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RESUMO
A tarefa de Anti-Spoofing Facial (FAS) foca na detecção de tentativas de enganar 

sistemas de autenticação facial. A grande maioria dos estudos nessa área se concentra em 
abordagens passivas, que não exigem nenhuma interação especial por parte do usuário. Em 
contraste, o subcampo da detecção ativa de vivacidade — onde a autenticidade é verificada por 
meio de ações realizadas pelo usuário — permanece pouco explorado. Essa lacuna se deve 
principalmente à falta de conjuntos de dados públicos adequados para tarefas de vivacidade 
ativa, o que leva a pesquisas irreproduzíveis, métodos desatualizados e análises comparativas 
limitadas. Para enfrentar esses problemas, este trabalho apresenta um novo conjunto de dados 
de vivacidade ativa com ênfase em vídeos com movimentos em close-up. O conjunto contém 
714 amostras genuínas coletadas de voluntários e 1.847 amostras falsas criadas usando imagens 
do CelebA e vídeos do CelebV exibidos em diferentes instrumentos de ataque de apresentação. 
Propomos quatro protocolos de avaliação para testar a capacidade de generalização de modelos 
de detecção de vivacidade ativa em cenários desafiadores, como lidar com ataques desconhecidos, 
instrumentos não vistos anteriormente e variações nos padrões de aquisição das câmeras. Além 
disso, este trabalho apresenta um novo modelo baseado em trabalhos anteriores, que integra 
invariantes projetivos com embeddings faciais para uma extração de características mais robusta. 
Essa abordagem melhora significativamente as técnicas existentes, superando outras linhas de 
base na detecção de tentativas de falsificação.

Palavras-chave: Vivacidade Facial Ativa, Dataset de Close-Up, Face anti-spoofing.



ABSTRACT
The Face Anti-Spoofing (FAS) task focuses on detecting attempts to deceive facial authentication 
systems. The vast majority of studies in this field focus on passive approaches, which do not 
require any special interaction with the user. In contrast, the subfield of active liveness detection 
— where authenticity is verified through user-performed actions — remains underexplored. This 
gap is primarily due to a lack of public datasets suitable for active liveness tasks, leading to 
irreproducible research, outdated methods, and limited comparative analysis. To address these 
issues, this work introduces a new active liveness dataset emphasizing videos with close-up 
movements. The dataset consists of 714 genuine samples collected from volunteer subjects 
and 1,847 spoof samples created using CelebA images and CelebV videos displayed across 
various presentation attack instruments. We propose four evaluation protocols to assess the 
generalization capabilities of active liveness detection models in challenging scenarios, such as 
handling unknown attacks, unseen instruments, and variations in camera acquisition patterns. 
Additionally, this work presents a new model that builds on prior work, integrating projective 
invariants with facial embedding for more robust feature extraction. This approach significantly 
improves upon existing techniques, outperforming other baselines in detecting spoofing attempts.

Keywords: Active Face Liveness, Close-Up Dataset, Face anti-spoofing.
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Chapter 1 

INTRODUCTION

Over the decades, the evolution of human-machine interfaces has been notable, with 
systems evolving from mechanical schemes to touch interfaces, voice commands, and even 
gesture-based controls. Following this trend, authentication mechanisms began to explore 
biometric information, popularizing facial authentication methods among various forms of 
biometrics(Jain et al. (2006)). Currently, these methods are employed in various infrastructures, 
such as entryways, digital banking, and device screen locks(Rui e Yan (2018)).

Parallel to the evolution of facial authentication, problems associated with exploiting 
vulnerabilities in these mechanisms have emerged, typically occurring in two ways: through 
injection attacks or presentation attacks. The former happens when the attacker bypasses the 
app’s security measures and inserts their own media instead of the one from the device’s camera. 
The latter, as the name suggests, occurs when an object or a mischaracterized face is shown 
to the device’s camera, typically to assume the identity of someone else or to obfuscate the 
attacker’s identity (Yu et al. (2023)). Several instruments are used to impersonate victims, 
such as high-quality printed photos of targets, social media videos displayed on digital screens, 
handcrafted or 3D-printed masks, and others (Kumar et al. (2017)). The instrument used to 
perform impersonation attacks is called a presentation attack instrument (PAI) (Ming et al. 
(2020)).

To identify these types of attacks, it is necessary to implement methods that perform 
the task of facial liveness verification, also known as presentation attack detection (PAD) when 
limited to presentation attacks (Marcel et al. (2019)). Methods that perform this task can also be 
referred to as face anti-spoofing (FAS) and mostly consist of binary classifiers labeling inputs as 
spoof when the media contains a liveness attack or live otherwise (Raheem et al. (2019)).

FAS can be broadly categorized into two types: active and passive methods. Passive 
methods detect signs of vitality from facial images or videos without requiring any explicit user 
interaction. In contrast, active methods require users to perform specific actions or gestures 
during authentication to confirm their presence (Yu et al. (2023)). We will focus on the latter 
approach since it is in the main scope of the research.

Within the realm of active liveness, a wide array of user interactions can be used. To 
name a few, it is possible to mention methods based on the measurement of physiological signals, 
spontaneous facial movements, information injection into the sample, and challenge-response 
methods (Antil e Dhiman (2025)). It is noteworthy that the common characteristic of all these 
approaches is their dynamic aspect; that is, the information exploited is contained over time as 
the system interacts with the user. Therefore, FAS mechanisms that adopt this approach are 
also known as dynamic methods, as opposed to static methods, which rely on the information 
contained in a single image to perform liveness verification (Yu et al. (2020a)).
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1.1 MOTIVATION
The increasing prevalence and sophistication of face spoofing attacks targeting face 

recognition systems is one of the main reasons for the continuous research and proposals 
regarding face liveness. As these systems become integral to various applications, such as 
financial transactions, access control, and personal device security, ensuring their robustness 
against such attacks is paramount.

It is believed that active liveness detection techniques offer a more resilient defense by 
analyzing dynamic responses to specific prompts. This dynamic interaction provides richer data 
for distinguishing between genuine users and spoofing attempts, making it harder for attackers to 
deceive the system using static images or pre-recorded videos.

In light of this situation, this work aims to explore active face liveness approaches based 
on the close-up challenge-response paradigm. By mapping meaningful features and enhancing 
the performance of existing proposals.

1.2 CHALLENGES
In the literature on passive facial liveness, a wide range of methods and implementations 

can be found, as well as the availability of different public datasets that can be used for 
experimentation and performance comparison of various methods.

However, the scenario for active liveness is significantly different. Primarily, the scarcity 
of public data for conducting research in this area is by far the most alarming challenge, as up to 
the present moment, there is no public dataset designed to study active face liveness. This hinders 
the execution of studies in the field and reveals the rudimentary stage of research addressing 
active liveness. Moreover, works on the topic often create their own datasets and report results 
on these private data, making it impossible to fairly compare different approaches.

Additionally, the few studies that explore the challenge-response approach based on 
close-ups do not directly incorporate raw image information into their models. Instead, they 
typically rely on extracting handcrafted features from a few frames of the input media. The 
lack of methods utilizing learned maps to extract information directly from images presents a 
challenge, as it represents an unexplored and innovative approach.

1.3 RESEARCH HYPOTHESIS
We hypothesize that the performance of existing Close-Up-based active FAS methods 

can be enhanced by integrating movement-based features with texture and spatial information.

1.4 PROPOSED APPROACH
The proposed approach revolves around two main points: the creation of an active 

dataset for facial liveness and the exploration of a novel method by adding spatial embedding 
information to other well-known methods.

The active dataset utilizes a close-up interaction that involves asking the user to align 
their face within a region shown on the capture device display. Initially, the user is positioned far 
from the device’s camera. After a few seconds, the alignment region changes, requiring the user 
to move closer to fit their face into the area of interest. Figure 1.1 illustrates this interaction.
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Figure 1.1: Close-Up movement scheme. First, faces are captured far from the camera by 
positioning them within a small region displayed on the screen, and then they are captured close, 
by fitting within a larger region shown.

The few active methods that employ the close-up challenge-response approach typically 
use only high-level features based on the concept of projection invariants, as defined by Riccio e 
Dugelay (2007). In this work, we propose a method following a hybrid architecture, combining 
these commonly used features with embedding information extracted from images by well-known 
encoders in the literature.

1.5 OBJECTIVES
This work aims to create a diverse and challenging dataset for training active methods 

based on the close-up interaction, as well as propose evaluation protocols to serve as a benchmark 
for related works in the field.

Furthermore, it proposes a new active presentation attack detector by adding spatial 
embedding information on existing models, comparing the results with the latest active benchmarks 
based on the close-up challenge.

