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RESUMO

Este trabalho tem como objetivo demonstrar as diferentes formas como a coleta e

uso de dados podem gerar valor para diferentes áreas da engenharia. Apresentamos

quatro artigos com aplicações de aprendizagem de máquina, mineração de processos,

ciência e análise de dados em engenharia. Os artigos são divididos em duas áreas

abrangentes: planejamento e controle de produção; e utilização de dados de

veículos conectados. Os dois primeiros artigos focam no planejamento e controle

de produções em manufaturas, com o primeiro sendo uma pesquisa inicial na

previsão de tempo remanescente de ordens de produção e o segundo uma pesquisa

mais robusta, a qual é continuação e melhora direta do primeiro. Nestes dois

artigos, são apresentados modelos de predição de tempo remanescente de ordens

de produção orientados ao produto, utilizando métodos de mineração de processo

e aprendizagem de máquina. Os modelos foram testados em dados artificiais e

em dados de uma manufatura real e apresentaram resultados interessantes. Os

dois últimos artigos têm como foco a utilização de dados de veículos conectados

para gerar valor em dois diferentes tópicos: eficiência energética e otimização

no tamanho de baterias de veículos elétricos. No primeiro desses artigos, uma

clusterização com base no contexto é apresentada como solução para tornar rankings
de consumo de combustível mais justos, isto é, que comparem os motorístas com

mínima influência externa. Neste artigo, tal método de clusterização é demonstrado

com dados de veículos reais e também é demonstrada a influência do contexto no

consumo de combustível. Utilizando essa clusterização, rankings justos são criados

e outras aplicações são propostas. O segundo desses artigos explora, em parte,

uma das aplicações propostas no artigo anterior para a clusterização com base

no contexto. Neste artigo, são utilizadas técnicas de aprendizagem de máquina e

ciência e análise de dados para otimizar o tamanho de baterias de veículos elétricos,

considerando os perfis de viagem dos diferentes contextos e considerando diferentes

hipóteses de recarregamento. Tamanhos ótimos de baterias são encontrados para

diferentes perfis de motoristas.

Palavras-chaves: Veículos Conectados; Análise de Dados; Ciência de Dados;

Aprendizagem de Máquina; Mineração de Processos; Predição de Tempo Rema-

nescente.



ABSTRACT

This work aims to demonstrate the different ways in which the collection and use of

data can generate value for different areas of engineering. We present four papers

with applications of machine learning, process mining, data science and analysis

in engineering. The papers are divided into two broad areas: production planning

and control; and utilizing data from connected vehicles. The first two articles focus

on production planning and control in manufacturing, with the first being initial

research into predicting the remaining time of production orders and the second

more robust research, which is a direct continuation and improvement of the first.

These two articles present product-orientated models for predicting the remaining

time of production orders using process mining and machine learning methods. The

models were tested on artificial data and data from a real manufacturing plant and

showed interesting results. The last two papers focus on using data from connected

vehicles to generate value in two different topics: energy efficiency and optimizing

the size of electric vehicles’ batteries. In the first of these papers, context-based

clustering is presented as a solution for making fuel consumption rankings fairer, i.e.

comparing drivers with minimal external influence. In this paper, such a clustering

method is demonstrated with real vehicles’ data, and the influence of context on

fuel consumption is also shown. Using this clustering, fair rankings are created,

and further applications are proposed. The second of these papers partly explores

one of the applications proposed in the previous paper for context-based clustering.

In this paper, machine learning, data science and analysis techniques are used to

optimize the size of electric vehicles’ batteries, considering the travel profiles of

different contexts and different recharging hypotheses. Optimal battery sizes are

found for different driver profiles.

Key-words: Connected Vehicles; Data Analysis; Data Science; Machine Learning;

Process Mining; Remaining Time Prediction.
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1 INTRODUCTION

Engineering is composed of many different knowledge areas. This comes

from the definition of engineering, as it can be broadly defined as the use of natural

science and mathematics to solve problems. The name engineering is a testament to

its definition, coming from the Latin word ingenium, meaning “cleverness”, exactly

what it takes to perform it.

For the constant problem-solving that is engineering, clever methods are

constantly being envisioned, built, and tested. In the case of this work, we brought

methods from mainly two fields of study: Machine Learning (ML) (Sarker, 2021)

and Process Mining (PM) (Aalst, 2016). These methods can be inserted into

the broad area of Data Science (Kelleher; Tierney, 2018) and Analysis (Kudyba,

2014), which uses different types of data to generate value, ranging from process

optimization to the discovery of unknown behaviors. The field of ML can be defined

as the use and development of statistical and mathematical algorithms that can

learn from data and generalize to unseen data. Similarly, PM is a field that studies

the processes that generate the data, extracting knowledge about its behavior.

In this work, we are going to demonstrate the usefulness of ML, PM, and

Data Science and Analysis as a whole for two very different areas of engineering:

production planning and control; and vehicular connectivity. The production

planning and control area includes all the processes and methods involved in any

part of a manufacturing process. Therefore, it can include a variety of problems, such

as logistical planning of the production plant, control of the ongoing production, or

analysis of the state of the production line. Vehicular connectivity is another broad

area as it can include all that can be done with connected vehicles. However, as our

focus here is vehicles with vehicle-to-cloud (V2C) connectivity, the applications are

a little more constrained. They can include vehicle monitoring by either individual

owners or fleet managers, analysis of vehicular usage by the manufacturer, or

generation of training data for algorithms related to vehicular features.

The problem related to production planning and control we explore is the

prediction of the remaining time of production orders in manufacturing systems.

The remaining time of a production order is the amount of time until a production
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order is finished given its current state. This information is of great importance for

manufacturers and can be especially critical for process managers. In manufacturers,

production orders are constantly being ordered, processed, or delivered. Thus,

they require constant planning for production to run smoothly. For example, if a

production manager knows the time in which a production order is going to be

finished, it can schedule the logistics needed to deliver it to its client ahead of time

and provide precise delivery dates. Furthermore, the remaining time information

allows production managers to plan and prepare the next orders ahead of time,

reducing idle time in the manufacturing.

The first two papers, in Chapters 2 and 3, present data-driven methods to

predict the remaining time of production orders. To do such a task they make use

of the logs of the processes that are normally generated by the production and

kept by the manufacturers. These logs have a table-like structure and can be called

event logs (Aalst, 2016) if they have basic information such as a production order

identifier (called the case), the activity that was performed, and the time it occurred.

From the event logs it is possible to extract the remaining time of each case and,

with enough data, ML and PM models can be trained on it to predict the remaining

time of new production orders. In our case, we consider manufacturers that produce

different products on the production line. Thus, the models presented in the papers

are product-oriented, e.g., each product has its own model, as different products

can have different production times even if they pass throw the same activities.

In the first paper, five methods to predict the remaining time are presented

and compared, which include two ML methods, a PM method, a hybrid method

(Choueiri et al., 2020), and a baseline method. The hybrid method creates models

that are a combination of many different models combined by optimizing a validation

score. The baseline method is a statistical value of the remaining time of the training

data. To compare and assess the models’ performances they are tested on simulated

logs. The simulated event logs are generated artificially by using preset production

paths with different production times for each product and machine, and including

different probabilities of rework in each machine. By generating logs for two

different products with different probabilities of rework, we can analyze how the

different methods behave in distinct situations.

In the second paper, we explore the same problem but with the addition of
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two new ML methods and an improved baseline method. The baseline method is

improved by transforming it into a simplified version of the PM method presented.

Another addition in this paper is the usage of a different encoding. Encoding is

the data processing technique used to make event log-type data understandable by

ML methods. While in the first paper, a simple binary-type encoding was used, in

this paper we present an encoding that accounts for the frequency of the activities.

Additionally, the artificially generated logs are expanded, with new paths, machines,

and products. Moreover, a deep analysis of a real manufacturer’s log was done. We

used this log to test the methods and compared the difference in performance of

simulated logs with well-defined paths and real logs with unstructured paths.

The two first papers achieve their common objective of demonstrating the

usefulness of the remaining time prediction in a manufacturing context. Their

results also make clear the importance of product segregation when building the

prediction models. The second paper, by having more models and test data, really

shows the difference between the methods across different types of data.

Now we move from the production planning and control area to vehicular

connectivity. The vehicular connectivity in this work is limited to V2C-type

connectivity, e.g., vehicles with the capability of sending and receiving data from

a server via the cellular network. This data can be miscellaneous, varying from

simple information such as the vehicle’s velocity to complex unstructured data

such as images or videos. In the case of this work, the data is on the simpler side,

consisting of information about the trip such as distance, time, speed, etc. Even

though the information collected is not on the more complex side, there are a

variety of applications that can use it. In our case, we explore two different topics:

fuel efficiency improvement and size optimization of batteries for electric vehicles

(EVs).

The importance of fuel efficiency in any context is clear, especially in recent

years with the known influence of fossil fuels on global warming (Zecca; Chiari,

2010). Outside the environmental reasons, there also are economic reasons, as

better fuel efficiency means lower expenses with fuel. The fuel efficiency can be

improved by many different means, such as engineering more efficient motors and

smarter transmissions or making the drivers themselves more efficient. In this work,

we tackle this last, more indirect way, as the data provided by vehicular connectivity
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allows us to understand how the vehicles are being driven. Our idea to indirectly

improve fuel efficiency is to profit from a common human trace: competitiveness

(Brankovic et al., 2018). To generate this sentiment between the drivers, a simple

solution is to rank them based on the subject we want to improve, in the case of fuel

efficiency, this means the construction of fuel efficiency rankings. If the drivers have

access to their performance information and how they compare to other drivers,

this can passively increase overall fuel efficiency as part of the drivers try to change

how they drive to be better than the others. However, the constructions of these

rankings are the real problem that needs to be solved as they must be as fair as

possible. Given vehicles of the same model in similar conditions traveling the same

route, what would mainly vary the fuel efficiency would be the different ways the

drivers can drive the vehicles, precisely what ideal fuel efficiency rankings must

classify. From the said characteristics that affect fuel efficiency, the vehicle’s model

is easily obtainable, leaving the problem we need to solve as the identification of

where the vehicle was driven.

In the third paper in Chapter 4, a solution for the construction of fair fuel

efficiency rankings is presented: a context-based clustering of the trips, built using

data from millions of trips and thousands of vehicles from all around Europe.

With context-based clustering it is possible to make rankings for each context,

making the rankings fair by eliminating the external bias. To make this clustering

the ML method k-means (MacQueen, 1967) is used. The k-means was chosen as

the clustering method due to low computing time and good overall results, which

were further improved using the k-means++ initiation. As our objective is context

identification, context-related features such as the trips’ distance, total time, average

speed, and other speed-related features were used. The identified contexts can

be directly related to different types of roads (Eppell et al., 2001), as they are

strongly influenced by speed-related features. With the clustered trips, fair fuel

efficiency rankings can be built, where the drivers’ trips from different contexts

are not compared. Furthermore, the constructed context-based clustering showed

potential application in other areas outside making fuel efficiency rankings fair. One

possible application in fleet management is demonstrated and applications in the

improvement of recommendation systems and product development are suggested.

Inside the product development area, one suggested application is related to EV

battery sizing considering different trip profiles.
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Choosing the right battery size for a new EV model is important for the

same reason as fuel efficiency is important: global warming. Concerns with CO2

emissions have leveraged the production and sale of EVs all around the world in

recent years (IEA, 2024). With this production growth, optimizing one of the most

expensive parts of an EV (S&P, 2024) is even more important. In our case, the

optimization of the battery size is done with one question as a north: which battery

size would be ideal for drivers who are migrating from internal combustion engine

vehicles (ICEVs) to EVs? This question is of utmost importance for manufacturers

that want to sell vehicles for drivers with no EV experience who are used to ICEVs.

To answer this question, our idea is to use data from real ICEVs, inferring their

energy consumption if they were EVs and comparing how different battery sizes

would perform in different contexts.

In the fourth and last paper in Chapter 5, ML, data science and analysis

techniques are used to optimize the battery sizes using data from ICEVs. By using

a function that converts average speed and temperature to energy consumption,

we can analyze how energy is consumed and what battery sizes would allow for

trips to be completed. Two hypotheses for vehicular recharging are compared, one

where the vehicle is only charged at home, having just one full charge each day,

and one where in-between trips fast charging was allowed for a limited amount of

time. The context-based clustering from the third paper is used as a way to separate

the different trip profiles, which influence energy usage and can lead to different

battery sizes depending on the drivers’ profile.

This work is divided into five parts, one for each paper and a conclusion:

Chapter 2 with the paper “Remaining time prediction in manufacturing systems: an

approach based on ML and process mining”; Chapter 3 with the paper “A product-

based hybrid model for remaining time prediction of production orders: a process

mining and machine learning approach”; Chapter 4 with the paper “How Can a

Context-Based Clustering of Drivers Help Increase Fuel Efficiency?”; Chapter 5

with the paper “Optimizing EV Battery Sizing with ICEV Energy Consumption

and Context-Based Clustering”; and the conclusion in Chapter 6. All four papers

have individual “Related Works” sections with vast bibliographical reviews in each

of their subjects.
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2 REMAINING TIME PREDICTION IN MANUFACTURING SYSTEMS:
AN APPROACH BASED ON ML AND PROCESS MINING

Given the data generated from logs of production orders in manufacturing

systems, we wrote this paper to demonstrate the different ways such data could be

used to generate value for the manufacturers.

Manufacturing systems deal with production orders that pass through

specific processes to be produced. Such processes can have many steps and it can be

difficult to know when the order is going to be finished in each step of its production.

The research in this paper has the objective of demonstrating how data-driven

methods can successfully predict the remaining time of production orders.

Using Process Mining (PM) techniques, the remaining time of previous

production orders can be extracted from event logs. We present Machine Learning

(ML) and PM methods that can be trained with this data and make predictions for

future production orders. A hybrid method that creates optimized models from the

output of other models is also proposed. All the methods are tested and compared

to a baseline method on artificially generated logs. The logs are generated based

on different preset paths and have a probability of activity rework, adding further

complexity to the predictions.

This paper was presented at the 12th CIRP Global Web Conference (CIRPe

2024) in the area of Manufacturing Systems. It was published by the journal

“Procedia CIRP” with DOI 10.1016/j.procir.2025.01.028 and can be accessed with

this link.
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1. Introduction

Recently, efforts have been concentrated on upgrading Pro-

duction, Planning, and Control (PPC) systems following In-

dustry 4.0 standards [1]. The advancements in hardware and

software over recent years have enhanced the ability to gener-

ate and store large volumes of raw data on the shop floor [2].

This data proliferation has driven the development of innova-

tive techniques for extracting valuable insights. In the realms

of manufacturing and logistics, the emphasis on Industry 4.0,

along with the concepts of smart manufacturing and smart sup-

ply chains, has underscored the need for machines to function

as part of an integrated network and supply chains to operate

seamlessly from end to end. This integration allows managers

to leverage real-time data for more precise decision-making [3].

Within industrial contexts, process mining has emerged as

a tool for performance evaluation, helping managers improve

∗ Corresponding author. E-mail address: joaobotelho@ufpr.br

quality cycles, manage maintenance, and apply Six Sigma

methodologies comprehensively, among other applications [4,

5]. The trend of using process mining to predict and monitor the

remaining time in processes is gaining traction [6]. Predictive

process monitoring encompasses techniques that utilize event

logs to forecast the future state of business process executions

[7].

As noted in [8], it is crucial to track the progress of produc-

tion orders to reconcile differences between the planned sched-

ule and the actual manufacturing process [9]. Predicting the re-

maining time for production orders enables managers to moni-

tor deviations from the planned execution, facilitating real-time

scheduling decisions. Ideally, the initial production plan would

match the actual manufacturing process, but unexpected distur-

bances often cause deviations. Issues like machine tool break-

downs, the arrival of urgent orders, and large amounts of un-

qualified work-in-progress (WIP) items can significantly dis-

rupt the original production schedule, causing major fluctua-

tions in the remaining order time.

Predictive process monitoring is a research domain focused

on exploring ongoing cases to predict future information. One

12th CIRP Global Web Conference (CIRPe 2024)

Remaining time prediction in manufacturing systems: an approach based on

ML and process mining

João Gabriel Santin Botelhoa,1,∗, Eduardo Alves Portela Santosa, Alexandre Checoli Choueiria, José
Eduardo Pécora Juniora

aUniversidade Federal do Paraná, Curitiba, Brazil

* Corresponding author. E-mail address: joaobotelho@ufpr.br

Abstract

The remaining time prediction of production orders in the manufacturing domain is of major concern among production, planning, and control

(PPC) managers. PPC managers must deal with significant uncertainty regarding the promise of delivering products to customers. Many techniques

use data to predict the remaining time of production orders, such as neural networks, time series analysis, and non-parametric statistical models,

among others. A powerful way to deal with these new machine-based data records is through process mining techniques, which can summarize

and collect information about the underlying process based on event logs. This paper proposes a hybrid predictive model based on annotated

transition-systems and machine learning models tailored to better predict ongoing production orders in industrial manufacturing environments.

The linear combination of models is performed by optimizing a linear programming (LP) model that minimizes the combined absolute errors of

predictions. We tested our new approach on artificially created logs. Results showed that our approach provides better accuracy measures than all

the other tested methods for the test instances.

© 2024 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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of the earliest works in this area, proposed by [10], introduced a

transition system annotated with timing information from ongo-

ing cases. Later research enhanced this model by incorporating

machine learning techniques such as Support Vector Machines

(SVM) and Naive Bayes [11, 12]. Moreover, [12] included ad-

ditional data, not just time, to enrich the transition system and

the learning model. Other researchers [13, 14] proposed extend-

ing the annotated transition model with a context-based predic-

tive clustering step, allowing for different predictors to charac-

terize various contexts and scenarios.

The proposed hybrid method integrates two predictive ap-

proaches [7]: (1) an annotated transition system derived from

event logs with operational timing information and (2) machine

learning (ML) models. This hybrid approach combines predic-

tions from both the annotated transition system and the ML

models through a linear combination. The combination is op-

timized using a linear programming (LP) model that minimizes

the combined absolute errors of the predictions.

The remainder of this paper is organized as follows: related

works and process mining key concepts are presented in sec-

tion 2. Section 3 presents the main ideas of the proposed frame-

work for remaining-time predictions. In section 4, we present

and analyse artificial logs. In section 5, discuss the results of

the presented methods. Section 6 portrays the conclusion of the

paper.

2. Foundations

In process mining terminology, an event is characterized by

various attributes, e.g., an event has a time-stamp, a resource

identifying the executor, associated costs, and so on [15]. Each

event must be associated with a case. When all case events are

in chronological order, we have a trace (a finite non-empty se-

quence of events, such that each event appears only once and

time is non-decreasing). Note that it is possible to have various

cases that follow the same trace, but each case is different. An

event-log is a set of traces. In theory, any process with a time

dimension could be stored as an event-log database, including

manufacturing activities.

Table 1: An example of an event log.

Case Act. Start Time Finish Time Prod. Qty

1 S 2023/01/16 10:00:00 2023/01/16 10:45:00 A 10

1 P1 2023/01/16 10:45:00 2023/01/16 12:00:00 A 10

1 P2 2023/01/16 12:00:00 2023/01/16 14:30:00 A 10

1 P3 2023/01/16 14:30:00 2023/01/16 16:00:00 A 10

1 E 2023/01/16 16:00:00 2023/01/16 16:30:00 A 10

2 S 2023/01/17 10:00:00 2023/01/17 10:30:00 A 6

2 P1 2023/01/17 10:30:00 2023/01/17 11:00:00 A 6

2 P3 2023/01/17 11:00:00 2023/01/17 12:15:00 A 6

2 P3 2023/01/17 12:15:00 2023/01/17 13:45:00 A 6

2 E 2023/01/17 13:45:00 2023/01/17 14:15:00 A 6

Table 1 presents an example of an event log related to a pro-

duction system. The case id represents the production order, and

the activity column (Act.) represents the activities (operations)

performed by the machines. The two columns time represent

the start and end of the activities. The last two columns, Prod.

and Qty., are attributes related to the production order: the prod-

uct being processed and the quantity, respectively.

3. Proposed Framework

Our model is composed of a linear combination of the pre-

dictions of three different models. One of those models is a tran-

sition system-based model (TSM), which relies heavily on pro-

cess mining. The other two models are ML models, composed

of a multiple linear regression model (MLR) and a random for-

est regression model (RF). The linear combination of all three

models is done by optimizing an LP model, which minimizes

the combined absolute errors of the predictions.

Our proposed framework collects data from a process as

event logs. Those datasets are then treated, filtered, and trans-

formed into forms each model can read. Then, those treated

datasets are separated by product. TSM, MLR, and RF models

are created for each product. Based on the testing predictions

of the three models, the weights of the linear combination of

the predictions for the hybrid models are decided by optimizing

LP models. Finally, given an unfinished product with a partial

trace, the hybrid model gives a predicted remaining time per

product.

3.1. Transition System Based Model

A straightforward way to describe a transition system (TS)

is that it represents all the paths in an event log. The TS has

an initial state from which all the existing paths that are in the

log branch. TSs are graphically represented as trees or graphs,

in which states are represented by the nodes and the transition

relations by the vertices.

We implemented an algorithm in Python to construct a TS

from an event log. This algorithm builds a TS, creating all pos-

sible sub-traces considering the time order for each separated

case. Consequently, the number of sub-traces produced equals

the number of observations from the generating dataset since

it allows repetition. This tolerance to repetitions will be essen-

tial in constructing the TSM, as it has annotations that can be

different on equal sub-traces.

The transition system-based prediction model consists of at-

taching annotations [10], based on the target value, to all the

different sub-traces in a TS and choosing a function that con-

nects a partial trace to a prediction value, in this case, related to

the remaining time.

Consider the following case example based on Table 1: run-

ning our algorithm for building TSs in this event log would give

the sub-traces exposed in Figure 1. A good and straightforward

way to calculate the possible remaining time, as one sub-trace

can appear more than once, is to calculate its mean or median

value. To account for processes that work in batches, we divide

the remaining time by the quantity of products in the batch. In

equation 1, we have an expression for the predicted remaining

time per product of a sub-trace.

Rem. Time (Trace, ncase) =
Tracecase FT − Traceact S T

ncase
. (1)
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In this remaining time per product equation (1), Tracecase FT

is the finish time of the whole case, e.g., for Case 1 in Table

1 it is “2023/01/16 16:30:00”, Traceact S T is the start time of

the activity from that case, and ncase is the number of products

processed in that case.

Fig. 1: The proposed annotated transition system for the event log in Table 1.

In Figure 1, we have the annotated transition system for the

event log from Table 1, where for each sub-trace in the system,

there is a mean remaining time per product.

As stated in [16], limitations of annotated transition system-

based models appear when an input partial trace does not exist

in the system. In those cases, a method for associating an un-

known partial trace with a known one in the system is needed.

Our chosen method for connecting partial traces to ones in the

system is based on a similarity score.

Our score depends on the size of the partial trace or the size

of the system sub-trace and the number of coinciding activities

in the traces, which must be in the same position. To find an

appropriate match to the analyzed partial trace in the annotated

TS, the model searches all the system’s sub-traces and gives

each one a similarity score. The predicted remaining time per

product of a partial trace is an average of all the annotations

from the sub-traces with the best score. Algorithm 1 shows a

pseudo-code for this connection function.

As seen in algorithm 1, the model cannot make a prediction

if there is no match between an activity from the partial trace

and one from any sub-trace in the system. This fact is an es-

sential factor and disadvantage of TSMs. Unlike ML models,

which make predictions based on features and can output pre-

dictions for whatever values its features have, transition system-

based models, as presented here, need training data with a high

degree of similarity to the data in which it will be used.

3.2. Machine Learning Regression Models

To diversify how a prediction can be made, we will present

two ML methods that will be used together with the TSM to

predict the remaining time per product in the hybrid model.

An event log is not an appropriate form to directly apply ML

models, which usually need a set of variables from which it

can derive its internal parameters’ optimal values. Thus, some

encoding is needed to extract information from an event log

using an ML model.

Our encoding is from [16]. It is similar to the famous one-

hot encoding, which gives binary values to categorical features

to inform if the action or thing represented by that feature hap-

pened or not. The remaining time per product is used for the

Algorithm 1 An algorithm to associate a prediction value to a

partial trace

Require: A transition system TS and a partial trace PT
Ensure: A prediction value pred

S max ← 0

match← empty list

for each trace ∈ TS do
S izemax, S izemin ← max (|PT |, |trace|), min (|PT |, |trace|)
S ← 0

for each k ∈ (0 ≤ k ≤ S izemin) do
if trace[k] is equal to PT [k] then

S ← S + 1/S izemax

end if
end for
match.add((S , trace))

if S > S max then
S max ← S

end if
end for
Mtraces← all trace in match where S is equal to S max

pred ← mean value from the annotations of each trace in

Mtraces

target variable. Applying this transformation to the log in Ta-

ble 1, we obtain Table 2. This encoding does not account for

activity repetition, which could be a problem for ML models.

Table 2: Transformed event log from Table 1 using binary encoding.

S P1 P2 P3 E Rem. Time

1 0 0 0 0 0.65

1 1 0 0 0 0.575

1 1 1 0 0 0.45

1 1 1 1 0 0.2

1 1 1 1 1 0.05

1 0 0 0 0 0.7083

1 1 0 0 0 0.625

1 1 0 1 0 0.5417

1 1 0 1 0 0.3333

1 1 0 1 1 0.0833

Multiple Linear Regression: The MLR method estimates

parameters that better describe some observations by applying

a linear relation [17]. For their simplicity and the fact that many

real applications have linear correlation, MLR models are the

most commonly used data-fitting methods. This regression uses

the relation y = Xθ + ε. Given an observation vector y ∈ Rn×1

with n observations and a matrix of variables X ∈ Rn×p with

p groups of variables, the MLR model tries to find the optimal

vector of parameters θ ∈ Rn×1, which minimizes a vector of

errors ε ∈ Rn×1.

The fair simplicity of the MLR method, while being an ad-

vantage, can also be seen as a disadvantage, as it has no hyper-

parameters that could boost the method’s performance.

Random Forest Regression: The RF method is a ML en-

semble method [18]. An RF model is created by using the pre-

diction of various decision trees, which are constructed from
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random samples of the training dataset. The RF method is a

way to reduce the variance of the overfitting-prone decision tree

models. It does that by using the average predicted values of

each decision tree as its predicted values.

The RF method can be considered a complex ML method

based on the number of variations it can have. Some of its hy-

perparameters are the decision trees’ depth, its maximum num-

ber of branches, its minimum number of leaves, its number of

trees, the size of the tree training samples, or the variables in

which a tree is trained. Hence, finding the optimal RF model

for a dataset can be difficult. Nonetheless, all this complexity al-

lows the construction of more robust and well-performing mod-

els.

3.3. Hybrid Model

Our Hybrid approach comes from [16]. It is a linear combi-

nation of the predictions of all the models, the TSM, MLR, and

RF. The following expression gives the prediction of the hybrid

model (HM):

HM = α1 · TS M + α2 · MLR + α3 · RF. (2)

The αis are the weights of the combination; they follow the

relation
∑3

j=1 α j = 1 and are non-negatives. Those weights are

obtained by optimizing an LP model. The LP model finds coef-

ficients that minimize the sum of the absolute errors from a test

set.

