesis 

is particularly valuable in electronics, catalysis, and biomedical fields, where 

high-performance AgNPs are required [177]. 

Due to the wide applications of laser-assisted synthesis of AgNPs, the 

literature is rich with diverse methods and applications of these nanoparticles. 

Ognjanovic et al. [177] utilized pulsed laser ablation in liquid to prepare AgNPs 

from a pure silver plate iN-dimethylformamide, which were then used to modify 

screen-printed carbon electrodes (SPCE). The modified SPCE was employed 

for gallic acid detection, demonstrating practical application in measuring gallic 

acid in biological fluids and estimating antioxidant capacity for food quality. In 

another study, Yu et al. [176] produced a hybrid material for optical limiting by 

combining reduced graphene oxide functionalized with AgNPs using 

femtosecond laser ablation in liquids. This hybrid material showed enhanced 

nonlinear absorption and excellent optical limiting properties with a low 

activation threshold of about 0.38 J cm-2. It highlights its potential for solid-state 

optical limiters and practical applications in the optical limiting field. 

A recent trend in nanoparticle synthesis involves combining laser-

assisted processes with supercritical deposition techniques. Arakcheev et al. 

[174,175] synthesized AgNPs in the pores of silica aerogel using supercritical 

deposition. The sample was impregnated with the precursor Ag(hfac)COD 

dissolved in supercritical carbon dioxide, and conversion was achieved via laser 

irradiation at 405 nm, matching the plasmon band of AgNPs. The concentration 
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of AgNPs could be adjusted by the exposure time, and the method was 

effective both under supercritical conditions and after depressurization. In 

another study, AgNPs were synthesized in the pores of Vycor glass, and the 

influence of irradiation wavelength on nanoparticle properties was analyzed. 

The synthesis was performed using laser irradiation at three different 

wavelengths: two resonant wavelengths matching the plasmon bands of 

spherical and elongated AgNPs, and one off-resonant wavelength red-shifted 

from the former two. The findings revealed that the irradiation wavelength 

significantly affects both the synthesis rate and the homogeneity of the AgNP 

ensemble, with resonance wavelengths increasing the mass fraction of non-

spherical particles. 

 

6.6 ELECTRODEPOSITION METHOD 

 

Electrodeposition synthesis is a highly effective technique for producing 

AgNPs with precise control over their size, shape, and distribution. This method 

involves reducing silver ions onto a conductive substrate using an electric 

current [178]. By adjusting parameters such as voltage, current density, 

electrolyte composition, and deposition time, researchers can fine-tune the 

properties of the resulting nanoparticles. Electrodeposition offers simplicity, 

cost-effectiveness, and the ability to produce uniform and well-dispersed 

nanoparticles [179]. This method is particularly suitable for electronics, 

catalysis, and biomedical applications because it can generate high-purity 

AgNPs with excellent functional properties [180]. 

In antibacterial and biomedical applications, electrodeposition-

synthesized AgNPs have shown promising results. For example, Mayouf et al. 

[180] presented a rapid double-pulse electrodeposition method for AgNPs on a 

thin polypyrrole film, enhancing electrical conductivity and antibacterial activity. 

The resulting AgNPs demonstrated uniform size and distribution, achieving a 

100% bacterial kill rate against E. coli and 99.99% against S. aureus. Similarly, 

Singaravelan and Alwar [179] developed a rapid electrochemical technique for 

synthesizing silver nano dendrites, which exhibited significant particle 
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aggregation and exceptional antibacterial activity against multidrug-resistant 

strains, including S. aureus and E. coli, particularly in combination with 

Streptomycin. 

Other studies have explored different applications of electrodeposition-

synthesized AgNPs, such as improving materials' mechanical and structural 

properties. Pan et al. [181] introduced carboxylated chitosan for synthesizing 

AgNPs and creating AgNPs/carboxylated chitosan nanocomposite films. The 

carboxylated chitosan acted as both a green reducing and stabilizing agent and 

formed the main component of the nanocomposite film, which was smooth, 

homogeneous, and detachable from the substrate. The films exhibited favorable 

antibacterial properties. Yin et al. [174] also developed a novel electrochemical 

method for synthesizing size-controlled spherical AgNPs using poly(N-

vinylpyrrolidone) as a stabilizer. This method facilitated the production of 

monodispersed nanoparticles and enabled their use in creating silver-doped tin 

electrodeposited nanocomposite coatings. 

 

6.7 SOL-GEL METHOD 

 

Sol-gel synthesis is a versatile and efficient method for producing 

AgNPs with controlled size and morphology. This technique involves the 

transition of a system from a liquid "sol" into a solid "gel" phase, providing a low-

temperature process for the formation of nanoparticles. In the sol-gel process, 

silver precursors are typically hydrolyzed and condensed to form a gel-like 

network, which is then subjected to thermal treatment to produce AgNPs [182]. 

This method allows for precise control over the particle size, distribution, and 

surface properties, making it ideal for applications in catalysis, antimicrobial 

treatments, and electronics [183]. The sol-gel technique's adaptability and 

simplicity have made it a popular choice for synthesizing AgNPs with tailored 

characteristics [184]. 

Ahlawat et al. [185] worked with AgNPs that were successfully prepared 

using the sol–gel method by annealing the sample at 550 °C for 30 min. The 

presence of silver metal in the silica matrix was confirmed, with an average 
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nanoparticle size of 10.2 nm, an absorption peak around 375 nm, and a particle 

size distribution from 8 nm to 25 nm. FTIR spectroscopy identified different 

chemical groups in samples prepared at room temperature, 450 °C, and 550 °C, 

confirming that silver nanoparticle formation depends on the annealing 

temperature. 

Shahjahan et al. [182] describe a simple and convenient procedure for 

preparing crystalline AgNPs using the sol-gel technique with CH3COONa and 

hydrazine as reducing agents in water at room temperature. The nanoparticles, 

averaging 11 nm, show homogeneity, uniform size, and a regular granular 

shape without impurities. The study concluded that the synthesized particles 

were pure and suitable for large-scale production with applications in electronics 

and catalysis. 

Some other works in the literature have tested different applications of 

AgNPs synthesized by sol-gel with biomedical applications. Patil et al. [183] 

report the rapid one-pot synthesis of AgNPs at room temperature using 

hydrazine hydrate as the reducing agent and polyvinyl alcohol as the stabilizing 

agent. Characterization reveals spherical nanoparticles with diameters ranging 

from 10 to 60 nm, a surface plasmon resonance at 410 nm, and a face-centered 

cubic structure. The synthesized AgNPs demonstrated antimicrobial activity 

against B. cereus, E. coli, S. aureus, and P. vulgaris, indicating potential 

applications in biotechnology and biomedical science. Ahmed et al. [186] report 

the formation of new conjugates comprising single-wall nanotubes and multi-

wall nanotubes doped with silver-doped titanium dioxide, exhibiting outstanding 

antimicrobial and toxic properties. The SWNTs–TiO2/Ag and MWNTs–TiO2/Ag 

conjugates exhibited significant antibacterial effects against E. coli and S. 

aureus and selectively killed uterine cancer cells (~60-40%) while minimally 

affecting normal cells (~10%). 

 

6.8 GREEN SYNTHESIS METHOD 

 

The use of microorganisms as eco-friendly precursors for nanoparticle 

production, including silver and gold, has garnered significant interest [187]. 
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Bacteria and fungi are particularly important in reducing metal ions, aiding in the 

remediation of toxic metals [188]. Pseudomonas stutzeri, known for its silver 

resistance, accumulates intracellular silver crystals approximately 200 nm in 

diameter with specific composition and shape [189]. Bacterial synthesis is 

superior to fabricating eco-friendly and cost-effective AgNPs [190]. Optimized 

cultures of Bacillus sp. have demonstrated rapid and high-yield synthesis of 

AgNPs [190]. 

Solis-Sandi et al. (2023) [191] noted that AgNPs were biosynthesized 

using the supernatant and intracellular extract of Cupriavidus necator, Bacillus 

megaterium, and Bacillus subtilis. AgNPs showed particle sizes ranging from 

20.8 to 118.4 nm. This study concluded that bacterial species, temperature, pH, 

and the type of extract (supernatant or intracellular) significantly impact the 

biosynthesis process. The synthesis method is simple, environmentally friendly, 

and cost-effective, making it suitable for producing AgNPs for antibacterial 

applications. 

Research on prokaryotic synthesis of metallic NPs is extensive due to 

bacteria's abundance, adaptability to extreme conditions, cost-effectiveness, 

and controllable growth conditions [192]. However, fungi are preferred for 

metallic NP synthesis because they secrete more proteins, facilitating higher 

nanoparticle production and offer easier scale-up and downstream processes 

[193]. Çiğdem et al. (2024) [194] demonstrated that Chroococcus sp. cell 

extracts can reduce aqueous Ag+ ions to synthesize stable, non-toxic, cost-

effective, and environmentally benign AgNPs. Thirumurugan et al. (2024) [195] 

reported the extracellular synthesis of AgNPs by marine actinobacteria, 

specifically Streptomyces parvisporogenes KL3. The AgNPs showed a mean 

diameter of 23-27 nm and demonstrated broad-spectrum antibacterial activity, 

inhibiting E. coli, B. subtilis, and K. pneumoniae.  