1.6 PUBLICATIONS
Sub-products of this proposal were published in previous works:

• Conference on Graphics, Patterns and Images (SIBGRAPI) - Workshop of Works in 
Progress (WIP) - Multi-challenge database for active liveness - Kamarowski et al. (2023)

• Conference on Graphics, Patterns and Images (SIBGRAPI) - Workshop of Works 
in Progress (WIP) - Hybrid method for active face anti-spoofing based on close-up 
challenge Kamarowski et al. (2024)

• Scientific Reports - Hybrid Close-up approach for new Active Face liveness benchmark 
- To be Submitted
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1.7 CONTRIBUTIONS
The contributions of this work are twofold:

• Establishment of a common dataset, enabling fair and standardized comparison of works 
in the field.

• Creation of a new active method based on the close-up challenge-response interaction 
combining well-known motion-based distortion features with spatial information.

1.8 OUTLINE
The remainder chapters in this work are organized as follows. Chapter 2 describes 

fundamental concepts and metrics related to liveness detection. Chapter 3 presents a study of 
related work. Chapter 4 presents this work’s proposed approach, which is evaluated as described 
and presented in Chapter 5. Limitations and possibilities for future work are finally discussed in 
Chapter 6.
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Chapter 2 

THEORETICAL BACKGROUND

Relevant concepts and metrics related to the field of face liveness detection and networks 
used in Chapters 4 and 5 are now presented. A foundational understanding of machine learning 
is expected from the reader. This chapter starts by presenting the concept of Face Spoofing 
Attacks along with a general description of evaluation metrics and a brief overview of each 
method used as a baseline in this study.

2.1 FACE SPOOFING ATTACKS
A facial spoofing attack is an attempt to interfere with the operation of a facial biometric 

system. This type of attack can occur in two main ways: either during or after the capture 
of the media used by the biometric system. Attacks occurring after capture are known as 
injection attacks. In these cases, the attacker bypasses the media acquisition system by inserting 
manipulated data that could potentially be used by the biometric system. On the other hand, 
attacks that take place during the capture process are referred to as presentation attacks (PA). 
Here, the attacker exposes a presentation attack instrument (PAI) to the camera at the time of 
media capture.

Presentation attacks can be further divided into two categories: obfuscation and 
impersonation attacks. In an obfuscation attack, the attacker’s goal is simply to avoid recognition 
by the biometric system. This type of attack typically uses PAIs to intentionally obscure or make 
facial features unrecognizable. Impersonation attacks, however, target a specific victim. PAIs in 
impersonation attacks typically employ representations of the victim’s face. Only impersonation 
attacks fall within the scope of this work, and thus, the term “presentation attack” (PA) will 
hereafter refer specifically to impersonation attacks.

Various PAIs can be used to assume the identity of a victim, and it is common in the 
literature to categorize presentation attacks by the instrument employed. The most common 
attack types in the literature include photo attacks, which use a printed image; display attacks, 
which use a static image on a digital screen; replay attacks, which involve video, GIFs, or any 
media with dynamic characteristics; and mask attacks, which use masks to carry out the spoof. 
In all cases, the instrument can vary greatly in complexity: it may be very simple, such as printed 
photos on a standard printer, or highly complex, such as synthetic masks that accurately represent 
the target’s facial features.
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2.2 EVALUATION METRICS
The task of liveness verification is typically modeled as a binary classification problem 

with two classes: spoof and bonafide (often referred to as live). Generally, datasets are heavily 
imbalanced toward the spoof class to ensure broad representation across various presentation 
attacks (PA) and presentation attack instruments (PAIs). Consequently, metrics that individually 
report the predictions for each class are commonly used.

Following the evaluation protocol established by ISO/IEC 30107-3 (ISO/IEC, 2023), 
presentation attack detectors should report the bonafide presentation classification error rate 
(BPCER) and the attack presentation classification error rate (APCER) for each PA. In the 
literature, it is also common to report the average classification error rate (ACER) in intra-dataset 
experiments.

The APCER for a given PA and the BPCER are defined as follows

1 N p a

APCERp a  = 1 -  - —  Y  Res t , (2.1)
N p A

1 =  1

1 N b f

BPCER = -------------V  Rest, (2.2)
Nb f

1 = 1

where Np a  and N b f  represent the number of spoof samples for that PA and the number of bona 
fide samples, respectively. Resi takes the value 1 if the i-th presentation is classified as an attack 
presentation and 0 if classified as a bona fide presentation.

Finally, ACER, which is not mentioned in the ISO/IEC 30107-3 but is widely adopted 
in scientific studies on liveness, is defined by Boulkenafet et al. (2017b) as the average of the 
highest APCER value among all PAs and the BPCER, as follows

max v e p A  (APCER p ) + BPCER 
ACER = -----^ ^ -------------- . (2.3)

2
Except for the particularity of computing APCER for each PA, it is noteworthy that the 

BPCER and APCER metrics are analogous to the false rejection rate (FRR) and false acceptance 
rate (FAR), commonly used in other machine learning contexts.

2.3 BASELINES
The methods Camera Close-Up (Castelblanco et al., 2022) and Face Close-Up (Li 

et al., 2019), used as baselines for this work, are now presented. Both methods are based on 
the principle of invariant projections defined by Riccio e Dugelay (2007), calculated through 
distances between landmarks. To the best of our knowledge, these are the most recent active 
methods utilizing the close-up challenge.

2.3.1 Face Close-up
Face Close-Up is a method for facial liveness detection that includes three main modules: 

the Video Frame Selector, the Distortion Feature Extractor, and the Liveness Classifier. The first 
module begins by processing input video and selecting frames based on the size of the face in 
each frame, ensuring that the video sequence captures the face at various distances as the camera
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moves closer or farther from it. Using a face detection algorithm, this module determines face 
sizes and selects frames that best represent these changes in distance.

With these frames, the Distortion Feature Extractor module detects 66 facial landmarks, 
including the chin, eyes, and lips, and calculates pairwise distances between these landmarks 
to capture facial geometry. Figure 2.1 shows a representation of the used landmarks. For each 
frame, these distances are normalized relative to a reference frame, which is established during a 
user registration phase. The result is a set of relative distances that reflect how facial geometry 
changes over time, forming a matrix that captures distortions across frames. This matrix serves 
as the core feature set for detecting liveness.

Oo
o  o

o

Figure 2.1: Landmarks used to extract distortions over time. Source: Li et al. (2019)

Finally, the Livenes Classifier module uses a convolutional neural network (CNN) to 
analyze this matrix of distortion features. The CNN architecture includes two convolutional layers 
and two pooling layers, followed by two fully connected layers, which help extract high-level 
patterns in the facial features to distinguish real faces from spoofed ones. The final output layer 
estimates the likelihood of the face being genuine or spoofed by providing probability estimates 
for each class.

2.3.2 Camera Close-up
Unlike the previous method designed for controlled environments, this approach is 

adapted for in the wild conditions where there is no fixed camera-user distance. Camera Close-Up 
is designed for both liveness detection and face verification, leveraging changes in facial geometry 
caused by natural camera movement and perspective shifts but only the FAS is explored in our 
work.

The preprocessing pipeline extracts a set of frames with detectable facial landmarks. 
Each frame’s signature is calculated as a vector of Euclidean distances between all landmark 
pairs. These frame signatures are concatenated to form a video signature matrix, which is 
then normalized relative to a reference frame located at the video’s midpoint, creating a matrix 
representing relative landmark distances.
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To ensure consistent input dimensions regardless of video length, the method samples a 
fixed number of normalized frame signatures using stratified sampling. This approach selects 
frames equitably across the video’s timeline to capture perspectives from close and far distances.

For classification, the method uses a neural network (NN) inspired by prior work 
but optimized for this paradigm’s unique features. The NN model includes an initial custom 
convolutional kernel to highlight horizontal changes in landmark distances, followed by three 
convolutional layers with batch normalization and max pooling. Finally, the model employs three 
fully connected layers with ReLU activation, ending with a sigmoid neuron to classify videos 
as live or spoofed. This model architecture leverages landmark distance changes to robustly 
detect liveness and verify identity in natural, uncontrolled settings. Figure 2.2 summarizes the 
described architecture.

Figure 2.2: Camera Close-Up CNN architecture CL: 2D Convolutional layer; MP: 2D Max- 
Pooling; FCL: Fully connected layer; BN: Batch Normalization. Source: Castelblanco et al. 
(2022).
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Chapter 3 

RELATED WORK

In this section, we present published works related to FAS. Section 3.1 discusses 
important passive liveness datasets, Section 3.2 summarizes the passive face anti-spoofing 
methods studied, and Subsection 3.3 presents the active face anti-spoofing methods explored.

