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for granting me the opportunity to realize this double diploma.

A special thanks to all members of the examination board for accepting to review my work.

Your comments and suggestions greatly contributed to improve this thesis.

Finally, I would like to thank my entire extended family and friends for the constant support,

in many ways, and for believing in me during all these last four years of my PhD.



Preface

This dissertation presents the recent results from my research at the Programa de Pós-
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RESUMO

Esta tese apresenta uma coleção de resultados em grupos de Lie compactos obti-

dos pelo autor durante os últimos anos. Esses incluem condições necessárias e

suficientes para a hipoeliticidade global e resolubilidade global de uma classe

de operadores diferenciais de “evolução” de primeira ordem com coeficientes

variáveis complexos, definidos num produto finito qualquer de grupos de Lie

compactos. Também apresentamos condições suficientes para a obtenção de uma

desigualdade de Gårding “sharp” para operadores pseudo-diferenciais agindo em

funções a valores vetoriais definidas em grupos de Lie compactos, e em seções

de fibrados vetoriais homogêneos.

Palavras-chave: grupos compactos, hipoeliticidade global, resolubilidade

global, grupos de Lie, desigualdade de Gårding, operador pseudo-diferencial.



ABSTRACT

This dissertation presents a collection of results on compact Lie groups obtained

by the author over the last few years. These results include necessary and suffi-

cient conditions to have global hypoellipticity and global solvability of a class of

first-order “evolution” differential operators with variable complex coefficients,

defined on an arbitrary finite product of compact Lie groups. Additionally,

we provide sufficient conditions for obtaining a “sharp” Gårding inequality for

pseudo-differential operators acting on vector-valued functions, defined on com-

pact Lie groups, and on sections of homogeneous vector bundles.

Keywords: compact groups, global hypoellipticity, global solvability, Lie

groups, Gårding inequality, pseudo-differential operator.



NEDERLANDSE SAMENVATTING

Dit proefschrift presenteert een verzameling resultaten over compacte Lie-

groepen, verkregen door de auteur in de afgelopen jaren. Deze resultaten omvat-

ten noodzakelijke en voldoende voorwaarden voor globale hypo-ellipticiteit en

globale oplosbaarheid van een klasse van eerste-orde “evolutie” differentiaalop-

eratoren met variabele complexe coëfficiënten, gedefinieerd op een willekeurig

eindig product van compacte Lie-groepen. We geven ook voldoende voorwaar-

den voor het verkrijgen van een “scherpe” Gårding-ongelijkheid voor pseudod-

ifferentiaaloperatoren die werken op vectorgewaardeerde functies, gedefinieerd

op compacte Lie-groepen, en op secties van homogene vectorbundels.

trefwoorden: compacte groepen, globale hypo-ellipticiteit, globale oplos-

baarheid, Lie-groepen, Gårding-ongelijkheid, pseudodifferentiaaloperator.
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Chapter 1

Introduction

The study of compact Lie groups has garnered significant attention due to their profound

mathematical structures and applications in various domains. In this context, the present

work aims to contribute to the field by offering a collection of novel results obtained over the

past few years. Specifically, this research focuses on two aspects: global hypoellipticity and

global solvability of first-order evolution differential operators, and the establishment of sharp

Gårding inequalities for pseudo-differential operators.

The investigation begins by exploring the necessary and sufficient conditions for global

hypoellipticity and solvability of a class of first-order evolution differential operators with

variable complex coefficients. These operators are considered on finite products of compact

Lie groups, providing a broad framework for understanding their behavior in more general

settings. The techniques used rely on state of the art theories developed for the study of com-

pact Lie groups. Remarkably, the generality of the results obtained presents many challenges

and requires notable changes to previously used techniques, as well as new ideas and defini-

tions. The difficulties arise, for instance, in the unknown behavior of the eigenvalues of vector

fields on compact Lie groups, in contrast with the well-known simple comportment of such

eigenvalues in the case of the torus and 3-sphere. This work can simultaneously be seen a gen-

eralization of certain results in [9] and [75]. This is in part because we treat a similar but more

general version of the differential operators considered in the first part of the first reference.

More specifically the vector fields considered can be any left-invariant vector field on compact

Lie groups, and we also consider a zero-order term. At the same time, our results extend cer-

tain results from the second reference by considering operators acting on any finite product of

compact Lie groups as opposed to only two, and we also investigate the global solvability in
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the complex case.

In addition, this work delves into the conditions required for obtaining a sharp Gårding

inequality for certain classes of pseudo-differential operators. The operators considered act

on vector-valued functions defined on compact Lie groups and on sections of homogeneous

vector bundles. As a direct consequence, we obtain a sharp Gårding inequality on compact

homogeneous manifolds as well. Establishing a sharp Gårding inequality is pivotal for ad-

vancing the theory of pseudo-differential operators, as it provides, for instance, a critical tool

for proving local solvability and well posedness of certain Cauchy problems. Due to the cor-

respondence between higher order differential equations and differential equations involving

vector-valued functions (which can be seen as a system of differential equations), our results

allow for the applications of this inequality to this setting also.

Overall, this dissertation presents a comprehensive study of differential operators and in-

equalities in the context of compact Lie groups, offering valuable insights and advancing the

field with significant theoretical contributions.

Outline of the dissertation:

This dissertation is organized as follows:

In Chapter 2, we remind the basic results and notation necessary for studying Fourier

analysis on compact Lie groups.

In Chapter 3, we introduce our novel multi-index notation, definitions, and basic results

for the study of Fourier analysis on a product of compact Lie groups.

In Chapter 4, we study the global hypoellipticity and global solvability of a class of con-

stant coefficients first-order differential operators defined on any finite product of compact Lie

groups.

In Chapter 5, we study a class of first order differential operators with variable real-valued

coefficients on finite products of compact Lie groups. We show that we can relate the global

hypoellipticity and global solvability of these operators with the corresponding properties of

the constant coefficient operators obtained by taking their coefficients’ averages.

In Appendix 5.A, we state and prove some auxiliary results used in the previous chapter.

In Chapter 6 we first recall the theory and main results regarding the study of the vector-

valued Fourier analysis on compact Lie groups. We also extend the notion of amplitudes to

the setting of pseudo-differential operators on vector-valued functions on compact Lie groups.

We then present and prove our main results concerning a type of “sharp” Gårding inequality
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for vector-valued functions on compact Lie groups. As a corollary, we then present a similar

result for compact homogeneous vector bundles.

In Chapter 7, we conclude by summarizing our main results and presenting possible appli-

cations of these.
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Chapter 2

Preliminaries

In this chapter, we introduce the main theory, results, and definitions used in this disser-

tation. A more detailed consideration of the concepts and demonstrations of the results pre-

sented in this chapter can be found in the references [94] (chapters 6 to 10), [45] (chapters 1

and 2) and [99].

2.1 Fourier analysis on compact topological groups

2.1.1 Representation of topological groups

Let G be a topological group and V a vector space. A representation ξ of G is a homo-

morphism from G into the automorphism group of V . We define its dimension by dim ξ =

dimV . Notice that when V is finite-dimensional, its automorphism group can be seen as a

group of matrices under the usual product. If V is also a Hilbert space, and for every g ∈ G,

the linear operator ξ(g) is unitary, we say that the representation ξ is unitary.

Definition 2.1.1. Let ξ be a representation of G. A subspace W ⊂ V is said to be ξ-invariant

if ξ(g)W ⊂ W , for all g ∈ G. The representation ξ is said to be topologically irreducible if the

only closed ξ-invariant subspaces of V are the trivial subspaces {0} and V .

Notice that if W ⊂ V is ξ-invariant, then ξ : G → Aut(W ) is a representation of G also.

Whenever V is a topological vector space, for instance when it is finite dimensional, then we

can establish the following definition.

Definition 2.1.2. A representation ξ of G is said to be strongly continuous if for every v ∈ V ,

the mapping from G to V given by g �→ ξ(g)v is continuous.
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Definition 2.1.3. An intertwining map between the representations ξ ∈ Hom(G,Aut(V )) and

η ∈ Hom(G,Aut(W )) of G, is a linear map A : V → W such that

Aξ(g) = η(g)A,

for every g ∈ G. If there exists an invertible intertwining map between the representations ξ

and η, then they are said to be equivalent, denoted by ξ ∼ η. We also denote their equivalence

class by [ξ] or [η]. Notice that ξ ∼ η =⇒ dim ξ = dim η.

If two representations ξ and η are both unitary and topologically irreducible, then it is possible

to show that any intertwining map between them is either the zero mapping or an invertible

isometry.

2.1.2 The Peter Weyl decomposition

In what follows, we assume that G is a compact group, that is, a topological group which

is also a compact topological space. Denote by Rep(G) the set of all strongly continuous uni-

tary irreducible representations of G. We define Ĝ to be the set of all equivalence classes of el-

ements in Rep(G). Since G is compact, every element in Rep(G) is finite dimensional. There-

fore, for each [ξ] ∈ Ĝ, we may choose a matrix-valued representative of [ξ], that is, ξ ∈ [ξ] is

such that ξ : G → U(m), for some m ∈ N, where U(m) = {A ∈ Cm×m|A∗ = A−1}. With this

in mind, we will always consider ξ ∈ [ξ] ∈ Ĝ to be matrix-valued.

For any [ξ] ∈ Ĝ, we denote its dimension by d[ξ] = dim ξ, and we may write it as dξ

for convenience. Therefore, for any [ξ] ∈ Ĝ, 1 ≤ i, j ≤ dξ, and x ∈ G, if we denote by

ξij(x)
.
= ξ(x)ij the “ij-th coefficient of the matrix ξ(x)”, we obtain the coefficient functions

ξij : G → C, where 1 ≤ i, j ≤ dξ. These are not only continuous, by definition, but can be

shown to be smooth also.

Next, notice that G is locally compact, therefore there exists a unique positive Borel mea-

sure μG, called the Haar measure of G, characterized by the following properties:

• It is invariant under group translation, in the sense that

∫
G

f(x)dμG(x) =

∫
G

f(yx)dμG(x),

for all measurable f : G → C and every y ∈ G.
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• It is finite and normalized, that is, μG(G) = 1.

For convenience, we denote such measure simply by dx and write

∫
G

f(x)dx
.
=

∫
G

f(x)dμG(x),

for all measurable complex-valued functions f . From the properties above, it can be shown

that this measure also satisfies

∫
G

f(x)dx =

∫
G

f(xy)dx =

∫
G

f(x−1)dx,

for any y ∈ G and measurable f : G → C.

We denote by Lp(G) the usual Banach space of p-th integrable (with respect to the Haar

measure) complex-valued functions on G, where 1 ≤ p < ∞ and ‖f‖p =
(∫

G
|f(x)|pdx

) 1
p .

For p = ∞, the space L∞(G) will denote the usual space of essentially bounded integrable

functions on G, and ‖f‖∞ = ess sup|f |.
Note that by Fubini’s Theorem one can show that the Haar measure on the product of

compact Lie groups is given by the tensor product of the Haar measures of each group.

The following well-known result highlights the importance of the representation theory of

G to the study of its function spaces.

Theorem 2.1.4 (Peter-Weyl). Let G be a compact group. Then the set

{√
dξξij ∈ L2(G)|ξ = (ξij)

dξ
i,j=1, [ξ] ∈ Ĝ

}
is an orthonormal basis for L2(G), where from each equivalence class in Ĝ, we choose only

one representative.

2.1.3 Fourier series on compact Lie groups

The results from the previous subsection motivate the definition of Fourier coefficients for

functions on compact groups, as follows.

Definition 2.1.5. Let G be a compact group. If f ∈ L2(G) and [ξ] ∈ Ĝ, where ξ = (ξij)
dξ
i,j=1 ∈
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Rep(G), define the Fourier coefficient of f at ξ as the matrix

f̂(ξ)
.
=

∫
G

f(x)ξ∗(x)dx ∈ Cdξ×dξ .

That means

f̂(ξ)αβ =

∫
G

f(x)ξβα(x)dx = 〈f, ξβα〉L2(G),

for each 1 ≤ α, β ≤ dξ.

Note that even though the coefficient f̂(ξ) depends on the choice of representative for

[ξ] ∈ Ĝ, different representatives yield unitarily similar matrices. Also, the Peter-Weyl Theo-

rem implies we can write any f ∈ L2(G) as the sum

f(x) =
∑
[ξ]∈Ĝ

dξ

dξ∑
α,β=1

f̂(ξ)αβξβα(x) =
∑
[ξ]∈Ĝ

dξTr
(
f̂(ξ)ξ(x)

)
.

This series converges for μG-almost every x in G, as well as in L2(G). The group Fourier

transform also preserves the L2 norm in the following sense.

Proposition 2.1.6 (Plancherel’s identity). Let G be a compact group. Then, for every f ∈
L2(G):

||f ||2L2(G) =
∑
[ξ]∈Ĝ

dξ‖f̂(ξ)‖2HS =
∑
[ξ]∈Ĝ

dξ

dξ∑
α,β=1

|f̂(ξ)αβ|2,

where ‖A‖2HS
.
= Tr(AA∗) denotes the Hilbert-Schmidt norm.

It is worth noting that the formulas above hold independently of the choice of representa-

tive for each equivalence class in Ĝ, due to the cyclic property of the trace.

Proposition 2.1.7. Let G be a compact group. Then, for every f, g ∈ L2(G):

〈f, g〉L2(G) =
〈
f̂ , ĝ
〉
L2(Ĝ)

.
=
∑
[ξ]∈Ĝ

dξ

dξ∑
α,β=1

f̂(ξ)αβ ĝ(ξ)αβ,

or, equivalently,

〈f, g〉G =
〈
f̂ , ĝ
〉
L2(Ĝ)

=
∑
[ξ]∈Ĝ

dξ

dξ∑
α,β=1

f̂(ξ)αβ ĝ(ξ)αβ. (2.1)

Proof. Indeed, using the orthogonality of the representations ξ ∈ [ξ] ∈ Ĝ, and the fact that the
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Fourier series converges in L2(G), we have that

∫
G

f(x)g(x)dx =

∫
G

⎛⎝∑
[ξ]∈Ĝ

dξ

dξ∑
α,β=1

f̂(ξ)αβξβα(x)

⎞⎠⎛⎝∑
[η]∈Ĝ

dη

dη∑
γ,κ=1

ĝ(ξ)γκηκγ(x)

⎞⎠ dx

=
∑
[ξ]∈Ĝ

∑
[η]∈Ĝ

dξdη

dξ∑
α,β=1

dη∑
γ,κ=1

f̂(ξ)αβ ĝ(ξ)γκ

∫
G

ξβα(x)ηκγ(x)dx

=
∑
[ξ]∈Ĝ

dξ

dξ∑
α,β=1

f̂(ξ)αβ ĝ(ξ)αβ.

Remark 2.1.8. Note that formula 2.1 makes sense since [ξ] ∈ Ĝ if and only if [ξ] ∈ Ĝ, where

ξ(x)
.
= ξ(x), for every x ∈ G. Moreover, the equivalence between both expressions above can

be seen from the fact that

ĝ(ξ) = ĝ(ξ),

for every g ∈ L2(G) and [ξ] ∈ Ĝ.

2.2 Fourier analysis on compact Lie groups

We now assume G is a compact Lie group. We will assume the reader is familiar with the

theory of smooth manifolds and Lie groups, for which we cite [82, 103]. Let g ≡ Lie(G) de-

note the space of all left-invariant vector fields on G, which can be identified with the tangent

space of G at the identity eG ∈ G. This real vector space (with dimension equal to dimG) also

has a Lie algebra structure (through the Lie bracket for vector fields), said to be the group’s

Lie algebra. Since G is compact or since they are left-invariant, each X ∈ g is complete. This

means that its flow starting at any x ∈ G, given by (x, t) �→ φX
t (x), is defined for every t ∈ R.

This way, we may define the exponential map

exp : g → G

by exp(X) = φX
1 (eG). Equivalently, as any compact Lie group is isomorphic to a subgroup

of the matrix group U(m) (see [23], Chapter III, Theorem 4.1), a compact group’s Lie algebra

may also be identified with a matrix subgroup and the exponential mapping coincides with the
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usual matrix exponential. That is the mapping given by the power series

exp(X)
.
=

∞∑
k=0

1

k!
Xk,

for any matrix X ∈ Cn×n. As vector fields, each X ∈ g acts as a first order left-invariant dif-

ferential operator on G. By definition of the exponential mapping, this action can be expressed

by

Xf(x) =
d

dt

∣∣∣∣
t=0

f(x exp(tX)),

for any f ∈ C∞(G) and x ∈ G. By taking the direct sum of the tensor products of multiple

copies of g, modulo an ideal, we can embed g into a unital associative algebra U(g), called the

universal enveloping algebra of g. Its elements can thus be viewed as finite order left-invariant

differential operators on G. More precisely, define

T .
=

∞⊕
m=0

⊗mg

the direct sum of all finite tensor products of g with itself, i.e. ⊗mg denotes the m-fold product

g⊗ · · · ⊗ g. Its elements are given by linear combinations of elements of the form

λ01+
J∑

j=1

Kj∑
k=1

λjkXkj1 ⊗ · · · ⊗Xkjj ,

where 1 is the formal unit of T , λ0, λjk ∈ R, Xkjm ∈ g and J,Kj ∈ N0. The product in T is

defined by the tensor product for the basis elements, that is,

(X1 ⊗ · · · ⊗Xn)(Y1 ⊗ · · · ⊗ Ym)
.
= X1 ⊗ · · · ⊗Xn ⊗ Y1 ⊗ · · · ⊗ Ym,

for Xj, Yk ∈ g, 1 ≤ j ≤ n, 1 ≤ k ≤ m, and extended linearly to T . Consider the two sided

ideal J ⊂ T spanned by the set

{X ⊗ Y − Y ⊗X − [X, Y ]|X, Y ∈ g} .

The universal enveloping algebra of g is then defined as the quotient algebra

U(g) .
= T /J .
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The Killing form of a real Lie algebra g is the bilinear mapping B : g× g → R given by

B(X, Y )
.
= Tr(ad(X)ad(Y )),

where ad(X) : g → g, is the mapping given by ad(X)(Y ) = [X, Y ], for any X, Y ∈ g.

It can be proven that the Killing form of the Lie algebra of a compact Lie group is nega-

tive semi-definite. Using this fact, through an argument similar to the Gram-Schmidt process

for constructing orthonormal basis on vector spaces, we can construct a basis {Xj}nj=1 of g

such that

B(Xi, Xj) = −δij, (2.2)

where δij is the Kronecker delta. The Casimir element LG ∈ U(g) of G, also known as the

positive Laplacian of G, or just the “Laplacian”, is defined by

LG = −
n∑

j=1

Xj ⊗Xj.

The positive Laplacian can be viewed as a second order, partial differential operator on G,

which is also positive definite and bi-invariant. It is also independent on the choice of basis

{Xj}nj=1 satisfying (2.2). One can prove that for every [ξ] ∈ Ĝ, its coefficient functions ξij :

G → C are all eigenfunctions of LG, corresponding to the same eigenvalue. In fact, we have

the following result.

Theorem 2.2.1. Let G be a compact Lie Group and LG its positive Laplacian. Then for every

[ξ] ∈ Ĝ, there exist real numbers ν[ξ] ≥ 0 such that

LGξαβ = ν[ξ]ξαβ,

for every 1 ≤ α, β ≤ dξ.

Now let G be a n dimensional compact Lie group, and B = {Xj}nj=1 a basis of its Lie

algebra. For any multi-index γ = (γ1, . . . , γn) ∈ Nn
0 , we denote by ∂γ a differential operator

given by the composition of exactly |γ| = γ1 + · · · + γn elements of B, such that Xj appears

exactly γj times, for 1 ≤ j ≤ n. Note here that composing the same vector fields in different

orders may yield different differential operators, but this will not be relevant in this work. We

will denote the set of all such operators by Diff(G,B).
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Let C∞(G) be the set of all smooth complex-valued functions on G. We endow it with the

Fréchet space topology given by the countable family of seminorms

{p∂γ |∂γ ∈ Diff(G,B), |γ| ≤ m ∈ N0},

where

p∂γ (f) = max
x∈G

|∂γf(x)|,

for every f ∈ C∞(G).

Definition 2.2.2. For G a compact Lie group, let D′(G) be the space of distributions on G,

that is, the space of all continuous linear functionals on C∞(G), with the usual notion of con-

vergence, that is, uj → u in D′(G) if and only if uj → u point-wise.

Throughout this work we will denote the duality between D′(G) and C∞(G) by

〈u, f〉G .
= u(f),

for u ∈ D′(G) and f in C∞(G). By definition, for each u ∈ D′(G) there exist C,N > 0 such

that

|〈u, f〉G| ≤ Cmax
x∈G

∑
|γ|≤N

|∂γf(x)|,

for every f ∈ C∞(G).

Notice that as G is compact, C∞(G) ⊂ L2(G). We can also extend the definitions and

results from the previous subsection to the space D′(G) as follows.

Definition 2.2.3. Let G be a compact Lie group. For u ∈ D′(G), and [ξ] ∈ Ĝ, define the

Fourier coefficient of u at ξ as the matrix

û(ξ)
.
= 〈u, ξ∗〉 ∈ Cdξ×dξ .

More precisely, û(ξ) is the dξ × dξ-matrix with coefficients

û(ξ)αβ
.
= 〈u, ξβα〉G ∈ C,

where 1 ≤ α, β ≤ dξ.
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Similar to the Peter-Weyl theorem, one can prove that for every u ∈ D′(G) the series

∑
[ξ]∈Ĝ

dξ

dξ∑
α,β=1

û(ξ)αβξβα

converges to u ∈ D′(G) in the sense of distributions. It follows then that for any u ∈ D′(G)

and f ∈ C∞(G):

〈u, f〉G =
∑
[ξ]∈Ĝ

dξ

dξ∑
α,β=1

û(ξ)αβ f̂(ξ)αβ,

similarly to formula (2.1).

If u ∈ Lp(G), 1 ≤ p ≤ ∞, there is a natural way to identify u with a distribution (still

denoted by u) through the formula

〈u, f〉G =

∫
G

u(x)f(x)dx, (2.3)

for every f ∈ C∞(G). Also, for any differential operator ∂γ ∈ Diff(G,B), we define ∂γu ∈
D′(G) by

〈∂γu, f〉G .
= (−1)|γ|〈u, ∂γf〉G,

for every f ∈ C∞(G). This extends a similar identity which holds for smooth functions and

coincides with the notion of weak derivatives for Lp functions via the duality (2.3).

Definition 2.2.4. Let G be a compact Lie Group and LG its positive Laplacian. Denote by

〈ξ〉 .
= (1 + ν[ξ])

1/2

the common eigenvalue of the linear operator (Id+LG)
1/2 corresponding to the eigenfunctions

ξαβ with 1 ≤ α, β ≤ dξ, [ξ] ∈ Ĝ.

From the discussion above, we know these eigenvalues are strictly positive. They also satisfy

the following inequality:

Proposition 2.2.5. Let G be a compact Lie group. There exists C > 0 such that

ν[ξ] ≤ 〈ξ〉2 ≤ Cν[ξ],

for all non trivial [ξ] ∈ Ĝ.
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Proof. Indeed, let λ be the smallest non-zero eigenvalue of LG. Then if [ξ] is not trivial

1 + ν[ξ] ≤
(
1

λ
+ 1

)
ν[ξ],

therefore ν[ξ] ≤ 〈ξ〉2 ≤
(
1
λ
+ 1
)
ν[ξ], for all non-trivial [ξ] ∈ Ĝ.

Also, by Weyl’s eigenvalue counting formula for the Laplacian (see [104]), one can also

prove the following.

Proposition 2.2.6. Let G be a compact Lie group. There exists K > 0 such that

dξ ≤ K〈ξ〉dimG
2 ,

for all [ξ] ∈ Ĝ.

Remark 2.2.7. Weyl’s eigenvalue counting formula also implies that given R > 0, there exist

only finitely many [ξ] ∈ Ĝ such that 〈ξ〉 < R. This fact will be relevant later in this work.

As in the Euclidean setting, it is well known that the asymptotic behaviour of the Fourier

coefficients characterizes smoothness as shown in the following theorem.

Theorem 2.2.8. Let G be a compact Lie Group. The following are equivalent:

i) f ∈ C∞(G);

ii) For every N > 0, there exists MN > 0 such that

|f̂(ξ)αβ| ≤ MN〈ξ〉−N ,

for all [ξ] ∈ Ĝ and 1 ≤ α, β ≤ dξ.

The following statements are equivalent:

i) u ∈ D′(G) ;

ii) There exist N > 0,M > 0 such that

|û(ξ)αβ| ≤ M〈ξ〉N ,

for all [ξ] ∈ Ĝ and 1 ≤ α, β ≤ dξ.
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In fact, the Sobolev space Hs(G), where s ∈ R, is defined as the Banach space given by

the set of all u ∈ D′(G) such that

‖u‖2Hs(G)
.
=
∑
[ξ]∈Ĝ

dξ〈ξ〉2s‖û(ξ)‖2HS =
∑
[ξ]∈Ĝ

dξ〈ξ〉2s
dξ∑

α,β=1

|û(ξ)αβ|2 < ∞,

with the Sobolev norm ‖ · ‖Hs(G).

Proposition 2.2.9. Let G be a compact Lie group. Then

∑
[ξ]∈Ĝ

d2ξ〈ξ〉−2t < ∞ ⇐⇒ t >
dimG

2
.

Proof. Indeed, notice that for the delta distribution centered at the group indentity δ, we have

δ̂(ξ) = Iddξ is the dξ × dξ identity matrix, for every [ξ] ∈ Ĝ. Therefore

∑
[ξ]∈Ĝ

d2ξ〈ξ〉−2t =
∑
[ξ]∈Ĝ

dξ〈ξ〉−2t‖δ̂(ξ)‖2HS = ‖δ‖2H−t(G).

Through a localization argument, this norm is finite if and only if t > dimG/2.

Theorem 2.2.8 then implies that

⋂
s∈R

Hs(G) = C∞(G),
⋃
s∈R

Hs(G) = D′(G).

We now present the concept of global symbol for pseudo-differential operators on com-

pact Lie groups, introduced by Ruzhansky and Turunen in [94], as follows.

Definition 2.2.10. Let A : C∞(G) → C∞(G) be a continuous linear operator. Its symbol is

defined as the mapping given by

σA(x, ξ)
.
= ξ(x)∗(Aξ)(x) ∈ Cdξ×dξ ,

for every x ∈ G, [ξ] ∈ Ĝ, where (Aξ)(x)αβ
.
= (Aξαβ)(x), for all 1 ≤ α, β ≤ dξ.

We can also obtain the symbol of a continuous linear operator as follows. In the following, we

denote by C∞(G) ⊗̂D′(G) the complete locally convex tensor product of the nuclear spaces

C∞(G) and D′(G).
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Theorem 2.2.11 (Schwartz kernel). Let A : C∞(G) → C∞(G) be a continuous linear opera-

tor. Then there exists a unique mapping K ∈ C∞(G) ⊗̂D′(G) such that

〈f, Aφ〉 = 〈K, f ⊗ φ〉.

Proposition 2.2.12. Let A : C∞(G) → C∞(G) be a continuous linear operator. Denote by

KA denote its Schwartz kernel, and RA
.
= K(x, y−1x) its right convolution kernel. Then

σA(x, ξ) = R̂A(x, ·)(ξ),

for every x ∈ G, [ξ] ∈ Ĝ.

Theorem 2.2.13. Let A : C∞(G) → C∞(G) be a continuous linear operator. Then

Af(x) =
∑
[ξ]∈Ĝ

dξTr[ξ(x)σA(x, ξ)f̂(ξ)] =
∑
[ξ]∈Ĝ

dξ

dξ∑
α,β,γ=1

ξβγ(x)σA(x, ξ)γαf̂(ξ)αβ (2.4)

for every f ∈ C∞(G) and x ∈ G.

Ruzhansky, Turunen and Wirth would also define the global symbol classes S m
ρ,δ(G) later

in [99]. These classes extend the usual Hörmander symbol classes Sm
ρ,δ(G) in the sense that

they define the same class of pseudo-differential operators in the range of ρ and δ on which

Sm
ρ,δ(G) are well defined, that is, 0 ≤ δ < ρ ≤ 1, and ρ ≥ 1− δ. We shall adopt the alternative

notation Sm
ρ,δ(G× Ĝ) ≡ S m

ρ,δ(G). More precisely, these symbol classes are defined as follows.

Definition 2.2.14. Let q ∈ C∞(G). We define the difference operator Δq by Δqf̂(ξ) = q̂f(ξ),

for every f ∈ D′(G). We say Δq is a difference operator of order k ∈ N if q has a zero of

order k at the group identity eG. A family of order 1 difference operators is said to be admis-

sible if the gradients at eG of the corresponding functions q span the tangent space of G at eG.

Furthermore, such collection is said to be strongly admissible if eG is the only common zero

of the functions q as well.

Consider a fixed ordered family of order 1 difference operators {Δq1 , . . . ,Δqk}. For every

multi-index α ∈ Nk
0 we denote by Δα the difference operator Δα1

q1
. . .Δαk

qk
of order |α|. We

also denote qα = qα1
1 . . . qαk

k . This way, Δα = Δqα as well.

The following result provides an analog of the “Leibniz’s rule” for difference operators, its

proof can be found in [96].
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Proposition 2.2.15 (Leibniz’s formula for Difference Operators). For any multi-index α there

exist constants Cλ,μ ≥ 0 such that

Δα
ξ [f̂(ξ)ĝ(ξ)] =

∑
|μ|,|λ|≤|α|≤|λ+μ|

Cλ,μ(Δ
λ
ξ f̂(ξ))(Δ

μ
ξ ĝ(ξ)),

for any f, g ∈ D′(G), and all [ξ] ∈ Ĝ.

Definition 2.2.16 (Symbol classes Sm
ρ,δ(G × Ĝ)). Let {Δq1 , . . .Δqk} be a strongly admissible

ordered family of difference operators, and {X1, . . . , Xn} an ordered basis for the Lie algebra

of G. We say that σ : G×Ĝ → ⋃[ξ]∈Ĝ Cdξ×dξ is in Sm
ρ,δ(G×Ĝ), where m ∈ R, 0 ≤ δ, ρ ≤ 1, if

σ(x, ξ) = κ̂(x, ·)(ξ) for some κ ∈ C∞(G) ⊗̂D′(G) and for every multi-index α ∈ Nk
0, β ∈ Nn

0 ,

there exists a constant Cαβ > 0 such that

‖Δα∂βσ(x, ξ)‖op ≤ Cα,β〈ξ〉m−ρ|α|+δ|β|,

for every (x, [ξ]) ∈ G× Ĝ.

Remark 2.2.17. It can be shown that the previous definitions does not depend on the choice of

strongly admissible ordered family of difference operators, nor on the choice of ordered basis

for the Lie algebra of G.

Definition 2.2.18. For σA ∈ Sm
ρ,δ(G × Ĝ) we define by A = Op(σA) the pseudo-differential

operator given by formula (2.4). We denote the set of all such operators by Ψm
ρ,δ(G× Ĝ).

We also denote the set of smoothing symbols and smoothing operators by

S−∞(G× Ĝ) =
⋂
m∈R

Sm
1,0(G× Ĝ), Ψ−∞(G× Ĝ) =

⋂
m∈R

Ψm
1,0(G× Ĝ),

respectively.

Remark 2.2.19. It can be shown that a pseudo-differential operator of order m is a bounded

operator from Hs(G) into Hs−m(G). Consequently, for a pseudo-differential A ∈ Ψ−∞(G ×
Ĝ), and any u ∈ D′(G), Au ∈ C∞(G), hence the name “smoothing”.

Remark 2.2.20. If A : C∞(G) → C∞(G) is a continuous left-invariant linear operator, that is,

(A ◦ πL(y)f)(x) = (πL(y) ◦ A)f(x),
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where πL(y)f(x) = f(y−1x), for every f ∈ C∞(G) and x, y ∈ G, then σA is independent of

x ∈ G. Theorem 2.2.13 then implies that

Âf(ξ) = σA(ξ)f̂(ξ),

for every ξ ∈ Rep(G) and f ∈ C∞(G). By duality, this remains true for f ∈ D′(G).

Viewed as a left-invariant first order partial differential operator, any left invariant vector

field X on a compact Lie group G is pseudo differential operator of order 1. In fact, its symbol

σX belongs to the symbol class S1
1,0(G× Ĝ). Therefore there exists a constant C > 0 such that

‖σX(ξ)‖op ≤ C〈ξ〉, (2.5)

for every [ξ] ∈ Ĝ.

In this thesis, we shall make use of the following theorem, whose proof can be found in

[44].

Theorem 2.2.21 (Taylor Expansion in Compact Lie Groups). Let G be a compact Lie group,

d = dimG. Let also {Δq1 , . . . ,Δqd} be a strongly admissible collection of difference opera-

tors. There exists a basis of left-invariant vector fields {X1, . . . , Xd} such that

Xjqk(x
−1)|x=eG = δjk,

for all 1 ≤ j, k ≤ d. Moreover, any f ∈ C∞(G), can be written as

f(xy) = f(x) +
∑

1≤|α|<N

1

α!
∂αf(x)qα(y

−1) +Rf
x,N(y),

for any x, y ∈ G, N ∈ N, where the last term is referred to as the Taylor remainder of order N

and satisfies

|Rf
x,N(y)| � |y|N max

|α|≤N
‖∂αf‖L∞(G).

