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RESUMO

Esta dissertação investiga a solução da equação de Wheeler-DeWitt no contexto da gravidade

quântica, com ênfase em uma correção quântica derivada da integral de caminhos. A pesquisa

começa abordando a evolução histórica, desde Planck até Wheeler e DeWitt, cujas contribuições

culminaram na formulação da equação que descreve a gravidade quântica. O primeiro passo no

desenvolvimento da dissertação é a dedução da equação de Wheeler-DeWitt a partir da ação de

Einstein-Hilbert, utilizando o formalismo de Arnowitt-Deser-Misner. Essa abordagem canônica

permite uma descrição detalhada da dinâmica da gravitação, essencial para a quantização do campo

gravitacional. No segundo estágio, a dissertação transita para o formalismo de Ashtekar, que

reformula a teoria gravitacional através de variáveis auto-duais. Essa reformulação é fundamental

para a quantização da gravidade, uma vez que as variáveis de Ashtekar facilitam a integração das

teorias clássicas com as abordagens quânticas, permitindo uma melhor compreensão da estrutura

matemática que rege a gravitação. A seguir, a dissertação apresenta uma modificação quântica à

ação de Einstein-Hilbert, com base na medida funcional proveniente da integral de caminhos.

Esta modificação é caracterizada pela introdução de uma constante cosmológica complexa, que

emerge como resultado da quantização da gravidade. A constante cosmológica complexa é

incorporada na ação modificada, e a equação de Wheeler-DeWitt é resolvida dentro desse novo

quadro teórico. Ao considerar os efeitos quânticos da gravitação, a solução obtida oferece

uma nova perspectiva sobre a natureza do espaço-tempo e seus componentes fundamentais em

escalas quânticas. A pesquisa propõe que a constante cosmológica, derivada dessa medida

funcional, desempenha um papel importante na dinâmica quântica do universo, esclarecendo

o comportamento das flutuações quânticas do espaço-tempo, através dos efeitos topológicos

e quânticos que nossa solução fornece, além de possibilitar novas linhas de pesquisa para a

origem da constante cosmológica. Este trabalho contribui para a resolução da equação de

Wheeler-DeWitt, ao integrar os formalismos canônicos e da integral de caminhos, propondo uma

nova maneira de interpretar a gravidade quântica.

Palavras-chave: Equação de Wheeler-DeWitt. Unificação. Cosmologia Quântica.



ABSTRACT

This dissertation investigates the solution of the Wheeler-DeWitt equation in the context of

quantum gravity, with emphasis on a quantum correction derived from the path integral. The

research begins by addressing the historical evolution, from Planck to Wheeler and DeWitt,

whose contributions culminated in the formulation of the equation that describes quantum gravity.

The first step in the development of the dissertation is the derivation of the Wheeler-DeWitt

equation from the Einstein-Hilbert action, using the Arnowitt-Deser-Misner formalism. This

canonical approach allows a detailed description of the dynamics of gravitation, essential for

the quantization of the gravitational field. In the second stage, the dissertation moves to the

Ashtekar formalism, which reformulates gravitational theory through self-dual variables. This

reformulation is fundamental for the quantization of gravity, since Ashtekar variables facilitate

the integration of classical theories with quantum approaches, allowing a better understanding of

the mathematical structure that governs gravitation. Next, the dissertation presents a quantum

modification to the Einstein-Hilbert action, based on the functional measure derived from the

path integral. This modification is characterized by the introduction of a complex cosmological

constant, which emerges as a result of the quantization of gravity. The complex cosmological

constant is incorporated into the modified action, and the Wheeler-DeWitt equation is solved

within this new theoretical framework. The solution obtained, by considering the quantum

effects of gravity, the obtained solution offers a new perspective on the nature of spacetime and

its fundamental components at quantum scales. The research proposes that the cosmological

constant, derived from this functional measure, plays an important role in the quantum dynamics

of the universe, shedding light on the behavior of quantum fluctuations of spacetime, through the

topological and quantum effects that our solution provides, in addition to enabling new lines of

research into the origin of the cosmological constant. This work contributes to the resolution

of the Wheeler-DeWitt equation, by integrating the canonical and path integral formalisms,

proposing a new way of interpreting quantum gravity.

Keywords: Wheeler-DeWitt equation. Unification. Quantum cosmology.
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1 INTRODUCTION

The Planck Era, which began at the end of the 19th century and extended into the early 20th

century, marks a crucial period in the evolution of modern physics. This era was characterized

by growing dissatisfaction with classical physics, which failed to adequately explain various

observed phenomena, especially those related to radiation and the structure of matter at very small

scales. Max Planck’s work, particularly his introduction of Planck’s constant �, was instrumental

in the development of the new quantum theory. In 1900, Planck proposed that energy is not

continuous but quantized, suggesting that energy is emitted or absorbed in discrete units, or

“quanta” [1].

Planck’s contribution became evident in his efforts to resolve the problem of blackbody

radiation, which had perplexed physicists of the time. Classical theories predicted that the radiation

emitted by a blackbody would diverge to infinite values at high frequencies, a phenomenon

known as the “ultraviolet catastrophe.” Planck proposed that the energy of oscillators composing

blackbody radiation is quantized, leading to his famous formulation of the Planck law for the

spectral distribution of radiation [1]. This idea not only solved the immediate problem of

blackbody radiation but also laid out the foundation for the ensuing revolution in physics.

The introduction of Planck’s constant represented a paradigm shift, challenging the

classical view that energy was a continuous quantity. Quantization not merely provided a

new understanding of thermal radiation, but it equally introduced the idea that nature could

be described in statistical terms. Quantum mechanics began to emerge as a theory capable of

explaining phenomena that classical physics could not, such as the photoelectric effect, later

elucidated by Albert Einstein in 1905 [2].

Furthermore, the Planck Era also witnessed the emergence of new ideas about atomic

structure. Dalton’s atomic theory was revisited, and with the work of Niels Bohr and others, a new

understanding of the atom began to take shape. Bohr’s model, which introduced quantized energy

levels for electrons in hydrogen atoms, demonstrated that quantization was an intrinsic feature of

nature at microscopic scales [3]. These discoveries did more than revolutionize chemistry and

physics, they also paved the way for a new perspective on the universe, where the deterministic

nature of classical physics and the idea of immutable physical laws were no longer universally

accepted. The emergence of quantum mechanics introduced inherent uncertainty, exemplified

by Heisenberg’s uncertainty principle, which highlighted the limitations of predictability at

microscopic scales, as we will see later.

Thus, the Planck Era represents a pivotal turning point in the history of physics, where

classical ideas began to give way to quantum concepts that defied intuition. However, while

quantum mechanics provided new insights into the behavior of subatomic particles, gravity

continued to be described by classical Newtonian physics. This disconnect between quantum

theory and classical gravity led to an urgent search for a theory that could unify these two domains,

a search that would be addressed, in part, by Albert Einstein’s contributions [4].

1.1 EINSTEIN’S THEORY OF RELATIVITY

In 1915, Einstein presented his General Theory of Relativity, which completely reshaped

the understanding of gravity. The theory not only challenged the Newtonian description of

gravity but also demonstrated how mass and energy influence the geometry of spacetime. This

groundbreaking framework provided the foundation for a new era in physics, where the unification



10

of quantum mechanics and gravity would become one of the central questions in modern physics

research [5].

Einstein’s field equation 1, expressed as

𝐺𝜇𝜈 =
8𝜋𝐺

𝑐4
𝑇𝜇𝜈, (1.1)

is a fundamental equation in the framework of general relativity and modern physics. Here, 𝐺𝜇𝜈

represents the Einstein tensor, while 𝑇𝜇𝜈 is the stress-energy tensor, describing the distribution of

mass and energy in spacetime. The constant 𝐺 is the gravitational constant, and 𝑐 is the speed of

light. This equation establishes a profound relationship between the geometry of spacetime and

the matter within it [5].

Through this equation, Einstein posited that gravity is not a force in the classical sense

but rather a consequence of the curvature of spacetime caused by the presence of mass and energy.

Massive objects, such as planets and stars, distort spacetime around them, causing other objects

to follow curved trajectories. This idea reshaped our understanding of gravity, with important

implications for cosmology and astrophysics..

The General Theory of Relativity profoundly changed our perception of the universe

and additionally introduced fundamental new concepts. The notion that space and time are

interconnected into a single entity, spacetime, marked a radical departure from previous ideas.

General relativity challenged classical intuition, revealing that phenomena such as time dilation

and spatial contraction are not mere artifacts but intrinsic features of reality. These insights led

to remarkable predictions, including the bending of light as it passes near massive objects, which

was experimentally confirmed during a solar eclipse in 1919 [6].

Moreover, Einstein’s theory provided the basis for understanding large-scale cosmic

phenomena, such as the expansion of the universe, later explored experimentally by scientists

like Edwin Hubble [7]. The interplay between gravity, space, and time also spurred the quest for

a unified theory that would incorporate gravity alongside the other fundamental principles of

physics. This persistent challenge of unification became a driving force in theoretical physics

throughout the 20th century and beyond.

With the advent of general relativity, physicists began to question whether a quantum

description of gravity could be formulated in alignment with the quantum principles established

by Planck and his contemporaries. The idea that the universe could be described by both quantum

theories and general relativity led to the search for new frameworks capable of reconciling these

two domains, ultimately culminating in the development of a quantum theory of gravity, including

the famous Wheeler-DeWitt equation [4].

1.2 EVOLUTION OF QUANTUM MECHANICS

After Einstein’s introduction of the theory of relativity, quantum physics began to solidify through

the contributions of notable physicists such as Werner Heisenberg, Erwin Schrödinger, and Paul

Dirac, who played crucial roles in the formulation of modern quantum mechanics [8].

1.2.1 Werner Heisenberg and Matrix Mechanics

In 1925, Werner Heisenberg proposed matrix mechanics, a new paradigm that represented

quantum systems in terms of matrices and operators. This approach was a significant innovation

1In this work, Greek indices 𝜇, 𝜈, 𝜌, . . . run from 0 to 3, representing spacetime coordinates. We adopt the

Einstein summation convention, where repeated indices imply summation over their range. Additionally, we use the

metric signature (−, +, +, +), which is common in relativistic formulations.
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as it shifted the focus of physicists from well-defined trajectories to observables—quantities that

can be measured.

The uncertainty principle, introduced by Heisenberg in 1927 [9], is one of the most

remarkable features of his theory. This principle states that it is impossible to simultaneously

measure the position (𝑥) and momentum (𝑝) of a particle with arbitrary precision, expressed by

the relation:

Δ𝑥Δ𝑝 ≥ �

2
, (1.2)

where Δ𝑥 is the uncertainty in position, Δ𝑝 is the uncertainty in momentum, and � is the reduced

Planck constant. This discovery challenged the classical view of determinism and laid the

foundation for a new understanding of the probabilistic nature of quantum mechanics.

1.2.2 Erwin Schrödinger and Wave Mechanics

In contrast to Heisenberg’s approach, Erwin Schrödinger introduced wave mechanics in 1926

[10], describing subatomic particles as waves. His famous wave equation, the Schrödinger

equation, provides a mathematical description of the temporal evolution of quantum systems:

𝑖�
𝜕Ψ(r, 𝑡)

𝜕𝑡
= − �

2

2𝑚
∇2Ψ(r, 𝑡) +𝑉 (r)Ψ(r, 𝑡), (1.3)

where Ψ(r, 𝑡) is the wave function of the system,𝑚 is the particle’s mass,𝑉 (r) is the potential, and

∇2 is the Laplacian operator. The wave function is fundamental as it contains all the information

about the quantum system and its evolution.

1.2.3 Paul Dirac and Quantum Field Theory

While Heisenberg and Schrödinger established the groundwork for quantum mechanics, Paul

Dirac made a significant contribution by unifying quantum mechanics with special relativity.

In 1928, Dirac formulated his equation, the Dirac equation, which describes the behavior of

particles like the electron in a way that incorporates both quantum and relativistic principles:

(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 = 0, (1.4)

where 𝛾𝜇 are the Dirac matrices, 𝜕𝜇 is the derivative operator, and 𝜓 is the electron’s wave

function.

This equation not only resolved the problem of negative energy but also predicted the

possibility of negative mass states, which later contributed to the interpretation of antiparticles

and the discovery of the positron in 1932 [11]. This issue arises because the relativistic energy-

momentum relation, 𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4, allows for both positive and negative energy solutions.

In classical mechanics, a particle would continuously lose energy and fall into arbitrarily negative

energy states, making the theory unstable. Dirac resolved this by proposing the existence of

a filled "sea" of negative energy states, preventing electrons from decaying into them due to

the Pauli exclusion principle. A vacancy in this sea would then behave as a positively charged

particle, later identified as the positron, providing a natural explanation for antimatter.

1.2.4 The Quest for Unification of Gravity and Quantum Mechanics

Although the contributions of Heisenberg, Schrödinger, and Dirac established quantum mechanics

as a fundamental theory, the unification of gravity and quantum mechanics remained an unresolved
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challenge. Einstein’s general relativity, with its geometric description of gravity, posed difficulties

when reconciled with the intrinsically probabilistic principles of quantum mechanics.

The interaction between gravity, described as a force arising from the curvature of

spacetime, and quantum forces, characterized by superposition and uncertainty, led to profound

investigations into the fundamental structure of spacetime [4]. Physicists began exploring new

approaches, including theories like loop quantum gravity and supergravity, in the hope of finding

a coherent framework that could unify these two pillars of physics.

1.3 THE PATH TO UNIFICATION: WHEELER AND DEWITT

As quantum mechanics solidified in the first half of the 20th century, the need for a deeper

understanding of the fundamental interactions, especially between gravity and quantum mechanics,

became evident. The challenge of unifying these theories was one of the main motivations

for theoretical physics research in the subsequent decades. In this context, prominent figures

like John Archibald Wheeler and Bryce DeWitt played crucial roles in formulating the idea of

quantum gravity.

1.3.1 John Archibald Wheeler: The Bridge Builder

Wheeler, one of the most influential physicists of the 20th century, began his career collaborating

with Einstein and dedicated himself to research in relativity and quantum gravity. He pioneered

the idea that gravity should not be treated as an isolated classical force but rather as a manifestation

of spacetime geometry. One of his most important concepts was that space and time are dynamic

fabrics shaped by the presence of mass and energy [12].

Wheeler also introduced the concept of "geometrodynamics," suggesting that gravity and

the geometry of spacetime are interdependent. This idea laid the foundation for quantum gravity

research and encouraged the exploration of new ways to understand the relationship between

quantum mechanics and general relativity. He popularized the famous phrase, "Physicists should

not merely accept the structure of spacetime; they should be able to build that structure" [13].

1.3.2 Bryce DeWitt: The Wheeler-DeWitt Equation

While Wheeler explored the intersection of gravity and quantum mechanics, Bryce DeWitt, one

of Wheeler’s collaborators, made significant strides in formulating the equation that now bears

their names. In 1967, DeWitt introduced the Wheeler-DeWitt equation [14], representing one of

the most significant efforts to quantize gravity. This equation can be seen as the quantum version

of Einstein’s field equations, aiming to describe the evolution of the universe in the context of

quantum mechanics.

The general form of the Wheeler-DeWitt equation is:

�̂�Ψ[𝑔𝑎𝑏, 𝜙] = 0, (1.5)

where �̂� is the Hamiltonian operator, 𝑔𝑎𝑏 is the metric tensor describing spacetime geometry, 𝜙
represents matter fields, and Ψ is the wavefunction of the universe.

The Wheeler-DeWitt equation presents significant challenges, as it does not include

time as an independent variable. Instead, its solution provides a description of the universe’s

state without a well-defined temporal parameter. This aspect raises fundamental questions about

the nature of time and evolution in the context of quantum gravity [15].
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1.3.3 The Quest for a Theory of Everything

The research of Wheeler and DeWitt was part of a broader movement to develop a "theory of

everything" that unifies all fundamental forces of nature, including gravity, electromagnetism,

and nuclear interactions. This quest has become one of the main goals of modern theoretical

physics and inspired the development of alternative theories, such as string theory and loop

quantum gravity [16].

The work of Wheeler and DeWitt not only laid the groundwork for quantum gravity

but also raised profound philosophical questions about the universe’s nature and the role of

consciousness in quantum observation. The Wheeler-DeWitt equation, in particular, remains an

active topic of research and discussion, reflecting the complexity of unifying quantum mechanics

and general relativity [15].

1.4 RESEARCH APPROACH

The search for a unified theory combining gravity and quantum interactions remains one of the

greatest challenges in modern theoretical physics. Although general relativity and quantum

mechanics have been remarkably successful in their respective domains, they have not yet

been fully unified. The Wheeler–DeWitt equation, introduced by John Archibald Wheeler and

Bryce DeWitt, represents one of the main attempts to describe gravity in a quantum framework.

However, the lack of an explicit time variable raises deep conceptual questions about the evolution

of the universe in quantum gravity, as we will see throughout the work.

This dissertation investigates a quantum correction to the Wheeler-DeWitt equation that

emerges from the functional measure in the path integral formalism, a correction that has been

previously established in the literature. This modification introduces a complex component to the

cosmological constant, thereby affecting the universe’s wave function Ψ. The implications of this

modification are far-reaching, potentially influencing the emergence of semiclassical spacetime,

quantum fluctuations in the early universe, and the stability of vacuum solutions. These aspects

will be explored in detail throughout this work.

Recognizing the limitations posed by the absence of an explicit time variable in the

standard Wheeler-DeWitt formulation, we employ the Ashtekar variables formalism as a means to

address this issue and develop a more complete approach to the quantum dynamics of spacetime.

This choice is motivated by the formalism’s ability to recast general relativity in a form that

resembles gauge theories, allowing for a more natural quantization procedure. Within this

framework, we explore how the introduction of a complex cosmological constant impacts the

structure of the Wheeler-DeWitt equation and its solutions.

The main contribution of this dissertation is to extend the analysis of the modified

Wheeler-DeWitt equation by investigating the physical consequences of a complex cosmological

constant within the Ashtekar formalism. Although previous works have derived this term, we

seek to resolve and discuss the impact that this new term has on the Wheeler-DeWitt equation

and the Ψ state.

To structure this study, the work is divided into five chapters and two appendices:

• Chapter 1: Introduction - This chapter contextualizes the reader about the historical

and scientific background of the topic, explaining the motivation for this study and its

importance in the context of quantum gravity research.

• Chapter 2: Wheeler-DeWitt Equation - This chapter delves into the foundational

aspects of quantum mechanics and general relativity, exploring their theoretical frame-
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works and highlighting the challenges in unifying these theories. It establishes the

conceptual groundwork necessary for the subsequent reformulations.

• Chapter 3: Ashtekar Variables - The focus shifts to reformulating general relativity

using the Ashtekar variables. This chapter provides a detailed explanation of the

motivation for introducing these variables, their mathematical structure, and their

relevance to quantum gravity. The nuances of this formalism are explored, with a

particular emphasis on its implications for the Wheeler-DeWitt equation.

• Chapter 4: Modified Wheeler-DeWitt Equation - This chapter introduces a quantum

correction to the Wheeler-DeWitt equation, derived from the path integral formulation.

It focuses on solving this modified equation using the previously introduced formalism

and interpreting the results in the context of quantum gravity.

• Chapter 5: Conclusions and Future Perspectives - The final chapter compiles

the results obtained throughout the study and discusses their broader implications.

Additionally, it provides an outlook on potential future research directions motivated by

these findings.

• Appendix A: Group Theory - Gauss Constraint - In this appendix, we present a study

of the Gauss constraint within the Ashtekar formalism. We begin with fundamental

concepts such as gauge symmetries and Lie groups, developing the necessary tools to

understand the definition and role of the Gauss constraint in quantum gravity.

• Appendix B: Exterior Algebra and Differential Forms - This appendix explores

exterior algebra, a fundamental formalism for describing geometric theories such as

general relativity. It covers key concepts like differential forms, the wedge product, and

the exterior derivative. The appendix also details the calculation of the curvature tensor

and its decomposition, highlighting the relevance of this framework in quantum gravity.

Lastly, an important limitation of this work lies in the theoretical and mathematical

nature of the analysis, which requires solving hard equations and using approximations, such as

assuming the field strength is self-dual. Furthermore, the physical interpretation of the solutions

is a conceptual challenge addressed throughout the research.
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2 WHEELER-DEWITT EQUATION

2.1 REVIEW OF GENERAL RELATIVITY

General relativity is the cornerstone of modern gravitational theory, providing a geometric

description of gravity as the curvature of spacetime caused by mass and energy. In this section,

we introduce the fundamental concepts of the metric tensor, curvature, and their relationship in

general relativity.

