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RESUMO

Esta tese apresenta uma cole¢do de resultados em grupos de Lie compactos obti-
dos pelo autor durante os ultimos anos. Esses incluem condi¢des necessarias e
suficientes para a hipoeliticidade global e resolubilidade global de uma classe
de operadores diferenciais de “evolu¢do” de primeira ordem com coeficientes
varidveis complexos, definidos num produto finito qualquer de grupos de Lie
compactos. Também apresentamos condi¢des suficientes para a obtencao de uma
desigualdade de Garding “sharp” para operadores pseudo-diferenciais agindo em
funcdes a valores vetoriais definidas em grupos de Lie compactos, € em secoes

de fibrados vetoriais homogéneos.

Palavras-chave: grupos compactos, hipoeliticidade global, resolubilidade

global, grupos de Lie, desigualdade de Garding, operador pseudo-diferencial.



ABSTRACT

This dissertation presents a collection of results on compact Lie groups obtained
by the author over the last few years. These results include necessary and suffi-
cient conditions to have global hypoellipticity and global solvability of a class of
first-order “evolution” differential operators with variable complex coefficients,
defined on an arbitrary finite product of compact Lie groups. Additionally,
we provide sufficient conditions for obtaining a “sharp” Garding inequality for
pseudo-differential operators acting on vector-valued functions, defined on com-

pact Lie groups, and on sections of homogeneous vector bundles.

Keywords: compact groups, global hypoellipticity, global solvability, Lie

groups, Garding inequality, pseudo-differential operator.



NEDERLANDSE SAMENVATTING

Dit proefschrift presenteert een verzameling resultaten over compacte Lie-
groepen, verkregen door de auteur in de afgelopen jaren. Deze resultaten omvat-
ten noodzakelijke en voldoende voorwaarden voor globale hypo-ellipticiteit en
globale oplosbaarheid van een klasse van eerste-orde “evolutie” differentiaalop-
eratoren met variabele complexe coéfficiénten, gedefinieerd op een willekeurig
eindig product van compacte Lie-groepen. We geven ook voldoende voorwaar-
den voor het verkrijgen van een “scherpe” Garding-ongelijkheid voor pseudod-
ifferentiaaloperatoren die werken op vectorgewaardeerde functies, gedefinieerd

op compacte Lie-groepen, en op secties van homogene vectorbundels.

trefwoorden: compacte groepen, globale hypo-ellipticiteit, globale oplos-

baarheid, Lie-groepen, Garding-ongelijkheid, pseudodifferentiaaloperator.
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Chapter 1

Introduction

The study of compact Lie groups has garnered significant attention due to their profound
mathematical structures and applications in various domains. In this context, the present
work aims to contribute to the field by offering a collection of novel results obtained over the
past few years. Specifically, this research focuses on two aspects: global hypoellipticity and
global solvability of first-order evolution differential operators, and the establishment of sharp
Garding inequalities for pseudo-differential operators.

The investigation begins by exploring the necessary and sufficient conditions for global
hypoellipticity and solvability of a class of first-order evolution differential operators with
variable complex coefficients. These operators are considered on finite products of compact
Lie groups, providing a broad framework for understanding their behavior in more general
settings. The techniques used rely on state of the art theories developed for the study of com-
pact Lie groups. Remarkably, the generality of the results obtained presents many challenges
and requires notable changes to previously used techniques, as well as new ideas and defini-
tions. The difficulties arise, for instance, in the unknown behavior of the eigenvalues of vector
fields on compact Lie groups, in contrast with the well-known simple comportment of such
eigenvalues in the case of the torus and 3-sphere. This work can simultaneously be seen a gen-
eralization of certain results in [9] and [75]. This is in part because we treat a similar but more
general version of the differential operators considered in the first part of the first reference.
More specifically the vector fields considered can be any left-invariant vector field on compact
Lie groups, and we also consider a zero-order term. At the same time, our results extend cer-
tain results from the second reference by considering operators acting on any finite product of

compact Lie groups as opposed to only two, and we also investigate the global solvability in
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the complex case.

In addition, this work delves into the conditions required for obtaining a sharp Garding
inequality for certain classes of pseudo-differential operators. The operators considered act
on vector-valued functions defined on compact Lie groups and on sections of homogeneous
vector bundles. As a direct consequence, we obtain a sharp Garding inequality on compact
homogeneous manifolds as well. Establishing a sharp Garding inequality is pivotal for ad-
vancing the theory of pseudo-differential operators, as it provides, for instance, a critical tool
for proving local solvability and well posedness of certain Cauchy problems. Due to the cor-
respondence between higher order differential equations and differential equations involving
vector-valued functions (which can be seen as a system of differential equations), our results
allow for the applications of this inequality to this setting also.

Overall, this dissertation presents a comprehensive study of differential operators and in-
equalities in the context of compact Lie groups, offering valuable insights and advancing the
field with significant theoretical contributions.

Outline of the dissertation:
This dissertation is organized as follows:

In Chapter 2, we remind the basic results and notation necessary for studying Fourier
analysis on compact Lie groups.

In Chapter 3, we introduce our novel multi-index notation, definitions, and basic results
for the study of Fourier analysis on a product of compact Lie groups.

In Chapter 4, we study the global hypoellipticity and global solvability of a class of con-
stant coefficients first-order differential operators defined on any finite product of compact Lie
groups.

In Chapter 5, we study a class of first order differential operators with variable real-valued
coefficients on finite products of compact Lie groups. We show that we can relate the global
hypoellipticity and global solvability of these operators with the corresponding properties of
the constant coefficient operators obtained by taking their coefficients’ averages.

In Appendix 5.A, we state and prove some auxiliary results used in the previous chapter.

In Chapter 6 we first recall the theory and main results regarding the study of the vector-
valued Fourier analysis on compact Lie groups. We also extend the notion of amplitudes to
the setting of pseudo-differential operators on vector-valued functions on compact Lie groups.

We then present and prove our main results concerning a type of “sharp” Garding inequality



Introduction 13

for vector-valued functions on compact Lie groups. As a corollary, we then present a similar
result for compact homogeneous vector bundles.
In Chapter 7, we conclude by summarizing our main results and presenting possible appli-

cations of these.
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Chapter 2

Preliminaries

In this chapter, we introduce the main theory, results, and definitions used in this disser-
tation. A more detailed consideration of the concepts and demonstrations of the results pre-
sented in this chapter can be found in the references [94] (chapters 6 to 10), [45] (chapters 1
and 2) and [99].

2.1 Fourier analysis on compact topological groups

2.1.1 Representation of topological groups

Let GG be a topological group and V' a vector space. A representation & of GG is a homo-
morphism from G into the automorphism group of V. We define its dimension by dim¢ =
dim V. Notice that when V is finite-dimensional, its automorphism group can be seen as a
group of matrices under the usual product. If V' is also a Hilbert space, and for every g € G,

the linear operator £(¢) is unitary, we say that the representation ¢ is unitary.

Definition 2.1.1. Let & be a representation of G. A subspace W C V is said to be {-invariant
if £(g)W C W, for all g € G. The representation £ is said to be topologically irreducible if the

only closed {-invariant subspaces of V' are the trivial subspaces {0} and V.

Notice that if W C V is &-invariant, then { : G — Aut(W) is a representation of G also.
Whenever V' is a topological vector space, for instance when it is finite dimensional, then we

can establish the following definition.

Definition 2.1.2. A representation £ of (G is said to be strongly continuous if for every v € V/,

the mapping from G to V' given by g — £(g)v is continuous.
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Definition 2.1.3. An intertwining map between the representations ¢ € Hom(G, Aut(1)) and
n € Hom(G, Aut(W)) of G, is a linear map A : V' — W such that

for every g € G. If there exists an invertible intertwining map between the representations &
and 7, then they are said to be equivalent, denoted by & ~ 7. We also denote their equivalence

class by [£] or [n]. Notice that { ~n = dim ¢ = dim.

If two representations & and 7 are both unitary and topologically irreducible, then it is possible
to show that any intertwining map between them is either the zero mapping or an invertible

isometry.

2.1.2 The Peter Weyl decomposition

In what follows, we assume that G is a compact group, that is, a topological group which
is also a compact topological space. Denote by Rep(G) the set of all strongly continuous uni-
tary irreducible representations of G. We define @ to be the set of all equivalence classes of el-
ements in Rep(G). Since G is compact, every element in Rep((G) is finite dimensional. There-
fore, for each [¢] € G, we may choose a matrix-valued representative of [¢], that is, & € [¢] is
such that ¢ : G — U(m), for some m € N, where U(m) = {A € C™*™|A* = A~'}. With this
in mind, we will always consider £ € [¢] € G to be matrix-valued.

~

For any [{] € G, we denote its dimension by djg; = dim &, and we may write it as d;¢

-~

for convenience. Therefore, forany [£] € G,1 < i, < d¢,andz € G, if we denote by
&ij(x) = &(x);; the “ij-th coefficient of the matrix £(z)”, we obtain the coefficient functions
&; + G — C,where 1l < 4,5 < d¢. These are not only continuous, by definition, but can be
shown to be smooth also.

Next, notice that GG is locally compact, therefore there exists a unique positive Borel mea-

sure /i, called the Haar measure of (5, characterized by the following properties:

e Itis invariant under group translation, in the sense that

/ F(@)duc(x) = / F(y2)dc(x),
G G

for all measurable f : G — C and every y € G.
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* It is finite and normalized, that is, uq(G) = 1.

For convenience, we denote such measure simply by dx and write

/G f(@)de = / F(@)dp(),

for all measurable complex-valued functions f. From the properties above, it can be shown

that this measure also satisfies

/G f(@)da = /G F(ey)ds = /G fe e,

for any y € GG and measurable [ : G — C.

We denote by LP(() the usual Banach space of p-th integrable (with respect to the Haar
measure) complex-valued functions on G, where 1 < p < oo and || f[l, = ([, |f(2) |pdx)%.
For p = o0, the space L>°((G) will denote the usual space of essentially bounded integrable
functions on G, and || f| = esssup|f].

Note that by Fubini’s Theorem one can show that the Haar measure on the product of
compact Lie groups is given by the tensor product of the Haar measures of each group.

The following well-known result highlights the importance of the representation theory of

G to the study of its function spaces.

Theorem 2.1.4 (Peter-Weyl). Let G be a compact group. Then the set

{ Vet € LAO)le = (6)i5-1. [¢) € G}

is an orthonormal basis for L*(G), where from each equivalence class in G, we choose only

one representative.

2.1.3 Fourier series on compact Lie groups

The results from the previous subsection motivate the definition of Fourier coefficients for

functions on compact groups, as follows.

Definition 2.1.5. Let G be a compact group. If f € L2(G) and [¢] € G, where & = (§,~j)?§-:1 €
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Rep(G), define the Fourier coefficient of f at £ as the matrix

/ f(2)€ (x)dx € Clexe,

That means

s = | J@)Eal@lde = {J. G
G
foreach1 < a, 8 < dg.
Note that even though the coefficient f(é’ ) depends on the choice of representative for

€] € G, different representatives yield unitarily similar matrices. Also, the Peter-Weyl Theo-

rem implies we can write any f € L*(G) as the sum

= d Z F(&)ap€palz) = dsTf( )) :

[]leG  @B=1 [€]eG

This series converges for yg-almost every x in G, as well as in L?(G). The group Fourier

transform also preserves the L? norm in the following sense.

Proposition 2.1.6 (Plancherel’s identity). Let G be a compact group. Then, for every f €
L*(G):

1122y = D delF(E)lzrs = D de Z 7 (€)asl’,

€leG leG  @f=l

where ||A||% ¢ = Tr(AA*) denotes the Hilbert-Schmidt norm.

It is worth noting that the formulas above hold independently of the choice of representa-

tive for each equivalence class in G, due to the cyclic property of the trace.

Proposition 2.1.7. Let G be a compact group. Then, for every f,g € L*(G):

<f> g>L2(G) = < >L2(G) - Z d& Z f aﬁg aﬁy

[eG  @B=1

or, equivalently,

(F.9)6 = (F.5) 00 = 2 e Z F(©)ap(E)as @1

[(leG  ap=1

Proof. Indeed, using the orthogonality of the representations £ € [¢] € G, and the fact that the
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Fourier series converges in L?(G), we have that

[ st [ (Y fersuto)) {3200 3 560 o

[eG  B=1 meG Y=l
E dy
- Z Z ded,y Z Z f §)asg(§ /fﬁa 77m
[€]eC neG af=17r=1
de
= de > F(€)apd(€)as
[leG  p=1

[]

Remark 2.1.8. Note that formula 2.1 makes sense since [¢] € G if and only if [(] € &, where
&(x) = &(x), for every x € . Moreover, the equivalence between both expressions above can

be seen from the fact that

for every g € L*(G) and [¢] € G.

2.2 Fourier analysis on compact Lie groups

We now assume G is a compact Lie group. We will assume the reader is familiar with the
theory of smooth manifolds and Lie groups, for which we cite [82, 103]. Let g = Lie(G) de-
note the space of all left-invariant vector fields on G, which can be identified with the tangent
space of (& at the identity e € G. This real vector space (with dimension equal to dim () also
has a Lie algebra structure (through the Lie bracket for vector fields), said to be the group’s
Lie algebra. Since G is compact or since they are left-invariant, each X € g is complete. This
means that its flow starting at any € G, given by (z,t) — ¢;* (z), is defined for every t € R.

This way, we may define the exponential map
exp:g— G

by exp(X) = ¢ (eq). Equivalently, as any compact Lie group is isomorphic to a subgroup
of the matrix group U(m) (see [23], Chapter III, Theorem 4.1), a compact group’s Lie algebra

may also be identified with a matrix subgroup and the exponential mapping coincides with the
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usual matrix exponential. That is the mapping given by the power series

| —

k
IX’

=

xp(X) = 3
k=0

for any matrix X € C"*". As vector fields, each X € g acts as a first order left-invariant dif-
ferential operator on GG. By definition of the exponential mapping, this action can be expressed

by
d

Xiw) = | Twew(x))

forany f € C*°(G)and z € (. By taking the direct sum of the tensor products of multiple
copies of g, modulo an ideal, we can embed g into a unital associative algebra U/(g), called the
universal enveloping algebra of g. Its elements can thus be viewed as finite order left-invariant

differential operators on (G. More precisely, define

T = @@mg

m=0

the direct sum of all finite tensor products of g with itself, i.e. ®" g denotes the m-fold product

g® ---® g. Its elements are given by linear combinations of elements of the form

J Kj
A()]_ +ZZ)\ijkJ1 X - ®Xk’jj7

=1 k=1

where 1 is the formal unit of 7, Ao, A\jx € R, X}, € gand J, K; € Ny. The product in 7 is

defined by the tensor product for the basis elements, that is,
(X1®...®Xn)(yl®...®ym)5X1®...®Xn®yl®...®ym7

for X;,V, € 9,1 < j <n,1 <k < m,and extended linearly to 7. Consider the two sided

ideal J C T spanned by the set
{(XY-YoX-[X,Y]|X,Y €g}.
The universal enveloping algebra of g is then defined as the quotient algebra

Ug)=T/J.
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The Killing form of a real Lie algebra g is the bilinear mapping B : g X g — R given by
B(X,Y) = Tr(ad(X)ad(Y)),

where ad(X) : g — g, is the mapping given by ad(X)(Y') = [X, Y], forany X, Y € g.

It can be proven that the Killing form of the Lie algebra of a compact Lie group is nega-
tive semi-definite. Using this fact, through an argument similar to the Gram-Schmidt process
for constructing orthonormal basis on vector spaces, we can construct a basis { X;}7_, of g
such that

B(X;, X;) = —0ij, (2.2)

where §;; is the Kronecker delta. The Casimir element L € U(g) of G, also known as the

positive Laplacian of G, or just the “Laplacian”, is defined by
Lo=-) X;®X;
j=1

The positive Laplacian can be viewed as a second order, partial differential operator on G,
which is also positive definite and bi-invariant. It is also independent on the choice of basis

{ X}, satisfying (2.2). One can prove that for every [¢] € G, its coefficient functions &j
G — C are all eigenfunctions of L, corresponding to the same eigenvalue. In fact, we have

the following result.

Theorem 2.2.1. Let G be a compact Lie Group and L its positive Laplacian. Then for every

€] € G, there exist real numbers Vg = 0 such that

Lc€ap = Vig&as,

foreveryl < a, <d..

Now let G be a n dimensional compact Lie group, and B = {X;}_, a basis of its Lie
algebra. For any multi-index v = (7y1,...,7,) € Ny, we denote by 07 a differential operator
given by the composition of exactly |y| = v; + - - - + 7, elements of 53, such that X, appears
exactly v; times, for 1 < j < n. Note here that composing the same vector fields in different
orders may yield different differential operators, but this will not be relevant in this work. We

will denote the set of all such operators by Diff(G, B).
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Let C*(G) be the set of all smooth complex-valued functions on G. We endow it with the

Fréchet space topology given by the countable family of seminorms
{pav|87 S lef(G, B), |’7| <me No},

where

o (f) = mass |07 f(2)],

for every f € C(G).

Definition 2.2.2. For G a compact Lie group, let D’(G) be the space of distributions on G,
that is, the space of all continuous linear functionals on C'*°((), with the usual notion of con-

vergence, that is, u; — w in D’(G) if and only if u; — u point-wise.

Throughout this work we will denote the duality between D'(G) and C*°(G) by

<u7 f>G = U(f)?

foru € D'(G) and f in C*°(G). By definition, for each u € D’'(G) there exist C, N > 0 such
that

(. f)el < Cmax 3 (07 (),

lvI<N
forevery f € C(G).
Notice that as G is compact, C*(G) C L*(G). We can also extend the definitions and

results from the previous subsection to the space D’'(G) as follows.

Definition 2.2.3. Let GG be a compact Lie group. For v € D'(G), and [¢] € G, define the

Fourier coefficient of u at ¢ as the matrix
() = (u, ") € Tl
More precisely, u(&) is the d¢ X d¢-matrix with coefficients
WU(&)as = (v, Gpa)a € C,

where 1 < o, 8 < d¢.
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Similar to the Peter-Weyl theorem, one can prove that for every u € D'(() the series

> de Z §)apsa

[(leG  ap=1

converges to u € D’'(G) in the sense of distributions. It follows then that for any u € D'(G)
and f € C>(G):
Ufc—zdgz (€)apgf(€)as.
[(leG  @b=1
similarly to formula (2.1).
Ifu € LP(G),1 < p < oo, there is a natural way to identify « with a distribution (still

denoted by ) through the formula

(u, flg = /Gu(x)f(x)dx, (2.3)

for every f € C°°(@). Also, for any differential operator 07 € Diff(G, B), we define 0"u €
D'(G) by

(07, e = (=1)"w, 0 fe,
forevery f € C'°°(G). This extends a similar identity which holds for smooth functions and

coincides with the notion of weak derivatives for L? functions via the duality (2.3).

Definition 2.2.4. Let GG be a compact Lie Group and L its positive Laplacian. Denote by

(€)= (14"

the common eigenvalue of the linear operator (Id+ Lg)'/?

Eap With 1 < o, B < de, [€] € G.

corresponding to the eigenfunctions

From the discussion above, we know these eigenvalues are strictly positive. They also satisty

the following inequality:

Proposition 2.2.5. Let G be a compact Lie group. There exists C' > 0 such that

v < (€)* < COyg,

~

for all non trivial [§] € G.
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Proof. Indeed, let \ be the smallest non-zero eigenvalue of L. Then if [¢] is not trivial

1
T+ug < (; + 1) Gh

therefore v < (€)? < (§ + 1) vy, for all non-trivial [¢] € G. O

Also, by Weyl’s eigenvalue counting formula for the Laplacian (see [104]), one can also

prove the following.

Proposition 2.2.6. Let G be a compact Lie group. There exists K > 0 such that

forall [¢] € G.

Remark 2.2.7. Weyl’s eigenvalue counting formula also implies that given R > 0, there exist

only finitely many [{] € G such that (€) < R. This fact will be relevant later in this work.

As in the Euclidean setting, it is well known that the asymptotic behaviour of the Fourier

coefficients characterizes smoothness as shown in the following theorem.

Theorem 2.2.8. Let G be a compact Lie Group. The following are equivalent:
i) feC™Q);
ii) For every N > 0, there exists My > 0 such that

|F(€)asl < Mn(€)™,

forall [€] € Gandl < a, B < dg.
The following statements are equivalent:
i) ueD(G);

ii) There exist N > 0, M > 0 such that

[@(E)as| < M(E)Y,

forall €] € Gandl < a, f < dg.
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In fact, the Sobolev space H*((), where s € R, is defined as the Banach space given by
the set of all u € D’(G) such that

[Jull? Hs(G Z de()**[u ()| Frs = Z dg(€)* Z [@(&)apl® < o0,
€leC €leC xf=1
with the Sobolev norm || - || ().

Proposition 2.2.9. Let G be a compact Lie group. Then

o dim G
Z dE) ™ <00 = t> -
BIEE

Proof. Indeed, notice that for the delta distribution centered at the group indentity ¢, we have

3(5 ) = Idg, is the d¢ x d; identity matrix, for every [{] € G. Therefore

ST BT =Y del&) IS s = 16131

[e]eG [€]eC
Through a localization argument, this norm is finite if and only if ¢ > dim G/2. []

Theorem 2.2.8 then implies that

[ E:(G) = C™(G), U B°(G)=D(G).

seR seR

We now present the concept of global symbol for pseudo-differential operators on com-

pact Lie groups, introduced by Ruzhansky and Turunen in [94], as follows.

Definition 2.2.10. Let A : C°(G) — C°°(G) be a continuous linear operator. Its symbol is

defined as the mapping given by

oa(w,8) = &(w)"(AE)(x) € T,

forevery z € G, [¢] € G, where (AE)(2)ap = (Aup)(x), forall 1 < a, B < d¢.

We can also obtain the symbol of a continuous linear operator as follows. In the following, we
denote by C*°(G)) ®D'(G) the complete locally convex tensor product of the nuclear spaces
C>(G) and D'(G).
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Theorem 2.2.11 (Schwartz kernel). Let A : C*(G) — C*°(G) be a continuous linear opera-
tor. Then there exists a unique mapping K € C*(G) @D'(G) such that

(f, A¢) = (K, f© ¢).

Proposition 2.2.12. Let A : C*(G) — C*°(G) be a continuous linear operator. Denote by

K 4 denote its Schwartz kernel, and Ry = K (x,y'x) its right convolution kernel. Then

oa(z,8) = Ra(x,-)(€),

foreveryx € G, [§] € G.

Theorem 2.2.13. Let A : C°(G) — C™(G) be a continuous linear operator. Then

= > deTrlE(@)oa(@, O F(©)] = > de Z oy ()04(2, )00 f()ap (2.4)

€leG [(eG  @P=1

forevery f € C*(G) and x € G.

Ruzhansky, Turunen and Wirth would also define the global symbol classes pT”g(G ) later
in [99]. These classes extend the usual Hérmander symbol classes S7';(G) in the sense that
they define the same class of pseudo-differential operators in the range of p and § on which

;%(G) are well defined, thatis, 0 < 6 < p < 1,and p > 1 — §. We shall adopt the alternative

notation S's(G x CAJ) = .7,%5(G). More precisely, these symbol classes are defined as follows.

Definition 2.2.14. Let ¢ € C'°°(G). We define the difference operator A, by Aqf(f’ ) = a}(ﬁ ),
forevery f € D'(G). We say A, is a difference operator of order £ € N if ¢ has a zero of
order k at the group identity e. A family of order 1 difference operators is said to be admis-
sible if the gradients at e of the corresponding functions ¢ span the tangent space of G at eg.
Furthermore, such collection is said to be strongly admissible if e is the only common zero

of the functions ¢ as well.

Consider a fixed ordered family of order 1 difference operators {A,,, ..., A, }. For every
multi-index o € N we denote by A® the difference operator Agl. .. Agk of order |af. We
also denote g, = ¢7"" ... ¢.". This way, A®* = A, as well.

The following result provides an analog of the “Leibniz’s rule” for difference operators, its

proof can be found in [96].
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Proposition 2.2.15 (Leibniz’s formula for Difference Operators). For any multi-index o there

exist constants C , > 0 such that

AL[FOFEO) = D CuulAO)(ALF(©)),

[l A<l <[ A+p]

forany f,g € D'(G), and all [§] € G.

Definition 2.2.16 (Symbol classes S7';(G x G)). Let {A,, ... Ay} be astrongly admissible
ordered family of difference operators, and { Xy, ..., X, } an ordered basis for the Lie algebra
of G. We say that o : GxG = U[g]e@ Cd*de ig in ;fé(Gx@), wherem € R, 0 < §,p < 1,if
o(z,€) = k(z,-)(€) for some k € C®(G) ®D'(G) and for every multi-index o € N&, 3 € NI,

there exists a constant C,3 > 0 such that
182070 (z, €)llop < Cap{€)™ 11,

for every (z,[¢]) € G x G.

Remark 2.2.17. It can be shown that the previous definitions does not depend on the choice of
strongly admissible ordered family of difference operators, nor on the choice of ordered basis

for the Lie algebra of G.

Definition 2.2.18. For o4 € S7%(G () we define by A = Op(c4) the pseudo-differential

~

operator given by formula (2.4). We denote the set of all such operators by ¥7';(G x G).

We also denote the set of smoothing symbols and smoothing operators by

ST(GxG)= [ STa(GxG), T =(GxG)=[) TG xG),

meR meR

respectively.

Remark 2.2.19. It can be shown that a pseudo-differential operator of order m is a bounded

operator from H*(G) into H°~™((G). Consequently, for a pseudo-differential A € ¥~=°(G x

~

(), and any u € D'(G), Au € C*°(G), hence the name “smoothing”.