Here |y| denotes the distance from the group identity eG to y, given by any Riemmanian met-

ric defined on G.
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Part I

Global hypoellipticity and solvability of

differential operators
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Chapter 3

Fourier analysis on the product of

compact Lie groups

3.1 Introduction

In this chapter, we propose to study the regularity of solution and solvability of a class of

first-order differential operators on a product of compact n ∈ N compact Lie groups. More

precisely, denoting by D′(G) the space of distributions on G = G1 × · · · × Gn, where each

Gj is a compact Lie group, and by L : D′(G) → D′(G) a first-order differential operator, we

are interested in establishing conditions that ensure that u is smooth whenever Lu is smooth, a

property known as global hypoellipticity. Regarding the global solvability, we want to identify

under what conditions it is possible to guarantee that the equation Lu = f ∈ C∞(G) admits a

smooth solution.

The study of compact Lie groups has significant relevance in the context of mathemat-

ics and physics. For instance, the compact Lie group SO(3) can be identified with the group

of symmetries of the 2-dimensional sphere, and therefore to rotations on R3. Similarly, there

is a connection between the compact Lie group Sp(3) and the quaternions which are also re-

lated to rotations in R3. One possible application of compact Lie groups is to the study of the

Landau-Lifshitz equation, which describes the magnetization of a ferromagnetic materials. In

[101] the author introduces an alternate formulation of the Landau-Lifshitz equation on the

Lie group SO(3), and develops a numerical method to solve these equations. The advantage

of basing the numerical method on the SO(3) interpretation is, that it allows us to preserve

quadratic first integrals of the differential equation (which define the geometry of this prob-
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lem).

Extensive research has been dedicated to exploring these global properties for operators

defined on the torus, as well as on other compact Lie groups, as in [1, 41], and also on arbi-

trary compact manifolds, as in [2, 18, 34, 37, 38].

The specific scenario where the operator L is a vector field defined on a torus deserves

special attention. As conjectured by S. Greenfield and N. Wallach, see [46], if a smooth closed

manifold M admits a globally hypoelliptic real vector field L, then M is diffeomorphic to a

torus, and L can be conjugated to a constant vector field that satisfies a Diophantine condition.

Consequently, the investigation of global hypoellipticity for vector fields on closed manifolds

primarily focuses on the tori. Some references in this subject include [29, 43, 55, 57, 65, 89].

It is worth noting that the literature contains numerous other references on this topic beyond

the ones mentioned here.

Most of the studies that deal with the question of global hypoellipticity and global solv-

ability on compact Lie groups make use of Fourier analysis, which allows one to reduce par-

tial differential equations into ordinary differential equations, or even algebraic equations.

This is possible through the Fourier analysis and quantization of pseudo-differential opera-

tors on compact Lie groups introduced by Ruzhansky and Turunen in [94]. This technique

is used, for example, in [1], [28], [74], [75], [76], [77], [78], [79] and [98]. In the particu-

lar case where the compact Lie group is a torus, Ruzhasnky and Turunen’s theory coincides

with the usual Fourier analysis of complex-valued periodic functions, and so the same tech-

nique dates much further back, and can be found in a large selection of papers, see for instance

[5, 8, 9, 10, 11, 12, 34, 36, 50, 55, 56, 57, 64, 89]. In this thesis, we adapt these techniques,

using state of the art theories, to the study of global hypoellipticity and global solvability of

first-order differential operators on finite products of compact Lie groups.

The main difficulties in studying this case, compared to the case of the torus, is that in

general we have no information about the rate of growth of the eigenvalues of an arbitrary

left-invariant vector field on a compact Lie group. There is also the problem that there is a

lack of “dilation” properties corresponding to the eigenvalues of such vector fields. In the n-

torus on the other hand, for every ξj ∈ Z, for every k ∈ Z the complex numbers ikξj corre-

spond to eigenvalues of the vector field ∂xj
. There is also the fact that the Fourier coefficients

are matrix-valued, and therefore required a multi-index notation to address specific entries of

these matrices.
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In this section, we introduce the theory and notation, developed by the author, used for

considering the Fourier analysis on the finite product of compact Lie groups. This theory and

notation will then be used in the following sections for the study of global properties of first-

order differential operators.

Let n ∈ N and consider G1, . . . , Gn compact Lie groups. Their product G = G1×· · ·×Gn

is also a compact Lie group, so we can apply definitions and results of Chapter 2 to it. More-

over, it can be shown that given any [ξ] ∈ Ĝ, there exist [ξ1] ∈ Ĝ1, . . . , [ξ
n] ∈ Ĝn such that

[ξ] = [ξ1 ⊗ · · · ⊗ ξn],

where ⊗ denotes the external tensor product of representations. As seen in [23, 74], the exter-

nal tensor product of strongly continuous irreducible unitary representations is also a strongly

continuous irreducible unitary representation, whose dimension is equal to the product of the

dimensions of each of its factors. Not only that, any two such representations are equivalent

if and only if each of its corresponding factors are pairwise equivalent. Therefore, we may

identify Ĝ with Ĝ1 × · · · × Ĝn. Inspired by the works of Kirilov, Almeida and Ruzhansky in

[74, 75], we define the partial Fourier transforms on the product group G as follows.

Definition 3.1.1. Let n ∈ N, n ≥ 2. Consider G = G1 × · · · ×Gn a product of n compact Lie

groups. Given f ∈ L2(G), define its partial Fourier transform at ξnαnβn
by

f̂(x1, . . . , xn−1, ξ
n)αnβn =

∫
Gn

f(x1, x2, . . . , xn)ξnβnαn
(xn)dxn,

where [ξn] ∈ Ĝn and 1 ≤ αn, βn ≤ dξn . Similarly, define its partial Fourier transform at

ξn−1
αn−1βn−1

⊗ ξnαnβn
by

f̂(x1, . . . , xn−2, ξ
n−1, ξn)αβ =

=

∫
Gn−1

∫
Gn

f(x1, x2, . . . , xn)ξ
n−1
βn−1αn−1

(xn−1)ξnβnαn
(xn)dxndxn−1 ,

where [ξj] ∈ Ĝj , α = (αn−1, αn), β = (βn−1, βn) and 1 ≤ αj, βj ≤ dξj , for j = n − 1, n.

Proceeding in a similar manner, we define up to the “total” partial Fourier Transform of f at
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ξ1α1β1
⊗ · · · ⊗ ξnαnβn

by

f̂(ξ1, . . . , ξn)αβ =

∫
G1

· · ·
∫
Gn

f(x1, . . . , xn)ξ1β1α1
(x1) . . . ξnβnαn

(xn) dxn . . . dx1,

where α = (α1, . . . , αn), β = (β1, . . . , βn) and [ξj] ∈ Ĝj , 1 ≤ αj, βj ≤ dξj , for j = 1, . . . , n.

Notice that f̂(ξ1, . . . , ξn) may be viewed as a 2n-dimensional array with complex entries

given by f̂(ξ1, . . . , ξn)α1β1α2β2...αnβn = f̂(ξ1, . . . , ξn)αβ .

If f ∈ L2(G), it then follows from the Peter-Weyl Theorem and the previous definitions

that

f(x1, . . . , xn) =

=
∑

[ξ1]∈Ĝ1

· · ·
∑

[ξn]∈Ĝn

dξ1 . . . dξn

dξ1∑
α1,β1=1

· · ·
dξn∑

αn,βn=1

f̂(ξ1, . . . , ξ
n)αβξ

1
β1α1

(x1) . . . ξ
n
βnαn

(xn),

(3.1)

where convergence holds almost everywhere as well as in L2(G).

To avoid cumbersome notation such as the one above, we establish the following definitions.

Definition 3.1.2. Let G = G1 × · · · × Gn be a product of compact Lie groups. For [ξ] =

[ξ1 ⊗ · · · ⊗ ξn] ∈ Ĝ, we define:

Jξ = {γ ∈ Nn|1 ≤ γj ≤ dξj , 1 ≤ j ≤ n}.

Also, for α, β ∈ Jξ, let

ξαβ(x)
.
= ξ1α1β1

(x1) . . . ξ
n
αnβn

(xn),

for all x = (x1, . . . , xn) ∈ G.

Since dξ = dξ1 . . . dξn , for every [ξ] ∈ Ĝ, equality (3.1) may be rewritten as:

f(x) =
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
f̂(ξ)αβ ξβα(x),
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for x = (x1, . . . , xn) and ξ = ξ1 ⊗ · · · ⊗ ξn. Similarly, for any 1 ≤ j < n the formula

f(x1, . . . , xn) =

=
∑

[ξj ]∈Ĝj

· · ·
∑

[ξn]∈Ĝn

dξj . . . dξn

d
ξj∑

αj ,βj=1

· · ·
dξn∑

αn,βn=1

f̂(x1, . . . , xj−1, ξ
j, . . . , ξn)αβ

× ξjβjαj
(xj) . . . ξ

n
βnαn

(xn)

can be rewritten as

f(x) =
∑

[ξ]∈ ̂(Gj×···×Gn)

dξ
∑

α,β∈Jξ
f̂(x1, . . . , xj−1, ξ)αβξβα(xj, . . . , xn),

where α = (αj, . . . αn) and β = (βj, . . . , βn).

We can extend these definitions to distributions on G as follows.

Definition 3.1.3. For u ∈ D′(G), where G = G1 × · · · × Gn is the product of n ≥ 2 compact

Lie groups, we define its partial Fourier transform at [ξnαnβn
] ∈ Ĝn as the distribution acting on

C∞(G1 × · · · ×Gn−1) given by

〈û(·, . . . , ·, ξn)αnβn , ψ〉G1×···×Gn−1
=
〈
u, ψ ⊗ ξnβnαn

〉
G1×···×Gn

,

for every ψ ∈ C∞(G1 × · · · × Gn−1). Similarly, we define its partial Fourier transform at

ξn−1
αn−1βn−1

⊗ ξnαnβn
as the distribution acting on C∞(G1 × · · · ×Gn−2) given by

〈
û(·, . . . , ξn−1, ξn)αβ, ψ

〉
G1×···×Gn−2

=
〈
u, ψ ⊗ ξn−1

βn−1αn−1
⊗ ξnβnαn

〉
G1×···×Gn

,

for every ψ ∈ C∞(G1 × · · · × Gn−2), where α = (αn−1, αn), β = (βn−1, βn). Proceeding

like this, we define up to the “total” partial Fourier transform of u at ξ1 ⊗ · · · ⊗ ξn, which

corresponds to the complex number

û(ξ1, . . . , ξn)αβ =
〈
u, ξ1β1α1

⊗ · · · ⊗ ξnβnαn

〉
G1×···×Gn

∈ C.
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As before, we can also write

u =

=
∑

[ξ1]∈Ĝ1

· · ·
∑

[ξn]∈Ĝn

dξ1 . . . dξn

d
ξj∑

αj ,βj=1

· · ·
dξn∑

αn,βn=1

û(ξ1, . . . , ξn)αβξ
1
β1α1

. . . ξnβnαn

=
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
û(ξ)αβξβα.

Similarly, for 1 ≤ j < n:

u =
∑

[ξ]∈ ̂Gj×···×Gn

dξ
∑

α,β∈Jξ
û(·, . . . , ·, ξ)αβξβα,

where the convergence holds in the sense of distributions.

As the tangent space of a product of manifolds can be identified with the direct sum of the

tangent spaces of each of its factors, we have that LG1×···×Gn = LG1 + · · · + LGn , and so

ν[ξ1⊗···⊗ξn] = ν[ξ1] + · · ·+ ν[ξn], for every [ξ1 ⊗ · · · ⊗ ξn] ∈ Ĝ. Therefore

〈ξ1 ⊗ · · · ⊗ ξn〉2 =
(
1 + ν[ξ1⊗···⊗ξn]

)
= (1 + ν[ξ1] + · · ·+ ν[ξn])

≤ (1 + ν[ξ1]) + · · ·+ (1 + ν[ξn])

= 〈ξ1〉2 + · · ·+ 〈ξn〉2 ≤ (〈ξ1〉+ · · ·+ 〈ξn〉)2.

Also

〈ξ1〉+ · · ·+ 〈ξn〉 ≤ 〈ξ1 ⊗ · · · ⊗ ξn〉+ · · ·+ 〈ξ1 ⊗ · · · ⊗ ξn〉

= n〈ξ1 ⊗ · · · ⊗ ξn〉.

From which we conclude that

1

n
(〈ξ1〉+ · · ·+ 〈ξn〉) ≤ 〈ξ1 ⊗ · · · ⊗ ξn〉 ≤ (〈ξ1〉+ · · ·+ 〈ξn〉), (3.2)

for every [ξj] ∈ Ĝj , 1 ≤ j ≤ n. With this inequality in mind, we extend Theorem 2.2.8 to the

product setting, in the following lemma.
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Lemma 3.1.4. Let G = G1×· · ·×Gn be a product of compact Lie groups. Then the following

are equivalent:

1. f ∈ C∞(G);

2. For every N > 0, there exists MN > 0 such that

|f̂(ξ)αβ| ≤ MN(〈ξ1〉+ · · ·+ 〈ξn〉)−N ,

for all [ξ] ∈ Ĝ, α, β ∈ Jξ.

Furthermore, the following are also equivalent:

1. u ∈ D′(G);

2. There exist N,M > 0, such that

|û(ξ)αβ| ≤ M(〈ξ1〉+ · · ·+ 〈ξn〉)N ,

for all [ξ] ∈ Ĝ, α, β ∈ Jξ.

Proof. Notice that the product of Lie groups is a Lie group as well, therefore this follows from

Theorem 2.2.8 and inequalities (3.2). This proof for the case n = 2 can also be found in [74].

Lemma 3.1.5. Let G = G0×G1×· · ·×Gn be a product of compact Lie groups, dimG0 = n0.

Then the following are equivalent:

1. f ∈ C∞(G);

2. For every γ ∈ Nn0
0 , for every N > 0, ∃MγN > 0 such that

|∂γ
t f̂(t, ξ

1, . . . , ξn)αβ| ≤ MγN

(
〈ξ1〉+ · · ·+ 〈ξn〉

)−N
,

for all t ∈ G0, [ξ
j] ∈ Ĝj, 1 ≤ αj, βj ≤ dξj , j = 1, . . . , n.

Furthermore, the following are also equivalent:

1. u ∈ D′(G);
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2. There exists N ∈ N, M > 0, such that:

|〈û(·, ξ1, . . . , ξn)αβ, ψ〉G0 | ≤ MpN(ψ)(〈ξ1〉+ · · ·+ 〈ξn〉)N ,

for all [ξj] ∈ Ĝj, 1 ≤ αj, βj ≤ dξj , j = 1, . . . , n and ψ ∈ C∞(G0).

where pN(ψ)
.
=
∑

|γ|≤N maxt∈G0 |∂γψ(t)|.

Proof. We will prove the case n = 1, since we can always write G = G0 × G′, where G′ =

G1 × · · · × Gn and then the result follows from inequalities (3.2). This result and proof were

inspired by [74].

First suppose f ∈ C∞(G). Since f is smooth, given N > 0, γ ∈ Nn0
0 , (Id + LG1)∂

γf is

also smooth and so

|〈ξ1〉N∂γ
t f̂(t, ξ

1)α1β1 | = | ̂
(Id + LG1)

N
2 ∂γ

t f(t, ξ
1)α1β1 |

≤
∫
G1

|(Id + LG1)
N
2 ∂γ

t f(t, x1)||ξ1β1α1
(x1)|dx1

≤ M,

for every t ∈ G0, 1 ≤ α1, β1 ≤ dξ1 ,where M = max(t,x1)∈G0×G1 |(Id+LG1)∂
γf(t, x1)| is finite

since G is compact and also since

1 = ξ1α1α1
(eG1) =

dξ1∑
β1=1

ξ1α1β1
(x1)ξ

1
β1α1

(x−1
1 )

=

dξ1∑
β1=1

ξ1α1β1
(x1)ξ

1∗
β1α1

(x1)

=

dξ1∑
β1=1

ξ1α1β1
(x1)ξ1α1β1

(x1) =

dξ1∑
β1=1

|ξ1α1β1
(x1)|2, (3.3)

so |ξ1α1β1
(x1)| ≤ 1 for every x1 ∈ G1.
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Now suppose the converse holds. Given N ′ > 0, take N ∈ N such that N ≥ N ′, notice that

νN
[ξ0]|f̂(ξ0, ξ1)αβ| = |L̂N

G0
f(ξ0, ξ1)αβ|

≤
∫
G0

|LN
G0
f̂(t, ξ1)||ξ0β0α0

(t)|dt

≤
∑

|γ|=2N

max
t∈G0

|∂γ
t f̂(t, ξ

1)|

≤ M,

from the definition of LG0 and the fact that |ξ0(t)β0α0 | ≤ 1 by (3.3). From Proposition 2.2.5

and our hypothesis we then conclude that

|f̂(ξ0, ξ1)αβ| ≤ CN〈ξ0〉−N〈ξ1〉−N ≤ CN2
N(〈ξ0〉+ 〈ξ1〉)−N

≤ CN2
N(〈ξ0〉+ 〈ξ1〉)−N ′

,

for every [ξ] = [ξ0 ⊗ ξ1] ∈ Ĝ, α, β ∈ Jξ. The fact that f ∈ C∞(G) then follows from Lemma

3.1.4. Now suppose u ∈ D′(G). Then notice that

〈û(·, ξ1)α1β1 , ψ〉G0 = 〈u, ψ ⊗ ξ1β1α1
〉G0×G1 , (3.4)

by definition. On the other hand, since u ∈ D′(G), there exist N0, N1 ∈ N0, C > 0 such that

|〈u, ψ ⊗ ξ1β1α1
〉| ≤ C max

(t,x1)∈G0×G1

∑
|γ|≤N0

∑
|λ|≤N1

|∂γ
t ψ(t)∂

λ
x1
ξ1β1α1

(x1)|

= Cmax
t∈G0

∑
|γ|≤N0

|∂γ
t ψ(t)| max

x1∈G1

∑
|λ|≤N1

|∂λ
x1
ξ1β1α1

(x1)|. (3.5)

Since the symbol of the differential operator ∂λ
x1

satisfies σ∂λ
x1

∈ Ψ
|λ|
1,0(G1 × Ĝ1), and since
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σ∂λ
x1
(ξ1) = ξ1(x1)

∗∂λ
x1
ξ1(x1) =⇒ ∂λ

x1
ξ(x1) = ξ1(ξ)σ∂λ

x1
(ξ1), we have that

|∂λ
x1
ξ1β1α1

(x1)| ≤
dξ1∑
γ=1

|ξ1α1γ
(x1)||σ∂λ

x1
(ξ1)γβ1 |

≤

⎛⎝ dξ1∑
γ=1

|ξ1α1γ
(x1)|2
⎞⎠1/2⎛⎝ dξ1∑

γ=1

|σ∂λ
x1
(ξ1)γβ1 |2

⎞⎠1/2

≤ ‖σ∂λ
x1
(ξ1)‖HS ≤

√
dξ1‖σ∂λ

x1
(ξ1)‖op ≤ C〈ξ1〉

dimG1
4 〈ξ1〉|λ|,

for some C > 0, by Proposition 2.2.6 and (3.3). Therefore

∑
|λ|≤N1

|∂λ
x1
ξ1β1α1

(x1)| ≤ C ′〈ξ1〉N1+
dimG1

4 , (3.6)

for some C ′ > 0. Hence, from (3.4) and (3.5) it follows that

|〈u(·, ξ1)α1β1 , ψ〉G0 | ≤ C ′′pN ′(ψ)〈ξ1〉N ′
,

for some C ′′ > 0, and where N ′ = max{N0, N1+
⌈
dimG1

4

⌉
}, for every [ξ1] ∈ Ĝ1, 1 ≤ α1, β1 ≤

dξ1 as claimed. For the converse, applying the definition of pN(·) and inequality (3.6) with ξ0

instead of ξ1, we obtain that there exist N ∈ N such that

|û(ξ0, ξ1)αβ| =
∣∣∣∣〈û(·, ξ1)α1β1 , ξ

0
β0α0

〉
G0

∣∣∣∣
≤ MpN(ξ

0
β0α0

)〈ξ1〉N

≤ C〈ξ0〉N+
dimG0

4 〈ξ1〉N

≤ C ′(〈ξ0〉+ 〈ξ1〉)N+
dimG0

4 ,

for some constant C ′ > 0 and all [ξ] = [ξ0 ⊗ ξ1] ∈ Ĝ. Therefore, Lemma 3.1.4 implies that

u ∈ D′(G), as claimed.

Next we extend Proposition 2.1.7 to the product of compact Lie groups, as in the follow-

ing propositions.

Proposition 3.1.6. Let G = G1 × · · · × Gn be a product of compact Lie groups, and f, g ∈
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L2(G). Then

〈f, g〉L2(G) =

∫
G

f(x)g(x)dx =
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
f̂(ξ)αβ ĝ(ξ)αβ.

Also, if f ∈ D′(G), g ∈ C∞(G)

〈f, g〉G =

∫
G

f(x)g(x)dx =
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
f̂(ξ)αβ ĝ(ξ)αβ.

Proof. Indeed

∫
G

f(x)g(x)dx =

∫
G

∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
f̂(ξ)αβξβα(x)g(x)dx

=
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
f̂(ξ)αβ

∫
G

g(x)ξβα(x)dx

=
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
f̂(ξ)αβ ĝ(ξ)αβ.

Note that the interchange of order of summation and integration is justified due to absolute

convergence of the integral and series in the first case, and by the convergence in the sense of

distributions of the Fourier series in the second case. This finishes the proof.

Proposition 3.1.7. Let G = G1 × · · · ×Gn be a product of compact Lie groups, G0 a compact

Lie group. Then for f, g ∈ L2(G0 ×G):

〈f, g〉L2(G0×G) =
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ

∫
G0

f̂(t, ξ)αβ ĝ(t, ξ)αβdt.

In particular

〈f, g〉G0×G
.
=

∫
G0×G

f(x)g(x)dx =
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ

∫
G0

f̂(t, ξ)αβ ĝ(t, ξ)αβdt.

Similarly, if f ∈ D′(G0 ×G) and g ∈ C∞(G0 ×G):

〈f, g〉G0×G =
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ

〈
f̂(·, ξ)αβ, ĝ(·, ξ)αβ

〉
G0

.
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Proof. Indeed, by applying Proposition 3.1.6 twice, we get that

〈f, g〉L2(G0×G) =
∑

[ξ0]∈Ĝ0

∑
[ξ]∈Ĝ

dξ0dξ
∑

α0,β0∈Jξ0

∑
α,β∈Jξ

f̂(ξ0, ξ)α′β′ ĝ(ξ0, ξ)α′β′

=
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ

∑
[ξ0]∈Ĝ0

dξ0
∑

α0,β0∈Jξ0

f̂(ξ0, ξ)α′β′ ĝ(ξ0, ξ)α′β′

=
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ

∫
G0

f̂(t, ξ)αβ ĝ(t, ξ)αβdt,

where α′ = (α0, α1, . . . , αn), β
′ = (β0, β1, . . . , βn). Since 〈f, g〉G0×G = 〈f, g〉L2(G0×G), this

implies

〈f, g〉G0×G = 〈f, g〉L2(G0×G) =
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ

∫
G0

f̂(t, ξ)αβ ĝ(t, ξ)αβdt,

which proves the second formula. Since C∞(G0 × G) ⊂ L2(G0 × G), the third claim follows

similarly.

Let G = G1 × · · · ×Gn be a product of compact Lie groups. Fix j ∈ {1, 2, . . . , n} and Xj

a left-invariant vector field on Gj . Notice that viewed as a linear differential operator, iXj acts

as a symmetric operator on L2(Gj), that is,

〈iXjf, g〉L2(G) =

∫
G

i
d

dt

∣∣∣∣
t=0

f(x exp(tXj))g(x)dx

=

∫
G

f(x)(−i)
d

dt

∣∣∣∣
t=0

g(x exp(−tXj))dx

= 〈f, iXjg〉L2(G),

where we have used the right invariance of the Haar measure. In particular, for a fixed [ξj] ∈
Ĝj , we may consider its action on the vector subspace Hξj ,αj ·

.
= span{ξjαjβj

|βj = 1, . . . , dξj},

which is invariant by iXj as seen below. It follows from the Fourier inversion formula, and

Remark 2.2.20, that

iXjξ
j
αjβj

(x) =
∑
γj=1

ξαjγj(x)σiXj
(ξj)γjβj

,

where σiXj
(ξj) ∈ Cd

ξj
×d

ξj is the symbol of the differential operator iXj evaluated at

[ξj] ∈ Ĝj , as defined in Definition 2.2.10. Thus, the symmetric linear operator iXj is given,

with respect to the basis {ξjαjβj
|βj = 1, . . . , dξj}, by the (symmetric) matrix σiXj

(ξj). But

then there exists a unitary matrix A such that A∗σiXj
(ξj)A is diagonal with real coefficients.
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Therefore, setting ηj(x)
.
= A∗ξj(x)A, for every x ∈ G, we have that ηj ∈ [ξj] and

σiXj
(ηj) = A∗σiXj

(ξj)A is diagonal. In conclusion, we may always choose a representative of

[ξj] such that σXj
(ξj) is diagonal with imaginary coefficients.

Definition 3.1.8. Given a left-invariant vector field Xj , for every 1 ≤ j ≤ n, we define the real

numbers μαj
(ξj) such that

σXj
(ξj)αjβj

= iμαj
(ξj)δαjβj

, for 1 ≤ αj, βj ≤ dξj , (3.7)

where δmn is the Kronecker delta.

Remark 3.1.9. With inequality (2.5) in mind, this implies that if Xj is a left-invariant vector

field on a compact Lie group Xj , then with the notation above, the inequality

|μαj
(ξj)| ≤ C〈ξj〉, (3.8)

holds for some C > 0 and every [ξj] ∈ Ĝj , 1 ≤ αj ≤ dξj .
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Chapter 4

Constant coefficients operators

This chapter is structured as follows:

-In Section 4.1, we present our new results regarding the global solvability and hypoellip-

ticity of constant coefficient first-order differential operators on the product of n compact Lie

groups.

-In Section 4.2, we show how our results recover results already known in the literature on

the products of tori and spheres, as well as new results in these setting.

First, we recall the definition of the global properties of differential operators which we are

concerned.

Definition 4.0.1. Let G be a compact Lie group. We say that a differential operator L : D′(G)

→ D′(G) is globally hypoelliptic if Lu = f ∈ C∞(G) =⇒ u ∈ C∞(G).

Definition 4.0.2. Let G be a compact Lie group. Let L : D′(G) → D′(G) be a differential

operator. We define

(ker tL)0
.
= {u ∈ D′(G) |〈u, f〉G = 0, ∀f ∈ ker tL}

where tL : C∞(G) → C∞(G) is the called the transpose of L, and is the differential operator

given by 〈Lu, f〉 = 〈u, tLf〉, for every u ∈ D′(G), f ∈ C∞(G). We say L is globally

solvable if for every f ∈ (ker tL)0 ∩ C∞(G), ∃u ∈ C∞(G) such that Lu = f .

Remark 4.0.3. It is worth mentioning a classical argument using functional analysis (as

proved in a more general context in [102], Proposition 35.4, and later more explicitly in [31],

Theorem 1.4 and Corollary 1.5) shows that a differential operator L : C∞(M) → C∞(M)

defined on a compact manifold M is globally solvable as in the definition above if and only
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if L has closed range. In fact, this equivalent condition is frequently used as the definition for

global solvability in several papers. Also, it is worth mentioning that this fact could possibly

simplify some of the proofs in this thesis, however we chose not to rely on this fact and prove

our results based only on the definition above.

4.1 Global regularity on compact Lie groups

Let G = G1 × · · · × Gn be a product of compact Lie groups. Consider the constant-

coefficients left-invariant first order differential operator L : D′(G) → D′(G) given by

L
.
= c1X1 + · · ·+ cnXn + q, (4.1)

where cj ∈ C, Xj is a left-invariant vector field on Gj , for j = 1, . . . , n and q ∈ C. Since

G1 × {eG2} ∼= G1, we will assume every Gj to be non-trivial. Also, since we allow the cj’s to

be equal to zero, we will also assume that every Xj is non-zero.

For each u ∈ D′(G), we may write the partial Fourier transforms of Lu, one variable at a

time, as follows:

L̂u(x1, . . . , xn−1, ξ
n)αnβn = (c1X1 + · · ·+ cn−1Xn−1)û(x1, . . . , xn−1, ξ

n)αnβn+

+ icnμαn(ξ
n)û(x1, . . . , xn−1, ξ

n)αnβn + qû(x1, . . . , xn−1, ξ
n)αnβn ,

L̂u(x1, . . . , xn−2, ξ
n−1, ξn)αβ = (c1X1 + · · ·+ cn−2Xn−2)û(x1, . . . , xn−2, ξ

n−1, ξn)αβ+

+ icn−1μαn−1(ξ
n−1)û(x1, . . . , xn−2, ξ

n−1, ξn)αβ+

+ icnμαn(ξ
n)û(x1, . . . , xn−2, ξ

n−1, ξn)αβ+

+ qû(x1, . . . , xn−2, ξ
n−1, ξn)αβ,

for α = (αn−1, αn) and β = (βn−1, βn), and so on, until we have taken the total partial Fourier

transform of Lu, given by

L̂u(ξ1, . . . , ξn)αβ = i
(
c1μα1(ξ

1) + · · ·+ cnμαn(ξ
n)− iq
)
û(ξ1, . . . , ξn)αβ. (4.2)

For convenience, let c = (c1, . . . , cn) ∈ Cn, α = (α1, . . . , αn) ∈ Nn and [ξ] = [ξ1⊗· · ·⊗ ξn] ∈
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Ĝ, and define

〈c, μα(ξ)〉 .
= c1μα1(ξ

1) + · · ·+ cnμαn(ξ
n). (4.3)

This way, equation (4.2) can be rewritten as

L̂u(ξ)αβ = i (〈c, μα(ξ)〉 − iq) û(ξ)αβ. (4.4)

Defining

σL(ξ)αα
.
= i (〈c, μα(ξ)〉 − iq) ,

we can view L as a Fourier multiplier with symbol σL.

With Lemma 3.1.4 in mind, we can study the global properties mentioned above by study-

ing the behaviour of the coefficients (〈c, μα(ξ)〉 − iq) as 〈ξ〉 → ∞.

In order to prove the necessary and sufficient conditions for the global solvability of the

operator L, we first obtain an equivalent characterization of global solvability for a differential

operator.

Definition 4.1.1. Let P : D′(G) → D(G) be a continuous linear operator whose symbol

σP (ξ) is diagonal, so that P̂ f(ξ)αβ = σP (ξ)ααf̂(ξ)αβ for each α, β ∈ Jξ, [ξ] ∈ Ĝ, f ∈ D′(G).

We define KP ⊂ D′(G) by

KP
.
= {u ∈ D′(G)| such that û(ξ)αβ = 0, for all β ∈ Jξ, if σP (ξ)αα = 0}.

Proposition 4.1.2. Let P be as in the previous definition. Suppose tP is also diagonal, that

is, t̂P u(ξ)αβ = σtP (ξ)ααû(ξ)αβ , for every α, β ∈ Jξ and u ∈ D′(G). If it satisfies σP (ξ) =

λσtP (ξ), for some λ ∈ C\{0}, and every [ξ] ∈ Ĝ, then

KP = (ker tP )0.

Proof. Suppose f ∈ KP and let v ∈ C∞(G) be such that v ∈ ker tP . Then

〈f, v〉G =
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
f̂(ξ)αβ v̂(ξ)αβ.
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If σP (ξ)αα = 0, then f̂(ξ)αβ = 0. On the other hand, if σP (ξ)αα �= 0, then

0 = t̂P v(ξ)αβ = σtP (ξ)ααv̂(ξ)αβ =
1

λ
σP (ξ)ααv̂(ξ)αβ

implies that v̂(ξ)αβ = 0, so every term in the sum above is zero. Therefore KP ⊂ (ker tP )0.

Now let f ∈ (ker tP )0. Suppose first that σP (ξ)αα = 0 for some [ξ] ∈ Ĝ, α ∈ Jξ. For each

β ∈ Jξ, let vξ,α,β ∈ C∞(G) be given by

v̂ξ,α,β(η)γκ =

⎧⎪⎨⎪⎩1 if η = ξ, γ = α, κ = β

0, otherwise.

Then ̂tP vξ,α,β(ξ)αβ = σtP (ξ)ααv̂ξ,α,β(ξ)αβ = 1
λ
σP (ξ)αα = 0, so v ∈ ker tP . Therefore

0 = 〈f, v〉G = dξf̂(ξ)αβ,

since this holds for every 1 ≤ β ≤ dξ, we conclude that f ∈ KP .

Proposition 4.1.3. The operator L defined in (4.1) is globally solvable if and only if

KL ∩ C∞(G) = L(C∞(G)).

Proof. As in equation (4.4), under our choice of representations

σL(ξ)αα = i(〈c, μα(ξ)〉 − iq)

and

σtL(ξ)αα = i(−〈c, μα(ξ)〉 − iq),

for every [ξ] ∈ Ĝ, α ∈ Jξ, since tL = −(c1X1 + · · · + cnXn) + q. Next, we claim that Xj

satisfies μαj
(ξj) = −μαj

(ξj), so that σL(ξ) = σtL(ξ), for every [ξ] ∈ Ĝ, and the claim follows

from Proposition 4.1.2. Indeed, note that

iμαj
(ξj) = σXj

(ξj)αjαj
= Xjξj(eGj

) = Xjξ
j
αjαj(eGj

)

= iμαj
(ξj) = −iμαj

(ξj),
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as claimed.

Next, we present necessary and sufficient conditions for global solvability and hypoellip-

ticity of the operator L.

Proposition 4.1.4. The operator L is globally solvable if and only if there exist M,N > 0

such that

|σL(ξ)αα| = |c1μα1(ξ
1) + · · ·+ cnμαn(ξ

n)− iq| ≥ M
(
〈ξ1〉+ · · ·+ 〈ξn〉

)−N
, (4.5)

for every [ξ] ∈ Ĝ, α ∈ Jξ, such that the left hand side of the inequality is not zero. It is glob-

ally hypoelliptic if and only if the equation

c1μα1(ξ
1) + · · ·+ cnμαn(ξ

n)− iq = 0

has only finitely many solutions for [ξ] ∈ Ĝ, α ∈ Jξ and inequality (4.5) also holds whenever

its left-hand side is not zero.