The current trend in nanoparticle production emphasizes green 

synthesis using plant extracts, which serve as multifunctional agents for 

reducing and stabilizing nanoparticles, thereby promoting green chemistry 

principles [138]. This method is cost-effective compared to microbial isolation, 

as non-toxic plant extracts act as natural capping agents. The increasing 
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interest in 'green' methods for metal nanoparticle synthesis has led to 

successful trials with various plant extracts [196]. Plant-mediated AgNP 

synthesis is preferred due to its local availability, eco-friendliness, cost-

effectiveness, high yield, and rapid synthesis compared to microbial methods. 

Abada et al. [138] reviewed various AgNPs synthesis methods, highlighting 

plant-assisted synthesis as an emerging area in nanotechnology. Tesfaye et al. 

[197] noted the compounds like alcohols, aldehydes, phenols, and flavonoids 

oxidize during plant-mediated synthesis, reducing metal ions to nanoparticles. 

Melo et al. [198] revealed the essential thyme (Thymus vulgaris) oil can 

efficiently produce metal nanostructures through green methods, avoiding 

hazardous solvents and waste. Their study demonstrated that biosynthesized 

AgNPs, prepared at different pH levels (7, 8, 9, and 10), exhibited excellent 

physicochemical stability over 90 days at 6 °C and 25 °C. Characterization 

techniques, including UV–visible spectroscopy, TEM, and Dynamic Light 

Scattering (DLS), confirmed the formation of nanoparticles with an average 

diameter of 40 nm and a homogeneous size distribution with an average 

particle diameter of around 90 nm for all pH levels tested. The AgNPs showed 

high antibacterial activity against Escherichia coli and Staphylococcus aureus. 

Using rosemary essential oil, Sganzerla et al. [192] produced eco-

friendly nanocomposite films with AgNPs. The AgNPs, confirmed by UV–vis 

spectroscopy, TEM, SEM, and XRD, had a size below 50 nm and demonstrated 

strong antimicrobial activity. The nanocomposites, functionalized with 15, 30, 

and 50% AgNPs, showed enhanced mechanical properties, making them a 

sustainable material for biological applications. Maciel et al. [199] presented an 

environmentally friendly approach to synthesizing AgNPs using essential oils as 

natural reducing agents. Essential oils from oregano (Origanum vulgare), thyme 

(Thymus vulgaris), clove (Syzygium aromaticum L.), rosemary (Rosmarinus 

officinalis L.), and Poiretia latifolia were screened for their effectiveness in AgNP 

synthesis. Clove essential oil, containing 80% eugenol, produced the best 

results. UV–Vis spectrophotometry confirmed the formation of AgNPs, and 

further characterization using TEM and DLS showed predominantly spherical 

nanoparticles. Small-Angle X-ray Scattering (SAXS) provided detailed insights, 
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revealing particle sizes between 18.6 nm (AgNP-Eugenol) and 22.4 nm (AgNP-

Clove). The AgNPs exhibited significant antimicrobial activity against S. aureus 

at various concentrations (40–100 μL mL-1), with a Minimum Inhibitory 

Concentration of 40 μL mL-1, indicating strong bactericidal properties. This study 

highlights that AgNP-Clove possesses similar characteristics to AgNP-Eugenol, 

making it a cost-effective and reliable alternative for producing AgNPs, 

particularly for applications in food packaging. 

Recent studies on the green synthesis of AgNPs using various natural 

sources have highlighted their potential environmental and biomedical 

applications. Aloe vera-derived AgNPs demonstrated strong antimicrobial 

properties against Pseudomonas aeruginosa and Staphylococcus aureus, 

showcasing their ability to degrade organic pollutants and treat microbial 

infections [200]. A microalga Scenedesmus sp. Study produced a biomass-

AgNPs composite that effectively reduced the industrial pollutant p-nitrophenol 

and exhibited antimicrobial activity against multiple pathogens, making it 

suitable for industrial effluent treatment [201]. The phytochemical-rich extract of 

red seaweed Champia parvula was used to synthesize stable, bioactive AgNPs 

with significant antioxidant, antimicrobial, and anticancer properties [202]. 

Furthermore, Artemisia absinthium callus cultures treated with silver and copper 

nanoparticles synthesized from Moringa oleifera leaves exhibited enhanced 

biomass accumulation, increased production of antioxidative enzymes, and 

improved antioxidant activity [203]. These findings underscore the versatility 

and effectiveness of using natural sources for the green synthesis of AgNPs, 

offering sustainable alternatives for environmental remediation and biomedical 

applications. 

The critical factors for the green synthesis of AgNPs include selecting 

suitable solvents, reducing agents, and non-toxic materials. AgNPs have shown 

excellent antibacterial performance and synergistic effects when combined with 

antibiotics [204,205]. Singh et al. [206] successfully extracted promising AgNPs 

from the propolis of Apis mellifera, which is rich in antioxidant compounds and 

polyphenolics, making it useful for drug delivery, free radical scavenging, and 

cytoprotective and genoprotective activities. 
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Karimitabar et al. [207] prepared a hydroalcoholic propolis extract to 

synthesize AgNPs through green methods. These nanoparticles exhibited low 

toxicity to cells and effectively inhibited the growth of various bacteria, including 

both Gram-positive and Gram-negative strains. 

Recent studies have expanded AgNP synthesis using various plant 

extracts, such as Maclura pomifera, Picea, Ginkgo biloba needles [208], 

Thymus vulgaris, Ficus pomifera wall, Strobilanthes flaccidifolius nees, 

Crassocephalum crepidioides [209], Moringa peregrina [210], Lallemantia 

royleana [211], Punica granatum fruit peels [212], Salvia officinalis [213], and 

Eupatorium adenophorum leaf [214]. The use of plant extracts in green AgNP 

synthesis significantly enhances environmental and economic feasibility, as 

many plant extracts have effectively synthesized AgNPs with consistent sizes 

and diverse applications. Table 6 summarizes the methods presented, the 

characteristics of the process, and the products obtained. 
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7. CHARACTERIZATION OF SILVER NANOPARTICLES (AGNPS): METHODS 
AND EVALUATION TECHNIQUES 

 

The characterization of AgNPs is crucial for determining their physical, chemical, 

and morphological properties, which directly influence their behavior in various applications. 

This section will discuss the main methods and techniques used to characterize AgNPs, 

considering their morphological properties, particle size, chemical composition, crystal 

structure, optical and surface properties, and colloidal stability. 

 

7.1 MORPHOLOGY, PARTICLE SIZE, AND DISTRIBUTION 

 

The morphology of AgNPs can be evaluated using microscopy techniques, such as 

TEM and Scanning Electron Microscopy (SEM). TEM are widely used to provide high-

resolution images, allowing for the observation of the shape and size of nanoparticles on a 

nanometric scale. Additionally, this technique can obtain detailed information about the 

internal structure of the nanoparticles. On the other hand, SEM is used to obtain high-

resolution images of the surfaces of nanoparticles, enabling a three-dimensional analysis of 

their morphology. 

SEM analysis is based on the interaction between the electron beam and the sample, 

producing particles and radiation that can be used to create a magnified image of the sample. 

The most important interactions between the primary electron beam and the solid species for 

the study of materials are those that provide information about the topography of the surface. 

This information is obtained by means of low-energy electrons (secondary or backscattering 

electrons), which provide photographic contrast and allow the study of the shallow relief of 

the surface. Among the possible applications of scanning electron microscopy in the field of 

catalysis is the study of morphology  [225,226]. 

Determining the size of AgNPs and their size distribution is crucial for understanding 

their properties and behavior in practical applications. DLS is one of the most widely used for 

this purpose, allowing for the determination of the average particle size and evaluation of the 

particle size distribution in a suspension. This technology is essential because the uniformity 

of the nanoparticle size affects their optical and catalytic properties. In addition, image 

analysis using software that processes data obtained from TEM or SEM allows for a more 

precise distribution of nanoparticle sizes [227,228]. 
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7.2 CHEMICAL COMPOSITION 

 

The chemical composition of silver nanoparticles can be determined using 

analytical techniques such as MEV with energy-dispersive X-ray spectroscopy (EDX) 

and X-ray photoelectron spectroscopy (XPS). Often performed with TEM or SEM, 

EDX is used to identify the elements present in the nanoparticles, providing a semi-

quantitative analysis of the composition. XPS is used to provide information about the 

chemical elements present on the surface of the nanoparticles and their oxidation 

states, providing an essential technique for the chemical characterization of surfaces 

[197]. 