The metric tensor 𝑔𝜇𝜈 is a symmetric tensor that defines distances and angles in spacetime.

The spacetime interval 𝑑𝑠2 between two events (specific points in spacetime, defined by their

spatial and temporal coordinates) is given by:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈, (2.1)

where 𝑑𝑥𝜇 are the coordinate differentials, and 𝑔𝜇𝜈 encodes the geometric properties of spacetime.

The indices 𝜇, 𝜈 = 0, 1, 2, 3 label the temporal (𝜇 = 0) and spatial (𝜇 = 1, 2, 3) components in a

four-dimensional spacetime1 .

The curvature of spacetime is described by the Riemann curvature tensor 𝑅
𝜌
𝜎𝜇𝜈, which

measures how much spacetime deviates from being flat or planar. Geometrically, this deviation

can be observed through the accumulated change in a vector that is parallel transported around

an infinitesimal closed loop2. The equation for the Riemann curvature tensor is:

𝑅
𝜌
𝜇𝜎𝜈 = 𝜕𝜇Γ

𝜌
𝜈𝜎 − 𝜕𝜈Γ𝜌𝜇𝜎 + Γ𝜌𝜇𝜆Γ

𝜆
𝜈𝜎 − Γ𝜌𝜈𝜆Γ

𝜆
𝜇𝜎. (2.2)

where Γ𝜎𝜇𝜈 are the Christoffel symbols, which represent the connections that describe the parallel

transport mentioned earlier. The expression for the Christoffel symbol is:

Γ𝜎𝜇𝜈 =
1

2
𝑔𝜎𝛼

(
𝜕𝜇𝑔𝛼𝜈 + 𝜕𝜈𝑔𝛼𝜇 − 𝜕𝛼𝑔𝜇𝜈

)
. (2.3)

Other important quantities to define are the Ricci tensor 𝑅𝜇𝜈 and the Ricci scalar 𝑅. The

Ricci tensor is obtained by contracting the Riemann tensor over its first and third indices:

𝑅𝜇𝜈 = 𝑅
𝜌
𝜇𝜌𝜈. (2.4)

This contraction reduces the complexity of the Riemann tensor by focusing on the

curvature along specific directions, making the Ricci tensor an essential quantity in Einstein’s

field equations, which describe how matter and energy influence the curvature of spacetime.

The Ricci scalar 𝑅, a further contraction of the Ricci tensor, is given by:

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈. (2.5)

1In Einstein’s summation convention, whenever an index appears twice in a term (once as a superscript and

once as a subscript, or both), it implies a sum over all possible values of that index. For example, the expression

𝑉 𝑖𝑔𝑖 𝑗 implicitly means
∑

𝑖 𝑉
𝑖𝑔𝑖 𝑗 , where the index 𝑖 is summed over all its possible values. This convention helps

streamline mathematical expressions, particularly in relativistic and gauge theories, by eliminating the need for

explicit summation signs.
2An infinitesimal closed loop refers to a small, differential path in spacetime that starts and ends at the same

point. The deviation observed after transporting a vector around this loop reveals the presence of curvature.
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The Ricci scalar represents the trace of the Ricci tensor and serves as a scalar quantity

that encodes the overall curvature of spacetime. It simplifies the complex structure of the Ricci

tensor into a single number, which is particularly useful in general relativity, where it appears in

the Einstein–Hilbert action, as we will see in the next section.

These quantities describe the curvature of spacetime and are fundamental to Einstein’s

field equations, which relate the geometry of spacetime to its energy content. Setting the speed of

light to unity (𝑐 = 1) simplifies Einstein’s field equations and can then be expressed explicitly as:

𝑅𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈, (2.6)

in which we can verify the importance of the previously mentioned quantities. The term Λ𝑔𝜇𝜈
corresponds to the cosmological constant Λ, which was originally introduced by Einstein to

allow for a static universe. It is now understood to be related to the energy density of the vacuum

and plays a crucial role in modern cosmology, particularly in the context of dark energy and the

accelerated expansion of the universe.

This brief overview of general relativity provides the necessary background to introduce

the Einstein-Hilbert action and its role in deriving the Einstein field equations, as we will study

in the next section.

2.2 EINSTEIN-HILBERT ACTION

The starting point for establishing the connection between quantum mechanics and cosmology

begins by exploring and manipulating the Einstein-Hilbert action. The Einstein-Hilbert action, in

turn, is simply a way of expressing Einstein’s field equations in a variational form, it’s given by:

𝑆𝐸𝐻 =
1

16𝜋𝐺𝑁

∫
𝑑4𝑥

√−𝑔 (𝑅 − 2Λ), (2.7)

where:

• 𝐺𝑁 is Newton’s gravitational constant .

• 𝑔 is the determinant of the metric 𝑔𝜇𝜈, which defines the geometric structure of spacetime

[17].

• 𝑅 is the Ricci scalar, which contains information about the curvature of spacetime [18].

• Λ is the cosmological constant, which describes the energy density of the vacuum [19].

To obtain Einstein’s field equations from this action, it is necessary to use the Hamilton

principle, which involves calculating the variation of the action with respect to the metric tensor

𝑔𝜇𝜈, to find the extremum of our physical system [20].

𝛿𝑆𝐸𝐻 =
1

16𝜋𝐺

∫
M
[𝛿(𝑅√−𝑔) − 2Λ𝛿

√−𝑔] 𝑑4𝑥 = 0. (2.8)

The variation of the action can be decomposed as:

𝛿(𝑅√−𝑔) = √−𝑔𝛿𝑅 + 𝑅𝛿(√−𝑔), (2.9)

𝛿
√−𝑔 = −1

2

√−𝑔𝑔𝜇𝜈𝛿𝑔𝜇𝜈. (2.10)

Now only the calculation of the variation of the Ricci scalar 𝑅 remains.
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2.2.0 Variation of the Ricci scalar

The Ricci scalar 𝑅 is obtained by contracting the Ricci tensor 𝑅𝜇𝜈, which describes the curvature

of space, with the metric 𝑔𝜇𝜈:

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈. (2.11)

When varying 𝑅, we apply the product rule, so:

𝛿𝑅 = 𝛿(𝑔𝜇𝜈𝑅𝜇𝜈) = (𝛿𝑔𝜇𝜈)𝑅𝜇𝜈 + 𝑔𝜇𝜈𝛿𝑅𝜇𝜈. (2.12)

Therefore, to obtain the full variation of𝑅, we need to calculate 𝛿𝑅𝜇𝜈, as a result:

𝑅𝜇𝜈 = 𝜕𝜆Γ
𝜆
𝜇𝜈 − 𝜕𝜈Γ𝜆𝜆𝜇 + Γ𝜆𝜆𝜎Γ

𝜎
𝜇𝜈 − Γ𝜆𝜈𝜎Γ

𝜎
𝜆𝜇, (2.13)

and,

𝛿𝑅𝜇𝜈 = ∇𝜆 (𝛿Γ𝜆𝜇𝜈) − ∇𝜈 (𝛿Γ𝜆𝜆𝜇), (2.14)

where

• ∇𝜆 denotes the covariant derivative3 associated with the metric 𝑔𝜇𝜈.

• Γ𝛼𝛽𝛾 denotes the Christoffel symbol, which is fundamental for understanding the parallel

transport in our spacetime over a given curvature [21].

The Christoffel connection is given in terms of the metric tensor 𝑔𝜇𝜈, by:

Γ𝜆𝜇𝜈 =
1

2
𝑔𝜆𝜎

(
𝜕𝜇𝑔𝜎𝜈 + 𝜕𝜈𝑔𝜎𝜇 − 𝜕𝜎𝑔𝜇𝜈

)
. (2.15)

The variation of the Christoffel connection 𝛿Γ𝜆𝜇𝜈 is:

𝛿Γ𝜆𝜇𝜈 =
1

2
𝑔𝜆𝜎

(∇𝜇𝛿𝑔𝜎𝜈 + ∇𝜈𝛿𝑔𝜎𝜇 − ∇𝜎𝛿𝑔𝜇𝜈
)
. (2.16)

Substituting expression (2.16) into (2.14), we obtain the variation of 𝑅𝜇𝜈:

𝛿𝑅𝜇𝜈 = ∇𝜆
(
∇𝜇𝛿𝑔

𝜆
𝜈 + ∇𝜈𝛿𝑔𝜆𝜇 − ∇𝜆𝛿𝑔𝜇𝜈

)
. (2.17)

Now we can substitute 𝛿𝑅𝜇𝜈 into the variation of 𝑅:

𝛿𝑅 = 𝑔𝜇𝜈𝛿𝑅𝜇𝜈 + 𝑅𝜇𝜈𝛿𝑔𝜇𝜈. (2.18)

The first term, 𝑔𝜇𝜈𝛿𝑅𝜇𝜈, involves covariant derivatives and can be rewritten in terms of

a total divergence term, which does not contribute to the variation of the action due to Gauss’s

theorem (which allows transforming a total divergence term into a boundary integral, which can

be ignored if the variation vanishes at the boundaries). Thus, the variation of 𝑅 can be expressed

as:

3The covariant derivative is a generalization of the ordinary derivative that accounts for changes in the basis of a

curved space. Given a vector field 𝑉 𝜇 and a connection Γ𝜆
𝜇𝜈 , the covariant derivative is defined as:

∇𝜈𝑉
𝜇 = 𝜕𝜈𝑉

𝜇 + Γ𝜇
𝜆𝜈𝑉

𝜆.

It ensures tensorial transformation properties under coordinate changes and is essential in differential geometry and

general relativity.
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𝛿𝑅 = 𝑅𝜇𝜈𝛿𝑔
𝜇𝜈 + ∇𝜇𝑉

𝜇, (2.19)

where 𝑉𝜇 is a vector that depends on 𝛿𝑔𝜇𝜈 and its derivatives. This term ∇𝜇𝑉
𝜇 can be ignored in

the variation of the action due to Gauss’s theorem.

Now, we substitute the variations of 𝑅 and
√−𝑔 into the variation of the action (2.8):

𝛿𝑆𝐸𝐻 =
1

16𝜋𝐺

∫
M

(√−𝑔𝑅𝜇𝜈 − 1

2

√−𝑔𝑅𝑔𝜇𝜈 + Λ
√−𝑔𝑔𝜇𝜈

)
𝛿𝑔𝜇𝜈 𝑑4𝑥, (2.20)

alternatively,

𝛿𝑆𝐸𝐻 =
1

16𝜋𝐺

∫
M

√−𝑔
(
𝑅𝜇𝜈 − 1

2
𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈

)
𝛿𝑔𝜇𝜈 𝑑4𝑥. (2.21)

For the action to be stationary (either minimum or maximum), this variation must be

zero for any 𝛿𝑔𝜇𝜈, which gives us the condition:

𝑅𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 0. (2.22)

These are the Einstein field equations in vacuum [22]. They relate the curvature of

spacetime (through the Ricci tensor 𝑅𝜇𝜈) to the spacetime metric 𝑔𝜇𝜈. To include matter and

energy, we introduce the energy-momentum tensor 𝑇𝜇𝜈, resulting in the complete field equations:

𝑅𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈. (2.23)

In equivalent terms:

𝐺𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 − Λ𝑔𝜇𝜈, (2.24)

where 𝐺𝜇𝜈 is the Einstein tensor, which describes the curvature of spacetime:

𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑅. (2.25)

Thus, the curvature of spacetime is determined by the presence of matter and energy, as described

by the tensor 𝑇𝜇𝜈 [23].

These observations confirm that the Einstein-Hilbert action is fundamental in general

relativity because it encapsulates all the information about the dynamics of the gravitational field.

Now that we have seen that this action can precisely express general relativity as described by

Einstein’s field equations, we need only to quantize gravity and arrive at the Wheeler-DeWitt

equation. To do this, we will use the ADM formalism to rewrite the action [24].

2.3 THE ADM FORMALISM

The ADM formalism (Arnowitt-Deser-Misner) was developed to reformulate general relativity in a

way that facilitates its quantization. The central idea is to foliate spacetime into three-dimensional

spatial slices that evolve over time, so that the four-dimensional spacetime can be described by a

three-dimensional metric ℎ𝑎𝑏 and auxiliary functions that determine how these slices evolve.

In other words, we take a 3+1 dimensional Riemannian manifold M with metric 𝑔 and

divide it into spatial slices Σ𝑡 as shown in Figure 2.1.
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Figure 2.1: A foliation of a manifold M into spatial hypersurfaces Σ𝑡 , representing different instants of time in the

spacetime evolution.

Thus, the spacetime metric in the ADM formalism can be written as4:

𝑑𝑠2 = −(𝑁2 − 𝑁𝑎𝑁
𝑎) 𝑑𝑡2 + 2𝑁𝑎 𝑑𝑥

𝑎 𝑑𝑡 + ℎ𝑎𝑏 𝑑𝑥𝑎 𝑑𝑥𝑏, (2.26)

where we introduced:

• The lapse function, denoted by 𝑁 , which controls the time interval between two

consecutive spatial slices;

• The shift vector, denoted by 𝑁𝑎, which describes how the spatial coordinates are ’shifted’

as time progresses;

• The three-dimensional metric ℎ𝑎𝑏 that describes the geometry of each spatial slice.

In this context, 𝑎, 𝑏 represent spatial indices on the slice, while the temporal dimension

is denoted separately by 𝑡. This separation allows for a clear decomposition of spacetime into

spatial and temporal components.

Additionally, we can interpret the lapse function and the shift vector geometrically as

shown in Figure 2.2 and Figure 2.3.

4The ADM metric is derived naturally by writing 𝑔𝜇𝜈 in terms of the geometric quantities associated with the

foliation.
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Figure 2.2: An illustration of the tangent vector 𝑡𝜇 (𝑥), representing the “time function”, evolving through a foliated

manifold M at a fixed point 𝑥.

The vector 𝑡𝜇 (𝑥) represents a tangent vector to the manifold 𝑀 at a point 𝑥. It is

associated with the “time function”, which describes the evolution of a system within a foliated

structure of spacetime. In a 3+1 dimensional foliation, the manifold is partitioned into a series of

spatial hypersurfaces, and 𝑡𝜇 (𝑥) encodes the change in the spatial slices as they evolve over time.

This vector is essential in the study of dynamics in general relativity, as it defines the direction of

time flow within the manifold and is typically used to parametrize the evolution of points across

the foliated slices.

Figure 2.3: An illustration of the lapse function 𝑁 and the shift vector 𝑁𝑎, which describe the evolution of spatial

hypersurfaces in the foliated spacetime.
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This decomposition allows us to rewrite the determinant of the metric 𝑔𝜇𝜈 and the Ricci

scalar 𝑅 in terms of these variables. This facilitates the analysis of the temporal evolution of the

geometry of space in terms of variables that can be quantized.

2.3.1 Decomposition of the Ricci Scalar

The decomposition of the Ricci scalar 𝑅 in the ADM formalism can be derived from the general

expression for the four-dimensional Ricci scalar and utilizing the foliation of spacetime into

three-dimensional spatial slices. The four-dimensional Ricci scalar is given by:

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈. (2.27)

Using the metric (2.26) and the definition of the Ricci tensor (2.13), we can rewrite the

Ricci scalar as:

𝑅 = (3)𝑅 + 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2, (2.28)

where:

• (3)𝑅 is the Ricci scalar associated with the three-dimensional metric ℎ𝑎𝑏, which describes

the intrinsic curvature of each spatial slice.

• 𝐾𝑎𝑏 is the extrinsic curvature tensor, which describes how each spatial slice is “curved”5

within the four-dimensional spacetime. It can also be thought of as the velocity field of

ℎ𝑎𝑏 (𝑥) that ’slides’ over the foliation.

• 𝐾 is the trace of the extrinsic curvature tensor, defined as 𝐾 = ℎ𝑎𝑏𝐾𝑎𝑏.

This decomposition is useful because it separates the contributions from the intrinsic

curvature of the spatial slices ((3)𝑅) and the extrinsic curvature (𝐾𝑎𝑏𝐾
𝑎𝑏 and 𝐾2) in the study of

gravity in the ADM formalism.

From (2.26), we also see that:

√−𝑔 = 𝑁
√
ℎ, (2.29)

where ℎ is the determinant of the three-dimensional metric ℎ𝑖 𝑗 . Substituting (2.28) and (2.29)

into the Einstein-Hilbert action (2.7), we obtain:

𝑆𝐴𝐷𝑀 =
1

16𝜋𝐺

∫
𝑑𝑡 𝑑3𝑥 𝑁

√
ℎ
(
(3)𝑅 + 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 − 2Λ

)
. (2.30)

This formulation forms the basis for writing and interpreting the Wheeler-DeWitt

equation concisely [25].

2.3.2 The Hamiltonian of General Relativity

To derive the Wheeler-DeWitt equation, we will define the DeWitt metric 𝐺𝑎𝑏𝑐𝑑 as follows:

𝐺𝑎𝑏𝑐𝑑 :=

√
ℎ

2
(ℎ𝑎𝑐ℎ𝑏𝑑 + ℎ𝑎𝑑ℎ𝑏𝑐 − 2ℎ𝑎𝑏ℎ𝑐𝑑). (2.31)

5This curvature arises as a consequence of the separation between the spatial slices in the foliation of spacetime.

Unlike intrinsic curvature, extrinsic curvature not only bends but also ’stretches’ spacetime, encoding how the

hypersurface is embedded in the higher-dimensional manifold.



22

This metric is used to define the geometry the spatial configuration, which allows

us to quantify differences between metric configurations. It also provides the foundation for

determining the geometric structure of the space of spatial metrics and incorporating the necessary

dynamical terms into the equation.

By substituting (2.31) into (2.30), we can explicitly observe the separation of the kinetic

and potential terms:

𝑆𝐴𝐷𝑀 =
1

16𝜋𝐺𝑁

∫
𝑑𝑡 𝑑3𝑥 𝑁


�����
𝐺𝑎𝑏𝑐𝑑𝐾𝑎𝑏𝐾𝑐𝑑︸�����������︷︷�����������︸

𝑘𝑖𝑛𝑒𝑡𝑖𝑐

+
√
ℎ
(
(3)𝑅 − 2Λ

)
︸�������������︷︷�������������︸

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

������
. (2.32)

From this point onward, and within the framework of the ADM formalism, where

spacetime is foliated into spatial slices, we will use the expression for

𝐾𝑎𝑏 =
1

2𝑁

( 	ℎ𝑎𝑏 − 𝐷𝑎𝑁𝑏 − 𝐷𝑏𝑁𝑎
)
, (2.33)

where,

• 𝐷𝑎 represents the covariant derivative associated with the three-dimensional spatial

metric ℎ𝑎𝑏
6 , and it acts within the spatial slices of the ADM formalism. It projects

the shift vector 𝑁𝑎 onto these slices, capturing variations entirely within the spatial

geometry;

• 	ℎ𝑎𝑏 represents the ordinary time derivative of the induced metric ℎ𝑎𝑏.

