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RESUMO

A literatura recente em Reconhecimento de Documentos tem visto muitos avanços. Desde a

incorporação do modelo BERT ao domínio de documentos, técnicas baseadas em Transformers

têm dominado o estado da arte, e assim como acontece no campo de NLP, este estado da arte

geralmente é superado através de modelagem de atenção ou ajustes no pré-treino. No entanto,

qualidade de dados tem sido um tópico cada vez mais pungente em vários campos de deep
learning, mas o escopo de documentos ainda não tem visto muitos avanços nesta discussão. Além

disso, existem vários domínios no campo de Reconhecimento de Documentos cujos documentos

apresentam tarefas few-shot onde anotações de qualidade são escassas. Com o objetivo de

avançar a pesquisa em documentos neste tópico, apresentamos duas técnicas de aumento de dados

que focam em maximizar o conhecimento contido nas instâncias de documentos conhecidas,

utilizando técnicas sem imagem. Prosseguimos na linha de utilizar algumas técnicas do campo

de NLP com um modelo baseado em LLMs para reescrita de textos, uma técnica de aumento

de dados que foi primeiro apresentada em alguns cenários de NLP. Além disso, criamos um

algoritmo para extrair templates de documentos de acordo com uma estrutura de grafos gerada

pelas respectivas entidades (nós). Estes templates possuem a informação de layout de cada

documento embutida, e podem ser usados para aumentação de dados numa estratégia simples de

preencher o formulário com algum método de geração de texto. Cada uma de nossas técnicas

de aumentação são testadas através de um dataset público da literatura, e realizamos a etapa de

fine-tuning em um modelo pré-treinado para verificar se nossas aumentações auxiliam na melhora

da performance. Nossos resultados mostram que estas técnicas conseguem melhorar as métricas

de qualidade consistentemente, para ambas as técnicas e em todos os cenários de teste, reduzindo

a taxa de erro em cerca de dez por cento para o FUNSD e em até cinquenta para o EPHOIE.

Palavras-chave: Aumento de dados. Reconhecimento de Documentos. Aprendizado de Máquina.



ABSTRACT

The most recent literature in Document Recognition has seen many advances. Ever since the

adaptation of BERT, Transformer-based approaches have been dominating and, in line with

other NLP improvements, the state of the art is usually broken through attention modeling

or pre-training adjustments. However, data quality has been an increasingly relevant topic in

various deep learning fields, but the document scope has not seen many advancements in this

discussion yet. Furthermore, many areas of Document Recognition involve important few-shot

tasks where annotated documents are scarce. To further the document research on this topic,

we present two new data augmentation techniques that focus on maximizing the knowledge

from the known document instances, using imageless techniques. We continue on the line of

employing some techniques from the NLP field with an LLM-based approach for text rewriting,

a data augmentation approach pioneered in some NLP scenarios. Furthermore, we also create

an algorithm to extract templates from documents based on a graph structure generated by the

respective entities (nodes). These templates encode the layout information from each document

and can be used for data augmentation by filling the template out with a generator’s text. Each of

our approaches is validated in a different public dataset taken from the literature, and we fine-tune

a pre-trained model to evaluate whether our augmentations help boost its performance. We find

out that these techniques consistently improve the quality measure, for both techniques and in all

testing scenarios, reducing the error rate in around ten percent for FUNSD and up to fifty for

EPHOIE.

Keywords: Data Augmentation. Document Recognition. Machine Learning.



LIST OF FIGURES

2.1 Transformer architecture (Vaswani et al., 2017) . . . . . . . . . . . . . . . . . . 15

2.2 Attention modeling (Vaswani et al., 2017) . . . . . . . . . . . . . . . . . . . . . 15

2.3 Attention example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Example from a FUNSD instance . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 An instance from the EPHOIE dataset . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 LLM Entity Augmentation Example . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Diagrammatic representation of the LLM augmentation technique . . . . . . . . 31

3.5 Template example from EPHOIE . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Schematization of the template augmentation . . . . . . . . . . . . . . . . . . . 33

4.1 LiLT architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Confusion Matrices for FUNSD Leave-one-out . . . . . . . . . . . . . . . . . . 44

A.1 Template example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



LIST OF TABLES

2.1 NLP state of the art at the release of RoBERTa. . . . . . . . . . . . . . . . . . . 17

2.2 Document Recognition SoTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Number of instances and entities for the EPHOIE and FUNSD datasets. . . . . . 35

4.2 Number of entities in FUNSD . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Number of entities in the real training partition of EPHOIE . . . . . . . . . . . . 37

5.1 Results for the SER task on FUNSD . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Results for the RE task on FUNSD . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 5-Fold Fine-tuning SER on the FUNSD Dataset . . . . . . . . . . . . . . . . . . 42

5.4 5-Fold Fine-tuning RE on the FUNSD Dataset . . . . . . . . . . . . . . . . . . . 42

5.5 Overall Results for FUNSD Leave-one-out . . . . . . . . . . . . . . . . . . . . . 43

5.6 Entity-wise F1 for FUNSD Leave-one-out . . . . . . . . . . . . . . . . . . . . . 43

5.7 Results for the SER task on EPHOIE . . . . . . . . . . . . . . . . . . . . . . . . 44

5.8 10-Fold Fine-tuning SER on the EPHOIE Dataset . . . . . . . . . . . . . . . . . 44

5.9 Overall Results for EPHOIE Leave-one-out . . . . . . . . . . . . . . . . . . . . 45

5.10 Entity-wise F1 for EPHOIE Leave-one-out . . . . . . . . . . . . . . . . . . . . . 45



LIST OF ACRONYMS

NLP Natural Language Processing

DR Document Recognizion

LLM Large Language Model

SoTA State of the Art

GPU Graphical Processing Unit

GAN Generative Adversarial Network

LSTM Long Short-Term Memory

OCR Optical Character Recognition

SER Semantic Entity Recognition

RE Relation Extraction



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 METHODS AND OBJECTIVES. . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 DOCUMENT ORGANIZATION. . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 RECENT LANGUAGE PROCESSING HISTORY . . . . . . . . . . . . . . . . 14

2.2 DATA AND QUALITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Document Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Document Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 DOCUMENT RECOGNITION STATE OF THE ART . . . . . . . . . . . . . . 21

2.4 POSSIBILITIES OF IMPROVEMENT . . . . . . . . . . . . . . . . . . . . . . 24

3 PROPOSAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 SCOPES OF WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 LLM APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 TEMPLATE APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 EXPERIMENTAL PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 DATASETS AND AUGMENTATIONS . . . . . . . . . . . . . . . . . . . . . . 35

4.2 MODEL AND TRAINING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 FUNSD RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 EPHOIE RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

APPENDIX A – PSEUDOCODE FOR LLM AUGMENTATION . . . . . . 53



11

1 INTRODUCTION

Although the Document Recognition field has seen many advances over the last few years that

pushed the state of the art to such a degree that most state-of-the-art models can be used in a wide

variety of scenarios thanks to the introduction of unsupervised pre-training techniques, there are

still quite a few problems regarding the availability of training data in many scenarios. Due to

the nature of machine learning systems, some amount of training data is still required for any

approach to succeed. In general, more data usually means a better performance, which is evident

in the fact that the most challenging datasets often contain few instances in training and testing.

Most of the techniques now used in the document field are borrowed from Natural

Language Processing (NLP). The current state of the art consists of transformer models trained

using an unsupervised pre-training followed by a supervised fine-tuning pipeline. This approach

was pioneered in NLP by BERT (Devlin et al., 2019). The pre-training stage can be understood

as the stage at which the model learns the domain’s syntax, while the fine-tuning stage is for the

semantics. A very large amount of training data is required to learn the syntax only through

examples. For documents, the IIT-CDIP dataset (Soboroff, 2022) is the one most commonly used.

It is publicly available and most state-of-the-art (SoTA) models use it today.

It is easier to gather data for the pre-training stage because the self-supervised training

model does not require a lot of annotations, just the text that can be obtained with OCR systems.

However, the supervised training in the fine-tuning stage requires a more specific annotation

style according to the task to be learned by the model, and this requirement makes fine-tuning

data more expensive. Furthermore, some document domains present an inherent difficulty in

gathering document instances due to containing sensitive information. For these reasons, there is

usually a lack of quality data for model fine-tuning in commercial applications.

The official document domain is an example, consisting of identity cards and passports.

There are few works regarding this domain, something that can be explained by the difficulty both

in reproducing experiments and publicizing datasets. This difficulty comes from the sensitive

nature of these documents, which makes data augmentation required. Furthermore, recent

advances such as the Large Language Model (LLM) technology show promising applications in

research, and we are yet to see their full potential in practice. Also, even for documents of public

domains, data augmentation may prove to be a powerful tool for helping model performance

in document understanding tasks, especially given how we suffer from a lack of annotated data

for the fine-tuning stage across various scenarios. We use this as a hypothesis for the presented

research, where we perform a few downstream fine-tuning DR tasks.

Our proposed methods aim to resolve the specific issue of document domains where

a reduced set of annotated instances is available, but new instances are hard to obtain and/or

annotate. With this in mind, our research question is:

Can we use data augmentation to improve performance in downstream tasks with small datasets?

Adjacently, if so, what are the augmentation techniques available for use in a document

recognition scenario, and how can they aid in our pursuit of better models? Furthermore, how

simple can we make it? Is it possible to perform a virtual, imageless augmentation and still

improve baseline results? In this research, we aim to answer these questions to the best of our

ability.
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1.1 METHODS AND OBJECTIVES

To answer our research questions, our objective is to build two different augmentation pipelines,

each one aimed at a different document domain type, and both focusing on generalization of

latent information from few document instances. We use two datasets for downstream document

recognition tasks: FUNSD (Guillaume Jaume, 2019) and EPHOIE (Wang et al., 2021), both

being datasets commonly used for SoTA comparisons, and each belonging to one domain that

we tackle. FUNSD features documents with complex text types and document layouts, while

EPHOIE features simple texts and layouts.

Our first approach is aimed at tackling complex datasets and is labelled the “LLM”

method. It leverages the latent knowledge from the LLM to expand the document corpus through

the means of textual augmentation. We employ the LLM together with some other simple

augmentation techniques to expand the text variability utilizing rewriting the same document

multiple times, creating new instances with new text. To the best of our knowledge, this is the

first work of the kind to use LLM textual augmentation specifically for documents.

Our second approach, labelled the “Template” method, focuses on extracting the layout

information contained in the known document images and annotations to augment new instances

that expand the known corpus while keeping the document’s structural integrity. In other words,

we create new documents following the same layout from old documents, but with new texts

belonging to the same labels. It differs from the first approach in that here, the document’s

structural semantics are not tied to the text contained in it: a name in a document can be any

name.

The idea behind these approaches comes from both the datasets themselves and from

correlated research in NLP. Textual augmentation in NLP is done through a number of techniques

that include LLM usage, and we follow in these steps when dealing with documents featuring

complex natural language sentences. We also use older approaches such as synonym replacement

to deal with simpler types of text within FUNSD. The template technique comes from the intuition

that some document domains are tied to a reduced number of layouts into which varying texts

of the same semantic are written. Form-like document datasets comprised of domains such as

identity documents or test headers can be described entirely in terms of the possible layouts, and

as such using these layouts as the sole basis for document crafting should yield a representative

synthetic dataset.

Furthermore, these techniques perform a virtual augmentation that emulates the creation

of a new document without an image representation of it. Here, a document will be represented

only by the size of an original document image and by the texts, their labels and coordinates

within that theoretical image. Performing imageless augmentation yields a simpler pipeline with

no drawback in performance, since models without the image modality remain competitive within

the document recognition SoTA, on top of being more light-weight since the image module is not

used.

1.2 CONTRIBUTIONS

The contributions of our work are the augmentation procedures and the respective augmented

instances, which are examples of the possible new paths for document augmentation. These

techniques contribute to the field by making it easier to fine-tune models on more restricted

domains as well as opening new paths for using LLMs in the document scenario. Furthermore,

we employ an imageless approach (using a bi-modal model for text and layout only) for quick

generation of a large number of instances, also circumventing the problem of understanding and
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reproducing image bias and noise in the target datasets (which feature scanned, noisy documents).

We show that data augmentation techniques can be used to improve performance on downstream

tasks with instance-restricted domains, which contributes to the field also by bringing to light the

fact that data augmentation is beneficial for DR. This is because the SoTA is often broken by

means of improving the architecture of the model or the pre-training procedure.

1.3 PUBLICATIONS

The work presented here has been partially published in two papers: as an initial exploration in

the Workshop of Works in Progress of SIBGRAPI 2024 (Wojcik et al., 2024) and as a complete

work in VISAPP 2025 (Wojcik et al., 2025). The results presented here represent a consolidation

of the concepts presented in these two papers. We perform new experiments with our augmented

datasets in a more comprehensive way in order to better answer our research question.

1.4 DOCUMENT ORGANIZATION

The remainder of this work is organized as follows. Chapter 2 shows the current state of the field

across both models and datasets, showcasing current challenges and their proposed solutions.

Chapter 3 presents the detailing of our augmentation techniques, as well as a description of the

datasets augmented and the model used for evaluation. Chapter 4 delineates the experiments

made to evaluate our approach, as well as a description of the model architecture for fine-tuning

each task and the statistics from the dataset, both the real and augmented parts. Chapter 5 shows

our results on the tasks used for evaluation on both domains and discusses the results achieved.

