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RESUMO

Devido à pandemia global de COVID-19, o diagnóstico assistido por computador de imagens

médicas ganhou significativa atenção. Fornecer uma segmentação semântica robusta de tomogra-

fias computadorizadas (CT) é altamente desejável, pois permite um diagnóstico rápido e reduz

a carga de tempo sobre os especialistas. Muitos estudos empregaram técnicas de aprendizado

profundo e redes neurais profundas, alcançando resultados impressionantes na segmentação

eficaz de tomografias de COVID-19. As redes neurais profundas são amplamente utilizadas em

várias tarefas de segmentação devido à sua capacidade de generalizar e aprender a representação

de diferentes classes de objetos dentro das imagens. No entanto, esses métodos requerem uma

quantidade substancial de dados para o treinamento, e o problema de segmentação de tomografias

de COVID-19 carece de dados disponíveis na literatura. Este estudo propõe uma nova técnica de

aumento de dados baseada em características de saliência visual para enfrentar esse desafio e

pode ser dividido em três fases. A primeira fase deste estudo envolveu uma avaliação extensiva

de cento e vinte redes de segmentação, compostas por vinte codificadores combinados com seis

decodificadores, em cinco conjuntos de dados. A principal conclusão dessa etapa destacou a

necessidade crítica de técnicas eficazes de aumento de dados. Na segunda fase, foram avaliadas

vinte técnicas de aumento de dados, cada uma testada com dez probabilidades de aplicação. As

técnicas de aumento foram avaliadas de duas maneiras. Primeiro, foram aplicadas separadamente

aos conjuntos de treinamento de cada conjunto de dados. Em seguida, os conjuntos de treinamento

de todos os conjuntos de dados foram combinados em um conjunto unificado, com as técnicas

de aumento aplicadas a esse conjunto unificado. Os resultados indicaram que as técnicas de

aumento de dados tiveram melhor desempenho no conjunto unificado. Além disso, as técnicas

de transformação espacial alcançaram melhores resultados no geral. No entanto, apesar das

melhorias trazidas pelo aumento de dados, as técnicas genéricas não produziram consistentemente

melhores resultados em todos os conjuntos de dados, destacando a necessidade de uma abordagem

específica de aumento de dados para o problema. A terceira fase deste trabalho envolveu o

desenvolvimento e a avaliação de uma nova técnica de aumento de dados. O fluxo de trabalho

do aumento proposto utiliza um modelo GAN para gerar tomografias CT saudáveis de regiões

pulmonares, combinando-as com lesões de COVID-19 já rotuladas para criar amostras adicionais

de treinamento, aprimorando o processo de treinamento de segmentação. Esta fase avaliou duas

versões do fluxo de trabalho proposto: uma sem o algoritmo de saliência, onde as lesões foram

adicionadas aleatoriamente às tomografias saudáveis, e outra que utiliza a distância de saliência

visual para adicionar as lesões. A técnica de aumento proposta com o uso de saliência visual

alcançou os melhores resultados no conjunto de dados Ricord1a em comparação com as técnicas

genéricas de aumento e a versão aleatória da proposta. Por fim, combinada com técnicas clássicas

de aumento, a técnica proposta apresentou os melhores resultados em quatro conjuntos de dados.

Palavras-chave: COVID-19, Segmentação Semantica, Aumento de Dados



ABSTRACT

Due to the COVID-19 global pandemic, computer-assisted diagnosis of medical images has

gained significant attention. Providing robust semantic segmentation of Computed Tomography

(CT) scans is highly desirable because it allows rapid diagnosis and reduces the time burden on

specialists. Many studies have employed deep learning techniques and deep neural networks

and achieved impressive results in effectively segmenting COVID-19 CT scans. Deep neural

networks are widely used in various segmentation tasks due to their generalization ability to

learn the representation of different classes of objects within images. However, these methods

require substantial data for training, with the COVID-19 CT problem needing more available

data in the literature. This study proposes a novel data augmentation technique based on visual

salience features to address this challenge and can be divided into three phases. The first

phase of this study involved an extensive evaluation of one hundred and twenty segmentation

networks, comprising twenty encoders combined with six decoders across five datasets. The

main conclusion from this step highlighted the critical need for effective data augmentation

techniques. Twenty data augmentation techniques were evaluated in the second phase, each tested

with ten application probabilities. The augmentation techniques were evaluated in two ways.

First, they were applied separately to the training sets of each dataset. Second, the training sets of

all datasets were combined into a unified training set, with the augmentation techniques applied

to this unified set. The results indicated that augmentation techniques performed better on the

unified training set. Additionally, spatial transform techniques achieved higher results overall.

However, despite the improvements brought by data augmentation, generic techniques did not

consistently yield better results across all datasets, underscoring the need for a problem-specific

data augmentation approach. The third phase of this work involved developing and evaluating a

novel data augmentation technique. The proposed augmentation workflow utilizes a Generative

Adversarial Network (GAN) model to generate healthy CT scans of lung regions, combining

them with existing labeled COVID-19 lesions to create additional training samples, enhancing

the segmentation training process. This phase evaluated two versions of the proposed workflow:

one without the saliency algorithm, where lesions were randomly added to the healthy CT

scans, and one that uses visual salience distance to add lesions. The proposed augmentation

technique with the visual salience achieved the highest results on the Ricord1a dataset compared

to generic augmentation techniques and the random version of the proposed augmentation.

Finally, combined with classic augmentation techniques, the proposed augmentation yielded the

best results in four datasets.

Keywords: COVID-19, Semantic Segmentation, Data Augmentation
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1 INTRODUCTION

The COVID-19 pandemic has been a global struggle since 2019, with millions of infections and

fatalities worldwide (Wang et al., 2020). The latest figures from (Johns Hopkins University of

Medicine, 2024), updated on October 10th, 2023, show that the number of COVID-19 cases

has surpassed 676 million globally, with over 6.8 million deaths. According to (Chen et al.,

2020a) and (Huang et al., 2020), early detection is a highly effective measure in the battle

against the virus, with the Reverse-Transcription Polymerase Chain Reaction (RT-PCR) being

widely applied in the diagnostic of suspected subjects (Fan et al., 2020a). Unfortunately, many

countries need more equipment for performing RT-PCR, which impedes the quick identification

of virus presence (Fan et al., 2020a). Moreover, as stated by (Ai et al., 2020), RT-PCR has high

false-negative rates.

Given the limited availability of equipment (Fan et al., 2020a) and high false-negative

rates associated with RT-PCR (Ai et al., 2020), there is a growing need for alternative methods for

detecting COVID-19 (Narin et al., 2021). Automatic detection of COVID-19 through Computed

Tomography (CT) scans has emerged as a promising approach, with recent studies, such as (Shi

et al., 2021) and (Yazdekhasty et al., 2021), demonstrating its effectiveness in diagnosing and

identifying COVID-19 patients. The Semantic Segmentation of CTs is one of several research

areas explored for the automatic detection of COVID-19 and has received significant attention

since the outbreak (Bizopoulos et al., 2020; Shi et al., 2021; Yazdekhasty et al., 2021). Thus,

Deep Learning methods for COVID-19 CT segmentation have become an essential supplementary

tool for RT-PCR tests (Zhang et al., 2022).

Even as the COVID-19 pandemic subsides and the number of cases declines, the

need for lung semantic segmentation remains crucial and the applications of lung semantic

segmentation extend far beyond COVID-19. Performing lung segmentation is indispensable for

the detection, diagnosis, and management of a wide range of pulmonary conditions, including

Chronic Obstructive Pulmonary Disease (COPD) (Winther et al., 2019; Dogan et al., 2024), lung

cancer (Primakov et al., 2022; Riaz et al., 2023), pneumonia (Wang et al., 2023; Zarate et al.,

2023), and interstitial lung disease (Gupta and Singh Bhadauria, 2022; Cai et al., 2023).

The Semantic Segmentation (Long et al., 2015), is an image processing operation that

performs per-pixel classification of an image. Each image pixel is labeled according to the object

class it belongs (Garcia-Garcia et al., 2018; Minaee et al., 2021). In the context of COVID-19

CT segmentation, the objective is to identify each pixel corresponding to a COVID-19 lesion

within a patient’s lung (Bizopoulos et al., 2020; Shi et al., 2021). The Zenodo dataset (Jun

et al., 2020; Ma et al., 2021) provides a useful example of CT segmentation, as illustrated

in Figure 1.1. Sub-figure 1.1(a) shows an example CT, while Sub-figure 1.1(b) shows the

corresponding segmentation mask. The Zenodo dataset includes labels for the left and right

lungs and COVID-19 lesions (Jun et al., 2020; Ma et al., 2021; Saood and Hatem, 2021).

To perform COVID-19 CTs segmentation, many studies in the field have employed Deep

Learning techniques and Deep Neural Networks, which have achieved impressive results (Shi

et al., 2021; Saood and Hatem, 2021; Alshomrani et al., 2023). Deep Neural Networks are

commonly used in segmentation problems due to their excellent generalization capacity and

ability to learn to represent different object classes in an image (Garcia-Garcia et al., 2018;

Minaee et al., 2021). However, the drawback of Deep Neural Network-based methods is their

high demand for data to train the networks (Shorten and Khoshgoftaar, 2019; Ankile et al., 2020).

Some datasets, such as ImageNet Large Scale Visual Recognition Challenge (ImageNet) (Deng
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(a) An example of CT from the Zenodo dataset. (b) The corresponding segmentation mask.

Figure 1.1: Example of CT from the Zenodo dataset (Jun et al., 2020; Ma et al., 2021). The Zenodo dataset includes

labels for the left and right lungs and COVID-19 lesions. In the segmentation mask, the left lung is represented in

green, the right lung in blue, and the COVID-19 lesions in red. The uncolored regions of the image represent the

background and are irrelevant to the problem. Source: (Jun et al., 2020; Ma et al., 2021).

(a) Original Image (b) CLAHE (c) Emboss (d) Gaussian Blur

(e) Grid Distortion (f) Random Sized Crop (g) Rotate (h) Salt and Pepper

Figure 1.2: Examples of data augmentation techniques that can be applied to a CT with COVID-19 lesions to

generate synthetic images. Each operation produces a new image. Sub-figure 1.2(a) shows the original image, and

Sub-figures 1.2(b) to 1.2(h) provide examples of the transformations applied to the original image. Source: (Jun

et al., 2020; Ma et al., 2021).

et al., 2009) and COCO (Lin et al., 2014), contain thousands of images. The use of Deep Neural

Networks for Semantic Segmentation of COVID-19 CTs is also limited by two factors. The

first is that labeling Semantic Segmentation is a time-consuming and labor-intensive process, as

each pixel of the image must be accurately labeled to avoid the network converging to incorrect

results (Cao and Bao, 2020; Cao et al., 2020). Furthermore, highly specialized doctors must label
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CT segmentation datasets to identify lesion regions in the image accurately (Fan et al., 2020a;

Shi et al., 2021).

To address these limitations, two approaches commonly used in the literature are transfer

learning and data augmentation. Transfer learning involves using Deep Neural Networks already

trained on generic problems and large datasets, such as ImageNet, to perform specialized training

of the last layers of a Deep Neural Network for the target problem (Zhuang et al., 2021). On the

other hand, data augmentation aims to increase the number of images in the dataset by applying

various operations to the image to generate synthetic data (Shorten and Khoshgoftaar, 2019).

Figure 1.2 illustrates data augmentation techniques that can be applied to a CT with COVID-19

lesions to generate synthetic images. Each operation produces a new image. Sub-figure 1.2(a)

shows the original image, and Sub-figures 1.2(b) to 1.2(h) provide examples of the transformations

applied to the original image.

(a) Example of Visual Saliency created by

the difference in intensity (the black bar

stands out from the gray bars).

(b) Example of Visual Salience by the dif-

ference in color (the green bar stands out

from the red bars).

(c) Example of Visual Salience by the dif-

ference in orientation (the bar inclined in

the opposite direction stands out from the

others).

Figure 1.3: Examples of Visual Salience features. Source: (Todt, 2005).

Although data augmentation techniques are widely used in Deep Learning (Shorten and

Khoshgoftaar, 2019), COVID-19 CT segmentation research has yet to explore these algorithms

thoroughly. Typically, generic techniques commonly used in Deep Learning are relied upon, with

only a few studies detailing the specific data augmentation methods applied and their impact on

network training for COVID-19 CT segmentation. Therefore, this work aims to comprehensively

study data augmentation techniques specifically for the COVID-19 CT segmentation problem.

As a product of this research, a novel data augmentation technique is developed as the main

contribution of this work. The proposed technique uses Visual Silences to generate new CTs with

COVID-19 lesions. Visual Salience refers to a subjective perceptual feature in objects that makes

them noticeable from their surrounding regions and immediately captures the human brain’s

attention (Itti, 2007; Krinski et al., 2019). Figure 1.3 presents three features that make an object

or region stand out from its surrounding elements. Sub-figure 1.3(a) illustrates an example of

Visual Saliency created by the difference in intensity (the black bar stands out from the gray

bars), and Sub-figure 1.3(b) by the difference in color (the green bar stands out from the red bars).

Sub-figure 1.3(c) by the difference in orientation (the bar inclined in the opposite direction stands

out from the others).

The concept of Visual Salience can also be applied to CTs. Figure 1.4 illustrates this

with examples of three CTs of COVID-19 patients from the Zenodo dataset (Jun et al., 2020;

Ma et al., 2021). Sub-figures 1.4(a), 1.4(b), and 1.4(c) show the CTs, and their corresponding

segmentation masks are presented in Sub-figures 1.4(d), 1.4(e), and 1.4(f). The images and

their corresponding ground-truths in Figure 1.4 show that the lesions in Sub-figure 1.4(a) have a
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higher contrast when compated with the background and are more visually salient than those

in Sub-figure 1.4(b), which are more visually salient than those in Sub-figure 1.4(c). This

difference in salience levels is due to the contrast, proportion and position of the lesions within

the image. The variation in salience levels can significantly impact the training process of a

segmentation network (Liu et al., 2023; Buongiorno et al., 2023). Segmentation models based on

Deep Learning may find examples like Sub-figure 1.4(a) and Sub-figure 1.4(b) easier to segment

than examples like Sub-figure 1.4(c). The idea behind a data augmentation based on Visual

Saliences is to consider these differences when generating new examples, calibrating the new

data to balance the dataset with optimized examples in terms of Visual Salience.

(a) (b) (c)

(d) (e) (f)

Figure 1.4: Examples of three CTs of COVID-19 patients from the Zenodo dataset (Jun et al., 2020; Ma et al., 2021).

Sub-figures 1.4(a), 1.4(b), and 1.4(c) show the CTs, and their corresponding segmentation masks are presented in

Sub-figures 1.4(d), 1.4(e), and 1.4(f). The color green represents the Left Lung, blue represents the Right Lung, and

red represents the COVID-19 lesion. Source: (Jun et al., 2020; Ma et al., 2021).

Aiming to study the data augmentation techniques on the COVID-19 CT segmentation

problem and develop a novel data augmentation technique for this problem, this work is divided

into three main phases. The first phase presents an extensive benchmark of encoder-decoder

networks on the COVID-19 CT segmentation problem. Encoder-Decoder Networks are Deep

Neural Networks largely used for segmentation problems, consisting of an encoder to extract

features and a decoder to perform segmentation (Badrinarayanan et al., 2017). In this analysis,

twenty encoders were combined with six decoders, resulting in one hundred and twenty encoder-

decoder architectures evaluated. The models were trained and evaluated on five different CT

datasets: MedSeg (MedSeg, 2021), Zenodo (Jun et al., 2020; Ma et al., 2021), CC-CCII (Zhang

et al., 2020), MosMed (Morozov et al., 2020), and Ricord1a (Tsai et al., 2020). Each dataset

was validated using a five-fold cross-validation strategy, resulting in 3,000 experiments. The

analysis conducted in the first phase uncovered certain weaknesses that needed to be addressed
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in the subsequent phases. One of the primary challenges identified was the limited number of

images in the datasets and the significant class imbalance, which adversely affected the deep

neural networks’ learning process.

The second phase of this study involved evaluating twenty conventional data augmen-

tation techniques to address the aforementioned data-related issues. The experiments were

performed on the same five datasets used in the first phase. A unified training approach was

also examined, where the training sets of the five datasets were merged and used for network

training. The data augmentation methods were evaluated on this unified training set with the same

ten probabilities. A 5-fold cross-validation strategy was employed to validate all experiments,

resulting in over 5,000 experiments for the first data augmentation evaluation and over 1,000

experiments for the unified training augmentation evaluation. The results showed that applying

data augmentation methods with the unified training set produced superior outcomes compared

to with applying data augmentation on each dataset individually. Furthermore, spatial-level

transformations proved to be the most promising in improving the performance of neural networks

for the COVID-19 CT segmentation challenge.

In the third phase of this work, a new data augmentation was proposed and evaluated

for the specific domain of the COVID-19 segmentation problem. This new data augmentation

uses Generative Adversarial Networks (GANs), Stargan (Choi et al., 2020) and Stylegan (Karras

et al., 2020), to generate healthy CT images without any COVID-19 lesion. A segmentation

model is trained to generate segmentation masks with the lung regions of these new images.

The lung masks generated by the segmentation model guides the augmentation algorithm to

place the new lesions in the image. In a first implementation of the proposed augmentation,

called DACov, a matching algorithm randomly combines the new images generated by GANs

with an image with COVID-19 lesions from the dataset. The experiments performed in this

random version of the proposed augmentation followed the same steps as the experiments

performed in the previews unified training approach evaluation, and the results of the proposed

augmentation are compared with the twenty conventional data augmentation techniques. However,

because of its multistep image generation process, it was applied in an offline augmentation

strategy. A 5-fold cross-validation strategy was used to validate all experiments, resulting in over

200 experiments. The proposed augmentation achieved competitive results with generic data

augmentation techniques and demonstrated promising results on the Ricord1a dataset.

A salience based version of the proposed augmentation, called SalDACov, was imple-

mented and evaluated. In this new version, a saliency algorithm chooses the lesion region to be

added to the healthy image generated by the GAN. In addition, each lung (right and left) has

its own list of compatible lesion based on lung size. So, the healthy lung image generated by

the GAN receives lesions from different training samples instead of the same image, and the

lesion can be in the same side or opposite side from original image. In total, nine variations of

the proposed augmentation is evaluated, considering the salience distance: maximum, minimum,

and random. And considering the side of the lesion in the original dataset image: same side,

opposite side, and random. A 5-fold cross-validation strategy was used to validate all experiments,

resulting in more than 900 experiments. The salience-based version of the proposed augmentation

achieved the highest F-scores in the Ricord1a dataset.

Finally, the salience based version of the proposed augmentation was also combined

with the twenty generic augmentation techniques previously evaluated. A 5-fold cross-validation

strategy was employed to validate all experiments, resulting in over 600 experiments. The

combination of the proposed augmentation with the generic augmentation techniques yielded the

highest results on three of five datasets: MosMed, Ricord1a, and Zenodo.
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1.1 OBJECTIVES AND HYPOTHESIS

The three main objectives of this work are: (i) an extensive comparison between segmentation

models for COVID-19 CT segmentation problem, pointing the best models to be applied in this

problem; (ii) an extensive comparison between data augmentation techniques for COVID-19

CT segmentation problem, pointing the best data augmentation techniques to be applied in

this problem; and (iii) a novel data augmentation based on Visual Salience for COVID-19 CT

segmentation problem aiming to outperform traditional data augmentation techniques.

From the main objectives of this work, specific objectives are raised with the following

hypotheses, denoted by H_n:

• An extensive comparison between encoder-decoder models in the COVID-19 segmenta-

tion problem. H_1: The combination of several encoder and decoder models used as

segmentation models perform promising results on the COVID-19 CT segmentation

problem.

• An extensive comparison between generic data augmentation techniques in the COVID-

19 segmentation problem. H_2: Data augmentation mitigate the problem of small

datasets available in the literature of COVID-19 CT segmentation. Thus, improving the

segmentation results by generating syntactic data.

• An extensive comparison between generic data augmentation techniques with the training

sets of all datasets unified in one big training set. H_3: Training a segmentation model in

a unified training set of all datasets generates promising results with data augmentation

techniques compared to training the segmentation model with each dataset individually.

• Training GANs for healthy CT generation. H_4: GANs generate consistent CT images

without COVID-19 lesions.

• Training a segmentation model for lung segmentation of healthy CTs generated by GANs.

H_5: A segmentation model trained for segmentation of lung regions on the available

datasets of COVID-19 CT segmentation problem generates promising segmentation

mask of the lung regions of the synthetic images generated by GANs.

• Add COVID-19 lesions inside the lung regions of the healthy CTs generated by GANs.

H_6: The proposed data augmentation improve the segmentation results by increasing

the number of CTs in the training sets.

• Apply Visual Salience concept to improve the proposed data augmentation. H_7:The

use of Visual Salience concepts in a data augmentation generate more robust CTs and

improve the segmentation results.

• Combination of the proposed augmentation with traditional augmentation techniques

to improve the COVID-19 CT segmentation. H_8: The proposed augmentation based

on Visual Salience when combined with traditional augmentation techniques generate

more promising outcomes to just use traditional augmentation techniques.

1.2 CONTRIBUTIONS AND ROADMAP

Based on the objectives and hypotheses established, this work followed this roadmap: It started

with an evaluation of 120 semantic segmentation models for the COVID-19 CT segmentation
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Figure 1.5: This work started with an evaluation of encoder-decoder networks for the COVID-19 CT segmentation

problem. Then, an evaluation of generic data augmentation techniques with network training performed on each

dataset individually and then on the combined training sets of all datasets. A novel data augmentation technique for

the COVID-19 CT segmentation problem was also evaluated.

problem, followed by an assessment of 20 generic data augmentation techniques with network

training performed on each dataset individually and then on the combined training sets of all

datasets. A novel data augmentation technique for the COVID-19 CT segmentation problem

was also evaluated, involving the assessment of two GANs models for healthy image generation,

training a semantic segmentation model for lung segmentation of the GAN-generated images,

and evaluating two algorithms for adding COVID-19 lesions to the healthy CT images—one

generic and the other based on visual saliency. Finally, the proposed augmentation technique was

evaluated in combination with the generic data augmentation techniques. Figure 1.5 presents a

roadmap outlining this work’s main phases and contributions, and the publications of the results

from this study are listed below.

• An extensive analysis of encoder-decoder models evaluated on the COVID-19 CT

segmentation problem. From this evaluation, the following paper was published:

Krinski, B. A., Ruiz, D. V. e Todt, E. (2021). Spark in the Dark: Evaluating Encoder-

Decoder Pairs for COVID-19 CT’s Semantic Segmentation. In 2021 Latin American

Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and

2021 Workshop on Robotics in Education (WRE). IEEE.

• An extensive analysis of generic data augmentation techniques evaluated on the COVID-

19 CT segmentation problem. From this evaluation, the following paper was published:

Krinski, B. A., Ruiz, D. V. e Todt, E. (2022). Light In The Black: An Evaluation of Data

Augmentation Techniques for COVID-19 CT’s Semantic Segmentation. In Simpósio

Brasileiro de Computação Aplicada à Saúde (SBCAS 2022).

• Evaluation of a training strategy with the training sets unified in one big training set

published on: Krinski, B. A., Ruiz, D. V., Laroca, R., and Todt, E. (2023). DACov:

a deeper analysis of data augmentation on the computed tomography segmentation

problem.Computer Methods inBiomechanics and Biomedical Engineering: Imaging &

Visualization, pages 1–18.
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• Evaluation of a novel data augmentation technique (random version) for COVID-19 CT

segmentation problem. The proposed augmentation was divided into the evaluation of

two GANs trained to generate healthy CT images without COVID-19 lesions, training a

segmentation model trained to perform segmentation of lung regions in a CT image, and

a random algorithm to add COVID-19 lesions of healthy CT images. The results were

also published on: Krinski, B. A., Ruiz, D. V., Laroca, R., and Todt, E. (2023). DACov:

a deeper analysis of data augmentation on the computed tomography segmentation

problem.Computer Methods inBiomechanics and Biomedical Engineering: Imaging &

Visualization, pages 1–18.

• Evaluation of a novel data augmentation technique (salience version) for COVID-19 CT

segmentation problem. The proposed augmentation was divided into the evaluation of

two GANs trained to generate healthy CT images without COVID-19 lesions, training a

segmentation model trained to perform segmentation of lung regions in a CT image,

and a salience algorithm to add COVID-19 lesions of healthy CT images.

• Evaluation of the novel data augmentation technique (salience version) in combination

with traditional augmentation techniques.

The code used in the experiments performed in this work and the link for the repositories

of each publication individually are available on the following Github: https://github.
com/BrunoKrinski.

1.3 OUTLINE

This work is divided as follows: Chapter 2 presents provides a general background of Semantic

Segmentation, Deep Learning, GANs, and the architectures used in this work. Chapter 3 presents

a literature review of segmentation studies proposed for the COVID-19 CT segmentation problem

and data augmentation techniques. Chapter 4 details the proposed data augmentation. Chapter 5

presents the datasets and evaluation metrics. Chapter 6 presents the experiments performed to

evaluate the segmentation networks, the data augmentations, and the proposed augmentation

technique. This Chapter also presents the discussion about the experiments. Finally, Chapter 7

ends this study by providing the conclusions and future works.
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2 MAIN CONCEPTS

This chapter introduces the main concepts used to develop this work. Section 2.1 covers

the Semantic Segmentation problem, while Section 2.2 presents the concept of Computed

Tomography (CT) segmentation. Then, Section 2.3 overviews the Deep Learning research field

and Convolutional Neural Networks (CNNs), and Section 2.4 presents the encoder-decoder

architecture of deep neural networks used for segmentation problems. Furthermore, this chapter

provides detailed information about the Deep Neural Networks employed in this work. Firstly,

Section 2.5 discusses the CNNs utilized as encoders, while Section 2.6 describes the segmentation

networks, also known as decoders. Additionally, Section 2.7 introduces the concept of Generative

Adversarial Networks (GANs) and provides an overview of the GANs used in this work. Finally,

Section 2.8 offers concluding remarks on the discussed neural networks.

2.1 SEMANTIC SEGMENTATION

Semantic Segmentation is a computer vision task that divides an image into multiple semantic

regions and each pixel receives a label representing the object’s class or region. In other words,

the goal is to classify each pixel in an image into a set of predefined classes (Thoma, 2016; Cao

and Bao, 2020). To illustrate that, Figure 2.1 presents an example of the Semantic Segmentation

problem. Sub-figure 2.1(a) presents an image with different objects (bottle, cub, cube) and

Sub-figure 2.1(b) presents the corresponding segmentation, with each pixel receiving a different

color to represent its class. The background is represented in yellow, the bottle in blue, the cube

in purple, and the cup in green.

(a) (b)

Figure 2.1: Example of Semantic Segmentation. Sub-figure 2.1(a) presents an image with different objects (bottle,

cub, cube) and Sub-figure 2.1(b) presents the corresponding segmentation, with each pixel receiving a different

color to represent its class. The background is represented in yellow, the bottle in blue, the cube in purple, and the

cup in green. Source: (Garcia-Garcia et al., 2018).

Another point to highlight about Semantic Segmentation is that it does not differentiate

between the different instances of objects in the image. Sub-figure 2.1(b) presents the three

cubes receiving the same label and color. Moreover, Semantic Segmentation differs from other

segmentation tasks in that it aims to classify an entire image rather than just a specific object or

region, making it a useful tool for many applications, such as object detection, image recognition,

and autonomous driving (Garcia-Garcia et al., 2018; Minaee et al., 2021).
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Nowadays, the state of art methods proposed to solve Semantic Segmentation problems

are based on Deep Learning techniques (Long et al., 2015; Garcia-Garcia et al., 2017; Li

et al., 2018; Csurka et al., 2023; Vezakis et al., 2024). Deep Learning techniques, especially

Convolutional Neural Networks (CNNs), have successfully tackled the Semantic Segmentation

problem (Cao and Bao, 2020; Minaee et al., 2021; Csurka et al., 2023). These models can learn

to automatically extract features from images and classify each pixel into a specific class, even in

complex scenarios with multiple overlapping objects and occlusions (Long et al., 2015; Garcia-

Garcia et al., 2017; Li et al., 2018; Csurka et al., 2023). Section 2.3 presents an introduction to

Deep Learning and how it is used to solve Semantic Segmentation problems.

2.2 COVID-19 COMPUTED TOMOGRAPHY (CT) SEGMENTATION

Computed Tomography (CT) is a diagnostic medical imaging technique that uses X-rays and

computer processing to produce detailed cross-sectional body images (of Biomedical Imaging

and Bioengineering, 2021; Vincenti et al., 2022). A CT scanner takes multiple X-ray images

from different angles around the body and then uses a computer to combine them into a series of

2D or 3D images. This allows doctors to see detailed images of internal organs, bones, blood

vessels, and other structures in the body (of Biomedical Imaging and Bioengineering, 2021;

Vincenti et al., 2022). Futhermore, CT scans are commonly used to diagnose and monitor

various medical conditions, including cancer, trauma, cardiovascular disease, and neurological

disorders. They can also guide minimally invasive procedures, such as biopsies and catheter

insertions (of Biomedical Imaging and Bioengineering, 2021; Vincenti et al., 2022).

Figure 2.2: Example of a CT scanner that generates CT images. A CT scanner consists of a donut-shaped machine

with an X-ray tube and a detector. The patient lies on a table that slides into the machine, which takes X-ray images

from different angles. The images are then sent to a computer that uses complex algorithms to reconstruct them into

detailed images of the body. Source: (USA, 2021).

Figure 2.2 presents an example of a CT scanner that generates CT images. A CT scanner

consists of a donut-shaped machine with an X-ray tube and a detector. The patient lies on a table
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that slides into the machine, which takes X-ray images from different angles. The images are

then sent to a computer that uses complex algorithms to reconstruct them into detailed images of

the body.

(a) An example of CT from the Zenodo dataset. (b) The corresponding segmentation mask.