3.1 DATASETS
Advancements in passive liveness detection have led to the creation of various datasets 

tailored for this task. Recent studies consider not only the number of individuals and types of 
attacks but also the variety of scenarios, lighting conditions, camera quality, and the diversity of 
individuals included. Table 3.1 summarizes some of the most popular datasets in the literature, 
including data from the Face Close-up (Li et al., 2019) and Camera Close-up (Castelblanco et al., 
2022) methods.

However, it is important to note that the cited passive datasets are not suitable for active 
approaches using the close-up paradigm, as they lack any form of interaction. An exception is 
the SiW dataset (Liu et al., 2018a), which includes a partition of images featuring individuals 
performing non-trivial tasks to assess the robustness of passive methods to variations in pose and 
distance. It is important to emphasize that this partition was created to stress-test the liveness 
verification capabilities of passive models in atypical scenarios. Due to this, the protocols 
suggested in this work do not meet the requirements of active methods and also have a limited 
number of samples performing the interaction of interest.

Moreover, the studies mentioned in Section 3.3 did not disclose the data used in their 
respective experiments. Therefore, to the best of our knowledge, there are no publicly available 
datasets designed specifically for active liveness detection using the close-up paradigm.

3.2 PASSIVE METHODS
Over the years, methods for Face Anti-Spoofing (FAS) have significantly advanced, 

shifting from simple handcrafted feature detection to the learning of feature maps through 
sophisticated techniques. Initially, researchers like Boulkenafet et al. (2017a) described facial 
appearance by applying Fisher vector encoding to features extracted from various color spaces. 
Similarly, Chingovska et al. (2012) assessed the effectiveness of texture features based on Local 
Binary Patterns (LBP) and their variations for classification.

In more recent developments, hybrid approaches have emerged, which combine hand
crafted features with those extracted using deep neural networks such as in de Freitas Pereira
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Table 3.1: Studied datasets’ main characteristics.

D ataset Citation Samples Subjects Attack types User interaction
NUAA Tan et al. (2010) 5105 real, 7509 spoof 15 1 Passive
PRINT-ATTACK Anjos e M arcel (2011) 200 real, 200 spoof 50 1 Passive
CASIA Zhang et al. (2012) 150 real, 450 spoof 50 3 Passive
Replay-Attack Chingovska et al. (2012) 200 real, 1000 spoof 50 3 Passive
M SU-M FSD W en et al. (2015) 110 real, 330 spoof 55 3 Passive
M SU-USSA Patel et al. (2016) 1140 real, 9120 spoof 1140 2 Passive
M LFP Agarwal et al. (2017) 150 real, 1200 spoof 10 2 Passive
Oulu-NPU Boulkenafet et al. (2017b) 990 real, 3960 spoof 55 4 Passive

SiW Liu et al. (2018a) 1320 real, 3300 spoof 165 6
M ultiple angles, 

face expressions and 
subject movement

SiW-M Liu et al. (2019a) 660 real, 968 spoof 493 13 Passive
HQ-W MCA M ostaani et al. (2020) 555 real, 2349 spoof 51 10 Passive
DM AD W ang et al. (2020) 900 real, 1800 spoof 300 6 Passive
Celeb A -Spoof Zhang et al. (2020b) 156384 real, 469 153 spoof 10177 6 Passive
WFAS W ang et al. (2023) 529 571 real, 853 729 spoof 469 920 18 Passive
Face Close-up dataset L ie ta l .  (2019) 710 real, 4970 spoof 71 3 Close up
Cam era Close-up dataset Castelblanco et al. (2022) 89 real, 2537 spoof 41 5 Close up
U FPR Close-Up This work 391 real, 1043 spoof 714 live, 1847 spoof 5 Close up

et al. (2013) and Komulainen et al. (2013). Additionally, methods described in Liu et al. (2021), 
Garg et al. (2020), and Yu et al. (2020b) use traditional deep learning techniques, employing 
end-to-end Convolutional Neural Networks (CNNs) to map face images directly to liveness labels 
with direct supervision for training. In contrast, Zheng et al. (2021), Wang et al. (2021b), and 
Zhang et al. (2020a) adopt pixel-wise supervision.

Advanced deep learning methods go even further by striving for robustness against 
variations in input sensors and attack types. Following this trend, the methods Wang et al. (2022), 
Sun et al. (2023) and Le e Woo (2024) focus on domain generalization, where the model is 
trained only once. Another approach is domain adaptation, which involves adjusting the model 
using test data (Li et al., 2018; Wang et al., 2021a). Moreover, George e Marcel (2021) and Quan 
et al. (2021) aim to generalize to unseen attack types through zero-shot and few-shot learning 
strategies, which use little to no training data. Lastly, there is also anomaly detection, where 
the model learns accurate representations of live samples instead of spoof characteristics as 
demonstrated in Liu et al. (2019a).

Examples of methods employing pixel-wise supervision and domain generalization 
include the DC-CDN network (Yu et al., 2021), which outputs a face depth map, and the IADG 
method (Zhou et al., 2023), which mitigates instance-specific features to avoid domain bias.

3.3 ACTIVE METHODS
As mentioned in Chapter 1, active methods depend on user interaction for liveness 

detection. They usually follow one of three guidelines: based on involuntary interaction, 
information injection, and based on challenge-response.

In the following sections, each of these guidelines is presented in more detail, along 
with examples of relevant works from the literature. It is important to note that this division 
serves an educational purpose, and a single method may intersect with multiple guidelines.
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3.3.1 Involuntary interaction
Approaches based on involuntary interactions typically utilize natural physiological 

actions that occur unconsciously. Similar to passive methods, this type of approach is minimally 
or not at all intrusive and can often be tested on passive datasets.

Following this trend, Hernandez-Ortega et al. (2020) uses remote photoplethysmography 
(rPPG), a technique that involves analyzing video sequences to detect subtle color changes in the 
human skin, which reveal the presence of blood under the tissue, to estimate the subject’s heart 
rate in the video. This heart rate information is then used as an auxiliary measure to verify if the 
presented face is real. In a similar strategy, Liu et al. (2018b) employs a CNN-RNN model to 
estimate face depth and rPPG signals with sequence-wise supervision. The estimated depth and 
rPPG are fused to verify liveness.

Yan et al. (2012) utilizes non-rigid motion cues found in genuine faces, such as eye 
blinking, combined with an analysis of movement consistency between the face and background, 
along with the evaluation of imaging quality defects introduced in the fake face reproduction. 
Singh e Arora (2017) and Singh e Arora (2018) evaluate not only the eye-blinking pattern but 
also the movements made with the subject’s mouth to identify attacks.

3.3.2 Information injection
Methods based on information injection, as the name suggests, add specific information 

at the moment of media capture that interacts with the user. Typically, the inserted information 
is designed to behave one way when presented with a real face and entirely differently when 
interacting with a fake face.

Adopting this premise, Farrukh et al. (2020) presents a sequence of light patterns on 
portions of the device screen. The reflections of the emitted light are then used to calculate 
surface normal vectors, estimating a 3D model of the surface. This model is used to differentiate 
a real face from 2D attacks. Additionally, the position of the flash serves as a signature, making 
the model more robust against injection and replay attacks.

Similarly, Zhang et al. (2021) adopts the idea of light pattern emission and use a CNN 
for depth map recovery and liveness classification, along with a regression branch for light 
CAPTCHA checking to search for the injected pattern in the user’s face and eyes.

A multimodal FAS method for mobile devices is detailed in Kong et al. (2024). This 
approach utilizes three built-in sensors to capture raw data from both genuine and spoofed faces. 
The front camera captures RGB images, while the speaker emits a customized high-frequency 
signal and the microphone collects the reflected acoustic signal. The acoustic fingerprint is 
extracted from the audio data and converted into a spectrogram map. These features, along with 
the processed images, are then fed into a cross-modal fusion model to make the final decision.

3.3.3 Challenge-response
In systems that require user cooperation, also known as challenge-response systems, the 

user is instructed to perform a series of simple actions. The idea behind this type of approach is to 
place the Presentation Attack Instrument (PAI) in situations that highlight characteristic features 
of spoofs. It is intuitive to deduce that methods based on user interaction tend to compromise 
system usability in favor of the security of the liveness verification process. This tendency 
occurs due to the potential difficulty in recording a valid input, that is, the user’s difficulty in 
understanding and executing the presented commands at the moment of input media acquisition.
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The nature of the challenges presented to the user varies greatly. For example, in 
Sluganovic et al. (2016), the user must follow a pattern shown on the device screen with their 
eyes. The input video is then used to assess whether the user actually followed the presented 
pattern or completed the challenge suspiciously. A similar strategy is adopted in Shen et al. 
(2018), where a study was conducted addressing random iris movements, allowing for refinement 
of the displayed patterns and improving the performance of its predecessor. As discussed in these 
works, approaches based on following patterns with the eyes tend to face usability issues, as the 
act of following a pattern on the screen requires attention, and even a small deviation in gaze can 
compromise the authentication process. Furthermore, the exclusive use of gaze tracking may 
make the model more vulnerable to mask attacks or other more sophisticated attacks that leave 
the eye region exposed, allowing the attacker to solve the challenge.

