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RESUMO

Um grafo G possui um autoespaço simplesmente estruturado se o autoespaço associado a

um autovalor da matriz laplaciana admite uma base cujas entradas pertencem ao conjunto

{−1,0,1}. Dizemos que G é simplesmente estruturado se todos os seus autoespaços forem

simplesmente estruturados. Neste trabalho, determinamos o número mı́nimo de vetores

em uma base de um autoespaço da matriz laplaciana de um grafo threshold conexo,

de modo que essa base seja simplesmente estruturada. Além disso, caracterizamos

todos os grafos threshold conexos com n vértices que são simplesmente estruturados

e cuja base de autovetores da matriz laplaciana admite uma ordenação tal que vetores

não consecutivos sejam ortogonais, os quais chamamos de grafos threshold fracamente

Hadamard diagonalizável (WHD). Isso oferece uma resposta parcial ao problema proposto

em [2] sobre a determinação de quais cografos são WHD. Também identificamos uma

subfamı́lia infinita de grafos em cadeia na qual todos os autovalores inteiros da matriz

laplaciana possuem autoespaços simplesmente estruturados, e mostramos que não faz

sentido estender as definições de grafos WHD para a matriz laplaciana sem sinal.

Palavras-chave: matriz laplaciana, autoespaço simplesmente estruturado, grafos

threshold.



ABSTRACT

A graph G has a simply structured eigenspace if the eigenspace associated with an

eigenvalue of the Laplacian matrix admits a basis with all entries in the set {−1,0,1}.
We say that G is simply structured if all its eigenspaces are simply structured. In

this work, we determine the minimum number of vectors in a basis of an eigenspace

of the Laplacian matrix of a connected threshold graph, such that this basis is simply

structured. Additionally, we characterize all connected threshold graphs with n vertices

that are simply structured and whose Laplacian eigenvector bases admit an ordering in

which non-consecutive vectors are orthogonal, which we call threshold weakly Hadamard

diagonalizable (WHD) graph. This provides a partial answer to the problem posed in

[2] with regard to determining which cographs are WHD. We also identify an infinite

subfamily of chain graphs in which all integer eigenvalues of the Laplacian matrix have

simply structured eigenspaces, and we show that extending the definition of WHD graphs

to the signless Laplacian matrix is not appropriate.

Keywords: Laplacian matrix, simply structured eigenspace, threshold graphs.
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Chapter 1

INTRODUCTION

Eigenspaces of matrices associated with graphs have been studied and shown to describe

interesting properties of the graph topology. This is the main topic of spectral graph theory, which is an

area on the border of linear algebra and graph theory. Eigenvalues can be helpful in understanding the

connectivity of a graph [[15], [17]] and eigenvectors can be used to partition the vertex set of the graph,

among many other results from the literature, such as [3], [8], [28]. Finding an eigenspace of a matrix

related to a graph with a simple and sparse structure has attracted the attention of many researchers

since these structures are easy to handle from the computational point of view.

A basis is simply structured if it consists only of vectors with entries in the set {−1,0,1},
[29]. In particular, we found some works characterizing trees and cographs with a simply structured

eigenspace basis for the null space [[3], [29]]. Some papers are dedicated to a more complex problem:

finding all graphs of a given order such that all eigenspaces bases are simply structured. A pioneer

paper in this area is the recent work of Adm et al. [2], where the authors found many graphs such that

all eigenspaces bases are simply structured. Adm et al. considered the eigenvectors of the Laplacian

matrix with a given constraint, which we will make more transparent ahead. Even more recent papers

on this topic have been published, as we refer to [[22], [26]]. Given the recent development of the topic

and its theoretical importance, we state the following problem that will be addressed throughout this

work.

Problem A: Given an integer n, determine (if there exists) all graphs G with n vertices for which the

eigenspaces bases of the Laplacian matrix of G are simply structured.

Notice that Problem A is very general. Only Laplacian integral graphs can have all simply

structured eigenspaces bases for its Laplacian matrix. This makes clear that this is not an easy problem

since finding integral Laplacian graphs is by itself a difficult problem, and to solve Problem A, we should

find all graphs with simply structured eigenspaces for all eigenvalues among the Laplacian integral

graphs. The main results of this work are related to the answer to Problem A in the threshold family

of graphs. Therefore, our approach involves studying the following three subproblems that would drive

us to answer the more general question.

Problem A.1: Determine the minimum number of vectors in the basis of an eigenspace of Laplacian

12



matrix of a connected threshold graph G such that the eigenspace basis is simply structured;

Problem A.2: Characterize all threshold graphs that are simply structured.

Problem A.3: Characterize all connected threshold graphs that are simply structured and such that the

matrix W , formed by the eigenvectores of L(G), satisfies the condition WTW is a tridiagonal matrix.

To the best of our knowledge none of the problems above is addressed in the literature. A

straightforward result is that connected trees cannot have this special structure in their eigenvectors since

it is well-known that every tree (except the star graph) has its second smallest eigenvalue (the algebraic

connectivity) less than 0.49. Therefore, any connected tree has algebraic connectivity greater than 0

and less than 0.49, and consequently, there are no connected trees with simply structured eigenspaces.

Motivated by these theoretical results, we developed an algorithm that generates threshold

graphs with the desired properties of Problems A.2 and A.3. We also identify an infinite subfamily of

chain graphs in which all integer eigenvalues of the Laplacian matrix have simply structured eigenspaces,

and we show that extending the definition of weakly Hadamard diagonalizable graph (WHD) to the

signless Laplacian matrix is not appropriate.

An interesting question that remains open is to answer Problem A for cographs that are not

threshold. We leave this for future work. Our proof techniques are mainly related to the edge principle

from Merris in [28], as well as on a recent result from our paper A Laplacian eigenbasis for threshold

graphs [24], that states that a star graph and any threshold graph on n vertices share the same Laplacian

eigenbasis. We highlight that some results of Chapter 5 have been published in the Special Matrices

journal, and another paper with the remaining results is in development.

This work is organized as follows. In Chapter 2, we establish some notations and review basic

concepts of linear algebra. We also introduce fundamental notions and terminology of graph theory.

The focus of this work is the study of the Laplacian matrix of a graph and its corresponding eigenvalues

and eigenvectors. In Chapter 3, we provide a brief literature review regarding Hadamard matrices and

weak Hadamard matrices. In Chapter 4, we investigate graphs G for which the Laplacian matrix L can

be diagonalized by a matrix P , where P is either the Hadamard matrix H or a weak Hadamard matrix

W . In Chapters 5 and 6, we present the main results obtained in the thesis.

13



Chapter 2

PRELIMINARIES

In this chapter, we establish some notations and explore well-known connections between

linear algebra, graphs, and matrices that will be useful later. Only real matrices were considered in this

work. We also present the basic notions and terminology of graph theory that are strictly necessary

to understand the rest of the work. We finish this chapter by defining chain graphs and presenting a

family of chain graphs that have a simple structured eigenspace, and it is the first contribution of this

work. The main references used here are [2], [7], [9], [16].

2.1 Graphs and matrices

Throughout the text, we consider G = (V,E) as a finite, simple, undirected, and unweighted

graph of order n = ∣V ∣ and size m = ∣E∣. We define (i, j) ∈ E as an edge of G if i is adjacent to j, where

i, j ∈ V . The graph Gc = (V ,E) obtained from G in such a way that V = V and (i, j) ∈ E when (i, j) ∉ E
is called the graph complement. Let Ni(G) be the set of vertices adjacent to i, and the degree of

i ∈ V is given by di(G) = ∣Ni(G)∣. The graph G is r-regular if di(G) = r for all i. We denote the star,

complete, and path graphs on n vertices as Sn,Kn, and Pn, respectively. The union of G and H,

denoted by G ⊔H, is the graph that has the vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H). For

any connected graph G, we write kG for the union of k copies of G. The join of G and H, denoted by

G ∨H = (Gc ⊔Hc)c, is the graph on n1 + n2 vertices obtained from the union of G and H by adding

new edges from each vertex of G to every vertex of H. A clique in a graph is a set of pairwise adjacent

vertices. A co-clique (or independence set) in a graph is a set of pairwise nonadjacent vertices.

Several matrices are associated with a graph G. Let M ∈ Rn×n be a matrix associated with

G. The determinant det(M − λI) is a polynomial in the (complex) variable λ of degree n and is called

the characteristic polynomial of M . The equation

det(M − λI) = 0

is called the characteristic equation of M . By the Fundamental Theorem of Algebra, the equation

has n complex roots, called the eigenvalues of M . The spectrum of M is the set of all λ ∈ C that are

eigenvalues of M and the spectral radius ρ(M) of A is the maximum modulus of an eigenvalue of M .

The eigenvalues might not all be distinct. The number of times an eigenvalue occurs as a root of the

14



characteristic equation is called the algebraic multiplicity of the eigenvalue. If λ is an eigenvalue of

M , we denote the eigenspace associated with λ by

EM(λ) = {x ∈ Rn, x ≠ 0 ∶Mx = λx};
the vectors x ∈ EM(λ) are called eigenvectors of M and (λ,x) is an eigenpair for M . The geometric

multiplicity of the eigenvalue λ of M is the dimension of the eigenspace EM(λ). The geometric

multiplicity of an eigenvalue does not exceed its algebraic multiplicity.

If M is a symmetric matrix, then its eigenvalues are real, and according to the spectral

theorem, there exists an orthogonal matrix P such that

PAPT = diag(λ1, λ2, . . . , λn),
and we say that M is diagonalized by P . We are particularly interested when P is a matrix whose

entries are only in {−1,0,1}. If M is symmetric, algebraic, and geometric multiplicities of any eigenvalue

coincide. In addition, the rank of the matrix equals the number of nonzero eigenvalues, counting

multiplicities.

The symmetry of a graph reflects in the matrix M associated with G and its eigenvectors and

eigenvalues since we can obtain a convenient partition of the vertex set of G. Let D ∶ V1 ∪ V2 . . . ∪ Vk be

a partition of V . Then the matrix M can be block partitioned as [Mij]k×k, where Mij is the submatrix

of M whose rows and columns are induced by Vi and Vj , respectively. The partition D is called an

equitable partition if the row-sum of each block is constant. The matrix Bk = [bij], where bij is the

row-sum of the block Mij , is called the quotient matrix or divisor matrix of M with respect to D.

The next result will be used later and implies that all eigenvalues of Bk are also eigenvalues of M .

Theorem 2.1 ([12], Theorem 3.9.5). Let M be a real symmetric matrix and D be an equitable partition

of M with quotient matrix Bk. Then, the characteristic polynomial of Bk divides the characteristic

polynomial of M .

We will focus on the cases when M is one of the following: the adjacency, the Laplacian, or the

signless Laplacian matrices of a graph. The adjacency matrix A(G) has entries aij such that aij = 1

if {i, j} ∈ E, and aij = 0 otherwise. Based on the degrees of the vertices, we define the degree matrix

D(G) where each diagonal entry is equals the degree of vertex i, that is, D(G) = diag(d1(G), . . . , dn(G)).
The Laplacian and the signless Laplacian matrix of G are given by

L(G) =D(G) −A(G) and Q(G) =D(G) +A(G),
respectively. Most of the time in this text, we will work with the Laplacian L(G) of a graph. The

celebrated Perron-Frobenius theorem is an important tool of our work.

15



Theorem 2.2 ([21], Perron-Frobenius). Let M ∈ Rn×n with n ≥ 2 be irreducible and nonnegative. Let

ρ(M) be the spectral radius of M. Then

(i) ρ(M) > 0;

(ii) ρ(M) is an eigenvalue of M with algebraic multiplicity 1;

(iii) there is a unique real positive vector x = [xi] such that Mx = ρ(M)x and x1 +⋯+ xn = 1;

(iv) there is a unique real positive vector y = [yi] such that yTM = ρ(M)yT and x1y1 +⋯+ xnyn = 1.

Theorem 2.2 states that the spectral radius of a matrix M associated with a connected graph

equals its largest eigenvalue, and the corresponding eigenvector (Perron vector) has only positive entries.

We know that the Perron vector has all entries equal to one for regular graphs. Notice that the

Perron-Frobenius theorem does not work for the Laplacian matrix of a graph since it has negative

entries.

The Laplacian spectrum of G is defined as

specL(G) = (μ1, μ2, . . . , μn−1, μn),
where μ1 ≥ ⋯ ≥ μn−1 ≥ μn are the eigenvalues of L(G) arranged in non-increasing order. Some elementary

properties of the Laplacian are summarized next.

Lemma 2.1 ([7], Lemma 4.3). Let G be a graph with V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}. Then
the following assertions hold.

(i) L(G) is a symmetric, positive semidefinite matrix.

(ii) The rank of L(G) equals n − k, where k is the number of connected components of G.

(iii) For any vector x ∈ Rn,

xTL(G)x = ∑
i∼j

(xi − xj)2.
(iv) The row and the column sums of L(G) are zero.

(v) The cofactors of any two elements of L(G) are equal.

It follows immediately from (iv) that 0 is an eigenvalue of L(G), with the corresponding

eigenvector �n, where �n denotes the n-entry all-ones vector. Furthermore, the number of connected

components of G equals the multiplicity of the eigenvalue 0.

Example 2.1. For the graphs G1 and G2 in Figure 2.1, we have spectL(G1) = (6,4,4,4,2,2,2,0) and

spectL(G2) = (4,3,3,3,1,0,0,0). Note that the number of connected components of each graph coincides

exactly with the multiplicity of the eigenvalue 0, which is the eigenvalue for both.

16



Figure 2.1: Graphs G1 and G2.

The second smallest eigenvalue of L(G), μn−1, is called the algebraic connectivity of graph

G and is denoted by α(G), or simply α. If G is connected, then μn = 0 is a simple eigenvalue of L(G),
that is, it has algebraic multiplicity 1 and in that case α > 0. Conversely if α = 0, then G is disconnected.

The complete graph Kn which may be regarded as “highly connected” has μ1 = ⋯ = μn−1 = n.

A graph is called Laplacian integral if the eigenvalues of L(G) are all integers. Table 2.1

presents the Laplacian spectrum of certain graphs.

Graph Notation Laplacian spectrum

Complete graph Kn (n(n−1),0(1))
Complement graph Gc (n − μn−1, . . . , n − μ1,0)

Cycle Cn (2 − 2 cos (2πj
n
); j = 1, . . . , n)

Complete bipartite graph Kn1,n2 ((n1 + n2)(1), n
(n2−1)
1 , n

(n1−1)
2 ,0(1))

Join of graphs G1 and G2 G1 ∨G2 (n1 + n2, λ2 + n2, . . . , λn1 + n2,

μ2 + n1, . . . , μn2 + n1,0)
Table 2.1: Laplacian spectrum of certain types of graphs

Let μ be an eigenvalue of L(G). If EL(μ) admits a simply structured basis B, that is, a basis

where all vectors of the basis have entries only from the set {−1,0,1}, we say that EL(μ) is simply

structured. The vectors in B are quasi-orthogonal if there is an ordering of these vectors such

that non-consecutive vectors are orthogonal. An eigenbasis of L(G) is a basis of Rn composed of

eigenvectors of L(G). A graph G is simply structured if L(G) has a simply structured eigenbasis.

We will denote the eigenvalues of signless Laplacian matrix Q(G) by q1 ≥ q2 ≥ ⋯ ≥ qn. Note

that Q(G) is also positive semidefinite, but it is not necessarily singular. This only happens when G

is a bipartite graph ([16], Proposition 5.9). Furthermore, when G is a bipartite graph, the spectrum of

the Laplacian matrix is equal to the spectrum of the signless Laplacian matrix, that is, μi = qi, for all

i ∈ {1, . . . , n} ([16], Proposition 5.10). For regular graphs, the spectrum of the signless Laplacian matrix

can be determined either from the spectrum of the adjacency matrix or the Laplacian matrix. In this

case, all the theory developed for adjacency and Laplacian matrices is also valid for signless Laplacian
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matrix. We still have that the degrees and the number of connected components of a regular graph can

be determined of the characteristic polynomial of the signless Laplacian matrix of the graph, according

to next proposition.

Proposition 2.1 ([16], Proposition 5.12). Let G be a graph with n vertices and m edges. Then G is

regular if and only if nq1 = 4m and, in this case, the degrees of its vertices are equal to
q1
2

and the

number of components is the multiplicity of q1.

The following characterizations for regular graphs are also very important.

Proposition 2.2 ([13], Proposition 2.3.2). A graph G is regular if and only if its signless Laplacian

has an eigenvector all of whose coordinates are equal to 1.

Proposition 2.3. If G is r-regular graph, then L(G) and Q(G) share the same eigenvectors.

Proof. Let (μ,x) is an eigenpair for L(G), that is, L(G)x = μx. Note that as L(G) =D(G) −A(G), we
obtain Q(G) =D(G)+A(G) = 2D(G)−L(G) and therefore, the eigenvalues of L(G) and the eigenvalues

of Q(G) satisfy the following relation q = 2r − μ, where r is the degree of regularity of the graph G.

Then,

Q(G)x = (2D(G) −L(G))x = 2D(G)x −L(G)x = 2rx − μx = (2r − μ)x = qx

Therefore, (q,x) is an eigenpair for Q(G).

2.2 Operations on graphs and spectral properties

In this section, we define some operations on graphs that will be useful later. Consider graphs

G and H with vertex sets V (G) = {u1, u2, . . . , un1} and V (H) = {v1, v2, . . . , vn2}. Let λ1, λ2, . . . , λn1 be

the eigenvalues of L(G), and μ1, μ2, . . . , μn2 be the eigenvalues of L(H). Further assume that ui is an

eigenvector of L(G) for eigenvalue λi, and vj an eigenvector of L(H) corresponding to the eigenvalue

μj .

1. The Cartesian product of G and H, denoted by G◻H, is the graph with vertex set V (G)×V (H)
and

(ui, vj) ∼ (ur, vs) in G ◻H ⇐⇒
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ui = ur and vj ∼ vs in H

or

vj = vs and ui ∼ ur in G

2. The direct product (or tensor product or Kronecker product) of G and H, denoted by

G ×H, is the graph with vertex set V (G) × V (H) and

(ui, vj) ∼ (ur, vs) in G ×H ⇐⇒ ui ∼ ur in G and vj ∼ vs in H
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3. The strong product of G and H, denoted by G⊠H, is the graph with vertex set V (G) × V (H)
such that

(ui, vj) ∼ (ur, vs) in G ⊠H ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui = ur and vj ∼ vs in H

or

vj = vs and ui ∼ ur in G

or

ui ∼ ur in G and vj ∼ vs in H

Note that the strong product is the union of the Cartesian and the tensor product, i.e., Kn1⊠Kn2 =
Kn1n2 .

4. The lexicographic product of G with H, denoted by G ○ H, is the graph with vertex set

V (G) × V (H) such that

(ui, vj) ∼ (ur, vs) in G ○H ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui ∼ ur in G and vj = vs

or

ui ∼ ur in G and vj ∼ vs in H

or

ui ∼ ur in G and vj /∼ vs in H

or

ui = ur and vj ∼ vs in H

⇐⇒
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ui ∼ ur in G

or

ui = ur and vj ∼ vs in H

Let ⋆ ∈ {◻,×,⊠, ○}, where ◻ denotes the Cartesian product, × the direct product, ⊠ the strong

product, and ○ the lexicographic product. For each of these products, if the graphs G and H are regular

of regularities s and r, respectively, then the product G ⋆ H is also regular, and its degree can be

easily calculated. Moreover, the eigenvectors of the Laplacian matrix of each of these products can be

computed from the eigenvectors of the Laplacian matrix of the constituent graphs. We have:

Graph Notation Laplacian spectrum

Cartesian product G ◻H λi + μj ; 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

Direct product G ×H rλi + sμj − λiμj ; 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

Strong product G ⊠H (1 + r)λi + (1 + s)μj − λiμj ; 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

Lexicograph product G ○H λin2, μj + duin2; 1 ≤ i ≤ n1, 2 ≤ j ≤ n2

Table 2.2: Laplacian spectrum of graph products

5. The operation of adding or removing an edge e = {ui, uj} to or from a graph G is called edge

addition or edge removal, respectively. In edge addition, if e is not already an edge in G, the
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resulting graph G′ = G+e will include e along with all the original edges of G. Conversely, in edge

removal, if e is an existing edge in G, the resulting graph G′ = G ∖ e will exclude e but retain all

the other original edges of G. Let G =Kn ∖ pK2 be a complete graph minus a matching of size p.