Given the matrix M with the predictions of remaining time

values, which has n lines, one for each sub-trace, and three

columns, one for each model, and given the vector o contain-

ing the actual remaining time values of each sub-trace, the LP

model is defined as:

Min

n∑
i=1

ε+i + ε
−
i (3)

s.t:

3∑
j=1

α j · Mi j + ε
+
i − ε

−
i = oi, ∀i = 1, ..., n; (4)

3∑
j=1

α j = 1; (5)

α j, ε
+
i , ε
−
i ≥ 0, ∀i = 1, ..., n, ∀ j = 1, ..., 3. (6)

The objective function in expression 3 minimizes the sum of

the absolute predicted error, |εi|. The first set of constraints in

equation 4 is an equality in which the weights and the errors

must vary to make the weighted sum of the predictions, plus

a positive or negative error, equal to the occurred value. The

second constraint set in equation 5 is the already explained sum

of the weights. The last constraint set in inequation 6 is the non-

negativity constraint.

4. Case Study

In this section, we present, analyse, and test our methods on

artificially created event logs. The artificial logs were created

using the Python 3 programming language. They were gener-

ated considering the following parameters: there are two prod-

ucts, which differ in the machines they need; there are 11 differ-

ent machines, which process time per product follow a normal

distribution and differ depending on the product; the number

of products of each batch varies from 10 to 100 uniformly; the

number of products influences the total process time following

a normal distribution; and there is a probability of process rep-

etition.

Figure 2 shows the Petri net representation of the artificial

logs. The silent transition τ illustrates the activity repetition

process and is implicit in all transitions. In Table 3, we have

the normal distribution of each machine’s processing time per

product for each product. The normal distribution for the varia-

tion of the total process time of the batch is N(1, 0.052).

Table 3: Probability distribution of remaining time per product.

Product

Machine 1 2

M1 N(0.3, 0.052) N(0.25, 0.0252)

M2 N(0.1375, 0.01752) -

M3 - N(0.225, 0.01252)

M4 N(0.25, 0.052) -

M5 N(0.25, 0.0252) -

M6 - N(0.275, 0.03752)

M7 N(0.2, 0.0252) -

M8 N(0.4, 0.0252) -

M9 - N(0.325, 0.01252)

M10 N(0.35, 0.0252) N(0.175, 0.01252)

M11 N(0.15, 0.012) N(0.1, 0.0052)

The probability of a case following a specific path was set as

equal. The probability of process repetition refers to the chance

of a product having to repeat the same process consecutively, as

in the path 〈M1,M1,M3,M6,M6,M9,M10,M11〉.
For our tests, we generated 5 logs, each with 680 cases.

These logs differ in the probability of process repetition, with

0%, 5%, 10%, 15%, and 20% chance of process repetition. Be-

cause of this variation, they also differ in the number of events,

with 4080, 4275, 4483, 4720, and 5112 events.

A total of 5 models were tested: the baseline model, where

the predicted value is just the mean time per product of each

product; the TSM; the MLR model; the RF model; and the HM.

The training process was the same for all models: a 5-fold cross-

validation with shuffling of the events. The shuffling minimizes

the appearance of unique traces in the training or test sets.

The leading accuracy indicator chosen is the MAE, or mean

absolute error, in equation 7, as it is the same, ignoring scale,

as the one used in the LP model objective function 4. Another

accuracy indicator used is the RMSE, or root mean square error,

in equation 8, which emphasizes the outliers errors. The last one

is the MAPE, or mean absolute percentage error, in equation 9,

which is a percentage indicator of the MAE.



João Gabriel Santin Botelho  et al. / Procedia CIRP 132 (2025) 165–170 169

Table 4: Errors of the models for product 1 from the artificial logs.

Models MAE RMSE MAPE

Prob. Rep. 0% 5% 10% 15% 20% 0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

Baseline 0.3854 0.4174 0.4424 0.4786 0.5219 0.4527 0.4970 0.5292 0.5756 0.6283 108.9106 113.1823 115.4856 120.0420 125.0817

TSM 0.0580 0.0925 0.1202 0.1576 0.2030 0.0831 0.1552 0.1943 0.2522 0.2946 6.5202 9.7907 12.6926 15.4323 19.8669

MLR 0.0701 0.1051 0.1304 0.1718 0.2143 0.0894 0.1555 0.1882 0.2423 0.2865 10.4190 13.5607 15.7941 18.5991 22.3014

RF 0.0584 0.0913 0.1159 0.1551 0.2025 0.0828 0.1532 0.1908 0.2522 0.2955 6.5404 9.1470 11.0414 13.5457 17.1648
HM 0.0579 0.0909 0.1155 0.1542 0.1993 0.0829 0.1528 0.1899 0.2489 0.2895 6.5147 9.1597 11.0840 13.8527 18.0079

Fig. 2: Petri nets of the artificial logs process. Each color is a product path.

MAE =
1

n

n∑
k=1

∣∣∣yk − yk

∣∣∣ (7)

RMSE =

√√
1

n

n∑
k=1

(
yk − yk

)2
(8)

MAPE =
100%

n

n∑
k=1

∣∣∣∣∣∣yk − yk

yk

∣∣∣∣∣∣ (9)

The models and logs implementations were done using

Python 3. Libraries numpy, pandas, scikit-learn, pyomo, mat-

plotlib, and seaborn were used.

We optimized the RF models’ hyperparameters. The modi-

fied hyperparameters of the RF models were the number of trees

and the maximum tree depth, and the model optimization was

done by prioritizing the MAE score.

Table 4 has the mean MAE, RMSE, and MAPE from the

cross-validation of each model for product 1 and each of the

five repetition probabilities of the artificial logs. In Figure 3, we

have graphs comparing the MAE and MAPE of all the models

tested in all five artificial logs.

Fig. 3: Comparison of the MAE and MAPE for the two products.

As a 5-fold cross-validation was done, the hybrid models

have coefficients for each fold. In Table 5, we have the mean

coefficients of each hybrid model for each product and each

artificial log.

Table 5: Mean coefficients of all hybrid models for the artificial logs tests.

Model Prob. Rep. Product 1 Product 2

TSM MLR RF TSM MLR RF

HM 0% 0.845 0.016 0.140 0.787 0.069 0.144

HM 5% 0.257 0.029 0.714 0.064 0.054 0.882

HM 10% 0.113 0.034 0.853 0.204 0.035 0.762

HM 15% 0.250 0.053 0.697 0.380 0.057 0.563

HM 20% 0.439 0.060 0.501 0.387 0.038 0.575

5. Results and Discussions

Analysing the results of the artificial logs tests from Table 4

and Figure 3, it is noticeable that all models show better per-

formance by a large margin than the baseline. However, as the

probability of activity repetition increases, the performance of

all models decreases. A reason for this behavior is the increase

of possible activity paths that the activity repetition enables,

thus increasing the variability in remaining time values, i.e., in-

creasing the inherent randomness of the data.
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For the MAE values of the artificial logs tests, the overall

best model is the hybrid, which showed the best results in all in-

stances. As the hybrid models are optimized based on the MAE,

this supremacy on MAE values does not necessarily translate to

better RMSE or MAPE values.

Analysing the RMSE, the MLR, the simplest model used,

ignoring the baseline, showed the best performance. This good

performance of the MLR model is not a surprise, given that

the artificial logs follow well-behaved paths with normally dis-

tributed remaining time values. Also, better results on a less

punitive metric on general models are expected, as the RMSE

punishes more severely outliers than the MAE.

Looking at the MAPE values, the RF model is always the

best model when there is activity repetition. Also, this model is

the second-best model after the hybrids on MAE values.

When analysing the MAE values and the hybrid models’ co-

efficients in Table 5, it is noticeable that the coefficients follow

a particular logical pattern. For all instances, models that per-

form better have a higher coefficient value. As the coefficients

follow this pattern, what we have in Table 5 is that, on average,

the models that make up more of the hybrid models are mainly

the TSM and RF models, with the MLR exerting little to no

influence.

Overall, the artificial tests results showed that all models per-

formed much better than the baseline, behaving very similarly

and performing well on moderately well-distributed data and

well-behaved paths.

6. Conclusion

This paper presented remaining time prediction methods

based on process mining, machine learning, and a hybrid ap-

proach. The presented models are “product-oriented” and capa-

ble of coping with manufacture particularities, in which traces

are represented as the activities already performed in the pro-

cess, and a prediction of an incomplete trace is performed.

The framework presented deals with batch-type manufactur-

ing. Furthermore, the presented TSM introduces a similarity

score that copes with a transition system’s “no trace” limita-

tion. The two ML methods presented enable us to introduce the

hybrid approach by combining them with the TSM.

We tested and validated the presented methods and approach

using artificially created logs. Our tests of the models showed

excellent results, with all models performing better than the

baseline in all instances.

Considering the TSM, its ease of use appeals to manufactur-

ing professionals. Since it does not require any specific pro-

cess mining software, the learning curve to use it is signifi-

cantly reduced, and there are no associated costs. Our predic-

tion method, built on ML models, can provide excellent relia-

bility to production and planning control managers. However,

a challenge that arises is how to generate confidence in these

models for PPC managers. Consequently, we are investigating

the enrichment of our system to explain their reasoning pro-

cesses and outputs (e.g., predictions) automatically. Also, we

plan to perform future tests on real-world event logs and fur-

ther investigate how the increase in the probability of repetition

decreases the performance of our models.
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J.E.J. Pécora: Reviewing.

References
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3 A PRODUCT-BASED HYBRID MODEL FOR REMAINING TIME
PREDICTION OF PRODUCTION ORDERS: A PROCESS MINING
AND MACHINE LEARNING APPROACH

The objective of this research remains the same as the previous paper,

accurate prediction of the remaining time of production orders, but with further

research, new models, and tests in different contexts. This paper has a much more

robust literature review and a more in-depth explanation of the subject, techniques

used and methods proposed.

The new models consist of two additional ML models and an improved

baseline model. As the baseline model in the previous paper was too simple, the

new proposed model has a little more complexity, being a simplified version of the

presented process mining (PM) method.

The same logic as the previous paper to generate the artificial logs was used

but with more products and expanded paths. An important addition to this paper is

the use of event logs from real manufacturers. These real logs allow us to compare

how different models perform in different contexts.

This paper was submitted to the journal “Engineering Applications of

Artificial Intelligence” and, until the writing of this, is under review.
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Abstract

The remaining time prediction of production orders in the manufacturing domain is of major concern among pro-

duction, planning, and control (PPC) managers. PPC managers must deal with significant uncertainty regarding the

promise of delivering products to customers. Many techniques use data to predict the remaining time of production

orders, such as neural networks, time series analysis, and non-parametric statistical models, among others. A powerful

way to deal with these new machine-based data records is through process mining techniques, which can summarize

and collect information about the underlying process based on event logs. This paper proposes a hybrid predictive

model based on annotated transition-systems and machine learning models tailored to better predict ongoing produc-

tion orders in industrial manufacturing environments. The linear combination of models is performed by optimizing

a linear programming (LP) model that minimizes the combined absolute errors of predictions. We tested our new

approach on artificial logs and a log from an actual manufacturer. Results showed that our approach provides better

accuracy measures than all the tested methods for test instances.

Keywords: Process Mining, Predictive process monitoring, Remaining time prediction, Manufacturing, Machine

learning

1. Introduction

According to [1], Manufacturing is one of the most challenging domains for business process management. There

is an increasing need to reduce product launch and delivery times, optimize manufacturing operations and resources,

reduce costs, and increase product quality. Extremely rigorous performance requirements and the demand for ultra-

fast deliveries generate a search for continuous process improvement never seen before in the manufacturing industry.

In this context, production, planning, and control (PPC) stands out as a company’s strategic area where these require-

ments have to be achieved.

PPC systems are information systems (IS) designed to assist managers in decision-making [2]. These tools support

all activities that define what, how much, and when to produce, purchase, and deliver efficiently to satisfy customer

needs. Furthermore, they define the production sequence for each product. Traditional production scheduling defines

which product will be produced when and where on a shop floor. However, several uncertainties can occur on the

shop floor, affecting the initial production plan, such as stochastic processing times, machine breakdowns, lack of raw

materials, and long times in machine setups, among others [3, 4]. In this context, production managers have to deal

with significant uncertainty regarding the promise of delivering products to customers.

According to [5], usually financial criteria are considered for decision-making in production planning and control.

With the advancement of Industry 4.0, which increases efficiency, value creation, and real-time optimization using

technologies such as the Internet of Things (IoT), companies are seeking decision-making criteria focused on the

∗Corresponding author

Email address: joaobotelho@ufpr.br (João Gabriel Santin Botelho)

Preprint submitted to Engineering Applications of Artificial Intelligence February 10, 2025



customer experience. The idea is to improve customer service levels rather than just minimizing costs. Therefore,

assuming that unforeseen events and uncertainties will occur, estimating more precise delivery dates for products to

customers is extremely important.

Recently, efforts have been made to transform PPC systems towards Industry 4.0 [2]. Hardware and software

developments in recent years have increased the ability to generate and store information, leading to a massive volume

of raw data on the shop floor [4]. This data availability has sparked interest in developing new techniques capable of

extracting increasingly helpful information from them. In manufacturing and logistics environments, this is reinforced

by the pursuit of Industry 4.0 and the concepts of smart manufacturing and smart supply chain, in which machines

work integrated as a collaborative network and the supply chain is integrated from end to end in all their operations,

providing managers with the possibility of using online data to make more accurate decisions [6]. In this context,

data analysis in the industry has grown extraordinarily [7, 8]. Furthermore, according to [7], recent advances in Big

Data and Machine Learning (ML) have transformed traditional manufacturing towards a new digital transformation

era. [9] point out the massive data collected in the manufacturing process has the characteristics of multi-dimensional,

heterogeneous, and time series.

There are many techniques that use data to predict variables of interest in some processes, for example, neural

networks, time series analysis, and non-parametric statistical models, among others [10]. A powerful way to deal

with these new machine-based data records is through process mining (PM) techniques, which can summarize and

collect information about the underlying process. The main concern in process mining is process discovery based on

event logs [11]. With this information, discovery algorithms are run to extract a process model. More information can

be analyzed with the model at hand; for example, compliance with the predefined model can be checked, bottleneck

activities are more easily detected and addressed, and some future process extensions and inferences [12].

In the industrial context, process mining has been applied as a performance evaluation method, guiding managers

in the quality improvement cycle, in maintenance management, in the integrated use of the Six Sigma methodology,

among other applications [13, 14, 15]. The use of process mining to predict and monitor remaining times in processes

is a current trend [16]. Predictive process monitoring is a family of techniques that uses event logs to predict the

state of a business process execution [17]. For example, a predictive monitoring technique may seek to predict the

remaining execution time of each ongoing case of a process [16], the next activity that will be executed in each case

[18], or the outcome of a case in relation to a set of possible business outcomes [19].

According to [20], it becomes fundamental to monitor the progress of production orders to balance the difference

between the original schedule and the actual manufacturing process [21]. In this way, the remaining time prediction

of production orders allows the manager to monitor deviations in the execution of the actual production plan, thus

enabling real-time decision-making related to scheduling. Ideally, the original production plan would be consistent

with the actual manufacturing process. However, this is different from what usually happens due to unexpected

disturbances in production. Breakdown of machine tools, the arrival of urgent orders, and large volumes of unqualified

WIPs that disrupt the original production schedule will result in large fluctuations in the order’s remaining time. Also,

deviations in the time between the arrival of production orders, processing, and preparation time can affect the original

schedule. In this case, these deviations change the production plan gradually and cause a slight fluctuation in the

remaining time. However, since these deviations accumulate over time, rescheduling is likely unavoidable.

Despite numerous works in the predictive monitoring area, there are still several gaps with potential for applying

new methods. This paper aims to address some of these gaps: high frequency of repetitive manufacturing tasks on ma-

chines, the same product with different production sequences, redundant machines, and high process variability (high

number of traces or production order sequences). To achieve that, this paper analyzes two types of logs, one artificially

made and another from a real production system with the mentioned characteristics. To address this complexity, this

article proposes a hybrid method for predicting the remaining time of production orders based on integrating process

mining with machine learning and optimization models. The work assumes that primary data will be available and

be used for process mining and forecasting: the production order ID, manufacturing tasks (activities), machine IDs,

and timestamps (start and end of activities). This dataset, called event log, is the raw material for process mining

application [11].

The proposed hybrid method simultaneously encompasses two approaches used in prediction [17]: (1) annotated

transition system discovered from the event log with operation timing information; (2) machine learning models.

The hybrid method is implemented by the linear combination of predictions from annotated transition and machine

learning models. The linear combination of models is performed by optimizing a linear programming (LP) model that
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minimizes the combined absolute errors of predictions.

The proposed method aims to enhance the accuracy of predicting the remaining time of production orders and

offers significant advantages for managers and decision-makers in manufacturing environments. By utilizing process

mining techniques tailored to the specific characteristics of manufacturing processes, managers can achieve more

precise estimates of when production orders will be completed. This improved accuracy enables better planning and

allocation of resources, such as labor, materials, and equipment, reducing idle time and increasing overall operational

efficiency.

The remainder of this paper is organized as follows: related works and process mining key concepts are presented

in Section 2. Section 3 presents the main ideas of the proposed framework for remaining-time predictions. In Section

4, we present and analyze the artificial logs and the real industrial log. Section 5 shows and discusses the results of the

methods applied to the logs. Section 6 portrays the conclusion of the paper and some remarks about the computational

analysis of the logs.

2. Foundation

2.1. Preliminaries in Process Mining

In process mining terminology, an event is characterized by various attributes, e.g., an event has a timestamp, a

resource identifying the executor, associated costs, and so on [11]. Each event must be associated with a case. When

all case events are in chronological order, we have a trace (a finite non-empty sequence of events, such that each event

appears only once and time is non-decreasing). Note that it is possible to have various cases that follow the same

trace, but each case is different. An event log is a set of traces. In theory, any process with a time dimension could

be stored as an event-log database, including manufacturing activities. Several works formalize the main elements of

process mining. The reader is invited to see [11] and [22].

Case ID Activity Resource Start Timestamp Complete Timestamp Span Order Qty Part Desc. Worker ID

Case 1 Turning & Milling - Machine 4 Machine 4 - Turning & Milling 2012/01/30 06:59:00.000 2012/01/30 07:21:00.000 000:22 10 Cable Head ID4167

Case 1 Turning & Milling - Machine 4 Machine 4 - Turning & Milling 2012/01/30 07:21:00.000 2012/01/30 10:58:00.000 003:37 10 Cable Head ID4167

Case 1 Turning & Milling Q.C. Quality Check 1 2012/01/31 13:20:00.000 2012/01/31 14:50:00.000 001:30 10 Cable Head ID4163

Case 1 Laser Marking - Machine 7 Machine 7- Laser Marking 2012/02/01 08:18:00.000 2012/02/01 08:27:00.000 000:09 10 Cable Head ID0998

Case 1 Lapping - Machine 1 Machine 1 - Lapping 2012/02/14 00:00:00.000 2012/02/14 01:15:00.000 000:00 10 Cable Head ID4882

Case 1 Lapping - Machine 1 Machine 1 - Lapping 2012/02/14 00:00:00.000 2012/02/14 01:15:00.000 000:00 10 Cable Head ID4882

Case 1 Lapping - Machine 1 Machine 1 - Lapping 2012/02/14 09:05:00.000 2012/02/14 10:20:00.000 000:00 10 Cable Head ID4882

Case 1 Lapping - Machine 1 Machine 1 - Lapping 2012/02/14 09:05:00.000 2012/02/14 09:38:00.000 000:33 10 Cable Head ID4882

Case 1 Round Grinding - Machine 3 Machine 3 - Round Grinding 2012/02/14 09:13:00.000 2012/02/14 13:37:00.000 004:24 10 Cable Head ID4445

Case 1 Round Grinding - Machine 3 Machine 3 - Round Grinding 2012/02/14 13:37:00.000 2012/02/14 15:27:00.000 001:50 10 Cable Head ID4445

Case 1 Final Inspection Q.C. Quality Check 1 2012/02/16 06:59:00.000 2012/02/16 07:59:00.000 001:00 10 Cable Head ID4493

Case 1 Final Inspection Q.C. Quality Check 1 2012/02/16 12:11:00.000 2012/02/16 16:12:00.000 004:01 10 Cable Head ID4493

Case 1 Final Inspection Q.C. Quality Check 1 2012/02/16 12:43:00.000 2012/02/16 13:58:00.000 000:00 10 Cable Head ID4493

Case 1 Packing Packing 2012/02/17 00:00:00.000 2012/02/17 01:00:00.000 000:00 10 Cable Head ID4820

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/17 07:01:00.000 2012/01/17 11:05:00.000 004:04 251 Spur Gear ID3846

Case 10 Turning Q.C. Quality Check 1 2012/01/17 11:00:00.000 2012/01/17 11:15:00.000 000:15 251 Spur Gear ID4618

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/17 19:24:00.000 2012/01/17 20:01:00.000 000:37 251 Spur Gear ID4132

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/17 20:01:00.000 2012/01/17 23:43:00.000 003:42 251 Spur Gear ID4132

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/17 23:49:00.000 2012/01/18 06:32:00.000 006:43 251 Spur Gear ID4794

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/18 06:59:00.000 2012/01/18 07:24:00.000 000:25 251 Spur Gear ID3846

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/18 16:33:00.000 2012/01/18 17:55:00.000 001:22 251 Spur Gear ID4132

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/18 17:57:00.000 2012/01/18 20:04:00.000 002:07 251 Spur Gear ID4132

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/18 20:10:00.000 2012/01/19 06:29:00.000 010:19 251 Spur Gear ID4794

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/19 16:12:00.000 2012/01/19 18:09:00.000 001:57 251 Spur Gear ID4132

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/19 18:10:00.000 2012/01/19 20:08:00.000 001:58 251 Spur Gear ID4132

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/19 20:09:00.000 2012/01/20 05:10:00.000 009:01 251 Spur Gear ID4794

Case 10 Turning & Milling - Machine 9 Machine 9 - Turning & Milling 2012/01/22 02:42:00.000 2012/01/22 06:34:00.000 003:52 251 Spur Gear ID4641

Table 1: An example of an industrial manufacturing event log.

Table 1 shows a fragment of an event log related to an industrial manufacturing system (available at: data.4tu.nl).

The first column of the Table shows the case ID, representing the production order ID. In manufacturing, all activities

performed on a given product can be stored in a Production Order (PO). Thus, in this event log, a PO is considered

as a case for process mining application. The second column specifies the activity, in this case, an activity along with

its performed machine, considering that one machine can perform more than one activity. The third column specifies

the resource responsible for each activity. The fourth and fifth columns contain the activity’s start and complete

timestamps. The remaining columns specify the attributes of each case ID and activities. For example, the column
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“Work Order Qty” represents the total of parts processed in an activity by a specific machine. The column “Part Desc”

identifies the products processed by machines (in this segment, two products are processed: cable head and spur gear).

When we consider a specific case, it is possible to identify a sequence of activities. For example, case 1 (or production

order 1) has a sequence of 14 activities. In this example, there are some repetitions of activities.

In the industrial manufacturing domain, we use the terms activities and machines interchangeably for convenience.

We may use (M1,M2,M3) to denote a sequence of three manufacturing activities executed by machines M1, M2 and

M3, respectively. Also, a unique machine can execute n manufacturing activities, such as drilling, turning, and milling.

Thus, we define Mmk as a set of m (m=positive integer) manufacturing machines and k ∈ K, where K is a finite set of

manufacturing operations. Note that depending on the project objective, it is not necessary to identify the operation

performed by a specific machine. Therefore, in the event log, the Mi label is sufficient for a process mining project.

2.2. Related Works

Predictive process monitoring is an area of research that explores ongoing cases to predict future information.

These can be activities, remaining time, or case results [23, 17]. The basic idea of remaining time prediction is il-

lustrated in Figure 1. According to [24], the predictive monitoring literature can be classified into the prediction and

algorithm types dimensions. In the prediction type dimension, one can also identify a subcategory called predic-

tions related to numeric predictions. This subcategory includes the prediction of the remaining time of an ongoing

execution. Another dimension reported by [24] is the approach to building the prediction model. In this case, two

approaches are identified: those based on explicit models, such as annotated transition systems, generally obtained

from the event log, or those that use statistical or machine learning models, such as regression models, classification

models, or neural networks. In this case, the event log extracts attributes that are input to the learning models.

Figure 1: Exemplification of remaining time monitoring and predicting.

Considering the prediction of remaining time, one of the first works in the area is the one proposed by [25]. The

authors propose a transition system annotated with timing information extracted from the event log. The model is then

used to predict the remaining time for an ongoing case. Later work extended the annotated transition system model

by integrating machine learning techniques, e.g., SVM and Naive Bayes [26, 27]. Additionally, [27] also uses data, in

addition to time, to enrich the transition system and the learning model. [28, 29] also propose to extend the annotated

transition model by combining a context-based predictive clustering step. The idea is that different predictors can

characterize different contexts and scenarios.

[30] uses sequence trees model to predict remaining time and next future activity. The model allows the clusteriza-

tion of traces with similar sequences of activities. A prediction model is then built for each node in the sequence tree.

[31] use generally distributed transitions stochastic Petri nets (GDT-SPN) to predict the remaining execution time of a

process instance. [32] extend previous work by exploring the time elapsed since the last event to obtain more accurate

predictions. [33] use Hidden Markov Models (HMM) to predict remaining time. A comparative evaluation shows

that HMM provides more accurate results than annotated transition systems and regression models. [34] introduce

cross-case feature predictions to predict the completion time of an ongoing case. The proposed approaches leverage

not only information related to the ongoing case but also the status of other cases (e.g., the number of concurrent

cases) to make predictions.
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[35] presents a framework capable of correlating process characteristics. They enrich the log with derived in-

formation and then discover correlations using decision trees. One of the proposed correlations is the prediction of

completion times. Predicting future events in process mining is proposed in [36]. The authors use a sliding window

model to transform the event-driven database into a predictive clustering problem, where the target variables are cho-

sen as the characteristics of the next event in the case. [10] propose the same type of prediction. The authors use a

long- and short-term neural network to predict the next event in the log. Along with the next event, the neural network

can deal with several attributes of the event, one of them being the completion time.

A general model is proposed in [37], which aims to answer several questions about a process, in addition to

estimates of completion time: estimates for discarding products in a machine, whether deviations from the regulatory

process cause delays in cases carried out due to non-compliance. The approach combines elements of data and process

mining techniques. [38] argues that most predictive methods for remaining time in business processes are considered

“black boxes” as they predict a single scalar value without decomposing it into elementary components. The authors

extract a process model from the log and replay the current case against it to see its current state. A flow analysis is

then performed to predict the time remaining for completion. [16] researches business process forecasting methods.

They present a review of the literature, as well as a cross-benchmark of 16 methods based on 16 real-life data sets.

Several works propose models for predicting remaining time in the industrial and manufacturing context. In this

case, the term jobs remaining time (JRT) represents the remaining time required to complete the remaining jobs in

the order, which is an instantaneous prediction under real-time conditions [20]. In manufacturing, several factors can

affect the cycle time of a product [39, 40]: work-in-progress (WIP) levels, line-bottlenecks, rework rates, equipment

downtime, mean time between failures/to repair, equipment load, product mix. These factors can cause significant

variations in the original production plan and, consequently, in the job’s remaining time.

Another aspect pointed out by [20] is the trend toward customization of complex products in the industry, which

has led to a change in production mode from make-to-stock (MTS) to make-to-order (MTO). In this scenario, predict-

ing the remaining production time is crucial to meet customer expectations. Works proposing methods for predicting

promised time [41, 42], order completion time [43, 44], cycle time [45, 46, 47, 48], remaining time [40, 20] are very

useful for supporting decision-making in production planning and control.

Digital twins (DT) have emerged as technologies for all-encompassing tools, including monitoring, simulation,

optimization, and prediction. According to [49], advancements in machine learning, the Internet of Things (IoT),

and big data have significantly improved DT features such as real-time monitoring and accurate forecasting. Other

works deal with relevant manufacturing problems that affects remaining time of production orders, as bottlenecks and

its cause analysis. For example, [50] propose an approach that utilises fusion-based clustering and hyperbolic neural

network-based knowledge graph embedding for bottleneck identification and root cause analysis.