Proof. Suppose the first condition is not satisfied, that is, for every m ∈ N, there exist distinct

ξm = ξ1m ⊗ · · · ⊗ ξnm, where [ξjm] ∈ Ĝj, j = 1, . . . , n, and α(m) ∈ Nn such that

0 < |〈c, μα(m)(ξm)〉 − iq| ≤ (〈ξ1m〉+ · · ·+ 〈ξnm〉)−m. (4.6)

Indeed, if only finitely many ξ satisfied the inequality above, by taking N large enough and M

small enough, we could obtain that inequality (4.5) holds for all [ξ] ∈ Ĝ and α ∈ Jξ. Define

the Fourier coefficients

f̂(ξm)α(m) 1 = i(〈c, μα(m)(ξm)〉 − iq), m ∈ N,

and

f̂(ξ)αβ = 0, otherwise.

Here 1 = (1, . . . , 1) ∈ Nn denotes the n-dimensional vector of ones. By Lemma 3.1.4 and

inequality (4.6), these coefficients define f ∈ C∞(G). Moreover, by Proposition 4.1.2 we have

that f ∈ (ker tL)0 since f̂(ξ)αβ = 0 whenever σ(ξ)αα = i(〈c, μα(ξ)〉 − iq) = 0. Now suppose
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there exists u ∈ C∞(G) such that Lu = f . Then its partial Fourier coefficients would satisfy

L̂u(ξ)αβ = i (〈c, μα(ξ)〉 − iq) û(ξ)αβ = f̂(ξ)αβ, (4.7)

and so û(ξm)α(m) 1 = 1, for every m ∈ N. But then u �∈ C∞(G) by Lemma 3.1.4, which

is a contradiction. We conclude no such u can exist and therefore L is not globally solvable.

Considering the same Fourier coefficients for f̂ and û, if we define all other coefficients of

û to be 0, then by Lemma 3.1.4 these coefficients define u ∈ D′(G) \C∞(G). Moreover,

by comparing Fourier coefficients, it clearly satisfies Lu = f , from which we conclude that

L is not globally hypoelliptic as well. Suppose now that inequality (4.5) holds in the correct

domain and let f ∈ (ker tL)0 ∩ C∞(G). Then, by Proposition 4.1.2, f̂(ξ)αβ = 0 whenever

〈c, μα(ξ)〉 − iq = 0. Define

û(ξ)αβ =
f̂(ξ)αβ

i (〈c, μα(ξ)〉 − iq)
, (4.8)

whenever 〈c, μα(ξ)〉 − iq �= 0 and û(ξ)αβ = 0, otherwise. Notice that

|û(ξ)αβ| ≤ |f̂(ξ)αβ|
1

M

(
〈ξ1〉+ · · ·+ 〈ξn〉

)N
.

Therefore, by Lemma 3.1.4, for every N ′ > 0 there exists M ′ > 0 such that

|û(ξ)αβ| ≤
M ′

M

(
〈ξ1〉+ · · ·+ 〈ξn〉

)−N ′+N

By Lemma 3.1.4 we conclude these Fourier coefficients define u ∈ C∞(G), which proves that

L is globally solvable. Note further that if u ∈ D′(G) is such that Lu = f ∈ C∞(G), then by

comparing partial Fourier transform as before, û(ξ)αβ is uniquely determined by equality (4.8)

whenever the denominator is not zero. Hence, if the set of [ξ], α for which the denominator is

zero is finite, the same argument as before implies that the coefficients of u must decay faster

than any power of (〈ξ1〉+ · · ·+ 〈ξn〉). Lemma 3.1.4 then implies that u ∈ C∞(G) and so L is

globally hypoelliptic.

Remark 4.1.5. We can apply a very similar argument to prove the inequality (4.5) is also a

necessary and sufficient condition for L to be globally solvable in the sense of distributions,

that is: for all f ∈ (ker tL)0, there exists u ∈ D′(G) such that Lu = f if and only if inequality

(4.5) holds whenever its left hand side is not zero.
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Corollary 4.1.6. If L defined in (4.1) is globally hypoelliptic, then

ker(L) ⊂ span
{
ξαβ | [ξ] ∈ Ĝ, α, β ∈ Jξ

}
,

and in fact dimker(L) < +∞.

Proof. Indeed, notice that if u ∈ ker(L), then by comparing Fourier coefficients as in equality

(4.7), we have that

u ∈ span
{
ξαβ | [ξ] ∈ Ĝ, 〈c, μα(ξ)〉 − iq = 0

}
.

Therefore,

dimker(L) ≤
∑
[ξ]∈Ĝ

〈c,μα(ξ)〉−iq=0

d2ξ .

Since L is globally hypoelliptic, the sum above is finite by Proposition 4.1.4, proving the state-

ment.

4.2 Global regularity on tori and spheres

Our goal in this section is to study the global regularity of the operator L in the particular

cases where the groups Gj are equal to different copies of the one dimensional torus or the

three dimensional sphere. Not only we recover results already proven in the literature using

the techniques developed in the last section, but also we present some new results.

4.2.1 Tori

First, let G = T1 × · · · × T1 = Tn, be the n dimensional torus and consider Xj = ∂xj
the

usual partial differentiation with respect to the j-th variable, for j = 1, . . . , n. Then, dim ξ = 1

for every [ξ] = [t �→ eikt] ∈ T̂1 and we may identify ξ ∼ μ1(ξ) ∼ k ∈ Z. In this case the

operator L described in the last section is given by

L = c1∂x1 + · · ·+ cn∂xn + q, (4.9)
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and its symbol is

σL(k) = i(〈c, μ1(k)〉 − iq) = i(c1k1 + · · ·+ cnkn − iq),

where k ∈ Zn, c ∈ Cn and q ∈ C. Since 〈kj〉 =
√

1 + k2
j has the same asymptotic behaviour

as |kj|, for kj → ±∞, Proposition 4.1.4 implies that L is globally solvable if and only if there

exist M,N > 0 such that

|c1k1 + · · ·+ cnkn − iq| ≥ M(|k1|+ · · ·+ |kn|)−N , (4.10)

for every k ∈ Zn \{0} whenever the left hand side of (4.10) is not zero.

With this in mind we obtain the following corollaries.

Corollary 4.2.1. Suppose that either

(i) c ∈ (Q+ iQ)n;

(ii) There exist 1 ≤ j1, j2 ≤ n such that α =
aj1
aj2

is an irrational non-Liouville number,
aj
aj2

∈ Q, for every j1 �= j = 1, . . . , n, and Im(q)
aj2

∈ Q;

(iii) There exist 1 ≤ j1, j2 ≤ n such that λ =
bj1
bj2

is an irrational non-Liouville number,
bj
bj2

∈ Q, for every j1 �= j = 1, . . . , n, and Re(q)
bj2

∈ Q;

where cj = aj + ibj , for j = 1, . . . n. Then L defined in (4.9) is globally solvable.

Remark 4.2.2. The claim above still holds if we replace the quotients in its statement by their

respective numerators. The proof is very similar.

Proof. First assume (i). We claim that there exists ε = ε(c, q) > 0 such that

|c1k1 + · · ·+ cnkn − iq| ≥ ε,

whenever the left hand side of the inequality is not zero. This proves that inequality (4.10)

holds trivially, and so L is globally solvable by Proposition 4.1.4. Indeed, note that if Re(q) ∈
Q, then there are, rj, r ∈ Z and sj, s ∈ N, j = 1, . . . , n, such that

|c1k1 + · · ·+ cnkn − iq| ≥
∣∣∣∣r1s1k1 + · · ·+ rn

sn
kn −

r

s

∣∣∣∣
= |r1k1s2 . . . sns+ · · ·+ rnkns1 . . . sn−1s+ rs1 . . . sn|

1

s1 . . . sns
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which is greater than or equal to ε = 1
s1...sns

whenever it is not zero, since the first term on

the last line is an integer. A similar argument can be applied if Im(q) ∈ Q, now using the

imaginary part of the symbol. If both the real and imaginary part of q are irrational, then with

the same notation as before, Re(q)s1 . . . sn �∈ Z, therefore

|c1k1 + · · ·+ cnkn − iq| ≥
∣∣∣∣r1s1k1 + · · ·+ rn

sn
kn − Re(q)

∣∣∣∣
= |r1k1s2 . . . sns+ · · ·+ rnkns1 . . . sn−1s+ Re(q)s1 . . . sn|

1

s1 . . . sn

≥ ‖Re(q)s1 . . . sn‖R /Z

s1 . . . sn
,

where ‖x‖R /Z denotes the distance of the real number x to the nearest integer, so the in-

equality also holds as claimed. Now assume (ii). Suppose, without loss of generality, that

j1 = 1, j2 = 2 and
aj
a2

=
rj
sj

,
Im(q)
a2

= r
s

where r, rj ∈ Z and s, sj ∈ N, for j = 2, . . . , n.

Then

|c1k1+ · · ·+ cnkn − iq|

≥ |a2|
∣∣∣∣αk1 + k2s3 . . . sns+ k3r3s4 . . . sns+ · · ·+ kns3 . . . sn−1s+ rs3 . . . sn

s3 . . . sns

∣∣∣∣ .
Set ω(k2, . . . , kn)

.
= k2s3 . . . sns+ k3r3s4 . . . sns+ · · ·+ kns3 . . . sn−1s+ rs3 . . . sn ∈ Z. Then

the last inequality can be rewritten as

|c1k1 + · · ·+ cnkn − iq| ≥ |a2||k1|
∣∣∣∣α− −ω(k2, . . . , kn)

|k1|s3 . . . sns

∣∣∣∣ ,
for k1 �= 0. But then, as |k1| > 0 and α is an irrational non-Liouville number, there exist

M ′ > 0, N ′ > 1 such that

|c1k1 + · · ·+ cnkn − iq| ≥ |a2||k1|M ′(|k1|s3 . . . sns)−N ′

≥ |a2|M ′(s3 . . . sns)−N ′ |k1|−N ′

≥ M ′′(|k1|+ · · ·+ |kn|)−N ′
,

for M ′′ = |a2|M(s3 . . . sns)
−N ′

> 0. When k1 = 0, we can apply the same argument from

part (i). Together, these inequalities imply (4.10) holds, therefore by Proposition 4.1.4 the op-

erator L is globally solvable. The proof of (iii) is very similar and is left to the reader.
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Corollary 4.2.3. If c ∈ Rn and there exist 1 ≤ j1, j2 ≤ n such that λ =
cj1
cj2

is a Liouville

number and q
cj2

= i� ∈ iZ, then L defined in (4.9) is not globally solvable.

Proof. First, without loss of generality, we may suppose j1 = 1, j2 = 2. Note that as λ is a

Liouville number there exist sequences (pm)m∈N ⊂ Z, (rm)m∈N ⊂ N, with rm → +∞ and

such that ∣∣∣∣λ− pn
rm

∣∣∣∣ < 1

(rm)m
⇐⇒ |λrm − pm| < (rm)

−m+1, ∀m ∈ N .

By taking k(m) = (rm,−(pm + �), 0, . . . , 0) ∈ Zn, for each m ∈ N, we have that

|c1k(m)1 + · · ·+ cnk(m)n − iq| = |c2| |λrm − pm| < |c2|(rm)−m+1. (4.11)

It follows the inequality (4.10) cannot hold, since if it did, there would exist M,N > 0 such

that

|c1k(m)1 + · · ·+ cnk(m)n − iq| ≥ M(|k(m)1|+ · · ·+ |k(m)n|)−N

for every m ∈ N. But then, by (4.11) that would imply

M(rm + |pm + �|)−N < |c2|(rm)−m+1,

which we can rewrite as

|c2| > M(rm + |pm + �|)−N(rm)
m−1 = M

(
r

m−1
N

m

rm + |pm + �|

)N

= M

(
r

m−1
N

−1
m

1 + |pm+�|
rm

)N

for every m ∈ N. By the definition of the sequences (rm)m∈N and (pm)m∈N, |pm| ≤ |λrm| + 1,

so
|pm+�|
rm

is bounded. Therefore, the right hand side of the inequality above tends to +∞ as

m → +∞, so that we obtain a contradiction. Hence (4.10) does not hold and so by Proposi-

tion 4.1.4 the operator L is not globally solvable.

As for global hypoellipticity, in this particular case Proposition 4.1.4 implies that L de-

fined in (4.9) is globally hypoelliptic if and only if it is globally solvable and the set

NL = {k ∈ Zn |c1k1 + · · ·+ cnkn − iq = 0}
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is finite. Note that if q = 0, then surely k = (0, . . . , 0) ∈ NL, and if there exists any other

k ∈ NL, then mk = (mk1, . . . ,mkn) ∈ NL for every m ∈ Z. Therefore the only way NL can

be finite is if NL = {0}. This is equivalent to there being no non-trivial integer solutions to the

system of Diophantine equations

⎧⎪⎨⎪⎩a1k1 + · · ·+ ankn = 0

b1k1 + · · ·+ bnkn = 0.

Also, if q �∈ c1 Z+ · · · + cn Z, then clearly NL is empty and therefore finite, and so L is glob-

ally hypoelliptic if and only if it is globally solvable. This means that, for instance, Corollary

4.2.1 allows us to conclude that if c ∈ Qn and q �∈ iQ, then L is globally hypoelliptic.

An interesting case occurs when n ≥ 2, b1 = b2 = · · · = bn = 0, a1, . . . , an ∈ Z and

q = −im ∈ iZ. Then

NL = {k ∈ Zn |a1k1 + · · ·+ ankn = m},

so in this case L is not globally hypoelliptic if and only if the Diophantine equation above has

infinitely many solutions k ∈ Z. This is true if and only if gcd(a1, . . . , an) divides m. Indeed,

if such equation has infinitely many solutions, choose one solution k ∈ Zn. Then since

a1k1 + · · ·+ ankn = m,

we see that gcd(a1, . . . , an) divides the left-hand side, and so it must divide m also. The con-

verse follows by induction on n ∈ N. If n = 2, then by Bézout’s identity, there exists k ∈ Z2

such that a1k1 + a2k2 = gcd(a1, a2) = d. Then since m = dl, for some l ∈ Z, we have that

k′ = (k1l, k2l) solves the equation. Consequently, for every w ∈ Z, every

kw =

(
k1w = k′

1 + w
a2

gcd(a1, a2)
, k2w = k′

2 − w
a1

gcd(a1, a2)

)

solves the equation, and so the claim follows. Now suppose the claim holds for the case with

n− 1 variables. If the Diophantine equation

a1k1 + · · ·+ ankn = m
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admits solution then the equation

gcd(a1, . . . , an−1)z + ankn = m

admits solution. By the reasoning above, as gcd(gcd(a1, . . . an−1), an) = gcd(a1, . . . an−1, an)

divides m, this last equation has infinitely many solutions z′, while each

a1k1 + · · ·+ an−1kn−1 = gcd(a1, . . . , an−1)z
′

also has infinitely many solutions by our inductive hypothesis, proving the case of n variables.

In sum, we have proved:

Corollary 4.2.4. Let L be the first-order differential operator acting on the torus Tn, n ≥ 2

given by

L = a1∂x1 + · · ·+ an∂xn + q,

where a1, . . . , an ∈ Z, q ∈ C. Then L is globally hypoelliptic if and only if q �∈ iZ or

gcd(a1, . . . , an) does not divide iq ∈ Z.

4.2.2 Spheres

Let G1, . . . , Gn = S3, and consider Xj = i∂0,j the smooth vector field in S3, where ∂0,j

is the neutral operator ∂0 on the j-th copy of S3. We recall there exists a natural identification

Ŝ3 ∼ 1
2
N0, where to each � ∈ 1

2
N0 there corresponds a 2� + 1 dimensional representation

which we also denote by �. With this in mind, we shall denote [�] ∈ ̂S3 × · · · × S3 with � ∈
1
2
Ns

0. Following the notation used so far, as seen in [94], the symbol of each Xj is given by

σi∂0(�j)αjβj
= i(αj − �j − 1)δαjβj

,

for 1 ≤ αj, βj ≤ 2�j + 1, j = 1, . . . , n, where δαjβj
is the Kronecker’s delta. Note that this

means

−�j ≤ μαj
(�j) ≤ �j, �j − μαj

(�j) ∈ N0,

for every 1 ≤ αj ≤ 2�j + 1, j = 1, . . . , n. This means in case �j ∈ 1
2
N0 \N0, then μαj

(�j)

assumes values in 1
2
Z \Z between −� and �, and for the case �j ∈ N0 we have that μαj

(�j) as-

sumes values in Z. Also, note that 〈�j〉 =
√
1 + �j(�j + 1) has the same asymptotic behaviour
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as �j for �j → +∞. Therefore the condition for global solvability can be rewritten as follows.

Corollary 4.2.5. The operator L given by

L = c1i∂0,1 + · · ·+ cni∂0,n + q

is globally solvable if and only if there exist M,N > 0 such that

|〈c, μα(�)〉 − iq| ≥ M(�1 + · · ·+ �n)
−N ,

for every −� ≤ μα(�) ≤ �, � − μα(�) ∈ Ns
0, � ∈ 1

2
Ns

0 \{0} such that the left hand side of the

inequality is not zero.

The global solvability in this case is determined by conditions very similar to the ones in

the previous subsection. On the other hand, in terms of conditions for global hypoellipticity,

there is a significant difference. Note that now if

c1μα1(�1) + · · ·+ cnμαn(�n)− iq = 0 (4.12)

for some � ∈ 1
2
Ns

0, α ∈ J�, then as μαj
(�j) = μαj+m(�j + m) for every m ∈ N0, we have

that the set of all � and α such that c1μα1(�1) + · · · + cnμαn(�n) − iq = 0 is either empty or

infinite. In particular, if q = 0, then L is not globally hypoelliptic, as in this case clearly � = 0

and α = 1 is a solution to the previous equation.

Hence, we can rewrite the condition condition for global hypoellipticity as follows.

Corollary 4.2.6. The operator L given by

L = c1i∂0,1 + · · ·+ cni∂0,n + q

is globally hypoelliptic if and only if

c1z1 + · · ·+ cnzn − iq �= 0

for all z1, . . . , zn ∈ 1
2
Zn and there exist M,N > 0 such that

|〈c, μα(�)〉 − iq| ≥ M(�1 + · · ·+ �n)
−N ,



55

for every −� ≤ μα(�) ≤ �, �− μα(�) ∈ Ns
0, � ∈ 1

2
Ns

0 \{0}.
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Chapter 5

Variable coefficients operators

5.1 Real coefficients

Let G0 be a compact Lie group and G = G1 × · · · × Gn be a product of compact Lie

groups. In this chapter we will prove necessary and sufficient conditions for the global solv-

ability and global hypoellipticity for operators of the form

L = X0 + a1(x0)X1 + · · ·+ an(x0)Xn + q(x0, x1, . . . , xn), (5.1)

where each aj is a smooth real-valued function on G0, q is a smooth complex-valued function

on G0 ×G and each Xj is a non-zero left-invariant vector field on Gj , for j = 0, 1, . . . , n.

We will show that under suitable conditions, the global solvability and global hypoellip-

ticity of the operator L is completely determined by whether or not these properties hold for

the constant coefficients operator L0 obtained by taking the averages of the coefficients of the

operator L. First, however, we will need the following lemma.

Lemma 5.1.1. For a compact Lie group G′, let L1, L2 : D′(G′) → D′(G′) be differential

operators on G′, such that ∃Ψ : D′(G′) → D′(G′) smooth automorphism which satisfies

Ψ(C∞(G′)) = C∞(G′) and L1 ◦Ψ = Ψ ◦L2. Then L1 is globally hypoelliptic if and only if L2

is globally hypoelliptic.

Proof. Suppose L1 is globally hypoelliptic and L2u = f ∈ C∞(G′). Then L1 ◦ Ψu = Ψ ◦
L2u = Ψf ∈ C∞(G′). Since L1 is globally hypoelliptic, Ψu ∈ C∞(G′) and so u ∈ C∞(G′),

from which we conclude L2 is globally hypoelliptic also. In case L2 is globally hypoelliptic,

then note that Ψ−1 satisfies L2 ◦Ψ−1 = Ψ−1 ◦ L1, so the result follows by symmetry.
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Proposition 5.1.2. Suppose that there exist real functions Aj ∈ C∞(G0) such that

X0Aj(x0) = aj(x0) − aj0, for some aj0 ∈ R, j = 1, . . . , n, and Q ∈ C∞(G0 × G) such that

(L − q)Q = q − q0, for some q0 ∈ C. Then L defined in (5.1) is globally hypoelliptic (resp.

solvable) if and only if L0 is globally hypoelliptic (resp. solvable), where L0 is the operator

given by

L0
.
= X0 + a10X1 + · · ·+ an0Xn + q0.

Proof. By Lemma 5.1.1, it suffices to exhibit an automorphism Ψ′ on D′(G0 × G) that pre-

serves C∞(G0 ×G) and conjugates L and L0, to prove L is globally hypoelliptic if and only if

L0 is globally hypoelliptic. Consider the mapping Ψ′ : D′(G0 ×G) → D′(G0 ×G) given by

Ψ′ .
= Ψq ◦Ψ,

where

Ψu(x0, x1, . . . , xn)
.
=
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
e−i(

∑n
j=1 μαj (ξ

j)Aj(x0))û(x0, ξ)αβξβα(x), (5.2)

and

Ψqu(x0, x)
.
= u(x0, x)e

−Q(x0,x),

in the sense of distributions, for every u ∈ D′(G0 × G). A simple computation verifies that

L◦Ψq ◦Ψ = Ψq ◦Ψ◦L0. We claim that Ψ′ is an automorphism on D′(G0×G) which preserves

C∞(G0×G). Indeed, first we will show that if u ∈ C∞(G0×G), then also Ψ′u ∈ C∞(G0×G).

Indeed, let γ ∈ NdimG0
0 . Then by (5.2) we have

|∂γΨ̂u(x0, ξ)αβ| =
∣∣∣∂γ
[
e−i(

∑n
j=1 μαj (ξ

j)Aj(x0))û(x0, ξ)αβ

]∣∣∣
≤
∑

γ′+γ′′=γ

∣∣∣∂γ′
e−i(

∑n
j=1 μαj (ξ

j)Aj(x0))
∣∣∣ ∣∣∣∂γ′′

û(x0, ξ)αβ

∣∣∣
≤
∑

γ′+γ′′=γ

n∑
j=1

Cγ′j|μαj
(ξj)||γ′|

∣∣∣∂γ′′
û(x0, ξ)αβ

∣∣∣ ,
for some Cγ′j > 0. Therefore, given N > 0, as u ∈ C∞(G0 × G), by Lemma 3.1.5 and
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Remark 3.1.9, there exists C ′
γ′′N > 0 such that

|∂γΨ̂u(x0, ξ)αβ| ≤
∑

γ′+γ′′=γ

n∑
j=1

Cγ′j〈ξj〉|γ
′|C ′

γ′′N (〈ξ1〉+ · · ·+ 〈ξn〉)−(N+|γ|)

≤ C ′′
γN (〈ξ1〉+ · · ·+ 〈ξn〉)−N

for some C ′′
γN > 0 and all x0 ∈ G0, [ξ] ∈ Ĝ, α, β ∈ Jξ. By Lemma 3.1.5 we conclude that

Ψu ∈ C∞(G0 ×G), and so clearly Ψ′u ∈ C∞(G0 ×G). The proof that u ∈ D′(G0 ×G) =⇒
Ψ′u ∈ D′(G0 ×G) is similar. Notice that Ψ′−1 is given by Ψ−1 ◦Ψ−1

q , where

Ψ−1u(x0, x1, . . . , xn)
.
=
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ
ei(

∑n
j=1 μαj (ξ

j)Aj(x0))û(x0, ξ)αβξβα(x),

and

Ψ−1
q u(x0, x)

.
= u(x0, x)e

Q(x0,x),

in the sense of distributions, for every u ∈ D′(G0 × G), so it is clear that Ψ′ is an automor-

phism. This proves the claim on global hypoellipticity. It remains to prove that L is globally

solvable if and only if L0 is globally solvable. First assume that L is globally solvable. Note

that L and L0 satisfy tL = −L + 2q and tL0 = −L0 + 2q0. Also, (−L + 2q) ◦ Ψ−1
q ◦ Ψ =

Ψ−1
q ◦ Ψ ◦ (−L0 + 2q0). Indeed, this follows from the following facts that can be verified by a

simple calculation:

• −(X0 +
∑n

j=1 aj(x0)Xj) ◦Ψ−1
q u = Ψ−1

q ◦ (−(X0 +
∑n

j=1 aj(x0)Xj))u+ (−q+ q0)Ψqu

• (−X0) ◦Ψu = Ψ ◦ (∑n
j=1 μαj

(ξj)(aj − aj0))u+Ψ ◦ (−X0)u

• Ψ ◦ (−∑n
j=1 μαj

(ξj)(aj0))u = Ψ ◦ (−∑n
j=1 aj0(x0)Xj)u

• (−∑n
j=1 aj(x0)Xj) ◦Ψu = −∑n

j=1 μαj
(ξj)aj(x0)Ψu.

To see why these last assertions are true, note that from Definition 2.2.10, we have that

σXj
(ξj) = ξj(xj)

∗Xjξ
j(xj) = Xjξ

j(eGj
),
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so that

Xjξ
j(xj) = ξj(xj)Xjξ

j(eGj
)

= ξj(xj)σXj
(ξj)

= ξj(xj)diag(μαj
(ξj)).

Therefore, Xjξ
j(xj)βjαj

= μαj
(ξj)ξj(xj)βjαj

.

Using this fact, we may prove that Ψ−1
q ◦Ψ(ker tL0) = ker tL. Indeed if u ∈ ker tL0, then

0 = Ψ−1
q ◦Ψ ◦ tL0 u

= Ψ−1
q ◦Ψ ◦ (−L0 + 2q0)u

= (−L+ 2q) ◦Ψ−1
q ◦Ψu

= tL ◦Ψ−1
q ◦Ψu,

therefore Ψ−1
q ◦Ψu ∈ ker(tL) and Ψ−1

q ◦Ψ(ker tL0) ⊂ ker tL. Conversely, if v ∈ ker tL then

0 = Ψ−1 ◦Ψq ◦ tLv

= Ψ−1 ◦Ψq ◦ (−L+ 2q)v

= (−L0 + 2q0) ◦Ψ−1 ◦Ψqv

= tL0 ◦Ψ−1 ◦Ψqv,

so Ψ−1 ◦ Ψq(ker
tL) ⊂ ker tL0 which implies ker tL ⊂ Ψ−1

q ◦ Ψ(ker tL0), which finishes the

proof that Ψ−1
q ◦Ψ(ker tL0) = ker tL.

Therefore every v ∈ ker tL may be written as v = (Ψ−1
q ◦Ψ)u, where u ∈ ker tL0. Now if

f ∈ (ker tL0)
0 ∩ C∞(G0 × G), then (Ψq ◦ Ψ)f ∈ (ker tL)0 ∩ C∞(G0 × G). Indeed, for any

v = Ψ−1
q ◦Ψu, u ∈ ker tL0, Proposition 3.1.7 implies that

∫
G0×G

Ψq ◦Ψf(x0, x)Ψ
−1
q ◦Ψu(x0, x)dx0dx

=

∫
G0×G

Ψf(x0, x)e
−Q(x0,x)Ψu(x0, x)e

Q(x0,x)dx0dx

=
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ

∫
G0

f̂(x0, ξ)αβe
−i(

∑n
j=1 μαj (ξ

j)Aj(x0))û(x0, ξ)αβe
−i(

∑n
j=1 μαj (ξ

j)Aj(x0)) dx0 .
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Since μαj
(ξj) = −μαj

(ξj), for every [ξj] ∈ Ĝj , the exponentials cancel out. Therefore

∫
G0×G

(Ψq ◦Ψ)f(x0, x)(Ψ
−1
q ◦Ψ)u(x0, x)dx0dx =

∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ

∫
G0

f̂(x0, ξ)αβû(x0, ξ)αβ dx0

=

∫
G0×G

f(x0, x)u(x0, x) dx0 dx = 0,

where we used Proposition 3.1.7 once again, and the fact that f ∈ (ker tL0)
0, u ∈ ker tL0.

This proves the claim that (Ψq ◦ Ψ)f ∈ (ker tL)0 ∩ C∞(G0 × G), so by the definition of

global solvability there exists u ∈ C∞(G0 × G) such that Lu = (Ψq ◦ Ψ)f . But then f =

(Ψ−1 ◦Ψ−1
q ◦ L)u = (L0 ◦Ψ−1 ◦Ψ−1

q )u, so that L0 is globally solvable. The converse follows

by symmetry, which finishes the proof.

Example 5.1.3. The following example has been extracted from [40], but with slightly differ-

ent notation. Let G0 = G1 = S3 and consider the operator L = X0 + a1(x0)X1, where Xj

corresponds to the vector field D3,j = ∂ψj
= i∂0,j on the xj variable, and a1 : S3 → R is

expressed in Euler’s angles by

a1(x0(φ0, θ0, ψ0)) = − cos

(
θ0
2

)
sin

(
φ0 + ψ0

2

)
+
√
2,

which satisfies

X0 Tr(x0) = a1(x0)−
√
2.

Since a10 =
√
2, by propositions 4.1.4 and 5.1.2 we have that L is not globally hypoelliptic,

but is globally solvable.

5.1.1 The case of the torus

Assume now G0 = T1, X0 = ∂t. In other words, the operator L can be seen as an “evolu-

tion operator” on a periodic time variable. In this case, the conditions for Proposition 5.1.2 are

satisfied for any a1, . . . , an ∈ C∞(T1) and q ∈ C∞(T1). Indeed, taking

Aj(t) =

∫ t

0

aj(τ)dτ − aj0t,
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for every t ∈ [0, 2π], where aj0 =
1
2π

∫ 2π
0

aj(τ)dτ , j = 1, . . . , n, and

Q(t) =

∫ t

0

q(τ)dτ − q0t,

for every t ∈ [0, 2π], where q0 =
1
2π

∫ 2π
0

q(τ)dτ , these satisfy

X0Aj(t) = ∂tAj(t) = aj(t)− aj0, j = 1, . . . , n,

and

(L− q)Q(t) = ∂tQ(t) = q(t)− q0,

for every t ∈ [0, 2π]. Therefore Proposition 5.1.2 implies the following corollary:

Corollary 5.1.4. Let Xj be a left-invariant vector field on a compact Lie group Gj , for each

j = 1, . . . , n, and consider the partial differential operator on T1 ×G1 × · · · ×Gn given by

L = ∂t + a1(t)X1 + · · ·+ an(t)Xn + q,

where a1, . . . , an are smooth real-valued functions on T1, q ∈ C∞(T1). The operator L is

globally solvable if and only if there exist M,N > 0 such that

|k + a10μα1(ξ
1) + · · ·+ an0μαn(ξ

n)− iq0| ≥ M
(
|k|+ 〈ξ1〉+ · · ·+ 〈ξn〉

)−N
(5.3)

for every (k, [ξ]) ∈ Z×Ĝ, α ∈ Jξ, such that the left hand side of the inequality is not zero,

where aj0 = 1
2π

∫ 2π
0

aj(t)dt, j = 1, . . . , n, q0 = 1
2π

∫ 2π
0

q(t)dt. It is globally hypoelliptic if and

only if the equation

k + a10μα1(ξ
1) + · · ·+ an0μαn(ξ

n)− iq0 = 0

has only finitely many solutions for (k, [ξ]) ∈ Z×Ĝ, α ∈ Jξ, and inequality (5.3) also holds

whenever its left-hand side is not zero.

Example 5.1.5. Consider L as given in Corollary 5.1.4. Suppose also that Re(q0) �= 0. Then

L is both globally solvable and globally hypoelliptic, as

|k + a10μα1(ξ
1) + · · ·+ an0μαn(ξ

n)− iq0| ≥ |Re(q0)| > 0,

for every (k, [ξ]) ∈ Z×Ĝ, α ∈ Jξ.
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Example 5.1.6. Let L be as in Corollary 5.1.4. Assume also that G1, . . . , Gn = T1. If

i) al0 is an irrational non-Liouville number, but aj0, Im(q) ∈ Q, for 1 ≤ j �= l ≤ n, or;

ii) a10, . . . , an0, Im(q0) ∈ Q.

Then L is globally solvable and, in the second case, L is not globally hypoelliptic.

Indeed, both cases (i) and (ii) follow from Corollaries 4.2.1 and 5.1.4 and their respective

comments.

Example 5.1.7. For G1, . . . , Gn = T1, if q0 ∈ iZ and there exists 1 ≤ j ≤ n such that aj0 is a

Liouville number, then L is not globally solvable (nor hypoelliptic). Indeed, this follows from

Corollaries 4.2.3 and 5.1.4.

5.2 Complex coefficients

The goal of this section is to study the case where the operator L has complex-valued co-

efficients. The standard approach is to apply the partial Fourier transform to the “space” vari-

ables x1, . . . , xn, in order to obtain a uncoupled system of differential equations in only the

“time” variable t. Since this technique requires solving a differential equation on the compact

Lie group G0, we will only consider the case G0 = T1, and X0 = ∂t. This way we may apply

the standard theory for solving ordinary differential equations on the torus, which boils down

to solving these equations on the real line, but with periodic boundary conditions. With this in

mind, in this chapter we study the operator

L
.
= ∂t +

[
n∑

j=1

cj(t)Xj

]
+ q(t), (5.4)

where cj(t) = aj(t) + ibj(t) are smooth complex-valued functions on T1, Xj are non-zero

left-invariant vector fields on the compact Lie groups Gj , j = 1, . . . , n, and q ∈ C∞(T1).