Finally, Chapter 6 presents the conclusion to our work.
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2 RELATED WORK

Since Document Recognition is intrinsically tied to NLP, we will first address NLP as a machine

learning problem and its evolution across the years. All recognition models here discussed are

based on Deep Learning (DL), here defined as a natural advance of Machine Learning. This

advance consists of the enlargement and deepening of previous models, granting the model the

possibility of learning a more robust representation by themselves.

This advancement is seen in NLP with the introduction of the pre-training plus fine-

tuning pipeline used in BERT (Devlin et al., 2019), a transformer-based (Vaswani et al., 2017)

architecture. The representation learning occurs at the pre-training stage, and is shown to require

large amounts of data, the quantity of which is tied to the model’s performance.1 With this, we

also discuss the process of making synthetic data across different document domains, as well as

recent NLP techniques that inspired our proposed approaches.

2.1 RECENT LANGUAGE PROCESSING HISTORY

We highlight three landmarks in the recent NLP history as relevant both to the language and

document fields. These are the publishing of transformer (Vaswani et al., 2017), BERT (Devlin

et al., 2019) and RoBERTa (Liu et al., 2019). Transformer was proposed as a model for

sequence-to-sequence tasks, and has become a staple of both NLP and document solutions. BERT

consists of an encoder from the transformer model and proposes the novel training procedure in

two stages described previously. Finally, RoBERTa uses the base BERT model with an improved

training recipe to improve the model’s performance on various downstream tasks. All of these

are briefly detailed in this section.

The transformer model consists of an Encoder-Decoder architecture. The basic block

of the architecture is called the attention mechanism, which is based on an attention function.

This architecture is shown in Figure 2.1 (Vaswani et al., 2017), the Encoder to the left and the

Decoder to the right. Each component is composed of a pipeline of 𝑁 attention blocks.

First, the text is represented via a vector embedding, which is transformed into the

Query, Key and Value vectors through the corresponding linear layer. The Q, K and V vectors are

the input to the multi-headed attention mechanism, which consists of ℎ parallel attention layers

with independent weights. Each attention layer performs a weighted sum between Q and K, and

then between this output and V. This mechanism is shown in Figure 2.2 (Vaswani et al., 2017).

The scaled dot-product attention function is also represented in Equation 2.1.

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉. (2.1)

Intuitively, the attention function creates a filter that highlights the important tokens in

the Key sentence for each given token in the Query. An example of this is given in Figure 2.3,

which presents a translation problem between Portuguese and English.

As shown in Figure 2.3, the path length between any two elements in the sequence in

terms of how much the network signals have to traverse the network, for transformer attention

layer, is 𝑂 (1). This means this operation has a high potential for parallelization, yielding better

performance in our current paradigm of GPU processing.

1A discussion on data quality is found in Section 2.2
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Figure 2.1: Transformer architecture (Vaswani et al., 2017)

Figure 2.2: Attention modeling (Vaswani et al., 2017)
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Figure 2.3: Attention example

This model has served as a baseline for most subsequent SoTA advances in NLP.

BERT (Devlin et al., 2019), or “Bidirectional Encoder Representations from transformers”, set

a new SoTA by using the transformer encoder together with the pre-training strategy that is

omnipresent to this day.

Intuitively, this model’s learning is split into two different parts: syntax and semantics,
wherein the syntax is learned in pre-training and the semantics in fine-tuning. The pre-training

stage in BERT consists of two self-supervised tasks2. These are Masked Language Modeling

(MLM) and Next Sentence Prediction (NSP).

MLM trains the model through a simple Cross-Entropy (CE) loss. From the input

sentence, a set of 15% tokens (corresponding to random slots in the input vector) are randomly

chosen. From these 15%, 80% tokens are replaced with a reserved [MASK] token, 10% tokens

are replaced with a randomly chosen token and the remaining 10% tokens are left unchanged.

The model is then asked to reconstruct the original, unmasked sentence, and the performance is

evaluated using the CE loss function.

At every step of training, the model receives as input two sentences (over which the

MLM task is performed) and a single binary token named isNext that corresponds to whether the

first sentence is followed by the second sentence in the text corpus they were taken from. In NSP,

the model is asked to predict whether this relationship is true, the Binary Cross-Entropy (BCE)

loss function is used to compare the model prediction with the ground truth from the isNext

token. These tasks model two things, respectively: the syntax of natural language sentences,

such that the model intrinsically understands what well-formed sentences look like, and the

continuation between sentences, something that is directly transferable to some downstream

fine-tuning tasks.

This pre-training technique has advantages and disadvantages. The main advantage,

as seen in the BERT results, is the fact that the model can leverage the availability of a large

corpus of natural language texts on the internet to learn a robust representation. However, two

disadvantages are: the requirement of a large amount of data (although it does not need to be

annotated, just grammatically correct), and the requirement of intense training, consuming a lot

of time and GPU resources. Regardless of these limitations, these tasks are still a staple in the

SoTA, especially MLM, which has been adapted to document learning as well.

2Some of the literature uses the word unsupervised since this training does not have a separate label. We prefer

to call it self-supervised since the ground truth is the text itself.
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Finally, RoBERTa authors improve on BERT by fine-tuning some training parameters

from the original BERT, using the same pre-training techniques. These experiments correspond

the fine-tuning of parameters such as learning rate and batch size. For us, the most important set

of experiments is the incremental addition of training data and a longer pre-training stage. The

results showcase that the most significant improvements on performance on downstream tasks

from the GLUE dataset are the addition of more data and longer pre-training stage. Table 2.1

displays these improved results.

The RoBERTa architecture is identical to BERT, which shows that the most determining

factor for transformer performance is the quantity and quality of data. This is seen in a comparison

with similar papers (You et al., 2019) where the improvement with architectural changes is less

than the improvement gained from more intensive training.

A comparison of the NLP field in a few of the GLUE tasks at the time of the release of

RoBERTa is shown in Table 2.1. MNLI stands for MultiNLI Matched / Mismatched (wherein

NLI means Natural Language Inference). QQP stands for Quora Question Pairs. QNLI stands for

Question NLI. SST is the Stanford Sentiment Treebank.

Model MNLI-(m/mm) QQP QNLI SST-2

BiLSTM+ELMo+Attn (2018) 76.4/76.1 66.1 82.3 93.2

GPT (2018) 82.1/81.4 70.3 87.4 91.3

BERT𝑙𝑎𝑟𝑔𝑒 (2018) 86.7/85.9 72.1 92.7 94.9

RoBERTa (2019) 90.2/90.2 92.2 94.7 96.4

Table 2.1: NLP state of the art at the release of RoBERTa

These are the NLP fundamentals that have established the current document SoTA,

which will be described in Section 2.3. As we will show, the current document SoTA follows

a similar route, using these models and strategies fine-tuned for a document scope. However,

we can identify a fourth key moment in NLP, which is the birth of the Large Language Model

(LLM). This kind of model is a radicalization of the presented approaches, with larger models

and quantities of data, following the same steps shown in this section. We will not present a

discussion on these models as their basis has been fully covered in this section.

2.2 DATA AND QUALITY

It is evident that the data used by machine learning models dictates its learning, given how these

models work. We structure our data quality discussions with some concepts from (Belgoumri

et al., 2024). That paper surveys the use of the term “Data Quality” across the machine learning

literature. This concept entails two different observations. First, it is not only dependent on the

dataset itself but also on its context. Second, it can be described on a variety of attributes.

The survey presents a taxonomy of data quality attributes (dimensions) where the

first-order dimensions are six. Statistical independence, attribute skew, label noise, fairness,

privacy protection and reputation, trust, and security. The best data can produce a Bayes-optimal

model. It will be large enough and drawn from the real distribution. In this sense, the authors

highlight that the second dimension, the one of attribute skew, is the most important for making

sure that the assumption that the sample data follows the real distribution is true. Essentially, the

data may be biased according to how it was gathered. For image datasets based on real pictures,

the location in which the pictures were taken and the hardware used may produce an innate bias

in the data that the model may capture unwillingly.
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To address this issue, the literature has produced a number of tools. One such tool is

data augmentation. In a scenario where there is a global distribution and several local datasets

with different biases, these local datasets can be augmented to bring them closer to the global

distribution. Two such examples are in (Abay et al., 2020) and (Jeong et al., 2018), the latter of

which is based on GANs. We further discuss some examples of data augmentation in a document

scenario in Section 2.2.2.

Recently, this discussion has become an issue regarding the LLM technology, as it has

been already began to see commercial usage. A phenomenon known as AI hallucination has been

observed in commercial LLMs, where the model produces fake information (hallucinations).

In (Rejeleene et al., 2024), there is a hypothesis that this has been an issue regarding the

pre-training stage, due to information quality issues. This is very concerning as human curation

of these datasets can be very expensive due to their enormous size.

However, these techniques for data understanding in the NLP scenario are still in a

preliminary state of research. Some other domains of data science have produced an extensive

body of work regarding data quality for various domains. For example, in (Liu et al., 2023), a

systematic classification and analysis of existing studies on data quality in health information

systems is presented. It is not only necessary to understand the possible dimensions of data

quality in each domain, but also to effectively leverage it in practice.

Since our current SoTA has focused on training and modeling improvements, we believe

looking at data issues will soon become a very important practice not just for pushing the SoTA

forward but also for ensuring reliability across various domains. In Section 2.2.1, we present

the main domains of research for documents and some of the datasets the current SoTA uses for

evaluation.

2.2.1 Document Datasets

Recent document research has seen a lot of focus on a few domains. For example, we have the

FUNSD dataset (Guillaume Jaume, 2019). This dataset is composed of noisy scanned documents

in a form-like format. This is one of the datasets we use for the evaluation of our methods, and we

detail it in Section 3.1. There is also XFUND (Xu et al., 2022), which features a similar format

as FUNSD and functions as an extension to it. XFUND is composed of seven partitions, each for

documents of a different language: Chinese, Japanese, Spanish, French, Italian, German, and

Portuguese. An usual practice is to treat FUNSD as an eighth partition of XFUND, corresponding

to the English language.

FUNSD is composed of some samples from a larger dataset, RVL-CDIP (Harley et al.,

2015), which is itself a subset of the even larger IIT-CDIP (Soboroff, 2022). RVL-CDIP is

composed of 400 thousand noisy pictures of scanned documents across training and testing, all

of which are labelled as one of sixteen classes such as memo, letter, and scientific paper (25

thousand images per class). IIT-CDIP comes from the Legacy Tobacco Document Library and

is a dataset of documents from the litigation between several US states and tobacco companies

from the nineties. There are almost seven million records describing lawsuit documents. Due to

the large size, this is the dataset usually chosen for pre-training of large document models.

Another dataset used in this work for evaluation is EPHOIE (Wang et al., 2021). This

dataset is composed of scanned examination test headers from various chinese schools. It is

also described in more detail in Section 3.1. The EPHOIE paper also presents a novel visual

information extraction method that consists of a few branches for detection, recognition, and

information extraction. Their evaluation procedure has been used as a staple for comparison in

this dataset for later models.
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Another common domain is the one of scientific papers. One reason for this is that

documents of this kind are easily available in the web, and very large in number. In this scenario,

there are datasets such as PubLayNet (Zhong et al., 2019b), PubTabNet (Zhong et al., 2019a) and

DocBank (Li et al., 2020).

PubLayNet focuses on the layout analysis problem. It comes from the PubMed Central™

Open Access repository of journal article preprints. This repository contains over a million

PDF and XML document instances, from which PubLayNet authors scraped the documents that

make up the dataset. These were automatically annotated by matching the XML annotation to

each respective PDF document. This dataset has been used by DocSynth (Biswas et al., 2021),

a document generation GAN that we describe in Section 2.2.2. It features over 360 thousand

document instances, which feature five types of entities: titles, text blocks, tables, lists, and

figures. The sheer size of this dataset makes it comparable to other computer vision datasets of

other domains such as ImageNet (Krizhevsky et al., 2012).

PubTabNet follows the same instance gathering and annotation procedure as PubLayNet,

using PMCOA. However, it narrows the scope for dealing with only tabular data, featuring

over 500 thousand tables in the HTML format of annotation. Also, that paper presents an

encoder-dual-decoder model for table recognition, evaluated in the PubTabNet dataset itself.

DocBank also features over 500 thousand instances and features LATEX documents that

were annotated automatically. These annotations are generated by creating a colored outline in

the output PDF for every entity, which is used to generate the bounding box in the end annotation.

This dataset uses the same five types of entities from PubLayNet plus another seven: abstract,

author, caption, equation, footer, reference and section. This dataset also features an extremely

fine-grained annotation, down to the token level.

We also highlight the domain of invoices, for which at least two datasets exist as

representatives: SROIE (Huang et al., 2021) and CORD (Park et al., 2019). SROIE stands for

Scanned Receipts OCR and Information Extraction, and was presented in ICDAR 2019 for a

competition on information extraction from scanned receipts. The dataset presents challenges for

OCR (text localization and extraction) and key information extraction. This dataset contains a

thousand annotated images of receipts across training and testing.

CORD stands for Consolidated Receipt Dataset, an invoice dataset that features high

quality fine-grained annotations at a token level, and like EPHOIE, features two levels of entity

class annotation, for individual segments (subtotal price, discount, service charge) and segment

groups (such as subtotal, where all the previous classes would be subclasses of this super-segment).