The studies referenced above lack a defined framework that facilitates the integration of predictive methods with

an information system and the ever-expanding manufacturing databases. Process mining techniques effectively ad-

dress this gap, as these techniques inherently rely on information systems to generate their logs. Utilizing process

mining to gather and interpret data within an industrial context is a logical step, and extending this approach to make

predictions is a natural progression. This paper presents an alternative to traditional cycle-time prediction methods,

which leverages process mining and utilizes raw data as input.

By employing process mining, new data can be seamlessly collected and integrated into the model, enabling an

online prediction system capable of adapting to changes on the production floor. Our model estimates the remaining

time of a process instance in a manufacturing environment, effectively serving as a prediction for the remaining cycle

time of a product. Also, we observed that only a few of the methods mentioned in this section address the online

aspect of prediction, and those that do primarily focus on business processes. Although manufacturing processes can

be broadly considered within the same framework as business processes, their unique characteristics can be leveraged

to overcome some of the limitations of generic process mining algorithms, resulting in more accurate predictions.

Our paper emphasizes the importance of regularly updating the predictive model to reflect current system char-

acteristics and adapt to changes in the manufacturing process, ensuring ongoing accuracy. Unlike previous models,

this paper develops a unique transition system for each product, ensuring that predictions for one product are not

influenced by others that may share the same machinery but have different cycle times. This specificity enhances

the reliability of the predictions. In addition, the proposed model optimizes the weights of the transition system and

machine learning methods using linear programming, contributing to the predictions’ overall effectiveness.
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3. Proposed Framework

This section presents and explains the proposed prediction model. Our model is composed of a linear combination

of the predictions of five different models. One of those models is a transition system-based model (TSM), which relies

heavily on process mining. The other four models are machine learning models, which are composed of a multiple

linear regression model (MLR), a random forest regression model (RF), a support vector regression model (SVR),

and a k-nearest neighbors regression model (KNN). The linear combination of all five models is done by optimizing

an LP model, which minimizes the combined absolute errors of the predictions. Figure 2 presents a general overview

of the framework.

Figure 2: A general overview of the proposed framework.

Data from a process is collected in the form of event logs. Those datasets are then treated, filtered, and transformed

into forms each model can read. Then, those treated datasets are separated by product. Models are then created

based on each product dataset, i.e., each product has its own TSM, MLR, RF, SVR, and KNN. Based on the testing

predictions of the five models, the weights of the linear combination of the predictions for the hybrid models are

set by optimizing LP models. Finally, given an unfinished product with a partial trace, the hybrid model predicts its

remaining time per product.

For the remainder of this section, we show how a transition system can be extracted from the event log and how

to create the TSM from the transition system. Also, we explain how the TSM can predict the values of traces it has

never seen, as this is of the utmost importance when cross-validation is performed. The machine learning models and

the necessary database transformations are then explained. Here, as a means of comparison, two possible database

transformations are presented, one that accounts for repetitions and one from [40] that does not. Finally, we explain

the LP model, which optimizes the weights of each model’s predictions for the hybrid model.

3.1. Transition System Based Model

A straightforward way to describe a transition system is that it represents all the paths in an event log. It starts

with a mutual initial state from which all the existing paths in the log branch out.

More formally, a transition system can be modeled as a tuple (S , L,T ), where S is the set of states (all possible

states in the process), L is the set of the transition labels (events), and T , the labeled transition relation, is a subset

of S × L × S which describes how the system goes from one state to another. Transition systems are graphically

represented as trees or graphs, in which the states are represented by the nodes and the labeled transition relations by

the vertices. There are different ways to define states and transitions of a transition system. Here, the definitions from

[25] will be used.

A state can be represented by a function lstate that produces some representation given a partial trace σ. Formally,

lstate ∈ T → R, where T is the set of possible traces and R is the set of possible representations (e.g., sequences, sets).

As there is a need to label the states in the transition system, there is also a need to label the events, the transition
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labels. Note that a concatenation of states can represent a path, so there must be a function to connect subsequent

states or transitions. This transition has a label represented by the levent function.

An event can be represented by a function levent that produces some representation given an event e. Formally,

levent ∈ E → R where E is the set of possible events and R is the set of possible (event) representations (e.g., the

corresponding activity name). Now that we have defined lstate and levent functions, creating a transition system is

possible. However, we must still define one last set function to expose the transition system-generating algorithm.

The function hdk creates a sequence of a set’s first k elements. For example, if we apply hd3 to the set defined

by the trace 〈a, b, c, d, e, f 〉, we obtain the partial trace, or sub-trace, defined by the set 〈a, b, c〉. Algorithm 1 shows

a pseudocode that we implemented in Python to create a transition system generating function based on an event log

dataset in which each line contains a process and is separated by cases, and each case is ordered by time.

Algorithm 1 An algorithm to obtain all sub-traces in an event log

Require: A dataset DF
Ensure: A list of sub-traces S T

S T ← empty list

for each case c ∈ DF do
for each k ∈ (0 ≤ k ≤ |c|) do

trace← empty list

for each j ∈ (0 ≤ j ≤ k) do
trace.add(process j from case c)

end for
S T.add(trace)

end for
end for

This algorithm finds all the sub-traces in an event log by going through all observations, which are grouped by

cases and ordered by start time. The sub-traces are obtained by listing all the activities/processes between the case’s

start and the sub-trace’s end. Consequently, the number of sub-traces produced is equal to the number of observations

from the generating dataset, as it allows repetition. This tolerance to repetitions will be essential in constructing the

annotated transition system, as it has annotations that can be different for equal sub-traces.

After using Algorithm 1 and obtaining a list of all sub-traces in the log, the next step in the building of a transition

system-based prediction model consists of attaching annotations [25], based on the target value, to all the different

sub-traces and choosing a function that connects a partial trace to a prediction value. As the prediction target in this

paper is the remaining time, a value related to it from each sub-trace will be the annotation of this sub-trace in the

model.

Case ID Activity Start Time Finish Time Product Qty

1 S 2023/01/16 10:00:00 2023/01/16 10:45:00 A 10

1 P1 2023/01/16 10:45:00 2023/01/16 12:00:00 A 10

1 P2 2023/01/16 12:00:00 2023/01/16 14:30:00 A 10

1 P3 2023/01/16 14:30:00 2023/01/16 16:00:00 A 10

1 E 2023/01/16 16:00:00 2023/01/16 16:30:00 A 10

2 S 2023/01/17 10:00:00 2023/01/17 10:30:00 A 6

2 P1 2023/01/17 10:30:00 2023/01/17 11:00:00 A 6

2 P3 2023/01/17 11:00:00 2023/01/17 12:15:00 A 6

2 P3 2023/01/17 12:15:00 2023/01/17 13:45:00 A 6

2 E 2023/01/17 13:45:00 2023/01/17 14:15:00 A 6

Table 2: An example of an event log.

Consider the following case example based on Table 2: running Algorithm 1 in this event log would give a list with

the sub-traces exposed in Figure 3. Given a partial trace, we want to stipulate a good value for the remaining time.
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A good and straightforward way to calculate the possible remaining time, given that one sub-trace can appear more

than once, is to calculate its mean or median value. However, when accounting for processes that work in batches, a

reasonable operation is to divide the remaining time by the quantity of products from that batch. In equation 1, we

have an expression for the predicted remaining time per product of a sub-trace.

Remaining Time (Trace, ncase) =
Tracecase RT − Traceact S T

ncase
. (1)

In this remaining time per product equation (1), Tracecase RT is the finish time of the whole case, e.g., for Case ID 1 in

Table 2 it is “2023/01/16 16:30:00”, Traceact S T is the start time of the activity from that case, and ncase is the number

of products processed in that case.

It is possible to write a more compact notation for the event log now that the prediction of the remaining time per

product does not need the date information. In Table 3, we have this compact form, where instead of the activities and

the start and finish date, we have a Trace column, which has the trace of the completed case, and, in the superscript of

each activity, there is the remaining time of the case when that activity happened.

Case ID Trace Product Qty End Time

1 〈S 6.5, P15.75, P24.5, P32, E0.5〉 A 10 6.5

2 〈S 4.25, P13.75, P33.25, P32, E0.5〉 A 6 4.25

Table 3: A compact form of the Table 2 log.

With a list of sub-traces and remaining times per product, it is possible to build an annotated transition system.

Algorithm 2 does that by selecting all equal sub-traces and their remaining time per product. Then, as a system

needs just one of the multiple equal sub-traces, it calculates the prediction time of that sub-trace as the mean (or

median) value of the remaining time per product of all the equal sub-traces. Using Algorithm 2 with the sub-traces

and remaining times per product of the example from Tables 2 and 3, we get the annotated transition system of Figure

3.

Algorithm 2 An algorithm to create an annotated transition system

Require: A indexed list of sub-traces S T and values V
Ensure: A annotated transition system ATS

traces, vals, traces inds, list vals← empty list

for each sb ind ∈ S T indexes do
if sb ind � traces inds then

traces.add(S T [sb ind])

rep inds← indexes of S T where it is equal to S T [sb ind]

for each rep ind ∈ rep inds do
traces inds.add(rep ind)

list vals.add(V[rep ind])

end for
vals.add(mean(list vals))

list vals← empty list

end if
end for
ATS ← dictionary where the keys are traces and the values are vals

With the annotations in the transition system explained, we will now explain how the transition system model

connects a partial trace to an existing sub-trace in the system. This connection is of primordial importance for the

model, as its performance can change drastically depending on the connecting function.

As stated in [40], limitations of annotated transition system-based models appear when an input partial trace does

not exist in the system. In those cases, a method for associating an unknown partial trace with a known one in the
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Figure 3: The proposed annotated transition system for the event log in Table 2.

system is needed. Our chosen method for connecting partial traces to ones in the system is based on a similarity score.

A possible way to calculate a similarity score is using the Jaccard index, which is the intersection ratio by the union

of two sets (sub-traces). However, the Jaccard index does not account for similarities in the sequence, e.g., relations

between the activities. Therefore, we will introduce another way to calculate the similarity score of two sub-traces.

Our score depends on the size of the partial trace or the size of the system sub-trace and the number of coinciding

activities in the traces, which must be in the same position. To find an appropriate match to the analyzed partial trace

in the annotated transition system, the model searches all the sub-traces in the system and gives a similarity score

to each one. The predicted remaining time per product given to the analyzed partial trace is an average of all the

annotations from the sub-traces with the best score. Algorithm 3 shows a pseudocode for this connection function in

the case of an unknown partial trace.

Algorithm 3 An algorithm to associate a prediction value to an unknown partial trace

Require: A transition system TS and a partial trace PT
Ensure: A prediction value pred

S max ← 0

match← empty list

for each trace ∈ TS do
S izemax ← max (|PT |, |trace|)
S izemin ← min (|PT |, |trace|)
S ← 0

if S izemax � S izemin then � Optional penalty for different length sub-traces

S ← -1/S izemax

end if
for each k ∈ (0 ≤ k ≤ S izemin) do

if trace[k] is equal to PT [k] then
S ← S + 1/S izemax

end if
end for
match.add((S , trace))

if S > S max then
S max ← S

end if
end for
Mtraces← all trace in match where S is equal to S max

pred← mean value from the annotations of each trace in Mtraces

As seen in algorithm 3, the model can only make a decent prediction if there is a match between an activity

from the partial trace and one from any sub-trace in the system. This fact is an essential factor and disadvantage

of transition system models. Unlike machine learning models, which make predictions based on feature values and
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can output predictions for whatever values its features have, transition system-based models, as presented here, need

training data with a very high degree of similarity to the data in which it will be used.

3.2. Machine Learning Regression Models
To diversify how a prediction can be made, we will present four machine learning methods that will be used

together with the transition system model to predict the remaining time per product in the hybrid model. The four used

ML methods: multiple linear regression (MLR), random forest regression (RF), support vector regression (SVR), and

k-nearest neighbors regression (KNN), were chosen mainly due to their popularity, simplicity of implementation, and

performance. All these methods are widely used mainly in the data science and analysis area, being easy to implement

due to Python’s vast set of ML libraries and achieving great performances in their proper contexts. Another popular

alternative ML method is artificial neural networks (ANN). ANNs were not used because finding the right architecture

for each log and product would be much more complex than optimizing the models of the four methods used.

In addition to the motivation of using the ML methods to build the hybrid model, another motivation for their

usage is to compare two event log encoding methods, one that does not account for activity repetition and one that

does. An event log is not an appropriate form to directly apply an ML model. It usually needs a set of variables, the

features, from which it can derive its internal parameters’ optimal values. Thus, some encoding is needed to extract

information from an event log using a machine-learning model. We will present two possible encodes. Those encodes

transform each event log activity into a feature, e.g., in a column in the transformed dataset.

The first encoding is from [40]. It is similar to the famous one-hot encoding, which gives binary values to cate-

gorical features to inform if the action or thing represented by that feature happened or not. The remaining time per

product is used for the target variable. Applying this transformation, which we will call binary, to the log in Table 2,

we obtain Table 4. As it can be noticed in the transformed log, this encoding does not account for activity repetition.

This lack of repetition information motivates the introduction of another encoding based on frequency.

The second encoding is very similar to the first, except if an activity happens more than once, the frequency of

repetitions is used instead of the number 1 in the repetition and its subsequent lines. Table 5 has the result of applying

this transformation to the log in Table 2.

S P1 P2 P3 E Rem. Time per Prod.

1 0 0 0 0 0.65

1 1 0 0 0 0.575

1 1 1 0 0 0.45

1 1 1 1 0 0.2

1 1 1 1 1 0.05

1 0 0 0 0 0.7083

1 1 0 0 0 0.625

1 1 0 1 0 0.5417

1 1 0 1 0 0.3333

1 1 0 1 1 0.0833

Table 4: Transformed event log from Table 2 using the binary

encoding.

S P1 P2 P3 E Rem. Time per Prod.

1 0 0 0 0 0.65

1 1 0 0 0 0.575

1 1 1 0 0 0.45

1 1 1 1 0 0.2

1 1 1 1 1 0.05

1 0 0 0 0 0.7083

1 1 0 0 0 0.625

1 1 0 1 0 0.5417

1 1 0 2 0 0.3333

1 1 0 2 1 0.0833

Table 5: Transformed event log from Table 2 using the repetition encod-

ing.

The lack of differentiation between lines 8 and 9 of Table 4 can be a problem for machine learning models. The

only information the models have is this dataset, so there is no possible way for the models to understand that lines

8 and 9 come from different sub-traces that repeat an activity. So, the additional information that the frequency

encoding provides could be helpful for more complex decision-based models, such as the random forest, which is

based on decision trees.

Multiple Linear Regression: The MLR method estimates parameters that better describe some observations by

applying a linear relation [51]. For their simplicity and the fact that many real applications have linear correlation,

MLR models are the most commonly used data-fitting methods. This regression uses the relation y = Xθ + ε. Given

an observation vector y ∈ Rn×1 with n observations and a matrix of variables X ∈ Rn×p with p groups of variables,

the MLR model tries to find the optimal vector of parameters θ ∈ Rn×1, which minimizes a vector of errors ε ∈ Rn×1.
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Using Table 4 and Table 5 datasets as an example, the y vector corresponds to the “Rem. Time” column and the X
matrix corresponds to the matrix formed by all the activities columns.

The fair simplicity of the MLR method, while being an advantage, can also be seen as a disadvantage. Unlike

more complex machine learning methods, which have many variable hyperparameters that, if properly chosen, can

seriously boost the method’s performance, the MLR method has no hyperparameters.

Random Forest Regression: The RF method is a machine learning ensemble method that can be used for clas-

sification or regression [52]. It is called an ensemble method because of its construction. An RF model is created by

using the prediction of various decision trees, which are constructed from random samples of the training dataset. As

decision tree models are easily prone to overfitting, e.g., high variance, as the trees grow deeper, the RF method is

a way to reduce the variance by using the average of a set of trees. The predicted value of an RF regression model,

different from a classification model, is the average of the continuous value predicted in each decision tree.

The RF method can be considered a complex machine learning method when we look at the number of variations

it can have. Apart from all the hyperparameters of the decision tree method, such as the depth of the tree, its maximum

number of branches, or its minimum number of leaves on a branch, the RF method has its own hyperparameters, such

as the number of trees, the size of the tree training samples, or the variables in which a tree is trained. Hence, finding

the optimal RF model for a dataset can be fairly difficult, if not impossible. Nonetheless, all this complexity allows

the construction of more robust and well-performing models.

Support Vector Regression: As the name implies, the SVR method is based on the Support Vector Machines

(SVM) method. In the SVM, roughly speaking, an optimal hyperplane that separates the categorical data is searched

by transforming the variables by applying kernel functions. However, in the case of the SVR, no data separation is

needed; instead, data fitting is needed. In the SVR, an optimal hyperplane that better fits the training data is searched

[53].

The SVR, while more complex than the MLR method, which has no hyperparameter, is less complex than the RF

method, hyperparameters-wise. The primary hyperparameters of the SVR method are its kernel function, the kernel

coefficient, and the regularization parameter.

K-Nearest Neighbors Regression: The KNN method is a classification method that classifies an observation

based on the most common class among its k closest neighbors [54]. When applied to regression, instead of the most

common class, the output is the average value of its k closest neighbors. An important technique that can improve the

performance of a KNN model is using a weighted average when calculating the output of the k closest neighbors, and

a standard scheme uses the inverse of the distance, 1/d, as the weight.

When discussing method customization, the KNN is closer to the MLR method than the RF or SVR methods.

While the KNN method still has hyperparameters, they are constrained. One is the number of neighbors k, which

has to be a natural number and usually does not get very high; the other is the weight of the weighted average of the

neighbors’ values; and the third is the type of distance used.

3.3. Hybrid Model
The method introduced in this work builds upon the approach proposed by [40]. As proposed by [40], our ap-

proach employs a transition system built for each product type. However, our method enhances this by integrating

a linear combination of the transition system with four different machine learning models: Multiple Linear Regres-

sion, Random Forest, Support Vector Regression, and K-Nearest Neighbors Regression. In contrast, [40] approach

solely utilized the transition system alongside a linear regression model. Additionally, our method accounts for the

repeatability of activities when transforming the event log into a data table for machine learning models, an essential

consideration in production systems that needed to be addressed in the work of [40]. The following expression gives

the prediction of the hybrid model (HM):

HM = α1 · TS M + α2 · MLR + α3 · RF + α4 · S VR + α5 · KNN. (2)

The αis are the weights of the combination; they follow the relation
∑5

j=1 α j = 1 and are non-negatives. Those

weights are obtained by optimizing a linear programming (LP) model. The logic of the LP model is to find the

coefficients that minimize the sum of the absolute errors from a test set, e.g., create a model that is a union of the

best-performing models.
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Given the matrix Models with the predictions of remaining time values, which has n lines, one for each sub-trace,

and five columns, one for each model, TSM, MLR, RF, SVR, and KNN, and given the vector o containing the actual

remaining time values of each sub-trace, the LP model is defined as:

Min

n∑
i=1

ε+i + ε
−
i (3)

s.t:

5∑
j=1

α j · Modelsi j + ε
+
i − ε

−
i = oi, ∀i = 1, ..., n; (4)

5∑
j=1

α j = 1; (5)

α j, ε
+
i , ε
−
i ≥ 0, ∀i = 1, ..., n, ∀ j = 1, ..., 5. (6)

The objective function in 3 minimizes the sum of the absolute predicted error, |εi|. The first set of constraints in

4 is an equality in which the weights and the errors must vary to make the weighted sum of the predictions, plus a

positive or negative error, equal to the occurred value. The second constraint set in 5 is the already explained sum of

the weights. The last constraint set in 6 is the classical non-negativity constraint of linear programming.

4. Case Study

This section presents, analyzes, and tests our methods on two types of logs, artificially created and from an actual

manufacturer. In the first part, we focus on the artificial logs, explaining what they are and how they were generated.

In the second part, we focus on the real manufacturers’ log, where we present, study, and analyze it. In the last part,

we present the error metrics used and the models’ performance on all the presented logs.

4.1. Artificial Logs
The artificial logs were created using the Python 3 programming language. The artificial logs were generated

considering the following parameters: there are three products, which differ in the machines they need; there are 13

different machines, which process time per product follow a normal distribution and differ depending on the product;

the number of products of each batch varies from 10 to 100 uniformly; the number of products influence the total

process time following a normal distribution; and there is a probability of process repetition.

Figure 4 shows the Petri net representation of the artificial log. In this figure, the activity repetition process

is illustrated apart not to pollute the Petri net representation, as the representation of the repetition with the silent

transition τ is the same for all transitions. In Table 6, we have the normal distribution of each machine’s processing

time per product for each product. The normal distribution for the variation of the total process time of the batch is

N(1, 0.052).

The probability of a case following a specific path was set as equal, so the number of cases of each product should

be very similar in the artificial logs. The probability of process repetition mentioned before refers to the chance of a

product having to repeat the same process consecutively, as in the path 〈M1,M1,M3,M7,M7,M11,M13〉.
For our tests, we generated 5 logs, each with 1000 cases. These logs differ in the probability of process repetition,

with 0%, 5%, 10%, 15%, and 20% chance of process repetition. Because of this variation in process repetition, the

logs also differ in the number of events, with 5663, 5983, 6273, 6633, and 7146 events.

4.2. Real Industrial log
We have tested our approach on an actual industrial event log, which can be found in data.4tu.nl and has a total of

43 products and 31 activities. Table 7 has a fragment of the explored log. The first column of the Table shows the case

ID in this log, representing the production order. The second column specifies the activity, in this case, an activity

along with its performed machine. The third and fourth columns contain the activity’s start and complete timestamps.

12



Figure 4: Petri nets of the artificial logs process, with each color representing a product path.

Product

Machine 1 2 3

M1 N(0.3, 0.052) N(0.25, 0.0252) N(0.2, 0.0252)

M2 N(0.1375, 0.01752) - -

M3 - N(0.225, 0.01252) N(0.225, 0.01252)

M4 N(0.25, 0.052) - -

M5 N(0.25, 0.0252) - -

M6 - N(0.275, 0.03752) -

M7 - - N(0.1175, 0.016252)

M8 N(0.2, 0.0252) - -

M9 N(0.4, 0.0252) - -

M10 - N(0.325, 0.01252) -

M11 - - N(0.2, 0.0252)

M12 N(0.35, 0.0252) N(0.175, 0.01252) -

M13 N(0.15, 0.012) N(0.1, 0.0052) N(0.085, 0.00252)

Table 6: Probability distribution of remaining time per product for each machine-product combination.

The number of products that are being processed resides in column 5. Lastly, the product being processed is indicated

in the last column. Figure 5 shows a representation of the distribution of the machines and their respective processes

on the production floor from the event log. The red arrows follow the trace of Case 1, shown in Table 7.

We notice a lack of events and extreme variability in this event log. Even though the log has 43 products, just

three products are responsible for 56%, or 2586 of the 4543 events. Therefore, we chose to apply our methods to just

these three most frequent products: Cable Head, with 1291 events; Ballnut, with 875 events; and Spur Gear, with 420

events.

Further study of the event log using DISCO software reveals the lack of variant repetition. For the three chosen

products, the number of cases is equal to the number of variants, e.g., there is no process repetition, e.g., each batch

was produced using a different sequence of activities, in this case, machines. Another fact to take note of in this log

is the incredible number of activity repetitions, which, in this case where a batch of products is being manufactured,
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Case ID Resource Start Timestamp Complete Timestamp Work Order Qty Part Desc.

Case 1 Machine 4 - Turning & Milling 2012/01/29 23:24:00 2012/01/30 05:43:00 10 Cable Head

Case 1 Machine 4 - Turning & Milling 2012/01/30 05:44:00 2012/01/30 06:42:00 10 Cable Head

Case 1 Machine 4 - Turning & Milling 2012/01/30 06:59:00 2012/01/30 07:21:00 10 Cable Head

Case 1 Machine 4 - Turning & Milling 2012/01/30 07:21:00 2012/01/30 10:58:00 10 Cable Head

Case 1 Quality Check 1 2012/01/31 13:20:00 2012/01/31 14:50:00 10 Cable Head

Case 1 Machine 7- Laser Marking 2012/02/01 08:18:00 2012/02/01 08:27:00 10 Cable Head

Case 1 Machine 1 - Lapping 2012/02/14 00:00:00 2012/02/14 01:15:00 10 Cable Head

Case 1 Machine 1 - Lapping 2012/02/14 00:00:00 2012/02/14 01:15:00 10 Cable Head

Case 1 Machine 1 - Lapping 2012/02/14 09:05:00 2012/02/14 10:20:00 10 Cable Head

Case 1 Machine 1 - Lapping 2012/02/14 09:05:00 2012/02/14 09:38:00 10 Cable Head

Case 1 Machine 3 - Round Grinding 2012/02/14 09:13:00 2012/02/14 13:37:00 10 Cable Head

Case 1 Machine 3 - Round Grinding 2012/02/14 13:37:00 2012/02/14 15:27:00 10 Cable Head

Case 1 Quality Check 1 2012/02/16 06:59:00 2012/02/16 07:59:00 10 Cable Head

Case 1 Quality Check 1 2012/02/16 12:11:00 2012/02/16 16:12:00 10 Cable Head

Case 1 Quality Check 1 2012/02/16 12:43:00 2012/02/16 13:58:00 10 Cable Head

Case 1 Packing 2012/02/17 00:00:00 2012/02/17 01:00:00 10 Cable Head

Table 7: Case 1 of the event log.

Figure 5: Layout of the industrial process from the event log, exemplifying the process of Case 1 from Table 7.

could be interpreted as the production of a whole batch, which was segmented because of production halts due to

emergence stops or the use of the same machine for the production of other products. Frequency encoding can be a

good alternative with almost no case without repetition.

Another important fact about this event log is the frequent concurrency of activities, as shown in lines 7 to 10, 14,

and 15 of Table 7. This concurrency can be interpreted as the parallelization of the production line, where there is
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more than one machine or worker doing the same process simultaneously. This kind of process behavior in event logs

can negatively affect the prediction results of ML models as most ML approaches view event logs as merely sequential

data rather than sequential manifestations of a concurrent system [22].

In Figure 6, we have a simplified process map of the event log extracted using DISCO. We emphasize that this

map is a simplified version, where less frequent paths are not represented, because the entire map is unreadable as the

process is unstructured, also called a Spaghetti process. This nonexistence of a defined process structure is true for all

products with a reasonable number of cases, not just the process as a whole. All the presented information about the

studied log demonstrates how it could be challenging to extract decent information from it.
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Figure 6: A representation of the process from the studied log created by DISCO.

4.3. Testing the models

For both the artificial and real logs, a total of 12 models were tested: the baseline model; the TSM; two models

of each of the four ML methods, which vary on the used encoding, binary and repetition; and two models of the HM,

which also vary on the used encoding for the ML models.

The baseline model is a very simplified version of the TSM. Instead of aggregating equal sub-traces, which can be

seen as the whole picture of a case in an event, it just uses the last process performed in the sub-traces. As an example,

instead of the tree created by the TSM in Figure 3, the baseline model would form just a list where the indexes are

the activities/processes in the data and the values are the mean/median remaining time per product of every sub-trace

where that activities/processes was the last performed. In the case of the data from Table 3 and taking activity P3 as an

example, while in the TSM there are three different sub-traces and values which have P3 as the last activity, in the case

of the baseline model, all these three different sub-traces would share the same value derived from their mean/median

remaining time per product.