The Laplacian specrtum of G is specL(G) = (n(n−p−1), (n − 2)(p),0(1)).
The Interlacing Theorem for the Laplacian Matrix provides a relationship between the eigenvalues

of a graph and the eigenvalues of the graph obtained by adding an edge.

Theorem 2.3 ([16], Theorem 4.1). Let G = (V,E) be a graph with n vertices, and let e ∈ E. If G′ = G+e,
then

μj(G) ≤ μj(G′) ≤ μj+1(G), for all j ∈ {1,2, . . . , n − 1}. (2.1)

Noting that tr(L(G)) = 2m, we obtain
n∑
i=1

(μi(G′) − μi(G)) = 2m + 2 − 2m = 2. Therefore, at

least one of the inequalities in (2.1) must be strict.

The next results establish that an appropriate change in a graph G by adding or removing

edges yields a new graph G′ such that an eigenvector x to L(G) is also still an eigenvector to L(G′) under
some conditions. In [28], Merris proved that this is true when the entries xi and xj of the eigenvector

x corresponding to the edge {i, j} ∈ E are equal.

Theorem 2.4 ([28], Edge Principle). Let μ be an eigenvalue of L(G) associated with eigenvector x. If

xi = xj, then μ is an eigenvalue of L(G′) associated with x, where G′ is obtained from G by deleting or

adding an edge e = {i, j} depending on whether or not it is an edge of G.

The results of [24] show that we can even go beyond the Edge Principle. The authors show

that it is possible to add or remove an edge {i, j} from G where the corresponding entries xi and xj

are not equal and still guarantee that x is also an eigenvector to the Laplacian matrix of the new graph

G′. It turns out that the results stated in Lemmas 2.2 and 2.3 are very important tools for proving the

main results presented in Chapter 5

Lemma 2.2 ([24], Lemma 2.2). Let G = (V,E) be a graph on n vertices and x ∈ Rn such that x =
(x1,x2, . . . ,xk,0, . . . ,0) is an eigenvector of L(G) associated with eigenvalue μ, in a way that

k∑
l=1

xl = 0

and xl ≠ 0, for all l ∈ {1, . . . , k}. Take the vertex partition W1 = {1, . . . , k} and W2 = {k + 1, . . . , n}. If

i ∈W2 and el = {i, l} ∉ E, for l = 1, . . . , k, then x is an eigenvector of L(G′), where G′ = G + e1 +⋯+ ek,

associated with eigenvalue μ + 1.

Lemma 2.3 ([24], Lemma 2.3). Let G = (V,E) be a graph on n vertices and suppose that x = xn−k =
(1,1, . . . ,1,−n + k,0,0, . . . ,0�������������������������������������� 

k−1

) is an eigenvector of L(G) associated with eigenvalue μ. Let G′ = G + e1 +
e2 + ⋯ + en−k, where el = {l, n − k + 1} ∉ E(G), for l = 1, . . . , n − k. Then, x is an eigenvector of L(G′)
associated with eigenvalue μ + (n − k) + 1.
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Notice that the previous results hold for any graph, but we will usually apply them to the

family of threshold graphs.

2.3 Cograph and threshold graphs

The family of complement reducible graphs (or cographs for short) is much studied. The

literature presents several definitions that characterize these graphs, for example, [1], [6], [7] and [11].

One way to define these graphs is through a recursive process.

Definition 2.1. A graph G is called a cograph if it is constructed using the following rules:

1) K1 is a cograph.

2) The union of two cographs is a cograph.

3) The complement of a cograph is a cograph.

Note that Definition 2.1 provides a recursive procedure for constructing a cograph. The

operations of disjoint union and join can also be used to build cographs. The rule number 3) in

Definition 2.1 can be replaced by

3′) The join of two cographs is a cograph.

Equivalently, the authors in [11] showed that:

Proposition 2.4. A graph G is a cograph if and only if G does not contain P4, as an induced subgraph.

It follows that if G is a cograph, then every induced subgraph of G is a cograph, and every

component of G is a cograph. Examples of cographs include every complete graph Kn is a cograph;

every complete bipartite graph Kn1,n2 is a cograph; no cycle of length greater than four is a cograph,

as Cn with n ≥ 5 has an induced P4.

Let G1 and G2 be two cographs on n1 and n2 vertices, respectively. Let 0 = λ1 ≤ λ2 ≤ ⋯ ≤ λn1

be the eigenvalues of L(G1) and 0 = μ1 ≤ μ2 ≤ ⋯ ≤ μn2 be the eigenvalues of L(G2). It follows from

Definition 2.1 that any connected cograph can be written as G1∨G2, and any disconnected cograph can

be written as G1⊔G2. Therefore, the spectrum of connected and disconnected cographs are, respectively:

spectL(G1 ∨G2) = (n1 + n2, λ2 + n2, . . . , λn1 + n2, μ2 + n1, μn2 + n1, 0) and

spectL(G1 ⊔G2) = (λ2, . . . , λn1 , μ2, . . . , μn2 , 0, 0)
Thus the eigenvalues of cographs are always integers, that is, cographs are Laplacian integral.

Note that there are other Laplacian integral graphs that are not cographs. For example, the

graph G = K2 ◻K3 (see Figure 2.2) is a Laplacian integral graph, as spectL(G) = (5,5,3,3,2,0), but
21



G is not a cograph since it contains an induced subgraph (for example, the 4-vertex path given by

(1,4) ∼ (2,4) ∼ (2,5) ∼ (1,5)) isomorphic to P4.

Figure 2.2: Cartesian product of G =K2 and H =K3.

Although some Laplacian integral graphs are not cographs, we have the following characterization

of cographs.

Proposition 2.5 ([1], Proposition 2.12). A graph G is a cograph if and only if every induced subgraph

of G is Laplacian integral.

The authors state in [8] that the eigenvectors of the Laplacian matrix of a cograph can be

chosen to have a simple structure, with most entries being zero.

Theorem 2.5 ([8], Theorem 11). Let G be a cograph. Then there exists a basis B of eigenvectors of

L(G) such that each vector of B has at most two distinct nonzero entries.

This theorem is important because it provides a characterization of the eigenvectors of cographs,

which simplifies their analysis and interpretation. The converse of Theorem 2.5 fails in general. For

example, the graph K3 ◻ K2 (see Figure 2.2) has a basis B = {(1,1,1,−1,−1,−1), (1,1,1,1,1,1),
(1,0,−1,1,0,−1), (0,1,−1,1,−1,0), (1,0,−1,−1,0,1), (0,1,−1,−1,1,0)} of eigenvectors of L(G) such

that each vector in the basis B has at most two distinct nonzero entries, but K3 ◻K2 is not a cograph

since it contains an induced subgraph isomorphic to P4. More generally, we have:

Lemma 2.4 ([8], Lemma 12). If G is a connected graph with n ≥ 3 vertices, then G ◻ K2 is not a

cograph.

There are several different ways to define a threshold graph, as can be seen in [25]. We use the

characterization by a binary generating sequence as follows.

Definition 2.2. Given a sequence {bi} of 0′s and 1′s with n elements, the threshold graph associated

with the binary sequence {bi} is the graph on n vertices constructed recursively, starting with an empty

graph, and for i = 1, . . . , n

(i) add the isolated vertex i if bi = 0,
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(ii) add the vertex i adjacent to all vertices with label less than i if bi = 1.

A vertex i is an isolated vertex if bi = 0 and a dominating vertex if bi = 1. For example, the

star K1,n−1 of order n is a threshold graph with exactly one dominating vertex and can be represented

by the binary sequence (0,0, . . . ,0,1). The graphs G1 and G2 in Figure 2.3 are also threshold graphs

and can be represented by the binary sequences (0,0,1,1,1) and (0,0,0,1,1,0), respectively.

Figure 2.3: Threshold graphs G1 and G2 with 5 and 6 vertices, respectively.

In the case where G is a connected threshold graph, by Definition 2.2, the last entry in the

binary sequence representing it will be equal to 1, meaning the last vertex will necessarily be a dominating

vertex. As a result, all connected threshold graphs have a diameter of at most 2. Furthermore, every

connected threshold graph G on n vertices has a star Sn as a subgraph. In the case where G is a

disconnected threshold graph, by Definition 2.2, for some vertex i, we have bi = 1 and bj = 0 for all j > i.

Thus, every disconnected threshold graph on n vertices can be constructed by taking the disjoint union

of a star graph of order n − p with pK1, where p is the number of isolated vertices in G. In this way, G

will have p + 1 connected components.

Threshold graphs also have a minimal forbidden subgraph characterization, as demonstrated

by the authors in [10].

Proposition 2.6. A graph G is a threshold graph if and only if G does not contain P4, C4 or 2K2 as

induced subgraphs.

Note that this characterization implies that every threshold is a cograph. However, the

converse is not true. For example, the cycle C4 is a cograph but not a threshold graph.

Since cographs are Laplacian integral, threshold graphs are also integral. The computation of

the eigenvalues of the Laplacian matrix of threshold graphs, based on their vertex degrees, is well-known

[27]. More specifically, let G be a threshold graph on n vertices defined by the binary sequence

(b1, b2, . . . , bn), with degree sequence d = (d1, d2, . . . , dn), where d1 ≥ d2 ≥ . . . ≥ dn, and tr(G) = n∑
i=1

bi.
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Then, the eigenvalues of L(G), denoted as μi for each i ∈ {1,2, . . . , n}, are given by:

μi =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

di + 1, if 1 ≤ i ≤ tr(G),
di+1, if tr(G) + 1 ≤ i ≤ n − 1,

0, if i = n,

(2.2)

It is worth highlighting that the threshold graphs are determined by the Laplacian spectrum; that is,

no two threshold graphs on n vertices have the same spectrum unless they are isomorphic.

2.4 Chain graphs

Several authors have studied the eigenvalues of the Laplacian matrix of chain graphs, among

which we can mention the recent work by Milica et al. [5], but little has been explored in the literature

regarding the eigenspaces of this family of graphs. Our interest in chain graphs is related to the fact

that any threshold graph can be obtained from a chain graph. It is known that every chain graph is

bipartite, with parts denoted as A and B, and the neighbors of vertices in each partition form a chain

with respect to inclusion. Parts A and B are organized into h non-empty cells denoted by A = ⋃h
i=1Ui

and B = ⋃h
i=1 Vi. The edges present in the chain graph are such that all vertices in Us are connected to

all vertices in ⋃h+1−s
k=1 Vk, for 1 ≤ s ≤ h. From this connection structure, it is possible to observe that all

vertices in a cell Ui share the same set of neighbors, as do the vertices in Vi for every i = 1, . . . , h. This fact

means that all vertices within the same cell have the same neighbors; that is, they are twin vertices.

We denote the chain graph G as C(m1,m2, . . . ,mh;n1, n2, . . . , nh), where mi = ∣Ui∣ and ni = ∣Vi∣, for
1 ≤ i ≤ h. A general idea of a chain graph is presented in Figure 2.4. Since C(m1, . . . ,mh;n1, . . . , nh) and
C(n1, n2, . . . , nh;m1,m2, . . . ,mh) are isomorphic, in all forthcoming considerations we will only mention

one of the corresponding isomorphic pair.

Figure 2.4: The chain graph G = C(m1,m2, . . . ,mh;n1, n2, . . . , nh).
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For i = 1, . . . , h the degree of each vertex in Ui is equal to

di = h+1−i∑
k=1

nk,

while each vertex of Vi has degree equal to

d∗i = h+1−i∑
k=1

mk.

By using this structure of a chain graph, it is possible to prove that any threshold graph can be obtained

from a chain graph by adding all edges to one co-clique or, in the other direction, by deleting edges

from the clique [5]. Chain graphs can also be characterized by forbidden subgraphs: they are precisely

the graphs that are {C3, C5,2K2}-free.
The subsets Ui and Vi of V (G) induce an equitable partition of the Laplacian matrix of

the chain graph. We denote by D(G) the quotient matrix of order 2h corresponding to the partition

D ∶ (⋃h
i=1Ui) ∪ (⋃h

i=1 Vi), i.e.,

D(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 −n1 ⋯ −nh−1 −nh

d2 −n1 ⋯ −nh−1

⋱ ⋮ ⋰
dh −n1

−m1 ⋯ −mh−1 −mh d∗1

−m1 ⋯ −mh−1 d∗2

⋮ ⋰ ⋱
−m1 d∗h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.3)

The following result gives a formula for the characteristic polynomial of the Laplacian matrix

of a chain graph.

Theorem 2.6 ([5], Lemma 3.4). Let G = C(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a chain graph, di =
h+1−i∑
k=1

nk, d
∗
i = h+1−i∑

k=1

mk, pj = (d∗j −λ)(λ− dh+1−j), for j = 1 . . . h, and D(G) its quotient matrix defined in

(2.3). Then the characteristic Laplacian polynomial φ(L(G), λ) of G is given by

φ(L(G), λ) = h∏
i=1

(λ − di)mi−1(λ − d∗i )ni−1φ(D(G), λ),
where

φ(D(G), λ) = (−1)hλ h∏
j=1

pj
⎛
⎝
n1

p1
+ λ

h∑
j=2

nj(λ − dh+2−j)pj + 1

λ − d1

⎞
⎠ ,

denotes the characteristic polynomial of D(G).
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The interchange of the roles of ni
′s and mi

′s and di
′s and d∗i

′s yields another formula for the

characteristic polynomial of D(G), that is,
φ(D(G), λ) = (−1)hλ h∏

j=1

pj
⎛
⎝
m1

ph
+ λ

h∑
j=2

mj(λ − d∗h+2−j)ph+1−j + 1

λ − d∗1

⎞
⎠ .

From Theorem 2.6, every eigenvalue of D(G) is an eigenvalue to L(G). The following theorem

collects some properties of the eigenvalues of chain graphs.

Theorem 2.7 ([4], [5]). Let G = C(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a chain graph, di = h+1−i∑
k=1

nk,

d∗i = h+1−i∑
k=1

mk and D(G) its divisor matrix defined in (2.3). The following items hold true.

(i) all the eigenvalues of the divisor matrix D(G) are simple. Furthermore, 0 is always an eigenvalue

of D(G).
(ii) If mi ≥ 2, then di is an L-eigenvalue with multiplicity at least mi − 1 and the corresponding

eigenvectors of L(G) have the form

xk = (0, . . . , 0, 1�� 
k−th

coordinate

, 0, . . . , 0, −1�� 
k+i−th

coordinate

, 0, . . . , 0)T , (2.4)

for 1 ≤ k ≤ mi − 1, as it can be seen at [14]. Similarly for ni ≥ 2, with d∗i in the role of di. The

remaining 2h L-eigenvalues are the eigenvalues of D(G).
(iii) A vertex degree d is an eigenvalue of D(G) if and only if d = di = d∗j , for some i, j ∈ {1,2, . . . , h}

such that i + j ∉ {h + 1, h + 2}.
We obtain the first result of this work by determining G = C(m1,m2, . . . ,mh;n1, n2, . . . , nh)

in which all integer eigenvalues of L(G) have simply structured eigenspaces. Specifically, we aim to

construct chain graphs of order n such that d = di = d∗j is not an eigenvalue of the quotient matrix

D(G), because if d is an eigenvalue of the quotient matrix D(G) defined in (2.3), we cannot ensure that

the corresponding eigenvector will have all its entries in {−1,0,1}. Thus, according to condition (iii)
of Theorem 2.7, we permit d = di = d∗j if and only if i + j ∈ {h + 1, h + 2} ensuring that d = di = d∗j will

not be an eigenvalue of D(G). We have that if i = 1 and j = h, then i + j ∈ {h + 1, h + 2}. Thus, d1 = d∗h

if and only if
h∑

k=1

nk = m1. In this case, m2, . . . ,mh can be any natural numbers greater than or equal

to 2. Similarly, if i = h and j = 1, then i + j ∈ {h + 1, h + 2}, and dh = d∗1 if and only if n1 = h∑
k=1

mk,

where n2, . . . , nh can be any natural numbers greater than or equal to 2. As the sequences (m1, . . . ,mh)
and (n1, . . . , nh) correspond to the sizes of cells U1, . . . , Uh and V1, . . . , Vh, respectively, we obtain an

infinite subfamily of chain graphs G in which all integer eigenvalues of L(G) have simply structured

eigenspaces.
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Proposition 2.7. Let G = C(m1, . . . ,mh;n1, . . . , nh) be a chain graph such that mi ≥ 2 and ni ≥ 2, for

i ∈ {1, . . . , h}. If m1 = h∑
k=1

nk, then all integer eigenvalues of L(G) have simply structured eigenspaces.

Proof. Given that mi ≥ 2 and ni ≥ 2, for i = 1, . . . , h, we apply item (ii) of Theorem 2.7 to conclude that

di and d∗i are eigenvalues of L(G) with multiplicity at least mi−1 and ni−1, respectively. Moreover, the

corresponding eigenvectors given in (2.4) have all their entries in {−1,0,1}. Let D(G) be the quotient

matrix of L(G) with respect to the partition D ∶ (⋃h
i=1Ui)∪(⋃h

i=1 Vi). By items (i) and (iii) of Theorem
2.7, all eigenvalues of D(G) are simple, and a vertex degree d is an eigenvalue of D(G) if and only if

d = di = d∗j for some i, j ∈ {1,2, . . . , h} such that i + j ∉ {h + 1, h + 2}. By hypothesis, we have d∗h = d1.

In this case, i + j ∈ {h + 1, h + 2}, and therefore by item (iii) of Theorem 2.7, d = d∗h = d1 will not be an

eigenvalue of D(G). Consequently, all integer eigenvalues of L(G) have simply structured eigenspaces.

From Proposition 2.7, we can prove that if we exchange m1 = h∑
k=1

nk for n1 = h∑
k=1

mk the same

result is valid.
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Chapter 3

CONSTRUCTIONS AND PROPERTIES OF HADAMARD

AND WEAK HADAMARD MATRICES

In this chapter, we present a short literature review of the Hadamard matrix, denoted by H,

and a weak Hadamard matrix denoted by W . Those matrices have entries only in a specific set S and

satisfying an additional property. More specifically:

1. S = {−1,1} and H satisfies HHT = nI.

2. S = {−1,0,1} and W satisfies WTW is a tridiagonal matrix.

3.1 Hadamard Matrices

Hadamard matrices have been a subject of interest for almost 150 years, ever since Sylvester

published the first examples in 1867 [30]. They have a wide range of applications, including in signal

processing, coding theory, and cryptography [20].

Definition 3.1. A (real) Hadamard matrix of order n is an n × n matrix H with all entries in the

set S = {−1,1} and with the property that

HHT = nI; (3.1)

that is, the inner product of two distinct rows is 0 and the inner product of a row with itself is n.

Examples for the orders n = 1,2 and 4 are

[ 1 ] ,
⎡⎢⎢⎢⎢⎢⎣
1 1

1 −1
⎤⎥⎥⎥⎥⎥⎦

and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Sylvester also noted that if H is a Hadamard matrix, so is

⎡⎢⎢⎢⎢⎢⎣
H H

H −H
⎤⎥⎥⎥⎥⎥⎦
. (3.2)
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Then, in 1893, Hadamard [18] published examples of orders 12 and 20, showing that the

matrices which have come to bear his name could exist in orders other than the powers 2k previously

demonstrated by Sylvester. Hadamard was interested in finding the maximal determinant of square

matrices with entries from the unit disc, and he showed in [18] that this maximal determinant nn/2 was

achieved by matrices with entries {−1,1} if and only if they satisfied (3.1). So Hadamard matrices are

extremal solutions of a problem in real analysis.