Remark 2.2.20. If A : C>*(G) — C*(G) is a continuous left-invariant linear operator, that is,

(Aom(y)f)(x) = (7Lly) o A)f(x),
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where 7, (y) f(z) = f(y 'z), forevery f € C°°(G) and z,y € G, then 04 is independent of

x € (. Theorem 2.2.13 then implies that

-~

AF(€) = 0a(€)FLE),

for every £ € Rep(G) and f € C*°(G). By duality, this remains true for f € D'(G).

Viewed as a left-invariant first order partial differential operator, any left invariant vector
field X on a compact Lie group G is pseudo differential operator of order 1. In fact, its symbol

ox belongs to the symbol class S} (G x @) Therefore there exists a constant C' > 0 such that

lox (E)llop < CLE), (2.5)

for every [¢] € G.
In this thesis, we shall make use of the following theorem, whose proof can be found in

[44].

Theorem 2.2.21 (Taylor Expansion in Compact Lie Groups). Let G be a compact Lie group,
d = dimG. Let also {A,,, ..., Ay} be a strongly admissible collection of difference opera-

tors. There exists a basis of left-invariant vector fields { X1, ..., X4} such that
—1
Xia(2™)|a=ee = Oj

forall1 < j k < d. Moreover, any f € C*(G), can be written as

1., B
flay) = f@)+ D =0 f(@)aaly™) + R v(),
1<lal<N
forany x,y € G, N € N, where the last term is referred to as the Taylor remainder of order N

and satisfies

IR v < lyY max [10° 1 (c).

Here |y| denotes the distance from the group identity e to y, given by any Riemmanian met-

ric defined on G.
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Chapter 3

Fourier analysis on the product of

compact Lie groups

3.1 Introduction

In this chapter, we propose to study the regularity of solution and solvability of a class of
first-order differential operators on a product of compact n € N compact Lie groups. More
precisely, denoting by D’(G) the space of distributions on G = G X --- X G, where each
(i is a compact Lie group, and by L : D'(G) — D’'(G) a first-order differential operator, we
are interested in establishing conditions that ensure that « is smooth whenever Lu is smooth, a
property known as global hypoellipticity. Regarding the global solvability, we want to identify
under what conditions it is possible to guarantee that the equation Lu = f € C*°(G) admits a
smooth solution.

The study of compact Lie groups has significant relevance in the context of mathemat-
ics and physics. For instance, the compact Lie group SO(3) can be identified with the group
of symmetries of the 2-dimensional sphere, and therefore to rotations on R?. Similarly, there
is a connection between the compact Lie group Sp(3) and the quaternions which are also re-
lated to rotations in R®. One possible application of compact Lie groups is to the study of the
Landau-Lifshitz equation, which describes the magnetization of a ferromagnetic materials. In
[101] the author introduces an alternate formulation of the Landau-Lifshitz equation on the
Lie group SO(3), and develops a numerical method to solve these equations. The advantage
of basing the numerical method on the SO(3) interpretation is, that it allows us to preserve

quadratic first integrals of the differential equation (which define the geometry of this prob-
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lem).

Extensive research has been dedicated to exploring these global properties for operators
defined on the torus, as well as on other compact Lie groups, as in [1, 41], and also on arbi-
trary compact manifolds, as in [2, 18, 34, 37, 38].

The specific scenario where the operator L is a vector field defined on a torus deserves
special attention. As conjectured by S. Greenfield and N. Wallach, see [46], if a smooth closed
manifold M admits a globally hypoelliptic real vector field L, then M is diffeomorphic to a
torus, and L can be conjugated to a constant vector field that satisfies a Diophantine condition.
Consequently, the investigation of global hypoellipticity for vector fields on closed manifolds
primarily focuses on the tori. Some references in this subject include [29, 43, 55, 57, 65, 89].
It is worth noting that the literature contains numerous other references on this topic beyond
the ones mentioned here.

Most of the studies that deal with the question of global hypoellipticity and global solv-
ability on compact Lie groups make use of Fourier analysis, which allows one to reduce par-
tial differential equations into ordinary differential equations, or even algebraic equations.
This is possible through the Fourier analysis and quantization of pseudo-differential opera-
tors on compact Lie groups introduced by Ruzhansky and Turunen in [94]. This technique
is used, for example, in [1], [28], [74], [75], [76], [77], [78], [79] and [98]. In the particu-
lar case where the compact Lie group is a torus, Ruzhasnky and Turunen’s theory coincides
with the usual Fourier analysis of complex-valued periodic functions, and so the same tech-
nique dates much further back, and can be found in a large selection of papers, see for instance
[5,8,9, 10, 11, 12, 34, 36, 50, 55, 56, 57, 64, 89]. In this thesis, we adapt these techniques,
using state of the art theories, to the study of global hypoellipticity and global solvability of
first-order differential operators on finite products of compact Lie groups.

The main difficulties in studying this case, compared to the case of the torus, is that in
general we have no information about the rate of growth of the eigenvalues of an arbitrary
left-invariant vector field on a compact Lie group. There is also the problem that there is a
lack of “dilation” properties corresponding to the eigenvalues of such vector fields. In the n-
torus on the other hand, for every §; € Z, for every k € 7Z the complex numbers ik§; corre-
spond to eigenvalues of the vector field 0, ;. There is also the fact that the Fourier coefficients
are matrix-valued, and therefore required a multi-index notation to address specific entries of

these matrices.
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In this section, we introduce the theory and notation, developed by the author, used for
considering the Fourier analysis on the finite product of compact Lie groups. This theory and
notation will then be used in the following sections for the study of global properties of first-
order differential operators.

Let n € N and consider GGy, . . ., GG, compact Lie groups. Their product G = G x-- - X G,
is also a compact Lie group, so we can apply definitions and results of Chapter 2 to it. More-

over, it can be shown that given any [¢] € G, there exist [¢'] € G, . .., [¢"] € G,, such that

K=& £,

where ® denotes the external tensor product of representations. As seen in [23, 74], the exter-
nal tensor product of strongly continuous irreducible unitary representations is also a strongly
continuous irreducible unitary representation, whose dimension is equal to the product of the
dimensions of each of its factors. Not only that, any two such representations are equivalent
if and only if each of its corresponding factors are pairwise equivalent. Therefore, we may
identify G with él X oo X én Inspired by the works of Kirilov, Almeida and Ruzhansky in

[74, 75], we define the partial Fourier transforms on the product group G as follows.

Definition 3.1.1. Let n € N, n > 2. Consider G = G x --- X G, a product of n compact Lie

groups. Given f € L?*(G), define its partial Fourier transform at o, DY
f('rh ey 1, gn)anﬁn - / f(xlu €Ty ... 7xn)€gnan(xn)d'rn7
G’!L

where [£"] € @n and 1 < o, 8, < dgn. Similarly, define its partial Fourier transform at
n—1 ® 6

Qn—1Pn—1 anﬁn

/\

xla-- y Up— 2’571 1a§n) =

/ /fx L) (20) B o (2n)dTad,

where [¢7] € @,a = (n-1,00), B = (Bn-1,bp) and 1 < «;, B; < dgi,forj =n —1,n.

Proceeding in a similar manner, we define up to the “total” partial Fourier Transform of f at
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g @ ®EL 5 by

~

FE, . M)y = /Gl.../an(acl,...,xn)%(xl)...%—an(xn) da, .. ds,

Wherea:(al,...,an),ﬁ:(51,...,Bn)and[§j]Gé;,lgaj,ﬁjSdgj,forjzl,...,n.

Notice that f(g 1., &") may be viewed as a 2n-dimensional array with complex entries

-~ -~

given by f(gl, s afn)a1ﬁ1a252---04nﬁn = f(glv cee ’gn)aﬁ.
If f € L*(@G), it then follows from the Peter-Weyl Theorem and the previous definitions

that
f(xl,-..,l'n):
d§1 dgn
= > Y daden > Y F (G g (1) - 6 (20,
[€€G1  [eneCn ar,fi=1  an,Bn=1

3.1

where convergence holds almost everywhere as well as in L?(G).

To avoid cumbersome notation such as the one above, we establish the following definitions.
Definition 3.1.2. Let G = G; X --- x G, be a product of compact Lie groups. For [{] =
('@ @& e G, we define:

Je={veN'[1<y; <dg, 1 <j<n}

Also, for o, 3 € Jg, let
Eap() = &gy (21) - €0 5. (),

forallx = (z1,...,2,) € G.

Since d¢ = dg1 . . . den, for every [£] € G, equality (3.1) may be rewritten as:

Fa) =" de > F(&)ap&pal2),

eGP
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forx = (z1,...,7,) and £ = ' ®@ - - ® €. Similarly, for any 1 < j < n the formula

f(xlw”axn):
d{n
Do D dede Z Y T, € €
[€11€G;  [¢m]eGn aj,Bj=1  an,fn=1

X &) 0, (@5) - €5, (T0)

can be rewritten as

f(il)): Z d& Z J/C\(xla--'7Ij—175)a66ﬂa(xjv"'73771)7

[€]e(Gyx—xGn)  “PETe

where o = (aj,... ) and B = (B;,. .., Bn).

We can extend these definitions to distributions on G as follows.

Definition 3.1.3. For u € D'(G), where G = G x - -+ x G, is the product of n > 2 compact
Lie groups, we define its partial Fourier transform at [{]; 5 | € @n as the distribution acting on

C>®(Gy x -+ x G,_1) given by

<a(7 ctt '7 gn)anﬁna w>Gl><...><Gn71 = <U’7 ¢ ® fgnan>G1><~~~><G’n )

forevery ¢» € C*(Gy x -+ x G,_1). Similarly, we define its partial Fourier transform at

nel ® &y 5, as the distribution acting on C>°(Gy X - -+ x G, _») given by

O‘nflﬁnfl

<a<77€n 1’571 O‘/3’¢>G1>< XGp_ < w®§ﬁn 1Qn—1 ®€gnf¥n>

G1 X xXGp ’

forevery ¢ € C*°(Gy X -+ X Gy_3), where a = (a1, a3), B = (Bn_1,Bn). Proceeding
like this, we define up to the “total” partial Fourier transform of v at £' ® --- ® £", which
corresponds to the complex number

W o = (0,8, - O, ) eC.

G X xGp
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As before, we can also write

u =
d{n
Z Z der ... dg Z Z N 0 WY S WY 5
[€leG  [€7)eCn a;,Bi=1  an,fn=1

= de > UE)asbsar

€] EG a,BeJ¢

Similarly, for 1 < j < n:

u = Z dg Z ﬂ(~,...,-,§)ag§5a7

[€leG X xG,  “BETe

where the convergence holds in the sense of distributions.
As the tangent space of a product of manifolds can be identified with the direct sum of the
tangent spaces of each of its factors, we have that L¢, «..xg, = Lg, + -+ + Lg,, and so

Vigrg..gen] = Vigi] + - - + Ven], forevery [' @ --- @ "] € @. Therefore

(€@ 0 = (1+vag.ae)
= (1 + ey + -+ en)
< (L +vygen) + - 4 (1 + vgem)
= EN 4 EP SN+ (E)

Also

Y+ <R+ + (R R

From which we conclude that
Lyt <@ e o) < () 4+ (€), (.2

for every [fj | € é\] , 1 < 5 < n. With this inequality in mind, we extend Theorem 2.2.8 to the

product setting, in the following lemma.
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Lemma 3.14. Let G = G| X --- X G,, be a product of compact Lie groups. Then the following

are equivalent:
1. feC>®G);

2. For every N > 0, there exists My > 0 such that

F(©agl < M () +---+ (€N,

forall[€) € G, o, B € Je.
Furthermore, the following are also equivalent:
1. uwe D(G);

2. There exist N, M > 0, such that

[@(€)asl < M) + -+ (€)Y,

forall[€] € G, a,B € Je.

Proof. Notice that the product of Lie groups is a Lie group as well, therefore this follows from

Theorem 2.2.8 and inequalities (3.2). This proof for the case n = 2 can also be found in [74].

]

Lemma 3.1.5. Let G = Gy x G X - - - X G}, be a product of compact Lie groups, dim Gy = ny.

Then the following are equivalent:
1. [ e C™G),

2. Forevery vy € Ni°, for every N > 0, IM,n > 0 such that

07 F (8, €1 gl < Moy () + -4+ (™) 7",

forallt € Gy, [¢] € Gy, 1 < 0, 8; < des,j=1,...,n.
Furthermore, the following are also equivalent:

1. uwe D (G);
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2. There exists N € N, M > 0, such that:

(@€ €ap V)ao| < Mpn($)((E1) + - + (€)Y,

forall [¢7] € é;, 1<a;,B; <dg,j=1,...,nand y € C=(Gy).

where py (V) = 37| <y MaxXteq, [07(1)].

Proof. We will prove the case n = 1, since we can always write G = Gy x G', where G' =
G X --- x G, and then the result follows from inequalities (3.2). This result and proof were
inspired by [74].

First suppose f € C°°(G). Since f is smooth, given N > 0,y € Ni°, (Id + Lg, )07 f is

also smooth and so

—

(YN T (8,6 ) anm] = 1(1d + L) O] F (1, s

(1d + L) 28] £(t, 20)]€], o, (1)]day
G

< M,

forevery t € Go, 1 < ay, 1 < der,where M = max(; 4, )ecoxc: |(Id+Lg, )07 f(t, 21)] is finite

since GG is compact and also since

dgl
L= 5‘1‘10‘1 (ecy) Z éh061/31 1 551&1( )
B1=1
d£1
- Z 5§4151 <x1)§éfa1 (‘7:1)
f1=1
d
o Z é-061/31 xl a151 Il Z ‘galﬂl xl ) (33)
Bl 1 ﬂl 1

50 [£4, 5, (21)| < 1 forevery z; € G1.
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Now suppose the converse holds. Given N’ > 0, take NV € N such that N > N’, notice that

| F(E% Y apl = LB F(E0 € )asl
< [ 1ey Foe g e
<> max 107 (£, €Y

7= 2N

< M,

from the definition of L, and the fact that [£°(t)g,0,] < 1 by (3.3). From Proposition 2.2.5

and our hypothesis we then conclude that

~

F(€°,6 ) ap] < Cn ()N < Cn2V((€%) + (€)Y
< ON2N((€%) + (€)Y,

for every [€] = [€° @ ¢1] € G, o, § € Jg. The fact that f € C°°(G) then follows from Lemma
3.1.4. Now suppose u € D'(G). Then notice that

(@ ENarp> Vo = (U9 @ %)G’OXGU (3.4)

by definition. On the other hand, since u € D'(G), there exist Ny, N1 € Ny, C' > 0 such that

(@) <C max >N [FP(H)NEL, (@)

(t,x1)EGoxG1
[7[<No [A|[<N1

_Cmax Z 0] (t) max Z 102 €5y o, (21)]. (3.5)

® |yI<No Y

Since the symbol of the differential operator 8’\ satisfies ooy, € \Ill’\‘ 0(G1 x Gl) and since
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ooy (§1) = E1(x1)° 0, € (1) = 02,&(w1) = £1(§)ogy, (§1), we have that

1

der
102,680 (@] < D 1o (21) 0y, (€111
v=1
de1 1/2 1/2
< Z |§éw($1)|2 Z |Ua Dol
y=1
dlﬂlG
< lloay, (€)lms < Vdellogy (€]l < C(EY) e,
for some C' > 0, by Proposition 2.2.6 and (3.3). Therefore
dim G
S 10 by (w1)] < CEYNFTE (3.6)

[A[<Ny

for some C’ > 0. Hence, from (3.4) and (3.5) it follows that

!

|<u(7 §1>a1ﬁ1’¢>Go| S C/,pN’(qu))(fl)]V )

for some C” > 0, and where N’ = max{ Ny, N; + (%w }, for every [£1] € GLl<ay,pB <
dg1 as claimed. For the converse, applying the definition of py(+) and inequality (3.6) with &

instead of &', we obtain that there exist N € N such that

[U(€", € )ap] =

<ﬁ(', fl)alb’l ) 5207>G0

< Mpw(Ehe,)(€)"
< NI (N

dim GO

<SC(E) +ENTTTE

for some constant C’ > 0 and all [¢] = [€° ® ¢!] € G. Therefore, Lemma 3.1.4 implies that
u € D'(G), as claimed. O

Next we extend Proposition 2.1.7 to the product of compact Lie groups, as in the follow-

ing propositions.

Proposition 3.1.6. Let G = G x --- X G, be a product of compact Lie groups, and f, g €
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L*(G). Then
. dhixe / f@)g@de =S de 3 F©)asi©as
Also, if f € D'(G), g € C™(G)
(. )6 = / f@g@)de =3 de S Fl€)apsi©s
¢ e wfee
Proof. Indeed

/Gf(x /Z%Zf Jasésa(®)g(x)da

[(leG  @BEJe

—stZf / Dsa(w)da

- Z de Z f(g)aﬁ?\(g)aﬂ

eGP

Note that the interchange of order of summation and integration is justified due to absolute
convergence of the integral and series in the first case, and by the convergence in the sense of

distributions of the Fourier series in the second case. This finishes the proof. [

Proposition 3.1.7. Let G = G X - -+ X G,, be a product of compact Lie groups, Gy a compact
Lie group. Then for f,g € L*(Gy x G):

(f,9) L2 coxa) = Zd§Z/ft§a59t§)ag

[(]leG  BeJe

In particular

<f,g>coxg£/c S@dr= 3 [ 700,00,

[]leG  PEJ:

Similarly, if f € D'(Go X G) and g € C*(Gy x G):

(f.9)coxc =Y de Y <J? 1€)asr 9(-, E)a5>

€] EG a,BeJ¢
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Proof. Indeed, by applying Proposition 3.1.6 twice, we get that

(F 9oy = D, D dade D D FEasF(E Eap

[€o]€Go [¢]€C a0,B0€ e, o BET;

— Z dg Z Z dgo Z f(&ovg)a’ﬁlﬁ(gvg)a'ﬂl

[€]leG  @PEI [g)eGy  0.P0€Tg

= de > f (t,€)asd(t, &) pdt,

§]EG a,Be e

where o/ = (O[(), Apyenny an)7 BI = (/80) /817 s 7671) Since <f7 g>G0><G = <f7 §>L2(G0><G)’ this
implies

(f,9) o = ([, D12Goxey = D de Y f (t,€)apg(t; €) 5dt,

[(leG  BEe
which proves the second formula. Since C*(Gy x G) C L*(Gy x G), the third claim follows

similarly. O]

Let G = Gy x - -- x G, be a product of compact Lie groups. Fix j € {1,2,...,n} and X
a left-invariant vector field on G ;. Notice that viewed as a linear differential operator, i.X; acts

as a symmetric operator on L*(G;), that is,

f(zexp(tX;))g(x)dz

<Z'Xjf,9>L2(G):/Gi£ B

where we have used the right invariance of the Haar measure. In particular, for a fixed [¢/] €
G j, we may consider its action on the vector subspace He; ;. = span{féj g 185 =1,....dg;},
which is invariant by .X; as seen below. It follows from the Fourier inversion formula, and

Remark 2.2.20, that
1.X 5%5] Z fa]'yj OzX )'yj,Bja

vi=1
where 0;x, (&) € C% "% is the symbol of the differential operator i.X ; evaluated at
KIRS é\] , as defined in Definition 2.2.10. Thus, the symmetric linear operator 7.X; is given,
with respect to the basis {fij 5,105 = 1,....dg,}, by the (symmetric) matrix o;x, (¢7). But

then there exists a unitary matrix A such that A*o;x, (£7)A is diagonal with real coefficients.
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Therefore, setting 7/ () = A*&I(x)A, forevery x € G, we have thatr’ € [¢/] and
oix, (V) = A*oix, (&) A is diagonal. In conclusion, we may always choose a representative of

[£7] such that oy, (£7) is diagonal with imaginary coefficients.

Definition 3.1.8. Given a left-invariant vector field X, for every 1 < j < n, we define the real

numbers /i, (£7) such that

UX]' (gj)a]ﬂj - Z.H’Ozj (Sj)(sajﬁja for 1 S Qi BJ S d§j7 (37)

where d,,,,, is the Kronecker delta.

Remark 3.1.9. With inequality (2.5) in mind, this implies that if X is a left-invariant vector

field on a compact Lie group X;, then with the notation above, the inequality

1o, (&) < C(E), (3.8)

holds for some C' > 0 and every [¢/] € é;, 1 <a; <d,.
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Chapter 4

Constant coefficients operators

This chapter is structured as follows:

-In Section 4.1, we present our new results regarding the global solvability and hypoellip-
ticity of constant coefficient first-order differential operators on the product of n compact Lie
groups.

-In Section 4.2, we show how our results recover results already known in the literature on
the products of tori and spheres, as well as new results in these setting.

First, we recall the definition of the global properties of differential operators which we are

concerned.

Definition 4.0.1. Let G be a compact Lie group. We say that a differential operator L : D'(G)
— D'(G) is globally hypoelliptic if Lu = f € C*°(G) = u € C*(G).

Definition 4.0.2. Let G be a compact Lie group. Let L : D'(G) — D'(G) be a differential

operator. We define
(ker'L)? = {u € D'(G) [{u, f)¢ =0, Vf € ker 'L}

where 'L : C°°(G) — C*((G) is the called the transpose of L, and is the differential operator
givenby (Lu, f) = (u,'L f),foreveryu € D'(G), f € C>°(G). We say L is globally
solvable if for every f € (ker'L)? N C>(G), Ju € C*(G) such that Lu = f.

Remark 4.0.3. It is worth mentioning a classical argument using functional analysis (as
proved in a more general context in [102], Proposition 35.4, and later more explicitly in [31],
Theorem 1.4 and Corollary 1.5) shows that a differential operator L : C*°(M) — C*°(M)

defined on a compact manifold M is globally solvable as in the definition above if and only
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if L has closed range. In fact, this equivalent condition is frequently used as the definition for
global solvability in several papers. Also, it is worth mentioning that this fact could possibly
simplify some of the proofs in this thesis, however we chose not to rely on this fact and prove

our results based only on the definition above.

4.1 Global regularity on compact Lie groups

LetG = G x -+ X G, be a product of compact Lie groups. Consider the constant-

coefficients left-invariant first order differential operator L : D'(G)) — D’'(G) given by
L=c X1+ + X+, 4.1)

where ¢; € C, X is a left-invariant vector field on G, for j = 1,...,nand ¢ € C. Since
Gh x {eg,} = G1, we will assume every G; to be non-trivial. Also, since we allow the ¢;’s to
be equal to zero, we will also assume that every X; is non-zero.

For each u € D'(G), we may write the partial Fourier transforms of Lu, one variable at a

time, as follows:

Lu(xl, ey 1, gn)anﬁn = (01X1 + 4 Cn_an_lﬁj,\(l’l, ey Tp—1, 5")%5"4-

+ iCnpla, (EMU(x1, . o o1, € )anp, + QU(T1, - Tne1, € ) an s

LU(ZL’l, ey, Tp_9, fn_l, fn)aﬁ = (Cle + - F Cn—QXn—Q)a(x17 vy Tp_2, fn_lv fn)aﬁ+
+ Z.Cn—l,uan,1 (gn_l)a(xla ce 3 Tn—2, é-n—17 gn)aﬂ_'_
+ Z.Cnﬂozn <£n)a(xla ceey Tp—2, fnila gn)aﬁ—i_

+ qa($17 sy Ip—2, éﬂ_l’ £n>0‘67

for a = (a1, ) and B = (B,_1, 5n), and so on, until we have taken the total partial Fourier

transform of Lu, given by

Lu(€', . € = i (Cipton (E) 4 -+ Cafton (€") — iq) T(E ..., EMap. (42

For convenience, let ¢ = (¢y,...,¢,) € C",a = (ay,...,a,) ENand [{] = [('®---®¢"] €
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é, and define
<C, Ma(g» = Cifhay (51) +- Cnlla, (fn) (43)

This way, equation (4.2) can be rewritten as

Lu(€)ap = i ({C, f1a(€)) — iq) (&) ap. (4.4)

Defining
01L(§)aa = 1 ({c; 1a(§)) — iq),

we can view L as a Fourier multiplier with symbol o,.

With Lemma 3.1.4 in mind, we can study the global properties mentioned above by study-
ing the behaviour of the coefficients ((c, 1o (§)) — iq) as (§) — oc.

In order to prove the necessary and sufficient conditions for the global solvability of the
operator L, we first obtain an equivalent characterization of global solvability for a differential

operator.

Definition 4.1.1. Let P : D'(G) — D(G) be a continuous linear operator whose symbol
op(€) is diagonal, so that ]/3?(5)@5 = 0p(E)aaf(€)as foreach o, 8 € Je, [€] € G, f e D(Q).
We define p C D'(G) by

Kp = {u € D'(G)| such that u(§)as = 0, forall 5 € Je, if 0p(§)aa = 0}.

Proposition 4.1.2. Let P be as in the previous definition. Suppose ' P is also diagonal, that
is, q?\u(f)aﬁ = 0tp(&)aati(§)ap forevery o, B € Jeand u € D'(G). If it satisfies op(§) =
Aot p(€), for some X € C\{0}, and every [¢] € G, then

Kp = (ker'P)°.
Proof. Suppose f € Kp and let v € C*(G) be such that v € ker*P. Then

(f,v)e = Z de Z f(g)aﬁa(g)aﬁ'

[(leG  @BEJ;
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~

If 0p(§)aa = 0, then f(€)as = 0. On the other hand, if 0p(€)aa # 0, then

0= Po@as = 01p(Eaa?Elap = 307(E)aadEus

implies that 7(£),s = 0, so every term in the sum above is zero. Therefore Kp C (ker'P)°.
Now let f € (ker'P)°. Suppose first that o p(£)aa = 0 for some [¢] € G, o € Je. For each
B € Je, let ve o 3 € C°(G) be given by

_ lifn=¢§v=a, k=4
Vea,5(1) s =
0, otherwise.