 

7.3 CRYSTALLINE STRUCTURE 

 

The crystalline structure of silver nanoparticles can be characterized by XRD 

and high-resolution transmission electron microscopy (HRTEM). X-rays are 

electromagnetic waves considered to be ionizing radiation. They are generated by 

elements that emit a certain number of photons, which are collimated and directed at 

the material to be characterized, which then diffracts them at a certain angle; these 

diffracted X-rays are detected and converted into signals. In the case of material 

identification, these signals are compared to the literature to confirm the presence of 

the desired phase and/or other phases. On the other hand, HRTEM provides detailed 

images of the atomic structure of the nanoparticles, enabling visualization of the 

crystalline orientation and identification of structural defects. These techniques are 

essential for understanding how the crystalline structure of silver nanoparticles 

affects their physical and chemical properties, such as thermal stability and catalytic 

reactivity [229]. 

 

7.4 OPTICAL PROPERTIES 

 

The optical properties of silver nanoparticles are distinctive, resulting from 

surface plasmon resonance phenomena. These properties can be evaluated through 

the use of UV-Vis spectroscopy and in the near-infrared region (FT-IR). 

Photoacoustic UV-Vis spectroscopy (PAS) is a method for obtaining optical 
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absorption spectra of solids, semi-solids, liquids, and gases. The technique is 

versatile in that it can analyze both optically opaque and transparent samples. The 

scattering of light by the sample, which represents a significant challenge in other 

optical spectroscopy techniques, does not present a substantial issue in photo 

acoustics, as only the light absorbed by the sample is converted into the desired 

signal. Conversely, in most instances, this technique does not necessitate the 

rigorous sample preparation. Moreover, as a non-destructive technique, the same 

sample can be monitored when subjected to various chemical, thermal, and physical 

treatments, among other factors. The use of photoacoustic absorption spectra 

facilitates the study of energy bands in a given element, as it allows for the 

assignment of the optical transitions involved.  

FT-IR enables the determination of molecular surface interactions. When 

subjected to a specific frequency within the infrared range, surface interactions 

absorb energy capable of inducing vibrations in chemical bonds. The capacity for this 

phenomenon varies depending on the type of chemical bond in question, with each 

bond exhibiting a distinct sensitivity to infrared radiation [230] [231]. 

 

7.5 COLLOIDAL STABILITY 

 

The colloidal stability of silver nanoparticles in solution can be evaluated 

using DLS spectroscopy and zeta potential analysis. As mentioned earlier, DLS is 

used to monitor changes in the size of nanoparticles over time, indicating their 

stability under different conditions. On the other hand, Zeta potential analysis 

provides information about the surface charge of the nanoparticles, which is an 

essential indicator of colloidal stability, as similar surface charges between particles 

can prevent aggregation [232]. Checking the behavior of the surface of materials in 

an aqueous environment allows conclusions to be drawn about the surface species. 

The determination of the zeta potential (ZP) is a simple analysis that allows to verify 

the tendency of the surface to acidity or basicity, indicating that for pH values above 

the pH (ZP), the surface of the material is negatively charged and, consequently, for 

values below the pH (ZP), it is positively charged [232,233].  

 

 



 
 

72 
 

 

8. APPLICATIONS OF SILVER NANOPARTICLES 
 

AgNPs are widely used due to their antimicrobial, catalytic, conductive, and 

photothermal properties, with significant applications in healthcare, electronics, water 

treatment, and cosmetics. Their unique characteristics enable the development of 

innovative solutions that have driven significant advancements in these fields. 

 

8.1 ANTIMICROBIAL AND ANTIFUNGAL PROPERTIES 

 

AgNPs are highly effective at inhibiting the growth of bacteria, fungi, and 

viruses due to the continuous release of silver ions, which bind to the cell 

membranes and DNA of microorganisms, inducing metabolic disruption and cell 

death. These properties make them essential in antibacterial coatings, textiles, and 

food packaging to prevent contamination by pathogenic agents [234]. 

 

8.2 CATALYST 

 

AgNPs are also important catalysts due to their high specific surface area and 

chemical activity. They are used in synthesizing organic compounds and gas purification 

processes, such as converting carbon monoxide to carbon dioxide in emission control 

systems. Additionally, they find applications in fuel cells, enhancing the efficiency of 

electrochemical reactions for clean energy generation [235]. 

 

8.3 SENSORS 

 

Due to their optical and electrical properties, AgNPs are widely used in sensors that 

detect ions and organic molecules with high sensitivity. These sensors are employed in the 

medical field for rapid diagnostics and environmental applications for pollutant monitoring. 

The interaction between light and the nanoparticles enhances optical signals, resulting in more 

precise and faster devices [236]. 
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8.4 ELECTRONIC APPLICATIONS 

 

In the field of electronics, AgNPs are used to manufacture printed circuits and 

touchscreen displays. Their excellent electrical conductivity and ability to be 

processed into thin films enable their application in flexible electronics and advanced 

memory devices. Additionally, AgNPs are being explored for the development of 

reusable masks with antimicrobial functions and real-time respiratory monitoring 

[225]. 

 

8.5 PHOTOTHERMAL THERAPY 

 

In medicine, AgNPs are being studied for use in photothermal therapies for cancer 

treatment. This technique involves irradiating nanoparticles with near-infrared light, 

generating localized heat that destroys tumor cells without harming adjacent healthy tissues. 

This approach shows promise in targeted therapies, offering new opportunities for treating 

complex diseases [237]. 

 

8.6 FILTERS AND WATER PURIFICATION 

 

AgNPs are incorporated into filters and water purification membranes due to 

their antimicrobial capacity, effectively eliminating pathogens such as bacteria and 

protozoa. They are widely used in water treatment systems and household filters, 

helping to improve water quality in various environmental contexts. 

The diverse applications of silver nanoparticles (AgNPs) demonstrate their 

technological and scientific importance across various sectors. By combining unique 

chemical and physical properties, AgNPs represent a promising source of innovation 

in fields such as health, environment, and electronics [238]. 

Table 7 summarizes the applications presented, as well as process 

descriptions and practical applications. 
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Table 7. Applications of silver nanoparticles. 

 

9. CONCLUSION 
 

Research on propolis and AgNPs has shown substantial advancements, particularly 

in their antimicrobial properties, wound healing potential, and drug delivery applications. 

Progress in extraction methods has enabled more efficient isolation of bioactive compounds 

from propolis, while improved synthesis techniques have enhanced the specific properties of 

AgNPs for targeted uses. The combination of these materials presents an exciting opportunity 

for developing more effective and sustainable biomedical solutions. 

Looking ahead, future research should focus on optimizing green extraction 

techniques to preserve the bioactivity of propolis while minimizing environmental impact. 

Additionally, the use of propolis as a natural stabilizer for AgNPs could enhance their 

biocompatibility, reduce toxicity, and improve their therapeutic effectiveness. Further efforts 

are needed to refine the scalability and reproducibility of nanoparticle synthesis, ensuring 

their reliable use in industrial applications. Investigating the potential of propolis-based 

AgNPs in areas such as medical device coatings, controlled drug release, and functional 

Application Description Practical Examples Reference 
Antimicrobial 

and 
Antifungal 
Properties 

AgNPs release silver ions that interact 
with cell membranes, inhibiting the 

growth of bacteria, fungi, and viruses. 

Wound dressings, 
antibacterial textiles, 

food packaging. 
[234] 

Catalyst 
Due to their high surface area and 

reactivity, they are used to accelerate 
chemical reactions and gas purification. 

Emission control, fuel 
cells, organic synthesis. [235] 

Sensors 
AgNPs amplify optical and electrical 
signals, increasing the accuracy of 

sensors. 

Medical sensors for 
rapid diagnostics and 

environmental 
monitoring of pollutants. 

[236] 

Electronic 
Applications 

The conductive properties of AgNPs 
enable their use in electronic devices 

and printed circuits. 

Touch screens, flexible 
electronics, masks with 

respiratory sensors. 
[225] 

Photothermal 
Therapy 

They emit localized heat under infrared 
irradiation, destroying target cells, such 

as tumor cells. 

Cancer therapies and 
treatments for other 
complex diseases. 

[237] 

Water Filters 
and 

Purification 

They act as antimicrobial agents in 
purification systems, eliminating 

pathogens. 

Household filters, water 
treatment systems, 

ultrafiltration 
membranes. 

[238] 
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biomaterials could significantly expand their utility in healthcare and beyond. Moreover, 

exploring the long-term stability and interactions of these nanoparticles in biological systems 

will be crucial for ensuring consistent, safe, and effective therapeutic outcomes. 

These findings have the potential to influence industry practices by offering 

sustainable, biocompatible alternatives to traditional materials used in antimicrobial 

treatments and drug delivery. The combination of propolis and AgNPs could drive innovation 

across healthcare, agriculture, and materials science. Regulatory frameworks may need to 

adapt to support the use of natural, eco-friendly materials like propolis, which could foster the 

development of green nanotechnologies and encourage policies that prioritize biocompatible, 

non-toxic nanomaterials. As such, these advancements could lead to more sustainable 

practices in manufacturing, particularly within the pharmaceutical and biotechnology 

industries. 