Figure 2.3: Example of CT from the Zenodo dataset (Jun et al., 2020; Ma et al., 2021). The Zenodo dataset includes

labels for the left and right lungs and COVID-19 lesions. In the segmentation mask, the left lung is represented in

green, the right lung in blue, and the COVID-19 lesions in red. The uncolored regions of the image represent the

background and are irrelevant to the problem. Source: (Jun et al., 2020; Ma et al., 2021).

This study focuses on the segmentation of CT images of COVID-19 patients, specifically

those taken from the lung area (Shi et al., 2021). This segmentation aims to identify the lung

regions affected by COVID-19 and create a segmentation mask that classifies each pixel in the

CT image according to its corresponding class (Shi et al., 2021). Figure 2.3 depicts a CT image

of a COVID-19 patient and its corresponding segmentation mask. Sub-figure 1.1(a) shows an

example CT, while Sub-figure 1.1(b) shows the corresponding segmentation mask. The dataset

used in this example is Zenodo (Jun et al., 2020; Ma et al., 2021), which provides labels for left

and right lungs and COVID-19 lesions. In the segmentation mask, the left lung is represented in

green, the right lung in blue, and the COVID-19 lesions in red. The uncolored regions of the

image represent the background and are irrelevant to the problem (Jun et al., 2020; Ma et al.,

2021; Saood and Hatem, 2021).

2.3 DEEP LEARNING

Deep Learning is a sub-field of Machine Learning which uses Artificial Neural Networks

composed by multiple processing layers, also called Deep Neural Networks, to solve complex

learning problems (LeCun et al., 2015). Each layer in the network performs a set of computations

on the input data to extract features, and the output of one layer is used as the input for the

next layer. This process continues until the final layer’s output is produced, representing the

prediction or classification made by the model (Schmidhuber, 2015). In recent years, deep

learning based methods achieved impressive results in many applications, including image and

speech recognition, natural language processing, and autonomous vehicles. However, such

models can be computationally intensive and require large amounts of training data to perform

well (Garcia-Garcia et al., 2018).
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Figure 2.4: The structure of a basic CNN. The CNN can be divided into two steps: the convolutional step and

the classification step. The convolutional step comprises convolutional and pooling layers to extract features from

the images. The classification step is composed by fully connected layers to classify the features extracted in the

convolutional step. Source: (Albelwi and Mahmood, 2017).

For image classification problems, an Artificial Neural Network called CNN (Lecun

et al., 1998; Krizhevsky et al., 2017) is widely used in the literature (Garcia-Garcia et al., 2018).

CNNs use convolution to analyze and learn features from the input data. The convolution

operation involves sliding small filters over the input image, computing a dot product between

the filter and the local region of the image it is currently overlapping, and producing a new output

feature map. By stacking multiple convolutional layers in a deep neural network, CNNs can learn

increasingly complex and abstract features, such as edges, shapes, textures, and patterns (Lee

et al., 2015; Ankile et al., 2020). Furthermore, a CNN is divided into two steps: the convolutional

step and the classification step. The convolutional step comprises convolutional and pooling

layers to extract features from the images. Meanwhile, the classification step is composed by

fully connected layers to classify the features extracted in the convolutional step (Albelwi and

Mahmood, 2017). Figure 2.4 illustrates a basic CNN structure. For Semantic Segmentation

problems, deep learning-based methods achieved impressive results through CNNs (Minaee et al.,

2021). In order to adapt CNNs to perform Semantic Segmentation, the fully connected layers are

replaced by upsampling layers to perform per-pixel classification (Long et al., 2015). Section 2.4

details how CNNs are adapted to perform segmentation and the structure of a segmentation CNN

known as encoder-decoder architecture.

2.4 ENCODER-DECODER NETWORKS

An Encoder-Decoder network is a CNN adapted to perform images segmentation (Badrinarayanan

et al., 2017). This category of deep neural networks is divided into two steps: the encoder and

the decoder (Krinski et al., 2021). The encoder uses a CNN without the fully connected layers to

extract features from the input image. Meanwhile, the decoder is composed by a sequence of

deconvolutional and upsampling layers to convert the features extracted in the encoder into a

segmentation mask (Elharrouss et al., 2021).

Figure 2.5 presents the SegNet (Badrinarayanan et al., 2017), one of the first networks

proposed to perform segmentation of images. The SegNet model utilizes an encoder-decoder

architecture in which the encoder comprises convolutional and pooling layers (colored in blue

and green, respectively). At the same time, the decoder mirrors the encoder with the same
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Figure 2.5: The SegNet model proposed by (Badrinarayanan et al., 2017). The SegNet model utilizes an encoder-

decoder architecture in which the encoder comprises convolutional and pooling layers (colored in blue and green,

respectively). At the same time, the decoder mirrors the encoder with the same convolutional layers arranged on the

opposite side of the network. However, instead of pooling layers, the decoder utilizes upsampling layers (colored in

red) to reconstruct the original image. The final layer of the decoder is a softmax layer (colored in yellow) that

performs per-pixel classification, generating the segmentation mask. Source: (Badrinarayanan et al., 2017).

convolutional layers arranged on the opposite side of the network. However, instead of pooling

layers, the decoder utilizes upsampling layers (colored in red) to reconstruct the original image.

The final layer of the decoder is a softmax layer (colored in yellow) that performs per-pixel

classification, generating the segmentation mask (Badrinarayanan et al., 2017).

2.5 CONVOLUTIONAL NEURAL NETWORKS (CNNS) - ENCODERS

The architecture of a CNN can vary widely depending on the specific task and input data, with

many variations being proposed. This section details the seven CNNs used in this work: Visual

Geometry Group (VGG) (Simonyan and Zisserman, 2015), Residual Network (ResNet) (He

et al., 2016), Res2Net (Gao et al., 2021), ResNeXt (Xie et al., 2017), Dense Convolutional

Network (DenseNet) (Huang et al., 2017), Squeeze-and-Excitation Networks (SE-Net) (Hu

et al., 2018), and RegNet (Radosavovic et al., 2020). These models are widely used in different

classification and segmentation problems, and are used in this work as encoders of encoder-decoder

segmentation models.

2.5.1 Visual Geometry Group (VGG)

The Visual Geometry Group (VGG) (Simonyan and Zisserman, 2015) architecture is a CNN

with promising results in classification problems (Li et al., 2022; Krichen, 2023). This CNN

uses small 3 × 3 filters throughout the convolutional layers, which allows the network to learn

more complex features with fewer parameters than larger filters. More precisely, this strategy

increases the number of non-linear Rectified Linear Units (ReLu) layers and the decision functions’

discrimination capacity. Moreover, the number of parameters of the architecture is reduced

without decreasing the number of effective receptive fields. The original VGG architecture

consists of 16 layers (VGG-16), with 13 convolutional layers and 3 fully connected layers. The

convolutional layers are arranged in groups of two or three, with each group followed by a

max-pooling layer. The number of filters in each convolutional layer increases as the spatial size

of the feature maps decreases, with the final layer having 512 filters. There are also variations

with 19 layers (VGG-19), and 11 layers (VGG-11). These variations have a similar structure to

the original VGG architecture but with fewer or more layers.

Figure 2.6 presents a table with all VGG architectures proposed (VGG-11, VGG-13,

VGG-16, and VGG-19), varying the number of layers in the network. The first layer of all
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VGG models is the original configuration’s input layer of size 224 × 224. Then, a sequence

of convolutional blocks is linked in the VGG models, with each convolutional block being

composed by a stack of convolutional layers. The VGG-11 and VGG-13 are composed by

convolutional blocks with one and two convolutional layers, while the VGG-16 and VGG-19 are

deeper architectures, with convolutional blocks of three and four convolutional layers. Between

the convolutional blocks, a max-pooling layer is attached to reduce the dimension of the feature

maps. After the last max-pooling layer, three fully connected and a softmax layers are attached to

classify the feature extracted in the convolutional blocks.

Figure 2.6: Table with all VGG architectures proposed (VGG-11, VGG-13, VGG-16, and VGG-19). The VGG-11

and VGG-13 are composed by stacks of two convolutional layers, while the VGG-16 and VGG-19 are deeper

architectures, with stacks of three and four convolutional layers. Source: (Simonyan and Zisserman, 2015).

2.5.2 Residual Networks (ResNet)

The Residual Network (ResNet) (He et al., 2016) is also a promising CNN architectures used in

classification problems (Li et al., 2022; Krichen, 2023). This model aims to solve the vanishing

gradients problem in very deep neural networks by introducing skip connections, or residual

connections, that allows information to flow directly from the input of a layer to the output of a

subsequent layer. In a standard deep neural network, each layer takes the previous layer’s output

as its input. As the number of layers increases, the gradients can become very small or even

vanish, making it difficult to train the network effectively. The ResNet addresses this problem by
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adding residual connections that allow the input of a layer to be added directly to the output of a

subsequent layer, bypassing the intermediate layers, which ensures that the gradients can still

flow through the network, even in very deep architectures. An example of skip connection is

presented in Figure 2.7. The input of the first weight (convolutional) layer "x" is linked through a

skip connection to the output of the second weight layer "𝐹 (𝑥)". A sequence of layers linked

through a skip connection is called building block.

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2.7: The weight layers are convolutional blocks, and the input of the first weight layer ("x") is linked through

a skip connection to the output of the second weight layer ("𝐹 (𝑥)"). Source: (He et al., 2016).

Figure 2.8: Table with details about each ResNet version proposed by (He et al., 2016). Five versions was proposed:

ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. Source: (He et al., 2016).

The basic building block of a ResNet, also called residual block, consists of two or

more convolutional layers followed by a skip connection that adds the input of the block to its

output. ResNets can achieve very deep architectures by stacking multiple residual blocks while

maintaining good performance. Figure 2.8 presents a table with details of the layers of each

ResNet version proposed by (He et al., 2016). Five versions have been proposed: ResNet-18,

ResNet-34, ResNet-50, ResNet-101, and ResNet-152. The major difference between each

proposed version is the number of residual blocks attached in sequence and thus varying the

network depth. Also, the ResNet-18 and ResNet-34 are composed by blocks with only two

convolutional blocks, as exemplified in Figure 2.8. Meanwhile, the ResNet-50, ResNet-101, and

ResNet-152 are composed by blocks with three convolutional blocks, and the input of the first

convolutional layer is linked to the output of the last convolutional layer in the block.
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2.5.3 ResNeXt

The ResNeXt (Xie et al., 2017) aims to increase the number of receptive fields and improve

the ability of the network to find objects in the image by adding parallel paths. It is a variation

of the ResNet architecture, which uses residual blocks to enable the training of very deep

neural networks. The ResNeXt extends ResNet by introducing a new "cardinality" module that

increases the network’s representational power without increasing its depth. The cardinality is

a hyperparameter that controls the number of independent paths or "cardinalities" within each

network block. In other words, the ResNet uses just one path with a large number of filters (large

depth), while the ResNeXt uses many parallel paths with a small number of filters (small depth).
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Figure 2.9: Comparison between ResNet and ResNext. In the left, the ResNet is presented, with only one path with

filters of size 64, and in the right, the ResNext is presented with Cardinality 32 and filters of size 4. Source: (Xie

et al., 2017).

Each block in ResNeXt consists of a set of parallel pathways, where each pathway is a

small CNN. These pathways are aggregated through a summation operation, which allows the

model to capture diverse patterns in the input data. Multiple pathways allow ResNeXt to achieve

high accuracy on a wide range of image classification tasks with fewer parameters than previous

state-of-the-art models and has demonstrated state-of-the-art performance on benchmark datasets

such as ImageNet Large Scale Visual Recognition Challenge (ImageNet) (Deng et al., 2009) and

CIFAR-10/100 (Krizhevsky et al., 2009). More precisely, the ResNeXt replaces the standard

path of ResNet with layers of 𝑋 filters to 𝐶 parallel paths with layers of 𝑑 filters, where 𝐶 is the

cardinality, and 𝑑 is the depth and equals to 𝑋/16. Figure 2.9 presents the difference between

both architectures. In the left, the ResNet is presented with only one path with filters of size 64.

In the right, the ResNext is presented with cardinality 32 and filters of size 4. At the end of the

ResNeXt, all 32 paths are aggregated to produce the same size output of the ResNet. Also, the

skip connection used in the ResNet works in the same way in the ResNeXt, with the input of the

block being aggregated with the output of the block.

2.5.4 Dense Convolutional Network (DenseNet)

The Dense Convolutional Network (DenseNet) (Huang et al., 2017) is a based on the idea of

densely connected convolutional layers. In a traditional CNN, information flows from the input

to the output layer through a sequence of convolutional layers, with occasional pooling and fully

connected layers. In contrast, DenseNet connects each layer to every other layer in a feed-forward
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fashion. This connectivity pattern creates a dense block, where each layer receives inputs from

all preceding layers and passes its output to all subsequent layers.

Figure 2.10: DenseNet architecture with three dense blocks and each dense block with five blocks. The first block

(white circle) output in each dense block is concatenated with the input of all following blocks (grey circles). The

same is made for all blocks inside the dense block. Source: (Huang et al., 2017).

Figure 2.11: Table with details about each DenseNet version proposed by (Huang et al., 2017). Four versions was

proposed: DenseNet-121, DenseNet-169, DenseNet-201, and DenseNet-264. Each dense block is composed by a

sequence of two convolutional layers of size 1 × 1 and 3 × 3 repeated 𝑛 times, with 𝑛 varying depending on the

DenseNet version. Source: (Huang et al., 2017).

The main advantages of the DenseNet are its ability to reduce the number of parameters

needed in the network while maintaining high accuracy, improving gradient flow, and facilitating

feature reuse. In addition, the DenseNet alleviates the vanishing gradient problem by propagating

gradients directly from the output to all layers in the block. A typical DenseNet architecture

consists of multiple dense blocks, where each dense block is followed by a transition layer that

performs downsampling and feature map compression. The last dense block is followed by a

global average pooling layer and a fully connected layer for classification. Figure 2.10 presents

an example of DenseNet architecture with three dense blocks and each dense block with five

blocks. The first block (white circle) output in each dense block is concatenated with the input of

all following blocks (grey circles). The same is made for all blocks inside the dense block. The

convolutional and pooling layers between two dense blocks are called transition layers.

Figure 2.11 presents a table with details about each DenseNet version proposed by (Huang

et al., 2017). Four versions was proposed: DenseNet-121, DenseNet-169, DenseNet-201, and

DenseNet-264. Each dense block is composed by a sequence of blocks repeated 𝑛 times, with

𝑛 varying depending on the DenseNet version. The major difference between each proposed
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version is the number of blocks on third and fourth dense blocks, with the larger versions of

DenseNet built with more blocks inside these two dense blocks.

2.5.5 Squeeze-and-Excitation Networks (SE-Net)

The Squeeze-and-Excitation Networks (SE-Net) (Hu et al., 2018) aims to selectively emphasize

informative features and suppress unimportant information by adaptively recalibrating the feature

maps. In traditional CNNs, feature maps are learned independently and equally contribute to the

final prediction, regardless of their importance. In contrast, SE-Net introduces a novel module

called the "Squeeze-and-Excitation block" that can adaptively recalibrate feature maps. The

block consists of two main operations: a squeeze operation that globally aggregates the spatial

dimensions of a feature map into a channel descriptor and an excitation operation that learns

to weigh each channel descriptor before rescaling the feature maps. Figure 2.12 presents the

difference between a standard convolutional block in the left side and a SE-Net convolutional

block in the right side. The SE-Net convolutional block has an additional building block to weigh

the channels, built with the following layers: average pooling, Fully Connected (FC), ReLu,

FC, Sigmoid. The average pooling operation squeezes the output of the convolutional block.

Then, the FC and ReLu layers add non-linearity, and the final FC and Sigmoid layers activate the

channels. In the end, each channel of the convolutional block is weighted based on the output of

the proposed building block.
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Figure 2.12: Difference between a standard convolutional block in the left side and a SE-Net convolutional block in

the right side. The SE-Net convolutional block has an additional building block to weigh the channels, built with the

following layers: average pooling FC, ReLu, FC, Sigmoid. Source: (Hu et al., 2018).
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The squeeze operation reduces the spatial dimensions of the feature maps into a single-

channel descriptor by applying global average pooling. The excitation operation then takes the

descriptor and applies two fully connected layers, followed by a sigmoid activation function to

learn a set of channel-wise scaling factors. These scaling factors are then used to rescale the

feature maps to emphasize informative channels and suppress unimportant ones. Furthermore,

the SE-Net can be easily integrated into existing CNN architectures as a plug-and-play module

without significant additional computational overhead. It has achieved promising results on

image classification problems (Ankile et al., 2020; Li et al., 2022; Krichen, 2023), including

the ImageNet (Deng et al., 2009) dataset. Moreover, SE-Net has shown to be effective in other

computer vision tasks, such as object detection and segmentation, as well as in other domains,

such as speech recognition and natural language processing.

2.5.6 RegNet

The RegNet (Radosavovic et al., 2020) uses a design space search algorithm to automatically

discover a family of efficient network architectures tailored to a specific computational budget.

The design space search algorithm explores the space of possible network architectures and

selects the ones that achieve the best trade-off between accuracy and computational cost. The

RegNet architecture consists of a series of "Bottleneck Blocks" stacked on top of each other

to form the full network. Each Bottleneck Block contains a sequence of 3 × 3 convolutional

layers, batch normalization, and ReLu activation functions. The main innovation in RegNet is

the "grouped convolutions", where the convolutional filters are partitioned into multiple groups,

each operating on a different subset of the input channels. This allows more efficient use of

computational resources and reduces the number of parameters needed in the network.

Figure 2.13: The general RegNet structure. The RegNet incorporates a general network structure that can be broken

down into three main components: a stem, a network body, and a head. The stem, which comprises a stride-two

3 × 3 convolution with 32 output channels (𝑤0), serves as the initial input to the network. The network body, which

is responsible for most of the computation, follows the stem and is then followed by a head that utilizes average

pooling and a fully connected layer to generate predictions for n output classes.Source: (Radosavovic et al., 2020).

In addition, RegNet uses a "SE-ResNet-style" skip connection between each pair

of Bottleneck Blocks, which helps to propagate gradients and stabilize the training process.

The RegNet achieves state-of-the-art performance on several image classification benchmarks,
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including the ImageNet (Deng et al., 2009) dataset, while being computationally efficient and

easy to train. Moreover, RegNet is effective in transfer learning and object detection tasks,

demonstrating its versatility and scalability. Figure 2.13 presents the general RegNet structure.

The RegNet incorporates a general network structure that can be broken down into three main

components: a stem, a network body, and a head. The stem, which comprises a stride-two 3 × 3

convolution with 32 output channels (𝑤0), serves as the initial input to the network. The network

body, which is responsible for most of the computation, follows the stem and is then followed by a

head that utilizes average pooling and a fully connected layer to generate predictions for n output

classes. The network body comprises a series of stages that operate at progressively reduced

resolutions, 𝑟𝑖. Each stage contains a sequence of identical blocks, except for the first block, which

uses stride-two convolution. Although the overall structure of the RegNet is straightforward, the

number of possible network configurations is vast due to the many possible combinations of

stage and block hyperparameters.

2.5.7 Res2Net
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Figure 2.14: Difference between the Res2net, in the right, and the ResNet, in the left. A multi-scale module replaces

the middle convolutional layer of size (3 × 3) in the ResNet with a set of smaller filter groups. Source: (Gao et al.,

2021).

The Res2Net (Gao et al., 2021) aims to leverage the multi-scale representations of

deep CNNs by introducing the Residual Pooling Unit (RPU) and achieved promising results in

classification problems (Heo et al., 2023; Yang and Zhang, 2024). This module enables efficient

feature reuse across different scales. The RPU module combines scale features by applying

multiple parallel convolutions with different kernel sizes on the input feature maps. These parallel

convolutions are then aggregated using a weighted sum, which allows the network to capture

fine-grained details and global context information in the input data. More precisely, the standard

block of ResNet is replaced by a 4-scale-(3 × 3) residual hierarchical architecture. A multi-scale

module replaces the middle convolutional layer of size (3 × 3) in the ResNet with a set of smaller
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filter groups. With this strategy, the number of receptive fields inside the block increases, which

enables the network to grab the different scale levels for the objects inside the image. Figure 2.14

presents the difference between the Res2net in the right, and the ResNet, in the left. Also, this

strategy can be used on both architectures, ResNet and ResNeXt.

The multi-scale module divided the feature maps in 𝐾 smaller feature maps

(𝑋1, 𝑋2, 𝑋3, 𝑋4, ...). The first slice 𝑋1 goes without any convolutional operation. The sec-

ond slice suffers a convolutional operation. The second slice is added to the third slice and suffers

a convolutional operation. The third slice is added to the fourth slice and suffers a convolutional

operation, and so on depending on the value of K. With this strategy, the number of receptive

fields is increased, and the CNN extracts more granular features in different levels of scale and

improves the ability of the network to find objects in the image. One of the main advantages of

the Res2Net over other state-of-the-art models is that it can achieve better performance with fewer

parameters and computation, making it more efficient for real-world applications. Res2Net has

demonstrated state-of-the-art performance on benchmark datasets, including ImageNet (Deng

et al., 2009) and COCO (Lin et al., 2014).

2.6 SEMANTIC SEGMENTATION NETWORKS - DECODERS

This section details the six Semantic Segmentation Networks used in this work: U-Net (Ron-

neberger et al., 2015), U-Net++ (Zhou et al., 2018), Feature Pyramid Network (FPN) (Lin et al.,

2017), Pyramid Scene Parsing Network (PSPNet) (Zhao et al., 2017), LinkNet (Chaurasia and

Culurciello, 2017), and Multi-scale Attention Net (MA-Net) (Fan et al., 2020b). These models are

widely used for Semantic Segmentation problems, with U-Net and U-Net++ particularly prevalent

in medical segmentation tasks. In this work, they are utilized as decoders in encoder-decoder

segmentation models.

2.6.1 U-Net

The U-Net (Ronneberger et al., 2015) architecture comprises an encoder and a decoder network

connected by a bottleneck layer. The encoder network is similar to a standard CNN architecture,

consisting of a series of convolutional and pooling layers that gradually reduce the spatial

dimensions of the input image. On the other hand, the decoder network consists of a series of

convolutional and upsampling layers that gradually increase the spatial dimensions of the input.

The U-Net architecture has skip connections between the encoder and decoder networks.

These skip connections concatenate the feature maps from the encoder network with the

corresponding feature maps in the decoder network, allowing the decoder network to reconstruct

the fine-grained details of the original input image. Another important aspect of the U-Net

architecture is the "cropping" in the decoder network. This cropping removes the unnecessary

border regions in the feature maps generated by the upsampling layers in the decoder network,

allowing the reconstructed image to have the same size as the original input image. Figure 2.15

presents the structure of a U-Net architecture. The blue boxes represent the feature maps. In the

left side, the red arrows are Max-Pooling operations to reduce the dimension of the feature maps,

and in the right side, the green arrows are transposed convolutions to reconstruct the dimension

of the feature map. The grey arrow indicates the concatenation of the feature map generated on

the encoder side, with the feature map generated on the decoder side.
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Figure 2.15: The complete structure of a U-Net architecture. The blue boxes represent the feature maps. In the

left size, the red arrows are Max-Pooling operations to reduce the dimension of the feature maps, and in the right

side, the green arrows are transposed convolutions to reconstruct the dimension of the feature map. The grey arrow

indicates the concatenation of the feature map generated on the encoder side, with the feature map generated on the

decoder side. Source: (Ronneberger et al., 2015).

2.6.2 Feature Pyramid Network (FPN)

The Feature Pyramid Network (FPN) (Lin et al., 2017) aims to construct a pyramid of feature maps

at multiple scale, which are then used to detect objects at different sizes and resolutions. This is

achieved by combining feature maps from different levels of a CNN into a single multi-scale

representation. Specifically, FPN constructs a pyramid of feature maps by taking the output of

each level of the CNN and upsampling it to the same spatial resolution as the next higher-level

feature map. This creates a set of feature maps at different scales, with the lower-level feature

maps capturing finer details and the higher-level feature maps capturing more global information.
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Figure 2.16: The Feature Pyramid Network (FPN) structure proposed by (Lin et al., 2017). The blue squares are

convolutional and upsample blocks, and the orange squares represent the segmentation masks generated in each

level of the decoder. Source: (Lin et al., 2017).

To improve the quality of the multi-scale representation, the FPN introduces a "top-

down" pathway that passes information from the higher-level feature maps to the lower-level

feature maps. This pathway consists of a series of lateral connections that perform 1 × 1
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convolutions to match the number of channels in the higher-level feature maps with the number

of channels in the corresponding lower-level feature maps. These lateral connections concatenate

the upsampled higher-level feature maps with the lower-level feature maps, producing a final

multi-scale representation. The resulting FPN architecture can be used for object detection by

attaching Region Proposal Networks (RPNs) to each level of the feature pyramid. The RPNs use

the multi-scale feature maps to generate a set of candidate object proposals at different scales and

resolutions, which are then refined and classified by a subsequent detection network. Figure 2.16

presents the FPN structure. The blue squares are convolutional and upsample blocks, and the

orange squares represent the segmentation masks generated in each level of the decoder.

2.6.3 Pyramid Scene Parsing Network (PSPNet)

The Pyramid Scene Parsing Network (PSPNet) (Zhao et al., 2017) has the same objective as the

FPN: construct a pyramid of feature maps at multiple scales, which are then used to perform

semantic segmentation at different levels of granularity. This is achieved by using a global pooling

layer to capture the context of the entire image, combined with a series of convolutional layers to

extract features at different scales. The PSPNet uses a modified version of the ResNet architecture

as the backbone network, which is pre-trained on large-scale image classification datasets. The

output of the last convolutional layer in the ResNet is passed through a global average pooling

layer, which produces a global feature vector that captures the context of the entire image. To

capture features at different scales, the PSPNet then applies a series of convolutional layers with

different dilation rates to the output of the last convolutional layer in the ResNet. A collection

of feature maps at varying scales is generated as a result of applying convolutional layers with

different dilation rates to the output of the last convolutional layer in the ResNet. The feature

maps at lower levels can capture finer details, while the ones at higher levels capture more global

information.

Figure 2.17: The PSPNet proposed by (Zhao et al., 2017). The input image presented in (a) inputs a CNN module to

extract features maps, presented in (b). Then, in the Pyramid Pooling Module (c), the pooling operation is applied

with four different sizes, generating four parallel feature maps with different scales. These four feature maps cross a

sequence of convolutional layers until being upsampled and concatenated again to generate the final feature map,

which will be used to generate the final prediction, as presented in (d). Source: (Zhao et al., 2017).

To fuse the multi-scale feature maps, the PSPNet introduces a "pyramid pooling module"

that uses global max pooling to extract information from each of the feature maps at multiple

scales. The resulting features are then concatenated and passed through a series of convolutional

layers to produce a final segmentation map. Figure 2.17 presents the structure of the PSPNet.

The input image presented in (a) inputs a CNN module to extract features maps, presented in (b).

Then, in the Pyramid Pooling Module (c), the pooling operation is applied with four different

sizes, generating four parallel feature maps with different scales. These four feature maps cross a
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sequence of convolutional layers until being upsampled and concatenated again to generate the

final feature map, which will be used to generate the final prediction, as presented in (d).

2.6.4 LinkNet

The LinkNet (Chaurasia and Culurciello, 2017) uses a skip connection architecture inspired by

the ResNet architecture to improve the flow of information between the encoder and decoder. The

encoder module uses a modified ResNet-18 architecture with fewer filters, which helps reduce

the computational cost of the model. The decoder module includes upsampling blocks, each

consisting of a bilinear upsampling layer followed by a convolutional layer. The skip connections

in LinkNet are added between the encoder and decoder at each stage of the encoder, allowing

for the transfer of high-resolution information from the encoder to the decoder. As presented in

Figure 2.18, the LinkNet is built with a sequence of encoder and decoder blocks. In the first step

of the network, the LinkNet has a sequence of encoder blocks, with each encoder block being a

sequence of convolutional layers to extract features from the image and reduce the dimension of

the feature maps. The second step has a sequence of decoder blocks, with each decoder block

being a sequence of convolutional and fully-convolutional layers (Long et al., 2015) to rebuild

the image and generate the segmentation mask.

Figure 2.18: The LinkNet architecture proposed by (Chaurasia and Culurciello, 2017). The LinkNet is built with a

sequence of encoder and decoder blocks. Also, to mitigate the information loss, each encoder block has a connection

to its corresponding decoder block. Source: (Chaurasia and Culurciello, 2017).

In addition, LinkNet uses batch normalization and ReLu activation functions throughout

the network to improve training and reduce overfitting. The final layer of the decoder module

uses a softmax activation function to produce the pixel-wise classification map. Figure 2.19

presents the structure of an encoder block. Each encoder block has a sequence of convolutional

blocks, with each convolutional block is composed by two convolutional layers, and the input of

the first convolutional layer is skipped and added to the output of the second convolutional layer.
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Figure 2.20 presents the structure of a decoder block. Each decoder block has three layers in the

following sequence: convolutional layer, fully-convolutional layer, and another convolutional

layer. Before the first encoder block, the LinkNet has the first convolutional and max-pooling

layers, and after the last decoder block, the LinkNet has a fully-convolutional layer followed by

a convolutional and a fully-convolutional layers. Also, to mitigate the information loss, each

encoder block has a connection to its corresponding decoder block.

Figure 2.19: The LinkNet encoder structure proposed by (Chaurasia and Culurciello, 2017). Each encoder block

has a sequence of convolutional blocks, with each convolutional block is composed by two convolutional layers,

and the input of the first convolutional layer is skipped and added to the output of the second convolutional layer.

Source: (Chaurasia and Culurciello, 2017).

Figure 2.20: The LinkNet decoder structure proposed (Chaurasia and Culurciello, 2017). Each decoder block has

three layers in the following sequence: convolutional layer, fully-convolutional layer, and another convolutional layer.

Source: (Chaurasia and Culurciello, 2017).