Another example of a challenge-response-based approach is to present a random sequence 
of words, numbers, or syllables and ask the user to read them aloud. In McShane e Stewart (2017), 
this type of challenge is adopted, where the acquired audio is initially transcribed to text, and the 
same is done using lip-reading techniques from the video alone. It is then verified whether both 
media actually produced the word to be pronounced. Uzun et al. (2018) and Chou (2021) also use 
this challenge, but their methods assign a score representing the coherence between the phoneme 
captured in the audio and the video segment in which the audio appears, enhancing the system’s 
robustness against more sophisticated attacks. However, voice-based approaches naturally have 
two disadvantages: they require capturing audio information, thus necessitating additional 
hardware infrastructure compared to other face spoof detection approaches. As mentioned in 
the cited works, another drawback is the interference from external environments, limiting the 
practical use of this approach to locations with minimal noise and good sound isolation.

In Ezz et al. (2023), the user is asked to emulate a sequence of three randomly selected 
facial expressions. The model was trained to detect four facial states (joy, anger, sadness, and 
neutral) and classify each expression’s image individually as live or spoof, then combine the 
results to produce a final prediction. This approach has a disadvantage compared to more 
traditional FAS methods due to the need for prior enrollment of a neutral face as a reference, 
which may not be feasible for certain applications.

3.4 CONCLUDING REMARKS
Given the current state of FAS research, the lack of available data for studying active 

FAS methods remains a significant challenge. Additionally, the limited studies in this area 
often fail to rigorously validate their proposed methods, either by not evaluating them in robust 
scenarios or by employing overly complex active interactions that compromise usability.

To address these challenges, this work introduces a new active liveness detection database 
featuring a close-up challenge-response interaction. This database consists of facial videos 
recorded by volunteer subjects using their own smartphones and generated spoof samples using 
selected faces from public datasets, featuring five different PAs. The proposed protocols are 
designed to evaluate methods in challenging scenarios, while the collection methodology ensures 
high variability in camera models, backgrounds, ethnicities, genders, and lighting conditions. 
Furthermore, we developed a hybrid approach inspired by previous models to effectively detect 
personification attacks.
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Chapter 4 

PROPOSAL

This chapter explains the proposed approach consisting of creating an active dataset 
entitled UFPR Close-Up and proposing an active hybrid method for spoof detection.

4.1 UFPR Close-Up Dataset
The creation of the dataset consisted of four steps: developing an application for 

collecting samples, collecting live samples, selecting targets for presentation attacks, and 
collecting spoof samples. Each of these steps will be detailed below along with the current 
proposed protocols.

Due to private financial support for the creation of this dataset and in compliance 
with data protection agreements, all spoof samples are currently available upon request at
h t t p s : / / w e b . i n f . u f p r . b r / v r i / d a t a b a s e s / u f p r - c l o s e u p / ,  but live samples 
will be released starting in April 2027.

4.1.1 The Close-Up liveness challenge
As mentioned earlier, active approaches can use a sequence of commands that the 

user must execute to prove their liveness. The close-up approach was designed to be used in 
conjunction with a digital screen displaying the content captured by the camera, and the sequence 
of prompts is as follows:

1. Distant Align: In this step, a small ellipse appears in the center of the device’s screen, 
indicating the area where the user’s face should be positioned. The user must fit their 
face within this ellipse.

2. Hold Distant Position: Once aligned, the user must remain still for at least one second. 
If the alignment is lost, the challenge will revert to the previous step, requiring the user 
to realign their face within the distant area.

3. Close Align: In this step, a larger ellipse appears on the screen, indicating a new, closer 
area where the user’s face should be positioned. The alignment process follows the 
same criteria as in the first step but it is based on the new, larger region shown on the 
screen. Notice that to position the presented face inside the new area, the user must 
reduce the distance between the presented face and the device, therefore, getting close 
to the recording camera.

https://web.inf.ufpr.br/vri/databases/ufpr-closeup/
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4. Hold Close Position: Finally, the user must remain still for at least one second within 
this close-up region. If the face moves outside the designated region, the challenge 
returns to the previous step, requiring the user to realign within the closer area.

Instructions to align the user’s face in the indicated region and to hold position are 
shown to the user during the media capture as exemplified in Figure 4.1. It can be seen that 
to complete the challenge, the user must fit it’s face in both distant and close positions, in this 
specific order. Therefore, it is guaranteed that the recorded media will contain a face in two 
different distances (close and distant).

(a) (b) (c) (d)

Figure 4.1: 4.1(a) - Distant alignment step; 4.1(b) - Distant waiting step; 4.1(c) - Close alignment 
step; 4.1(d) - Close waiting step

4.1.2 Mobile app
This section is summarized in (Kamarowski et al., 2023). This previous work describes 

the app development process, the problem of lack of disclosure active datasets, and three active 
interactions: Close-up, Head movements, and Flash. Notice that only the former one is in the 
scope of this work. To ensure a close-up movement pattern among all samples, live or spoof, a 
mobile app for sample capturing was developed for Android and iOS devices. Exclusively for 
the collection of live samples, the application included a user registration system, requesting 
information such as self-identified gender (male or female), an optional age input, and a declaration 
of acceptance of the terms of use. These terms outlined the objectives of data collection, how 
the data would be used, and sought user consent for the use and publication of the collected 
information for academic purposes. After registration, users could record sessions completing 
three liveness challenges, including the close-up challenge. Once a user recorded a session, 
they were restricted from recording new sessions for a period of 12 hours. This measure was 
implemented to enhance variability in conditions such as lighting, clothing, environment, and 
other factors, increasing the dataset diversity.

The recordings were made using the device’s front camera to obtain 20 frames per 
second videos with close-up movement. This value was chosen based on empirical tests from 
an initial sample, which revealed that a higher sampling frequency degraded the application’s 
performance, compromising its usability.
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During capture, each frame was checked in real time for face position using the Google 
ML Kit API for face detection method (Google, 2021). The smaller region, shown in steps 1 and 
2 of the close-up challenge, was positioned at the center of the screen, with the ellipse’s width set 
to half the screen width and its height set to 1.3 times the ellipse’s width. For the larger region, 
shown in steps 3 and 4, the ellipse was also centered on the screen, but its width was 95% of the 
device screen width, while its height remained 1.3 times the ellipse’s width. Figure 4.2 depicts 
the dimension of each used region.

0.5 xW  0.95 xW
(a) (b)

Figure 4.2: 4.2(a) - Dimensions of the distant region; 4.2(b) - Dimensions of the close region;

At every step, alignment was verified by calculating the Intersection over Union (IoU) 
between the detected face and the displayed region. In steps 1 and 3, alignment was considered 
correct if the IoU exceeded 0.8, whereas for steps 2 and 4, a lower threshold of 0.65 was used. 
This adjustment between adjacent steps was implemented to prevent minor oscillations while 
moving the face from causing the challenge to unexpectedly advance to the next step and then 
revert, a common issue when the IoU value is too close to the set threshold. This whole processing 
is summarized in Figure 4.3, the squares are the current state of the solving process of the 
close-up challenge and the diamond-shaped elements are checks done after each new frame.

In addition, the application automatically deletes recorded videos that do not successfully 
complete all four steps. Correct samples were uploaded to a private server to be stored.

4.1.3 Live samples acquisition
All live subjects are volunteers who agreed to participate in the data collection. To 

simulate a realistic use scenario, volunteers received no additional instructions on how to perform 
the close-up challenge. Furthermore, each volunteer used their personal device to capture live 
samples, resulting in a diverse array of camera types and qualities in the dataset.
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Figure 4.3: Fluxogram of the app’s implementation of the close-up challenge

Participants were asked to record two sessions, but not limited to this amount, with a 
minimum interval of 12 hours between sessions. This approach ensured that the dataset included 
multiple samples from the same subject under varying conditions, such as different lighting and 
backgrounds, enhancing the variability of the collected data. Figure 4.4 depicts frames from two 
sessions of some live samples.