In conclusion, while the integration of propolis and AgNPs offers tremendous 

potential for improving medical treatments and industrial applications, continued 

interdisciplinary collaboration, optimization of synthesis methods, and regulatory support are 

essential to fully realizing their benefits. By focusing on green synthesis, environmental 

sustainability, and safety, propolis-based nanoparticle formulations could become 

foundational in future biomedical solutions, offering safer and more effective alternatives in 

medicine, biotechnology, and material science. 
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                                                                        CHAPTER III 
 
ENHANCED EXTRACTION OF BIOACTIVE COMPOUNDS FROM BROWN 
PROPOLIS: EMPLOYING PRESSURIZED LIQUID EXTRACTION IN SEMI-
CONTINUOUS FLOW-THROUGH SYSTEM 
 

ABSTRACT 
 

This study examined the influence of ethanol concentration (0–80%), 

temperature (60–120 °C), and pH (2–12) on the extraction efficiency of bioactive 

compounds from brown propolis using pressurized liquid extraction (PLE) in a semi-

continuous flow system. The findings demonstrated that the maximum total phenolic 

content (144.55 ± 8.73 mg GAE g-1) was attained at 90 °C and pH 7, while the 

optimal flavonoid yield (56.01 ± 3.37 mg CE g-1) was achieved at 120 °C. 

Furthermore, the highest sugar concentration (445.27 mg g-1) was achieved at 90 °C 

and pH 2, whereas acetic acid production peaked at 62.77 ± 3.44 mg g-1 under 90 °C 

and pH 10. Higher temperatures and more basic pH conditions promoted the 

formation of Maillard reaction products, influencing the colorimetric properties of the 

extracts, with lower luminosity (L*) values and increased chroma (C*). The 

antioxidant activity, evaluated by DPPH and FRAP assays, reached 304.82 ± 0.40 

and 385.37 ± 18.88 μmol TEAC g-1, respectively. These findings suggest that PLE 

can be optimized to selectively recover different bioactive compounds while 

minimizing degradation. In conclusion, the extraction conditions at 90 °C and pH 7 

were optimal for phenolic compound recovery, while higher temperatures (120 °C) 

and basic pH (12) maximized flavonoid extraction. The findings of this study 

demonstrate that PLE is a highly effective and sustainable method for extracting 

bioactive compounds from brown propolis, with significant potential applications in 

the pharmaceutical, food, and cosmetic industries. 

Keywords: Hydrolysis; Subcritical water; Organic acids; Antioxidant activity. 
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1 INTRODUCTION  
 

Propolis, a resinous substance collected by bees from plant exudates, is 

subsequently combined with salivary secretions and wax. This material plays a 

fundamental role in protecting the hive, acting as a natural antimicrobial agent and a 

physical barrier against predators and pathogens. Beyond its biological function, 

propolis has been the focus of extensive research due to its complex chemical 

composition, which includes flavonoids, phenolic compounds, terpenoids, and other 

biomolecules with bioactive properties. These characteristics give propolis significant 

value for various applications, particularly in the pharmaceutical, cosmetic, and food 

industries [1–5].  

Among the different types of propolis found worldwide, brown propolis stands 

out due to its rich chemical composition and widespread availability. Recent studies 

have highlighted the complex phytochemical profile of this variety, with a high 

concentration of antioxidant, antimicrobial, and anti-inflammatory compounds. The 

presence of these bioactive compounds gives brown propolis promising therapeutic 

properties, justifying the growing interest in its scientific and industrial exploration. 

However, for these bioactive compounds to be effectively utilized, it is essential to 

develop efficient extraction methods capable of preserving their properties and 

optimizing their use [5–10].  

The extraction of bioactive compounds from propolis involves various 

techniques, each with its particularities. Conventional methods, such as maceration, 

percolation, and extraction with organic solvents, are widely used but present 

significant limitations. The main challenges associated with these methods include 

excessive use of chemical solvents, long extraction times, low selectivity, and the risk 

of thermal degradation of sensitive compounds. Additionally, conventional extraction 

often results in complex mixtures containing impurities that may compromise the 

effectiveness of the obtained extracts. These difficulties have driven the search for 

innovative strategies that not only enhance process efficiency but also reduce 

environmental impact [10–14]. 

In this context, advanced extraction techniques, such as pressurized liquid 

extraction (PLE), have been explored as promising alternatives. PLE utilizes solvents 

under controlled high-pressure and temperature conditions, promoting the selective 
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extraction of bioactive compounds while reducing the need for large volumes of 

organic solvents. Compared to traditional approaches, this method offers several 

advantages, including higher yield, shorter processing time, and reduced degradation 

of target compounds. The application of PLE in obtaining secondary metabolites from 

plant matrices has been extensively studied, demonstrating superior efficiency in 

extracting flavonoids and phenolic compounds compared to conventional methods 

[14–18]. 

In addition to PLE, another relevant technological innovation is the use of 

semi-continuous flow systems in extraction processes. Unlike static methods, where 

the solvent remains in contact with the solid matrix for a fixed period, continuous flow 

systems allow for the constant circulation of the solvent, promoting more efficient and 

homogeneous extraction. This approach enables more precise control of process 

variables such as temperature, pressure, and flow rate, which can result in higher 

selectivity and better utilization of the target compounds. Furthermore, semi-

continuous flow systems facilitate industrial scalability, making the process more 

economically viable and environmentally sustainable [19,20]. 

The growing demand for natural and functional products reinforces the need to 

improve extraction techniques, particularly concerning bioactive compounds with 

therapeutic potential. Flavonoids, for example, are widely recognized for their 

antioxidant properties, acting in the neutralization of free radicals and protection 

against oxidative damage in human cells. Similarly, phenolic compounds have 

demonstrated significant antimicrobial activity, being used in food preservation and 

pharmaceutical formulations. The efficiency with which these compounds can be 

extracted from brown propolis directly impacts their application in final products, 

highlighting the importance of innovative methods to ensure their stability and 

bioavailability [21,22].  

Another crucial aspect to consider in extracting bioactive compounds from 

brown propolis is the sustainability of the process, as traditional extraction methods 

often generate chemical waste and require significant amounts of energy and 

solvents. The adoption of more sustainable approaches, such as PLE combined with 

semi-continuous flow systems, represents a significant advancement in this regard. 

Reducing organic solvent consumption and optimizing process yield, promoted by 

these technologies, contribute to minimizing the environmental impact associated 
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with the production of plant extracts. Additionally, the development of more efficient 

processes can result in lower production costs, making propolis-derived products 

more accessible and competitive in the market [23–26].  

In this context, the present study aims to investigate the optimized extraction 

of bioactive compounds from brown propolis using pressurized liquid extraction (PLE) 

in a semi-continuous flow system. The choice of this approach is based on the need 

to optimize process efficiency, ensuring a high yield of bioactive compounds without 

compromising their chemical integrity. Moreover, this study seeks to contribute to 

technological innovation in the field of secondary metabolite extraction, exploring 

strategies that can be applied on an industrial scale and meet sustainability 

requirements.   

The research presented in this article not only expands knowledge about the 

bioactive compounds of brown propolis but also proposes a more efficient extraction 

model aligned with the needs of modern industry. The expected results include a 

detailed characterization of the obtained compounds, an evaluation of the efficiency 

of the proposed technique, and a comparative analysis with traditional methods. 

Thus, this study aims to contribute to the development of more sustainable extraction 

processes, providing insights for the industrial application of brown propolis extracts 

in different sectors.   

Beyond the direct impacts on the pharmaceutical, food, and cosmetic 

industries, this work may also have significant implications for environmental science. 

The reduction in the use of organic solvents and the optimization of extraction yields 

align with the principles of green chemistry, promoting more responsible alternatives 

from an ecological perspective. By proposing an innovative method for obtaining 

bioactive compounds, this study reinforces the importance of integrating science, 

technology, and sustainability in the development of new natural products.   

In conclusion, considering the growing importance of bioactive compounds in health 

promotion and disease prevention, optimizing extraction processes is a crucial factor 

in advancing this field of research. The combination of advanced techniques, such as 

PLE and semi-continuous flow systems, represents a promising strategy to optimize 

the use of natural resources, ensuring greater efficiency and sustainability. 

Therefore, this study not only deepens the understanding of brown propolis but also 
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opens new perspectives for its large-scale application, benefiting both industry and 

society. 

 

2 MATERIALS AND METHODS  
 

2.1 RAW MATERIAL 

 

  The raw propolis was obtained from a producer in the northern region of the 

state of Paraná, Brazil. The samples were subjected to a drying process at 35 °C for 

24 hours in a forced ventilation oven (Lucadema, model LUCA-82/250, São Paulo, 

SP, Brazil). Thereafter, the samples were stored in a dark and dry environment until 

use. 