2.6.5 U-Net++

The U-Net++ (Zhou et al., 2018) is based on the same encoder-decoder structure as the U-Net,

but it introduces a more complex skip connection structure between the encoder and decoder

networks. Instead of a single set of skip connections, the U-Net++ architecture uses multiple

levels of nested skip connections, with each level aggregating feature maps from a larger range of

scales. Specifically, the U-Net++ architecture introduces a "recursive U-Net" structure, where

each level of the encoder network is itself a U-Net architecture that generates multiple sets of

feature maps at different scales. The corresponding levels in the decoder network then concatenate

these feature maps across the different scales, using a weighted sum based on the similarity

between the feature maps. This helps to capture more fine-grained details and improve the

accuracy of the segmentation.
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Figure 2.21: The U-Net++ architecture proposed by (Zhou et al., 2018). The black circles and arrows show the

standard U-Net architecture. The green and blue regions, circles, and arrows are the dense convolutional blocks, and

the red structure is the deep supervised module. Source: (Zhou et al., 2018).

In addition to the nested skip connections, the U-Net++ architecture also introduces a

"deep supervision" mechanism, where intermediate feature maps are fed to auxiliary classifiers

that predict the segmentation masks at multiple scales. This helps to regularize the training

process and improve the model’s overall performance. Figure 2.21 presents the U-Net++ complete

structure. The black circles and arrows show the standard U-Net architecture. The green and

blue regions, circles, and arrows are the dense convolutional blocks, and the red structure is the

deep supervised module.

2.6.6 Multi-scale Attention Net (MA-Net)

The MA-Net (Fan et al., 2020b) uses attention mechanisms to selectively focus on different

regions of input images at different scales. The architecture is designed to extract relevant features

from images and consists of three main components: a feature extractor, a multi-scale attention

module, and a classifier. The feature extractor is a CNN that processes the input image and

produces a set of feature maps. The multi-scale attention module operates on these feature maps

and uses a set of attention mechanisms to selectively attend to different regions of the image at

multiple scales. The attention mechanisms are designed to identify salient features important

for the task and suppress irrelevant information. The multi-scale attention module also includes

a set of convolutional layers that combine the attended feature maps across different scales to

produce a final set of feature maps. These feature maps are then passed through a classifier,

which produces the network’s final output.

The MA-Net has the ability to selectively attend to different regions of an image at

multiple scales, making it well-suited for tasks requiring fine-grained image feature analysis.

Figure 2.22 presents the MA-Net architecture. The encoder is composed by a sequence of

residual blocks (Res-Blocks) and convolutional blocks, presented in white and blue, respectively.

The residual blocks are used to mitigate the vanishing gradient problem. The decoder step is

composed by a sequence of Multi-scale Fusion Attention Block (MFAB) and Up-Sampling layers,
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presented in red and purple, respectively. The Multi-scale Fusion Attention Block (MFAB) layer

is a structure proposed by the authors that use SE-Net (Hu et al., 2018) blocks to extract the

interdependence between feature channels by combining High and Low-level feature maps. The

MA-Net also has a Position-wise Attention Block (PAB) module, presented in yellow, between

the encoder and decoder steps to capture spatial dependencies between any two position feature

maps. Also, for each block in the encoder step, a skip connection is linked to the corresponding

block in the decoder step to mitigate the information loss.

Figure 2.22: The MA-Net architecture proposed by (Fan et al., 2020b). The encoder is composed by a sequence

of residual blocks (Res-Blocks) and convolutional blocks, presented in white and blue, respectively. The decoder

step is composed by a sequence of MFAB and Up-Sampling layers, presented in red and purple, respectively. The

authors proposed a Position-wise Attention Block (PAB) module between the encoder and decoder steps, presented

in yellow. Also, for each block in the encoder step, a skip connection is linked to the corresponding block in the

decoder step. Source: (Fan et al., 2020b).

2.7 GENERATIVE ADVERSARIAL NETWORKS (GANS)

GANs are deep learning algorithm designed to generate images and consists of two neural

networks: a generator and a discriminator (Goodfellow et al., 2014). The generator is trained to

create synthetic data that resembles real data, while the discriminator is trained to distinguish

between synthetic and real data (Goodfellow et al., 2020). During training, the generator generates

fake data and presents it to the discriminator, which then tries to distinguish between the real and

synthetic data. The feedback from the discriminator is used to update the generator to generate

synthetic data that is increasingly similar to the real data (Ruiz et al., 2020a).

The main idea behind GANs is to have the generator and discriminator competing

against each other, with the generator trying to generate more realistic data and the discriminator

trying to better distinguish between real and synthetic data. This competition between the

two networks drives the learning process, with both networks continually improving until the

generator produces synthetic data that is indistinguishable from real data (Choi et al., 2018;

Karras et al., 2019). GANs have been successfully applied to various applications, including face

generation (Karras et al., 2018), image-to-image translation (Isola et al., 2017), inpainting (Pathak

et al., 2016), video generation (Vondrick et al., 2016), and 3d-modeling (Wu et al., 2016).

Figure 2.23 presents the structure of a GAN proposed by (Goodfellow et al., 2014).

The main goal of the generator in a GAN is to generate synthetic data. The generator step is a

CNN in reverse mode. When a CNN is used for a classification task, it receives an image as
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Figure 2.23: Structure of a basic GAN. The GAN is composed by two neural networks called generator and

discriminator. The better the images produced by the generator, the more difficult it is for the discriminator to

distinguish fake data from real. So, the generator’s objective is to trick the discriminator, and the objective of the

discriminator is to reveal the generator fails. Source: (Silva, 2020).

input and generates a feature map representing that image. However, in the reverse mode, the

CNN receives a feature map with random values and generates a fake image. The discriminator

network is also a CNN trained to differentiate between real and fake data generated by the

generator. As the generator produces better-quality images, distinguishing between fake and real

data becomes more challenging for the discriminator. Therefore, the objective of the generator is

to deceive the discriminator, while the objective of the discriminator is to expose the generator’s

inaccuracies (Karras et al., 2020; Choi et al., 2020). The following Subsections details the two

GANs used in this work: StyleGANv2 (Karras et al., 2020) and StarGAN (Choi et al., 2020).

2.7.1 StyleGAN

The StyleGAN (Karras et al., 2019) architecture is composed by a multi-stage generator network

capable of generating images at different levels of abstraction and a mapping network that

converts a random vector into a latent space, which is then used by the generator network to

produce images. The StyleGAN uses the Adaptive Instance Normalization (AdaIN) for style

transfer, which allows transferring style information from a reference image to the generated

image while maintaining control over other aspects of the image synthesis process.

The StyleGAN employs a strategy of style transfer (Huang and Belongie, 2017) to

generate images, and introduces a new generator model, illustrated in Figure 2.24. The

conventional generator (presented in the left side) takes a latent space vector as input and produces

images from it. However, the updated generator architecture of the StyleGAN (presented on the

right side) inputs the latent space vector 𝑧 in a mapping network 𝑓 , generating an intermediate

latent space 𝑊 , which is used to control the generator through AdaIN at each convolution

layer. Additionally, Gaussian noise is applied after each convolution and before the non-linearity

function. The "𝐴" symbol represents a learned affine transform, and "𝐵" applies learned

per-channel scaling factors to the noise input.
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Figure 2.24: The conventional generator (presented in the left side) takes a latent space vector as input and produces

images from it. However, the updated generator architecture of the StyleGAN (presented on the right side) inputs the

latent space vector 𝑧 in a mapping network 𝑓 , generating an intermediate latent space𝑊 , which is used to control the

generator through AdaIN at each convolution layer. Additionally, Gaussian noise is applied after each convolution

and before the nonlinearity function. The "𝐴" symbol represents a learned affine transform, and "𝐵" applies learned

per-channel scaling factors to the noise input. Source: (Karras et al., 2019).

2.7.2 StyleGANv2

The StyleGANv2 (Karras et al., 2020) is an evolution of the StyleGAN architecture and it is

able to generate high-resolution images up to 1024 × 1024 pixels, in contrast with the limit of

512 × 512 of the original StyleGAN. The StyleGANv2 architecture uses a progressive growing

technique that starts with a low resolution and gradually increases it as the model learns.

The StyleGAN synthesis network architecture is revamped, as presented in Figure 2.25.

The first architecture presents the StyleGAN generator, where the letter "A" denotes a learned

affine transform and "𝐵" applies learned per-channel scaling factors to the noise input. The

second architecture details the first one by showing the normalization process followed by

modulation, which operates on the mean and standard deviation per feature map. The third and

fourth architecture details the StarGANv2 generator, with the instance normalization replaced by

a "demodulation" operation, applied to the weights associated with each convolution layer.
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Figure 2.25: The first architecture presents the StyleGAN generator, where the letter "A" denotes a learned affine

transform and "𝐵" applies learned per-channel scaling factors to the noise input. The second architecture details the

first one by showing the normalization process followed by modulation, which operates on the mean and standard

deviation per feature map. The third and fourth architecture details the StarGANv2 generator, with the instance

normalization replaced by a "demodulation" operation, applied to the weights associated with each convolution layer.

Source: (Karras et al., 2020).

2.7.3 StarGAN

The StarGAN (Choi et al., 2018) is a generative architecture designed for image-to-image

translation tasks. The image-to-image problem translation aims to learn a mapping that enables

converting an image from domain A to an image from domain B (Isola et al., 2017). The main

advantage of the StarGAN is that it can perform multiple tasks using a single pair generator and

discriminator networks, unlike other image-to-image translation methods trained for a specific

task. The core idea behind StarGAN is to learn a mapping between multiple domains. This is

achieved by a single generator network that takes an input image and a target domain label as

input and outputs an image in the specified domain. Then, a discriminator network is trained to

distinguish between generated and real images. Additionally, it employs a novel technique called

"adversarial loss with multiple discriminators," which enhances the discrimination ability of the

network and improves the quality of the generated images.

The StarGAN architecture is presented in Figure 2.26. It comprises two main components:

a discriminator network, denoted by D, and a generator network, denoted by G. Firstly, the

discriminator network (presented in "a") is trained to classify real images according to their

corresponding domain and distinguish between real and fake images. Then, the generator network

(presented in "b") takes the input image and the target domain label as input and generates a fake

image. The generator network is also trained to reconstruct the original image from the fake

image (presented in "c"). Finally, the generator network is optimized to produce images that can

be classified as the target domain by the discriminator network (presented in "d").
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Figure 2.26: The StarGAN comprises two main components: a discriminator network, denoted by D, and a generator

network, denoted by G. Firstly, the discriminator network (presented in "a") is trained to classify real images

according to their corresponding domain and distinguish between real and fake images. Then, the generator network

(presented in "b") takes the input image and the target domain label as input and generates a fake image. The

generator network is also trained to reconstruct the original image from the fake image (presented in "c"). Finally,

the generator network is optimized to produce images that can be classified as the target domain by the discriminator

network (presented in "d"). Source: (Choi et al., 2018).

2.7.4 StarGANv2

The StarGANv2 (Choi et al., 2020) is an improved version of the original StarGAN architecture.

One of the main differences between StarGANv2 and the original StarGAN is the introduction of

an attention mechanism that allows the generator to focus selectively on specific regions of the

input image. This attention mechanism has a spatial-semantic alignment module consisting of

an attention mask and a feature descriptor that helps the generator selectively attend to certain

regions of the input image based on the target domain. Furthermore, in contrast to the original

StarGAN, which used a U-Net generator architecture, the StarGANv2 generator uses a progressive

growing architecture with skip connections, similar to the StyleGAN architecture, allowing more

flexibility in generating high-quality images. The StarGANv2 also introduces a new technique

called "adaptive discriminator augmentation", which helps alleviate mode collapse, a common

issue in GANs. This technique involves augmenting the discriminator network with randomly

selected image transformations during training, encouraging the generator to produce diverse

images.

The StarGANv2 is projected with four networks: the Mapping network, the Style

encoder, the Generator, and the Discriminator. The Mapping network takes a latent code

randomly sampled from the standard Gaussian distribution, the target domain, and outputs a

style code, which maps the latent code to the target domain. The Style encoder takes the input

image, its corresponding domain and outputs a style code that maps the input image into its

corresponding domain. The Generator takes the input image, the style codes from the Mapping

network, and the Style encoder and generates the output image in the target domain. Finally,

the Discriminator evaluates the image to distinguish if it is real. Figure 2.27 presents the four

networks of the StarGANv2.
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Figure 2.27: The four networks that composed the StarGANv2. The Mapping network, presented in green, generates

the style code for the target domain. The Style encoder, presented in blue, generates the style code for the input

domain. The Generator, presented in black, used the style codes from the Mapping network and Style encoder to

translate the input image into another image with a different domain. The Discriminator, presented in red, evaluates

the truthfulness of the generated image. Source: (Choi et al., 2020).

2.8 FINAL CONSIDERATIONS

This Chapter presented relevant concepts approached in this work as Deep Learning, CNN,

Semantic Segmentation, Encoder-Decoder networks, and GANs. The CNNs reviewed in this

Chapter are fundamental for classification and segmentation problems due to their generalization

capabilities. Classification networks like VGG, ResNet, Res2Net, ResNeXt, DenseNet, SE-Net,

and RegNet are designed to extract rich and hierarchical features from images, improving

the accuracy and robustness of predictions. Specifically, architectures like ResNet introduced

residual connections that facilitate the training of very deep networks, while DenseNet promotes

feature reuse through dense connections. The segmentation networks like U-Net, U-Net++,

FPN, PSPNet, LinkNet, and MA-Net are widely used in many segmentation problems, including

medical segmentation problems. U-Net and its variants are highly effective due to their encoder-

decoder architecture with skip connections that preserve spatial details, which is essential

for detailed segmentation. FPN and PSPNet contribute advanced techniques for combining

information at multiple scales, enhancing segmentation in varied contexts.

StarGAN and StyleGAN are generative models with advanced architectures and ca-

pabilities in producing high-quality and realistic images. StarGAN is particularly notable for

its ability to perform multi-domain image-to-image translation and introduced an innovative

approach using a unified framework for diverse image translation tasks, thereby reducing the

need for separate models for each domain. StyleGAN is also renowned for its ability to generate

high-resolution and photorealistic images. It has introduced style-based generator architecture,

allowing precise control over the image generation process and enabling detailed manipulation of

features such as facial expressions, textures, and lighting conditions. The next Chapter presents

a literature review of segmentation studies and data augmentation techniques proposed for the

COVID-19 CT segmentation problem.
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3 RELATED WORKS

The basis for the development of this work is drawn from a compilation of pertinent studies,

which are succinctly summarized in this chapter. Section 3.1 presents studies proposed for the

segmentation of COVID-19 Computed Tomographys (CTs), and Section 3.2 presents studies with

generic data augmentation techniques proposed for learning-based problems, and Section 3.3

discuss studies about data augmentation techniques for COVID-19 CT segmentation. Section 3.4

is the conclusion of this chapter.

3.1 COVID-19 CT-SCAN SEGMENTATION

The study proposed by (Saood and Hatem, 2021), conducted a comparative analysis between

the U-net (Ronneberger et al., 2015) and SegNet (Badrinarayanan et al., 2017) architectures,

presented on Figure 3.1, for the COVID-19 CT-Scan segmentation problem. According to the

results obtained from the comparison, the SegNet outperformed the U-net in binary segmentation,

whereas the U-net outperformed the SegNet in multi-class segmentation.

Figure 3.1: The top architecture is the SegNet with encoder blocks in grey and decoder blocks in white, and the

bottom architecture is the U-net with encoder side in yellow and decoder side in blue. Source: (Saood and Hatem,

2021).

In their study, (Amyar et al., 2020) proposed a Multi-task Learning (MTL) architecture

that combines classification, segmentation, and reconstruction tasks. The proposed architecture,

illustrated in Figure 3.2, follows an encoder-decoder structure, with one encoder shared across

three decoders. The first decoder is responsible for image reconstruction from the latent space, the

second decoder generates a segmentation mask, and the third decoder produces a classification

result with three classes: COVID, normal, and others. For the segmentation and reconstruction

tasks, a U-net architecture is employed. At the same time, a sequence of fully connected layers

is attached at the end of the architecture for the classification task. According to (Zhang and
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Yang, 2022), incorporating multiple tasks into a single architecture can enhance the model’s

generalization ability.

Figure 3.2: The proposed architecture follows an encoder-decoder structure, with three decoders sharing one encoder.

The first decoder reconstructs the image from latent space, the second decoder generates a segmentation mask, and

the third decoder generates a classification with three classes: COVID, normal, and others. Source: (Amyar et al.,

2020).

In (Zhao et al., 2021), the authors modified the U-net model by substituting the

convolution layers on the decoder side with dilated convolutions. Additionally, they proposed

a dual attention module connected to the skip connections within the decoder module. The

dual attention module comprises two components, namely the Gate Attention Module (GAM)

and Decoder Attention Module (DAM), which refine the features extracted by the encoder and

reduce the semantic gap by combining high and low-level feature maps. Furthermore, a module

known as the Residual Attention Block (RAB) is attached to each decoder side block. The RAB

incorporates a hybrid dilated convolution module and a DAM to refine post-upsample features.

Figure 3.3 provides an overview of the proposed model.

Figure 3.3: A module called RAB is attached to each block of the decoder side. The decoder has four GAMs and

four RABs. Each RAB has a hybrid dilated convolution module and a DAM. Source: (Zhao et al., 2021).
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A U-net-based architecture with attention modules for segmenting COVID-19 lesions is

proposed in (Zhou et al., 2020). Each block in the encoder and decoder comprises a Res_dil block

that follows a series of convolutional layers. The Res_dil blocks incorporate dilated convolutions,

which aid the network in learning more detailed regions of the image. Each skip connection

in the U-net, which connects a convolution block to its corresponding deconvolution block,

incorporates two attention mechanisms constructed with dilated convolutions. The first attention

mechanism is connected at the beginning of the skip connection, while the other is connected at

the end. Figure 3.4 illustrates the proposed network, where the Res_dil blocks are depicted in

yellow, and the attention mechanisms are presented in a light and dark grey rectangles.

Figure 3.4: The Res_dil blocks, represented in yellow, use dilated convolutions to help the network learn more

detailed image regions. The attention mechanisms are presented in light and dark grey rectangles. Source: (Zhou

et al., 2020).

Figure 3.5: The Tri-level Attention-based Segmentation Network (TA-SegNet) is presented on the left side of the

image. The output of the TA-SegNet inputs the Joint Classification Unit on the right side of the image. The Joint

Classification Unit outputs the diagnostic and severity predictions. Source: (Mahmud et al., 2021a).

The work presented in (Mahmud et al., 2021a) proposes a complex framework based

on attention to segment COVID-19 CT-Volumes, as shown in Figure 3.5. The first stage of the

framework introduces a network named TA-SegNet. Based on SegNet (Badrinarayanan et al.,

2017), this network performs image segmentation and extracts diagnostic feature vectors from

COVID CT-Volumes. The diagnostic feature vectors generated by TA-SegNet are fed into the

Joint Classification Unit. A proposed Tri-level Attention Unite (TAU) is employed to enhance
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the diagnostic features and make diagnostic and severity predictions. In positive cases, the Joint

Classification Unit outputs whether the image shows COVID and its severity level.

In (Qiblawey et al., 2021), a pipeline comprising two segmentation models is proposed.

The first model takes the entire dataset’s image as input and performs segmentation of lung

regions, generating a new image containing only the lung regions. The second model uses this

image as input to segment the COVID lesions, and the severity of the lesions is evaluated at

the end of the pipeline. Several segmentation models are evaluated in the proposed pipeline.

Figure 3.6 illustrates the proposed pipeline, where the first segmentation model, called Lung

Segmentation, generates an image containing only lung regions, and the second model, called

COVID-19 Pneumonia Segmentation, receives this image and produces a segmentation mask for

COVID infections.

Figure 3.6: The first segmentation model, called Lung Segmentation, generates an image only with lung regions.

The second segmentation model, called COVID-19 pneumonia segmentation, receives the image only with the lung

regions and generates a segmentation mask with COVID infections. Source: (Qiblawey et al., 2021).

Figure 3.7: The encoder E is represented with dark blue, and the decoders G1 and G2 are presented in yellow and

light blue. The discriminator D is presented in pink. Source: (Yang et al., 2021).



53

The authors of (Yang et al., 2021) introduced a weakly-supervised COVID lesion

localization and segmentation framework. The framework includes an encoder and two decoders,

namely G1 and G2. The G1 decoder generates an image without lesions, followed by a

discriminator to determine if the image is genuine. The G2 decoder is a segmentation network

used to estimate the lesion region. The framework aims to divide the image into two images,

one with COVID lesions and the other without, to improve the detection process. Figure 3.7

presents an overview of the proposed network, where the encoder E is shown in dark blue, and

the decoders G1 and G2 are in yellow and light blue. The discriminator D is presented in pink.

In contrast,(Müller et al., 2021) proposed a 3D-U-net to perform COVID-19 lesion segmentation

on 3D volumes. As shown in Figure3.8, the architecture takes 3D patches as input and outputs

the segmentation of COVID-19 3D volumes.

Figure 3.8: The architecture receives 3D patches as input and outputs the segmentation of COVID-19 3D-Volumes.

Source: (Müller et al., 2021).

Figure 3.9: The proposed framework has two encoders. The first one in yellow, called G, extracts features from

general examples, and the second one in blue, called T, extracts features from target examples, i.e., COVID. The

features extracted from both encoders are concatenated to input the decoder D, represented in green, to generate the

segmentation of COVID CT-Scans. Source: (Zhang et al., 2021a).

In their study, (Zhang et al., 2021a) investigated the combination of feature sets extracted

from CT-Scans with COVID lesions and those with lesions from non-COVID cases. The

proposed framework employs two encoders, as illustrated in Figure 3.9: an encoder (G) that

extracts features from general examples and an encoder (T) that extracts features from target
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examples, specifically COVID cases. The features extracted from both encoders are merged and

inputted into the decoder (D), which generates the segmentation of COVID CT-Scans.

(Mahmud et al., 2021b) introduced a network named CovSegNet, which follows a

two-phase training pipeline. Firstly, a 2D version of CovSegNet, CovSegNet2D, is trained to

segment 2D images of COVID lesions. Secondly, the pre-trained CovSegNet2D is applied to

remove redundant regions from a 3D volume. Given that CovSegNet2D is designed for 2D

images, the 3D volume is divided into 2D slices and merged at the end of CovSegNet2D. In

this phase, the output of CovSegNet2D is a Region of Interest (ROI)-enhanced segmentation

volume, which serves as the input for a 3D version of CovSegNet called CovSegNet3D. The

CovSegNet3D generates the final segmentation of the 3D volume, considering intra-slice and

inter-slice contextual features. The proposed pipeline is illustrated in Figure 3.10, where the

phase one represents the training of CovSegNet2D for 2D segmentation, and the phase two

represents the utilization of CovSegNet2D to generate an ROI-enhanced volume, which is then

inputted to CovSegNet3D for the final 3D segmentation.

Figure 3.10: In Phase-1, represented in yellow, the CovSegNet2D is trained to perform segmentation of 2D slices

and in Phase-2, represented in blue, the CovSegNet2D is used to generate the ROI-enhanced volume used as input of

the CovSegNet3D. Source: (Mahmud et al., 2021b).

Figure 3.11: The input image is divided into texture and structure images and fed into the first network to generate

the ROI region image. The ROI region image and the original image are then fed into the second network, which

produces the final segmentation of lesion regions. Source: (Elharrouss et al., 2021).

(Elharrouss et al., 2021) employed two encoder-decoder networks for COVID-19 CT

segmentation. The first network is designed to segment only the ROI with the lung, while the

second network is responsible for segmenting the lesions inside the lung region. Both networks

consist of two encoders that are concatenated before the decoder. The input image is divided

into texture and structure images and fed into the first network to generate the ROI region image.

The ROI region image and the original image are then fed into the second network, which
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produces the final segmentation of lesion regions. The flowchart of the proposed networks is

illustrated in Figure 3.11.

(Das et al., 2022) enhanced a U-Net architecture by incorporating two modules: a

Attention-modulated Multi-Scalar (MS)-block and an Attention Gate (AG). The MS-block is

added to the network’s encoder and decoder steps and merges the features of dilated convolutions

using four distinct dilation rates to extract multi-scale features. The Attention Gate (AG) module

integrates the upsampled images with the encoded features to boost the importance of lesion

regions in the feature maps. The proposed architecture, called Ensembled Attention-based

Multi-scaled Convolution Network (EAMC), is illustrated in Figure 3.12.

Figure 3.12: The MS-block is added to the network’s encoder and decoder steps and merges the features of dilated

convolutions using four distinct dilation rates to extract multi-scale features. The Attention Gate (AG) module

integrates the upsampled images with the encoded features to boost the importance of lesion regions in the feature

maps. The Attention-modulated Multi-Scalar (MS)-block is depicted in "b" and the AG module is shown in "c".

The complete network is presented in "a". Source: (Das et al., 2022).

In their work, (Xu et al., 2020) proposed a Weakly-supervised Framework for COVID-19

Lesion Segmentation called GASNet, which incorporates a Generative Adversarial Network

(GAN) training process into a segmentation network. The proposed framework, illustrated in

Figure 3.13, comprises a generator, a segmenter, and a discriminator. The generator (in green)

generates healthy images without COVID-19 lesions. The segmenter (in blue) generates a

segmentation mask based on the input image. The output of the generator and the segmenter are

combined to create a healthy synthetic image. The discriminator (in orange) then receives a real
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healthy image and a synthetic one and tries to determine which is real. This training process

improves the segmentation by allowing the segmenter and generator to deceive the discriminator.
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Figure 3.13: The GASNet is composed by a generator, a segmenter, and a discriminator. The segmenter (in blue) is

responsible for taking the input image and generating a segmentation mask. The output of the generator and the

segmenter’s output are fused to generate a healthy synthetic image. Then, the discriminator (in orange) will receive

a real healthy and the synthetic one and try to find out which one is real. Source: (Xu et al., 2020).

Figure 3.14: The proposed approach involves a three-stage encoder, where each stage consists of a single convolutional

layer, followed by a Rectified Linear Units (ReLu) activation function and a max-pooling layer. The decoder also

comprises three stages, each incorporating deconvolutional and upsampling layers. A softmax layer is appended to

the decoder’s end to produce the ultimate segmentation mask. Source: (Khalifa et al., 2021).

The authors of (Khalifa et al., 2021) put forward a U-Net-style architecture to address the

COVID CT segmentation problem. The proposed approach involves a three-stage encoder, where

each stage consists of a single convolutional layer, followed by a ReLu activation function and a

max-pooling layer. The decoder also comprises three stages, each incorporating a deconvolutional

and upsampling layers. A softmax layer is appended to the decoder’s end to produce the ultimate

segmentation mask. Figure 3.14 illustrates the proposed network architecture.

In (Chen et al., 2020c), the convolutional blocks of the U-net were replaced by ResNeXt

blocks, and an attention mechanism was proposed to capture complex features from the feature

maps. Furthermore, the output of each block in the decoder receives the concatenation of the

output of the encoder block with the predecessor decoder block. The concatenation of the encoder

and decoder outputs passes through the attention mechanism before being fed into the following

decoder block. The evaluated model is presented in Figure 3.15.
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Figure 3.15: A U-Net architecture where all blocks are ResNeXts blocks. Furthermore, the output of each block in

the decoder receives the concatenation of the output of the encoder block with the predecessor decoder block. The

concatenation of the encoder and decoder outputs passes through the attention mechanism before being fed into the

following decoder block. Source: (Chen et al., 2020c).

Figure 3.16: Each block of the encoder and the decoder are composed by a convolutional layer (the yellow rectangles)

and Max-pooling layers (the green rectangles). Each AG mechanism receives the output of a decoder block and

the output of an encoder block through a skip connection (in blue), and then the output of the AG mechanism is

concatenated with the output of the encoder block past through the skip connection. Source: (Ümit Budak et al.,

2021).

In their publication, (Ümit Budak et al., 2021) introduced a modified SegNet architecture

that utilizes AG to enhance segmentation accuracy. Specifically, AG mechanisms are integrated

into the skip connections of the SegNet, highlighting the salient features in these connections and
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increasing their resolution, which improves the segmentation results. The proposed architecture,

illustrated in Figure 3.16, comprises an encoder and decoder steps for feature extraction and

mask generation. Each encoder and decoder block includes a convolutional layer (depicted as

yellow rectangles) and Max-pooling layers (shown as green rectangles). The AG mechanism

takes the output of a decoder block and an encoder block through a skip connection (denoted in

blue). Then it concatenates the output of the AG mechanism with the output of the encoder block

passed through the skip connection. This concatenated output serves as input for the subsequent

decoder block.

The segmentation network proposed in (Punn and Agarwal, 2022) is named Covid-19

Hierarchical Segmentation Network (CHS-Net). The CHS-Net consists of two Residual Attention

Inception U-Nets (RAIU-Nets) that are cascaded in sequence. An RAIU-Net is a segmentation

network based on the U-net architecture that uses a spectral-spatial and depth attention network

in the skip connections to improve the segmentation of the different feature maps resolutions.

The first RAIU-Net is employed for lung segmentation, producing an image containing only the

region inside the lungs. This image is fed into the second RAIU-Net to segment COVID-19

lesions. The architecture of the CHS-Net with the two RAIU-Nets is shown in Figure 3.17.

Figure 3.17: The first RAIU-Net performs lung segmentation, generating an image only with the region inside the

lung. This image inputs the second RAIU-Net to perform the segmentation of COVID lesions. Source: (Punn and

Agarwal, 2022).