Figure 4.4: Close and Distant frames of four live subjects in different sessions.
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Figure 4.5: Final distribution of Yaw and Pitch angles

4.1.4 Target selection
In a real-world scenario, an attacker would likely not have access to media specifically 

created for facial liveness validation. Therefore, our approach diverges from most datasets in the 
literature by using publicly available images that an attacker might realistically access. These 
images, where the subjects are not necessarily engaged in facial authentication, may feature 
non-frontal postures and varied facial expressions. To generate spoof samples, we selected raw 
images from the CelebA (Liu et al., 2018c) dataset and videos from CelebV (Zhu et al., 2022).

To mitigate pose bias between live samples and attack targets, selected media were 
filtered considering the live pose distribution. This distribution was calculated by randomly 
selecting ten frames from each live sample, measuring yaw and pitch angles for each frame, and 
averaging the poses for each subject. In facial pose estimation, yaw and pitch are two key angles 
that describe the orientation of the head in 3D space. Yaw refers to the horizontal rotation of the 
head, indicating whether the face is turning left or right. Pitch, on the other hand, represents the 
vertical tilt of the head, showing whether the person is looking up or down. There is also a third 
angle for describing facial pose, roll, which represents the tilt to the side. This angle was not used 
as a criterion for face selection because, since applying an image rotation centered on the face, it 
is possible to modify the perceived roll angle. The head pose angles were estimated by detecting 
facial landmarks using MTCNN (Zhang et al., 2016), a widely adopted method known for its 
robustness in diverse scenarios. These landmarks were then mapped to a 3D face model using 
the PnP algorithm (Marchand et al., 2015) to accurately determine the head pose. This process 
calculates the face angles related to yaw, pitch, and roll movements from the extracted key points.

This produced pose distributions Yawuve and Pitch Live. A relaxed interval for 
spoof targets was considered. That is, spoof target candidates outside the interval [- 
m a x e s '(YawLive)),max(abs(Faw^ve))] and [ -m a x e s '(P itchnve')),max(abs(Pitchnve))] for 
target’s media Yaw and Pitch angles, respectively were discarded. The remaining images were 
randomly selected maintaining the same gender distribution as the live samples. Figure 4.5 shows 
the final pose distributions for live and spoof subjects.

4.1.5 Spoof acquisition
The selected media were used as targets in presentation attacks solving the proposed 

active interaction prompt. To complete the close-up challenge, the attacker can move the device, 
keeping the attack instrument still, or do the opposite. Following the types of attacks documented
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in the literature, our dataset includes some of the most commonly used techniques with a range 
of instruments for diverse spoofing attempts:

• Photo: The victim’s image is printed on an A4 sheet of paper. This image can be large 
enough to show part of the victim’s torso or focus only on the face. In the latter case, 
the photo is placed on the face of a mannequin to emulate a human body. The sheet of 
paper can be completely flat or wrapped around the mannequin’s head, emulating the 
curvature of a human face.

• Display: Similar to the Photo attack, however, the image of the victim’s face is shown 
on a digital screen. The material used in the attack can be a television or monitor screen 
(desktop or notebook).

• Replay: In contrast to a display attack, in a replay attack a video is shown on a digital 
screen, thus naturally capturing the victim’s physiological aspects such as eye blinking, 
breathing, and head movements. Again, the materials used in the attack can be a 
television or monitor screen.

• Scaling: The idea of Scaling attacks is to generate a video that presents the same 
close-up movement pattern as a live sample. To generate these media, a random subset 
of the live samples was selected. And (i) the position of the center of the subject’s face, 
(ii) the size of the image, and (iii) the axis of the eyes concerning the horizontal axis of 
the image were extracted from each frame. Then, for each live frame a new manipulated 
image with a selected target's face was created by using affine operations to rotate and 
translate the victim’s face to match the positions of live frames, creating a video that 
follows the same pattern as the live sample. The resulting media was used to perform 
scaling attacks in the same way that the videos were used for replay.

• Mask: The masks were produced by printing on A4 sheets of paper photos of the faces 
of the attack targets on a real-life scale. These photos were then cut out in silhouette 
and shown next to a representation of the target’s body. This representation could be a 
hanger with a piece of clothing on it or an object that adds volume and shape to a piece 
of clothing, such as a mannequin or the attacker’s own body. In both cases, the mask 
is positioned in the region where the face would be located, resulting in mask attacks 
labeled as hanger and cut-out, respectively.

It is important to emphasize that no faces from the live media subset were used to generate spoof 
samples, meaning that the identities of subjects in the live subset are not present in any produced 
spoof media. Examples of frame samples picturing each PA and their PAI can be seen in Figure 
4.6.
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Figure 4.6: Examples of each Presentation Attack and their respective Presentation Attack 
Instruments.

4.1.6 Dataset statistics
The distribution of dataset samples is summarized in Table 4.1. The first column contains 

the two possible classes (live or spoof), the second column displays the possible presentation 
attacks, and the third column lists the presentation attack instrument used on each PA. Finally, 
the last column details the number of samples per PAI on each PA.

Label PA PAI #Samples

Photo Flat 186
Wrapped 186

Display Monitor 186
TV 186

Spoof Replay Monitor 186
TV 186

Scaling Monitor 181
TV 184

Mask Hanger 182
Cut-out 184

Live - - 714

Table 4.1: Dataset sample distribution per Label, PA and PAI.

As previously mentioned, attack targets were selected based on the gender distribution 
of live samples. In addition, spoof samples were recorded according to device availability, but 
with an effort to maintain a similar proportion of samples captured on Android and iOS devices 
as in the live samples. Figure 4.7(a) details the final gender distribution, while Figure 4.7(b) 
shows the number of samples recorded using Android and iOS devices. It can be observed that 
the live distribution is approximately proportional to its counterpart across both figures.
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Figure 4.7: 4.7(a) - Distribution of male and female in both live subjects and selected attack 
targets; 4.7(b) - Distribution of samples recorded with Android and iOS in both live and spoof 
samples.

4.1.7 Protocols
We propose four protocols to evaluate the generalization capabilities of the algorithms 

for active PAD in scenarios with slight domain shifts on the UFPR-Close-up database. For all 
protocols, the dataset is divided into training, validation, and testing subsets with an approximate 
ratio of 3:1:1. The split maintains gender, number of different identities, and category of attack 
proportional among each subset. Additionally, each subject appears in only one subset, to avoid 
biased results due to memorization of identity facial cues. The proposed protocols are named as 
General, Unknown PAI, Unknown PA, and Unknown Device and defined as follows:

• Protocol I - General: The first protocol evaluates the ability to learn and generalize 
features in a scenario with almost no domain shift. All types of PA and PAI are present 
in the training, validation, and testing sets. This protocol is designed to obtain an 
overall result of the proposed PAD on the dataset and compare it with the results of the 
following protocols.

• Protocol II - Unknown PAI: Different PAI produces different noises after being captured 
by a digital camera. This protocol aims to evaluate the robustness of the proposed PAD 
against unseen PAI. Only attacks using Flat paper, Monitor, and Hanger masks are on the 
training set. The validation and testing set is composed of the remaining PAI (Wrapped 
paper, TV, and Cut-out). We follow the choice of PAI for training and validation/testing 
sets from other works in the literature (Boulkenafet et al., 2017b; Wang et al., 2023)

• Protocol III - Unknown PA: Following the same idea as the previous protocol, here a 
new sample arrangement is designed to study the ability to generalize learned features to 
unseen attacks. The training set has Photo, Display, and Scaling PAs, while Replay and 
Mask attacks appear only on validation and testing sets. Again, we follow the choice of 
PA from other works in the literature (Boulkenafet et al., 2017b; Wang et al., 2023)

• Protocol IV - Unknown Device: In the context of face anti-spoofing, it is crucial 
to include not only a wide representation of potential attacks under various lighting 
conditions and backgrounds but also a variety of cameras used for media acquisitions. 
In this protocol, samples are grouped based on the type of capturing device. Samples 
acquired with Android devices are used for training, whilst those obtained with iOS 
devices are assigned to the validation and testing sets.
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Protocol Subset PA PAI Phone #Live Videos #Spoof Videos

Protocol I - General
Train All All All 430 1073
Val All All All 147 376
Test All All All 137 398

Protocol II - Unknown PAI
Train All Flat Photo, Monitor, Hanger Mask All 430 547
Val All Wrapped Photo, TV, Cut-out Mask All 147 196
Test All Wrapped Photo, TV, Cut-out Mask All 137 204

Protocol III - Unknown PA
Train Photo, Display, Scaling Flat photo, Wrapped Photo, Monitor and TV All 430 641
Val Replay and Mask Monitor, TV, Hanger Mask and Cut-out Mask All 147 149
Test Replay and Mask Monitor, TV, Hanger Mask and Cut-out Mask All 137 157

Protocol IV - Unknown device
Train All All Android 271 710
Val All All iOS 67 123
Test All All iOS 54 142

Table 4.2: Details of each protocol split.