—_ —_ =

Then " P ve 0 5(€)ap = 0tp(€)aaleas()as = %ap(g)aa =0, so v € ker ' P. Therefore

~

0= (f,v)a =def(§)as;

since this holds for every 1 < 3 < d¢, we conclude that f € Kp. ]

Proposition 4.1.3. The operator L defined in (4.1) is globally solvable if and only if
K NC®(G) = L(C™(Q)).
Proof. As in equation (4.4), under our choice of representations

0L(§)aa = i({c, pa(§)) — iq)

and

0t1(§)aa = i(—(c; 1a(§)) —iq),

for every [¢] € G.ac Je,since 'L = —(c; X + -+ + ¢, X,,) + ¢. Next, we claim that X
satisfies fiq, (€)= — Lo, (&7), so that o1,(€) = o1y,(€), for every [¢] € G, and the claim follows

from Proposition 4.1.2. Indeed, note that

iuaj (é‘]) =0Xx; (g)ajaj = Xjf_j(eGj) = Xjégéjaj (eGj)

= 0, (&) = ~ipta, (&),
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as claimed. L]

Next, we present necessary and sufficient conditions for global solvability and hypoellip-

ticity of the operator L.

Proposition 4.1.4. The operator L is globally solvable if and only if there exist M, N > 0

such that

|O-L<£>aoz| = |Clua1 (§1> +ot Cn,uan(gn> - Zq, > M (<£1> +eet <£n>)_ ) 4.5)

forevery [¢] € G ac Je¢, such that the left hand side of the inequality is not zero. It is glob-

ally hypoelliptic if and only if the equation

Cilbay (gl) + o+ Cllay, (gn) —1q = 0

has only finitely many solutions for [§] € G o€ Je and inequality (4.5) also holds whenever

its left-hand side is not zero.

Proof. Suppose the first condition is not satisfied, that is, for every m € N, there exist distinct

=&l @ @& where [¢)] € é;, j=1,...,n,and a(m) € N" such that

0 < [{es fagm)(&n)) —iq] < ((Eh) + -+ + (€)™ (4.6)

Indeed, if only finitely many & satisfied the inequality above, by taking /N large enough and M
small enough, we could obtain that inequality (4.5) holds for all [¢] € Ganda € Je. Define

the Fourier coefficients

-~

f(gm)a(m)f = i(<c> :ua(m)(gm» - iQ)v m € N,

and

-~

J(€)as =0, otherwise.

Here 1 = (1,...,1) € N" denotes the n-dimensional vector of ones. By Lemma 3.1.4 and
inequality (4.6), these coefficients define f € C°°((G). Moreover, by Proposition 4.1.2 we have
that f € (ker'L)° since f(f)aﬁ = 0 whenever 0(§)aa = i({c, 1a(§)) — iq) = 0. Now suppose
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there exists u € C*°(G) such that Lu = f. Then its partial Fourier coefficients would satisfy

~

Lu(€)as = i ({c, 1a(€)) — iq) W(E)ap = F(E)ap, 4.7)

and 50 U(&m) o(my7 = 1, forevery m € N. Butthenu ¢ C°°(G) by Lemma 3.1.4, which
is a contradiction. We conclude no such w can exist and therefore L is not globally solvable.
Considering the same Fourier coefficients for fand u, if we define all other coefficients of
u to be 0, then by Lemma 3.1.4 these coefficients define u € D'(G)\ C*(G). Moreover,
by comparing Fourier coefficients, it clearly satisfies Lu = f, from which we conclude that
L is not globally hypoelliptic as well. Suppose now that inequality (4.5) holds in the correct

domain and let f € (ker’L)? N C*°(G). Then, by Proposition 4.1.2, f(f)aﬁ = 0 whenever

(¢, pa(&)) —ig = 0. Define R
f(g)aﬂ
i((c, na(§)) — iq)’

whenever (¢, 11, (€)) — iq # 0 and U(§).s = 0, otherwise. Notice that

U(§)ap = (4.8)

[A(Easl < 1F(Easl7 (€1 + -+ ().

Therefore, by Lemma 3.1.4, for every N’ > 0 there exists M’ > 0 such that

€] < 30 (1€ + -+ (€7)

—N'+N

By Lemma 3.1.4 we conclude these Fourier coefficients define u € C'*°((), which proves that
L is globally solvable. Note further that if u € D’'(G) is such that Lu = f € C*°(G), then by
comparing partial Fourier transform as before, (), is uniquely determined by equality (4.8)
whenever the denominator is not zero. Hence, if the set of [£], o for which the denominator is
zero is finite, the same argument as before implies that the coefficients of © must decay faster
than any power of ((¢!) + -+ + (£")). Lemma 3.1.4 then implies that u € C°°(G) and so L is
globally hypoelliptic. ]

Remark 4.1.5. We can apply a very similar argument to prove the inequality (4.5) is also a
necessary and sufficient condition for L to be globally solvable in the sense of distributions,
that is: for all f € (ker’L)°, there exists u € D'(G) such that Lu = f if and only if inequality

(4.5) holds whenever its left hand side is not zero.
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Corollary 4.1.6. If L defined in (4.1) is globally hypoelliptic, then
ker(L) C span {gag | €] € CA?, a, e Jg} ,

and in fact dim ker(L) < +o0.

Proof. Indeed, notice that if u € ker(L), then by comparing Fourier coefficients as in equality

(4.7), we have that

we span {€us | [€] € G (e p1al€)) —ig = 0}

Therefore,

dimker(L) < dz.

¢Je
(e;pa(8))

|

iq=0
Since L is globally hypoelliptic, the sum above is finite by Proposition 4.1.4, proving the state-

ment. (]

4.2 Global regularity on tori and spheres

Our goal in this section is to study the global regularity of the operator L in the particular
cases where the groups G; are equal to different copies of the one dimensional torus or the
three dimensional sphere. Not only we recover results already proven in the literature using

the techniques developed in the last section, but also we present some new results.

4.2.1 Tori

First, let G = T' x --- x T' = T", be the n dimensional torus and consider X; = 9, the
usual partial differentiation with respect to the j-th variable, for j = 1,...,n. Then, dim¢ =1
for every [¢] = [t — €] € T and we may identify £ ~ 11(§) ~ k € Z. In this case the

operator L described in the last section is given by

L= Claacl +--+ Cnaacn + q, (49)
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and its symbol is
O'L(/{Z> = i((C, ,U,T<k’)> — Zq) = i(Clkl + - F ann — iq),

where k € 7", c € C" and ¢ € C. Since (k;) = /1 + /{:]2 has the same asymptotic behaviour
as |k;|, for k; — oo, Proposition 4.1.4 implies that L is globally solvable if and only if there

exist M, N > 0 such that
lerk + - 4 caky —iq) > M(Jki| + -+ + [ka]) Y, (4.10)

for every k € Z" \{0} whenever the left hand side of (4.10) is not zero.

With this in mind we obtain the following corollaries.

Corollary 4.2.1. Suppose that either
(i) c € (Q+:Q)";

(ii) There exist 1 < 71,72 < n such that o = Zﬁ is an irrational non-Liouville number,
J2

Y eQ foreveryji#£j=1,....n and 2 € Q;
2

J2

iii) There exist 1 < 71,72 < nsuchthat A\ = % is an irrational non-Liouville number,
Ji,J b
J2

bi_JQ € Q, forevery j, # j = 1,...,n,andee]—,(;) € Q;
where c; = a; + b, for j = 1,...n. Then L defined in (4.9) is globally solvable.

Remark 4.2.2. The claim above still holds if we replace the quotients in its statement by their

respective numerators. The proof is very similar.

Proof. First assume (i). We claim that there exists ¢ = (¢, ¢) > 0 such that
lerky + -+ cukn — iq] > &,

whenever the left hand side of the inequality is not zero. This proves that inequality (4.10)
holds trivially, and so L is globally solvable by Proposition 4.1.4. Indeed, note that if Re(q) €

, then there are, r;,7 € Zand s;,s € N, j = 1,...,n, such that
J J J

T Tn T
etk + - 4 ek —ig| > | Ey e Lk, — -
S1 Sp, s

= |rikiSg ... SpS+ FTpkpS1 .. Sp_1S F TS Sy ———
S1...5,8



50

1

S1...8n8

which is greater than or equal to e = whenever it is not zero, since the first term on
the last line is an integer. A similar argument can be applied if Im(q) € Q, now using the
imaginary part of the symbol. If both the real and imaginary part of ¢ are irrational, then with

the same notation as before, Re(q)s; . .. s, & Z, therefore

r Tn
leiky + -+ + cnky, —ig > 8—1k1+-~~+8—kn—Re(q)
1

n

= |rik1so. .. S$pSs+ -+ rpkpSt .. Sp_18 + Re(q)sy - . . Sl
S1...5p

> | Re(q)sy ... SnH]R/Z
B S1...8p

bl

where ||z||r /7 denotes the distance of the real number x to the nearest integer, so the in-

equality also holds as claimed. Now assume (ii). Suppose, without loss of generality, that

i =1,js = 2and Z = n Imle) L where r,7; € Zands,s; € N,forj = 2,...,n.

By as

Then

|Clk1+ I ann — Zq‘

koSs ..., + k3rsss... 8,8+ -+ kpS3...8,-15+1rS3...8,

> |as| |aky + s
3...5n

Set w(ka, ... kp) = koSz...SuS+ ksrssy...Sps+ - +knS3... 8,15+ 71s3...8, € Z. Then

the last inequality can be rewritten as

—W(kﬁg, ey kn)

|k1|s3 ... Sps

|Clk’1 + - +Cnl€n —ZCJ| Z |(12||]{?1| o —

for k; # 0. But then, as |k;| > 0 and « is an irrational non-Liouville number, there exist

M’ > 0, N’ > 1 such that

|Clk31 + -+ ann — Zq| 2 |a2]|k1|M'(|k1|33 e SnS)_N/
> |ag|M' (s . .. $p8) N |ke| N

> M”(Ufl’ 4+ .4 ’knD—N”

for M" = |ag|M(s5...5,5)" Y > 0. When k; = 0, we can apply the same argument from
part (i). Together, these inequalities imply (4.10) holds, therefore by Proposition 4.1.4 the op-

erator L is globally solvable. The proof of (ii1) is very similar and is left to the reader. ]
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Corollary 4.2.3. If ¢ € R" and there exist 1 < ji,jo < n suchthat A = 27—1 is a Liouville
72

number and - = il € i Z, then L defined in (4.9) is not globally solvable.

0]2

Proof. First, without loss of generality, we may suppose j; = 1, jo = 2. Note thatas Aisa
Liouville number there exist sequences (P, )men C Z, (Trm)men C N, with 7, — +o00 and
such that

<

T'm

= My — Pl < (7)™ Vm € N

(Tm)™

By taking k(m) = (7, —(pm + €),0,...,0) € Z™, for each m € N, we have that
lerk(m)y + -+ + cpk(m), —iq| = |ea| | ANrm — pm| < |ea|(rm) ™™ 4.11)

It follows the inequality (4.10) cannot hold, since if it did, there would exist M/, N > 0 such
that
lctk(m)y + -+ + cpk(m), —ig| > M(Jk(m)| + - + |k(m), )V

for every m € N. But then, by (4.11) that would imply
M (T + [pm + )N < |ea|(rp) ™,

which we can rewrite as

N

,rmT_l
co| > M(ry, + lpm + ) N t= M [ —2——
2] > M1+ I+ 0)7 () <rm+ypm+a)

ey
M
1 + |pm 44|

for every m € N. By the definition of the sequences (7, )men and (Pm ) mens |Pm| < [Arm| + 1,

N

|prm 4|

m

SO is bounded. Therefore, the right hand side of the inequality above tends to +oo as
m — 00, so that we obtain a contradiction. Hence (4.10) does not hold and so by Proposi-

tion 4.1.4 the operator L is not globally solvable. [

As for global hypoellipticity, in this particular case Proposition 4.1.4 implies that L de-

fined in (4.9) is globally hypoelliptic if and only if it is globally solvable and the set

N =A{k € Z" |c1ky + - - + cukn — ig = 0}
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is finite. Note that if ¢ = 0, then surely & = (0,...,0) € N, and if there exists any other
k € N, then mk = (mky,...,mk,) € N forevery m € Z. Therefore the only way N7, can
be finite is if N, = {0}. This is equivalent to there being no non-trivial integer solutions to the

system of Diophantine equations

a1k1+---+ankn:()

biky + -+ byky, = 0.

Also,if ¢ € ¢, Z+ - - - + ¢, Z, then clearly N7, is empty and therefore finite, and so L is glob-
ally hypoelliptic if and only if it is globally solvable. This means that, for instance, Corollary
4.2.1 allows us to conclude that if ¢ € Q" and g ¢ ¢Q, then L is globally hypoelliptic.

An interesting case occurs whenn > 2,b; = by = --- = b, = 0,a1,...,a, € Zand

q = —im € 1 Z. Then
Ny =A{k e Z" |arky + - - - + ayk, = m},

so in this case L is not globally hypoelliptic if and only if the Diophantine equation above has
infinitely many solutions k& € Z. This is true if and only if ged(ay, . . ., a,,) divides m. Indeed,

if such equation has infinitely many solutions, choose one solution k£ € Z". Then since
a1k1+"'+ankn:m7

we see that gcd(ay, . . ., a,,) divides the left-hand side, and so it must divide m also. The con-
verse follows by induction on 7 € N. If n = 2, then by Bézout’s identity, there exists k € Z>
such that a1 k; + agks = ged(ay, az) = d. Then since m = dl, for some | € Z, we have that

k" = (kil, kol) solves the equation. Consequently, for every w € Z, every

a2 aq
by = kw:k/ —,kw:k‘/— _
(e =t ey o = Ko )

solves the equation, and so the claim follows. Now suppose the claim holds for the case with

n — 1 variables. If the Diophantine equation

arky + -+ ank, =m
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admits solution then the equation
ged(ay, ... an_1)z + ank, =m

admits solution. By the reasoning above, as ged(ged(ay, ... a,1),a,) = ged(aq, ... an_1, ay)

divides m, this last equation has infinitely many solutions z’, while each
arky + -+ an1kn1 = ged(ay, ..., ay-1)7

also has infinitely many solutions by our inductive hypothesis, proving the case of n variables.

In sum, we have proved:

Corollary 4.2.4. Let L be the first-order differential operator acting on the torus T", n > 2
given by
L:a18x1+"'+anaxn+Q>

where ay,...,a, € Z,q € C. Then L is globally hypoelliptic if and only if ¢ & iZ or

ged(ay, . . ., a,) does not divide iq € 7.

4.2.2 Spheres

Let Gy,...,G, = S% and consider X; = 0, ; the smooth vector field in S*, where ) ;
is the neutral operator J, on the j-th copy of S®. We recall there exists a natural identification
S3 ~ % Ny, where to each ¢ € % Nj there corresponds a 2¢ + 1 dimensional representation
which we also denote by ¢. With this in mind, we shall denote [¢(] € S? X x SPwith £ €

% N{. Following the notation used so far, as seen in [94], the symbol of each X is given by
Tity (U)o, = i(at; = £ = 1)0as;,

forl < ay,B8; < 20;+1,j = 1,...,n, where 0,3, is the Kronecker’s delta. Note that this
means

—0; < pay (6) < 4, & = piay (£5) € No,

forevery 1 < o; < 20; +1,j = 1,...,n. This means in case {; € 3 No \ Ny, then pq, (¢;)
assumes values in § Z \ Z between —( and ¢, and for the case ¢; € Ny we have that /i, (¢;) as-

sumes values in Z. Also, note that (¢;) = /1 + ¢;(¢; + 1) has the same asymptotic behaviour
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as {; for £; — +-o0. Therefore the condition for global solvability can be rewritten as follows.

Corollary 4.2.5. The operator L given by
L =c1i0p1 + -+ + cpi0pn + q
is globally solvable if and only if there exist M, N > 0 such that
(e, a(0)) =gl = M(y+ -+ + €)™,

for every —0 < po(0) < 6, 0 — po(C) € N, £ € § Ny \{0} such that the left hand side of the

inequality is not zero.

The global solvability in this case is determined by conditions very similar to the ones in
the previous subsection. On the other hand, in terms of conditions for global hypoellipticity,

there is a significant difference. Note that now if
Clta, (1) + -+ + Cpfia, (b)) —ig =0 (4.12)

forsome ( € L Nj, a € Jy, then as puo, ((;) = fta,+m({; + m) for every m € Ny, we have
that the set of all £ and « such that ¢y pia, (¢1) + - -+ + Cafa, (€n) — iqg = 0 is either empty or
infinite. In particular, if ¢ = 0, then L is not globally hypoelliptic, as in this case clearly ¢{ = 0
and o = 1 is a solution to the previous equation.

Hence, we can rewrite the condition condition for global hypoellipticity as follows.

Corollary 4.2.6. The operator L given by
L =c1i0p1 + -+ + cpi0pn + q
is globally hypoelliptic if and only if
c1z1+ -+ epzy —iqg#0
forall z, ..., z, € % Z" and there exist M, N > 0 such that

e, a()) =gl = M0+ -+ £,)7",



forevery —0 < po(0) < 0, L — py(l) € Ny, £ € %N(S) \{0}.

55



56

Chapter 5

Variable coefficients operators

5.1 Real coefficients

Let GGy be a compact Lie group and G = G X --- x (G, be a product of compact Lie
groups. In this chapter we will prove necessary and sufficient conditions for the global solv-

ability and global hypoellipticity for operators of the form
L =X+ a(xg) X1+ -+ 4 an(x0) X0, + q(z0, 21, . . ., T0), (5.1)

where each a; is a smooth real-valued function on G, ¢ is a smooth complex-valued function
on Gy x G and each X is a non-zero left-invariant vector field on G;, for j = 0,1, ..., n.
We will show that under suitable conditions, the global solvability and global hypoellip-
ticity of the operator L is completely determined by whether or not these properties hold for
the constant coefficients operator L, obtained by taking the averages of the coefficients of the

operator L. First, however, we will need the following lemma.

Lemma 5.1.1. For a compact Lie group G', let Ly, Ly : D'(G') — D'(G’) be differential
operators on G', such that 3V : D'(G') — D'(G") smooth automorphism which satisfies

U (C*(G") = C>®(G") and L1 oW = Vo Ly. Then Ly is globally hypoelliptic if and only if L
is globally hypoelliptic.

Proof. Suppose L is globally hypoelliptic and Lou = f € C*(G"). Then Ly o Yu = ¥ o
Lou = U f € C°°(G"). Since L, is globally hypoelliptic, Vu € C*(G") and so u € C*(G’),
from which we conclude L, is globally hypoelliptic also. In case L is globally hypoelliptic,

then note that U~ satisfies Ly o U=! = W1 o L;, so the result follows by symmetry. O
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Proposition 5.1.2. Suppose that there exist real functions A; € C*(Gy) such that
XoAj(xo) = aj(xg) — ajo, for some ajo € R, j =1,....n,and Q € C*(Gy x G) such that
(L —q)Q = q — qo, for some qo € C. Then L defined in (5.1) is globally hypoelliptic (resp.
solvable) if and only if Ly is globally hypoelliptic (resp. solvable), where Ly is the operator
given by

Lo = Xo+ a10X1 + -+ + ano Xy + qo-

Proof. By Lemma 5.1.1, it suffices to exhibit an automorphism ¥’ on D'(Gy x G) that pre-
serves C°((G x () and conjugates L and L, to prove L is globally hypoelliptic if and only if
Ly is globally hypoelliptic. Consider the mapping V' : D'(Gy x G) — D'(Gy x G) given by

U =W, 00,
where
Vulzg, 01, yn) = Y de Y e Einna @A@N)G0 6 ses (), (5.2)
[leG  PEJ;
and

U u(zo, ) = u(xo, :U)e’Q(J”O»I)7

in the sense of distributions, for every u € D'(Gy x G). A simple computation verifies that
LoWV,o¥ = W, 0Wo L, We claim that ¥ is an automorphism on D’(G, x ) which preserves
C*>(GyxG). Indeed, first we will show that if u € C>°(GyxG), then also V'u € C°(GyxG).
Indeed, let v € Ngim % Then by (5.2) we have

07" Tu(zo, )ap| =

a,y [e_i(Z?:1 Hoj (gj)Aj (-TO))a(ajO’ 5)0&5]

< Z ’67/6_1‘(2?:1 Hhorj (Ej)Aj(CCO))‘ 87"a(x07 f)aﬁ
'Y/+’YN:7

< DD Ol (@) 0 o, E)as).
Y H+y'=y j=1

for some C'; > 0. Therefore, given N > 0,asu € C*(Gy x G), by Lemma 3.1.5 and
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Remark 3.1.9, there exists C’;,/ ~ > 0 such that

T, asl < Y Y Cry@IC ((€1) + -+ (gm)) "D

v +y"=y j=1

<Oy (E) + -+

for some C”y, > Oand all zy € G, [{] € G, o, 8 € Je. By Lemma 3.1.5 we conclude that
Vu € C*(Gy x G), and so clearly V'u € C°(Gy x G). The proof that u € D'(Gy x G) =

'y € D'(Gy x G) is similar. Notice that W'~ is given by U~' o W, where

\Ijilu(l‘m L1y 73371) = Z d{ Z ei(Z?ﬂ Ky (51')Aj(:p0))a<x0’ g)aﬁfﬁa(‘%)a
leG  @PE

and

\I/q_lu(xo,x) = u(xg, )@@

in the sense of distributions, for every u € D'(Gy x G), so it is clear that ¥’ is an automor-
phism. This proves the claim on global hypoellipticity. It remains to prove that L is globally
solvable if and only if L is globally solvable. First assume that L is globally solvable. Note
that L and Ly satisfy *L = —L + 2gand 'Ly = —Lo + 2qo. Also, (=L +2¢q) o ¥t o U =
v Lo Wo (=L + 2qp). Indeed, this follows from the following facts that can be verified by a

simple calculation:
o —(Xo+ Y7 aj(w0)X;) o Wty = Wt o (—(Xo+ Y0 a;(20)X;))u+ (—q+ qo) Yqu
o (—Xo) o Wu=Wo (X pta, (€9)(a; — azo))u+ W o (—Xo)u
* Wo (=220 pa, (§)(ag0))u = o (=320 ajo(ro)X;)u
o (=2 ai(x0) X)) 0 Wu = =3 pra, (§7)a; () Vu.

To see why these last assertions are true, note that from Definition 2.2.10, we have that

ox, (€)= & (1)) X;€ (x;) = X;€ (eq;,),
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so that

X;8 () = & (2;)X;8 (eq,)
- gj (xj)UXj (€j>
= & (x;)diag(pa, (£7)).

Therefore, ngj (xj)ﬁjaj = Hay (5])5] (xj)ﬁjaj‘
Using this fact, we may prove that ¥, ' o W(ker L) = ker'L. Indeed if u € ker ‘L, then

0= \Ilq_lo\IJotLOu
=V oWo (—Lo+2q)u
= (=L +2q) oV, oWu
="' 0\11;1 o Yu,

therefore W, ' o Wu € ker(*L) and W' o W(ker ‘L) C ker ‘L. Conversely, if v € ker'L then

0=0"'oV, oLy
=V oW, o (—L+29)v
= (—=Lo+2q) oV ol
="LyoV oW,

so U~' o W (ker'L) C ker'L, which implies ker 'L C W' o ¥(ker ‘L), which finishes the
proof that W' o W(ker'L,) = ker'L.

Therefore every v € ker ‘L may be written as v = (\I/q_1 o W)u, where u € ker ‘L. Now if
f € (kerL,)° N C*(Gy x G), then (¥, 0 U)f € (ker'L)’ N C*(Gy x G). Indeed, for any

v="V,"0TVu, uec ker ‘L, Proposition 3.1.7 implies that

/ U, 0 W f(x,2)¥, " o Wu(xo, z)dzoda
GoXG

= / U f (g, x)e~ @0 Wy (20, 2)e?@00 droda
GQXG

> de D /G Flwo, €)ape (B roy @4 E0) g F) g™ (S o @41(00) i,
0

]G @PETE
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Since fiq,; (&7) = —Jta, (§7), for every [¢7] € é; , the exponentials cancel out. Therefore

\/C;' G(\Pq © \I[)f(xmx)(qjq \Ij) (l’o, dxodx — Z d§ Z f an aﬁa(xmz)aﬁ dx()

[(]leG  BeJe

:/ f(zo, x)u(xo, ) drgdx = 0,
GoxG

where we used Proposition 3.1.7 once again, and the fact that f € (ker ‘L), u € ker'L,.
This proves the claim that (¥, o ¥)f € (ker‘L)? N C*=(Gy x G), so by the definition of
global solvability there exists u € C*(Gy x G) such that Lu = (¥, o V) f. Butthen f =
(OtoW o L)u=(LooW oW, 1)u,so that Ly is globally solvable. The converse follows
by symmetry, which finishes the proof. ]

Example 5.1.3. The following example has been extracted from [40], but with slightly differ-
ent notation. Let Gy = G| = S and consider the operator L = X, + a; (o)X, where X j
corresponds to the vector field D3 ; = 0y, = i0y; on the z; variable, and a; : S? — Ris

expressed in Euler’s angles by

a1(zo(¢o, 6o, 10)) = — cos <%> sin <¢0 + ¢0> + \/57

2

which satisfies

X() TI'(ZL‘()) = al(xo) — \/5

Since a1y = V/2, by propositions 4.1.4 and 5.1.2 we have that L is not globally hypoelliptic,
but is globally solvable.