These matrices have been extensively studied, and it is known that a necessary condition for

the existence of such a matrix is that n = 1,2, or is a multiple of 4. A well-known and still open problem

concerns the question of whether this is sufficient.

Conjecture 3.1 (Hadamard). Hadamard matrices exist for all orders n of the form n = 4k.

The Hadamard conjecture is one of the longest-standing open problems in mathematics. We

will present the four major families of Hadamard matrices that have been discovered over the past

century: 1) Sylvester, 2) Paley, 3) Hadarmard Design and 4) Williamson. These families include different

construction methods, each with its own specific characteristics and properties.

3.1.1 Classical constructions

The tensor product is the basis of techniques for constructing Hadamard matrices, allowing

for the systematic generation of new matrices from existing ones.

Definition 3.2. Let A and B be matrices of order m × n and p × q, respectively. The tensor product

(also called Kronecker product or direct product), denoted A ⊗ B, is a matrix of order mp × nq

defined by

A⊗B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11B a12B . . . a1mB

a21B a22B . . . a2mB

⋮ ⋮ ⋱ ⋮
am1B am2B . . . ammB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

or A⊗B = [aijB].
It can be verified from the definition that

(A⊗B)(C ⊗D) = AC ⊗BD. (3.4)

Some elementary constructions of Hadamard matrices follow easily from (3.1), (3.2) and (3.3).

Lemma 3.1 ([20], Lemma 2.2). Let H be a Hadamard matrix of order n, so by (3.1) it is invertible

over Q, with H−1 = n−1HT . Set H1 =
⎡⎢⎢⎢⎢⎢⎣
1 1

1 −1
⎤⎥⎥⎥⎥⎥⎦
. Then
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i) the negation −H of H is a Hadamard matrix;

ii) the transpose HT of H is a Hadamard matrix;

iii) if H ′ is a Hadamard matrix of order n′, the tensor product H ′⊗H is a Hadamard matrix of order

n′n;

iv) for k ≥ 1, (⊗kH1) ⊗H is a Hadamard matrix of order 2kn.

Next, we present the four well-known ways of constructing Hadamard matrices.

1) Sylvester Hadamard matrices

The earliest known, and still by far the most significant, family of Hadamard matrices are those

of order 2k for k ≥ 1, due to Sylvester. They are constructed by iterating the tensor product of

H1 with itself (that is, by setting H = [1] in Lemma 3.1). These matrices are all symmetric.

The Sylvester Hadamard matrices are the matrices in the family

{Hk = ⊗kH1; k ≥ 1}.
In other words, by defining H0 = [1], we have

Hk+1 =
⎡⎢⎢⎢⎢⎢⎣
Hk Hk

Hk −Hk

⎤⎥⎥⎥⎥⎥⎦
, for k ≥ 0.

For k = 0 and k = 1, we get

H1 =
⎡⎢⎢⎢⎢⎢⎣
1 1

1 −1
⎤⎥⎥⎥⎥⎥⎦

and H2 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2) Paley Hadamard matrices

This method is due to Paley [23] and it uses the quadratic residues in a finite field GF (q) of odd

order. An integer g is called a quadratic residue modulo q if it is congruent to a perfect square

modulo q, i.e., if there exists an integer x such that x2 ≡ g(mod q). The quadratic character X
on the cyclic group GF (q)∗ = GR(q) ∖ {0}, defined by

X(g) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if g is a quadratic residue in GF (q)
−1, if g is a quadratic nonresidue in GF (q)

is extended to GF (q) by setting X(0) = 0. The version of Paley’s constructions given here, and a

more accessible proof, may be found in [19].
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Lemma 3.2 ([20], Lemma 2.4). For q an odd prime power, and an ordering {g0 = 0, g1, . . . , gq−1}
of GF (q), set Q = [X(gi − gj)]0≤i,j<q. Let R be the (q + 1) × (q + 1) matrix R =

⎡⎢⎢⎢⎢⎢⎣
0 �q

�
T
q Q

⎤⎥⎥⎥⎥⎥⎦
.

i) Paley Type I Hadamard matrix - If q ≡ 3(mod 4), then

Pq =
⎡⎢⎢⎢⎢⎢⎣

1 −�q

�
T
q Q + Iq

⎤⎥⎥⎥⎥⎥⎦
is a Hadamard matrix of order q + 1.

ii) Paley Type II Hadamard matrix - If q ≡ 1(mod 4), then

P ′q =
⎡⎢⎢⎢⎢⎢⎣
R + Iq+1 R − Iq+1

R − Iq+1 −R − Iq+1

⎤⎥⎥⎥⎥⎥⎦
is a Hadamard matrix of order 2(q + 1).

Note that Q is skew-symmetric when q ≡ 3(mod 4) and symmetric when q ≡ 1(mod 4).
Example 3.1. If q = 7, so the quadratic residues in GF (7) are 1,2,4, and the Paley Type I

Hadamard matrix P7 of order 8 is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 −1 1 −1 1 1

1 1 1 −1 −1 1 −1 1

1 1 1 1 −1 −1 1 −1
1 −1 1 1 1 −1 −1 1

1 1 −1 1 1 1 −1 −1
1 −1 1 −1 1 1 1 −1
1 −1 −1 1 −1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.5)

Now, if q = 5, so the quadratic residues in GF (5) are 1,4, and the Paley Type II Hadamard matrix
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P5 of order 12 is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 −1 1 1 1 1 1

1 1 1 −1 −1 1 1 −1 1 −1 −1 1

1 1 1 1 −1 −1 1 1 −1 1 −1 −1
1 −1 1 1 1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 1 1 −1 −1 1 −1 1

1 1 −1 −1 1 1 1 1 −1 −1 1 −1
−1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 −1 −1 1 1 −1
1 1 −1 1 −1 −1 −1 −1 −1 −1 1 1

1 −1 1 −1 1 −1 −1 1 −1 −1 −1 1

1 −1 −1 1 −1 1 −1 1 1 −1 −1 −1
1 1 −1 −1 1 −1 −1 −1 1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.6)

Combining these constructions using tensor products (Lemma 3.1) gives a very large family of

Hadamard matrices, but, as always, the tensor product increases the 2-power factor in the order.

Definition 3.3. Let {qi; i ∈ I} e {q′j ; j ∈ J} be finite sets of prime powers congruent to 3(mod 4)
and 1(mod 4), respectively. A matrix of the form

(⊗
i∈I

Pqi)⊗⎛
⎝⊗j∈J P

′
q′j

⎞
⎠ ,

which is a Hadamard matrix of order ∏
i∈I

(qi+1)∏
j∈J

2(q′j+1), is called a Paley Hadamard matrix.

3) Hadamard designs

The Paley Type I Hadamard matrices form one of three main known families of Hadamard matrices

which may be constructed directly from square block designs, so a little combinatorial design theory

is now introduced.

Definition 3.4. A (square) (v, k, λ)-design is a pair D = (P,B) consisting of a set P = {p1, p2, . . . , pv}
of v points and a set B = {B1,B2, . . . ,Bv} of v blocks each containing k points (1 < k < v), such
that each pair of distinct points is contained in exactly λ blocks.

An incidence matrix A = [aij] de D is a v × v matrix with entries 0,1, having

aij = 1 if and only if pj ∈ Bi.

It follows that a v × v matrix A with entries 0,1 is a incidence matrix of a (v, k, λ)-design if and

only if

AAT = (k − λ)I + λJ, AJ = kJ, (3.7)
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For proof, see, for example, [31].

Definition 3.5. A normalised matrix is a matrix whose first row and first column consist

entirely of 1′s. The submatrix excluding the first row and column of a normalised matrix is called

its core.

In general, the formula (3.7) allows us to equate the core of a normalised Hadamard matrix of

order 4n and the {−1,1} version of an incidence matrix of a (4n− 1,2n− 1, n− 1)-design. That is,
if A′ = 2A − J is the {−1,1} matrix obtained from incidence matrix A by replacing 0 by −1, then

H =
⎡⎢⎢⎢⎢⎢⎣

1 �

�
T A′

⎤⎥⎥⎥⎥⎥⎦
(3.8)

is the corresponding Hadamard matrix of order 4n, and vice versa.

Example 3.2. Consider the Paley Type I Hadamard matrix P7, defined in (3.5). Multiplying

each column except the first by −1 gives a normalised Hadamard matrix of the form

⎡⎢⎢⎢⎢⎢⎣
1 �7

�7 −(Q + I7)
⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 −1 1 1 −1 1 −1 −1
1 −1 −1 1 1 −1 1 −1
1 −1 −1 −1 1 1 −1 1

1 1 −1 −1 −1 1 1 −1
1 −1 1 −1 −1 −1 1 1

1 1 −1 1 −1 −1 −1 1

1 1 1 −1 1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.9)

The {0,1} version of the core −(Q + I7) of the normalised P7 in (3.9) is

A = 1

2
(J − (Q + I7)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

Then AAT = 2I + J, AJ = 3J and A is the incidence matrix of a (7,3,1)-design.
Lemma 3.3 ([20], Lemma 2.7). There exists a Hadamard matrix of order 4n if and only if there

exists a square (4n − 1,2n − 1, n − 1)-design.
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For obvious reasons, a square (4n−1,2n−1, n−1)-design is called aHadamard design. Hadamard

designs are doubly valuable because, by adjoining one point and suitably redefining blocks, an

extended design is obtained in which every block is incident with 2n points, with the stronger

incidence property that every 3 distinct points, not just every 2, are together incident with exactly

n− 1 blocks. Such a 3−(4n,2n,n− 1)-design is called a Hadamard 3-design, and conversely, every

3 − (4n,2n,n − 1)-design is the unique extension (up to isomorphism) of a Hadamard design. For

more details, we refer the reader to [5].

4) Williamson Hadamard matrices

The Williamson construction is the simplest of many powerful ‘plug-in’ methods for finding

Hadamard matrices. These techniques essentially capitalise on the success of tensoring as a

generator of Hadamard matrices, by allowing judicious replacement of a matrix Bi in definition

A⊗ [B1,B2, . . . ,Bm] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11B1 a12B1 . . . a1mB1

a21B2 a22B2 . . . a2mB2

⋮ ⋮ ⋱ ⋮
am1Bm am2Bm . . . ammBm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.11)

by several different matrices, which do not have to be Hadamard. We will vary Williamson’s

original template [32], by taking the overlying matrix A in (3.11) to be the Hadamard matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1
1 −1 −1 1

1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Lemma 3.4 ([20], Lemma 2.10). If there exist {−1,1} matrices A,B,C,D of order n which satisfy

both

XY T = Y XT , for X ≠ Y ∈ {A,B,C,D}
and

AAT +BBT +CCT +DDT = 4nIn,

then

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C D

B −A D −C
C −D −A B

D C −B −A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is a Hadamard matrix of order 4n.
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Definition 3.6. The Williamson Hadamard matrices are the Hadamard matrices constructed

in Lemma 3.4.

Next, we give an example of obtaining a Hadarmard matrix of order 12 by using the Williamson

Hadamard process.

Example 3.3. The matrices

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 1 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B = C =D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1
−1 1 −1
−1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

satisfy the relations of the Lemma 3.4. Then,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 −1 −1 1 −1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 1 −1 −1 1 −1
1 1 1 −1 −1 1 −1 −1 1 −1 −1 1

1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 1

−1 1 −1 −1 −1 −1 −1 1 −1 1 −1 1

−1 −1 1 −1 −1 −1 −1 −1 1 1 1 −1
1 −1 −1 −1 1 1 −1 −1 −1 1 −1 −1

−1 1 −1 1 −1 1 −1 −1 −1 −1 1 −1
−1 −1 1 1 1 −1 −1 −1 −1 −1 −1 1

1 −1 −1 1 −1 −1 −1 1 1 −1 −1 −1
−1 1 −1 −1 1 −1 1 −1 1 −1 −1 −1
−1 −1 1 −1 −1 1 1 1 −1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is a Hadamard matrix of order 12.

3.1.2 Equivalency of Hadamard matrices

The notion of equivalent Hadamard matrices is basic to our understanding. Most often, it

is sufficient to demonstrate any proof or property for Hadamard matrices up to membership of an

equivalence class.

Definition 3.7. Two {−1,1} n × n matrices H and H ′ are (Hadamard) equivalent, written H ∼ H ′,

if one can be obtained from the other by performing a finite sequence of the following operations:

1. permute the rows or the columns;

2. multiply a row or a column by −1.
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In particular, any equivalence class of n ×n matrices with entries from {−1,1} will contain at

least one normalized representative. Any equivalence operations applied to a Hadamard matrix give a

Hadamard matrix, so the Hadamard matrices of order n partition naturally into equivalence classes, each

containing normalized Hadamard matrices. Of the elementary constructions in Lemma 3.1, H ∼ −H e

H ⊗H ′ ∼H ′⊗H, but often H ≁HT ; the first examples of inequivalent transposes occur at order 16. In

Table 3.1 we display the number of non-equivalent Hadamard matrices up to order 32. The number of

non-equivalent Hadamard matrices (H. matrices) of order 36 is still unknown.

Order H. matrices

4 1

8 1

12 1

16 5

20 3

24 60

28 487

32 13.710.027

36 (unknown)

Table 3.1: The order and the number of Hadamard matrices (H. matrices).

3.2 Weak Hadamard matrices

Adm et al. in [2] generalized the notion of Hadamard matrices and introduced a new family of

matrices whose entries are all in the set S = {−1,0,1} and satisfy the condition that the product of the

matrix with its transpose is a tridiagonal matrix. Later, Hermie, Plosker and McLaren in [26] studied

some constructions and properties of these matrices.

Definition 3.8. A matrix W is called weak Hadamard if it satisfies the following two properties:

1) the entries of the matrix are from the set S = {−1,0,1};
2) there is an ordering of the columns of the matrix so that the non-consecutive columns are orthogonal.

The consecutive columns can be either orthogonal or not orthogonal. The second condition implies

that the product of any such matrix with its transpose is a tridiagonal matrix, that is, WTW is a

tridiagonal matrix.
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For example, W =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is a weak Hadamard matrix.

If W is a weak Hadamard matrix, the operations of permuting the rows or columns of W

and multiplying a row or column of W by −1 used to produce an equivalent matrix W ′ can affect the

quasi-orthogonality of the columns. Note also that not all weak Hadamard matrices can be normalized.

Example 3.4. Let

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0

1 −1 1 0 0

1 0 −1 1 0

1 0 0 −1 1

1 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that all entries of W are in the set S = {−1,0,1} and that

WTW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0

0 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
it is a tridiagonal matrix. Therefore, W is a weak Hadamard matrix of order n = 5. Now, consider the

matrix

W ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0

0 1 1 1 0

0 1 0 −1 1

1 1 −1 0 0

0 1 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

equivalent to W . Note that

(W ′)TW ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −1 0 0

0 5 0 0 0

−1 0 2 1 0

0 0 1 2 −1
0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Therefore, W ′ is not a weak Hadamard matrix. Also, note that it is not possible to normalize the matrix

W , i.e., it is not possible to perform a finite sequence of row and column permutation operations on W

and multiply its rows and columns by −1 to obtain a matrix whose first row and first column are entirely

composed of 1′s.

We know that a necessary condition for the existence of a Hadamard matrix H is that the

order of H is 1, 2, or a multiple of 4. In [26], the authors presented sufficient conditions for when the

same holds for weak Hadamard matrices.

Theorem 3.1. Let W be a weak Hadamard matrix of order n with two columns x and z that are

orthogonal to �n. Then the following statements hold:

1. The vector x has an even number of non-zero entries, exactly half of which are 1′s.

2. If x has k number of 1′s and r number of 0′s, then r = n − 2k. If k is even, then n ≡ r (mod 4).
3. If x has all entries non-zero, then n = 2k. Moreover, k is even if and only if n ≡ 0 (mod 4).
4. If (i) k is even and r ≡ 0 (mod 4) or (ii) all entries of both x and z are non-zero, then n ≡

0 (mod 4).
When W is a normalized weak Hadamard matrix of odd order (n = 2k + 1, for k ≥ 1) with

pairwise orthogonal columns, then each column of W (other than �n) has three or more zero entries

(Corollary 1, [26]. A consequence of this result is that there is no normalized weak Hadamard matrix

of order 5 that has pairwise orthogonal columns (Corollary 2 in [26]).

3.2.1 Constructions of weak Hadamard matrices

In [26], the authors also explored the idea of constructing weak Hadamard matrices analogously

to the classical constructions of Hadamard matrices.

1) Sylvester: The tensor product A⊗B of two weak Hadamard matrices A and B, where B is not

equal to the all-zeros matrix, is a weak Hadamard matrix if and only if the columns of A are all

pairwise orthogonal (Proposition 1, in [26]). It follows that the tensor product of a Hadamard

matrix with a weak Hadamard matrix is a weak Hadamard matrix (Proposition 3.3, in [2]).

2) Invertible weak Hadamard matrices: Take any orthogonal vectors a,b,c, . . ., with components

in {−1,0,1}. Construct the matrix having two copies of each vector side by side as columns:

W = [a,a,b,b,c,c, . . .]. Such a matrix is a weak Hadamard matrix with WTW having non-zero

entries only on the diagonal and super-diagonal.
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For n = 2k (even), partition Rn into k orthogonal subspaces S1, S2, . . . , Sk. From each partition

select any two independent vectors a1,a2 ∈ S1, b1,b2 ∈ S2 etc., while ensuring the vectors have

components in {−1,0,1}. Then the matrix W = [a1,a2,b1,b2, . . .] is an invertible weak Hadamard

matrix.

This construction works for any n > 1, because we can decompose Rn as the direct sum of the

orthogonal subspaces S1, S2, . . . , Sk, where
k∑
i=1

dim(Si) = n.

3) Williamson: A matrix

W =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C D

−B A −D C

−C D A −B
−D −C B A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is weak Hadamard if the matrices A,B,C,D has all entries in the set {−1,0,1} and satisfy

XTY = Y TX, para X,Y ∈ {A,B,C,D}
and

ATA +BTB +CTC +DTD is tridiagonal.

4) Weak Hadamard matrices of higher order: Can be constructed in two ways.

i) Let G and H be matrices with entries in {−1,0,1}. If HTH + GTG is tridiagonal and

HTG −GTH = 0, then W =
⎡⎢⎢⎢⎢⎢⎣
H G

G −H
⎤⎥⎥⎥⎥⎥⎦
is a weak Hadamard matrix.

ii) Let G and H be weak Hadamard matrices of order n such that x is the first column of both

matrices, and, moreover, that x is orthogonal to every other column in G and H. Then the

block matrix W =
⎡⎢⎢⎢⎢⎢⎣
H X

X −G
⎤⎥⎥⎥⎥⎥⎦
, with X the matrix with first column x and all others 0, is a

weak Hadamard matrix. Furthermore, if G and H have pairwise orthogonal columns, then

so too does W .

5) Paley: Let Zq be the integers mod q, where q is a power of an odd prime. Define

X(a) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if a ≡ 0

1, if a ≡ b2, for some non-zero b ∈ Zq

−1, otherwise

Construct the circulant matrix C = [cij], where cij = X(i− j). Then the matrix W =
⎡⎢⎢⎢⎢⎢⎣

0 �
T
q

�q CT

⎤⎥⎥⎥⎥⎥⎦
is a weak Hadamard matrix of order (q + 1) × (q + 1) with pairwise orthogonal columns.
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6) Weak Hadamard matrices of order 2n: For n, k ∈ N with k ≤ n, define the sets X2k consisting

of 2n−k vectors {xj}j∈Z
2n−k

of dimension 2n, where the i-th component of the vector xj is given

by:

xj(i) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if i ∈ {2kj + 1, . . . ,2kj + 2k−1},
−1, if i ∈ {2kj + 2k−1 + 1, . . . ,2kj + 2k},
0, otherwise.