CORD has over 11 thousand receipts collected from Indonesian shops.

More recently, a number of different datasets were presented at ICDAR 2023. These

datasets feature very challenging task across a large number of domains. We present a few of

these that are closer to the domains we already presented in this section.

The competition on structured text extraction from visually-rich document images (Yu

et al., 2023) features two novel datasets: HUST-CELL and Baidu-FEST. HUST-CELL contains

30 document classes across over 4 thousand document instances. This dataset also contains

over four hundred key and value entity types, with fine-trained key-value pairs, nested keys and

multi-line keys and values. These documents were collected from public websites and cover

a large number of domains: receipts, certificates and industry licenses. Baidu-FEST uses a

more commercial set of scenarios, for example from finance, insurance, logistics and customs

inspection. It features 11 document classes in training and 10 in testing, and around 60 instances

for each class.

DocILE (Šimsa et al., 2023) is used in the competition on document information

localization and extraction. DocILE is a large-scale benchmark built for this task, featuring
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almost 7 thousand business documents and another 100 thousand synthetic documents, as well as

almost 1 million unlabelled documents for transformer pre-training. This dataset features a large

amount of domain-specific knowledge in the business document scenario.

The FinTabNet (Zheng et al., 2021) datasets is used in the visual question answering on

business documents challenge, with a focus on table recognition. This dataset features almost 90

thousand document pages with over 100 thousand annotated tables across training and testing

partitions.

Lastly, the Document UnderstanDing of Everything (DUDE) (Landeghem et al., 2023)

challenge features multi-domain, multi-purpose and multi-page documents. The challenge

consists of a series of question-answer pairs related to information contained inside a given

document instances. The DUDE dataset contains 5 thousand documents across training and

testing, with almost 19 thousand question-answer pairs in the training set. This dataset presents a

novel problem that’s related to multi-page documents, a challenge that has not been presented by

past datasets.

Finally, the next section deals with some data augmentation techniques in the document

scenarios. There are many other document datasets generated using these augmentations, and

they are described following the data augmentation techniques.

2.2.2 Document Data Augmentation

Most research in document augmentation focuses on creating new datasets. In the official

document scenario, there is MIDV-2020 (Arlazarov et al., 2018), BID (Álysson Soares et al.,

2020) and NBID (Wojcik et al., 2023). MIDV authors follow a simple augmentation pipeline

consisting of pasting generated text onto background samples from Wikimedia Commons, names

stemming from some name datasets available on the web, and other fields such as gender and

birth being generated randomly following legislation from each country. These documents were

then scanned, taken photos of, and filmed, generating the MIDV-2020 dataset, which contains

the corresponding partitions: scans, photos and videos.

Both BID and NBID use roughly the same approach. The augmentation pipeline uses

the image, text, and bounding box annotations to inpaint the sensitive text parts and paste new,

synthetic info on top of the erased image. The inpainting is necessary since the input image is a

real document, with sensitive data from real people. This also means experiments done using the

real data cannot be reproduced, since the real partition cannot be made public since it contains

sensitive information.

Donut (Kim et al., 2022) presents both an innovative OCR-free transformer approach

and SynthDoG, an augmentation engine that is used to create instances to be used in the Donut

pre-training stage alongside IIT-CDIP. SynthDoG stands for Synthetic Document Generator,

and works with a rather simple approach where text is projected into a blank slate which is

projected linearly into a background image. The backgrounds are sampled from the ImageNet

dataset (Krizhevsky et al., 2012), the texts are sampled from Wikipedia, and the text layouts are

created using a simple rule-based algorithm for grid stacking. The images are further processed

to mimic image noise from real documents. For more details on the algorithm, refer to the Donut

paper.

A simpler approach similar to Donut in the sense that it uses a repository of background

images and a set of texts that are pasted into the images is DocCreator (Journet et al., 2017).

This model couples this pasting process with some usual data augmentation techniques to create

weathering and noise, simulating real noise from scanned documents. One of the main features

from this model is the fact that the implementation features an annotation extractor with extremely
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fine-grained annotation. This makes the augmentation tool useful for essentially any downstream

task in DR.

On the other side of the spectrum, in (Raman et al., 2021) we find an augmentation

engine that aims towards an annotation-free approach for the layout recognition problem. The

proposed method uses a Bayesian network, which is structured as a set of rules to define the

concept of a document. The authors define a document as an arrangement of a set of primitive

elements such as paragraphs, titles and lists. The structure of the document is defined by that set

of rules. The proposed network generates new layouts that are used by a set of image manipulation

routines to extract the augmented document image.

GANs have been the staple for data generation for a long time, and they have been

adapted for document augmentation as well. DocSynth (Biswas et al., 2021) is a GAN that creates

new layouts using five structural elements from scientific papers: tables, figures, text blocks,

titles, and lists. These five classes have been chosen for the baseline experiments from DocSynth

because the model was trained and evaluated based on PubLayNet (Zhong et al., 2019b), which

is a dataset that features these entity types.

Another use of GANs is in (Pondenkandath et al., 2019). In this paper, the authors

tackle the historical document domain, augmenting images using a few of the SoTA GAN models

(at the time): CycleGAN (Zhu et al., 2017) and VGG-19 (Simonyan and Zisserman, 2014). The

authors train the model in a style-based augmentation technique where the model must create an

older version of the document image, that is, a direct image-to-image translation task. Each GAN

is trained separately using a different approach. CycleGAN is trained with the usual approach

from its original paper, while the VGG-19 model in the Neural Style Transfer training style.

Lastly, in (Márk and Orosz, 2021) there is an overview of possible data augmentation

methods. That paper focuses on text-centric approaches and goes through a few methods already

used in NLP. It does not present any experiments, only an evaluation of each approach in terms

of whether it can or cannot be used for the legal document scenario. The paper hypothesizes the

use of ML-based text generators using LSTMs and LLMs (GPT-1 and 2, which were the ones

available at the time). For LLMs, the authors conclude that they cannot be used because there is

no way to protect certain keywords from the generation, which is a requirement for their scope.

The use of LLMs for data augmentation is already being put into practice in the NLP

field. For example, in (Ye et al., 2024) and (Guo et al., 2023), some LLMs are employed for text

rewriting. The idea of rewriting text using LLMs is proven to consistently improve performance

in both cases, while the first paper shows that only some LLMs can generate new instances ex
nihilo. We go into detail over these two papers in Section 3.2 to substantiate our first augmentation

approach.

2.3 DOCUMENT RECOGNITION STATE OF THE ART

The current SoTA in DR follows a research line pioneered by LayoutLM (Xu et al., 2019). This

model uses the baseline BERT architecture with a new embedding style and adapted pre-training

objectives, effectively treating DR as a task of NLP with new dimensions (layout and image). To

tackle these new dimensions, a new embedding type is presented. LayoutLM adds two extra

embeddings that correspond to the 2-D positional embedding and an image embedding. The

image features are extracted by using an F-RCNN, which works as an image backbone for this

model. The text and positional embeddings are merged using an element-wise addition operation,

while the visual (image) embeddings are added at the end of the pre-training procedure to aid in

the fine-tuning stage.
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LayoutLM also adapts the pre-training procedure by developing two new pre-training

objectives. The Masked Visual-Language Model (MVLM) task corresponds to BERT’s MLM,

which is adapted to the new embedding style by feeding the model with the corresponding

unmasked 2-D positional embeddings for the masked text embeddings, making sure that the model

can correlate the positional and textual information. The Multi-label Document Classification

(MDC) is designed to use the IIT-CDIP dataset (Soboroff, 2022) since this dataset features

documents with multiple labels per document. In this task, the model must predict every label

for the document independently, and the authors define a novel loss function for it. Since the

multi-label classification is a specificity of IIT-CDIP that is not shared with most other document

datasets, the authors define this second task as optional. It is of note that MDC is a supervised

task. While the first model to introduce the BERT paradigm for DR uses a supervised task, this

style of learning was abandoned in favor of other self-supervised tasks.

While LayoutLM is outdated, we present its contributions since we believe it is essential

to understand how the current DR SoTA came to be, since the use of the NLP technique of

self-supervised pre-training has become ubiquitous in said SoTA, with MVLM being widely

used still today. LayoutLM served as the basis for LayoutLMv2 and 3 (Xu et al., 2020; Huang

et al., 2022), the latter of which is still used in SoTA competitions of DR at the time of writing3.

LayoutLMv3 innovated by placing the image and text embeddings side by side in a single

embedding vector to represent the document at both training phases. The positional embeddings

are again merged by element-wise addition for both image and text embeddings. The authors

also dismember the MVLM task into the original MLM task and a brand new Masked Image

Modeling objective, which functions the same as MLM, but masking the image tokens instead.

The LayoutLM models were evaluated, among others, on the FUNSD, CORD and RVL-CDIP

datasets.

Most of the recent advances in the DR SoTA come from three sources: adapting the

pre-training stage, improving representation through more complex embedding modeling, and

changes to the vanilla attention mechanism from the transformer. The architectures are usually

the same, drawing all the way back to BERT. The LayoutLM series of models serve as examples

of adaptations to the training and modeling that made it possible to apply the BERT approach to

DR. Now, we discuss a few SoTA models that show how attention modeling can be performed.

First, we discuss MGDoc (Wang et al., 2022b), wherein “MG” stands for Multi-Granular.

This model leverages the hierarchy that structures most documents for effective recognition.

MGDoc authors use text, layout, and image features extracted at three different levels of abstraction

from the document: page, region, and word. This multi-modal and multi-granular embedding

uses a multi-granular attention mechanism that encodes the hierarchical relationships between

regions and words. In short terms, two new bias terms are added to the vanilla attention function,

respective to the hierarchy and relative distance between embeddings. These are trainable weights,

where the hierarchy bias encodes the inside or outside relation that models the spatial hierarchy

in the document image, and the relative distance bias encodes the relative Euclidean distance

between each embedding’s bounding boxes. MGDoc was evaluated on FUNSD, CORD, and

RVL-CDIP.

ERNIE-Layout (Peng et al., 2022) continues the trend of incorporating NLP advances

into DR through the use of the disentangled attention mechanism presented by DeBERTa (He

et al., 2020). In DeBERTa, each word is represented by two vectors: the textual content itself and

its positional encoding. The attention weights between words are then calculated through the

use of disentangled matrices over contents and positions. This is in opposition to the vanilla

attention, where the positional encoding is directly merged with the textual embedding, such that

3In particular, we highlight the 2023 ICDAR competitions.
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both modes are represented through a single vector. In ERNIE-Layout, the attention calculation

corresponds to a sum of four elements, which are themselves attention products between text and

text, text and relative position (1-D distance within the sentences), text and x-coordinate, and text

and y-coordinate, such that all of these scores are calculated independently and joined together at

the end, as opposed to having all of them be entangled within a single embedding.

The ERNIE-Layout model also experiments with the reading order of the document,

an approach that consists in running the list of entities through an off-the-shelf layout analyzer

that serializes the entities according to the left-to-right, up-to-down order that corresponds to

the western reading order. These entities are reordered on both text and visual embeddings, in a

rather simple approach. The paper also presents four pre-training objectives, one of which uses

this reading order idea to model a reading order prediction task, in which the model must indicate

in a matrix corresponding to the relationship between input tokens which tokens are followed by

the other in the input text. While the input is already serialized, this task makes sense because

there is no explicit boundary between text segments in the transformer input. Among others,

ERNIE-Layout was evaluated on FUNSD, SROIE, CORD and RVL-CDIP.

The idea of leveraging the reading order to enhance prediction is also explored in (Zhang

et al., 2023). In this paper, the authors present the Token Path Prediction (TPP) task, a simple

prediction head that works by predicting entity mentions as token sequences in a document. TPP

models the document’s layout as a complete directed graph, and as such the head is used to

predict token paths between entities in the document graph. This leverages the fact that the entity

recognition task in DR is often treated as a simple sequence tagging task, just like the Named

Entity Recognition task in NLP. This model was evaluated on FUNSD and CORD, but it uses the

LayoutLMv3 model as a baseline to raise its performance in some scenarios.

RORE (Zhang et al., 2024) is a Transformer model that changes the reading order

prediction task by modeling it as an ordering of relations between layout elements, such that

the model is trained on relation extractions instead of sequence predictions, which is the usual

state-of-the-art approach for Transformers. The model first produces a reading order matrix that

is then used to calculate the final attention score, as illustrated in Equation 2.2, where {𝑝𝑖
𝑖 𝑗
}𝑖≤𝑖, 𝑗≤𝑛

represents the reading order relation matrix and 𝜆𝑙 is a learnable scalar that represents the weight

of the reading order information at layer 𝑙 in the Transformer. The reading order score can be

understood as a bias factor that influences the relation between entities, meaning they are more

likely to be related if one is read after the other. RORE was evaluated on FUNSD, CORD and

SROIE, among others.

𝑎𝑙𝑖 𝑗 =
𝑒𝑥𝑝((𝑞𝑙𝑇

𝑖
+ 𝜆𝑙 𝜌𝑖 𝑗 )/

√
𝑑𝑘 )

Σ
𝑛
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𝑖
+ 𝜆𝑙 𝜌𝑖 𝑗 )/

√
𝑑𝑘 )

(2.2)

Following this line, treating visual documents as graphs is quite a common concept.