The training process was the same for all models: a 5-fold cross-validation [55] with shuffling of the events. Cross-

validation is necessary to evaluate the models’ capability of extrapolating from its training data and make predictions

for unknown cases [56]. In this manner, we decided that a 5-fold, i.e., a data division of 80% for train and 20% for

test, is enough to assess the models’ quality. The shuffling is necessary because the logs are ordered by case and

each case by time, so not doing a shuffle would mean that in the train-test division, whole groups of cases would be

excluded from the training or the testing set.

The leading accuracy indicator chosen is the MAE, or mean absolute error, as it is the same, ignoring scale, as

used in the LP model objective function 4. Another accuracy indicator used is the RMSE, or root mean square error,

which emphasizes outliers errors. The last one is the MAPE, or mean absolute percentage error, a percentage indicator

15



of the MAE. In 7, we have the formulas for the used accuracy indicators.

MAE =
1

n

n∑
k=1

∣∣∣yk − yk

∣∣∣ RMSE =

√√
1

n

n∑
k=1

(
yk − yk

)2
MAPE =

100%

n

n∑
k=1

∣∣∣∣∣∣yk − yk

yk

∣∣∣∣∣∣ (7)

where yk is the actual value and yk is the predicted value.

A disclaimer for the calculation of the MAPE: in the real log tests, it was calculated using both the mean and the

median, as the computation by the mean is hugely affected by the fact that only a few smaller values can result in

extremely large relative errors (dividing “almost zero” leads to “almost infinite”), which is a known problem of this

error measure [57]. Calculating the MAPE using the median allows a better understanding of the models’ performance

for the whole log, as it ignores extreme relative errors.

The models’ implementations, logs’ dataset treatment and transformation were done using Python 3. Almost all

implementation extensively used the numpy library. The pandas library was used for the data manipulation. All the

machine learning algorithms are from the scikit-learn library. The pyomo library and the glpk solver were used for

the LP model construction and optimization. Lastly, the error plots were made using the matplotlib library.

The hyperparameters’ optimization of the ML models were done manually by varying the different hyperparam-

eters values until a good local optima of each ML model, based on the test errors, were found. This search avoided

spending too much time on just one model, as it could lead to biased results. As the MLR models have no hyperpa-

rameters, they were not modified. The modified hyperparameters of the RF models were the number of trees and the

maximum tree depth, and the model optimization was done by prioritizing the MAE score. The kernels, their degrees

and coefficients, and the regularization parameter were modified for the SVR models. Lastly, for the KNN models,

the number of neighbors and the weight function were modified.

In the Tables and Figures with the tests results, we will be using the following notations: the “B” at the end of the

models’ names symbolizes the use of the binary encoding; the “R” at the end of the models’ names symbolizes the

use of the repeating encoding.

Tables 8, 9, and 10 have the mean MAE, RMSE, and MAPE from the cross-validation of each model for each of

the three products: 1, 2, and 3, and each of the five repetition probabilities of the artificial logs. Tables 11, 12, and

13 have the mean MAE, RMSE, and MAPE from the cross-validation of each model for each of the three products:

Cable Head (CH), Ballnut (BN), Spur Gear (SG). In Figure 7, we have graphs for the MAE and MAPE of the artificial

logs experiments. In Figure 8, we have graphs for the MAE and MAPE of the real log’s experiments.

As 5-fold cross-validation was done, the hybrid models have coefficients for each fold. In Tables 14 and 15,

we have the mean coefficients of each hybrid model for each product of the artificial logs and the real log tests,

respectively.

Models MAE RMSE MAPE

Prob. Rep. 0% 5% 10% 15% 20% 0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

Baseline 0.0554 0.0794 0.1169 0.1538 0.2184 0.0803 0.1365 0.1960 0.2430 0.3317 6.1889 8.0272 11.1376 13.3516 18.2417
TSM 0.0555 0.0842 0.1221 0.1658 0.2349 0.0803 0.1436 0.1986 0.2523 0.3471 6.1980 9.1453 12.8635 16.2503 22.3857
MLR B 0.0675 0.0917 0.1318 0.1700 0.2311 0.0869 0.1396 0.1932 0.2351 0.3218 10.0204 11.7712 15.6617 17.9113 23.9770
MLR R 0.0675 0.1232 0.1809 0.2266 0.2933 0.0869 0.1688 0.2391 0.2868 0.3821 10.0204 22.4435 34.7992 40.1964 51.2728
RF B 0.0558 0.0794 0.1170 0.1537 0.2180 0.0808 0.1365 0.1959 0.2425 0.3316 6.1881 8.0301 11.1508 13.3632 18.1925
RF R 0.0558 0.0799 0.1190 0.1558 0.2198 0.0808 0.1370 0.1955 0.2420 0.3299 6.1881 8.1218 11.4135 13.7176 18.7902
SVR B 0.0661 0.0940 0.1307 0.1672 0.2273 0.0854 0.1418 0.1959 0.2391 0.3286 13.0363 13.9129 17.1863 19.7737 24.4039
SVR R 0.0661 0.0962 0.1334 0.1701 0.2253 0.0854 0.1418 0.1927 0.2391 0.3230 13.0363 16.3251 19.9748 21.3453 25.1160
KNN B 0.0555 0.0817 0.1200 0.1692 0.2275 0.0803 0.1408 0.1967 0.2338 0.3202 6.1806 8.1833 11.7950 16.4591 21.6750
KNN R 0.0555 0.0831 0.1267 0.1781 0.2491 0.0803 0.1408 0.1967 0.2415 0.3481 6.1806 8.7300 13.9371 19.2370 26.1582
HM B 0.0553 0.0793 0.1169 0.1537 0.2178 0.0801 0.1366 0.1953 0.2418 0.3302 6.1664 8.0126 11.1970 13.4101 18.3180
HM R 0.0553 0.0798 0.1183 0.1556 0.2194 0.0801 0.1368 0.1939 0.2415 0.3278 6.1664 8.1245 11.5899 13.7640 19.2555

Table 8: Errors of the models for product 1 from the artificial logs.
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Models MAE RMSE MAPE

Prob. Rep. 0% 5% 10% 15% 20% 0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

Baseline 0.0293 0.0665 0.0918 0.1304 0.1632 0.0417 0.1239 0.1520 0.2114 0.2573 4.4983 8.0131 10.4176 14.0308 16.3743
TSM 0.0293 0.0686 0.0923 0.1351 0.1707 0.0417 0.1264 0.1526 0.2138 0.2650 4.4983 8.6257 11.0923 15.9341 19.1106
MLR B 0.0293 0.0731 0.1002 0.1408 0.1711 0.0417 0.1188 0.1445 0.1999 0.2491 4.5010 9.5722 13.2879 18.8824 20.8418
MLR R 0.0293 0.1194 0.1466 0.2072 0.2506 0.0417 0.1606 0.1852 0.2635 0.3242 4.5010 34.2347 40.8524 56.6729 62.2815
RF B 0.0293 0.0665 0.0919 0.1303 0.1630 0.0418 0.1240 0.1521 0.2108 0.2571 4.5001 8.0041 10.4283 14.0466 16.3422
RF R 0.0293 0.0665 0.0906 0.1303 0.1629 0.0418 0.1238 0.1507 0.2103 0.2566 4.5001 8.0187 10.4044 14.0794 16.3784
SVR B 0.0478 0.0910 0.1130 0.1452 0.1748 0.0571 0.1251 0.1500 0.2056 0.2559 19.4117 23.0801 25.2540 27.0915 28.1274
SVR R 0.0478 0.0878 0.1109 0.1444 0.1746 0.0571 0.1244 0.1500 0.2046 0.2560 19.4117 19.6129 24.0299 26.3591 27.6952
KNN B 0.0294 0.0721 0.1003 0.1401 0.1672 0.0419 0.1198 0.1451 0.2003 0.2529 4.5144 8.8619 12.5056 17.5382 19.1232
KNN R 0.0294 0.0732 0.0998 0.1403 0.1752 0.0419 0.1224 0.1453 0.2042 0.2558 4.5144 9.2851 13.3714 18.4669 22.2621
HM B 0.0292 0.0664 0.0912 0.1301 0.1627 0.0416 0.1236 0.1500 0.2097 0.2563 4.4923 8.0181 10.5976 14.1194 16.4965
HM R 0.0292 0.0664 0.0905 0.1302 0.1626 0.0416 0.1231 0.1499 0.2098 0.2555 4.4923 8.0147 10.4250 14.1482 16.7252

Table 9: Errors of the models for product 2 from the artificial logs.

Models MAE RMSE MAPE

Prob. Rep. 0% 5% 10% 15% 20% 0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

Baseline 0.0231 0.0445 0.0665 0.0758 0.1027 0.0316 0.0805 0.1159 0.1261 0.1605 5.6046 8.7246 11.3866 13.1239 16.7276
TSM 0.0231 0.0459 0.0678 0.0780 0.1054 0.0316 0.0823 0.1172 0.1278 0.1612 5.6046 9.3055 12.3233 14.3098 18.4082
MLR B 0.0230 0.0480 0.0730 0.0823 0.1092 0.0316 0.0781 0.1094 0.1203 0.1547 5.5894 10.1874 14.1695 16.9123 21.9982
MLR R 0.0230 0.0711 0.1088 0.1216 0.1516 0.0316 0.0972 0.1422 0.1607 0.1951 5.5894 27.7812 40.0128 44.1003 52.3384
RF B 0.0231 0.0445 0.0665 0.0758 0.1025 0.0317 0.0805 0.1157 0.1260 0.1603 5.6032 8.7246 11.3923 13.1326 16.7231
RF R 0.0231 0.0446 0.0665 0.0760 0.1026 0.0317 0.0807 0.1155 0.1261 0.1602 5.6032 8.7385 11.4050 13.2109 16.8009
SVR B 0.0398 0.0740 0.0907 0.0945 0.1160 0.0502 0.0904 0.1159 0.1255 0.1593 25.2323 31.3303 31.8166 31.2830 32.7415
SVR R 0.0398 0.0735 0.0902 0.0934 0.1156 0.0502 0.0915 0.1163 0.1249 0.1591 25.2323 31.0173 31.1032 30.2643 31.8700
KNN B 0.0231 0.0457 0.0712 0.0808 0.1122 0.0316 0.0797 0.1101 0.1202 0.1715 5.6265 9.1742 13.0184 15.8258 20.3239
KNN R 0.0231 0.0480 0.0738 0.0823 0.1140 0.0316 0.0803 0.1126 0.1225 0.1654 5.6265 10.0207 14.1451 16.4548 22.6303
HM B 0.0230 0.0444 0.0664 0.0757 0.1023 0.0316 0.0801 0.1150 0.1255 0.1600 5.5868 8.7362 11.4301 13.1739 16.7454
HM R 0.0230 0.0446 0.0664 0.0760 0.1025 0.0316 0.0803 0.1149 0.1258 0.1594 5.5868 8.7404 11.4630 13.2324 17.0276

Table 10: Errors of the models for product 3 from the artificial logs.

MAE CH BN SG

Baseline 8.3423 5.8747 3.9360
TSM 4.3717 4.9450 3.0017
MLR B 10.1812 7.0488 4.2198
MLR R 10.2119 7.5439 4.4750
RF B 6.2484 5.3294 3.3700
RF R 5.6483 5.2264 3.4164
SVR B 6.1168 5.2067 3.2750
SVR R 5.7978 5.1382 3.0943
KNN B 7.7062 5.4610 3.6392
KNN R 5.8211 5.4791 4.0967
HM B 4.3476 4.8385 2.8121
HM R 4.3543 4.8084 2.8303

Table 11: MAE of all models for each of the tree products.

RMSE CH BN SG

Baseline 21.4302 14.3207 7.1721
TSM 17.3217 13.8988 6.6488
MLR B 19.9699 13.3708 6.2892
MLR R 21.2111 13.8471 6.4195
RF B 18.1089 13.4592 6.0951
RF R 18.1519 13.3185 6.1731
SVR B 18.7195 13.5407 6.2923
SVR R 18.8092 13.5647 5.7806
KNN B 19.5602 13.5082 6.4981
KNN R 19.4075 14.2169 7.7105
HM B 17.0915 13.4764 5.9150
HM R 17.0609 13.4366 5.7933

Table 12: RMSE of all models for each of the tree products.

5. Results and Discussions

Analyzing the results of the artificial logs tests from Tables 8, 9 and 10, an interesting result is noticeable: all

models, except the MLR with repetition encoding and the two SVRs, show very similar performances. Even more

interesting is how the baseline model outperformed almost all models in all artificial log instances. The simplicity of

the logs can explain this incredible performance of a really simple model. This will be clearer when discussing the

real log results, where the baseline model performed very poorly.

Another noticeable aspect of the models’ performance in the artificial logs is how none of the models were able

to cope with the increased probabilities of repetition. A reason for this behavior is the increase of possible activity

paths that the activity repetition enables, thus increasing the variability in remaining time values, i.e., increasing the

inherent randomness of the data.
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MAPE CH BN SG

Baseline 71.9816 (21942) 79.2313 (2047) 67.3916 (9258)
TSM 2.5956 (10405) 23.9265 (1248) 17.4189 (1116)
MLR B 100.8389 (38777) 154.0191 (4760) 79.2256 (8515)
MLR R 95.6097 (27538) 199.7470 (8771) 102.5075 (24976)
RF B 30.4513 (18476) 55.0757 (1363) 58.2252 (1689)
RF R 13.6041 (15813) 50.5332 (1814) 48.2315 (2044)
SVR B 22.0140 (17368) 57.7457 (1242) 52.0886 (1752)
SVR R 17.8158 (13309) 60.4407 (1541) 46.2241 (4519)
KNN B 39.3435 (6607) 60.1598 (1188) 55.0322 (1760)
KNN R 4.6462 (13878) 48.1100 (1550) 35.8785 (5791)
HM B 3.8588 (11141) 35.0561 (1325) 28.5584 (1488)
HM R 3.2231 (10886) 38.0854 (1372) 32.1206 (2179)

Table 13: MAPE of all models for each of the tree products. For each products there are two values, the one in the left is the calculated using the

median and the one in the right is using the mean.

Figure 7: Mean MAE and MAPE of all models tested on the artificial logs.

For the MAE values of the artificial logs tests, the overall best model is the hybrid with binary encoding, which

showed better or equal results in all instances, with just two exceptions in product 2 with 10% and 20% probability of

repetition, where the hybrid with frequency encoding performed better. As the hybrid models are optimized based on

the MAE, this supremacy on MAE values does not necessarily translate to better RMSE or MAPE values.

On an RMSE-focused analysis, the results are mixed: for product 1, the best model is the KNN with binary

encoding; for products 2 and 3, the best model is, surprisingly, the simplest ML model, the MLR with binary encoding.

A good performance of the MLR model is not a surprise, given that the artificial logs follow well-behaved paths with

normally distributed remaining time values. Also, better results on a less punitive metric on general models are

expected, as the RMSE punishes more severely outliers than the MAE. Looking at the MAPE values, the baseline

model and the RF with binary encoding are consistently the best models when there is any activity repetition. The

hybrid models showed a lower MAPE just in the cases without repetition. The MAPE values of the SVR models

of product 3 express a very interesting and unique behavior. In addition to their odd behavior of not having their
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Figure 8: Mean MAE and MAPE of all models tested on the real log.

performance as affected by the increase in the probability of repetition as all the other models, they performed better

in the 15% than in the 5% and 10% probability of repetition.

Overall, the artificial tests results showed that most models behaved very similarly and performed well on mod-

erately well distributed-data and well-behaved paths. There are only two types of models that showed poor or odd

performance: the MLR with frequency encoding and both SVR models. It is noticeable how the repetition encoding

is not a good encoder for the MLR model, showing why the encoding is critical as it severely affected the performance

of a method. As for the SVR models, they performed worse on the 0% probability of repetition instance than the rest.

However, as the repetition probability increased, their scores got closer to the rest of the models. This indicates that

the SVR can be a good choice when dealing with data with a lot of randomness.

Now, we shift our analysis to the real industrial log tests. From the results in Table 11, we can notice that

MAE values-wise, almost all models for all the three products had a better performance than the baseline, with the

exceptions being the MLR B the MLR R. These results demonstrate well the importance of choosing the suitable

method for the data as, discordant with the artificial logs results where the baseline performed really well and the

MLR B did not perform poorly, for the messy data in the real log, these simpler methods cannot reach an acceptable

performance level. When analyzing the MAE results, it is noticeable how the different encodings affected each method

and product differently. Excluding the MLR models, as the same pattern from the artificial logs tests of the repetition

encoding being worse happens again, for product CH, the models with the repetition encoding showed consistently

better results. However, the results for products BN and SG are mixed.

Comparing the TSM with the ML models shows that it performed better than all the ML models. These results

are not surprising, given our analysis of the event log. For an event log with no visible pattern, the ML models that

usually search for observations with similar behaviors to construct their prediction models may struggle. Furthermore,

as the TSM is based on an annotated transition system, its predictions are directly based on the observed values.

Moreover, because the TSM makes its predictions based on the similarity score, its predictions are not based on

pattern recognition but on trace similarity. In this event log where there are a lot of unique traces, if a trace is

sufficiently similar to another, there is a high probability that they are related. Consequently, the prediction will most

likely be more accurate.

Analyzing the results of the ML models using the two encodings, we can say that in the artificial logs, the models
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Product 1 Prob. Rep. TSM MLR RF SVR KNN

HM B
0%

0.3993 0.0118 0.1328 0.0045 0.4517
HM R 0.3993 0.0118 0.1328 0.0045 0.4517

HM B
5%

0.0480 0.0281 0.8270 0.0000 0.0968
HM R 0.0422 0.0103 0.8319 0.0155 0.1000

HM B
10%

0.0518 0.0188 0.9116 0.0 0.0178
HM R 0.2102 0.0095 0.7208 0.0012 0.0583

HM B
15%

0.0000 0.0268 0.9649 0.0083 0.0000
HM R 0.0601 0.0098 0.9183 0.0000 0.0119

HM B
20%

0.0143 0.0262 0.9343 0.0000 0.0253
HM R 0.0133 0.0050 0.8635 0.0969 0.0213

Product 2 Prob. Rep. TSM MLR RF SVR KNN

HM B
0%

0.2753 0.0000 0.3953 0.0071 0.3222
HM R 0.2753 0.0000 0.3953 0.0071 0.3222

HM B
5%

0.0244 0.0314 0.9367 0.0023 0.0052
HM R 0.0246 0.0039 0.8981 0.0066 0.0669

HM B
10%

0.4153 0.0047 0.5226 0.0004 0.0571
HM R 0.0553 0.0036 0.9030 0.0000 0.0381

HM B
15%

0.0440 0.0000 0.9086 0.0064 0.0410
HM R 0.0340 0.0000 0.9392 0.02124 0.0056

HM B
20%

0.0930 0.0257 0.8454 0.0024 0.0335
HM R 0.0784 0.0015 0.8419 0.0369 0.0413

Product 3 Prob. Rep. TSM MLR RF SVR KNN

HM B
0%

0.0000 0.6918 0.1121 0.0046 0.1914
HM R 0.0000 0.6918 0.1121 0.0046 0.1914

HM B
5%

0.0601 0.0000 0.6805 0.0030 0.2564
HM R 0.0558 0.0052 0.8740 0.0037 0.0613

HM B
10%

0.0995 0.0071 0.8566 0.0021 0.0346
HM R 0.0778 0.0030 0.8758 0.0039 0.0396

HM B
15%

0.0183 0.0237 0.9429 0.0011 0.01413
HM R 0.0162 0.0063 0.9605 0.0015 0.0155

HM B
20%

0.0714 0.0323 0.8232 0.0047 0.0684
HM R 0.0992 0.0071 0.8653 0.0042 0.0243

Table 14: Mean coefficients of all hybrid models for the artificial logs tests.

Cable Head TSM MLR RF SVR KNN

HM B 0.9586 0.0002 0.0143 0.0258 0.0010
HM R 0.9447 0.0014 0.0295 0.0036 0.0208

Ballnut TSM MLR RF SVR KNN

HM B 0.6825 0.0134 0.0161 0.2165 0.0716
HM R 0.5909 0.0022 0.0227 0.3213 0.0630

Spur Gear TSM MLR RF SVR KNN

HM B 0.6704 0.0044 0.0723 0.1587 0.0943
HM R 0.5036 0.0260 0.0705 0.3999 0.0000

Table 15: Mean coefficients of all hybrid models.

with the binary encoding were better, while in the real log, the models with the repetition encoding performed better.

The differences between the encodings in the artificial logs were very slight, excluding the MLR with repetition

encoding, with the binary encoding being better by a small margin. The difference is also slight in the real log when

we just count how many times each encoding was better than the other. However, contrary to the MLR models in

the artificial logs and real log, the SVR models performed much better with the repetition encoding, and there was
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an isolated case for the KNN where the binary encoding performed very poorly. From these results, the repetition

information may be more suitable for more complex methods, such as the RF or the SVR, in contrast to simpler

models, such as the MLR, which can not utilize the additional information or even the KNN.

It is noticeable when analyzing the MAE values and the hybrid models’ coefficients in Tables 14 and 15 that the

coefficients follow a particular logical pattern. For all instances, models that perform better have a higher coefficient

value, i.e., have more influence on the hybrid models. As the coefficients follow this pattern, what we have in Table

14 is that, on average, the models that make up more of the hybrid models for the artificial logs are mainly the TSM

and RF models, with the KNN models being less prominent but still having some influence. In table 15, we have a

monopoly of the TSM for the CH hybrid model, while the BN and SG hybrid models are more diverse. The TSM still

has the biggest coefficients for these last two products, but the SVR has a significant influence, and the RF and KNN

also participate.

When comparing the differences between the hybrids and the other models, an interesting detail can be noticed:

the bigger the difference between the best non-hybrid model and the other models, the smaller the difference between

the hybrid and the best non-hybrid model. This is most noticeable when comparing the results from product CH,

where the TSM has a much better MAE than the ML models but is just slightly worse than the hybrid models, with

products BN and SG, where the TSM has a similar MAE as the ML models but is noticeably worst than the hybrid

models.

These differences in MAE make the interpretation of hybrid models’ coefficients values clearer. A pattern in both

artificial and real logs results connecting these coefficients and the model’s performance is that the better a model’s

MAE is, the bigger its coefficient is in the hybrid models. To demonstrate this pattern, we ordered the models by their

MAE values, ascending order, and by their hybrid models’ coefficients values, descending order, of each instance and

log. Table 16 shows the mean absolute difference in the order of the MAE and hybrid models’ coefficients values

positions of each model for the artificial and real logs. In Table 16, no model had a mean difference in position bigger

than one, which means that, on average, if a model has a specific position in MAE performance, its hybrid model

coefficient will have this same position in coefficient value.

Log TSM MLR RF SVR KNN

Artificial 0.7333 0.9333 0.2000 0.6667 0.7333

Real 0.0000 0.1667 0.5000 0.1666 0.8333

Table 16: Mean absolute difference of the position of the models in a MAE rank and a hybrid models’ coefficient rank.

6. Conclusion

This paper presented some remaining time prediction methods based on process mining, machine learning, and

a hybrid approach. As an annotated transition system, the transition system model was established based on process

mining techniques. We introduced four machine learning methods and two encodings, which were used to present our

hybrid approach that combines process mining with machine learning methods. The presented models are “product-

oriented” and capable of coping with manufacture particularities, in which traces are represented as the activities

already performed in the process, and a prediction of an incomplete trace is performed.

The time predictions made by the framework presented in this paper are remaining time per product, which

deals with batch-type manufacturing where products can have similar production times but different batch sizes.

Furthermore, the presented annotated transition system-based model (TSM) introduces a similarity score based on

sequence and size similarity, which copes with the “no trace” limitation of a transition system, e.g., if there is no equal

sub-trace in the system, it cannot establish a prediction value.

We introduced four machine learning methods: multiple linear regression, random forest regression, support vector

regression, and k-nearest neighbors regression. Each of these methods is very different from the others, and the use of

these methods as a way to introduce the hybrid approach allowed the impact of different encodings of event logs for

machine learning methods to be shown. Two encodings were presented and compared: the binary encoding, which

does not hold the activity repetition information, and the repetition encoding, which does.
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We tested and validated the presented methods and approach in two different situations: on artificially created logs

and on an actual data log from a real manufacturer. The artificial logs recreate the log of three products using their Petri

net, the probability distributions of their activities’ remaining time values, and their activity repetition probabilities.

Consequently, the artificial logs are well-behaved and show a well-defined process structure. On the other hand, our

apriori analysis of the real industrial log demonstrated some of the challenges that this log had, such as the lack of

trace repetition, an incredible amount of variants, the occurrence of concurrent activities, and activity repetition.

Our tests of the models for the artificial logs showed surprising results, with almost all models performing well

and the simple baseline model performing incredibly well. The fact that almost all models’ performance equally

decreased as the repetition probability increased demonstrated how difficult it is to cope with inherent randomness

and how unpredictable reworking can seriously affect a production line. Overall, the best-performing method in these

tests was the hybrid with binary encoding, but the hybrid with frequency encoding also showed similar results.

For the real log, in our leading indicator, the MAE, the model that performed better was the hybrid model with

the repetition encoding. The differences between the hybrid models and the best non-hybrid model were slim when

the hybridization was low and higher when the hybridization was high, demonstrating that the hybrid models perform

better if the models that make it are well mixed.

Concerning the encoding comparison, the results were different for the two tests. According to the results of

the artificial logs, the best encoding is the binary. However, the real log results show that the repetition encoding

performed better overall, especially for the more complex and better-performing ML models: RF and SVR.

The estimates provided by the presented methods are satisfactory as quantified by the accuracy measures. A

good remaining time estimate could be the difference between an accomplished and a non-accomplished customer

expectation. Considering the annotated transition system-based method, its ease of use appeals to manufacturing

professionals. Since it does not require any specific process mining software, the learning curve to use it is greatly

reduced, and there are no associated costs. As for the machine learning methods, they are less automated for use than

the TSM, as they require hyperparameter tuning and, as shown, have a performance that varies a lot depending on the

encoding used. The hybrid method is as appealing as the annotated transition system-based method when there are at

least two models and a linear programming solver.

Given the clear difference that different encodings can have in these ML methods’ performance, future research

could be associated with improving the ML methods for remaining time prediction in a process log. A more profound

analysis of the process structure and the ML method can help to develop a better encoding that favors the process

structure and method logic.

Our prediction method, built on machine learning models (ML), can provide greater reliability to production

and planning control managers. However, a challenge that arises is how to generate confidence in these models

for PPC managers. In this context, [58] proposes to apply explainable AI methods to create trustworthy AI-based

manufacturing systems. Consequently, we are investigating the enrichment of our system to explain their reasoning

processes and outputs (e.g., predictions) automatically.

Moreover, accurate production order completion times predictions allow managers to provide more reliable deliv-

ery timelines to customers, improving customer satisfaction and trust. This capability also aids in identifying potential

delays earlier in the production process, enabling proactive measures to mitigate risks, such as adjusting schedules

or reallocating resources. In highly competitive markets, where meeting deadlines is crucial, the ability to forecast

production timelines with greater certainty can become a key differentiator, enhancing the company’s reputation and

potentially leading to increased market share.

Building on the promising results of our current approach, several avenues for future research have been identified

to further enhance the accuracy and applicability of remaining time predictions in production orders. Firstly, future

work will explore integrating additional machine learning models into our hybrid approach. By incorporating a

broader range of models, we aim to improve the robustness and precision of our predictions, adapting to varying

production environments and complexities.

Another important direction for future research involves including failure and maintenance stop events in the

event log. By accounting for these critical factors, we can develop a more comprehensive model that reflects real-

world disruptions, thereby increasing the reliability of the predictions. Additionally, integrating our approach with

scheduling systems represents a crucial step towards not only keeping production orders within their due dates but

also minimizing delays. This integration will allow for more dynamic and responsive scheduling, aligning production

timelines more closely with operational realities.
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Finally, future work will also consider including additional attributes in the event log, such as product color, fam-

ily, and raw materials. By expanding the range of attributes analyzed, we can capture a more nuanced understanding

of how different factors influence production times, leading to even more accurate and context-sensitive predictions.