Note that each vector xj will have 2k non-zero consequent entries, with an equal number of 1′s

and −1′s. Furthermore, each set X2k consists of 2n−k mutually orthogonal vectors, all of which

are orthogonal to �. The set X = ⋃1≤k≤nX2k combined with � gives a collection of 2n mutually

orthogonal vectors. Consequently, for any n ∈ N there exists a weak Hadamard matrix W of order

2n, such that W has pairwise orthogonal columns and contains � as a column, but where W is

not a Hadamard matrix.

3.2.2 Equivalency of weak Hadamard matrices

For a weak Hadamard W , let aW be the number of blocks of any size in the block digonal

form of WTW , bW be the number of blocks of size greater than or equal to 2, and cW is the number of

pairs of identical columns in W . With these definitions, the authors in [26] showed that the number of

equivalent weak Hadamard matrices to W attained by permuting of the columns of W is given by

2bW /cW aW ! (3.12)

(Theorem 2, in [26]).

Example 3.5. Let

W =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1

1 0 0 −1
1 1 1 0

1 −1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
be a weak Hadamard matrix. We have that

WTW =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0

0 2 2 0

0 2 2 0

0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, aW = 3 e bW = cW = 1.

Therefore, it follows from (3.12) that the number of weak Hadamard matrices equivalent to W is equal

to 12.
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Chapter 4

HADAMARD AND WEAK HADAMARD

DIAGONALIZABLE GRAPHS

In this chapter, we will present some results from the literature on graphs G for which the

Laplacian matrix L(G) can be diagonalized by a matrix P , where P is either a Hadamard matrix H

or a weak Hadamard matrix W . Specifically, this means that L(G) can be written as L(G) = PΛPT ,

where Λ = diag(μ1, μ2, . . . , μn). The main focus of this work is to study and characterize graphs G such

that L(G) can be diagonalized by a weak Hadamard matrix W .

4.1 Hadamard diagonalizable graphs

One of the interesting questions in the spectral graph theory is about the structure of the

eigenvectors of matrices associated with graphs. Barik, Fallat and Kirkland in [8] studied graphs for

which their Laplacian matrix can be diagonalized by a Hadamard matrix H.

Definition 4.1. We say that a graph G is Hadamard diagonalizable and denoted by HD if an H

Hadamard matrix exists such that

1

n
HTL(G)H = Λ,

or equivalently,

L(G) = 1

n
HΛHT ,

where Λ is the diagonal matrix consisting of the eigenvalues of L(G).
This class of graphs corresponds to graphs on n vertices such that their Laplacian matrix has n

orthogonal eigenvectors with entries only from the set {−1,1}. The absence of definitive knowledge about
the existence of Hadamard matrices makes characterizing graphs that are Hadamard diagonalizable

challenging. In fact, a complete graph on n vertices is Hadamard diagonalizable if and only if a

Hadamard matrix of order n exists [8]. This means that determining which complete graphs are

Hadamard diagonalizable requires first demonstrating that a Hadamard matrix of a given order n

exists, and hence resolving the Hadamard conjecture 3.1. In [8], the authors investigate the following

question:
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Which graphs are Hadamard diagonalizable?

Firstly, they demonstrated that a graph G is Hadamard diagonalizable if and only if there is a normalized

Hadamard matrix that diagonalizes L(G) (Lemma 4 in [8]). They also observed and demonstrated that

given any Hadamard matrix H of order n = 4k, k ≥ 1, the complete graph Kn is diagonalizable by

H (Observation 1 in [8]) and there is a permutation matrix P such that the complete bipartite graph

Kn/2,n/2 is diagonalizable by the Hadamard matrix PH (Observation 2 in [8]).

Two important features of diagonalizable Hadamard graphs are stated in the following theorem.

Theorem 4.1 ([8]). Let G be a graph of order n which is Hadamard diagonalizable. Then G is regular

and all its Laplacian eigenvalues are even integers.

However, regularity and even integer eigenvalues are not sufficient conditions for a graph to

be Hadamard diagonalizable. In other words, even if a graph is regular or has even integer eigenvalues,

it may not satisfy the additional condition of having an orthogonal basis of eigenvectors with all entries

in {−1,+1}, which is necessary for a graph to be Hadamard diagonalizable. For example, the cycle

C8 is regular but is not Hadamard diagonalizable, and the complete graph K8 minus one edge e, i.e.,

G =K8 ∖ e has all its eigenvalues as even integers, but is also not Hadamard diagonalizable.

Also, note that if G is a Hadamard diagonalizable graph by a Hadamard matrix, say H, since

the eigenspaces for the Laplacian matrix of G and its complement graph Gc are the same (although the

eigenvalues are different), it follows that Gc is a Hadamard diagonalizable graph by the same Hadamard

matrix H (Lemma 7 in [8]).

The union and join operations of Hadamard diagonalizable graphs were also characterized. Let

G1 and G2 be two graphs. If G1 ⊔G2 is Hadamard diagonalizable, then G1 and G2 satisfy the following

properties: both are regular graphs of the same order and same regularity, both have even eigenvalues

and share the same eigenvalues (Lemma 6 in [8]). It follows that if G is a Hadamard diagonalizable

graph by a Hadamard matrix H, then G⊔G and G∨G are also Hadamard diagonalizable graphs (Lemma

7 in [8]), both diagonalizable by the same Hadamard matrix

⎡⎢⎢⎢⎢⎢⎣
H H

H −H
⎤⎥⎥⎥⎥⎥⎦
.

Observation 4.1. If G⊔G and G∨G are Hadamard diagonalizable graphs, it is not always true that G is

Hadamard diagonalizable. For example, consider G =K6. Both K6 ⊔K6 and K6 ∨K6 are diagonalizable

by a Hadamard matrix of order 12, but since there does not exists any Hadamard matrix of order 6, K6

is not Hadamard diagonalizable.

Let ⋆ ∈ {◻,×,⊠}, where ◻ denotes the Cartesian product of graphs, × the direct product, and

⊠ the strong product. We have already seen that the eigenvectors for the Laplacian matrix of each

of these products can be computed from the eigenvectors of the constituent graphs. Thus, knowing
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the eigenvectors for each of these graph products shows that if the constituent graphs are Hadamard

diagonalizable, then the product graph is also Hadamard diagonalizable.

Theorem 4.2 ([2], Theorem 3.2). If G1 and G2 are both Hadamard diagonalizable graphs on n1 and

n2 vertices, respectively, then G1 ⋆G2 is Hadamard diagonalizable for ⋆ ∈ {◻,×,⊠}.
In [9], it was also shown that the lexicographic product of G1 ○ G2 of two diagonalizable

Hadamard graphs G1 and G2 is a Hadamard diagonalizable graph. The proof from the results about the

product of Hadamard diagonalizable graphs still being a Hadamard diagonalizable graph is straightforward.

If H1 and H2 are Hadamard matrices that diagonalize G1 and G2, respectively, then H1 ⊗H2 is also a

Hadamard matrix and it diagonalizes G1 ⋆G2, for ⋆ ∈ {◻,×,⊠, ○}.
In the paper [9], the authors developed further tools to determine the Hadamard diagonalizable

graphs of a given order and listed all Hadamard diagonalizable graphs up to order n = 36. It is important

to mention that the number of non-equivalent Hadamard matrices is still unknown. They proved that

if n = 8k + 4, there are only four Hadamard diagonalizable graphs of order n.

Theorem 4.3 ([9], Theorem 5). Let G be a graph of order n. If n = 8k + 4 and G is Hadamard

diagonalizable, then G ∈ {Kn,Kn/2, n/2, 2Kn/2, nK1}.
Moreover, the graphs Kn, Kn/2,n/2, nK1, and 2Kn/2 are Hadamard diagonalizable, and they

are diagonalizable by any normalized Hadamard matrix H of order n ≥ 4 (Proposition 6 in [9]). Note

that it doesn’t matter which matrix H is used; it simply needs to be normalized so that these four graphs

are diagonalized by H. In other words, any normalized Hadamard matrix will always diagonalize at

least four graphs.

In [9] the authors also developed computational tools to search for all possible Hadamard

diagonalizable graphs of small order. In particular, given a Hadamard matrix H, an algorithm was

presented by which all graphs which are diagonalized by H are produced. The algorithm proposed by

the authors is based on the following result.

Proposition 4.1 ([9], Proposition 8). Let G be a Hadamard diagonalizable graph with its Laplacian

matrix L. Let H be a normalized Hadamard matrix diagonalizing L. Let Λ be the diagonal matrix with

its diagonal entries λ1 = 0, λ2, . . . , λn, the eigenvalues of L corresponding to the columns of H as their

associated eigenvectors. Then the entries L12, . . . , L1n uniquely determine λ2, . . . , λn.

To conclude this section, we summarize in Table 4.1 the number of Hadamard diagonalizable

graphs (H. graphs) up to order 36.
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Order H.graphs

4 4

8 10

12 4

16 50

20 4

24 26

28 4

32 10.196

36 4

Table 4.1: The number of Hadamard diagonalizable graphs (H. graphs) up to 36 vertices.

4.2 Weakly Hadamard diagonalizable graphs

The determination of graphs whose Laplacian matrix can be diagonalized by a weak Hadamard

matrix W is quite recent and first appeared in the article of Adm et al. [2]. In this article, the authors

introduced the subject and determined several families of graphs that are WHD.

Definition 4.2. A graph G is weakly Hadamard diagonalizable and denoted by WHD if its Laplacian

matrix L(G) can be diagonalized with a weak Hadamard matrix W , that is,

L(G) =WΛW −1,

where Λ is the diagonal matrix consisting of the eigenvalues of L(G) and W has all entries from the set

{−1,0,1} and WTW is tridiagonal.

Note that any Hadamard diagonalizable graph is also weakly Hadamard diagonalizable. However,

the converse need not hold in general. The following example illustrates these facts.

Example 4.1. Let G be the complete graph K4 minus one edge e, i.e., G = K4 ∖ e. Without loss of

generality, suppose that e = {1,2}. We have that:

L(G) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −1 −1
0 2 −1 −1

−1 −1 3 −1
−1 −1 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the vectors (1,1,1,1), (1,−1,0,0), (1,1,−1,−1), (0,0,1,−1) form an ordered basis of R4 composed

of eigenvectors of L(G) associated with eigenvalues 0, 2, and 4 of multiplicities 1, 1, and 2, respectively.
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Thus, if we form the matrix W where each column is an eigenvector of L(G), and the diagonal matrix

Λ consisting of the eigenvalues of L(G), that is,

W =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0

1 −1 1 0

1 0 −1 1

1 0 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 2 0 0

0 0 4 0

0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
it follows that WTW is tridiagonal, and L(G) =WΛW −1. Therefore, G is a WHD graph. However, by

Theorem 4.1, G is not Hadamard diagonalizable graph as it is not a regular graph.

Example 4.1 shows that the Theorem 4.1 need not hold in general for WHD graphs, that is,

WHD graphs may not be regular.

In the article [2] the authors extended some of the existing results on Hadamard diagonalizable

graphs to weakly Hadamard diagonalizable graphs. First, they showed that the complete graph Kn is

WHD for every value of n ≥ 1 (Lemma 1.5 in [2]). Note that this is not the case in the usual Hadamard

diagonalizable graphs, as a necessary condition for a graph to be Hadamard diagonalizable is that it

has an order of n = 1,2, or 4k (as Hadamard matrices only exist for these orders). Unlike Hadamard

matrices, there is a weak Hadamard matrix of order n for every n ≥ 1.

Furthermore, a graph G that is WHD can have odd eigenvalues for its Laplacian matrix. More

precisely, the authors showed that if G is WHD, then all the eigenvalues of L(G) are integers (Lemma

2.2 in [2]).

Example 4.2. The complete graph K3 is WHD (since Kn is WHD for all n ≥ 1) and the eigenvalues

of L(G) are 0 and 3, with multiplicities 1 and 2, respectively. Therefore, this is an example of a graph

G that is WHD and has an odd integer as an eigenvalue of L(G).
Union, join and products operations for WHD graphs were also characterized. For the union

of WHD graphs, a more general result of the union of Hadamard diagonalizable graphs holds. We have

that G1 ⊔G2 is a WHD graph if G1 and G2 are WHD graphs (Lemma 2.3 in [2]).

Example 4.3. Since K4 and K8 are WHD graphs it follows that the graph K4 ⊔ K8 is also WHD.

Note that the graphs K4 and K8 are also Hadamard diagonalizable. However, by Theorem 4.3, we know

that the only disconnected graphs of order 12 that are Hadamard diagonalizable are Kc
12 and K6 ⊔K6.

Therefore, the disconnected graph K4 ⊔K8 is not Hadamard diagonalizable.

Conditions for the complement of a WHD graph to also be WHD were presented. The

cases when G is a connected WHD graph and when G is a disconnected WHD graph were considered

separately. If G is a connected WHD graph, then Gc is also a WHD graph (Lemma 2.4 in [2]). If G is

disconnected and WHD, then Gc is not necessarily a WHD graph.
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Example 4.4. Consider the disconnected graph G = K1 ⊔ K2. We can conclude that G is a WHD

graph since it is the union of two WHD graphs. Note that Gc = K1,2 and the eigenvalues of L(Gc) are

0, 1, and 3. Since EL(3) = span {(1,1,−2)}, it follows that L(Gc) cannot be diagonalized by a weak

Hadamard matrix.

The complement Gc of a disconnected WHD graph G on n vertices is also a WHD graph if G

is regular and its components are of equal size (Lemma 2.5 in [2]).

Example 4.5. The graph Kn,n = (Kn⊔Kn)c is WHD. In fact, we know that Kn is WHD, for all n ≥ 1,

and that Kn⊔Kn is WHD, since it is the union of graphs WHD. Furthermore, Kn⊔Kn is disconnected,

regular and its connected components have the same size, so by Lemma 2.5 in [2], we conclude that

Kn,n = (Kn ⊔Kn)c is WHD.

In Example 4.5 the bipartite graph Kn,n is WHD. In fact, this is the only bipartite graph

that is WHD. More precisely, the graph Kn1,n2 is WHD if and only if n1 = n2 (Lemma 2.6 in [2]).

Additionally, the authors in [2] investigated the conditions under which the cycles are WHD. They

showed that the cycle Cn is WHD if and only if n = 3,4 or 6 (Proposition 2.7 in [2]).

To analyze the product of WHD graphs, we begin with the following observation: if W1 and

W2 are two weak Hadamard matrices that diagonalize the graphs G1 and G2, respectively, then W1⊗W2

will diagonalize the graph G1 ⋆G2, for ⋆ ∈ {◻,×,⊠}. However, it is important to note that W1 ⊗W2

is not necessarily tridiagonal. So an extra condition is required to guarantee that the graph products

produce WHD graphs.

Proposition 4.2 ([2], Proposition 3.3). Suppose graphs G1 and G2 are WHD with the matrix of

eigenvectors W1 and W2, respectively, such that WT
1 W1 is a diagonal matrix. Then G1 ⋆G2 is WHD

for any ⋆ ∈ {◻,×,⊠}.
As a consequence of the Proposition 4.2 if G1 is Hadamard diagonalizable and G2 is a WHD

graph, then G1 ⋆G2 is WHD for any ⋆ ∈ {◻,×,⊠} (Corollary 3.4 in [2]). Note that Proposition 4.2 does

not characterize the products of graphs that are WHD. For example we know that Kn1n2 = Kn1 ⊠Kn2

is WHD, but this graph is not included in Proposition 4.2. In particular, the matrix W = W1 ⊗W2,

where W1 and W2 are weak Hadamard matrices que diagonalize the graphs Kn1 e Kn2 , respectively,

has entries only from the set {0,−1,1} and it diagonalizes Kn1n2 , but W
TW is not a tridiagonal matrix.

So this natural construction of eigenvectors with entries from {0,−1,1} for the product graph may not

give a quasi-orthogonal basis of eigenvectors.

The join of WHD graphs can be improved compared to the case of Hadamard diagonalizable

graphs.

Definition 4.3. An integer partition of an integer n to be recursively balanced partition if it

satisfies the following. The partition with only one part, i.e. P = [n], is defined to be a recursively
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balanced partition. A partition P = [n1, n2, . . . , nk], k ≥ 2 is called a recursively balanced partition if

there is a partition Q = [Q1,Q2, . . . ,Ql] of the parts of P with Qi = [ni1 , . . . , niki
] such that

(1) for any i, j ∈ {1, . . . , l}
ni1 + ni2 +⋯+ niki

= nj1 + nj2 +⋯+ njkj

and

(2) each sub-partition Qi is also a recursively balanced partition.

For example, the recursively balanced partitions of 8 are:

[8], [4,4], [4,2,2], [4,2,1,1], [4,1,1,1,1], [2,2,2,2], [2,2,2,1,1],
[2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].

With the previous definition, it can be shown that the join of k connected WHD graphs Xi

on ni vertices, is a WHD graph if [n1, n2, . . . , nk] is a recursively balanced partition (Lemma 4.3 in

[2]). This result can be applied to complete multipartite graphs, since they are joins of empty graphs,

that is, the complete multipartite graph Kn1,n2,...,nk
is WHD if [n1, n2, . . . , nk] is a recursively balanced

partition (Corollary 4.4 in [2]). However, this condition does not characterize complete multipartite

graphs that are WHD.

Example 4.6. K3,2,2,1 is a WHD graph with 8 vertices, but [3,2,2,1] is not a recursively balanced

partition of 8.

The graph G =Kc
k ∨Kn can be represented as a complete multipartite graph by the partition

[1,1, . . . ,1, k]. By Corollary 4.4 in [2] see that if n = k, then the graph G will have a recursively balanced

partition given by [1, . . . ,1, k] and therefore G will be WHD.

Lemma 4.1 ([2], Lemma 4.6). Let G =Kc
k ∨Kn. If n − k ∈ {0,1,2}, then G is a WHD graph.

Furthermore,

Lemma 4.2 ([2], Lemma 4.7). Let G = H ∨Kn where H is a WHD connected graph on k vertices. If

n − k ∈ {0,1,2}, then G is a WHD graph.

We note that G =H∨Kn =Kn+k∖Hc, where k ∈ {n,n−1, n−2}. In other words, G =K2n−i∖Hc

with i ∈ {0,1,2}. Therefore, the previous result can be seen as a result about the join of two graphs or

a result about removing a subgraph from a complete graph.

Other examples of the join of graphs that is WHD are presented below; in these examples

one of the graphs is disconnected. The following two results show that Kn minus matching is WHD for

n ≥ 4. Note that if n = 3, then K3 minus one edge is P3, which is not WHD (see Example 4.4).
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Lemma 4.3 ([2], Lemma 4.8). For n ≥ 4, the graph G obtained from Kn minus an edge is WHD.

Corollary 4.1 ([2], Corollary 4.9). For n ≥ 4, a complete graph Kn minus a matching of size p with

p ≤ n

2
is WHD.

Let A = {K4, C4, K4 ∖ e, Kc
4, K2 ⊔K2, Kc

2 ⊔K2} be the set of all 6 graphs (both connected

and disconnected) with 4 vertices that are WHD. Consider X(k) = ⊔k
j=1Xj and Z(k) = X ∨X ∨ ⋯ ∨X,

where Xj ,X ∈ A. In the paper of McLaren, Monterde and Plosker [26], they showed (Corollary 6) that

if X is WHD and PX has pairwise orthogonal columns, then Z(k) is WHD if k = 2l, l ≥ 1. In particular,

if X ∈ {K4 ∖ e, Kc
2 ⊔K2} then F1 = {Z(k) ∶ k = 2l, l ≥ 1} is an infinite family of WHD graphs, and PZ(k)

has pairwise orthogonal columns. They also showed that F2 = {X(k) ∶ k = 2l, l ≥ 1} is an infinite family

of disconnected non-regular WHD graphs, where at least two of the Xj ’s are distinct, and each Xc
(k) is

also WHD, with PX(k) = PX(k)c having pairwise orthogonal columns. Furthermore, they presented the

conditions under which these families exhibit perfect state transfer (PST).