5.1.1 The case of the torus

Assume now Gy = T!, Xy = 0,. In other words, the operator L can be seen as an “evolu-

tion operator” on a periodic time variable. In this case, the conditions for Proposition 5.1.2 are

satisfied for any ay, . .., a, € C®(T') and ¢ € C°°(T"). Indeed, taking

t
Ay(t) = /0 a;(7)dT — ajot,
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for every ¢ € [0, 2], where ajo = 5 fo% aj(r)dr,j=1,...,n,and

Q) = / ¢(r)dr - qot,

1
2w

for every t € [0, 27|, where ¢y = fOZW q(7)dr, these satisfy

XoA;j(t) = 0,4;(t) = a;(t) — ajo, 1=1,...,n,

and

(L —@)Q(t) = 9:Q(t) = q(t) — qo,
for every ¢ € [0, 2x]. Therefore Proposition 5.1.2 implies the following corollary:

Corollary 5.1.4. Let X; be a left-invariant vector field on a compact Lie group G, for each

j =1,...,n, and consider the partial differential operator on T* xG1 x --- x G,, given by
L = 8t + a1<t)X1 + -+ a’TL(t)XTL + q,

where ay, . . ., a, are smooth real-valued functions on T', ¢ € C°°(T'). The operator L is

globally solvable if and only if there exist M, N > 0 such that
[k + G10/taq (€1) + -+ + Guotia, (€7) — iqo] > M (| + (€") + -+ + (€)™ (5.3)

forevery (k,[€]) € Z xG, a € Je, such that the left hand side of the inequality is not zero,

2

1 1 21
2w JO

where a;y = 5= Jo

aj(t)dt, g =1,...,n,q0 = q(t)dt. It is globally hypoelliptic if and
only if the equation

k + A10Hay (gl) + Anota, (gn) - iQO =0

has only finitely many solutions for (k,[§]) € Z xG, a € Je, and inequality (5.3) also holds

whenever its left-hand side is not zero.

Example 5.1.5. Consider L as given in Corollary 5.1.4. Suppose also that Re(qg) # 0. Then
L is both globally solvable and globally hypoelliptic, as

|k + 010,%1(51) + o anofta, (") — 10| > |Re(qo)| > 0,

for every (k, [€]) € ZxG, o € Je.
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Example 5.1.6. Let L be as in Corollary 5.1.4. Assume also that Gy, ..., G, = T, If
i) ay is an irrational non-Liouville number, but a o, Im(q) € Q, for 1 < j # 1 < n, or;

i) a, ..., an,Im(q) € Q.

Then L is globally solvable and, in the second case, L is not globally hypoelliptic.
Indeed, both cases (i) and (ii) follow from Corollaries 4.2.1 and 5.1.4 and their respective

comments.

Example 5.1.7. For G, ...,G,, = T, if ¢y € i Z and there exists 1 < j < n such that ajo is a
Liouville number, then L is not globally solvable (nor hypoelliptic). Indeed, this follows from

Corollaries 4.2.3 and 5.1 4.

5.2 Complex coefficients

The goal of this section is to study the case where the operator L has complex-valued co-
efficients. The standard approach is to apply the partial Fourier transform to the “space” vari-
ables 71, ..., x,, in order to obtain a uncoupled system of differential equations in only the
“time” variable £. Since this technique requires solving a differential equation on the compact
Lie group Gy, we will only consider the case Gy = T, and X, = 0;. This way we may apply
the standard theory for solving ordinary differential equations on the torus, which boils down
to solving these equations on the real line, but with periodic boundary conditions. With this in
mind, in this chapter we study the operator

L=0+ +q(t), (5.4)

Z ci()X;

where ¢;(t) = a;(t) + ib;(t) are smooth complex-valued functions on T*, X are non-zero
left-invariant vector fields on the compact Lie groups G;, j = 1,...,n,and ¢ € C>=(T").
The same arguments used in Proposition 5.1.2 can be used to prove that the global hypoellip-

ticity and solvability of L is equivalent to those same properties of the operator given by

n

> (ajo +ib;(1)X;

J=1

8t + +q0a
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where R 3 ajo = o 027r a;(t)dt, j=1,...,n,and C 5 gy = & 027r q(t)dt, so we will assume
these functions are all constant. In other words, we will consider a; = a;o € R, j = 1,...,n,

and ¢ = qo € C. We also define the constant coefficients operator

n

Z Cjo(t)Xj

Jj=1

LQ = 8t + +q, (55)

where Cjo = % 027r Cj (t)dt

First, we present some notation and prove some auxiliary lemmas.
Notice that if u, f € C(T! xG) satisfy Lu = f, comparing partial Fourier coefficients on

T! x G yields the following uncoupled system of ordinary differential equations on the torus:

~

Oru(t, €)ap +i({c(t), Ha(€)) — i) ult, E)ap = [ (¢ E)as; (5.6)

fort € T', [€] € G.and o, B € Jg, where (c(t), j1a(€)) = 27, ¢;(t)pta, (€).

Lemma 5.2.1. Let L be as defined in (5.4). Suppose that the sequence of smooth functions
U(-,&)ap € C=(T) satisfies

~

[00 + i({c(t), 1a(8)) — Q)] U(t, §)ap = F(t,€)as, (5.7)

forallt € T €] € G, and o, § € Je, where f € C°°(T' xG). If there exist K, N > 0, such

that

~

[t €)asl < K (€7 + -+ (N I (-, E)aslloc,

forallt € T, [¢] € G, and a, 3 € Jg, then these Fourier coefficients define a smooth function
u € C®(T! x@), which also satisfies Lu = f.

Proof. To prove these coefficients define a smooth function, by Lemma 3.1.5 we must prove

that Vm € Ny, VN’ > 0, 3K/, > 0 such that

[0t €)agl < Koy ((€1) 4+ 4+ (€))7,

forallt € T[] € @, and o, B € Je. We prove this by strong induction on m. The case

m = 0, follows from the hypothesis and Lemma 3.1.5. Suppose the claim holds for every case
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m < k € Ny. Then, by (5.7), we have that

UL, €)ap = 07 (0U(L, €)ap) =
= Of (—ille(t), 1a(€)) — i)t s + F(t €)as)

k
— Y (k (€0)0E It €)as) + aOFT(L, E)a + OF T8, E)as

JO‘]

and so

O, €)ag| < 28 max max 18] calloo ((€7) + - -+ + (€7))

..........

X max, |7t €)as| + |al|OFTE, €)as] + 10F £, €)as |lo, (5.8)

-----

forevery t € T, [¢] € G and o, f € Je. The case m = k + 1 then follows from the previous
cases and the inequality above. Indeed, given N > 0, by the inductive hypothesis there exists

M > 0 be such that

[max, 107(t, €)ap| < M ((EY) +---+ (emy)~ WD,

.....

forevery t € T, [¢] € G and a, 3 € Je. Also, since f is smooth, by Lemma 3.1.5 there exists
M’ > 0 such that

|OF F(t,€)apl < M ((€Y) + -+ (")

foreveryt € T, [£] € G and a, B € Je. Applying this inequalities to (5.8) we obtain

OF 10t €)apl < ((2* o max [[Fculloo +1aDM + M) ((67) + -+ (")

..........

foreveryt € T, [¢] € G and a, 3 € Jg, which finishes the proof by induction. The fact that

Lu = f can be seen by comparing partial Fourier coefficients. ]

Finally, for ¢y = (ci9, - - ., cno) € C", define the following sets
2, ={(lgha) € G xN"|a € Je, {co, pal€)) —ig € 2} (5.9)

Ze = {([g],a) e GxN'|ae Je, (co pial€)) —iq & Z} , (5.10)
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where (co, p1o(§)) — iq is as in (4.3).

Sufficient Conditions

We are now ready to prove sufficient conditions for the operator L to be globally solvable
and/or globally hypoelliptic. The first condition we present establishes a connection between
the sublevel sets of the coefficients of L the Fourier coefficients of solutions to the equation

Lu = f. This is similar to the conditions found in [9].

Proposition 5.2.2. Suppose equation (5.6) admits solution, for some ([¢], ) € Z;, B € Je.

Suppose also that for every r € R each sublevel set

05 = {1 €| [ 40r).a(©) - Retarir <}

is connected. Then there exists U(t,)qp, solution to (5.6), which satisfies

-~

| u(t,€)ap | < 27| (- €)aslloc,

for everyt € T

Proof. Let ([¢],«) € Z1, 8 € Je be as stated. By compactness of T, there exists t¢, € T'

such that

— [ 0@~ Relarar = ut {~ [ 0601 (0 - Relarar .

teT!

According to the hypothesis, the differential equation given by 0; u(t, &) s +i({c(t), ta(§)) —

iq) u(t, €)ap = f(t,€)ap admits solution, so by Lemma 5.A.1 the mapping

o 0~ [ e {—z’ / ((el), 1u(©) — i) dr} 5. 0uds G

Ea

defines one such solution. Let us prove it satisfies the inequality as stated. For ¢ € T, define

S / (). 1 (€)) — Re(q)dr.
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Note that ¢ and t¢,, € Qﬁ;a, where

a5 = {te |- [ ) a0} ~ Rela)ir <},

which is connected by Lemma 5.A.5 and our assumptions. Therefore there exists v; C Qf;a

circumference arc connecting ¢, to t. Since 7y is contained in Qﬁ;a, we have that

- /:(b(f),ua(é)) —Re(q)dr <1y = — /Ot<b(7)7ﬂa(£)> — Re(q)dr, (5.12)

for all s € 7, by definition. Note that for any ¢+ € T, there are precisely two arcs connecting

l¢q to t, whose union is T!. As equation (5.6) admits solution, Lemma 5.A.1 implies that

o= [ e {i [ (e ) iy ar | 75, 100

~ [Tew = [ (e ale) — i) e} T s

/0% exXp {—i / t ({c(7), 1a(§)) — iq) dT} F(5,)apds =0,

Hence

and so since the integration on the torus is oriented, the integral from ¢, to ¢ in the definition
of u is independent on the choice of path connecting these two points. Integrating over ~y;, we

can rewrite formula (5.11) as

it = | ew{-i ((el). 1a(©) — ig) d }7 Eas ds

-/ exp { [ 040).nal€)) ~ Relair - £) - Rela)dr

~

% exp{i(s — £)({a0, f1a(€)) + Tm(q))} F (5. € ds

Therefore, by (5.12) we can estimate

(¢, E)as | < / 175, €)aslds
Yt

<271 £ (-, €) s oo

Since t € T! was arbitrarily chosen, the inequality holds for every ¢ € T". O
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Corollary 5.2.3. If Z¢ is finite and for all sufficiently large (£) every sublevel Q5 is con-
nected, then L defined in (5.4) is globally solvable.

Proof. Let f € (ker'L)° N C>=(T' xG). Then by Lemma 5.A.3, the equation

~ ~

Lu(t, ©)as = [(t,8)as <= [0 +i({c(t), 1a(9)) = i) At as = f(£,E)as  (5.13)

admits solution u(-, )5 € C(T!) for every [¢] € G, B € Je. We claim that the inverse
Fourier transform of this sequence of functions defines a smooth function on T* xG. Let R >
0, be such that every sublevel Q5 is connected, for (¢) > R. Since Z§ is finite, we may take

R’ > R such that (¢) < R/, for every ([¢], ) € Z§. Let

K: a a At) o A.7 o 00 -1 >0
r)fIéﬁ@gIé}ﬂXﬁgﬁlU( a1 aslloc) ™ =

('af)aﬂ?ﬁo

Then

~

|a(t>€)a5 | < K||f('v€)a6||007

foreveryt € T, (§) < R'and o, B € Je. If (§) > R/, then ([¢], ) € Z1, and each sublevel
Q% is connected. Proposition 5.2.2 then implies that for every 3 € J; there exists a solution

to equation (5.13) which satisfies

~

[ u(t, €)ap | < 27| (-, €)aslloc,

forevery t € T'. Taking K = max{K, 27}, then | U(t,&)as| < f(||f(-,§)a5\|oo for every
€] € G,and o, B € Je. Finally, Lemma 5.2.1 implies u € C*°(T! xG) and satisfies Lu = f,

which proves L is globally solvable. 0

Remark 5.2.4. It is worth noting that if G is non-trivial, then G is infinite. Therefore, if Z7 is
finite then Z; must be infinite. Also, as we shall prove in Proposition 5.2.12, every vector field
X; admits a sequence [¢1,] € G; such that i1 (&1,) — 0o as m — oco. Therefore the only way
for Z¢ to be finite (and so Zj, infinite) is if Re(¢) = Oand bjp = Oforeveryj = 1,...,n.
We will prove this by contradiction. Indeed, suppose first that Re(q) # 0. Then for [{] € G,

o€ Jg
Im((co, a(§)) = iq) = (bo, Ha(§)) — Re(q).

Therefore (o, 1o (§)) — iq € Zonly if (by, o (§)) = Re(q). If all by are zero, then
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(€], ) € Z5 forall [€] € G, a € Je. On the other hand, if some bjo # 0, then let [ ]| € EJ\J be
a sequence such that 1 (£7)) — oo asm — oc. Let &, = 1'®- - @1 1@d o1/l . .- 1",
where 17 € U(1) is the trivial representation on G, that is, 17 (x;) = 1 € U(1), Vz; € G,
j = 1,...,n. Notice that, in particular, 17 satisfies y;(17) = 0, forall j = 1,..., n. There-
fore, we have that ([£,,], 1) € Z;, for only finitely many m, since in this case (by, /1o (Em)) =
bjop1(&),) — Foo. Therefore ([¢,,],1) € Z¢ for infinitely many m and Z¢ must be infinite.
The case where some b;, # 0 and Re(¢q) = 0 is analogous.

Finally, note that Z7 finite also implies that L is globally solvable but not globally hy-
poelliptic, by Proposition 4.1.4.

Lemma 5.2.5. The following are equivalent:

1. There exist M, N > 0 such that
[+ {co, p1a(€)) — iql = M(Jk| + (€7) + -+ ("),

for every (k,[€],0) € ZxG x N", a € Je such that k + (co, j1o(§)) — iq # 0.

2. There exist M, N > 0 such that

|1 . €i2ﬂ"i(<00,/‘a(£)>7iq)‘ Z M (<£1> +--F <£n>)_N7

forevery ([¢], ) € Z¢.

Proof. Suppose 2. does not hold. This means that for every m € N, there exists [¢,,,] € G,

a(m) € Jg,, such that
A } 1
0 < }1 _ 6i2ﬂ2(<007Ua(m)(§7TL)>_Zq)‘ < _(<§71n> R <€Zl>)—m (5.14)
m

Note that this implies | Re(q) — (bo, fta(m)(&m))| — 0 and that there exists a sequence of

integers (K, )men such that
‘km + <(Z(), ,ua(m)(gm)) + Im(Q)' — 0.
It is easy to verify that for any real numbers a and b:

|1 _€a+bi| > |1 o 6a|.
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Therefore, for all sufficiently large m € N, the mean value theorem implies that

1 _ eiQWi(<CO,}La(m) (g’m)>7lq)| Z |1 _ €i2ﬂ—(Re(q)7<b07l”‘a(m)(£M)>)‘

(5.15)
> e7127| Re(q) — (Do, ftam)(Em))|-
Also, since % — 1 as x — 0, we have that
| sin(27 (ki + (aopta(m)(§m)) +1m(q))| = T|km + (a0, ftagm)(§m)) + Im(g)], (5.16)

for all sufficiently large m € N. For sufficiently large m, we also have that >™(e(@)={boaim))

> %, as this sequence has limit equal to 1. Therefore, for all such m, we have that

7T|km + <Cl(), Ha(m) (5m)>+1nl(Q)| S | sin(27r(km + <a07 Ha(m) (gm» + Im(q))|
< 2627 R0~ 0stot D) sin (27 (ki + (a0, 10y (§m) + ()]
= 2 [Im(1 — e*2rillcotiaom (Em))—ia)) |

S 2 |1 — e:tzWi((COvua(m) (gm»_lq)‘ .

(5.17)

Together, inequalities (5.14), (5.15), (5.16) and (5.17) imply that for C' = 42% > 0 and all

sufficiently large m

0< ‘km + <007Ma(m)(£m)> - ZQ|

< [km =+ (a0, fra(m) (&m)) +Im(g)] + | Re(q) — (bo, ttam)(&m))]

4+ Ti((c —i C " o
< 27T€ ’1 . e:|:2 ({costta(m) (Em)) ‘I)‘ < E (<§71n> + -+ <£m>) ’

We claim that this implies 1. cannot hold. Indeed, suppose that it holds. Then there exist

M, N > 0, such that for every m € N we have that

M ([l ]+ (€LY + -+ 4+ (€20) ™ < T + (Cor Hapm) (Em)) — id]

m

<%(<§;>+---+<£;z>) -



70

But then

(€L + -+ (€N (k] + (€L + - + (2™

(s ™ (g g 1)

3= 3=

Since |ky, + (a0, ftam)(§m)) +Im(g)| < 1 for all sufficiently large m € N, this implies that for

all such m we have that
k| <14 K((&,) + -+ (&) + [Tm(g)],

where

0 S K= maX{C’1|a10], . ,C’n|an0]}.

Here, C; > 0 satisfies |pq, (&7)] < C;(&7), forevery o; € Jg, [¢7] € é\J andj = 1,...,n.

Therefore

1+ [Tm(q)|
(Eh) + -+ (En)

(<£;>+---+<£;>)‘m+N( +K+1>N,

0<J\4<1
C m

for every sufficiently large . € N. But this cannot be true since the right hand side of the
inequality above tends to 0 as m — 4-c0. This proves the claim and so 1. cannot hold if 2.
does not hold.

Next, suppose 1. does not hold. Then, for every m € N, there exist k,, € Z, [£,] €

a, a(m) € Jg,, such that

0 < i + {60, pogy ) — 0] < — (bl + €1) + -+ (€R) ™

In particular, every ([&,], «(m)) is in ZF and ky,+(co, fta(m)(&m)) —iq tends to 0 as m — +oo.

Let us define for every m € N, the real numbers

Tm = Re(km + <007 Ha(m) (ém» - ZQ)a

Vm, = Im(km + <007 Ha(m) (gm» - ZQ)
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Note that
1 — eF2milicostamm EmD=i0) | < |1 — 2™ cos(27y,)| 4 €227 sin (27|, (5.18)
for every m € N. Also, for any real numbers x and y we have the inequality
[1—e*cos(y)| < |1 —cos(y)| +[cos(y)[[1 — e*| < [1 —cos(y)| + |1 —€”].
Therefore inequality (5.18) implies that for each m sufficiently large

1 — eiQﬂ’i((Cozua(m)(ﬁm))*i(I)| < ‘1 _ COS(QW’ym)’ + ’1 B eﬂFZﬂum’ + eﬂFQﬂ-um‘ Sin(27'(")/m)’
< 27| Y| + 27|V |e 4 27 |vp e

< C(lyml + [vml),

for C' = 6me, where for the second inequality we have applied the mean value theorem on

each factor of the sum in the first line, and also the fact that both v,,, v,, — 0. Therefore

< 2%(;/%\ + &L+ T

C
<9 1 . n\\—m
<2 ((Eh) + e ()T
for all sufficiently large m, so that 2. cannot hold. L]

Proposition 5.2.6. Suppose that there exists R > 0 such that for all (€) > R, we have that

« T' >t (b(1), 1al§)) = D201 b () pta, (§7) does not change sign if (&, o) € Zf, and

j=1
o the sublevel Q5% is connected for every (£,a) € Z1, 7 € R.

Suppose also L defined in (5.5) is globally solvable. Then L defined in (5.4) is globally solv-
able, and if Z, is finite, then L is globally hypoelliptic.

Proof. Let f € (ker'L)? N C=(T! xG) and R > 0 be as stated. We shall exhibit
u € C(T! x@) such that Lu = f, by choosing the appropriate partial Fourier coefficients for

u. By Lemma 5.A.3 we know that for every [{] € @, a, f € Jg, the differential equation

Lu(t, €)ap = [0 +i((c(t), pa(€)) = i9)] A(t, s = F(t,E)as (5.19)
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admits smooth solution. For each () < R,and o, € Jg, define u(-, &),s to be one such
solution. Since there are only finitely many such coefficients (see Remark 2.2.7), we can find,

as in the proof of Corollary 5.2.3, K; > 0 such that

~

|a(t,&)ap | < K1l F(-,€)apllo, (5.20)

foreveryt € T, (¢) < R,and o, 8 € Je. Now suppose (¢) > Rand ([{],a) € Z;.In
this case, every sublevel Q5 is connected. Hence by Lemma 5.2.2, for every 3 € J, we can

define u(+, £)p to be the smooth solution to (5.19) which satisfies

~

| u(t, )as | < 27| (-, €)aplloo- (5.21)

for every t € T*. On the other hand, if () > R, ([¢],«) € Z¢,and 8 € Jg, according to
Lemma 5.A.1 we can choose u(+, £),zs to be the unique solution to the differential equation

(5.19) given by the equivalent expressions

-~

27
Ut,E)ap = (Gea) ™" / Q—QT@—Z’T@OaMa(E))efFT(b(w),ua(E))dwf(t —7,6)apdr, (5.22)
0

and
27

u(t, &)ap = (cis,a)_l/ AT im0 e @) o= [T BwhaO)w £y 7€) sdr, (5.23)
0

where e, = 1 — e 2millcona®)=ia) g, = e2millconal€)=ia) _ 1 Note also that since L is

globally solvable, and as |k| has the same asymptotic behaviour as (k) = /1 + k2 for k €

T! ~ Z, by Proposition 4.1.4 and Lemma 5.2.5 there exist M, N > 0 such that
()l ™ < M(E) + -+ ("),

(dea)| 8 < M((E) +---+ (€Y.

Ast — (b(t), o (€)) does not change sign, first assume it is non-positive. Then

efttf-r (0(w), pa (§))dw 1

— Y
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for every 0 < t,7 < 27. Therefore, for each 8 € J¢, formula (5.22) implies that

|t €)as | < 20 MO (E) 4o+ (ENM N O aplloos

for every ¢ € T'. If we now assume (b(t), 11,(£)) > 0 for all t € T?, then

o= ST (b(w) pa (§)dw 1

so by formula (5.23), for every 3 € J, the inequality

|t ©)ag | < 2eMe™R@ (1) - 4 (DN [T sl

is also satisfied for every t € T'. Taking K = max{2m, 2r Me?™#e@! K}, it follows from
Lemmas 3.1.5 and 5.2.1 that these Fourier coefficients indeed define v € C*°(T! xG), which
clearly satisfies Lu = f, therefore L is globally solvable. Finally, note that if Z; is finite and
if Lu = f € C*°(T! x@G), then by the unicity of the solutions of (5.19) for all ([{],a) € Z¢,
by Lemma 5.A.1, and from the fact that these solutions satisfy the previous inequalities, u €

C>=(T! xG) by Lemma 3.1.5. This proves that L is globally hypoelliptic as well. L

5.2.1 Necessary Conditions

Next we state and prove necessary conditions for the operator L to be globally solvable
and/or globally hypoelliptic. Some of these will require estimates from below to the symbols
of vector fields, which shall be explained.

The first necessary condition we present states that the operator L can be globally solv-

able, or globally hypoelliptic, only if the operator L is globally solvable.

Proposition 5.2.7. If L defined in (5.4) is globally solvable or globally hypoelliptic, then Ly
defined in (5.5) is globally solvable.

Proof. Suppose that L is not globally solvable. Then by Proposition 4.1.4 and the fact that
v/1 4 k? has the same asymptotic behavior as |k| for k € Z, k — 400, there exist sequences

([&m], a(m))men C 25, (km)men C Z, such that

0 < km + i({Co, ta(m) (Em)) — Q)] < (&) 4+ + (&) + [km]) ™™,



74

for every m € N. Up to a change of representative we may assume, without loss of generality,
that «(m) = 1 = (1,...,1) for all m € N. Then, as in the proof of Lemma 5.2.5, there exists
K’ > 0 such that

] < K" (&) + -+ ()7

where

dp = 1 — e~ 2millcopz(Em))—ia)

for every m € N. Also, for all such m, let ¢,,, € [0, 27 be such that

|00, )~ Re(a)ds = mae [ (b(5). (6, — Relghas.

te[0,2m

Due to the [0, 27| being compact, by taking a subsequence we can assume t,, — %o € [0, 27].
After a translation, we may further suppose ty € (0, 27r) Take ¢ € C*°(T"'), such that
supp(¢) C 1,0 < ¢(t) < 1, ft s)ds > —andf s)ds = 1, where I C (0,27) is
a closed interval not containing to. For every m € N, define f F(. &)1 € C°°(TY) to be the

2m-periodic extension of the function
t
0.27] £ dyexp {1 [ (fowh, a6 — ia)dw 10
tm

Otherwise, define f(, £)ap = 0. We claim that these partial Fourier coefficients define a

smooth function on T! x G. Indeed, notice that for every v € Ny, and every t € [0, 27]:

Y

> (Vetew =i [ tetwrten - inav} oo

J=0

107 F(t, &)1 | = |

By Faa-di-Bruno’s formula
ot esp { =i [ (Getu palen) ~ imaw ) = > Hew{- /t:L<<c<w>,u1<5m>> i)t}
y H ( iol [} ({e(w), pr(&m)) — iQ)dw)”
I !

where A(j) = {r € NJ|>27_, Ir, = j}. Notice that |1, (£5)| < C;(€F), for some C; > 0 and
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foreverym e N, k=1,...,n,and

Re (i /t;<<c<w>,u1<§m>> ~ig)du) - /;<b<w>, p(6)) — Re(g)dw < 0.

for all t € [0, 27|, by the definition of ¢,,. Therefore, we obtain that

ohexp { - /t;«c(w),ul(fm» i)t} < D€+ + (€Y.

for some D; > Oand all ¢ € [0,27], j € {0,1,...,~}. Finally, we can estimate

107 F(t, €)1 | < Kom((€L) + -+ (€0))™™,

forall ¢t € T', m € N. Therefore, it follows from Lemma 3.1.5 that f € C°°(T! xG). Further-
more, Lemma 5.A.2 implies that f € (ker'L)°, since f{(, €)ap = 0forall ([£],a) € Z. We
now show that there is no u € C*°(T* xG) which satisfies Lu = f, and so L is not globally

solvable. Indeed, suppose that such a u exists. Then its Fourier coefficients satisfy

-~

Lu(t, &n)r1 = 01 + i((e(t). p1(6n)) = @)A1, En)is = Flt En)in,
forevery t € T', m € N. From Lemma 5.A.1, u(-, &,,)71 must satisfy
2m t -
e, &) = @)™ [ oo =i [ (felwh () ia)do ) Flo . abradr, 524

forevery t € [0,27], m € N. In order to properly calculate the value of u(t, &, )71, at each

t € T!, we first split the integral above into two integrals: one where 7 ranges from 0 to ¢ and
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another where 7 ranges from ¢ to 2. Hence, for any ¢ € [0, 27] this yields
u(t, &m)it =
[rew{i [ ctwnmten —iado—i [ etw) () - v ot - ar
27 t t—71427
# [Cew{=i [ Getwhasten — it —i [ (et st ~ o)}

X ¢(t — 1+ 2m)dr

~ e |- /;«c(w),ul(&m» ~igyiu} 6t — 7ir

re{-i | ff2”<<c<w>, e~y | [ o= 7+ 2ma.

t

After a change of variables, and due to the definition of ¢y, we have that

it i = exp {4 /t;<<c<w>,u1<5m>> —iaytu} [ oyir
+exp {—z /tj%«c(w),m(sm» - @dw} / " or)ir
~ e (- /;“C(“’)’ jaten) — it} ([ o0

e {2l (o, p6n)) —i0)} | ¢<T'>dr') |

For t = t,,,, we obtain
Bt )11 = / o7 + exp {~2mi((co, () — i)} / olr

By continuity, both |e=2m({co-#1(&m))=i0)| and ft 7')dr’ are greater than 3 for m big enough,

and so

[u(t, &m)1] >

e |

for all such m € N. Lemma 3.1.5 then implies u ¢ C°°(T' x@G), which is a contradic-
tion, and therefore no such function u can exist. As we have exhibited f € (ker'L)"

C>=(T! xG) such that there isnou € C*(T! xG) which satisfies Lu = f, we con-
clude that L is not globally solvable. To prove L is also not globally hypoelliptic, we exhibit
u € D'(T' xG)\C>(T! xG) which satisfies Lu = f. For that, define the Fourier coefficients
(-, &) ap as identically zero for [£] # [¢,] or a, B # 1, and U(+, &,,)77 by formula (5.24), for
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every m € N. Then as we have seen, these coefficients cannot define u € C(T! xG) by

Lemma 3.1.5. On the other hand, note that for all ¢ € [0, 27| and m € N sufficiently big,

ot il < v { /;«b(w), p(6)) ~ Relg)o

+ exp {27 ((bo, #1(&m)) — Re(q))}

< 1+ exp {2m((bo, 11 (&m)) — Re(q))} < 3,

since e27((bo#3(6m)—Re(@) _y 1 ag m — +o0. This implies that for any b € C(T%), [¢] € G
and o, B € Jg,
[(@(+; E)ap, V)| < 67[[¢)]|oc.