The same arguments used in Proposition 5.1.2 can be used to prove that the global hypoellip-

ticity and solvability of L is equivalent to those same properties of the operator given by

∂t +

[
n∑

j=1

(aj0 + ibj(t))Xj

]
+ q0,
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where R � aj0 =
1
2π

∫ 2π
0

aj(t)dt, j = 1, . . . , n, and C � q0 =
1
2π

∫ 2π
0

q(t)dt, so we will assume

these functions are all constant. In other words, we will consider aj = aj0 ∈ R, j = 1, . . . , n,

and q = q0 ∈ C. We also define the constant coefficients operator

L0
.
= ∂t +

[
n∑

j=1

cj0(t)Xj

]
+ q, (5.5)

where cj0 =
1
2π

∫ 2π
0

cj(t)dt.

First, we present some notation and prove some auxiliary lemmas.

Notice that if u, f ∈ C∞(T1 ×G) satisfy Lu = f , comparing partial Fourier coefficients on

T1 ×G yields the following uncoupled system of ordinary differential equations on the torus:

∂t û(t, ξ)αβ +i(〈c(t), μα(ξ)〉 − iq) û(t, ξ)αβ = f̂(t, ξ)αβ, (5.6)

for t ∈ T1, [ξ] ∈ Ĝ, and α, β ∈ Jξ, where 〈c(t), μα(ξ)〉 .
=
∑n

j=1 cj(t)μαj
(ξj).

Lemma 5.2.1. Let L be as defined in (5.4). Suppose that the sequence of smooth functions

û(·, ξ)αβ ∈ C∞(T1) satisfies

[∂t + i(〈c(t), μα(ξ)〉 − iq)] û(t, ξ)αβ = f̂(t, ξ)αβ, (5.7)

for all t ∈ T1, [ξ] ∈ Ĝ, and α, β ∈ Jξ, where f ∈ C∞(T1 ×G). If there exist K,N > 0, such

that

|û(t, ξ)αβ| ≤ K (〈ξ1〉+ · · ·+ 〈ξn〉)N ‖f̂(·, ξ)αβ‖∞,

for all t ∈ T1, [ξ] ∈ Ĝ, and α, β ∈ Jξ, then these Fourier coefficients define a smooth function

u ∈ C∞(T1 ×G), which also satisfies Lu = f .

Proof. To prove these coefficients define a smooth function, by Lemma 3.1.5 we must prove

that ∀m ∈ N0, ∀N ′ > 0, ∃K ′
mN ′ > 0 such that

|∂m
t û(t, ξ)αβ| ≤ K ′

mN ′ (〈ξ1〉+ · · ·+ 〈ξn〉)−N ,

for all t ∈ T1, [ξ] ∈ Ĝ, and α, β ∈ Jξ. We prove this by strong induction on m. The case

m = 0, follows from the hypothesis and Lemma 3.1.5. Suppose the claim holds for every case
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m ≤ k ∈ N0. Then, by (5.7), we have that

∂k+1
t û(t, ξ)αβ = ∂k

t (∂tû(t, ξ)αβ) =

= ∂k
t

(
−i(〈c(t), μα(ξ)〉 − iq)û(t, ξ)αβ + f̂(t, ξ)αβ

)
= −i

k∑
j=0

(
k

j

)
(〈∂j

t c(t), μα(ξ)〉∂k−j
t û(t, ξ)αβ) + q∂k

t û(t, ξ)αβ + ∂k
t f̂(t, ξ)αβ,

and so

|∂k+1
t û(t, ξ)αβ| ≤ 2k max

l=1,...,k
max

j=1,...,n
‖∂j

t cl‖∞ (〈ξ1〉+ · · ·+ 〈ξn〉)

× max
j=1,...,k

|∂j
t û(t, ξ)αβ|+ |q||∂k

t û(t, ξ)αβ|+ ‖∂k
t f̂(·, ξ)αβ ‖∞, (5.8)

for every t ∈ T1, [ξ] ∈ Ĝ and α, β ∈ Jξ. The case m = k + 1 then follows from the previous

cases and the inequality above. Indeed, given N > 0, by the inductive hypothesis there exists

M > 0 be such that

max
j=1,...,k

|∂j
t û(t, ξ)αβ| ≤ M (〈ξ1〉+ · · ·+ 〈ξn〉)−(N+1),

for every t ∈ T1, [ξ] ∈ Ĝ and α, β ∈ Jξ. Also, since f is smooth, by Lemma 3.1.5 there exists

M ′ > 0 such that

|∂k
t f̂(t, ξ)αβ| ≤ M ′ (〈ξ1〉+ · · ·+ 〈ξn〉)−N ,

for every t ∈ T1, [ξ] ∈ Ĝ and α, β ∈ Jξ. Applying this inequalities to (5.8) we obtain

|∂k+1
t û(t, ξ)αβ| ≤ ((2k max

l=1,...,k
max

j=1,...,n
‖∂j

t cl‖∞ + |q|)M +M ′) (〈ξ1〉+ · · ·+ 〈ξn〉)−N ,

for every t ∈ T1, [ξ] ∈ Ĝ and α, β ∈ Jξ, which finishes the proof by induction. The fact that

Lu = f can be seen by comparing partial Fourier coefficients.

Finally, for c0 = (c10, . . . , cn0) ∈ Cn, define the following sets

ZL =
{
([ξ], α) ∈ Ĝ× Nn |α ∈ Jξ, 〈c0, μα(ξ)〉 − iq ∈ Z

}
(5.9)

Zc
L =
{
([ξ], α) ∈ Ĝ× Nn |α ∈ Jξ, 〈c0, μα(ξ)〉 − iq �∈ Z

}
, (5.10)
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where 〈c0, μα(ξ)〉 − iq is as in (4.3).

Sufficient Conditions

We are now ready to prove sufficient conditions for the operator L to be globally solvable

and/or globally hypoelliptic. The first condition we present establishes a connection between

the sublevel sets of the coefficients of L the Fourier coefficients of solutions to the equation

Lu = f . This is similar to the conditions found in [9].

Proposition 5.2.2. Suppose equation (5.6) admits solution, for some ([ξ], α) ∈ ZL, β ∈ Jξ.

Suppose also that for every r ∈ R each sublevel set

Ωξ,α
r =

{
t ∈ T1
∣∣ ∫ t

0

〈b(τ), μα(ξ)〉 − Re(q)dτ < r

}

is connected. Then there exists û(t, ξ)αβ , solution to (5.6), which satisfies

| û(t, ξ)αβ | ≤ 2π‖f̂(·, ξ)αβ‖∞,

for every t ∈ T1.

Proof. Let ([ξ], α) ∈ ZL, β ∈ Jξ be as stated. By compactness of T1, there exists tξα ∈ T1

such that

−
∫ tξα

0

〈b(τ), μα(ξ)〉 − Re(q)dτ = inf
t∈T1

{
−
∫ t

0

〈b(τ), μα(ξ)〉 − Re(q)dτ

}
.

According to the hypothesis, the differential equation given by ∂t û(t, ξ)αβ +i(〈c(t), μα(ξ)〉 −
iq) û(t, ξ)αβ = f̂(t, ξ)αβ admits solution, so by Lemma 5.A.1 the mapping

t �→ û(t, ξ)αβ =

∫ t

tξα

exp

{
−i

∫ t

s

(〈c(τ), μα(ξ)〉 − iq) dτ

}
f̂(s, ξ)αβ ds (5.11)

defines one such solution. Let us prove it satisfies the inequality as stated. For t ∈ T1, define

rt
.
= −
∫ t

0

〈b(τ), μα(ξ)〉 − Re(q)dτ.
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Note that t and tξα ∈ Ω̃ξ,α
rt , where

Ω̃ξ,α
r =

{
t ∈ T1
∣∣− ∫ t

0

〈b(τ), μα(ξ)〉 − Re(q)dτ ≤ r

}
,

which is connected by Lemma 5.A.5 and our assumptions. Therefore there exists γt ⊂ Ω̃ξ,α
rt

circumference arc connecting tξα to t. Since γt is contained in Ω̃ξ,α
rt , we have that

−
∫ s

0

〈b(τ), μα(ξ)〉 − Re(q)dτ ≤ rt = −
∫ t

0

〈b(τ), μα(ξ)〉 − Re(q)dτ, (5.12)

for all s ∈ γt, by definition. Note that for any t ∈ T1, there are precisely two arcs connecting

tξα to t, whose union is T1. As equation (5.6) admits solution, Lemma 5.A.1 implies that

0 =

∫ 2π

0

exp

{
i

∫ s

0

(〈c(τ), μα(ξ)〉 − iq) dτ

}
f̂(s, ξ)αβ ds

=

∫ 2π

0

exp

{
−i

∫ 0

s

(〈c(τ), μα(ξ)〉 − iq) dτ

}
f̂(s, ξ)αβ ds .

Hence ∫ 2π

0

exp

{
−i

∫ t

s

(〈c(τ), μα(ξ)〉 − iq) dτ

}
f̂(s, ξ)αβds = 0,

and so since the integration on the torus is oriented, the integral from tξα to t in the definition

of û is independent on the choice of path connecting these two points. Integrating over γt, we

can rewrite formula (5.11) as

û(t, ξ)αβ =

∫
γt

exp

{
−i

∫ t

s

(〈c(τ), μα(ξ)〉 − iq) dτ

}
f̂(s, ξ)αβ ds

=

∫
γt

exp

{∫ t

0

〈b(τ), μα(ξ)〉 − Re(q)dτ −
∫ s

0

〈b(τ), μα(ξ)〉 − Re(q)dτ

}
× exp {i(s− t)(〈a0, μα(ξ)〉+ Im(q))} f̂(s, ξ)αβ ds .

Therefore, by (5.12) we can estimate

| û(t, ξ)αβ | ≤
∫
γt

|f̂(s, ξ)αβ|ds

≤ 2π‖f̂(·, ξ)αβ‖∞.

Since t ∈ T1 was arbitrarily chosen, the inequality holds for every t ∈ T1.
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Corollary 5.2.3. If Zc
L is finite and for all sufficiently large 〈ξ〉 every sublevel Ωξ,α

r is con-

nected, then L defined in (5.4) is globally solvable.

Proof. Let f ∈ (ker tL)0 ∩ C∞(T1 ×G). Then by Lemma 5.A.3, the equation

L̂u(t, ξ)αβ = f̂(t, ξ)αβ ⇐⇒ [∂t + i(〈c(t), μα(ξ)〉 − iq)] û(t, ξ)αβ = f̂(t, ξ)αβ (5.13)

admits solution û(·, ξ)αβ ∈ C∞(T1) for every [ξ] ∈ Ĝ, α, β ∈ Jξ. We claim that the inverse

Fourier transform of this sequence of functions defines a smooth function on T1 ×G. Let R >

0, be such that every sublevel Ωξ,α
r is connected, for 〈ξ〉 > R. Since Zc

L is finite, we may take

R′ ≥ R such that 〈ξ〉 ≤ R′, for every ([ξ], α) ∈ Zc
L. Let

K = max
t∈T1

max
〈ξ〉≤R′,α β∈Jξ
f̂(·,ξ)αβ 
=0

| û(t, ξ)αβ |(‖f̂(·, ξ)αβ‖∞)−1 ≥ 0.

Then

| û(t, ξ)αβ | ≤ K‖f̂(·, ξ)αβ‖∞,

for every t ∈ T1, 〈ξ〉 ≤ R′ and α, β ∈ Jξ. If 〈ξ〉 > R′, then ([ξ], α) ∈ ZL, and each sublevel

Ωξ,α
r is connected. Proposition 5.2.2 then implies that for every β ∈ Jξ there exists a solution

to equation (5.13) which satisfies

| û(t, ξ)αβ | ≤ 2π‖f̂(·, ξ)αβ‖∞,

for every t ∈ T1. Taking K̃ = max{K, 2π}, then | û(t, ξ)αβ | ≤ K̃‖f̂(·, ξ)αβ‖∞ for every

[ξ] ∈ Ĝ, and α, β ∈ Jξ. Finally, Lemma 5.2.1 implies u ∈ C∞(T1 ×G) and satisfies Lu = f ,

which proves L is globally solvable.

Remark 5.2.4. It is worth noting that if G is non-trivial, then Ĝ is infinite. Therefore, if Zc
L is

finite then ZL must be infinite. Also, as we shall prove in Proposition 5.2.12, every vector field

Xj admits a sequence [ξjm] ∈ Ĝj such that μ1(ξ
j
m) → ∞ as m → ∞. Therefore the only way

for Zc
L to be finite (and so ZL infinite) is if Re(q) = 0 and bj0 = 0 for every j = 1, . . . , n.

We will prove this by contradiction. Indeed, suppose first that Re(q) �= 0. Then for [ξ] ∈ Ĝ,

α ∈ Jξ

Im(〈c0, μα(ξ)〉 − iq) = 〈b0, μα(ξ)〉 − Re(q).

Therefore 〈c0, μα(ξ)〉 − iq ∈ Z only if 〈b0, μα(ξ)〉 = Re(q). If all b0 are zero, then
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([ξ], α) ∈ Zc
L for all [ξ] ∈ Ĝ, α ∈ Jξ. On the other hand, if some bj0 �= 0, then let [ξjm] ∈ Ĝj be

a sequence such that μ1(ξ
j
m) → ∞ as m → ∞. Let ξm = 11⊗· · ·⊗1j−1⊗ξjm⊗1j+1⊗· · ·⊗1n,

where 1j ∈ U(1) is the trivial representation on Gj , that is, 1j(xj) = 1 ∈ U(1), ∀xj ∈ Gj ,

j = 1, . . . , n. Notice that, in particular, 1j satisfies μ1(1
j) = 0, for all j = 1, . . . , n. There-

fore, we have that ([ξm], 1) ∈ ZL for only finitely many m, since in this case 〈b0, μα(ξm)〉 =

bj0μ1(ξ
j
m) → ±∞. Therefore ([ξm], 1) ∈ Zc

L for infinitely many m and Zc
L must be infinite.

The case where some bj0 �= 0 and Re(q) = 0 is analogous.

Finally, note that Zc
L finite also implies that L0 is globally solvable but not globally hy-

poelliptic, by Proposition 4.1.4.

Lemma 5.2.5. The following are equivalent:

1. There exist M,N > 0 such that

|k + 〈c0, μα(ξ)〉 − iq| ≥ M(|k|+ 〈ξ1〉+ · · ·+ 〈ξn〉)−N ,

for every (k, [ξ], α) ∈ Z×Ĝ× Nn, α ∈ Jξ such that k + 〈c0, μα(ξ)〉 − iq �= 0.

2. There exist M,N > 0 such that

|1− e±2πi(〈c0,μα(ξ)〉−iq)| ≥ M (〈ξ1〉+ · · ·+ 〈ξn〉)−N ,

for every ([ξ], α) ∈ Zc
L.

Proof. Suppose 2. does not hold. This means that for every m ∈ N, there exists [ξm] ∈ Ĝ,

α(m) ∈ Jξm , such that

0 <
∣∣1− e±2πi(〈c0,μα(m)(ξm)〉−iq)

∣∣ < 1

m
(〈ξ1m〉+ · · ·+ 〈ξnm〉)−m. (5.14)

Note that this implies |Re(q) − 〈b0, μα(m)(ξm)〉| → 0 and that there exists a sequence of

integers (km)m∈N such that

|km + 〈a0, μα(m)(ξm)〉+ Im(q)| → 0.

It is easy to verify that for any real numbers a and b:

|1− ea+bi| ≥ |1− ea|.
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Therefore, for all sufficiently large m ∈ N, the mean value theorem implies that

∣∣1− e±2πi(〈c0,μα(m)(ξm)〉−iq)
∣∣ ≥ ∣∣1− e±2π(Re(q)−〈b0,μα(m)(ξm)〉)∣∣
≥ e−12π|Re(q)− 〈b0, μα(m)(ξm)〉|.

(5.15)

Also, since
sin(2πx)

2πx
→ 1 as x → 0, we have that

| sin(2π(km + 〈a0μα(m)(ξm)〉+ Im(q))| ≥ π|km + 〈a0, μα(m)(ξm)〉+ Im(q)|, (5.16)

for all sufficiently large m ∈ N. For sufficiently large m, we also have that e2π(Re(q)−〈b0,μα(m)〉

≥ 1
2
, as this sequence has limit equal to 1. Therefore, for all such m, we have that

π|km + 〈a0, μα(m)(ξm)〉+ Im(q)| ≤ | sin(2π(km + 〈a0, μα(m)(ξm)〉+ Im(q))|

≤ 2e2π(Re(q)−〈b0,μα(m)(ξm)〉)| sin(2π(km + 〈a0, μα(m)(ξm)〉+ Im(q))|

= 2
∣∣Im(1− e±2πi(〈c0,μα(m)(ξm)〉−iq))

∣∣
≤ 2
∣∣1− e±2πi(〈c0,μα(m)(ξm)〉−iq)

∣∣ .
(5.17)

Together, inequalities (5.14), (5.15), (5.16) and (5.17) imply that for C = 4+e
2π

> 0 and all

sufficiently large m

0 < |km + 〈c0, μα(m)(ξm)〉 − iq|

≤ |km + 〈a0, μα(m)(ξm)〉+ Im(q)|+ |Re(q)− 〈b0, μα(m)(ξm)〉|

≤ 4 + e

2π

∣∣1− e±2πi(〈c0,μα(m)(ξm)〉−iq)
∣∣ ≤ C

m

(
〈ξ1m〉+ · · ·+ 〈ξnm〉

)−m
.

We claim that this implies 1. cannot hold. Indeed, suppose that it holds. Then there exist

M,N > 0, such that for every m ∈ N we have that

M
(
|km|+ 〈ξ1m〉+ · · ·+ 〈ξnm〉

)−N ≤ |km + 〈c0, μα(m)(ξm)〉 − iq|

<
C

m

(
〈ξ1m〉+ · · ·+ 〈ξnm〉

)−m
.
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But then

0 <
M

C
<

1

m

(
〈ξ1m〉+ · · ·+ 〈ξnm〉

)−m (|km|+ 〈ξ1m〉+ · · ·+ 〈ξnm〉
)N

=
1

m

(
〈ξ1m〉+ · · ·+ 〈ξnm〉

)−m+N
( |km|
〈ξ1m〉+ · · ·+ 〈ξnm〉

+ 1

)N
.

Since |km + 〈a0, μα(m)(ξm)〉+ Im(q)| < 1 for all sufficiently large m ∈ N, this implies that for

all such m we have that

|km| ≤ 1 +K(〈ξ1m〉+ · · ·+ 〈ξnm〉) + | Im(q)|,

where

0 ≤ K = max{C1|a10|, . . . , Cn|an0|}.

Here, Cj > 0 satisfies |μαj
(ξj)| ≤ Cj〈ξj〉, for every αj ∈ Jξj , [ξ

j] ∈ Ĝj and j = 1, . . . , n.

Therefore

0 <
M

C
<

1

m

(
〈ξ1m〉+ · · ·+ 〈ξnm〉

)−m+N
(

1 + | Im(q)|
〈ξ1m〉+ · · ·+ 〈ξnm〉

+K + 1

)N
,

for every sufficiently large m ∈ N. But this cannot be true since the right hand side of the

inequality above tends to 0 as m → +∞. This proves the claim and so 1. cannot hold if 2.

does not hold.

Next, suppose 1. does not hold. Then, for every m ∈ N, there exist km ∈ Z, [ξm] ∈
Ĝ, α(m) ∈ Jξm such that

0 < |km + 〈c0, μα(m)(ξm)〉 − iq| < 1

m
(|km|+ 〈ξ1m〉+ · · ·+ 〈ξnm〉)−m.

In particular, every ([ξm], α(m)) is in Zc
L and km+〈c0, μα(m)(ξm)〉−iq tends to 0 as m → +∞.

Let us define for every m ∈ N, the real numbers

γm
.
= Re(km + 〈c0, μα(m)(ξm)〉 − iq),

νm
.
= Im(km + 〈c0, μα(m)(ξm)〉 − iq).
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Note that

∣∣1− e∓2πi(〈c0,μα(m)(ξm)〉−iq)
∣∣ ≤ |1− e±2πνm cos(2πγm)|+ e±2πνm | sin(2πγm)|, (5.18)

for every m ∈ N. Also, for any real numbers x and y we have the inequality

|1− ex cos(y)| ≤ |1− cos(y)|+ | cos(y)||1− ex| ≤ |1− cos(y)|+ |1− ex|.

Therefore inequality (5.18) implies that for each m sufficiently large

∣∣1− e±2πi(〈c0,μα(m)(ξm)〉−iq)
∣∣ ≤ |1− cos(2πγm)|+ |1− e∓2πνm |+ e∓2πνm | sin(2πγm)|

≤ 2π|γm|+ 2π|νm|e+ 2π|νm|e

≤ C(|γm|+ |νm|),

for C = 6πe, where for the second inequality we have applied the mean value theorem on

each factor of the sum in the first line, and also the fact that both νm, γm → 0. Therefore

∣∣1− e±2πi(〈c0,μα(m)(ξm)〉−iq)
∣∣ ≤ 2C|γn + iνm|

< 2
C

m
(|km|+ 〈ξ1m〉+ · · ·+ 〈ξnm〉)−m

≤ 2
C

m
(〈ξ1m〉+ · · ·+ 〈ξnm〉)−m,

for all sufficiently large m, so that 2. cannot hold.

Proposition 5.2.6. Suppose that there exists R > 0 such that for all 〈ξ〉 > R, we have that

• T1 � t �→ 〈b(t), μα(ξ)〉 .
=
∑n

j=1 bj(t)μαj
(ξj) does not change sign if (ξ, α) ∈ Zc

L, and

• the sublevel Ωξ,α
r is connected for every (ξ, α) ∈ ZL, r ∈ R.

Suppose also L0 defined in (5.5) is globally solvable. Then L defined in (5.4) is globally solv-

able, and if ZL is finite, then L is globally hypoelliptic.

Proof. Let f ∈ (ker tL)0 ∩ C∞(T1 ×G) and R > 0 be as stated. We shall exhibit

u ∈ C∞(T1 ×G) such that Lu = f , by choosing the appropriate partial Fourier coefficients for

u. By Lemma 5.A.3 we know that for every [ξ] ∈ Ĝ, α, β ∈ Jξ, the differential equation

L̂u(t, ξ)αβ = [∂t + i(〈c(t), μα(ξ)〉 − iq)] û(t, ξ)αβ = f̂(t, ξ)αβ (5.19)
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admits smooth solution. For each 〈ξ〉 ≤ R, and α, β ∈ Jξ, define û(·, ξ)αβ to be one such

solution. Since there are only finitely many such coefficients (see Remark 2.2.7), we can find,

as in the proof of Corollary 5.2.3, K1 > 0 such that

| û(t, ξ)αβ | ≤ K1‖f̂(·, ξ)αβ‖∞, (5.20)

for every t ∈ T1, 〈ξ〉 ≤ R, and α, β ∈ Jξ. Now suppose 〈ξ〉 > R and ([ξ], α) ∈ ZL. In

this case, every sublevel Ωξ,α
r is connected. Hence by Lemma 5.2.2, for every β ∈ Jξ, we can

define û(·, ξ)αβ to be the smooth solution to (5.19) which satisfies

| û(t, ξ)αβ | ≤ 2π‖f̂(·, ξ)αβ‖∞. (5.21)

for every t ∈ T1. On the other hand, if 〈ξ〉 > R, ([ξ], α) ∈ Zc
L, and β ∈ Jξ, according to

Lemma 5.A.1 we can choose û(·, ξ)αβ to be the unique solution to the differential equation

(5.19) given by the equivalent expressions

û(t, ξ)αβ = (c̃ξ,α)
−1

∫ 2π

0

e−qτe−iτ〈a0,μα(ξ)〉e
∫ t
t−τ 〈b(w),μα(ξ)〉dwf̂(t− τ, ξ)αβdτ, (5.22)

and

û(t, ξ)αβ = (d̃ξ,α)
−1

∫ 2π

0

eqτeiτ〈a0,μα(ξ)〉e−
∫ t+τ
t 〈b(w),μα(ξ)〉dwf̂(t+ τ, ξ)αβdτ, (5.23)

where c̃ξ,α = 1 − e−2πi(〈c0,μα(ξ)〉−iq), d̃ξ,α = e2πi(〈c0,μα(ξ)〉−iq) − 1. Note also that since L0 is

globally solvable, and as |k| has the same asymptotic behaviour as 〈k〉 =
√
1 + k2 for k ∈

T̂1 ∼ Z, by Proposition 4.1.4 and Lemma 5.2.5 there exist M,N > 0 such that

|(c̃ξ,α)|−1 ≤ M (〈ξ1〉+ · · ·+ 〈ξn〉)N ,

|(d̃ξ,α)|−1 ≤ M (〈ξ1〉+ · · ·+ 〈ξn〉)N .

As t �→ 〈b(t), μα(ξ)〉 does not change sign, first assume it is non-positive. Then

e
∫ t
t−τ 〈b(w),μα(ξ)〉dw ≤ 1,
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for every 0 ≤ t, τ ≤ 2π. Therefore, for each β ∈ Jξ, formula (5.22) implies that

| û(t, ξ)αβ | ≤ 2πMe2π|Re(q)| (〈ξ1〉+ · · ·+ 〈ξn〉)N ‖f̂(·, ξ)αβ‖∞,

for every t ∈ T1. If we now assume 〈b(t), μα(ξ)〉 ≥ 0 for all t ∈ T1, then

e−
∫ t+τ
t 〈b(w),μα(ξ)〉dw ≤ 1,

so by formula (5.23), for every β ∈ Jξ, the inequality

| û(t, ξ)αβ | ≤ 2πMe2π|Re(q)| (〈ξ1〉+ · · ·+ 〈ξn〉)N ‖f̂(·, ξ)αβ‖∞

is also satisfied for every t ∈ T1. Taking K = max{2π, 2πMe2π|Re(q)|, K1}, it follows from

Lemmas 3.1.5 and 5.2.1 that these Fourier coefficients indeed define u ∈ C∞(T1 ×G), which

clearly satisfies Lu = f , therefore L is globally solvable. Finally, note that if ZL is finite and

if Lu = f ∈ C∞(T1 ×G), then by the unicity of the solutions of (5.19) for all ([ξ], α) ∈ Zc
L,

by Lemma 5.A.1, and from the fact that these solutions satisfy the previous inequalities, u ∈
C∞(T1 ×G) by Lemma 3.1.5. This proves that L is globally hypoelliptic as well.

5.2.1 Necessary Conditions

Next we state and prove necessary conditions for the operator L to be globally solvable

and/or globally hypoelliptic. Some of these will require estimates from below to the symbols

of vector fields, which shall be explained.

The first necessary condition we present states that the operator L can be globally solv-

able, or globally hypoelliptic, only if the operator L0 is globally solvable.

Proposition 5.2.7. If L defined in (5.4) is globally solvable or globally hypoelliptic, then L0

defined in (5.5) is globally solvable.

Proof. Suppose that L0 is not globally solvable. Then by Proposition 4.1.4 and the fact that
√
1 + k2 has the same asymptotic behavior as |k| for k ∈ Z, k → ±∞, there exist sequences

([ξm], α(m))m∈N ⊂ Zc
L, (km)m∈N ⊂ Z, such that

0 < |km + i(〈c0, μα(m)(ξm)〉 − iq)| ≤ (〈ξ1m〉+ · · ·+ 〈ξnm〉+ |km|)−m,
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for every m ∈ N. Up to a change of representative we may assume, without loss of generality,

that α(m) = 1
.
= (1, . . . , 1) for all m ∈ N. Then, as in the proof of Lemma 5.2.5, there exists

K ′ > 0 such that

|dm| ≤ K ′(〈ξ1m〉+ · · ·+ 〈ξnm〉)−m,

where

dm
.
= 1− e−2πi(〈c0,μ1(ξm)〉−iq),

for every m ∈ N. Also, for all such m, let tm ∈ [0, 2π] be such that

∫ tm

0

〈b(s), μ1(ξm)〉 − Re(q)ds = max
t∈[0,2π]

∫ t

0

〈b(s), μ1(ξm)〉 − Re(q)ds.

Due to the [0, 2π] being compact, by taking a subsequence we can assume tm → t0 ∈ [0, 2π].

After a translation, we may further suppose t0 ∈ (0, 2π). Take φ ∈ C∞(T1), such that

supp(φ) ⊂ I, 0 ≤ φ(t) ≤ 1,
∫ 2π
t0

φ(s)ds > 1
2

and
∫ 2π
0

φ(s)ds = 1, where I ⊂ (0, 2π) is

a closed interval not containing t0. For every m ∈ N, define f̂(·, ξm)1 1 ∈ C∞(T1) to be the

2π-periodic extension of the function

[0, 2π] � t �→ dm exp

{
−i

∫ t

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}
φ(t).

Otherwise, define f̂(·, ξ)αβ ≡ 0. We claim that these partial Fourier coefficients define a

smooth function on T1 ×G. Indeed, notice that for every γ ∈ N0, and every t ∈ [0, 2π]:

|∂γ
t f̂(t, ξm)1 1 | = |dm|

∣∣∣∣∣
γ∑

j=0

(
γ

j

)
∂j
t exp

{
−i

∫ t

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}
∂γ−j
t φ(t)

∣∣∣∣∣ .
By Faa-di-Bruno’s formula

∂j
t exp

{
−i

∫ t

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}
=
∑

r∈Δ(j)

j!

r!
exp

{
−i

∫ t

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}

×
j∏

l=1

(
−i∂l

t

∫ t
tm
(〈c(w), μ1(ξm)〉 − iq)dw

l!

)rl

,

where Δ(j) = {r ∈ Nj
0|
∑j

l=1 lrl = j}. Notice that |μ1(ξ
k
m)| ≤ Cj〈ξkm〉, for some Cj > 0 and



75

for every m ∈ N, k = 1, . . . , n, and

Re

(
−i

∫ t

tm

(〈c(w), μ1(ξm)〉 − iq)dw

)
=

∫ t

tm

〈b(w), μ1(ξm)〉 − Re(q)dw ≤ 0,

for all t ∈ [0, 2π], by the definition of tm. Therefore, we obtain that∣∣∣∣∂j
t exp

{
−i

∫ t

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}∣∣∣∣ ≤ Dj(〈ξ1m〉+ · · ·+ 〈ξnm〉)j,

for some Dj > 0 and all t ∈ [0, 2π], j ∈ {0, 1, . . . , γ}. Finally, we can estimate

|∂γ
t f̂(t, ξm)1 1 | ≤ K̃γm(〈ξ1m〉+ · · ·+ 〈ξnm〉)γ−m,

for all t ∈ T1, m ∈ N. Therefore, it follows from Lemma 3.1.5 that f ∈ C∞(T1 ×G). Further-

more, Lemma 5.A.2 implies that f ∈ (ker tL)0, since f̂(·, ξ)αβ ≡ 0 for all ([ξ], α) ∈ ZL. We

now show that there is no u ∈ C∞(T1 ×G) which satisfies Lu = f , and so L is not globally

solvable. Indeed, suppose that such a u exists. Then its Fourier coefficients satisfy

L̂u(t, ξm)1 1 = [∂t + i(〈c(t), μ1(ξm)〉 − iq)]û(t, ξm)1 1 = f̂(t, ξm)1 1,

for every t ∈ T1, m ∈ N. From Lemma 5.A.1, û(·, ξm)1 1 must satisfy

û(t, ξm)1 1 = (dm)
−1

∫ 2π

0

exp

{
−i

∫ t

t−τ

(〈c(w), μ1(ξm)〉 − iq)dw

}
f̂(t− τ, ξm)1 1dτ, (5.24)

for every t ∈ [0, 2π], m ∈ N. In order to properly calculate the value of û(t, ξm)1 1, at each

t ∈ T1, we first split the integral above into two integrals: one where τ ranges from 0 to t and
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another where τ ranges from t to 2π. Hence, for any t ∈ [0, 2π] this yields

û(t, ξm)1 1 =∫ t

0

exp

{
−i

∫ t

t−τ

(〈c(w), μ1(ξm)〉 − iq)dw − i

∫ t−τ

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}
φ(t− τ)dτ

+

∫ 2π

t

exp

{
−i

∫ t

t−τ

(〈c(w), μ1(ξm)〉 − iq)dw − i

∫ t−τ+2π

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}
× φ(t− τ + 2π)dτ

= exp

{
−i

∫ t

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}∫ t

0

φ(t− τ)dτ

+ exp

{
−i

∫ t+2π

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}∫ 2π

t

φ(t− τ + 2π)dτ.

After a change of variables, and due to the definition of c0, we have that

û(t, ξm)1 1 = exp

{
−i

∫ t

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}∫ t

0

φ(τ ′)dτ ′

+ exp

{
−i

∫ t+2π

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}∫ 2π

t

φ(τ ′)dτ

= exp

{
−i

∫ t

tm

(〈c(w), μ1(ξm)〉 − iq)dw

}(∫ t

0

φ(τ ′)dτ ′

+exp {−2πi(〈c0, μ1(ξm)〉 − iq)}
∫ 2π

t

φ(τ ′)dτ ′
)
.

For t = tm, we obtain

û(tm, ξm)1 1 =

∫ tm

0

φ(τ ′)dτ ′ + exp {−2πi(〈c0, μ1(ξm)〉 − iq)}
∫ 2π

tm

φ(τ ′)dτ ′.