(Asad et al., 2023) proposed the Adaptive Multiscale Online Likelihood Network

(MONet), which utilizes a U-Net architecture during the training phase to produce a segmentation

image with a corresponding probability of lesion and background regions. Subsequently, a

human specialist provides feedback on the initial segmentation result by selecting foreground and

background seeds and rejecting incorrect segmentation results. The likelihood network uses 3D

convolutions with varying kernel sizes to extract multi-scale features from the generated feature

maps. These are then concatenated to input fully connected layers responsible for producing the

final segmentation image. The user can iteratively refine the segmentation result by adding or

removing seeds, and the likelihood network is dynamically updated in real-time to incorporate

the user’s feedback. Figure 3.18 presents the proposed MONet.
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Figure 3.18: The MONet utilizes a U-Net architecture during the training phase to produce a segmentation image

with a corresponding probability of lesion and background regions. Subsequently, a human specialist provides

feedback on the initial segmentation result by selecting foreground and background seeds and rejecting incorrect

segmentation results. The likelihood network uses 3D convolutions with varying kernel sizes to extract multi-scale

features from the generated feature maps. These are then concatenated to input fully connected layers responsible

for producing the final segmentation image. Source: (Asad et al., 2023).

(Hu et al., 2022) made modifications to an encoder-decoder network by incorporating

three modules: Edge Supervised Module (ESM), Auxiliary Semantic Supervised Module

(ASSM), and Attention Fusion Module (AFM). The ESM is added to the first convolutional

layers of the encoder to accentuate edge information and object boundaries. Then, the ASSM is

applied to the deeper layers in the encoder to extract semantic information from the feature maps

in these layers. Finally, the AFM fuses multi-scale feature maps of different levels in the decoder

to produce the final segmentation map. The objective of the AFM is to integrate high-level and

low-level features to improve the network’s capacity to segment multi-scale objects. Figure 3.19

depicts the proposed network architecture.

Figure 3.19: The ESM is added to the first convolutional layers of the encoder to accentuate edge information and

object boundaries. Then, the ASSM is applied to the deeper layers in the encoder to extract semantic information

from the feature maps in these layers. Finally, the AFM fuses multi-scale feature maps of different levels in the

decoder to produce the final segmentation map. Source: (Hu et al., 2022).
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The authors in (Zhang et al., 2021b) also presented a U-Net architecture with an attention

module between the encoder and decoder steps. Additionally, they proposed a modification in

the decoder by employing super-pixel blocks to restore the resolution of the feature maps and

generate the output segmentation. The encoder in their proposed model uses Residual Network

(ResNet) blocks to extract features from the input images. The modifications made to the U-Net

architecture are illustrated in Figure 3.20.

Figure 3.20: The proposed U-Net architecture has an attention module between the encoder and decoder steps.

Additionally, the decoder has super-pixel blocks to restore the resolution of the feature maps and generate the output

segmentation. The encoder in the proposed model uses ResNet blocks to extract features from the input images.

Source: (Zhang et al., 2021b).

Figure 3.21: The proposed network incorporates attention mechanisms to enhance the learning of representations

from the infected regions. These attention mechanisms are attached at the end of each convolutional block in the

encoder, and their output is concatenated with the input of each deconvolutional block in the decoder. Source:

(Ahmed et al., 2022).

The COVID-19 CT segmentation problem was addressed by (Ahmed et al., 2022) using

a U-Net model. The proposed network incorporates attention mechanisms (Oktay et al., 2018) to

enhance the learning of representations from the infected regions. These attention mechanisms
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are attached at the end of each convolutional block in the encoder, and their output is concatenated

with the input of each deconvolutional block in the decoder. Figure 3.21 provides a detailed view

of the proposed network.

The network proposed in (Zhang et al., 2022) replaces the conventional convolutional

and deconvolutional blocks with the Multiscale Feature Capture Block (MSFCB), which utilizes

dilated convolutions to gather context information from various scales. The initial three encoder

blocks capture low-level features, while the following two capture high-level features. Additionally,

a Multiscale Feature Fusion (MSFF) module is incorporated between the encoder and decoder

steps to combine multilevel features extracted from the preceding three MSFCB blocks.

Figure 3.22: The proposed network replaces the conventional convolutional and deconvolutional blocks with the

MSFCB, which utilizes dilated convolutions to gather context information from various scales. The initial three

encoder blocks capture low-level features, while the following two capture high-level features. Additionally, a MSFF

module is incorporated between the encoder and decoder steps to combine multilevel features extracted from the

preceding three MSFCB blocks. Source: (Zhang et al., 2022).

In (Joseph Raj et al., 2021), the authors proposed the integration of an Improved Dilation

Convolution (IDC) module between the encoder and decoder to enhance the receptive field and

gather more precise edge information, which assisting with characteristic extraction. Additionally,

the authors utilized an AG module in every skip connection between the encoder and decoder

mirror blocks to minimize spatial information loss in the feature mapping toward the end of the

encoder. Figure 3.23 represents the proposed architecture. The grey dashed square between the

last encoder block and the first decoder block is the IDC module, and the triangle in each skip

connection is the AG module.
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Figure 3.23: The grey dashed square between the last encoder block and the first decoder block is the IDC module,

and the triangle in each skip connection is the AG module. Source: (Joseph Raj et al., 2021).

Table 3.1: List of papers reviewed in this work with methods proposed for COVID-19 CT segmentation.

Paper Author/Year
Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation (Amyar et al., 2020)

Residual Attention U-Net for Automated Multi-Class Segmentation of COVID-19 Chest CT Images (Chen et al., 2020c)

GASNet: Weakly-supervised Framework for COVID-19 Lesion Segmentation (Xu et al., 2020)

Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism (Zhou et al., 2020)

COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet (Saood and Hatem, 2021)

D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution (Zhao et al., 2021)

Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning (Qiblawey et al., 2021)

Towards Unbiased Covid-19 Lesion Localisation And Segmentation Via Weakly Supervised Learning (Yang et al., 2021)

Robust chest CT image segmentation of COVID-19 lung infection based on limited data (Müller et al., 2021)

ADID-UNET—a segmentation model for COVID-19 infection from lung CT scans (Joseph Raj et al., 2021)

CovTANet: A Hybrid Tri-Level Attention-Based Network for Lesion Segmentation,

Diagnosis, and Severity Prediction of COVID-19 Chest CT Scans
(Mahmud et al., 2021a)

CovSegNet: A Multi Encoder–Decoder Architecture for Improved Lesion Segmentation of COVID-19 Chest CT Scans (Mahmud et al., 2021b)

An Encoder–Decoder-Based Method for Segmentation of COVID-19 Lung Infection in CT Images (Elharrouss et al., 2021)

A deep learning semantic segmentation architecture for COVID-19 lesion discovery in limited chest CT datasets (Khalifa et al., 2021)

Efficient COVID-19 Segmentation from CT Slices Exploiting Semantic Segmentation

with Integrated Attention Mechanism
(Ümit Budak et al., 2021)

Exploiting Shared Knowledge From Non-COVID Lesions for Annotation-Efficient

COVID-19 CT Lung Infection Segmentation
(Zhang et al., 2021a)

Novel coronavirus pneumonia detection and segmentation based on the deep-learning method (Zhang et al., 2021b)

CHS-Net: A Deep Learning Approach for Hierarchical Segmentation of COVID-19 via CT Images (Punn and Agarwal, 2022)

Deep co-supervision and attention fusion strategy for automatic COVID-19 lung infection segmentation on CT images (Hu et al., 2022)

A Sustainable Deep Learning-Based Framework for Automated Segmentation of COVID-19

Infected Regions: Using U-Net with an Attention Mechanism and Boundary Loss Function
(Ahmed et al., 2022)

Collective Intelligent Strategy for Improved Segmentation of COVID-19 from CT (Das et al., 2022)

Semantic segmentation of COVID-19 lesions with a multiscale dilated convolutional network (Zhang et al., 2022)

Adaptive Multi-scale Online Likelihood Network for AI-assisted Interactive Segmentation (Asad et al., 2023)



63

Table 3.1 presents a list of papers reviewed in this work with methods proposed for

COVID-19 CT segmentation.

3.2 DATA AUGMENTATION

Data augmentation is a technique used in deep learning to increase the size and diversity of

a training datasets (Ruiz et al., 2019, 2020b,a). It involves applying transformations to the

original data, generating new examples similar to the original but with some modifications.

These transformations include rotations, translations, scaling, shearing, flipping, and adding

noise or distortions (Krinski et al., 2022). It also aims to provide the model with more diverse

examples, which can improve its ability to generalize and perform well on unseen data (Shorten

and Khoshgoftaar, 2019). Data augmentation is particularly useful when dealing with limited

training data or when the data is imbalanced, with some classes having significantly fewer

examples than others. By applying transformations to the original data, data augmentation can

balance the dataset and prevent the model from overfitting the training data. It can also improve

the model’s ability to handle variations in the input data, such as changes in lighting or viewpoint,

and make it more robust to noise and errors (Shorten and Khoshgoftaar, 2019).

The Random Erasing (Zhong et al., 2020) is an example of data augmentation that adds

new information to the image. This approach involves randomly selecting a rectangular area in

an image and replacing the pixels in that region with random values or the average pixel value

of the entire image. The rectangle’s height, width, and center position are chosen randomly.

This technique improves the model’s robustness to object occlusions and reduce overfitting by

introducing new information into the image. Figure 3.24 displays examples of the Random

Erasing method applied to different images.

Figure 3.24: Some examples of the Random Erasing data augmentation applied in different images. A rectangle

with random values is positioned on top of the image. This rectangle’s height, width, and center points are also

random values. Source: (Zhong et al., 2020).

The CutMix (Yun et al., 2019) technique combines two images to create a new one

and shares a similar concepts with the Random Erasing (Zhong et al., 2020). The idea is to

select a rectangular region from one image and replace it with the corresponding region from

another image while adjusting the pixel values in the overlapping region to reflect the combined

contribution of both images. This process creates a new image with a mix of objects and

backgrounds from both images. The size and position of the rectangular region are chosen

randomly. The CutMix helps improve the model’s generalization ability by encouraging it

to learn features from multiple classes simultaneously and reducing overfitting. Figure 3.25

provides examples of this data augmentation method, where Sub-figure 3.25(b) shows an image
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containing a dog, and Sub-figure 3.25(a) displays the same image mixed with another image of a

cat. Compared to methods that fill a rectangular image area with zero or random noise values,

CutMix has the advantage of minimizing information loss, thereby improving training efficiency.

(a) Example of image with a dog. (b) The same image of the dog but mixed with an

image of a cat.

Figure 3.25: CutMix combines two images by adding a selected region of Image A to a selected region of Image B.

Source: (Yun et al., 2019).

Figure 3.26: Some examples of the different mixing techniques evaluated by (Summers and Dinneen, 2019). First,

an example of linear mixing data augmentation is presented, where the input images are added to each other. Then,

eight examples of non-linear mixing algorithms evaluated by the authors are presented. Source: (Summers and

Dinneen, 2019).

In a similar way of CutMix (Yun et al., 2019), which involves merging two distinct

images, the study presented by (Summers and Dinneen, 2019) explored various non-linear mixing

algorithms. Figure 3.26 displays some instances of the different mixing techniques analyzed
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by the researchers. Initially, Figure 3.26 presents a linear mixing data augmentation technique,

which involves adding input images to each other. Subsequently, Figure 3.26 presents eight

non-linear mixing algorithms. The authors highlight that non-linear mixing algorithms can be as

effective as linear mixing data augmentation techniques.

The AugMix (Hendrycks et al., 2020) is a data augmentation technique combining

multiple image processing operations to create many augmented images. It consists of three

main steps: augmentation chain creation, mixing of augmented images, and normalization. In

the first step, image processing operations, such as rotation, shearing, and color distortion, are

randomly selected to create an augmentation chain. The length and strength of the chain are also

randomly determined. In the second step, multiple augmented images are generated by applying

different augmentation chains to the same input image. These augmented images are mixed

using a specific mixing parameter to create a final augmented image. Finally, in the third step,

the normalized version of the augmented image is fed into the deep learning model for training.

Figure 3.27 presents an example of the AugMix application with three augmentation sequences

applied to the image. Then, the three sequences are combined in one image, with each sequence

receiving a weight in the element-wise convex combination. In the end, the generated image and

the original image are combined to generate the final image.

Figure 3.27: Example of the AugMix application with three augmentation sequences applied on the image. Then,

the three sequences are combined in one image, with each sequence receiving a weight in the elementwise convex

combination. In the end, the generated image and the original image are combined to generate the final image.

Source: (Hendrycks et al., 2020).

The ClassMix data augmentation, proposed by (Olsson et al., 2021), is a data augmenta-

tion technique similar to CutMix (Yun et al., 2019). However, instead of replacing a portion of

an image with a portion of another image, ClassMix replaces the class label of an image with the

class label of another randomly selected image. Specifically, in ClassMix, a randomly selected

image is chosen from the training dataset. Its class label is replaced with the class label of another

randomly selected image in the same mini-batch. The resulting mixed image is then used to train

the model. The intuition behind ClassMix is that it encourages the model to learn more robust

and discriminative features by forcing it to generalize to images that belong to different classes.

This is especially useful in cases where the training dataset is imbalanced or lacks diversity. In

this algorithm, a segmentation network is applied to generate the segmentation masks 𝑆𝐴 and 𝑆𝐵
of the images A and B. Half of the classes from 𝑆𝑎 are randomly selected and used to create a

new segmentation mask M. Then, M creates a mixed image 𝑋𝑎 and a mixed segmentation mask

𝑌𝑎. The ClassMix pipeline is presented in Figure 3.28.
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Figure 3.28: In the ClassMix, a segmentation network is applied to generate the segmentation masks 𝑆𝐴 and 𝑆𝐵 of

the images A and B. Half of the classes from 𝑆𝑎 are randomly selected and used to create a new segmentation mask

M. Then, M creates a mixed image 𝑋𝑎 and a mixed segmentation mask 𝑌𝑎. Source: (Olsson et al., 2021).

Figure 3.29: The GridMask overlaps a grid of rectangular patches on the input image, and the patches are randomly

selected for masking. The grid can be uniform or random, and the size and shape of the patches can be varied.

Source: (Chen et al., 2020b).
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The GridMask (Chen et al., 2020b) overlaps a grid of rectangular patches on the input

image, and the patches are randomly selected for masking. The grid can be uniform or random,

and the size and shape of the patches can be varied. The main idea of this data augmentation

is the same as Random Erasing proposed by (Zhong et al., 2020), which forces the network to

learn from occluded regions in the image and reduces overfitting. This method’s advantage over

Random Erasing and others that randomly remove regions from the image is that these random

algorithms can remove relevant regions from the image. Figure 3.29 presents an example of the

Grid Mask application with three different square sizes on top of a cat image.

In (Kisantal et al., 2019), a data augmentation method was proposed to enhance the

detection and segmentation of small objects. The authors utilized a "copy and paste" technique

to generate multiple copies of the target objects. This approach increased the number of anchor

boxes produced by Mask-RCNN (He et al., 2017), facilitating the network to identify and detect

small objects. Figure 3.30 illustrates two instances of the proposed augmentation technique. The

first image depicts a man playing tennis with several ball copies, and the second image shows

three women playing with multiple copies of frisbees.

Figure 3.30: Examples of the data augmentation proposed by (Kisantal et al., 2019). The authors applied a "copy

and pasting" strategies to create several copies of the interest objects. The first image presents a man playing

tennis with several ball copies, while the second image presents three women playing several copies of frisbees.

Source: (Kisantal et al., 2019).

Figure 3.31: The steps of the Few-shot UNsupervised Image-to-image Translation (FUNIT) data augmentation

proposed by (Liu et al., 2019). In the first step (called training), the network is trained with different classes of dogs

(dog races), and in the second step (called deployment), the network can translate the images of dogs to images of

felines. Source: (Liu et al., 2019).

The Few-shot UNsupervised Image-to-image Translation (FUNIT) (Liu et al., 2019)

is an unsupervised image-to-image translation method that aims to learn a mapping between

two domains of images without using paired data. It consists of two main steps: training and

deployment. During training, the model learns to map images from one domain to another using

an GAN with a content reconstruction loss. The adversarial loss ensures that the generated
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images are indistinguishable from real images. In contrast, the content reconstruction loss ensures

that the content of the input image is preserved in the output image. During deployment, a few

input images are used to generate diverse output images by randomly sampling from the learned

distribution of the target domain. This allows FUNIT to generate various images with different

styles and appearances, which can be used for data augmentation in various image classification

tasks. Figure 3.31 illustrates the steps of the proposed FUNIT data augmentation. In the first

step (called training), the network is trained with different classes of dogs (dog races), and in

the second step (called deployment), the network can translate the images of dogs to images

of felines. The proposed method uses several images of different classes in the training step,

called source images, and learns to translate the images between these classes. Finally, in the

deployment step, FUNIT uses a small set of images from the target class to translate from the

source classes to the target class.

The InstaBoost (Fang et al., 2019) is an augmentation technique specifically designed to

improve instance segmentation. This algorithm uses an inpainting technique (Bertalmio et al.,

2003) to remove the interest object from the image and place them in another region of the

image. An appearance consistency heatmap (Field et al., 1993) is used to estimate the new

region of the image where the object will be placed. The InstaBoost has three main steps. First,

object proposals are generated for each image using a Region Proposal Network (RPN). Second,

probability maps are computed for each object proposal, which estimates the probability of an

object being present in a given image region. Third, the object proposals are augmented by

copy-pasting objects from other images based on the probability maps. The probability maps

guide the copy-pasting process, which ensures that objects are pasted in regions of the image

where they are most likely to appear. This results in a diverse set of augmented images that contain

variations of the objects’ positions and scales, improving the robustness of the model to variations

in object appearance. Figure 3.32 presents an example of InstaBoost data augmentation.

(a) Example of image with a tennis player highlighted in yellow. (b) The same image but with the tennis player, highlighted in blue, placed

in a different image region.

Figure 3.32: Example of InstaBoost data augmentation. Source: (Fang et al., 2019).

Table 3.2 presents a list of papers reviewed in this work with data augmentation

techniques.
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Table 3.2: List of papers reviewed in this work with data augmentation techniques.

Paper Author/Year
CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features (Yun et al., 2019)

Augmentation for small object detection (Kisantal et al., 2019)

Improved Mixed-Example Data Augmentation (Summers and Dinneen, 2019)

Few-Shot Unsupervised Image-to-Image Translation (Liu et al., 2019)

InstaBoost: Boosting Instance Segmentation via Probability Map Guided Copy-Pasting (Fang et al., 2019)

Random Erasing Data Augmentation (Zhong et al., 2020)

AugMix: A Simple Method to Improve Robustness and Uncertainty under Data Shift (Hendrycks et al., 2020)

GridMask Data Augmentation (Chen et al., 2020b)

ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning (Olsson et al., 2021)

Random Erasing Data Augmentation (Zhong et al., 2020)

3.2.1 Salience Based Data Augmentation

The SuperMix (Dabouei et al., 2021) uses Visual Salience to mix images. For each image to

be mixed, the algorithm generates a mixing binary mask with the salience information of the

respective image. Then, a teacher model already trained in the problem is applied to mix the

images, optimize the position of the salient region in the mixed image, and ensure that both

salient regions are presented in the final mixed image. Figure 3.33 presents three examples of the

SuperMix data augmentation. Input 0 and input 1 are the images being mixed, with the respective

salience maps mask 0 and mask 1. The Mixed images are the final image generated.

Figure 3.33: Three examples of the SuperMix data augmentation. Input 0 and input 1 are the images being

mixed, with the respective salience maps mask 0 and mask 1. The Mixed images are the final image generated.

Source: (Dabouei et al., 2021).

The method introduced by (Choi et al., 2021), known as SalfMix, is a single image-based

augmentation. This technique involves the random selection of two images from the training

dataset. Subsequently, a saliency map is computed for each image, followed by an average

pooling operation on these saliency maps to emphasize salient regions instead of individual
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salient pixels. The next step entails copying the most salient region from each image to the

least salient region within the same image, creating two novel training samples. The SalfMix

procedure’s final phase entails applying a complementary mixing augmentation to blend the two

new images. The complementary mixing methods utilized in this stage are Mixup (Zhang et al.,

2017), SaliencyMix (Uddin et al., 2021), and CutMix (Yun et al., 2019). Figure 3.34 display the

pipeline of the SalfMix algorithm.

Figure 3.34: SalfMix technique involves the random selection of two images from the training dataset. Subsequently,

a saliency map is computed for each image, followed by an average pooling operation on these saliency maps

to emphasize salient regions instead of individual salient pixels. The next step entails copying the most salient

region from each image to the least salient region within the same image, creating two novel training samples. The

SalfMix procedure’s final phase entails applying a complementary mixing augmentation to blend the two new

images. Source: (Choi et al., 2021).

SnapMix, introduced by the authors in (Huang et al., 2021), represents an augmentation

approach that asymmetrically combines two images by leveraging their Semantic Percentage

Maps. The initial phase of the SnapMix algorithm involves employing a Convolutional Neural

Network (CNN) to generate Semantic Percentage Maps for a given pair of images. Concurrently,

a collection of random boxes is extracted from these two images. Subsequently, a series of

transformations are applied to the region obtained from the second image, aligning it with

the region extracted from the first image. In the concluding stage of SnapMix, the semantic

proportions act as a guiding principle for merging the one-hot labels of the two images. Figure 3.35

presents the SnapMix algorithm pipeline for mixing two images.

PuzzleMix (Kim et al., 2020), a refinement of the SaliencyMix technique (Uddin et al.,

2021), is an augmentation algorithm designed to mix two images. In pursuit of this objective,

PuzzleMix leverages the saliency maps of the two images to identify their most salient regions.

The authors then proposed an optimal transportation algorithm to mix these two salient areas,
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Figure 3.35: The initial phase of the SnapMix algorithm involves employing a CNN to generate Semantic Percentage

Maps for a given pair of images. Concurrently, a collection of random boxes is extracted from these two images.

Subsequently, a series of transformations are applied to the region obtained from the second image, aligning it with

the region extracted from the first image. In the concluding stage of SnapMix, the semantic proportions act as a

guiding principle for merging the one-hot labels of the two images. Source: (Huang et al., 2021).

resulting in a fresh image incorporating the most significant features from both original images.

Figure 3.36 demonstrates an instance of the PuzzleMix algorithm combining two images.

Saliency Before Transport After Transport

Input Before Transport After Transport

Figure 3.36: The PuzzleMix is an augmentation algorithm designed to mix two images. In pursuit of this objective,

PuzzleMix leverages the saliency maps of the two images to identify their most salient regions. The authors then

proposed an optimal transportation algorithm to mix these two salient areas, resulting in a fresh image incorporating

the most significant features from both original images. Source: (Kim et al., 2020).

The SaliencyMix technique (Uddin et al., 2021) also employs visual saliency to mix

images. This approach involves utilizing two images: a target and a source image. The algorithm

generates a saliency map for the source image and subsequently chooses a patch containing the

most salient region within that image. This selected patch is then combined with the target image.

Figure 3.37 presents the sequential process of SaliencyMix augmentation.
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Figure 3.37: The SaliencyMix approach involves utilizing two images: a target and a source image. The algorithm

generates a saliency map for the source image and subsequently chooses a patch containing the most salient region

within that image. This selected patch is then combined with the target image. Source: (Uddin et al., 2021).

Table 3.3 presents a list of papers reviewed in this work with data augmentation

techniques based on visual salience features.

Table 3.3: List of papers reviewed in this work with data augmentation techniques based on visual salience features.

Paper Author/Year
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup (Kim et al., 2020)

SuperMix: Supervising the Mixing Data Augmentation (Dabouei et al., 2021)

SalfMix: A Novel Single Image-Based Data Augmentation Technique Using a Saliency Map (Choi et al., 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (Huang et al., 2021)

SaliencyMix: A Saliency Guided Data Augmentation Strategy for Better Regularization (Uddin et al., 2021)

3.3 DATA AUGMENTATIONS FOR COVID-19 CT SEGMENTATION PROBLEM

Due to the novelty of COVID-19, only a few studies have proposed data augmentation techniques

for COVID-19 segmentation problems. In general, the studies in the COVID-19 CT segmentation

field are limited to generic data augmentation applications (Narin et al., 2021; Diniz et al., 2021;

Zhang et al., 2022; Salama and Aly, 2022; Yao et al., 2022). The most common operation

are variations of an affine transformation, such as random flipping, translation, rotation, and

scaling. Müller et al. (2020, 2021) evaluated eight generic data augmentation divided into

three categories: spatial, color and noise transformations. An example of data augmentation

proposed for COVID-19 CT segmentation is presented in the work of (Yazdekhasty et al., 2021).

The authors employed a Conditional GAN (Mirza and Osindero, 2014) to generate CT images.

Initially, they extracted the lesion regions from the images, resulting in an image with only the

lesion regions. These images were mirrored and then fed into the Conditional GAN to generate

new synthetic images of lesions. Subsequently, the generated lesions replaced the original

lesions in the original image. The generated images were used to train a Fully Convolutional

Network (FCN) architecture adapted with a Channel-wise attention mechanism (Woo et al., 2018)

to extract contextual information from the images. Figure 3.38 illustrates the proposed data

augmentation pipeline.

The approach proposed in (Mahapatra and Singh, 2021) aims to generate new samples

for COVID-19 CT segmentation by using the geometric information of the lesions. To achieve

this, the input image 𝑋 is first processed by a Weakly-Supervised Segmentation (WSS) module,

which generates a segmentation mask 𝑆𝑋 . Then, 𝑆𝑋 is fed into a Spatial Transformer Network

(STN) to create a new segmentation mask by altering the shape, location, scale, and orientation

attributes of the COVID-19 lesions. The output of the STN (Jaderberg et al., 2015) is used

as input to a GAN. The generator of the GAN uses the STN mask to produce a new sample
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Figure 3.38: Initially, they extracted the lesion regions from the images, resulting in an image with only the lesion

regions. These images were mirrored and then fed into the Conditional GAN to generate new synthetic images of

lesions. Subsequently, the generated lesions replaced the original lesions in the original image. The generated images

were used to train a FCN architecture adapted with a Channel-wise attention mechanism. Source: (Yazdekhasty

et al., 2021).

image, which the discriminator evaluates. The discriminator includes two classifier networks

that assess the accuracy of the class and shape of the new image. The pipeline of this proposed

data augmentation approach is depicted in Figure3.39.

Figure 3.39: The input image 𝑋 is fed into a WSS module to generate a segmentation mask 𝑆𝑋. Then, 𝑆𝑋 inputs an

STN to generate a new segmentation mask changing the shape, attributes of location, scale, and orientation of the

COVID lesions. The output of the STN inputs a GAN. Source: (Mahapatra and Singh, 2021).

The authors in (Jiang et al., 2021) proposed a novel data augmentation technique for

COVID-19 using a dual-network GAN. The generator and discriminator are designed to extract

global and local features, respectively, and the generator consists of two sub-discriminators to

differentiate multi-resolution images. The authors also propose the Dynamic Element-wise Sum

(DESUM) to balance the information extracted during the generator step and the Dynamic Feature

Matching (DFM) to weigh the loss of input with different resolutions dynamically. Figure 3.40

illustrates the proposed GAN, where the top image shows the generator training process that

receives two segmentation masks of different resolutions and generates synthesized images in

high and low resolutions with the lesions of the segmentation maps.

The authors of (Chen et al., 2023) also proposed a data augmentation technique for

COVID-19 CT segmentation. They used the Fourier transformation to convert CT images from

cancer patients to CT images with COVID-19 lesions. Then, they applied a teacher-student
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Figure 3.40: The top image presents the generator training process, the bottom left image presents the discriminator

training process, and the bottom right image presents the generator test process. The orange generator extracts

global information from the high-resolution image, and the green generator extracts local information from the

low-resolution image. The bottom left image shows the discriminator training process with two sub-discriminators,

one for high-resolution and the other for low-resolution images. The output of the discriminator is a new image with

the lesions of the generated segmentation map. The bottom right image shows the generator test process, which

receives a segmentation map and outputs the final image. Source: (Jiang et al., 2021).

architecture to generate segmentation masks for the new COVID-19 CT images. The student

architecture received the cancer CT images converted to COVID-19 and unlabeled CT images

with COVID-19 lesions to output the segmentation masks. Although the student network

achieved good results for cancer CT segmentation, it did not perform well for COVID-19 CT

segmentation. To address this issue, the authors introduced a teacher architecture trained with

unlabeled COVID-19 CT images to assist the student architecture in extracting robust COVID-19

features. The proposed method is illustrated in Figure 3.41.
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Figure 3.41: The proposed data augmentation uses the Fourier transformation to convert CTs from cancer patients to

CTs with COVID-19 lesions. Then, a teacher-student architecture is applied to generate segmentation masks for the

new COVID-19 CTs. The student architecture receives the cancer CTs converted in COVID-19 CTs and a set of

unlabeled CTs with COVID-19 lesions and outputs the segmentation masks. The teacher architecture is trained with

unlabeled COVID-19 CTs to help the student architecture to extract robust features of COVID-19. Source: (Chen

et al., 2023).

Table 3.4 presents a list of papers reviewed in this work with data augmentation

techniques proposed for COVID-19 CT segmentation.

Table 3.4: List of papers reviewed in this work with data augmentation techniques proposed for COVID-19 CT

segmentation.

Paper Author/Year
Segmentation of Lungs COVID Infected Regions by Attention Mechanism and Synthetic Data (Yazdekhasty et al., 2021)

CT Image Synthesis Using Weakly Supervised Segmentation and Geometric Inter-Label

Relations For COVID Image Analysis
(Mahapatra and Singh, 2021)

COVID-19 CT Image Synthesis With a Conditional Generative Adversarial Network (Jiang et al., 2021)

A teacher–student framework with Fourier Transform augmentation for COVID-19

infection segmentation in CT images
(Chen et al., 2023)

3.4 FINAL CONSIDERATIONS

This chapter reviews various studies that address the COVID-19 segmentation problem and

the data augmentation techniques proposed for COVID-19 CT segmentation datasets. Most

of these studies utilized popular segmentation models in Semantic Segmentation, with U-Net

being the most prevalent architecture. Additionally, this chapter examines studies on generic data

augmentation techniques for classification and segmentation problems. Generally, these works

applied transformations such as rotation, translation, scaling, shearing, flipping, and adding noise

or distortions. Some studies also explored mixing image algorithms for data augmentation, while

recent approaches proposed specific domain augmentation techniques. Furthermore, there are

some works that explored visual salience features on data augmentation techniques and others

that used GANs for data augmentation in the COVID-19 segmentation problem. This study aims

to introduce a novel data augmentation technique for the COVID-19 segmentation problem. The

next chapter will detail the proposed data augmentation approach and the steps to achieve the

research objectives.
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4 PROPOSED WORK

This chapter presents the steps in developing this work and provides a detailed overview of the

proposed training pipeline and the novel Data Augmentation method.