While we also follow this idea for one of our proposed augmentation methods (see Section 3.3).

Even models that pre-date the BERT approach such as PICK (Yu et al., 2020) may feature a

graph module to leverage the inter-entity relationships in an explicit way. Some more recent

models from the SoTA also use this idea. In particular, we discuss GraphDoc (Zhang et al., 2022)

and Doc2Graph (Gemelli et al., 2023).

GraphDoc also imports an NLP approach in the document field. In particular, this model

uses an idea pioneered by Star-transformer (Guo et al., 2019), where the attention mechanism is

only performed between neighboring tokens (adjacent in the text) and a global entity representing

the entire text. GraphDoc presents the graph attention layer using a similar idea, leveraging

the spatial relationships between entities inside the document image. In GraphDoc, the entities
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correspond to the nodes of the graph, and it has been evaluated on FUNSD, SROIE, CORD and

RVL-CDIP.

Doc2Graph uses a Graph Neural Network (GNN) and a special graph representation

module for documents. It is, as a novelty, not based on transformers. This model uses a fully

connected undirected graph, where the nodes correspond to the semantic entities in the document.

The authors experiment with two granularity levels: considering the minimal entity to be a

text block and each singular word. The model designs the features differently for nodes and

edges. Nodes are represented in the typical multi-modal style, the text being encoded using the

spaCy (Honnibal and Montani, 2017) large English model to extract the text vector encoding,

and the image encoded by a U-Net (Ronneberger et al., 2015) that was pre-trained on FUNSD for

entity segmentation. Edges use the Euclidean distance between nodes and the polar coordinates

for relative positioning. This model was evaluated on FUNSD, on the entity recognition task and

a few other tasks including another subset of RVL-CDIP for entity recognition and segmentation.

LayoutMask (Tu et al., 2023) is another model that does not use image features for

training. It introduces novel text-layout pre-training objectives in the form of Masked Language

Modeling and Masked Position Modeling, two tasks that follow in the same line as the traditional

MLM modes with the twist that image features are not used for prediction. LayoutMask also

introduces word-level masking at pre-training level for the given objectives. LayoutMask was

evaluated on FUNSD, CORD, SROIE and RVL-CDIP.

Table 2.2 presents an overview of the models presented in their evaluation scenarios.

We report the micro-averaged entity-level F1 score on all cases, with the exception of RVL-CDIP,

where the reported metric is the Accuracy. The number of parameters of LiLT depends on the

text model that is coupled with the layout module that is also called, by metonymy, LiLT. The

number of parameters reported here correspond to the total size of the layout module. A full

explanation of this architecture can be found in Section 4.2.

Model Modes Year # Params FUNSD SROIE CORD RVL-CDIP

LayoutLM T+L 2019 343M 78.66 94.38 94.72 94.42

LayoutLMv2 T+L+I 2020 426M 82.76 96.25 94.95 95.25

LayoutLMv3 T+L+I 2022 368M 92.08 - 97.46 95.93

MGDoc T+L+I 2022 203M 89.44 - 97.11 93.64

ERNIE-Layout T+L+I 2022 355M 93.12 97.55 97.21 96.27

GraphDoc T+L+I 2022 265M 87.77 98.45 96.93 96.02

Doc2Graph T+L+I 2022 2.68M 82.25 - - -

LiLT T+L 2022 11M 88.41 - 96.07 -

LayoutMask T+L 2023 404M 93.2 97.27 97.19 93.8

RORE T+L+I 2024 399M 91.84 96.97 98.52 93.8

Table 2.2: Document Recognition SoTA

2.4 POSSIBILITIES OF IMPROVEMENT

Recent advancements in the document SoTA, as we have seen in the previous sections, mostly

work around the pre-training objectives and attention modeling. As seen in the NLP approaches,

fine-tuning training parameters and focusing on data quality and quantity may be valid approaches

for pushing the current SoTA. In this sense, we believe there is a lot to gain by leveraging the

massive body of knowledge contained in LLMs, as well as its capacities for rapid learning.
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Furthermore, there is a lack of research regarding document data augmentation. This

might be explained by the complexity contained in a document instance, especially for domains

with non-trivial layouts and complex image features. Usually, document models use embeddings

that encode three modes of knowledge: image, layout, and text. So, ideally, Augmentation

techniques should deal with all three cases or use a simpler model that requires less information.

Lastly, research has not managed to deal effectively with a few challenges such as

documents with sensitive data. One such example is ID cards and passports. One such example is

inpainting the images and generating fake texts to be pasted back (such as in (Wojcik et al., 2023)).

While this approach creates safe data, since most models use image cues, the performance might

be harmed since these embeddings are probably corrupted in the inpainting phase.

The approaches we design in Chapter 3 are an attempt to close the gap and present a

few directions for future research in document data augmentation. We present an exploratory

work that improves the baseline using novel data augmentation approaches, inching closer to

solving the mentioned problems.
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3 PROPOSAL

In this chapter, we present our augmentation proposals and the scopes in which they can be used.

We also present the datasets we choose to augment with each proposal. Our LLM approach is

used for FUNSD, which features varied text types, including some complex natural language

sentences. For the template approach, we use EPHOIE, a simpler dataset with simple entity types.

We present our definitions of a document, a template, and how we can use these definitions to

create new approaches for document data augmentation.

Our methods are best fit for a specific working scope where gathering and annotating

new document instances is hard or not possible at all. Typically, these scopes usually deal with

documents containing sensitive or private information. A typical example is the one of official

documents such as identity cards, where the documents are not easily available in the web and

cannot be publicized.

This is also the case for the datasets we experiment with: FUNSD and EPHOIE. The

instances in the FUNSD dataset come from lawsuits held against the tobacco industry in the

nineties by the United States. In a legal scenario where documents are often unable to be

made public, gathering more instances and annotating them is posed as a significant challenge,

and augmenting already known instances serves as an alternative. EPHOIE is comprised of

examination paper headers that contain sensitive information about the students and schools they

come from, and as such the text pertaining to these labels had to be erased and re-synthesized for

the dataset to be made public. Given this difficulty, this is another scope where gathering new

instances is a hard task and therefore data augmentation becomes a viable alternative.

3.1 SCOPES OF WORK

We first define a document as of a list of entities, where each entity is an object that contains, at

least, a textual string that corresponds to its OCR annotation, a bounding box corresponding to

the entity’s placement in the document, and a label, indicating the entity’s class. Additionally,

a document may define a set of key-value relations between entities. The list of entities is

presented in an annotation file. The base documents have images from which these annotations

are extracted, but our augmentation approaches do not take the image into account. Also, for

datasets where the document image contains text that is not annotated, this text is treated as part

of the background and ignored.

We define our two augmentation strategies based on this definition. We leverage two of

the defining features of the document: the entities’ text and placement from the document. The

text augmentation is tackled using an LLM to provide rewritten versions of each entity’s text. The

LLMs in the literature contain a vast knowledge of the English language, the language in which

these models are mostly trained in. Our approach is inspired by recent NLP developments (Ye

et al., 2024; Guo et al., 2023) that perform a similar operation. This is our first approach, detailed

in Section 3.2.

To validate the LLM approach, we picked the FUNSD dataset (Guillaume Jaume, 2019).

FUNSD is an acronym for Form Understanding in Noisy Scanned Documents, and the dataset is

composed of Form-like documents that were sampled from the larger RVL-CDIP dataset (Harley

et al., 2015), meaning FUNSD is a subset of RVL-CDIP. It contains 199 documents, 149 for

training and 50 for testing. As the dataset name suggests, FUNSD is composed of noisy scanned

documents and stands out from RVL-CDIP due to its more fine-grained annotations. Unlike its
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Figure 3.1: Example from a FUNSD instance

superset, FUNSD can be used for downstream tasks such as Semantic Entity Recognition (SER)

and Relation Extraction (RE), thanks to the more detailed annotations. SER consists of the task

of labeling every entity in the document with its correct label, while RE consists of extracting the

inter-entity relationships of parent and child, using the annotation file as the ground truth in both

cases.

Figure 3.1 features an excerpt from a document from the FUNSD dataset. Magenta

represents an entity assigned the “other” label. Orange is the header, blue is the question and

green is the answer, corresponding to the four entity classes defined by FUNSD. Arrows represent

relations, such that they come from the parent entity and are destined towards the child entity.

The form of this dataset, as explained here, follows our definition of a document as

described at the start of this section. Each document in FUNSD corresponds to a list of entities,

every entity has a bounding box representing the position, the text written in said position, and a

class. On top of this, there may or may not exist a key-value relationship between any two entities

in the document. For FUNSD, this relation is structured such that this relationship may exist

between headers (key) and questions (value), and questions (key) and answers (value).

Figure 3.1 also illustrates the SER and RE tasks: SER requiring the labeling of each

entity and RE requiring the recognition of which relationships between entities exist. We highlight

that some of the relations are not shown in Figure 3.1, for example between the header and the

entity represented by the texts “Code #:” and “Supplier:”. We have omitted these arrows for

readability, but in this sample, the header is a parent to every question.

FUNSD has entity-level annotations for text and labels, gathered using a semi-supervised

OCR mechanism detailed in their paper. We have found there are a few OCR errors, but have

opted not to fix these manually as we directly compare our training protocols with the ones

from the baseline model using the same dataset. Furthermore, the OCR errors do not impact

our LLM augmentation neither positively nor negatively, since the LLM is able to distinguish

the semantics from the text regardless of a few misplaced characters. The one exception to

this is the empty string that some entities have for the text annotation. Usually, these entities

correspond to graphical elements such as logotypes and signatures, which the OCR model failed

to recognize. These entities are left without a text so that this is not a factor to consider when

discussing the results of our augmentation procedure since the baseline model uses the faulty

OCR transcriptions.

We also use the placement of the entities in the document to generate templates that

encode information from the document’s layout to generate new documents. These templates are

extracted from the known documents, with identical templates being merged. The templates are

iteratively chosen at random and their entities are filled with text according to their class. This
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Figure 3.2: An instance from the EPHOIE dataset

approach is fit for simple documents with repeated layouts. We detail this approach in Section 3.3

and further detailed in a pseudo-code presented in Appendix A.

To validate the template augmentation approach, we choose the EPHOIE dataset (Wang

et al., 2021). EPHOIE stands for Examination Paper Head Dataset for OCR and Information

Extraction. It is a Chinese dataset composed of real examination paper headers from many

schools across China and features a total of 1494 samples across training (1183) and testing

(311). These documents feature scanned images, and the text is both printed and handwritten.

Figure 3.2 presents an instance from the EPHOIE dataset. This dataset features both an

entity-level and a token-level label annotation, apart from the textual transcriptions and bounding

boxes. In every entity, every token has a separate label corresponding to the token-level class,

which may be one out of ten entity types, according to the paper. Each entity may also contain a

label that corresponds to the Form-like annotation between key, value and none. As such, this

dataset is fit for both SER and RE tasks, depending on which set of labels is used for training.

However, since the baseline model does not perform RE on this dataset, we do not use this task

for comparison.

Since our augmentation approaches do not easily carry over to images, that is, we

virtually augment the text and layout without changing the images, we use the LiLT (Wang et al.,

2022a) model for our experiments. LiLT is a pre-trained bi-modal transformer encoder developed

for Document Recognition whose extracted features correspond only to layout and text. To the

best of our knowledge, LiLT is currently one of the state of the art for this kind of bi-modal

models where both the code and some of the pre-trained models are publicly available, making

it possible to replicate the results. We explain the model’s architecture and the design of the

downstream tasks we perform as well as the training protocols in Section 4.2.

The LiLT paper evaluates the model on both of our selected datasets and reports the

result for the SER and RE tasks on FUNSD and only SER on EPHOIE. Therefore, we perform

our baseline comparison using the same fine-tuning setting. We compare our results to the ones

reported in their paper as a baseline and also to our reproductions of their fine-tuning.

3.2 LLM APPROACH

We develop our LLM-based approach for FUNSD taking into account two features of this dataset.

These are the presence of various complex natural language texts, and the complex layouts from

each document. Since altering the layouts is a complex task given these forms are complicated

and intricately designed, we employ a simple rewriting technique using an LLM for augmentation.

This keeps the document’s internal coherency intact while increasing textual variability.

This approach is inspired by a few papers from the NLP field. The idea of using LLMs

to augment text by creating new, rewritten versions of it, has been presented in at least two

papers (Ye et al., 2024; Guo et al., 2023). We discuss these papers from the text-only domain and

their results briefly to explain our choices for the development of our technique.

LLM-DA (Ye et al., 2024) approaches the problem of Few-Shot Named Entity Recog-

nition in textual data by using LLM-based data augmentation at Context and Entity levels.

Context-level augmentations feature strategies for sentence length (longer, shorter), vocabulary
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usage (advance words, adverbs, adjectives, prepositions, conjunctions), subordinate clause

incorporation, and presentation styles (news, spoken language, magazines, fiction, Wikipedia, and

movie reviews). The Entity-level augmentation features a single strategy of substituting entities

in a given sentence by other entities with the same label, keeping the grammatical structure of

the original text intact. These other entities can be generated by the LLM, beyond the known

entities in the training dataset. This rewriting strategy was shown to be successful in the paper.