 

2.2  SEMI-CONTINUOUS HIGH PRESSURE HYDROTHERMAL PROCESS 

 

  The extractive process used was semi-continuous hydrothermal at high 

pressure (Figure 1). The reactor used for hydrolysis has a capacity of 110 mL and 

was equipped with a water pump capable of providing high pressure. Initially the 

water was heated in a preheated preheated followed by a heat exchanger and later 

inserted into the reactor. During the hydrolysis process, pressure and temperature 

were monitored with pressure gauges, which had a measurement range of 0 to 7,500 

psi and an accuracy of 0.1%, and K-type thermocouples. 

The parameters used were determined by previous studies [27,28]. The 

hydrothermal process was carried out at a pressure of 200 bar, at a flow rate of 5 

mL/min during a period of 30 minutes,6 where aliquots were collected every 5 

minutes. The ratio between the solvent and the feed (S/F) was 60 g of water per 

gram of propolis. The propolis hydrolysis process was carried out by means of a 

central composite design of three factors containing three levels: high (+1), medium 

(0) and low (−1). The variables studied were ethanol concentration (0 to 80%), 

temperature (60 to 120 ºC) and pH (2 to 12). Table 1 presents the sixteen (19) 

treatments performed. 
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Figure 1. Schematic diagram of the experimental apparatus for the semi-continuous subcritical water 

hydrolysis of raw propolis. Reproduced from Barroso et al. [29], with permission from Elsevier. 

*Label: W, water tank; P, high-pressure pump; V, block valves; P, manometer; T, thermocouples; R, 

subcritical water hydrolysis reactor; HE, heat exchanger; MV, micrometric valve; CV, collecting vessel. 

 
 
TABLE 1. EXPERIMENTAL CONDITIONS FOR PRESSURIZED LIQUID EXTRACTION OF BROWN 
PROPOLIS. 

 Treatments 
 Codified variables  Non-codified variables 

 X1  X2  X3 
 EtOH 

(%) 
 Temperature 

(ºC) 
 Ph 

 PLE - 1  -1  -1  -1  0  60  2 
 PLE – 2  -1  -1  +1  0  60  12 
 PLE – 3  -1  +1  -1  0  120  2 
 PLE – 4  -1  +1  +1  0  120  12 
 PLE – 5  +1  -1  -1  80  60  2 
 PLE – 6  +1  -1  +1  80  60  12 
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 PLE – 7  +1  +1  -1  80  120  2 
 PLE – 8  +1  +1  +1  80  120  12 
 PLE – 9  -1  0  0  0  90  7 
 PLE – 10  +1  0  0  80  90  7 
 PLE – 11  0  -1  0  40  60  7 
 PLE – 12  0  +1  0  40  120  7 
 PLE – 13  0  0  -1  40  90  2 
 PLE – 14  0  0  +1  40  90  12 
 PLE – 15  0  0  0  40  90  7 
 PLE – 16  0  0  0  40  90  7 

 

2.3 CHARACTERIZATION OF EXTRACTS AND HYDROLYSATES 

 

2.3.1  Color parameters  

 

The colorimetric parameters of the CIELab system (L* (luminosity), a* 

(red/green) and b* (blue/yellow)) were obtained through transmittance values in the 

range of 340 nm to 830 nm with the readings being performed every 5 nm in UV-Vis 

spectrophotomrto (Model UV-M51, Bell Photonics). The parameter Hº (hue angle) 

was calculated using the following formula:  

 

 
2.3.2 Total phenolic compounds 

 

The total phenolic content was quantified using an adapted Folin-Ciocalteu 

method [30]. In the procedure, 60 μL of the sample was mixed with 300 μL of Folin-

Ciocalteu reagent and 3 mL of distilled water. The resulting mixture was stirred, then 

allowed to sit in the dark for 3 minutes. Afterward, 0.9 mL of a 15% sodium carbonate 

solution and 1.74 mL of distilled water were added. The mixture was allowed to react 

for 2 hours, after which the absorbance was measured at 765 nm using a UV-Vis 

spectrophotometer (Model UV-M51, Bell Photonics). The phenolic content was 

determined by comparing the absorbance to a gallic acid standard curve, with 

concentrations ranging from 0 to 1000 μM. The final results were expressed in terms 

of milligrams of gallic acid per gram of propolis extract. 
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2.3.3 Total flavonoids compounds 

 

The total flavonoid content of the hydrolysates will be analyzed following the 

methodology outlined by Ozsoy et al. [31] with certain modifications. The absorbance 

will be measured at 510 nm using a UV–vis spectrophotometer. The total flavonoid 

content of the samples will be determined using rutin (RE) as a standard, and the 

analysis results will be expressed as milligrams of rutin equivalents per gram of the 

dried sample (mg RE g-1). 

 

2.3.4  Antioxidant activity by DPPH and FRAP assays 

 

The evaluation of antioxidant activity was performed in vitro by the DPPH and 

FRAP methods. To identify DPPH free radical inhibition, the method proposed by 

Brand-Williams was used [32]. 150 μL of the samples were mixed with 5850 μL of a 

DPPH solution (0.06 mmol/L). After 30 minutes, the absorbance was recorded at 515 

nm in a spectrophotometer (Hach, model DR 4000U, São Paulo, SP, Brazil). The 

standard used was the Trolox, with the standard curve expressed by the equation y = 

0.0006x + 0.5776, with R² = 0.9837. The results were expressed in μg of Trolox 

equivalent antioxidant capacity (TEAC) per gram of propolis (μg/g). The antioxidant 

activity was investigated through the ferric-reducing antioxidant power (FRAP) assay, 

according to the procedures of Benzie and Strain [33], with some adaptations. The 

reaction involved 100 μL of the sample, 100 μL of ferric chloride (3 mmol/L) and 1800 

μL of the TPTZ solution (2,4,6-Tris(2-pyridyl)-1,3,5-triazine). The samples were 

incubated at 37 °C for 30 minutes. Absorbance measurement was performed at 620 

nm using a spectrophotometer (Hach, model DR 4000U, São Paulo, SP, Brazil). The 

Trolox pattern was used, with the standard curve represented by the equation y = 

0.0015x + 0.0171, with R² = 0.9805. The results were expressed as μg of Trolox-

equivalent antioxidant capacity (TEAC) per gram of propolis (μg/g). 

 

2.3.5  Maillard reaction products 
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The potential formation of Maillard reaction products during the extraction and 

hydrolysis processes was investigated by measuring the absorbance at 294 nm, 

corresponding to the intermediate state, and at 420 nm, which represents the final 

stage of the products of this reaction.  

 

2.3.6 Sugar and Organic acids 

 

The analysis of sugars and organic acids was performed by means of high-

performance liquid chromatography (HPLC), using a refractive index detector (RID). 

The separation of the compounds was done using a Rezex column (Phenomenex, 

model ROA-Organic Acid H+ (8%), 8 μm, 300×7.8 mm, Torrance, CA, USA), with an 

isotropic flow of H2SO4 (5 mmol/L) at 60 °C, configured for 0.6 mL/min. The RID 

detector was set to a temperature of 40 °C.  Prior to the analysis, the extracts and 

hydrolysates were subjected to centrifugation at 10,000×g for 15 minutes and filtered 

with a 0.22 μm nylon filter. After this procedure, 10 μL of the sample was injected into 

the system and the analysis lasted 50 minutes. The concentrations of arabinose, 

cellobiose, xylose and citric acid were computed based on calibration curves for each 

corresponding standard. Results were reported as mg g −1 of dry propolis. 

 

2.3.7 Soluble proteins 

 

The soluble protein content was quantified according to the method proposed by 

Bradford [34]. 100 μL of the dilute protein sample, 1 mL of the Coomassie Brilliant 

Blue G-250 solution, dissolved in phosphoric acid, and finally 900 μL of deionized 

water were added. Then, the mixture was homogenized and allowed to rest for 5 

minutes at room temperature to allow the dye to bind to the proteins. After the 

incubation period, the absorbance of the solution was measured at 595 nm using a 

spectrophotometer. Protein concentration was determined by comparing absorbance 

with a standard curve obtained from BSA (bovine serum albumin) solutions at known 

concentrations, ranging from 0 to 1000 μg/mL.  

 

2.4 STATISTICAL ANALYSIS 
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The results obtained will undergo analysis of variance (ANOVA) to evaluate the 

statistically significant factors and interaction effects among variables. Significant 

differences will be determined using Tukey’s test (p ≤ 0.05), and the results will be 

obtained in triplicate for all assays. 

 
3 RESULTS AND DISCUSSION  

 
3.1 VISUAL APPEARANCE AND COLOR PARAMETERS  

 

The visual appearance of hydrolysates 1 and 14 is shown in Figure 2(a). In 

general, it can be seen that all treatments produced a hydrolysate with a brownish 

color (Figure 2(b)), indicating the possible presence of phenolic compounds and 

flavonoids. As the hydrolysis time progressed, it can be seen that in the samples with 

a more basic pH, the color of the hydrolysates changed to a darker brown. The 

brown color developed in the hydrolysates can be related to the products of the 

Maillard reaction, due to the caramelization of sugars and the degradation of amino 

acids.  