4.1 PROPOSED WORK

Semantic segmentation of COVID-19 Computed Tomographys (CTs) scans has emerged as a

crucial research domain in response to the global COVID-19 pandemic (Chen et al., 2023; Fung

et al., 2021; Sun et al., 2022; Enshaei et al., 2022) and this field representing one of the numerous

endeavors undertaken to combat the COVID-19 disease (Chen et al., 2020a; Ai et al., 2020; Shi

et al., 2021). Chapter 3 explores various studies that have leveraged Deep Learning techniques

and Deep Neural Networks to accurately segment COVID-19 CTs scans, yielding remarkable

outcomes in this undertaking (Shi et al., 2021). However, Semantic Segmentation methods

based on Deep Neural Networks suffer from a significant drawback, namely the substantial data

requirements for training the networks effectively (Shorten and Khoshgoftaar, 2019; Ankile et al.,

2020). In the context of COVID-19 CT segmentation, two additional factors further limit the

utilization of Deep Neural Networks. Firstly, labeling Semantic Segmentation is arduous and

time-consuming, necessitating accurate labeling for every pixel in the image to avoid erroneous

network convergence (Shi et al., 2021; Cao and Bao, 2020). Moreover, the labeling of CT

segmentation datasets must be carried out by highly specialized doctors capable of correctly

annotating the lesion regions within the image (Shi et al., 2021).

Data augmentation techniques have been extensively employed in various Deep Learning

domains to address these limitations (Shorten and Khoshgoftaar, 2019; Ruiz et al., 2019, 2020b).

Nonetheless, in the context of COVID-19 CT segmentation, a thorough investigation of data

augmentation methods is lacking, as existing approaches rely on generic techniques commonly

utilized in diverse Deep Learning problems (Müller et al., 2021; Narin et al., 2021; Diniz et al.,

2021; Zhang et al., 2022; Salama and Aly, 2022; Yao et al., 2022). Drawing upon these insights,

the primary objective of this work is to present an innovative data augmentation approach

designed explicitly for segmenting COVID-19 lesions in CT scans and create new CT scans with

COVID-19 lesions.

The proposed technique involves harnessing Visual Salience, a subjective perceptual

attribute found in objects that enables them to stand out from their surrounding areas and

instantaneously capture the human brain’s attention (Itti, 2007; Krinski et al., 2019). By

leveraging Visual Salience, it becomes feasible to adjust the segmentation complexity of new CT

examples, generating instances with COVID-19 lesions exhibiting varying levels of salience. This

enables the generation of new examples with COVID-19 lesions that possess either a heightened

or diminished salience level, thereby providing a broader range of segmentation difficulty. As

presented in Figure 4.1, there are differences in size and position of COVID-19 lesions in a CT.

Upon visual examination of the images and their corresponding ground-truth data, it

becomes evident that the lesions depicted in Sub-figure 4.1(a) exhibit a higher level of salience

compared to the lesions in Sub-figure 4.1(b), while the lesions in Sub-figure 4.1(c) possess

an even lower salience level. This disparity in salience levels arises from factors such as

the proportion and spatial position of the lesions within the images. The varying levels of

salience directly impact the training phase of a deep learning-based segmentation network,

making examples like Sub-figure 4.1(a) and Sub-figure 4.1(b) relatively easier for the model to



77

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Examples of different visual salience level in COVID-19 a CT. Sub-figures 4.1(a), 4.1(b), and 4.1(c)

present three examples of CTs from the Zenodo (Jun et al., 2020; Ma et al., 2021) dataset and its corresponding

segmentation mask in Sub-figures 4.1(d), 4.1(e), and 4.1(f). Green is the label for the Left Lung, blue is the label for

the Right Lung, and red is the label for the COVID-19 lesion. Source: (Jun et al., 2020; Ma et al., 2021).

segment compared to examples like Sub-figure 4.1(c). The concept behind data augmentation

utilizing Visual Salience is to consider these differences while generating new examples and

aligning the new data to create a balanced dataset with optimized examples in terms of Visual

Salience. As a result, the newly generated examples will not be as easy as those illustrated

in Sub-figure 4.1(a) nor as challenging as those depicted in Sub-figure 4.1(c). The proposed

approach for this novel data augmentation based on Visual Salience involves three key steps:

evaluation of segmentation networks, assessment of data augmentation techniques, and creation

of a new data augmentation workflow.

The segmentation of COVID-19 CTs is an emerging field, as discussed in Chapter 3,

where numerous studies have employed Deep Learning techniques and Deep Neural Networks

to achieve remarkable results in COVID-19 CT segmentation (Shi et al., 2021). Nevertheless,

due to the rapid introduction of novel approaches heightened by the global pandemic, there is a

demand for comprehensive evaluations to be conducted. In order to establish a standardized basis

for comparing various architectures on multiple recently introduced datasets, the initial phase of

this study involves conducting a thorough benchmarking of multiple segmentation architectures.

In this step, twenty encoder models where combined with six decoder models, totaling one

hundred twenty segmentation models evaluated. Section 6.1 in Chapter 6 details the experiments

conducted in this phase; the evaluated networks; the training, validation, and testing procedure;

the datasets utilized; and the results obtained.

One notable finding from the comparison between the Encoder-Decoder architectures

is that the datasets exhibit certain limitations, including a limited number of images and a
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significant class imbalance. These factors can influence the learning process of deep neural

networks. Aiming to overthrow these problems, the best network evaluated in the previous

step is used to perform a comparison between twenty data augmentation techniques across five

recently proposed datasets. Also, a deep investigation on how different probabilities of applying

a data augmentation was performed and each data augmentation was evaluated with ten different

probabilities. Section 6.2 in Chapter 6 details the experiments conducted in this phase; the

augmentation techniques evaluated; the training, validation, and testing procedure; the datasets

utilized; and the results obtained.
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Figure 4.2: A comparison is made between the traditional training workflow and the unified training methodology.

In the traditional approach (left), the datasets train the network individually. On the other hand, in the unified training

strategy (right), the datasets are combined to train the network. Source: (Krinski et al., 2023).

Moreover, an alternative training methodology is examined apart from the conventional

training approach, where the datasets are used individually to train the network. The proposed

training methodology involves merging the training sets from the five datasets into a larger unified

training set and the twenty data augmentation techniques were also evaluated with this new

training strategy. As depicted in Figure 4.2 (right), the individual training subsets are consolidated

into a single extensive set, while the testing procedure remains unchanged. The original class

labels were adapted to background and lesion to ensure a fair comparison. Furthermore, a

balancing procedure was implemented to ensure a fair representation of each original sample

in the new combined training set. For smaller datasets, namely CC-CCII, MedSeg, MosMed,

and Zenodo, their samples were repeated 𝑛 times to match the number of samples in the largest

dataset, Ricord1a (details about the datasets are provided in Chapter 5). The value of 𝑛𝑖 for

each dataset 𝑖 was calculated as the ceiling of the number of images in the Ricord1a training

set (calculated as the number of images in the Ricord1a dataset minus the number of images

in the test and validation sets of the Ricord1a dataset) divided by the number of images in the

corresponding training set of the dataset 𝑥𝑖 (calculated as the number of images in the dataset

𝑥𝑖 minus the number of images in the test and validation sets of the dataset 𝑥𝑖), as described by

Equation 4.1. Section 6.2 in Chapter 6 details the experiments conducted in this new training

strategy and the results obtained.

𝑛𝑖 =

⌈
|𝑅𝑖𝑐𝑜𝑟𝑑1𝑎 |

|𝑥𝑖 |

⌉
(4.1)

The third phase of this work involves the development and evaluation of a novel technique

for data augmentation. This technique utilizes a Generative Adversarial Network (GAN) model
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to generate healthy CT scans of lung regions and combine them with existing labeled COVID-19

lesions to create additional samples and enhance the segmentation training process. This phase

included two evaluations of the proposed workflow: one version without the salience algorithm,

where lesions were randomly added to the healthy CT scans, and an improved version that uses

visual salience distance to add lesions.

4.1.1 Proposed Augmentation - DACov

As presented in Figure 4.3, the overall workflow consists of three main steps: healthy CT

generation with GANs, lung segmentation algorithm, and lesion addition algorithm. In the

initial step of the data augmentation workflow (healthy CT generation), the GAN is trained

using two images: CT scans with COVID-19 lesions and CT scans without lesions, or only CT

scans without lesions, depending on the generative network. By learning from these images, the

GAN can effectively generate healthy CT scans without COVID-19 lesions. In the subsequent

step, a segmentation model is trained in the CC-CCII and Zenodo datasets to perform lung

segmentation. The segmentation model is trained in these two datasets because they are the only

two datasets that provided the lung field annotation in the ground-truth masks. After training, the

segmentation model takes the images produced by the GAN and generates lung segmentation

masks for these new images. These masks ensure that the newly added lesions are placed only

within the lung regions of the images.
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Segmentation
Network
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New lesioned
image

Figure 4.3: Workflow of the DACov version of the proposed approach, which is divided into three main steps. A

GAN is trained using two classes, healthy and COVID-19-infected lungs, or only healthy lungs, depending on the

network. Thus, the network generates new healthy samples that subsequently have the lung region labeled by a

pre-trained segmentation model, ensuring that when the lesions are added later they are cropped by the lung mask.

The last step randomly adds labeled lesions from real CT images into the generated samples. Labeled lesion regions

were highlighted in red, labeled lung region was highlighted in blue. Source: (Krinski et al., 2023).

The final step of the proposed workflow is the algorithm that adds lesions, which uses

the lung segmentation mask to place the new COVID-19 lesion inside the lung region, resulting
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in a new CT scan with COVID-19 lesions. This step receives the newly generated image without

COVID-19 lesions (healthy images) and the respective lung masks, a COVID-19 lesion image

(dataset image), and the respective segmentation mask. The algorithm uses the lung masks from

both images to generate the bounding boxes of each lung (right and left lungs). Then, for each

healthy image generated by the GAN, the algorithm tries to find a corresponding image from the

dataset in which the bounding boxes of the lungs are similar sizes. The size difference is limited

to a range of 10% smaller or 10% bigger. This limitation is necessary due to the great difference

between the size of the lungs in the dataset, which could lead to distortion in the lesions when

added to another image. After finding an image in the dataset that matches the size, the algorithm

uses the AddWeighted algorithm from OpenCV (Bradski, 2000) library to add the lesions in the

new lung images generated by the GANs. Sub-Section 6.3.3 in Chapter 6 details the experiments

conducted with the DACov version of the proposed augmentation.

4.1.2 Proposed Augmentation - SalDACov

The SalDACov version of the proposed augmentation has the same steps as the DACov version:

healthy CT generation with GANs, lung segmentation algorithm, and lesion addition algorithm.

Figure 4.4 presents the overall workflow. The healthy CT generation and lung segmentation

algorithm are the same as the DACov version. However, in this version, the lesion addition

algorithm is replaced by a visual salience algorithm, presented in Figure 4.5, to guide the choice

of the lesions that will be added to each lung.
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Figure 4.4: Workflow of the SalDACov version of the proposed approach, which is divided into three main steps. A

GAN is trained using two classes, healthy and COVID-19-infected lungs, or only healthy lungs, depending on the

network. Thus, the network generates new healthy samples that subsequently have the lung region labeled by a

pre-trained segmentation model, ensuring that when the lesions are added later they are cropped by the lung mask.

The last step uses visual salience features to add labeled lesions from real CT images into the generated samples.

Labeled lesion regions were highlighted in red, labeled lung region was highlighted in blue.

The salience algorithm receives the images generated by the GANs (set A) and the

dataset images (set B). The algorithm also receives the lung masks generated in the segmentation
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algorithm step for both sets of images. Then, in the first step of the algorithm, the bounding

boxes of each lung (left and right lung) are generated for both sets of images. Also, in this step,

a salience feature vector is generated for each lung region (left and right lungs) of the images

generated by the GAN and for each lesion region (left and right lesions) of the images from the

dataset.
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Figure 4.5: Workflow of the salience algorithm in the proposed data augmentation approach. In the first step of the

algorithm, the bounding boxes of each lung (left and right lung) are generated (healhty and dataset images). Also, in

this step a salience feature is generated for each lung region (left and right lungs) of the images generated by the

GANs and for each lesion region (left and right lesions) of the images from the dataset. Then, for each lung, the

algorithm generates two lists of compatibles lesions for each lung. The first list stores the compatible lesions in the

same side lung, and the second list stores the compatible lesions in the opposite side lung (flipped). After that, the

K-Nearest Neighbors (KNN) (Fix and Hodges, 1989) is applied to sort the compatibles lesions using the salience

feature vector distance between the healthy image and the compatible lesions in the list. In the last step, the lesions

are added to the healthy images.

Visual salience comprises three features: color, intensity, and orientation (Itti, 2007). In

the proposed augmentation, the intensity was extracted with the grayscale histogram, and the

orientation was extracted with the Local Binary Patterns (LBP) (He and Wang, 1990; Wang and

He, 1990) histogram. The color feature was left out since the CT images are only grayscale. So,

the salience feature vector comprises 128 features encoding the grayscale histogram and 128

features encoding the LBP histogram, totaling a vector of 256 features.
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In the next step, the algorithm uses the size of the lung bounding box to find compatible

lesions for each lung in the image generated by the GANs. More precisely, for each healthy image

generated by the GAN, the algorithm searches in the images from the dataset to build a list of

compatible lungs. The algorithm looks at each image in the dataset, attempting to find at least

25 compatible lungs. The search can be stopped earlier (i.e., early stop for the dataset) if there

are at least 100 elements per list (easy case, with many compatibles). If the image i does not

have at least 25 elements on its list after going through all lesions on the dataset (i.e., early stop

for image i), the image is excluded from the following steps thus reducing the total number of

artificial images (worst case, with the least compatible cases).

Similar to the DACov version of the proposed augmentation, the size of the lung

bounding box is used to build the list of compatible lungs. The difference in size is limited to the

range [0.9,1.1]. However, different from the DACov version, which enforced both lungs in the

healthy image to match the size of the lungs in the image from the dataset, this version makes the

match independent. Each lung in the image might receive a lesion from a different image.

Furthermore, the algorithm generates two lists of compatible lesions for each lung. That

is, the left lung 𝐿 of the healthy image 𝑖 has a list of images from the dataset that the left lung

is size compatible, list 𝐿𝑖_𝑙𝑒 𝑓 𝑡; and a list of images from the dataset that the right lung is size

compatible, list 𝐿𝑖_𝑟𝑖𝑔ℎ𝑡, (the lesions in the right in the dataset will be flipped when added to

the left lung in a healthy image). The right lung 𝑅 of the healthy image 𝑖 also has a list of images

from the dataset that the right lung is size compatible, list 𝑅𝑖_𝑟𝑖𝑔ℎ𝑡; and has a list of images from

the dataset that the left lung 𝑅𝑖_𝑙𝑒 𝑓 𝑡 is size compatible (the lesions in the left in the dataset will

be flipped when added to the right lung in a healthy image).

After that, the proposed algorithm uses the KNN (Fix and Hodges, 1989) with the

Euclidean distance to sort the compatible lesions based on the distance between the salience

feature vector of the healthy image and the salience feature vector of the compatible lesions in

the list. That is, for each list of compatible lungs 𝑙, the KNN with a size of |𝑙 | is applied to sort

that list using the distance between the salience feature vector of the healthy image generated

by the GAN and the compatible images from the dataset. Then, for each lung, the algorithm

takes a compatible lesion from the compatible list based on the salience distance and uses the

AddWeighted algorithm from OpenCV (Bradski, 2000) library to add the lesion. The lesion can

be chosen considering the higher salience distance (randomly chosen between the top 10 last

elements in the list) or the lower salience distance (randomly chosen between the top 10 first

elements).

4.2 FINAL CONSIDERATIONS

This chapter outlined the proposed data augmentation method and the steps to develop this

work. The data augmentation approach leverages GANs to generate healthy CT images without

COVID-19 lesions. A segmentation model is then trained to produce segmentation masks for

the lung regions in these newly generated images. These lung masks guide the augmentation

algorithm in accurately placing new lesions within the image. Subsequently, a salience algorithm

identifies the specific lesion region to be added to the healthy image produced by the GAN.

The effectiveness of the proposed augmentation can be assessed based on salience distance

(maximum, minimum, and random) and the lesion’s position relative to the original dataset image

(same side, opposite side, and random). The next chapter will discuss the datasets and evaluation

metrics used to assess each stage of this work.
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5 METHODOLOGY

This chapter is structured into three main sections. Firstly, Section 5.1 introduces the dataset

employed for training both the segmentation models and Generative Adversarial Networks

(GANs). Secondly, Section 5.2 details the evaluation metrics utilized to assess the performance

of the segmentation models and GANs. Thirdly, Section 5.3 describes the statistical methods

employed in this study. Lastly, Section 5.4 concludes the chapter.

5.1 DATASETS

In this work, a total of six datasets were used: CC-CCII (Zhang et al., 2020), MedSeg (MedSeg,

2021), MosMed (Morozov et al., 2020), Ricord1a (Tsai et al., 2020), Ricord1b (Tsai et al., 2020),

and Zenodo (Jun et al., 2020; Ma et al., 2021). The following sub-sections present details about

each dataset.

5.1.1 CC-CCII

The first dataset is a subset of the CC-CCII (Zhang et al., 2020) dataset comprising 750 images

with segmentation masks with four labels: Background, Lung Field, Ground Glass Opacity

(GGO), and Consolidation. Each image has dimensions of 512× 512 pixels. Examples of images

and their corresponding segmentation masks from the CC-CCII dataset are shown in Figure 5.1.

The Lung Field is represented in blue, the GGO in green, and Consolidation in red. Regions

without any color correspond to the Background regions. Additionally, the pixel distribution for

each label in the images is unbalanced, with the classes occupying the following mean proportion:

Background (0.87152), Lung Field (0.11691), GGO (0.00802), and Consolidation (0.00353).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: Examples of images and segmentation masks from CC-CCII datasets. The Lung Field is presented

in blue, the GGO in green, and Consolidation in red. The regions without any color are the Background regions.

Source: (Zhang et al., 2020).
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5.1.2 MedSeg

The MedSeg (MedSeg, 2021) dataset includes 929 images and labels for four classes: Background,

GGO, Consolidation, and Pleural Effusion, with each image having a size of 512 × 512 pixels.

Examples of images and segmentation masks from the MedSeg dataset are presented in Figure 5.2,

where the GGO is depicted in blue, Consolidation in green, and Pleural Effusion in red. The

regions without any color represent the Background regions. This dataset presents some issues

like coarse segmentation masks and trash markings, as shown in Sub-figures 5.2(f) and 5.2(c),

that make the learning process of Deep Neural Networks difficult. The number of pixels for each

label in the images is unbalanced, with the classes occupying the following mean proportion:

Background (0.98563), GGO (0.01072), Consolidation (0.00351), and Pleural Effusion (0.0001).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Examples of images and segmentation masks from MedSeg dataset. The GGO is presented in blue,

the Consolidation in green and Pleural Effusion in red. The regions without any color are the Background regions.

Source: (MedSeg, 2021).

5.1.3 MosMed

The MosMed (Morozov et al., 2020) dataset is composed by 2,049 images, with labels for two

classes: Background and GGO-Consolidation, with each image being of size of 512 × 512 pixels.

Figure 5.3 presents examples of images and segmentation masks from the MosMed dataset. The

GGO-Consolidation is presented in red and the regions without any color are the Background

regions. The MosMed is the most unbalanced dataset, with the classes occupying the following

mean proportion: Background (0.99810) and GGO-Consolidation (0.00189).

5.1.4 Zenodo

The Zenodo (Jun et al., 2020; Ma et al., 2021) dataset comprises 3,520 images, each of size

512× 512 pixels, with labels for four classes: Background, Left Lung, Right Lung, and Infections.

Examples of images and their corresponding segmentation masks from the Zenodo dataset are

shown in Figure 5.4, where the Left Lung is presented in blue, the Right Lung in green, and the

Infections in red. The regions without any color represent the Background regions. The Zenodo
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.3: Examples of images and segmentation masks from MosMed dataset. The GGO-Consolidation is

presented in red, and the regions without any color are the Background regions. Source: (Morozov et al., 2020).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Examples of images and segmentation masks from Zenodo dataset. The Left Lung is presented in blue,

the Right Lung is green, and the Infections are red. The regions without any color are the Background regions.

Source: (Jun et al., 2020; Ma et al., 2021).

dataset presents the following mean proportion for each class: Background (0.89893), Left Lung

(0.04331), Right Lung (0.04923), and Infections (0.00852).

5.1.5 Ricord1a

The Ricord (Tsai et al., 2020) dataset is divided into three sets: 1a, 1b, and 1c. The set 1a is

the only one with segmentation masks, the set 1b has Computed Tomography (CT)-Scans with



86

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Examples of images and segmentation masks from Ricord1a dataset. The Infections are presented in red,

and the regions without any color are the Background regions. Source: (Tsai et al., 2020).

negative diagnostics for COVID-19, and the set 1c has CT-Scans with positive diagnostics for

COVID-19 . The Ricord1a is the largest segmentation dataset, composed of 9,166 images, with

labels for two classes: Background and Infections. Each image has a size of 512 × 512 pixels.

Figure 5.5 presents examples of images and segmentation masks from Ricord1a dataset. The

Infections are presented in red, and the regions without any color are the Background regions. The

Ricord1a has the following mean proportion: Background (0.95295) and Infections (0.04704).

5.1.6 Ricord1b

The Ricord1b is another subset of the Ricord (Tsai et al., 2020) dataset. This dataset has 21,220

CT-Scans with negative diagnostics for COVID-19. Each image has a size of 512 × 512 pixels.

Figure 5.6 presents examples of images in this dataset.

5.2 EVALUATION METRICS

5.2.1 Semantic Segmentation Metrics

To evaluate the performance of Deep Neural Networks in COVID-19 CT-Scan semantic segmen-

tation, commonly used metrics are the F-score (equation 5.2) and Intersection over Union (IoU)

(equation 5.3) are employed. These metrics are widely used in Semantic Segmentation (Minaee

et al., 2021). Additionally, during the training process, the segmentation models were optimized

using a weighted mean loss function (equation 5.1), with weights 𝑤1 and 𝑤2 set to 1. The loss

function was defined as the weighted average of both F-score and IoU to enhance the performance

of both metrics. The F-score, Precision, and Recall are commonly used metrics for evaluating

binary classification problems, particularly in cases where the number of samples of one category

is significantly greater than the other (Pedregosa et al., 2011). Since the datasets employed in

this study involved more than two classes, the F-score and IoU were computed instead. For

each image, the F-score and IoU were calculated as the mean of the F-score and IoU across all

classes. The F-measure is computed as the harmonic average of Precision and Recall, which are
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.6: Examples of images from Ricord1b dataset. Source: (Tsai et al., 2020).

metrics used to evaluate the performance of binary classification models. Precision measures

the proportion of positive predictions, while Recall measures the proportion of actual positive

instances correctly classified as positive (Powers, 2008). True Positive refers to the number of

positive instances correctly classified as positive, False Positive refers to the number of negative

instances wrongly classified as positive, and False Negative refers to the number of positive

instances wrongly classified as negative.

𝐿𝑜𝑠𝑠 = 1 −
𝑤1 ∗ 𝐹 − 𝑠𝑐𝑜𝑟𝑒 + 𝑤2 ∗ 𝐼𝑜𝑈

2
(5.1)

where:

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
2

(5.2)

and

𝐼𝑜𝑈 =
𝑇𝑎𝑟𝑔𝑒𝑡 ∩ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑎𝑟𝑔𝑒𝑡 ∪ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
(5.3)

The IoU is a widely used metric to evaluate Semantic Segmentation methods (Jaccard,

1912; Minaee et al., 2021). It involves the predicted object’s area and the target object’s area and

two values are calculated: the intersection and the union of these areas. The intersection is the

overlapping area between the predicted and target objects, while the union is the sum of both

areas. The IoU is then calculated as the intersection value divided by the union value (Minaee

et al., 2021). The segmentation methods aim to generate segmentation masks with predicted

object areas as close to the target area as possible. The calculation of the IoU is illustrated in

Figure 5.7, where the area of overlap is represented by the blue-colored square between the two

white-colored squares, and the union area is all blue-colored areas. Therefore, the higher the

intersection area between the predicted and target objects, the better the segmentation method.
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Figure 5.7: Illustration of the IoU calculation. The area of overlap is the blue-colored square between the two

white-colored squares, and the area of union is all blue-colored areas. Source: (Jaccard index, 2021).

5.2.2 Generative Adversarial Networks Metrics

The Fréchet Inception Distance (FID) (Heusel et al., 2017) is employed to assess the performance

of the GANs architectures. This metric measures the similarity between the images generated by

the GAN and the real images used to train the discriminator. The FID uses one of the deeper

layers of the Inception V3 (Szegedy et al., 2016) network to compare the mean and standard

deviation of the distributions. The FID is calculated as presented in equation 5.4.

𝐹𝐼𝐷 = | |𝜇𝑋 − 𝜇𝑌 | |
2 − 𝑇𝑟

(∑
𝑋
+
∑

𝑌
− 2

√∑
𝑋

∑
𝑌

)
(5.4)

The 𝑋 and 𝑌 are the real and fake vectors extracted from the Inception model. 𝜇𝑋 and

𝜇𝑌 are the magnitudes of 𝑋 and 𝑌 . 𝑇𝑟 is the trace matrix, and
∑
𝑋 and

∑
𝑌 are the covariance

matrix.

5.3 STATISTICAL METHODS

5.3.1 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test for comparing two

distributions and assessing the performance difference between two classifiers (Demšar, 2006).

One significant advantage of this test is its ability to handle distributions that are not necessarily

Gaussian. The Wilcoxon test is computed as follows:

• Let 𝑥 = [𝑥0, 𝑥1, ..., 𝑥𝑛] and 𝑦 = [𝑦0, 𝑦1, ..., 𝑦𝑛] be two random distribution that will be

compared;

• The null hypothesis of the Wilcoxon signed-rank says that the median of the differences

between 𝑥 and 𝑦 is equal to zero;

• The alternative hypothesis of the Wilcoxon signed-rank says that the median of the

differences between 𝑥 and 𝑦 is different of zero;

• Compute the absolute difference 𝑑 between 𝑥 and 𝑦, 𝑑 = [|𝑥0−𝑦0 |, |𝑥1−𝑦1 |, ..., |𝑥𝑛−𝑦𝑛 |];
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• Compute the sign 𝑠 of the difference between 𝑥 and 𝑦, 𝑠 = [𝑠𝑔𝑛(𝑥0 − 𝑦0), 𝑠𝑔𝑛(𝑥1 −

𝑦1), ..., 𝑠𝑔𝑛(𝑥𝑛 − 𝑦𝑛)];

• Discard from 𝑑 and 𝑠 the differences equal to zero;

• Order 𝑑 in ascending order;

• For each value of 𝑑, assign a rank 𝑟 = 1, 2, 3, ..., 𝑛. Repeated absolute values receive

the average of the ranks they cover;

• Each rank 𝑟𝑖 of 𝑑𝑖 receives a sign 𝑠𝑖;

• Calculate 𝑅+ as the sum of the positive ranks and 𝑅− as the sum of the negative ranks,

both in absolute values;

𝑅+ = |

𝑛∑
𝑖=0

𝑟𝑖 |, 𝑟𝑖 > 0 (5.5)

𝑅− = |

𝑛∑
𝑖=0

𝑟𝑖 |, 𝑟𝑖 < 0 (5.6)

• Take the smaller value between 𝑅+ and 𝑅−, 𝑇 = 𝑚𝑖𝑛(𝑅+, 𝑅−);

• Calculates a z-score as follows:

𝑧 =
𝑇 − 1

4
𝑛(𝑛 + 1)√

1
24
𝑛(𝑛 + 1) (2𝑛 + 1)

(5.7)

The implementation of the Wilcoxon signed-rank test in this study utilized the Scipy

library (Virtanen et al., 2020). Scipy is an open-source Python library for scientific, mathematical,

and engineering computations. The Scipy implementation of the Wilcoxon test also accommodates

various null hypotheses, enabling evaluation of whether the median differences between 𝑥 and 𝑦
are negative (𝑥 < 𝑦) or positive (𝑥 > 𝑦).

5.3.2 Friedman Test

Like the Wilcoxon signed-rank test, the Friedman test is a non-parametric statistical hypothesis

test for comparing multiple distributions (Demšar, 2006) that does not assume that the compared

distributions follow a Gaussian distribution. In this study, the Friedman test was applied to the

experiments using the implementation provided by the Scipy library (Virtanen et al., 2020). The

calculation of the Friedman test is as follows:

• The measurements must be organized in a matrix of 𝑛 rows (the size of the distributions)

and 𝑘 the columns (the number of distributions);

• Rank each row (the best value receives rank 1, the second-best value receive rank 2, ...)

and replace the values in the matrix with the ranks (repeated ranks are replaced by the

average rank);

• Find the average rank of each column as follows:

𝑅𝑗 =
1

𝑛

𝑛∑
𝑖

𝑟𝑖 𝑗 (5.8)
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where 𝑖 is the i-th row and 𝑗 is the j-th column;

• Calculate the test statistic as follows:

𝑄 =
12𝑛

𝑘 (𝑘 + 1)

𝑘∑
𝑗=1

(𝑅𝑗 −
𝑘 + 1

2
)2 (5.9)

5.3.3 P-value

The statistical significance is determined using the p-value, which represents the probability of

obtaining the observed statistical value when the null hypothesis is true. This study defines a

significance level of 𝛼 = 0.05, which is commonly used (Demšar, 2006). If the p-value is greater

than 𝛼, the null hypothesis can not be rejected, whereas if the p-value is less than 𝛼, the null

hypothesis is rejected.