Furthermore, in (Guo et al., 2023), a simple rewriting of Question-Answer pairs is

introduced using GPT-3.5 and GPT-4 to improve performance on a Q&A dataset. An important

finding of this paper is that both evaluated LLMs were able to rewrite the existing Q&A pairs in

a semantically meaningful way, boosting the baseline performance. However, the pairs that were

created by the model were heavily dependent on the model’s domain-specific knowledge. In their

paper, GPT-4 was able to boost performance by creating the Q&A pairs, while GPT-3.5 wasn’t.

This is very limiting - since we do not have access to the entire training dataset of most LLMs,

we cannot verify whether the model has the domain-specific knowledge for a given application in

a way that is not experimental.

Given the results from the papers presented, we have opted to perform augmentation

by only rewriting the entity texts using the LLM. The results from the NLP research show that

augmentation by altering the presentation of data is sufficient to boost performance in downstream

tasks. We extend this idea for the document scenario.

The rewriting technique developed is tailored for the FUNSD entities. A close inspection

on the FUNSD documents reveals that their entities are very diverse in nature, and there is

no one-size-fits-all strategy for augmentation. In particular, we identify four types of entities

according to the nature of their texts. The first type corresponds to complex natural language

sentences. The second type corresponds to simple questions, entities with generic nouns that

expect a second entity such as “Name:”, “Supplier:” and “Code Number:”. The third type

corresponds to simple answers, which would be the names, supplying companies and codes in

question. We note that the simple question type does not necessarily correspond to the question

label from the dataset, and the simple answer also does not correspond to the answer label from

the dataset. These classes are created on top of the labels defined by the dataset itself. The

remaining entities that cannot be classified in these three bins are the fourth class, which is

“none”.

In order to perform our augmentation, every entity is manually classified among these

four bins. The first three bins are augmented, but not the fourth one, which is composed of

texts that could not be augmented. For the complex sentences, we ask the LLM to rewrite the

given text up to five times. The LLM provides both alternative syntax styles and vocabulary.

This augmentation style is largely unsupervised in the sense that the model does not receive

instructions on how the augmentation procedure must be carried out, only that it must rewrite the

text a given number of times.

The LLM is also used for the simple question class. In this case, the model is asked

to provide a list of synonyms for the text. For the simple questions, the model is not oriented

to reach a certain number of augmentations, so the number of rewritten versions varies. For

these augmentations, we use an off-the-shelf pre-trained Llama2 model (Touvron et al., 2023)

with no fine-tuning. Llama-2 was shown to be inconsistent with output formatting, sometimes

inserting unwanted extra text padding that had to be filtered out. 1 The LLM generations are

revised manually in order to remove the filler and format the output in the manner of a list of

strings, as well as to make sure that the generations make sense.

1These are textual replies such as “Certainly! Here’s a list of synonyms:”, “Thank you for asking! Here’s some

synonyms:”, etc.
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Figure 3.3: LLM Entity Augmentation Example

The third class, the simple answers, is augmented using a set of simple rules for

augmentation. Names with initials are expanded via a dictionary, such that the initial becomes a

random name from a dictionary of common english names, and full names are retracted into

initials as well. They also change format, from “Surname, Name” into “Name Surname” and

vice-versa. Dates are augmented by changing the format they are written in. The “MM-DD-YY”

format can be changed to “Month DD, YYYY” and vice versa. Measures and numbers receive

an OCR noise such that some of the digits are randomly replaced with different digits. For every

entity in this class, a list of rewritten versions is created according to the rules presented and

shuffled.

Figure 3.3 presents an entity example for each of the three classes. The last class is

left untouched. Among these entities are texts with three characters or less, complex codes and

unknown acronyms as well as empty strings which may be due to an OCR annotation failure.

These are accounted for in Section 4.1.

Figure 3.4 presents a representation of our LLM augmentation approach. Entities on

each document are manually annotated into each bin and forwarded towards their respective

augmentation generators. As such, for every entity text, a number of new texts is generated, and a

repository is created for the augmentations. For every document, each entity is assigned a list of

possible entity texts that also contains the original text from the base document annotation. The

un-augmented entities are assigned to a single-item list that corresponds to the entity’s original

text.

Given these text lists, our approach for generating new documents is as follows. For

each document, we create up to five new documents, such that the entities in each one of these

have their texts are randomly chosen from their respective set of possible texts. This choice is

uniformly random, meaning the n-th entity in the first augmented document does not necessarily

receive the first augmented text in its list. The original entity text is part of the entity’s text list

and can also be chosen.

Also, since the new text may have a different length from the original one, we use the

top-left coordinates from the entity to simulate the writing of the new text in the document image.

The text size is sampled from the document itself by analyzing the text and its bounding box.

We leverage the word-level bounding box annotations to extract the character size, taking the
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Figure 3.4: Diagrammatic representation of the LLM augmentation technique

absolute difference between the vertical values, and to find where the text wraps around to a new

line, wherein the next word’s top coordinate value is greater or equal to the last word’s bottom

coordinate value. With this, we can create a new bounding box that more accurately represents

the new text. Also, since we keep the semantic structure of the document’s entities intact, the

key-value relationships remain the same.

Lastly, we have tried to use the template approach, detailed in Section 3.3, to augment

FUNSD too, but it did not work well. We detail the text generation method used for EPHOIE,

which was applied to FUNSD too. In summary, this method consists of swapping an entity’s text

with the text of a random entity from the dataset. The results were poor, which can be explained

by the fact that for FUNSD, the document loses internal coherency, as there is no correlation

between random entities when matching together complex texts from different documents. We

have also refined this approach by picking only header-question-answer trees to fill the templates

in such a way that the trees were composed by related entities. However, this approach was

shown to be inefficient as the resulting augments harmed the model’s performance. For this

reason, this idea was scrapped.

3.3 TEMPLATE APPROACH

Our template-based approach is destined for a particular domain where the documents are pre-

defined in a reduced set of templates. This means most documents share the same arrangement

of entities within the image. An example of a scope such as this is the one of official documents.

Usually, each country defines a set of rules for the layout of an identity document, for example,

and all identity cards from that country, or from the same issuing organization, will follow the

same layout, with every entity in roughly the same spot with a given background image.

It is with this in mind that we define the concept of a template. We define a template as

a fully-connected directed graph that represents a document. The semantic entities contained in

the document correspond to the vertices, each vertex containing a property corresponding to

the entity type. Each edge contains a property called the direction. The direction can be one of

eight - up, down, left, right and the four diagonals. The direction of an edge represents the spatial

relation between the two entities it connects. Since the graph is directed and fully-connected,
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Figure 3.5: Template example from EPHOIE

there is one pair of edges between every entity. the edge that goes from edge 𝐴 to 𝐵 contains the

direction towards B in relation to A, and the edge that goes from 𝐵 to 𝐴 contains the direction

towards A in relation to B.

An example of a template is given in Figure 3.5. This figure is an excerpt from the

EPHOIE dataset, which we chose for augmentation using the template method. The graph shown

in Figure 3.5 is not represented as complete only for the sake of readability. The template object

extracted from the EPHOIE documents is always fully-connected.

Since a single template can be the root of hundreds of document instances, we create

our template augmentation approach by extracting templates from the known instances and using

them to generate new, augmented document instances. If the templates are known, a simple

augmentation procedure consisting of picking a template randomly and filling it out with new

texts can be used to generate very representative datasets. This approach is similar to the way that

new official documents are issued, where the holder’s information is printed on a background

image that contains a fixed layout. Our approach works by reverse-engineering the dataset to

acquire the templates from the known instances.

The only issue with defining this approach is the matter of text generation. When issuing

a new document, the details are provided by its holder. When creating synthetic data, there are

a few possible approaches. Since the EPHOIE dataset has hundreds to thousands of instances

per class, we create a text repository for each entity label, where this repository will contain

all the text attributes across all entities of the same class in the dataset. Datasets with smaller

distributions can rely on automatic generation via LLMs or use entity dictionaries available in

the web for person names, organization names and the like.

Therefore, to generate a new document instance, a given template has its entities filled

out with random texts from the repositories, according to the entity labels. The upside of using

this method is that it is very simple, and works for any entity type. The downside is that it

requires a significant amount of data for the dictionaries to be relevant, and it is not scalable.

Since EPHOIE is fairly significant in size, with just over a thousand instances, this downside has

not been a big problem in our experiments.
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Figure 3.6: Schematization of the template augmentation

Our template augmentation approach is built using the presented building blocks. In this

work, we use the training partition from the EPHOIE dataset as a basis for our augmentations,

but the algorithm can be used for any document scope that falls into the definition we presented

at the start of this section. The outline of our augmentation method is as follows.

• First, extract the template from every document instance in the original repository. Equal

templates (rigorously either: the exact same graph or one template being a subgraph of

another) are merged together.

• Then, compile a dictionary for every entity type, such that we assign to every entity type

a list of entity texts corresponding to all possible texts in the known document entities

that pertain to that given entity type.

• Finally, pick a template at random and fill its entities with corresponding samples from

the entity type dictionaries, recalculating the bounding boxes with the new text’s length

and the entity’s bounding box saved in the template. Repeat this step 𝑁 times, where 𝑁

is the total number of desired augmentation samples.

This approach is illustrated in Figure 3.6. Also, we provide a detailed pseudo-code

for the main steps in this pipeline in Appendix A. The code for this augmentation process is

fairly verbose, and the template object might need different extra information depending on the

dataset used. For EPHOIE, we save the 𝑥 and 𝑦 coordinates for each entity, as well as the original

entity label sequences. EPHOIE has multi-label entities, where every character is assigned a

separate label. These entities are split according to the clusters of same-label characters, and

this information is stored in the template object for reassembling at the end of the augmentation

process.

Also, the main reason for using a graph representation for the templates is so that the

newly generated dataset can have a balanced representation of the root templates. The source
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dataset can have a variable number of documents pertaining to each given template, with an

unbalanced distribution. If we list all the available templates, it is possible to generate a new

dataset with an uniformly random distribution of these templates.

Our template augmentation approach, apart from improving the performance of the

model (as per Chapter 5), also makes it possible to generate a large amount of instances using

few examples, provided that the available examples contemplate a good amount of the possible

templates. It is also possible to generate template-level augmentations for further variability. This

would be done, for example, by randomly deleting or adding entities. Also, since this approach

has an immense few-shot potential, it is possible to find known layouts in the internet to manually

generate some root document instances for the template repository.

Finally, we remark that we cannot use the LLM approach to augment EPHOIE. This is

because we would not be able to verify the LLM’s generations due to our lack of knowledge of

the Chinese language.
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4 EXPERIMENTAL PROTOCOL

In this chapter, we present the datasets used for the baseline augmentation and describe them in

terms of their entities. We also present the result of our augmentation procedures. Finally, we

present and detail the model we used for validation, its innovations in terms of architecture and

training, and how it was adapted for each downstream task.

4.1 DATASETS AND AUGMENTATIONS

We refer to the original datasets as presented in the literature, and the ones used as a basis for

our augmentation, as the “real” datasets that contain real instances, and to the results of our

augmentation processes as the “augmented” datasets, which contain augmented instances. In

Table 4.1 we present the final number of instances and entities in the real and augmented datasets.

It is important to note that only the training partitions are considered in the augmentation process,

while the test partition remains always the same, only containing real instances. Also, the entities

considered on both FUNSD and EPHOIE are only the ones that are annotated in the respective

datasets. Other texts are considered part of the background and ignored. The model will be

trained on partitions that contain both the real training set and the corresponding augmented

partitions, such that the experiments with 1 augment of FUNSD are done by fine-tuning the

model on 298 instances - the 149 real instances and their augmented counterparts. The same is

true for EPHOIE.

For FUNSD, our augmentation model produces up to five instances for each one of the

149 documents in the real training set. A given document is augmented by replacing the entity

texts with the augmented versions. This is done by choosing one of the possible augmentations

at random, including the original entity text (which is required for the entities for which no

augmentation was produced, for example). The augmented training sets are built incrementally

from the previous partitions, such that the 2 augments partition contains the entire 1 augment

partition plus another new 149 instances.

For FUNSD, we generate a number of different augmentations for each entity according

to our approach detailed in the last chapter. Table 4.2 presents a relation of the number of entities

and augmentations by type. In this table, we are considering only the training instances, such that

the number of 7411 entities corresponds to the number of entities across the entire real training

partition of FUNSD. Our augmentations on FUNSD use the pre-trained Llama-2-7b-hf (Touvron

et al., 2023) for generation.

Table 4.1: Number of instances and entities for the EPHOIE and FUNSD datasets

FUNSD EPHOIE

Partition Documents Entities Documents Entities

Real Train 149 7411 1183 12411

1 Augment 149 7411 1200 12921

2 Augments 298 14822 2400 25850

3 Augments 447 22233 3588 38656

4 Augments 696 29644 - -

5 Augments 745 37055 - -

Test 50 2332 311 3343
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Table 4.2: Number of entities in FUNSD

Entity Amounts Number of Augs By Type

Header 441 1 978 Complex 647

Question 3266 2 1580 Synonym 4106

Answer 2802 3 1560 Simple 375

Other 902 4 or More 1010 None 2283

Total 7411 Augments 14611 Augmented 5128

We experimented with a few prompts for Llama2, the most robust ones being rather

simple. The prompts used for complex sentences and simple questions are, respectively:

Please rewrite the following text, maintaining the

semantics with different vocabulary or syntax:

Please provide a list of synonyms for the following

text:

As seen in Table 4.2, there is a significant imbalance in the number of entities pertaining

to each label. Most of the entities in this dataset are composed of simple texts, which explains

why more than half of them are augmented using the Synonym augmentation. The variation in

the number of augmentations per entity is explained by the fact that the LLM does not always

manage to produce the same number of semantically relevant augmentations for every entity, in

both augmentation cases where the LLM was used.