In this way, we can apply (2.33) to (2.32), resulting in:

𝑆𝐴𝐷𝑀 =
1

16𝜋𝐺

∫
𝑑𝑡 𝑑3𝑥


����𝑝
𝑎𝑏 	ℎ𝑎𝑏 − 𝑁H 𝑔

⊥ − 𝑁𝑎H 𝑔
𝑎︸������������︷︷������������︸

H𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

����� , (2.34)

where,

• 𝑝𝑎𝑏 is the conjugate momentum with respect to the metric ℎ𝑎𝑏, definined by:

𝑝𝑎𝑏 =

√
ℎ

16𝜋𝐺𝑁

(
𝐾𝑎𝑏 − ℎ𝑎𝑏𝐾

)
; (2.35)

• H 𝑔
⊥ is the Hamiltonian density responsible for the Hamiltonian constraint (as we will

discuss shortly), defined by:

H 𝑔
⊥ = 16𝜋𝐺𝑁𝐺𝑎𝑏𝑐𝑑 𝑝

𝑎𝑏 𝑝𝑐𝑑 −
√
ℎ

16𝜋𝐺𝑁

(
(3)𝑅 − 2Λ

)
; (2.36)

6𝐷𝑎 is the covariant derivative compatible with the three-dimensional spatial metric ℎ𝑎𝑏, meaning that it satisfies

𝐷𝑎ℎ𝑏𝑐 = 0. It acts within the spatial slices of the ADM formalism and ensures that spatially projected tensors

transform consistently under coordinate changes within each slice. Unlike the four-dimensional covariant derivative

∇𝜇, which includes the full spacetime connection Γ𝜆
𝜇𝜈 , 𝐷𝑎 only involves the Christoffel symbols Γ𝑐

𝑎𝑏 constructed

from ℎ𝑎𝑏.
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• H 𝑔
𝑎 is the Hamiltonian density responsible for the momentum constraint, defined by:

H 𝑔
𝑎 = −2𝐷𝑏𝑝

𝑏
𝑎. (2.37)

Similarly to what we did in (2.8), we will vary our action with respect to the shift

vector 𝑁𝑎 and the lapse function 𝑁 (since the metric now depends on these new parameters) and

extremize in such a way that:

𝛿𝑆

𝛿𝑁
= 0, (2.38)

𝛿𝑆

𝛿𝑁𝑎
= 0. (2.39)

We can now begin to notice that the first variation will only affect the term 𝑁H 𝑔
⊥, so:

𝛿𝑆

𝛿𝑁
=
𝛿(𝑁H 𝑔

⊥)
𝛿𝑁

= H 𝑔
⊥ + 𝑁 𝛿H

𝑔
⊥

𝛿𝑁
= 0. (2.40)

It is important to note that the term
𝛿𝐻⊥

𝑔

𝛿𝑁 implicitly depends on 𝑁 , as expanding the conjugate

momentum 𝑝𝑎𝑏 will include extrinsic curvature terms 𝐾𝑎𝑏 that depend on 𝑁 . Under certain

approximations, such as considering small variations of the 3-metric or a stationary background,

we assume that 𝐾𝑎𝑏 is of order 1/𝑁 , i.e., 𝐾𝑎𝑏 ∼ 1
𝑁 , leading to the following expression:

𝛿H 𝑔
⊥

𝛿𝑁
→ 0. (2.41)

This approximation is valid under the assumption that the extrinsic curvature 𝐾𝑎𝑏
becomes approximately constant in time. This assumption is reasonable because, in the regime

we are considering, the variations in 𝐾𝑎𝑏 over time are small enough to be neglected. Specifically,

the shift vector 𝑁𝑎 and lapse function 𝑁 do not exhibit significant time dependence, which

implies that the extrinsic curvature terms are approximately constant. Consequently, the time

variation of the extrinsic curvature can be treated as negligible, simplifying the calculation. This

approximation is particularly useful when the system is in a stable configuration, where the

effects of time-dependent changes in the geometry are minimal.

Now that we have this term tending to zero due to the approximation made, we can

return to (2.40) and find our first constraint (the Hamiltonian constraint):

H 𝑔
⊥ ≈ 0 (Hamiltonian Constraint). (2.42)

Performing the variation 𝛿𝑆
𝛿𝑁𝑎 . This variation will only affect the term 𝑁𝑎H 𝑔

𝑎 , from which we

obtain:

𝛿𝑆

𝛿𝑁𝑎
=
𝛿(𝑁𝑎H 𝑔

𝑎 )
𝛿𝑁𝑎

= 0. (2.43)

If we observe the dependence of 𝑁𝑎 in the extrinsic curvature tensor 𝐾𝑎𝑏 , we find that,

similarly to what was done above, we can derive the momentum constraint, given by:

H 𝑔
𝑎 = −2𝐷𝑏𝑝

𝑏
𝑎 ≈ 0 (Momentum Constraint). (2.44)

Now that we have derived the Hamiltonian constraints responsible for describing the

dynamics of the gravitational field, the next step will be to quantize these equations [26].
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2.3.3 Quantization and the Wheeler-DeWitt Equation

To obtain the quantum version of general relativity, we perform the usual quantization procedure

by transforming the momenta 𝑝𝑎𝑏 and ℎ𝑎𝑏 into differential operators that act on the wave

functional (also known as the wave function of the universe) Ψ[ℎ𝑎𝑏 (x)]:

𝑝𝑎𝑏 → 𝑝𝑎𝑏,

ℎ𝑎𝑏 → ℎ̂𝑎𝑏,

and act on Ψ[ℎ𝑎𝑏 (x)] as follows:

𝑝𝑎𝑏Ψ[ℎ𝑎𝑏 (x)] = −𝑖� 𝛿

𝛿ℎ𝑎𝑏
Ψ[ℎ𝑎𝑏 (x)], (2.45)

ℎ̂𝑎𝑏Ψ[ℎ𝑎𝑏 (x)] = ℎ𝑎𝑏Ψ[ℎ𝑎𝑏 (x)], (2.46)

and the Poisson bracket becomes:

[ℎ̂𝑎𝑏 (x), 𝑝𝑐𝑑 (y)] = 𝑖�𝛿𝑐𝑎𝛿𝑑𝑏𝛿(x, y). (2.47)

Now that we know how the Hamiltonian elements act on the wave functional, we can

substitute and apply the Hamiltonian Ĥ⊥
𝑔

to Ψ[ℎ𝑎𝑏 (x)], as follows:

Ĥ 𝑔
⊥Ψ[ℎ𝑎𝑏 (x)] =

(
−16𝜋𝐺𝑁�

2𝐺𝑎𝑏𝑐𝑑
𝛿2

𝛿ℎ𝑎𝑏𝛿ℎ𝑐𝑑
−

√
ℎ

16𝜋𝐺𝑁
((3)𝑅 − 2Λ)

)
Ψ[ℎ𝑎𝑏 (x)] = 0. (2.48)

This is the Wheeler-DeWitt equation, which describes the quantum dynamics of the

gravitational field. It is a wave equation for the universe, and the wave function of the universe

Ψ[ℎ𝑎𝑏 (x)] contains all the information about the possible quantum states of the universe at a

given point x.

Additionally, we can replicate the analysis for the second constraint, the momentum

constraint Ĥ𝑎, which results in:

Ĥ𝑎Ψ[ℎ𝑎𝑏 (x)] =
(
−2𝐷𝑏𝐻𝑎𝑐

�

𝑖

𝛿

𝛿ℎ𝑏𝑐

)
Ψ[ℎ𝑎𝑏 (x)] = 0. (2.49)

This equation is known as the quantum diffeomorphism equation and, together with the

Wheeler-DeWitt equation, enforces invariance under spatial coordinate transformations. This

equation is related to the conservation of momentum and also ensures that the wave functional of

the universe respects such symmetries.

2.4 PROBLEMS AND DETAILS OF THE WHEELER-DEWITT EQUATION

Now that we have defined the Wheeler-DeWitt equations, we will seek to analyze them to better

understand the nuances and results that we can obtain from them.

2.4.1 Problem of time

One of the most notable features of the Wheeler-DeWitt equation is the absence of an explicit

time term. This characteristic gives rise to one of the major problems associated with the
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Wheeler-DeWitt equation, known as the "Problem of Time" [27, 28]. This problem arises from

the conceptual incompatibility of time between general relativity and quantum mechanics. While

general relativity treats time as a geometric variable dependent on the structure of spacetime,

in quantum mechanics, time is an external, absolute variable that serves as a parameter for the

evolution of the system [29]. This mismatch between the two theories creates a profound dilemma

in the quest for a quantum theory of gravity.

The problem of time is intrinsically related to the Wheeler-DeWitt equation because,

when quantized, it results in a static equation, meaning there is no explicit dependence on

time. This suggests that, according to this equation, the state of the universe is timeless, which

contradicts our intuition based on standard quantum mechanics, where systems evolve over time.

In general relativity, time is part of the structure of spacetime and is not an independent

entity. Time is tied to the spacetime metric, and the absence of temporal evolution in the

Wheeler-DeWitt equation implies that there is no global notion of time, as exists in conventional

quantum mechanics. Furthermore, the lack of time dependence of the spatial metric ℎ𝑎𝑏 can be

understood by considering that in the ADM formalism, ℎ𝑎𝑏 represents the intrinsic geometry of

the three-dimensional spatial hypersurfaces. These hypersurfaces are "frozen" in the Wheeler-

DeWitt equation, which reflects the fact that the evolution of the spatial geometry is encoded

in the Hamiltonian constraints, and not explicitly in terms of time. Hence, the absence of time

dependence in ℎ𝑎𝑏 arises due to the formulation of the theory, where the evolution of the system

is encoded in the constraints, rather than through a direct time parameter.

2.4.1.1 Proposed Solutions

Several approaches have been proposed to resolve or reinterpret the problem of time. Among

them, the following stand out:

• Emergent Time: One of the most widely accepted proposals is that time, as we

understand it, is an emergent entity [30] that arises approximately in certain regimes,

such as in the semiclassical limit of gravity. In this scenario, time may emerge when

gravity is coupled with other quantum field theories, recovering temporal evolution.

• Deparametrization: Another approach is deparametrization, where the aim is to

identify an internal variable of the system that can act as a substitute for time [31]. This

means that time can be viewed as a function of other parameters of the system, allowing

the evolution to be described in terms of internal variables.

• Many-Worlds Interpretations: In the context of the many-worlds interpretation of

quantum mechanics, the problem of time can be reinterpreted as a reflection of the

branching of the universe’s states [32, 33]. In this framework, the absence of a global

time would be an inherent feature of the many-worlds formalism, where observers in

different "branches" perceive distinct temporal evolutions.

2.4.1.2 Implications and Difficulties

The difficulty in defining a clear notion of time in a quantum gravity theory has profound

implications. The absence of a classical time variable complicates the interpretation of the

equations of quantum gravity in terms of evolving observables [28]. Additionally, the emergence

of a notion of time and causality may be deeply connected to resolving fundamental issues such

as the origin of the universe and the singularity of the Big Bang. Thus, the problem of time
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remains one of the most important and challenging issues in the quest for a unified theory of

quantum gravity.

Despite the problem of time, the Wheeler-DeWitt equation is capable of providing

significant results in various contexts. For example, it plays a fundamental role in quantum

cosmology, specifically in the minissuperspace model, where the universe’s metric is simplified

and the equation describes the evolution of the universe in its early moments [34]. In this scenario,

the Wheeler-DeWitt equation can predict the emergence of a universe from the quantum vacuum,

offering a theoretical description for the origin of the Big Bang and the creation of spacetime

[35]. Additionally, in semiclassical regimes, when quantum gravity is coupled with quantum

matter, the equation recovers the classical temporal evolution of the universe, providing insights

into the transition between the quantum and classical regimes. Thus, while the problem of time

remains a fundamental challenge, the equation still offers a powerful framework for studying the

quantum aspects of gravity and cosmology.

2.4.2 Group Theory

The Wheeler-DeWitt equation emerges as the quantum expression of gravity in the ADM

formalism, imposing that the state of the universe be independent of any explicit temporal

evolution. An essential part of this formulation is the invariance under the diffeomorphism group,

which governs coordinate transformations in spacetime. This subsection explores the role of the

diffeomorphism group in the Wheeler-DeWitt equation and the concept of superspace, which

captures the geometric structure of the problem.

2.4.2.1 The Role of the Diffeomorphism Group in the Wheeler-DeWitt Equation

In the context of general relativity, the central symmetry group describing coordinate transforma-

tions in spacetime is the diffeomorphism group of a manifold M [36], denoted as Diff(M). This

group consists of all smooth and invertible transformations that can be applied to the coordinates

ofM. In simple terms, any coordinate transformation that preserves the differentiability of the

manifold belongs to the group Diff(M).
The group Diff(M) represents the transformations that keep the physics of gravity

invariant, regardless of the choice of coordinates. This reflects general covariance, one of

the fundamental principles of general relativity. General relativity, and by extension, the

Wheeler-DeWitt equation, are formulated such that the laws of physics remain invariant under

any coordinate change. This means that there is no privileged coordinate system. Thus, the group

Diff(M) encodes this fundamental symmetry.

Therefore, the group Diff(M) is an infinitely dimensional group of geometric trans-

formations. This reflects the fact that diffeomorphisms can be thought of as smooth, invertible

mappings between different configurations of the manifold. Since there are infinitely many ways

to deform the spacetime geometry in a smooth manner, the group becomes infinitely dimensional.

It encompasses transformations that allow for local variations in the manifold without introducing

any singularities, capturing the full range of smooth deformations of the spacetime.

These deformations refer specifically to changes in the spatial metric ℎ𝑎𝑏, which

describes the intrinsic geometry of the three-dimensional spatial hypersurfaces in the ADM

formalism. Diffeomorphisms act on this metric by smoothly shifting its components, altering

the geometry in a continuous way without changing its fundamental smooth structure. This

highlights the flexibility of the ADM formalism in describing different spatial configurations

through smooth, continuous transformations.
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2.4.2.2 Superspace

The concept of "superspace" is central to the canonical analysis of general relativity and the

quantization of gravity. Superspace is the space of all possible three-dimensional spatial

geometries, meaning it is the space of metrics ℎ𝑎𝑏 on a three-dimensional hypersurface, identified

up to diffeomorphisms. This abstract space is crucial for the formulation of the Wheeler-DeWitt

equation.

More precisely, superspace is the quotient space defined as:

Superspace =
Riem(Σ)
Diff(Σ) , (2.50)

where

• Riem(Σ) is the set of all Riemannian metrics ℎ𝑎𝑏 on a spatial hypersurface Σ;

• Diff(Σ) is the group of diffeomorphisms on Σ.

Thus, superspace can be described as the space of all possible spatial geometries, with

two metrics being equivalent if they can be related by a diffeomorphism.

The Wheeler-DeWitt equation, when interpreted in superspace, describes the quantum

evolution of spatial geometries independent of an external time. Since time does not appear

explicitly in the Wheeler-DeWitt equation, this formulation reflects the problem of time mentioned

earlier in quantum gravity, where there is no global time parameter.

2.4.2.3 Comparison Between Diff(M) and SU(2)
In terms of group theory, there is a significant distinction between the diffeomorphism group

Diff(M) and the internal symmetry group SU(2), which appears in Ashtekar variables and will

be discussed in the next chapter. While Diff(M) describes geometric symmetries related to

spacetime itself, SU(2) describes internal symmetries associated with gauge connections.

• Diff(M): It is an infinite-dimensional group that includes all smooth transformations of

spacetime. It reflects the freedom to choose different coordinates in spacetime without

altering the underlying physical laws. Its role in the Wheeler-DeWitt equation is to

ensure the invariance of quantum gravity under coordinate changes.

• SU(2): It is a finite-dimensional Lie group with 3 generators. In the context of Ashtekar

variables, SU(2) is the internal symmetry group associated with the gauge connection,

used to reformulate quantum gravity in terms of a gauge field theory, facilitating the

quantization of gravity.

In summary, Diff(M) is an infinitely dimensional group of geometric transformations,

while SU(2) is a three-dimensional group of internal symmetries. These topics will be revisited

in the next chapter.

2.4.2.4 Conclusions

This chapter aimed to establish the connection between quantum mechanics and general relativity,

presenting all the crucial calculations derived from the Einstein-Hilbert action. Additionally, we

outlined new topics for the upcoming chapters, such as Ashtekar variables and their significance

with the SU(2) group, which we will explore in greater depth to understand the reasons for this

choice.
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3 ASHTEKAR VARIABLES

In this chapter, we will seek to reformulate our Wheeler-DeWitt equation in order to address the

problem of time and also reduce its mathematical complexity. We will write our spacetime using

Ashtekar variables [37], based on the tetrad formalism, replacing the metric 𝑔𝜇𝜈 with tetrads 𝑒𝑎𝜇
to obtain a simpler and more efficient local description.

Through this approach, we will be able to not only reduce the mathematical difficulty of

describing curvature but also express gravity in terms of a gauge theory. This will allow for a

connection with algebraic structures, such as those in group theory, simplifying the manipulation

of the equations. Moreover, by using Ashtekar variables, we will be able to address the problem

of time more effectively, paving the way for a possible quantization of gravity.

In summary, the tetrad formalism will provide us with a powerful tool to deal with the

geometric and topological aspects of spacetime, while the Ashtekar variables will facilitate the

reformulation of Einstein’s equations in a quantum context.

3.1 TETRAD FORMALISM

The tetrad formalism replaces the metric 𝑔𝜇𝜈 of spacetime with a set of tetrads 𝑒𝑎𝜇, which are

1-forms that act as a local basis at each point in spacetime. These tetrads provide a coordinate-

independent way of describing the geometry of spacetime, making them particularly useful in

general relativity and quantum gravity. Instead of working directly with the metric, the use

of tetrads allows for a more flexible description of the geometry, as they directly connect the

geometric properties of spacetime with those of quantum fields. This is particularly important in

contexts of quantum gravity quantization, where the classical metric poses difficulties due to the

complexity of quantum fluctuations.

The tetrads 𝑒𝑎𝜇 can be viewed as a set of vectors that map the curved spacetime to a

locally flat tangent space. The spacetime metric is expressed in terms of the tetrads as follows:

𝑔𝜇𝜈 = 𝑒
𝑎
𝜇𝑒

𝑏
𝜈𝜂𝑎𝑏, (3.1)

where 𝜂𝑎𝑏 represents the Minkowski metric1 in the local tangent space. The tetrads 𝑒𝑎𝜇 thus serve

to bridge the curved spacetime and the locally flat Minkowski space, allowing the Minkowski

metric to be applied locally at each point in spacetime. This relationship introduces the effects

of spacetime curvature through the connections between the fields and the local geometry of

spacetime.

By making this transition, we can see that the tetrad formalism facilitates the transition

to quantum theories of gravity, such as loop quantum gravity, where gravity is treated as a

gauge theory. The tetrad formalism provides a simpler and more natural algebraic structure for

incorporating quantum fields, allowing gravity to be quantized in a manner similar to the other

fundamental forces described in terms of gauge fields [39, 40].

Below is an illustration that exemplifies the relationship between the tetrad 𝑒𝑎𝜇 and the

vectors of the local tangent space and the curved spacetime:

1The Minkowski metric describes the geometry of flat space-time in special relativity and is given by 𝑑𝑠2 =
−𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2, where 𝑑𝑠2 is the line element, 𝑑𝑡 represents the time interval, and 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 represent

the spatial intervals. The negative sign in front of the time term reflects the difference between space and time in the

four-dimensional spacetime framework.
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Figure 3.1: A two-dimensional illustration to clarify the tetrad formalism. The tetrads 𝑒𝐴𝜇 serve to relate the

coordinate chart (𝑈, 𝜑) on the manifold 𝑀 to the orthonormal basis {𝑒𝑥 , 𝑒𝑦} in the tangent bundle 𝑇𝑝𝑀. These

tetrads also represent the coefficients in the natural (holonomic) basis {𝜕𝑥 , 𝜕𝑦}. The coordinate map 𝜑 assigns to

each point 𝑝 ∈ 𝑈 ⊆ 𝑀 the coordinates 𝜑(𝑝) = (𝑥, 𝑦) ∈ 𝜑(𝑈) ⊆ R
4. By transitioning from the tangent space 𝑇𝑝𝑀

to the cotangent bundle 𝑇∗
𝑝𝑀 through the spacetime metric 𝑔𝜇𝜈 and the Minkowski metric 𝜂𝐴𝐵, the natural basis

{𝑑𝑥, 𝑑𝑦} is transformed into the orthonormal basis {𝑒𝑥 , 𝑒𝑦} using the tetrads 𝑒𝐴𝜇. [38]

Curved spacetime

with metric 𝑔𝜇𝜈

𝑒𝑎𝜇−→ Local tangent space

with metric 𝜂𝑎𝑏

In this illustration, the tetrads act as the vectors that transform the local tangent space

of Minkowski, with the flat metric 𝜂𝑎𝑏, into the curved spacetime, with the metric 𝑔𝜇𝜈. This

simplifies the description of curvature and makes the formalism more suitable for the quantization

of gravity.

3.2 CURVATURE

One of the advantages of using the tetrad formalism is that it facilitates the treatment of the

curvature of spacetime, primarily through the use of differential forms. Differential forms provide

a more natural and flexible framework for describing geometric objects like curvature, and we

will define them in more detail in Appendix B.

In the metric formalism, curvature is defined through the Levi-Civita connection.

However, in the tetrad formalism, we express the connection in terms of tetrads, which simplifies

the treatment of curvature and provides a more intuitive geometric interpretation.