5.4 FINAL CONSIDERATIONS

This chapter presented the datasets, evaluation metrics, and statistical methods used to perform

experiments and evaluate the segmentation and data augmentation methods in this work. The

following chapter presents the experiments and evaluations performed in this work.
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6 EVALUATION AND EXPERIMENTS

This work can be divided into three main phases, and this chapter presents the experiments and

results obtained in each phase of this work. Section 6.1 (first phase) comprehensively analyzes

120 Encoder-Decoder segmentation models applied to COVID-19 Computed Tomography (CT)

image segmentation. Next, Section 6.2 (second phase) presents a detailed analysis of 20 traditional

data augmentation techniques applied to the COVID-19 CT image segmentation. This Section

is divided into Subsection 6.2.1 and Subsection 6.2.2. The techniques were evaluated on each

training set individually in the first Subsection, and in the second Subsection, the techniques were

evaluated in a unified training set of all datasets.

6.2 DEEP NEURAL
NETWORK

EVALUATION

6.3.1
 Experiment I:

Traditional Data
Augmentation

Techniques

6.3.2
Experiment II:

Training Sets Unified

6.3 DATA AUGMENTATION EVALUATION

6.4.1 
Healthy CT
 Generation

6.4.2 
Lung

Segmentation

6.4.3.1 
Adding New Lesions -

Initial Version
6.4.3.2 

Evaluation -
Initial Version

6.4.3.3
 Adding New Lesions -

Improved Version
6.4.3.4

Evaluation - Improved
Version

6.4.3.5
Evaluation - Improved

Version Plus Traditional
Data Augmentation

Techniques

6.4 PROPOSED DATA AUGMENTATION EVALUATION

6.4.3 Adding New Lesions

Phase 1: Evaluation of
120 Encoder-Decoder
segmentation models

Phase 2: Evaluation of 20 tradition data
augmentation techniques. The techniques

were evaluated on each training set
individually and in a unified training set of

all datasets

Phase 3: Evaluation of the proposed
augmentation technique on the unified

training set. The proposed augmentation
was evaluated without the saliency

algorithm (random version) and with the
saliency algorithm (saliency version). The

improved version was also evaluated
together with the traditional data

augmentation techniques.

Figure 6.1: This work can be divided into two main phased. Phase 1: Evaluation of 120 Encoder-Decoder

segmentation models. Phase 2: Evaluation of 20 tradition data augmentation techniques. Phase 3: Evaluation of the

proposed augmentation technique on the unified training set.

Section 6.3 (third phase) presents a step-by-step evaluation of the proposed data

augmentation method based on visual salience. Firstly, Subsection 6.3.1 presents the healthy

CT generation process. Subsection 6.3.2 presents the segmentation model trained to perform

semantic segmentation of the lung areas of the healthy CT images. Then, Subsection 6.3.3

presents the experiments performed in the proposed data augmentation technique.

Two versions of the proposed augmentation were evaluated. The first version uses a

random algorithm to place the lesions in the healthy CT images. Subsubsection 6.3.3.1 details the

algorithm, and Subsubsection 6.3.3.2 presents the experiments performed with the first version of

the proposed augmentation. The second version uses visual salience features to place the lesions

in healthy CT images. Subsubsection 6.3.3.3 details the algorithm, and Subsubsection 6.3.3.4

presents the experiments performed with the second version of the proposed augmentation.
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Subsubsection 6.3.3.5 presents the evaluation of the second version of the proposed

augmentation applied together with the traditional augmentation techniques. Finally, Section 6.4

concludes the chapter by summarizing the main findings of this work. Figure 6.1 illustrates the

roadmap of the experiments performed in this work.

6.1 DEEP NEURAL NETWORK EVALUATION

Aiming to perform the segmentation of COVID-19 CTs, many studies apply Deep Learning

techniques and Deep Neural Networks, achieving impressive results in the task (Shi et al., 2021).

In general, Deep Neural Networks are widely applied in many segmentation problems due to

their great generalization capacity, enabling them to learn how to represent different classes of

objects in the image (Garcia-Garcia et al., 2018). However, as new approaches are being quickly

proposed due to the urgency of the global pandemic, there is a pressing need for a comprehensive

evaluation of these methods in the COVID-19 CT segmentation field. Therefore, to provide a

standardized comparison of various architectures on multiple recently proposed datasets, the

first step of this study involves an extensive benchmark of encoder-decoder models. In this step,

twenty encoder models where combined with six decoder models, totaling one hundred twenty

models evaluated.

Encoder Decoder

Input Images Segmentations

Figure 6.2: The encoder-decoder structure. The images inputs the encoder, the output of the encoder inputs the

decoder, and the output of the decoder are the segmentation masks.

Figure 6.2 presents the encoder-decoder structure of the Deep Learning models evaluated

in this step. In this step, twenty encoder models where combined with six decoder models,

totaling one hundred twenty models. The encoder architectures evaluated in this step are:

ResNet-50 and ResNet-101 (He et al., 2016); ResNeXt50 and ResNeXt101 (Xie et al., 2017);

Res2Net50 and Res2Net101 (Gao et al., 2021); Visual Geometry Group (VGG)-16 (Simonyan and

Zisserman, 2015); DenseNet121, DenseNet169, and DenseNet201 (Huang et al., 2017); Squeeze-

and-Excitation Networks (SE-Net)-ResNet50, SE-Net-ResNet101, SE-Net-ResNeXt50, and

SE-Net-ResNeXt101 (Hu et al., 2018); RegNetx-002, RegNetx-004, RegNetx-006, RegNety-002,

RegNety-004, and RegNety-006 (Radosavovic et al., 2020). And decoders evaluated are: U-

Net (Ronneberger et al., 2015), U-Net++ (Zhou et al., 2018), Feature Pyramid Network (FPN) (Lin

et al., 2017), Pyramid Scene Parsing Network (PSPNet) (Zhao et al., 2017), LinkNet (Chaurasia

and Culurciello, 2017), and Multi-scale Attention Net (MA-Net) (Fan et al., 2020b). Table 6.1

presents a list of the twenty encoders evaluated and each architecture’s respective number of

parameters in millions of parameters (M). Table 6.2 presents a list of all six decoders evaluated.

In order to evaluate the segmentation models, the PyTorch Segmentation Mod-

els (Yakubovskiy, 2020) implementation was utilized. Additionally, a transfer learning (Zhuang
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Table 6.1: List of all twenty encoders evaluated and the respective number of parameters of each architecture in

millions of parameters (M).

Encoder Parameters Encoder Parameters
ResNet-50 23M SE-ResNet-50 26M

ResNet-101 42M SE-ResNet-101 47M

ResNeXt-50 32 × 4𝑑 22M SE-ResNeXt-50 32 × 4𝑑 25M

ResNeXt-101 32 × 8𝑑 86M SE-ResNeXt-101 32 × 4𝑑 46M

Res2Net-50 26𝑤-4𝑠 23M RegNetx-002 2M

Res2Net-101 26𝑤-4𝑠 43M RegNetx-004 4M

VGG-16 14M RegNetx-006 5M

Densenet-121 6M RegNety-002 2M

Densenet-169 12M RegNety-004 3M

Densenet-201 18M RegNety-006 10M

Table 6.2: List of all six decoders.

Decoders

U-Net U-Net++ FPN PSPNet LinkNet MA-Net

et al., 2021) approach was adopted where the pre-trained weights from Imagenet (Deng et al.,

2009), available in the library by (Yakubovskiy, 2020), were used to initialize the models. With

the transfer learning, the model starts with a foundation of learned features, which enables

the models to leverage knowledge gained from pretraining on large datasets and applying it to

specific tasks with limited data, such as medical imaging. Additionally, transfer learning can

improve model performance by providing a more generalized understanding of data patterns,

which enhances its ability to adapt and generalize to new but problems (Zhuang et al., 2021).

The models were trained and evaluated on five distinct CTs datasets: MedSeg (MedSeg,

2021), Zenodo (Jun et al., 2020; Ma et al., 2021), CC-CCII (Zhang et al., 2020), MosMed (Morozov

et al., 2020), and Ricord1a (Tsai et al., 2020). In order to perform the training and validation,

a standard strategy adopted in the Covid-19 CT segmentation problem is dividing the training

set in K-folds, with a 5-fold cross-validation being the most common division adopted (Müller

et al., 2021; Saood and Hatem, 2021; Yazdekhasty et al., 2021; Fung et al., 2021; Sun et al.,

2022). Following that, the 5-fold cross-validation strategy was applied in this evaluation to avoid

the results being attached to a particular training and validation division, resulting in a total of

3,000 experiments.

Furthermore, all datasets were divided into training and test sets following the Pareto

principle (Erridge, 2006; Dunford et al., 2014), with the training set being composed of 80% of the

images and the test set with 20% of the images. This division is also applied to other segmentation

problems (Khan and Borji, 2018; Dmitriev and Kaufman, 2019; Pandey et al., 2020; Li et al.,

2019; Habili et al., 2023), including medical segmentation problems (Dong et al., 2018; Chen

et al., 2019; Cao et al., 2020; Li et al., 2023; Gite et al., 2022). Then, all networks were trained for

50 epochs in training set with a batch size of 8. The learning rate started at 0.001 and was divided

by 10 every 10 epochs. The parameters’ values were selected by referencing the available values

on the GitHub repository where the network implementations were available (Yakubovskiy,

2020). Additionally, preliminary experiments were conducted to evaluate the networks’ training

behavior and the training curves when the parameters were changed.
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Figure 6.3: Average training and validation curves of the CC-CCII dataset. The curves are color-coded by decoder

(U-Net, U-Net++, FPN, PSPNet, LinkNet, and MA-Net) and represents the average F-score of the five-folds of all

encoders (ResNet-50-fold0, ..., ResNet-50-fold4, ResNet-101-fold0, ..., ResNet-101-fold4, etc) using that decoder.

Source: (Krinski et al., 2021).

Figure 6.4: Average training and validation curves of the MedSeg dataset. The curves are color-coded by decoder

(U-Net, U-Net++, FPN, PSPNet, LinkNet, and MA-Net) and represents the average F-score of the five-folds of all

encoders (ResNet-50-fold0, ..., ResNet-50-fold4, ResNet-101-fold0, ..., ResNet-101-fold4, etc) using that decoder.

Source: (Krinski et al., 2021).
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Figure 6.5: Average training and validation curves of the MosMed dataset. The curves are color-coded by decoder

(U-Net, U-Net++, FPN, PSPNet, LinkNet, and MA-Net) and represents the average F-score of the five-folds of all

encoders (ResNet-50-fold0, ..., ResNet-50-fold4, ResNet-101-fold0, ..., ResNet-101-fold4, etc) using that decoder.

Source: (Krinski et al., 2021).

Figure 6.6: Average training and validation curves of the Ricord1a dataset. The curves are color-coded by decoder

(U-Net, U-Net++, FPN, PSPNet, LinkNet, and MA-Net) and represents the average F-score of the five-folds of all

encoders (ResNet-50-fold0, ..., ResNet-50-fold4, ResNet-101-fold0, ..., ResNet-101-fold4, etc) using that decoder.

Source: (Krinski et al., 2021).



96

Figure 6.7: Average training and validation curves of Zenodo dataset. The curves are color-coded by decoder (U-Net,

U-Net++, FPN, PSPNet, LinkNet, and MA-Net) and represents the average F-score of the five-folds of all encoders

(ResNet-50-fold0, ..., ResNet-50-fold4, ResNet-101-fold0, ..., ResNet-101-fold4, etc) using that decoder. Source:

(Krinski et al., 2021).

In order to evaluate only the networks, no data augmentation was applied and the input

images were resized to 256×256. To minimize distortion on resizing the images, the scaling factor

was based on the largest dimension of the image, and the smallest size was padded with zeros

accordingly. Figures 6.3, 6.4, 6.5, 6.6, and 6.7 presents training and validation curves generated

by the six encoders on each dataset. The curves are color-coded by decoder (U-Net, U-Net++,

FPN, PSPNet, LinkNet, and MA-Net) and represents the average F-score of the five-folds of all

encoders (ResNet-50-fold0, ..., ResNet-50-fold4, ResNet-101-fold0, ..., ResNet-101-fold4, etc)

attached to that decoder.

The U-Net++, U-Net, LinkNet, and MA-Net architectures demonstrated similar perfor-

mance, with U-Net++ achieving the best results in most datasets. FPN and PSPNet achieved the

lowest results overall, although PSPNet achieved very similar results to U-Net++ in the Ricord1a

dataset. Across all models, generalization was strong, with the validation curve closely tracking

the training curve in most datasets. However, the CC-CCII dataset presented a challenge to

generalization, with most models showing a significant gap between the validation and training

curves. The only network that performed well on this dataset was PSPNet. Moreover, the

FPN could not capable of learning the Ground Glass Opacity (GGO)-Consolidation label in

the MosMed dataset. As presented in Figure 6.5, both train and validation curves are straight

lines with an F-score of 50%. The FPN achieved an F-score of 99% for background and 0%

for lesion class. Such behavior happened due to the critical class imbalance present in this

dataset (Background (0.99810) and GGO-Consolidation (0.00189)). The number of classes in

this dataset (two classes) also collaborated with this result. In the Ricord1a, another dataset with

two classes, the FPN achieved results very far from the other networks.
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Table 6.3: The average value of the five-folds cross-validation strategy for test set evaluated with the last train weight.

The best F-score values are highlighted in blue, and the best Intersection over Union (IoU) values are highlighted in

red. Source: (Krinski et al., 2021).

Decoder Encoder CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

U-Net++

ResNet-50

ResNet-101

ResNeXt50_32x4d

ResNeXt101_32x8d

Res2Net-50_26w_4s

Res2Net-101_26w_4s

VGG-16

Densenet-121

Densenet-169

Densenet-201

SE-ResNet-50

SE-ResNet-101

SE-ResNeXt50_32x4d

SE-ResNeXt101_32x4d

RegNetx-002

RegNetx-004

RegNetx-006

RegNety-002

RegNety-004

RegNety-006

0.6460

0.6440

0.6462

0.6477

0.6467

0.6458

0.6482

0.6516
0.6505

0.6474

0.6482

0.6457

0.6479

0.6440

0.6414

0.6384

0.6386

0.6402

0.6402

0.6400

0.6068

0.6043

0.6065

0.6078

0.6076

0.6061

0.6082

0.6121
0.6108

0.6074

0.6076

0.6057

0.6076

0.6042

0.6008

0.5981

0.5991

0.6001

0.6007

0.6001

0.3732

0.3719

0.3740

0.3721

0.3744

0.3733

0.3717

0.3756

0.3750

0.3743

0.3767

0.3770
0.3760

0.3763

0.3744

0.3727

0.3742

0.3743

0.3710

0.3735

0.3475

0.3464

0.3479

0.3464

0.3485

0.3474

0.3459

0.3494

0.3490

0.3480

0.3510

0.3512
0.3505

0.3509

0.3486

0.3468

0.3484

0.3486

0.3455

0.3476

0.6135

0.6114

0.6115

0.6103

0.6115

0.6132

0.6160

0.6117

0.6123

0.6124

0.6219
0.6205

0.6168

0.6192

0.6112

0.6127

0.6108

0.6134

0.6162

0.6146

0.5880

0.5859

0.5861

0.5847

0.5863

0.5876

0.5913

0.5857

0.5862

0.5868

0.5969
0.5955

0.5927

0.5947

0.5862

0.5878

0.5860

0.5885

0.5907

0.5895

0.8802

0.8697

0.8789

0.8721

0.8776

0.8790

0.8686

0.8873

0.8836

0.8814

0.8908

0.8910

0.8963

0.8963

0.8954

0.8909

0.8940

0.8954

0.8983
0.8962

0.8185

0.8061

0.8172

0.8092

0.8158

0.8176

0.8053

0.8269

0.8228

0.8207

0.8308

0.8311

0.8377

0.8378

0.8369

0.8317

0.8354

0.8368

0.8407
0.8378

0.7351

0.7338

0.7352

0.7344

0.7353

0.7350

0.7357

0.7358

0.7354

0.7359

0.7360

0.7358

0.7367
0.7366

0.7360

0.7364

0.7352

0.7364

0.7364

0.7358

0.7065

0.7052

0.7069

0.7058

0.7071

0.7066

0.7075

0.7077

0.7070

0.7078

0.7078

0.7077

0.7091
0.7088

0.7079

0.7085

0.7069

0.7084

0.7086

0.7076

U-Net

ResNet-50

ResNet-101

ResNeXt50_32x4d

ResNeXt101_32x8d

Res2Net-50_26w_4s

Res2Net-101_26w_4s

VGG-16

Densenet-121

Densenet-169

Densenet-201

SE-ResNet-50

SE-ResNet-101

SE-ResNeXt50_32x4d

SE-ResNeXt101_32x4d

RegNetx-002

RegNetx-004

RegNetx-006

RegNety-002

RegNety-004

RegNety-006

0.6512
0.6477

0.6452

0.6466

0.6479

0.6492

0.6428

0.6483

0.6489

0.6475

0.6454

0.6493

0.6462

0.6470

0.6360

0.6369

0.6337

0.6402

0.6370

0.6333

0.6105
0.6076

0.6054

0.6065

0.6079

0.6086

0.6031

0.6092

0.6095

0.6075

0.6057

0.6096

0.6058

0.6070

0.5925

0.5947

0.5937

0.5973

0.5963

0.5940

0.3739

0.3725

0.3732

0.3712

0.3727

0.3727

0.3704

0.3726

0.3719

0.3721

0.3765

0.3760

0.3757

0.3772
0.3707

0.3707

0.3707

0.3712

0.3717

0.3705

0.3478

0.3462

0.3474

0.3452

0.3468

0.3468

0.3443

0.3464

0.3459

0.3460

0.3508

0.3507

0.3502

0.3516
0.3447

0.3445

0.3448

0.3452

0.3458

0.3448

0.6123

0.6095

0.6121

0.6140

0.6131

0.6130

0.6156

0.6127

0.5899

0.5906

0.6208

0.6209
0.6182

0.6181

0.6138

0.6107

0.6108

0.6120

0.6107

0.6116

0.5868

0.5841

0.5869

0.5884

0.5874

0.5876

0.5913

0.5864

0.5688

0.5694

0.5958

0.5960
0.5941

0.5939

0.5889

0.5859

0.5862

0.5869

0.5865

0.5868

0.8744

0.8719

0.8734

0.8700

0.8755

0.8730

0.8672

0.8835

0.8850

0.8794

0.8910

0.8922

0.8953

0.8961

0.9042
0.8986

0.8975

0.9028

0.8968

0.8893

0.8115

0.8087

0.8108

0.8068

0.8134

0.8100

0.8035

0.8226

0.8241

0.8177

0.8312

0.8326

0.8365

0.8378

0.8482
0.8417

0.8399

0.8461

0.8389

0.8296

0.7342

0.7333

0.7345

0.7339

0.7342

0.7341

0.7351

0.7346

0.7343

0.7346

0.7354

0.7357

0.7354

0.7362
0.7354

0.7344

0.7343

0.7358

0.7355

0.7348

0.7052

0.7041

0.7057

0.7050

0.7053

0.7051

0.7068

0.7058

0.7055

0.7058

0.7070

0.7074

0.7072

0.7083
0.7070

0.7056

0.7055

0.7075

0.7071

0.7061

FPN

ResNet-50

ResNet-101

ResNeXt50_32x4d

ResNeXt101_32x8d

Res2Net-50_26w_4s

Res2Net-101_26w_4s

VGG-16

Densenet-121

Densenet-169

Densenet-201

SE-ResNet-50

SE-ResNet-101

SE-ResNeXt50_32x4d

SE-ResNeXt101_32x4d

RegNetx-002

RegNetx-004

RegNetx-006

RegNety-002

RegNety-004

RegNety-006

0.5505

0.6313

0.4737

0.6329

0.6341

0.6338

0.4931

0.6381
0.6349

0.6374

0.6306

0.6319

0.6362

0.4752

0.5380

0.4633

0.3881

0.6152

0.6212

0.3117

0.5150

0.5902

0.4434

0.5915

0.5931

0.5925

0.4546

0.5968
0.5942

0.5963

0.5896

0.5902

0.5948

0.4445

0.5014

0.4324

0.3632

0.5727

0.5794

0.2922

0.2478

0.2677

0.2705

0.2692

0.3177
0.2765

0.2478

0.2907

0.2722

0.2715

0.3176

0.2961

0.2478

0.2478

0.2478

0.2478

0.2478

0.2712

0.2478

0.2478

0.2458

0.2611

0.2636

0.2624

0.3013
0.2675

0.2458

0.2792

0.2652

0.2644

0.3012

0.2845

0.2458

0.2458

0.2458

0.2458

0.2458

0.2643

0.2458

0.2458

0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.4997
0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.4991
0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.7282

0.5621

0.5664

0.6458

0.8032

0.6343

0.4882

0.8844

0.8935
0.8928

0.6524

0.6433

0.5705

0.5720

0.4882

0.5713

0.5711

0.4882

0.4882

0.5650

0.6873

0.5403

0.5453

0.6146

0.7515

0.6016

0.4776

0.8231

0.8342
0.8337

0.6226

0.6116

0.5504

0.5525

0.4776

0.5517

0.5514

0.4776

0.4776

0.5436

0.7314

0.7303

0.5507

0.6310

0.7293

0.7313

0.2355

0.7331

0.7324

0.7324

0.6921

0.6922

0.7325

0.7334
0.3639

0.6309

0.6320

0.6834

0.6316

0.5331

0.7012

0.6997

0.5240

0.6043

0.6981

0.7011

0.2241

0.7035

0.7028

0.7026

0.6622

0.6624

0.7028

0.7038
0.3381

0.6038

0.6055

0.6525

0.6049

0.5104
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Table 6.4: The average value of the five-fold cross-validation strategy for test set evaluated with the last train weight.

The best F-score values are highlighted in blue, and the best IoU values are highlighted in red (Continuation of

Table 6.3). Source: (Krinski et al., 2021).

Decoder Encoder CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

PSPNet

ResNet-50

ResNet-101

ResNeXt50_32x4d

ResNeXt101_32x8d

Res2Net-50_26w_4s

Res2Net-101_26w_4s

VGG-16

Densenet-121

Densenet-169

Densenet-201

SE-ResNet-50

SE-ResNet-101

SE-ResNeXt50_32x4d

SE-ResNeXt101_32x4d

RegNetx-002

RegNetx-004

RegNetx-006

RegNety-002

RegNety-004

RegNety-006

0.4822

0.4817

0.5366

0.4823

0.5044

0.4822

0.4816

0.4992

0.4995

0.4933

0.5420
0.5245

0.4832

0.4826

0.4756

0.4783

0.4800

0.4764

0.4799

0.4808

0.4698

0.4692

0.5122

0.4701

0.4872

0.4700

0.4687

0.4831

0.4832

0.4788

0.5153
0.5020

0.4708

0.4702

0.4589

0.4628

0.4659

0.4596

0.4657

0.4668

0.3598

0.2942

0.3161

0.3616

0.3119

0.3337

0.3394

0.2843

0.3621
0.3162

0.3620

0.3443

0.3338

0.3549

0.2478

0.2478

0.2478

0.2478

0.2478

0.2478

0.3336

0.2814

0.2996

0.3354

0.2958

0.3129

0.3159

0.2743

0.3358
0.2997

0.3358
0.3215

0.3130

0.3305

0.2458

0.2458

0.2458

0.2458

0.2458

0.2458

0.5201

0.5950

0.5846

0.5631

0.5832

0.5620

0.5803

0.5632

0.5520

0.5564

0.5831

0.5550

0.5428

0.6080
0.4995

0.4995

0.4995

0.4995

0.4995

0.4995

0.5145

0.5704

0.5634

0.5471

0.5623

0.5461

0.5592

0.5470

0.5375

0.5414

0.5620

0.5404

0.5318

0.5815
0.4990

0.4990

0.4990

0.4990

0.4990

0.4990

0.8881

0.8858

0.8917

0.8901

0.8910

0.8908

0.8793

0.8940

0.8930

0.8920

0.8925

0.8913

0.8941

0.8957
0.8418

0.8601

0.8747

0.8451

0.8764

0.8788

0.8276

0.8247

0.8322

0.8303

0.8313

0.8310

0.8171

0.8350

0.8337

0.8324

0.8329

0.8315

0.8355

0.8369
0.7731

0.7944

0.8118

0.7769

0.8136

0.8168

0.6192

0.6386

0.6614

0.6406

0.6412

0.6612

0.7001
0.6200

0.6198

0.6198

0.6411

0.6621

0.6623

0.6197

0.6470

0.5197

0.6364

0.6288

0.6170

0.6172

0.5993

0.6156

0.6364

0.6183

0.6190

0.6360

0.6690
0.6004

0.6002

0.6001

0.6190

0.6372

0.6378

0.6003

0.6162

0.4970

0.6122

0.6013

0.5959

0.5963

LinkNet

ResNet-50

ResNet-101

ResNeXt50_32x4d

ResNeXt101_32x8d

Res2Net-50_26w_4s

Res2Net-101_26w_4s

VGG-16

Densenet-121

Densenet-169

Densenet-201

SE-ResNet-50

SE-ResNet-101

SE-ResNeXt50_32x4d

SE-ResNeXt101_32x4d

RegNetx-002

RegNetx-004

RegNetx-006

RegNety-002

RegNety-004

RegNety-006

0.6432

0.6438

0.6281

0.6455

0.6448

0.6429

0.6414

0.6142

0.6275

0.6353

0.6461

0.6455

0.6467
0.6449

0.6135

0.6185

0.6215

0.6135

0.6316

0.6286

0.6023

0.6030

0.5878

0.6049

0.6044

0.6023

0.6024

0.5707

0.5862

0.5941

0.6062

0.6056

0.6064
0.6054

0.5704

0.5766

0.5810

0.5705

0.5906

0.5884

0.3561

0.3632

0.3688

0.3696

0.3666

0.3695

0.3715

0.3708

0.3629

0.3693

0.3743

0.3753

0.3757

0.3761
0.3601

0.3671

0.3673

0.3659

0.3675

0.3687

0.3288

0.3328

0.3412

0.3432

0.3375

0.3431

0.3453

0.3445

0.3314

0.3430

0.3482

0.3496

0.3500

0.3505
0.3333

0.3409

0.3415

0.3396

0.3411

0.3427

0.6111

0.6072

0.6125

0.6103

0.6096

0.6085

0.6136

0.6076

0.6076

0.6056

0.6207

0.6211

0.6212

0.6213
0.6038

0.6085

0.6088

0.6063

0.6070

0.6127

0.5857

0.5817

0.5868

0.5843

0.5838

0.5824

0.5888

0.5816

0.5820

0.5800

0.5959

0.5963

0.5964

0.5965
0.5793

0.5836

0.5836

0.5808

0.5811

0.5869

0.8612

0.8563

0.8643

0.8643

0.8679

0.8716

0.8647

0.8755

0.8730

0.8702

0.8893

0.8895

0.8934

0.8944

0.8913

0.8935

0.8895

0.8911

0.8946
0.8934

0.7960

0.7903

0.7998

0.7997

0.8040

0.8078

0.8002

0.8129

0.8101

0.8065

0.8288

0.8292

0.8339

0.8352

0.8318

0.8346

0.8296

0.8311

0.8357
0.8346

0.7323

0.7315

0.7339

0.7322

0.7323

0.7324

0.7353

0.7331

0.7329

0.7332

0.7096

0.7354

0.7361
0.7361
0.7250

0.7328

0.7303

0.7314

0.7335

0.7343

0.7031

0.7018

0.7051

0.7029

0.7030

0.7031

0.7070

0.7039

0.7038

0.7040

0.6779

0.7070

0.7081
0.7081
0.6926

0.7032

0.6998

0.7011

0.7043

0.7053

MA-Net

ResNet-50

ResNet-101

ResNeXt50_32x4d

ResNeXt101_32x8d

Res2Net-50_26w_4s

Res2Net-101_26w_4s

VGG-16

Densenet-121

Densenet-169

Densenet-201

SE-ResNet-50

SE-ResNet-101

SE-ResNeXt50_32x4d

SE-ResNeXt101_32x4d

RegNetx-002

RegNetx-004

RegNetx-006

RegNety-002

RegNety-004

RegNety-006

0.6468

0.6448

0.6461

0.6462

0.6468

0.6475

0.6452

0.6470

0.6455

0.6470

0.6484
0.6479

0.6431

0.6432

0.6402

0.6392

0.6372

0.6440

0.6395

0.6351

0.6036

0.6023

0.6047

0.6052

0.6051

0.6062

0.6047

0.6055

0.6039

0.6057

0.6076
0.6075

0.6026

0.6031

0.5983

0.5987

0.5969

0.6020

0.5988

0.5949

0.3682

0.3692

0.3709

0.3712

0.3701

0.3669

0.3737

0.3645

0.3659

0.3647

0.3759
0.3758

0.3751

0.3755

0.3725

0.3714

0.3721

0.3715

0.3713

0.3710

0.3422

0.3430

0.3449

0.3446

0.3438

0.3406

0.3474

0.3381

0.3389

0.3383

0.3502
0.3501

0.3497

0.3498

0.3467

0.3458

0.3461

0.3457

0.3453

0.3454

0.6132

0.6109

0.6133

0.6086

0.6122

0.6109

0.6169

0.6099

0.5797

0.6084

0.6212
0.6206

0.6172

0.6197

0.6130

0.6089

0.6118

0.6105

0.6109

0.6101

0.5880

0.5856

0.5875

0.5831

0.5866

0.5852

0.5923

0.5840

0.5599

0.5823

0.5960
0.5956

0.5928

0.5948

0.5880

0.5844

0.5873

0.5859

0.5862

0.5852

0.8691

0.8660

0.8733

0.8634

0.8689

0.8741

0.8789

0.8565

0.8597

0.8615

0.8819

0.8873

0.8918
0.8917

0.8888

0.8874

0.8817

0.8825

0.8835

0.8851

0.8055

0.8017

0.8104

0.7982

0.8053

0.8112

0.8171

0.7907

0.7944

0.7965

0.8208

0.8265

0.8321

0.8323
0.8288

0.8269

0.8204

0.8210

0.8223

0.8241

0.7310

0.7306

0.7315

0.7313

0.7312

0.7308

0.7351

0.7304

0.7296

0.7301

0.7331

0.7333

0.7335

0.7352
0.7345

0.7340

0.7332

0.7336

0.7343

0.7330

0.7008

0.7002

0.7016

0.7013

0.7011

0.7004

0.7067
0.7002

0.6990

0.6997

0.7038

0.7041

0.7043

0.7067
0.7053

0.7048

0.7038

0.7043

0.7054

0.7034
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Table 6.3 and Table 6.4 display the results obtained in the test set, calculated as the

average of the five-fold cross-validation strategy using the last trained weight. The best F-score

values are highlighted in blue, and the best IoU values are highlighted in red. The U-Net,

U-Net++, and MA-Net showed more consistent results with similar performance across different

encoders. However, the FPN, PSPNet, and LinkNet appeared to be more sensitive to encoder

change, exhibiting higher variations in F-score and IoU. The FPN and PSPNet obtained the worst

results among the decoders, while the other decoders achieved comparable results. The MedSeg

was the most challenging dataset, with all the networks achieving poor results. When compared

to other datasets for COVID-19 segmentation, the MedSeg dataset presents some challenges,

such as coarse segmentation masks that bypass the lung region and additional markings like

circles and arrows pointing to the lesion area. These issues can make the learning process for

Deep Neural Networks more difficult.