In some cases, it was not possible to augment the entity at all. These cases are comprised

of entities that contain texts composed of three characters or less, such as tickboxes, as well

as entities with no text annotated. We assume that the latter is due to a failure of the OCR

mechanism used in the annotation of the original dataset. A minority of these no augmentation

cases is also comprised of entities to which the LLM did not produce any meaningful generations,

such as entities belonging to the “other” label whose text consists of long codes of letters and

numbers, acronyms the model did not understand, and chemical substances.

For FUNSD, which has 149 training documents, we create up to five augmentations

per document, numbered one to five. Then, the 𝑛-th training set is constructed as the original

149 training instances from FUNSD plus the 1 to 𝑛 augmentations of each training document.

This means the base training set (the real train) contains only the original 149 training instances,

the training set with one augment (the 1 augment) contains the real train set plus the first

augmentation of each document, totalling 248. The training set with two augments contains the 1

augment training set plus the second augmentation of each document, totalling 447 instances,

and so on. For EPHOIE, we create 3600 documents by choosing templates at random from the

repository, and build the partitions 1 to 3 using subsets of 1200 synthetic documents. A curation

of the synthetic samples revealed that 12 documents were malformed, with too many overlapping

entities, and as such these documents were removed.

Table 4.3 presents the number of entities in the EPHOIE dataset. This table also only

considers the real training partition. We can see that the amount of entities per label is also highly

imbalanced in EPHOIE. However, EPHOIE is different from FUNSD in that each annotated

semantic entity has two sets of labels. One of them indicates the form-like label between key,

value, and none, and is applied to the entire entity. The second one consists of the twelve entity

types presented in Table 4.3, and every token in the entity’s text has a separate label, that may
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Table 4.3: Number of entities in the real training partition of EPHOIE

Entity type Real Train 1 Augs 2 Augs 3 Augs Test

Other 5679 5930 11867 17769 1601

Exam Number 128 144 257 380 36

Score 377 398 827 1236 92

Name 2365 2400 4797 7172 620

Student Number 422 382 847 1245 108

School 1358 1396 2671 3989 335

Grade 441 458 958 1415 103

Seat Number 184 181 383 555 43

Class 1625 1686 3421 5088 438

Subject 376 395 836 1241 93

Candidate Number 467 476 940 1434 120

Test Time 79 72 154 240 13

differ from the label of other tokens in the same entity. This means that a line from the document

that features both a student’s name and number may be annotated as the same entity, but the

characters corresponding to the name and number are labeled differently inside the same entity.

To cope with this peculiarity in the template repository building stage from our template

augmentation method, we first split every entity in the training documents, clustering together

same-label character groups. The corresponding bounding boxes are also split, such that the

horizontal coordinates are interpolated according to the number of characters in the string relative

to its size. This is equivalent to generating an annotation to the bounding boxes shown in

Figure 3.5. The relation of which entities were split into which new entities is stored in the

template object and used to reassemble these entities after the new documents are generated.

Furthermore, we note that there is a mismatch between the reported number of entity

labels in the paper (10) from the number of entity labels in the dataset itself (12). The two entities

that the EPHOIE paper seems not to consider are “other” and “candidate number”, which are

absent from the evaluation table in their paper. In the Appendix, LiLT authors follow the 10

entity remarks from EPHOIE’s paper. We do not consider these entities for the experiments in

order to accurately compare our results to the LiLT baseline.

4.2 MODEL AND TRAINING

To validate our approach, we use the pre-trained LiLT model (Wang et al., 2022a) for fine-tuning

on both FUNSD and EPHOIE datasets. We reproduce a similar training setting as described in

the LiLT paper for a fair comparison. LiLT is a double transformer model, consisting of two

separate, independent transformer Encoder models, as represented in Figure 4.1 (Wang et al.,

2022a). Each model is responsible for one mode between language (text) and layout. Each one of

these models has its own attention flow, and they exchange information via a specially designed

attention mechanism.

The LiLT attention mechanism is called a "Bi-directional attention complementation

mechanism" (BiACM). In this model, each embedding (text and layout) is inputted into each

sub-model, and the attention function (see Equation 2.1 for the vanilla version from the original

transformer) is defined as,
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Figure 4.1: LiLT architecture

𝑎𝑇
𝑖 𝑗
= 𝑎𝐿𝑖 𝑗 + 𝑎𝑇𝑖 𝑗

𝑎𝐿
𝑖 𝑗
=

{
𝑎𝐿𝑖 𝑗 + DETACH(𝑎𝑇𝑖 𝑗 ) in pre-training

𝑎𝐿𝑖 𝑗 + 𝑎𝑇𝑖 𝑗 in fine-tuning

(4.1)

where 𝑎𝑇𝑖 𝑗 means the output of the vanilla attention mechanism from the textual flow, and 𝑎𝐿𝑖 𝑗 is

the output from the layout flow. Therefore, each attention mechanism takes as final output the

element-wise sum between each vector from text and layout. However, the layout flow uses the

detached version of the textual output in the pre-training stage. LiLT authors have opted to not

let the textual gradient affect the layout model so that it can work with other off-the-shelf textual

modules from the NLP SoTA.

This design of a dual transformer as done by LiLT gives the model an advantage: the

layout model can be detached from the textual model and be coupled with other text models. The

original LiLT paper uses this to fine-tune the model in many different datasets across various

languages. For our purposes, we use LiLT-RoBERTa-EN, which is LiLT (the baseline layout

model, dubbed LiLT by metonymy) plus the original RoBERTa model, trained in the English

language. We also use LiLT-InfoXLM. InfoXLM is pre-trained in 94 languages, including the

seven languages of XFUND and English.

Both hybrid LiLT models are publicly available, and we use them for evaluation. For

FUNSD, we use LiLT-RoBERTa-EN for the SER task, and InfoXLM for the RE task. This is

because LiLT authors report their best result on SER using the English model, but this model is

not used for evaluation on the RE task, only InfoXLM. Therefore, we follow this line to accurately

compare our results.
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Pre-training on LiLT works with three objectives: Masked Visual-Language Modeling

(MVLM), Key Point Location (KPL) and Cross-modal Alignment Identification (CAI). MVLM

works just like MLM in BERT, but in this case the layout information remains unchanged. KPL

consists of dividing the input into 49 squares in a 7 × 7 grid, masking some bounding boxes, and

asking the model to predict the box edges into each square. CAI uses the encoded features of

masked text and box pairs and asks the model whether these pairs are aligned or not (if they were

replaced by MVLM or KPL).

The LiLT paper performs fine-tuning on three downstream tasks: Document Classifica-

tion, which consists of assigning a label to a given document, Semantic Entity Recognition (SER),

and Relation Extraction (RE). We perform SER and RE on FUNSD and only SER on EPHOIE.

This is in accordance with the experiments done by LiLT, in order to accurately compare our

results. As a task, SER consists of the problem of assigning a label to each entity inside a

given document. For FUNSD, the labels correspond directly to the form-like labels (header,

question/key, answer/value, and none), while EPHOIE defines twelve other semantic entities, as

described in Table 4.3. RE is the problem of linking semantically related entities in a formulary.

This means extracting the correct relations between headers and questions, and questions and

answers.

Fine-tuning occurs differently for the SER and RE tasks. For SER, an additional layer

is built on top of the output of the transformer. It predicts a token-level label for every token

in each entity field. For RE, an additional head is added in a more complex scenario. This

head is a pipeline, which begins by incrementally constructing the set of relation candidates by

enumerating all possible entity pairs, the representations of which are then projected by two

Feed-Forward Network layers, concatenated, and fed into a bi-affine classifier.

4.3 EXPERIMENTS

To validate our approach, we perform three sets of experiments on both FUNSD and EPHOIE

using the new augmented instances: one to five augmentations per real image for FUNSD and

one to three for EPHOIE. As usual for these datasets, these are fine-tuning experiments performed

on pre-trained LiLT models. Our first experiment follows the same line used in the literature and

consists in exhaustively training the model until the test set performance reaches a plateau, such

that the testing set acts as a validation set. This experiment mirrors LiLT’s original training and

will be performed in order to check whether it is possible to surpass the performance achieved by

the original model without augmentations. We perform it for both SER and RE tasks.

The second experiment is a n-fold protocol with cross-validation over 1000 epochs and

an early stopping parameter of 30 epochs, experimentally found to yield a model that reached the

performance plateau. We use 5 folds for FUNSD and 10 for EPHOIE. This difference is due to

the size of the training set: 149 images for FUNSD and 1183 for EPHOIE. We aim at reaching

a balance between the validation set size and the number of experiments. If the validation set

is too small, the out-of-sample estimates will not be as accurate. If the number of folds is too

small, it is harder to draw conclusions with statistical significance. The goal of this experiment is

to ascertain, with statistical significance, that training with our data augmentation improves the

performance in downstream tasks for the chosen datasets, and whether there is a specific number

of augmentations that is ideal. For this experiment, we also perform both SER and RE tasks.

Finally, we perform a leave-one-out set of experiments, where the testing set is reduced

to a single instance and all the other instances are added to the training set. We train for 100

epochs in FUNSD and 50 for EPHOIE, which are close to the average number of epochs reached
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by the model in the fine-tuning of the n-fold experiments.1 The goal of this experiment is to

better examine the strengths and shortcomings of our augmentation methods through its results

in the best possible scenario. We perform this experiment only with the SER task.

We use the base LiLT model, with maximum sequence length of 512, a 12-layer encoder

of 192 hidden size, 768 feed-forward filter size and 12 attention heads. The model is fine-tuned

on a NVIDIA Titan V GPU with an Adam (Kingma and Ba, 2014) optimizer. The first and

second training protocols use a max number of epochs of 1000 and an early stopping parameter

of 30. The third protocol trains the model for 100 epochs. For SER, the batch size is 16 with a

learning rate of 1𝑒− 5 and a warm-up ratio of 0.1, and the loss function used is the Cross-Entropy.

For RE, the batch size is 8 with a learning rate of 6𝑒 − 6, also with a warm-up ratio of 0.1, and a

Binary Cross-Entropy loss.

1There is no statistical significance in the difference between the number of epochs with or without augmentations.
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5 RESULTS AND DISCUSSION

In this chapter, we present the results of the experiments we discussed in the last chapter and

discuss these results, presenting the advantages and limitations of our approaches. Chapter 5

presents the results on both tasks on FUNSD and the SER task on EPHOIE. Section 5.3 presents

a detailed discussion of the results and explains both fortes and shortcomings of our approaches.

5.1 FUNSD RESULTS

Partition Test F1-Score

Real only (Reported) - RoBERTa-EN 88.41

Real only (Reported) - InfoXLM 85.86

Real + 1 Augment 88.82

Real + 2 Augments 89.76

Real + 3 Augments 89.04

Real + 4 Augments 89.72

Real + 5 Augments 89.02

Table 5.1: Results for the SER task on FUNSD

For FUNSD, we present our results for the first experiment on the SER task in Table 5.1.

On this task, LiLT presents its best result using the LiLT-RoBERTa-EN model. However, they

also evaluate using InfoXLM, yielding a slightly worse result. We fine-tune the pre-trained LiLT-

RoBERTa-EN model for a fair comparison against their best result. We report the micro-averaged

F1-score as calculated over the testing set. As seen in the results, our augmentations managed to

beat the baseline in every scenario.

Still regarding FUNSD, we also evaluate our approach in the RE task, which is more

challenging as seen by how the model’s performance is worse in this scenario, in line with the

rest of the state of the art. Unlike the SER task, in RE LiLT authors only use LiLT-InfoXLM for

fine-tuning and evaluation, and no result using the RoBERTa-EN model is provided. In order

to compare our results, we follow the same line of experiments and fine-tune the pre-trained

LiLT-InfoXLM model using our augmented datasets.

LiLT presents various training scenarios for FUNSD, treating it as an extension of

XFUND, a dataset similar to FUNSD that contains seven partitions in seven different languages.

LiLT authors fine-tune the LiLT-InfoXLM model on all XFUND partitions (including FUNSD as

an eighth partition) in three scenarios. Mono-lingual, Cross-lingual and Zero-shot Cross-lingual.

Mono-lingual training consists of fine-tuning the model separately on each partition, once for

each language. The Cross-lingual scenario consists of fine-tuning on all partitions at once, and

the Zero-shot Cross-lingual is a simple evaluation of the fine-tuned model on FUNSD on the

other partitions, with no further training. Our approach follows the monolingual scenario, since

our augmentation technique is destined only towards FUNSD, and as such we only use this

dataset in our experiments.