The 2-form of curvature 𝑅𝑎𝑏, which represents the curvature of spacetime in this

formalism, is given by:

𝑅𝑎𝑏 = 𝑑𝜔𝑎𝑏 + 𝜔 𝑐
𝑎 ∧ 𝜔 𝑏

𝑐 , (3.2)

where 𝜔𝑎𝑏 is the spin connection. The spin connection 𝜔𝑎𝑏 is a 1-form that encodes how

the tetrads change from point to point, and it is crucial for defining how vectors are parallel

transported in curved spacetime. The term 𝑑𝜔𝑎𝑏 represents the exterior derivative of the spin

connection, which can be seen as the "rate of change" of the spin connection itself.
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The wedge product ∧ is the operation used in differential forms to combine two 1-forms

into a 2-form, which is the correct mathematical object for representing curvature. The first

term, 𝑑𝜔𝑎𝑏, describes how the spin connection itself changes, while the second term, 𝜔 𝑐
𝑎 ∧ 𝜔 𝑏

𝑐 ,

describes how the spin connections at different points in spacetime interact.

This reformulation of curvature is more suitable in geometric and topological contexts

because it enables a more efficient manipulation of the equations. It also simplifies the expressions

for curvature, allowing for more straightforward calculations. Moreover, the use of differential

forms facilitates the exploration of the topological properties of spacetime, which are crucial in

quantum gravity theories, where the underlying geometry may have quantum fluctuations.

In the context of the metric formalism, the Ricci tensor 𝑅𝜇𝜈 is obtained by contracting

the Riemann curvature tensor 𝑅
𝜌
𝜇𝜈𝜌. The Ricci tensor provides information about the curvature

of spacetime, specifically the trace of the curvature in a given direction. In the tetrad formalism,

the curvature can be expressed similarly, but the use of differential forms and the spin connection

provides a more flexible and geometrically insightful description.

In situations where the metric 𝑔𝜇𝜈 becomes singular, such as in the case of black holes

or the singularity of the Big Bang, the metric formalism faces significant challenges. The tetrad

formalism offers a way to bypass these singularities [41, 42]. While the metric may become

undefined or singular, the tetrads can continue to provide a well-defined description of the local

structure of spacetime, even in regions of high curvature. This makes it a useful tool in the

formulation of quantum gravity theories, which seek to describe these regions where the classical

theory of gravity is not applicable.

3.3 ACTION IN THE TETRAD FORMALISM

Now that we know how to express our metric tensors 𝑔𝜇𝜈 and curvature 𝑅𝑎𝑏 in these new variables,

we will seek to rewrite the Einstein-Hilbert action in this new formalism. We know that the

Einstein-Hilbert action is given by:

𝑆𝐸𝐻 =
1

16𝜋𝐺𝑁

∫
𝑑4𝑥

√−𝑔 (𝑅 − 2Λ).

To express
√−𝑔 𝑑4𝑥 in terms of this new formalism, we will need to rewrite our metric

𝑔 as follows:

𝑔 = det(𝑔𝜇𝜈) = det(𝑒𝑎𝜇𝑒𝑏𝜈𝜂𝑎𝑏). (3.3)

We know from Binet’s theorem that:

𝑑𝑒𝑡 (𝐴.𝐵) = 𝑑𝑒𝑡 (𝐴).𝑑𝑒𝑡 (𝐵). (3.4)

Using (3.4) in (3.3), we have:

𝑔 = det(𝑒𝑎𝜇) det(𝑒𝑏𝜈 ) det(𝜂)︸︷︷︸
=−1

. (3.5)

therefore,

√−𝑔 =
√

det(𝑒𝑎𝜇) det(𝑒𝑏𝜈 ) =
√

det(𝑒𝑎𝜇)2 = 𝑑𝑒𝑡 (𝑒). (3.6)

We also know that the volume element 𝑑4𝑥 can be written as:
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𝑑4𝑥 = 𝑑𝑥0 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3, (3.7)

or alternatively, using the tetrads 𝑒𝑎, where 𝑒𝑎 = 𝑒𝑎𝜇 𝑑𝑥
𝜇, we can rewrite 𝑑𝑥𝜇 as:

𝑑𝑥𝜇 = 𝑒𝜇𝑎 𝑒
𝑎, (3.8)

and expanding the implicit sum of 𝑎, we get:

𝑑𝑥𝜇 = 𝑒𝜇𝑎 𝑒
𝑎 = 𝑒𝜇

0
𝑑𝑥0 + 𝑒𝜇

1
𝑑𝑥1 + 𝑒𝜇

2
𝑑𝑥2 + 𝑒𝜇

3
𝑑𝑥3. (3.9)

Using (3.9) in (3.7) results in:

𝑑4𝑥 = 𝑑𝑥0 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 =
(
𝑒0

0 𝑑𝑥
0 + 𝑒0

1 𝑑𝑥
1 + 𝑒0

2 𝑑𝑥
2 + 𝑒0

3 𝑑𝑥
3
)

︸����������������������������������������︷︷����������������������������������������︸
=𝑒0

∧

∧
(
𝑒1

0 𝑑𝑥
0 + 𝑒1

1 𝑑𝑥
1 + 𝑒1

2 𝑑𝑥
2 + 𝑒1

3 𝑑𝑥
3
)
)︸�����������������������������������������︷︷�����������������������������������������︸

=𝑒1

∧

∧
(
𝑒2

0 𝑑𝑥
0 + 𝑒2

1 𝑑𝑥
1 + 𝑒2

2 𝑑𝑥
2 + 𝑒2

3 𝑑𝑥
3
)

︸����������������������������������������︷︷����������������������������������������︸
=𝑒2

∧

∧
(
𝑒3

0 𝑑𝑥
0 + 𝑒3

1 𝑑𝑥
1 + 𝑒3

2 𝑑𝑥
2 + 𝑒3

3 𝑑𝑥
3
)

︸����������������������������������������︷︷����������������������������������������︸
=𝑒3

.

(3.10)

Thus, the volumetric element 𝑑4𝑥, can be represented through the tetrads 𝑒𝑎, as:

𝑑4𝑥 = 𝑒0 ∧ 𝑒1 ∧ 𝑒2 ∧ 𝑒3. (3.11)

Using (3.6), (3.11), and introducing the Levi-Civita symbol 𝜖𝑎𝑏𝑐𝑑 to correctly represent

the volume in spacetime, we have:

𝜖𝑎𝑏𝑐𝑑 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1, if (𝑎, 𝑏, 𝑐, 𝑑) is an even permutation of (0, 1, 2, 3),
−1, if (𝑎, 𝑏, 𝑐, 𝑑) is an odd permutation of (0, 1, 2, 3),
0, if any index is repeated.

With this definition, we can now express the volume differential in spacetime in terms of the

tetrads 𝑒𝑎. Therefore, we have:

√−𝑔 𝑑4𝑥 =
1

4!
𝜖𝑎𝑏𝑐𝑑𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑒𝑐 ∧ 𝑒𝑑. (3.12)

The factor 1
4!

arises in the expression for the differential volume 𝑑4𝑥 in terms of the

Levi-Civita symbol due to the normalization of the outer product of tetrads. The Levi-Civita

symbol 𝜖𝑎𝑏𝑐𝑑 is used in this context to represent the volume of spacetime in a compact and

oriented way, and when writing the volume 𝑑4𝑥 as a combination of the wedge product of tetrads,

the constant 1/4! appears to correct for the number of possible permutations of the indices.

This term is a consequence of the number of ways to arrange four distinct indices, since the

Levi-Civita symbol has a total of 4! permutations, and by dividing by the factor 4! we ensure that
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the expression is normalized correctly. For more details on the use of the Levi-Civita symbol and

its application in differential geometry and theoretical physics, the reader is referred to references

such as Misner et al. [43] and Wald [18].

In addition, we need to rewrite the scalar curvature 𝑅 with these new variables. We

know that:

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈. (3.13)

Using (3.1), we have:

𝑅 = 𝑒𝜇𝑎 𝑒
𝜈
𝑏𝜂

𝑎𝑏𝑅𝜇𝜈, (3.14)

and we can also write it as:

𝑅 =
1

2
𝑅𝑎𝑏 ∧ 𝑒𝑎 ∧ 𝑒𝑏, (3.15)

or alternatively,

𝑅 =
1

2
𝜖𝑎𝑏𝑐𝑑𝑅𝑎𝑏 ∧ 𝑒𝑐 ∧ 𝑒𝑑. (3.16)

The equations (3.15) and (3.16) represent transformations of the curvature tensor 𝑅𝜇𝜈
into the differential form 𝑅𝑎𝑏, using the Levi-Civita symbol. The calculation leading to expression

(3.15) and its alternative (3.16) is extensive and complicated, with the main goal of rewriting

the curvature tensor in terms of differential forms and connecting the components of the tensor

with the Levi-Civita symbol to represent the wedge product of 2-forms. Readers interested in

more details about these steps can refer to the books by Wald (1984) General Relativity [18]

and Misner, Thorne, and Wheeler (1973) Gravitation [25], which extensively cover the tetrad

formalism and curvature in terms of differential forms.

Once we have obtained (3.16) and (3.12), we can write the action as:

𝑆 =
1

16𝜋𝐺

∫
𝜖𝑎𝑏𝑐𝑑

(
1

2
𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑐𝑑 − 2Λ

4!
𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑒𝑐 ∧ 𝑒𝑑

)
,

𝑆 =
1

32𝜋𝐺

∫
𝜖𝑎𝑏𝑐𝑑

(
𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑐𝑑 − Λ

6
𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑒𝑐 ∧ 𝑒𝑑

)
. (3.17)

Furthermore, we can separate the first term into real and imaginary parts, see Appendix B, in

order to obtain:

𝜖𝑎𝑏𝑐𝑑𝑒
𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑐𝑑 −→ ★(𝑒𝑎 ∧ 𝑒𝑏) ∧ 𝑅𝑎𝑏 + 𝑖𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑎𝑏, (3.18)

where its mathematical meanings are:

• The real part, that is, the term ★(𝑒𝑎 ∧ 𝑒𝑏), is the dualized curvature, and the ★ denotes

the Hodge dual, applied to the 2-forms. This gives us a classical description of curvature.

• The imaginary part is the term without dualization, 𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑎𝑏, with a factor of 𝑖,
indicating the complexification.

Thus, we can rewrite the Einstein-Hilbert action as:

𝑆 =
1

32𝜋𝐺

∫
𝑀4

(
★(𝑒𝑎 ∧ 𝑒𝑏) ∧ 𝑅𝑎𝑏 + 𝑖𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑎𝑏 − Λ

6
𝜖𝑎𝑏𝑐𝑑𝑒

𝑎 ∧ 𝑒𝑏 ∧ 𝑒𝑐 ∧ 𝑒𝑑
)
. (3.19)
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This expression has three main terms:

1. ★(𝑒𝑎 ∧ 𝑒𝑏) ∧ 𝑅𝑎𝑏: Represents the real part of curvature, which describes classical gravity.

It corresponds to the Hilbert-Palatini action [18];

2. 𝑖𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑎𝑏: The imaginary part of curvature, which is the Holst term, proportional to

the first Bianchi identity in the absence of torsion [25].

3. −Λ
6
𝜖𝑎𝑏𝑐𝑑𝑒

𝑎 ∧ 𝑒𝑏 ∧ 𝑒𝑐 ∧ 𝑒𝑑: The cosmological constant term, which provides the vacuum

energy [18].

And as expected, although there are differences in the way we interpret the geometry of

space-time, we arrive at the same physical results derived from the Einstein-Hilbert action, since

we have only modified the way we express this geometry using the tetrad 𝑒
𝜇
𝑎 . Now that we have

obtained this transformation, we will seek to derive its corresponding Hamiltonian, with the goal

of rewriting and reinterpreting the Wheeler-DeWitt equation in this new formalism.

3.4 HAMILTONIAN IN ASHTEKAR FORMALISM

Now, we will seek to write a Hamiltonian so we can perform the canonical quantization of general

relativity in this new formalism. We know that a total Hamiltonian can be written as a linear

combination of its constraints, see reference [8], such that:

𝐻𝑇𝑜𝑡𝑎𝑙 =
1

8𝜋𝐺

∫
𝑑4𝑥

𝑁∑
𝑖=1

𝜆𝑖C𝑖 , (3.20)

where 𝜆𝑖 is the Lagrange multiplier related to the constraint C𝑖, which can be interpreted as

auxiliary parameters that do not necessarily have physical meanings but ensure the validity of the

restrictions imposed by the theory.

If we observe that the work done so far was to change the way we interpret spacetime

and describe it through other variables, it is reasonable to assume that the physics must be

preserved. Therefore, we can assume that the total Hamiltonian is similar to the one calculated in

the previous chapter (2.34), of the form:

𝐻𝑇𝑜𝑡𝑎𝑙 =
1

8𝜋𝐺

∫
𝑑4𝑥

(
𝑁H + 𝑁𝑎V𝑎 +

𝑁∑
𝑖=3

𝜆𝑖C𝑖
)

(3.21)

In this equation, we open the sum up to 2 and keep the remainder contained in the sum,

where the first term, 𝑁H , refers to the Hamiltonian constraint or scalar constraint, together with

its Lagrange multiplier 𝑁 (lapse function). This constraint is responsible for guaranteeing the

temporal invariance of the theory, being the expression of the dynamical content of gravity in the

canonical context. Physically, 𝑁 controls the passage of time between the spatial slices in the

ADM decomposition.

The second term, 𝑁𝑎V𝑎, refers to the diffeomorphism constraint or vector constraint,

with its Lagrange multiplier 𝑁𝑎 (displacement vector). This term guarantees invariance under

spatial diffeomorphisms, allowing the theory to be invariant with respect to changes in spatial

coordinates. The multiplier 𝑁𝑎 adjusts how the system evolves toward three-dimensional space,

allowing "shifts" between spatial slices.

Finally, the term
∑𝑁
𝑖=3 𝜆

𝑖C𝑖 encompasses all other constraints, such as the Gaussian

constraint, which appears in gauge theories (such as in the Ashtekar formalism, see Appendix
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A.3), with 𝜆 𝑗 representing the associated Lagrange multipliers. The Gaussian constraint in this

context enforces the conservation of the internal charge 𝑆𝑈 (2) and guarantees the internal gauge

invariance of the theory. For example, in our formalism, it will guarantee that the gauge symmetry

𝑆𝑈 (2) of the connection 𝐴𝑖𝑎 and the densified triad 𝐸𝑎𝑖 is preserved under local rotations in the

internal space [44].

As mentioned in the last chapter, by reformulating our theory with Ashtekar variables,

we reduce our theory to the group 𝑆𝑈 (2), as the densitized triad 𝐸𝑎𝑖 and the self-dual connection

𝐴𝑖𝑎 are defined in terms of this internal gauge group. The connection 𝐴𝑖𝑎 is an 𝑆𝑈 (2) connection,

representing the degrees of freedom of gravity, while 𝐸𝑎𝑖 acts as its conjugate momentum,

reflecting the metric properties of space. This reduction arises naturally because the internal

symmetry of the tetrad formalism is 𝑆𝑂 (3, 1) (special orthogonal group in 3+1 dimensions, is

the group of linear transformations that preserve the Minkowski interval), and when restricted

to self-dual components, it simplifies to 𝑆𝑈 (2), preserving the internal gauge invariance under

local rotations in the internal space [44]. Consequently, we can express the total Hamiltonian in

terms of only three constraints, which constitute the main symmetries of the theory: invariance

under temporal evolutions, spatial diffeomorphisms, and gauge transformations. Thus, the total

sum of the constraints, multiplied by their respective Lagrange multipliers, results in the total

canonical Hamiltonian of gravity given by:

𝐻𝑇𝑜𝑡𝑎𝑙 =
1

8𝜋𝐺

∫
𝑑4𝑥 (𝑁H + 𝑁𝑎V𝑎 + 𝜆𝑖G𝑖) , (3.22)

where this last term represents the Gauss constraint, which imposes the internal gauge freedom

and ensures that the evolution of the system respects the internal symmetries of the gauge

connection.

Once we have expression (3.22), we only need to explicitly determine the constraints H ,

V𝑎, and G𝑖. At this point, it is important to emphasize that we are looking to work with a system

similar to that performed in the ADM formalism. Therefore, to formulate the theory in canonical

terms with the variables 𝑁 and 𝑁𝑎, it is convenient to choose a gauge with 𝑒0
𝜇 = 0, fixing the

temporal component of the tetrad.

In the context of the tetrads 𝑒𝑎𝜇, where 𝜇 represents the spacetime coordinate indices

and 𝑎 represents the local basis indices, 𝑒0
𝜇 is the temporal component, while 𝑒1

𝜇, 𝑒
2
𝜇, and 𝑒3

𝜇

correspond to the spatial ones. By adopting 𝑒0
𝜇 = 0, we align the temporal vector of the tetrad with

the normal to the spatial surfaces, a natural condition in the ADM formalism, which separates

temporal and spatial directions in spacetime and acts as if it were the foliation in this new

formalism.

To facilitate the canonical quantization of gravity, we rewrite the geometric variables

in conjugate pairs, analogous to the "𝑝 	𝑞" that occur in classical systems. In this context, the

densitized triad 𝐸𝑎𝑖 and the Ashtekar variable, or self-dual connection 𝐴𝑖𝑎, are introduced to

represent, respectively, a spatial geometric density and a conjugate connection. This pair will

simplify our description of gravity and be fundamental for the quantization of gravity.

The densitized triad 𝐸𝑎𝑖 is defined as:

𝐸𝑎𝑖 = 𝜖𝑖 𝑗 𝑘 𝜖
𝑎𝑏𝑐𝑒

𝑗
𝑏𝑒

𝑘
𝑐 , (3.23)

where 𝑒
𝑗
𝑏 represents the components of the spatial triad, derived from the tetrad 𝑒𝑎𝜇. This density

preserves the three-dimensional geometric structure of space, and 𝐸𝑎𝑖 behaves as a momentum in

the canonical theory, as we will observe throughout the chapter.

On the other hand, the Ashtekar variable 𝐴𝑖𝑎, conjugate to 𝐸𝑎𝑖 , is expressed as:
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𝐴𝑎𝑖 = Γ𝑎𝑖 + 𝑖𝐾𝑎
𝑖 ,

𝐴𝑖𝑎 (𝑥) ≡ −1

2
𝜖
𝑖 𝑗
𝑘 𝜔

𝑘
𝑎 𝑗 − 𝑖𝜔𝑖𝑎0, (3.24)

where Γ𝑖𝑎 ≡ −1
2
𝜖
𝑖 𝑗
𝑘 𝜔

𝑘
𝑎 𝑗 is the spin connection2,𝜔𝑘

𝑎 𝑗 is the Lorentz connection, which describes how

the tetrad field is transported under local Lorentz transformations in the space-time. Specifically,

the Lorentz connection 𝜔𝑘
𝑎 𝑗 governs the behavior of vectors and spinors under infinitesimal local

rotations and boosts in the tangent space of the space-time. It is associated with the curvature of

the internal gauge group 𝑆𝑂 (3, 1) and controls how the local frame (tetrad) changes as we move

through the manifold. 𝐾𝑎
𝑖 = −𝜔𝑖𝑎0

is the extrinsic curvature, and 𝜔𝑖𝑎0
is the temporal component

of the Lorentz connection. Since the term 𝜔𝑖𝑎0
is associated with the variation of the tetrad field

𝑒0
𝜇, it acts as the equivalent of extrinsic curvature, which controls the rate of temporal variation

of the spatial structure, and therefore will be associated with the "temporal displacement" in

the ADM decomposition. With these definitions, we can recover the physical meanings of the

Lagrange multipliers.

Moreover, we can easily verify that, although the variables used to describe the geometry

of spacetime are complex, they still ensure that we obtain corresponding physical quantities that

are real, and thus obey the realism condition:

𝐴𝑖𝑎 + 𝐴𝑖∗𝑎 = 2Γ𝑖𝑎 [𝐸], (3.25)

where the symbol ∗ denotes the complex conjugate. This choice simplifies the canonical structure

of the theory, as it reduces the number of complex variables without losing consistency with the

reality of spacetime.

Thus, 𝐸 and 𝐴 form the core of the Ashtekar formulation for gravity, with a Poisson

structure analogous to the conjugate pairs in quantum mechanics, as shown in (3.26), which

allows us to treat canonical gravity appropriately for quantization:

{𝐴𝑖𝑎 (𝑥), 𝐸𝑏𝑗 (𝑦)} = 𝑖8𝜋𝐺 𝛿𝑏𝑎𝛿
𝑖
𝑗 𝛿(𝑥 − 𝑦). (3.26)

Now that we have an improved structure to describe our problem in terms of the Ashtekar

variable and its conjugate, respecting the ADM formalism and the physics obtained in the previous

chapter, we can write our Hamiltonian.