By continuity, both |e−2πi(〈c0,μ1(ξm)〉−iq)| and
∫ 2π
tm

φ(τ ′)dτ ′ are greater than 1
2

for m big enough,

and so

|û(tm, ξm)1 1| ≥
1

4
,

for all such m ∈ N. Lemma 3.1.5 then implies u �∈ C∞(T1 ×G), which is a contradic-

tion, and therefore no such function u can exist. As we have exhibited f ∈ (ker tL)0 ∩
C∞(T1 ×G) such that there is no u ∈ C∞(T1 ×G) which satisfies Lu = f , we con-

clude that L is not globally solvable. To prove L is also not globally hypoelliptic, we exhibit

u ∈ D′(T1 ×G)\C∞(T1 ×G) which satisfies Lu = f . For that, define the Fourier coefficients

û(·, ξ)αβ as identically zero for [ξ] �= [ξm] or α, β �= 1, and û(·, ξm)1 1 by formula (5.24), for
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every m ∈ N. Then as we have seen, these coefficients cannot define u ∈ C∞(T1 ×G) by

Lemma 3.1.5. On the other hand, note that for all t ∈ [0, 2π] and m ∈ N sufficiently big,

|û(t, ξm)1 1| ≤ exp

{∫ t

tm

(〈b(w), μ1(ξm)〉 − Re(q)dw

}
+ exp {2π(〈b0, μ1(ξm)〉 − Re(q))}

≤ 1 + exp {2π(〈b0, μ1(ξm)〉 − Re(q))} ≤ 3,

since e2π(〈b0,μ1(ξm)〉−Re(q)) → 1 as m → +∞. This implies that for any ψ ∈ C∞(T1), [ξ] ∈ Ĝ

and α, β ∈ Jξ,

|〈û(·, ξ)αβ, ψ〉T1 | ≤ 6π‖ψ‖∞.

Therefore, by Lemma 3.1.5 these coefficients define u ∈ D′(T1 ×G). By comparing Fourier

coefficients, we see that Lu = f , from which we conclude that L is not globally hypoelliptic.

Corollary 5.2.8. If t �→ 〈b(t), μα(ξ)〉 does not change sign for all but finitely many [ξ] ∈ Ĝ,

and α ∈ Jξ, then L defined in (5.4) is globally hypoelliptic if and only if L0 defined in (5.5)

is globally hypoelliptic. If also, Re(q) = 0, then L is globally solvable if and only if L0 is

globally solvable.

Proof. Notice that for all [ξ] ∈ Ĝ, α ∈ Jξ such that t �→ 〈b(t), μα(ξ)〉 does not change sign,

the sublevel Ωξ,α
r is connected for every r ∈ R, as the integral in its definition is monotone

when Re(q) = 0. From Proposition 5.2.6 we then conclude that L is globally solvable if L0 is

also globally solvable. Conversely, if L0 is not globally solvable, then by Proposition 5.2.7, L

is not globally solvable. Now, for any Re(q), from Proposition 5.2.6 it also follows that if L0

is globally hypoelliptic, then so is L. If however L0 is not globally hypoelliptic, by Proposition

4.1.4 either L0 is not globally solvable, or ZL is infinite. In the first case, Proposition 5.2.7

implies that L is not globally hypoelliptic. There only remains to prove that if ZL is infinite,

then L is not globally hypoelliptic. Suppose ZL is infinite and let ([ξm], α(m))m∈N ⊂ ZL be a

sequence of distinct terms. For each m ∈ N, let dm ∈ R, tm ∈ [0, 2π] be such that

dm
.
= max

0≤t≤2π

∫ t

0

(〈b(s), μα(m)(ξm)〉 − Re(q))ds =

∫ tm

0

(〈b(s), μα(m)(ξm)〉 − Re(q))ds.
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For every m ∈ N, define

û(t, ξm)α(m) 1 = e−dme−i
∫ t
0 (〈c(w),μα(m)(ξm)〉−iq)dw,

for every t ∈ T1. Also define û(·, ξ)αβ ≡ 0 for every other partial Fourier coefficient. Notice

that these partial Fourier coefficients are all well defined since (ξm, α(m)) ∈ ZL, for every

m ∈ N. Also,

|û(t, ξm)α(m) 1| = e−dme
∫ t
0 (〈b(w),μα(m)(ξm)〉−Re(q))dw ≤ 1

and

|û(tm, ξm)α(m) 1| = 1,

for all m ∈ N, so these coefficients define u ∈ D′(T1 ×G)\C∞(T1 ×G), by Lemma 3.1.5. On

the other hand, L̂u(·, ξm)α(m) 1 ≡ 0 for all m, since

L̂u(t, ξm)α(m) 1 = ∂tû(t, ξm)α(m) 1 + i(〈c(t), μα(m)(ξm)〉 − iq)û(t, ξm)α(m) 1

= 0,

for every t ∈ T1. We conclude that Lu = 0 ∈ C∞(T1 ×G), and therefore L is not globally

hypoelliptic.

Remark 5.2.9. Notice that in the corollary above we can replace “t �→ 〈b(t), μα(ξ)〉 does not

change sign for all but finitely many [ξ] ∈ Ĝ” by “All bi are linearly dependent and do not

change sign”. Indeed, if b1, . . . bn are linearly dependent and do not change sign, then there

exists a smooth real-valued function b0 : T1 → R, which does not change sign, and a vector

v = (λ1, . . . , λn) ∈ Rn such

(b1, . . . , bn) = b0(λ1, . . . , λn).

Then clearly t �→ 〈b(t), μα(ξ)〉 =
∑n

j=1 bj(t)μαj
(ξj) =

(∑n
j=1 λjμαj

(ξj)
)
b0(t) does not

change sign, for every [ξ] ∈ Ĝ.

In order to obtain further necessary conditions we will need the following definition.

Definition 5.2.10. We say that a vector field X on a compact Lie group G admits an

Archimedean sequence if there exists a sequence of distinct elements [ξm] ∈ Ĝ, and integers
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1 ≤ rm ≤ dξm , for m ∈ N, and K, ε > 0 such that

|μrm(ξm)| ≥ K〈ξm〉ε, ∀m ∈ N. (5.25)

Here σX(ξ) = diag(iμ1(ξ), . . . , iμdξ(ξ)). Note we can always assume 0 < K, ε ≤ 1. By

composing ξm with a change of variables, we may further assume rm = 1, for all m ∈ N.

Also, as 〈ξ〉 = 〈ξ〉 and μr

(
ξ
)
= −μr(ξ) for [ξ] ∈ Ĝ, r ∈ {1, . . . , dξ}, we can also assume that

μ1 (ξm) ≥ K〈ξm〉, ∀m ∈ N. (5.26)

By taking a subsequence, we will also suppose that the sequence of real numbers μ1(ξm) is

strictly increasing. Furthermore, for each m ∈ N, we define

ξ−m = ξm,

and ξ0 = 1 is the trivial representation 1(x) = 1, ∀x ∈ G. In particular, limm→±∞ μ1(ξm) =

±∞.

Example 5.2.11. Suppose G = Tn is the n-dimensional torus, n ∈ N. Then every [ξ] ∈ T̂n is

one dimensional, and we can identify [ξ] ∼ k ∈ Zn. Also, the vector fields ∂tj , j = 1, . . . , n

have symbol σ∂tj
(k) = ikj , and 〈k〉 =

√
1 + |k|2. This means the sequence (k(m))m∈N given

by k(m) = (0, . . . ,m, . . . , 0) is an Archimedean sequence for the vector field Xj , where m is

in the j-th coordinate, as

|μ1(k(m))| = |m| ≥ 1√
2

√
1 +m2 =

1√
2
〈k(m)〉, ∀m ∈ N .

Similarly, for G = S3, we can identify [ξ] ∈ Ŝ3 with � ∈ 1
2
N0. Also, the vector field i∂0 = D3

on S3 corresponding with the partial derivative ∂
∂ψ

in the local chart given by the Euler angles,

has symbol

σD3(�) = (i(α− �− 1)δαβ)
2�+1
α,β=1.

Also, here 〈�〉 =
√
1 + �+ �2. This means the sequence (�m)m∈N given by �m = m is an

Archimedean sequence for the vector field D3, as

|μ1(�m)| = m ≥ 1√
3

√
1 +m+m2 =

1√
3
〈�m〉, ∀m ∈ N .
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On the other hand, if G is any compact Lie group and X is the 0 vector field, that is, Xf ≡ 0,

for any f ∈ C∞(G), then clearly X does not admit Archimedean sequence, as σX(ξ) = 0 ∈
Cdξ×dξ for every ξ ∈ Ĝ.

Proposition 5.2.12. Every non-zero left-invariant vector field on a compact Lie group admits

an Archimedean sequence.

Proof. Let X �= 0 be a left-invariant vector field on a compact Lie group G, 0 < ε < 1.

Viewed as a linear operator, X is not bounded from the Sobolev space Hs(G) to Hs−ε(G), for

any s ∈ R, by Theorem 1.1 in [26], a result by Cardona, Kirilov, Moraes and the author. We

claim that this implies the existence of an Archimedean sequence with exponent ε. Indeed, if

not, then for σX(ξ) = diag(μ1(ξ), . . . , μdξ(ξ)), there would exist C > 0 such that

|μr(ξ)| ≤ C〈ξ〉ε,

for all [ξ] ∈ Ĝ, 1 ≤ r ≤ dξ. But then, for any v ∈ Hs(G):

‖Xv‖2Hs−ε(G) =
∑
[ξ]∈Ĝ

dξ

dξ∑
r,m=1

〈ξ〉2(s−ε)|μr(ξ)|2|v̂(ξ)rm|2

≤ C
∑
[ξ]∈Ĝ

dξ

dξ∑
r,m=1

〈ξ〉2s|v̂(ξ)rm|2

= C‖v‖2Hs(G).

This implies X : Hs(G) → Hs−ε(G) is bounded which is a contradiction. Therefore, we

conclude such an Archimedean sequence must exist.

Remark 5.2.13. From the previous examples, we see that in some cases it is also possible to

obtain Archimedean sequences with exponent ε = 1. In fact, this seems to be the case in all

known examples, and we conjecture Proposition 5.2.12 is also true for ε = 1. Also, note that

necessarily we have that 0 < ε ≤ 1, due to inequality (3.8).

Proposition 5.2.14. Suppose that for some 1 ≤ j ≤ n, the function bj changes sign. If one of

the following also holds:

1. ZL is finite;

2. Re(q) �= 0;
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3. bj0 �= 0 or

4. br0 �= 0, for some j �= r ∈ {1, . . . , n},

then L as defined in (5.4) is not globally solvable nor globally hypoelliptic.

Proof. We will prove the claim by way of contradiction. First, suppose L is globally solv-

able. Then, by Proposition 5.2.7, this implies that L0 defined in (5.5) is also globally solvable.

Without loss of generality, we may assume j = 1. Let ([ξ1m])m∈Z ⊂ Ĝ1 be an Archimedean

sequence for X1. Assuming case 1, 2 or 3 hold, we define the sequence

([ξm])m∈N ⊂ Ĝ,

by

[ξm]
.
= [ξ1m ⊗ 12 ⊗ · · · ⊗ 1n],

for every m ∈ N, where 1j ∈ U(1) is the trivial representation on Gj , that is, 1j(xj) = 1 ∈
U(1), ∀xj ∈ Gj , j = 1, . . . , n. Notice that, in particular, 1j satisfies μ1(1

j) = 0, for all

j = 1, . . . , n. By taking a subsequence we may also assume ([ξm], 1) ∈ Zc
L for all m ∈ N.

Indeed, this is possible due to our assumptions and Remark 5.2.4. That is, since Archimedean

sequences tend to infinity, as explained in that remark, the sequence [ξm] can only have finitely

many elements contained in ZL.

Suppose first b10 = 0 or b10 > 0. In either case, set

G(t, τ)
.
=

∫ t+τ

t

a10 + ib1(w)dw,

and let B ∈ R, t0, τ0 ∈ [0, 2π] be such that

B = min
0≤t,τ≤2π

Im(G(t, τ)) =

∫ t0+τ0

t0

b1(w)dw.

Notice that, since b1 changes sign, B < 0. Also, by composing b1 with an appropriate transla-

tion if necessary, we may assume t0, τ0 ∈ (0, 2π) and that b1(0) �= 0, so that b1(t0 + τ0) = 0

and t0 + τ0 ∈ (0, 2π). Take φ ∈ C∞(T1) and δ > 0 such that

supp(φ) ⊂ [t0 + τ0 − δ, t0 + τ0 + δ] ⊂ (0, 2π),
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φ ≡ 1 in [t0 + τ0 − δ/2, t0 + τ0 + δ/2],

and also 0 ≤ φ(t) ≤ 1 for all t ∈ T1. Define f̂(·, ξm)1 1 to be the 2π-periodic extension of the

mapping

[0, 2π] � t �→ dme
Bμ1(ξ1m)e−iμ1(ξ1m)a10(t−t0)φ(t)e−q(t−t0),

where dm
.
= e2πi(c10μ1(ξm)−iq) − 1, for every m ∈ N. For every other partial Fourier co-

efficient, define it by f̂(·, ξ)αβ ≡ 0. We claim that these partial Fourier coefficients define

f ∈ C∞(T1 ×G).

Indeed, first notice that since b10 ≥ 0 and μ1(ξ
1
m) → +∞,

|dm| ≤ e2π(−b10μ1(ξ1m)+Re(q)) + 1 ≤ e2π(Re(q)) + 1,

for all m ∈ N sufficiently large. It follows that there exists K > 0 such that |dm| ≤ K, for all

m ∈ N . Next, let ψ ∈ C∞([0, 2π]) be given by: [0, 2π] � t �→ φ(t)e−q(t−t0). Then

|∂γ
t f̂(t, ξm)1 1| ≤ KeBμ1(ξ1m)

γ∑
j=0

(
γ

j

)
|∂j

t e
−iμ1(ξ1m)a10(t−t0)||∂γ−j

t ψ(t)|, (5.27)

for every t ∈ [0, 2π], m ∈ N. Note that

|∂j
t e

−iμ1(ξ1m)a10(t−t0)| = |(−iμ1(ξ
1
m)a10)

je−iμ1(ξ1m)a10(t−t0)|

≤ (1 + |a10|)j〈ξ1m〉j

≤ (1 + |a10|)γ〈ξ1m〉γ, (5.28)

for every t ∈ [0, 2π], m ∈ N. Also, since B < 0 and ([ξ1m])m is an Archimedean sequence, we

have that

eBμ1(ξ1m) ≤ eK
′B〈ξ1m〉ε (5.29)

for some K ′, ε > 0 and every m ∈ N. Therefore, from (5.27), (5.28) and (5.29) we have that

|∂γ
t f̂(t, ξm)1 1| ≤ K(1 + |a10|)γQγe

K′B〈ξ1m〉ε〈ξ1m〉γ,

for every t ∈ T1, m ∈ N, where Qγ
.
= 2γ max1≤j≤γ maxt∈[0,2π] |∂j

tψ(t)|. Therefore, for any
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N > 0 there exist QγN , Q
′
γN > 0 such that

|∂γ
t f̂(t, ξm)1 1| ≤ QγN〈ξ1m〉−N

≤ Q′
γN(〈ξ1m〉+ 〈12〉+ · · ·+ 〈1n〉)−N ,

for every t ∈ T1, m ∈ N, so by Lemma 3.1.5 these coefficients define f ∈ C∞(T1 ×G) by

their inverse partial Fourier transform, as claimed. Next, notice that since {([ξm], 1)}m∈N is

contained in Zc
L, this implies that f̂(·, ξ)αβ ≡ 0 for all ([ξ], α) ∈ ZL. And so we conclude,

from Lemma 5.A.2, that f ∈ (ker tL)0 ∩ C∞(T1 ×G).

Now suppose Lu = f , for some u ∈ C∞(T1 ×G). Since {([ξm], 1)}m∈N is contained in Zc
L,

by Lemma 5.A.1, û(·, ξm)1 1 satisfies

û(t, ξm)1 1 = (dm)
−1

∫ 2π

0

exp

{∫ t+τ

t

(〈c(w), μ1(ξm)〉 − iq)dw

}
f̂(t+ τ, ξm)1 1dτ

= e−iμ1(ξ1m)a10(t−t0)e−q(t−t0)

∫ 2π

0

eμ1(ξ1m)(B−Im(G(t,τ))φ(t+ τ)dτ,

for every t ∈ [0, 2π], and every m ∈ N. Let θ(τ)
.
= Im(G(t0, τ))− B, τ ∈ T1. Then

|û(t0, ξm)1 1| =
∣∣∣∣∫ 2π

0

e−μ1(ξ1m)θ(τ)φ(t0 + τ)dτ

∣∣∣∣
≥
∫ τ0+δ/2

τ0−δ/2

e−μ1(ξ1m)θ(τ)dτ

≥
∫ τ0+δ/2

τ0−δ/2

e−K′′〈ξ1m〉θ(τ)dτ,

for every m ∈ N, since θ(τ) ≥ 0 for all τ ∈ [0, 2π], and 0 < μ1(ξ
1
m) ≤ K ′′〈ξ1m〉 for some

K ′′ > 0 and for all m ∈ N. It follows from Lemma 5.A.4 that for all m sufficiently big, there

exists M > 0 such that

|û(t0, ξm)1 1| ≥ M(〈ξ1m〉)−
1
2 ,

so

|û(t0, ξm)1 1| ≥ M ′(〈ξ1m〉+ 〈12〉+ · · ·+ 〈1n〉)− 1
2

for all m ∈ N and some M ′ > 0. We conclude then that u �∈ C∞(T1 ×G), by Lemma
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3.1.5. But that is a contradiction, which means no such an u can exist and so L is not glob-

ally solvable. To prove that L is not globally hypoelliptic, consider the same function f

and partial Fourier coefficients û(·, ξm)1 1, but now define every other partial Fourier coeffi-

cient û(·, ξ)αβ to be identically 0. By the previous argument, these coefficients do not define

u ∈ C∞(T1 ×G). However, they do define u ∈ D′(T1 ×G), since for every ζ ∈ C∞(T1)

|〈û(·, ξ1m)1 1, ζ〉T1 | =

=

∣∣∣∣∫ 2π

0

e−i(μ1(ξ1m)a10+μ1(η2)a20)(t−t0)e−q(t−t0)

∫ 2π

0

eμ1(ξ1m)(B−Im(G(t,τ))φ(t+ τ)ζ(t)dτdt

∣∣∣∣
≤
∫ 2π

0

∫ 2π

0

e2π|Re(q)|eμ1(ξ1m)(B−Im(G(t,τ))|φ(t+ τ)||ζ(t)|dτdt

≤ (2π)2‖φ‖∞‖ζ‖∞e2π|Re(q)|

≤ Q′p1(ζ)〈ξ1m〉

≤ Q′′p1(ζ)(〈ξ1m〉+ 〈12〉+ · · ·+ 〈1n〉)1,

for some Q′, Q′′ > 0 and every m ∈ N. By comparing partial Fourier coefficients, it is clear

that Lu = f , and so we conclude that L is not globally hypoelliptic. In the case b10 < 0, the

proof is similar, though now define

A
.
= max

0≤t,τ≤2π
Im(H(t, τ)) =

∫ t1

t1−τ1

b(w)dw > 0,

d′m
.
= 1− e−2πi(c0μ1(ξ1m)−iq),

and let f̂(·, ξm)1 1 be the 2π-periodic extension of

[0, 2π] � t �→ d′me
Aμ1(ξ1m)e−iμ1(ξ1m)a10(t−t0)φ̃(t)e−q(t−t1),

where φ̃ has properties similar to those of φ, and then make use of the other equivalent for-

mula for the solutions of the differential equations [∂t + i(〈cj(t), μα(ξ)〉 − iq)]û(t, ξm)1 1 =

f̂(t, ξ)1 1. Finally, we prove case 4. In this case, we may assume, without loss of generality,

that r = 2. Choose η2 ∈ Ĝ2 such that μ1(η
2) �= 0, which is possible as X2 is non-zero. Indeed,

if not, then since X̂2f(η
2)α2β2 = μα2(η

2)f̂(η2)α2β2 for every f ∈ C∞(G2), 1 ≤ α2, β2 ≤ dη2 ,

this would imply X2f ≡ 0, for every f ∈ C∞(G2), which would imply X2 = 0, a contradic-
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tion with our assumptions. Define

[ξ̃m]
.
= [ξ1m ⊗ η2 ⊗ 13 · · · ⊗ 1n],

for each m ∈ N. We may assume b10 = 0 and Re(q) = 0, as we have already proved the result

otherwise (in the previous cases). In this setting we may also suppose (again) that ([ξ̃m], 1) ∈
Zc

L for all m ∈ N. Notice that we may further assume that b2 does not change sign, since,

if it did, we could reorder it to be b1 and apply the proof of case 3 once again. Next, we split

the proof in two subcases: b20 > 0 or b20 < 0. Assume first that b20 > 0. In this subcase,

substituting η2 by η2, we may further assume μ1(η
2) > 0. Using the same notation as in the

first part of this proof, define f̂(·, ξ̃m)1 1 to be the 2π-periodic extension of

[0, 2π] � t �→ d̃me
Bμ1(ξ1m)e−i(μ1(ξ1m)a10+μ1(η2)a20)(t−t0)φ(t)e−q(t−t0),

where now d̃m
.
= e2πi(c10μ1(ξ1m)+c20μ1(η2)−iq) − 1. Define also f̂(·, ξ)αβ ≡ 0 for every other

[ξ] ∈ Ĝ, α, β ∈ Jξ. Again we claim that these coefficients define a smooth function f . Indeed,

since b10 = 0 = Re(q),

|d̃m| ≤ K1,

where K1 = e2π(−μ1(η2)b20) + 1. For each γ ∈ N0, we estimate as before

∣∣∣∂γ
t f̂(t, ξ̃m)1 1

∣∣∣ ≤ KeBμ1(ξ1m)

γ∑
j=0

(
γ

j

) ∣∣∣∂j
t e

−i(μ1(ξ1m)a10+μ1(η2)a20)(t−t0)
∣∣∣ ∣∣∂γ−j

t ψ(t)
∣∣ ,

for every t ∈ [0, 2π]. Notice that

|∂j
t e

−i(μ1(ξ1m)a10+μ1(η2)a20)(t−t0)| =
∣∣∣(−i(μ1(ξ

1
m)a10 + μ1(η

2)a20)
je−i(μ1(ξ1m)a10+μ1(η2)a20)(t−t0)

∣∣∣
≤ (1 + |a10|+ |a20|)j

(
〈ξ1m〉+ 〈η2〉

)j
≤ (1 + |a10|+ |a20|)γ

(
〈ξ1m〉+ 〈η2〉

)γ
,

for every t ∈ [0, 2π] and m ∈ N. Also, since B < 0 and ([ξ1m])m is an Archimedean sequence,

eBμ1(ξ1m) ≤ eBK2〈ξ1m〉ε



86

for some K2, ε > 0. Therefore

|∂γ
t f̂(t, ξ̃m)1 1| ≤ K1(1 + |a10|+ |a20|)γQγe

BK2〈ξ1m〉ε (〈ξ1m〉+ 〈η2〉
)γ

,

for every t ∈ T1, where Qγ = 2γ max1≤j≤γ maxt∈[0,2π] |∂j
tψ(t)|. Moreover, as B < 0, for any

N > 0 there exists a constant QγN > 0 such that

|∂γ
t f̂(t, ξ̃m)1 1| ≤ QγN〈ξ1m〉−(N+γ)

(
〈ξ1m〉+ 〈η2〉

)γ
,

for every t ∈ T1, m ∈ N. Therefore

|∂γ
t f̂(t, ξ̃m)1 1| ≤ Q′

γN

(
〈ξ1m〉+ 〈η2〉+ 〈13〉+ · · ·+ 〈1n〉

)−N
,

for some constant Q′
γN > 0, and every t ∈ T1, m ∈ N, γ ∈ N0. By Lemma 3.1.5, we conclude

that these coefficients define f ∈ C∞(T1 ×G). Once again, notice that {([ξ̃m], 1) |m ∈ N} is

contained in Zc
L, which implies that f̂(·, ξ)αβ ≡ 0 for all ([ξ], α) ∈ ZL. By Lemma 5.A.2 we

conclude that f ∈ (ker tL)0 ∩ C∞(T1 ×G). Now suppose there exists u ∈ C∞(T1 ×G) such

that Lu = f . Since ([ξ̃m], 1) ∈ Zc
L for every m ∈ N, because Re(q) = 0 and b20 �= 0 �= μ1(η

2),

Lemma 5.A.1 implies that the partial Fourier coefficients û(·, ξ̃m)1 1 must satisfy

û(t, ξ̃m)1 1 = (d̃m)
−1

∫ 2π

0

exp

{∫ t+τ

t

(〈c(w), μ1(ξ̃m)〉 − iq)dw

}
f̂(t+ τ, ξ̃m)1 1dτ

= e−i(μ1(ξ1m)a10+(μ1(η2)a20)(t−t0)e−q(t−t0)

∫ 2π

0

eμ1(ξ1m)(B−Im(G(t,τ))e−μ1(η2)
∫ t+τ
t b2(w)dwφ(t+ τ)dτ,

(5.30)

for every t ∈ T1, m ∈ N. As we are assuming b20 < 0, this implies b2 is non-positive on T1.

Therefore ∫ t+τ

t

b2(w)dw ≤ 0
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for all t, τ ∈ [0, 2π]. Let θ(τ)
.
= Im(G(t0, τ))−B, for each τ ∈ [0, 2π]. Then

|û(t0, ξ̃m)1 1| =
∣∣∣∣∫ 2π

0

e−μ1(ξ1m)θ(τ)e−μ1(η2)
∫ t0+τ
t0

b2(w)dwφ(t0 + τ)dτ

∣∣∣∣
≥
∫ τ0+δ/2

τ0−δ/2

e−μ1(ξ1m)θ(τ)e−μ1(η2)
∫ t0+τ
t0

b2(w)dwdτ

≥
∫ τ0+δ/2

τ0−δ/2

e−K′′〈ξ1m〉θ(τ)dτ,

where we used the fact that θ(τ) ≥ 0, and 0 < μ1(ξ
1
m) ≤ K ′′〈ξ1m〉 for some K ′′ > 0 and for

every m ∈ N, as well as the fact that e−μ1(η2)
∫ t0+τ
t0

b2(w)dw ≥ 1 for all τ ∈ [0, 2π]. Applying

Lemma 5.A.4 once again, there exists M̃ > 0 such that, for all sufficiently large m

|û(t0, ξ̃m)1 1| ≥ M̃
1

〈ξ1m〉
1
2

. (5.31)

Therefore

|û(t0, ξ̃m)1 1| ≥ M̃ ′ (〈ξ1m〉+ 〈η2〉+ 〈13〉+ · · ·+ 〈1n〉
)− 1

2

for some M̃ ′ > 0, and all m ∈ N. By Lemma 3.1.5 u �∈ C∞(T1 ×G), which is a contradiction.

Therefore no such function u exists, which means that L is not globally solvable. Next we

prove that L is not globally hypoelliptic. Indeed, similar to the previous case, we choose the

partial Fourier coefficients of u by formula (5.30) for û(t, ξ̃m)1 1 and let û(·, ξ)αβ ≡ 0 for every

other [ξ] ∈ Ĝ, and α, β ∈ Jξ. Then the inequalities (5.31) imply that these partial Fourier

coefficients do not define a smooth function. On the other hand, for every ζ ∈ C∞(T1) and
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m ∈ N, we have that

|〈û(·, ξ̃m)1 1, ζ〉T1 | =

=

∣∣∣∣∫ 2π

0

e−i(μ1(ξ1m)a10+μ1(η2)a20)(t−t0)e−q(t−t0)

×
∫ 2π

0

eμ1(ξ1m)(B−Im(G(t,τ))φ(t+ τ)ζ(t)e−μ1(η2)
∫ t+τ
t b2(w)dwdτdt

∣∣∣∣
≤
∫ 2π

0

∫ 2π

0

e2π|Re(q)|eμ1(ξ1m)(B−Im(G(t,τ))|φ(t+ τ)||ζ(t)|e−μ1(η2)
∫ t+τ
t b2(w)dwdτdt

≤ (2π)2‖φ‖∞‖ζ‖∞ max
t,τ∈[0,2π]

e−μ1(η2)
∫ t+τ
t b2(w)dwe2π|Re(q)|

≤ Q̃′p1(ζ)〈ξ1m〉

≤ Q̃′′p1(ζ)(〈ξ1m〉+ 〈η2〉+ 〈13〉+ · · ·+ 〈1n〉)1

for some constants Q̃′, Q̃′′ > 0. Thus, by Lemma 3.1.5 these partial Fourier coefficients define

u ∈ D′(T1 ×G). By comparing partial Fourier coefficients, it is clear that Lu = f , therefore

we conclude that L is not globally hypoelliptic. The proof for the sub-case b20 > 0 is very

similar, so we omit it. But the main idea is to substitute η2 by η2 (since μ1(η2) < 0).

Next, exhibit a condition which allows us to recover certain results analogous to the case

of the Torus. This condition guarantees that the eigenvalues in an Archimedean sequence are

not too “far apart”.

Definition 5.2.15. We say a vector field X on a compact Lie group admits a non-sparse

Archimedean sequence if there exists an Archimedean sequence ([ξk])k∈Z for X and M > 0

such that

|μ1(ξk+1)− μ1(ξk)| ≤ M,

for all k ∈ Z.

Remark 5.2.16. Note that as a direct consequence of the definition above, for every r ∈ R,

there exists kr ∈ Z such that

r < μ1(ξkr) < r +M. (5.32)

Indeed, suppose that is not true. Then, as μ1(ξk) → +∞ as k → +∞, and μ(ξk) is strictly

increasing, there exists r ∈ R and k ∈ Z such that μ1(ξk) < r < r + M < μ1(ξk+1). Then

μ1(ξk+1)− μ1(ξk) > M , a contradiction.
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With non-sparse Archimedean sequences, we can relate linear independence of the coeffi-

cients with the change of sign of their linear combinations, as follows.

Proposition 5.2.17. Let X1, . . . , Xn be left invariant vector fields on the compact Lie groups

Gj , j = 1, . . . , n, n ∈ N . Suppose every Xj admits a non-sparse Archimedean sequence. Then

t �→ 〈b(t), μ1(ξ)〉 =
∑n

j=1 bj(t)μ1(ξ
j) changes sign for infinitely many [ξ] ∈ Ĝ, if and only if

some bj changes sign or dim span{b1, . . . , bn} ≥ 2.

Proof. First suppose some bj changes sign. Without loss of generality we can assume j = 1.

Let (ξ1m)m be an Archimedean sequence for X1. For every m ∈ N, define

ξm = ξ1m ⊗ 12 ⊗ · · · ⊗ 1n.

It is clear then that the function t �→ 〈b(t), μ1(ξm)〉 =
∑n

j=1 bj(t)μ1(ξ
j
m) = b1(t)μ1(ξ

1
m)

changes sign for infinitely many [ξ] ∈ Ĝ, as there are infinitely many m ∈ N such that

μ1(ξ
j
m) �= 0. Suppose now g

.
= bj1 , h

.
= bj2 are R-linearly independent, for some

j1, j2 ∈ {1, . . . , n}. Without loss of generality we may assume j1 = 1 and j2 = 2. Let

(ξ1k)k and (ξ2k)k be non-sparse Archimedean sequences for X1 and X2, respectively. We shall

exhibit sequence (ξm)m∈N, of distinct terms, such that t �→ 〈b(t), μ1(ξm)〉 changes sign, for

each m ∈ N. From the previous case, we may assume both g and h do not change sign. Since

g �= λh, for some non-zero constant λ, the mapping t �→ h(t)
g(t)

is either identically zero or non

constant on A
.
= {t ∈ T1 |g(t) �= 0}. Take t0, t1 ∈ T1 such that g(t0) �= 0 �= h(t1). If the

quotient
h(t)
g(t)

is identically zero on A and sign(g(t0)) = sign(h(t1)), then

t �→ μ1(ξ
1
−m)g(t) + μ1(ξ

2
1)h(t)

changes sign since h(t) = 0 whenever g(t) �= 0 and μ1(ξ
1
−m) < 0 while μ1(ξ

2
1) > 0. Therefore

we can take ξm = ξ1−m ⊗ ξ21 ⊗ 13 ⊗ · · · ⊗ 1n, for each m ∈ N. If sign(g(t0)) �= sign(h(t1)),

we can apply the same idea and take the sequence ξm = ξ1+m ⊗ ξ21 ⊗ 13 ⊗ · · · ⊗ 1n. Now

assume that the mapping t �→ h(t)
g(t)

is non constant in A. Suppose first that h(t) ≥ 0, then

choose t0, t1 ∈ [0, 2π], such that

0 �= a =
h(t0)

g(t0)
<

h(t1)

g(t1)
= b �= 0.

These exist since the function t �→ h(t)
g(t)

is continuous and non-constant by our assumptions.
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We claim there exists k1m, k2m ∈ Z such that

0 < μ1(ξ
1
k1m

)g(t0) + μ1(ξ
2
k2m

)h(t0),

0 > μ1(ξ
1
k1m

)g(t1) + μ1(ξ
2
k2m

)h(t1),

for each m ∈ N. Indeed, as h(t0), h(t1) > 0, the inequalities above are satisfied if

−μ1(ξ
1
k1m

)
g(t0)

h(t0)
< μ1(ξ

2
k2m

) < −μ1(ξ
1
k1m

)
g(t1)

h(t1)
. (5.33)

As
g(t1)
h(t1)

< g(t0)
h(t0)

, there exists ε > 0, such that
g(t1)
h(t1)

= g(t0)
h(t0)

− ε. Then, if k1m is sufficiently big,

μ1(ξ
1
k1m

)ε ≥ M , where M > 0 is such that for every r ∈ R, there exists kr ∈ Z such that

r < μ1(ξ
2
kr) < r +M

(notice that M exists because the sequence (ξ2k)k is non-sparse). Therefore, for each rm =

−μ1(ξ
1
k1m

) g(t0)
h(t0)

, there exists k2m ∈ Z such that

rm < μ1(ξ
2
k2m

) < rm +M ≤ rm + μ1(ξk1m)ε.