We conclude this section by presenting Tables 4.2 and 4.3 where we summarize some of the

differences and similarities between HD and WHD graphs.
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HD Graphs WHD Graphs

Kn is HD if, and only if, there exists

a Hadamard matrix of order n.

Kn is WHD, for all n ≥ 1.

G is regular G does not need to be regular.

All Laplacian eigenvalues are even

integers.

All Laplacian eigenvalues are

integers.

If G is HD, then G ⊔G is HD. If G1 and G2 are WHD, then G1⊔G2

is also WHD.

If G is HD, then Gc is HD.

• If G is connected and WHD,

then Gc is WHD.

• If G is disconnected and

WHD, G is regular and all its

connected components have

the same size, then Gc is

WHD.

If H1 diagonalizes G1, H2

diagonalizes G2, and both H1

and H2 are HD, then H1 ⊗ H2

diagonalizes X ⋆ Y , and it is HD,

with ⋆ ∈ {◻,×,⊠, ○}.

If W1 diagonalizes G1, W2

diagonalizes G2, and both W1

and W2 are both weak Hadamard,

then W1 ⊗W2 diagonalizes G1 ⋆G2,

with ⋆ ∈ {◻,×,⊠}, but W1 ⊗ W2 is

not necessarily weak Hadamard.

If both G1 and G2 are HD, then G1⋆
G2 is also HD, with ⋆ ∈ {◻,×,⊠, ○}.

If G1 is WHD with W1, G2 is WHD

with W2, and WT
1 W1 is diagonal,

then G1 ⋆ G2 is also WHD, with

⋆ ∈ {◻,×,⊠}. In particular, if G1

is a HD graph and G2 is a WHD

graph, then G1⋆G2 is WHD, for any

⋆ ∈ {◻,×,⊠}.
Table 4.2: Comparison between HD and WHD graphs
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If there exists a Hadamard matrix of

order n, then Kn/2,n/2 is HD.

Kn1,n2 is WHD if, and only if, n1 =
n2.

The multipartite graph Kn1,n2,...,nk

is WHD if [n1, n2, . . . , nk] is a

recursively balanced partition.

If G is HD, then G ∨G is also HD. If Gi, i = 1,2,⋯, k, are connected

and WHD graphs with ni vertices,

and [n1, n2,⋯, nk] is a recursively

balanced partition, then ⋁k
i=1Gi is

a WHD graph.

If n − k ∈ {0,1,2}, then KC
k ∨Kn is

WHD.

Let G = H ∨ Kn, where H is a

connected and WHD graph with k

vertices. If n − k ∈ {0,1,2}, then G

is WHD.

G =Kn ∖ e is WHD for n ≥ 4.

G = Kn minus a matching of size p

is WHD for n ≥ 4 and p ≤ n
2
.

Table 4.3: Comparison between HD and WHD graphs
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Chapter 5

THRESHOLD GRAPHS THAT ARE SIMPLY

STRUCTURED

The main results of this work address the following problems: A.1) Determine the minimum

number of vectors in the basis of an eigenspace of Laplacian matrix of a connected threshold graph

G such that the eigenspace basis is simply structured; A.2) Characterize all threshold graphs that are

simply structured; A.3) Characterize all connected threshold graphs that are WHD. Additionally, we

show that it does not make sense to extend the definitions of HD and WHD graphs to the signless

Laplacian matrix.

Our motivations are related to (i) showing the relevance of our very recent result of [24],

have been published in the Special Matrices journal, by obtaining all threshold graphs that are WHD

since those graphs are not easy to find; (ii) the fact that it could be useful to create new graphs with

Laplacian perfect state transfer among those threshold graphs WHD since the eigenvectors are known

for a given order and the eigenvalues are easily obtained from the degree sequence. Related works in

this subject include recent studies by McLaren, Hermie, and Plosker [26], as well as Johnston et al. [22];

(iii) the authors of [2] raised an interesting problem of determining all cographs that are WHD. While

completely solving this problem seems to be a difficult task, we give a step forward to find all threshold

graphs that are WHD and partially answer the question.

5.1 Structural tools

In this section, we present a specific eigenbasis {x1, . . . ,xn} of L(Sn) and we will see that when

G is any threshold graph on n vertices, we can obtain a Laplacian eigenbasis for G from {x1, . . . ,xn}.
This result serves as an important structural tool for addressing Problems A.1, A.2, and A.3 in the

following sections.

Let Sn be a star graph on n vertices. For 1 ≤ k < n, it is easy to see that each xk satisfying

xk
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if i < k + 1,

−k, if i = k + 1,

0, if k + 1 < i ≤ n,

(5.1)

and xn = �n = (1,1, . . . ,1)T are pairwise orthogonal eigenvectors of L(Sn) associated with eigenvalues 1,
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n and 0 of multiplicities n−2, 1 and 1, respectively. So, {x1, . . . ,xn} is an eigenbasis L(Sn). Macharete

et al. in [24] proved that any threshold graph of a given order can be recognized from a specific Laplacian

eigenbasis, which is a spectral characterization of a threshold graph. In this sense, they proved that

L(G) and L(Sn) share the same eigenvectors when G is a connected threshold graph on n vertices, as

stated in Theorem 5.1.

Theorem 5.1 ([24], Theorem A). Let G be a connected graph on n vertices. Then, G is a threshold

graph if and only if {x1, . . . ,xn} is an eigenbasis of the Laplacian matrix of G.

Lemmas 2.2 and 2.3 and Edge Principle 2.4 are applied in the context of threshold graphs

and are important structural tools to prove the Theorema 5.1. Interestingly, the result implies that the

knowledge of the eigenvectors is sufficient to identify whether the graph is a threshold graph. However,

notice that the eigenspaces associated with the eigenvalues of L(G) can be different from the eigenspaces

of L(Sn). The next example illustrate Theorem 5.1.

Example 5.1. Let G1 be the threshold graph of Figure 5.1. Its binary sequence is given by b1 =
(0,0,0,1,0,1).

Figure 5.1: Graph G1.

Note that G1 has the graph S6 as a subgraph. In other words, we have that G1 = S6 + {1,4} +
{2,4} + {3,4}. The eigenvalues of L(S6) are 1, 6, and 0 of multiplicities 4, 1, and 1, respectively.

An eigenbasis of L(S6) is given by B = {x1, x2, x3, x4, x5, x6}, where x1 = (1,−1,0,0,0,0),
x2 = (1,1,−2,0,0,0), x3 = (1,1,1,−3,0,0), x4 = (1,1,1,1,−4,0), x5 = (1,1,1,1,1,−5), and

x6 = (1,1,1,1,1,1). Moreover, the vectors x1,x2,x3 and x4 are associated with eigenvalue 1, the

eigenvector x5 is associated with eigenvalue 6, and the eigenvector x6 is associated with eigenvalue

0. Note that b4 is the first entry equal to one in b1. Then, by Lemma 2.2 we add one unit to the

eigenvalue 1 for 1 ≤ k ≤ i − 2 = 2, and we obtain that (2,x1) and (2,x2) are eigenpair for L(G1). When

k = 3, that is, k = i − 1, by Lemma 2.2 we add 1 + k to the eigenvalue 1 and hence we have that (5,x3)
is the eigenpair for L(G1). Finally, by Theorem 2.4 (Edge Principle), we obtain that the eigenpairs

(1,x4), (6,x5) and (0,x6) are preserved in the graph G1. Therefore, the eigenbasis B of L(S6) is also

an eigenbasis of L(G1). Table 5.1 summarizes the result.
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Eigenvector of L
Eigenvalue of L

For L(S6) For L(G1)
x1 1 2

x2 1 2

x3 1 5

x4 1 1

x5 6 6

x6 0 0

Table 5.1: Eigenvectors and eigenvalues for the Laplacian matrix of the connected threshold graphs S6

and G1.

We also extended the result of Theorem 5.1 to disconnected threshold graphs as presented in

Macharete et al., [24]. Consider now that G is a disconnected threshold graph on n vertices and can

be written as G = H ⊔ pK1, where H is a connected threshold graph with n − p vertices, and p is the

number of isolated vertices. For 1 ≤ k ≤ n − p, let yk be the n-vector with entries:

yk
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk
j , if 1 ≤ j ≤ n − p,

0, otherwise,
(5.2)

where the xk
j are given in Equation (5.1). For 1 ≤ l ≤ p, define

yn−p+l
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if j = n − p + l,

0, otherwise.
(5.3)

The next theorem establishes that the eigenvectors of L(G) are the same as those of L(Sn−p ⊔
pK1), where p ≥ 1 is the number of isolated vertices. In other words, it means that n− p eigenvectors of

L(G) can be obtained from the eigenvectors of L(Sn−p) by adding p entries equal to 0 and the remaining

p eigenvectors are the standard vectors ej for a convenient j. More precisely, we have that:

Theorem 5.2 ([24], Theorem 3.6). Let G be a disconnected graph on n vertices. Then, G is threshold

if and only if {y1,y2, . . . ,yn} is an eigenbasis of L(G).
The next example illustrates Theorem 5.2.

Example 5.2. Consider the disconnected threshold graphs G = S6 ⊔ 3K1 and H = G1 ⊔ 3K1, where

G1 is the graph given in the Example 5.1. Since the Laplacian spectrum of the union is the union of the

spectra of the connected components (and multiplicities are added), it follows that

spectL(G) = (6,1,1,1,1,0,0,0,0) and spectL(H) = (6,5,2,2,1,0,0,0,0).
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By Theorem, 5.2 the basis B′ = {y1,y2, y3, y4, y5, y6, y7, y8, y9}, where y1 = (1,−1,0,0,0,0,0,0,0),
y2 = (1,1,−2,0,0,0,0,0,0),y3 = (1,1,1,−3,0,0,0,0,0), y4 = (1,1,1,1,−4,0,0,0,0), y5 = (1,1,1,1,1,−5,0,0,0),
y6 = (1,1,1,1,1,1,0,0,0), y7 = (0,0,0,0,0,0,1,0,0), y8 = (0,0,0,0,0,0,0,1,0), y9 = (0,0,0,0,0,0,0,0,1)}
is an eigenbasis of L(G) and L(H). In Table 5.2, we show the eigenvalues and their corresponding

eigenspaces for the graphs G and H.

Eigenvector of L
Eigenvalue of L

For L(G) For L(H)
y1 1 2

y2 1 2

y3 1 5

y4 1 1

y5 6 6

y6 0 0

y7 0 0

y8 0 0

y9 0 0

Table 5.2: Eigenvectors and eigenvalues for the Laplacian matrix of the disconnected threshold graphs

G and H.

Similarly to the case of connected threshold graphs, the eigenvectors of L(G) and L(H) are

the same but they are associated with different eigenvalues.

5.2 Minimum number of eigenvectors in certain eigenspaces

In this section, we investigate the answer to problem A.1, which we state again next, but

considering our analysis when G is a connected threshold graph.

Problem A.1: Determine the minimum number of vectors on the basis of an eigenspace of the Laplacian

matrix of a connected threshold graph G such that the eigenspace basis is simply structured.

In Section 5.1, we see that L(G) and L(Sn) share the same eigenvectors when G is a connected

threshold graph on n vertices ([24], Theorem A). The eigenvectors x1 and xn are the only ones in the

eigenbasis B = {x1, . . . ,xn} of L(G) with all the entries in the set {−1,0,1}. We also know that the

eigenbasis B is not unique, and that any other eigenbasis B for L(G) can be obtained from B through

a linear combination.
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We know that 0 is an eigenvalue of L(G) with multiplicity 1 and EL(0) = span {xn}, where
xn = (1,1 . . . ,1). Therefore, EL(0) is simply structured. We also know that the largest eigenvalue of

L(G) is equal to n. In this section, we determine the minimum dimension of the eigenspace of the

eigenvalue n, that is, we proved that dim(EL(n)) ≥ ⌈n/2⌉ when G is threshold and simply structured,

which is the result of Proposition 5.1. Also, assuming the result of Proposition 5.1, we easily see

that n − k is an eigenvalue to L(G) and prove that dim(EL(n − k)) ≥ k, for k ≥ ⌈n/4⌉, which is the

result of Proposition 5.2. These results solve Problem A.1 to Laplacian eigenvalues n and n − k, but

when applied recursively enabled us to generate all connected threshold graphs of a given order n with

simply structured eigenspaces. Therefore, we finish this chapter by presenting a recursive algorithm

that generates all connected threshold graphs of a given order n with simply structured eigenspaces.

Proposition 5.1. Let G be a connected threshold graph on n vertices defined by the binary sequence

b = (b1, b2, . . . , bk, bk+1, . . . , bn−1, bn), and let k ∈ {1, . . . , n − 1} be such that bk+1 = ⋯ = bn and bk ≠ bk+1.

Then, EL(n) is simply structured if and only if 1 ≤ k ≤ ⌊n
2
⌋.

Proof. By Theorem 5.1, L(G) and L(Sn) share the same eigenvectors. Let k ∈ {1, . . . , n − 1} such that

bk+1 = . . . = bn and bk ≠ bk+1. By hypothesis, G is connected, so bn = 1. Thus, we obtain bk+1 = . . . = bn = 1

and bk = 0. By Theorem 5.1 ([24], Theorem A) we have that

EL(n) = span {xk, . . . ,xn−1} e dim(EL(n)) = n − k.

Suppose that EL(n) is simply structured. Then, by hypothesis, there is a basis B = {vk+1, . . . ,vn−1,v′}
such that

EL(n) = span {xk, . . . ,xn−1} = span{vk+1, . . . ,vn−1,v′},
where each vector v ∈ B has entries only in the set {−1,0,1}. Take v = [v1, . . . , vn] ∈ B and determining

it from the vectors xi corresponds to finding coefficients a = [ak, ak+1, . . . , an−1]T such that

Xa = v, (5.4)
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where

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1 1

⋮ ⋮ ⋱ ⋮ ⋮
1 1 . . . 1 1

−k 1 . . . 1 1

0 −(k + 1) . . . 1 1

0 0 . . . 1 1

⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . 1 1

0 0 . . . −(n − 2) 1

0 0 . . . 0 −(n − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and each column of X is a vector xi for i = k, . . . , n−1. Note that v must have the same number of −1′s
and 1′s since it is orthogonal to the vector xn = (1,1, . . . ,1). Observe that the first k equations of (5.4)

are all identical, and therefore v1 = v2 = ⋯ = vk. The other n − k equations are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k ak + ak+1 + . . . + an−2 + an−1 = vk+1

−(k + 1)ak+1 + . . . + an−2 + an−1 = vk+2

⋮ ⋮
−(n − 2)an−2 + an−1 = vn−1

−(n − 1)an−1 = vn

(5.5)

Let us analyze the cases where v1 = ⋯ = vk = 0 or v1 = ⋯ = vk = 1. Note that the case where v1 = ⋯ = vk =
−1 is analogous to the previous case, except for a change of sign. Initially, suppose that v1 = ⋯ = vk = 0.

Since the number of 1′s and −1′s must be equal, for each i ∈ {k + 1, . . . , n − 1}, take vi = 1, vi+1 = −1 and

vj = 0 for all j ≠ {i, i + 1}. The solution to the system (5.4) is unique and is given by

ai = 1

i
, ai+1 = −1

i
e aj = 0, para j ∈ {k + 1, . . . , n − 1} ∖ {i, i + 1}.

This shows that it is possible to combine the vectors xk+1, . . . ,xn−1 to obtain n − k − 1 eigenvectors of

L(G) that are linearly independent with entries in {−1,0,1}. These vectors are

vi = 1

i
xi − 1

i
xi−1 = ei − ei+1 (5.6)

for each i ∈ {k + 1, . . . , n− 1}. Furthermore, in the other cases where there are two or more 1′s and −1′s,
the vectors obtained are a linear combination of the vectors vi obtained in (5.6).

Now, suppose that v1 = ⋯ = vk = 1. In this case, we must have at least k entries equal to -1

among vk+1, . . . , vn in the n − k equations in (5.5). Hence, we must have n − k ≥ k, which implies that

1 ≤ k ≤ ⌊n
2
⌋. Suppose that vk+1 = ⋯ = v2k = −1 and let v = k∑

i=1

ei − 2k∑
i=k+1

ei. The solution to the system
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(5.4) is unique and is given by

ai = 2k

i(i + 1) , for i = k, . . . ,2k − 1 and ai = 0, for i = 2k, . . . , n − 1.

Thus, it is possible to combine the vectors xk, . . . ,x2k−1 to obtain an eigenvector of L(G) with entries

in {−1,0,1} given by

v′ = 2k

k(k + 1) xk + . . . + 2k

(2k − 2)(2k − 1) x2k−2 + 1

2k − 1
x2k−1 (5.7)

Note that v′ in (5.7) is not a linear combination of the vectors vk+1, . . . ,vn−1 in (5.6), since the first k

coordinates of v′ are equal to 1, while the first k coordinates of vk+1, . . . ,vn−1 are equal to 0. Therefore,

the vectors {vk+1, . . . ,vn−1,v′} are linearly independent. Thus, if EL(n) is simply structured, then

1 ≤ k ≤ ⌊n
2
⌋.

On the other hand, suppose that 1 ≤ k ≤ ⌊n
2
⌋ and that bk+1 = . . . = bn = 1 and bk = 0. Then,

EL(n) = span {xk, . . . ,xn−1} e ⌈n
2
⌉ ≤ dim(EL(n)) ≤ n − 1.

Since k ∈ {1, . . . , ⌊n
2
⌋}, it is possible to combine the vectors xk, . . . ,xn−1 that are in the basis of EL(n)

to obtain a new basis for EL(n) formed by the vectors vk+1, . . . ,vn−1,v′ with entries only in {−1,0,1},
where the vectors vi, para i = k + 1, . . . , n − 1 are given in (5.6) and the vector v′ is given in (5.7).

Therefore, if 1 ≤ k ≤ ⌊n
2
⌋, then EL(n) is simply structured.

From Proposition 5.1, we conclude that the minimum number of vectors in the basis of EL(n)
is ⌈n

2
⌉. This result provides the answer to Problem A.1 for EL(n). Assuming that G is a connected

threshold graph with binary sequence such that bk+1 = ⋯ = bn = 1 and bk = 0, for some k ∈ {2, . . . , n− 1},
we always obtain n − k as an eigenvalue of L(G). For that reason, from now on, we will focus on

addressing Problem A.1 for the eigenspace of the eigenvalue n − k.

Proposition 5.2. Let G be a connected threshold graph on n vertices defined by the binary sequence

b = (b1, b2, b3, . . . , bk, bk+1, . . . , bn) such that bk = 0 and bk+1 = . . . = bn = 1, for some k ∈ {2, . . . , n−1}. Let

l ∈ {1, . . . , k−1} such that bl+1 = . . . = bk and, if l ≥ 2, then bl ≠ bl+1. Then, EL(n−k) is simply structured

if and only if 1 ≤ l ≤ ⌊k
2
⌋.