These investigations will contribute to the continuous improvement of production order management, providing valu-

able tools for optimizing manufacturing processes.
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4 HOW CAN A CONTEXT-BASED CLUSTERING OF DRIVERS HELP
INCREASE FUEL EFFICIENCY?

Connected vehicles with vehicle-to-cloud (V2C) connections are vehicles

that have the capability of sending and receiving information from a server. This

information can be miscellaneous and so can be their applications. We wrote

this paper to demonstrate how this data can generate value for both the vehicle’s

manufacturer and drivers.

An important aspect of a vehicle, especially for the drivers, is the vehicle’s

fuel efficiency. Improvements in fuel efficiency values mean lower cost and

environmental impact. In this paper, we propose an indirect and passive way to

increase fuel efficiency by using data from connected vehicles’ trips.

Humans are naturally competitive. Our proposition in this paper is to use

this competitiveness by relating it to fuel efficiency. For this, fuel efficiency rankings

of the drivers are proposed. However, given the fact that the drivers can be in

different environments on each trip, something that affects fuel efficiency, it would

not be fair to insert all trips in the same ranking.

To solve this problem, a context-based clustering is presented. This clustering

can identify and separate trips into different environments based on context-related

values such as distance, time, and speed. With this information it is possible to

create individual rankings for each context, making fair fuel efficiency comparisons.

Even though the presented context-based clustering was projected to build

fair fuel efficiency rankings, we also present other possible applications. One is

particularly interesting, as it served as a spark for the research of the next paper.

This paper was submitted to the journal “Transportation Research Part D:

Transport and Environment” and, until the writing of this, is under review.
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Abstract

The automotive industry is evolving, and with the popularization of big data it is natural that the production of con-

nected vehicles is growing. Among the many ways to extract value from vehicles’ data is the identification of the

drivers’ environment, e.g., in which context they can be inserted, which influences fuel efficiency. In this paper, we

present a study on the clustering of vehicles, based on their context and without using highly sensitive GPS data, to

built unbiased fuel efficiency rankings using data from vehicles from all over Europe. We propose a framework for the

clustering of the data before a fuel efficiency ranking may be applied. K-means models were tested and trained with

historical data to cluster new unseen data and validated using available fuel consumption data. Also, we show how

our method can be used for analyzing fleet behavior, improving recommendation systems, and assisting in product

development.

Keywords: Connected vehicles, Driving context, Fuel efficiency, Clustering, k-means

1. Introduction

More than ever, the industry is shifting towards data-driven solutions and adapting to new technologies [1]. Nowa-

days, collecting and using vast amounts of data is already a reality for most medium to big-size companies. This

growing accumulation of vastly different types of data is driven by the ever-growing possibilities in the generation of

value that the advancements in data processing and machine learning techniques are creating [2].

In the automotive industry, data collection is becoming a common trend [3] as more connected vehicles enter

the market each year [4]. A connected vehicle, precisely a vehicle with V2C (vehicle to cloud) connection [5], is a

cellular-enabled vehicle that connects to a central server, enabling the receiving and sending of data using the mobile

network [6]. The increase in the development and production of connected vehicles is a direct consequence of the

many benefits it can bring to the drivers [7] and the many ways it can generate value for the vehicle’s manufacturer

[8].

Easy monitoring of the vehicle’s conditions, receiving reports of the latest trips, controlling many of the vehicle’s

features, and vehicle software updates with OTA (over-the-air) updates. These are some benefits a V2C connection

enables, being easily accessible to the driver through a smartphone app [5]. When well implemented, these features

often mean a later gain to the manufacturer, as they increase customer satisfaction. A shorter-term gain a manufacturer

has with connected vehicles is the value the data collected from it can generate. Aiming to decrease production costs

and increase sales, a big part of vehicle development is identifying features that can be excluded and should be

included in new models. Gathering and analyzing connected vehicles’ data can easily replace most surveys performed

to identify those features [9]. Furthermore, this data is often more reliable than the answers from survey participants

as they contain the ground truth of how the vehicles are being used. Moreover, with the increased amount and quality
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of data comes the question of what is important enough to be the focus of analyses. One of those topics is definitively

fuel consumption, given its importance inside and outside of the automotive industry [10].

When our focus is fuel consumption, the objective immediately turns to increasing fuel efficiency and, conse-

quently, emitting less CO2 by driven kilometer. One way of achieving that is by comparing drivers. The competi-

tiveness born by the comparison of the drivers’ fuel efficiencies and the gamification of the act of driving can be an

efficient way to improve fuel efficiencies passively [11, 12, 13, 14] and, consequently, decrease overall CO2 emissions.

This comparison could be made with fuel efficiency rankings between drivers, constructed to avoid inserting any bias.

To build unbiased fuel efficiency rankings, we must consider that the fuel efficiency of a vehicle is highly affected by

different factors [15] such as vehicle model, type of fuel, drivers’ behavior, road quality, vehicle maintenance, and

many others. However, in this paper, the focus is the identification of the context, type of road in which the vehicle was

driven, a factor that also seriously impacts fuel efficiency, and without using highly sensitive positional data such as

GPS data, it is not as easily identifiable as the vehicle’s model or type of fuel. Independent of the drivers’ behavior and

how economical or wasteful they are, vehicles on highways show very different fuel efficiencies than vehicles in city

centers. Thus, removing most environment-induced biases, such as speed, space, and time limitations, is paramount

before a fuel efficiency comparison can be made.

From this fact, the primary motivation of this research arises: how can an unbiased fuel efficiency ranking be

built? We tackle this problem by clustering the drivers based on contextual data, i.e., data mainly describing where

the vehicle has been driven without using highly sensitive positional information. By clustering the drivers according

to their contexts, the biases that were different for the whole group get nearly the same for individuals from the same

cluster, therefore removing a bias by creating groups where everyone has the same bias. Thus, comparisons between

individuals with the same bias can be considered fair, given that the same environment-induced limitations affect all

drivers; a fuel efficiency ranking for each context would be fair. Four clustering methods were tested and considered:

the k−means++, the hierarchical agglomerative, the DBSCAN, and the spectral. Ultimately, the k−means++ was

chosen due to its capabilities of clustering a massive volume of data and data unknown by the clustering models.

The data used in this research was generated by real connected vehicles with V2C connections. The type of data

received and stored in the data lake is tabular, where each observation, row, has the aggregated data from one trip, and

a trip is defined by the turn on and off of the vehicle. Therefore, we will be clustering the trips sent by the vehicles,

and with a group of trips, it is possible to identify the drivers’ use patterns and the context in which the vehicles are

mainly driven. By being included in a group with the same context, i.e., bias, the drivers can be fairly ranked within

these groups based solely on fuel efficiency.

The main contribution of the context-based clustering we will expose in this study is the construction of fair fuel

efficiency rankings. However, other significant uses of the method are presented here. Some of the other meaningful

applications of the proposed method we will show in this paper include using this clustering to analyze the drivers’

behavior and in product development. We demonstrate how our method can be used in a macro drivers’ behavior

analysis by analyzing a whole fleet to identify the drivers’ patterns. Also, we present a possibility of application in

a micro driver’s behavior analysis with the analysis of each vehicle to improve individual recommendation systems.

The possible applications of the method in product development can be broad. However, we discuss two concrete

examples: the segregation of interest groups in electric vehicles (EVs) battery size analysis and the discovery of

features that should be removed or added in new vehicles.

The remainder of this paper is organized as follows: Section 2 discusses previous studies related to the topics

presented in this paper. Section 3 presents our framework for clustering the trips, explaining data treatment, the

used clustering methods and metrics, and the models selection and validation methodology. Section 4 validates the

framework and the chosen features using available fuel consumption data, showing the results of applying it to real

data. Section 5 presents the results obtained and some real-world applications. Lastly, Section 6 presents the study’s

conclusions and possible follow-up research related to the studied topic and reached results.

2. Related Works

In the field of the applications of vehicle connectivity, [5] presents and discusses various examples of different

frameworks. This paper does not only focus on V2C connection but also on V2N (vehicle to network) and V2I

(vehicle to infrastructure). It presents many applications of the different types of vehicle connectivity, ranging from as
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simple as controlling vehicle features using a smartphone app to as complex as optimizing battery degradation cycles

of electric buses [16].

Connectivity to create better methods is shown in [17]. In this paper, a V2C connection is used in conjunction with

a method to manage electric vehicles’ battery temperature in low-temperature environments. Their battery thermal

management strategy is based on a non-linear model that utilizes predictions of the vehicle’s future speed based on its

path given via a V2C connection. Another example of performance gain from using a V2C connection is in [18]. In it,

an energy management strategy (EMS) for hybrid buses is proposed, which uses driving pattern recognition and V2C

connectivity. For the driving pattern recognition, the k-means algorithm is applied to separate 7208 power profiles into

16 clusters, and for each cluster, a heuristic rule is extracted. The driving pattern recognition algorithm is executed

online with traffic information provided through V2C connectivity to select an off-line-trained optimal rule.

Although connectivity undoubtedly has many benefits, the collection of data can be a sensitive subject. In [19]

this issue is tackled by the application of Human-Data Interaction (HDI) framework, conducting semi-structured

interviews with 15 drivers. These interviews revealed issues related to the drivers understanding of car data and their

control over it. This study brings light to the importance of data privacy on connected vehicles and how manufactures

could improve their costumers awareness of the data they are sharing and what benefits their data can generate. The

study in [20] explores the benefits that vehicle connectivity, the sending and receiving of data by a vehicle, could have

in society. Three scenarios are presented and analysed in this study: Mobility for All; Mobility in Transition; and

Fragmented Mobility. They conclude that the most significant societal benefits of connected vehicles come from its

interactions with automation and electrification and that any push towards CV represent a low-regrets options.

A remarkably complete and thoughtful paper on clustering algorithms for vehicular data is [21]. This study reviews

and summarizes 20 clustering techniques and various clustering metrics. This survey paper separates the clustering

methods into groups according to their working principles. The authors explain each method, their advantages and

disadvantages, and the scenarios where they are most advantageous. This paper was very helpful in selecting the

clustering algorithms used in our research.

An extensive study on the value of vehicular data clustering can be found in [22]. In this study, the author writes

an extensive introduction to data analysis and the evolution of data usage in the automotive industry context. Although

the study focuses on trucks’ historical data, its objective is similar to ours: the demonstrations of how the clustering of

vehicular data can be a powerful tool for data analysis and how it can help manufacturers improve the development of

their products. Another study on clustering can be found in [23], where there is a deep analysis of high-dimensional

data based on driving styles. This study tests dimension reduction techniques coupled with clustering algorithms

to identify the best combination of these techniques for clustering different driving styles. Another study on using

vehicle data to cluster drivers can also be found in [24], where the authors categorize the drivers’ behavior, focusing

on drivers’ aggressiveness. Although the features and data structure are not the same as in our study, as more detailed

telematic data is used, the clustering is also performed using the k-means algorithm with k-means++ initiation.

Another interesting work on clustering related to vehicular data is [25]. With the objective of understanding road

crashes, this paper investigates the optimal number of driving profiles with the most important characteristics to dif-

ferentiate drivers. Two algorithms are used, the k-means and the OPTICS, and using drivers behaviour characteristics

such as number of speeding, headway and harsh events per 100 km, three driving profiles were discovered, dividing

the drivers into less risky, modest, and aggressive. Another paper that uses the k-means to identify driving styles is

[26]. This study has the objective of using Basic Safety Messages (BSMs) generated by connected vehicles to quantify

at each instant driving behavior and classify driving styles in different spatial contexts. Similar to the previous paper,

the driving styles are divided into three groups: aggressive; normal; and calm. They show that the spatial contexts

vary the proportions of each group, demonstrating that the environment affects the drivers’ behavior.

A paper that partially uses clustering for fuel consumption reduction is in [27]. This paper uses a spectral clustering

method to cluster fuel consumption groups based on speed and acceleration. Combined with environmental and

behavioral data, this clustering information is then used to train a deep-learning network to predict fuel consumption

levels. In [28] the impact of driving behavior in fuel consumption is analysed. This study focus on the driving styles in

work-zones and curves and demonstrates that aggressive driving generates an increase on fuel consumption compared

to normal driving. Another paper related to fuel, or energy as this case is for electric vehicles (EVs), is [29]. In this

study different styles of charging a EV are identified via a clustering analysis over the data of 994 respondents across

Australia. They were able to divide the drivers into five charging styles, which demonstrated that a uniform approach

to EV-related policies is not appropriate, both by governments or as market strategies by manufactures.
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3. Proposed Framework

In this section, we expose our proposed framework and explain each of its steps, beginning with the vehicles

sending data to the cloud and ending with the construction of the fair fuel efficiency rankings or the other possible

applications of our clustering method.

In Figure 1, we have a scheme of the proposed framework. The framework shows the big picture, from the vehicle

to the clustered data applications, but our method is inserted in three major steps:

1. It starts in the data lake with the extraction of the historical data of the vehicles’ trips and continues with the

subsequent treatment, filtering, features selection and generation, and transformation of this data;

2. With the treated historical data, clustering models are tested, and the best models are trained with all the treated

historical data and kept for use;

3. With the trained clustering models and the trained data rescaling information, new unseen data can be extracted

from the data lake and be clustered by the models.

With the clustered data, many applications are possible; Figure 1 lists just some of them. The main motivation for

this work is the construction of fair fuel efficiency rankings. Nonetheless, the presented method could also be used

for other purposes, such as analyzing a fleet’s behavior, improving recommendation systems by adding the clusters’

information, and helping with product development by finding interest groups in the clustered data.

Figure 1: Graphical representation of the framework.

3.1. Data Treatment
In this study, we use data from connected vehicles from all over Europe of a French automotive company, from

which the drivers permitted their data to be collected by V2C connection. Table 1 is an example of how this data is

structured. It is possible to notice that the data collected is organized in tables, where each row contains information

regarding one trip of a vehicle. The collected information is organized in different columns and can be divided into

trip-related and vehicle-related. Trip-related information are the ones that change depending on the trip, like the

time of start and end of the trip, distance traveled, duration the vehicle stayed in a specific velocity or RPM interval,

average acceleration, brake pressure and external temperature, fuel consumption, and many more. Alternatively,

vehicle-related information are inherent to the vehicle, like the hashed vehicle identification number (VIN), model,

motor, transmission, power, battery size, features of the vehicle, and many more.

Before treating the data, we start by selecting the columns that will be used for the clustering. In this feature

selection, we consider that we have data from different vehicle models, so we need features that would enable a

previous separation of different vehicle models. We also have to consider that the objective of the clustering is context

identification, so features that describe where the vehicle has been driven are needed. Another critical point to consider
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is the reliability of the columns, i.e., their percentage of null values. If the trip has null values on used features, the

clustering models cannot insert it into a cluster. By taking into account all these objectives, we chose the following

columns:

• VIN hashed, to be able to identify the different trips that were created by different vehicles;

• Model, transmission, power, and battery size, to, before clustering by the context, manually separate different

types of vehicles;

• Distance traveled;

• Start and end time of the trips, to be able to calculate the trips’ total time and, with the distance traveled

information, calculate the average speed;

• Duration the vehicle stayed in specific velocity intervals.

The duration the vehicle stayed in specific velocity intervals will be called “Speed i”, where “i” is a number, and the

bigger it is, the higher the speed interval. Due to their unmanageable percentage of null values, many useful features

were not included. From these features, the average acceleration and brake pressure features were the most significant

losses due to value nullity.

VIN
hashed Start Time Finish Time Distance

(km)
Time (s) at

0 km/h · · · Model Transmission Power Bat.
Size

76973 01/01/2023 12:00:00 01/01/2023 12:30:00 10 60 · · · A M P1

92928 01/01/2023 12:20:00 01/01/2023 13:50:00 111 150 · · · B E P1 B1

85349 01/01/2023 12:30:00 01/01/2023 12:50:00 8 50 · · · A M P1

36348 01/01/2023 12:35:00 01/01/2023 12:40:00 2 30 · · · A A P2

54526 01/01/2023 12:37:00 01/01/2023 12:47:00 6 30 · · · A A P2

76759 01/01/2023 12:40:00 01/01/2023 13:05:00 12 120 · · · B E P1 B1

23915 01/01/2023 12:42:00 01/01/2023 13:22:00 24 230 · · · B E P1 B1

31261 01/01/2023 12:47:00 01/01/2023 13:02:00 8 60 · · · A A P2

46851 01/01/2023 12:50:00 01/01/2023 13:15:00 7 130 · · · A M P1

Table 1: Table exemplifying the connected vehicles’ dataset.

The treatment of the data starts by extracting it from the data lake. After the extraction, we start by eliminating

the problematic rows. We eliminate observations with some anomalies, such as the existence of null values, start time

greater than or equal to the end time, odometer value at the start greater than or equal to the odometer value at the

end, and many more. Another group of rows that is eliminated is the ones where the distance traveled is smaller than

100 meters, as by testing, we noticed that most of the irregular trips belong to this group. Trips that differ too much

on the duration calculated by delta time and time in velocity intervals are also eliminated. Lastly, we eliminate the

observations in which the distance traveled is greater than the maximum possible distance given the values of duration

in velocity intervals, e.g., if a vehicle stayed for 1 hour in the interval 0 to 100 km/h, its maximum traveled distance

should be 100 km.

After excluding problematic data, we create two new columns: total trip time and average speed. Total trip time is

the delta, in seconds, between the start and end time of the trip, and average speed, in km/h, is the distance traveled, in

kilometers, divided by the total trip time, in hours. Another modification we make to the data is the transformation of

the values from the columns of duration in specific speed intervals. Originally, the measurement unit of these columns

is seconds. However, as each column represents the duration in a different continuous interval, and the end of each

interval is the beginning of another, it is possible to transform the values from seconds to percentages by dividing it

by the total time of the trip.

Knowing that one of the objectives of clustering algorithms is to find groups that are not easily found manually

and that a huge factor that affects fuel consumption is the vehicle’s characteristics, which are easily separable in our
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data, we do a manual clustering based on the vehicles’ inherent characteristics. In this manual clustering, we cluster

the trips based on the vehicle model, transmission, power, and battery size information, forming different groups.

Lastly, having in mind that this data will be used for the training of clustering models and that the algorithm that

will be used is the k-means [30], a method based on distances, a rescaling of the data is important as to not bias the

model towards features with big values. We rescale each group by feature, making them range from 0 to 1, where 0

is the minimum value, and 1 is the maximum value of that feature. The rescaling is performed for all features which

originally ranged outside the [0, 1] interval; thus, the “Speed i” columns are not rescaled. Also, the original minimum

and maximum values of each rescaled feature for each group are kept for use in the rescaling of the new data, which

will be clustered.

Using Table 1 as an example of a dataset to be clustered, Table 2 is an example of this dataset after the creation of

the new columns, trip time and average speed, and selection of the columns that would be used in the clustering. Table

3 is an example of the data that would be fed to the clustering algorithms, i.e., after applying all the data treatment,

separation, and transformation to the data from Table 2.

VIN
hashed

Distance
(km)

Trip Time
(s)

Avg. Speed
(km/h)

Speed 0
(s) · · ·

Speed 7
(s) Model Transmission Power

(kW)
Bat. Size

(kWh)

76973 10 1800 20 60 · · · 0 A M P1

92928 111 5400 74 150 · · · 300 B E P1 B1

85349 8 1200 24 50 · · · 0 A M P1

36348 2 300 24 30 · · · 0 A A P2

54526 6 600 36 30 · · · 0 A A P2

76759 12 1500 28.8 120 · · · 0 B E P1 B1

23915 24 2400 36 230 · · · 0 B E P1 B1

31261 8 900 32 60 · · · 0 A A P2

46851 7 1500 16.8 130 · · · 0 A M P1

Table 2: Table exemplify the data selected to be used for the context-based clustering.

Group Distance
(km)

Trip Time
(s)

Avg. Speed
(km/h)

Speed 0
(s) · · ·

Speed 7
(s)

A_M_P1

1.0000 1.0000 0.4444 0.0333 · · · 0.0000

0.3333 0.0000 1.0000 0.0417 · · · 0.0000

0.0000 0.5000 0.0000 0.0867 · · · 0.0000

A_A_P2

0.0000 0.0000 0.0000 0.1000 · · · 0.0000

0.6667 0.5000 1.0000 0.0500 · · · 0.0000

1.0000 1.0000 0.6667 0.0667 · · · 0.0000

B_E_P1_B1

1.0000 1.0000 1.0000 0.0278 · · · 0.0556

0.0000 0.0000 0.0000 0.0800 · · · 0.0000

0.1386 0.2308 0.1593 0.0958 · · · 0.0000

Table 3: Table exemplify the data feed to the clustering algorithms.

3.2. Clustering

In this subsection, we explain the main reasons for using the k-means clustering method in detriment to the

other tested methods: hierarchical agglomerative, the density-based spatial clustering of applications with noise (DB-

SCANS), and the spectral. Furthermore, we will explain how the treated historical data is used to test, select, and

train the k-means models and why we used the k-means++ initiation. We will present the methods and metrics used

to select the best parameters for training the final models.
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3.2.1. Clustering Algorithm Selection
There are many different clustering algorithms. These algorithms can vary from how they aggregate observations

to how they define clusters. The four clustering methods we tested belong to four classes: Partition, Hierarchical,

Density-Based, and Modern clustering [21].

The Partition type method we will consider is the k-means [30]. Partition clustering methods are the most common

and popular methods of clustering. Their working principle generally consists of using centroids and their relative

distance to the observations to indicate to which cluster an observation belongs. The k-means basic working principles

make it very suitable for large-scale data, as its low time complexities allow for fast training and use of the models.

The Hierarchical type method we will be considering is the hierarchical agglomerative. Hierarchical clustering

methods work by creating trees that link their nodes and clusters based on different types of Linkages. These Linkages

are the different ways to calculate the similarity between the clusters. Due to their hierarchical working principles,

with the methods of this class, it is possible to define the optimal clustering they produce by analyzing their resulting

trees, which keep all the clusters in different hierarchies. However, coupled with this advantage comes their main

disadvantages: high time complexity and memory usage. The agglomerative, specifically, has a time complexity of

O(n3) and a memory complexity of O(n2) [31], which makes it unsuitable for large-scale data.

The Density-Based type method we will be considering is the DBSCANS [32]. Density-Based clustering methods

are on the more unique end of the clustering methods spectrum, as they are not based on distances but on density

instead. They work by aggregating data with similar densities and, in the DBSCANS case, by identifying observations

in the core, border, or out of the clusters’ area. The main advantage of this class is its capability to cluster arbitrary

shapes and identify outliers. One of their characteristic that could be an advantage or a disadvantage is the fact that the

number of clusters is defined by the model, depending on its parameters values. Their time complexity and memory

usage are lower than those of the hierarchical agglomerative, but they are still not as suitable for large-scale data as

the k-means.

The Modern type method we will consider is the spectral [33]. Modern clustering methods are also on the unique

end of the clustering methods spectrum, varying a lot within the class. They do not have a common working principle,

but they all derive from the idea of mixing deep learning with clustering algorithms. The spectral clustering method

uses graph theory, regarding sample points as vertices and the similarity between the data as edges. It can deal well

with high dimensionality and arbitrary shape data. However, it has a very high time and memory complexity, making

it unsuitable for large-scale data.

The data we have to cluster comprises millions of observations and 11 columns. Thus, we have to deal with a

lot of data with not as high dimensionality. Another important aspect of our clustering needs is the clustering of

unknown observations, as new data arrives daily. Considering the characteristics of our data and exposed methods,

our only reliable choice is the k-means. The hierarchical agglomerative and spectral memory usage makes clustering

our data using them impossible, and the DBSCANS can not manage to cluster our data promptly. Furthermore, the

k-means is the only method that allows for easy clustering of new data. In contrast, if the other three methods were

used, additional classification models would be required to be trained on the clustered data to be able to cluster by

classification the new data.

3.2.2. K-means Method
Given that the k-means is our chosen method, we will further explain some of its characteristics. The k-means is by

a far margin the most popular clustering algorithm. While not an exact method, as it is a heuristic for the minimization

of within-cluster variance problem, which is an NP-hard problem, and is a little unstable due to its randomness on

the initiation of the clustering, which can be diminished by the k-means++ initiation, the k-means is much faster than

other clustering algorithms due to its simplicity. Also, although it is simple, it always converges to a local optima and

often yields satisfactory results depending on the cluster’s shape.

The k-means is an iterative method, needing just one iteration to have a solution but some to reach a convergent

solution. By following Figure 2, it is possible to understand how the method works. It starts with k, the number of

clusters, random points as initial centroids. These centroids work as references for building the clusters, where each

point is assigned to its closest centroid in each iteration. At the end of each iteration, the new clusters’ centroids are

calculated, and the process repeats until a stop criterion is satisfied, which could be if the change from one iteration

to another in the positions of the centroids or in the composition of the clusters is less than a tolerance value.
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The k-means++ initiation method was created to cover the k-means flaw of sometimes converging to bad solutions,

which usually is a consequence of poor initial centroids choice. This initiation method is an improved method for

obtaining initial centroids. It randomly chooses a point from the data as the first centroid. Then, for each data

point, the distance between it and its nearest centroid is calculated. The next centroid is chosen following a weighted

probability distribution with the square of the previously calculated distances as the weights. This process is repeated

until k centroids have been obtained. Figure 3 demonstrates how the method works. The size of the different points

represents the probability of being chosen as new centroids.

Even though this method of generating initial centroids takes more time than choosing at random, the k-means

with it is proven to converge much faster and to better local optima [34], ultimately making it faster and better than

with the normal initiation.

Figure 2: Illustration of how the k-means algorithm works on two dimensional data.

The dashed lines represent the boundaries created by the centroids.
Figure 3: Illustration of how the k-means++ algorithm

works on two dimensional data.

3.2.3. Model Selection Method
With the chosen clustering algorithm exposed, we will present the selected metrics to assist in choosing the number

of clusters of the k-means and measure the clusters’ fitness. The chosen metrics are the silhouette score [35] and the

Davies-Bouldin index [36], as both measure the fitness of the data points to their cluster compared to the other clusters,

not needing label values, which do not exist in our case.

The silhouette score measures how similar a point is to its cluster compared to the others. This metric takes two

measures for each point: the mean distance to its cluster and the smallest mean distance to any other cluster. The

silhouette score of one data point is obtained by subtracting the latest from the first and dividing it by the maximum

between them. This method yields a score that ranges from -1 to 1, where a high value indicates high proxim-

ity/similarity with its cluster and lower to the other clusters, and lower values indicate the opposite. In our case, we

used the average silhouette score from all clustered points as the fitness measurement.

Unlike the silhouette score, the Davies-Bouldin index (DBI) measures the clustering as a whole. It measures

the separation between the clusters and variation within the clusters. It works by measuring the average distance

between the points and the centroids in a cluster and measuring the distance between all the centroids. Using these

values, it compares the clusters by pairs, adding the intra-cluster mean distances and dividing by the distance between

the centroids. The DBI is the average of the maximums of this pair-wise comparison. Consequently, the DBI is a

non-negative number, where a low value indicates high separation between clusters and low variation within clusters.