Therefore, by Lemma 3.1.5 these coefficients define u € D'(T! x ). By comparing Fourier
coefficients, we see that Lu = f, from which we conclude that L is not globally hypoelliptic.

]

Corollary 5.2.8. Ift — (b(t), o (&)) does not change sign for all but finitely many (]| € G,
and o € Jg, then L defined in (5.4) is globally hypoelliptic if and only if L defined in (5.5)
is globally hypoelliptic. If also, Re(q) = 0, then L is globally solvable if and only if Ly is
globally solvable.

Proof. Notice that for all [¢] € G, a € Je such that ¢ — (b(t), pua(€)) does not change sign,
the sublevel Q5 is connected for every r € R, as the integral in its definition is monotone
when Re(q) = 0. From Proposition 5.2.6 we then conclude that L is globally solvable if Ly is
also globally solvable. Conversely, if L is not globally solvable, then by Proposition 5.2.7, L
is not globally solvable. Now, for any Re(q), from Proposition 5.2.6 it also follows that if L
is globally hypoelliptic, then so is L. If however L is not globally hypoelliptic, by Proposition
4.1.4 either L is not globally solvable, or Z is infinite. In the first case, Proposition 5.2.7
implies that L is not globally hypoelliptic. There only remains to prove that if Z, is infinite,
then L is not globally hypoelliptic. Suppose Z;, is infinite and let ([§,,], a(m))men C 21 be a

sequence of distinct terms. For each m € N, let d,,, € R, ,, € [0, 27] be such that

dm = max /0(<b(8),ua(m>(£m)> —Re(Q))dsz/Om(<b(8),ua(m)(£m)> — Re(q))ds.

0<t<2m
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For every m € N, define

a(t’ §m)a(m)T — e_dme_ifg«c(w)’/"a(m)(gm»_iq)dw

)

for every t € T'. Also define u(-,&),s = 0 for every other partial Fourier coefficient. Notice
that these partial Fourier coefficients are all well defined since (§,,,, a(m)) € Zp, for every

m € N. Also,
|a<t7 gm)a(m)ﬂ - eidmefot«b(w)’“a(m)(£W)>*Re(Q))dw <1

and

‘a(tm’ fm)a(m)ﬂ =1,

for all m € N, so these coefficients define u € D'(T! xG)\C>(T* xG), by Lemma 3.1.5. On

the other hand, m(, Em)a(my1 = 0 for all m, since

Lu(t, Em)a(m)T = OU(t, Em)am)T + 1((C(t); Ha(m)(Em)) — 1) u(t; Em)aim)T

=0,

for every t € T'. We conclude that Lu = 0 € C(T! x(G), and therefore L is not globally
hypoelliptic. O]

Remark 5.2.9. Notice that in the corollary above we can replace “t — (b(t), 10 (§)) does not
change sign for all but finitely many [£] € G by “All b; are linearly dependent and do not
change sign”. Indeed, if by, ... b, are linearly dependent and do not change sign, then there
exists a smooth real-valued function b, : T — R, which does not change sign, and a vector

v=(A1,...,\,) € R" such
(bt bn) = bo(Ars s An).

Then clearly t = (b(t), 11a(€)) = Sy bj(0)tta, (67) = (s Ajtta, (67)) bo(2) does not
change sign, for every [¢] € G.

In order to obtain further necessary conditions we will need the following definition.

Definition 5.2.10. We say that a vector field X on a compact Lie group G admits an

Archimedean sequence if there exists a sequence of distinct elements [¢,,,] € é, and integers
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1 <r, <dg,, form € N, and K, > 0 such that
|y (Em)| = K(Em)®, Vm € N. (5.25)

Here ox(§) = diag(ipi(§), - .., ipa.(§)). Note we can always assume 0 < K,e < 1. By
composing &,,, with a change of variables, we may further assume r,,, = 1, forallm € N.

Also, as (€) = (€) and pi, (€) = —p,(€) for [€] € G, 7 € {1,..., de}, we can also assume that

By taking a subsequence, we will also suppose that the sequence of real numbers 111 (&) is

strictly increasing. Furthermore, for each m € N, we define

g—m = f_rm

and &, = 1 is the trivial representation 1(x) = 1, Vx € G. In particular, lim,, 1o p1(&n) =

+o0.

Example 5.2.11. Suppose G = T" is the n-dimensional torus, n € N. Then every [{] € T is
one dimensional, and we can identify [£] ~ k € Z". Also, the vector fields J;,, j = 1,...,n
have symbol 0y, (k) = ik;, and (k) = /1 + [k[2. This means the sequence (k(1m))mex given
by k(m) = (0,...,m,...,0) is an Archimedean sequence for the vector field X;, where m is

in the j-th coordinate, as

i ((m))] = m] 2 5T m? = =5 (k(m)), Vim € N.

Similarly, for G = S3, we can identify [£] € S3 with £ € 3 No. Also, the vector field idy = Ds

on S? corresponding with the partial derivative % in the local chart given by the Euler angles,

has symbol

oD, (0) = (i(o = € = 1)3ap) 5 i1

Also, here (¢) = +/1+ ¢ + (2. This means the sequence (¢,,)nen given by ¢, = m is an

Archimedean sequence for the vector field Ds, as
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On the other hand, if G is any compact Lie group and X is the 0 vector field, thatis, X f = 0,
forany f € C*°(G), then clearly X does not admit Archimedean sequence, as ox(§) = 0 €

Cdexde for every ¢ € G.

Proposition 5.2.12. Every non-zero left-invariant vector field on a compact Lie group admits

an Archimedean sequence.

Proof. Let X # 0 be a left-invariant vector field on a compact Lie group G, 0 < ¢ < 1.
Viewed as a linear operator, X is not bounded from the Sobolev space H*(G) to H*~¢(G), for
any s € R, by Theorem 1.1 in [26], a result by Cardona, Kirilov, Moraes and the author. We
claim that this implies the existence of an Archimedean sequence with exponent . Indeed, if

not, then for ox (&) = diag(u1(§), - - -, pac (§)), there would exist C' > 0 such that

|1 (§)] < C(€)°,

forall (] € G, 1< r < de. But then, for any v € H*(G):

IX0lFei) = D de Z ) 1 (&) P[0(E) rm?

§]€G rm=1

<O d Z () [5(&)ml”

[E]Eé rm=1
= C|[v| JQLIS(G)

This implies X : H*(G) — H*®* ¢(G) is bounded which is a contradiction. Therefore, we

conclude such an Archimedean sequence must exist. ]

Remark 5.2.13. From the previous examples, we see that in some cases it is also possible to
obtain Archimedean sequences with exponent ¢ = 1. In fact, this seems to be the case in all
known examples, and we conjecture Proposition 5.2.12 is also true for ¢ = 1. Also, note that

necessarily we have that 0 < £ < 1, due to inequality (3.8).

Proposition 5.2.14. Suppose that for some 1 < j < n, the function b; changes sign. If one of

the following also holds:
1. Zj is finite;

2. Re(q) # 0;
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3. bj() 7é 0or
4. by # 0, for some j #r € {1,...,n},
then L as defined in (5.4) is not globally solvable nor globally hypoelliptic.

Proof. We will prove the claim by way of contradiction. First, suppose L is globally solv-
able. Then, by Proposition 5.2.7, this implies that L, defined in (5.5) is also globally solvable.
Without loss of generality, we may assume j = 1. Let ([€} )nez, € Gy be an Archimedean

sequence for X;. Assuming case 1, 2 or 3 hold, we define the sequence

([&n])men € G

by
Em] = En® 1@ - @17,

for every m € N, where 17 € U(1) is the trivial representation on G, that is, 17(z;) = 1 €
U(1),Vz; € Gj,j = 1,...,n. Notice that, in particular, 17 satisfies u;(17) = 0, for all

j = 1,...,n. By taking a subsequence we may also assume ([¢,,],1) € Z¢ forall m € N.
Indeed, this is possible due to our assumptions and Remark 5.2.4. That is, since Archimedean
sequences tend to infinity, as explained in that remark, the sequence [¢,,,] can only have finitely
many elements contained in Z;.

Suppose first by = 0 or byp > 0. In either case, set
t+7
G(t, 1) = / ayo + iby (w)dw,
t
and let B € R, ty, 7 € [0, 27] be such that

B = min Im(G(t,71)) :/0 ! by (w)dw.

0<t,7<27 ¢
0

Notice that, since b; changes sign, B < 0. Also, by composing b; with an appropriate transla-
tion if necessary, we may assume ¢, 7o € (0, 27) and that b;(0) # 0, so that by (to + 79) = 0
and tg + 19 € (0, 27). Take ¢ € C>°(T') and § > 0 such that

supp(¢) C [to + 70 — 0,0 + 70 + 0] C (0, 27),
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ng lin [to+7’0—5/2,t0+7’0+5/2],

and also 0 < ¢(t) < 1forall t € T!. Define f(, &m )17 to be the 27-periodic extension of the

mapping
0,27] >t — dmeB’“(5}“)6_i“1(§’1’t)“10(t_t0)(b(t)e_’I(t_tO),

where d,, = e?™(cw0m&n)=ia) _ 1 forevery m € N. For every other partial Fourier co-
efficient, define it by f(, €)ap = 0. We claim that these partial Fourier coefficients define
f e C(T! x@).

Indeed, first notice that since b > 0 and p(€L) — +o0,

\d,| < 2 (=bropn (6)+Re(@) 4 1 < p2m(Re(0)) | 1,

for all m € N sufficiently large. It follows that there exists X > 0 such that |d,,| < K, for all
m € N. Next, let ¢» € C>([0, 27]) be given by: [0,27] > t — ¢(t)e~9*%), Then

v
Tt &m)url < K Bf“(fmZ()Wewmm”oua” Wl 62

Jj=0

for every ¢ € [0, 27|, m € N. Note that

|3ge*iu1(€3n)alo(t*to)‘ — ’(_iﬂl(é )@10) e~ (Em)ato(t— to)‘
< (14 |aso])’ (&)
< (14 Jaw]) 7€), (5.28)

for every t € [0,27], m € N. Also, since B < 0 and ([¢}]),, is an Archimedean sequence, we
have that
eBrmEn) < oK'BlEn)® (5.29)

for some K’, ¢ > 0 and every m € N. Therefore, from (5.27), (5.28) and (5.29) we have that

107 F(t, Em)r1] < K1+ |a]) Qe B (el ),

forevery t € T', m € N, where ), = 27 max; <j<, Max;e[p 2] |074)(t)|. Therefore, for any
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N > 0 there exist (), n, ', > 0 such that

~

10 F(t, &)1l < Qo (€)Y
< Q;N(<f,1n> + <112> et <]1n>)—N’

forevery t € T', m € N, so by Lemma 3.1.5 these coefficients define f € C(T! xG) by
their inverse partial Fourier transform, as claimed. Next, notice that since {([£,,], 1) }men is
contained in Z7, this implies that f(, €)ap = Oforall (¢],a) € ZL. And so we conclude,
from Lemma 5.A.2, that f € (ker 'L)° N C>=(T! xG).

Now suppose Lu = f, for some u € C*°(T* xG). Since {([{], 1) }men is contained in Z§,

by Lemma 5.A.1, u(-, &, )17 satisfies

~

it o= ) [ { [ (Getwhen)) — g} e+ g isis

2m
— e*im(éﬂn)alo(t*to)eﬂl(t*to) / em(f}n)(B*Im(G(th))gb(t + T)dT,
0
for every t € [0,27], and every m € N. Let §(7) = Im(G(to, 7)) — B, 7 € T'. Then

21
[i(to, Em)rs] = / e M ENIO g1 + 7)dr
0

T0+5/2
> / o (EL)O) g
T0—0/2

To+5/2
> / oK (€000 g
T0—0/2

for every m € N, since (1) > OforallT € [0,27],and 0 < (&) < K"{(¢l) for some
K" > 0 and for all m € N. It follows from Lemma 5.A.4 that for all m sufficiently big, there

exists M > 0 such that

[(to, Em)r1l > MI((EL) + (12) + -+ + (1™) 72

forallm € Nandsome M’ > (0. We conclude then that u ¢ C*(T' x&), by Lemma
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3.1.5. But that is a contradiction, which means no such an « can exist and so L is not glob-
ally solvable. To prove that L is not globally hypoelliptic, consider the same function f

and partial Fourier coefficients u(-, &, )17, but now define every other partial Fourier coeffi-
cient u(+, £).p to be identically 0. By the previous argument, these coefficients do not define

u € C™(T! xG). However, they do define u € D'(T! xG), since for every ¢ € C>(T?!)

|<a(7 grln)TD C>']T1 ’ =

2 2
/ ot (u1(Eh)ar0+p1 (117)az0) (t—to) ,—a(t—to) / e Em)(B=Im(GED) (¢ 4 )¢ () drdt
0 0

21 21

< / / 2 Re(@lgrr (En) (BTG | (¢ 4 7)||C(8) | drdt
0 0

< (27)%0]|oo | ¢ [|aoe®™ @)

< Q'm)(En)
< Q"pi(Q) (&) + (1%) +--- + (1™)1,

for some )', Q" > 0 and every m € N. By comparing partial Fourier coefficients, it is clear
that Lu = f, and so we conclude that L is not globally hypoelliptic. In the case by, < 0, the
proof is similar, though now define
t1
A= max Im(H(t, 7)) = / b(w)dw > 0,
t

0<t,r<2m .

d o=1- o~ 2milcopn (€5,)—1q)

Y

and let f (+,&n)17 be the 2m-periodic extension of
[0,27] 5t — d;neAul(f#)e—iul(5%)(110('5—?50)Qg(t)e—Q(t—tl)7

where ¢ has properties similar to those of ¢, and then make use of the other equivalent for-
mula for the solutions of the differential equations [0; + i({c;(t), ua(§)) — iqQ)|u(t,&m)1r =
f(t, ¢)71- Finally, we prove case 4. In this case, we may assume, without loss of generality,
that r = 2. Choose n? € CAJQ such that ,u1(772) # 0, which is possible as X5 is non-zero. Indeed,
if not, then since X f(n?)ays, = fiay (12) F(1%)ays, for every f € C=(Gs), 1 < an, By < dy2,

this would imply X, f = 0, for every f € C'*°(G5), which would imply X, = 0, a contradic-
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tion with our assumptions. Define
fn] = @ ©1%- - ©1"],

for each m € N. We may assume b;o = 0 and Re(q) = 0, as we have already proved the result
otherwise (in the previous cases). In this setting we may also suppose (again) that ([ém} 1) €
Z7 forallm € N. Notice that we may further assume that b, does not change sign, since,

if it did, we could reorder it to be b; and apply the proof of case 3 once again. Next, we split
the proof in two subcases: byg > 0 or byy < 0. Assume first that byg > 0. In this subcase,
substituting 1> by 12, we may further assume s, (n?) > 0. Using the same notation as in the

first part of this proof, define f(, fm)ﬁ to be the 27-periodic extension of

[0,27] 5 ¢ d;leBm(&}n)e—i(ul(Ein)amﬂn(n2)azo)(t—to)¢(t)Q—Q(t—to)’

where now d,, = e2mi(crom(En)tenm®®=ia) _ 1 Define also f(-,¢)as = 0 for every other
€] € G, o, b e Je. Again we claim that these coefficients define a smooth function f. Indeed,
since bip = 0 = Re(q),

|| < K7,

where K| = (=11 (n*)b20) 1 1 For each ~ € Ny, we estimate as before

v
a?f(tém)ii < KeBm(&}n) Z <7> atje*i(ﬂl(ﬁn)aloﬂu(772)a20)(t*t0) |8;7*Jw(t)| ’
=0 N
for every ¢ € [0, 2|. Notice that
J o —i(p1(Eh,)ato+p1(n?)azo)(t—to) | — |(_~ 1 2 J p=i(p1 (&) aro+p1(n?)azo) (t—to)
|0} e | = [(=i(p1 () aro + pa(n7)azo) e

< (1+ [ago + lazo] ) (&) + (%)’

< (1+ Jasol + lazo])” ((€5) + (7))
for every t € [0,27] and m € N. Also, since B < 0 and ([¢! ]),, is an Archimedean sequence,

eBm(f}n) < eBK2<£7}n>E
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for some K5, > 0. Therefore
107 F (¢, &m)r1l < Ko (1+ |aro] + las]) QP20 ((€1) + (%)),

for every t € T', where Q., = 27 max; <<, Max;c(o.27] |0/ (t)|. Moreover, as B < 0, for any

N > 0 there exists a constant (), > 0 such that

107 F(t, €)1l < Qo (Eh) "N (Eh) + ()7,

for every t € T', m € N. Therefore

107 7t &mral < @ ((€0) + () + (1% -4 (A7) 7
for some constant Q’VN > 0,and every t € T!, m € N, v € Ny. By Lemma 3.1.5, we conclude
that these coefficients define f € C°°(T! xG). Once again, notice that {([¢,,,], 1) |m € N} is
contained in Z¢, which implies that 7., €)ap = 0forall ([£],) € Z1. By Lemma 5.A.2 we
conclude that f € (ker’L)? N C>=(T! xG). Now suppose there exists u € C*(T! xG) such
that Lu = f. Since ([&,,], 1) € Z¢ for every m € N, because Re(q) = 0 and by # 0 # 11 (1?),

Lemma 5.A.1 implies that the partial Fourier coefficients (-, ém)TT must satisfy

2 t+71 B . 5
it &l = ()" [ exp { | tetw)n@) - z’q)dw} Pt + 7, En)redr
0 ¢
27
— o~ im(En)aro+(u(n?)azo) (t—t0) ,—a(t—to) / 6#1(E#)(B—IHI(G(ET))G—M(772)f:” bz(w)dw¢(t + 7)dr,
0

(5.30)

forevery t € T!, m € N. As we are assuming byy < 0, this implies b, is non-positive on T*.

Therefore

t+7
/ by (w)dw < 0
¢
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forall ¢, 7 € [0,27]. Let 0(7) = Im(G(ty, 7)) — B, for each 7 € [0, 27]. Then

~ 2m -
|u(to, Em)1l = / e (Em)Om) = () fig L) (4 4 ) dr
0

T0+6/2 .
> / T i (€00() gt () [0 b g
N T0—0/2

T0+0/2
> / oK (€000 g
T0—06/2

where we used the fact that 0(7) > 0,and 0 < py(&L) < K"(£]) for some K” > ( and for
every m € N, as well as the fact that e~ () Jig T baw)dw > 1forall 7 € [0,27]. Applying

Lemma 5.A.4 once again, there exists M > 0 such that, for all sufficiently large m

1
()

|@(to, &)1l > M . (5.31)

N

Therefore
[@to, Em) il = M ((EL) + (n?) + (13) 4 -+ (1)) 2

for some M’ > 0, and all m € N. By Lemma 3.1.5 v & C°°(T" xG), which is a contradiction.
Therefore no such function u exists, which means that L is not globally solvable. Next we
prove that L is not globally hypoelliptic. Indeed, similar to the previous case, we choose the
partial Fourier coefficients of u by formula (5.30) for @(t, &, )11 and let (-, €) o3 = 0 for every
other [¢] € G, and a, 5 € Je. Then the inequalities (5.31) imply that these partial Fourier

coefficients do not define a smooth function. On the other hand, for every ¢ € C*°(T") and
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m € N, we have that

’<’/LL\(, ém>TT7 C>’]I‘1 | =

2
/ o1 (€h)aro 41 (12)a0) (t—t0) o —a(t—to)
0

27
% / 6#1(5#)(B*Im(0(t77))¢(t + T)C(t)e**”(”% ST ba(w)dw gy

0
21 21
< / 27| Re(a)] o (65,) (B—Im(G(t,7)) ot +7)||C(1) ‘e—m(nZ) ST ba(wdw gy
o Jo

< (277')2||¢||oo||g||oo max 6—#1(772)ff+7 ba(w)dw 27| Re(q)]
t,7€[0,27]

< Q'm(¢)(En)

< Q"pi(QEh) + () + (1% + -+ (1)

for some constants Q’ ) Q” > (. Thus, by Lemma 3.1.5 these partial Fourier coefficients define
u € D'(T' x@). By comparing partial Fourier coefficients, it is clear that Lu = f, therefore
we conclude that L is not globally hypoelliptic. The proof for the sub-case byy > 0 is very

similar, so we omit it. But the main idea is to substitute 7> by 72 (since ;i (F) < 0). L

Next, exhibit a condition which allows us to recover certain results analogous to the case
of the Torus. This condition guarantees that the eigenvalues in an Archimedean sequence are

not too “far apart”.

Definition 5.2.15. We say a vector field X on a compact Lie group admits a non-sparse
Archimedean sequence if there exists an Archimedean sequence ([x])xez for X and M > 0

such that
| (Epgr) — pa (&) < M,

forall k € Z.

Remark 5.2.16. Note that as a direct consequence of the definition above, for every r € R,
there exists k, € Z such that
< p(&,.) <7+ M. (5.32)

Indeed, suppose that is not true. Then, as y;(§x) — +ooask — +oo, and (&) is strictly
increasing, there exists 7 € Rand k& € Z such that p;(§x) < r < 7+ M < p1(&ky1). Then

p1(Eks1) — (&) > M, a contradiction.



&9

With non-sparse Archimedean sequences, we can relate linear independence of the coeffi-

cients with the change of sign of their linear combinations, as follows.

Proposition 5.2.17. Let X, ..., X, be left invariant vector fields on the compact Lie groups
Gj, j=1,...,n,n € N.Suppose every X; admits a non-sparse Archimedean sequence. Then
t (b(t), 17(€)) = D20, bi(t) i (§7) changes sign for infinitely many [€] € G, if and only if

some bj changes sign or dim span{by, ..., b,} > 2.

Proof. First suppose some b; changes sign. Without loss of generality we can assume j = 1.

Let (£!),, be an Archimedean sequence for X;. For every m € N, define
bn=6,012® - 01"

It is clear then that the function ¢ — (b(¢), u1(&m)) = Doy bi(0)pa (&) = bi(t)ua(EL,)

j=1

changes sign for infinitely many [] € G, as there are infinitely many m € N such that
p(&2) # 0. Supposenow g = b, h = b, are R-linearly independent, for some
J1,72 € {1,...,n}. Without loss of generality we may assume j; = landj, = 2. Let
(&)x and (&2). be non-sparse Archimedean sequences for X; and X, respectively. We shall
exhibit sequence (&, )men, of distinct terms, such that ¢ +— (b(t), u7(&,,)) changes sign, for

each m € N. From the previous case, we may assume both g and / do not change sign. Since

g # Ah, for some non-zero constant )\, the mapping ¢ — % is either identically zero or non

constanton A = {t € T!|g(t) # 0}. Take to,t; € T' such that g(ty) # 0 # h(t;). If the

quotient % is identically zero on A and sign(g(to)) = sign(h(t;)), then

t i (EL,,)9(t) 4+ pa (&) h(t)

changes sign since h(t) = 0 whenever g(t) # 0 and iy (£1,,) < 0 while p11(£2) > 0. Therefore
wecantake &, = & & @13 ® - @ 1", foreach m € N. If sign(g(ty)) # sign(h(t1)),

we can apply the same idea and take the sequence &, = &}, ® & ® 1° ® --- @ 1. Now

assume that the mapping ¢ +—> % is non constant in A. Suppose first that A(¢) > 0, then

choose %y, t; € [0, 27], such that

>
~—

(ta

(t1)

(to

(o)

=
=

0#a=

<

= b£0.