Proof. By Theorem 5.1 ([24], Theorem A), L(G) and L(Sn) share the same eigenvectors. By hypothesis,

we have bk = 0 and bk+1 = . . . = bn = 1, for some k ∈ {2, . . . , n − 1}. Let l ∈ {1, . . . , k − 1} be such that

bl+1 = . . . = bk = 0 and, if l ≥ 2, then bl = 1. Under these conditions, n − k is an eigenvalue of L(G), and
by Theorem 5.1 ([24], Theorem A) we have that

EL(n − k) = span {xl, . . . ,xk−1} and dim(EL(μ)) = k − l.
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Suppose that EL(n−k) is simply structured. Then, by hypothesis, there is a basis B = {ul+1, . . . ,uk−1,u′}
such that

EL(n − k) = span {xl, . . . ,xk−1} = span{ul+1, . . . ,uk−1,u′},
where each vector u ∈ B has entries only in the set {−1,0,1}. Tome u = [u1, . . . , un] ∈ B and determining

it from the vectors xi corresponds to finding coefficients a = [al, al+1, . . . , ak−1]T such that

Xa = u, (5.8)

where

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1 1

⋮ ⋮ ⋱ ⋮ ⋮
1 1 . . . 1 1

−l 1 . . . 1 1

0 −(l + 1) . . . 1 1

0 0 . . . 1 1

⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . 1 1

0 0 . . . −(k − 2) 1

0 0 . . . 0 −(k − 1)
0 0 . . . 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where each column of X is a vector xi for i = l, . . . , k − 1. Note that u must have same number of −1′s
and 1′s since it is orthogonal to vector xn = (1,1, . . . ,1). Observe that the first l equations of (5.8) are

all identical, and therefore u1 = u2 = ⋯ = ul. The other k − l equations are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−l al + al+1 + . . . + ak−2 + ak−1 = ul+1

−(l + 1)al+1 + . . . + ak−2 + ak−1 = ul+2

⋮ ⋮
−(k − 2)ak−2 + ak−1 = uk−1

−(k − 1)ak−1 = uk

(5.9)

and the remaining t equations from (5.8) are all equal to 0, and therefore un−t+1 = ⋯ = un = 0. Let us

analyze the cases where u1 = ⋯ = ul = 0 or u1 = ⋯ = ul = 1. Note thet the case where u1 = ⋯ = ul = −1
is analogous to the previous case, except for the change of sign. Initially, suppose that u1 = ⋯ = ul = 0.

Since the number of 1′s and −1′s must be equal, for each i ∈ {l + 1, . . . , n − t − 1}, take ui = 1, ui+1 = −1
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and uj = 0 for all j ≠ {i, i + 1}. The solution to the system (5.8) is unique and given by

ai = 1

i
, ai+1 = −1

i
and aj = 0, for j ∈ {l + 1, . . . , k − 1} ∖ {i, i + 1}.

This shows that is possible to combine the vectors xl+1, . . . ,xk−1 to obtain k− l−1 eigenvectors of L(G)
that are linearly independent with entries in {−1,0,1}. These vectors are

ui = 1

i
xi − 1

i
xi−1 = ei − ei+1 (5.10)

for each i ∈ {l + 1, . . . , k − 1}. Furthermore, in the other cases where are two or more 1′s and −1′s, the
vectors obtained are a linear combination of the vectors ui obtained in 5.10.

Now, suppose that u1 = ⋯ = ul = 1. In this case, we must have at least l entries equal to

-1 among ul+1, . . . , uk in the k − l equations in (5.9). Hence, we have must k ≥ 2l, which implies that

1 ≤ l ≤ ⌊k
2
⌋. Suppose that ul+1 = ⋯ = u2l = −1 and let u = l∑

i=1

ei − 2l∑
i=l+1

ei. The solution to the system (5.8)

is unique and is given by

ai = 2l

i(i + 1) , for i = l, . . . ,2l − 1 and ai = 0, for i = 2l, . . . , k − 1.

Thus, it is possible to combine the vectors xl, . . . ,x2l−1 to obtain 1 eigenvector of L(G) with entries in

{−1,0,1} given by

u′ = 2l

l(l + 1) xl + . . . + 2l

(2l − 2)(2l − 1) x2l−2 + 1

2l − 1
x2l−1 (5.11)

Note that u′ in (5.11) is not a linear combination of the vectors ul+1, . . . ,uk−1 in (5.10), since the first l

coordinates of u′ are equal to 1, while the first l coordinates of ul+1, . . . ,uk−1 are equal to 0. Therefore,

the vectors {ul+1, . . . ,uk−1,u′} are linearly independent. Thus, if EL(n − k) is simply structured, then

1 ≤ l ≤ ⌊k
2
⌋.

On the other hand, suppose that 1 ≤ l ≤ ⌊k
2
⌋ and that bl+1 = . . . = bk = 0 and, if l ≥ 2, then bl = 1. So,

EL(n − k) = span {xl, . . . ,xk−1} and ⌈k
2
⌉ ≤ dim(EL(n − k)) ≤ k − 1.

Since l ∈ {1, . . . , ⌊k
2
⌋}, it is possible to combine the vectors xl, . . . ,xk−1 that are in the basis of EL(μ)

to obtain a new basis for EL(μ) formed by the vectors ul+1, . . . ,uk−1,u′ with entries only in {−1,0,1},
where the vectors ui, for i = l + 1, . . . , k − 1 are given in (5.10) and the vector u′ is given in (5.11).

Threfore, if 1 ≤ l ≤ ⌊k
2
⌋, then EL(n − k) is simply structured.

From Proposition 5.2, we conclude that the minimum number of vectors in the basis of EL(n−k)
is ⌈k

2
⌉. This result provides the answer to Problem A.1 for EL(n − k). Assuming that G is a connected

threshold graph with binary sequence such that bl+1 = ⋯ = bk = 0 and bk+1 = ⋯ = bn = 1, for some

k ∈ {2, . . . , ⌊n
2
⌋} and l ∈ {1, . . . , ⌊k

2
⌋}, we always have EL(n) and EL(n−k) as simply structured, regardless
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of what happens in the other positions of the binary sequence. Therefore, propositions 5.1 and 5.2

provide an important starting point to determine the threshold graphs that are simply structured.

Applying those results recursively, we can generate all simply structured threshold graphs of order n.

This idea will be detailed in the next section.

5.3 Algorithm

Based on the theoretical results of the previous section, we build an algorithm to generate all

connected threshold graphs on n vertices that are simply structured.

Let G be a connected threshold graph on n vertices defined by binary sequence

b = (b1, b2, . . . , bk, bk+1, . . . , bn). Propositions 5.1 and 5.2 allow us to address Problem A.1 for the

eigenspaces associated with the eigenvalues n and n − k, respectively. From now on, we will see that

by recursively applying the same ideas used in the proofs of the Propositions 5.1 and 5.2 we can solve

Problem A.1 for all the eigenspaces of L(G). In other words, we solve Problem A.2, which states:

Problem A.2: Characterize all threshold graphs that are simply structured.

Problem A.2 will be solved in the steps of Algorithms 1 and 2. We designed Algorithm 1 to

generate all possible partitions of an integer n, that is, the order of the threshold graph. The idea of

Algorithm 1 is explained below.

Algorithm 1: We start by letting P = [n] be the first partition, and make LP containing P . In general,

let P = [P (1), P (2), . . . , P (m)] be a partition of the integer n with length m, where m ≥ 1. We want

to determine a list LP that contains all possible non-decreasing partitions. We refer to the length of a

given partition P , which is equal to its number of parts, as the level of its partition. All other partitions

in the list LP will be obtained through a procedure that we will call expansion. This procedure consists

of obtaining a new partition P ′ of level m + 1 from P , and it can occur in two ways, depending on the

parity of level m:

1.1) If levelm is odd: for each j ∈ {1, . . . , ⌊P (1)
2

⌋}, construct a partition P ′ = [j, P (1)−j, P (2), . . . , P (m)]
and then add P ′ to the list LP .

1.2) If levelm is even: for each j ∈ {2, . . . , ⌊P (1)
2

⌋}, construct a partition P ′ = [j, P (1)−j, P (2), . . . , P (m)]
and then add P ′ to the list LP .

The expansion will be performed recursively for each partition P obtained in substeps 1.1 and

1.2, and that were added to the list LP. We continue to apply the expansion procedure until ⌊P (1)
2

⌋ ≤ 3.

Note that the criterion for applying the expansion procedure is the same as the one used in Propositions

5.1 and 5.2. We represent the Step 1 procedure in Figure 5.2.
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Figure 5.2: Diagram to represent the expansion procedure.

According to the ideas above, Algorithm 1 is presented next.
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Algorithm 1 - Partition1(P)

Input : Partition P=[n], LP = ∅
Output: List of partitions LP

1. LP = LP ∪ [P ]
2. Let x = P (1)
3. Let level = len(P) // len(P) is the length of P

4. if level is odd then

5. j0 = 1

6. else

7. j0 = 2

8. end if

9. for j = j0 to ⌊x
2
⌋ do

10. Set P ′ = [j, x − j, P (2), . . . , P (m)]
11. Partition1(P ′) // Call Algorithm 1 recursively for P ′ and put all of the

results into LP

12. end for

Algorithm 2 consists of generating the binary sequence of all threshold graphs that are simply

structured from partitions obtained from Algorithm 1. The main ideas of this algorithm are described

in the following steps below.

Step 1: It consists of removing all partitions of odd length from the list LP since only partitions of

even length can guarantee the construction of a binary sequence b that alternates 0’s and 1’s, where the

first P (1) positions are 0’s and the last P (m) positions of b are 1’s. We will denote by LP ′ the list that

contains all the non-decreasing partitions P of even length from n obtained in Algorithm 1.

Step 2: For each partition P ∈ LP ′, we construct the corresponding binary sequence b, that is, if

P = [P (1), P (2), . . . , P (m)], then b1 = . . . = bP (1) = 0 and for i ∈ {2, . . . ,m}, we have that b∑i−1
j=1 P (j)+1 =

. . . = b∑i
j=1 P (j) is equal to 0 or 1, depending on whether i is odd or even, respectively. Since the number

of elements in each part P (i), for i ∈ {1, . . . ,m}, was obtained using the same criteria as in Propositions

5.1 and 5.2 (given by ⌊P (1)/2⌋), we can ensure a simply structured basis for the eigenspace associated

with each eigenvalue of the graph. Therefore, the threshold graphs defined by these binary sequences

are simply structured.

Algorithm 2 is presented below.
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Algorithm 2 - Algorithm for determining threshold graphs that are simply

structured
Input : n (order of the graph); BS = ∅
Output: BS (list of a binary sequence)

1. LP = Algorithm1(P=[n])

2. LP ′ = remove odd(LP ) // Remove all partitions of odd length

3. for P ∈ LP ′ do

4. b = ∅ // Empty list of length n

5. b1 = ⋯ = bP (1) = 0

6. for i = 2 to len(P ) do

7. if i is odd then

8. b∑i−1
j=1 P (j)+1 = ⋯ = b∑i

j=1 P (j) = 0

9. else

10. b∑i−1
j=1 P (j)+1 = ⋯ = b∑i

j=1 P (j) = 1

11. end if

12. end for

13. BS = BS ∪ b // Append b to the binary sequence list

14. end for

Next, we present an example that illustrates the functioning of Algorithms 1 and 2.

Example 5.3. Let us characterize all connected threshold graphs with n = 9 vertices that are simply

structured. Initially, we will determine all extensions according to Step 1.

Level 1 Level 2 Level 3 Level 4

9 1,8

2,7

3,6

4,5 2,2,5 1,1,2,5

Next, we remove all partitions of odd length generated by the expansion procedure. With the

remaining partitions, we construct the corresponding binary sequences b and represent the graph defined

by b as shown in the Table 5.3.
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Partitions of even length Binary sequence Graph

1,8 (0,1,1,1,1,1,1,1,1) Kc
1 ∨K8 ≅K9

2,7 (0,0,1,1,1,1,1,1,1) Kc
2 ∨K7 ≅K9 − (1,2)

3,6 (0,0,0,1,1,1,1,1,1) Kc
3 ∨K6

4,5 (0,0,0,0,1,1,1,1,1) Kc
4 ∨K5

1,1,2,5 (0,1,0,0,1,1,1,1,1) (K2 ⊔Kc
2) ∨K5 ≅Kc

4 ∨K5 + (1,2)
Table 5.3: Connected threshold graphs on 9 vertices that are simply structured.

In Appendix A, we present all connected threshold graphs with order n ∈ {3,4, . . . ,18}
generated by Algorithm 2.
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Chapter 6

THRESHOLD GRAPHS THAT ARE WHD

In the previous chapter we characterized all connected thresholds that are simply structured.

In this chapter, we are interested in exploring the connection between weak Hadamard matrices and

thresholds. It is worth mentioning that not all graphs obtained from Algorithm 2 are WHD. Here, we

present results that identify certain families of threshold graphs that are WHD. These theoretical results

were crucial in the development of an algorithm through which we characterize all connected threshold

on n vertices that are WHD.

6.1 Introduction

In Example 5.3, we obtained that K9, K9−(1,2), Kc
3∨K6, K

c
4∨K5 and Kc

4∨K5+(1,2) are the
only graphs with 9 vertices having a simply structured eigenbasis. Consider the graph G =Kc

3 ∨K6. By

Proposition 5.1, EL(9) = span {v4, v5, v6, v7, v8, v′}, and by Proposition 5.2, EL(6) = span {u′, u2},
where v4 = e4 − e5, v

5 = e5 − e5, v
6 = e6 − e7, v

7 = e7 − e8, v
8 = e8 − e9, v′ = (e1 + e2 + e3)− (e4 + e5 + e6),

u′ = e1 − e2, u2 = e2 − e3. Moreover, we know that EL(0) = span {x9}, where x9 = �9. Therefore,

B = {u′, u2,v4, v5, v6, v7, v8, v′,x9} is a simply structured eigenbasis of L(G). If we form the

matrix

W = [(u′)T , (u2)T ∣ (v4)T , (v5)T , (v6)T , (v7)T , (v8)T , (v′)T ∣ (x9)T ],
that is,

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1 1

−1 1 0 0 0 0 0 1 1

0 −1 0 0 0 0 0 1 1

0 0 1 0 0 0 0 −1 1

0 0 −1 1 0 0 0 −1 1

0 0 0 −1 1 0 0 −1 1

0 0 0 0 −1 1 0 0 1

0 0 0 0 0 −1 1 0 1

0 0 0 0 0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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we obtain that

WTW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0 0 0 0

−1 2 0 0 0 0 0 0 0

0 0 2 −1 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0

0 0 0 −1 2 −1 0 −1 0

0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 −1 2 0 0

0 0 0 0 −1 0 0 6 0

0 0 0 0 0 0 0 0 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is not tridiagonal. Since the vector v6 is not orthogonal to the vectors v5, v7, and v′, any other matrix

W ′ formed by the vectors in the eigenbasis B will result in W ′TW ′ not being tridiagonal. Therefore,

the graph G3 =Kc
3 ∨K6 is not WHD for the given basis. This implies that not all threshold graphs that

are simply structured are necessarily WHD. Motivated by this fact, we developed procedures based on

some theoretical results that together with the results of Chapter 5 helped us to determine all threshold

WHD graphs.

6.2 Theoretical results

Some families of threshold graphs that are WHD have already been studied. Recently, Adm

et al. in [2], showed that the threshold graphs G = Kc
k ∨Kn−k are WHD under certain conditions on n

and k. For instance, if k = 1 and n ≥ 2, then G ≅ Kn and G are WHD according to Lemma 1.5, ([2],

Lemma 1.5). If k = 2 and n ≥ 4, then G ≅ Kn − e, that is, G is the complete graph minus an edge, and

G is WHD according to Lemma 4.8 ([2], Lemma 4.8). If k ≥ 3 and n ∈ {2k,2k + 1,2k + 2}, then G is

WHD according to Lemma 4.6 ([2], Lemma 4.6). Macharete et al. in [24] presented an alternative and

more complete proof of Lemma 4.6, since they showed that the matrix W of eigenvectors satisfies the

additional property that WTW is tridiagonal, in such a way that it is clearer than in the proof provided

by the authors in [2]. This new proof is in Proposition 6.1. Besides, it shows the power of the structure

tools developed in Lemmas 2.2 and 2.3.

Proposition 6.1. ([24], Proposition 4.1) Let G =Kc
k ∨Kn−k, with k ≥ 3. If n− 2k ∈ {0,1,2}, then G is

a WHD graph.

Proof. Note that G = Kc
k ∨ Kn−k is a threshold graph on n vertices and binary sequence

b = (0,0, . . . ,0�������������������������������������� 
k

,1,1, . . . ,1�������������������������������������� 
n−k

). The eigenvalues of L(G) are n − k, n, and 0 with multiplicities k − 1, n − k,
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and 1, respectively. We arrange the vertices of G so that the first k vertices are the vertices of Kc
k.

From Theorem 5.1, L(G) and L(Sn) share the same eigenvectors and we obtain that the eigenspaces

associated with eigenvalues n − k,n and 0 of L(G) are given by

EL(n − k) = span {x1,x2, . . . ,xk−1},
EL(n) = span {xk, . . . ,xn−1},
EL(0) = span {xn}.

Now, we are going to obtain linear combinations of those vectors to obtain vectors with entries in the

set {−1,0,1}. Consider a convenient linear combination given by

u1 = x1 and ui = xi − xi−1

i
, for i = 2, . . . , k − 1,

that is,

ui = ei − ei+1, for i = 1, . . . , k − 1.

Hence we obtain

EL(n) = span {u1,u2, . . . ,uk−1}
and each entry of ui, for i = 1, . . . , k − 1 is equal to -1, 0 or 1. Similarly, consider a convenient linear

combination given by

vi = xi − xi−1

i
, for i = k + 1, . . . , n − 1, (6.1)

that is,

vi = ei − ei+1, for i = k + 1, . . . , n − 1.

Hence we obtain n − 1 vectors that belong to EL(n), and each entry of vi is equal to -1,0 or 1. Since

dim(EL(n)) = n− k we need another vector v to complete the eigenspace related to the eigenvalue n+ k

of L(G). Since

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n − k 0 0 . . . 0 −1 −1 −1 . . . −1
0 n − k 0 . . . 0 −1 −1 −1 . . . −1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . n − k −1 −1 −1 . . . −1
−1 −1 −1 . . . −1 n − 1 −1 −1 . . . −1
−1 −1 −1 . . . −1 −1 n − 1 −1 . . . −1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮⋮ ⋮ ⋮ ⋱ ⋮
−1 −1 −1 . . . −1 −1 −1 −1 . . . n − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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notice that v = (1,1, . . . ,1�������������������������������������� 
k

,−1,−1, . . . ,−1���������������������������������������������������������������������� 
n−k−1

, n − 2k − 1��������������������������������������� 
1

) is an eigenvector of L(G) associated with eigenvalue

n+k. Moreover, if n− 2k ∈ {0,1,2}, then the eigenvector v of L(G) has entries from {−1,0,1}. Besides,
v is not a linear combination of the set {vk+1, . . . ,vn−1} since the first k entries of each vi are equal to

zero. Then, we obtain that

EL(n) = span {vk+1, . . . ,vn−1,v}
and each entry of vi, for i = k + 1, . . . , n − 1 and v are equal to -1, 0 or 1.

Let

β = {u1,u2, . . . ,uk−1,vk+1,vk+2, . . . ,vn−1,v,xn} (6.2)

an eigenbasis of L(G). Note that u1 is orthogonal to all vectors in β, except for the vector u2; ui,

for i = 2,3, . . . , k − 2, is orthogonal to all vectors in β, except for the vectors ui−1 and ui+1; uk−1 is

orthogonal to all vectors in β, except for the vector uk−2; vk+1 is orthogonal to all vectors in β, except

for the vector vk+2; vi, for i = k + 2, k + 3, . . . , n − 2, is orthogonal to all vectors in β, except for the

vectors vi−1 and vi+1; vn−1 is orthogonal to all vectors in β, except for the vector vn−2; v and xn are

orthogonal to all vectors in β.