The last three protocols exhibit a domain shift between the training subset and the 
validation and test subsets, following the same approach used in previous works (Boulkenafet 
et al., 2017b; Wang et al., 2023), i.e., defining a subset of features for training and another subset 
for validation and testing, therefore, emulating the ideal scenario where the validation and test 
sets follow similar distributions. Table 4.2 summarizes the proposed protocols and the average 
size of each partition.

4.2 HYBRID CLOSE-UP
The proposed method employs the close-up movement to capture facial features at various 

distances. This approach was inspired by the Camera Close-Up liveness detector (Castelblanco 
et al., 2022), sharing similarities in the creation of distortion feature vectors. The Hybrid 
Close-Up approach integrates texture embeddings with the concept of projective invariants, as 
defined by Riccio e Dugelay (2007), extracted from landmarks, with face embeddings in a fusion 
model.

The Hybrid Close-Up method is composed of three modules: Frame Selection, Feature 
Extraction, and Classification. Figure 4.8 provides an overview of the method, and each module 
is described in the followings.

Figure 4.8: General pipeline used on Hybrid Close-up method.
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4.2.1 Frame Selection
The first module of the pipeline is responsible for selecting the frames used in the next 

steps and this process is represented in the yellow box in Figure 4.8. In this work, we employ 
the MMOD CNN method (King, 2015) for face detection and an ensemble of regression trees 
described in Kazemi e Sullivan (2014) for landmark detection. Both methods were used by 
the mentioned baselines for similar tasks. First, the face detector is used to discard frames 
that do not contain a face. Next, from each valid frame the ladmarks of the shown face are 
extracted and the distortion features of the given face are computed. The distortion features are 
computed by calculating the Euclidean distances between all pairs of landmarks, excluding the 
distances between landmarks in the mouth region. Given a valid frame k , this process produces 
a distortion feature vector dk = (fk o, fk \ , . . . ,  fkM-l) of length M , where M  is the number of 
distances between pairs of landmarks. The Frame Selection module also selects and computes 
the distortion feature vector of a special frame called reference frame, which is always the frame 
in the middle of the video.

Then, the computed distortion feature vectors are normalized. The normalization 
process of distortion features consists of the following: Given the distortion feature vector 
dk = (fk0, fk 1, . . . ,  fkM-1) of a selected frame- k and the distortion feature vector of the reference 
frame dref  = (f ref 0, fref 1, . . . ,  fre/M-1) • A normalized distortion feature vector dnk is calculated 
as

dnk =
fk  0 fkM - (4.1)

yfrefO frefM-1 /
This process is done for each valid frame in the input video. The process of creating a 

normalized distortion feature vector from a selected frame and a reference frame is represented 
in Figure 4.9.

Figure 4.9: Representation of the process to extract distortion feature vectors from selected 
frames.

1

Next, N  frames are selected by solving the Maximally Spread Subset Selection (MSSS) 
problem, defined as follows: Given a set of elements P = {p0,p 1, ...,pv-1} of size V , a function 
d(x, y) that measures the distance between a pair of elements (x, y) e P x  P and an integer N  
where 1 < N < | P | . The expected output for an instance of the MSSS problem is a subset P' c  P 
with |P'l = N  where the sum of the distance between all pairs of elements in p ' is maximal, or 
more precisely, ensures Equation 4.2, i.e.,
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max y  d(x,y)  (4.2)
P,CP,IP,I=Nx,yeP

x^y
The selection is made using the Farthest Point Sampling (FPS) algorithm (Eldar et al., 

1997), which is a heuristic approach used to select a representative subset of points from a
larger set and does not guarantee an optimal result for the MSSS problem. In our scenario, this
algorithm uses the distortion feature vectors as the input set of points P, where each distortion 
vector is a point of dimension M . The well-known Euclidean distance was used as a distance 
function d. The FPS algorithm has a computational complexity of O (VNM ), where V is the 
total number of points. A generic implementation of this algorithm is shown in Algorithm 1. 
Note that the parameter N  is defined in the experiments.

Algorithm 1 Farthest Point Sampling
Input: P (Set of points), N  (Number of points to select)
Output: S (Subset of selected points)

1: Choose a random point p 0 e P and add to S 
2: while | S | < N  do
3: Find p e P \  S that maximizes min^g^ d (p, s)
4: Add p  to S
5: end while 
6: return S

4.2.2 Feature Extraction
The next module is responsible for extracting texture features and processing the 

distortion feature vectors of selected frames. The distortion feature vectors are reorganized to 
form a matrix of distortion features N  x  M , which is used as input to a distortion feature encoder, 
defined in Table 4.3, to extract the embeddings of the distortion features. The 1D Convolutions 
have kernel size 5, stride 1 and padding 1 while the 1D Max Pooling operations have kernel size 
3, stride 2 and padding 1.
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#Layer Operations input size output size

1
Conv 1d

N  x M 16 x (M  -  2)Batch normalization
ReLU

2 Max Pooling 1d 16 x (M  -  2) 16 x ( V ’

3
Conv 1d

16 x ( m2-1) 32 x (m4 5)Batch normalization
ReLU

4 Max Pooling 1d 32 x (M- 5) 32 x ( V

5
Conv 1d

32 x (M“3) 64 x (M-11)Batch normalization
ReLU

6 Max Pooling 1d 64 x ' M 4ni 64 x ( V
7 Flatten 64 x (V 8 (M  -  7)

Table 4.3: Distortion feature encoder architecture

The second type of feature summarizes the spatial information. These features are 
processed using texture encoders, which compute N  texture embeddings of length E for each 
selected frame, excluding the reference frame. The embeddings are then merged using a spatial 
bottle neck structure based on learned maps defined in Table 4.4, producing a combined spatial 
embedding with the same length as the final distortion feature embedding. Variations of the 
texture encoder architecture are explored in Chapter 5.

#Layer Operations input size output size

1 Fully connected N  * E 8 (M  -  7)ReLU

Table 4.4: Spatial bottle neck structure

4.2.3 Classification
The final module of the Hybrid Close-Up method is responsible for classifying the 

extracted embeddings as either live or spoof based on the computed features. This process begins 
by creating a final classification embedding, formed by concatenating the combined texture 
embedding with the distortion feature embedding, both of which are extracted in the preceding 
module. Then, this embedding is sent to a multi-layer perceptron (MLP) defined in Table 4.5 to 
predict the sample class.
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#Layer Operations input size output size

1
Fully connected

1 x 8(M -  7) + 8(M -  7) 1 x 1024ReLU
Dropout (0.2)

2
Fully connected

1 x 1024 1 x 512ReLU
Dropout (0.1)

3 Fully connected 1 x 512 1 x 1Sigmoid

Table 4.5: Description of MLP used for final classification
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Chapter 5 

EXPERIMENTS

This section discusses details regarding the used methodology and experimental results 
obtained exploring the proposed approach in different scenarios.

5.1 METHODOLOGY
The executed experiments and the steps for reproduction are presented. All experiments 

were conducted on a single machine equipped with the following GPUs: NVIDIA GeForce RTX 
3060 and NVIDIA GeForce RTX 3090.

We followed the distortion feature extraction steps outlined in Castelblanco et al. (2022), 
utilizing the Python module of the dlib library (King, 2009) for face detection and landmark 
extraction across all implemented models. The used landmark extractor computes 68 points, 
with 10 of them being from the mouth region. Thus, the distortion feature vector of the proposed 
approach has a length of 2088 (M = 2088) (resulting from the distances of all pairs of points 
except all distances between pairs of the 10 points from the mouth region). Note that the Face 
Close-Up paper claim to use 66 landmarks but do not specify the used landmark extractor. 
Therefore, its distortion feature vector extraction routine was adapted to use 68 landmarks. 
This adaptation was trivially implemented using all pairwise distances between the extracted 
landmarks.

5.1.1 Dataset
All experiments used partitions of the proposed dataset detailed in Section 4.1. As 

mentioned earlier, no previous work on active approaches based on the close-up challenge 
discloses their used data. Therefore, the proposed dataset is the first publicly available dataset 
suitable for the proposed task.