The Friedman test was utilized to perform statistical analysis on the trained models.

This test assumes that the models have the same distribution. Each trained model’s F-score value

was used to build their respective distribution using the test set. The encoders and decoders were

compared, and the Friedman test was first applied to each decoder to determine the statistical

difference between the encoders trained with that decoder. Next, the Friedman test was applied

to compare the statistical difference between decoders. In both cases, the Friedman test returned

a P-value of zero, leading to the null hypothesis being rejected, implying a statistical difference

between encoders and decoders. Hence, even though the average F-score and IoU of each model

were comparable, as shown in Table 6.3 and Table 6.4, changing the encoders paired with an

encoder generates a distinct distribution in the test images, and the encoders have a different

distribution in the test images as well.

Despite the large number of models compared, there is no definitive answer for the best

encoder-decoder combination to be used in the COVID-19 CT segmentation problem, as expected.

However, this study provides, as main contribution, a robust guideline on encoder-decoder

selection for future works, setting of variables like the number of network parameters, and number

of training epochs. Furthermore, among the decoders, the U-Net and the U-Net++ achieved the

highest results, with the LinkNet and MA-Net as close contenders. On the other hand, FPN and

PSPNet were found unsuitable for this problem. In terms of encoders, the performance varied

depending on the decoder combination and dataset applied. None of the encoders stood out,

as they all achieved comparable results. This analysis also revealed some weak points in the

datasets, such as the small number of images and critical class imbalance, which can impact the

learning process of deep neural networks.

6.2 DATA AUGMENTATION EVALUATION

The next step of this work addresses the issues of small datasets and class imbalance, highlighted

in Section 6.1, by evaluating data augmentation techniques. Generally, the impacts of data aug-

mentation techniques are not approached in studies proposed for the COVID-19 CT segmentation

problem (Saood and Hatem, 2021; Mahmud et al., 2021a). Generally, studies on COVID-19

CT segmentation have not evaluated data augmentation techniques extensively, with only a few

studies utilizing them (Zhao et al., 2021; Qiblawey et al., 2021; Joseph Raj et al., 2021; Müller

et al., 2021; Chen et al., 2020c; Xu et al., 2020). Moreover, the data augmentation techniques

applied in these studies are limited to Flip and Rotation operations. To correctly measure the

impact of data augmentation on the COVID-19 CT segmentation problem, this section presents an

evaluation of 20 different data augmentation techniques not based on neural networks: CLAHE,

Coarse Dropout, Elastic Transform, Emboss, Flip, Gaussian Blur, Grid Distortion, Grid Dropout,
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(a) Original Image

(b) CLAHE (c) Coarse Dropout (d) Elastic Transform (e) Emboss (f) Flip

(g) Gaussian Blur (h) Grid Distortion (i) Grid Dropout (j) Image Compression (k) Median Blur

(l) Optical Distortion (m) Piecewise Affine (n) Posterize (o) Random Brightness Con-

trast

(p) Random Crop

(q) Random Gamma (r) Random Snow (s) Rotate (t) Sharpen (u) Shift Scale Rotate

Figure 6.8: Illustration of the 20 traditional data augmentation techniques (i.e., not based on neural networks) applied

to a CT image. In 6.8(a), the original image is presented. The data augmentation techniques are illustrated in the

following sequence: Contrast Limited Adaptive Histogram Equalization (CLAHE) 6.8(b), Coarse Dropout 6.8(c),

Elastic Transform 6.8(d), Emboss 6.8(e), Flip 6.8(f), Gaussian Blur 6.8(g), Grid Distortion 6.8(h), Grid Dropout 6.8(i),

Image Compression 6.8(j), Median Blur 6.8(k), Optical Distortion 6.8(l), Piecewise Affine 6.8(m), Posterize 6.8(n),

Random Brightness Contrast (RBC) 6.8(o), Random Crop 6.8(p), Random Gamma 6.8(q), Random Snow 6.8(r),

Rotate 6.8(s), Sharpen 6.8(t), and Shift Scale Rotate 6.8(u).

Image Compression, Median Blur, Optical Distortion, Piecewise Affine, Posterize, RBC, Random

Crop, Random Gamma, Random Snow, Rotate, Sharpen, Shift Scale Rotate. Figure 6.8 illustrates

the 20 data augmentation techniques applied to a CT image. These data augmentation techniques

were applied using the Albumentations library (Buslaev et al., 2020), which has been successfully

explored in various areas of computer vision (Kupyn et al., 2019; Kaissis et al., 2021; Laroca

et al., 2022b). In order to perform this evaluation, the augmentations were applied with the
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default parameters of the Albumentations library. Parameter optimization of the best techniques

was left for future work.

As mentioned in the previous section, a problem identified was the class imbalance

due to several images with just the background class. Moreover, recent works have shown that

several applications suffer from class imbalance problem (Johnson and Khoshgoftaar, 2019;

Laroca et al., 2021, 2022a; Sanagavarapu et al., 2021). To address this issue, images with

ground-truth masks containing only lung pixels or no labeled pixels were eliminated from the

datasets. In the CC-CCII dataset, 201 images were removed, while 1,676 images were removed

from the Zenodo dataset. Similarly, 457 images were removed from the MedSeg dataset, and

1,264 images were removed from the MosMed dataset. The details of the number of images

and the number of images in each dataset are presented in Table 6.5. After these images being

removed, the datasets were divided into 80% for training and 20% for testing, following the

Pareto principle (Erridge, 2006). Furthermore, to encourage generalization, the original classes

of the five datasets were reorganized into two classes: background and lesion. Everything that

was not a type of lesion was converted to the background, and all lesion subtypes were merged

into a single class. The training set was subjected to a 5-fold cross-validation strategy for training

and validation purposes.

Table 6.5: The segmentation models were trained and evaluated across five different datasets of CT scans:

MedSeg (MedSeg, 2021), Zenodo (Jun et al., 2020), CC-CCII (Zhang et al., 2020), MosMed (Morozov et al., 2020)

and Ricord1a (Tsai et al., 2020). Source (Krinski et al., 2023).

Dataset Type Number
of Images

Removed
Images Labels

CC-CCII Segmentation 750 201
Background, Lung Field,

GGO, and Consolidation

MedSeg Segmentation 929 457
Background, GGO,

Consolidation, and Pleural Effusion

MosMed Segmentation 2,049 1,264 Background and GGO-Consolidation

Ricord1a Segmentation 9,166 0 Background and Infections

Zenodo Segmentation 3,520 1,676
Background, Left Lung,

Right Lung, and Infections

The encoder-decoder network chosen to evaluate the augmentation techniques was the

RegNetx-002 (Radosavovic et al., 2020) encoder and U-net++ (Zhou et al., 2018) decoder. The

architecture was trained for up to 100 epochs with the patience of 10 epochs. The initial learning

rate was set to 0.001 and was divided by 10 every 10 epochs. The augmentation algorithms

were applied using online augmentation, where each batch of images has a probability of being

augmented before being fed into the network. The impact of increasing the number of augmented

images was also evaluated with ten probabilities of applying data augmentation: 0.05, 0.1, 0.15,

0.2, 0.25, 0.30, 0.35, 0.4, 0.45, and 0.5. Generally, the studies in the literature do not specify the

probabilities used for data augmentation. When they do, they rarely provide a rationale for the

chosen values. The range selected in this work aims to encompass the probabilities mentioned in

the literature (Müller et al., 2020, 2021; Zhang et al., 2022). Additionally, higher probabilities

were reserved for future research due to the significant time required to evaluate each probability.

In order to avoid information loss when the image is downscaled, the segmentation

network was trained with the original resolution of 512×512 instead of the downscaled 256×256



102

used in the previous section. In general, downsizing images can lead to information loss, adversely

affecting network learning. Furthermore, this evaluation consists of two stages. Firstly, the

augmentation techniques were applied to the training set of each dataset separately, generating over

5.000 experiments. The results obtained using this approach are presented in Sub-section 6.2.1.

Besides this conventional training methodology, where the training and test sets are separate

subsets of the same dataset, a distinct methodology was also evaluated, generating over 1.000

experiments. In this approach, the training subsets are merged into a larger set while the testing

procedure remained unchanged. The original classes were converted to background and lesion
to ensure a fair comparison. Refer to Subsection 6.2.2 for more information on this methodology.

6.2.1 Experiment I: Traditional Data Augmentation Techniques

This Subsection presents the evaluation of the segmentation model trained with the augmentation

techniques presented in Figure 6.8. Table 6.6 presents the evaluation results for probabilities 0.05

and 0.1, Table 6.7 presents the results for probabilities 0.15 and 0.2, Table 6.8 presents the results

for probabilities 0.25 and 0.3, Table 6.9 presents the results for probabilities 0.35 and 0.4, and

Table 6.10 presents the results for probabilities 0.45 and 0.5. The Wilcoxon Signed-Rank Test

was utilized to perform statistical analysis between the segmentation model trained applying data

augmentation technique and training the segmentation model without applying data augmentation.

The values highlighted in green show the data augmentation techniques where the P-value

achieved values lower than 0.05, and the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation).

Most data augmentation techniques failed to enhance the F-score and the IoU values. At

a probability of 0.05, no technique produced an F-score improvement greater than 1% compared

to the baseline, where no data augmentation was applied. However, seven methods exhibited

statistical differences in Ricord1a, while one technique showed statistical differences in CC-CCII

and Zenodo. At a probability of 0.1, Piecewise Affine and Rotate enhanced the F-score in

CC-CCII, Shift Scale Rotate improved the F-score in MedSeg, and Grid Distortion improved the

F-score in MosMed. Optical Distortion improved the F-score in CC-CCII at a probability of 0.15.

At a probability of 0.2, six data augmentation techniques have improved the F-score in CC-CCII,

while five methods improved the F-score in MosMed. Elastic Transform improved the F-score in

the Zenodo dataset. At a probability of 0.25, three data augmentation techniques produced better

F-score values on CC-CCII, and three techniques achieved better F-score values on MosMed. At

a probability of 0.3, seven data augmentation techniques improved the F-score value in CC-CCII,

five techniques improved the F-score in MosMed, and one technique (Gaussian Blur) improved

the F-score in Ricord1a.

At a probability of 0.35, five data augmentation techniques improved the F-score value

in CC-CCII, one technique (Elastic Transform) improved the F-score value in MedSeg, and six

techniques improved the F-score in MosMed. At a probability of 0.4, five data augmentation

techniques improved the F-score value in CC-CCII, and five techniques improved the F-score

in MosMed. At a probability of 0.45, six data augmentation techniques improved the F-score

value in CC-CCII, five techniques improved the F-score in MosMed, two techniques improved

the F-score in Ricord1a, and Grid Distortion improved the F-score in Zenodo. At a probability

of 0.5, six data augmentation techniques improved the F-score value in CC-CCII, two data

augmentation techniques improved the F-score value in MedSeg and five techniques improved

the F-score in MosMed, and Median Blur improved the F-score in Ricord1a. Considering the 10

probabilities evaluated, the probability of 0.5 achieved the best outcomes considering the number

of augmentation techniques that improved the F-score values.
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Table 6.6: Results of the data augmentation evaluation. 𝑝 stands for probability, the blue-colored values indicate the

best F-score values, while the red-colored values indicate the best IoU values. The values highlighted in green show

the data augmentation techniques in which the P-value achieved values lower than 0.05, and thus the null hypothesis

was rejected (i.e., there is a statistical difference and the results achieved are better than without data augmentation).

Source: (Krinski et al., 2023)

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8450 0.7896 0.8885 0.8261 0.8180 0.7528 0.8875 0.8275 0.9072 0.8490

0.05

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8364

0.8463

0.8467

0.8477

0.8458

0.8451

0.8457

0.8391

0.8386

0.8446

0.8431

0.8468

0.8455

0.8441

0.8440

0.8431

0.8432

0.8479

0.8481
0.8459

0.7810

0.7911

0.7915

0.7916

0.7905

0.7894

0.7897

0.7840

0.7835

0.7887

0.7884

0.7914

0.7899

0.7883

0.7886

0.7890

0.7870

0.7917

0.7931
0.7894

0.8839

0.8869

0.8886

0.8867

0.8869

0.8856

0.8868

0.8870

0.8868

0.8849

0.8865

0.8874

0.8873

0.8872

0.8853

0.8866

0.8861

0.8885

0.8873

0.8897

0.8211

0.8247

0.8266

0.8244

0.8246

0.8229

0.8242

0.8245

0.8248

0.8225

0.8246

0.8257

0.8252

0.8247

0.8224

0.8244

0.8237

0.8262

0.8249

0.8281

0.8137

0.8160

0.8136

0.8162

0.8189

0.8126

0.8197
0.8149

0.8118

0.8116

0.8134

0.8155

0.8168

0.8129

0.8156

0.8176

0.8152

0.8175

0.8154

0.8185

0.7478

0.7499

0.7482

0.7505

0.7542
0.7467

0.7536

0.7499

0.7465

0.7455

0.7485

0.7498

0.7504

0.7474

0.7500

0.7523

0.7497

0.7523

0.7504

0.7526

0.8871

0.8872

0.8856

0.8866

0.8884

0.8883

0.8855

0.8866

0.8881

0.8888

0.8852

0.8879

0.8895
0.8870

0.8862

0.8889

0.8863

0.8861

0.8882

0.8860

0.8274

0.8271

0.8256

0.8268

0.8281

0.8280

0.8252

0.8265

0.8282

0.8289

0.8250

0.8279

0.8299
0.8268

0.8265

0.8289

0.8260

0.8258

0.8283

0.8259

0.9072

0.9077

0.9073

0.9082

0.9087
0.9086

0.9077

0.9069

0.9074

0.9078

0.9081

0.9076

0.9076

0.9084

0.9067

0.9083

0.9063

0.9084

0.9085

0.9083

0.8488

0.8498

0.8489

0.8500

0.8509
0.8502

0.8494

0.8486

0.8491

0.8492

0.8499

0.8495

0.8489

0.8502

0.8486

0.8499

0.8476

0.8500

0.8502

0.8500

0.1

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8372

0.8477

0.8481

0.8436

0.8483

0.8436

0.8458

0.8422

0.8490

0.8460

0.8483

0.8505
0.8448

0.8415

0.8375

0.8447

0.8460

0.8503

0.8492

0.8491

0.7816

0.7922

0.7931

0.7872

0.7928

0.7891

0.7910

0.7869

0.7938

0.7907

0.7940

0.7949
0.7904

0.7870

0.7819

0.7901

0.7906

0.7947

0.7931

0.7944

0.8864

0.8878

0.8875

0.8880

0.8877

0.8843

0.8889

0.8855

0.8875

0.8861

0.8893

0.8892

0.8862

0.8873

0.8869

0.8870

0.8851

0.8874

0.8849

0.8905

0.8240

0.8259

0.8255

0.8260

0.8260

0.8213

0.8266

0.8229

0.8255

0.8235

0.8275

0.8276

0.8239

0.8249

0.8248

0.8251

0.8222

0.8256

0.8224

0.8287

0.8125

0.8171

0.8158

0.8158

0.8204

0.8136

0.8211
0.8152

0.8150

0.8167

0.8164

0.8194

0.8092

0.8095

0.8137

0.8118

0.8114

0.8185

0.8173

0.8186

0.7472

0.7516

0.7503

0.7503

0.7547

0.7480

0.7564
0.7498

0.7489

0.7501

0.7500

0.7536

0.7435

0.7426

0.7480

0.7451

0.7457

0.7526

0.7519

0.7537

0.8874

0.8874

0.8871

0.8885

0.8861

0.8874

0.8864

0.8840

0.8869

0.8888

0.8888

0.8871

0.8866

0.8871

0.8877

0.8867

0.8861

0.8848

0.8890
0.8861

0.8273

0.8272

0.8271

0.8283

0.8260

0.8273

0.8267

0.8237

0.8268

0.8288

0.8290

0.8270

0.8268

0.8270

0.8279

0.8268

0.8258

0.8248

0.8291
0.8260

0.9070

0.9080

0.9088
0.9088
0.9081

0.9071

0.9088
0.9073

0.9086

0.9074

0.9080

0.9072

0.9077

0.9079

0.9080

0.9071

0.9068

0.9077

0.9076

0.9086

0.8486

0.8499

0.8510

0.8510

0.8495

0.8487

0.8511
0.8484

0.8504

0.8491

0.8498

0.8488

0.8497

0.8495

0.8499

0.8486

0.8479

0.8491

0.8494

0.8504

To sum up, the best outcome for each dataset was as follows: in CC-CCII, Shift Scale

Rotate applied with a probability of 0.45 achieved an F-score of 0.8598; in MedSeg, Elastic

Transform applied with a probability of 0.35 resulted in an F-score of 0.8906; in MosMed,

Grid Distortion applied with a probability of 0.35 produced an F-score of 0.8307; in Ricord1a,

Median Blur applied with a probability of 0.5 obtained an F-score of 0.8904; and in Zenodo,

Grid Distortion applied with a probability of 0.45 achieved an F-score of 0.9104. Considering
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Table 6.7: Results of the data augmentation evaluation (Continuation of Table 6.6). 𝑝 stands for probability, the

blue-colored values indicate the best F-score values, while the red-colored values indicate the best IoU values. The

values highlighted in green show the data augmentation techniques where the P-value achieved values lower than

0.05, and thus the null hypothesis was rejected (i.e., there is a statistical difference and the results achieved are better

than without data augmentation). Source: (Krinski et al., 2023)

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8450 0.7896 0.8885 0.8261 0.8180 0.7528 0.8875 0.8275 0.9072 0.8490

0.15

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8414

0.8415

0.8477

0.8457

0.8478

0.8462

0.8484

0.8379

0.8437

0.8445

0.8506
0.8485

0.8426

0.8449

0.8447

0.8455

0.8430

0.8491

0.8472

0.8461

0.7863

0.7869

0.7926

0.7905

0.7919

0.7912

0.7935

0.7819

0.7879

0.7898

0.7944
0.7943

0.7873

0.7892

0.7903

0.7909

0.7861

0.7924

0.7925

0.7919

0.8836

0.8856

0.8891
0.8880

0.8881

0.8871

0.8882

0.8838

0.8867

0.8827

0.8889

0.8869

0.8862

0.8866

0.8877

0.8866

0.8845

0.8865

0.8877

0.8888

0.8208

0.8232

0.8273
0.8255

0.8255

0.8246

0.8258

0.8207

0.8248

0.8196

0.8273
0.8248

0.8238

0.8240

0.8254

0.8244

0.8217

0.8239

0.8255

0.8266

0.8117

0.8118

0.8195

0.8155

0.8220
0.8137

0.8205

0.8152

0.8148

0.8141

0.8148

0.8189

0.8157

0.8132

0.8139

0.8134

0.8170

0.8190

0.8136

0.8198

0.7451

0.7466

0.7538

0.7504

0.7562
0.7484

0.7541

0.7491

0.7498

0.7479

0.7499

0.7541

0.7498

0.7466

0.7484

0.7478

0.7506

0.7530

0.7479

0.7542

0.8886

0.8896
0.8857

0.8889

0.8846

0.8883

0.8831

0.8866

0.8890

0.8870

0.8863

0.8861

0.8880

0.8860

0.8872

0.8880

0.8842

0.8842

0.8865

0.8841

0.8288

0.8297
0.8255

0.8295

0.8240

0.8280

0.8224

0.8263

0.8294

0.8273

0.8263

0.8260

0.8276

0.8256

0.8272

0.8277

0.8240

0.8233

0.8265

0.8236

0.9082

0.9065

0.9091

0.9080

0.9080

0.9073

0.9083

0.9078

0.9065

0.9081

0.9092
0.9088

0.9071

0.9071

0.9081

0.9081

0.9062

0.9084

0.9071

0.9083

0.8497

0.8481

0.8512

0.8498

0.8489

0.8491

0.8504

0.8491

0.8480

0.8497

0.8513
0.8509

0.8488

0.8485

0.8498

0.8500

0.8472

0.8500

0.8490

0.8498

0.2

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8421

0.8448

0.8488

0.8516

0.8551
0.8415

0.8533

0.8424

0.8416

0.8452

0.8494

0.8510

0.8478

0.8410

0.8468

0.8502

0.8455

0.8498

0.8457

0.8512

0.7868

0.7890

0.7932

0.7957

0.7988
0.7872

0.7980

0.7878

0.7851

0.7897

0.7937

0.7959

0.7921

0.7858

0.7909

0.7939

0.7896

0.7941

0.7900

0.7955

0.8847

0.8857

0.8870

0.8886

0.8870

0.8859

0.8887

0.8849

0.8864

0.8863

0.8895
0.8857

0.8874

0.8868

0.8861

0.8861

0.8814

0.8885

0.8886

0.8890

0.8213

0.8234

0.8249

0.8266

0.8241

0.8236

0.8268

0.8220

0.8241

0.8238

0.8279
0.8231

0.8250

0.8239

0.8241

0.8242

0.8175

0.8261

0.8261

0.8271

0.8141

0.8114

0.8198

0.8134

0.8231

0.8131

0.8237

0.8122

0.8108

0.8145

0.8163

0.8233

0.8148

0.8110

0.8164

0.8141

0.8119

0.8238
0.8131

0.8233

0.7480

0.7465

0.7546

0.7473

0.7574

0.7468

0.7579
0.7458

0.7462

0.7483

0.7509

0.7568

0.7494

0.7437

0.7509

0.7483

0.7456

0.7577

0.7478

0.7571

0.8860

0.8870

0.8846

0.8873

0.8803

0.8877

0.8862

0.8855

0.8879

0.8866

0.8881

0.8865

0.8871

0.8867

0.8866

0.8892
0.8856

0.8816

0.8874

0.8830

0.8255

0.8269

0.8242

0.8273

0.8192

0.8273

0.8263

0.8254

0.8282

0.8259

0.8285

0.8263

0.8268

0.8263

0.8269

0.8290
0.8251

0.8203

0.8273

0.8224

0.9072

0.9081

0.9100
0.9075

0.9094

0.9078

0.9082

0.9072

0.9071

0.9067

0.9082

0.9087

0.9089

0.9065

0.9073

0.9083

0.9056

0.9073

0.9078

0.9090

0.8483

0.8500

0.8522
0.8491

0.8505

0.8497

0.8499

0.8484

0.8489

0.8481

0.8502

0.8503

0.8508

0.8481

0.8491

0.8500

0.8467

0.8483

0.8499

0.8507

the augmentations that achieved the highest scores, the probabilities of 0.35 and 0.45 achieved

the most promising results.

In CC-CCII, MedSeg, MosMed, and Zenodo datasets, spatial transformations yielded the

highest F-score, while in Ricord1a, a color operation achieved the highest F-score. Spatial-based

techniques yielded better results in these datasets as they encourage variations in the shape of the

lesion regions. However, Ricord1a comprises very similar images with minimal lung position

and shape changes, making spatial operations counterproductive. Therefore, a color operation
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Table 6.8: Results of the data augmentation evaluation (Continuation of Tables 6.6 and 6.7). 𝑝 stands for probability,

the blue-colored values indicate the best F-score values, while the red-colored values indicate the best IoU values.

The values highlighted in green show the data augmentation techniques in which the P-value achieved values lower

than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical difference and the results achieved are

better than without data augmentation). Source: (Krinski et al., 2023)

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8450 0.7896 0.8885 0.8261 0.8180 0.7528 0.8875 0.8275 0.9072 0.8490

0.25

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8396

0.8406

0.8537
0.8448

0.8526

0.8483

0.8525

0.8398

0.8396

0.8439

0.8481

0.8478

0.8447

0.8405

0.8467

0.8392

0.8439

0.8495

0.8418

0.8493

0.7842

0.7852

0.7980
0.7892

0.7963

0.7932

0.7971

0.7849

0.7845

0.7892

0.7928

0.7921

0.7891

0.7847

0.7910

0.7849

0.7867

0.7932

0.7870

0.7951

0.8842

0.8847

0.8887

0.8883

0.8851

0.8852

0.8870

0.8820

0.8872

0.8846

0.8883

0.8868

0.8875

0.8863

0.8870

0.8859

0.8802

0.8879

0.8891
0.8891

0.8211

0.8219

0.8269

0.8260

0.8226

0.8225

0.8248

0.8189

0.8253

0.8218

0.8263

0.8248

0.8255

0.8234

0.8249

0.8232

0.8160

0.8256

0.8268

0.8274

0.8108

0.8152

0.8195

0.8169

0.8284
0.8125

0.8227

0.8136

0.8124

0.8177

0.8208

0.8240

0.8183

0.8122

0.8109

0.8142

0.8157

0.8222

0.8109

0.8188

0.7450

0.7501

0.7534

0.7511

0.7631
0.7465

0.7568

0.7470

0.7467

0.7514

0.7547

0.7581

0.7533

0.7448

0.7454

0.7481

0.7488

0.7561

0.7454

0.7527

0.8869

0.8858

0.8844

0.8881

0.8827

0.8887

0.8871

0.8837

0.8857

0.8834

0.8864

0.8872

0.8851

0.8843

0.8880

0.8884

0.8860

0.8787

0.8895
0.8823

0.8263

0.8257

0.8239

0.8279

0.8221

0.8287

0.8269

0.8227

0.8259

0.8226

0.8263

0.8268

0.8245

0.8231

0.8287

0.8283

0.8252

0.8175

0.8297
0.8214

0.9058

0.9076

0.9096
0.9072

0.9082

0.9073

0.9085

0.9052

0.9075

0.9069

0.9089

0.9087

0.9080

0.9064

0.9070

0.9065

0.9037

0.9071

0.9080

0.9083

0.8469

0.8494

0.8519
0.8491

0.8494

0.8489

0.8503

0.8456

0.8494

0.8490

0.8509

0.8503

0.8497

0.8476

0.8486

0.8483

0.8443

0.8482

0.8496

0.8497

0.3

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8400

0.8413

0.8546

0.8458

0.8490

0.8442

0.8556

0.8408

0.8508

0.8452

0.8527

0.8561

0.8440

0.8421

0.8476

0.8513

0.8468

0.8494

0.8423

0.8567

0.7846

0.7860

0.7996

0.7904

0.7918

0.7892

0.7993

0.7854

0.7945

0.7907

0.7966

0.8006

0.7877

0.7862

0.7920

0.7949

0.7901

0.7933

0.7891

0.8013

0.8846

0.8856

0.8893

0.8881

0.8846

0.8865

0.8894

0.8838

0.8871

0.8836

0.8896
0.8884

0.8865

0.8865

0.8869

0.8865

0.8815

0.8876

0.8862

0.8887

0.8215

0.8235

0.8273

0.8259

0.8213

0.8243

0.8274

0.8210

0.8252

0.8209

0.8277
0.8266

0.8241

0.8239

0.8248

0.8243

0.8169

0.8248

0.8231

0.8267

0.8085

0.8114

0.8250

0.8138

0.8257

0.8097

0.8258
0.8131

0.8138

0.8143

0.8184

0.8224

0.8127

0.8097

0.8144

0.8128

0.8148

0.8253

0.8093

0.8237

0.7428

0.7457

0.7590

0.7480

0.7605
0.7440

0.7593

0.7472

0.7483

0.7478

0.7532

0.7562

0.7472

0.7432

0.7487

0.7465

0.7484

0.7592

0.7440

0.7571

0.8824

0.8883

0.8847

0.8877

0.8792

0.8903
0.8867

0.8840

0.8867

0.8872

0.8890

0.8846

0.8858

0.8866

0.8867

0.8867

0.8848

0.8789

0.8866

0.8808

0.8215

0.8283

0.8241

0.8276

0.8183

0.8303
0.8267

0.8231

0.8269

0.8272

0.8293

0.8243

0.8257

0.8260

0.8267

0.8267

0.8237

0.8174

0.8260

0.8199

0.9062

0.9081

0.9097
0.9078

0.9087

0.9058

0.9089

0.9061

0.9080

0.9086

0.9091

0.9087

0.9065

0.9066

0.9073

0.9080

0.9043

0.9066

0.9089

0.9092

0.8474

0.8497

0.8520
0.8498

0.8496

0.8471

0.8507

0.8469

0.8500

0.8505

0.8513

0.8505

0.8477

0.8478

0.8490

0.8498

0.8450

0.8472

0.8512

0.8506

(Median Blur) achieved the highest F-score, indicating that this dataset is more sensitive to color

operations. However, the results achieved in this experiment, did not yielded interesting results.