The results in the RE task, including the result reported by LiLT in the mono-lingual

scenario, are shown in Table 5.2. Again, we report the micro-averaged F1-Score over the testing

set, as evaluated by the LiLT-InfoXLM model. Here, we also manage to beat the baseline in

every scenario, by a larger margin than in SER.
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Partition Test F1-score

Real only (Reported) - InfoXLM 62.76

Real + 1 Augments 64.4

Real + 2 Augments 68.44

Real + 3 Augments 70.52

Real + 4 Augments 70.35

Real + 5 Augments 69.55

Table 5.2: Results for the RE task on FUNSD

Partition
Mean Mean Test F1 Paired T-test p-value

Valid F1 Test F1 Stdev 0 1 2 3 4

0 Augs 82.68 85.44 0.53 - - - - -

1 Augs 84.21 86.78 0.78 0.025 - - - -

2 Augs 84.15 86.67 0.42 0.004 0.618 - - -

3 Augs 84.02 86.98 0.51 0.015 0.276 0.159 - -

4 Augs 84.05 86.44 0.19 0.02 0.759 0.793 0.955 -

5 Augs 83.54 86.6 0.78 0.023 0.762 0.584 0.804 0.374

Table 5.3: 5-Fold Fine-tuning SER on the FUNSD Dataset

Partition
Mean Mean Test F1 Paired T-test p-value

Valid F1 Test F1 Stdev 0 1 2 3 4

0 Augs 57.64 61.27 1.69 - - - - -

1 Augs 60.32 64.59 2.44 0.016 - - - -

2 Augs 62.77 64.28 1.78 0.01 0.654 - - -

3 Augs 61.82 64.91 2.74 0.017 0.451 0.387 - -

4 Augs 64.02 67.18 2.49 0.007 0.123 0.109 0.111 -

5 Augs 65.05 67.1 2.44 0.007 0.178 0.109 0.124 0.517

Table 5.4: 5-Fold Fine-tuning RE on the FUNSD Dataset
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Partition Test F1 Perfect Instances Performed Better Equal

0 89.82 5 16 12

1 90.56 6 22 12

Table 5.5: Overall Results for FUNSD Leave-one-out

Partition Header F1 Question F1 Answer F1 Other F1

0 70.39 93.27 91.47 73.53

1 66.39 93.36 93.33 70.59

Number of Entities 119 1070 809 272

Table 5.6: Entity-wise F1 for FUNSD Leave-one-out

Our second set of experiments is the 5-fold with cross-validation. Tables 5.3 and 5.4

present our results in the SER and RE tasks, respectively. This protocol involves partitioning the

training set into five folds of (more or less) the same number of documents. The model is trained

five times, each time trained on all folds except one fold that is used for validation. The validation

fold changes according to the training run, each fold being used for validation once. As usual,

we use LiLT-RoBERTa-EN for SER and LiLT-InfoXLM for RE, and report the micro-averaged

F1-score on the test and validation sets, averaged across the five runs. As usual, the test set for

each fold remains the same across all augmented partitions: the real test set with no augmented

instances. We can see the same trend suggested in the first experiments, where the improvement

in RE is larger than the improvement in SER, and the augmented partitions manage to improve

the results in every case.

This time, we use the results to perform a paired t-test, using the F1 scores as the sample

measurements. As per the literature’s usual practices, we set a p-value of 0.05 as the significance

threshold. For this test, the null hypothesis states that the difference between the distributions is

zero, meaning they are statistically the same. In Tables 5.3 and 5.4, we present all possible test

p-values in the five last columns, testing how the column-wise partition relates to the row-wise

partition in the statistical test. We use the alternative hypothesis that the first sample (indicated

by the column) is smaller than the second sample (indicated by the row).

Our results indicate that fine-tuning with any number of augmentations yields a more

effective model than training without augmentations, since the p-values in the first column

indicate that we can reject the null hypothesis with a confidence of 0.05 for all five training

sessions, for both SER and RE tasks. However, there is no way to discriminate between any

given number of augmentations, since the p-value for all cases but one is not within the 0.95 or

0.05 thresholds. The only exception is in the SER task, between two and four augmentations,

where the p-value is greater than 0.95, indicating the null hypothesis can be accepted, suggesting

that training with two or four augmentations is statistically equivalent.

Our third and final protocol for FUNSD is the leave-one-out protocol. We train the

model 50 times, each time leaving one of the testing instances out of the training set. The

collected results across all training sessions are presented in Table 5.5. Here, we can see a

marginal increase in the overall performance, where the augmented model performed equal to or

better than the un-augmented one 34 times out of 50, yielding a perfect result in one extra sample.

But the question remains: where is the new model improving on performance? To

answer this, we bring the detailed F1 result across each individual label in Table 5.6, as well

as the confusion matrices in Figure 5.1. Here, we can see that performance gets worse for the

classes with less instances in the testing set (a distribution that is reflected on training, as seen in
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Figure 5.1: Confusion Matrices for FUNSD Leave-one-out

Partition Test F1-score

Real only (Reported) - RoBERTa-ZH 97.97

Real only (Reported) - InfoXLM 97.59

Real + 1 Augment 99.2

Real + 2 Augments 99.19

Real + 3 Augments 99.13

Table 5.7: Results for the SER task on EPHOIE

Table 4.2), but marginally better for the more represented classes. In particular, the header-other

confusion increases for the augmented version of the model.

5.2 EPHOIE RESULTS

Finally, we present the results on the SER task on EPHOIE in Table 5.7. The LiLT paper presents

results using both LiLT-InfoXLM and LiLT-RoBERTa-ZH (Cui et al., 2020), the latter of which

consists of a specially trained RoBERTa model for the Chinese language. Since this second

model is not available in the official LiLT GitHub1, we only fine-tune using the LiLT-InfoXLM

model. As expected, LiLT reports a better performance when using the specially trained Chinese

RoBERTa than the more general InfoXLM model. However, our fine-tuning of LiLT-InfoXLM

still beats both baselines. Again, we report the micro-averaged F1-Score over the testing set.

1Available at https://github.com/jpWang/LiLT/tree/main

Partition Mean Valid F1 Mean Test F1 Stdev
Paired T-test p-value

0 1 2

0 Augs 96.56 97.65 0.32 - - -

1 Augs 97.45 98.02 0.28 0.023 - -

2 Augs 96.95 97.96 0.24 0.003 0.648 -

3 Augs 97.21 97.71 0.3 0.342 0.991 0.943

Table 5.8: 10-Fold Fine-tuning SER on the EPHOIE Dataset
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Partition Test F1 Perfect Instances Performed Better Equal

0 99.3 273 1 306

1 99.33 275 4 306

Table 5.9: Overall Results for EPHOIE Leave-one-out

Partition Other F1 Grade F1 Subject F1 School F1

0 99.06 90.03 98.92 99.1

1 99.88 90.03 98.92 99.1

Number of Entities 1601 103 93 335

Partition Test Time F1 Class F1 Name F1 Candidate Number F1

0 92.31 98.63 99.35 99.17

1 92.31 98.63 99.35 99.17

Number of Entities 13 438 620 120

Partition Score F1 Seat # F1 Student # F1 Examination # F1

0 97.83 93.02 99.07 1

1 97.83 95.35 99.07 1

Number of Entities 92 43 108 36

Table 5.10: Entity-wise F1 for EPHOIE Leave-one-out

For EPHOIE, we also perform a 10-fold cross-validation training, an increase in the

number of folds that is made possible by the larger training set. We follow the same line used for

FUNSD, except this time our experiments are done with up to three augmentations instead of

five, following the augmented datasets generated, and with ten folds instead of five. The results

are reported in Table 5.8. We use the same testing scenario for the paired t-test.

As we can see, there is a statistical significance (𝑝 < 0.05) between no augmentations

and up to two augmentations, but the performance decreases for three augmentations, and

the p-value is no longer significant. However, it is also possible to ascertain that using three

augmentations yields similar results to using one, as the large p-value suggests we can affirm the

null hypothesis that the distributions are similar.

Finally, we report the leave-one-out results for EPHOIE in the same fashion as FUNSD,

with the overall results reported in Table 5.9 and the entity-wise metrics reported in Table 5.10,

split into three sub-tables so that all entities can fit into the page. Again, we see a marginal

increase in performance, with two more perfect instances for the augmented model and four

instances with improved performance versus one in the un-augmented case.

The performance between each individual entity is very similar, as seen in Table 5.10.

For EPHOIE, we omit the confusion matrices as there is only one type of error: a switching of

the Other and Seat number labels that the un-augmented model performs.

5.3 DISCUSSION

As we have seen in the results section, both of our augmentation methods manage to beat the

baseline consistently in every evaluation scenario. For FUNSD, we have trained with up to five

augmentations per instance for the same reason as to why we do only three augmentations for

EPHOIE. These numbers were chosen experimentally, since our experiments have shown that

this is where the model’s performance reaches a plateau for each dataset and approach. For
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the LLM approach, there are only so many meaningful synonyms, and paraphrases also have

limited potential for improving the model’s invariability towards vocabulary. For the template

approach, we use a much larger dataset (149 vs. over a thousand training instances), and there is

also limited variability since we do not expand the text corpus in this dataset.

Therefore, one of the limitations of our approach is the one of scaling. However, in

the template approach this may only be a limitation because we are dealing with a dataset

that is already significant in size. We hypothesize that scaling might be exactly one of the

template approach’s main advantages when dealing with limited amounts of data, provided a

few significantly different samples are available. Text generation in this approach can be done

via dictionaries and by simple rules such as the ones used in MIDV (Arlazarov et al., 2018), for

example.

In general, we highlight that each method works best in distinctly separate cases. The

LLM method is better for datasets with many varied and complex texts that span many contexts.

LLMs are good at dealing with human language and this kind of text is very suited towards this

augmentation technique.

The template method is better for datasets with simple text types. While it is designed

for scenarios with a reduced set of templates, it worked well for EPHOIE, a dataset where almost

every document is its own template. Nonetheless, this method still takes advantage of the fact

that EPHOIE text types are specific and simple, which allows for indiscriminate text swapping.

Our LLM method is a first step towards the application of LLMs in the document

scenario. We use it for data augmentation because we find that these models have a very large

knowledge of the languages they were trained in, given the large amounts of data they were

provided with during training. It shows to be very promising, given the results. We highlight

that this method reaches a higher level of performance improvement when used to augment the

corpus of the LiLT-InfoXLM training set.

InfoXLM is a cross-lingual NLP model that was trained in several languages, and

the English examples in its pre-training are less numerous than those of RoBERTa-EN. We

believe there is a bigger gap to be crossed in InfoXLM because of this. Since InfoXLM has less

knowledge of the English language, and since our augmentation leverages the LLM’s knowledge

to provide the model with richer and more numerous instances of the English language, we

improve the model’s performance more than we would for RoBERTa-EN, since this model already

has a larger knowledge of English. This would explain why the improvement for InfoXLM is

bigger than for RoBERTa-EN. However, even for the English model we still see a meaningful

increase in the evaluation metric.

The performance improvement seen in most cases is a reflex of what we call Syntax

Invariability, which is how we call how we try to skew the model’s learning through our

augmentation approaches. In the LLM approach, we replace sentences by modifying their syntax,

changing some words for equivalent synonyms, and changing some format conventions for dates,

names, etc. All of this is done while keeping the semantics intact. We aim to force the model to

learn only the meaning, making sure that an entity is classified the same regardless of its exact

textual content.

The same is true for the template approach, but we go a little further in this case. In

EPHOIE, by directly replacing texts using random samples from the dataset, we are also creating

a template-wide invariability. This is because some schools might use the same template, but by

allowing information from other templates to be placed in a given template, we force the model

to become invariable to learning only templates of specific schools. This helps the model not

reach an overfit state so quickly. However, this also limits the scaling of this approach in datasets

such as EPHOIE, for similar reasons as the ones previously stated.
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6 CONCLUSION

In this work, we have presented two new data augmentation methods for visual documents. We

pioneer the usage of LLMs in this scenario with our first method, drawing inspiration from NLP

research. We also introduce a new way of using layout information for document recognition

at data level in the second method. Neither of our approaches rely on image features and

augmentations, and as such we use LiLT, an imageless model, for validation.

Our validation experiments are split into three protocols: the one used for comparison

in the literature, a 𝑛-fold cross-validation protocol and a leave-one-out cross-validation protocol.

The goals for each experiment set were, respectively, to see whether the augmentation process

manages to beat the baseline set by the model, to ascertain this improvement with statistical

significance, and to examine the strengths and shortcomings of each method. The results show

that augmented training manages to improve the baseline in almost all scenarios. Furthermore,

our fine-tuning code, and augmentation results and source code can be found in GitHub.1

The present research opens up new possibilities for data augmentation in documents.

We have shown there is potential for improvement when leveraging LLM technology and layout

information for data augmentation, but whether directly using these for digesting the data

during training, via a new language module in document Transformers will yield a more robust

improvement is a question that will be answered with future research.

Another question is whether different, newer LLMs can yield better augmentation

results than the one used in this work. New LLMs with increasing knowledge are being released

constantly, and these new models may prove to be better suited for the data augmentation task

proposed in this work.

Also in future research, it is possible to extend the ideas presented here for new datasets

as well. Each augmentation technique is versatile enough within its scope of documents to

be used in new scenarios, and there are several datasets in the literature, old and new, that

could benefit from augmentation. This can also be done in order to further test each method’s

scalability, dealing with small and large datasets alike. A possible ablation study may involve

further partitioning the training sets into smaller chunks in order to check for the impact of the

amount of training data in performance.