=)
Q

These exist since the function ¢ % is continuous and non-constant by our assumptions.
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We claim there exists k1,,, k2,, € Z such that

0 < p1(&4,,.)9(to) + p1(&7,, )h(to),

0> (&, )alty) + (&, ) h(t),

for each m € N. Indeed, as h(to), h(t1) > 0, the inequalities above are satisfied if

g(to)
h(to)

—t (&) < liy,) < —m(€r,,) (5.33)

As Z((';B < Zg‘;)), there exists € > 0, such that Z&; == th’); — ¢. Then, if ky,, is sufficiently big,

,ul(g,ilm)g > M, where M > 0 is such that for every r € R, there exists k. € Z such that

r<m(&)<r+M

(notice that M exists because the sequence (£7)y, is non-sparse). Therefore, for each r,, =

—u1 (€ ,}um) %g; , there exists ksy,, € Z such that

Tm < ,u1<§132m) < T+ M <1+ /"Ll(é-klm)g'

Choosing k1, = kig+m, where ki satisfies 11 (£, ) > M /e and ks, satisfying the inequality
above, we have (ki,,, ko) € 772 for each m € N, such that (5.33) holds, therefore ¢ >
(b(t), p7(&m)) changes sign forevery &, = &, ® & @ 1°®--- @ 1", where m € N. The

case h(t) < 0 is analogous. Finally, the reverse implication follows from Remark 5.2.9. ]

To conclude this section, we collect some of the results of this section in two final corol-

laries, as follows.

Corollary 5.2.18 (Global solvability). Let L and Ly be the operators defined in (5.4) and
(5.5), respectively.

1. If b = 0 then L is globally solvable if and only if Lg is globally solvable.

2. If some b; # 0, Z5 is finite (and so Re(q) = 0 and all bjo = 0 by Remark 5.2.4), and the

sublevels Q5 are connected for all (€) large enough, then L is globally solvable.

3. If some b; # 0, Re(q) = 0, dimspan{bs, ... ,b,} = 1 and no b; changes sign then L is

globally solvable if and only if Lg is globally solvable.



91

4. Ifb £ 0, t — (b(t), na(§)) does not change sign for all but finitely many [£] € G, and
a € Jg, and also Re(q) = 0, then L is globally solvable if and only if Ly is globally

solvable.

Proof. First notice that case 1 follows from Corollary 5.1.4. Case 2, is given by Corollary
5.2.3. Remark 5.2.9 implies that Case 3 follows from Corollary 5.2.8. Finally, case 4 corre-
sponds to Corollary 5.2.8. ]

Corollary 5.2.19 (Global hypoellipticity). Let L and Ly be the operators defined in (5.4) and
(5.5), respectively.

1. If b =0, then L is globally hypoelliptic if and only if L is globally hypoelliptic.

2. Ifb £ 0and dim span{by,...,b,} = 1, then L is globally hypoelliptic if and only
if, no b; changes sign, Z, is finite and L is globally solvable (and therefore Ly is also

globally hypoelliptic).

3. Ift — (b(t), ua(&)) does not change sign for all but finitely many [£] € G, and o € Je,
then L is globally hypoelliptic if and only if Ly is globally hypoelliptic.

Proof. Case 1 is a direct consequence of Corollary 5.1.4. Now, from Remark 5.2.9 we have
that if all the conditions of case 2 hold, then L is globally hypoelliptic by Corollary 5.2.8. On
the other hand, if L is not globally solvable or if Z, is infinite, then L is not globally hy-
poelliptic and L is not globally hypoelliptic also by Corollary 5.2.8. If we suppose that Z, is
finite, but now that some b; changes sign, then L is not globally hypoelliptic by Proposition

5.2.14. Finally, case 3 corresponds to Corollary 5.2.8. ]

Remark 5.2.20. It is worth mentioning that by Theorem 3.5 in [2] we have that in this context
every globally hypoelliptic operator is globally solvable. This could be used to simplify some
of the results and proofs in this section. We chose not to rely on this fact as we do not include

its proof, and also to present original proofs using different techniques.

5.2.2 Examples

Example 5.2.21. Consider the operator L defined on T' x T! xS? given by

L =0+ ((1+sin(t)) +i(4 + cos(4t) 0, + ((2 + sin(t)) + 2i(4 + cos(4t)))idy + (4 + sin(3t))
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then
Lo=0;+ (14 4i)0, + (2 + 8i)idy + 4.

Since by = 2by, by, by > 0 and

k4 (1 +40)€ + (2 + &) — 4i| = \/(k + € + 20)2 + (4€ + 802,

which is either Oor > 1fork, & € Zand a € % Z. Therefore Ly is globally solvable by
Corollary 5.2.18, item 3. Notice that it is not globally hypoelliptic by Corollary 5.2.19 because

Z, is infinite since its symbol is zero for k = 0, £ € Z and o = — ;’5.

Example 5.2.22. Consider the operator L defined on T! x T! xS? given by
L =0+ (14 cos(t)) +isin(t))0, + ((2 + sin(t)) + 2i cos(t))idy + (4i + sin(3t)).

Then
Lo = 0, + 10, + 210y + 44, (5.34)

and so

ZE:{(k,g,a)EWx;Z |k+§+2a+4¢Z}:®.

Hence Z7 1is finite. Moreover, one can show that the sublevels

t
05 = {t e T | / € -sin(1) + 2« - cos(7)dT < r}
0

:{teTl | —f-cos(t)+2a-sin(t)<r},

are connected forall € € Z, o € % Z and r € R. Therefore L is globally solvable by Corollary 5.2.18

item 2.

Example 5.2.23. Consider the operator L defined on T* x T' xS? given by
L =0+ (k + 10isin® ()9, + (V2 + 20i cos®(t))idy + (4i + sin(3t)),
where v = ) 7 # is a Liouville number. Then
Lo = 0y + vd, +\/2idy + 44,

soag = (v,v/2),byp = (0,0) and gy = 4i. Since v is a Liouville number and gy € i Z, by an argu-
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ment similar to the one used in Corollary 4.2.3 we have that Lg is not globally solvable. Therefore by
Proposition 5.2.7 we have that L is not globally solvable.

Indeed, by the reasoning of Corollary 4.2.3 the sequence (—(> v, 10™~* + 4),10™",0) €
72 x % Z, m € N, it satisfies

m
‘-( 10m"f’+4> +r-10™ + V2. 04+4| <
k

1
10m!m
=1

m m
<C (|10m!| +] - (Z 10m =M g+ |0\>> :

k=1

for some C' > 0. Therefore, consider the distribution given by

R 1, if (k,&,¢,0,8) = (— (5, 10m=H +4) ,10™,0,1,1), m € N
u(kvgyg)oaﬁ =

0, otherwise.

It clearly is not smooth, however Lu = f € C*°(T! x T* xS?).

5.3 Application to the product of tori and 3-spheres

Not only can we apply the results in the last section to the setting where G; x --- x G,
is the product of tori T* and spheres S*, but also, in this case, obtain better results concerning
the global properties of the operator L. In fact, we are able to obtain necessary and sufficient
conditions for both the global solvability and hypoellipticity of this operator. A more detailed
exposition of the global properties of L in this case can be found in [79].

Henceforth, we shall consider first-order evolution differential operators on T x (S?)%,
where 7 and s are non-negative integers not both zero. By composing it with a change of vari-

ables, we may assume the operator L can be written as

L=0,+Y ¢j(t)ds, + Y di(t)ido; + q(t), (5.35)
j=1 =1
where ¢;, d;, g are smooth functionson T, j = 1,...,7, 1 = 1,...,s,and Op; = %D&l is

the neutral operator on a different copy of S?, for each [. Again we may assume that the real
part of ¢; and d;, as well as ¢ are all constant. This means that for u € D'(T"** x (S*)%) by

taking the partial Fourier transform of Lu of the last r + s variables, with the same notation as
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in Chapter 2, Section 4.2, we obtain

Lu(t, k, 0)as = O4i(t, k, O)ap + i (Z (ki + > di(t)(og — 6 — 1) — z'q) Ut k) g,
j=1 =1
for every (k,0) € Z" x Njj, o, B € Jp. We can simplify this expression by allowing our matrix

indexes to assume values in % Z., and performing the change of variables

ap=a,— 0 —1,

By =p—0—1.

This way, writing

T

D ety = elt). k), Y dilt)a) = (d(1), o),

Jj=1

we can rewrite the equality above as
m(ﬁ, k, g)a//gl = 8@(15, k, f)a/gl + i(<C(t), k) + <d(t>, Oé/> — iq)a(t, k, f)a/ﬂ/,

From now on we will omit the prime notation on the indexes « and # and assume they are in
the appropriate range.
The first step in adapting the results in the previous section to this setting concerns the

cardinality of Z; and Z7, as defined in (5.9) and (5.10), respectively. Notice that, setting

1 2 2w

1
Co = — C(t)dt, do = — d(t)dt,

2 Jo 2m J,

we have that

1 1
Z; = {((kﬁ,g),@) GZTX§NSX§ZS |—€§a§€, <Co,k>+<d0,a>—iq€Z},

1 1
Zi = {((k‘,ﬁ),a) GZTX§NS><§ZS |-l <a</, <co,k‘)+(do,a)—iq§zZ}.

It follows immediately that if s # 0 these are either empty or infinite. Indeed, note that if
((k,0),0) € Z§ or ((k, ), ) € Zy, for some (k, () € Z" x5 N§, then ((k,{ +m), o) € Z§ or
((k,£+m),«a) € Z, for every m € Z, respectively. Moreover, notice that either Z, or Z¢ is

infinite (and thus not empty), but not both.
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Another distinguishing characteristic of this particular case is that given a representation cor-
responding to a triple ((k, ¢), ), there exist representations corresponding to the triples
((mk,ml), ma), for every m € Z.. This fact allows the construction of singular solutions and
is responsible for obtaining more results than in the general case. For instance, we are able to

obtain a converse of Corollary 5.2.3 as follows.

Proposition 5.3.1. If Z¢ is empty, or equivalently,
co €L, dy €27°, q€ i,

then L, as defined in (5.35), is globally solvable if and only if the sublevel set

Qo — {t eT| /;(ilm(cj)(ﬂk:j + ilm(dl)(T)al>d7’ < m}

is connected, for everym € R k € 7', a € %ZS.

The “if” part follows from Corollary 5.2.3. So we only need to prove the reverse implication.
The proof was inspired by [9] and relies essentially on the following lemma adapted from a

result by Hormander in [70].

Lemma 5.3.2. Let L be a globally solvable differential operator on a compact Lie group G.
Then, there exist m € N and C' > 0 such that for every f € (ker'L)? and v € C*(Q), the

following inequality holds:

/Gf(x)v(x) dx

<C Z sup |0 f| Z sup [0*("Lo)| | . (5.36)
G
la|<m || <m
The sum Z\al <m 18 taken over all left-invariant differential operators on G of order at most m,
or equivalently, it is taken over all linear combinations of at most m compositions of elements

of a basis for the Lie algebra of G.

Proof of Proposition 5.3.1. Denote b; = Im(c;), ¢, = Im(d;),forl < j <r 1 <1 <.

Suppose that L is globally solvable and that, for some ke 7", o € %ZS, and m; € R, the

sublevel set

- t :
Qif = {t € ’]1“1;/ ((b(7), k) + (f(7),q))dr < mg} is disconnected.
0 0
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It is worth noting that this assumption implies that either k # 0 or & # 0. By applying Lemma

5.A.6, we can find my € R as well as functions gy and v in C°°(T?) that satisfy the following

conditions:
2w .
/ go(t)dt =0, supp go N Q,’f,l‘; = ¢, and
0
2m
/0 go(t)vo(t) dt = €y > 0, supp v, C an‘(??
For each n € N, we define nl = (n|dy|, ..., n|d,|) and g,, v, € C°(T ! x (S?)*) as follows:

t X y \/_exp <m/ ), 7%2> + <d(7'), 0~5>d7_qt> go(t)e_m@’bt?fnz)(_né)(y)
n(t, . y) \/_exp( /0 ot ),]~€) + (d(T),&)dT—i-qt) vo(t)e™ e, >t€f€)(n£)(y)

for every (t,x,y) € T" x (S3)*. It is important to note that these functions are well-defined
based on the given hypotheses for ¢y, dy, and q.
We claim that g,, € (ker ‘L)°. Indeed, if u € ker’L then

ULtk )ag = 0 = [0, +i({c(t), k) + (d(t), @) + ig)[a(t,k, as = 0. (537)

Next, we will use the following lemma:

Lemma 5.3.3. The following equalities hold:

i If f,g € L*(S?), then
f(z)g(x)dr = Z (20+1 Z O)mng(0) (—my(—ny (—1)"7™, (5.38)

i. if f,g€ L*((S®)%), then

f)g@)de =" di > F(0apd0)cayp(~1)¥@ ), (539

(S3)® ZG%N(S) —t<a,B<l
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iii. if f,g € L*((S?)*%), then

/T iy fo=@m) Y > d (5.40)

§ELT e ING
2T

x Y ft (t,€, 0apd(t, =&, ) oy (=17 ) dt . (5.41)

—<a,B<L

Proof. These equalities follow immediately from Propositions 2.1.7 and 3.1.7, by considering
the property % = tf_m) (—n) (—1)™ ™. This last fact can be deduced from the definition itself

(see [94]), as evaluating t,, with Euler angles yields, as follows:

b (W(0,0,9)) = eI BL (cos(6))

e~ HEmet(=mv) (1 ynmm Pl (cos(0))

(—1yrmemiEmermnpl L (cos(6))

(= 1)y (w(©,0,2)))

where

— x)(n—m)/2 t—m
Phae) = o1 s () =0 (142)

with

Now, using the formula from Lemma 5.3.3, we have

(,gn) = Q2m)" > > di Y / At k0 apn(t, =k, 0) (_ay(p) dt(—1)=E—e0)

keZr pcl 1N —<a,B<L

= \/d_ng(QW)T/O Wﬂ(t,nl%,nf)(ng)(ng) exp (m/o (e(1), k) + <d(7’),d>d7’—qt) go(t) dt
= \/d,;(2m)" /0 Wﬂ(t,n/%ng)(nz)(nz) exp(niw(t)—qt)go(t) dt,

where w(t) = /O (e(7), B + (d(7), adr.
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Since

O (exp(m’w(t)—qt)ﬂ(t, n/;:, nﬁ)(nd)(n&)) = exp(niw(t)—qt)x

x |9t nke, ) uayinay + (mille(t), B + (d(t), &)] = q) @lt,nk, n) sy o | = O,
then for every n € N we have
exp(m'w(t)—qt)ﬂ(t,nl;:,ng)(nd)(n&) =k, eC.

Consequently

2

(90) =/ 2k [ an(t)dt =0,

0

which implies that g,, € (ker ‘L) for all n € N, as claimed.
Therefore, by Lemma 5.3.2 there exists C' > 0, A € Ny such that

/ InUn
Tr+1x (SB)S

<C Z sup 10" g (t, 7, 9))|
ES) (t,x,y)ETr+1x (S3)s

X Z sup 0" (*Lw,) (¢, z,y)| | - (5.42)

lul<A (tz,y)€TrH1x (83)s

However, note that by the definitions of ¢g,, and v,,, we have

d - 2m
/ gnUp = (27T)TLZ fo(t)l]o(t)dt = (27T)Tl0 > Uy > 0, ne N. (5.43)
Tr+1><(g3)5 dnf 0

On the other hand, since supp fy N Qﬁg = o, by the Leibniz formula, there exist positive
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constants My, M, and M such that

sup |0" gn (L, z,y)]
o (BTy) €T (592

SV Y s

e (BW)ETHx(89)8

% |07 90D )y )|

ST G0 exp(niw(t) — gt)] o e

Y1tV FY3 VA=

< V dn[ Z MlMunlul Sllp~ |exp(mw(t)—qt)| Z sup |a t—noc)( noc)(y)|

A 3
ES) teTH\QNs ya<p YEE?)?

< T s {exp <—n /Ot<b<r>,l%>+<f(r),d>dr)]

tETI\Q

X sup sup |874tn£na)(—nd) (y)|’
Ya<pye(s?)s

Y1,72,73,74

~ t ~
where C, = (" ). Fort ¢ QF% we have / ((b(7), k) + (f(7),@))dr > mq, hence
0

sup. [exp <—n /0 t(b(r), k) + ( f(T),o?)dTﬂ < e ™0 p e N,

tET\QRS

Furthermore, for any —¢; < «; < ¢; and y; € S? the unitarity identity holds:

4
1—tO‘J0‘J Z taJBJ yj B]a]<yj )
B]—_ j
L

Z taﬁ yi)t ajﬂ yj Z

ajﬁj y]

?

where e € S? is the neutral element of the Lie group S°.

(yj)

ential operator of order less than or equal to A, then it can be expressed as a linear combination

This implies that |t

< 1forall o, B;, and y;. Now, if 97 is a left-invariant differ-

of at most A (including 0) compositions of the vector fields in {D; ;, Do ;, D3 ;}%

i—1, where

each D ; and D, ; represent the vector fields on S* given by 9/9¢; and 9/96;, respectively, in
local coordinates. Here, (¢;, 0;,1;) are Euler angle coordinates on S?, and so their associated
coordinate vector fields form a basis for the Lie algebra of the group.

It is clear that Dk,jtg;, 5, = 0ifj # j'. Furthermore, according to [94] Chapter 11, we
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have the following result:

Do i — V(=B + B + 1),(4- VB - B+ 1),(4- ,
2,0 %;B; — 2 aj;B+1 2 a;B;—1
Do VIl — j)(€j+5j+1)téj n \/(€j+ﬁj)(@—ﬁj+1)t€j
1,5 Oéjﬁj - _27/ Oéjﬂj-f—l —2Z Olj,Bj—l'

Therefore, for all £;, a;, 5;, and k, we have
Z-
| Dijta s, (03] < 265

By induction, we obtain

‘374t?|_0:1ﬂ'éj)(_ndj)| < 2|’Y4|n|’74||dj||"f4|'
Since
4,7 = [Tl + 1) < [T 40l + 190 = (|l + 10,
Jj=1 J=1

substituting this inequality into the previous inequality, we obtain:

sup 10" gu(t, 2, y)] < My o2e o2 n |6 %, (1léoo + 1)

<A (tz,y)€Tr+1x(S3)s

_ M{/n2>\+s/26—nmo

(n&)(na)

Also, observe that 'L <exp(—mw(t)—|—qt)ein@jﬂ{nz (y)) = 0. Therefore, we have

"Lua(t, 2, y) = V/dyg(' L+ 0) [0h(8) exp(—inw(t)+qt)e™ Pl o (4)]
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Hence,

(¢ )?rug (S3) |a”(tLUn)(t;I,y)|
|uf<x (BT ELTTEX(E7)7

<Vdg Y sup

ul <A1 BE)ETHX(E)

0" [h(8) exp(—niw(t)+a)e™ Pl .o (v)] |

tEsupp vy, || <A+1

3 _
< VA sup [exp (v [ 01+ )0 sup [0 <y>)]
0
< 2SM2n2(A+1)+S/2||6é||éo+lenfgl<b(T)7l;>+(f(T)’d>dT(”6[”00 + 1)5/2

= Mp2O+D+s/2en JoHb(r) k) +(f (7),G)dr

Y

o . . . .
where t; € supp (vp) C €20 is a point where the restriction of the exponential function
achieves its maximum value over supp ().

We define )
. /0 (), B + (F(r), @)dr — mo.

Notice thatw < 0, since t; € an‘g By using the previous inequalities, we can establish the

following:

sup 0" gut,z ) | | D sup 0" ("L ) (t, 2, )|

o (L) €T HIx(57)s o (E) €T H1x (57)3

S M{,M5n4>\+3+senw.

Consequently, by (5.42) and (5.43), we have:

0 = lim / JnUn| > Ly > 0.
n—00 Tr+1><(§3)s
This leads to a contradiction, proving that L cannot be globally solvable. ]

It is also evident that in this context every vector field in L admits non-sparse
Archimedean sequences, which allow us to relate the linear independence of the coefficient
functions with the change of sign of their linear combinations by Proposition 5.2.17. Not only
that, notice that if ¢ — (Im(c)(¢), k) + (Im(d)(t), &) changes sign for some (k, ) €

Z" x5 Z°, then the same is true for the “dilations” (m - k,m - o) € Z" x 1 Z*, for every



102

m € Z. Using this, we can obtain another version of Proposition 5.2.14:

Proposition 5.3.4. If there exist vectors k € 7" and & € %ZS not both zero such that

(co, k) + (do, &) —iq € Z,

and the real-valued smooth function

>
—~
~+
~—
I
—_~
S
—~
~+
~—
T

)+ (f(t),a),t €T

changes sign, then the operator L defined in (5.35) is neither globally hypoelliptic nor glob-
ally solvable.

And also the following proposition:

Proposition 5.3.5. Suppose that at least one of the functions b; or f, is non-null. Then the

operator L, as defined in (5.35), is neither globally solvable nor globally hypoelliptic if:
(A) (bo, fo) = 0 and (ag, eo,q) € 7" x 27° X il or

B) (bo, fo) # 0 and either dim span {by,...,b,, f1,..., fs} > 2 or some of the functions b,

or fi. changes sign.

Putting all these results together and using the properties mentioned above, we are able to
obtain both necessary and sufficient conditions for global solvability and hypoellipticity in this

case, that is:

Theorem 5.3.6 (Global solvability). The operator L is globally solvable if and only if one of

the following conditions holds:

i. dimspan {by,...,b., f1,..., fs} < 1, none of the functions b; and f, change sign, and

Ly is globally solvable.

ii. (b,f)#0, (bo, fo) =0, (ap,e0) € Z" x 2Z°, q € iZ and every sublevel set

QFe = {t € Tl;/t<ibj(t)kj + ifl(t)al)dt < m}
0 =1 =1

is connected, for every m € R, k € 7", and o € %Zs .
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Theorem 5.3.7 (Global hypoellipticity). L defined in (5.35) is globally hypoelliptic if and only
if dimspan {b,...,b., f1,..., fs} < 1, none of the functions b; and fy, changes sign, and Ly
is globally hypoelliptic.

Example 5.3.8. Consider the first order differential operator
L=20,+ (a+¢e")d, + (b+ e")idy + iq(t)
acting on T! x T! xS3, where a,b € Randq € C°°(T!') isreal valued. Then since

fo% cos(t)dt = 0, by Theorem 5.3.6 L is globally solvable if and only if (a,b) € Z x2Z and

1 21

5= Jo q(t)dt € Z. Also, by Theorem 5.3.7 it is not globally hypoelliptic since cos(t) changes

sign on [0, 27]. On the other hand, let L be given by
L =0y + a(sin(t) + 1)0, + b(sin(t) + 1)idy + 1,
where a,b € R. Then L is globally hypoelliptic. Indeed, taking M = N = 1 itis true that
k1 + aky +ba — | > 1> M (k| + |ko| + )77,
for every kq, ko € Z,( € %NO, not all zero, and —¢ < o < ¢, { — o € Ny. Also, notice that
k1 + ako +ba— 1 # 0

for every ki, ko € Z, a0 € % Z. Therefore the claim follows from Theorem 5.3.7 and Proposi-

tion 4.1.4.

Example 5.3.9. Consider the operator L defined on T! x T! xS? given by
L =0+ (14 cos(t)) +isin®(t))d, + ((2 + sin(t)) + 2i cos®(2t))idy + (4i + sin(3t)).

Then
Lo = 0y + 10, + 210y + 44,

and so (bg, fo) = 0, (ap,e0) € Zx2Z and q € iZ. However, for{ = 1, a = —% andr = 1.1 the

sublevel

t
o = et | e i) + 20 coderar < v
0
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is not connected. Therefore L is not globally solvable by Theorem 5.3.6.
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Appendices

5.A Technical lemmas

Lemma 5.A.1. Let f,0 € C*°(T"), and set 0y = - fo% O(t)dt. If 0y & iZ, then the differential
equation

Opu(t) + 0(t)u(t) = f(t), te T, (5.44)

admits unique solution in C*(T") given by

1 27 o N
ult) = =5 /0 f(t—s)e Jis 00 g, (5.45)

or equivalently by
1 2 t+e g0\
u(t) = 627,90—_1/0 f(t+s)el 00 g, (5.46)

If 0y € iZ, then equation (5.44) admits infinitely many solutions given by
t t t
uy(t) = e Jo 07)dT 4. / f(s)e s 00drgg (5.47)
0

for every \ € R, if and only if
2w
/ f(t)elo 6T g — ¢
0

Proof. This can easily be verified by treating functions on the torus as periodic functions on

R. []

Lemma 5.A.2. Let G = G X - -+ X G, be a product of compact Lie groups and

L= @—1—2@(25))(]- +q

j=1

where ¢;(t) = a; + ib;(t) are smooth functions on the one-dimensional torus T' = R /(27 Z),
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X, €97 =1,...,n, are left-invariant vector fields on G;, q € C. Define

i = {((6].0) € G x N'|a € Je, (eo. pa(€)) — g € 2

where cg = 5- OQTF c(t)dt € C" po(€) = (fay (€Y, ..., ta, (E™)) as defined in Definition

318 If f € C®(T' xQ) is such that f(-,€)ap = 0 whenever ([{],a) € Ny, then [ €
(ker'L)? N C>=(T* xG).

Proof. Let f € C*(T* xG) be as claimed. Suppose v € ker ‘L. Then — L v = 0, therefore,

taking the partial Fourier transform on the last n variables yields:

ZL ot ©)ap = 0t E)ag + i({c(t), 11a(E)) + iq)0(t, E)as = 0 (5.48)

foreveryt € T', [¢] € G, o, B € Je. Therefore, for every ([£], ) & N, as {(co, o (§)) —iq &

7, then also

(Co, 11a(€)) — iq = —(co, pta(§)) — iq

= —((co, a(§)) +iq) ¢ Z

50 {cofta(€)) +iq & Z. It follows from Lemma 5.A.1 that equation 5.48 implies (-, )5 = 0.