Choosing k1m = k10+m, where k10 satisfies μ1(ξ
1
k10

) ≥ M/ε and k2m satisfying the inequality

above, we have (k1m, k2m) ∈ Z2 for each m ∈ N, such that (5.33) holds, therefore t �→
〈b(t), μ1(ξm)〉 changes sign for every ξm = ξ1k1m ⊗ ξ2k2m ⊗ 13 ⊗ · · · ⊗ 1n, where m ∈ N. The

case h(t) ≤ 0 is analogous. Finally, the reverse implication follows from Remark 5.2.9.

To conclude this section, we collect some of the results of this section in two final corol-

laries, as follows.

Corollary 5.2.18 (Global solvability). Let L and L0 be the operators defined in (5.4) and

(5.5), respectively.

1. If b ≡ 0 then L is globally solvable if and only if L0 is globally solvable.

2. If some bj �≡ 0, Zc
L is finite (and so Re(q) = 0 and all bj0 = 0 by Remark 5.2.4), and the

sublevels Ωξ,α
r are connected for all 〈ξ〉 large enough, then L is globally solvable.

3. If some bj �≡ 0, Re(q) = 0, dim span{b1, . . . , bn} = 1 and no bj changes sign then L is

globally solvable if and only if L0 is globally solvable.
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4. If b �≡ 0, t �→ 〈b(t), μα(ξ)〉 does not change sign for all but finitely many [ξ] ∈ Ĝ, and

α ∈ Jξ, and also Re(q) = 0, then L is globally solvable if and only if L0 is globally

solvable.

Proof. First notice that case 1 follows from Corollary 5.1.4. Case 2, is given by Corollary

5.2.3. Remark 5.2.9 implies that Case 3 follows from Corollary 5.2.8. Finally, case 4 corre-

sponds to Corollary 5.2.8.

Corollary 5.2.19 (Global hypoellipticity). Let L and L0 be the operators defined in (5.4) and

(5.5), respectively.

1. If b ≡ 0, then L is globally hypoelliptic if and only if L0 is globally hypoelliptic.

2. If b �≡ 0 and dim span{b1, . . . , bn} = 1, then L is globally hypoelliptic if and only

if, no bj changes sign, ZL is finite and L0 is globally solvable (and therefore L0 is also

globally hypoelliptic).

3. If t �→ 〈b(t), μα(ξ)〉 does not change sign for all but finitely many [ξ] ∈ Ĝ, and α ∈ Jξ,

then L is globally hypoelliptic if and only if L0 is globally hypoelliptic.

Proof. Case 1 is a direct consequence of Corollary 5.1.4. Now, from Remark 5.2.9 we have

that if all the conditions of case 2 hold, then L is globally hypoelliptic by Corollary 5.2.8. On

the other hand, if L0 is not globally solvable or if ZL is infinite, then L0 is not globally hy-

poelliptic and L is not globally hypoelliptic also by Corollary 5.2.8. If we suppose that ZL is

finite, but now that some bj changes sign, then L is not globally hypoelliptic by Proposition

5.2.14. Finally, case 3 corresponds to Corollary 5.2.8.

Remark 5.2.20. It is worth mentioning that by Theorem 3.5 in [2] we have that in this context

every globally hypoelliptic operator is globally solvable. This could be used to simplify some

of the results and proofs in this section. We chose not to rely on this fact as we do not include

its proof, and also to present original proofs using different techniques.

5.2.2 Examples

Example 5.2.21. Consider the operator L defined on T1 ×T1 ×S3 given by

L = ∂t + ((1 + sin(t)) + i(4 + cos(4t)∂x + ((2 + sin(t)) + 2i(4 + cos(4t)))i∂0 + (4+ sin(3t))
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then

L0 = ∂t + (1 + 4i)∂x + (2 + 8i)i∂0 + 4.

Since b1 = 2b2, b1, b2 ≥ 0 and

|k + (1 + 4i)ξ + (2 + 8i)α− 4i| =
√
(k + ξ + 2α)2 + (4ξ + 8α)2,

which is either 0 or ≥ 1 for k, ξ ∈ Z and α ∈ 1
2
Z. Therefore L0 is globally solvable by

Corollary 5.2.18, item 3. Notice that it is not globally hypoelliptic by Corollary 5.2.19 because

ZL is infinite since its symbol is zero for k = 0, ξ ∈ Z and α = −k+ξ
2

.

Example 5.2.22. Consider the operator L defined on T1 ×T1 ×S3 given by

L = ∂t + ((1 + cos(t)) + i sin(t))∂x + ((2 + sin(t)) + 2i cos(t))i∂0 + (4i+ sin(3t)).

Then

L0 = ∂t + 1∂x + 2i∂0 + 4i, (5.34)

and so

Zc
L =

{
(k, ξ, α) ∈ Z2×1

2
Z | k + ξ + 2α+ 4 �∈ Z

}
= ∅.

Hence Zc
L is finite. Moreover, one can show that the sublevels

Ωξ,α
r =

{
t ∈ T1 |

∫ t

0
ξ · sin(τ) + 2α · cos(τ)dτ < r

}
=
{
t ∈ T1 | − ξ · cos(t) + 2α · sin(t) < r

}
,

are connected for all ξ ∈ Z, α ∈ 1
2 Z and r ∈ R. Therefore L is globally solvable by Corollary 5.2.18

item 2.

Example 5.2.23. Consider the operator L defined on T1 ×T1 ×S3 given by

L = ∂t + (κ+ 10i sin3(t))∂x + (
√
2 + 20i cos3(t))i∂0 + (4i+ sin(3t)),

where ν =
∑∞

k=1
1

10k!
is a Liouville number. Then

L0 = ∂t + ν∂x +
√
2i∂0 + 4i,

so a0 = (ν,
√
2), b0 = (0, 0) and q0 = 4i. Since ν is a Liouville number and q0 ∈ iZ, by an argu-
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ment similar to the one used in Corollary 4.2.3 we have that L0 is not globally solvable. Therefore by

Proposition 5.2.7 we have that L is not globally solvable.

Indeed, by the reasoning of Corollary 4.2.3 the sequence (−(
∑m

k=1 10
m!−k! + 4), 10m!, 0) ∈

Z2×1
2 Z, m ∈ N, it satisfies

∣∣∣∣∣−
(

m∑
k=1

10m!−k! + 4

)
+ ν · 10m! +

√
2 · 0 + 4

∣∣∣∣∣ < 1

10m!m

≤ C

(
|10m!|+ | −

(
m∑
k=1

10m!−k! + 4|+ |0|
))m

,

for some C > 0. Therefore, consider the distribution given by

û(k, ξ, �)αβ =

⎧⎪⎨⎪⎩
1, if (k, ξ, �, α, β) =

(
−
(∑m

k=1 10
m!−k! + 4

)
, 10m!, 0, 1, 1

)
, m ∈ N

0, otherwise.

It clearly is not smooth, however Lu = f ∈ C∞(T1×T1×S3).

5.3 Application to the product of tori and 3-spheres

Not only can we apply the results in the last section to the setting where G1 × · · · × Gn

is the product of tori T1 and spheres S3, but also, in this case, obtain better results concerning

the global properties of the operator L. In fact, we are able to obtain necessary and sufficient

conditions for both the global solvability and hypoellipticity of this operator. A more detailed

exposition of the global properties of L in this case can be found in [79].

Henceforth, we shall consider first-order evolution differential operators on Tr+1 × (S3)s,

where r and s are non-negative integers not both zero. By composing it with a change of vari-

ables, we may assume the operator L can be written as

L = ∂t +
r∑

j=1

cj(t)∂xj
+

s∑
l=1

dl(t)i∂0,l + q(t), (5.35)

where cj, dl, q are smooth functions on T1, j = 1, . . . , r, l = 1, . . . , s, and ∂0,l = 1
i
D3,l is

the neutral operator on a different copy of S3, for each l. Again we may assume that the real

part of cj and dl, as well as q are all constant. This means that for u ∈ D′(Tr+1 × (S3)s) by

taking the partial Fourier transform of Lu of the last r + s variables, with the same notation as
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in Chapter 2, Section 4.2, we obtain

L̂u(t, k, �)αβ = ∂tû(t, k, �)αβ + i

(
r∑

j=1

cj(t)kj +
s∑

l=1

dl(t)(αl − �l − 1)− iq

)
û(t, k, �)αβ,

for every (k, �) ∈ Zr ×Ns
0, α, β ∈ J�. We can simplify this expression by allowing our matrix

indexes to assume values in 1
2
Z, and performing the change of variables

α′
l = αl − �l − 1,

β′
l = βl − �l − 1.

This way, writing
r∑

j=1

cj(t)kj
.
= 〈c(t), k〉,

s∑
l=1

dl(t)α
′
l
.
= 〈d(t), α′〉,

we can rewrite the equality above as

L̂u(t, k, �)α′β′ = ∂tû(t, k, �)α′β′ + i(〈c(t), k〉+ 〈d(t), α′〉 − iq)û(t, k, �)α′β′ .

From now on we will omit the prime notation on the indexes α and β and assume they are in

the appropriate range.

The first step in adapting the results in the previous section to this setting concerns the

cardinality of ZL and Zc
L, as defined in (5.9) and (5.10), respectively. Notice that, setting

c0 =
1

2π

∫ 2π

0

c(t)dt, d0 =
1

2π

∫ 2π

0

d(t)dt,

we have that

ZL =

{
((k, �), α) ∈ Zr ×1

2
Ns

0 ×
1

2
Zs | − � ≤ α ≤ �, 〈c0, k〉+ 〈d0, α〉 − iq ∈ Z

}
,

Zc
L =

{
((k, �), α) ∈ Zr ×1

2
Ns

0 ×
1

2
Zs | − � ≤ α ≤ �, 〈c0, k〉+ 〈d0, α〉 − iq �∈ Z

}
.

It follows immediately that if s �= 0 these are either empty or infinite. Indeed, note that if

((k, �), α) ∈ Zc
L or ((k, �), α) ∈ ZL for some (k, �) ∈ Zr ×1

2
Ns

0, then ((k, � +m), α) ∈ Zc
L or

((k, � +m), α) ∈ ZL, for every m ∈ Z, respectively. Moreover, notice that either ZL or Zc
L is

infinite (and thus not empty), but not both.
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Another distinguishing characteristic of this particular case is that given a representation cor-

responding to a triple ((k, �), α), there exist representations corresponding to the triples

((mk,m�),mα), for every m ∈ Z+. This fact allows the construction of singular solutions and

is responsible for obtaining more results than in the general case. For instance, we are able to

obtain a converse of Corollary 5.2.3 as follows.

Proposition 5.3.1. If Zc
L is empty, or equivalently,

c0 ∈ Zr, d0 ∈ 2Zs, q ∈ iZ,

then L, as defined in (5.35), is globally solvable if and only if the sublevel set

Ωk,α
m =

{
t ∈ T1 |

∫ t

0

( r∑
j=1

Im(cj)(τ)kj +
s∑

l=1

Im(dl)(τ)αl

)
dτ < m

}

is connected, for every m ∈ R, k ∈ Zr, α ∈ 1
2
Zs.

The “if” part follows from Corollary 5.2.3. So we only need to prove the reverse implication.

The proof was inspired by [9] and relies essentially on the following lemma adapted from a

result by Hörmander in [70].

Lemma 5.3.2. Let L be a globally solvable differential operator on a compact Lie group G.

Then, there exist m ∈ N and C > 0 such that for every f ∈ (ker tL)0 and v ∈ C∞(G), the

following inequality holds:

∣∣∣∣∫
G

f(x)v(x) dx

∣∣∣∣ ≤ C

⎛⎝∑
|α|≤m

sup
G

|∂αf |

⎞⎠⎛⎝∑
|α|≤m

sup
G

|∂α(tLv)|

⎞⎠ . (5.36)

The sum
∑

|α|≤m is taken over all left-invariant differential operators on G of order at most m,

or equivalently, it is taken over all linear combinations of at most m compositions of elements

of a basis for the Lie algebra of G.

Proof of Proposition 5.3.1. Denote bj
.
= Im(cj), el

.
= Im(dl), for 1 ≤ j ≤ r, 1 ≤ l ≤ s.

Suppose that L is globally solvable and that, for some k̃ ∈ Zr, α̃ ∈ 1
2
Zs, and m′

0 ∈ R, the

sublevel set

Ωk̃,α̃
m′

0
=

{
t ∈ T1;

∫ t

0

(
〈b(τ), k̃〉+ 〈f(τ), α̃〉

)
dτ < m′

0

}
is disconnected.
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It is worth noting that this assumption implies that either k̃ �= 0 or α̃ �= 0. By applying Lemma

5.A.6, we can find m0 ∈ R as well as functions g0 and v0 in C∞(T1) that satisfy the following

conditions:

∫ 2π

0

g0(t)dt = 0, supp g0 ∩ Ωk̃,α̃
m0

= ∅, and∫ 2π

0

g0(t)v0(t) dt = �0 > 0, supp v′0 ⊂ Ωk̃,α̃
m0

,

For each n ∈ N, we define n�̃ = (n|α̃1|, . . . , n|α̃s|) and gn, vn ∈ C∞(Tr+1 × (S3)s) as follows:

gn(t, x, y) =
√

dn�̃ exp

(
ni

∫ t

0

〈c(τ), k̃〉+ 〈d(τ), α̃〉dτ−qt

)
g0(t)e

−ni〈x,k̃〉tn�̃
(−n�̃)(−n�̃)

(y)

vn(t, x, y) =
√
dn�̃ exp

(
−ni

∫ t

0

〈c(τ), k̃〉+ 〈d(τ), α̃〉dτ+qt

)
v0(t)e

ni〈x,k̃〉tn�̃
(n�̃)(n�̃)

(y)

for every (t, x, y) ∈ Tr+1× (S3)s. It is important to note that these functions are well-defined

based on the given hypotheses for c0, d0, and q.

We claim that gn ∈ (ker tL)0. Indeed, if u ∈ ker tL then

−̂ tLu(t, k, �)αβ = 0 =⇒ [∂t + i(〈c(t), k〉+ 〈d(t), α〉+ iq)]û(t, k, �)αβ = 0. (5.37)

Next, we will use the following lemma:

Lemma 5.3.3. The following equalities hold:

i. If f, g ∈ L2(S3), then

∫
S3
f(x)g(x) dx =

∑
�∈ 1

2
N0

(2�+ 1)
�∑

m,n=−�

f̂(�)mnĝ(�)(−m)(−n)(−1)n−m, (5.38)

ii. if f, g ∈ L2((S3)s), then

∫
(S3)s

f(x)g(x) dx =
∑
�∈ 1

2
Ns
0

d�
∑

−�≤α,β≤�

f̂(�)αβ ĝ(�)(−α)(−β)(−1)Σ(αj−βj), (5.39)
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iii. if f, g ∈ L2((S3)s), then

∫
Tr+1×(S3)s

fg = (2π)r
∑
ξ∈Zr

∑
�∈ 1

2
Ns
0

d� (5.40)

×
∑

−�≤α,β≤�

∫ 2π

0

f̂(t, ξ, �)αβ ĝ(t,−ξ, �)(−α)(−β)(−1)Σ(αj−βj) dt . (5.41)

Proof. These equalities follow immediately from Propositions 2.1.7 and 3.1.7, by considering

the property t�mn = t�(−m)(−n)(−1)n−m. This last fact can be deduced from the definition itself

(see [94]), as evaluating t�mn with Euler angles yields, as follows:

t�mn(ω(φ, θ, ψ)) = ei(mφ+nψ)P �
mn(cos(θ))

= e−i((−m)φ+(−n)ψ)(−1)n−mP �
mn(cos(θ))

= (−1)n−me−i((−m)φ+(−n)ψ)P �
(−m)(−n)(cos(θ))

= (−1)n−mt�(−m)(−n)(ω(φ, θ, ψ))

where

P �
mn(x) = c�mn

(1− x)(n−m)/2

(1 + x)(m+n)/2

(
d

dx

)�−m

[(1− x)�−n(1 + x)�+n]

with

c�mn = 2−� (−1)�−nin−m√
(�− n)!(�+ n)!

√
(�+m)!

(�−m)!
.

Now, using the formula from Lemma 5.3.3, we have

〈u, gn〉 = (2π)r
∑
k∈Zr

∑
�∈ 1

2
N0

d�
∑

−�≤α,β≤�

∫ 2π

0

û(t, k, �)αβ ĝn(t,−k, �)(−α)(−β) dt(−1)Σ(βj−αj)

=
√

dn�̃(2π)
r

∫ 2π

0

û(t, nk̃, n�̃)(n�̃)(n�̃) exp

(
ni

∫ t

0

〈c(τ), k̃〉+ 〈d(τ), α̃〉dτ−qt

)
g0(t) dt

=
√

dn�̃(2π)
r

∫ 2π

0

û(t, nk̃, n�̃)(n�̃)(n�̃) exp(niw(t)−qt)g0(t) dt,

where w(t) =

∫ t

0

〈c(τ), k̃〉+ 〈d(τ), α̃〉dτ .
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Since

∂t

(
exp(niw(t)−qt)û(t, nk̃, n�̃)(nα̃)(nα̃)

)
= exp(niw(t)−qt)×

×
[
∂tû(t, nk̃, n�̃)(nα̃)(nα̃) +

(
ni[〈c(t), k̃〉+ 〈d(t), α̃〉]− q

)
û(t, nk̃, n�̃)(nα̃)(nα̃)

]
= 0,

then for every n ∈ N we have

exp(niw(t)−qt)û(t, nk̃, n�̃)(nα̃)(nα̃) ≡ kn ∈ C.

Consequently

〈u, gn〉 =
√

dn�̃ (2π)
rkn

∫ 2π

0

g0(t) dt = 0,

which implies that gn ∈ (ker tL)0 for all n ∈ N, as claimed.

Therefore, by Lemma 5.3.2 there exists C > 0, λ ∈ N0 such that

∣∣∣∣∫
Tr+1×(S3)s

gnvn

∣∣∣∣ ≤ C

⎛⎝∑
|μ|≤λ

sup
(t,x,y)∈Tr+1×(S3)s

|∂μgn(t, x, y)|

⎞⎠
×

⎛⎝∑
|μ|≤λ

sup
(t,x,y)∈Tr+1×(S3)s

|∂μ(tLvn)(t, x, y)|

⎞⎠ . (5.42)

However, note that by the definitions of gn and vn, we have

∫
Tr+1×(S3)s

gnvn = (2π)r
dn�̃
dn�̃

∫ 2π

0

f0(t)v0(t)dt = (2π)rl0 ≥ �0 > 0, n ∈ N. (5.43)

On the other hand, since supp f0 ∩ Ωk̃,α̃
m0

= ∅, by the Leibniz formula, there exist positive
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constants M1, Mμ, and M ′
1 such that

∑
|μ|≤λ

sup
(t,x,y)∈Tr+1×(S3)s

|∂μgn(t, x, y)|

≤
√

dn�̃
∑
|μ|≤λ

sup
(t,x,y)∈Tr+1×(S3)s

∣∣∣∣∣ ∑
γ1+γ2+γ3+γ4=μ

Cμγ∂
γ1 [exp(niw(t)− qt)]∂γ2 [e−in〈x,k̃〉]

∣∣∣∣∣
×
∣∣∣∂γ3 [g0(t)]∂

γ4tn�̃(−nα̃)(−nα̃)(y)
∣∣∣

≤
√
dn�̃
∑
|μ|≤λ

M1Mμn
|μ| sup

t∈T1\Ωk̃,α̃
m0

| exp(niw(t)−qt)|
∑
γ4≤μ

sup
y∈(S3)s

|∂γ4tn�̃(−nα̃)(−nα̃)(y)|

≤
√
dn�̃M

′
1n

λ sup
t∈T1\Ωk̃,α̃

m0

[
exp

(
−n

∫ t

0

〈b(τ), k̃〉+ 〈f(τ), α̃〉dτ
)]

× sup
γ4≤μ

sup
y∈(S3)s

|∂γ4tn�̃(−nα̃)(−nα̃)(y)|,

where Cμγ =
(

μ
γ1,γ2,γ3,γ4

)
. For t �∈ Ωk̃,α̃

m0
we have

∫ t

0

(
〈b(τ), k̃〉+ 〈f(τ), α̃〉

)
dτ > m0, hence

sup
t∈T1\Ωk̃,α̃

m0

[
exp

(
−n

∫ t

0

〈b(τ), k̃〉+ 〈f(τ), α̃〉dτ
)]

≤ e−nm0 , n ∈ N.

Furthermore, for any −�j ≤ αj ≤ �j and yj ∈ S3 the unitarity identity holds:

1 =t�jαjαj
(e) =

�j∑
βj=−�j

t
�j
αjβj

(yj)t
�j
βjαj

(y−1
j )

=

�j∑
βj=−�j

t
�j
αjβj

(yj)t
�j
αjβj

(yj) =

�j∑
βj=−�j

∣∣∣t�jαjβj
(yj)
∣∣∣2 ,

where e ∈ S3 is the neutral element of the Lie group S3.

This implies that
∣∣∣t�jαjβj

(yj)
∣∣∣ ≤ 1 for all αj, βj , and yj . Now, if ∂γ4 is a left-invariant differ-

ential operator of order less than or equal to λ, then it can be expressed as a linear combination

of at most λ (including 0) compositions of the vector fields in {D1,j, D2,j, D3,j}sj=1, where

each D1,j and D2,j represent the vector fields on S3 given by ∂/∂φj and ∂/∂θj , respectively, in

local coordinates. Here, (φj, θj, ψj) are Euler angle coordinates on S3, and so their associated

coordinate vector fields form a basis for the Lie algebra of the group.

It is clear that Dk,jt
�j′
αj′βj′

= 0 if j �= j′. Furthermore, according to [94] Chapter 11, we
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have the following result:

D3,jt
�j
αjβj

= iβjt
�j
αjβj

;

D2,jt
�j
αjβj

=

√
(�j − βj)(�j + βj + 1)

2
t
�j
αjβj+1 −

√
(�j + βj)(�j − βj + 1)

2
t
�j
αjβj−1;

D1,jt
�j
αjβj

=

√
(�j − βj)(�j + βj + 1)

−2i
t
�j
αjβj+1 +

√
(�j + βj)(�j − βj + 1)

−2i
t
�j
αjβj−1.

Therefore, for all �j, αj, βj , and k, we have

|Dk,jt
�j
αjβj

(yj)| ≤ 2�j.

By induction, we obtain

|∂γ4t
n|α̃j |
(−nα̃j)(−nα̃j)

| ≤ 2|γ4|n|γ4||α̃j||γ4|.

Since

dn�̃ =
s∏

j=1

(2n|α̃j|+ 1) ≤
s∏

j=1

4(‖α̃‖∞ + 1)n = 4s(‖α̃‖∞ + 1)sns,

substituting this inequality into the previous inequality, we obtain:

∑
|μ|≤λ

sup
(t,x,y)∈Tr+1×(S3)s

|∂μgn(t, x, y)| ≤ M ′
1n

λ+s/2e−nr02λ+snλ‖α̃‖λ∞(‖α̃‖∞ + 1)s/2

= M ′′
1 n

2λ+s/2e−nm0 .

Also, observe that tL
(
exp(−inw(t)+qt)ein〈x,k̃〉tn�̃(nα̃)(nα̃)(y)

)
= 0. Therefore, we have

tLvn(t, x, y) =
√

dn�̃(
tL+ ∂t)

[
v′0(t) exp(−inw(t)+qt)ein〈x,k̃〉tn�̃(nα̃)(nα̃)(y)

]
.
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Hence,

∑
|μ|≤λ

sup
(t,x,y)∈Tr+1×(S3)s

|∂μ(tLvn)(t, x, y)|

≤
√
dn�̃
∑

|μ|≤λ+1

sup
(t,x,y)∈Tr+1×(S3)s

∣∣∣∂μ
[
v′0(t) exp(−niw(t)+qt)ein〈x,k̃〉tn�̃(nα̃)(nα̃)(y)

]∣∣∣
≤
√
dn�̃M2n

(λ+1) sup
t∈supp v′0

[
exp

(
n

∫ t

0

〈b(τ), k̃〉+ 〈f(τ), α̃〉dτ
)

sup
|μ|≤λ+1

∣∣∣∂μtn�̃(nα̃)(nα̃)(y)
∣∣∣]

≤ 2sM2n
2(λ+1)+s/2‖α̃‖λ+1

∞ en
∫ t1
0 〈b(τ),k̃〉+〈f(τ),α̃〉dτ (‖α̃‖∞ + 1)s/2

= M ′
2n

2(λ+1)+s/2en
∫ t1
0 〈b(τ),k̃〉+〈f(τ),α̃〉dτ ,

where t1 ∈ supp (v′0) ⊂ Ωk̃,α̃
m0

is a point where the restriction of the exponential function

achieves its maximum value over supp (v′0).

We define

ω =

∫ t1

0

〈b(τ), k̃〉+ 〈f(τ), α̃〉dτ −m0.

Notice that ω < 0, since t1 ∈ Ωk̃,α̃
m0

. By using the previous inequalities, we can establish the

following:⎛⎝∑
|μ|≤λ

sup
(t,x,y)∈Tr+1×(S3)s

|∂μgn(t, x, y)|

⎞⎠⎛⎝∑
|μ|≤λ

sup
(t,x,y)∈Tr+1×(S3)s

|∂μ(tLvn)(t, x, y)|

⎞⎠
≤ M ′′

1M
′
2n

4λ+3+senω.

Consequently, by (5.42) and (5.43), we have:

0 = lim
n→∞

∣∣∣∣∫
Tr+1×(S3)s

gnvn

∣∣∣∣ ≥ �0 > 0.

This leads to a contradiction, proving that L cannot be globally solvable.

It is also evident that in this context every vector field in L admits non-sparse

Archimedean sequences, which allow us to relate the linear independence of the coefficient

functions with the change of sign of their linear combinations by Proposition 5.2.17. Not only

that, notice that if t �→ 〈Im(c)(t), k〉+ 〈Im(d)(t), α〉 changes sign for some (k, α) ∈
Zr ×1

2
Zs, then the same is true for the “dilations” (m · k,m · α) ∈ Zr ×1

2
Zs, for every
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m ∈ Z. Using this, we can obtain another version of Proposition 5.2.14:

Proposition 5.3.4. If there exist vectors k̃ ∈ Zr and α̃ ∈ 1
2
Zs not both zero such that

〈c0, k̃〉+ 〈d0, α̃〉 − iq �∈ Z,

and the real-valued smooth function

θ(t)
.
= 〈b(t), k̃〉+ 〈f(t), α̃〉, t ∈ T1

changes sign, then the operator L defined in (5.35) is neither globally hypoelliptic nor glob-

ally solvable.

And also the following proposition:

Proposition 5.3.5. Suppose that at least one of the functions bj or fk is non-null. Then the

operator L, as defined in (5.35), is neither globally solvable nor globally hypoelliptic if:

(A) (b0, f0) = 0 and (a0, e0, q) �∈ Zr × 2Zs × iZ or

(B) (b0, f0) �= 0 and either dim span {b1, . . . , br, f1, . . . , fs} ≥ 2 or some of the functions bj

or fk changes sign.

Putting all these results together and using the properties mentioned above, we are able to

obtain both necessary and sufficient conditions for global solvability and hypoellipticity in this

case, that is:

Theorem 5.3.6 (Global solvability). The operator L is globally solvable if and only if one of

the following conditions holds:

i. dim span {b1, . . . , br, f1, . . . , fs} ≤ 1, none of the functions bj and fl change sign, and

L0 is globally solvable.

ii. (b, f) �≡ 0, (b0, f0) = 0, (a0, e0) ∈ Zr × 2Zs, q ∈ iZ and every sublevel set

Ωk,α
m =

{
t ∈ T1;

∫ t

0

( r∑
j=1

bj(t)kj +
s∑

l=1

fl(t)αl

)
dt < m

}

is connected, for every m ∈ R, k ∈ Zr, and α ∈ 1
2
Zs .
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Theorem 5.3.7 (Global hypoellipticity). L defined in (5.35) is globally hypoelliptic if and only

if dim span {b1, . . . , br, f1, . . . , fs} ≤ 1, none of the functions bj and fk changes sign, and L0

is globally hypoelliptic.

Example 5.3.8. Consider the first order differential operator

L = ∂t + (a+ eit)∂x + (b+ eit)i∂0 + iq(t)

acting on T1 ×T1 ×S3, where a, b ∈ R and q ∈ C∞(T1) is real valued. Then since∫ 2π
0

cos(t)dt = 0, by Theorem 5.3.6 L is globally solvable if and only if (a, b) ∈ Z×2Z and

1
2π

∫ 2π
0

q(t)dt ∈ Z. Also, by Theorem 5.3.7 it is not globally hypoelliptic since cos(t) changes

sign on [0, 2π]. On the other hand, let L be given by

L = ∂t + a(sin(t) + 1)∂x + b(sin(t) + 1)i∂0 + 1,

where a, b ∈ R. Then L is globally hypoelliptic. Indeed, taking M = N = 1 it is true that

|k1 + ak2 + bα− i| ≥ 1 ≥ M(|k1|+ |k2|+ �)−N ,

for every k1, k2 ∈ Z, � ∈ 1
2
N0, not all zero, and −� ≤ α ≤ �, �− α ∈ N0. Also, notice that

k1 + ak2 + bα− i �= 0

for every k1, k2 ∈ Z, α ∈ 1
2
Z. Therefore the claim follows from Theorem 5.3.7 and Proposi-

tion 4.1.4.

Example 5.3.9. Consider the operator L defined on T1 ×T1 ×S3 given by

L = ∂t + ((1 + cos(t)) + i sin3(t))∂x + ((2 + sin(t)) + 2i cos3(2t))i∂0 + (4i+ sin(3t)).

Then

L0 = ∂t + 1∂x + 2i∂0 + 4i,

and so (b0, f0) = 0, (a0, e0) ∈ Z×2Z and q ∈ iZ. However, for ξ = 1, α = −3
2 and r = 1.1 the

sublevel

Ωξ,α
r =

{
t ∈ T1 |

∫ t

0
ξ · sin3(τ) + 2α · cos3(2τ)dτ < r

}
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is not connected. Therefore L is not globally solvable by Theorem 5.3.6.
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Appendices

5.A Technical lemmas

Lemma 5.A.1. Let f, θ ∈ C∞(T1), and set θ0 = 1
2π

∫ 2π
0

θ(t)dt. If θ0 �∈ iZ, then the differential

equation

∂tu(t) + θ(t)u(t) = f(t), t ∈ T1, (5.44)

admits unique solution in C∞(T1) given by

u(t) =
1

1− e−2πθ0

∫ 2π

0

f(t− s)e−
∫ t
t−s θ(τ)dτds, (5.45)

or equivalently by

u(t) =
1

e2πθ0 − 1

∫ 2π

0

f(t+ s)e
∫ t+s
t θ(τ)dτds. (5.46)

If θ0 ∈ iZ, then equation (5.44) admits infinitely many solutions given by

uλ(t) = λe−
∫ t
0 θ(τ)dτ +

∫ t

0

f(s)e−
∫ t
s θ(τ)dτds, (5.47)

for every λ ∈ R, if and only if ∫ 2π

0

f(t)e
∫ t
0 θ(τ)dτdt = 0.

Proof. This can easily be verified by treating functions on the torus as periodic functions on

R.

Lemma 5.A.2. Let G = G1 × · · · ×Gn be a product of compact Lie groups and

L = ∂t +
n∑

j=1

cj(t)Xj + q

where cj(t) = aj + ibj(t) are smooth functions on the one-dimensional torus T1 = R /(2π Z),
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Xj ∈ gj j = 1, . . . , n, are left-invariant vector fields on Gj , q ∈ C. Define

NL =
{
([ξ], α) ∈ Ĝ× Nn |α ∈ Jξ, 〈c0, μα(ξ)〉 − iq ∈ Z

}
where c0 = 1

2π

∫ 2π
0

c(t)dt ∈ Cn, μα(ξ) = (μα1(ξ
1), . . . , μαn(ξ

n)) as defined in Definition

3.1.8. If f ∈ C∞(T1 ×G) is such that f̂(·, ξ)αβ ≡ 0 whenever ([ξ], α) ∈ NL, then f ∈
(ker tL)0 ∩ C∞(T1 ×G).

Proof. Let f ∈ C∞(T1 ×G) be as claimed. Suppose v ∈ ker tL. Then − tLv = 0, therefore,

taking the partial Fourier transform on the last n variables yields:

−̂ tLv(t, ξ)αβ = ∂tv̂(t, ξ)αβ + i(〈c(t), μα(ξ)〉+ iq)v̂(t, ξ)αβ = 0 (5.48)

for every t ∈ T1, [ξ] ∈ Ĝ, α, β ∈ Jξ. Therefore, for every ([ξ], α) �∈ NL, as 〈c0, μα(ξ)〉 − iq �∈
Z then also

〈c0, μα(ξ)〉 − iq = −〈c0, μα(ξ)〉 − iq

= −(〈c0, μα(ξ)〉+ iq) �∈ Z

so 〈c0μα(ξ)〉 + iq �∈ Z. It follows from Lemma 5.A.1 that equation 5.48 implies v̂(·, ξ)αβ ≡ 0.

From Proposition 3.1.7 we conclude that

〈v, f〉T1 ×G =
∑
[ξ]∈Ĝ

dξ
∑

α,β∈Jξ

∫ 2π

0

f̂(t, ξ)αβ v̂(t, ξ)αβdt

= 0

as every term in the sum above is zero. Since v ∈ ker tL was arbitrary, we conclude f ∈
(ker tL)0.