In this case, if we form the matrix W where the first k − 1 columns are the eigenvectors of

EL(n − k), the next n − k columns are the eigenvectors of EL(n), and the last column is given by the

eigenvector of EL(0), then we have

W = [(u1)T , . . . , (uk−1)T ∣ (vk+1)T , . . . , (vn−1)T , (v)T ∣ xn],
and therefore, it follows that WTW is tridiagonal, and the proof is complete.

Let G =H∨Kn−k be a graph, whereH =Kc
l ∨Kk−l is a connected on k vertices. By Proposition

6.1, H is a WHD graph, if l ≥ 3 and k − 2l ∈ {0,1,2}. Lemma 4.7 ([2], Lemma 4.7) ensures that G is a

WHD graph if n− 2k ∈ {0,1,2}. Therefore, the thereshold graphs G =Kc
l ∨Kk−l ∨Kn−k ≅Kc

l ∨Kn−l are

WHD if k − 2l ∈ {0,1,2} and n − 2k ∈ {0,1,2}. However, in the proof of Lemma 4.7 presented in [2], we

identified some inaccuracies, which motivated us to rewrite the proof of this result as Proposition 6.2 of

this thesis.

Proposition 6.2. Let G = H ∨ Kn where H is a WHD connected graph on k ≥ 2 vertices. If n − k ∈
{0,1,2}, then G is a WHD graph.

Proof. Let specL(H) = {μ(n1)
1 , μ

(n2)
2 , . . . , μ

(nl)
l , 0(1)}, then

specL(G) = {(n + k)(n), (n + μ1)(n1), (n + μ2)(n2), . . . , (n + μl)(nl), 0(1)}.
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The all ones vector, denoted by �n+k, is an eigenvector of L(G) associated with eigenvalue 0. We arrange

the vertices of G so that the first k vertices are the vertices of H. Denote by uij the eigenvectors of

L(H) associated with eigenvalues μi. Since H is WHD, the vectors uij form a weak Hadamard matrix

which diagonalizes L(H). Moreover, the vectors uij concatenated with n zeros, denoted by Uij , form

suitable eigenvectors for the eigenspace associated with n + μi.

Similarly, the vectors vi = ei −ei+1, with i = k+1, . . . , n+k−1 are n−1 suitable eigenvectors of

L(G) for the eigenspace associated with n+ k. The vector v = (1,1, . . . ,1�������������������������������������� 
k

,−1,−1, . . . ,−1���������������������������������������������������������������������� 
n−1

, n − k − 1������������������������������ 
1

) is an

eigenvector of L(G) associated with eigenvalue n+k. Moreover, if n−k ∈ {0,1,2}, then the eigenvector v

of L(G) has entries from {−1,0,1}. Besides, v is not a linear combination of the set {vk+1, . . . ,vn+k−1}
since the k first entries of each vi is equal to zero.

If we form the matrix W where the first k − 1 columns are the eigenvectors Uij of L(G)
associated with eigenvalues n + μi, the next n columns are the eigenvectors vk+1, . . . ,vn+k−1,v of L(G)
associated with eigenvalues n+k, and the last column is given by the eigenvector �n+k of L(G) associated
with eigenvalue 0, then we have that WTW is tridiagonal, and the proof is complete.

We proved that it is possible to extend Proposition 6.1 and that the graphs obtained from

Kc
k ∨Kn−k by adding a single edge preserves the properties of being threshold and WHD. Hence, this

results in a new infinite family of threshold graphs that are WHD, and it was published in Macharete

et al., [24].

Proposition 6.3. Let G =Kc
k ∨Kn−k such that n−2k ∈ {0,1,2} and k ≥ 4. Then, G′ = G+ e is a WHD

threshold graph.

Proof. From Proposition 6.1, G = Kc
k ∨Kn−k is WHD. Let G′ = G + e. Without loss of generality, take

e = {1,2}. Hence, G′ can be represented by the binary sequence b = (0,1,0,0, . . . ,0�������������������������������������� 
k−2

,1,1, . . . ,1�������������������������������������� 
n−k

). So, G′

is a threshold graph on n + k vertices. The eigenvalues of L(G′) are n − k + 2, n − k, n and 0 with

multiplicities 1, k − 2, n − k, and 1, respectively. From Theorem 5.1, L(G′) and L(Sn) share the same

eigenvectors. Also,

EL(n − k + 2) = span {x1},
EL(n − k) = span {x2, . . . ,xk−1},

EL(n) = span {xk, . . . ,xn−1},
EL(0) = span {xn}.

We have that EL(n) = span {vk+1, . . . ,vn−1,v}, where the vectors vk+1, . . . ,vn−1 are given in (6.1) and
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v = (1,1, . . . ,1�������������������������������������� 
k

,−1,−1, . . . ,−1���������������������������������������������������������������������� 
n−k−1

, n − 2k − 1��������������������������������������� 
1

).
If k is even, we can make the appropriate linear combination of the vectors x2, . . . ,xk−1 to obtain the

vectors wj and zj , for j = 1, . . . , k
2
− 1, where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
wj = − 1

2j − 1
x2j−2 − (j − 1)

j(2j − 1)x2j−1 + (j + 1)
j(2j + 1)x2j + 1

2j + 1
x2j+1

zj = 1

2j + 1
(x2j+1 − x2j) (6.3)

that is,

(w1)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

−1
−1
0

0

0

0

⋮
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (w2)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

1

−1
−1
0

0

⋮
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , (wj)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

⋮
0

0

1

1

−1
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

(z1)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

−1
0

0

0

0

⋮
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (z2)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

−1
0

0

⋮
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , (zj)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

⋮
0

0

0

0

1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore,

EL(n) = span {w1, . . . ,wj ,z1, . . . ,zj}.
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Notice that each entry of wj and zj , for j = 1, . . . , k
2
− 1, is equal to -1, 0 or 1. Moreover, {z1,z2, . . . ,zj}

forms a mutually orthogonal set and wi is orthogonal to {wi+2,wi+3, . . . ,wj}, for i = 1, . . . , j−2. Finally,
observe that wi is orthogonal to zk for any i, k. Hence, if we form the matrix

W = [(x1)T ∣ (w1)T , . . . , (wj)T , (z1)T , . . . , (zj)T ∣
(vk+1)T , . . . , (vn+k−1)T , (v)T ∣ (xn+k)T ]

then it follows that WTW is a tridiagonal matrix.

If k is odd, consider the appropriate linear combination of the vectors x2, . . . ,xk−1 to obtain the vectors

wj , zj and z, for j = 1, . . . , k−1
2

− 1, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wj = − 1

2j − 1
x2j−2 − (j − 1)

j(2j − 1)x2j−1 + (j + 1)
j(2j + 1)x2j + 1

2j + 1
x2j+1

zj = 1

2j + 1
(x2j+1 − x2j)

z = 1

n − 1
(xn−1 − xn−2)

(6.4)

that is,

(w1)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

−1
−1
0

0

0

0

⋮
0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (w2)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

1

−1
−1
0

0

⋮
0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , (wj)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

⋮
0

0

1

1

−1
−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

(z1)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

−1
0

0

0

0

⋮
0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (z2)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

−1
0

0

⋮
0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , (zj)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

⋮
0

0

0

0

1

−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and (z)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

⋮
0

0

0

0

0

1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore,

EL(n) = span {w1, . . . ,wj ,z1, . . . ,zj ,z}.
Observe that each entry of wj , zj , for j = 1, . . . , k−1

2
− 1, and z is equal to -1, 0 or 1. Moreover,

{z1,z2, . . . ,zj} forms a mutually orthogonal set and wi is orthogonal to {wi+2,wi+3, . . . ,wj}, for i =
1, . . . , j−2, andwi is orthogonal to zk for any i, k. Finally, note that z is orthogonal to {w1,w2, . . . ,wj−1,

z1,z2, . . . ,zj−1}, but z is not orthogonal to neither wj nor zj . In this case, we form the matrix

W = [(x1)T ∣(w1)T , . . . , (wj−1)T ∣ (wj)T , (z)T , (zj)T ∣ (z1)T , . . . , (zj−1)T ∣
(vk+1)T , . . . , (vn−1)T , (v)T ∣ (xn)T ]

and it follows that WTW is a tridiagonal matrix. So G′ is WHD and the proof is complete.

In the paper of McLaren, Monterde and Plosker [26], they build an infinite family of threshold

graphs that are WHD of order 2l for l ≥ 1. Proposition 6.3 we build an infinite family of threshold graphs

that are WHD and are not completely described by their work. For instance, the graph (K2 ⊔Kc
6)∨K8

belongs to the family we build but does not belong to the families defined in [26]. In addition, we

are able to generate threshold WHD graphs for any number of vertices, and we are not restricted to

threshold graphs of order n = 2l for l ≥ 1. These facts make the graphs obtained from Proposition 6.3

interesting.

We conclude this section by using Theorem 5.2 to show that the disconnected threshold graph

G =H ⊔ pK1 is WHD if H is WHD.

72



Corollary 6.1. Let G =H ⊔ pK1 be a disconnected threshold graph, where H is a connected threshold

graph with n − p vertices and p is the number of isolated vertices. If H is a WHD graph, then G is also

a WHD graph.

Proof. Consider the disconnected threshold graph G = H ⊔ pK1, where H is a connected threshold

graph with n − p vertices and p is the number of isolated vertices. By Theorem 5.1, the L(H) and

L(K1,n−p−1) share the same eigenvectors. Assuming that H is WHD, we can reconfigure the eigenvectors

of L(K1,n−p−1) to obtain an eigenbasis B for L(H) that is simply structured. Furthermore, the matrix

W , formed by the vectors in B, results in WTW being a tridiagonal matrix. By Theorem 5.2, the

eigenvectors of L(G) are the same as those in the basis B′ = {y1,y2, . . . ,yn}, defined in (5.2) and

(5.3). Thus, L(G) has a simply structured eigenbasis and the matrix W ′ = [y1,y2, . . . ,yn] satisfies the
condition that W ′TW ′ is a tridiagonal matrix. Therefore, we conclude that the graph G is also WHD.

6.3 Algorithm

Let P = [P (1), P (2), . . . , P (m)] be a partition of n and let b = (b1, b2, . . . , bn) be a binary

sequence that defines a connected threshold graph G. In the families of connected threshold WHD

graphs that have been studied, we can observe that the binary sequence b follows the following pattern:

b1 = . . . = bP (1) = 0

b∑i−1
j=1 P (j)+1 = . . . = b∑i

j=1 P (j), for i ∈ {2, . . . ,m}
such that the following conditions hold:

P (i + 1) − 2P (i) ∈ {0,1,2}, for ∈ {1, . . . ,m − 1} (6.5)

This observation led us to conclude that, to identify all WHD threshold graphs on n vertices, we need to

determine all partitions of n that satisfy the conditions in (6.5). In this way, we will be able to address

Problem A.3, which states:

Problem A.3: Characterize all connected threshold graphs on n vertices that are WHD.

We completely solve Problem A.3 by using the following three steps.

Step 1: To determine a list S that contains all non-decreasing partitions P = [P (1), P (2), . . . , P (m)]
of length m of n that satisfy (6.5). Note that P = [P (1)], where P (1) = n, is a partition of n of length

1, and this is the first element of S. All other partitions in the list S will be obtained through two

procedures that we will call expansion and reduction, respectively, which will be defined below.
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Substep 1.1 (Expansion) : this procedure consists of obtaining a new partition P ′ of length m + 1

from P , and it can occur in two ways.

• Criterion (1): We determine all positive integers k that are solutions to equation P (1) − 2k ∈
{0,1,2}. If P (1) is even, k ∈ {P (1)

2
, P (1)−2

2
}. If P (1) is odd, k ∈ {P (1)−1

2
}. For each of these

solutions, we construct the partition P ′ = [k,P (1)−k,P (2), . . . , P (m)] and then add P ′ to the list

S. The Criterion (1) will be performed recursively for each partition P obtained. We continue to

apply the expansion procedure until P (1) = 1. Note that Criterion (1) for applying the expansion

procedure is the same as the one used in Proposition 6.1.

• Criterion (2): If P (1) ≥ 7 and is odd, then we construct the partition P ′ = [2, P (1) −
2, P (2), . . . , P (m)] and add P ′ to the list S. Criterion (2) will be performed recursively for

each partition P obtained. We continue to apply the expansion procedure until P (1) < 7. Note

that Criterion (2) for applying the expansion procedure is the same as the one used in Lemma 4.8

[2].

Substep 1.2 (Reduction) : Let P ∈ S be a partition of length m ≥ 3. The reduction procedure

consists of obtaining a new partition P ′ of length m − 1 from P by adding the number of elements in

parts P (2) e P (3). Specifically, we construct P ′ = [P (1), P (2)+P (3), P (4), . . . , P (m)] and then add P ′

to the list S. The reduction will be performed recursively for each partition P obtained. We continue to

apply the reduction procedure until m = 2. Note that the criterion for applying the reduction procedure

is the same as the one used in Proposição 6.2.

Figure 6.1 captures the expansion and reduction procedures described above.
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Figure 6.1: Diagram to represent the expansion and reduction procedures.

Step 2: Consists of removing all partitions of odd length from the list S, as only with partitions of

even length we can guarantee the construction of a binary sequence b that alternates 0’s and 1’s, where

the first P (1) positions are 0’s and the last P (m) positions of b are 1’s. We will denote by S′ the list

that contains all the non-decreasing partitions P of even length from n obtained in Step 1.

Step 3: For each partition P ∈ S′, we construct the corresponding binary sequence b. Specifically, if

P = [P (1), P (2), . . . , P (m)], then b1 = ⋯ = bP (1) = 0 and for i ∈ {2, . . . ,m}, we have that b∑i−1
j=1 P (j)+1 =

⋯ = b∑i
j=1 P (j) is equal to 0 or 1, depending on whether i is odd or even, respectively. Since the number

of elements in each part P (i), for i ∈ {1, . . . ,m} was obtained using the same criteria as in Propositions

6.1, 6.2 and Lemma 4.6 [2]), we can ensure that the threshold graphs defined by these binary sequences

are WHD.

The following example illustrates the procedures described above.

Example 6.1. Let’s determine all connected threshold graphs with n = 9 vertices that are WHD. Figure

shows all the partitions of n = 9 obtained through the extensions and reductions described in Step 1.
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Figure 6.2: All partitions of n = 9 obtained through the extensions and reductions procedures described in Step

1

Next, we remove all partitions of odd length generated by the expansion and reduction procedures.

With the remaining partitions, we construct the corresponding binary sequences b and represent the graph

defined by b as shown in the Table 6.1.

Partitions of even lenght Binary sequence Graph

1,8 (0,1,1,1,1,1,1,1,1) Kc
1 ∨K8 ≅K9

2,7 (0,0,1,1,1,1,1,1,1) Kc
2 ∨K7 ≅K9 − (1,2)

4,5 (0,0,0,0,1,1,1,1,1) Kc
4 ∨K5

1,1,2,5 (0,1,0,0,1,1,1,1,1) (K2 ⊔Kc
2) ∨K5 ≅Kc

4 ∨K5 + (1,2)
Table 6.1: Threshold graphs on 9 vertices that are WHD.

Note that among all the simply structured graphs obtained in Example 5.3 only the graph

Kc
3 ∨K6 is not WHD.

Algorithms 3 and 4 capture the processes described in Steps 1,2 e 3 e are able to generate all

connected threshold graphs on n vertices that are WHD.
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Algorithm 3 - Partition2(P)

Input : Partition P = [n], S = ∅
Output: S (set of resulting partitions)

1. if P ∈ S then

2. return

3. end if

4. n = P [1]
5. Add P into S

6. for k positive integer in solutions to n − 2k ∈ {0,1,2} do

7. P ′ = [k, n − k,P (2), . . . , P (m)]
8. Invoke Algorithm 3 recursively with P ′ and S

9. end for

10. if n ≥ 7 and n odd then

11. P ′ = [2, n − 2, P (2), . . . , P (m)]
12. Invoke Algorithm 3 recursively with P ′ and S

13. end if

14. if len(P ) ≥ 3 then

15. P ′ = [P (1), P (2) + P (3), P (4), . . . , P (m)]
16. Partition2(P ′) // Recursive call

17. end if
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Algorithm 4 - Algorithm for determining threshold graphs that are WHD

Input : n

Output: BS ∶ list of binary sequences

1. S = Algorithm3(P=[n])

2. S′ = remove odd(S)

3. for P in S′ do

4. b = ∅ // Empty list of length n

5. b1 = . . . = bP (1) = 0

6. for i = 2 to len(P ) do

7. if i is odd then

8. b∑i−1
j=1 P (j)+1 = ⋯ = b∑i

j=1 P (j) = 0

9. else

10. b∑i−1
j=1 P (j)+1 = ⋯ = b∑i

j=1 P (j) = 1

11. end if

12. end for

13. BS = BS ∪ b // Append b to BS

14. end for

In Appendix B, we present all threshold graphs of order n ∈ {3,4, . . . ,18} generated by

Algorithm 4. Table 6.2 compares the number of graphs generated by Algorithm 2 and Algorithm

4. Note that up to n = 8, all graphs with a simply structured eigenbasis are also WHD. Also, note that

from n = 18, the number of graphs with a simply structured eigenbasis is significantly greater than the

number of WHD graphs.
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n Algorithm 2 Algorithms 4

3 1 1

4 2 2

5 2 2

6 3 3

7 3 3

8 5 5

9 5 4

10 7 6

11 7 4

12 10 8

13 10 6

14 13 9

15 13 6

16 18 13

17 18 10

18 23 14

19 23 8

20 30 16

21 30 12

22 37 16

23 37 8

24 47 20

25 47 16

26 57 22

27 57 12

28 70 24

29 70 18

30 83 24

31 83 12

Table 6.2: Number of threshold graphs with simply structured generated from Algorithm 2 and WHD

graphs generated from Algorithm 4.

Adm et al. in [2], raised the following problem: Which cographs are WHD? While solving this
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problem completely may be challenging, we have made significant progress by determining all threshold

graphs that are WHD. It is important to note that this result contributes to the broader question, as

every threshold graph is a cograph. An interesting question that remains open is to answer Problem A

for cographs that are no threshold. We left it for future work. Since we have characterized all threshold

graphs that are WHD, this provides a useful foundation for the authors in [26] to study WHD threshold

graphs that exhibit perfect state transfer with arbitrary order.

6.4 Q-WHD graphs

In this section, we aim to address the following question: Given a graph G with n vertices,

does it make sense to think of the weak Hadamard matrix W that diagonalizes the signless Laplacian

matrix Q? We will treat separately the cases in which G is a connected and disconnected graph and we

will show that in both cases the study of graphs whose signless Laplacian matrix Q can be diagonalized

by weak Hadamard matrix W is reduced to the study of WHD graphs.

First, let’s suppose that G is a connected graph on n vertices. We will show that only regular

graphs can have their matrix Q diagonalized by W .

Proposition 6.4. Let G be a connected graph on n vertices. If the signless Laplacian matrix Q

associated to a graph G is diagonalized by a weak Hadamard matrix W , then G is regular.

Proof. If G is connected, the signless Laplacian matrix Q = D +A is irreducible, and by the Theorem

2.2, ρ(Q) is an eigenvalue of Q with algebraic multiplicity 1 and has a unique positive unit eigenvector

associated x. By hypothesis, Q is diagonalized by W , therefore x is a column of W and as all the entries

of W are from {−1,0,1} it follows that x = �n. By Proposition 2.2, we have that G is regular.

Next, we show that ifG is r-regular andWHD, then the signless LaplacianQ(G) is diagonalizable
by a weak Hadamard matrix W.

Proposition 6.5. Let G be a connected graph on n vertices. If G is r-regular and WHD, then the

signless Laplacian matrix Q associated to a graph G is diagonalized by a weak Hadamard matrix W .