Furthermore, bi-modal Transformers have shown to be both effective in document

augmentation and lighter than multi-modal models, since there is no image module. Another

direction in future research is to create a new state-of-the-art model using only the text and layout

modalities for document recognition that can fully leverage our augmentation approaches.

1Fine-tuning code at https://github.com/BOVIFOCR/DocAug-Finetune-Code, datasets at

https://github.com/BOVIFOCR/DocAug/tree/main and augmentation code at https://github.

com/BOVIFOCR/sampler.
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APPENDIX A – PSEUDOCODE FOR LLM AUGMENTATION

Here, we present the full algorithms for extracting templates from a document instance as well as

augmenting new document instances using this method. The template object can be exported as a

JSON file, while the documents are represented by an annotation file that contains a list of entities,

each entity having, at least, a bounding box and a class label. The extract_template

function below creates a graph (the template dictionary returned) that corresponds to the

fully-connected graph we explained in Section 3.3. Its keys correspond to its nodes, which are

the document’s entities. The value of each key corresponds to a list of all remaining entities

and its corresponding directions relative to the key entity. The input document corresponds to

a dictionary where its keys correspond to the entities and its values are 2D coordinates for the

top-left corner of the entity bounding box.

Algorithm 1 Template extraction routines

1: function Get-Angle(𝑥1, 𝑦1, 𝑥2, 𝑦2)

2: 𝑣𝑒𝑐 ← (𝑥1 − 𝑦1, 𝑥2 − 𝑦2)
3: 𝑜𝑟𝑖𝑔 ← (1, 0)
4: 𝑎𝑛𝑔𝑙𝑒_𝑟𝑎𝑑𝑖𝑎𝑛𝑠 ← ArcTan2(𝑜𝑟𝑖𝑔[1], 𝑜𝑟𝑖𝑔[0]) − ArcTan2(𝑣𝑒𝑐[1], 𝑣𝑒𝑐[0])
5: 𝑎𝑛𝑔𝑙𝑒_𝑑𝑒𝑔𝑟𝑒𝑒𝑠 ← Radians-To-Degrees(𝑎𝑛𝑔𝑙𝑒_𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
6: if 𝑎𝑛𝑔𝑙𝑒_𝑑𝑒𝑔𝑟𝑒𝑒𝑠 < 0 then

7: 𝑎𝑛𝑔𝑙𝑒_𝑑𝑒𝑔𝑟𝑒𝑒𝑠 ← 360 − Abs(𝑎𝑛𝑔𝑙𝑒_𝑑𝑒𝑔𝑟𝑒𝑒𝑠)
8: end if

9: return 𝑎𝑛𝑔𝑙𝑒_𝑑𝑒𝑔𝑟𝑒𝑒𝑠

10: end function

11: function Get-Relation(𝑥1, 𝑦1, 𝑥2, 𝑦2)

12: 𝑎𝑛𝑔𝑙𝑒 ← Get-Angle(𝑥1, 𝑦1, 𝑥2, 𝑦2)
13: if 𝑎𝑛𝑔𝑙𝑒 < 12.5 or 𝑎𝑛𝑔𝑙𝑒 > 347.4 then

14: return 𝑅𝐼𝐺𝐻𝑇

15: else if 𝑎𝑛𝑔𝑙𝑒 ≥ 12.5 or 𝑎𝑛𝑔𝑙𝑒 < 77.5 then

16: return 𝑈𝑃_𝑅𝐼𝐺𝐻𝑇

17: else if 𝑎𝑛𝑔𝑙𝑒 ≥ 77.5 or 𝑎𝑛𝑔𝑙𝑒 < 102.5 then

18: return 𝑈𝑃

19: else if 𝑎𝑛𝑔𝑙𝑒 ≥ 102.5 or 𝑎𝑛𝑔𝑙𝑒 < 167.5 then

20: return 𝑈𝑃_𝐿𝐸𝐹𝑇

21: else if 𝑎𝑛𝑔𝑙𝑒 ≥ 167.5 or 𝑎𝑛𝑔𝑙𝑒 < 192.5 then

22: return 𝐿𝐸𝐹𝑇
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23: else if 𝑎𝑛𝑔𝑙𝑒 ≥ 192.5 or 𝑎𝑛𝑔𝑙𝑒 < 257.5 then

24: return 𝐷𝑂𝑊𝑁_𝐿𝐸𝐹𝑇

25: else if 𝑎𝑛𝑔𝑙𝑒 ≥ 257.5 or 𝑎𝑛𝑔𝑙𝑒 < 282.5 then

26: return 𝐷𝑂𝑊𝑁

27: else if 𝑎𝑛𝑔𝑙𝑒 ≥ 282.5 or 𝑎𝑛𝑔𝑙𝑒 < 347.5 then

28: return 𝐷𝑂𝑊𝑁_𝑅𝐼𝐺𝐻𝑇

29: end if

30: end function

31: function Extract_Template(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)

32: 𝑛_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ← 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 [′𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠′] .𝑙𝑒𝑛𝑔𝑡ℎ
33: 𝑖𝑛𝑑𝑒𝑥_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = Indices(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡.𝑒𝑛𝑡𝑖𝑡𝑦_𝑡𝑦𝑝𝑒𝑠)
34: 𝑎𝑙𝑙_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ← 𝐴𝑟𝑟𝑎𝑦(𝑛_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠)
35: for all 𝑖 ∈ 𝑖𝑛𝑑𝑒𝑥_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 do

36: 𝑎𝑙𝑙_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖] ← 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡.𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠[𝑖] [′𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠′]
37: end for

38: 𝑘𝑛𝑛 ← KNN(𝑎𝑙𝑙_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑛 = 𝑛_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠)
39: 𝑎𝑙𝑙_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← 𝐴𝑟𝑟𝑎𝑦(𝑛_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠, 𝑛_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 − 1)
40: for all 𝑖 ∈ 𝑖𝑛𝑑𝑒𝑥_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 do

41: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← 𝑘𝑛𝑛.𝑔𝑒𝑡_𝑛𝑒𝑎𝑟𝑒𝑠𝑡 (𝑎𝑙𝑙_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) [1 : 𝑛_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠]
42: 𝑎𝑙𝑙_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑖] ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

43: end for

44: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦()
45: for all 𝑖 ∈ 𝑖𝑛𝑑𝑒𝑥_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 do

46: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 [′𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠′] [𝑖]] ← 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦()
47: for all 𝑗 ∈ 𝑎𝑙𝑙_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑖] do

48: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 [′𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠′] [𝑖]] [𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 [′𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠′] [ 𝑗]] ←
Get-Relation(𝑎𝑙𝑙_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖], 𝑎𝑙𝑙_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[ 𝑗])

49: end for

50: end for

51: return 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

52: end function

The following is an example of a template extracted from a document. Figure A.1

presents a graphical representation of the same template.

1 "template": {

2 "e1": {

3 "e4": "down_right",

4 "e2": "right",

5 "e5": "down_right",

6 "e3": "right"

7 },

8 "e2": {

9 "e1": "left",

10 "e4": "down_left",

11 "e5": "down_right",

12 "e3": "right"

13 },

14 "e3": {

15 "e1": "left",

16 "e2": "left",
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17 "e4": "down_left",

18 "e5": "down_left"

19 },

20 "e4": {

21 "e1": "up_left",

22 "e2": "up_right",

23 "e5": "right",

24 "e3": "up_right"

25 },

26 "e5": {

27 "e1": "up_left",

28 "e4": "left",

29 "e2": "up_left",

30 "e3": "up_right"

31 }

32 }

Our template extraction algorithm also considers that the document dataset may feature

identical templates that should be merged together. Also, the templates need to contain information

about the entities’ placement in the document for augmentation to be possible later down the

line. The following algorithm illustrates our approach for creating the full template repository.

For simplicity, we only consider the top-left coordinates in this code, and assume all entities are

pasted in a single line.

Finally, the algorithm below illustrates our augmentation approach. In this algorithm 𝑁

corresponds to the number of desired augmentations, which is taken as an user-given parameter

for the generator. This algorithm is abstracting two elements: the text generation tool (in the

text_gen function, which for our EPHOIE example corresponds to picking a random text

sample from all entities from the training set with the same label) and the method of extracting the

resulting bounding box. The bounding box can be extracted both by pasting the text in an empty

canvas image and extracting the bounding box from the image itself (maximum and minimum

non-blank 𝑥, 𝑦 coordinates) or by calculating the final box as, for the x coordinates, the stored

x-coordinate plus a product between the number of characters in the text and the average character

length (which can be sampled from the dataset itself), and, for the y coordinates, the stored

y-coordinate plus the average text height. In our approach for EPHOIE, we store the average

character height and width for every entity pertaining to the documents in the same template.

Figure A.1: Template example
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function Merge-Templates(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)

for all 𝑐𝑢𝑟_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ∈ Indices(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠) do

if Compare-Templates(𝑐𝑢𝑟_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[′𝑔𝑟𝑎𝑝ℎ′], 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒) = TRUE then

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠[𝑖] [′𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠′] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)
return

end if

end for

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦())
𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠[𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠.𝑙𝑒𝑛𝑔𝑡ℎ − 1] [′𝑔𝑟𝑎𝑝ℎ′] ← 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠[𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠.𝑙𝑒𝑛𝑔𝑡ℎ − 1] [′𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠′] ← 𝐿𝑖𝑠𝑡 ()
𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠[𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠.𝑙𝑒𝑛𝑔𝑡ℎ − 1] [′𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠′] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)

end function

function Compute-Statistics(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_ 𝑓 𝑢𝑙𝑙)

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[′𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠′] ← 𝐷𝑖𝑐𝑡 ()
for all 𝑒𝑛𝑡𝑖𝑡𝑦 ∈ 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[′𝑔𝑟𝑎𝑝ℎ′] .𝑘𝑒𝑦𝑠 do

𝑎𝑙𝑙_𝑥_𝑐𝑜𝑜𝑟𝑑𝑠 ← 𝐴𝑟𝑟𝑎𝑦(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠[′𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠′] .𝑙𝑒𝑛𝑔𝑡ℎ)
𝑎𝑙𝑙_𝑦_𝑐𝑜𝑜𝑟𝑑𝑠 ← 𝐴𝑟𝑟𝑎𝑦(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠[′𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠′] .𝑙𝑒𝑛𝑔𝑡ℎ)
for all 𝑖 ∈ Indices(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[′𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠′]) do

𝑎𝑙𝑙_𝑥_𝑐𝑜𝑜𝑟𝑑𝑠[𝑖] ← 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠[′𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠′] [𝑖] [𝑒𝑛𝑡𝑖𝑡𝑦] [0]
𝑎𝑙𝑙_𝑦_𝑐𝑜𝑜𝑟𝑑𝑠[𝑖] ← 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠[′𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠′] [𝑖] [𝑒𝑛𝑡𝑖𝑡𝑦] [1]

end for

𝑥_𝑚𝑒𝑎𝑛 ← Mean(𝑎𝑙𝑙_𝑥_𝑐𝑜𝑜𝑟𝑑𝑠)
𝑦_𝑚𝑒𝑎𝑛 ← Mean(𝑎𝑙𝑙_𝑦_𝑐𝑜𝑜𝑟𝑑𝑠)
𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[′𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠′] [𝑒𝑛𝑡𝑖𝑡𝑦] ← 𝐷𝑖𝑐𝑡 ()
𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[′𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠′] [𝑒𝑛𝑡𝑖𝑡𝑦] [𝑥] ← 𝑥_𝑚𝑒𝑎𝑛

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[′𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠′] [𝑒𝑛𝑡𝑖𝑡𝑦] [𝑦] ← 𝑦_𝑚𝑒𝑎𝑛

end for

end function

function Create-Repository(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠 ← 𝐿𝑖𝑠𝑡 ()
for all 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 ∈ 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 do

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← Extract-Template(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)
Merge-Templates(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)

end for

for all 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_ 𝑓 𝑢𝑙𝑙 ∈ 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠 do

Compute-Statistics(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_ 𝑓 𝑢𝑙𝑙)
end for

end function
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Algorithm 2 Template augmentation routine

1: function Augment-Document(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠, 𝑡𝑒𝑥𝑡_𝑑𝑖𝑐𝑡𝑠)

2: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_ 𝑓 𝑢𝑙𝑙 ← Random(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠)
3: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 ← 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦()
4: for all 𝑙𝑎𝑏𝑒𝑙, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ∈ 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_ 𝑓 𝑢𝑙𝑙 do

5: 𝑛𝑒𝑤_𝑡𝑒𝑥𝑡 ← Random(𝑡𝑒𝑥𝑡_𝑑𝑖𝑐𝑡𝑠[𝑙𝑎𝑏𝑒𝑙)
6: 𝑛𝑒𝑤_𝑏𝑜𝑥 ← Draw-Box(𝑛𝑒𝑤_𝑡𝑒𝑥𝑡, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)
7: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 [𝑙𝑎𝑏𝑒𝑙] ← 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦()
8: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 [𝑙𝑎𝑏𝑒𝑙] [′𝑡𝑒𝑥𝑡′] ← 𝑛𝑒𝑤_𝑡𝑒𝑥𝑡

9: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 [𝑙𝑎𝑏𝑒𝑙] [′𝑏𝑜𝑥′] ← 𝑛𝑒𝑤_𝑏𝑜𝑥

10: end for

11: return 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑

12: end function