To ensure that our final models are optimal for the clustering of each data group, we will introduce a method for

searching for the best number of clusters k for each k-means model. This search is based on a train and test division

to ensure no over-fitting, as the chosen models will be used to cluster new observations.
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Our searching method tests k varying from 2 to 15 using a 10-fold cross-validation with five variations of initiation

seeds for each fold. The 10-fold cross-validation is our countermeasure against over-fitting. The division of each data

group into 10 samples: 9 for training and 1 for testing and the repetition of this process of varying the train and test

samples ensures that the models do not get biased by the training data. The seed variation is a countermeasure for

when the k-means converge to bad solutions. Figure 6 and the following explains how the method works:

1. For each group of historical data to be clustered, divide it into 10 samples of the same size without repetition.

These are the samples that will be used in the cross-validation, taking turns being data for test and training;

2. For k varying from 2 to 15, do the following:

2.1. Each fold is defined by 1 sample for the fitness test, different from the other folds, and the remaining 9

samples for the training of the models;

2.2. For each of the 10 folds, train and test five k-means models using different initiation seeds and measure

the fitness of their test sample;

3. For each group, find the k which yields, on average, over the 10-folds and the five initiation seeds, the maximum

silhouette, and the minimum DBI.

The described method tests 700 k-means models for each group.

Figure 4: Graphical representation of the method for searching the optimal number of clusters k.

After the best k is found, the final k-means model for each group is created by using all historical data for training

and varying the initiation seed ten times to increase the probability of finding the best models. These models are then

saved to be used in conjunction with their rescaling data to cluster new data that arrives daily in the data lake.

4. Case Study

This section will present the previously shown framework applied to real-world data. We will show the clustering

of real data collected from vehicles of a French automotive company scattered all over Europe and what exactly is the

context in which the vehicles are clustered. Also, we will use available consumption data to demonstrate the validity

of the chosen features. In this validation, we will demonstrate the influence of the context on fuel efficiency and

how raking without clustering based on context would be biased and unfair. This unfairness comes from comparing

drivers’ fuel efficiencies without considering that their efficiencies are also affected by their contexts, not just their

driving styles.

4.1. Vehicles’ Data & Clusters’ Nomenclature
The data used to find and train the best models were from trips made from June 2022 to December 2023. The data

from this period yielded more than 12 million trips, which were reduced to 10 million after applying the data treatment

presented in Section 3.1. Because around 7 million of these 10 million trips were from just one vehicle group, a

sampling of 2 million trips was performed in this anomalously big group, eliminating 5 million trips. In the end, the

data used had a total of 5 million trips divided into eight groups. In those groups, there were two vehicle models, one

hybrid and one electric, which we will call “A” and “B”, respectively. The hybrid model has five variants, varying in

hybridization level, transmission, and power. The electric has three variants, varying in power and battery size. From

here on out, to facilitate mentioning the vehicle groups, we will call them “model_power_transmission_battery-size”.

For example, the group of model “A” with power “P1” and transmission “A” is called “A_P1_A”.
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The base of our clustering is context, as the features that define them are based on distance, speed, and trip duration.

Something that is also defined by these features is the existing different types of roads. Thus, the names we gave to

the clusters are from the road hierarchy, specifically, the hierarchy also defined by [37]. What is represented by the

clusters is the type of road the vehicle was on that trip, or at least was in for most of the trip, as it is highly improbable

that a vehicle was driven on only one type of road. Our hierarchy divides the roads into four main categories: highway,

arterial, collector, and local. This division is mainly based on three axes: speed limit, traffic flow, and accessibility

to property. Figure 5 illustrates how each of the four main categories is placed in the space of these three axes, and

complementary to this figure, these categories would be described as follows:

• Highway: very high speed limits and traffic flow but very low accessibility to property. They are built as

connections between cities and detours from cities’ centers;

• Arterial: high speed limits and traffic flow but low accessibility to property. They are built to enable fast transit

inside the cities and as connections between the cities and the highways;

• Collector: moderate traffic flow, speed limits, and accessibility to property. They are built to connect local roads

to more busy roads, working as distribution type of roads;

• Local: high accessibility to property but low speed limits and traffic flow. They are built to create easy access

to properties.

Figure 5: Illustration of the three axes in the road’s hierarchy.

Complementary to these four primary categories, we established subcategories for clusters that could be classified in

the same hierarchy. The main subcategories are: local-center and local-outskirts, which are subdivisions of local roads.

By clustering the data, this subdivision gets clearer, as seen in Figures 7 and 8. In these figures, both local-center and

local-outskirts have similar, very low average speeds but slightly different distances and total times. However, the

main feature differentiating them is the “Speed 0” feature, which is the percentage of the trips’ duration in which the

vehicles were stationary. From this, we called the cluster stationary for the most time local-center, as in city centers,

there are more traffic lights and traffic in general. In contrast, we call local-outskirts the one which does not stay

stationary as much, as in the outskirts, traffic lights are more uncommon and traffic is lower.

4.2. Clustering Models
By following the optimization method for the k-means models illustrated by Figure 4, we obtained the results

shown in Figure 6. This Figure presents the results from only two groups, but the same process was performed for

all eight groups. Using this type of graph, we were able to choose the best number of clusters k based on maximum

silhouette score and minimum Davies-Bouldin Index (DBI). In these two specific groups, it is possible to notice, for

the silhouette score, a prominent peak around k = 5 for the “A” model and k = 6 for the “B” model. For the DBI,

the reverse is true, as a big valley is noticeable for the same ks, which indicates that the optimal number of clusters is

5 for the “A” and 6 for the “B” model. Using this method for each group, we created one k-means clustering model
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for each group. Interestingly, k = 5 was the optimum number of clusters for the five groups of the “A” model, and

k = 6 was the optimum number of clusters for the three groups of the “B” model. As model “A” is hybrid and “B” is

electric, this coincidence in an optimal number of clusters indicates that the a priori separation of those groups was a

good decision.

Figure 6: Results of the optimization method for the k-means models applied to two different groups.

Using the number of clusters we found, we were able to train the final k-means models. Figure 7 is an example

of how the clustering models separate the data. In Figure 7, we use the three main features, distance, average speed,

and total time, to visualize the separations created by the model of the group “A_P1_A”. The cluster’s segregation is

well defined in all dispersion graphs, with amalgamation between clusters occurring just in boundary regions. The

distance and total time variables are in the log scale because most trips are agglomerated in a small distance and time

range, making the visualization in a linear scale much more difficult.

The average speed separation in the clusters is very linear, as shown in Figure’s 7 dispersion graphs where the

average speed is in the y-axis. This linearity is also expressed by the influence of the speed on the other variables,

which can be seen in the distance by the total time graph in Figure 7, where diagonal lines separate the clusters very

well. These lines reveal the existing positive linear relation between trip distance and duration: smaller trips are

shorter, and longer trips are lengthier. In graphs where both axes are in the logarithm scale, changes in the slope, a, of

a linear function f (x) = ax + b translates more to a shift in the x-axis than to the expected change in line angle. Thus,

the strip-shaped clusters in this graph confirm the direct influence of speed on trip distance and duration. The lines

formed by the clusters show how, in contexts with low speeds, a slight change in distance translates to a big change in

trip time, bigger a, while in contexts with high speeds, the same change in distance translates to a smaller change in

trip time, smaller a.

It is noticeable how the separation of the average speed feature is more well-defined than the other two features.

This fact is probably due to the use of the duration in speed interval features, which we called “Speed i”. Figure 8

shows well how these speed-related features affected the model’s decision. The combination of these two figures, 7

and 8, make our nomenclature choice for the clusters much more apprehensible. They demonstrate how, for example,

the trips in the “Highway” cluster were clearly driven in a context where very elevated speeds can be achieved, and

trips are generally longer and lengthier. This example holds for the other cluster names, roads categories, which can

be easily distinguishable by looking at the average speed values in Figure 7 and “Speed i” values in Figure 8.

In statistics, correlation is any statistical relation between variables. In the case of Figure 8, the correlations in the

heat map are Pearson correlation coefficients [38]. These correlations indicate the degree of linear relation between

the features, with values close to -1 indicating strong negative linear relation, values close to 0 indicating no linear

relation, and values close to 1 indicating strong positive linear relation.

The k-means is a purely distance-based method, meaning there is no rationale behind its clustering decisions,

just distances to centroids. This fact makes it difficult to rationally justify why a particular trip was clustered in a

specific cluster. The correlations in Figure 8 can help with that and, at least, demonstrate the logic behind the models’

decisions. From these correlations, it is possible to understand the degree of importance the models give to each

feature when classifying the trips in each cluster. If the correlation is high, most trips in that cluster have a high value

for that feature, and the opposite is also true. However, if the correlation is zero, the feature is unimportant to that
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Figure 7: Visualization of the clustering of group’s “A_P1_A” vehicles and the cluster’s box plot distributions for the main features.

Figure 8: Heat map of the correlation between the features and the clusters for two groups of vehicles.

cluster. For example, a trip with high values in the features distance, average speed, total time, and “Speed”s 5 to

7, with low values in the features “Speed”s 0 to 3, and whatever value in feature “Speed 4” would most probably be

clustered as “Highway”.

In Figure 7, the “Local-center” and “Local-outskirts” clusters are the less well-defined ones, making it difficult

to understand why the model separated them. However, their differences become crystal clear with the additional

correlation information in Figure 8. The abnormally high correlation between “Local-center” and “Speed 0” indicates

that in most of the “Local-center” trips, the vehicles are stationary for a long time. Meanwhile, the correlation is

almost non-existent between the “Local-outskirts” and the “Speed 0”, meaning there is a similar number of trips with

high and low stationary time clustered as “Local-outskirts”. This means that even if their average speeds are similar,

their speed profiles are very different.
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4.3. Clustering Validation

The main objective of our proposed context-based clustering is to enable the construction of unbiased fuel effi-

ciency rankings. This proposition comes from the assumption that vehicles in different contexts also have different fuel

efficiencies. In this subsection, we will empirically demonstrate that context plays a significant role in fuel efficiency

fluctuation using our clustering models and available fuel consumption data from actual vehicles.

The data we had did not have a proper efficiency column. Therefore, we calculated the efficiency of each trip, in

kilometers per liter, by dividing its total distance by the amount of fuel consumed. Also, just three vehicle groups had

fuel consumption values: groups “A_P1_M”, “A_P1_A” and “A_P3_CVT”. The treatment for this data was the same

as the one described in subsection 3.1.

A valuable technique to understand how much a feature impacts another is the calculation of the Pearson correla-

tion between them. The usefulness of this correlation analysis was already demonstrated in subsection 4.2 when we

used it to understand the clustering models’ decisions in Figure 8. Moreover, besides its use for models’ explainabil-

ity, it is also essential in many feature selection methods for machine learning, as in the Correlation-based Feature

Selection (CFS) [39]. In Figure 9, we have the correlations between the features used in the clustering models and

the efficiencies of three vehicle groups. The correlations in these graphs corroborate our initial hypothesis that the

context greatly influences fuel efficiency. Figure 9 clearly distinguishes how each feature affects the efficiency. For

example, the features that have the most significant positive influence on fuel efficiency across all three models are

“Average Speed” and “Speed”s 4 and 5, and the ones with the most significant negative influence are “Speed”s 0 to 2.

In contrast, “Speed”s 6 and 7 have a small positive influence. This indicates that medium to high speeds contribute to

elevated fuel efficiency while being stationary or at low speeds contributes to poor fuel efficiency and that very high

speeds do not necessarily lead to good fuel efficiency. By analyzing these correlations, it is clear how high speeds

and long trips typically indicate high efficiency and low speeds and short trips indicate low efficiency, which already

indicates the existence of, at the very least, two distinct groups.

Figure 9: Heat map of the correlation between the used features and the efficiency for three groups of vehicles.

The correlation between features and efficiency is already a good indicator. However, we can have an even better

understanding by analyzing the efficiency of each cluster created by the clustering models. Figure 10 has graphs

showing how the clusters separate the efficiency data. The dispersion plots give us a better understanding of how the

average speed, distance, and total trip time relate to fuel efficiency. All three of the dispersion graphs from Figure

10 show a crescent relation between the x-axis feature and the efficiency, which was already indicated by the positive

correlations in Figure 9. Another noticeable feature of these dispersion plots is how the different clusters’ regions

span through different efficiency ranges, especially in the distance and total time graphs. In these two graphs, it is

noticeable how the clusters are less well separated than in the average speed graph, but the segregation is still evident.

Another interesting insight the dispersion graphs from Figure 10 bring is the variation of the fuel efficiency values

in each cluster. As seen in all three graphs from this figure, the difference in efficiency variance is highly related to
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the average speed, distance, and duration. Trips with low speeds, encompassing both “Local” clusters, have fairly

consistent low efficiencies, while trips with high speeds, encompassing the “Highway” cluster, have very consistent

high efficiencies. Also, the two clusters with medium speeds have the highest efficiency variance. Another aspect

related to efficiency variance that needs to be addressed is the possible errors in measuring the trips’ fuel consumption.

Some efficiency values shown in Figure 10 are impossible given the vehicles. Values above 35 Km/L are significantly

over the analyzed vehicles capabilities, and values under 5 Km/L should not occur unless in unusual situations where

the vehicle stays on and stationary for a long time, which would mean a very high trip duration and low distance and

average speed, what rarely happens.

Figure 10: Visualization of the efficiency clustering in relation to average speed, distance and total trip time for the “A_P1_M” group.

The validity, necessity, and importance of the proposed context-based clustering for fuel efficiency rankings are

really demonstrated by the box plots in Figure 11. The difference in the distribution of the efficiency data between the

clusters for all three groups is evident in these graphs. For example, this difference is more prominent in the clusters

“Highway” and “Local-outskirts” from the group “A_P1_M”. In this case, it is clear how a fuel efficiency comparison

between drivers from these two clusters would be extremely unfair. All drivers from the “Highway” cluster show a

better efficiency than 75% of the drivers from the “Local-outskirts” cluster. If we were to compare the average driver

from these two clusters, there would be a 7 km/L gap between them, a gap which is not due to the drivers’ ability,

what fuel efficiency rankings usually try to measure, but by their context, which is out of their control. Once we can

cluster based on this uncontrollable characteristic that is the environment, we end this unfairness by building ranks

within each cluster, which will compare the ability of each driver with minimum bias from their context.

Figure 11: Efficiency box plot distribution of each cluster for three groups of vehicles.

Another important aspect of our clustering method that the box plots from Figure 11 corroborate with is the

difference between the fuel efficiency of different groups of vehicles. While groups “A_P1_M” and “A_P3_CVT” are

very similar efficiency-wise, group “A_P1_A” is much different, having a much higher overall fuel efficiency. This

difference comes from the fact that the vehicles from group “A_P1_A” are full-hybrid, while the ones from the other

two groups are mild-hybrid.

5. Results and Discussions

In this section, we will focus on the last part of the framework from Figure 1, where we present the applications

and value of the presented context-based clustering. We will discuss how the proposed clustering method can be used

14



to build different types of unbiased fuel efficiency rankings and how it can be used to gain knowledge on the drivers’

behaviors on fleet analysis.

Our initial proposed method to rank the drivers’ fuel efficiency using the context-based clustering is done by

choosing a periodic time interval and calculating the drivers’ trips average efficiencies from different clusters over that

time interval. Tables 4 and 5 show the position in weekly and monthly fuel efficiency rankings, one for each cluster,

of some drivers from the vehicles from group “A_P1_M”. These cluster rankings show the position of the drivers

in relation to other drivers that had trips in that cluster and also show the percentage of drivers better than them in

terms of fuel efficiency. For example, looking at vehicle #68, we can see that it had no trips clustered as “Arterial”

and “Highway” in the week of the weekly rankings, so it is not in the rankings of that week for those clusters, but it

is in the other clusters rankings. In the other rankings, it is possible to notice that this vehicle has very low efficiency

in its “Collector” and “Local-center” trips, consequently being worse than 76.4% and 73.0% of the drivers from these

clusters, respectively. However, in the “Local-outskirts” cluster ranking, it performed better, surpassing 59.5% of the

drivers.

Context Arterial Collector Highway Local-center Local-outskirts

Vehicle Position Effi. Position Effi. Position Effi. Position Effi. Position Effi.

#129 45 | 54.3% 14.37 57 | 62.9% 10.88 15 | 51.9% 14.72 31 | 40.5% 7.90 4 | 3.8% 10.90

#68 69 | 76.4% 10.12 55 | 73.0% 6.40 33 | 40.5% 7.94

#122 50 | 60.5% 14.02 87 | 96.6% 7.76 20 | 70.4% 13.69 50 | 66.2% 6.77 54 | 67.1% 6.91

#10 41 | 44.9% 11.44 16 | 55.6% 14.42 14 | 17.6% 9.98 12 | 13.9% 9.54

Table 4: Weekly rankings of each cluster of some vehicles of the “A_P1_M” group.

An essential aspect of this fuel efficiency ranking method is the time interval. This is very noticeable by comparing

the rankings from Tables 4 and 5. Looking again at vehicle #68 it is possible to see that even if in one week of the

month it had no trips clustered as “Arterial” and “Highway”, in the whole month it had. Moreover, more interesting is

that it performed exceptionally well, specifically in the “Highway” cluster monthly ranking, having the best efficiency

of all drivers in that ranking for that month.

Context Arterial Collector Highway Local-center Local-outskirts

Vehicle Position Effi. Position Effi. Position Effi. Position Effi. Position Effi.

#129 66 | 65.0% 14.52 86 | 84.2% 10.87 24 | 42.6% 15.18 68 | 66.3% 7.72 14 | 12.9% 10.21

#68 43 | 42.0% 15.33 78 | 76.2% 11.06 1 | 0.0% 18.36 80 | 78.2% 6.67 56 | 54.5% 8.27

#122 65 | 64.0% 14.61 37 | 35.6% 12.33 38 | 68.5% 14.16 47 | 45.5% 9.28 53 | 51.5% 8.50

#10 50 | 48.5% 11.91 31 | 55.6% 14.70 43 | 41.6% 9.37 26 | 24.8% 9.82

Table 5: Monthly rankings of each cluster of some vehicles of the “A_P1_M” group.

The main objective of a ranking is to compare and, from this comparison, make the drivers more eager to perform

better [11, 12, 13, 14]. The benefits of a fuel efficiency ranking come from that, as drivers strive to be better positioned

in a ranking, less CO2 is emitted as they collectively increase their fuel efficiencies. For this to be possible, a driver

has to be able to know how it is performing. The graphs from Figure 12 show a possible layout for a driver to

follow its fuel efficiency and ranking position in different clusters and throughout different weeks. With this type of

visualization, the driver can monitor its performance over time and analyze where it can improve. An example of

how helpful graphs like Figure 12 can be, comes from noticing how different is the performance of vehicle #167 in

different clusters. While its performance is overall mediocre in the “Collector” trips, it is terrible in the “Highway”

trips. This fact, made clear by the graphs, could motivate the driver to investigate the reasons for this and improve his

driving.
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Figure 12: Position in weekly rankings and average efficiency of vehicle #167 throughout four months using the first ranking method.

Instead of including the driver in one ranking for each cluster it had trips clustered as, another possible way of

ranking the drivers is by including them in just one cluster in each time period. However, a way to classify the

drivers is needed for this to be possible, as the observations we initially clustered are the trips, not the drivers. The

classification of a driver based on its trips’ clusters can be made in different ways depending on the end goal. This

driver’s classification has at least two parameters: time interval and viewpoint. The time interval is the span of time in

which a classification is made, for example, the driver’s context in a day, week, or month. The viewpoint is related to

the application of the classification, which is based on what the classification will be used for. For example, it could

be based on the clustered trips’ frequency, distance, or duration.

Figure 13 exemplifies this driver’s classification method by using a weekly time aggregation and choosing the

week’s cluster by three different viewpoints: absolute frequency, weighted frequency based on distance, and weighted

frequency based on time duration. In the frequency-based classification, just the number of occurrences of each cluster

in a period is accounted for, with the classification of a period being the cluster of the most trips in that period. This

classification method could be attractive for applications related to short trips. On the other hand, the distance and

time-based ones could be better for longer and lengthier trips. In those cases, the weight of each trip is the distance or

total time of that trip, making longer trips more important in the classification. This increased importance of longer

trips makes sense when the analysis is focused on fuel consumption. By using this method, possible unbiased fuel

efficiency rankings can be created by comparing the fuel efficiency of drivers from the same groups, clusters, and time

periods.

From the classifications in Figure 13, it is possible to see why the viewpoint is essential, as the weekly classification

changes drastically depending on how the trips’ clusters are accounted for. This can be clearly seen in the first week

of the analyzed period, the date “2024-01-02”, where we have three different classifications for that week depending

on the viewpoint. These different classifications are strongly related to the viewpoint used. The frequency viewpoint

classified that week as “Local-outskirts”, which makes sense since trips in this cluster are short and can be quickly

done many times in a single day. The distance viewpoint classified that week as “Highway”, which is expected given

that trips in this cluster have very high distances. The time viewpoint classified that week as “Arterial”, which also

makes sense, as the high frequency combined with the high total time of the trips in this cluster resulted in a very high

accumulated time.

A possibility of fuel efficiency ranking is partially displayed in Table 6. In Figure 14, we have a graph of this

ranking comparing the fuel efficiency of all vehicles in each cluster. This ranking was built using data from the

vehicles in the “A_P1_M” group. The vehicles were clustered with a weekly aggregation and with a distance-based

viewpoint. The ranking shown in Table 6 and Figure 14 is just from one of the weeks in the analyzed period. The
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efficiency numbers in the ranking are the weighted averages of the efficiencies on that week, where the weights are the

distance of the trips. The results in this ranking are very similar to the ones from the box plots of Figure 11. Again, as

in Figure 11, the most prominent difference in the ranking is between the vehicles from cluster “Local-outskirts” and

the ones from cluster “Highway”, where the worst vehicle from cluster “Highway” still has a better weighted average

efficiency than the best from “Local-outskirts”. Even though vehicle #25 is in first place in the ranking of its cluster,

“Local-center”, it still would be in last place if it was in the “Highway” cluster rank. This ranking example reinforces

what we demonstrated in subsection 4.3, that a ranking without the context-based clustering segregation would be

unfair.

Arterial Collector Highway Local-center Local-outskirts

Rank Vehicle Effi. Rank Vehicle Effi. Rank Vehicle Effi. Rank Vehicle Effi. Rank Vehicle Effi.

1 #111 17.60 1 #77 13.04 1 #61 16.35 1 #25 11.71 1 #68 11.28

2 #31 16.93 2 #137 13.00 2 #165 15.71 2 #13 11.50 2 #5 8.22

3 #48 16.88 3 #85 12.85 3 #118 15.66 3 #151 8.97 3 #107 8.15

48 #28 11.15 18 #83 9.43 16 #167 12.57 4 #157 7.23 4 #67 8.09

49 #17 10.79 19 #141 9.33 17 #160 12.48 5 #30 5.87 5 #60 4.71

50 #143 9.28 20 #42 9.31 18 #74 12.08 6 #112 4.96 6 #125 1.14

Table 6: Rankings of one of the weeks of a weekly analysis from vehicles of the “A_P1_M” group.

Figure 15 follows the same idea as Figure 12. However, this time, we have just one position and fuel efficiency per

period, as in this type of fuel efficiency ranking, a driver is included in just one cluster in each time period, different

from the first one presented. In Figure 15, the colors of each point represent the ranking the driver was included in

that week. Unlike the visualization of the first type of ranking presented, this one is much simpler, as it is impossible

to know how a driver performed in different contexts. This simplicity, while being good due to its easy readability

for the driver, can also be a disadvantage, as the information on the driver’s performance in each context could be

Figure 13: Classification of a driver from group “A_P2_M”. Aggregated by week and using different viewpoints.

17



Figure 14: Visualization of the rankings of one of the weeks of a weekly analysis from vehicles of the “A_P1_M” group.

beneficial for a driver to know in what contexts it needs to improve its efficiency.

Figure 15: Position in the weekly ranks it was included and average efficiencies of vehicle #167 throughout four months in the second ranking

method.

Additionally to the fair fuel efficiency rankings, another possible application of our clustering is analyzing drivers’

behaviors. As one example of this application, we will dive into the fleet management area by analyzing the change

over time in the clusters’ ratio of a group of vehicles. Fleet management is a valuable area that can not be overlooked by

various sectors: vehicle manufacturers, rental, insurance, and delivery companies. All of them can gain something by

better understanding their fleets. Figure 16 is an example of how a fleet of vehicles can be monitored and analyzed. In

this figure, vehicles from the “B_P4_E” group are used, and their drivers were classified using the weekly classification

with the distance viewpoint. For each week, it shows the percentage of drivers classified in each cluster and how this

percentage changes over time.

Figure 16 displays a fascinating overall behavior of the drivers, mainly with the changes in the ratios of the clusters

“Highway” and “Collector”. It is very intriguing how these two clusters seem to have an almost “sum zero” relation,

i.e., when the rations of “Highway” increase, the ones of “Collector” decrease, and the inverse is also true. It is also

very noticeable how cluster “Highway” ratios increase around the north hemisphere during summer time, and it is even

more noteworthy how spikes in the line of ratio change appear at Christmas time. This behavior of the ratios from the

cluster “Highway” reinforces the common knowledge that most long trips happen around summer and holiday times.

Also, it gave us the surprising information that Christmas is by far the most long trip intensive holiday. By using our

context-based clustering to analyze fleet behavior, we were not just able to confirm common knowledge that summer

has more long trips but also detect a not-as-obvious behavior related to Christmas in Europe and the intriguing relation

between the drivers classified in the “Highway” and “Collector” clusters.
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Figure 16: Ratio of the clusters and its change over time for the vehicles from the “B_P4_E” group.

6. Conclusion

The recent increase in connected vehicles brought a surge of vehicle-related data. This data, in turn, increased the

possibilities of how connected vehicle information can be utilized to increase our understanding of the drivers and the

vehicles. One of the many possible ways to use this data is to identify how and where the vehicles have been driven

and, in doing so, apply this knowledge to desired applications. The context-based clustering presented in this paper

works as a tool for this purpose, developed primarily to enable the construction of unbiased fuel efficiency rankings of

the drivers without having to use highly sensitive positional data to identify the context. These rankings are constructed

to passively decrease CO2 emissions by using the drivers’ competitiveness to increase their fuel efficiencies by having

it compared to other drivers’ efficiencies.

The proposed framework deals with data produced from vehicles with a vehicle-to-cloud (V2C) connection and

stored in data lakes. A data treatment was proposed before clustering models could be trained and tested. Also,

a method for training and validating multiple clustering models was proposed as a tool to find the optimal models.

Several clustering algorithms were considered and tested, but ultimately, the k-means with improved initiation was

chosen. The coupling of the k-means++ with our model’s optimization method created fast models that generated

well-separated clusters.

Given the definition of context in this research, the type of road in which the vehicle was driven, and the features

used in our clusterings, the chosen nomenclature for our clusters was from the roads’ hierarchy. As such, this hierarchy

is divided based on the speed limit, traffic flow, and accessibility to property. The application of our method to data

from actual vehicles of different models and types from Europe showed how well trips can be separated into different

contexts. Overall, all vehicles showed similar clustering of their trips, and vehicles of the same models showed

almost equal clustering. The clusterings were well-defined and fitted well with their corresponding road hierarchy.

Furthermore, with correlation analysis, we demonstrated how each individual feature affected the models’ decisions.

Our proposed context-based clustering solves the unfairness of comparing drivers’ efficiencies without caring

about their situations. We demonstrated that, according to common knowledge and our initial hypothesis, context,

mainly defined by the vehicle’s speed, trip distance, and duration, has a real influence on the vehicle’s fuel efficiency.

Moreover, our empirical tests with real vehicles’ data showed that the different clusters created by the constructed

clustering models have different fuel efficiency distributions. This fact further clarifies the fundamental importance

of context for fuel efficiency comparison, as the positions in a ranking comparing efficiencies from trips in different

contexts would mainly be influenced by the context and not the drivers’ driving styles.