To do this, we introduce two fields that be fundamental to solving our problem: the

magnetic field 𝐵𝑎𝑖 and the gauge field strength 𝐹𝑘𝑎𝑏. Both of these fields are electromagnetic

objects, where 𝐵𝑎𝑖 represents the magnetic field and 𝐹𝑘𝑎𝑏 is the electromagnetic field strength

tensor. The gauge field strength 𝐹𝑘𝑎𝑏 is obtained from the Ashtekar connection 𝐴𝑖𝑎 through the

following expression:

𝐹𝑘𝑎𝑏 = 𝜕𝑎𝐴
𝑘
𝑏 − 𝜕𝑏𝐴𝑘𝑎 + (8𝜋𝐺)𝜖 𝑘𝑖 𝑗 𝐴𝑖𝑎 𝐴 𝑗

𝑏, (3.27)

where 𝜕𝑎 denotes the partial derivative with respect to the spatial coordinates. This structure

allows the gauge field strength 𝐹𝑘𝑎𝑏 to act as a curvature tensor, reflecting the variation of the

connection in space as a function of the gauge connection. Additionally, the magnetic field 𝐵𝑎𝑖 is

defined as:

2We changed the notation from 𝜔 to Γ for consistency throughout the rest of the text, and to avoid confusion with

the Lorentz connection 𝜔𝑘
𝑎 𝑗 .
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𝐵𝑎𝑖 ≡ 1

2
𝜖𝑎𝑏𝑐𝐹𝑖𝑏𝑐. (3.28)

These definitions allow us to interpret gravitational dynamics in a context analogous to

electromagnetism, where the magnetic field is related to variations in the gauge field strength.

Just as in electrodynamics, where the magnetic field facilitates the description of interactions

in terms of geometric flows, in gravity, the fields 𝐵 and 𝐹 translate the curvature of spacetime

into three-dimensional variables, aiding in the understanding of the interactions between the

geometry of spacetime and the gravitational fields. Furthermore, this analogy provides a basis

for constructing a Hamiltonian that incorporates these new fields, leading to a richer formulation

of quantum gravitational theories.

When we combine all our definitions, we find the resulting Hamiltonian:

𝐻 =
∫
𝑀3

[
𝑁′𝜖𝑖 𝑗 𝑘𝐸𝑎𝑖𝐸𝑏 𝑗

(
𝐹𝑘𝑎𝑏 +

Λ
3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑖

)
+

+𝑁𝑎′𝐸𝑏𝑖 𝐹
𝑖
𝑎𝑏 + 𝜆′𝑖

(
𝜕𝑎𝐸

𝑎
𝑖 + (8𝜋𝐺)𝜖𝑖 𝑗 𝑘 𝐴 𝑗

𝑎𝐸
𝑎𝑘
)]
𝑑3𝑥.

(3.29)

This expression captures the interaction between the magnetic and gauge fields, allowing

for a more complete description of gravitational dynamics in a quantum context. Thus, the

introduction of the fields 𝐵𝑎𝑖 and 𝐹𝑘𝑎𝑏 not only enriches our understanding of gravity but also

establishes a promising path for the investigation of quantum gravity theories, where the geometry

and dynamics of spacetime are interconnected through these new variables.

Moreover, we can write our action as:

𝑆 =
1

32𝜋𝐺

∫
𝑑𝑡

∫
𝑀3

[
	𝐴𝑎𝑖 𝐸𝑖𝑎 + 𝑁′𝜖𝑖 𝑗 𝑘𝐸𝑎𝑖𝐸𝑏 𝑗

(
𝐹𝑘𝑎𝑏 +

Λ
3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑖

)
+𝑁′𝑎𝐸𝑏𝑖 𝐹

𝑖
𝑎𝑏 + 𝜆′𝑖

(
𝜕𝑎𝐸

𝑎
𝑖 + (8𝜋𝐺)𝜖𝑖 𝑗 𝑘 𝐴 𝑗

𝑎𝐸
𝑎𝑘
)]
𝑑3𝑥.

(3.30)

It is similar to the case presented in the previous chapter; if we use Hamilton’s principle, we

obtain the following constraints:

𝛿H
𝛿𝑁′ = 0 → H = 𝜖𝑖 𝑗 𝑘𝐸

𝑎𝑖𝐸𝑏 𝑗
(
𝐹𝑘𝑎𝑏 +

Λ
3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑖

)
= 0, (3.31)

𝛿H
𝛿𝑁′𝑎 = 0 → 𝐸𝑏𝑖 𝐹

𝑖
𝑎𝑏 = 0, (3.32)

𝛿H
𝛿𝜆′𝑖

= 0 → 𝜕𝑎𝐸
𝑎
𝑖 + (8𝜋𝐺)𝜖𝑖 𝑗 𝑘 𝐴 𝑗

𝑎𝐸
𝑎𝑘 = 0. (3.33)

Here we again obtain the three constraints mentioned earlier, which are:

• 𝛿H
𝛿𝑁 ′ = 0 is the Hamiltonian constraint, responsible for generating our Wheeler-DeWitt

equation, which is fundamental for quantizing general relativity in our system.

• 𝛿H
𝛿𝑁 ′𝑎 is the diffeomorphism constraint, responsible for showing the invariance of our

system under diffeomorphisms.
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• 𝛿H
𝛿𝜆′𝑖

is the Gauss constraint, responsible for ensuring that the system respects the internal

gauge symmetry.

Now that we have found the Hamiltonian of general relativity in this new formalism, we

will defer the discussion of its solution to the next chapter and interpret the results obtained so far

in a bit more detail.

3.4 CONNECTION WITH GAUGE THEORIES

As we have seen, the tetrad formalism also allows us to treat gravity as a gauge theory, similar to

Yang-Mills theories [45]. In gauge theories, the connection is identified with the gauge field, and

the curvature 𝐹𝑎𝜇𝜈 represents the curvature of the associated fiber bundle. The tetrads function as

a gauge field, connecting different points in spacetime. Yang-Mills theories describe fundamental

interactions between particles through gauge fields, where the connection plays a crucial role in

describing the properties of local symmetry. For example, the Yang-Mills action can be written

as:

𝑆𝑌𝑀 =
1

4

∫
𝑑4𝑥 𝐹𝑎𝜇𝜈𝐹

𝜇𝜈𝑎, (3.34)

where 𝐹𝑎𝜇𝜈 is the Yang-Mills field tensor, given by:

𝐹𝑎𝜇𝜈 = 𝜕𝜇𝐴
𝑎
𝜈 − 𝜕𝜈𝐴𝑎𝜇 + 𝑔 𝑓 𝑎𝑏𝑐𝐴𝑏𝜇𝐴𝑐𝜈, (3.35)

with 𝐴𝑎𝜇 representing the gauge field associated with the symmetry group, 𝑔 the coupling constant,

and 𝑓 𝑎𝑏𝑐 the structure constants of the group.

The connection between the tetrad formalism and gauge theories is evident in how

gravity can be understood in terms of symmetries and connections. The Lorentz connection 𝜔,

which appears in the description of curvature, can be related to gauge transformations, where

gravity manifests as a field that influences the geometry of spacetime. The tetrad connection is

expressed as:

𝜔𝑎𝑏
𝜇 = 𝑒𝑎𝜆𝑒

𝑏
𝜈∇𝜇𝑒

𝜆𝜈, (3.36)

where 𝑒𝑎𝜇 are the tetrads and ∇𝜇 represents the covariant derivative. The curvature is then given

by the relation:

𝑅𝑎𝑏 = 𝑑𝜔𝑎𝑏 + 𝜔𝑎𝑐 ∧ 𝜔𝑏
𝑐, (3.37)

where 𝑅𝑎𝑏 is the curvature tensor and 𝑑 is the exterior derivative.

Furthermore, the concept of invariance under local transformations is fundamental for

both gravity and Yang-Mills theories. In Yang-Mills theory, local invariance ensures that the

equations of motion do not change under gauge transformations, resulting in constraint conditions

[45], such as the Bianchi identities:

∇𝜇𝐹𝑎𝜇𝜈 = 0, (3.38)

where 𝐹𝑎𝜇𝜈 is the field tensor. Similarly, in gravity, the conditions for invariance under diffeomor-

phisms impose restrictions on the variables that describe the geometry of spacetime.

The tetrads, which are used to represent the metric of spacetime, can be viewed as a

set of gauge fields that connect the local geometry to the global features of spacetime. When

considering the Ashtekar formalism, gravity is reinterpreted in terms of variables that possess
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gauge symmetry. The Ashtekar formalism provides a foundation for the quantization of gravity

by establishing an analogy with Yang-Mills theories, where the connection and curvature play

central roles.

In the Ashtekar formalism, the Hamiltonian is expressed in terms of energy density and

the conjugate momentum. The Hamiltonian in terms of gauge fields is given by:

𝐻 =
∫
𝑀3

𝑑3𝑥

(
𝑁′𝜖𝑖 𝑗 𝑘

(
𝐸𝑎𝑖𝐸𝑏 𝑗 𝐹𝑘𝑎𝑏 +

Λ
3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑖

)
+ 𝑁𝑎𝐸𝑏𝑖 𝐹

𝑖
𝑎𝑏+

+𝜆𝑖
(
𝜕𝑎𝐸

𝑎
𝑖 + (8𝜋𝐺)𝜖𝑖 𝑗 𝑘 𝐴 𝑗

𝑎𝐸
𝑎𝑘
)
,

(3.39)

where 𝐸𝑎𝑖 is the conjugate momentum to the gauge field 𝐴𝑖𝑎.
Finally, the relationship between the tetrad formalism and Yang-Mills theories is not only

conceptual but also technical. Both formalisms benefit from a common mathematical language,

where gauge theory serves as a powerful framework for describing fundamental interactions.

The ability to reinterpret gravity as a gauge theory allows for new approaches to be explored

in the search for a quantum theory of gravity, where gravitational interactions can be described

similarly to particle interactions mediated by gauge fields. The Einstein-Hilbert action without

the cosmological constant in the tetrad formalism can be written in terms of the curvature form

𝑅𝑎𝑏 and the tetrads 𝑒𝑎:

𝑆 ∝
∫ [

𝜖𝑎𝑏𝑐𝑑𝑒
𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑐𝑑

]
.

This action has a structure similar to that of Yang-Mills theories, with the difference that

here the gauge symmetry is associated with the Lorentz group, which governs the symmetries of

spacetime in terms of rotations and boosts. This is distinct from diffeomorphisms, which are

more general transformations preserving the smooth structure of the manifold. This provides a

theoretical foundation for using techniques developed in gauge theories for the study of gravity,

including quantization.

3.5 INTERPRETATIONS OF THIS NEW FORMALISM

Now we will seek to provide some interpretations of how the Ashtekar formalism transforms our

understanding of gravity, especially through its canonical variables, which directly connect the

geometry and topology of spacetime. This approach not only simplifies the equations governing

the dynamics of gravity but also offers new insights into the fundamental properties of spacetime.

3.5.1 Geometric Structure of Gravity

In the Ashtekar approach, the connection 𝐴𝑖𝑎 and the densitized triad 𝐸𝑎𝑖 have important geometric

interpretations. The connection 𝐴𝑖𝑎 generalizes the notion of covariant derivatives from differential

geometry and plays a central role in defining how local geometric structures (such as the curvature

of spacetime) change from point to point. It determines how the tetrads or local frames rotate

and stretch across spacetime.

On the other hand, the densitized triad 𝐸𝑎𝑖 , which can be understood as a momentum

conjugate to the connection, is closely related to the three-dimensional geometry of space. More

precisely, the components of 𝐸𝑎𝑖 are associated with the *area* of a two-dimensional surface in

three-dimensional space. This is because, in the Ashtekar formalism, 𝐸𝑎𝑖 represents the density of
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the triad field, which encodes the geometric properties of space. Specifically, it is proportional to

the area element of a surface in the three-dimensional manifold, giving a measure of the "amount

of space" associated with each point.

In classical differential geometry, it is the *metric* that determines how distances and

angles are measured. The connection 𝐴𝑖𝑎, while determining how vectors are transported across

spacetime, does not directly measure distances. Instead, the metric, which can be derived from

the tetrads in the Ashtekar formalism, defines the actual geometry of space, including distances,

areas, and volumes.

The relationship between 𝐸𝑎𝑖 and curvature is expressed in the Einstein field equations.

In particular, the energy density 𝜌 and pressure 𝑝 can be related to the components of curvature

of spacetime. Thus, gravitational dynamics is intricately linked to the geometry of spacetime,

where the Ashtekar connection provides a clear mapping between physical properties (such as

energy density) and geometric structure (such as curvature).

3.5.2 Topology of Phase Space

The phase space in the Ashtekar formalism is composed of pairs (𝐴𝑖𝑎, 𝐸𝑎𝑖 ). The structure of this

space is highly topological, with topology associated with the possible configurations of the

system. In particular, Ashtekar’s variables allow us to consider the configuration space in terms

of gauge groups, such as 𝑆𝑈 (2).
Gauge transformations correspond to local changes in the connection, reflecting how

different configurations can represent the same physical state. This gauge invariance suggests

that the topology of the phase space has a rich structure, where homotopy classes can be defined,

and different Wilson loops can be used to represent fundamental interactions.

The presence of Wilson loops 𝑊 [𝐶] = P exp
(∫
𝐶
𝐴
)

is crucial for understanding the

interaction between particles and fields in spacetime. The loop 𝐶 represents a curve in space,

while P is the path product operator. This topological interpretation shows that gravity, when

described with Ashtekar’s variables, is not just a matter of curvature and geometry but is also

deeply rooted in the topological properties of spacetime.

3.5.3 Physical Interpretations of the Hamiltonian Constraints

The Hamiltonian constraints play a fundamental role in defining the dynamics of the system and

in its physical and geometric interpretation.

1. Gauss Constraint:
G𝑖 = 𝐷𝑎𝐸

𝑎
𝑖 = 0.

This equation ensures the conservation of charge associated with local gauge symmetries.

Physically, this implies that gravity should be viewed as an interaction that preserves certain

quantities, while geometrically it ensures that the curvature of spacetime does not contain

monopoles, reflecting a cohesive topological structure.

2. Diffeomorphism Constraint:

V𝑎 = 𝐸𝑏𝑖 𝐹
𝑖
𝑎𝑏 = 0.

This term reflects invariance under diffeomorphic transformations, which is essential for the

consistency of the theory. The physical interpretation is that the dynamics of the system is

independent of the parameterization of points in spacetime, ensuring that the configuration space

maintains its topological structure regardless of how coordinates are chosen.
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3. Hamiltonian Constraint:

H = 𝜖𝑖 𝑗 𝑘𝐸
𝑎𝑖𝐸𝑏 𝑗 𝐹𝑘𝑎𝑏 + Λ𝜖𝑎𝑏𝑐𝐸

𝑐𝑖 = 0.

This equation links the temporal evolution of the system to its geometric properties. Geometrically,

the Hamiltonian constraint can be seen as a restriction on the possible configurations of spacetime,

reflecting the interconnection between geometric structure and the presence of matter and energy,

while physically it implies that gravity not only curves space but also defines its evolution.

3.5.4 Resolution of the Problem of Time

The Ashtekar approach provides a new understanding of the problem of time in quantum gravity.

Instead of treating time as an external entity, Ashtekar’s variables allow time to be considered an

integral part of the equations themselves. As we will see in the next chapter, the imposition of

the Wheeler-DeWitt equation:

Ĥ |Ψ〉 = 0,

suggests that the state of the universe does not evolve in the classical sense but instead coexists in

a space of superposition of states. This implies that "time" in quantum gravity may not be linear

and absolute, but rather an emergent property of the dynamics of spacetime.

3.5.4 Conclusion

The introduction of Ashtekar variables in the description of gravity not only simplifies the

equations of general relativity but also provides a new perspective on the interconnection between

geometry, topology, and the dynamics of spacetime. By treating gravity as a gauge theory, the

Ashtekar variables open new avenues for understanding quantum gravity, including the resolution

of the problem of time and the interrelationship between curvature and the topological structure

of the universe.
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4 MODIFIED WHEELER-DEWITT EQUATION

In this chapter, we explore how the quantization of gravity, via the path integral formalism,

introduces quantum corrections to the classical gravitational action. These corrections arise

from the inclusion of a non-trivial functional measure in the configuration space, which adds a

term dependent on the functional determinant of the metric 𝑔𝜇𝜈. This term manifests as a purely

imaginary contribution to the effective action, being proportional to � and representing loop

corrections.

We identify that this contribution can be interpreted as a modification of the cosmological

constant, leading to the introduction of a complex cosmological constant ΛC. This is composed of

the classical cosmological constant Λ and an additional term Λ𝑖, which encapsulates the quantum

effects of the functional measure. We rewrite the Einstein-Hilbert action to incorporate this new

constant, demonstrating how quantization alters the fundamental structure of the gravitational

theory.

The introduction of the complex cosmological constant not only modifies the traditional

understanding of gravity but also suggests implications for physical phenomena, such as

instabilities in spacetime or topological effects, as we will explore throughout the chapter. Finally,

we will show that this analysis provides a solid theoretical foundation for future investigations into

the impacts of quantization on gravitational models and their potential connections to high-energy

physics.

4.1 CORRECTION FROM THE FUNCTIONAL MEASURE

4.1.1 Functional measurement review

At this point, we will use an equation capable of encapsulating all the information about a physical

system, while providing a complete description of its quantum and gravitational behavior and

possible interactions. The introduction of the generating functional, as done in the work “Massive
Graviton from Diffeomorphism Invariance” [46], appears as a natural solution to this problem.

In this mentioned work, the authors describe a mechanism through which the graviton acquires a

mass through the functional measure, without violating the symmetry of the diffeomorphism or

introducing Stückelberg fields. In addition, their work deals in more detail with the derivation of

the complex cosmological constant, which we will use in the rest of the research.

The generating functional contains all the information about the quantum system,

and its importance goes beyond simply calculating observables. By performing functional

differentiations with respect to the external source 𝐽, we can obtain the correlation functions,

which describe how the fields interact with each other and with external sources. Additionally,

these functions are fundamental for obtaining scattering amplitudes, which directly connect to

experimental results through the LSZ (Lehmann–Symanzik–Zimmermann) formula. Although

we will not work with this formula in our research, it can serve as inspiration for future work.

Thus, the generating functional 𝑍 [𝐽] is defined as:

𝑍 [𝐽] =
∫

𝑑𝜇[𝜑] 𝑒𝑖(𝑆[𝜑𝑖]+𝐽𝑖𝜑𝑖) , (4.1)

where 𝑑𝜇[𝜑] represents the functional measure with 𝜑 representing the set of fields that describe

the physical system, 𝑆[𝜑𝑖] is the classical action of the system, which describes the interactions
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and dynamics of the fields, and 𝐽𝑖𝜑
𝑖 represents the interaction with an external source, which

will not play a significant role in our work.

From this definition, we can obtain, for example, correlation functions, which are

essential for characterizing the interactions and quantum behaviors of the fields. These functions

are obtained by performing a functional differentiation of 𝑍 [𝐽] with respect to 𝐽, which allows

us to study how the field 𝜑(𝑥) responds to external perturbations. However, for this work, we

will focus only on the term related to the functional measure 𝑑𝜇[𝜑].
Despite the central role of the generating functional in quantum field theory, the rigorous

mathematical definition of the functional measure 𝑑𝜇[𝜑] remains a challenge. Operationally, it

can be expressed as:

𝑑𝜇[𝜑] = D𝜑𝑖
√

Det𝐺𝑖 𝑗 , (4.2)

where 𝐷𝜑𝑖 =
∏

𝑖 𝑑𝜑 represents the infinitesimal volume element in the configuration space, and

𝐺𝑖 𝑗 is the configuration-space metric, defined for each type of field. The factor
√

Det𝐺𝑖 𝑗 is

necessary to account for the non-trivial geometry of the configuration space 1, as exemplified in

models like the non-linear sigma model. In such models, the fields 𝜑𝑖 live on a curved target space

rather than a flat Euclidean space, leading to a configuration space with a metric 𝐺𝑖 𝑗 that depends

on the geometry of the target space. The determinant of 𝐺𝑖 𝑗 encodes this curvature, ensuring that

the functional measure correctly reflects the underlying geometry. For instance, in a non-linear

sigma model, the kinetic term of the fields naturally involves 𝐺𝑖 𝑗 , and neglecting
√
𝑑𝑒𝑡𝐺𝑖 𝑗 would

result in inconsistencies in the path integral quantization, such as a failure to properly account for

the degrees of freedom constrained by the geometry. Therefore, this factor plays a crucial role

in preserving the consistency and invariance of the theory under transformations related to the

symmetry of the target space.