The colorimetric parameters (Table 2) confirm these visual observations. The 

luminosity (L*) values ranged from 70.49 ± 3.34 to 90.68 ± 4.20, with lower values 

associated with darker hydrolysates, especially at higher temperatures and basic pH 

conditions. The a* values, representing the red-green spectrum, varied between -

4.43 ± 0.54 and 10.26 ± 3.37, with higher values indicating a shift towards a more 

reddish hue, which was particularly noticeable in samples subjected to extreme 

extraction conditions. Similarly, the b* values, corresponding to the yellow-blue 

spectrum, ranged from 29.43 ± 1.40 to 61.36 ± 7.15, reinforcing the dominance of 

brownish tones in all samples. 

The chroma (C*) values followed a similar trend, with the highest intensity (62.80 ± 

9.31) observed under more severe extraction conditions, suggesting an increased 

presence of pigments and possibly degradation products. The hue angle (Hº) varied 

from -3.06 ± 0.12 to 1.87 ± 0.11, indicating subtle shifts in coloration that may be 

attributed to differences in chemical composition among hydrolysates. 
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Figure 2.  Hydrolysates obtained after pressurized liquid extraction of brown 

propolis: a) Visual appearance of treatments 1, and 14; b) Color kinetic profile of the 

brown propolis extracts. 

 

These findings highlight the influence of processing conditions on the visual 

and colorimetric properties of the extracts, reinforcing the importance of optimizing 

hydrolysis parameters to control both the aesthetic and compositional attributes of 

the final product.  
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3.2 TOTAL PHENOLIC COMPOUNDS  

 

The results obtained for the total phenyl compounds in the propolis extracts 

are shown in Figure 3 and Table 3. The values ranged from 58.71 ± 1.74 mg GAE g-

1 to 144.55 ± 8.73 mg GAE g-1, with the lowest result recorded for the PLE 7 

treatment (80% etOH - 120 ºC - pH 2) and the highest result for the PLE 9 treatment 

(0% etOH - 90 ºC - pH 7). These results are consistent with those documented in the 

extant literature, wherein a study employing 80% ethanolic extraction of brown 

propolis (1:25 m/v) yielded phenolic contents ranging from 48.5 to 238.9 mg GAE g-1 

in samples from diverse regions of South Korea. In addition, the study reported 

concentrations of phenolic compounds ranging from 126.8 ± 4.12 mg GAE g-1 in 

Brazilian propolis to 142.4 ± 3.61 mg GAE g-1 in Australian propolis, with Chinese 

propolis exhibiting a concentration of 132.1 ± 3.28 mg GAE g-1  [35]. Another study 

developed solutions of Lithuanian propolis with different solvents and concentrations, 

and the results ranged from 85.4 ± 1.65 mg GAE g-1 to 175.6 ± 1.89 mg GAE g-1 [36]. 

 
Figure 3. Kinetic profile of the accumulated bioactive compounds obtaining 

during the pressurized liquid extraction of brown propolis: a) total phenolic 

compounds; b) total flavonoids content; c) DPPH; d) FRAP; and e) soluble proteins.  
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The results of the present study may not be entirely consistent with those 

reported in the extant literature. Such discrepancies can be attributed to the influence 

of various factors, including extraction methods, temperature, and the choice of 

solvent. It is imperative to consider the geographical origin of the raw propolis 

samples, as numerous studies have indicated that this factor can also influence the 

composition of propolis [37]. 

An evaluation of the statistical modeling and optimization for total phenolic 

compounds reveals that all factors (EtOH%, temperature, and pH) have a statistically 

significant effect, as illustrated in Figure 4(a) (Pareto chart). Figure 5(a) shows that 

when evaluating the combined effects of ethanol concentration and pH, the amount 

of total phenolic compounds (TPC) produced is significantly higher. Specifically, a 

decrease in pH accompanied by an increase in EtOH concentration results in a 

higher amount of TPC. Conversely, the effect of EtOH concentration and temperature 

demonstrates a divergent pattern; it was observed that a combination of a higher 

temperature together with an increase in EtOH%, specifically 120 °C and 80% EtOH, 

produced the highest concentration of TPC. Finally, the effect of temperature and pH 

on TPC recovery exhibited a pattern analogous to that observed with EtOH 

concentration and pH: a decrease in pH and an increase in temperature resulted in a 

greater amount of TPC recovered.  

In consideration of the level of significance as determined by the analysis of 

variance (ANOVA) test, at a 5% level (see Table 4), the factors of ethanol 

percentage, temperature, and pH demonstrate a p-value less than 0.05, thereby 

indicating that there is no significant difference between them. The generation of 

response surface graphs (Figure 6(a)) further substantiates this finding, 

demonstrating the viability of recovering a quantity of TPC > 125 mg GAE g-1 at 

temperatures close to 100°C and concentrations above 20% EtOH, along with an 

acidic pH ≤ 2. 

Derivation of the equation (Eq. 1) and the coefficients of determination for the 

regression model adjusted for the variables in the second-order functions was also 

possible. This estimation of TPC was found to be satisfactory, with a model showing 

a good fit, reaching an R² value above 0.6. This indicates that the model can predict 

the amount of TPC that can be recovered in the PLE process of brown propolis. 
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Figure 6.  Response surface plots of the statistical analysis: a) 2D – level 

curve for total phenolic compounds; b) 2D – level curve for total flavonoid 

compounds; c) 2D – level curve for DPPH; and d) 2D – level curve for FRAP. 
 

3.3 TOTAL FLAVONOIDS COMPOUNDS  

 

Flavonoids are organic chemical compounds that contain polyphenols in their 

structure and are obtained from foods such as wine and honey. These natural 

compounds belong to the class of secondary metabolites and have therapeutic 

effects on health, acting as antioxidants, anti-inflammatory agents, antimutagenic 

agents, and demonstrating anticancer activity [38]. Due to their versatility, flavonoids 

are of great importance in the pharmaceutical, nutraceutical, medicinal, and cosmetic 

sectors [39].  

The results obtained for total flavonoids compounds in brown propolis extracts 

are presented in Table 3. The values ranged from 13.47 ± 0.54 mg CE g-1 to 56.01 ± 

a) b) 

c) d) 
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3.37 mg CE g-1, with the lowest result recorded for treatment PLE 11 (40% etOH - 60 

ºC - pH 7) and the highest result for treatment PLE 8 (80% etOH - 120 ºC - pH 12). 

These results are similar to those reported in the literature, where a quantity of 19.34 

mg CE g-1 was obtained from Anatolian propolis using 70% ethanolic extraction [40]. 

Can et al. [41], In another study using brown propolis from Romania, 95% ethanolic 

extraction (1:25 m/v) yielded phenolic contents ranging from 53.72 to 97.65 mg CE g-

1 in samples from different regions. Ultrasound extraction technology was also 

employed to extract compounds from brown propolis, using an 80% ethanolic 

solution, acetone, and ethyl acetate for 7 hours. The authors obtained 220.19 ± 0.26 

mg CE g-1 from the ethanolic extract, 269.74 ± 0.55 mg CE g-1 from the ethyl acetate 

extract, and 124.67 ± 0.54 mg CE g-1 from the acetone extract [42]. 

The results obtained in this experiment varied from those found in the 

literature. It is worth noting that these differences may be influenced by the extraction 

method and solvent used. Additionally, variations in geographic origins and the type 

of vegetation where the propolis was produced can be major contributing factors. 

Several studies suggest that the composition of propolis varies according to the 

available flora [37].  Therefore, the observed difference was expected, as the 

chemical composition of propolis undergoes significant changes depending on 

geographical location.  

When evaluating the statistical modeling and optimization for total flavonoid 

compounds, it can be seen in Figure 4 (b), which shows the Pareto chart, that all 

factors (EtOH%, temperature, pH) have a significant statistical effect. Figure 5 (b) 
illustrates that when assessing the combined effects of EtOH concentration and 

temperature, the amount of total flavonoid compounds (TFC) produced is significantly 

higher. Specifically, a temperature of 120 °C combined with an EtOH concentration of 

80% allows for the recovery of the highest concentration of TFC.  In contrast, when 

evaluating the effect of EtOH concentration and pH, the behavior differs; lowering the 

pH while increasing the EtOH concentration results in a greater amount of TFC. 

Finally, regarding the effect of temperature and pH, the same pattern is observed as 

with EtOH concentration and pH: by decreasing the pH and increasing the 

temperature, a greater amount of TFC can be recovered.  

Regarding the significance level by the ANOVA test, at a level of 5% (Table 4) 
the EtOH % and temperature factors present a value of p < 0.05, demonstrating that 
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there is no significant difference between the EtOH concentration and temperature, 

but when it comes to the pH factor the value of p > 0.05 and therefore it has a 

significant difference. Response surface graphs were generated (Figure 6 (b)), it is 

possible to visualize that it is possible to recover an amount of TFC > 40 mg CE g-1, 

at temperatures close to 120ºC and concentrations above 60% of EtOH, and with 

acidic pH < 2 and pH > 10. 