From Proposition 3.1.7 we conclude that

2 R _
W =3 de / FUt,©)asi(t, Dasdt

[(leG  @PEI;

=0

as every term in the sum above is zero. Since v € ker ‘L was arbitrary, we conclude f €

(ker " L)°. O

Lemma 5.A.3. Let G = G X --- X G}, be a product of compact lie groups and

L= 815 +ZCj<t)Xj +q

j=1

where c;(t) = ajo + ib;(t), ajo € R, b; are smooth real functions on T', X; are left-invariant

vector fieldson G, 7 = 1,...,n,q € C. Let cjo = % o%cj(t)dtaj =1,...,nIff €
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(ker *L)° N C>=(Q), then the ordinary differential equations on T" given by

Lu(t, €)ap = 00 +i((¢;(t), 11a(€)) — i) U(t, )ap = F(t, ) (5:49)

admits solution for every [§] € G, a,B€ Je.

Proof. Let f € (ker'L)? N C>(T! x@G) and consider equation (5.49). By Lemma 5.A.1 it
admits (unique) solution whenever ([¢],a) € N7, § € Je. Now suppose ([¢], ) € N and let
B € Je. Define

o0t 80s = e { | (el palE)) — i

and U(t, &) o p = 0 for all other [¢'] € G, o, f € Jer. Note that these are well defined since
([¢], @) € Ni. By taking the partial inverse Fourier transform of these coefficients, we obtain

that v € (ker'L), since:

—

—"Lo(t,€)as = 00(t, E)ap +i({c(t), ta(€)) +iq)0(t,§)ap
= i({e(t), 1a(8)) — 1@)0(t, E)as + i(—{e(t), 1a(8)) + i) (¢, €)ap
=0.

Since f € (ker’L)?, by Proposition 3.1.7:

O—/Tl/fta: (t,x)dxdt = i f(t E)ap U(t, E)apdt

/ 7t £)as exp{ / (), 1a(€) —z’q)df}dt

so by Lemma 5.A.1 equation (5.49) admits (infinitely many) solutions. L

Lemma 5.A4. Let ) € C*°(T") be a smooth non-negative real-valued function with a zero of
order greater than one at sy € T, that is, 1(sg) = 1'(sg) = 0. Then, there exists M > 0 such

that
so+0
/ e M) ds > /merf(S)NY2M Y2,

0—0

for all X > 0 sufficiently big and 6 > 0.

Proof. By Taylor’s theorem, for each s € (sg — J, so + 0), there exists s € (sg — d, 50 + 9),
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such that

o) = P o o2

P(s)

Let M = SUD s [50—8,50-+4] ‘T > 0.If M = 0,thent) = Oon [sy — J, 59 + 0] and the

inequality is trivial with M = 1, as /7 erf(§) < 24. Otherwise, let M = M and then for
AM > 1 we have:

50+5 So+5 ) 1 OV IM )
/ e M) gg > / e~ (VAM(s=s0) g > — — / e % ds
500 50—5 VM \J_svxm

5
> \/i_M </5 e_Sst) = merf(§)AV2M Y2,

]

Lemma 5.A.5. Let ¢ € C°°(T") be such that fozﬂ o(t) dt = 0 and for everyr € R, the set
Q, = {t e T | f(f o(r)dr < r} is connected. Then

Q, = {t€T1|/0t¢(T)der} = {te']l‘1|—/0t¢(7)d7§ —7’}

is also connected.

Proof. This follows from Q, = T! \§2, and the general fact that any A C T! is connected
if and only if T" \ A is connected. To see this, let A be connected. Note that the claim T'' \ A
is connected is trivially true if A = T, Otherwise, then T \ A contains at least one point,

which, without loss of generality we may assume it is 0 = 0 4 27 Z. If we consider

f:(0,2m) — T\{0 + 27 Z}

T x+2n7

then f is an homeomorphism. Since A is connected, I = f~'(A) also is. But then [ is an

interval, so 1¢ = (0, 2m)\/ is either an interval containing (0, €) or (27 — ¢, 27) for some € > 0
or the disjoint union of two intervals containing (0, ¢) U (27 — ¢, 27), for some € > 0. In both
cases, since T' \A = f(I°) U {0+ 27 Z} it is clearly connected. Switching the roles of A and

T' \ 4, the converse also follows. [

Lemma 5.A.6. Let ¢ € C(T") be a non-null function, and let ® be a function such that
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®' = ¢. Suppose there exists m € R such that the sublevel set
Q ={t €T, ®(t) <m}

is not connected. Then, there exists mo < m such that §2,,,, has two connected components

with disjoint closures. Consequently, we can define functions go, vy € C*°(T') such that:

27 2
/ go(t) dt =0, supp (go) N Uy = &, supp (v,) C Qyy,, and / go(t)vo(t) dt > 0.
0 0

Proof. Let C; C T! be a connected component of (2,,,. Notice that C is homeomorphic to
an open interval and has two distinct boundary points: 9C; = {t1,t2}. Choose t3 € C such
that (¢) < m. Since (2, is not connected, there exists another connected component C of
Q,, such that C; N Cy = (). Similar to C, the component C is also homeomorphic to an open
interval and its boundary is given by two distinct points: dCy = {t4,t5}. Choose tg € Cy such
that ®(tg) < m.

Now, choose € > 0 such that my = max{®(t3), P(ts)} + € < r. Since ®(t;) = m, by the
continuity of ®@, there exists an open set U; C T containing ¢, such that ®(¢) > mj for each
t € U;. Similarly, we can find an open set U, containing ¢, with the same property.

Let I and J be the connected components of (2,,,, that contain ¢35 and ¢, respectively. It is
important to note that U; and U, are contained in T'\ (I U J). Moreover, I C C} and J C
(s are “separated” by U; and Us,, which implies that their closures do not intersect. In other
words, if z € I N J, then there exist sequences (x,,), C I and (y,), C J such that z,, — =
and y,, — x. However, since z,, € I C (1, it follows that ®(x,,) < my for all n, which implies
®(z) < my < m. Therefore, we have = € C. The same logic applies to ¥, J, and Cs, which
leads to z € C; N (5, which is a contradiction.

Let us consider the previously defined set as contained in the interval K = [t;,t; + 27| C

R. Without loss of generality, we can assume that
1 <ty <ty <tly<tg<tys <t;+27m

t3€]CC’1:(t1,t2), tg GJCOQZ (t4,t5)

U1 = {tl,tl + 6/) U (tl + 27 — 6/,t1 + 271'],
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where 0 < ¢/, and ¢; + ¢’ < t3, and
Uy = (ty — €' ta + €"),

where 0 < ¢’ and t3 < ty — €’ <ty + €’ <.
Now, for j = 1,2, let g; € C2°(U;) be a bump function such that fo% g;(t)dt = 1. Set

go = g2 — g1, so that supp (go) C Uy U U, and so supp (go) N 2, = 0. Also,

2T
/ 902/92_/91:1_1:0-
0 Uz Uy

Finally, let § > 0 be such thatt; + 0 € [ and ts — § € J. Choose vy € C°((t3, 1)) such

that vg = 1 in [t3 + 0, — 0]. In this case,

27
/ 90002/92=1>0
0 Uz

and supp (v() C I U J C Q. O
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Chapter 6

Vector-valued sharp Garding inequality on

compact Lie groups

6.1 Introduction

The so called Garding inequality was first proved by Garding in his paper [47] and can be
stated as follows:

Let P be an elliptic self-adjoint pseudo-differential operator of order m € R on an
open set U C R". Then, for any compact set ) C U andy < m/2, there exist constants

cv.0, Cy.o > 0 such that
(Pu,u)r2 > ¢y ollullfms — Crellullfy,

for every u € C§°(Q). Here, (-, -) 12 denotes the usual L? inner product and || - || z-, denotes
the usual norm on the Sobolev space of order » € R. In order to apply it to different prob-
lems, Hormander [71] and Lax and Nirenberg [81] then adapted this result and proved the so
called sharp Garding inequality for pseudo-differential operators for symbols in the Kohn-
Nirenberg class S™(R*"). Their result states that if a symbol p € S™(R*"), form € R sat-
isfies Re p(x,£) > 0, then the pseudo-differential operator p(z, D) associated to this symbol

satisfies the estimate

Re(p(z, D)u, u) r2®n) > —C'||U||ilm71,

2

for some C' > 0 and every u € H™z (R"), where the norm on the right hand side of the in-

equality denotes the usual norm in the Sobolev space H e (R™). Since then, this result has
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been extended, by many authors, to different settings and symbol classes. In particular, this
type of inequality has been extended to the global symbol classes on compact Lie groups for
scalar valued functions. Inspired by the works on Gérding inequality on compact Lie group
[100], on sharp Garding inequality on compact Lie groups [96], on sharp Garding inequality
for subelliptic operators on compact Lie groups [25] and on Garding inequality on graded Lie
groups [24], we prove a type of sharp Garding inequality for pseudo-differential operators act-
ing on vector-valued functions on compact Lie groups. In order to do so, we also extend the
notion of pseudo-differential operators defined by amplitudes to the vector-valued compact Lie
group setting. As a consequence, we obtain a sharp Garding inequality for pseudo-differential
operators on compact homogeneous vector bundles and compact homogeneous manifolds. Fi-
nally, in the end we present an application of this result proving existence and uniqueness of
solution to a class of systems of vector-valued Cauchy problems of pseudo-differential equa-
tions. These results could have many applications in analysis, such as in local solvability and
well-posedness of certain Cauchy problems. We remark that our results use state of the art
ideas, such as the vector valued Fourier analysis on compact Lie groups developed in [27]. It
is also relevant to mention that the sharp Garding inequality is the strongest lower bound esti-
mate known to hold for systems on R" (vector-valued functions). The aim of this chapter is to

extend this property for the global quantization of operators on compact Lie groups.

6.2 Preliminaries

6.2.1 Vector-valued Fourier analysis

In this section we recall some of the work by Cardona, Kumar and Ruzhansky in [27]
about the vector-valued analog of the Fourier analysis on compact Lie groups presented in
Chapter 2. The theory here presented differs slightly from the one found in that paper, as they
considered subelliptic Hormander classes, and here we have adapted their results to consider
the usual elliptic Hormander classes.

Let E, be a n-dimensional C-vector space, where n € N. Consider By = {ey,...,e,} an
orthonormal basis on . We may identify Fy, = C" = C"*! as vector spaces, by identifying
each element in B, with the canonical basis in C". Hence, given a mapping f : G — Ej, we

may write it as

f@) = (fulx),..., fulz))" € C,
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where f;(z) = (f(x),e;)r, € C, foreachxz € G, where (-, -) g, denotes the canonical inner
product on Ej, which it inherits from C". Here also the superscript “t” denotes the transpose

of the corresponding vector.

Definition 6.2.1. For f € L'(G, E,), define the Fourier coefficients of f at [¢] € G by

-~ ~ ~ -~

f(f) = ( (17€>7 e '7f(n7€))t = (fl(g)a ce 7fn<€))ta

where ﬁ(f ) is the group Fourier transform defined in Chapter 2.

As before, this definition can be extended to the set of distributions D'(G, Ej) acting on
C>(G, Ey). For a scalar function g : G — C, we fix the notation g(x) ® e; to denote the
vector-valued function defined which has © +— ¢(z) as its i-th component, and zero for its
other components, i.e.: (g ® €;);(z) = g(z)0;;.

From the Peter-Weyl Theorem, the inversion formula can be written as
f@) =33 deTe (€@ (0. 6)) @ e,
=1 [gle@
forevery f € L*(G, Ey).

Definition 6.2.2. Let A : C>*(G, Ey) — C>=(G, Ey) be a continuous linear operator. Its

matrix-valued symbol is given by

JA<i7r7x7£) = §($)*<A(f®€i)($),67«>Eo, (61)

forlﬁi,rﬁn,a:EG,[f]E@.

A similar quantization formula holds in the vector-valued case. More precisely, the fol-

lowing result was proved in [27]:

Proposition 6.2.3. Let A : C>*(G, Ey) — C™(G, Ey) be a continuous linear operator. Then

n

Af(2) =" deTrle()oali r, 2, [€) Fi(€)] ® e, (6.2)

ir=1 [g)e@

foreveryx € G, f € C™(G, Ey).
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Equivalently, formula (6.2) can also be written as

Af(x)
Z > deTelE(z)oali 1, [ Z > deTrlg(x)oali,n, 2, [€) Fi(€)] ]
i=1 [¢leG =1 [gleG
= > deTre(2)* oalz, [€)F(€)).
[€]eG

Here the matrix o 4(z, [¢]) € (Cd*de)"*" ig given by:

O-A(xv [é])ﬂ" - O-A(iv r,Z, [5])7

for1 <i,r <n, (z,[¢]) € G x G, and £(x)®" is the block diagonal (C%*)™*"_matrix given
by
£(@)™" = diag(¢(), ., &(2)), (6.3)

forall (z,[¢]) € G x G. Also, this last trace should be understood component-wise, 1.e.:
(Tr(v)); = Tr(v;), for 1 < j < n.

As before, we introduce the symbol classes with respect to these quantization formulas.

Definition 6.2.4. Let J,, = {1,...,n},0 < p,d < 1. Asymbol o € S)((G x G) ® End(E,))
is a mapping from J,, x J,, x G x Rep(G), smooth in z, such that, (i, r, x, ) € Cl%*% for
any ¢ € Rep(G), i,r € J,, and it satisfies

1A807 o (i, 7,,€)]lop < Cap ()™ P11,

for some C,, 3 > 0, for all multi-indices «, /3, and all (4,7, z,§) € J,, X J, x G x Rep(G). As
before, due to the trace invariance under cyclic permutations, we will abuse the notation and
identify Rep(G) with G.

For a symbol o, its associated pseudo-differential operator Op(c) : C*(G, Ey) —

D'(G, Ey) is defined by the expression

(Op(o =Y dyTr |n(x) Y olirz,n)imn)| (6.4)

DEE =1
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forevery 1 < r < n. We then say Op(o) is a vector-valued pseudo-differential operator of

order m, and write Op(o) € W7';((G x @) ® End(E))).

We also denote the set of smoothing symbols and smoothing operators by

S™((G x G) @ End(Ey)) = ) STo((G x G) ® End(Ey)), (6.5)
meR

~((G x G) ® End(Ep)) = | ¥I,((G x G) ® End(Fy)), (6.6)
meR

As in Chapter 2, for every s € R, the vector-valued Sobolev space H*(G, Ey), is defined

as the set of all distributions in D’(G, Ey) such that

[[u] %JS(G,EO) = Z de ( QSZ [a(i, &[5 < oo
€led
In this case, the equalities
[ H°(G,Ey) = C*(G, Ey), | H°(G. Ey) = D'(G, Ey). (6.7)
seR seR

also hold.
The following theorem justifies the term “smoothing” for the symbols in (6.5), because of

equalities (6.7). Its proof can be found in [27, Theorem 3.17].

Theorem 6.2.5. Let A : C(G, Ey) — C>®(G, Ey) be a continuous linear operator with
symbol a € S]'5((G x G) @ End(Ey)), 0 <6 < p < 1. Then A : H*(G, Ey) — H*"™(G, Ey)

extends to a bounded operator for all s € R.

Remark 6.2.6. As in the scalar case, if A : C°(G, Ey) — C*(G, Ej)) is a continuous left-

invariant linear operator, that is,

(Aom(y)f)(x) = (mLly) o A)f(x),

where (71,(y) f)(z) = f(y 'z), forevery f € C*(G, Ey) and x,y € G, then 74 is indepen-
dent of x € G. Proposition 6.2.3 then implies that

5) = ZUA(i,T, 5)?(%5)7
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or equivalently

(A1), (€) = > 0alin OFi(€).

foreveryl < r < n,[¢] € Gand f € C®(G, E,). By duality, this remains true for f €

D'(G, Ep). This implies A can be seen as a “matrix Fourier multiplier”.

Definition 6.2.7. An amplitude a € A7;((G x G) ® End(E,)), where m € R, 0 < p,8 < 1,
is a mapping from J,, x J, x G x G x Rep(G), smooth in x and y, such that, for any ¢ €
Rep(G), a(i,r, z,y, &) € Cl%*d, and for any admissible collection of difference operators A%,

it satisfies

1AL a(i,r, 2, €)|lop < Capy (&)™ AATABH, (6.8)

for some C,3, > 0 and for all multi-indices «, 3,7, (4,7, z,y, [§]) € J, X J, x G X G X G.
For an amplitude a, the amplitude operator Op(a) : C(G, Ey) — D'(G, Ey) is defined
by

(Op@yu),(x) = Y d Tr[ () / > alisr,y sl () dy (6.9)

(neG
forevery 1 < r < n,u € C*(G, Ey). Notice that if A is a pseudo-differential operator
A C™(G, Ey) — C™(G, Ey) defined as before, and if a(i,r,z,y,n) = oa(i,r, z,n), then
Op(a) = A.

Proposition 6.2.8. Let 0 < § < Land 0 < p < 1, and a € A75((G x G) ® End(Ey)). Then
Op(a) is a continuous linear operator from C>= (G, Ey) to C* (G, Ey).

Proof. Recall that by definition, (Id + L)1 = (n)?n. Consequently, we may rewrite (6.9) as

ZdTr

[eG

z) / > aliyr g m)uy)(n) = (1d+ La) 7 (y) dy] : (6.10)
G =1
Since (Id + L) is self-adjoint, the equation above can be rewritten as

> d Tr[ (@) [ Yo+ Lo lati a0y >dy] ©11)

[n] GG

for any s € N. By (6.9) we have that

1(1d + Le)*ali, 7,2, y,m)|op{n) > < Oy 2070),
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Since 0 < § < 1, we can take s € N sufficiently big so that the series above converges abso-
lutely. By a similar argument, the same is true for all derivatives in = of the above expression.
It follows that Op(a)u € C*(G, Ey) provided u € C*(G, Ey). The continuity of Op(a)

follows similarly. H

Next we show that any operator defined by an amplitude may also be defined by a symbol,

and these two objects are related through an asympotic expansion as follows.

Proposition 6.2.9. Letm € R, 0 < < p < landa € AJ((G X G)® End(Ey)). Then A =
Op(a) is a pseudo-differential operator with matrix symbol 04 € S}'s((G % @) ® End(E))).

Moreover, o 4 has the asymptotic expansion

O'A(i,’f’,l’,g) ~ Z a'a;jA (Z T7xuy7§)’y=$7

a>0
foreach 1 < i,r, < n, in the sense that
oali,r,z, &) — Z aay Agali,r, 2, y,8)ly=2 | € 5,5 =ON((G x G) ® End(Ey)),
0<|a|<N
for every N € N sufficiently big.

Proof. Indeed, by Proposition 6.2.8, A is a continuous linear operator acting on C*°(G, Ej)

and therefore admits symbol o 4, the matrix symbol of A, given by:

O-A<i’ T, 5) = 5(1‘)*<A(§ ® ei)(‘r)v 6T>E0'

Therefore

oali,r,2,8)m Zf “Dmi(A(Em ® €:))r()

= Zg(fl / > dy Teln(x)ali, r, 2z, y,m)EW)mn(y) 1dy

mleG

/Zf Dot (Y)in Z d, Tr[n(y~"n(x)ali,r,z,y,n)|dy

meG

/éx yngdTr n(yx)a(i,r,z,y,n)]dy.

n] EG
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Performing the change of variables z = y 'z (justified by the invariance of the Haar measure),

we obtain that

dn

oAty 7,2, ) mn = / £z )mn dy n(2)jk ali,r, z, 2 1777>kjdz
“ eG k=1
dy
= |Z/ x/§ _1 anOz Zd Z ]kalrﬂf?/n)k]d
0<|a\<N : med k=1
dn
/5 _lngdZ ]kRNZTZTDk]d
meG k=1
= Y ) T vl vyl
0<|a\<N 77]€G
/f *1ngdZ 2) iR (3,7, 2,m)kdz
meG  Jk=1
1 (63 « N
= Z Jay Ag a(laral‘ayaf)mnk/:x
0<|a|<N
/6 Dnn > dy Z 2R (0,7, 2, )iz, (6.12)

meG k=1

where Ry (i, 7, z,1)k; is the remainder of the Taylor expansion in y of order N € N of
a(i,r, x,y,n)k; centered at x. Therefore, to prove the claim we only need to analyze these last
series of integrals. For (z,y) € G x G, 1 < i,r < n, define k4, ,(7,r, -) to be the distribution
defined by

a(i,r, 2,y,€) = kawy(i.1,), €] € G.

Similarly, denote by k, (7, r, -) to be the right convolution kernels of A, that is, the distribu-

tion which satisfies

O-A(i7rax7§) - k/rf;(iﬂﬂa 5)7 [5] € a

Notice that

:/Zfi(y)kx‘l@:y(i’r’ y'x)dy
/Zfz kAa:xz 1(2TZ)dZ
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where the first equality can be found in [25]. Also,

:\/Gizn;fi(y)ka,m(iaryy_lx)dy:/Gizn;fi(l‘z_l)k‘aw(i,hz)dz,

therefore we have that

kA,x,y(ia T, y_lw) - ko‘,:c (Za r, y_lx)a kA,a:,xz—l (7/7 T, Z) = ka,x<i7 r, 2)7

in the sense of distributions, for all 1 < 7,7 < n. Now, fix 1 < ¢,r < n, and notice that

Zdz 2) iR (4,7, 2,m)k; Zdz a(i,r,x, 2270

meG k=1 G 2=
- ay‘y:xa/(ia T) $, y? n)k]]
= k’A,ac,;rz*l(Z., r, Z)kj - 8y|y:xkz47x,y<i7r? Z)kj

- k0,$<i7r7 Z) - Z qa( )azl|21 ekAa:xz (Z T, Z)
la|<N
Applying this to (6.12), our goal now is to prove that the Fourier transform of the expression
above is in S;?d_(p _6)N((G x G) ® End(E,)) for every N sufficiently big, which we do as
follows. For any multi-indices , 3, let M’ € 2 Nj such that

M"> ply[ = 0|B] —m+ (p— )N

and
!

M
7>—p|7|+6|ﬁ|+m+2(p—5)]\f. (6.13)

Then

(€)Ph1=318l=m+(—O)N A 798 Z d Z 2/5 D (2) 1 By (6,7, 2, )k dz

=1 j,k=1
[ne@ 75 op

S A”@B Z d Z Z /5 _1 mnn ijN(Z r,z n)kjd
[W]EG i=1 j,k=1 op
< 1+ £) 7 [a(2)0 ko (1,7, 2) = D a2 lesmekapiaars (67, 2] i)

la|<N

= (1d + £) % [g,(2)8 R (i, 2)] | 1 .. (6.14)
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where

. . k xT,Tr -
koy(i,r,2) = kagp—1(i,7, 2) = Z 4a(2)03 |21= ek g g 0nr (i, 7, 2) + Ry (0,1, 2),

|a| <N
forall z,y, z € G by the Taylor expansion theorem. Moreover, by [44], Lemma 7.4, the re-

mainder satisfies the estimate

|Ryn(iyr 2)| < C|2|N max [|05kazq(4, 7, 2)|| Lo (). -
la|<N

Now applying the definition of £ and the Leibniz’s rule on (6.14), gives us

M’ kA oz
1(1d + £)% [q, ()02 RESe (i, 7, 2)] || oy
A Pk o,
< 3 IX L X RO A (7 2 |
1<ig < <ig<d, [\| <M

(6.15)

where the notation < denotes that the inequality holds up to a constant which independs on

the functions involved. By estimates similar to the ones above, we have

28 kA .z x o -
X X G | S Y e 1056 (2002l ) (0.

and since {09 (¢, ()02 ka (i, 7, -)) }1,—; are the right-convolution kernels of a pseudo-

differential operator of order
s' =m +6|B] + dlaf + 0|\ — plvl,

by Proposition 6.7 of [44] we have that

d

10270, (2) 07 ka a7, 2)) | ). S 12

for 1 <4, r < n. Putting these previous estimates together, one obtains

1(d + £)*% [g,(2) 0 REA (i, r, 2 Hmmm/l (V=1 =55, (6.16)



122

and the integral on the right-hand-side is finite if
p(IA] = N)+ 5" +d < pd.

But indeed, for N big enough, we have M’ < (p—0)N. By choosing M’ so that (p—9§)N/2 <
M’ also, we have that (p — 0) N is proportional to M’'. Hence, using that || + |A\| < N and
(6.13) yields

p(IAl = N) + 8" +d = p|Al = pN +m + 0|8| + dlaf + 0|A| — p|ly| +d
< p[A[ = pN +m + 0|8 + plaf + p[A] — ply| +d
= pIAl = p(N = |a| = [A]) +m +6[8] = ply| + d

< pAl+m +6|5] = ply| +d
M/ !
§pM’+7—2N(p—5)+d§
3(p— )N
2

—2N(p—9)+d

(p—0)N

—2N(p = 8) +d =~

+d,

where in the second to last line we used the fact that |\| < M’ from (6.15). By choosing N >
No > 2d(1 — p)/(p — 0), we get that p(|]A\| — N) + s’ + d < pd, which by (6.12), (6.16)
and the previous inequalities proves that the remainder term in the asymptotic expansion is in

ST ON(G x G) ® End(Ey)), for all such N. O

P50

6.2.2 Even and odd functions on compact Lie groups

Recall that f € C*°(G) is called central if f(zy) = f(yz), for every x,y € G. Following
[96], we will say f € C°°(Q) is even if it is invariant under inversions, that is: f(z™!) = f(z)
for every x € G. Similarly, we will say that f € C>(G) is odd if f(z~') = — f(x), for every

z e G,

Lemma 6.2.10. Let f € C°°(Q) be central and even. Then for any left-invariant vector field
X, the function X f is odd. Moreover, if g € C*° is odd, then fg is also odd.
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Proof. Indeed, we have that

f@ exp(tX)) — f(z™")

-1\ __ 7:
Xf@™) = lim t
o HEep(—tX)n) - f(2)
t—0 t
o flaexp(—tX)) — /(@)
t—0 t
for any x € G, which proves the first claim. The second claim is immediate. L

Lemma 6.2.11. Let f € C*°(G) be odd. Then [, f(z)dz = 0.