Lemma 5.A.3. Let G = G1 × · · · ×Gn be a product of compact lie groups and

L = ∂t +
n∑

j=1

cj(t)Xj + q

where cj(t) = aj0 + ibj(t), aj0 ∈ R, bj are smooth real functions on T1, Xj are left-invariant

vector fields on Gj , j = 1, . . . , n, q ∈ C. Let cj0 = 1
2π

∫ 2π
0

cj(t)dt, j = 1, . . . , n. If f ∈
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(ker tL)0 ∩ C∞(G), then the ordinary differential equations on T1 given by

L̂u(t, ξ)αβ = [∂t + i(〈cj(t), μα(ξ)〉 − iq)] û(t, ξ)αβ = f̂(t, ξ)αβ (5.49)

admits solution for every [ξ] ∈ Ĝ, α, β ∈ Jξ.

Proof. Let f ∈ (ker tL)0 ∩ C∞(T1 ×G) and consider equation (5.49). By Lemma 5.A.1 it

admits (unique) solution whenever ([ξ], α) ∈ N c
L, β ∈ Jξ. Now suppose ([ξ], α) ∈ NL and let

β ∈ Jξ. Define

v̂(t, ξ)αβ = exp

{∫ t

0

i(〈c(τ), μα(ξ)〉 − iq)dτ

}

and v̂(t, ξ′)α′β′ ≡ 0 for all other [ξ′] ∈ Ĝ, α′, β′ ∈ Jξ′ . Note that these are well defined since

([ξ], α) ∈ NL. By taking the partial inverse Fourier transform of these coefficients, we obtain

that v ∈ (ker tL), since:

−̂ tLv(t, ξ)αβ = ∂tv̂(t, ξ)αβ + i(〈c(t), μα(ξ)〉+ iq)v̂(t, ξ)αβ

= i(〈c(t), μα(ξ)〉 − iq)v̂(t, ξ)αβ + i(−〈c(t), μα(ξ)〉+ iq)v̂(t, ξ)αβ

= 0.

Since f ∈ (ker tL)0, by Proposition 3.1.7:

0 =

∫
T1

∫
G

f(t, x)v(t, x)dxdt =

∫ 2π

0

f̂(t, ξ)αβ v̂(t, ξ)αβdt

=

∫ 2π

0

f̂(t, ξ)αβ exp

{∫ t

0

i(〈c(τ), μα(ξ)〉 − iq)dτ

}
dt

so by Lemma 5.A.1 equation (5.49) admits (infinitely many) solutions.

Lemma 5.A.4. Let ψ ∈ C∞(T1) be a smooth non-negative real-valued function with a zero of

order greater than one at s0 ∈ T1, that is, ψ(s0) = ψ′(s0) = 0. Then, there exists M > 0 such

that ∫ s0+δ

s0−δ

e−λψ(s)ds ≥
√
π erf(δ)λ−1/2M−1/2,

for all λ > 0 sufficiently big and δ > 0.

Proof. By Taylor’s theorem, for each s ∈ (s0 − δ, s0 + δ), there exists s′ ∈ (s0 − δ, s0 + δ),
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such that

ψ(s) =
ψ′′(s′)

2
(s− s0)

2.

Let M̃ = sups∈[s0−δ,s0+δ]

∣∣∣ψ′′(s)
2

∣∣∣ ≥ 0. If M̃ = 0, then ψ ≡ 0 on [s0 − δ, s0 + δ] and the

inequality is trivial with M = 1, as
√
π erf(δ) ≤ 2δ. Otherwise, let M = M̃ and then for

λM > 1 we have:

∫ s0+δ

s0−δ

e−λψ(s)ds ≥
∫ s0+δ

s0−δ

e−(
√
λM(s−s0))2ds ≥ 1√

λM

(∫ δ
√
λM

−δ
√
λM

e−s2ds

)

≥ 1√
λM

(∫ δ

−δ

e−s2ds

)
=

√
π erf(δ)λ−1/2M−1/2.

Lemma 5.A.5. Let φ ∈ C∞(T1) be such that
∫ 2π
0

φ(t) dt = 0 and for every r ∈ R, the set

Ωr =
{
t ∈ T1 |

∫ t
0
φ(τ)dτ < r

}
is connected. Then

Ω̃r =

{
t ∈ T1 |

∫ t

0

φ(τ)dτ ≥ r

}
=

{
t ∈ T1 | −

∫ t

0

φ(τ)dτ ≤ −r

}

is also connected.

Proof. This follows from Ω̃r = T1 \Ωr and the general fact that any A ⊂ T1 is connected

if and only if T1 \A is connected. To see this, let A be connected. Note that the claim T11 \A
is connected is trivially true if A = T11. Otherwise, then T1 \A contains at least one point,

which, without loss of generality we may assume it is 0 = 0 + 2π Z. If we consider

f : (0, 2π) → T1 \{0 + 2π Z}

x �→ x+ 2π Z

then f is an homeomorphism. Since A is connected, I = f−1(A) also is. But then I is an

interval, so Ic = (0, 2π)\I is either an interval containing (0, ε) or (2π − ε, 2π) for some ε > 0

or the disjoint union of two intervals containing (0, ε) ∪ (2π − ε, 2π), for some ε > 0. In both

cases, since T1 \A = f(Ic) ∪ {0 + 2π Z} it is clearly connected. Switching the roles of A and

T1 \A, the converse also follows.

Lemma 5.A.6. Let φ ∈ C∞(T1) be a non-null function, and let Φ be a function such that
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Φ′ = φ. Suppose there exists m ∈ R such that the sublevel set

Ωm = {t ∈ T1; Φ(t) < m}

is not connected. Then, there exists m0 < m such that Ωm0 has two connected components

with disjoint closures. Consequently, we can define functions g0, v0 ∈ C∞(T1) such that:

∫ 2π

0

g0(t) dt = 0, supp (g0) ∩ Ωm0 = ∅, supp (v′0) ⊂ Ωm0 and
∫ 2π

0

g0(t)v0(t) dt > 0.

Proof. Let C1 ⊂ T1 be a connected component of Ωm. Notice that C1 is homeomorphic to

an open interval and has two distinct boundary points: ∂C1 = {t1, t2}. Choose t3 ∈ C1 such

that Φ(t) < m. Since Ωm is not connected, there exists another connected component C2 of

Ωm such that C1 ∩ C2 = ∅. Similar to C1, the component C2 is also homeomorphic to an open

interval and its boundary is given by two distinct points: ∂C2 = {t4, t5}. Choose t6 ∈ C2 such

that Φ(t6) < m.

Now, choose ε > 0 such that m0
.
= max{Φ(t3),Φ(t6)} + ε < r. Since Φ(t1) = m, by the

continuity of Φ, there exists an open set U1 ⊂ T1 containing t1 such that Φ(t) > m0 for each

t ∈ U1. Similarly, we can find an open set U2 containing t2 with the same property.

Let I and J be the connected components of Ωm0 that contain t3 and t6, respectively. It is

important to note that U1 and U2 are contained in T1\(I ∪ J). Moreover, I ⊂ C1 and J ⊂
C2 are “separated” by U1 and U2, which implies that their closures do not intersect. In other

words, if x ∈ I ∩ J , then there exist sequences (xn)n ⊂ I and (yn)n ⊂ J such that xn → x

and yn → x. However, since xn ∈ I ⊂ C1, it follows that Φ(xn) < m0 for all n, which implies

Φ(x) ≤ m0 < m. Therefore, we have x ∈ C1. The same logic applies to yn, J , and C2, which

leads to x ∈ C1 ∩ C2, which is a contradiction.

Let us consider the previously defined set as contained in the interval K = [t1, t1 + 2π] ⊂
R. Without loss of generality, we can assume that

t1 < t3 < t2 ≤ t4 < t6 < t5 ≤ t1 + 2π

t3 ∈ I ⊂ C1 = (t1, t2), t6 ∈ J ⊂ C2 = (t4, t5)

U1 = [t1, t1 + ε′) ∪ (t1 + 2π − ε′, t1 + 2π],
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where 0 < ε′, and t1 + ε′ < t3, and

U2 = (t2 − ε′′, t2 + ε′′),

where 0 < ε′′ and t3 < t2 − ε′′ < t2 + ε′′ < t6.

Now, for j = 1, 2, let gj ∈ C∞
c (Uj) be a bump function such that

∫ 2π
0

gj(t) dt = 1. Set

g0 = g2 − g1, so that supp (g0) ⊂ U1 ∪ U2 and so supp (g0) ∩ Ωm0 = ∅. Also,

∫ 2π

0

g0 =

∫
U2

g2 −
∫
U1

g1 = 1− 1 = 0.

Finally, let δ > 0 be such that t3 + δ ∈ I and t6 − δ ∈ J . Choose v0 ∈ C∞
c ((t3, t6)) such

that v0 ≡ 1 in [t3 + δ, t6 − δ]. In this case,

∫ 2π

0

g0v0 =

∫
U2

g2 = 1 > 0

and supp (v′0) ⊂ I ∪ J ⊂ Ωm0 .
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Part II

Sharp Gårding inequality
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Chapter 6

Vector-valued sharp Gårding inequality on

compact Lie groups

6.1 Introduction

The so called Gårding inequality was first proved by Gårding in his paper [47] and can be

stated as follows:

Let P be an elliptic self-adjoint pseudo-differential operator of order m ∈ R on an

open set U ⊂ Rn. Then, for any compact set Q ⊂ U and γ < m/2, there exist constants

cγ,Q, Cγ,Q > 0 such that

〈Pu, u〉L2 ≥ cγ,Q‖u‖2Hm/2 − Cγ,Q‖u‖2Hγ ,

for every u ∈ C∞
0 (Q). Here, 〈·, ·〉L2 denotes the usual L2 inner product and ‖ · ‖Hr , denotes

the usual norm on the Sobolev space of order r ∈ R. In order to apply it to different prob-

lems, Hörmander [71] and Lax and Nirenberg [81] then adapted this result and proved the so

called sharp Gårding inequality for pseudo-differential operators for symbols in the Kohn-

Nirenberg class Sm(R2n). Their result states that if a symbol p ∈ Sm(R2n), for m ∈ R sat-

isfies Re p(x, ξ) ≥ 0, then the pseudo-differential operator p(x,D) associated to this symbol

satisfies the estimate

Re〈p(x,D)u, u〉L2(Rn) ≥ −C‖u‖2
H

m−1
2

,

for some C > 0 and every u ∈ H
m−1

2 (Rn), where the norm on the right hand side of the in-

equality denotes the usual norm in the Sobolev space H
m−1

2 (Rn). Since then, this result has
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been extended, by many authors, to different settings and symbol classes. In particular, this

type of inequality has been extended to the global symbol classes on compact Lie groups for

scalar valued functions. Inspired by the works on Gårding inequality on compact Lie group

[100], on sharp Gårding inequality on compact Lie groups [96], on sharp Gårding inequality

for subelliptic operators on compact Lie groups [25] and on Gårding inequality on graded Lie

groups [24], we prove a type of sharp Gårding inequality for pseudo-differential operators act-

ing on vector-valued functions on compact Lie groups. In order to do so, we also extend the

notion of pseudo-differential operators defined by amplitudes to the vector-valued compact Lie

group setting. As a consequence, we obtain a sharp Gårding inequality for pseudo-differential

operators on compact homogeneous vector bundles and compact homogeneous manifolds. Fi-

nally, in the end we present an application of this result proving existence and uniqueness of

solution to a class of systems of vector-valued Cauchy problems of pseudo-differential equa-

tions. These results could have many applications in analysis, such as in local solvability and

well-posedness of certain Cauchy problems. We remark that our results use state of the art

ideas, such as the vector valued Fourier analysis on compact Lie groups developed in [27]. It

is also relevant to mention that the sharp Gårding inequality is the strongest lower bound esti-

mate known to hold for systems on Rn (vector-valued functions). The aim of this chapter is to

extend this property for the global quantization of operators on compact Lie groups.

6.2 Preliminaries

6.2.1 Vector-valued Fourier analysis

In this section we recall some of the work by Cardona, Kumar and Ruzhansky in [27]

about the vector-valued analog of the Fourier analysis on compact Lie groups presented in

Chapter 2. The theory here presented differs slightly from the one found in that paper, as they

considered subelliptic Hörmander classes, and here we have adapted their results to consider

the usual elliptic Hörmander classes.

Let E0 be a n-dimensional C-vector space, where n ∈ N. Consider B0 = {e1, . . . , en} an

orthonormal basis on E0. We may identify E0
∼= Cn ∼= Cn×1 as vector spaces, by identifying

each element in B0 with the canonical basis in Cn. Hence, given a mapping f : G → E0, we

may write it as

f(x) = (f1(x), . . . , fn(x))
t ∈ Cn×1,
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where fj(x) = 〈f(x), ej〉E0 ∈ C, for each x ∈ G, where 〈·, ·〉E0 denotes the canonical inner

product on E0 which it inherits from Cn. Here also the superscript “t” denotes the transpose

of the corresponding vector.

Definition 6.2.1. For f ∈ L1(G,E0), define the Fourier coefficients of f at [ξ] ∈ Ĝ by

f̂(ξ) = (f̂(1, ξ), . . . , f̂(n, ξ))t
.
= (f̂1(ξ), . . . , f̂n(ξ))

t,

where f̂i(ξ) is the group Fourier transform defined in Chapter 2.

As before, this definition can be extended to the set of distributions D′(G,E0) acting on

C∞(G,E0). For a scalar function g : G → C, we fix the notation g(x) ⊗ ei to denote the

vector-valued function defined which has x �→ g(x) as its i-th component, and zero for its

other components, i.e.: (g ⊗ ei)j(x) = g(x)δij .

From the Peter-Weyl Theorem, the inversion formula can be written as

f(x) =
n∑

i=1

∑
[ξ]∈Ĝ

dξ Tr
(
ξ(x)f̂(i, ξ)

)
⊗ ei,

for every f ∈ L2(G,E0).

Definition 6.2.2. Let A : C∞(G,E0) → C∞(G,E0) be a continuous linear operator. Its

matrix-valued symbol is given by

σA(i, r, x, ξ) = ξ(x)∗〈A(ξ ⊗ ei)(x), er〉E0 , (6.1)

for 1 ≤ i, r ≤ n, x ∈ G, [ξ] ∈ Ĝ.

A similar quantization formula holds in the vector-valued case. More precisely, the fol-

lowing result was proved in [27]:

Proposition 6.2.3. Let A : C∞(G,E0) → C∞(G,E0) be a continuous linear operator. Then

Af(x) =
n∑

i,r=1

∑
[ξ]∈Ĝ

dξTr[ξ(x)σA(i, r, x, [ξ])f̂i(ξ)]⊗ er, (6.2)

for every x ∈ G, f ∈ C∞(G,E0).
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Equivalently, formula (6.2) can also be written as

Af(x)

=

⎛⎝ n∑
i=1

∑
[ξ]∈Ĝ

dξTr[ξ(x)σA(i, 1, x, [ξ])f̂i(ξ)], . . . ,
n∑

i=1

∑
[ξ]∈Ĝ

dξTr[ξ(x)σA(i, n, x, [ξ])f̂i(ξ)]

⎞⎠t

,

or

Af(x) =
∑
[ξ]∈Ĝ

dξTr[ξ(x)⊗nσA(x, [ξ])f̂(ξ)].

Here the matrix σA(x, [ξ]) ∈ (Cdξ×dξ)n×n is given by:

σA(x, [ξ])ir = σA(i, r, x, [ξ]),

for 1 ≤ i, r ≤ n, (x, [ξ]) ∈ G× Ĝ, and ξ(x)⊗n is the block diagonal (Cdξ×dξ)n×n-matrix given

by

ξ(x)⊗n = diag(ξ(x), . . . , ξ(x)), (6.3)

for all (x, [ξ]) ∈ G × Ĝ. Also, this last trace should be understood component-wise, i.e.:

(Tr(v))j = Tr(vj), for 1 ≤ j ≤ n.

As before, we introduce the symbol classes with respect to these quantization formulas.

Definition 6.2.4. Let Jn
.
= {1, . . . , n}, 0 ≤ ρ, δ ≤ 1. A symbol σ ∈ Sm

ρ,δ((G× Ĝ)⊗ End(E0))

is a mapping from Jn × Jn × G × Rep(G), smooth in x, such that, σ(i, r, x, ξ) ∈ Cdξ×dξ , for

any ξ ∈ Rep(G), i, r ∈ Jn, and it satisfies

‖Δα
ξ ∂

β
xσ(i, r, x, ξ)‖op ≤ Cαβ〈ξ〉m−ρ|α|+δ|β|,

for some Cα,β > 0, for all multi-indices α, β, and all (i, r, x, ξ) ∈ Jn × Jn × G × Rep(G). As

before, due to the trace invariance under cyclic permutations, we will abuse the notation and

identify Rep(G) with Ĝ.

For a symbol σ, its associated pseudo-differential operator Op(σ) : C∞(G,E0) →
D′(G,E0) is defined by the expression

(Op(σ)u)r(x)
.
=
∑
[η]∈Ĝ

dηTr

[
η(x)

n∑
i=1

σ(i, r, x, η)ûi(η)

]
, (6.4)
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for every 1 ≤ r ≤ n. We then say Op(σ) is a vector-valued pseudo-differential operator of

order m, and write Op(σ) ∈ Ψm
ρ,δ((G× Ĝ)⊗ End(E0)).

We also denote the set of smoothing symbols and smoothing operators by

S−∞((G× Ĝ)⊗ End(E0)) =
⋂
m∈R

Sm
1,0((G× Ĝ)⊗ End(E0)), (6.5)

Ψ−∞((G× Ĝ)⊗ End(E0)) =
⋂
m∈R

Ψm
1,0((G× Ĝ)⊗ End(E0)), (6.6)

As in Chapter 2, for every s ∈ R, the vector-valued Sobolev space Hs(G,E0), is defined

as the set of all distributions in D′(G,E0) such that

‖u‖2Hs(G,E0)
=
∑
[ξ]∈Ĝ

dξ〈ξ〉2s
n∑

i=1

‖û(i, ξ)‖2HS < ∞.

In this case, the equalities

⋂
s∈R

Hs(G,E0) = C∞(G,E0),
⋃
s∈R

Hs(G,E0) = D′(G,E0). (6.7)

also hold.

The following theorem justifies the term “smoothing” for the symbols in (6.5), because of

equalities (6.7). Its proof can be found in [27, Theorem 3.17].

Theorem 6.2.5. Let A : C∞(G,E0) → C∞(G,E0) be a continuous linear operator with

symbol a ∈ Sm
ρ,δ((G× Ĝ)⊗ End(E0)), 0 ≤ δ < ρ ≤ 1. Then A : Hs(G,E0) → Hs−m(G,E0)

extends to a bounded operator for all s ∈ R.

Remark 6.2.6. As in the scalar case, if A : C∞(G,E0) → C∞(G,E0) is a continuous left-

invariant linear operator, that is,

(A ◦ πL(y)f)(x) = (πL(y) ◦ A)f(x),

where (πL(y)f)(x) = f(y−1x), for every f ∈ C∞(G,E0) and x, y ∈ G, then σA is indepen-

dent of x ∈ G. Proposition 6.2.3 then implies that

(̂Af)(r, ξ) =
n∑

i=1

σA(i, r, ξ)f̂(i, ξ),
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or equivalently

(̂Af)r(ξ) =
n∑

i=1

σA(i, r, ξ)f̂i(ξ),

for every 1 ≤ r ≤ n, [ξ] ∈ Ĝ and f ∈ C∞(G,E0). By duality, this remains true for f ∈
D′(G,E0). This implies A can be seen as a “matrix Fourier multiplier”.

Definition 6.2.7. An amplitude a ∈ Am
ρ,δ((G × Ĝ) ⊗ End(E0)), where m ∈ R, 0 ≤ ρ, δ ≤ 1,

is a mapping from Jn × Jn × G × G × Rep(G), smooth in x and y, such that, for any ξ ∈
Rep(G), a(i, r, x, y, ξ) ∈ Cdξ×dξ , and for any admissible collection of difference operators Δα

ξ ,

it satisfies

‖Δα
ξ ∂

β
x∂

γ
ya(i, r, x, y, ξ)‖op ≤ Cαβγ〈ξ〉m−ρ|α|+δ|β+γ|, (6.8)

for some Cαβγ > 0 and for all multi-indices α, β, γ, (i, r, x, y, [ξ]) ∈ Jn × Jn ×G×G× Ĝ.

For an amplitude a, the amplitude operator Op(a) : C∞(G,E0) → D′(G,E0) is defined

by

(Op(a)u)r(x)
.
=
∑
[η]∈Ĝ

dη Tr

[
η(x)

∫
G

n∑
i=1

a(i, r, x, y, η)ui(y)η
∗(y) dy

]
(6.9)

for every 1 ≤ r ≤ n, u ∈ C∞(G,E0). Notice that if A is a pseudo-differential operator

A : C∞(G,E0) → C∞(G,E0) defined as before, and if a(i, r, x, y, η) = σA(i, r, x, η), then

Op(a) = A.

Proposition 6.2.8. Let 0 ≤ δ < 1 and 0 ≤ ρ ≤ 1, and a ∈ Am
ρ,δ((G × Ĝ) ⊗ End(E0)). Then

Op(a) is a continuous linear operator from C∞(G,E0) to C∞(G,E0).

Proof. Recall that by definition, (Id + LG)η = 〈η〉2η. Consequently, we may rewrite (6.9) as

∑
[η]∈Ĝ

dη Tr

[
η(x)

∫
G

n∑
i=1

a(i, r, x, y, η)ui(y)〈η〉−2r(Id + LG)
rη∗(y) dy

]
. (6.10)

Since (Id + LG) is self-adjoint, the equation above can be rewritten as

∑
[η]∈Ĝ

dη Tr

[
η(x)

∫
G

n∑
i=1

(Id + LG)
s[a(i, r, x, y, η)ui(y)]〈η〉−2rη∗(y) dy

]
, (6.11)

for any s ∈ N. By (6.9) we have that

‖(Id + LG)
sa(i, r, x, y, η)‖op〈η〉−2s ≤ C〈η〉m−2s(1−δ).
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Since 0 ≤ δ < 1, we can take s ∈ N sufficiently big so that the series above converges abso-

lutely. By a similar argument, the same is true for all derivatives in x of the above expression.

It follows that Op(a)u ∈ C∞(G,E0) provided u ∈ C∞(G,E0). The continuity of Op(a)

follows similarly.

Next we show that any operator defined by an amplitude may also be defined by a symbol,

and these two objects are related through an asympotic expansion as follows.

Proposition 6.2.9. Let m ∈ R, 0 ≤ δ < ρ ≤ 1 and a ∈ Am
ρ,δ((G× Ĝ)⊗ End(E0)). Then A =

Op(a) is a pseudo-differential operator with matrix symbol σA ∈ Sm
ρ,δ((G × Ĝ) ⊗ End(E0)).

Moreover, σA has the asymptotic expansion

σA(i, r, x, ξ) ∼
∑
α≥0

1

α!
∂α
yΔ

α
ξ a(i, r, x, y, ξ)|y=x,

for each 1 ≤ i, r,≤ n, in the sense that⎛⎝σA(i, r, x, ξ)−
∑

0≤|α|<N

1

α!
∂α
yΔ

α
ξ a(i, r, x, y, ξ)|y=x

⎞⎠ ∈ S
m−(ρ−δ)N
ρ,δ ((G× Ĝ)⊗ End(E0)),

for every N ∈ N sufficiently big.

Proof. Indeed, by Proposition 6.2.8, A is a continuous linear operator acting on C∞(G,E0)

and therefore admits symbol σA, the matrix symbol of A, given by:

σA(i, r, x, ξ) = ξ(x)∗〈A(ξ ⊗ ei)(x), er〉E0 .

Therefore

σA(i, r, x, ξ)mn =

dξ∑
l=1

ξ(x−1)ml(A(ξln ⊗ ei))r(x)

=

dξ∑
l=1

ξ(x−1)ml

∫
G

∑
[η]∈Ĝ

dη Tr[η(x)a(i, r, x, y, η)ξ(y)lnη(y)
∗]dy

=

∫
G

dξ∑
l=1

ξ(x−1)mlξ(y)ln
∑
[η]∈Ĝ

dη Tr[η(y−1)η(x)a(i, r, x, y, η)]dy

=

∫
G

ξ(x−1y)mn

∑
[η]∈Ĝ

dη Tr[η(y−1x)a(i, r, x, y, η)]dy.
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Performing the change of variables z = y−1x (justified by the invariance of the Haar measure),

we obtain that

σA(i, r, x, ξ)mn =

∫
G

ξ(z−1)mn

∑
[η]∈Ĝ

dη

dη∑
j,k=1

η(z)jk a(i, r, x, xz
−1, η)kjdz

=
∑

0≤|α|<N

1

α!
∂α
y |y=x

∫
G

ξ(z−1)mnqα(z)
∑
[η]∈Ĝ

dη

dη∑
j,k=1

η(z)jka(i, r, x, y, η)kjdz

+

∫
G

ξ(z−1)mn

∑
[η]∈Ĝ

dη

dη∑
j,k=1

η(z)jkRN(i, r, z, η)kjdz

=
∑

0≤|α|<N

1

α!

∫
G

ξ(z)∗mnqα(z)
∑
[η]∈Ĝ

dη Tr[η(z)∂α
y |y=xa(i, r, x, y, η)]dz

+

∫
G

ξ(z−1)mn

∑
[η]∈Ĝ

dη

dη∑
j,k=1

η(z)jkRN(i, r, z, η)kjdz

=
∑

0≤|α|<N

1

α!
∂α
yΔ

α
ξ a(i, r, x, y, ξ)mn|y=x

+

∫
G

ξ(z−1)mn

∑
[η]∈Ĝ

dη

n∑
j,k=1

η(z)jkRN(i, r, z, η)kjdz, (6.12)

where RN(i, r, z, η)kj is the remainder of the Taylor expansion in y of order N ∈ N of

a(i, r, x, y, η)kj centered at x. Therefore, to prove the claim we only need to analyze these last

series of integrals. For (x, y) ∈ G× G, 1 ≤ i, r ≤ n, define kA,x,y(i, r, ·) to be the distribution

defined by

a(i, r, x, y, ξ) = k̂A,x,y(i, r, ξ), [ξ] ∈ Ĝ.

Similarly, denote by kσ,x(i, r, ·) to be the right convolution kernels of A, that is, the distribu-

tion which satisfies

σA(i, r, x, ξ) = k̂σ,x(i, r, ξ), [ξ] ∈ Ĝ.

Notice that

Af(x)r =

∫
G

n∑
i=1

fi(y)kA,x,y(i, r, y
−1x)dy

=

∫
G

n∑
i=1

fi(xz
−1)kA,x,xz−1(i, r, z)dz,
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where the first equality can be found in [25]. Also,

Af(x)r =

∫
G

n∑
i=1

fi(y)kσ,x(i, r, y
−1x)dy =

∫
G

n∑
i=1

fi(xz
−1)kσ,x(i, r, z)dz,

therefore we have that

kA,x,y(i, r, y
−1x) = kσ,x(i, r, y

−1x), kA,x,xz−1(i, r, z) = kσ,x(i, r, z),

in the sense of distributions, for all 1 ≤ i, r ≤ n. Now, fix 1 ≤ i, r ≤ n, and notice that

∑
[η]∈Ĝ

dη

n∑
j,k=1

η(z)jkRN(i, r, z, η)kj =
∑
[η]∈Ĝ

dη

n∑
j,k=1

η(z)jk[a(i, r, x, xz
−1η)kj

− ∂y|y=xa(i, r, x, y, η)kj]

= kA,x,xz−1(i, r, z)kj − ∂y|y=xkA,x,y(i, r, z)kj

= kσ,x(i, r, z)−
∑
|α|<N

qα(z)∂
α
z1
|z1=ekA,x,xz−1

1
(i, r, z).

Applying this to (6.12), our goal now is to prove that the Fourier transform of the expression

above is in S
m−(ρ−δ)N
ρ,δ ((G × Ĝ) ⊗ End(E0)) for every N sufficiently big, which we do as

follows. For any multi-indices γ, β, let M ′ ∈ 2N0 such that

M ′ > ρ|γ| − δ|β| −m+ (ρ− δ)N,

and
M ′

2
> −ρ|γ|+ δ|β|+m+ 2(ρ− δ)N. (6.13)

Then∥∥∥∥∥∥〈ξ〉ρ|γ|−δ|β|−m+(ρ−δ)NΔγ∂β
x

⎡⎣∑
[η]∈Ĝ

dη

n∑
i=1

n∑
j,k=1

∫
G

ξ(z−1)mnη(z)jkRN(i, r, z, η)kjdz

⎤⎦∥∥∥∥∥∥
op

≤

∥∥∥∥∥∥〈ξ〉M ′
Δγ∂β

x

⎡⎣∑
[η]∈Ĝ

dη

n∑
i=1

n∑
j,k=1

∫
G

ξ(z−1)mnη(z)jkRN(i, r, z, η)kjdz

⎤⎦∥∥∥∥∥∥
op

≤ ‖(Id + L)M′
2 [qγ(z)∂

β
x [kσ,x(i, r, z)−

∑
|α|<N

qα(z)∂
α
z1
|z1=ekA,x,xz−1

1
(i, r, z)]‖L1(G)z

= ‖(Id + L)M′
2 [qγ(z)∂

β
xR

kA,x,x

x,N (i, r, z)]‖L1(G)z , (6.14)
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where

kσ,x(i, r, z) = kA,x,xz−1(i, r, z) =
∑
|α|<N

qα(z)∂
α
z1
|z1=ekA,x,xz−1

1
(i, r, z) +R

kA,x,x

x,N (i, r, z),

for all x, y, z ∈ G by the Taylor expansion theorem. Moreover, by [44], Lemma 7.4, the re-

mainder satisfies the estimate

|Rx,N(i, r, z)| ≤ C|z|N max
|α|≤N

‖∂α
xkA,x,x(i, r, z)‖L∞(G)x .

Now applying the definition of L and the Leibniz’s rule on (6.14), gives us

‖(Id + L)M′
2 [qγ(z)∂

β
xR

kA,x,x

x,N (i, r, z)]‖L1(G)z

�
∑

1≤i1≤···≤id≤d, |λ|≤M ′
‖Xλ1

i1,z
. . . Xλd

id,z
[R

qγ(z)∂
β
xkA,x,x

x,N (i, r, z)‖L1(G)z ,

(6.15)

where the notation � denotes that the inequality holds up to a constant which independs on

the functions involved. By estimates similar to the ones above, we have

|Xλ1
i1,z

. . . Xλd
id,z

[R
qγ(z)∂

β
xkA,x,x

x,N (i, r, z)]| � |z|N−|λ| max
|α|≤N−|λ|

‖∂α+λ
z (qγ(z)∂

β
xkA,x,x(i, r, z))‖L∞(G)x ,

and since {∂α+λ
z (qγ(·)∂β

xkA,x,x(i, r, ·))}ni,r=1 are the right-convolution kernels of a pseudo-

differential operator of order

s′ = m+ δ|β|+ δ|α|+ δ|λ| − ρ|γ|,

by Proposition 6.7 of [44] we have that

‖∂α+λ
z (qγ(z)∂

β
xkA,x,x(i, r, z))‖L∞(G)z � |z|− s′+d

ρ ,

for 1 ≤ i, r ≤ n. Putting these previous estimates together, one obtains

‖(Id + L)M′
2 [qγ(z)∂

β
xR

kA,x,x

x,N (i, r, z)]‖L1(G)z �
∫
G

|z|N−|λ||z|− s′+d
ρ , (6.16)
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and the integral on the right-hand-side is finite if

ρ(|λ| −N) + s′ + d < ρd.

But indeed, for N big enough, we have M ′ ≤ (ρ−δ)N . By choosing M ′ so that (ρ−δ)N/2 �
M ′ also, we have that (ρ − δ)N is proportional to M ′. Hence, using that |α| + |λ| ≤ N and

(6.13) yields

ρ(|λ| −N) + s′ + d = ρ|λ| − ρN +m+ δ|β|+ δ|α|+ δ|λ| − ρ|γ|+ d

< ρ|λ| − ρN +m+ δ|β|+ ρ|α|+ ρ|λ| − ρ|γ|+ d

= ρ|λ| − ρ(N − |α| − |λ|) +m+ δ|β| − ρ|γ|+ d

≤ ρ|λ|+m+ δ|β| − ρ|γ|+ d

≤ ρM ′ +
M ′

2
− 2N(ρ− δ) + d ≤ 3M ′

2
− 2N(ρ− δ) + d

∼ 3(ρ− δ)N

2
− 2N(ρ− δ) + d = −(ρ− δ)N

2
+ d,

where in the second to last line we used the fact that |λ| ≤ M ′ from (6.15). By choosing N ≥
N0 ≥ 2d(1 − ρ)/(ρ − δ), we get that ρ(|λ| − N) + s′ + d < ρd, which by (6.12), (6.16)

and the previous inequalities proves that the remainder term in the asymptotic expansion is in

S
m−(ρ−δ)N
ρ,δ ((G× Ĝ)⊗ End(E0)), for all such N .

6.2.2 Even and odd functions on compact Lie groups

Recall that f ∈ C∞(G) is called central if f(xy) = f(yx), for every x, y ∈ G. Following

[96], we will say f ∈ C∞(G) is even if it is invariant under inversions, that is: f(x−1) = f(x)

for every x ∈ G. Similarly, we will say that f ∈ C∞(G) is odd if f(x−1) = −f(x), for every

x ∈ G.