It was also possible to derive the equation (Eq. 2) and the coefficients of 

determination for the regression model adjusted for the variables in the second-order 

functions to estimate the TFC. The model demonstrates a good fit, achieving an R² 

value above 0.6, indicating that it satisfactorily predicts the amount of TFC that can 

be recovered in the PLE process of brown propolis. 

                                                      

 
 

3.4 SOLUBLE PROTEINS 

 

The soluble protein results obtained are shown in Table 3. The soluble protein 

content found in the hydrolysates ranged from 1.61 ± 0.26 mg g-1 to 5.01 ± 0.39 mg 

g-1. These results differ from those reported in the literature, where no significant 

values of soluble proteins were found in extracts obtained from propolis. The protein 

content of propolis may be attributed to the type of plant from which it is derived, as 

well as to the digestion and secretion processes carried out by the bees, given that 

the chemical composition of propolis varies according to geographical region and 

available flora [43–45]. 

 

3.2 3.5 ANTIOXIDANT ACTIVITY  

 

3.5.1 DPPH 
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In Table 3 and Figure 3, the results of the DPPH antioxidant activity of 

propolis extracts obtained through pressurized liquid extraction can be observed. The 

findings indicate that the DPPH antioxidant activity ranged from 54.66 ± 3.16 μmol 

TEAC g ¹ in the PLE 2 treatment (0% EtOH, 60 ºC, and pH 12) to 304.82 ± 0.40 μmol 

TEAC g-1 in the PLE 13 treatment (40 % EtOH, 90 ºC, and pH 2). 

In a study aimed at assessing the variability of propolis parameters from 

different apiaries in southeastern Mexico, the authors reported results ranging from 

200 to 2710 μmol TEAC g-1. In this study, the authors prepared extracts using 6 

grams of propolis, which were mixed with 20 mL of 96 % EtOH. The mixture was 

agitated for 12 days at 100 rpm, kept in the dark, and maintained at room 

temperature (25 ºC). The extracts were then evaporated under reduced pressure and 

subsequently rediluted in 10 mL of 96 % EtOH [46]. In another study evaluating the 

DPPH antioxidant activity of 31 propolis extracts from northern Spain, the authors 

reported an average value of 1,114.28 μmol TEAC g-1 for the extracts. These 

extracts were obtained by adding 600 mL of a 70% hydroalcoholic solution to 10 g of 

propolis, carried out in two stages of 24 hours at 20 °C, with 300 mL of the 

hydroalcoholic solution added during each stage [47].  

Extracts of brown propolis from Colombia were obtained using different 

techniques, including Soxhlet extraction, ultrasound-assisted extraction, and 

supercritical CO2 extraction. The authors reported DPPH results of 86.63 ± 0.42 μmol 

TEAC g-1 for Soxhlet extraction, 99.26 ± 0.34 μmol TEAC g-1 for ultrasound-assisted 

extraction, and 101.79 ± 0.38 μmol TEAC g-1 for supercritical CO2 extraction [18]. 

The results found in the literature vary significantly, with some values being similar to 

those obtained in this study. As previously mentioned, the geographic location and 

type of vegetation where propolis is produced greatly influence its characteristics. 

The Pareto chart for DPPH analysis is shown in Figure 4 (c), indicating that all 

the factors studied have a statistically significant influence on DPPH antioxidant 

activity. Figure 5 (c) illustrates the combined effects, demonstrating that a medium 

temperature (90 ºC) and an EtOH concentration of 80% produce extracts with higher 

DPPH antioxidant activities. Regarding the combination of pH and EtOH 

concentration, it can be concluded that lower pH (2) and an EtOH concentration 

between 60% and 70% result in greater DPPH antioxidant activity. For the 
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combination of temperature and pH, it is observed that a temperature range of 90 to 

110 ºC with an acidic pH (2) yields the highest antioxidant activities of brown propolis. 

The ANOVA test, conducted at a significance level of 5% (Table 4), 
demonstrated that none of the factors studied presented statistically significant 

differences, as the p-value was <0.05. In Figure 6 (c), the surface graphs of 

responses for DPPH antioxidant activity can be observed, showing that extracts with 

DPPH antioxidant activity greater than 300 μmol TEAC g-1 can be obtained at 

temperatures around 90 ºC, with EtOH concentrations above 60 %, and an acidic pH 

lower than 5. 

Equation (3) presents the optimized equation along with its coefficients of 

determination for the regression model adjusted for DPPH antioxidant activity. The 

results indicate that the model is well adjusted, with an (R2) value of 0.822, allowing 

for the prediction of the DPPH antioxidant capacity of the extract obtained from the 

pressurized liquid extraction (PLE) of brown propolis. 

 

                 

 
3.5.2 FRAP 

 

The results for the FRAP antioxidant activity of propolis extracts obtained 

through pressurized liquid extraction are presented in Table 3 and Figure 3. As 

shown, the DPPH antioxidant activity ranged from 238.4 ± 24.66 μmol TEAC g-1 in 

the PLE 1 treatment (0 % EtOH, 60 ºC, and pH 2) to 385.37 ± 18.88 μmol TEAC g-1 

in the PLE 8 treatment (80 % EtOH, 120 ºC, and pH 12). 

Propolis obtained from three regions of Iran was evaluated for its antioxidant 

activity. The ethanol extract was produced by cutting the propolis into very small 

pieces and adding 25 mL of 95 % ethanol, with continuous stirring for 24 hours. The 

authors obtained extracts that exhibited FRAP antioxidant activity ranging from 

125.25 to 3381.64 μmol mL at propolis concentrations of 100 and 2000 μg mL-1 [48]. 

Another study evaluated the FRAP antioxidant activity of 19 samples from Turkey. 

The extracts were prepared by weighing one gram of propolis and extracting it with 
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10 mL of an 80 % EtOH solution, using a sonicator for 45 minutes. The results 

ranged from 62.3 to 1,396 μmol TEAC g-1 [49]. 

As with the DPPH antioxidant activity, the FRAP antioxidant activity is 

statistically influenced by all the factors studied, as shown in the Pareto chart in 

Figure 4(d). The influence of the combination of factors is illustrated in Figure 5 (d). 
When combining EtOH concentration (%) with temperature, it is demonstrated that 

using a high concentration of EtOH (80 %) in conjunction with a high temperature 

(120 ºC) result in FRAP antioxidant activity greater than 300 μmol TEAC g-1. 

Evaluating the combination of EtOH concentration (%) with pH shows that an acidic 

pH (2) combined with a concentration ranging from 60 % to 80 % yields the highest 

FRAP antioxidant activity values. Finally, the interaction between temperature and 

pH indicates that extracts with greater FRAP antioxidant activity can be obtained at a 

temperature of 120 ºC and a pH of 2. It is also observed that high temperatures 

enhance antioxidant activity, regardless of the pH of the mobile phase. 

In Table 4, it can be observed that none of the factors studied presents a 

statistically significant difference, as the p-value <0.05. In Figure g (d), the surface 

graphs of responses for FRAP antioxidant activity are shown, indicating that extracts 

with FRAP antioxidant activity greater than 360 μmol TEAC g-1 can be obtained at 

high temperatures close to 120 ºC, high EtOH concentrations (60-80 %), and an 

acidic pH near 2. 

Equation (4) presents the optimized equation along with its coefficients of 

determination for the regression model adjusted for FRAP antioxidant activity. The 

results indicate that the model fits satisfactorily, with an R2 value of 0.626, allowing 

for the prediction of the FRAP antioxidant capacity of the extract obtained from the 

pressurized liquid extraction (PLE) of brown propolis. 
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3.6 SUGAR AND MAILLARD REACTION PRODUCTS  

 

The results obtained for sugars are presented in Table 5. The content of 

sugars of propolis can come from the pollen, the type of plant, the components of the 

exudates of surrounding plants, in addition to the digestion and secretion processes 

carried out by the bees [44]. The chemical composition of propolis varies depending 

on the available flora and the practices of beekeepers. This includes both simple 

sugars such as glucose and fructose, as well as more complex sugars derived from 

hemicellulose, such as xylose and arabinose, or from cellulose, cellobiose [50–52]. 
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In the hydrolysates, three sugars were identified: cellobiose, xylose and 

arabinose, which are present in the composition of different types of honey and can 

thus be transferred to the propolis [50–52]. Among the sugars identified, cellobiosis 

presented the lowest concentrations in all treatments, with values ranging from 38.62 

to 68.56 mg/g. This variation suggests that experimental parameters, such as pH, 

temperature and pressure, directly influence the efficiency of obtaining this sugar, 

both to increase its concentration and to reduce its formation. Previous studies have 

proven that acidic pH can favor the release of cellobiosis [53,54]. The highest 

concentration was observed in the PLE 5 treatment (68.56 ± 0.82 mg/g) 

demonstrating that more acidic pH conditions, associated with moderate 

temperatures, are more effective for breaking glycosidic bonds. On the other hand, in 

treatments with severe temperature increase (PLE-3, PLE-7 and PLE-13), a 

reduction in cellobiose concentration was observed (Figure 7 (a)), which can be 

attributed to cellobiose degradation under high temperatures, especially under 

conditions of low pH and high pressures [55]. Xylose had the highest concentration in 

PLE 10 (196.47 ± 3.55 mg/g), while arabinose had its highest concentration in PLE 3 

(194.10 ± 2.87 mg/g), which reflects the ideal extraction conditions for each type of 

sugar. The total sugar content, shown in Figure 7 (d), is the sum of the 

concentrations of cellobiose, xylose and arabinose. These values ranged from 

198.08 mg/g in PLE 11 to 445.27 mg/g in PLE 10. The large variation observed 

between the samples suggests that the extraction efficiency is directly related to the 

specific conditions of each treatment, such as temperature, pressure and pH. The 

optimized condition found in PLE 10 for the maximum release of sugars reflects the 

synergy between these variables and indicates that, under certain PLE conditions, it 

is possible to maximize the extraction of sugars, which has important implications for 

industrial processes that aim to obtain these compounds from agro-industrial 

residues. 