5.1.2 Experiments
Initial experiments were conducted to define the ideal number of selected frames, texture 

encoder architecture and validate our proposed frame selection method. Followed by experiments 
featuring baseline methods and the proposed approach using the protocols (I to IV) of the dataset 
and finishing with an special test partition with spoof samples featuring live subjects. Results 
obtained using Protocol I were used as an upper bound comparison protocol, once it pictures the 
ideal scenario, with known PA and PAI. The final results on the testing subset were calculated 
using the weights and threshold that generated the lowest EER on the validation set.
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Baseline methods were implemented based on descriptions available in their respective 
papers using PyTorch and other parameters (e.g., number of selected frames) are reproduced 
according to the original works. Both methods were trained using the ADAM optimizer, with a 
learning rate of 0.001, a batch size of 20, and using early stopping with the patience value set as 
30 epochs1. Our proposed method was trained using the binary cross entropy loss function.

5.2 RESULTS
We now present a detailed analysis of the experimental results. First, we conduct a 

study to evaluate the impact of the number of selected frames. Then, we perform experiments 
to identify the optimal texture encoder for the Hybrid method. Next, we show the experiments 
comparing the Hybrid Close-up method operating with different frame selection approaches. 
Finally, we conclude with a comprehensive comparison of the baseline methods and the proposed 
approach across each protocol and tests with a special test set with different spoof samples.

5.2.1 Frame Selection Impact
As previously mentioned, the collected dataset has only two steps with strict temporal 

constraints, i.e., close and distant alignment with at least 1 second, each. With a sampling rate of 
20 FPS, every dataset sample has at least 40 frames picturing faces. In this scenario, although 
the smallest step for frame selection is equal to 1, due to the elevated number of repetitions of 
each experiment, we adopted a step of 6. Based on these observations, we trained the proposed 
method with N e {6,12,18,24,30,36}. This experiment used only the proposed Protocol I, to 
get the expected upper bound of the proposed method.

Table 5.1 shows the results of this experiment. It can be seen that the ACER reaches 
its lowest value of 4.33% with 12 frames. After this value, a degradation in the method’s 
performance is observed as the number of selected frames increases. In light of the presented 
results, the following experiments using the Hybrid Close-up method were conducted selecting 
12 frames.

N
Validation Test

E E R  (%) EER th
Photo Display Scaling Replay M ask Overall

A P C E R (%) A PC ER  (%) A P C E R (%) A P C E R (%) A P C E R (%) A PC ER  (%) B P C E R (%) A CER (%)
6 2.10 0.870 0.72 0.98 1.84 0.00 5.08 5.08 5.24 5.16
12 2.04 0.862 0.72 1.23 1.05 0.00 4.41 4.41 4.26 4.33
18 2.40 0.937 0.60 1.23 1.58 0.00 5.12 5.12 5.60 5.36
24 2.97 0.846 0.84 1.85 1.71 0.00 7.12 7.12 5.21 6.16
30 2.68 0.710 0.72 1.60 1.32 0.00 7.24 7.24 5.56 6.39
36 2.59 0.779 0.84 1.75 1.58 0.02 7.03 7.03 6.25 6.64

Table 5.1: Experimental results on frame selection.

5.2.2 Encoder Impact
To extract spatial embeddings, we chose to use well-known encoder architectures 

designed for pattern recognition tasks. To do that, we used only the encoder portion of the 
networks ResNet-18, ResNet-34, ResNet-50 and ResNet-100. Note that ViT encoders are not 
employed here due to the reduced number of approaches adopting this technique in FAS tasks, 
especially in active scenarios. ViT models typically require large datasets to achieve optimal

*All implementations, including our proposal, are available at https://github.com/BrunoHKC/ 
Close_Up_Methods.

https://github.com/BrunoHKC/Close_Up_Methods
https://github.com/BrunoHKC/Close_Up_Methods
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performance, which is not feasible with the collected dataset containing only 1.503 video samples 
for training in Protocol I.

Table 5.2 shows the results of this experiment. The configuration that achieved 
the lowest errors (APCER, BPCER, and ACER) was the one using the ResNet-50 encoder, 
outperforming ResNet-18 and ResNet-34 by a wide margin. We hypothesize that ResNet-50’s 
superior performance is due to its greater model capacity, enabling it to learn more complex 
features and capture finer details in the embeddings. Following this reasoning, we also suggest 
that ResNet-101 did not outperform ResNet-50 because the latter offers a complexity better suited 
to the dataset’s characteristics, whereas ResNet-101 may have been more prone to overfitting. In 
light of the presented results, the following experiments using the Hybrid Close-up method were 
conducted using the ResNet-50 encoder.

Encoder
Validation Test

EER (%) EER th Photo Display Scaling Replay Mask Overall
APCER (%) APCER (%) APCER (%) A PC E R (%) APCER (%) APCER (%) BPCER (%) ACER (%)

ResNet-18 3.33 0.723 0.36 1.60 1.45 1.75 6.74 6.74 4.89 5.81
ResNet-34 2.24 0.714 0.24 1.11 1.97 0.27 5.90 5.90 5.54 5.72
ResNet-50 2.04 0.86 0.72 1.23 1.05 0.00 4.41 4.41 4.26 4.33
ResNet-101 2.01 0.871 1.44 1.85 1.32 0.00 4.85 4.85 4.21 4.53

Table 5.2: Experimental results on texture encoder.

5.2.3 Validation of the frame selection approach
To investigate if the proposed approach for frame selection is actually improving the 

Hybrid Close-Up performance, we evaluted the model using the proposed frame selection criteria, 
entitled as FPS-based in this experiment, using the approach used by the Face Close-Up, named 
Face Size - based and lastly, using the approach described in the Camera Close-Up’s work, 
entitled Bin-based.

Table 5.3 shows the results of this experiment. It can be observed that the configuration 
achieving the lowest errors (APCER, BPCER, and ACER) was using the FPS-based approach, 
followed by the Bin-based and the face size-based approaches. We hypothesize that the improved 
performance of FPS-based frame selection stems from its sampling strategy, which prioritizes 
selecting the most dissimilar frames. This approach reduces redundancy and ensures that the 
proposed model receives more diverse and informative data. As expected, the Bin-based approach 
achieved similar results. The underlying reason is comparable—by selecting a fixed number of 
frames from each segment of a video, it promotes diversity across different portions of the input. 
However, it has a higher tendency to sample similar frames.

Furthermore, as discussed in Camera Close-Up’s work, selecting frames based on face 
size may not be a generalizable approach. This method relies on a uniform movement pattern 
across all samples to ensure that each video contains frames representing the desired face sizes. 
However, in less constrained scenarios, such uniformity is unlikely, limiting the effectiveness of 
this technique.

In light of the presented results, we can observe that the proposed fame selection 
approach is more efficient in sampling relevant data. Therefore it validates the usage of the 
FPS-based frame selection method.
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Frame Selection criteria
Validation Test

EER (%) EER th Photo Display Scaling Replay Mask Overall
APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) BPCER (%) ACER (%)

Face size-based 2.31 0.931 0.24 1.47 2.36 0.81 6.66 6.66 4.43 5.55
Bin-based 2.36 0.762 0.60 1.35 1.58 0.00 4.55 4.55 4.70 4.62
FPS-based 2.04 0.862 0.72 1.23 1.05 0.00 4.41 4.41 4.26 4.33

Table 5.3: Experimental results on texture encoder.

5.2.4 Protocols
Finally, results using the baselines and the Hybrid Close-up method on each proposed 

protocol are described below. Experiments using the first protocol are shown in Table 5.4. It can 
be seen that the proposed method outperforms the baselines by a significant margin, scoring a 
lower BPCER, APCER and ACER for all PA. Several factors contribute to these results, but we 
hypothesize that the most significant one is the use of the full image as input to the model. This 
approach allows the model to leverage spatial cues beyond the face region, enhancing its ability 
to detect spoofs more effectively. As previously mentioned, values obtained using protocol I tend 
to be an upper bound once the training, validation, and testing set contains all types of PA, PAI, 
and devices.

Method
Validation Test

EER (%) EERth Photo Display Scaling Replay Mask Overall
APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) BPCER (%) ACER (%)

Camera Close-Up 7.39 0.285 9.40 4.44 4.87 6.22 5.18 9.40 9.52 9.46
Face Close-Up 9.60 0.335 10.84 5.68 5.26 8.51 5.54 10.84 13.72 12.28

Hybrid Close-Up 2.04 0.862 0.72 1.23 1.05 0.00 4.41 4.41 4.26 4.33

Table 5.4: Experimental results using Protocol I.

In real-world scenarios, a spoof detection model will likely encounter spoof attacks 
created using PAIs that were not present in its training set. Given this challenge, generalization is 
a crucial property for any FAS.