Proof. Notice that [, f(x)dz = [, f(z™")dx = — [, f(x)dz, so [, f(x)dz = 0. O

6.3 Sharp Garding inequality on compact Lie groups

6.3.1 Main Results

Here we present the main result in [83], obtained by the author and Ruzhansky. Its proof
will be then carried out through several lemmas.
Theorem 6.3.1. Let G be a compact Lie group, dim(G) = d, and Ey a n-dimensional C-
vector space. Let A = Op(oa) € V}5((G x G) ® End(Ey)), 0 < § < p < 1, be such that its
matrix-valued symbol o 4(x, ) is positive semi-definite for every (x,[€]) € G X @, in the sense
that B*o 4(x,£)B € C%*% js positive semi-definite for all B € (C%*d)"1 Equivalently,

this means that for any By, . .., B, € C%*! the inequality

>N B oaliorz,€)B, >0,

1,r=1

holds for all (z,[€]) € G x G. Then there exists C > 0 such that, for every u € C™(G, Ey) we

have

Re(Au, u) 26,0 2 —C”UHZ(mf(pf(S))/z(G,Eo)7 (6.17)

where (-, ) 12(G,E,) denotes the canonical inner product on L*(G, Ej).
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Remark 6.3.2. In the previous statement and throughout the rest of this chapter, for a column-
vector of matrices B € (C%*4)"*1 we denote by B* € (C%*d¢)1x" the row-vector of matri-
ces given by

B*=(By,...,B}).

m—(p—9) m—(p—9)

First, notice thatif Q : H~ 2 (G, Ey) — H~~ 2 (G, Ey) is a bounded linear opera-

tor, we have

Re(Qu, U>L2(G,Eo) > —[{Qu, u>L2(G,E0)|

> - m—(p— m—(p—
> —Qull, weges ,, lull oo

(G)EO)

v

2
- Q u m—(p— .
|| HOPH ”H (p—9) (G.Eo)

Hence, Theorem 6.3.1 will follow once we show that A can be written as A = P + (), where
P is positive and () is as above.

First, following the ideas in [96] and [25], we construct an auxiliary function we : G — C,
for each £ € Rep(G).

We can assume G is a closed subgroup of GL(/NV, R) for some NV € N. Then its Lie alge-
bra g € RY*" is a d-dimensional vector subspace such that [A, B] = AB — BA € g, for every
A, B eg.LetU C GandV C g be neighbourhoods of the identity Idy = e¢ € G and 0 € g,
respectively, so that the matrix exponential mapping is a diffeomorphism exp : V' — U. With-
out loss of generality, we may assume that V" is the open ball V' = B(0,r) = {z € R?||z| <

r}, of radius r > 0. Let ¢ : [0, 00) — [0, 00) be a smooth function such that the mapping

g—R
z = @(]2])

is supported in V" and such that ¢(s) = 1 for all sufficiently small s > 0. For every { €
Rep(G) define

’LU{ZG—)R

p+é d(p+9)
4

v ¢ exp (2)[(€) 2 Jv(exp T (2))(§)

where ¢(y) = Cp|det Dexp(y)| 2 f(y)2,foreveryy € g = R% Dexp is the Ja-
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cobi matrix of the mapping exp, f is the density with respect to the Lebesgue measure of
the Haar measure on G pulled back to g = R? by the exponential mapping, and with
= (fpa (]2])2d2) 2.
The following lemma states the main properties of w; that will be used in this paper, its
proof can be found in [25], but we also state it here with some slight changes for the sake of

completeness.

Lemma 6.3.3. The functions we defined above are smooth, for every & € Rep(G). Moreover,

they satisfy the following properties:

d(p+5)

1. we(e) = Co(§) 5,

2. wg is central and inversion invariant;

“

dist(z,e) ~ |exp(z)| < (@JTH on the support of we;

~

A

|well 22y = 15

5. (2,[€]) = we(x)ldy, € SICENL(G % G),

(p+6)/2

forevery & € Rep(G), where dist(x, e) denotes the geodesic distance from the group neutral

- | denotes the central norm on g given by |X| = [, [uX""u""|odu,
where | - | denotes the Euclidean norm on g = =~ R? and the product is the product of matrices.

Also, Id,, denotes the dg¢ X d¢ identity matrix.

p+5)

b

Proof. Notice that, due to the properties of ¢, we immediately have that we(e) = Cy()

we is central (since f is invariant under adjoint representation as a density of two bi-invariant
: S : )

measures) and inversion invariant, and dist(z,e) < r(¢)~ “2~ on supp we. As for the

|we || £2(c)» we have

25 _ 2t (o+
[ a5 [ aqvice

:AﬂwWWﬂ>wwhmmmw@-

)2 (V)[?] det D exp(Y)| £(Y)dY

(p+9) _(p+9)
2

22 = )dZ

=Cq | o(lZ))*dZ =1,
Rd

(p+9)

where in the second line we applied the change of variables Z = Y (£) 2= , while in the third

line we simply used the expression of ).
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We are now left with the proof of

d(p+9) ~

(z,8) = we(2)Idg, € Sp oin (G X G). (6.18)

From the compactness of GG, proving (6.18) is equivalent to showing that, for every multi-

+8) | (e+0)
index 3 and for any fixed 2 € G, (0°w¢)(x)ldg, € S, e
[96]). First observe that

|’8|( () (see Lemma 3.3 in

p+6 d(p+9)

Pue(@)ldg = > Cos|0°6( exp™ (@)[(6)F) |07 w(exp™" (2))(€) 5 1dg,

a;lal<|B]

(p+9) (p+9)|a] d(P+6)
2

Y Captallexp™(@)(€) 7 )E) 2 Xp-alexp  (@)(E) T 1dy,,

HEIASTE]
where ¢,, x5— are suitable functions such that ¢, € C§°(R) is constant near the origin, while

Xp—a € C3°(V). Since

niets) 4 (o40) 5 .
Iddf 51704 2 (G X G),

"(p+5) 4+ (ptd)|e| (p+5)\a|

(€

for every |a| < ||, then for every (fixed) z € G,

d(P+5) +(P+5) 18| ~

(p+6)

if o(lexp™(2)|(€) = )xp—a(exp™(2))ldg, € ST (G x @) for all o and 3 as above. There-

fore, to complete the proof it is enough to check that these last terms are standard global sym-
bols of order 0.

Now, given x € G, it is easy to see that

(p+9)

dol] expH(2)[(€) 2 )xp—alexp (z)) < C, (6.19)

for some constant C' > 0. In fact, if z is such that exp‘l(as) = 0, then ¢,, is constant and the
inequality follows. If, instead, exp~'(x) # 0, then, since ¢, is compactly supported in &, we
get that the symbol in the left hand side of (6.19) is compactly supported, then smoothing, and

the inequality follows. This concludes the proof of (6.18) from which the result follows. [

Lemma 6.3.4. Let 0 4 be the matrix valued symbol of A as in Theorem 6.3.1. Define the am-
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plitude

p(i,r,z,y,&) = / wf(xz_l)wg(yz_l)aA(i,r,z,f)dz € CdEXdﬁ, (6.20)
G

foreveryl < i,;r < n,z,y € G, [¢] € G, where we is as in Lemma 6.3.3. Then

pE A;”,ig((G X é) ® End(Ey)) and the linear operator P : C*(G, Ey) — C*>(G, Ey)
)

given by

n

(Pu). () = [ 37 deTrlely ol v usty)dy, 1< <,

@ i=1igea

for every x € G, is a well defined pseudo-differential operator of order m, and also a positive

linear operator on L*(G, Ey).

Proof. First, we verify that p € AZ‘ s ((G X () ®End(Ey)). Indeed, note that by the Leibniz’s
)2
rule, for any multi-indices «, 3, , the matrix 97 9y Ag‘p(i, r,x,y,§) is given by a sum of terms

of the form

/G (AP (22 1)) (AN we (g2 ) (Mo a(i 2. ),

where | + A + p| > |« range over a finite set. Also, due to properties of we from Lemma

6.3.3, we have

(A28 we (2 1)) (AL we(yz1))lop S (€)4 7 AU RD+E (BRI,

~

. . o . (p+9)
Therefore, since supp(w;) is contained in a set of measure proportional to (&) ¢ 2, we can

estimate

/G(Agafwg(xz_l)) (A?@;wg(yz_l)) (Afoa(i,r,2,8))dz

op

N

<§>d@—p<m|+w>+@<\ﬂ|+|v|)—d@+m—p|u|

<£>mfp\a|+W<|m+w)’

IN

and so [|0707 Agp(i, 7, x,y,€)l|lop S (€ym=plal+ 3281+ als0, which proves the first claim.
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Next, notice that

(Puw)zy = | (Puta),u(o)) sds
// Z Z de Tr[¢( (z)p(i,r, 2, y, §)ui(y)] dymdx.

ri=lge@

Substituting p(i, r, x, y, £) by its definition in the previous expression, one obtains

L 3 T ) [ welos ey a8 deus)s(o) Vg ) de.
5] Grz 1

(6.21)

Let
M(i,2,€) = /G wely=")ely=" ) usly)dy € Clexde,

Then (6.21) can be written as

/ Z Z de Te[M (1, 2,£)*E(2)oa(i, r, 2, £)E(2) M (4, 2,€)|d=

1,r=1 [ﬁ]EG’

which is non-negative by our hypothesis since

TT[M(Z' 2,6)"¢(2)oa(i,r, 2, §)€(2)" M (r, 2,€)]

_Zflc 226 O—A(ZTZ£> (T,Z,g)szo,
as (2)*M(r, z,€) fr, € C%*1 where { fk}Zil is any orthonormal basis of column vectors in
Ce, O

Lemma 6.3.5. Following the previous notation, we have that (i,r, z, [£]) — p(i,r,z,x,§) —
oa(x, &) is the symbol of a pseudo-differential operator bounded from H*(G, Ey) to
Hs=(m=0=0)(G Ey), for any s € R.

Proof. By Theorem 6.2.5, it is enough to show that

(i,r,2, [€]) = p(iy 2, 2,8) — oali,r,z,€) € S5 ~0 (@ x G) ® End(Ey)).
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Notice that, by Lemma 6.3.3,

I
S~

p(i,r,x,2,8) —oali,r,z,§) wg(z)ZaA(i, rowz "t €)dz — oa(i,r, 3, )

we(2)*(oali,r, 227t &) — oaliyr, x,8))dz.

Using the Taylor expansion of o 4 (4,7, 721, £) at x we can write

OA(i,T, IZ_17§) = O-A(Z.ﬂna x)&) + Z a;O-A(i7T7 x?&)q’y(z) + Ra:<i7r7 Zag)u

|v[=1

where R, € S;?(;LQ&((G x G) ® End(Ey)) is the Taylor remainder of order 2 of o4 (-, -, z, ).
Notice that we can choose the “polynomials” ¢, so that they are odd for all |y| = 1, and using

that wg is even, we can conclude that
/ wi(2)qy(2)dz = 0,
el
for all |y| = 1. Hence, for multi-indices «, /3:
AL (pli, 0,2, €) — oali, 2, ) = A? /G we(=)200 Raliyr, 2, €) dz.
Applying the Leibniz rule, we can write the expression above as a sum of terms of the form
/G@fA?le(i,r,z,f)A?ng(z)A?“wg(z)dz,

where |a; + s + a3| > |o| range over a finite set. By Lemma 7.4 of [44], the remainder

satisfies
|AL 05 Ry (i, 7, 2,6)||op < C!z\zﬁfgsug IAG 07000 a(0, 7,2, €)lop S [2|2(€)™PlalHoHIAD,
Sz e

—d (p+9)

forall z € G, |z| S (§>_p2ié on supp(wg) by Lemma 6.3.3, and [supp(we)| S (§)"% 2 , we




conclude that

; 85A?1Rx(i, r, 2, §) AP we (2) AP we (2)dz

op

N

VAN

<€>m—(ﬂ—5)—pla\+6|ﬁl’

which implies
HA?E)f(p(i,T, 2,2,8) —oali,r,2,8))|lop S (gym—(p=0)=plal+olF]

proving the claim.
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() ~P=d+m—plaa|+6(2+B)+d g —plagl+d e —plaa| i3]

[]

Lemma 6.3.6. Let op be the symbol of the pseudo-differential operator P defined in Lemma

6.3.4. Then the pseudo-differential operator with symbol {ap(i,r,x,§) — p(i,r, 2,7, }

is bounded from H*(G, Ey) to H*=(m=(=9)(G Ey), for any s € R.
Proof. As in the proof of the previous lemma, it is enough to prove that
(i, [€]) = op (i, 2, €) = plis 7, 3,2, €) € 7,057 (G x G) @ End(E)).

By Proposition 6.2.9, we have the asymptotic expansion

p(i,ryz,&) ~ Z — A0 p(i, 7,7, Y, §)|y=a;

04>O

with the properties specified in Proposition 6.2.9. Recalling the formula (6.20), notice that

after a change of variables 2!z — 2 one obtains
ALOyp(i,r, @y, &) |y=e = AF /G we(2)00we (2)oa(i,r, 27 e, €) dz
Let N € N to be chosen later. Define

SN(i,T,$,§> - O-P(Z'7T7I7§) —p(i,T,ZE,I’) - RN(i,T,.’L',é),

_ (pt+9)

where Ry € SZ; 7 (VHD (Gx é)@End(Eo)) is the remainder term given by the asymptotic
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expansion above. Applying the Taylor expansion to the formula above yields

Sn(i,r,x, &) = Z A?/ng(z)ﬁjw,g(z)aA(i,r,x,ﬁ)dz
+ Z Ag/wf(z)ﬁgwg(z)Ravl(i,r,z_lm,ﬁ)dz—RN(i,r,:p,ﬁ)
G
=1(i,r,x, &)+ J(i,r,x,&) — Ry (1,7, 2,8),

where IR, ; is the remainder in the Taylor expansion of order 1 of o4, centered at x. Therefore,
if we can prove that /, J and R all belong to the specified symbol class, we will have proved
the lemma. Let us examine each one at a time. First, we see that the first term in the sums in /

(of order 1) vanishes since
/ we(2)05we(z) dz = 0,
G

for || = 1 because the functions w, and 0w, are even and odd, respectively, by Lemmas

6.2.10,6.2.11 and 6.3.3. In particular, [ is given by

Z AO‘/ 2)0%we(2) dzoaliyr, x,§)

2<|a| <N

- Y Yo, / Afuwe(2))(A20%we(2)) dz Mo ai, 7, 2, ),
2<]a|<N K\ pm
for some constants C,, » ,, where the sum is taken over a finite set satisfying |x + X\ + p| >
||, where here we have used the “Leibniz’s” rule for difference operators, that is, Proposition
2.2.15. Recalling that by Lemma 6.3.3 (z, [£]) + we(x)Idg, isin S ’::; //42(G x (), we get
that

5 o (p+8) (1 o (p+6) _gletd) K (p+6)
/G [(Afwe(2)) (A 02 we(2))| dz S ()2 ~PIRFAIHATET () 2 = (g) 7ol HelTE,
(6.22)

where we have taken into account that the support of z — w¢(z) is contained in a set of mea-

sure ~ (&)~ —atep? , by Lemma 6.3.3, and that taking differences in £ does not increase the sup-
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port in z. Thus we get

G2 )llop S Y D Crnf) - PIRIFADHe 252 gy m—pl

2<|a|<N KA\, p

m—pla|+|al L2 m—(p—
< D (nrlelEE g gmed),

2<|a|<N

since

(p+9)
2

(0—5)S

— ol

—plaf +af —(p—9).

Applying a similar argument to A785 I(i,r, x, &) we obtain the respective decay estimates,
which allow us to conclude that / € S (o) H) ((G x G) @ End(Ey)), as desired. We now

consider the term J. In this case,

17Gr e llew S Y D / 1(AFwe(2)) (Ag 02 we (2)) (AL R (i1, 27 2, €) [lop d2
1<]a| <N KA\, p

where again we have used the Leibniz’s rule for difference operators, and the middle sum is

over a finite set satisfying | + A\ 4+ u| > |a|. Using Lemma 6.3.3 and the estimates for the

remainder in the Taylor expansion, we get that

. (P+5) K a(p+6)
G2l S 3 / (st DA g
supp(wg

1<]a| <N KA1

xmax [| AL (i .y ) lapll =i
S S ()t el (5 e sl s
1<|a|<N

(p—=3) _(p=9)

S QT = (g,

Again, applying a similar argument to A“’(‘)ﬁ J(i,r, x,£) we obtain the respective decay esti-
mates, which allow us to conclude that J € S @ fé) (G x G) @ End(Ey)), as desired. It only
remains necessary to study the remainder Ry . In this case, by Proposition 6.2.9, we have that
Ry € S ,M PERUAR (G x (A}) ® End(FE)y)). By taking N sufficiently large, we obtain that Ry

belongs to the desired symbol class, which concludes the proof. [

Proof of Theorem 6.3.1. Let Q = A — P, with the operator P as in Lemma 6.3.4. Letu €
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C*>(G, Ey). Then A = P + () and the positivity of P implies

Re(Au, u) 12(¢ 5y = Re(Pu, u) 12(¢, 5y + Re(Qu, u) 12(¢, 5y

> Re(Qu, u) 126, k)

Let now Py = Op({p(i,r, z,7,§)},—}). Writing Q = (A — F) + (Fo — P), we have

O—A*PO(LT?‘%’S) = UA(i,T,LL’,f) —p(i,r,x,x,ﬁ)

and
O-PO*P(L Tz, f) = p<27 T, T, 5) - UP(L r,x, 5)
Consequently, both A — Py and P, — P are bounded from H "% (G, Ey) to

_m—(p=9)

H~"=2 (G, Ey) by Lemmas 6.3.5 and 6.3.6, respectively. It follows that () is also bounded
between these spaces so that
| Re{Qu, w)12(6.0) | S NQull gy el mepesr

< 2
Sl g

completing the proof of Theorem 6.3.1. ]

6.4 Sharp Garding inequality on homogeneous spaces

We now recall the Fourier analysis on homogeneous vector bundles as introduced in [27].
But first, we introduce the setting of compact homogeneous manifolds, following [104].

Letp : £ — X be a vector bundle. A continuous map s : X — F is called a section
of Eifforallz € X, p(s(x)) = p(x). We denote by I'(F) the set of all sections of E. If
X, E are smooth manifolds, we also define I'°(F) the set of all smooth sections of E. If X is
orientable, the space LI(E), 1 < ¢ < o0, is then defined as the completion of the set of all

smooth sections s € I'°(F) such that

Mmmi(/mmeQ < 0. 6.23)
X

Now, consider GG be a compact Lie group and K a closed subgroup of G. Let M = G/ K
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be equipped with its natural compact manifold topology. There exists a natural left action of G
on M given by g - hK = ghK, for every g,h € (G. We say that a vector bundle p : & — M is

a homogeneous vector bundle over M if G acts on E on the left and this action satisfies:
l. g-E, =Ey,,forallz € M, g € G}
2. The previously induced mappings from £, to I, are linear.
There is natural left action of G on I'(E), G x I'(E)) — I'(E) given by
(9-5)(x)=yg-s(g"'x),

forall x € X, g € G. For a homogeneous vector bundle p : E — M, let Ey = p~'(K), be the
fiber at the identity coset. As shown in [22], there exists 7 € Hom(K, End(E))), and a natural
right action of K on G x Fy by (g,v) = (gk, 7' (k)v). We denote by G x, FEj the quotient
(G x Ey)/K under this action. Bott also shows that G X, Ej admits a natural homogeneous

vector bundle structure, and that in fact there exists 7 € Hom(/, End(£))) such that
E =G %, Ey,

as vector bundles. Now consider the vector subspace C*(G, Ey)™ C C°(G, Ey) given by

C¥(G, Ey)" = {f € C*(G, Eo)|Vg € G,Vk € K, f(gk) = 7(k)"" f(9)},
and likewise L?(G, Ey)™ C L*(G, Ey) by

L*(G,Ey)" ={f € L*(G,Ey)|f(gk) = 7(k) "' f(g) fora. e. g,k € G}.
It can be shown that the bijection x, : I'°(E) — C*(G, Ey)7, given by
X-(s)(g) = g7 s(gK),

forevery g € G, extends to a surjective isometry from L*(F) into L*(G, Ey). Therefore
we identify T'°°(F) and L?(E) with C*°(G, Ey)" and L*(G, Ey)7, respectively. The Sobolev

space H*(E) for s € R is then defined as the completion of the set of smooth sections under
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the norm

ull s 2y = |7l s (0, B0)-

Now let A : I'°(E) — I'*°(E) be a continuous linear operator. Then A induces a continuous

linear map A : C°(G, Ey)” — C>(G, Ey)” by
A= X7 © A © X;l'

Ifalso A € V(G x G) ® End(Ey)), we say that A € U7s(E), and define its symbol by
0; = 04, where 04 is the matrix-valued symbol defined in (6.1). The quantization formula

(6.2) then implies

As(gK szfTr z)o (i, 9, )X+5(1,)) @ e |

i,r= 1 ]€G

where {e;}%7, is an orthonormal basis of Ey. As a consequence of Theorem 6.3.1, we obtain

the following result.

Corollary 6.4.1. Letp : E — M = G/K be a homogeneous vector bundle over a compact
homogeneous manifold M, where K < G are compact Lie groups, & = G X, L. Let A€
Us(E), 0 < 0 < p < 1, be such that its matrix-valued symbol o 4(x, &) is positive semi-
definite for every (z,[£]) € G X G, in the sense of Theorem 6.3.1. Then there exists C' > 0
such that

R’e<AS7S>L2(E) 2 _CHSHZW*(QP*@ )

(E)

for every s € T'™(E), where (-,-) 12(r) denotes the canonical inner product on L*(E) and

H'"(FE) denotes the Sobolev space over E of order r € R.

Proof. Let A = Op(c4) be the vector-valued operator associated with A. For s € I'>°(E), set

u = x,S. Theorem 6.3.1 implies that there exists C' > 0 such that

A > —Cllull? i
Re( U,U>L2(G,EO)_ CHU/”HW(G,EO)

:—CH5H2m—<p—6> .
H 2 (B)
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The result then follows from the fact that

Re(As, )12z = Re(x: " Axx; u, X5 u) 2 (m)

= R6<AXTX;1U, U>L2(G,Eo) = Re(Au, u>L2(G,E0)7

where we have used that y-! : L*(G, Ey)”™ — L?(E) is an isometry. O

Finally, note that if £ = G x1 C = M is the trivial bundle (where 1 : K’ — C is the trivial
representation), then we can identify I'°(E) = C*(M), and x1 : C®(M) — C>=(G)¥ is just
the projective lifting defined by

xif(9) = f(g) = f(9K),

forevery f € C>(M),and g € G. The pseudo-differential operator classes and Sobolev
spaces of M are then defined likewise. As an immediate consequence of the previous result,

we obtain the following corollary.

Corollary 6.4.2. Let M = G/K be a compact homogeneous manifold, where K < G are
compact Lie groups. Let Ae \I/Z?(;(M ), 0 <0 < p <1, be such that its matrix valued symbol
oa = oa(x,§) € S)'5(G) is positive semi-definite for every (, [£]) € G X G. Then there exists
C' > 0 such that

Re(Au, u)r2ary > —Cllull?® meies)
H™2— (M)

foreveryu € C(M).



137

Part 111

Conclusion
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Chapter 7

Conclusion

We conclude this thesis by summarizing its main contributions and potential future research.

In the first part we presented a concise notation for the Fourier analysis on a general prod-
uct of compact Lie groups. We then provided an application of such notation in the study of
global hypoellipticity and global solvability of a broad class of first-order differential opera-
tors defined on a product of compact Lie groups. We remark that this application is of theoret-
ical importance since it generalizes certain previous results and further abstracts much of the
theory already established on the torus.

In the second part we generalized the validity of the important and useful “sharp Garding”
inequality on compact Lie groups from the scalar-valued setting to the vector-valued setting.
This new result certainly will be useful in generalizing many other results in analysis from the
scalar-valued to the vector-valued setting. This of course is of importance as there are many
important uses for vector-valued functions in mathematics and physics. We also proved the
new result that such a “Garding” inequality also holds in compact homogeneous spaces. This
is quite relevant as many important manifolds are included in these spaces, such as the n-
dimensional sphere, for any n € N. Finally, we also generalized the concept of amplitudes
and amplitude operators from the scalar-valued compact Lie group setting to the vector-valued
setting. This could be useful in obtaining new results on pseudo-differential operators in this
setting, which have many applications in mathematics and physics.

With respect to potential further future projects in these subjects, perhaps the most natural
next step would be to study the global hypoellipticity and global solvability of left-invariant
pseudo-differential operators on the product of compact Lie groups. The reason for that is,

as observed in Remark 2.2.20, that these operators also act as Fourier multipliers in this set-
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ting. Therefore similar techniques could possibly be used to study these operators. Another
possibility is to study the many other types of global hypoellipticity and global solvability
present in the literature to the same class of operators considered in this thesis. In the con-
text of the sharp Garding inequality, there are many opportunities for further research in its
applications in analysis, such as local solvability (see [105]) and in proving well-posedness of

certain Cauchy problems (see [72], [83]).
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