The application of high pressure and temperature to extracts containing reducing 

sugars favors a number of chemical reactions, including the Maillard reaction. This 

reaction occurs between amino acids and reducing sugars, such as glucose, xylose, 

and arabinose, generating MRP, which evolve from intermediate compounds to final 

products [56,57]. During extraction in PLE, parameters such as pH, temperature, and 

the presence of solvents such as ethanol play a crucial role in the formation of these 
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compounds, altering characteristics such as color and molecular structure [56,58]. By 

analyzing the MRP under different PLE conditions, it is possible to identify the 

intermediate and final compounds formed and evaluate the conditions that optimize 

the production of these products (Table 3).  
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Figure 7. Kinetic profile of the accumulated biocompounds obtaining during 

the pressurized liquid extraction of brown propolis: a) cellobiose; b) xylose; c) 

arabinose; d) global sugars yield; e) acetic acid; and f) global organic acid yield. 

Different lower-case letters indicate significant differences by Tukey's test at p ≤ 0.05. 
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In the absorbance values at 294 nm (A294), treatments such as PLE 5 and PLE 

10 show high values (1.20 and 1.07 nm, respectively), indicating greater formation of 

reactive Maillard intermediates, such as amadori compounds [59]. These 

intermediate products tend to form more easily at moderate temperatures and acidic 

pH (pH 2) [59,60]. However, PLE 8, with an alkaline pH (pH 12) and high 

temperature (120°C), resulted in lower values of A294, suggesting a possible 

decomposition of the intermediates due to increased instability under these 

conditions. For the A420 values, which reflect the formation of final products of the 

Maillard reaction, such as melanoidins [56], an increase was observed in treatments 

using ethanol, such as PLE 8 (A420 = 0.25 ± 0.08). The presence of ethanol can 

favor the formation and stability of these compounds due to the stabilizing effect of 

alcoholic solvents on the reaction. However, PLEs with neutral pH and moderate to 

high temperature, such as PLE 9 and PLE 12, also demonstrated an increase in 

A420 values, suggesting that such conditions promote the formation of melanoidins 

in greater quantities. 

 

3.7 ORGANIC ACIDS 

 

Acetic acid was the only organic acid identified in the propolis extracts (Table 
5).  The concentration of acetic acid in the treatments ranged from 19.31 ± 2.54 mg/g 

(PLE 6) to 62.77 ± 3.44 mg/g (PLE 10), with the highest values observed in the 

treatments PLE 10 and 14 (Fig. The values obtained in this study were higher than 

the levels found by Pavlovic et al., 2020 [61] when analyzing crude propolis from hills 

and plains originating in Italy, where only substantial values ranging from 45.28 to 

57.80 μg/g were found. The difference between the values can be explained by the 

difference in origin of the propolis analyzed, considering that several factors 

significantly influence their composition [62].  The result of total organic acids present 

in Figure 7 (f) corresponds only to the values presented by acetic acid, which was 

the only one to be identified.  

Obtaining sugars and organic acids through pressurized liquid (PLE) extraction can 

be optimized by adjusting process variables to achieve specific objectives, such as 

maximizing the extraction of sugars or acids. For formulations that require simple 
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sugars, such as xylose and arabinose, PLE 10 conditions can be a reference, since 

they have the highest concentrations of these sugars. Similarly, for extracts with high 

acetic acid content, PLE 10 stands out, suggesting a favorable synergy between the 

extraction parameters and the release of this compound. In addition, the use of PLE 

in combination with other extraction techniques, such as extraction with organic 

solvents, can be an effective strategy to increase the overall efficiency of the process 

and maximize the recovery of bioactive compounds, such as sugars and organic 

acids, from agro-industrial residues [63]. 

 

4. CONCLUSION  
The present study investigates the efficiency and sustainability of the removal of 

bioactive compounds from brown propolis by PLE in semi-continuous flow. The study 

demonstrates that the variation in operational parameters influences the recovery of 

phenolic compounds, flavonoids, sugars and organic acids, thus allowing the 

optimization of the process for different applications. 

The highest concentrations of phenolic compounds (144.55 ± 8.73 mg GAE g-1) were 

obtained under conditions of moderate temperature and pH (90 ºC - pH 7), and 

flavonoids (56.01 ± 3.37 mg CE g-1) under conditions of elevated temperature and 

basic pH (120 ºC - pH 12). Conversely, the most efficient recovery of sugars (445.27 

mg g-1) was observed under moderate temperature and acid pH conditions (90 °C 

and pH 2), exhibiting a predominance of xylose and arabinose. The DPPH 

antioxidant activity ranged from 54.66 ± 3.16 to 304.82 ± 0.40 μmol TEAC g-1, while 

the FRAP activity reached a maximum of 385.37 ± 18.88 μmol TEAC g1.  Acetic acid 

removal was optimized at 90 °C and pH 10, reaching 62.77 ± 3.44 mg g-1.  

This study underscores the potential of PLE for the valorization of brown propolis, 

offering a sustainable and efficient approach for the removal of bioactive compounds, 

with promising applications in the pharmaceutical, food and cosmetic industries. 
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                                                                   CHAPTER IV 
CONSIDERAÇÕES FINAIS E PERSPECTIVAS FUTURAS 

 

Esta dissertação aborda de maneira abrangente a extração e as aplicações 

de compostos bioativos da própolis, com foco em sua utilização em diferentes 

setores, como o farmacêutico, alimentar e cosmético. O primeiro estudo analisou o 

crescente interesse na própolis, extratos naturais e nanopartículas de prata (AgNPs), 

destacando suas propriedades terapêuticas e a busca por soluções naturais e 

inovadoras. Os avanços nas técnicas de extração, como a extração com líquido 

pressurizado (PLE), têm permitido um aproveitamento mais eficiente dos compostos 

bioativos, o que potencializa seu uso em uma variedade de produtos industriais. A 

análise bibliométrica realizada demonstrou que há um grande potencial para futuras 

descobertas e aplicações dessas substâncias, principalmente na medicina 

personalizada e no desenvolvimento de terapias inovadoras. 

O segundo estudo apresentou resultados detalhados sobre a extração de 

compostos bioativos da própolis marrom usando PLE em um sistema de fluxo 

semicontínuo, revelando a influência de variáveis como temperatura, pH e 

concentração de etanol na eficiência da extração. O estudo mostrou que condições 

otimizadas, como 90 °C e pH 7, proporcionaram a maior recuperação de compostos 

fenólicos, enquanto temperaturas mais altas (120 °C) e pH básico maximizaram a 

extração de flavonoides. Essas condições também afetaram as propriedades 

colorimétricas dos extratos e sua atividade antioxidante. A pesquisa conclui que o 

uso de PLE oferece uma abordagem eficiente e sustentável para a extração de 

compostos bioativos da própolis, com grandes perspectivas para sua aplicação em 

diversas indústrias. 

Ambos os estudos destacam a importância das técnicas de extração 

aprimoradas e da aplicação de AgNPs e extratos naturais em uma variedade de 

indústrias. As inovações no processo de extração, como o uso de métodos verdes, 

têm o potencial de reduzir o impacto ambiental e melhorar a sustentabilidade dos 

processos. Além disso, a personalização das nanopartículas de prata, com ajustes 

em tamanho, forma e propriedades de superfície, pode resultar em avanços 

significativos em dispositivos biomédicos, tratamentos antimicrobianos e eletrônicos 

flexíveis. 
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A pesquisa sugere que, à medida que mais avanços forem feitos em técnicas 

de extração e otimização de propriedades materiais, as possibilidades de utilização 

desses compostos bioativos serão ampliadas, conduzindo a novas soluções 

sustentáveis e eficazes nos campos da saúde, segurança alimentar e ambientais. A 

integração de tecnologias avançadas com substâncias naturais promete um futuro 

promissor para inovações em diversos setores. 

 
 
 
 
 
 
 
 
 
 
 
 
 