Proof. Since G is WHD we have the Laplacian matrix L is diagonalized by a weak Hadamard matrix

W . By hypotesis, G is r-regular then from Proposition 2.3 we have that if (μ,x) is an eigenpair of

L(G) then (q,x) is an eigenpair of Q, where the eigenvalues of L and Q satisfy the following relation

q = 2r − μ, for all L-autovalor μ. Therefore it follows that matrix Q associated with the graph G is

diagonalized by the same weak Hadamard matrix W that diagonalizes L.

Now, let us consider that G is a disconnected graph. We will show that the matrix Q is

diagonalized by weak Hadamard matrix W if and only if the connected components of G are regulars

and WHD.
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Proposition 6.6. Let G = G1 ⊔ . . . ⊔ Gk be a disconnected graph on n vertices, where the order of

Gi = ni, for 1 ≤ i ≤ k. The signless Laplacian matrix Q associated to a graph G is diagonalized by a

weak Hadamard matrix W if and only if the connected components Gi, for all i = 1, . . . , k, are regular

and WHD.

Proof. Note that the matrices L and Q of graph G are block matrices. Since the connected components

Gi are WHD we have the Laplacian matrix L(Gi) are diagonalized by a weak Hadamard matrix Wi, for

i = 1, . . . , k. Moreover, we have that spectQ(G) = spectQ(G1) ∪ . . . ∪ spectQ(Gk). Since the connected

components of G are regulares, from Proposition 2.3 we have that for each block of Q if (μi,x) is an

eigenpair of L(Gi) then (qi,x) is an eigenpair of Q(Gi), where qi = 2r−μi for i = 1 . . . k and x = [xj] for
j = 1 . . . ni. Therefore, it follows the matrix Q(Gi) is diagonalized by the same weak Hadamard matrix

Wi that diagonalizes L(Gi), for i = 1, . . . , k. Let

W =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1 0 . . . 0

0 W2 . . . ⋮
⋮ ⋮ ⋱ 0

0 . . . 0 Wk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a matrix whereW1,W2, . . . ,Wk are matrices weak Hadamard that diagonalized the connected components

G1,G2, . . . ,Gk of G, respectively, that is, the columns of W are given by

x′ = (x′j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xj , 1 ≤ j ≤ ni,

0, ni + 1 ≤ j ≤ n.

where x = [xj], for j = 1, . . . , ni are the eigenvectors of L(Gi), for i = 1, . . . , k. Since all entries of W are

in {−1,0,1} and WTW is a tridiagonal matrix, it follows that the matrix Q is diagonalized by matrix

W . The converse follows from applying Theorem 2.2 for each block.
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CONCLUDING REMARKS AND FUTURE WORK

In this work, we study the eigenspaces of the Laplacian matrix associated with threshold

and chain graphs. It has been shown in the literature, mainly in the spectral graph theory area, that

eigenvalues and eigenvectors are related to combinatorial invariants of graphs and can encode nice

properties of the graph. In particular, we are interested in describing which threshold and chain graphs

have eigenspaces where all vectors on the basis have entries only from the set {−1,0,1}. If an eigenspace

has all vectors with entries from the set {−1,0,1} we say that this eigenspace is simply structured.

We studied the chain graphs because every threshold graph can be obtained from a chain

graph. We obtained a subfamily of the chain graphs (graphs where all cells have at least two vertices

and other constraints) where the integer eigenvalues have simply structured eigenspaces, but we could

not guarantee that all eigenvalues are integer. So, we could not find Laplacian integral chain graphs,

and that is the reason why we did not make much progress in finding WHD chain graphs.

We addressed the problem of determining all threshold graphs of a given order with a simply

structured eigenspace for all eigenvalues of the Laplacian matrix. Besides, we determined all thresholds

WHD graphs. Our approach consisted of determining the minimum number of vectors in the basis of an

eigenspace of the Laplacian matrix of a connected threshold graph so that this basis is simply structured,

as it can be seen in Propositions 5.1 and 5.2. We solved this question for the eigenvalues n and n−k, and
observed that the same ideas used for these two eigenvalues can be applied recursively in such a way that

we can guarantee the minimum number of eigenvectors to generate simply structured eigenspace for all

eigenvalues. This allowed us to develop the Algorithm 2 that generates all connected threshold graphs

of order n that are simply structured. For these graphs, we went a step further and identified those

whose basis of L(G) has an ordering in which nonconsecutive vectors are orthogonal. As a consequence,

we partially answered the problem proposed in [2], which aims to determine which cographs are WHD

by characterizing all threshold graphs that are WHD for the development of Algorithm 4.

We also investigated unicyclic graphs, that is, connected graphs in which the number of vertices

is exactly equal to the number of edges, that are WHD. In this context, we have that if G is a unicyclic

graph of order n (n ≥ 3), then G is Laplacian integral if and only if G ≅ Sn + e or G ≅ C3 or G ≅ C4 or

G ≅ C6 (Theorem 3.2., [23]). By Proposition 2.7 in [2], the graphs C3, C4 and C6 are WHD. Note that

Sn + e is a threshold graph and specL(Sn + e) = {(k + 3)(1),3(1),1(k),0(1)}, where k is the number of

pendant vertices. Since EL(k+3) = span{(1,1, . . . ,1,−(k+2))}, it follows that for all k ≥ 1, the unicyclic

graph Sn + e is not WHD. Thus, we conclude that the only unicyclic graphs that are WHD are C3, C4

and C6.
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As a future work, we consider the following problem:

Problem 1: Let Gn be the family of all cographs on n vertices such that for each G ∈ Gn, G is not

threshold. Find all WHD graphs in Gn.

In this sense, note that the complete bipartite graph Kk,k is cograph but not threshold. Adm

et al. in [2] proved that those graphs are WHD. Also, we can prove that there are graphs of type

G =Kk,k ∨Kn that is a WHD cograph if n− 2k ∈ {0,1,2} and is not a threshold. However, determining

all graphs of the family Gn remains an open problem.
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Appendix A

THRESHOLD GRAPHS THAT ARE SIMPLY

STRUCTURED

n = 3

Binary Sequence Graph

011 K3

Number of Graphs: 1

n = 4

Binary Sequence Graph

0111 K4

0011 Kc
2 ∨K2

Number of Graphs: 2

n = 5

Binary Sequence Graph

01111 K5

00111 Kc
2 ∨K3

Number of Graphs: 2

n = 6

Binary Sequence Graph

011111 K6

001111 Kc
2 ∨K4

Continued on next page
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Binary Sequence Graph

000111 Kc
3 ∨K3

Number of Graphs: 3

n = 7

Binary Sequence Graph

0111111 K7

0011111 Kc
2 ∨K5

0001111 Kc
3 ∨K4

Number of Graphs: 3

n = 8

Binary Sequence Graph

01111111 K8

00111111 Kc
2 ∨K6

00011111 Kc
3 ∨K5

00001111 Kc
4 ∨K4

01001111 K2 ⊔Kc
2 ∨K4

Number of Graphs: 5

n = 9

Binary Sequence Graph

011111111 K9

001111111 Kc
2 ∨K7

000111111 Kc
3 ∨K6

000011111 Kc
4 ∨K5

010011111 K2 ⊔Kc
2 ∨K5

Number of Graphs: 5
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n = 10

Binary Sequence Graph

0111111111 K10

0011111111 Kc
2 ∨K8

0001111111 Kc
3 ∨K7

0000111111 Kc
4 ∨K6

0000011111 Kc
5 ∨K5

0100111111 K2 ⊔Kc
2 ∨K6

0100011111 K2 ⊔Kc
3 ∨K5

Number of Graphs: 7

n = 11

Binary Sequence Graph

01111111111 K11

00111111111 Kc
2 ∨K9

00011111111 Kc
3 ∨K8

00001111111 Kc
4 ∨K7

00000111111 Kc
5 ∨K6

01001111111 K2 ⊔Kc
2 ∨K7

01000111111 K2 ⊔Kc
3 ∨K6

Number of Graphs: 7

n = 12

Binary Sequence Graph

011111111111 K12

001111111111 Kc
2 ∨K10

000111111111 Kc
3 ∨K9

000011111111 Kc
4 ∨K8

000001111111 Kc
5 ∨K7

000000111111 Kc
6 ∨K6

Continued on next page
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Binary Sequence Graph

010011111111 K2 ⊔Kc
2 ∨K8

010001111111 K2 ⊔Kc
3 ∨K7

010000111111 K2 ⊔Kc
4 ∨K6

011000111111 K3 ⊔Kc
3 ∨K6

Number of Graphs: 10

n = 13

Binary Sequence Graph

0111111111111 K13

0011111111111 Kc
2 ∨K11

0001111111111 Kc
3 ∨K10

0000111111111 Kc
4 ∨K9

0000011111111 Kc
5 ∨K8

0000001111111 Kc
6 ∨K7

0100111111111 K2 ⊔Kc
2 ∨K9

0100011111111 K2 ⊔Kc
3 ∨K8

0100001111111 K2 ⊔Kc
4 ∨K7

0110001111111 K3 ⊔Kc
3 ∨K7

Number of Graphs: 10

n = 14

Binary Sequence Graph

01111111111111 K14

00111111111111 Kc
2 ∨K12

00011111111111 Kc
3 ∨K11

00001111111111 Kc
4 ∨K10

00000111111111 Kc
5 ∨K9

00000011111111 Kc
6 ∨K8

00000001111111 Kc
7 ∨K7

Continued on next page
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Binary Sequence Graph

01001111111111 K2 ⊔Kc
2 ∨K10

01000111111111 K2 ⊔Kc
3 ∨K9

01000011111111 K2 ⊔Kc
4 ∨K8

01100011111111 K3 ⊔Kc
3 ∨K8

01000001111111 K2 ⊔Kc
5 ∨K7

01100001111111 K3 ⊔Kc
4 ∨K7

Number of Graphs: 13

n = 15

Binary Sequence Graph

011111111111111 K15

001111111111111 Kc
2 ∨K13

000111111111111 Kc
3 ∨K12

000011111111111 Kc
4 ∨K11

000001111111111 Kc
5 ∨K10

000000111111111 Kc
6 ∨K9

000000011111111 Kc
7 ∨K8

010011111111111 K2 ⊔Kc
2 ∨K11

010001111111111 K2 ⊔Kc
3 ∨K10

010000111111111 K2 ⊔Kc
4 ∨K9

011000111111111 K3 ⊔Kc
3 ∨K9

010000011111111 K2 ⊔Kc
5 ∨K8

011000011111111 K3 ⊔Kc
4 ∨K8

Number of Graphs: 13

n = 16

Binary Sequence Graph

0111111111111111 K16

0011111111111111 Kc
2 ∨K14

Continued on next page
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Binary Sequence Graph

0001111111111111 Kc
3 ∨K13

0000111111111111 Kc
4 ∨K12

0000011111111111 Kc
5 ∨K11

0000001111111111 Kc
6 ∨K10

0000000111111111 Kc
7 ∨K9

0000000011111111 Kc
8 ∨K8

0100111111111111 K2 ⊔Kc
2 ∨K12

0100011111111111 K2 ⊔Kc
3 ∨K11

0100001111111111 K2 ⊔Kc
4 ∨K10

0110001111111111 K3 ⊔Kc
3 ∨K10

0100000111111111 K2 ⊔Kc
5 ∨K9

0110000111111111 K3 ⊔Kc
4 ∨K9

0100000011111111 K2 ⊔Kc
6 ∨K8

0110000011111111 K3 ⊔Kc
5 ∨K8

0111000011111111 K4 ⊔Kc
4 ∨K8

0011000011111111 Kc
2 ∨K2 ⊔Kc

4 ∨K8

Number of Graphs: 18

n = 17

Binary Sequence Graph

01111111111111111 K17

00111111111111111 Kc
2 ∨K15

00011111111111111 Kc
3 ∨K14

00001111111111111 Kc
4 ∨K13

00000111111111111 Kc
5 ∨K12

00000011111111111 Kc
6 ∨K11

00000001111111111 Kc
7 ∨K10

00000000111111111 Kc
8 ∨K9

01001111111111111 K2 ⊔Kc
2 ∨K13

01000111111111111 K2 ⊔Kc
3 ∨K12

Continued on next page
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Binary Sequence Graph

01000011111111111 K2 ⊔Kc
4 ∨K11

01100011111111111 K3 ⊔Kc
3 ∨K11

01000001111111111 K2 ⊔Kc
5 ∨K10

01100001111111111 K3 ⊔Kc
4 ∨K10

01000000111111111 K2 ⊔Kc
6 ∨K9

01100000111111111 K3 ⊔Kc
5 ∨K9

01110000111111111 K4 ⊔Kc
4 ∨K9

00110000111111111 Kc
2 ∨K2 ⊔Kc

4 ∨K9

Number of Graphs: 18

n = 18

Binary Sequence Graph

011111111111111111 K18

001111111111111111 Kc
2 ∨K16

000111111111111111 Kc
3 ∨K15

000011111111111111 Kc
4 ∨K14

000001111111111111 Kc
5 ∨K13

000000111111111111 Kc
6 ∨K12

000000011111111111 Kc
7 ∨K11

000000001111111111 Kc
8 ∨K10

000000000111111111 Kc
9 ∨K9

010011111111111111 K2 ⊔Kc
2 ∨K14

010001111111111111 K2 ⊔Kc
3 ∨K13

010000111111111111 K2 ⊔Kc
4 ∨K12

011000111111111111 K3 ⊔Kc
3 ∨K12

010000011111111111 K2 ⊔Kc
5 ∨K11

011000011111111111 K3 ⊔Kc
4 ∨K11

010000001111111111 K2 ⊔Kc
6 ∨K10

011000001111111111 K3 ⊔Kc
5 ∨K10

011100001111111111 K4 ⊔Kc
4 ∨K10

Continued on next page
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Binary Sequence Graph

001100001111111111 Kc
2 ∨K2 ⊔Kc

4 ∨K10

010000000111111111 K2 ⊔Kc
7 ∨K9

011000000111111111 K3 ⊔Kc
6 ∨K9

011100000111111111 K4 ⊔Kc
5 ∨K9

001100000111111111 Kc
2 ∨K2 ⊔Kc

5 ∨K9

Number of Graphs: 23
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Appendix B

THRESHOLD GRAPHS THAT ARE WHD

n = 3

Binary Sequence Graph

011 K3

Number of Graphs: 1

n = 4

Binary Sequence Graph

0111 K4

0011 Kc
2 ∨K2

Number of Graphs: 2

n = 5

Binary Sequence Graph

01111 K5

00111 Kc
2 ∨K3

Number of Graphs: 2

n = 6

Binary Sequence Graph

011111 K6

001111 Kc
2 ∨K4

000111 Kc
3 ∨K3

Continued on next page
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Binary Sequence Graph

Number of Graphs: 3

n = 7

Binary Sequence Graph

0111111 K7

0011111 Kc
2 ∨K5

0001111 Kc
3 ∨K4

Number of Graphs: 3

n = 8

Binary Sequence Graph

01111111 K8

00111111 Kc
2 ∨K6

00011111 Kc
3 ∨K5

00001111 Kc
4 ∨K4

01001111 K2 ⊔Kc
2 ∨K4

Number of Graphs: 5

n = 9

Binary Sequence Graph

011111111 K9

001111111 Kc
2 ∨K7

000011111 Kc
4 ∨K5

010011111 K2 ⊔Kc
2 ∨K5

Number of Graphs: 4
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n = 10

Binary Sequence Graph

0111111111 K10

0011111111 Kc
2 ∨K8

0000111111 Kc
4 ∨K6

0000011111 Kc
5 ∨K5

0100111111 K2 ⊔Kc
2 ∨K6

0100011111 K2 ⊔Kc
3 ∨K5

Number of Graphs: 6

n = 11

Binary Sequence Graph

01111111111 K11

00111111111 Kc
2 ∨K9

00000111111 Kc
5 ∨K6

01000111111 K2 ⊔Kc
3 ∨K6

Number of Graphs: 4

n = 12

Binary Sequence Graph

011111111111 K12

001111111111 Kc
2 ∨K10

000111111111 Kc
3 ∨K9

000001111111 Kc
5 ∨K7

000000111111 Kc
6 ∨K6

010001111111 K2 ⊔Kc
3 ∨K7

010000111111 K2 ⊔Kc
4 ∨K6

011000111111 K3 ⊔Kc
3 ∨K6

Number of Graphs: 8
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n = 13

Binary Sequence Graph

0111111111111 K13

0011111111111 Kc
2 ∨K11

0001111111111 Kc
3 ∨K10

0000001111111 Kc
6 ∨K7

0100001111111 K2 ⊔Kc
4 ∨K7

0110001111111 K3 ⊔Kc
3 ∨K7

Number of Graphs: 6

n = 14

Binary Sequence Graph

01111111111111 K14

00111111111111 Kc
2 ∨K12

00011111111111 Kc
3 ∨K11

00000011111111 Kc
6 ∨K8

00000001111111 Kc
7 ∨K7

01000011111111 K2 ⊔Kc
4 ∨K8

01000001111111 K2 ⊔Kc
5 ∨K7

01100011111111 K3 ⊔Kc
3 ∨K8

01100001111111 K3 ⊔Kc
4 ∨K7

Number of Graphs: 9

n = 15

Binary Sequence Graph

011111111111111 K15

001111111111111 Kc
2 ∨K13

000111111111111 Kc
3 ∨K12

000000011111111 Kc
7 ∨K8

010000011111111 K2 ⊔Kc
5 ∨K8
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Binary Sequence Graph

011000011111111 K3 ⊔Kc
4 ∨K8

Number of Graphs: 6

n = 16

Binary Sequence Graph

0111111111111111 K16

0011111111111111 Kc
2 ∨K14

0001111111111111 Kc
3 ∨K13

0000111111111111 Kc
4 ∨K12

0000000111111111 Kc
7 ∨K9

0000000011111111 Kc
8 ∨K8

0100111111111111 K2 ⊔Kc
2 ∨K12

0100000111111111 K2 ⊔Kc
5 ∨K9

0100000011111111 K2 ⊔Kc
6 ∨K8

0110000111111111 K3 ⊔Kc
4 ∨K9

0110000011111111 K3 ⊔Kc
5 ∨K8

0111000011111111 K4 ⊔Kc
4 ∨K8

0011000011111111 Kc
2 ∨K2 ⊔Kc

4 ∨K8

Number of Graphs: 13

n = 17

Binary Sequence Graph

01111111111111111 K17

00111111111111111 Kc
2 ∨K15

00011111111111111 Kc
3 ∨K14

00001111111111111 Kc
4 ∨K13

00000000111111111 Kc
8 ∨K9

01001111111111111 K2 ⊔Kc
2 ∨K13

01000000111111111 K2 ⊔Kc
6 ∨K9

Continued on next page
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Binary Sequence Graph

01100000111111111 K3 ⊔Kc
5 ∨K9

01110000111111111 K4 ⊔Kc
4 ∨K9

00110000111111111 Kc
2 ∨K2 ⊔Kc

4 ∨K9

Number of Graphs: 10

n = 18

Binary Sequence Graph

011111111111111111 K18

001111111111111111 Kc
2 ∨K16

000111111111111111 Kc
3 ∨K15

000011111111111111 Kc
4 ∨K14

000000001111111111 Kc
8 ∨K10

000000000111111111 Kc
9 ∨K9

010011111111111111 K2 ⊔Kc
2 ∨K14

010000001111111111 K2 ⊔Kc
6 ∨K10

010000000111111111 K2 ⊔Kc
7 ∨K9

011000001111111111 K3 ⊔Kc
5 ∨K10

011100001111111111 K4 ⊔Kc
4 ∨K10

011100000111111111 K4 ⊔Kc
5 ∨K9

001100001111111111 Kc
2 ∨K2 ⊔Kc

4 ∨K10

001100000111111111 Kc
2 ∨K2 ⊔Kc

5 ∨K9

Number of Graphs: 14
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