In the context of gravitational systems, the determinant of 𝐺𝑖 𝑗 introduces corrections to

the classical action 𝑆[𝜑𝑖]. Specifically, we write:

Det𝐺𝑖 𝑗 = 𝑒
𝛿 (4) (0)

∫
𝑑4𝑥

√−𝑔 tr log𝐺𝑖 𝑗 , (4.3)

where 𝛿(𝑛) (0) represents a divergent term. In dimensional regularization, this is often set to zero,

simplifying the determinant to unity. However, such an approach can obscure important physical

phenomena, such as anomalies. To avoid this, we adopt a more controlled regularization scheme,

as proposed in Wilsonian effective field theory, where a natural cutoff is implemented [47]. For

instance, using a Gaussian regularization, we define:

𝛿(4) (𝑥) = Λ4

(2𝜋)2
𝑒

−𝑥2Λ2

2 . (4.4)

When evaluated at the origin, we thus find:

𝛿(4) (0) = Λ4

(2𝜋)2
, (4.5)

where Λ is a soft cutoff scale. This approach regularizes the divergent term and introduces a

correction to the action, resulting in an effective action:

1A non-linear sigma model is a type of quantum field theory where the fields take values in a curved manifold

(often called the target space). The action typically includes a kinetic term for the fields that involves the metric of

the target space. This model is called "non-linear" because the fields do not transform linearly under the symmetries

of the target space. These models are important in various areas of theoretical physics, such as string theory and the

study of spontaneous symmetry breaking.
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𝑆eff =
∫

𝑑4𝑥
√−𝑔 (L − 𝑖𝜁 tr log𝐺𝑖 𝑗

)
, (4.6)

here, 𝜁 is a coefficient dependent on the cutoff Λ and the regularization scheme. This additional

term encapsulates quantum corrections arising from the non-trivial geometry of the configuration

space and is fundamental in theories involving gravity, where it can manifest as modifications to

the cosmological constant or other non-perturbative effects.

It is important to recognize that the configuration space metric 𝐺𝑖 𝑗 must be considered

as an intrinsic part of the definition of the theory. Although it is commonly associated with the

bilinear form in the kinetic term, this connection lacks a direct physical justification. However,

the requirement that the functional measure be invariant under the underlying symmetries allows

the determination of 𝐺𝑖 𝑗 in a manner similar to that in effective field theories. In our specific

case, this approach yields the DeWitt metric. In prime order, the most general form of the

configuration space metric for arbitrary fields takes the form:

𝑆eff =
∫

𝑑4𝑥
√−𝑔 (

𝐿 − 𝑖𝛾 tr log |𝑔𝜇𝜈 |
)
, (4.7)

where 𝛾 is related to 𝜁 through a finite renormalization [48]. The finite renormalization refers to

the process by which the parameters of the model are adjusted in a controlled manner to handle

divergences that arise during the calculation of integrals in field theories. Instead of simply

removing the divergences through infinite renormalization, finite renormalization introduces a

correction factor that addresses these divergences while ensuring the theory remains physically

meaningful and consistent. This correction factor is often linked to a cutoff parameter, which

allows divergent contributions to be regularized without discarding the underlying physics. This

approach guarantees that the theory retains its internal consistency, with the corrections being

finite and controlled, preserving the essential properties of the system.

Despite the correction term, it is crucial to emphasize that this equation does not break

diffeomorphism invariance. The apparent violation arises because
√

Det𝐺𝑖 𝑗 transforms as a

(functional) scalar density, and therefore, so does the final term in the action. However, the

measure 𝐷𝜑𝑖 also behaves as a scalar density in such a way that the full product 𝐷𝜑𝑖
√

Det𝐺𝑖 𝑗

remains invariant. As a result, any variations in the apparent symmetry-breaking term under

spacetime diffeomorphisms are canceled by the Jacobian that emerges from 𝐷𝜑𝑖, preserving the

invariance of the quantum theory and all its observables.

Since both the functional measure and the classical action respect diffeomorphism in-

variance, the background-field effective action Γ[𝑔] naturally reflects this symmetry. Specifically,

at the one-loop level 2, it is expressed as:

Γ[𝜑𝑖] = 𝑆[𝜑𝑖] − 𝑖

2
log Det𝐺𝑖 𝑗 + 𝑖

2
log DetH𝑖 𝑗

= 𝑆[𝜑𝑖] + 𝑖

2
log DetH 𝑖

𝑗 ,
(4.8)

where the configuration-space metric 𝐺𝑖 𝑗 contributes to the usual correction log DetH𝑖 𝑗 , which

is derived from the second derivative of the action 𝑆[𝜑𝑖] with respect to the fields 𝜑𝑖. The term

2The "one-loop level" refers to the approximation where only the lowest-order quantum fluctuations are considered

in the perturbative expansion of the effective action. In this context, it involves the contribution from fluctuations

around a classical background, accounting for one loop in the Feynman diagram expansion. This is often used to

calculate quantum corrections to the classical action, such as the effective potential or propagators.
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H𝑖 𝑗 represents the Hessian of the action, describing the field fluctuations around the classical

configuration. While its determinant is basis-dependent, we express it as a linear operator,

ensuring that the determinant of H𝑖 𝑗 remains invariant. This invariance is crucial for maintaining

symmetries in the quantum formulation of the theory, particularly when considering the effective

action and quantum corrections.

Finally, the results presented above were derived within the framework of the Lorentzian

path integral. The appearance of the imaginary factor in Eq. (2.6) (and consequently in Eq.

(2.8)) arises when the factor 𝑖 =
√
−1 is extracted from the argument of the exponential in the

Lorentzian path integral3, allowing the measure to be written as a correction to the classical

action. By adopting the Euclidean formalism, the functional measure is defined as:

𝑍𝐸 [𝐽] =
∫

𝑑𝜇[𝜑] 𝑒−(𝑆𝐸eff
[𝜑𝑖]+𝐽𝑖𝜑𝑖) , (4.9)

which leads to a real one-loop correction:

𝑆𝐸eff =
∫

𝑑4𝑥
√−𝑔 (

𝐿 − 𝛾 tr log |𝑔𝜇𝜈 |
)
. (4.10)

This raises the issue of whether the path-integral measure should be defined in Euclidean

space (followed by a rotation back to real time) or directly in Lorentzian space. The former

choice is typically preferred for a more rigorous mathematical construction of the path integral,

although it remains largely formal. In contrast, since the physical processes we observe are

described by Lorentzian spacetime, we define the measure within this framework. As a result,

different approaches may lead to distinct mathematical treatments, each with its own implications

for the theory.

Now that we have made this brief review of functional measure, we will use this

knowledge to analyze the correction that arises from the functional measure of Einstein Hilbert’s

action.

4.1.2 Complex Cosmological Constant

We know that the Einstein-Hilbert action is given by:

𝑆𝐸𝐻 =
1

16𝜋𝐺

∫
𝑑4𝑥

√−𝑔 (𝑅 − 2Λ) , (4.11)

The Hessian associated with this action can be expressed as:

𝐻𝜇𝜈𝜌𝜎 = 𝐾𝜇𝜈𝜌𝜎� +𝑈𝜇𝜈𝜌𝜎 (4.12)

where 𝐾𝜇𝜈𝜌𝜎 is given by:

𝐾𝜇𝜈𝜌𝜎 =
1

4

(
𝑔𝜇𝜌𝑔𝜈𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜌 − 𝑔𝜇𝜈𝑔𝜌𝜎

)
, (4.13)

3The Lorentzian path integral is an approach in quantum theory that uses the Lorentzian metric (−, +, +, +) of

spacetime to calculate transition amplitudes, preserving the relativistic structure and the nature of real time.
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� is the D’alembert operator4 and 𝑈𝜇𝜈𝜌𝜎 represents a tensor that depends on the spacetime

curvature. The exact form of𝑈𝜇𝜈𝜌𝜎 is not critical for our discussion, though it can be found in

references such as [49].

A standard choice for the configuration-space metric in gravity is the DeWitt metric:

𝐺𝜇𝜈𝜌𝜎 =
1

2

(
𝑔𝜇𝜌𝑔𝜈𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜌 − 𝑎𝑔𝜇𝜈𝑔𝜌𝜎

)
, (4.14)

where 𝑎 is a dimensionless parameter that adjusts the deformation of the configuration-space

metric. This parameter modifies the standard DeWitt metric, which is used to describe the

geometry of the space of field configurations. The value of 𝑎 controls the relative contributions

of different components in the metric and can affect the behavior of the theory in various contexts,

such as in the formulation of quantum gravity or asymptotic safety. By combining Eqs. (4.12)

and (4.14), the expression from Eq. (4.8) leads to the following effective action:

Γ[𝑔] =
∫

𝑑4𝑥
√−𝑔


������
𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛−𝐻𝑖𝑙𝑏𝑒𝑟𝑡︷�����︸︸�����︷
(𝑅 − 2Λ)

16𝜋𝐺
+𝑖𝜁

2
log det

(
1

2

(
𝛿
𝜌
𝜇𝛿

𝜎
𝜈 + (𝑎 − 1)𝑔𝜇𝜈𝑔𝜌𝜎

) ) +
+ 𝑖

2
log det

(
𝛿
𝜇
𝛼𝛿

𝜈
𝛽� + (𝐾−1)𝜇𝜈𝜌𝜎𝑈𝜌𝜎𝛼𝛽

)
.

(4.15)

In this expression, the determinant is the finite-dimensional determinant, denoted by

det, and the indices are arranged properly, with an equal number of covariant and contravariant

indices. Under diffeomorphisms, the determinant yields equal factors of the Jacobian and its

inverse, which cancel each other, ensuring the invariance of the effective action, as expected from

the correct transformation of the functional measure.

At this point, we focus on simplifying the expression. The last term in Eq. (4.15) can be

evaluated using asymptotic expansions in either the curvature or spacetime derivatives. At low

energies, the terms involving these derivatives are less significant compared to the second term,

which contains no curvature or derivative factors and arises solely from the contribution of the

functional measure. Thus, we concentrate on the first line of Eq. (4.15).

Using the matrix determinant lemma 5 , we obtain:

det (𝛿𝐼𝐽 + (𝑎 − 1)𝑔𝐼𝑔𝐽) = 1 + 4(𝑎 − 1), (4.16)

which simplifies Eq. (4.15) to:

Γ[𝑔] =
∫

𝑑4𝑥
√−𝑔

( (𝑅 − 2Λ)
16𝜋𝐺

+ 𝑖Λ′
𝑖

)
, (4.17)

4The operator�, called the d’Alembert operator or wave operator, is defined as� = ∇𝜇∇𝜇 = 1√−𝑔 𝜕𝜇 (
√−𝑔𝑔𝜇𝜈𝜕𝜈),

where ∇𝜇 is the covariant derivative in a curved spacetime, and 𝑔𝜇𝜈 is the metric tensor. In flat Minkowski spacetime,

this simplifies to � = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 , where 𝜂𝜇𝜈 is the Minkowski metric.
5The Matrix Determinant Lemma states that for a square invertible matrix A and vectors u and v, the determinant

of the rank-one updated matrix A + uv𝑇 can be computed as:

det(A + uv𝑇 ) = det(A) · (1 + v𝑇A−1u).

This lemma is useful for simplifying determinant calculations, especially in the context of perturbations in linear

algebra and statistical computations.



46

where Λ𝑖 is defined as:

Λ′
𝑖 =

𝜁

2
log (1 + 4(𝑎 − 1)) . (4.18)

This result shows that, for the DeWitt metric, the functional measure contributes a

complex term to the cosmological constant, Λ𝑖, which can influence the interpretation of the

cosmological constant in quantum gravity.

4.1.3 Hamiltonian with correction

Once we have seen how we can introduce this complex cosmological constant, we can replicate

the development carried out in the previous chapter, so that:

𝑆EH =
1

16𝜋𝐺

∫
𝑑4𝑥

√−𝑔 (𝑅 − 2ΛC) ,

where ΛC = Λ + 𝑖Λ𝑖, with Λ𝑖 = −8𝜋𝐺Λ′
𝑖.

Rewriting in the exterior algebra formalism, we have an analogous expression to (3.17):

𝑆 =
1

32𝜋𝐺

∫
𝜖𝑎𝑏𝑐𝑑

(
𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑐𝑑 − ΛC

6
𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑒𝑐 ∧ 𝑒𝑑

)
. (4.19)

With this, we can separate the first term as in equation (3.18) and obtain:

𝑆 =
1

32𝜋𝐺

∫
𝑀4

(
★(𝑒𝑎 ∧ 𝑒𝑏) ∧ 𝑅𝑎𝑏 + 𝑖𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑎𝑏 − ΛC

6
𝜖𝑎𝑏𝑐𝑑𝑒

𝑎 ∧ 𝑒𝑏 ∧ 𝑒𝑐 ∧ 𝑒𝑑
)
. (4.20)

Having (4.20), we can write our Hamiltonian and action as (according to equations (3.29) and

(3.30)):

𝐻 =
∫
𝑀3

[
𝑁′𝜖𝑖 𝑗 𝑘𝐸𝑎𝑖𝐸𝑏 𝑗

(
𝐹𝑘𝑎𝑏 +

ΛC

3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑖

)
+𝑁𝑎′𝐸𝑏𝑖 𝐹

𝑖
𝑎𝑏 + 𝜆′𝑖

(
𝜕𝑎𝐸

𝑎
𝑖 + (8𝜋𝐺)𝜖𝑖 𝑗 𝑘 𝐴 𝑗

𝑎𝐸
𝑎𝑘
)]
𝑑3𝑥,

(4.21)

𝑆 =
1

32𝜋𝐺

∫
𝑑𝑡

∫
𝑀3

[
	𝐴𝑎𝑖 𝐸𝑖𝑎 + 𝑁′𝜖𝑖 𝑗 𝑘𝐸𝑎𝑖𝐸𝑏 𝑗

(
𝐹𝑘𝑎𝑏 +

ΛC

3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑖

)
+𝑁′𝑎𝐸𝑏𝑖 𝐹

𝑖
𝑎𝑏 + 𝜆′𝑖

(
𝜕𝑎𝐸

𝑎
𝑖 + (8𝜋𝐺)𝜖𝑖 𝑗 𝑘 𝐴 𝑗

𝑎𝐸
𝑎𝑘
)]
𝑑3𝑥.

(4.22)

Finally, using the principle of least action of Hamilton, we find our new Wheeler-DeWitt

Hamiltonian given by:

HWDW = 𝜖𝑖 𝑗 𝑘𝐸𝑎𝑖𝐸𝑏 𝑗
(
𝐹𝑘𝑎𝑏 +

ΛC

3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑘

)
. (4.23)

4.2 SOLUTION OF THE WHEELER-DEWITT EQUATION

Now, we know that the Wheeler-DeWitt Hamiltonian, responsible for the evolution of the wave

function in the gravitational quantization formalism, can be expressed as:
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HWDW = 𝜖𝑖 𝑗 𝑘𝐸𝑎𝑖𝐸𝑏 𝑗
(
𝐹𝑘𝑎𝑏 +

Λ + 𝑖Λ𝑖

3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑘

)
, (4.24)

where ΛC = Λ + 𝑖Λ𝑖 represents the complex cosmological constant, introducing an imaginary

component to explore possible effects of complex gravity in our quantum theory.

To quantize the theory, we promote the field 𝐸𝑎𝑖 to a functional derivative operator.

Thus, we have:

𝐸𝑎𝑖 → −𝜅� 𝛿

𝛿𝐴𝑎𝑖
, (4.25)

where 𝜅 is a normalization factor that preserves the correct dimensionality of the action and

facilitates the transition to the quantum regime. We then substitute 𝐸𝑎𝑖 with the operator above

and apply the Hamiltonian HWDW to the field’s wave function, Ψ[𝐴], to obtain the quantum

Wheeler-DeWitt equation.

By applying the Hamiltonian HWDW on Ψ[𝐴], we perform the substitution of 𝐸𝑎𝑖 with

its quantized expression. Thus, the Hamiltonian becomes:

Ĥ𝑊𝐷𝑊Ψ[𝐴] = (𝜅�)2𝜖𝑖 𝑗 𝑘
𝛿

𝛿𝐴𝑎𝑖

𝛿

𝛿𝐴𝑏 𝑗

(
𝐹𝑘𝑎𝑏 −

𝜅�(Λ + 𝑖Λ𝑖)
3

𝜖𝑎𝑏𝑐
𝛿

𝛿𝐴𝑐𝑘

)
Ψ[𝐴] = 0. (4.26)

The first term 𝜖𝑖 𝑗 𝑘 𝛿2

𝛿𝐴𝑎𝑖𝛿𝐴𝑏 𝑗
𝐹𝑘𝑎𝑏 represents the "quantum curvature" and describes the

interaction of the Yang-Mills field with the conjugate momentum operator to the connection

potential 𝐴𝑎𝑖. The presence of 𝛿2

𝛿𝐴𝑎𝑖𝛿𝐴𝑏 𝑗
indicates a second-order functional dependence on

the connection potential, highlighting the complexity of the phase space of quantum gravity.

The second term introduces the complex cosmological constant ΛC = Λ + 𝑖Λ𝑖, which here

generates a "complex evolution" in the wave function Ψ[𝐴]. This term suggests that Ψ[𝐴] is

not invariant under a temporal evolution defined by the Hamiltonian HWDW, which associates

complex variations to the functional momentum operator.

Additionally, the expression (4.26) is a functional wave equation for Ψ[𝐴], where each

term reflects topological and gravitational contributions. The term with ΛC implies that the wave

function may exhibit wave behavior with complex oscillations or decay, depending on the sign

and value of the real and imaginary parts of Λ.

The equation is geometrically interpreted as a constraint on the curvature induced by

the connection field 𝐴𝑎𝑖, and topologically, it suggests that the ground state may be associated

with vacuum states with non-trivial structure, such as the Chern-Simons vacuum states, which

have direct interpretations in terms of topological invariants. Thus, quantization using Ashtekar

variables enables a description that unites curvature and topology in a quantum gravity scenario.

4.2.0 Self-duality of the field strong

To simplify the equation, we assume that 𝐹𝑘𝑎𝑏 = −ΛC

3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑘 , which leads to the self-duality

of the field strength, an important condition in quantum gravity theories due to symmetry and

topological properties. With this assumption, we rewrite 𝐹𝑘𝑎𝑏 in terms of 𝐸𝑎𝑖, reducing the

dependence on the wave function and allowing identification with an exponential function of the

Chern-Simons functional.

Furthermore, this simplification will serve as an approximation for low energies, as when

the cosmological constant ΛC takes specific values and spacetime is close to a vacuum state with a
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particular symmetry, this approximation becomes a natural simplification, allowing the reduction

of the complex quantum formalism to a system where long-range behavior (gravitational effects

on large scales) is dominant.