Lemma 6.2.10. Let f ∈ C∞(G) be central and even. Then for any left-invariant vector field

X , the function Xf is odd. Moreover, if g ∈ C∞ is odd, then fg is also odd.
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Proof. Indeed, we have that

Xf(x−1) = lim
t→0

f(x−1 exp(tX))− f(x−1)

t

= lim
t→0

f(exp(−tX)x)− f(x)

t

= lim
t→0

f(x exp(−tX))− f(x)

t

= −Xf(x),

for any x ∈ G, which proves the first claim. The second claim is immediate.

Lemma 6.2.11. Let f ∈ C∞(G) be odd. Then
∫
G
f(x)dx = 0.

Proof. Notice that
∫
G
f(x)dx =

∫
G
f(x−1)dx = −

∫
G
f(x)dx, so

∫
G
f(x)dx = 0.

6.3 Sharp Gårding inequality on compact Lie groups

6.3.1 Main Results

Here we present the main result in [83], obtained by the author and Ruzhansky. Its proof

will be then carried out through several lemmas.

Theorem 6.3.1. Let G be a compact Lie group, dim(G) = d, and E0 a n-dimensional C-

vector space. Let A = Op(σA) ∈ Ψm
ρ,δ((G × Ĝ) ⊗ End(E0)), 0 ≤ δ < ρ ≤ 1, be such that its

matrix-valued symbol σA(x, ξ) is positive semi-definite for every (x, [ξ]) ∈ G× Ĝ, in the sense

that B∗σA(x, ξ)B ∈ Cdξ×dξ is positive semi-definite for all B ∈ (Cdξ×dξ)n×1. Equivalently,

this means that for any B1, . . . , Bn ∈ Cdξ×1, the inequality

n∑
i,r=1

Bi
T
σA(i, r, x, ξ)Br ≥ 0,

holds for all (x, [ξ]) ∈ G× Ĝ. Then there exists C > 0 such that, for every u ∈ C∞(G,E0) we

have

Re〈Au, u〉L2(G,E0) ≥ −C‖u‖2H(m−(ρ−δ))/2(G,E0)
, (6.17)

where 〈·, ·〉L2(G,E0) denotes the canonical inner product on L2(G,E0).
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Remark 6.3.2. In the previous statement and throughout the rest of this chapter, for a column-

vector of matrices B ∈ (Cdξ×dξ)n×1 we denote by B∗ ∈ (Cdξ×dξ)1×n the row-vector of matri-

ces given by

B∗ = (B∗
1 , . . . , B

∗
n) .

First, notice that if Q : H
m−(ρ−δ)

2 (G,E0) → H−m−(ρ−δ)
2 (G,E0) is a bounded linear opera-

tor, we have

Re〈Qu, u〉L2(G,E0) ≥ −|〈Qu, u〉L2(G,E0)|

≥ −‖Qu‖
H−m−(ρ−δ)

2 (G,E0)
‖u‖

H
m−(ρ−δ)

2 (G,E0)

≥ −‖Q‖op‖u‖2
H

m−(ρ−δ)
2 (G,E0)

.

Hence, Theorem 6.3.1 will follow once we show that A can be written as A = P + Q, where

P is positive and Q is as above.

First, following the ideas in [96] and [25], we construct an auxiliary function wξ : G → C,

for each ξ ∈ Rep(G).

We can assume G is a closed subgroup of GL(N,R) for some N ∈ N. Then its Lie alge-

bra g ⊂ RN×N is a d-dimensional vector subspace such that [A,B]
.
= AB−BA ∈ g, for every

A,B ∈ g. Let U ⊂ G and V ⊂ g be neighbourhoods of the identity IdN = eG ∈ G and 0 ∈ g,

respectively, so that the matrix exponential mapping is a diffeomorphism exp : V → U . With-

out loss of generality, we may assume that V is the open ball V = B(0, r) = {z ∈ Rd | |z| <
r}, of radius r > 0. Let φ : [0,∞) → [0,∞) be a smooth function such that the mapping

g → R

z �→ φ(|z|)

is supported in V and such that φ(s) = 1 for all sufficiently small s > 0. For every ξ ∈
Rep(G) define

wξ : G → R

x �→ φ(| exp−1(x)|〈ξ〉 ρ+δ
2 )ψ(exp−1(x))〈ξ〉 d(ρ+δ)

4 ,

where ψ(y)
.
= C0| detD exp(y)|− 1

2f(y)−
1
2 , for every y ∈ g ∼= Rd, D exp is the Ja-
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cobi matrix of the mapping exp, f is the density with respect to the Lebesgue measure of

the Haar measure on G pulled back to g ∼= Rd by the exponential mapping, and with

C0 = (
∫
Rd φ(|z|)2dz)− 1

2 .

The following lemma states the main properties of wξ that will be used in this paper, its

proof can be found in [25], but we also state it here with some slight changes for the sake of

completeness.

Lemma 6.3.3. The functions wξ defined above are smooth, for every ξ ∈ Rep(G). Moreover,

they satisfy the following properties:

1. wξ(e) = C0〈ξ〉
d(ρ+δ)

4 ;

2. wξ is central and inversion invariant;

3. dist(x, e) ∼ | exp−1(x)| � 〈ξ〉− ρ+δ
2 on the support of wξ;

4. ‖wξ‖L2(G) = 1;

5. (x, [ξ]) �→ wξ(x)Iddξ ∈ S
d(ρ+δ)/4
ρ,(ρ+δ)/2(G× Ĝ),

for every ξ ∈ Rep(G), where dist(x, e) denotes the geodesic distance from the group neutral

element e to x ∈ G. Also, | · | denotes the central norm on g given by |X| =
∫
G
|uX−1u−1|0du,

where | · |0 denotes the Euclidean norm on g ∼= Rd and the product is the product of matrices.

Also, Iddξ denotes the dξ × dξ identity matrix.

Proof. Notice that, due to the properties of φ, we immediately have that wξ(e) = C0〈ξ〉
d(ρ+δ)

4 ,

wξ is central (since f is invariant under adjoint representation as a density of two bi-invariant

measures) and inversion invariant, and dist(x, e) ≤ r〈ξ〉− (ρ+δ)
2 on suppwξ. As for the

‖wξ‖L2(G), we have

∫
G

|wξ(x)|2dx = 〈ξ〉 d(ρ+δ)
2

∫
Rd

φ(|Y |〈ξ〉 (ρ+δ)
2 )2|ψ(Y )|2| detD exp(Y )|f(Y )dY

=

∫
Rd

φ(|Z|)2|ψ(Z〈ξ〉− (ρ+δ)
2 )|2| detD exp(Z〈ξ〉− (ρ+δ)

2 )|f(Z〈ξ〉− (ρ+δ)
2 )dZ

= C2
0

∫
Rd

φ(|Z|)2dZ = 1,

where in the second line we applied the change of variables Z = Y 〈ξ〉 (ρ+δ)
2κ , while in the third

line we simply used the expression of ψ.
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We are now left with the proof of

(x, ξ) �→ wξ(x)Iddξ ∈ S
d(ρ+δ)

4

ρ,
(ρ+δ)

2

(G× Ĝ). (6.18)

From the compactness of G, proving (6.18) is equivalent to showing that, for every multi-

index β and for any fixed x ∈ G, (∂βwξ)(x)Iddξ ∈ S
d(ρ+δ)

4
+

(ρ+δ)
2

|β|
ρ,0 (G) (see Lemma 3.3 in

[96]). First observe that

∂βwξ(x)Iddξ =
∑

α;|α|≤|β|
Cα,β

[
∂αφ(| exp−1(x)|〈ξ〉 (ρ+δ)

2 )
]
∂β−αψ(exp−1(x))〈ξ〉 d(ρ+δ)

4 Iddξ

=
∑

α;|α|≤|β|
Cα,βφα(| exp−1(x)|〈ξ〉 (ρ+δ)

2 )〈ξ〉 (ρ+δ)|α|
2 χβ−α(exp

−1(x))〈ξ〉 d(ρ+δ)
4 Iddξ ,

where φα, χβ−α are suitable functions such that φα ∈ C∞
0 (R) is constant near the origin, while

χβ−α ∈ C∞
0 (V ). Since

〈ξ〉n(ρ+δ)
4

+
(ρ+δ)|α|

2 Iddξ ∈ S
n(ρ+δ)

4
+

(ρ+δ)
2

|β|
1,0 (G× Ĝ),

for every |α| ≤ |β|, then for every (fixed) x ∈ G,

∂β
xwξ(x)Iddξ ∈ S

d(ρ+δ)
4

+
(ρ+δ)

2
|β|

1,0 (G× Ĝ)

if φα(| exp−1(x)|〈ξ〉 (ρ+δ)
2 )χβ−α(exp

−1(x))Iddξ ∈ S0
1,0(G× Ĝ) for all α and β as above. There-

fore, to complete the proof it is enough to check that these last terms are standard global sym-

bols of order 0.

Now, given x ∈ G, it is easy to see that

φα(| exp−1(x)|〈ξ〉 (ρ+δ)
2κ )χβ−α(exp

−1(x)) ≤ C, (6.19)

for some constant C > 0. In fact, if x is such that exp−1(x) = 0, then φα is constant and the

inequality follows. If, instead, exp−1(x) �= 0, then, since φα is compactly supported in ξ, we

get that the symbol in the left hand side of (6.19) is compactly supported, then smoothing, and

the inequality follows. This concludes the proof of (6.18) from which the result follows.

Lemma 6.3.4. Let σA be the matrix valued symbol of A as in Theorem 6.3.1. Define the am-
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plitude

p(i, r, x, y, ξ)
.
=

∫
G

wξ(xz
−1)wξ(yz

−1)σA(i, r, z, ξ)dz ∈ Cdξ×dξ , (6.20)

for every 1 ≤ i, r ≤ n, x, y ∈ G, [ξ] ∈ Ĝ, where wξ is as in Lemma 6.3.3. Then

p ∈ Am
ρ, ρ+δ

2

((G × Ĝ) ⊗ End(E0)) and the linear operator P : C∞(G,E0) → C∞(G,E0)

given by

(Pu)r(x) =

∫
G

n∑
i=1

∑
[ξ]∈Ĝ

dξ Tr(ξ(y−1x)p(i, r, x, y, ξ)ui(y))dy, 1 ≤ r ≤ n,

for every x ∈ G, is a well defined pseudo-differential operator of order m, and also a positive

linear operator on L2(G,E0).

Proof. First, we verify that p ∈ Am
ρ, ρ+δ

2

((G×Ĝ)⊗End(E0)). Indeed, note that by the Leibniz’s

rule, for any multi-indices α, β, γ, the matrix ∂β
x∂

γ
yΔ

α
ξ p(i, r, x, y, ξ) is given by a sum of terms

of the form ∫
G

(Δη
ξ∂

β
xwξ(xz

−1))(Δλ
ξ∂

γ
ywξ(yz

−1))(Δμ
ξσA(i, r, z, ξ))dz,

where |η + λ + μ| ≥ |α| range over a finite set. Also, due to properties of wξ from Lemma

6.3.3, we have

‖(Δη
ξ∂

β
xwξ(xz

−1))(Δλ
ξ∂

γ
ywξ(yz

−1))‖op � 〈ξ〉d (ρ+δ)
2

−ρ(|η|+|λ|)+ (ρ+δ)
2

(|β|+|γ|).

Therefore, since supp(wξ) is contained in a set of measure proportional to 〈ξ〉−d
(ρ+δ)

2 , we can

estimate∥∥∥∥∫
G

(Δη
ξ∂

β
xwξ(xz

−1))(Δλ
ξ∂

γ
ywξ(yz

−1))(Δμ
ξσA(i, r, z, ξ))dz

∥∥∥∥
op

� 〈ξ〉d (ρ+δ)
2

−ρ(|η|+|λ|)+ (ρ+δ)
2

(|β|+|γ|)−d
(ρ+δ)

2
+m−ρ|μ|

≤ 〈ξ〉m−ρ|α|+ (ρ+δ)
2

(|β|+|γ|),

and so ‖∂β
x∂

γ
yΔ

α
ξ p(i, r, x, y, ξ)‖op � 〈ξ〉m−ρ|α|+ (ρ+δ)

2
(|β|+|γ|) also, which proves the first claim.
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Next, notice that

〈Pu, u〉L2(G,E0) =

∫
G

〈Pu(x), u(x)〉E0dx

=

∫
G

∫
G

n∑
r,i=1

∑
[ξ]∈Ĝ

dξ Tr[ξ(y)∗ξ(x)p(i, r, x, y, ξ)ui(y)] dy ur(x) dx .

Substituting p(i, r, x, y, ξ) by its definition in the previous expression, one obtains

∫
G

∫
G

∑
[ξ]∈Ĝ

n∑
r,i=1

Tr[ξ(x)

∫
G

wξ(xz
−1)wξ(yz

−1)σA(i, r, z, ξ) dz ui(y)ξ(y)
∗] dy ur(x) dx .

(6.21)

Let

M(i, z, ξ)
.
=

∫
G

wξ(yz
−1)ξ(yz−1)∗ui(y)dy ∈ Cdξ×dξ .

Then (6.21) can be written as

∫
G

n∑
i,r=1

∑
[ξ]∈Ĝ

dξ Tr[M(r, z, ξ)∗ξ(z)σA(i, r, z, ξ)ξ(z)
∗M(i, z, ξ)]dz,

which is non-negative by our hypothesis since

Tr[M(i, z, ξ)∗ξ(z)σA(i, r, z, ξ)ξ(z)
∗M(r, z, ξ)]

=

dξ∑
k=1

f ∗
kM(i, z, ξ)∗σA(i, r, z, ξ)M(r, z, ξ)fk ≥ 0,

as ξ(z)∗M(r, z, ξ)fk ∈ Cdξ×1, where {fk}dξk=1 is any orthonormal basis of column vectors in

Cdξ .

Lemma 6.3.5. Following the previous notation, we have that (i, r, x, [ξ]) �→ p(i, r, x, x, ξ) −
σA(x, ξ) is the symbol of a pseudo-differential operator bounded from Hs(G,E0) to

Hs−(m−(ρ−δ))(G,E0), for any s ∈ R.

Proof. By Theorem 6.2.5, it is enough to show that

(i, r, x, [ξ]) �→ p(i, r, x, x, ξ)− σA(i, r, x, ξ) ∈ S
m−(ρ−δ)
ρ,δ ((G× Ĝ)⊗ End(E0)).
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Notice that, by Lemma 6.3.3,

p(i, r, x, x, ξ)− σA(i, r, x, ξ) =

∫
G

wξ(z)
2σA(i, r, xz

−1, ξ)dz − σA(i, r, x, ξ)

=

∫
G

wξ(z)
2(σA(i, r, xz

−1, ξ)− σA(i, r, x, ξ))dz.

Using the Taylor expansion of σA(i, r, xz
−1, ξ) at x we can write

σA(i, r, xz
−1, ξ) = σA(i, r, x, ξ) +

∑
|γ|=1

∂γ
xσA(i, r, x, ξ)qγ(z) +Rx(i, r, z, ξ),

where Rx ∈ Sm+2δ
ρ,δ ((G × Ĝ) ⊗ End(E0)) is the Taylor remainder of order 2 of σA(·, ·, x, ·).

Notice that we can choose the “polynomials” qγ so that they are odd for all |γ| = 1, and using

that wξ is even, we can conclude that

∫
G

w2
ξ(z)qγ(z)dz = 0,

for all |γ| = 1. Hence, for multi-indices α, β:

Δα
ξ ∂

β
x (p(i, r, x, x, ξ)− σA(i, r, x, ξ)) = Δα

ξ

∫
G

wξ(z)
2∂β

xRx(i, r, z, ξ) dz .

Applying the Leibniz rule, we can write the expression above as a sum of terms of the form

∫
G

∂β
xΔ

α1
ξ Rx(i, r, z, ξ)Δ

α2
ξ wξ(z)Δ

α3
ξ wξ(z)dz,

where |α1 + α2 + α3| ≥ |α| range over a finite set. By Lemma 7.4 of [44], the remainder

satisfies

‖Δα1
ξ ∂β

xRx(i, r, z, ξ)‖op ≤ C|z|2 max
|γ|≤2

sup
x∈G

‖Δα1
ξ ∂γ

x∂
β
xσA(i, r, x, ξ)‖op � |z|2〈ξ〉m−ρ|α1|+δ(2+|β|),

for all z ∈ G, |z| � 〈ξ〉− ρ+δ
2 on supp(wξ) by Lemma 6.3.3, and |supp(wξ)| � 〈ξ〉−d

(ρ+δ)
2 , we
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conclude that∥∥∥∥∫
G

∂β
xΔ

α1
ξ Rx(i, r, z, ξ)Δ

α2
ξ wξ(z)Δ

α3
ξ wξ(z)dz

∥∥∥∥
op

� 〈ξ〉−ρ−δ+m−ρ|α1|+δ(2+|β|)+d
(ρ+δ)

4
−ρ|α2|+d

(ρ+δ)
4

−ρ|α3|−d
(ρ+δ)

2

≤ 〈ξ〉m−(ρ−δ)−ρ|α|+δ|β|,

which implies

‖Δα
ξ ∂

β
x (p(i, r, x, x, ξ)− σA(i, r, x, ξ))‖op � 〈ξ〉m−(ρ−δ)−ρ|α|+δ|β|

proving the claim.

Lemma 6.3.6. Let σP be the symbol of the pseudo-differential operator P defined in Lemma

6.3.4. Then the pseudo-differential operator with symbol {σP (i, r, x, ξ)− p(i, r, x, x, ξ)}ni,r=1

is bounded from Hs(G,E0) to Hs−(m−(ρ−δ))(G,E0), for any s ∈ R.

Proof. As in the proof of the previous lemma, it is enough to prove that

(i, r, x, [ξ]) �→ σP (i, r, x, ξ)− p(i, r, x, x, ξ) ∈ S
m−(ρ−δ)

ρ,
(ρ+δ)

2

((G× Ĝ)⊗ End(E0)).

By Proposition 6.2.9, we have the asymptotic expansion

σP (i, r, x, ξ) ∼
∑
α≥0

1

α!
Δα

ξ ∂
α
y p(i, r, x, y, ξ)|y=x,

with the properties specified in Proposition 6.2.9. Recalling the formula (6.20), notice that

after a change of variables z−1x �→ z one obtains

Δα
ξ ∂

α
y p(i, r, x, y, ξ)|y=x = Δα

ξ

∫
G

wξ(z)∂
α
z wξ(z)σA(i, r, z

−1x, ξ) dz .

Let N ∈ N to be chosen later. Define

SN(i, r, x, ξ) = σP (i, r, x, ξ)− p(i, r, x, x)−RN(i, r, x, ξ),

where RN ∈ S
m− (ρ+δ)

2
(N+1)

ρ,δ ((G×Ĝ)⊗End(E0)) is the remainder term given by the asymptotic
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expansion above. Applying the Taylor expansion to the formula above yields

SN(i, r, x, ξ) =
∑

1≤|α|≤N

Δα
ξ

∫
G

wξ(z)∂
α
z wξ(z)σA(i, r, x, ξ) dz

+
∑

1≤|α|≤N

Δα
ξ

∫
G

wξ(z)∂
α
z wξ(z)Rσ,1(i, r, z

−1x, ξ) dz−RN(i, r, x, ξ)

.
= I(i, r, x, ξ) + J(i, r, x, ξ)−RN(i, r, x, ξ),

where Rσ,1 is the remainder in the Taylor expansion of order 1 of σA, centered at x. Therefore,

if we can prove that I, J and RN all belong to the specified symbol class, we will have proved

the lemma. Let us examine each one at a time. First, we see that the first term in the sums in I

(of order 1) vanishes since ∫
G

wξ(z)∂
α
z wξ(z) dz = 0,

for |α| = 1 because the functions wξ and ∂αwξ are even and odd, respectively, by Lemmas

6.2.10, 6.2.11 and 6.3.3. In particular, I is given by

∑
2≤|α|≤N

Δα
ξ

∫
G

wξ(z)∂
α
z wξ(z) dz σA(i, r, x, ξ)

=
∑

2≤|α|≤N

∑
κ,λ,μ

Cκ,λ,μ

∫
G

(Δκ
ξwξ(z))(Δ

λ
ξ∂

α
z wξ(z)) dzΔ

μ
ξσA(i, r, x, ξ),

for some constants Cκ,λ,μ, where the sum is taken over a finite set satisfying |κ + λ + μ| ≥
|α|, where here we have used the “Leibniz’s” rule for difference operators, that is, Proposition

2.2.15. Recalling that by Lemma 6.3.3 (x, [ξ]) �→ wξ(x)Iddξ is in S
d(ρ+δ)/4
ρ,(ρ+δ)/2(G × Ĝ), we get

that

∫
G

|(Δκ
ξwξ(z))(Δ

λ
ξ∂

α
z wξ(z))| dz � 〈ξ〉d (ρ+δ)

2
−ρ(|κ|+|λ|)+|α| (ρ+δ)

2 〈ξ〉−d
(ρ+δ)

2 = 〈ξ〉−ρ(|κ|+|λ|)+|α| (ρ+δ)
2 ,

(6.22)

where we have taken into account that the support of z �→ wξ(z) is contained in a set of mea-

sure ∼ 〈ξ〉−d
(ρ+δ)

2 , by Lemma 6.3.3, and that taking differences in ξ does not increase the sup-
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port in z. Thus we get

‖I(i, r, x, ξ)‖op �
∑

2≤|α|≤N

∑
κ,λ,μ

Cκ,λ,μ〈ξ〉−ρ(|κ|+|λ|)+|α| (ρ+δ)
2 〈ξ〉m−ρ|μ|

�
∑

2≤|α|≤N

〈ξ〉m−ρ|α|+|α| (ρ+δ)
2 � 〈ξ〉m−(ρ−δ),

since

−ρ|α|+ |α|(ρ+ δ)

2
= −|α|(ρ− δ)

2
≤ −(ρ− δ).

Applying a similar argument to Δγ
ξ∂

β
xI(i, r, x, ξ) we obtain the respective decay estimates,

which allow us to conclude that I ∈ S
m−(ρ−δ)

ρ,
(ρ+δ)

2

((G × Ĝ) ⊗ End(E0)), as desired. We now

consider the term J . In this case,

‖J(i, r, x, ξ)‖op �
∑

1≤|α|≤N

∑
κ,λ,μ

∫
G

‖(Δκ
ξwξ(z))(Δ

λ
ξ∂

α
z wξ(z))(Δ

μ
ξRσ,1(i, r, z

−1x, ξ)‖op dz

where again we have used the Leibniz’s rule for difference operators, and the middle sum is

over a finite set satisfying |κ + λ + μ| ≥ |α|. Using Lemma 6.3.3 and the estimates for the

remainder in the Taylor expansion, we get that

‖J(i, r, x, ξ)‖op �
∑

1≤|α|≤N

∑
κ,λ,μ

∫
supp(wξ)

〈ξ〉d (ρ+δ)
2

−ρ(|κ|+|λ|)+|α| (ρ+δ)
2

)|z|1 dz×

×max
|γ|≤1

‖‖Δμ
ξ ∂

γ
yσA(i, r, y, ξ)‖op‖L∞(G)y

�
∑

1≤|α|≤N

〈ξ〉d (ρ+δ)
2

−ρ(|α|)+|α| (ρ+δ)
2

− (ρ+δ)
2

−d
(ρ+δ)

2
+m+δ

� 〈ξ〉m− (ρ−δ)
2

− (ρ−δ)
2 = 〈ξ〉m−(ρ−δ).

Again, applying a similar argument to Δγ
ξ∂

β
xJ(i, r, x, ξ) we obtain the respective decay esti-

mates, which allow us to conclude that J ∈ S
m−(ρ−δ)

ρ,
(ρ+δ)

2

((G× Ĝ)⊗ End(E0)), as desired. It only

remains necessary to study the remainder RN . In this case, by Proposition 6.2.9, we have that

RN ∈ S
m− (ρ+δ)

2
(N+1)

ρ, ρ+δ
2

((G× Ĝ)⊗ End(E0)). By taking N sufficiently large, we obtain that RN

belongs to the desired symbol class, which concludes the proof.

Proof of Theorem 6.3.1. Let Q = A − P , with the operator P as in Lemma 6.3.4. Let u ∈



133

C∞(G,E0). Then A = P +Q and the positivity of P implies

Re〈Au, u〉L2(G,E0) = Re〈Pu, u〉L2(G,E0) + Re〈Qu, u〉L2(G,E0)

≥ Re〈Qu, u〉L2(G,E0).

Let now P0 = Op({p(i, r, x, x, ξ)ni,r=1}). Writing Q = (A− P0) + (P0 − P ), we have

σA−P0(i, r, x, ξ) = σA(i, r, x, ξ)− p(i, r, x, x, ξ)

and

σP0−P (i, r, x, ξ) = p(i, r, x, x, ξ)− σP (i, r, x, ξ).

Consequently, both A − P0 and P0 − P are bounded from H
m−(ρ−δ)

2 (G,E0) to

H−m−(ρ−δ)
2 (G,E0) by Lemmas 6.3.5 and 6.3.6, respectively. It follows that Q is also bounded

between these spaces so that

|Re〈Qu, u〉L2(G,E0)| ≤ ‖Qu‖
H−m−(ρ−δ)

2 (G,E0)
‖u‖

H
m−(ρ−δ)

2 (G,E0)

� ‖u‖2
H

m−(ρ−δ)
2 (G,E0)

,

completing the proof of Theorem 6.3.1.

6.4 Sharp Gårding inequality on homogeneous spaces

We now recall the Fourier analysis on homogeneous vector bundles as introduced in [27].

But first, we introduce the setting of compact homogeneous manifolds, following [104].

Let p : E → X be a vector bundle. A continuous map s : X → E is called a section

of E if for all x ∈ X , p(s(x)) = p(x). We denote by Γ(E) the set of all sections of E. If

X,E are smooth manifolds, we also define Γ∞(E) the set of all smooth sections of E. If X is

orientable, the space Lq(E), 1 ≤ q < ∞, is then defined as the completion of the set of all

smooth sections s ∈ Γ∞(E) such that

‖s‖Lq(E)
.
=

(∫
X

‖s(x)‖qEx
dx

) 1
q

< ∞. (6.23)

Now, consider G be a compact Lie group and K a closed subgroup of G. Let M = G/K
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be equipped with its natural compact manifold topology. There exists a natural left action of G

on M given by g · hK = ghK, for every g, h ∈ G. We say that a vector bundle p : E → M is

a homogeneous vector bundle over M if G acts on E on the left and this action satisfies:

1. g · Ex = Egx, for all x ∈ M , g ∈ G;

2. The previously induced mappings from Ex to Egx are linear.

There is natural left action of G on Γ(E), G× Γ(E) → Γ(E) given by

(g · s)(x) = g · s(g−1x),

for all x ∈ X , g ∈ G. For a homogeneous vector bundle p : E → M , let E0 = p−1(K), be the

fiber at the identity coset. As shown in [22], there exists τ ∈ Hom(K,End(E0)), and a natural

right action of K on G × E0 by (g, v) = (gk, τ−1(k)v). We denote by G ×τ E0 the quotient

(G × E0)/K under this action. Bott also shows that G ×τ E0 admits a natural homogeneous

vector bundle structure, and that in fact there exists τ ∈ Hom(K,End(E0)) such that

E ∼= G×τ E0,

as vector bundles. Now consider the vector subspace C∞(G,E0)
τ ⊂ C∞(G,E0) given by

C∞(G,E0)
τ = {f ∈ C∞(G,E0)|∀g ∈ G, ∀k ∈ K, f(gk) = τ(k)−1f(g)},

and likewise L2(G,E0)
τ ⊂ L2(G,E0) by

L2(G,E0)
τ = {f ∈ L2(G,E0)|f(gk) = τ(k)−1f(g) for a. e. g, k ∈ G}.

It can be shown that the bijection χτ : Γ∞(E) → C∞(G,E0)
τ , given by

χτ (s)(g)
.
= g−1 · s(gK),

for every g ∈ G, extends to a surjective isometry from L2(E) into L2(G,E0)
τ . Therefore

we identify Γ∞(E) and L2(E) with C∞(G,E0)
τ and L2(G,E0)

τ , respectively. The Sobolev

space Hs(E) for s ∈ R is then defined as the completion of the set of smooth sections under
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the norm

‖u‖Hs(E)
.
= ‖χτu‖Hs(G,E0).

Now let Ã : Γ∞(E) → Γ∞(E) be a continuous linear operator. Then Ã induces a continuous

linear map A : C∞(G,E0)
τ → C∞(G,E0)

τ by

A = χτ ◦ Ã ◦ χ−1
τ .

If also A ∈ Ψm
ρ,δ((G × Ĝ) ⊗ End(E0)), we say that Ã ∈ Ψm

ρ,δ(E), and define its symbol by

σÃ
.
= σA, where σA is the matrix-valued symbol defined in (6.1). The quantization formula

(6.2) then implies

Ãs(gK) = χ−1
τ

⎛⎝ dτ∑
i,r=1

∑
[ξ]∈Ĝ

dξTr (ξ(x)σÃ(i, r, g, ξ)χ̂τs(i, ξ))⊗ ei

⎞⎠ ,

where {ei}dτi=1 is an orthonormal basis of E0. As a consequence of Theorem 6.3.1, we obtain

the following result.

Corollary 6.4.1. Let p : E → M = G/K be a homogeneous vector bundle over a compact

homogeneous manifold M , where K < G are compact Lie groups, E ∼= G ×τ E0. Let Ã ∈
Ψm

ρ,δ(E), 0 ≤ δ < ρ ≤ 1, be such that its matrix-valued symbol σA(x, ξ) is positive semi-

definite for every (x, [ξ]) ∈ G × Ĝ, in the sense of Theorem 6.3.1. Then there exists C > 0

such that

Re〈Ãs, s〉L2(E) ≥ −C‖s‖2
H

m−(ρ−δ)
2 (E)

,

for every s ∈ Γ∞(E), where 〈·, ·〉L2(E) denotes the canonical inner product on L2(E) and

Hr(E) denotes the Sobolev space over E of order r ∈ R.

Proof. Let A = Op(σA) be the vector-valued operator associated with Ã. For s ∈ Γ∞(E), set

u = χτs. Theorem 6.3.1 implies that there exists C > 0 such that

Re〈Au, u〉L2(G,E0) ≥ −C‖u‖2
H

m−(ρ−δ)
2 (G,E0)

= −C‖s‖2
H

m−(ρ−δ)
2 (E)

.
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The result then follows from the fact that

Re〈Ãs, s〉L2(E) = Re〈χ−1
τ Aχτχ

−1
τ u, χ−1

τ u〉L2(E)

= Re〈Aχτχ
−1
τ u, u〉L2(G,E0) = Re〈Au, u〉L2(G,E0),

where we have used that χ−1
τ : L2(G,E0)

τ → L2(E) is an isometry.

Finally, note that if E = G×1 C ∼= M is the trivial bundle (where 1 : K → C is the trivial

representation), then we can identify Γ∞(E) ∼= C∞(M), and χ1 : C∞(M) → C∞(G)K is just

the projective lifting defined by

χ1f(g) ≡ ḟ(g)
.
= f(gK),

for every f ∈ C∞(M), and g ∈ G. The pseudo-differential operator classes and Sobolev

spaces of M are then defined likewise. As an immediate consequence of the previous result,

we obtain the following corollary.

Corollary 6.4.2. Let M = G/K be a compact homogeneous manifold, where K < G are

compact Lie groups. Let Ã ∈ Ψm
ρ,δ(M), 0 ≤ δ < ρ ≤ 1, be such that its matrix valued symbol

σA = σA(x, ξ) ∈ Sm
ρ,δ(G) is positive semi-definite for every (x, [ξ]) ∈ G× Ĝ. Then there exists

C > 0 such that

Re〈Ãu, u〉L2(M) ≥ −C‖u‖2
H

m−(ρ−δ)
2 (M)

,

for every u ∈ C∞(M).
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Part III

Conclusion
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Chapter 7

Conclusion

We conclude this thesis by summarizing its main contributions and potential future research.

In the first part we presented a concise notation for the Fourier analysis on a general prod-

uct of compact Lie groups. We then provided an application of such notation in the study of

global hypoellipticity and global solvability of a broad class of first-order differential opera-

tors defined on a product of compact Lie groups. We remark that this application is of theoret-

ical importance since it generalizes certain previous results and further abstracts much of the

theory already established on the torus.

In the second part we generalized the validity of the important and useful “sharp Gårding”

inequality on compact Lie groups from the scalar-valued setting to the vector-valued setting.

This new result certainly will be useful in generalizing many other results in analysis from the

scalar-valued to the vector-valued setting. This of course is of importance as there are many

important uses for vector-valued functions in mathematics and physics. We also proved the

new result that such a “Gårding” inequality also holds in compact homogeneous spaces. This

is quite relevant as many important manifolds are included in these spaces, such as the n-

dimensional sphere, for any n ∈ N. Finally, we also generalized the concept of amplitudes

and amplitude operators from the scalar-valued compact Lie group setting to the vector-valued

setting. This could be useful in obtaining new results on pseudo-differential operators in this

setting, which have many applications in mathematics and physics.

With respect to potential further future projects in these subjects, perhaps the most natural

next step would be to study the global hypoellipticity and global solvability of left-invariant

pseudo-differential operators on the product of compact Lie groups. The reason for that is,

as observed in Remark 2.2.20, that these operators also act as Fourier multipliers in this set-
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ting. Therefore similar techniques could possibly be used to study these operators. Another

possibility is to study the many other types of global hypoellipticity and global solvability

present in the literature to the same class of operators considered in this thesis. In the con-

text of the sharp Gårding inequality, there are many opportunities for further research in its

applications in analysis, such as local solvability (see [105]) and in proving well-posedness of

certain Cauchy problems (see [72], [83]).
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[37] de Ávila Silva, F., Gramchev, T. and Kirilov, A. (2018). Global hypoellipticity for first-

order operators on closed smooth manifolds. J. Anal. Math., 135(2):527–573.
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