To evaluate the model’s ability to generalize to unknown PAIs, we conduct experiments 
under Protocol II, with the results presented in Table 5.5. It can be observed that the ACER of all 
methods increased compared to the values in Table 5.4, emphasizing the greater difficulty of this 
protocol. This effect is particularly evident in the case of Photo attacks, where the performance 
degradation is more pronounced. This increase was the primary factor raising the overall ACER 
from 9.46% to 12.54% for the Camera Close-Up method, from 12.28% to 20.59% for Face 
Close-Up, and from 4.33% to 9.13% for Hybrid Close-Up. The reason for this may be the 
differences among Photo Attack PAIs. Curved images emulate depth and exhibit 3D features 
that are absent in the flat images used for training. When confronted with these unfamiliar depth 
patterns in spoof samples from curved images, the model struggles to generalize effectively due 
to the significant deviation from its learned features. In contrast, other PAIs do not introduce 
such a pronounced domain shift, resulting in a less severe performance degradation.

Method
Validation Test

EER (%) EERth Photo Display Scaling Replay Mask Overall
APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) BPCER (%) ACER (%)

Camera Close-Up 7.93 0.619 15.71 3.90 6.83 5.79 4.76 15.71 9.37 12.54
Face Close-Up 11.33 0.511 25.71 5.61 6.10 12.89 6.90 25.71 15.47 20.59

Hybrid Close-Up 3.62 0.807 9.76 4.31 3.25 0.00 5.79 9.76 8.51 9.13

Table 5.5: Experimental results using Protocol II

To study the effectiveness of proposed PAD methods against unseen PA, and consequently, 
some PAIs, protocol III isolates two out of five PAs. The obtained values for each of these
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scenarios are described in Table 5.6. As we can see, all methods experienced performance 
degradation when handling Replay and Mask attacks, compared to their results for these attacks in 
Protocol I. Moreover, based on the ACER values obtained, we observe that performance against 
unknown PAIs (Protocol II) is nearly as challenging as the scenario explored in Protocol III.

Method
Validation Test

EER (%) EERth Replay Mask Overall
APCER (%) APCER (%) APCER(%) BPCER(%) ACER (%)

Camera Close-Up 11.61 0.347 14.19 2.89 14.19 11.83 13.01
Face Close-Up 14.56 0.420 19.32 5.30 19.32 15.99 17.65

Hybrid Close-Up 3.63 0.809 0.72 13.25 13.25 7.30 10.28

Table 5.6: Experimental results using Protocol III.

Lastly, to verify the impact of the used acquisition camera, protocol IV trains proposed 
models on the Android-collected samples and evaluates their performance on the iOS-collected 
inputs. The obtained values for these scenarios are depicted in Table 5.7. Here, we see that 
although Photo, Replay, and Mask attacks were slightly easier to detect, the remaining PAs 
were more difficult to classify. This reveals that variations in capture sensors represent another 
significant concern for face PAD.

Method
Validation Test

EER (%) EERth
Photo Display Scaling Replay Mask Overall

APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) BPCER (%) ACER (%)
Camera Close-Up 5.40 0.317 2.97 9.41 5.77 5.38 3.33 9.41 11.73 10.57

Face Close-Up 8.61 0.301 17.03 6.47 11.92 5.38 10.56 17.03 17.22 17.12
Hybrid Close-Up 2.99 0.843 0.63 1.07 2.57 0.00 5.56 5.56 11.11 8.33

Table 5.7: Experimental results using Protocol IV.

Based on the experiments shown, we can see that the dataset has a high ACER in all 
methods across various scenarios. Therefore, the collected dataset is still challenging for the 
latest published active PAD. Additionally, the proposed method outperforms the baselines by a 
wide margin across all protocols, demonstrating its superior ability to generalize learned features 
in small domain shifts.

5.2.5 Test with special spoof samples
A modified test set was created in which spoof samples were generated using the live 

identities already present in the original test set. In other words, in this variation, the same 
identity appears in both the live and spoof classes. For this subset, one random frame from each 
live subject in the original test set was selected and used to generate a spoof sample for each PA. 
The only exception was the Replay attacks, where the entire video was utilized. The recording 
methodology for the new spoof samples followed the procedure outlined in the previous chapter. 
Table 5.8 presents the distribution of this new test partition.
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Label PA PAI #Samples

Photo Flat 36
Wrapped 37

Display Monitor 36
TV 37

Spoof Replay Monitor 36
TV 37

Scaling Monitor 36
TV 37

Mask Hanger 36
Cut-out 37

Live - - 137

Table 5.8: Special test partition distribution per Label, PA and PAI.

It is hypothesized that using the same identities in both the live and spoof sets may 
degrade model performance. This hypothesis is based on the observation that using live images 
to generate spoofs makes the feature distributions of both classes more similar, as the images 
themselves are more alike. As a result, the decision frontier tends to be stricter and more complex, 
making it more difficult to separate the two classes. Moreover, using the same subjects in instances 
live and spoof samples ensures that both classes share the same facial feature distributions, 
preventing the model from leveraging identity-related cues to distinguish real faces from spoofs. 
It is important to emphasize that due to the sensitivity of the data used in this new test set, no 
spoof sample generated from a live identity can be disclosed.

Next, Table 5.9 presents the results of an experiment in which the Hybrid Close- 
Up method was trained and validated using the standard train and validation subset of the 
UFPR-Close-Up dataset, respectively, but tested with the modified test set described in this 
section.

Method
Validation Test

EER (%) EERth Photo Display Scaling Replay Mask Overall
APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) APCER (%) BPCER (%) ACER (%)

Camera Close-Up 7.28 0.278 11.48 5.87 6.35 9.84 7.41 11.48 9.39 10.43
Face Close-Up 9.66 0.393 12.61 6.06 6.39 11.38 7.69 12.61 13.64 13.13

Hybrid Close-Up 2.10 0.879 3.04 4.61 3.94 8.76 6.95 8.76 4.31 6.54

Table 5.9: Experimental results using test set with spoof samples generated from live midias.

The results show a substantial drop in performance when comparing the values in Table 
5.4, changing the ACER metric from 4.33% to 6.54% for the Hybrid Close-Up case, supporting 
the proposed hypothesis.Along with a significant increase in ACER, a particularly notable pattern 
is the sharp rise of 8.76 percentage points in APCER for Replay attacks. We hypothesized 
that this can be explained by the nature of the spoof media used in standard Replay attacks, 
which often come from datasets capturing individuals in diverse activities. Consequently, these 
media may lack key characteristics present in the Close-Up authentication process, such as faces 
captured within the expected distance range. The same reasoning applies to the other PAs. That 
is, the images selected from CelebA to create the other PAs were captured in various contexts 
and may exhibit characteristics such as lighting conditions, a higher frequency of individuals 
wearing makeup, facial expressions, and other traits that are uncommon in live samples. This 
could potentially introduce a bias that the model may have learned for classification.
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When live media are used to generate spoof samples, the live and spoof sets share the 
same identities. As a result, the inter-class distance is reduced, making the classification task 
significantly more challenging.
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Chapter 6 

CONCLUSION

A comprehensive overview of the state of the art in face presentation attack detection 
was presented in this work. Prominent datasets were also listed to highlight the challenges within 
the active face anti-spoofing field, particularly the scarcity of publicly available data suitable 
for developing and evaluating solutions, which are essential for ensuring reproducibility and 
fostering collaborative research.

To address this issue, we focus on creating a new FAS active dataset based on close-up 
interactions, contributing to the field by establishing a common dataset and evaluation protocols, 
paving the way for further academic advancements.

The conducted experiments demonstrate that the collected dataset poses significant 
challenges to recent active close-up methods proposed in the literature. While the proposed 
method outperforms existing approaches in the evaluated scenarios being a strong evidence in 
favor of our hypothesis that the spacial and texture features extracted from image embeddings 
complement the distortion features, improving the model’s performance. However, the proposed 
method still struggles with generalization issues, as observed in Protocols II, III, and IV. Moreover, 
as show in Section 5.2.5, we observe that the usage of the same identities in both live and spoof 
samples may be a challenging scenario.

Future research may explore several avenues for improvement. One promising direction 
is refining the frame selection process by incorporating image quality metrics to ensure more 
informative samples. Another potential enhancement involves integrating strategies commonly 
used in passive PAD methods within the classification module, such as auxiliary tasks like depth 
map estimation.

Furthermore, future studies could investigate alternative active interactions, such as 
the head movement challenge-response method described in (Castelblanco et al., 2022), where 
users rotate their heads toward prompted positions. Another promising approach is the flash 
challenge, which projects different light patterns onto the user’s face to reveal live cues like depth 
and shadow projections, as utilized in Liu et al. (2019b). Both challenges are contemplated by 
the UFPR dataset.
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