Consequently, we can verify the simplification by using (4.25) in

𝐹𝑘𝑎𝑏 = −ΛC

3
𝜖𝑎𝑏𝑐𝐸

𝑐𝑘 , (4.27)

which gives:

𝐹𝑘𝑎𝑏 → −Λ + 𝑖Λ𝑖

3
𝜖𝑎𝑏𝑐

(
−𝜅� 𝛿

𝛿𝐴𝑐𝑘

)
=
𝜅�(Λ + 𝑖Λ𝑖)

3
𝜖𝑎𝑏𝑐

𝛿

𝛿𝐴𝑐𝑘
. (4.28)

Applying (4.28) to (4.26) we find:

(𝜅�)2𝜖𝑖 𝑗 𝑘
𝛿

𝛿𝐴𝑎𝑖

𝛿

𝛿𝐴𝑏 𝑗

(
𝜅�(Λ + 𝑖Λ𝑖)

3
𝜖𝑎𝑏𝑐

𝛿

𝛿𝐴𝑐𝑘
− 𝜅�(Λ + 𝑖Λ𝑖)

3
𝜖𝑎𝑏𝑐

𝛿

𝛿𝐴𝑐𝑘

)
Ψ[𝐴] = 0. (4.29)

Once we consider a non-trivial solution, i.e., 𝛿
𝛿𝐴𝑎𝑖

𝛿
𝛿𝐴𝑏 𝑗

Ψ[𝐴] ≠ 0, we can observe that

our simplification is sufficient to satisfy the equation, and thus, we only need to solve:

𝜖𝑎𝑏𝑐
𝛿Ψ

𝛿𝐴𝑘𝑐
=

3

𝜅�(Λ + 𝑖Λ𝑖)
𝐹𝑘𝑎𝑏Ψ[𝐴] . (4.30)

Here we want to explore how the functional variation of Ψ with respect to the gauge

potential 𝐴 relates to the field strength 𝐹. To simplify this expression, we contract both sides

with 𝜖𝑑𝑎𝑏, so as to eliminate the indices 𝑎 and 𝑏 on the right-hand side. Contracting both sides

with 𝜖𝑑𝑎𝑏, we obtain:

𝜖𝑑𝑎𝑏𝜖
𝑎𝑏𝑐 𝛿Ψ

𝛿𝐴𝑘𝑐
=

3

𝜅�(Λ + 𝑖Λ𝑖)
𝜖𝑑𝑎𝑏𝐹

𝑘
𝑎𝑏Ψ[𝐴] . (4.31)

The contraction with 𝜖𝑑𝑎𝑏 is a common technique in field theory to simplify expressions

involving antisymmetric tensors, such as the structure tensor 𝜖𝑎𝑏𝑐, as it helps reduce the number

of indices and thus simplify the resulting equation. Applying this to the left-hand side we can

use the identity 𝜖𝑑𝑎𝑏𝜖
𝑎𝑏𝑐 = 2𝛿𝑐𝑑 , so we obtain:

2𝛿𝑐𝑑
𝛿Ψ

𝛿𝐴𝑘𝑐
=

3

𝜅�(Λ + 𝑖Λ𝑖)
𝜖𝑑𝑎𝑏𝐹

𝑘
𝑎𝑏Ψ[𝐴] . (4.32)

Isolating the variation of Ψ with respect to 𝐴 and renaming the indices 𝑑 → 𝑎 and

𝑘 → 𝑖 to better represent the final expression:

𝛿Ψ

𝛿𝐴𝑖𝑎
=

3

2𝜅�(Λ + 𝑖Λ𝑖)
𝜖𝑎𝑏𝑐𝐹𝑖𝑏𝑐Ψ[𝐴] . (4.33)

To solve the functional equation for Ψ[𝐴], we will multiply (4.33) by
𝛿𝐴𝑖

𝑎

Ψ[𝐴] and integrate over its

entire domain, thus we have:

∫
𝛿Ψ

Ψ[𝐴] =
∫

3

2𝜅�(Λ + 𝑖Λ𝑖)
𝜖𝑎𝑏𝑐𝐹𝑖𝑏𝑐𝛿𝐴

𝑖
𝑎 =

3

2𝜅�

(
Λ − 𝑖Λ𝑖

Λ2 + Λ2
𝑖

) ∫
𝜖𝑎𝑏𝑐𝐹𝑖𝑏𝑐𝛿𝐴

𝑖
𝑎. (4.34)
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Being in a geometric context, and having defined 𝛿𝐴𝑖𝑎 as a differential 1-form in the

three-dimensional space, we can rewrite this term as (Appendix B):

𝛿𝐴𝑖𝑎 = 𝐴𝑖𝑎𝑑𝑥
𝑎 = 𝐴𝑖𝑎𝑑

3𝑥, (4.35)

where 𝑑𝑥𝑎 is the cotangent basis and is equal to our differential volume element 𝑑3𝑥 constituted

from the 3-form 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3. By using (4.35) in (4.34), we obtain:∫
𝛿Ψ

Ψ[𝐴] =
3

2𝜅�

(
Λ − 𝑖Λ𝑖

Λ2 + Λ2
𝑖

) ∫
𝜖𝑎𝑏𝑐𝐹𝑖𝑏𝑐𝐴

𝑖
𝑎𝑑

3𝑥. (4.36)

Integrating the left-hand side, we obtain:

ln(Ψ[𝐴]) = 3

2𝜅�

(
Λ − 𝑖Λ𝑖

Λ2 + Λ2
𝑖

) ∫
𝜖𝑎𝑏𝑐𝐹𝑖𝑏𝑐𝐴

𝑖
𝑎𝑑

3𝑥. (4.37)

Exponentiating both sides, we get:

Ψ[𝐴] = exp

(
3

2𝜅�

(
Λ − 𝑖Λ𝑖

Λ2 + Λ2
𝑖

) ∫
𝜖𝑎𝑏𝑐𝐹𝑖𝑏𝑐𝐴

𝑖
𝑎𝑑

3𝑥

)
. (4.38)

Expanding the term 𝐹𝑖𝑏𝑐 given by (3.27), we have:

Ψ[𝐴] = exp

(
3

2𝜅�

(
Λ − 𝑖Λ𝑖

Λ2 + Λ2
𝑖

) ∫
𝜖𝑎𝑏𝑐

(
𝜕𝑎𝐴

𝑘
𝑏 𝐴

𝑖
𝑎 − 𝜕𝑏𝐴𝑘𝑎 𝐴𝑖𝑎 + (8𝜋𝐺)𝜖 𝑘𝑖 𝑗 𝐴𝑖𝑎 𝐴 𝑗

𝑏𝐴
𝑖
𝑎

)
𝑑3𝑥

)
. (4.39)

The integrand in the exponential of (4.38) is known as the Chern-Simons Functional.

To highlight this, we simply write this expression in its differential form, thus we have:

Ψ[𝐴] = exp

(
3

2𝜅�

(
Λ − 𝑖Λ𝑖

Λ2 + Λ2
𝑖

) ∫
Tr

(
𝐴 ∧ 𝑑𝐴 + 2

3
𝐴 ∧ 𝐴 ∧ 𝐴

))
, (4.40)

alternatively, we can compact our solution as:

Ψ[𝐴] = exp

(
− 3

2𝜅�

(
Λ − 𝑖Λ𝑖

Λ2 + Λ2
𝑖

) ∫
𝑌CS [𝐴]

)
, (4.41)

where 𝑌CS [𝐴] is the Chern-Simons functional, defined by:

𝑌CS [𝐴] = Tr

(
𝐴 ∧ 𝑑𝐴 + 2

3
𝐴 ∧ 𝐴 ∧ 𝐴

)
= −1

2

(
𝐴𝑖𝑑𝐴𝑖 + 1

3
𝜖𝑖 𝑗 𝑘 𝐴𝑖 𝐴 𝑗 𝐴𝑘

)
(4.42)

Furthermore, we can calculate |Ψ[𝐴] |2 for the obtained state. Looking at (3.24), we can

easily see that the Ashtekar variable is complex, and thus the Chern-Simmons functional (4.42)

is also complex. If it is complex, we can represent it as:

𝑌CS [𝐴] = 𝑅𝑒(𝑌CS [𝐴]) + 𝑖𝐼𝑚(𝑌CS [𝐴]), (4.43)

so the wave function becomes:
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Ψ[𝐴] = exp

(
− 3

2𝜅�

(
Λ − 𝑖Λ𝑖

Λ2 + Λ2
𝑖

) (∫
𝑅𝑒(𝑌CS [𝐴]) + 𝑖

∫
𝐼𝑚(𝑌CS [𝐴])

))
, (4.44)

or, we can separate the real and imaginary parts, obtaining:

Ψ[𝐴] = exp

[
− 3

2𝜅�

(
1

Λ2 + Λ2
𝑖

) (
Λ
∫

𝑅𝑒(𝑌CS [𝐴]) + Λ𝑖

∫
𝐼𝑚(𝑌CS [𝐴])

)]
︸����������������������������������������������������������������������������������︷︷����������������������������������������������������������������������������������︸

𝑅𝑒𝑎𝑙

×

× exp

[
− 3

2𝜅�

(
𝑖

Λ2 + Λ2
𝑖

) (
Λ
∫

𝐼𝑚(𝑌CS [𝐴]) − Λ𝑖

∫
𝑅𝑒(𝑌CS [𝐴])

)]
︸����������������������������������������������������������������������������������︷︷����������������������������������������������������������������������������������︸

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

.

(4.45)

This way, it is possible to verify that your Ψ∗[𝐴] is:

Ψ∗[𝐴] = exp

[
− 3

2𝜅�

(
1

Λ2 + Λ2
𝑖

) (
Λ
∫

𝑅𝑒(𝑌CS [𝐴]) + Λ𝑖

∫
𝐼𝑚(𝑌CS [𝐴])

)]
×

× exp

[
3

2𝜅�

(
𝑖

Λ2 + Λ2
𝑖

) (
Λ
∫

𝐼𝑚(𝑌CS [𝐴]) − Λ𝑖

∫
𝑅𝑒(𝑌CS [𝐴])

)]
.

(4.46)

Finally, the modulus squared of the wave function is given by:

|Ψ[𝐴] |2 = Ψ[𝐴]Ψ∗[𝐴], (4.47)

|Ψ[𝐴] |2 = exp

[
− 3

𝜅�

(
1

Λ2 + Λ2
𝑖

) (
Λ
∫

𝑅𝑒(𝑌CS [𝐴]) + Λ𝑖

∫
𝐼𝑚(𝑌CS [𝐴])

)]
. (4.48)

Once we obtain the solution (4.41) and (4.48), we now need to interpret it physically, seeking

nuances and new interpretive results.

4.3 INTERPRETATIONS

In this section, we explore the mathematical and physical elements of this solution, highlighting

its interpretations and implications.

4.3.1 Mathematical Interpretations of the state

The expression of our state exhibits a complex exponential dependence on a topological functional,

the Chern-Simons functional:

𝑌CS [𝐴] =
∫

Tr

(
𝐴 ∧ 𝑑𝐴 + 2

3
𝐴 ∧ 𝐴 ∧ 𝐴

)
. (4.49)
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This functional is constructed from the self-dual connection 𝐴𝑖𝑎, and describes topological

properties of the three-dimensional space. The dependence of Ψ[𝐴] on 𝑌CS [𝐴] indicates that the

state is sensitive to the topological structure of spacetime but not to the specific metric.

The statement that the state is sensitive to the topological structure of spacetime, but not

to the specific metric, arises from the mathematical properties of the Chern-Simons functional,

𝑌CS [𝐴], and how it is constructed.

The reason for this independence is primarily tied to the fact that it is formulated

exclusively in terms of the connection 𝐴𝑖𝑎 and its exterior derivative, without directly involving

metric components, such as 𝑔𝑎𝑏 or the determinant of the metric
√
𝑔, which are necessary to

define metric properties like distances or angles. Moreover, the functional is invariant under

diffeomorphisms, i.e., transformations that preserve the smoothness of space but not the metric.

This invariance reflects its topological nature, as 𝑌CS [𝐴] measures global properties associated

with the topological class of the connection 𝐴𝑖𝑎, such as the winding number. These global

properties are independent of the choice of local metric, reinforcing the idea that the functional is

related only to the connection structure and the topology of space [50].

In the context of the Ashtekar formalism, the three-dimensional metric ℎ𝑎𝑏 can be

reconstructed from the triadic density variables 𝐸𝑎𝑖 , but the obtained state depends only on the

Chern-Simons functional, which is directly constructed with 𝐴𝑖𝑎. Thus, the metric emerges

only as a secondary entity, while the state remains solely linked to the topological structure of

space. Therefore, the obtained state, being based on 𝑌CS [𝐴], reflects sensitivity to the topological

properties of spacetime, disregarding specific metrics.

4.3.2 Physical Interpretations of the state

The obtained state Ψ[𝐴] is an exact solution of the Wheeler-DeWitt equation in the Ashtekar

formalism, with a non-zero cosmological constant. As we saw earlier, its expression contains

topological terms provided by the Chern-Simons functional, and together with the cosmological

constant, it becomes capable of connecting topological aspects with quantum aspects of gravity.

The first interpretation we can have is that the obtained state describes a universe in

which the connection variables 𝐴𝑖𝑎 capture the curvature of spacetime in a self-similar 6 way.

Specifically, 𝐴𝑖𝑎 are related to the spacetime curvature through the field strength 𝐹𝑖𝑎𝑏, which

encodes how the geometry of spacetime is influenced by gravitational fields. In de Sitter (Λ > 0)

or anti-de Sitter (Λ < 0) spacetimes, these connection variables reflect the constant curvature of

the space, while in the quantum context, it can be interpreted as a gravitational vacuum state.

Furthermore, 𝑌CS [𝐴] measures global topological properties of the space, such as

loops or windings associated with the connection 𝐴𝑖𝑎. This makes our state sensitive to the

topology of spacetime, but independent of local metric properties such as distances and angles.

This independence reflects the mathematical construction of 𝑌CS [𝐴], which is invariant under

diffeomorphisms and does not depend on the metric 𝑔𝑎𝑏.
From a quantum perspective, this state can be understood as a representation of the

"vacuum" in quantum gravity, where the cosmological constant ΛC = Λ + 𝑖Λ𝑖 plays a central

role. The real part, Λ, corresponds to the classical curvature scale of spacetime, which is directly

related to the geometry of the universe. The imaginary part, Λ𝑖, arises from the functional

measure in path integrals and reflects quantum corrections that introduce fluctuations in the

gravitational field at small scales. These quantum corrections can affect the overall properties of

spacetime, potentially influencing phenomena such as the origin of the cosmological constant.

6The term "self-similar" refers to the fact that the connection preserves the symmetries of these constant curvature

spacetimes.
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Furthermore, the presence of Λ𝑖 links to issues in black hole thermodynamics, where imaginary

components in quantum field theory have been suggested as playing a role in understanding black

hole entropy and the emergence of topological phase transitions [51, 52].

In summary, the state offers a quantum description of a spacetime dominated by a

cosmological constant, highlighting its dependence on topology and providing insights into the

interaction between quantum gravity, cosmology, and quantum properties of spacetime.

The state has several physical implications, including:

• Topology and Quantum Gravity: The dependence on the Chern-Simons functional

connects the solution to global properties of spacetime, such as topological invariants.

This suggests that the state can be interpreted as a quantum description of spacetimes

with a positive cosmological constant (Λ > 0).

• Quantum Cosmology: In de Sitter universes, the state is interpreted as the quantum

vacuum. The imaginary component of the cosmological constant (Λ𝑖) may be associated

with quantum effects or topological phases.

• Quantum Phase State: The presence of a complex exponential implies that Ψ[𝐴]
encodes information about the quantum phase of the system, which may be relevant for

topological transitions or non-trivial vacuum states.

Furthermore, we can compare this with traditional quantum mechanics, where we have

the expression:

〈𝑥 |Ψ〉 = Ψ(𝑥), (4.50)

which represents the probability amplitude of finding the system in state Ψ at position 𝑥. When

we take the modulus squared, we obtain the probability density of finding the particle at position

𝑥, given by the expression |〈𝑥 |Ψ〉|2.

In our context, the configuration 𝐴 can be understood as a variable that describes the

geometry or topology of spacetime, and in this case, the expression becomes:

〈𝐴|Ψ〉 = Ψ[𝐴], (4.51)

which represents the probability amplitude of finding the universe in the state Ψ with the

configuration 𝐴. The modulus squared of this amplitude, |〈𝐴|Ψ〉|2, gives us the probability that

the system is associated with this configuration 𝐴, i.e., the probability that the universe is in a

specific cosmic era that can be described by configuration 𝐴.

For example, if the configuration 𝐴 is associated with a specific cosmic era (such as the

inflationary era, radiation era, or matter era), the expression |〈𝐴|Ψ〉|2 gives us the probability

that the universe is in that stage of evolution, given the quantum state Ψ.

In summary, the analogy with traditional quantum mechanics helps us understand that,

just as in quantum systems where we can measure the probabilities of a particle being at positions

𝑥, in quantum gravity the configuration 𝐴 can represent the topology or geometry of spacetime,

and |〈𝐴|Ψ〉|2 gives us the probability that the universe is in the cosmological era associated with

this configuration of 𝐴. This is because, in principle, if we can express a cosmic era through

the Lorentz connection, i.e., the curvature the universe has, as in (3.24), we can calculate the

probability that our state is in this configuration.

Furthermore, the equation (4.48) represents the probability density associated with

the modified Kodama state, incorporating a complex cosmological constant Λ + 𝑖Λ𝑖. Unlike
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the original Kodama state [53], which involved only the real Chern-Simons functional, this

expression includes separate real and imaginary components, each weighted by the corresponding

part of the cosmological constant. This structure indicates that the wave function of the universe

in this formalism depends not only on the curvature determined by the connection field 𝐴 but

also on additional terms that modify the probability distribution.

The exponential dependence on the Chern-Simons functional suggests that field con-

figurations maximizing this functional have a higher probability weight. In particular, when

Λ𝑖 ≠ 0, the wave function includes an oscillatory component associated with the imaginary term.

This behavior contrasts with the original Kodama state, where the probability was a purely real

exponential function. The presence of an imaginary part alters the weight given to different

configurations, modifying the classical limit of the theory.

Another relevant aspect is that the introduction of a nonzeroΛ𝑖 affects the normalizability

of the state. The original Kodama state was known to be non-normalizable in certain contexts,

raising concerns about its physical validity. The presence of an imaginary term in the exponent

may modify the asymptotic behavior of the wave function, potentially influencing the convergence

of the probability measure over the space of connections. This affects the interpretation of the

modified state and its applicability to quantum gravity models.

The structure of this probability density also indicates that the preferred configurations

of the gauge field are determined by a balance between the real and imaginary parts of the

Chern-Simons functional.7 This suggests that the evolution of the system is not governed solely

by real curvature effects but also by additional contributions from the imaginary sector of the

theory. The interplay between these terms could lead to different predictions compared to those

obtained using the original Kodama state.

Finally, the modification introduced by the complex cosmological constant changes

the weighting of different geometries in the quantum description. This affects how classical

and semiclassical limits are recovered, as well as how fluctuations in the cosmological constant

contribute to the probability distribution. The dependence on both the real and imaginary parts

of 𝑌CS [𝐴] implies that the probability measure over connections is influenced by additional

parameters, which may lead to different physical implications when considering quantum

corrections.

4.3.3 Limitations and Challenges

Although our state is mathematically elegant, there are important issues to be considered, similar

to the Kodama state, such as:

• Normalizability: The integral over the configuration spaces of 𝐴𝑖𝑎 may diverge

depending on the type of configuration integrated, raising questions about the quantum

consistency of the state.

• Physical Interpretation of Λ𝑖: Despite its theoretical applications, the imaginary

cosmological constant (Λ𝑖) still lacks a clear experimental or observational interpretation.

7The real part of the Chern-Simons functional, Re(𝑌CS [𝐴]), is associated with classical solutions of the self-dual

connection equations, which are relevant in Ashtekar’s formalism for gravity. The imaginary part, Im(𝑌CS [𝐴]),
arises when considering extensions to a complexified phase space, where additional terms contribute to the weight

of different configurations. The preferred configurations refers to field configurations of the connection 𝐴 that

maximize the probability density |Ψ[𝐴] |2. These are the configurations that contribute most significantly to the path

integral formulation of quantum gravity, as they dominate the probability distribution. In the classical limit, they

correspond to gauge fields that satisfy self-duality conditions, while in the quantum regime, they are influenced by

both the real and imaginary components of the Chern-Simons functional, leading to modifications in how classical

solutions emerge from the quantum state.
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4.3.3 Conclusion

The obtained state provides a formally rich solution to the Wheeler-DeWitt equation in the

Ashtekar formalism, relating quantum gravity to topological properties of spacetime through

the Chern-Simons functional. Despite its potential as a vacuum state in quantum cosmology,

challenges related to normalizability and physical interpretation remain open, making it a topic

of great interest in modern theoretical physics.

The resulting wave function can be interpreted according to the values of the real and

imaginary parts of ΛC:

• If Λi = 0: The wave function Ψ[𝐴] reduces to the pure Kodama state, associated with a

Chern-Simons vacuum state.

• If Λi ≠ 0: The wave function is partially oscillatory and partially exponential, rep-

resenting a vacuum state with moderate decay or growth, depending on the sign and

magnitudes of Λ and Λi.
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5 CONCLUSIONS

In this dissertation, we investigated the solution of the Wheeler-DeWitt equation in the context of

quantum gravity, with an emphasis on the introduction of a complex cosmological constant. This

final chapter aims to synthesize the main contributions of the work, discuss the implications of

the obtained results, highlight limitations, and suggest avenues for future research.