We demonstrated the main application of our method by building two types of fuel efficiency rankings separated

by context. Our rankings further demonstrated the disparity in efficiency between the clusters, with the best of some
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clusters being worse than the worst of other clusters. Also, using the ranking results from individual drivers, we

showed how their rankings information, positions, and efficiencies in each cluster throughout time could be displayed

in a way that instigates them to analyze and improve their efficiencies in different environments. Thus, this indicates

an approach that can possibly passively decrease CO2 emissions.

Although our method’s primary purpose was to create unbiased fuel efficiency rankings, its applications are not

limited to it. We demonstrated that by exposing how functional the context-based clustering can be for analyzing fleet

behavior, an essential element for many businesses that depend on fleet management. In our analysis, we detected

many non-trivial global behaviors of the fleet, such as the fluctuations of the clusters over time and the relation between

the clusters.

In this research, we aimed to demonstrate the importance and usefulness of a context-based clustering of drivers for

the automotive industry. Although we presented some of its applications, much remains to be explored. An application

that could open up to a whole new research is the integration of the context-based clustering with recommendation

systems [40]. The information on what context the driver fits the best in a specific time interval could help in choosing

the recommendations the system should give the driver at that time. The area of product development also has a

lot to gain by using the context-based clusters information, which can provide new viewpoints in data analysis. One

example of this is in electric vehicles battery size analysis. The battery pack is one of the most expensive and pollutant

parts of electric vehicle production. Thus, analyzing how its size can be reduced is of great importance. The context-

based clustering can provide a more focused view of different interest groups, possibly showing the main differences

between urban and highway drivers. This also allows the discovery of vehicle features used by drivers from different

clusters, allowing vehicles to be produced with fewer unnecessary features.
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5 OPTIMIZING EV BATTERY SIZING WITH ICEV ENERGY CON-
SUMPTION AND CONTEXT-BASED CLUSTERING

In the same way as in the previous paper, in this one our objective is also to

demonstrate how connected vehicles’ data can generate value. However, in this one,

the focus is on the size of batteries for electric vehicles (EVs).

In recent years, the optimization of the battery size for EVs has grown

in importance as EVs are being produced and sold more than ever. A possible

reduction of the battery size can translate directly to lower production costs and

lower environmental impact. In this paper, our proposal to optimize battery size is

also dependent on the need to sell EVs to drivers of internal combustion engine

vehicles (ICEVs). For this to be possible, the battery size must not constrain the

previously ICEVs drivers. Given this fact, data from trips of ICEVs are used to

stipulate the optimal battery so that EVs can equal ICEVs, range-wise, with minimal

changes in how they are driven.

As data from real ICEVs are used, there is no energy consumption data. To

generate this value, a function that uses average speed and temperature as input and

outputs energy efficiency values is used. With the energy consumption calculated,

energy thresholds are set to simulate battery sizes. Another aspect considered

is recharging, something that, ideally, should not take too much time given our

proposal that the drivers are previous ICEVs drivers. For this, two situations are

compared, one without recharging in the day and one with limited time in-between

trips recharging.

In the previous paper, a context-based clustering was presented. Here, we

use this method to analyze how the different contexts affect energy consumption

and, consequently, how it affects the battery needed to complete the trips in different

contexts.

This paper was submitted to the journal “Energy” and, until the writing of

this, is under review.
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Abstract

One of the most important sections in an electric vehicle (EV) production process is the choice of its battery. In the

current state of battery technology, batteries for EVs are expensive, heavy, and volumetric. Therefore, an extensive

study of how it can be optimally sized for specific vehicles can be very impactful. In this paper, by using data from

actual internal combustion engine vehicles (ICEVs) we analyse how different driving profiles impact battery energy

consumption and recharging. The energy consumptions of the trips are estimated using a function dependent on the

trips’ average speed and external temperature. The driving profiles are identified by a context-based clustering method,

which mainly identifies what type of road the driver was mostly driving on in each of its trips. The recharging type

used is the fast charge, as it is ever so more common in modern charging stations nowadays. Our analysis hopes to

answer the question of which battery size is ideal for each driving profile and how a good fast-charging infrastructure

can further help in reducing EVs’ battery costs.

Keywords: Connected vehicles, Driving context, Battery Size, Data Analysis, Energy

1. Introduction

More than ever, the industry is shifting towards data-driven solutions and adapting to new technologies [1]. Nowa-

days, collecting and using vast amounts of data is already a reality for most medium to big-size companies. This

growing accumulation of vastly different types of data is driven by the ever-growing possibilities in the generation of

value that the advancements in data processing and machine learning techniques are creating [2].

In the automotive industry, data collection is becoming a common trend [3] as more connected vehicles enter

the market each year [4]. A connected vehicle, precisely a vehicle with V2C (vehicle to cloud) connection [5], is a

cellular-enabled vehicle that connects to a central server, enabling the receiving and sending of data using the mobile

network [6]. The increase in the development and production of connected vehicles is a direct consequence of the

many benefits it can bring to the drivers [7] and the many ways it can generate value for the vehicle’s manufacturer

[8]. Also, the increase in the production of electric vehicles (EVs) in recent years has had a direct impact on vehicle

connectivity, as EVs with their mostly digital systems are perfect for the implementation of connectivity features.

From a manufacturer’s internal point of view, the greatest gain it can have with connected vehicles is the value the

collected data can generate. Aiming to decrease production costs and increase sales, a big part of vehicle development

is identifying features that can be excluded and should be included in new models. Gathering and analyzing connected

vehicles’ data can easily replace most surveys performed to identify those features [9]. Furthermore, this data is often

more reliable than the answers from survey participants as they contain the ground truth of how the vehicles are being
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used. Moreover, with the increased amount and quality of data comes the question of what is important enough to be

the focus of analyses.

The manufacturing of EVs has seen an explosion in production and sales since 2020 [10]. The huge growth in

market and production can be related to many factors, mainly environmental and technological. The recent European

Union (EU) regulations on CO2 emission standards forced automotive companies with a market in Europe to increase

investments in the production of EVs, and these regulations favoring low-emission vehicles are not restricted to Eu-

rope, with similar bills passing all around the globe [11]. Consequently, this huge growth in EVs’ investment also

created a big opportunity for technological advancements in this area, not only related to the direct manufacturing

process but also on indirect parts of the process as the batteries and the supply chains. This in turn made EVs’ cost

decrease and production increase even further, culminating in the market we have today.

With this growing market of EVs a question that still remains for all manufacturers is how big an EV model

battery should be. This question is of utmost importance due to many factors, but it mainly comes to cost. Even with

the ever-declining cost per kWh of batteries in the past years [12, 13] due to technological progress, the battery still

accounts for around 30% of an EV cost [14]. The main contributor to this high cost is the cathode of the battery cell,

which can account for 35% of the battery cell price and can be composed of many different materials. In the case

of lithium, nickel, and cobalt oxides-based batteries, these metals’ high costs are the main contributing factors to the

battery’s high costs. Even though batteries composed of nickel and cobalt oxides such as lithium nickel manganese

cobalt oxide (NMC), lithium nickel cobalt aluminium oxide (NCA), lithium nickel cobalt manganese aluminium oxide

(NCMA), and Lithium cobalt oxide (LCO) are more expensive than iron phosphate-based batteries such as the lithium

iron phosphate (LFP), they are very desirable for EVs due to their much higher energy density.

Even though it mainly comes to a matter of costs, smaller batteries equal cheaper EVs, another area that manufac-

turers must pay attention to is the clients’ desires. Which battery size would be ideal for each type of driver? Which

would be ideal for each type of vehicle given the vehicle’s target market? These are questions that can be answered by

analysing the drivers’ behaviour. In this paper, our objective is to find an answer to a similar question: Which battery

size would be ideal for drivers who are migrating from internal combustion engine vehicles (ICEVs) to EVs?

The answer is simple: the ideal size is the one that does not make the driver change his driving habits. However,

as stated before, cost plays a big role in battery size for both the manufacturers and the drivers, and different drivers

behave differently making the ideal battery size different for each individual. Therefore, to find a realistic answer, our

analysis will be based on real drivers’ data and how their behaviour with ICEVs translates to EVs. For this analysis to

be possible we used real ICEVs data collected from many different drivers from all around Europe. To convert their

ICEVs data to simulated EVs data we used a function that, given an average speed and an average temperature, returns

an energy efficiency. This function is specific for the ICEV that generated our data, as it considers its weight and drag

coefficient, using the data of electric engines from this vehicle’s manufacturer. This simulated energy consumption

allows us to analyse how much energy is being consumed by a trip and, supposing a vehicle can be fully recharged

every day, how much energy is consumed in a day. These energy values are our reference to which battery size would

be ideal, analysing which energy threshold would allow which full-day trips to be completed.

Infrastructure is a key requirement for the sales sustainability of the ever-growing production of EVs. As gas

stations are imperative for ICEVs to be functional means of transportation, charging stations are also indispensable

for EVs. Given this fact, the increase in the charging station infrastructure is following the growth of EV numbers in

most developed countries [10]. Therefore, the existence of means to easily recharge an EV outside the house and to

do so in a fast time, something made possible by DC fast chargers, can change our initial idea of just fully recharging

the vehicle from one day to the next. Moreover, the recharging possibility can also decrease the battery size needed to

travel the same distance with the drawback of having to do recharging stops. To include this outside-home recharging

possibility, we also simulated trips with recharging in-between trips. The recharging curves used to simulate how

much charge can be gained given a certain amount of battery state of charge (SoC) and a time of recharging were from

150 kW DC fast chargers. These are types of chargers that are publicly available and are growing in quantity due to

the increase in the demand of high-speed recharging. The curves used simulate the recharging process simulate the

recharging of EVs models with NMC-type batteries from the same manufacturer as the analysed ICEVs.

As stated before, not every driver behaves equally. There are drivers that almost never go out of city centers

and drivers that take the highway every day. These differences in behaviour undoubtedly affect the battery size these

drivers would need. To consider this, we also applied a context-based clustering to the drivers to classify each different

day and analyse how the different contexts affect battery size. This clustering is done by k-means models and uses
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context-related values such as average speed, trip distance and time, and time and different speed intervals. The

contexts are identified as the road types in which the vehicle stayed for most of the trip.

The remainder of this paper is organized as follows: Section 2 discusses previous studies related to the topics

presented in this paper. Section 3 presents the data used in our analysis. Section 4 presents the methods employed

to assess the energy consumption of the ICEVs, battery size calculation, the context-based classification, and the

recharging of the batteries. Section 5 presents the results obtained and how they affect our battery size decision.

Lastly, Section 6 presents the study’s conclusions and possible follow-up research related to the studied topic and

reached results.

2. Related Works

Before producing EVs, it is important to understand how the drivers see EVs and what are the main obstacles

to greater EV adoption. In [17] a survey of potential EV consumers was made, with the objective of investigating

the barriers to EV adoption. They found that the main barriers were financial, technological, and infrastructure. In

[16] a similar conclusion is reached, with the interesting additional finding that reputation and status also influence

EV purchase, with reputation-driven customers opting less for EVs in the situation that EVs cost the same as ICEVs.

Another survey is made in [15] but with a focus on EV drivers’ satisfaction. They found that the intention for

cost-saving during operation is a key factor for EV users’ satisfaction and that satisfied users have the intention to

repurchase and recommend EVs to others. An exhaustive literature review is done on what are the main factors

that affect the consumers’ intention to adopt EVs in [18]. It was found that situational type factors were the most

influential. They also found that the lack of charging station availability and limited driving range were the most cited

barriers to the adoption of EVs, while the reduction in air pollution and the availability of policy incentives were the

most cited motivators.

To obtain the energy consumption from ICEVs’ trips, we used a function based on average speed and external

temperature, as there is plenty of literature on this topic. In [19, 20, 21, 22, 23, 24, 25] the effects of external

temperature in energy consumption are well explored with different approaches. However, even while analysing

different vehicles, all these studies showed similar results. The function used in this paper also shows similar results

to these studies, with low and high temperatures affecting negatively the energy efficiency and with the worst results

occurring in really low temperature ranges. Another important aspect of energy consumption that is accounted for in

the function used in our study is the vehicle’s average speed, which is also well explored in [19, 24, 25]. All these

papers demonstrate how those two factors together affect energy consumption, also with the addition of other factors.

For example, in [19] analysis, a division of the trips into 3 types, urban, rural, and motorway, is done. And in [24, 25]

the driving style factor, with different levels of aggressiveness, is analysed, and [25] infrastructure factors like curves

and slopes are also accounted for. In [32] the authors analyse real EVs’ data, investigating factors that influence

consumption. However, in this paper, the authors go one step further by using this data to train machine learning

models to predict consumption curves.

The topic of required ranges and battery size optimization for EVs does not lack in papers, which is expected given

its importance in recent years when EV production is growing exponentially. Before the explosion in EV production,

[27] is a study that investigated, based on ICEVs’ daily trips, the ranges that EVs should be able to do to be viable

substitutes to ICEVs. A more recent study that has a similar objective to ours is [26]. Although lacking in sample

size, as just one vehicle was investigated, it successfully showed how battery size can be reduced considerably without

affecting the driver’s usage. In [29], a very complete TCO (total cost of ownership) analytical method is proposed,

which encompasses many variables that affect the cost of EVs as the different geographical regions, ranges, and

policies. In their analyses, it is concluded that the TCO of all EVs, independent from battery size, is significantly

lower than ICEVs and plug-in hybrid electric vehicles (PHEVs) in almost all regions. [30] analyses consumption

data from real-world driving and uses models to generate driving cycles to investigate the usage of different battery

sizes. Their findings show that different drivers require different battery sizes, depending on climate and range, with

the maximum size needed reaching just 70 kWh. In [28], the authors’ focus is another side of batteries that can be as

important as their size: when and by how much they should be recharged. They show that usage outside the 20%-80%

of SoC range can lead to more energy consumption and faster degradation.

When investigating the possibilities of different sizes of batteries, an important factor to consider is how they are

recharged and how the recharging can affect the grid and the battery size. [31] studies how EV recharging can impact
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the grid, showing the peak recharging hours of the analysed vehicles, and also how energy is consumed. In [33] the

two main range extenders for EVs are considered: bigger battery or better fast-charging infrastructure. The study

concludes that fast charging can significantly increase range, and analyses many aspects of the current infrastructure

in Germany and how it could be further improved. [35] proposes an optimal hybrid-type battery pack with a low

range but extremely fast recharging. Such a battery would only be possible if fast chargers were readably available. In

[34] different recharging strategies are considered to optimize charging stations usage. Two strategies are compared:

communication and reservation. They showed that the communication strategy, which has real-time information

sharing, can reduce trip time and optimize charging station usage in comparison with the reservation strategy, which

can waste the potential usage of a charging spot.

The high charging rates of fast chargers can significantly impact the grid and vary the energy demand. With the

need to increase the number of stations with fast chargers, solutions to this problem are being researched. The use of

battery storage units as buffers between the grid and the stations is a viable strategy. In [36], the author optimizes the

size of those battery storage units and also demonstrates the feasibility of it in cases with energy arbitrage. [37] also

makes this optimization and shows that it can reduce operational costs due to energy arbitrage. In [38] the battery

storage units are optimized also considering the forecasting of photovoltaic power production.

3. Data

The data used in this study is from connected vehicles of a French automotive company from all over Europe,

where each observation is a trip, initiated when the vehicle is turned on and finalized when it is turned off. Table 1 is

an example of the type of data we have, where each row is a different trip, and each column holds different information

about the trips.

VIN
hashed Start Time Finish Time Distance

(km)
Avg. Speed

(km/h)
Avg. Temp.

(°C) · · · Model Power

76973 01/01/2023 12:00:00 01/01/2023 12:30:00 10 60 15 · · · A P1

92928 01/01/2023 12:20:00 01/01/2023 13:50:00 111 150 17 · · · A P1

36348 01/01/2023 12:35:00 01/01/2023 12:40:00 2 30 16 · · · A P1

76759 01/01/2023 12:40:00 01/01/2023 13:05:00 12 120 19 · · · A P1

23915 01/01/2023 12:42:00 01/01/2023 13:22:00 24 230 17 · · · A P1

46851 01/01/2023 12:50:00 01/01/2023 13:15:00 7 130 20 · · · A P1

Table 1: Example of the data structure.

Although data from many vehicles and different models are available, here we analyse a single hybrid model.

From this single model, we had almost 10 million trips from more than 8 thousand different vehicles, spanning from

the beginning of 2023 to the end of 2024. To increase the quality of our data, we made filters to discard data from

drivers without periodic usage of their vehicles. Also, we focused our analysis on a specific one-year period, from

July 2023 to July 2024. This was done so as to not unbalance our data by including periods with specific events like

summer holidays more than one time while just including other specific events like winter holidays just one time, as

in the case if the analysed period was from May 2023 to October 2024. With this data pruning, our final dataset had

around 3.2 million trips from around 2.5 thousand different vehicles.

4. Methodology

4.1. Energy Consumption Calculation

The reason for our single model analysis comes from our method of stipulating the energy consumption of non-

electric vehicles as if they were electric vehicles (EVs). The main causes of deviation in overall energy consumption

of different models of EVs, disregarding deviations from individual usage, are the different power trains, weights, and

drag coefficients. A simulated energy consumption table that assumes a specific electric power train in a hybrid model
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body was provided to us. Therefore, we can only stipulate the energy consumption of this specific hybrid vehicle

model, as the simulated data assumes its weight and drag coefficient.

The energy consumption table provides to us is a discrete function D : Z2 → Q, where the two integer variables

are average speed (km/h) and average external temperature (°C) values, and the rational image is the energy efficiency

in kWh/100km. Table 2 is a representation of this function.

Average Speed (km/h)

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Te
m

pe
ra

tu
re

(°
C

) -5 34.36 27.34 23.40 20.94 19.66 19.25 19.43 20.02 20.84 22.05 23.55 25.57 27.75 30.12

5 26.73 21.57 18.97 17.51 16.89 16.90 17.40 18.12 19.01 20.26 21.76 23.63 25.65 27.84

14 19.86 16.38 14.98 14.41 14.39 14.79 15.56 16.41 17.36 18.65 20.16 21.88 23.76 25.78

23 17.36 14.63 13.60 13.19 13.28 13.78 14.64 15.56 16.54 17.84 19.33 20.99 22.79 24.73

30 20.32 16.43 14.77 13.87 13.60 13.96 14.76 15.64 16.53 17.58 18.78 20.38 22.13 24.01

40 24.54 19.00 16.45 14.84 14.06 14.23 14.92 15.76 16.51 17.58 18.78 20.38 22.13 24.01

Table 2: Energy efficiency discrete function.

Our simulated table data exists only for discrete values. However, the trips’ speed and temperature values from

the data we need to stipulate the energy consumption are all rational. Therefore, a way to calculate energy efficiency

given continuous speed and temperature values is needed. One alternative is function fitting, i.e., find a function

F : R2 → R that best fits our discrete set of points. This can be achieved with polynomial regression, and in our case,

we used a cubic function. Figure 1 is a heat map with the results of our function fitting. In the fitting, we achieved a

mean absolute error of 0.634 kWh/100km and a mean absolute percentage error of 3.423%.

Figure 1: Continuous energy efficiency function heat map.

With the ability to calculate the energy efficiency of a trip, we also can calculate the energy consumption of a trip

or a day. Table 3 is an example of these values calculated. Given a set of trips from a vehicle and their distances,
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average speeds, and average temperatures, we can calculate their energy efficiency and energy consumption.

VIN Date Start
time

End
time

Distance
(km)

Avg.
Speed
(km/h)

Avg.
Temp.
(°C)

Energy
Efficiency
(kWh/km)

Energy
Consumed

(kWh)

Day
Consumption

(kWh)

#1 25/03/2024 08:12 08:32 10 30 15 0.1558 1.5583 4.7658

#1 25/03/2024 12:32 13:02 25 50 22 0.1283 3.2075 4.7658

#1 26/03/2024 07:00 10:00 240 80 16 0.1536 36.8623 74.5125

#1 26/03/2024 10:15 12:15 180 90 18 0.1659 29.8548 74.5125

#1 26/03/2024 14:15 15:15 60 60 22 0.1299 7.7954 74.5125

#1 27/03/2024 08:15 08:35 10 30 12 0.1639 1.6392 1.6392

Table 3: Simulated energy consumption calculation.

4.2. Battery Size Calculation

Our battery size calculation is based on a daily energy usage threshold. Imposing many different daily energy

thresholds, we can analyse the days and vehicles which did or did not respect each threshold, and if the threshold was

not respected, it means that a battery of that size would not be sufficient. Table 4 has an example of these calculations.

VIN Date
Energy

Consumed
(kWh)

Day
Consumption

(kWh)

Energy >
10kWh

Energy >
15kWh

Energy >
20kWh . . .

Energy >
120kWh

#1 25/03/2024 1.5583 4.7658 No No No . . . No

#1 25/03/2024 3.2075 4.7658 No No No . . . No

#1 26/03/2024 36.8623 74.5125 Yes Yes Yes . . . No

#1 26/03/2024 29.8548 74.5125 Yes Yes Yes . . . No

#1 26/03/2024 7.7954 74.5125 Yes Yes Yes . . . No

#1 27/03/2024 1.6392 1.6392 No No No . . . No

Table 4: Battery size thresholds calculations.

Using the thresholds we can measure the number and percentage of days in which each battery size threshold

was respected for each vehicle. Table 5 has an example of these calculations. With these values we can calculate the

amount of coverage each battery size would have on a sample of vehicles, making it possible to choose the best size

given a pursued objective such as a percentage of vehicles that need to be covered on a specific percentage of time.

VIN N° of
days

N° of days
< 10kWh

N° of days
< 15kWh . . .

N° of days
< 120kWh

% of days
< 10kWh

% of days
< 15kWh . . .

% of days
< 120kWh

VIN#2 240 156 179 . . . 238 65,00% 74,58% . . . 97,08%

VIN#3 312 262 268 . . . 311 83,97% 85,90% . . . 99,68%

VIN#4 230 138 145 . . . 220 60,00% 63,04% . . . 95,65%

VIN#5 320 207 215 . . . 296 64,69% 67,19% . . . 92,50%

VIN#6 290 213 218 . . . 281 73,45% 75,17% . . . 96,90%

Table 5: Coverage of each battery size for each vehicle.

6



4.3. Battery Recharging Calculation
Besides the consumption of electric energy, another important aspect of EVs is the recharge of this energy. To

simulate a more precise electric energy usage, we also included the recharging process in our analysis. In this study,

we assume that at each interval between trips bigger than 2 minutes, the vehicle can be recharged. For example, if

the interval between trips is 5 minutes, we assume that the vehicle was recharging for at most 3 minutes. Given this

hypothesis, the recharging speeds are set by direct current (DC) fast charger curves, which in our case can reach an

output of up to 150 kW. The decision to use this kind of recharging technology comes from the fact that their numbers

are growing in public recharging stations due to the increase in the demand for high-speed recharging [10]. Figure 2

shows the state of charge (SoC) by time curves of different battery sizes on a DC fast charger for EVs models with

NMC-type batteries from the same manufacturer from the analysed ICEVs.

Figure 2: Fast charger simulated SoC by Time curves.

With the energy consumption of a trip and the time interval between trips, we can simulate SoC curves for each

day, vehicle, battery size, and recharging time. Table 6 and Figure 3 represent how we did these calculations for an

exemplifying case where the battery size was 60 kWh, and the maximum recharging time was 10 minutes. In this

example, it is possible to see the cases when there is no time to recharge, less than 2-minute intervals, and the cases

when there is more time, but it was limited to 10 minutes. Also, this example really shows the difference in how much

can be recharged in 10 minutes when the SoC is as high as 90%, with only around 3% being recharged, and when it

is as low as 10%, with more than 20% being recharged.

VIN Date Start
Time

End
Time

Distance
(km)

Avg.
Temp.
(°C)

Avg.
Speed
(km/h)

Energy
Effi.

(kWh/km)

Energy
Consu.
(KWh)

Start
SoC (%)

End
SoC (%)

Recharged
SoC (%)

#1 2023-12-24 06:59:54 07:33:39 23.021 -0.150 40.930 0.194 4.472 100.000 92.547

#1 2023-12-24 13:04:57 13:31:59 22.580 6.455 50.127 0.159 3.589 95.168 89.186 2.620

#1 2023-12-24 14:26:20 16:37:36 196.639 8.440 89.885 0.180 35.379 92.704 33.740 3.518

#1 2023-12-24 16:39:17 17:43:39 87.201 5.590 81.297 0.174 15.201 33.740 8.405 0.000

#1 2023-12-24 19:15:01 19:29:08 8.320 2.050 35.360 0.193 1.606 29.462 26.786 21.057

#1 2023-12-24 23:38:47 23:53:17 8.080 1.168 33.417 0.201 1.624 48.723 46.017 21.938

Table 6: Simulated discharge and recharge calculations.

4.4. Context-Based Clustering
An aspect that cannot be ignored when dimensioning batteries for EVs is the type of driver for which those vehicles

are being made. From a commercial viewpoint, it makes no sense to produce a small EV with low power and carry
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Figure 3: Representation of the SoC by time of Table 6.

capacity, but with a large battery, as it is known that most clients of this kind of small vehicles never go out of the

city and only use it to commute from home to work. The same is true for the other side of the spectrum: producing

a big SUV-type EV with medium to high power and carry capacity, but with a small battery. We will be using a

context-based clustering to identify the different types of roads the vehicles are being driven, and how these different

contexts affect electric energy usage both for consumption and recharging.

The context-based clustering method we are using is a k-means++ model based on features mostly related to

speed, but also distance and duration. The contexts found and separated by this clustering model can be identified

as road types due to their strong speed segregation. In Figure 4 we have the boxplot distributions of the three main

features and in Figure 5 we have the correlations between the clustered groups, road types, and all the features. These

figures in combination with Table 7 that has indicators of the clustered groups, demonstrate how and which of the

trips are separated.

Context

Arterial Collector Highway Local-center Local-outskirts

Avg. Speed (km/h) 46.86 27.45 78.61 14.97 15.50

Avg. Distance (km) 16.48 4.89 75.63 3.94 1.59

Avg. Duration (min) 20.59 10.20 54.05 13.59 5.53

Avg. Temp. (°C) 14.69 15.28 15.42 16.07 16.47

Freq. Count (%) 28.48 33.16 6.61 12.61 19.14

Freq. Distance (%) 57.90 22.90 14.05 2.67 2.48

Freq. Time (%) 48.46 32.55 6.85 6.27 5.87

Table 7: Indicators of the different road types.

However, given the way we are calculating the energy consumption, analysing a whole day, we also need to

classify the driver’s days, not only the trips. This driver’s classification has one parameter, the viewpoint. Here, the

viewpoint is related to the application of the classification, which is based on what the classification will be used

for. For example, it could be based on the clustered trips’ frequency, distance, or duration. Figure 6 exemplifies

this driver’s days classification method by using three different viewpoints: absolute frequency, weighted frequency

based on distance, and weighted frequency based on time duration. In the frequency-based classification, just the

number of occurrences of each cluster in a day is accounted for, with the classification of a day being the cluster

with the most trips in a day. This classification method could be attractive for applications related to short trips. On
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Figure 4: Boxplot distributions of the cluster features. Figure 5: Correlation between the features and clusters.

the other hand, the distance and time-based ones could be better for longer and lengthier trips. In those cases, the

weight of each trip is the distance or total time of that trip, making longer trips more important in the classification.

This increased importance of longer trips makes sense when the analysis is focused on energy consumption. For our

energy consumption analysis, we will be using the classification with the weighted frequency based on distance, as

the energy consumption is totally related to the distance traveled.