Throughout this chapter, we will address how the advancements proposed in this work

connect with current challenges in quantum gravity and the potential to impact future theories

and observations.

5.1 CONTRIBUTIONS OF THE WORK

The main contribution of this work was solving the Wheeler-DeWitt equation using the Ashtekar

formalism with a complex cosmological constant, emerging from the correction of the functional

measure in the path integral. The key advancements include:

• Incorporation of a complex cosmological constant, offering new perspectives on the

quantum dynamics of spacetime, connecting classical gravity concepts with emerging

quantum properties.

• Exploration of the physical interpretations of the modified solution, including implica-

tions for the origin of the cosmological constant and quantum effects in high-curvature

regions. This study points to the possibility of new phase transitions in spacetime.

These contributions not only expand the understanding of the Wheeler-DeWitt equation

but also open pathways for explorations that may unify the topological structures of spacetime

with the fundamental equations of theoretical physics. The adopted approach also provides a

foundation for studying the implications of quantum effects in astrophysical systems, such as

black holes and the primordial universe.

5.2 INTERPRETATIONS OF THE RESULTS

The results obtained provide insights into quantum gravity and the nature of spacetime. The

introduction of the complex cosmological constant suggests a deep connection between the

topological aspects of spacetime and the quantum description of gravity. Specifically:

• The dependence of the solution on the Chern-Simons functional indicates the relevance

of topological structures for quantum gravity. This approach enables the exploration of

equivalence classes of spacetime at quantum scales.

• Quantum fluctuations of spacetime, associated with the complex cosmological constant,

may offer an interpretation of the universe’s origin and black hole dynamics. Such

phenomena may open pathways to new observables in quantum gravity.

• The role of the imaginary part of the cosmological constant, proportional to �, suggests a

pathway to understanding the transition between classical and quantum regimes, directly

connecting gravity with quantum mechanics at a fundamental scale.
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One of the conceptual contributions is the perception that spacetime is not merely a

passive container for events but also possesses an emergent dynamics intrinsically connected

with quantum degrees of freedom. This view promotes greater integration between classical and

quantum perspectives in the description of the universe.

5.3 STUDY LIMITATIONS

Although this work has achieved interesting results, some limitations must be highlighted:

• Dependence on mathematical approximations, such as the assumption of self-duality

of the force field, limits the generality of the results and requires further studies for

validation in broader contexts.

• The physical interpretation of the complex cosmological constant still lacks more

experimental or phenomenological support, especially in the direct detection of its

effects.

• The proposed solution is restricted to specific cases and does not fully address the

problem of time in quantum gravity. This remains one of the central challenges in the

quest for a unified theory.

Additionally, future reformulations should include more general scenarios, with greater

interactions between matter, energy, and spacetime. This will allow validating the predictions

made here in experimental contexts.

5.4 FUTURE PERSPECTIVES

This work opens several possibilities for future research:

• Exploring the physical implications of the complex cosmological constant in more

realistic cosmological models, including scenarios with matter and radiation. Models

with anisotropies may reveal new quantum dynamics.

• Investigating the role of additional quantum corrections to resolve the problem of time

and obtain more general dynamic solutions. This may include the use of string theory

and emergent gravity theories.

• Developing clearer connections between the topological aspects of the solution and

astrophysical or cosmological observations. This could involve investigations of

primordial black holes and gravitational waves.

• Expanding the study to include effects of quantum field theories in curved spacetimes,

with greater emphasis on computational applications.

5.5 FINAL CONSIDERATIONS

The resolution of the Wheeler-DeWitt equation presented in this dissertation offers an interesting

vantage point to the understanding of quantum gravity. Despite the limitations, the results

obtained highlight the potential of Ashtekar variables and the complex cosmological constant as

tools to unify classical and quantum gravity theories.
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The theoretical impact may extend to other areas of physics, as the methods used in

quantum gravity could offer new approaches to problems in fields like high-energy physics,

quantum field theory, and cosmology. By providing a framework for linking quantum mechanics

and general relativity, it could help explore aspects that are not fully understood within these

areas.
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APPENDIX A – GROUP THEORY - GAUSS CONSTRAINT

In this appendix, we present a detailed study of the Gauss constraint within the Ashtekar

formalism. We start from fundamental concepts such as gauge symmetries and Lie groups, and

develop the tools necessary to understand the definition and role of the Gauss constraint in the

context of quantum gravity.

A.1 INTRODUCTION TO GAUGE SYMMETRIES AND LIE GROUPS

Gravity in the Ashtekar formalism is formulated as a gauge theory with symmetries associated

with the group SU(2). To understand the Gauss constraint, it is first necessary to review the basic

concepts:

A.1.1 Lie Groups and their Algebras

A Lie group is a continuous group that is also a differentiable manifold. The group SU(2) is

defined as the set of 2 × 2 unitary matrices with unit determinant:

SU(2) = {𝑈 ∈ C
2×2 | 𝑈†𝑈 = 𝐼, det(𝑈) = 1}. (A.1)

Its Lie algebra 𝔰𝔲(2) is the space of anti-Hermitian matrices with zero trace:

𝔰𝔲(2) = {𝑋 ∈ C
2×2 | 𝑋† = −𝑋, tr(𝑋) = 0}. (A.2)

The generators of the algebra 𝔰𝔲(2) are denoted by 𝑇𝑖 (with 𝑖 = 1, 2, 3) and satisfy the

commutation relations:

[𝑇𝑖, 𝑇 𝑗 ] = 𝜖𝑖 𝑗𝑘𝑇 𝑘 , (A.3)

where 𝜖
𝑖 𝑗
𝑘 is the Levi-Civita symbol.

A.1.2 Gauge Connections

A gauge connection 𝐴𝑖𝑎 in SU(2) is a mathematical object that allows the definition of parallel

transport and curvature in a gauge theory. It is defined as a 1-form valued in the Lie algebra

𝔰𝔲(2), encoding how the internal degrees of freedom of the system transform under local gauge

transformations.

In three-dimensional space, the gauge connection is expressed as:

𝐴𝑎 = 𝐴𝑖𝑎𝑇
𝑖, (A.4)

where 𝐴𝑖𝑎 are the components of the connection, 𝑎 is the spatial index (running over the spatial

coordinates), and 𝑖 is the internal index associated with the generators 𝑇𝑖 of the Lie algebra 𝔰𝔲(2).
Physically, the gauge connection plays a role analogous to the electromagnetic potential

𝐴𝜇 in electrodynamics, where it defines how charged fields interact with the gauge field. However,

in the case of gravity formulated within the Ashtekar formalism, the gauge group is SU(2)
rather than U(1), reflecting the internal rotational symmetry of the triad formulation. This

reinterpretation of general relativity as a gauge theory, extensively discussed in [44, 26], provides

a natural setting for canonical quantization and loop quantum gravity.
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The field strength 𝐹𝑖𝑎𝑏 associated with the gauge connection, also known as the curvature

of the connection, is given by:

𝐹𝑖𝑎𝑏 = 𝜕𝑎𝐴
𝑖
𝑏 − 𝜕𝑏𝐴𝑖𝑎 + 𝜖𝑖 𝑗 𝑘 𝐴 𝑗

𝑎 𝐴
𝑘
𝑏 . (A.5)

This quantity measures the non-triviality of the gauge field configuration. The first two terms

represent the ordinary curl of the connection, while the last term encodes the non-Abelian

nature of the SU(2) gauge group. Unlike the electromagnetic field strength, which is simply the

antisymmetric derivative of the potential, the presence of the commutator term in the expression

for 𝐹𝑖𝑎𝑏 results in self-interaction of the gauge field, characteristic of non-Abelian gauge theories.

In the context of general relativity reformulated in the Ashtekar variables, the connection

𝐴𝑖𝑎 is related to the spin connection that describes how local frames rotate with respect to each

other in curved space. This allows for a parallel with Yang-Mills gauge theories, where curvature

and parallel transport play fundamental roles, as detailed in [44, 26].

A.1.3 Densitized Triads

The densitized triad 𝐸𝑎𝑖 is a fundamental quantity in the Ashtekar formalism, encoding the spatial

geometry of a given hypersurface. It is related to the usual triad 𝑒𝑎𝑖 by the determinant density of

the spatial metric ℎ:

𝐸𝑎𝑖 =
√
ℎ𝑒𝑎𝑖 . (A.6)

Here, 𝑒𝑎𝑖 are the components of the triad field, which provide a local orthonormal basis for

the spatial slice. The factor
√
ℎ ensures that 𝐸𝑎𝑖 transforms appropriately under coordinate

transformations and has density weight one.

The densitized triad satisfies the key relation:

𝐸𝑎𝑖 𝐸
𝑏
𝑗 𝛿

𝑖 𝑗 = ℎℎ𝑎𝑏, (A.7)

where ℎ𝑎𝑏 is the inverse metric on the three-dimensional hypersurface. This equation demonstrates

how the densitized triad acts as the bridge between the gauge-theoretic description and the

conventional metric formulation of general relativity.

From a physical perspective, the triad 𝑒𝑎𝑖 determines distances and angles in the spatial

manifold, similar to the metric tensor ℎ𝑎𝑏. However, using 𝐸𝑎𝑖 as a fundamental variable provides

a more natural formulation in terms of canonical variables, particularly when transitioning to the

quantum theory.

One of the crucial aspects of using densitized triads is their role in defining the Poisson

bracket structure of general relativity in the Ashtekar formalism. The fundamental phase space

variables are given by the pair (𝐴𝑖𝑎, 𝐸𝑎𝑖 ), satisfying the canonical relation:

{𝐴𝑖𝑎 (𝑥), 𝐸𝑏𝑗 (𝑦)} = 𝛿𝑏𝑎𝛿𝑖𝑗 𝛿3(𝑥 − 𝑦). (A.8)

This structure closely resembles that of a Yang-Mills gauge theory, reinforcing the interpretation

of general relativity as a constrained gauge system. The role of densitized triads in loop quantum

gravity, particularly in their connection with spin networks and discrete quantum geometry, is

extensively discussed in [54, 55].
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A.2 THE GAUSS CONSTRAINT

The Gauss constraint is one of the first-class constraints in the Ashtekar formalism. It is defined

by:

𝐺𝑖 = 𝜕𝑎𝐸
𝑎
𝑖 + 𝜖𝑖 𝑗 𝑘 𝐴 𝑗

𝑎𝐸
𝑎𝑘 . (A.9)

A.2.1 Physical Significance

The Gauss constraint ensures the invariance of the theory under internal gauge transformations

of the group SU(2). For any infinitesimal parameter 𝛼𝑖, a gauge transformation is given by:

𝛿𝐴𝑖𝑎 = 𝐷𝑎𝛼
𝑖, 𝛿𝐸𝑎𝑖 = 𝜖𝑖 𝑗 𝑘𝛼

𝑗𝐸𝑎𝑘 , (A.10)

where 𝐷𝑎𝛼
𝑖 = 𝜕𝑎𝛼

𝑖 + 𝜖𝑖 𝑗 𝑘 𝐴
𝑗
𝑎𝛼

𝑘 is the covariant derivative.

The constraint 𝐺𝑖 ≈ 0 ensures that physical observables are invariant under these

transformations.

A.2.2 Hamiltonian Form

In the Hamiltonian formalism, the Gauss constraint appears as a condition on the allowed states

in the phase space: ∫
Σ
𝜆𝑖𝐺

𝑖 𝑑𝑣 = 0, (A.11)

where 𝜆𝑖 are the associated Lagrange multipliers and Σ is the three-dimensional hypersurface.

A.3 THE GAUSS CONSTRAINT IN THE QUANTUM CONTEXT

In the quantum formulation, the operators corresponding to the triads �̂�𝑎𝑖 and connections �̂�𝑖𝑎
satisfy the commutation relations:

[ �̂�𝑖𝑎 (𝑥), �̂� 𝑏𝑗 (𝑦)] = 𝑖�𝛿𝑏𝑎𝛿𝑖𝑗 𝛿3(𝑥 − 𝑦). (A.12)

The Gauss constraint is implemented as a condition on the quantum states Ψ[𝐴]:

�̂�𝑖Ψ[𝐴] = 0. (A.13)

This implies that Ψ[𝐴] must be invariant under gauge transformations of the group

SU(2).

A.3.0 Final Considerations

The Gauss constraint in the Ashtekar formalism is essential to ensure the consistency of the

gauge theory associated with gravity. It guarantees that physical configurations are invariant

under internal gauge transformations, both in the classical and quantum formulations. In the

context of the Kodama state, this constraint is automatically satisfied, reinforcing its consistency

as a physical solution.



64

APPENDIX B – EXTERIOR ALGEBRA AND DIFFERENTIAL FORMS

This appendix presents exterior algebra, a central formalism for describing geometric theories

such as general relativity. We cover fundamental concepts like differential forms [56], the wedge

product, and the exterior derivative, the calculation of the curvature tensor within this framework,

and the decomposition

𝜖𝑎𝑏𝑐𝑑𝑒𝑒
𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑐𝑑 −→ ★(𝑒𝑎 ∧ 𝑒𝑏) ∧ 𝑅𝑎𝑏 + 𝑖𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑎𝑏.

B.1 FOUNDATIONS OF EXTERIOR ALGEBRA

B.1.1 Differential Forms: Definitions

Differential forms are mathematical objects used to describe physical fields in a covariant manner

[56]. Formally, a 𝑘-form on a manifold 𝑀 is a completely antisymmetric multilinear function:

𝜔 : 𝑇𝑝𝑀 × · · · × 𝑇𝑝𝑀 → R, (B.1)

where𝑇𝑝𝑀 is the tangent space at a point 𝑝 on 𝑀 . The function𝜔maps 𝑘 vector fields 𝑋1, . . . , 𝑋𝑘
to real numbers:

𝜔(𝑋1, . . . , 𝑋𝑘 ) ∈ R. (B.2)

B.1.1.1 Examples of 𝑘-Forms

• A 0-form is a scalar function 𝑓 (𝑥).
• A 1-form is a linear combination of differentials:

𝜔 = 𝜔𝜇 𝑑𝑥
𝜇, (B.3)

where𝜔𝜇 are components and 𝑑𝑥𝜇 are coordinate differentials, representing infinitesimal

displacements in the spacetime coordinates..

• A 2-form is given by:

𝜔 =
1

2
𝜔𝜇𝜈 𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈, (B.4)

with 𝜔𝜇𝜈 = −𝜔𝜈𝜇, reflecting antisymmetry.

B.1.1.2 Properties of Differential Forms

• Antisymmetry: For any vectors 𝑋,𝑌 , we have:

𝜔(𝑋,𝑌 ) = −𝜔(𝑌, 𝑋). (B.5)

• Linearity: For vectors 𝑋,𝑌 and scalars 𝑎, 𝑏:

𝜔(𝑎𝑋 + 𝑏𝑌, 𝑍) = 𝑎𝜔(𝑋, 𝑍) + 𝑏𝜔(𝑌, 𝑍).
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B.1.2 Exterior Product

The exterior product is a bilinear and anticommutative operation, combining 𝑘- and 𝑙-forms into

a (𝑘 + 𝑙)-form. For 𝜔 ∈ Ω𝑘 (𝑀) and 𝜂 ∈ Ω𝑙 (𝑀):

𝜔 ∧ 𝜂 = (−1)𝑘𝑙 𝜂 ∧ 𝜔. (B.6)

Example: If 𝜔 = 𝑑𝑥1 and 𝜂 = 𝑑𝑥2, then:

𝑑𝑥1 ∧ 𝑑𝑥2 = −𝑑𝑥2 ∧ 𝑑𝑥1. (B.7)

B.1.3 Exterior Derivative

The exterior derivative is an operation mapping a 𝑘-form 𝜔 to a (𝑘 + 1)-form 𝑑𝜔. It is defined as:

𝑑𝜔(𝑋0, 𝑋1, . . . , 𝑋𝑘 ) =
𝑘∑
𝑖=0

(−1)𝑖 𝑋𝑖𝜔(𝑋0, . . . , �̂�𝑖, . . . , 𝑋𝑘 ), (B.8)

where �̂�𝑖 indicates that 𝑋𝑖 is omitted.

Properties:

• 𝑑2 = 0 (the exterior derivative applied twice is zero).

• Product Rule: 𝑑 (𝜔 ∧ 𝜂) = (𝑑𝜔) ∧ 𝜂 + (−1)𝑘𝜔 ∧ 𝑑𝜂, where 𝜔 is a 𝑘-form.

B.1.4 Volume Form and the Levi-Civita Symbol

The volume form on an 𝑛-dimensional manifold is a non-degenerate 𝑛-form. In local coordinates,

it is given by:

vol =
√
|𝑔 | 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ · · · ∧ 𝑑𝑥𝑛, (B.9)

where 𝑔 = det(𝑔𝜇𝜈) is the determinant of the metric.

The Levi-Civita symbol 𝜖𝜇1𝜇2...𝜇𝑛 is related to the volume form by:

vol = 𝜖𝜇1𝜇2...𝜇𝑛 𝑑𝑥
𝜇1 ∧ 𝑑𝑥𝜇2 ∧ · · · ∧ 𝑑𝑥𝜇𝑛 . (B.10)

B.2 CURVATURE TENSOR IN EXTERIOR ALGEBRA

In the connection formalism, curvature is represented as a 2-form associated with the connection

operator ∇. The curvature tensor is defined as:

𝑅𝑎𝑏 = 𝑑𝜔𝑎
𝑏 + 𝜔𝑎

𝑐 ∧ 𝜔𝑐
𝑏, (B.11)

where 𝜔𝑎
𝑏 are 1-form connections.

B.2.1 Properties of the Curvature Tensor

• Antisymmetry: 𝑅𝑎𝑏 = −𝑅𝑏𝑎.
• Bianchi Identity: 𝑑𝑅𝑎𝑏 + 𝜔𝑎

𝑐 ∧ 𝑅𝑐𝑏 − 𝑅𝑎𝑐 ∧ 𝜔𝑐
𝑏 = 0.
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B.3 DECOMPOSITION OF 𝜖𝑎𝑏𝑐𝑑𝑒𝑒
𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑐𝑑

The term 𝜖𝑎𝑏𝑐𝑑𝑒𝑒
𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑐𝑑 frequently appears in the description of gravity as a gauge theory.

The mentioned decomposition involves splitting this term into real and imaginary parts [25]:

𝜖𝑎𝑏𝑐𝑑𝑒𝑒
𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑐𝑑 = ★(𝑒𝑎 ∧ 𝑒𝑏) ∧ 𝑅𝑎𝑏 + 𝑖𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑎𝑏. (B.12)

B.3.1 Hodge Star

The Hodge star ★ is an operator mapping 𝑘-forms to (𝑛 − 𝑘)-forms, defined by the manifold’s

metric. In an orthonormal basis:

★(𝑑𝑥𝜇1 ∧ · · · ∧ 𝑑𝑥𝜇𝑘 ) = 1

(𝑛 − 𝑘)! 𝜖
𝜇1···𝜇𝑘

𝜇𝑘+1···𝜇𝑛 𝑑𝑥
𝜇𝑘+1 ∧ · · · ∧ 𝑑𝑥𝜇𝑛 . (B.13)

B.3.2 Physical Interpretation

The decomposition reflects the division between the "electric" and "magnetic" parts of curvature

in terms of differential forms:

• ★(𝑒𝑎 ∧ 𝑒𝑏) ∧ 𝑅𝑎𝑏: Related to oriented volumes.

• 𝑖𝑒𝑎 ∧ 𝑒𝑏 ∧ 𝑅𝑎𝑏: Related to topological complexity.

B.3.2 Final Considerations

Exterior algebra enables a compact and coordinate-independent description of differential geom-

etry, facilitating the analysis of gauge and gravitational theories. The mentioned decomposition

reflects fundamental properties of curvature in the context of modified gravity theories. It also

highlights the relevance of differential forms in the context of quantum gravity, where geometric

and topological aspects play a crucial role in understanding the structure of spacetime. The

separation of terms involving real and imaginary components of the curvature operator suggests

an interplay between the classical and quantum aspects of the theory, offering insights into how

gravity could be unified with other fundamental forces. Furthermore, the use of the Hodge star

operator emphasizes the importance of duality and symmetry in understanding the fundamental

nature of spacetime and curvature.