Figure 6: Example of the different ways a day can be classified.
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5. Results and Discussions

In this analysis, we will be constantly comparing two possibilities of battery energy usage: regular usage without

in-between trips recharge, and with in-between trips recharge. The energy data for both possibilities are obtained with

the energy efficiency conversion function. For the data without recharge, we created datasets like the ones from Tables

3 and 5, and for the data with recharge, we created datasets like Table 6 for a 10kWh to 120kWh range of battery

sizes. Also, a maximum time of recharging of 10 minutes per stop was imposed, with 2 minutes needed to start the

recharging process. For both cases we apply the context-based clustering to the data, analysing how the context, road

type, affects energy usage and efficiency.

5.1. Energy Consumption and Thresholds

Using the energy efficiency conversion function and setting energy thresholds ranging from 1 to 120 kWh, we can

make graphs such as Figure 7. In this graph, using the calculated percentage of days covered, i.e., the percentage of

days in which the energy used was less than the battery size, we calculated for each battery size the percentage of

vehicles covered. For example, in Figure 8 we have a closer look at the graph from Figure 7 and it is possible to see

that for a battery size of 60 kWh, in the slightly darker green range, 90% of the vehicles were covered 95% of the

days, i.e., there was at least one vehicle on this 90% which used more than 60 kWh of energy in 5% of its days.

Figure 7: Vehicular and time coverage heat map.

For the case with recharging, we count a day as covered if the vehicle SoC did not get lower than 0% for that

vehicle on that day. Figure 9 is the same type of graph as figures 7 and 8 but with the new SoC calculation. Here it is

already noticeable how the introduction of recharging increased the vehicles by days coverage curves. Looking at the

40 kWh battery size, in the light blue range, before, around 70% of the vehicles were covered 95% of the days, with

the recharging in the same percentage of days around 80% can be covered, an increase of 10% in vehicular coverage.

Another way we can analyse the daily energy consumption of the vehicles is with graphs like the one in Figure

10. In this graph, we have the energy consumption by the percentage of vehicles throughout many ranges of days.

For example, it is possible to see that more than half of the vehicles didn’t even hit the 100 kWh mark in a single day

in a whole year. However, it also shows that around 5% of the vehicles used at least 100 kWh of energy in 10 days.

This graph demonstrates that almost all vehicles consume a small amount of energy for most of the days and that the

vast majority of drivers just consume a lot of energy in very few days in a year. Also, there is a small percentage of

vehicles that consume a lot of energy in a considerable number of days.
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Figure 8: Zoom on a section of Figure 7. Figure 9: Vehicular and time coverage heat map applying the recharging.

Figure 10: Vehicular energy consumption by days heat map.

From the energy consumption information in Figure 10 two points can already be raised: considering a worst-case

scenario of no in-between trips recharging, a medium to big size battery, 60 to 80 kWh, would be more than enough

for regular usage of the vehicles by the vast majority of the drivers; it does not make sense to increase battery size

with the objective of covering all days for most vehicles, as energy usage values can get really high for low numbers

of days.

Although very informative, the range of percentage of days covered in the graphs from figures 7, 8 and 9 are too

big. By setting some threshold values for what percentage of days we need to cover, we can make graphs such as

the one in Figure 11, relating vehicular coverage and battery size. With this graph, it is possible to see how difficult

it gets to cover more vehicles for percentages of days covered closer to 100%, with really big batteries of 120 kWh

covering just about 65% of the vehicles on all the days without recharging and 84% with recharging. This percentage

without recharge corroborates with the daily consumptions from Figure 10, which shows that for 1 day and 100%

days coverage, 35% of drivers consumed more than 120 kWh, which are the drivers excluded from the 65% from

Figure 11. Figure 11 also demonstrates how much the addition of recharging increases vehicular coverage, with the

most noticeable differences occurring on low percentages of days covered as 80% and 90%, and small batteries as 10

to 20 kWh, and on high percentages of days covered as 99% and 100%, and big batteries as 60 to 120 kWh.
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Figure 11: Vehicular coverage on specific percentages of days covered.

Given the difficulty of covering all days strictly, as in the 100% of days coverage a vehicle counts as not covered

if just a single trip surpasses the battery size, we made a less strict coverage of days rule. This new rule ignores a

single day that was not covered in a whole year. Figure 12 compares the days’ coverage when we set it as not covered

when just a single day was not covered and when we ignore one day. Figure 13 shows the difference for both cases,

without and with recharging, of ignoring a single day. This comparison shows the percentage of vehicles that are not

covered in just one day for each battery size. Both curves for the cases with and without recharging are very similar

but the one with recharging is always higher until the 85 kWh battery size mark. After this mark, the percentage of

vehicles in the case without recharging stays constant while it starts to drop in the case with recharging. This sudden

drop can be explained by the types of days that need bigger battery sizes. As with all the data we have, those days

were driven on ICEVs which do not need recharging stops. With this lack of stops, there is no opportunity for an

in-between trip recharge to occur. Another important piece of information on the curves from Figure 13 is the huge

number of vehicles that have just one big day in a year, further confirming that traveling long distances in a day is the

exception for most drivers, not the rule. Given this increase in coverage by ignoring only one day in the year, from

here on out we will be using this less strict rule.

Figure 12: Vehicular coverage while covering all days. Figure 13: Difference between the strict and not strict rule.

Using the rule of overlooking one day for 100% of days covered, we can directly compare the cases without and

with recharging. Figures 14 and 15 show this comparison from two different viewpoints: percentage of vehicular

coverage and battery size. Figure 14 compares the percentage of vehicular coverage by calculating the difference in

these values between the cases with and without recharging. The curve is always positive and peaks for a battery size
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of 89 kWh at around a 19% difference, which means that the recharging case is always better and that the battery size

where the recharging is the worthiest is 89 kWh. Also, for more standard battery sizes such as 40, 60, and 80 kWh the

increase in the percentage of vehicular coverage is around 10, 15, and 17%.

Figure 14: Vehicular coverage comparison between recharging and not

recharging.

Figure 15: Battery size comparison between recharging and not recharg-

ing.

Figure 15 has a viewpoint focused on battery size, which can be more easily translated to cost. This graph shows

the difference in battery size needed to cover different percentages of vehicles. For example, if it is decided that 70%

of the vehicles need to be covered in all days, Figure 15 shows that there is a 25 kWh difference between recharging

and not recharging the vehicles. This means that just by having some in-between trips recharging it is possible to

make a vehicle with a battery 25 kWh smaller. Supposing a battery production cost of $115.00 per kWh [39], this

would save $2,875.00 in production cost. Unfortunately, as the percentage of vehicles in this graph is limited to the

lower bound in the comparison, the curve without recharging, we only have values between 0% and 80%. However,

this interval already demonstrates the gains of an infrastructure that allows for easy recharging of EVs.

5.2. Context-Based Classification

All Those figures give us a general vision of the data. However, it is well known that the trips that are forcing

us to have a big battery to increase vehicular coverage are the low-frequency long-distance trips. Those trips can

be clustered from the others by applying our context-based clustering. In our clustering, they are recognized as

“Highway” trips. We clustered our data and did the classification process from Figure 6 using the distance viewpoint.

Table 8 shows how the days were separated, with 14% of the total number of days from all vehicles being classified

as “Highway”.

Context

Arterial Collector Highway Local-center Local-outskirts

Classification Frequency (%) 42.97 28.69 14.16 7.45 6.73

Table 8: Frequency distribution of the classification of the days by context.

In Figure 16 we have graphs of energy consumption by percentage of vehicles over a range of days, like the one

from Figure 10 but now with the data separated on the different contexts. These graphs in Figure 16 make clear when

energy is most consumed, with what we will be calling the totally urban days, “Collector” and “Local” contexts,

having less than 3% of the vehicles consuming more than 30 kWh in at least one day. On the other hand, for days

classified as “Arterial” this percentage is up to 50%, and for days classified as “Highway” it goes to around 93% of

the drivers. Considering the amount of energy of medium size batteries, 60 kWh, the totally urban days can be totally

covered, while around 7% of the “Arterial” days would still be uncovered and almost 75% of the “Highway” days

would not be able to be completed. This shows the gap in energy usage of urban contexts to the highway context, and

how it is a reasonable choice to separate them when considering different battery sizes.
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Figure 16: Vehicular energy consumption by days with context division heat map.

Setting the days coverage as 100% and using the less strict rule of ignoring one day not covered in a year, we built

battery size by vehicular coverage graphs separated by the context-based classification. Figures 17 and 18 show these

curves for each context and for all the data, and for both the with and without recharging cases. These graphs make

clear how easy it is to cover the totally urban days, as 30 and 20 kWh batteries cover around 100% of the vehicles for

the without and with recharging cases, respectively. Looking at the frequencies in Table 8, this means that at the very

least 43% of all the days can be covered with 30 or 20 kWh batteries. For days that are between urban and highway,

“Arterial” context, 30 kWh batteries can cover 73% or 93% of the vehicles, with a 60 kWh battery covering around

98% or 100% of the vehicles. However, although we can cover at least 86% of all the days with a 60 kWh battery, the

“Highway” days are still unreachable, with this battery size just covering 32% or 46% of the vehicles.

An interesting behaviour of the “Highway” and “All data” lines can be observed in Figure 18. Around 90 kWh

battery size there is a small change in the tangential angle of the curves. For battery sizes smaller than around 90 kWh,

the curves can be approximated by a linear function with an angular coefficient of 1, e.g., for each 1 kWh increase in

battery size there is a 1% increase in vehicular coverage. However, for battery sizes bigger than around 90 kWh, the

angular coefficient of the approximated linear function changes to 0.5. This means that increasing the battery by the

same amount after around 90 kWh only results in half of the gains in vehicular coverage.

Comparing the results from figures 17 and 18 really demonstrates how recharging can decrease battery size or

increase coverage. Figures 19 and 20 make the differences of these cases clearer. Figure 19 compares the percentage

of vehicular coverage of the graphs from figures 17 and 18. This graph demonstrates that recharging is always

better, as its curves are always positive, but it also shows for which battery sizes the recharging is more worthy. For

example, for the total urban contexts, the peak in vehicular coverage gain is at the smallest size, 10 kWh batteries,

with “Local-center”, “Local-outskirts”, and “Collector” days gaining around 2%, 11%, and 35%, respectively. For

the “Arterial” days the maximum gain is at 19 kWh batteries, with a gain of around 41% in vehicular coverage. And

for the “Highway” days, its curve is similar to the one from Figure 14, which peaks at a battery size of 89 kWh, with
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a gain of around 19% in vehicular coverage.

Figure 17: Vehicular coverage for all days with context segregation and

without recharging.

Figure 18: Vehicular coverage for all days with context segregation and

with recharging.

Figure 19: Vehicular coverage comparison between recharging and not

recharging for different contexts.

Figure 20: Battery size comparison between recharging and not recharg-

ing for different contexts.

Figure 20 also compares the cases without and with recharging but looks at the difference in battery sizes. Its

graph gives the gain of recharging in battery size given a percentage of vehicles that must be covered. For example,

it is noticeable how the curve for the “Arterial” days has the longest domain of percentage of vehicular coverage and

how it is almost always increasing, with high values at high percentages. If it is decided that is necessary to build

an EV with a battery that covers 95% of the vehicles for all “Arterial” days, Figure 20 shows that there is a 16 kWh

difference in the battery size needed, or a decrease of $1.840,00 in production cost, if the vehicle will or will not be

recharged between its trips.

Instead of looking at the vehicular coverage, i.e., the percentage of vehicles that had all their days covered by a

specific battery size, we can look at the days’ coverage or the opposite of that. The first two graphs from Figures

21 show the percentage of days that could not be covered by a range of battery sizes, for all the different contexts

and for all the data, for the cases with and without recharging. The coverage of days axis in these graphs is in the

logarithmic scale, which allows us to see with more detail the minor gains, consequently allowing for better decisions.

For example, in the “Arterial” curve of the graph with recharging, a 99.9% coverage of the days can be achieved with

a 41 kWh battery, and a 99.99% coverage of the days can be achieved with a 65kWh. However, would an increase

in days covered of 0.09% be worth the cost of a 24 kWh bigger battery? Most probably not. Even more when we

analyse the differences between with and without recharging. The last graph of Figure 21 demonstrates this difference,

showing the percentage of days covered gained from recharging compared to the case without recharging. This graph

shows the impressive gains from recharging for small battery sizes, less than 30 kWh, for all contexts. Also, for

the “Highway” days the days gained remain high even for big battery sizes, demonstrating that, even with just the
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in-between trips stops that drivers already do with their ICEVs, the addition of in-between trips recharging increases

a lot the coverage of high distance days.

Figure 21: Total of days not covered by battery size and context, and comparison between the cases without and with recharging.

The graph of Figure 22 compares the results in the graphs of Figure 21 with a focus on the difference in battery

sizes. For each context and for all data this figure shows how much bigger a battery would need to be to cover the same

percentage of days but without the in-between trips recharging. This comparison makes much clearer the gains from

the application of recharging. For the realistic percent off day range, where increase in coverage still has a significant

difference, i.e., 0.01 to 100%, the days in the “Arterial” context show the biggest difference, with a peak of 30 kWh

difference in battery size to cover the same 99.99% of the days. In this case, while a 65 kWh battery can cover 99.99%

of the days with recharging, a huge 95 kWh battery would be needed if recharging is not applied.

Figure 22: Battery size comparison between the cases without and with recharging for a same percentage of days covered.

6. Conclusion

In recent years the production of EVs has grown non-stop. This growth can be mainly associated with environ-

mental and technological factors. Year after year the impacts of global warming are getting more tangible, forcing

countries to attack what they conclude as the main cause: CO2 emission [11]. Regulations on combustion engines

pressure the automotive industry into changing their products, increasing even further the rate of idealization and

16



production of EVs. With the necessity of increasing the production of EVs, advances in manufacturing technologies

that allow for faster and cheaper production of this somewhat new technology are pursued.

This increase in EV production is happening alongside another transformation in the automotive industry: vehicle

connectivity. The many advantages vehicular connectivity brings to both the drivers and manufacturers [7, 8] are the

reasons why the industry is increasingly including connectivity on new vehicles. Moreover, vehicular connectivity is

mainly related to the digitalization of vehicles, which is the default on EVs, making the implementation of vehicular

connectivity on EVs even more natural.

It is from the data collected from connected vehicles that we answer one of the biggest questions in today’s

automotive industry: what is the ideal EV battery size? With our main focus being drivers who are and will need

to eventually migrate from ICEVs to EVs. To find an answer, we analysed the trips from many different vehicles

of an ICEV model, getting simulated energy consumption values by using a conversion function. As the increase in

the circulation of EVs caused an increase in public recharging infrastructure, two scenarios were tested: without and

with in-between trips recharging. Another important factor that was accounted for is the difference in energy usage

when the vehicle is in different contexts, mainly between urban and highway trips. This was included by applying a

context-based clustering method that can cluster the trips into different types of roads.

The various graphs showing energy usage, and coverage of vehicles and days for different battery sizes, scenarios,

and contexts led to interesting conclusions. The first and perhaps the most important one is that just increasing battery

size is not the right answer, yet. Even without accounting for the massive increase in weight and reduction in internal

space that a big battery would cause, our analyses showed that even the biggest proposed size, 120 kWh, was not

nearly enough to make the longest days possible, which were few but existed for a big share of the analysed vehicles.

This conclusion is further confirmed by the days classified as “Highway” in our context-segregated analysis. These

days were the only ones that could not be properly covered by reasonably sized batteries. This makes the hypothesis

of making EVs that can compete with ICEVs in the range of trips without stops impossible for vehicles in the same

category, as the current battery technology still cannot compete with the energy density of fossil fuels. This conclusion

is for the current technology, as batteries’ energy density continues to increase in recent years [40, 41].

The comparisons between the scenarios with and without in-between trips recharging is what gave us another, less

hopeless, conclusion: there are significant gains from short recharging stops. Even if an unreasonably huge battery

still cannot achieve a bigger range than a tank fuel of gas, if a smaller, more realistic, battery can be well recharged

in a short amount of time, the same distance can be achieved in similar times. In our tests, even though a fairly short

duration for the recharging stops was used, with the objective of not upsetting previously ICEVs drivers, the gains

from it were still pretty clear in the graphs, independently from the context. This demonstrated that a smaller battery,

cheaper to produce, lighter, and occupying less space, can achieve the same results as a bigger battery if occasionally

recharged between trips. However, for this to be possible a good infrastructure of public fast recharges is needed.

Currently, such ideal infrastructure only exists inside urban centers of well-developed countries. Nevertheless, their

numbers are growing following the huge growth in EVs’ production [10].

Following the conclusion that reasonable battery sizes with in-between trips recharging is the best option in oppo-

sition to a huge battery that wouldn’t require stops, we can suggest some sizes given the study’s results. The context

segregation showed that covering urban days is fairly easy, thus, if a small vehicle for mostly the urban market is being

made, a battery of around 40 kWh would be sufficient, as it can cover all urban days and almost all the “Arterial” days,

which are between urban and highway. For the general market, which encompasses most drivers, an adequate size

would be around 60 kWh, as it can easily cover all non-highway days allowing for comfortable urban usage, cover

almost half of the vehicles in highway days, and cover around 99% of all days. Lastly, to maximize range without

being unreasonable, a battery of around 90 kWh could be ideal, as it does everything that a 60 kWh one would do

but increasing its coverage of vehicles on highway days to 75%. Furthermore, looking at the “Highway” curve from

Figure 18, after this battery size the slope of the curve starts to drop, making further increases in vehicular coverage

less cost-efficient. Moreover, in Figure 19 around 90 kWh is where the coverage of vehicles gained from doing the

in-between trips recharging is maximized.

We compared in different contexts a hypothesis of no recharging and one with a specific recharging strategy. After

our analysis, we confirmed that the best and most reasonable strategy for EV batteries is to apply a recharging strategy.

However, only one specific recharging strategy was tested, where in every stop lengthier than 2 minutes a maximum

of 10 minutes of fast recharging could be done. To further consolidate our analysis of EV batteries, a future study

could be done comparing different recharging strategies that could be employed, which could include different stop

17



times and frequencies, charger speeds, and battery sizes.
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[36] V. Salapić, M. Gržanić, T. Capuder, Optimal sizing of battery storage units integrated into fast charging ev stations, in: 2018 IEEE

International Energy Conference (ENERGYCON), 2018, pp. 1–6. doi:doi:10.1109/ENERGYCON.2018.8398789.

[37] P. Félix, L. A. Roque, I. Miranda, A. Gomes, Battery energy storage system optimal sizing in a battery electric vehicle fast charging

infrastructure, U.Porto journal of engineering. 9 (2023). doi:doi:10.24840/2183-6493_009-005_001937.

[38] F. Aksan, V. Suresh, P. Janik, Optimal capacity and charging scheduling of battery storage through forecasting of photovoltaic power

production and electric vehicle charging demand with deep learning models, Energies 17 (2024). doi:doi:10.3390/en17112718.

[39] BloombergNEF, Lithium-ion battery pack prices see largest drop since 2017, falling to $115 per kilowatt-hour, 2024. URL: ����������	
��

��
���	����	�������
���	������
������������
���

�����
�����	������
���������������	������
�����	������	
����		��
���
�

[40] PhysicsWorld, Lithium-ion batteries break energy density record, 2023. URL: ����������������	�����	����

�����
���	������
��
����
���
�
�����
�������
�	���.

[41] Q. Li, Y. Yang, X. Yu, H. Li, A 700 wh/kg rechargeable pouch type lithium battery, Chinese Physics Letters 40 (2023). doi:doi:10.1088/0256-

307X/40/4/048201.

20



92

6 CONCLUSION

This work presented a compilation of four papers that demonstrate the

applications of Machine Learning (ML) (Sarker, 2021), Process Mining (PM)

(Aalst, 2016), and Data Science (Kelleher; Tierney, 2018) and Analysis (Kudyba,

2014) in very distinct areas of engineering: production planning and control, and

vehicular connectivity.

Our motivation for this work was to demonstrate how unrelated problems,

from vastly different areas of engineering, can be solved with modern data-driven

methods. This compilation of four different studies shows how the field of data-

related methods has unlimited applicability. If there is data related to the problem,

methods can be used to investigate, diagnose, and solve it.

In this work, the first problem explored was in the area of production

planning and control. Motivated by the necessity of better control of the plant and

planning of future production orders, the remaining time of the production orders

is explored. Having access to accurate remaining time information of production

orders can optimize production in manufacturing plants, as production managers

are able to correctly allocate production orders and provide clients with accurate

completion times. The proposed solution to get accurate remaining times was to use

data-driven prediction methods, from ML and PM, and data from the manufacturing

process to build prediction models. However, another problem that appears when

trying to predict the remaining times is the variation caused by the production of

different products. Even if two products pass by the same process, here defined by

the machines used, their times won’t necessarily be the same. For example, the

milling process to make spur gears with different numbers of teeth will result in

different processing times. To solve this, individual prediction models for each

product are proposed, making the models product-oriented. In the two first papers,

we study these problems and present the solutions.

To obtain the remaining time information from the data in the form of

manufacturing logs, PM techniques were applied. These techniques use the logs of

the production, called event logs (Aalst, 2016). To accurately predict the remaining

time of the production orders both papers presented data-driven methods based
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on ML and PM, and also a hybrid (Choueiri et al., 2020) and a baseline method.

The first paper compared two ML, one PM, a hybrid, and a baseline method. In the

second paper, this was further expanded and improved, with the addition of two

ML methods and the improvement of the baseline method.

To compare the methods and demonstrate their usefulness in predicting

the remaining times, various tests were performed comparing across different test

data and validation metrics. In the first paper, artificially generated event logs were

created. These logs simulated the manufacturing process of different products,

passing through machines with different processing times. These artificial logs

also simulated activity rework, which included further complexity to the logs. In

the second paper, the artificial logs were further expanded with the addition of a

product and machines, and an event log from a real manufacturer was analyzed and

used.

The results in the first paper demonstrated the potential of the presented

methods, with all models making accurate predictions much better than the baseline

and demonstrating how the different probabilities of rework affected the models.

The results in the second paper complement the ones from the first. Besides the

two new ML methods and the improved baseline method, the tests on the event

logs of the real manufacturer exposed how the models behave for data generated

from different origins. While most of the models performed well in all tests with

the artificial logs, most models underperformed in the real logs. The second paper

demonstrated the importance of choosing the right model for the right data, with

the best example of this being the baseline model. Even though the baseline method

was simple, it performed on the same level as the more complex methods in the

artificial logs. However, in the more complex real log, it underperformed while the

more complex models performed much better.

The models’ results in the two first papers showed the potential of data-

driven prediction models in the manufacturing context. They demonstrated how

the remaining time can be predicted with accuracy, depending on the quality of

the process, by using events logs and separating the different products. Some

propositions related to future studies from the first paper were explored in the

second, such as the test and analysis of real-world data and further investigation of

the effects of the rework on the models’ performance. However, the propositions
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of the second paper are still open to future studies. These include the generation

of logs with more complex anomalous behavior instead of just the possibility of

rework, and the integration of additional attributes of the event logs to the prediction

models with the objective of decreasing their errors.

The second problem explored was in the area of connected vehicles’ data,

more specifically in the usage of this data to increase drivers’ fuel efficiency.

Although the topic of fuel efficiency is essentially economical, as the higher the

efficiency the smaller the fuel costs, it also is highly ecological. One of the most

discussed topics in recent years is global warming and how the burning of fossil

fuels accentuates it by releasing greenhouse gasses such as CO2. As such, solutions

that aim at decreasing fossil fuel burning hates are of extreme importance. In our

case, to achieve an increase in fuel efficiency, the solution proposed was to create

fuel efficiency rankings of the drivers, comparing their driving performance. Such

rankings have the potential to passively increase overall fuel efficiency, as the

generated competitiveness between drivers makes them try to be better than other

drivers (Brankovic et al., 2018) and, in doing so, they increase their fuel efficiency.

Ideally, the drivers’ driving styles should be what influence the rankings

the most. However, given all the external factors that influence fuel efficiency and

are out of the drivers’ control, simple fuel efficiency rankings would not rank

the drivers fairly. To minimize the impact of these extern factors and create fair

rankings, the solution proposed by the third paper is to make a clustering of the

trips based on context. This context-based clustering allows for the construction of

rankings with a separation of the trips driven in different road types (Eppell et al.,

2001), which present different patterns of speed, distance, and time of the trips.

The third paper successfully demonstrated how the trips can be separated

based on their contexts and validated the effects of the contexts on fuel efficiency.

With the clustered trips, it was shown that trips driven in different contexts present

significantly different fuel efficiency distributions, proving the unfairness of inter-

cluster fuel efficiency comparisons. The primary objective of the paper was achieved

with the building of different examples of context-segregated fuel efficiency rankings.

The importance of these rankings was demonstrated with examples of drivers and

trips that would not be fairly ranked if segregation had not been done. Applications

outside fuel efficiency were also shown, with concrete demonstrations of how
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context-based clustering can be used to analyze the behavior of a fleet of vehicles.

Propositions of possible applications in the area of recommendation systems and

product development were made. In future studies, the applicability of integrating

the clustering information to a recommendation system to provide more information

to it could be investigated. In product development, the use of clustering information

to find interest groups is another area to be investigated. One proposed future study

in this area is to use the clustering information in the analysis of battery size for

electric vehicles (EVs).

The third problem explored comes from the last proposed application of

the previous paper. Therefore, it also is in the area of connected vehicles’ data. This

problem is the optimization of battery sizes for electric vehicles (EVs). The sudden

growth in EVs’ production and sales is the main motivation for this optimization.

As the production of EVs scales, the importance of optimizing the production to

decrease costs also scales. In an EV, the battery still is one of the most expensive

components, so reducing its cost can significantly reduce overall vehicle costs.

Another consequence of the growth of EVs’ production is the replacement of a

portion of internal combustion engine vehicles (ICEVs). The replacement means

that some ICEVs drivers will eventually need to migrate to EVs. Therefore, our

optimization problem has to consider the needs and habits of previously ICEVs

drivers. The solution proposed by the fourth paper it to use the data from trips

of real ICEV and analyze their energy usage to find an optimal battery size. Its

relation with context-based clustering comes from the fact that it can be used to

separate the trips and drivers into different contexts, which can affect energy usage.

The fourth paper uses data from trips of real ICEVs to analyze how those

vehicles are normally used. However, ICEVs do not have raw energy consumption,

as what they consume is fuel. Therefore, to obtain energy consumption values a

function that converts average speed and temperature into energy efficiency was

used. However, as this function was obtained by simulating the energy efficiency of

a specific ICEV model, with a specific drag coefficient and weight, it can only be

used for data from this vehicle model. After obtaining energy consumption values,

to infer the battery sizes needed to complete different trips, energy consumption

thresholds were set. Considering that as ICEVs can refuel, EVs can recharge, two

different recharging strategies were compared: one with only overnight recharging,
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and another with fastcharging in-between trips. Moreover, segregated analysis using

context-based clustering was performed to understand how different contexts affect

energy consumption.

The analysis done in the fourth paper was able to show the energy consump-

tion profile of ICEVs and how it can change depending on context. The segregated

analysis using the context-based clustering coupled with the comparison between

two recharging strategies successfully demonstrated how recharging and context

affect the battery size. Ultimately, an optimal recharge strategy was chosen and

three optimal battery sizes were obtained. Even though the recharging strategy

can annoy unaccustomed ICEVs drivers, its much better performed over the no

recharging strategy overcome this issue. Using the values obtained from this strategy,

considering different types of drivers, three battery sizes were proposed: 40 kWh

for urban, 60 kWh for general, and 90 kWh for highway drivers. Although we were

able to obtain optimal battery sizes, only two strategies were compared. Future

works could further refine these results by comparing other recharging strategies.

This work demonstrated the potential of data-driven methods for engineering

problems. The four presented papers explore vastly different areas and problems,

having one subject in common: the use of data. Ultimately, what the compilation of

these papers shows is how having good enough data so that different methods can

be applied to analyze it can help solve difficult problems.
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