When compared with the baseline, where the network was trained without data augmentation,

the augmentation techniques produced small gains. Furthermore, the data augmentation process

resulted in a small difference between the probabilities applied, making it unclear which is the

optimal probability in this case.
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Table 6.9: Results of the data augmentation evaluation (Continuation of Tables 6.6, 6.7, and 6.8). 𝑝 stands for

probability, the blue-colored values indicate the best F-score values, while the red-colored values indicate the best

IoU values. The values highlighted in green show the data augmentation techniques in which the P-value achieved

values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical difference and the results

achieved are better than without data augmentation).

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8450 0.7896 0.8885 0.8261 0.8180 0.7528 0.8875 0.8275 0.9072 0.8490

0.35

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8382

0.8403

0.8551
0.8483

0.8476

0.8490

0.8528

0.8372

0.8446

0.8489

0.8477

0.8537

0.8396

0.8442

0.8366

0.8439

0.8389

0.8528

0.8431

0.8538

0.7820

0.7850

0.7993
0.7926

0.7925

0.7932

0.7975

0.7813

0.7887

0.7928

0.7923

0.7981

0.7841

0.7879

0.7811

0.7888

0.7836

0.7971

0.7889

0.7989

0.8846

0.8848

0.8906
0.8870

0.8861

0.8853

0.8884

0.8811

0.8861

0.8877

0.8869

0.8884

0.8883

0.8854

0.8872

0.8857

0.8773

0.8870

0.8859

0.8868

0.8213

0.8222

0.8286
0.8243

0.8228

0.8225

0.8263

0.8174

0.8238

0.8255

0.8243

0.8264

0.8264

0.8223

0.8251

0.8230

0.8125

0.8246

0.8234

0.8247

0.8085

0.8135

0.8214

0.8175

0.8258

0.8148

0.8307
0.8140

0.8140

0.8174

0.8212

0.8262

0.8172

0.8127

0.8138

0.8134

0.8099

0.8258

0.8120

0.8238

0.7441

0.7484

0.7561

0.7509

0.7596

0.7493

0.7653
0.7479

0.7486

0.7509

0.7553

0.7595

0.7513

0.7468

0.7480

0.7474

0.7429

0.7603

0.7466

0.7578

0.8849

0.8871

0.8849

0.8890

0.8773

0.8869

0.8868

0.8839

0.8887

0.8871

0.8837

0.8849

0.8895
0.8846

0.8873

0.8879

0.8854

0.8776

0.8894

0.8820

0.8240

0.8267

0.8243

0.8289

0.8157

0.8262

0.8264

0.8231

0.8289

0.8268

0.8234

0.8246

0.8293

0.8239

0.8275

0.8282

0.8245

0.8160

0.8296
0.8208

0.9057

0.9063

0.9090
0.9074

0.9083

0.9082

0.9089

0.9050

0.9082

0.9067

0.9088

0.9082

0.9077

0.9063

0.9067

0.9074

0.9045

0.9056

0.9089

0.9081

0.8470

0.8477

0.8510
0.8488

0.8491

0.8499

0.8506

0.8459

0.8501

0.8481

0.8508

0.8496

0.8495

0.8476

0.8483

0.8491

0.8448

0.8462

0.8508

0.8495

0.4

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8417

0.8429

0.8544

0.8372

0.8457

0.8480

0.8540

0.8411

0.8468

0.8441

0.8492

0.8508

0.8429

0.8417

0.8459

0.8412

0.8420

0.8565

0.8423

0.8593

0.7866

0.7873

0.7983

0.7825

0.7898

0.7918

0.7993

0.7852

0.7912

0.7899

0.7925

0.7956

0.7882

0.7861

0.7910

0.7864

0.7859

0.7996

0.7874

0.8038

0.8810

0.8852

0.8888

0.8886

0.8864

0.8864

0.8905
0.8837

0.8860

0.8860

0.8892

0.8859

0.8853

0.8865

0.8877

0.8865

0.8782

0.8864

0.8894

0.8879

0.8170

0.8228

0.8268

0.8259

0.8236

0.8237

0.8287
0.8204

0.8239

0.8235

0.8274

0.8234

0.8224

0.8239

0.8254

0.8241

0.8135

0.8238

0.8271

0.8255

0.8066

0.8134

0.8266

0.8117

0.8250

0.8134

0.8287
0.8115

0.8168

0.8187

0.7556

0.8261

0.8196

0.8122

0.8107

0.8130

0.8113

0.8258

0.8122

0.8279

0.7413

0.7476

0.7599

0.7454

0.7583

0.7477

0.7624
0.7457

0.7518

0.7531

0.7032

0.7601

0.7527

0.7449

0.7453

0.7469

0.7444

0.7597

0.7459

0.7622

0.8877

0.8878

0.8848

0.8873

0.8772

0.8857

0.8853

0.8834

0.8874

0.8883

0.8896
0.8844

0.8859

0.8853

0.8866

0.8867

0.8824

0.8758

0.8877

0.8812

0.8272

0.8278

0.8246

0.8274

0.8156

0.8255

0.8250

0.8225

0.8277

0.8284

0.8303
0.8239

0.8250

0.8244

0.8265

0.8264

0.8211

0.8140

0.8277

0.8198

0.9047

0.9077

0.9094
0.9070

0.9061

0.9076

0.9092

0.9048

0.9075

0.9077

0.9094
0.9080

0.9076

0.9064

0.9081

0.9074

0.9041

0.9058

0.9074

0.9074

0.8454

0.8494

0.8513
0.8485

0.8465

0.8494

0.8509

0.8453

0.8490

0.8493

0.8512

0.8494

0.8493

0.8474

0.8498

0.8490

0.8444

0.8460

0.8493

0.8486

6.2.2 Experiment II: Training Sets Unified

Inspired by promising outcomes observed in other research areas (Laroca et al., 2021, 2023),

an alternative methodology that integrates training subsets from multiple datasets into a single,

larger set, was evaluated alongside the traditional approach of using separate subsets from a

single dataset for training and testing. Table 6.11 presents the evaluation results for probabilities

0.05 and 0.1, Table 6.12 presents the results for probabilities 0.15 and 0.2, Table 6.13 presents the

results for probabilities 0.25 and 0.3, Table 6.14 presents the results for probabilities 0.35 and 0.4,
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Table 6.10: Results of the data augmentation evaluation (Continuation of Tables 6.6, 6.7, 6.8, and 6.9). 𝑝 stands for

probability, the blue-colored values indicate the best F-score values, while the red-colored values indicate the best

IoU values. The values highlighted in green show the data augmentation techniques in which the P-value achieved

values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical difference and the results

achieved are better than without data augmentation).

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8450 0.7896 0.8885 0.8261 0.8180 0.7528 0.8875 0.8275 0.9072 0.8490

0.45

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8394

0.8458

0.8522

0.8440

0.8531

0.8468

0.8532

0.8364

0.8433

0.8480

0.8487

0.8586

0.8413

0.8438

0.8415

0.8472

0.8387

0.8562

0.8419

0.8598

0.7831

0.7907

0.7964

0.7889

0.7961

0.7915

0.7987

0.7803

0.7871

0.7927

0.7938

0.8032

0.7868

0.7876

0.7859

0.7914

0.7825

0.7987

0.7871

0.8039

0.8809

0.8833

0.8895
0.8870

0.8865

0.8857

0.8889

0.8821

0.8887

0.8839

0.8889

0.8891

0.8888

0.8880

0.8871

0.8860

0.8786

0.8868

0.8878

0.8890

0.8171

0.8206

0.8277
0.8242

0.8234

0.8231

0.8269

0.8187

0.8266

0.8215

0.8270

0.8273

0.8269

0.8255

0.8249

0.8234

0.8137

0.8239

0.8256

0.8270

0.8041

0.8156

0.8231

0.8136

0.8262

0.8159

0.8259

0.8112

0.8146

0.8164

0.8189

0.8262

0.8207

0.8085

0.8138

0.8121

0.8100

0.8264

0.8124

0.8272

0.7386

0.7502

0.7572

0.7465

0.7599

0.7495

0.7603

0.7449

0.7487

0.7506

0.7534

0.7601

0.7550

0.7417

0.7483

0.7462

0.7434

0.7600

0.7462

0.7612

0.8854

0.8870

0.8833

0.8881

0.8760

0.8902
0.8839

0.8812

0.8877

0.8850

0.8902
0.8851

0.8851

0.8833

0.8881

0.8880

0.8842

0.8741

0.8881

0.8773

0.8249

0.8267

0.8226

0.8282

0.8142

0.8302

0.8233

0.8201

0.8280

0.8243

0.8306
0.8246

0.8244

0.8217

0.8282

0.8279

0.8229

0.8119

0.8278

0.8155

0.9053

0.9069

0.9087

0.9065

0.9050

0.9061

0.9104
0.9042

0.9067

0.9076

0.9095

0.9091

0.9068

0.9064

0.9073

0.9078

0.9045

0.9064

0.9087

0.9074

0.8465

0.8484

0.8503

0.8479

0.8450

0.8479

0.8524
0.8445

0.8484

0.8492

0.8515

0.8512

0.8485

0.8478

0.8487

0.8498

0.8446

0.8465

0.8508

0.8486

0.5

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8369

0.8406

0.8519

0.8398

0.8529

0.8438

0.8535

0.8388

0.8424

0.8440

0.8518

0.8571
0.8439

0.8422

0.8402

0.8442

0.8413

0.8525

0.8442

0.8520

0.7820

0.7857

0.7965

0.7849

0.7955

0.7883

0.7981

0.7832

0.7870

0.7896

0.7966

0.8016
0.7887

0.7866

0.7844

0.7883

0.7842

0.7961

0.7893

0.7964

0.8815

0.8835

0.8895

0.8871

0.8850

0.8822

0.8902
0.8808

0.8879

0.8833

0.8900

0.8882

0.8871

0.8859

0.8890

0.8866

0.8771

0.8856

0.8869

0.8880

0.8183

0.8205

0.8276

0.8245

0.8219

0.8192

0.8283

0.8166

0.8263

0.8209

0.8284
0.8260

0.8251

0.8230

0.8271

0.8243

0.8119

0.8230

0.8242

0.8258

0.8073

0.8159

0.8286

0.8134

0.8264

0.8123

0.8328
0.8117

0.8127

0.8189

0.8192

0.8255

0.8175

0.8104

0.8161

0.8110

0.8114

0.8243

0.8098

0.8273

0.7426

0.7501

0.7624

0.7466

0.7600

0.7475

0.7653
0.7457

0.7472

0.7529

0.7534

0.7590

0.7514

0.7429

0.7503

0.7438

0.7447

0.7579

0.7441

0.7609

0.8864

0.8856

0.8845

0.8886

0.8759

0.8886

0.8833

0.8820

0.8891

0.8904
0.8886

0.8850

0.8860

0.8859

0.8872

0.8861

0.8820

0.8735

0.8879

0.8786

0.8260

0.8254

0.8240

0.8284

0.8138

0.8287

0.8227

0.8207

0.8290

0.8303
0.8291

0.8244

0.8253

0.8250

0.8269

0.8261

0.8208

0.8110

0.8278

0.8171

0.9064

0.9066

0.9090

0.9070

0.9070

0.9082

0.9088

0.9043

0.9092

0.9078

0.9091

0.9096
0.9070

0.9062

0.9077

0.9067

0.9043

0.9061

0.9064

0.9084

0.8473

0.8483

0.8504

0.8481

0.8476

0.8502

0.8506

0.8448

0.8511

0.8496

0.8513
0.8512

0.8486

0.8476

0.8495

0.8482

0.8444

0.8464

0.8479

0.8496

and Table 6.15 presents the results for probabilities 0.45 and 0.5. The Wilcoxon Signed-Rank Test

was utilized to perform statistical analysis between the segmentation model trained applying data

augmentation technique and training the segmentation model without applying data augmentation.

The highlighted values in green demonstrate the data augmentation techniques that yielded

P-values less than 0.05, thus rejecting the null hypothesis, indicating a statistical difference and

the achieved results are superior to those without data augmentation. A comparison between

training with a unified training set and training with individual training sets was also conducted.
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Table 6.11: Results of the data augmentation evaluation when unifying the training sets. 𝑝 stands for probability, the

blue-colored values indicate the best F-score value, and the red-colored values indicate the best IoU values. The

values highlighted in green show the data augmentation techniques in which the P-value achieved values lower than

0.05, and thus the null hypothesis was rejected (i.e., there is a statistical difference and the results achieved are better

than without data augmentation). The underscored values show the techniques where training with the unified set

achieved a P-value lower than 0.05 when compared with training with a single training set, and the null hypothesis

was rejected. Source: (Krinski et al., 2023)

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8580

0.8624

0.8722
0.8659

0.8659

0.8641

0.8687

0.8631

0.8620

0.8608

0.8685

0.8708

0.8643

0.8614

0.8607

0.8675

0.8647

0.8695

0.8661

0.8680

0.8025

0.8071

0.8168
0.8103

0.8103

0.8089

0.8133

0.8069

0.8060

0.8055

0.8126

0.8153

0.8092

0.8054

0.8056

0.8105

0.8096

0.8144

0.8098

0.8129

0.8873

0.8882

0.8913

0.8876

0.8911

0.8868

0.8922
0.8867

0.8870

0.8884

0.8898

0.8915

0.8897

0.8856

0.8870

0.8854

0.8873

0.8902

0.8901

0.8910

0.8247

0.8260

0.8294

0.8250

0.8290

0.8242

0.8303
0.8243

0.8242

0.8259

0.8279

0.8296

0.8274

0.8226

0.8239

0.8225

0.8244

0.8279

0.8277

0.8293

0.8198

0.8266

0.8281

0.8237

0.8265
0.8189

0.8272

0.8218

0.8203
0.8227

0.8236

0.8318
0.8261

0.8207

0.8195

0.8192

0.8213
0.8277

0.8167
0.8289

0.7554

0.7631

0.7634

0.7607

0.7628

0.7555

0.7624

0.7576

0.7564

0.7584

0.7609

0.7682
0.7627

0.7569

0.7554

0.7545

0.7580

0.7635

0.7532

0.7657

0.8585

0.8585

0.8553

0.8552

0.8610

0.8579

0.8605

0.8578

0.8589

0.8592

0.8608

0.8709
0.8641

0.8565

0.8524

0.8526

0.8586

0.8609

0.8545

0.8647

0.7932

0.7930

0.7887

0.7889

0.7958

0.7925

0.7951

0.7917

0.7932

0.7933

0.7958

0.8073
0.7996

0.7905

0.7856

0.7860

0.7931

0.7956

0.7884

0.8001

0.9098

0.9097
0.9113

0.9113

0.9111

0.9106
0.9115

0.9094

0.9101
0.9103

0.9110

0.9119
0.9110

0.9103

0.9088

0.9087
0.9103

0.9118

0.9108
0.9115

0.8521

0.8517

0.8536

0.8536

0.8535

0.8527

0.8539

0.8511

0.8519

0.8526

0.8535

0.8544
0.8535

0.8522

0.8505

0.8502

0.8527

0.8543

0.8526

0.8541

0.1

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8561

0.8609

0.8720

0.8633

0.8691

0.8657

0.8713

0.8610

0.8634

0.8627

0.8629

0.8729

0.8621

0.8617

0.8606

0.8645

0.8616

0.8724

0.8633

0.8743

0.8004

0.8059

0.8176

0.8083

0.8139

0.8108

0.8173

0.8048

0.8081

0.8076

0.8085

0.8180

0.8074

0.8049

0.8050

0.8091

0.8065

0.8172

0.8080

0.8204

0.8866

0.8883
0.8927

0.8885

0.8907

0.8880

0.8935

0.8873

0.8875

0.8890

0.8911

0.8937
0.8890

0.8885

0.8870

0.8882

0.8896
0.8924

0.8899

0.8926

0.8237

0.8264

0.8313

0.8263

0.8289

0.8259

0.8317

0.8254

0.8250

0.8261

0.8291

0.8320
0.8265

0.8254

0.8239

0.8253

0.8270

0.8312

0.8278

0.8317

0.8172
0.8239

0.8315

0.8189
0.8267

0.8134
0.8319

0.8297

0.8205

0.8155
0.8255

0.8306

0.8212

0.8241

0.8166
0.8197

0.8227

0.8353
0.8236

0.8297

0.7548

0.7612

0.7676

0.7564

0.7625

0.7508

0.7685

0.7670

0.7570

0.7527

0.7615

0.7666

0.7576

0.7603

0.7536

0.7550

0.7595

0.7710
0.7603

0.7653

0.8606

0.8648

0.8567

0.8609

0.8542

0.8576

0.8536

0.8668
0.8605

0.8561

0.8581

0.8572

0.8610

0.8608

0.8559

0.8566

0.8576

0.8568

0.8633

0.8553

0.7953

0.8004

0.7904

0.7958

0.7880

0.7916

0.7870

0.8023
0.7950

0.7899

0.7925

0.7910

0.7958

0.7958

0.7899

0.7906

0.7921

0.7908

0.7985

0.7890

0.9084

0.9103
0.9122
0.9114
0.9104

0.9098
0.9119

0.9108

0.9091
0.9100

0.9115

0.9121

0.9106
0.9098

0.9095

0.9091
0.9106

0.9117

0.9116

0.9118

0.8502

0.8528

0.8552
0.8539

0.8527

0.8516

0.8545

0.8530

0.8511

0.8523

0.8539

0.8547

0.8526

0.8519

0.8513

0.8510

0.8530

0.8541

0.8545

0.8544

The Wilcoxon Signed-Rank Test was utilized to perform statistical analysis between

the segmentation model trained with the unified set and the segmentation model trained with

the individual training sets. The underscored values presented in Tables 6.11, 6.12, 6.10, 6.14,

and 6.15 are the techniques where training with the unified set resulted in a P-value lower than

0.05, thereby rejecting the null hypothesis, suggesting that there is a statistical difference and the

achieved results with the unified training set are superior to those with the individual training sets.
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Table 6.12: Results of the data augmentation evaluation when unifying the training sets (Continuation of Table 6.11).

𝑝 stands for probability, the blue-colored values indicate the best F-score values, and the red-colored values indicate

the best IoU values. The values highlighted in green show the data augmentation techniques in which the P-value

achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical difference and

the results achieved are better than without data augmentation). The underscored values show the techniques where

training with the combined training sets achieved a P-value lower than 0.05 when compared with training with a

single training set, and the null hypothesis was rejected. Source: (Krinski et al., 2023)

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.15

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8548
0.8629

0.8734

0.8643

0.8704

0.8641

0.8736

0.8633

0.8654

0.8649

0.8676

0.8758

0.8623

0.8581

0.8648

0.8609

0.8609

0.8762

0.8641

0.8766

0.7992

0.8071

0.8203

0.8097

0.8164

0.8086

0.8193

0.8080

0.8103

0.8093

0.8130

0.8225

0.8070

0.8019

0.8095

0.8045

0.8063

0.8219

0.8087

0.8234

0.8883

0.8895

0.8920

0.8908

0.8922

0.8912
0.8939

0.8873

0.8863
0.8901

0.8914
0.8944
0.8905

0.8884

0.8890

0.8887
0.8907

0.8944
0.8893
0.8941

0.8252

0.8276

0.8310

0.8291

0.8308

0.8295

0.8326

0.8250

0.8235

0.8286

0.8297

0.8335

0.8280

0.8255

0.8267

0.8258

0.8285

0.8333

0.8273

0.8336

0.8179

0.8283

0.8345

0.8229

0.8358

0.8207

0.8353

0.8246

0.8199
0.8258

0.8245

0.8353

0.8242

0.8222

0.8238

0.8176

0.8281

0.8350

0.8220

0.8374

0.7552

0.7642

0.7704

0.7591

0.7717

0.7575

0.7720

0.7610

0.7561

0.7615

0.7610

0.7713

0.7604

0.7577

0.7602

0.7536

0.7651

0.7696

0.7580

0.7744

0.8602

0.8610

0.8594

0.8577

0.8587

0.8729
0.8612

0.8635

0.8574

0.8677

0.8538

0.8610

0.8617

0.8570

0.8668

0.8596

0.8643

0.8517

0.8663

0.8652

0.7947

0.7959

0.7938

0.7918

0.7933

0.8100
0.7961

0.7987

0.7915

0.8036

0.7874

0.7955

0.7967

0.7910

0.8026

0.7938

0.7997

0.7847

0.8022

0.8007

0.9088
0.9100

0.9111
0.9115

0.9123

0.9127

0.9136

0.9102

0.9095
0.9116

0.9114
0.9135

0.9097

0.9086
0.9109

0.9090
0.9104

0.9115

0.9128

0.9144

0.8506

0.8522

0.8537

0.8541

0.8547

0.8557

0.8568

0.8521

0.8511

0.8545

0.8541

0.8565

0.8520

0.8505

0.8533

0.8508

0.8531

0.8539

0.8558

0.8576

0.2

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8569

0.8597

0.8746

0.8632

0.8722

0.8615

0.8750

0.8613

0.8625

0.8656

0.8678

0.8761
0.8609

0.8599

0.8632

0.8631

0.8632

0.8753

0.8631

0.8761

0.8020

0.8052

0.8215

0.8088

0.8177

0.8067

0.8219

0.8058

0.8068

0.8104

0.8133

0.8231
0.8058

0.8045

0.8070

0.8074

0.8089

0.8216

0.8077

0.8230

0.8872

0.8873
0.8959

0.8907
0.8926

0.8888
0.8961

0.8879

0.8876
0.8901

0.8921
0.8957

0.8889

0.8873

0.8871

0.8860
0.8909

0.8949

0.8895
0.8992

0.8240

0.8255

0.8352

0.8288

0.8310

0.8264

0.8356

0.8259

0.8247

0.8282

0.8301

0.8351

0.8264

0.8240

0.8243

0.8233

0.8286

0.8343

0.8277

0.8392

0.8183
0.8244

0.8356

0.8285

0.8316

0.8170
0.8391

0.8240

0.8166
0.8173

0.8264

0.8365

0.8201
0.8209

0.8209

0.8206
0.8278

0.8391

0.8202
0.8431

0.7546

0.7605

0.7728

0.7641

0.7672

0.7527

0.7761

0.7611

0.7537

0.7545

0.7633

0.7732

0.7559

0.7565

0.7576

0.7572

0.7650

0.7741

0.7566

0.7808

0.8602

0.8575

0.8572

0.8686
0.8561

0.8616

0.8597

0.8591

0.8569

0.8630

0.8632

0.8603

0.8530

0.8486

0.8632

0.8587

0.8622

0.8542

0.8633

0.8666

0.7946

0.7915

0.7912

0.8046
0.7900

0.7965

0.7941

0.7934

0.7910

0.7979

0.7984

0.7948

0.7860

0.7812

0.7986

0.7929

0.7971

0.7878

0.7985

0.8021

0.9093

0.9106
0.9133

0.9131

0.9119

0.9116

0.9133

0.9090

0.9091
0.9108

0.9121

0.9140
0.9104

0.9086

0.9103

0.9096
0.9116

0.9121

0.9115

0.9135

0.8509

0.8528

0.8564

0.8557

0.8542

0.8541

0.8561

0.8506

0.8510

0.8531

0.8550

0.8569
0.8523

0.8502

0.8523

0.8516

0.8540

0.8544

0.8541

0.8568

The results displayed in Tables 6.11, 6.12, 6.13, 6.14, and 6.15 demonstrate that

employing the unified training set produced favorable outcomes compared to utilizing individual

training sets. Specifically, for a probability of 0.05, the F-score was higher when training with

the unified training set than with the baseline in all data augmentation techniques used in the

CC-CCII dataset. This pattern was also observed in 11 data augmentation techniques in MosMed

and 10 in Zenodo. At a probability of 0.1, the unified training set yielded superior F-score
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Table 6.13: Results of the data augmentation evaluation when unifying the training sets (Continuation of Tables 6.11

and 6.12). 𝑝 stands for probability, the blue-colored values indicate the best F-score values, and the red-colored

values indicate the best IoU values. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation). The underscored values show the

techniques in which training with the combined training sets achieved a P-value lower than 0.05 when compared

with training with a single training set, and the null hypothesis was rejected. Source: (Krinski et al., 2023)

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.25

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8565

0.8635

0.8758

0.8641

0.8717

0.8604

0.8761

0.8628

0.8629

0.8622

0.8699

0.8778
0.8627

0.8602

0.8632

0.8640

0.8634

0.8762

0.8625

0.8774

0.8006

0.8084

0.8235

0.8105

0.8178

0.8060

0.8236

0.8072

0.8078

0.8081

0.8161

0.8250
0.8068

0.8035

0.8072

0.8087

0.8093

0.8221

0.8074

0.8244

0.8856

0.8899
0.8981
0.8925

0.8926

0.8898

0.8960

0.8890

0.8892

0.8881
0.8927

0.8959

0.8882

0.8882

0.8883

0.8893
0.8913

0.8952

0.8906
0.8973

0.8227

0.8279

0.8376
0.8306

0.8311

0.8279

0.8349

0.8270

0.8269

0.8261

0.8317

0.8357

0.8259

0.8255

0.8257

0.8272

0.8291

0.8343

0.8282

0.8372

0.8212

0.8292

0.8378

0.8233

0.8338

0.8218

0.8398

0.8270

0.8195
0.8219

0.8307

0.8425

0.8160
0.8228

0.8220

0.8229

0.8288

0.8409

0.8183
0.8432

0.7579

0.7653

0.7739

0.7600

0.7697

0.7582

0.7759

0.7634

0.7569

0.7585

0.7681

0.7791

0.7521

0.7586

0.7587

0.7600

0.7665

0.7758

0.7549

0.7799

0.8654

0.8637

0.8594

0.8707
0.8546

0.8682

0.8547

0.8607

0.8669

0.8632

0.8636

0.8633

0.8522

0.8602

0.8634

0.8611

0.8665

0.8514

0.8576

0.8602

0.8010

0.7988

0.7937

0.8074
0.7884

0.8040

0.7882

0.7952

0.8029

0.7981

0.7987

0.7982

0.7857

0.7948

0.7990

0.7957

0.8021

0.7848

0.7919

0.7945

0.9098

0.9113

0.9135

0.9124

0.9113

0.9115

0.9137

0.9079

0.9112

0.9123

0.9126

0.9144
0.9089
0.9098

0.9101

0.9096

0.9130

0.9118

0.9115

0.9133

0.8516

0.8538

0.8568

0.8555

0.8532

0.8542

0.8568

0.8499

0.8535

0.8550

0.8560

0.8577
0.8506

0.8517

0.8526

0.8518

0.8556

0.8539

0.8540

0.8560

0.3

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8564

0.8632

0.8747

0.8657

0.8732

0.8644

0.8750

0.8563

0.8629

0.8647

0.8700

0.8764

0.8625

0.8591

0.8631

0.8635

0.8659

0.8774
0.8635

0.8767

0.8001

0.8084

0.8235

0.8110

0.8193

0.8085

0.8225

0.8019

0.8078

0.8093

0.8157

0.8229

0.8067

0.8028

0.8073

0.8077

0.8112

0.8237

0.8085

0.8239

0.8854
0.8910

0.8978

0.8901
0.8933

0.8899

0.8994
0.8881

0.8882
0.8900

0.8928
0.8952

0.8902

0.8904

0.8859

0.8883
0.8901

0.8964

0.8890
0.8984

0.8229

0.8290

0.8383

0.8280

0.8323

0.8281

0.8394
0.8262

0.8259

0.8274

0.8316

0.8349

0.8281

0.8281

0.8228

0.8254

0.8284

0.8356

0.8270

0.8382

0.8202

0.8284

0.8414

0.8219

0.8297
0.8154

0.8448
0.8277

0.8243

0.8190
0.8238

0.8384

0.8243

0.8299

0.8193
0.8199

0.8333

0.8401

0.8144

0.8417

0.7569

0.7645

0.7781

0.7593

0.7658

0.7530

0.7814
0.7646

0.7607

0.7550

0.7613

0.7750

0.7597

0.7653

0.7558

0.7562

0.7703

0.7757

0.7512

0.7786

0.8648

0.8598

0.8622

0.8682

0.8501

0.8718
0.8625

0.8627

0.8639

0.8608

0.8637

0.8598

0.8593

0.8632

0.8659

0.8574

0.8671

0.8494

0.8629

0.8583

0.8000

0.7945

0.7971

0.8039

0.7831

0.8085
0.7975

0.7973

0.7993

0.7954

0.7989

0.7942

0.7940

0.7982

0.8017

0.7912

0.8029

0.7823

0.7980

0.7924

0.9096

0.9094
0.9147
0.9127

0.9108

0.9121

0.9141

0.9094

0.9115

0.9124

0.9141

0.9137

0.9111

0.9094

0.9107

0.9092
0.9125

0.9112

0.9113
0.9126

0.8516

0.8517

0.8583
0.8557

0.8523

0.8548

0.8575

0.8511

0.8538

0.8552

0.8575

0.8567

0.8536

0.8514

0.8527

0.8511

0.8557

0.8533

0.8539

0.8554

values in 2 data augmentation techniques in the MedSeg dataset, 13 techniques in MosMed, 11

in Zenodo, and all techniques in the CC-CCII dataset, as shown in Tables 6.11, 6.12, and 6.13.

At a probability of 0.15, the unified training set produced higher F-score values in 6 techniques

in the MedSeg dataset, 17 in MosMed, 13 in Zenodo, and 19 in CC-CCII. At a probability of 0.2,

the unified training set yielded better F-score values in 8 techniques in MedSeg, 12 in MosMed,

11 in Zenodo, and all techniques in the CC-CCII dataset.
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Table 6.14: Results of the data augmentation evaluation when unifying the training sets (Continuation of Tables 6.11,

6.12 and 6.13). 𝑝 stands for probability, the blue-colored values indicate the best F-score values, and the red-colored

values indicate the best IoU values. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation). The underscored values show the

techniques in which training with the combined training sets achieved a P-value lower than 0.05 when compared

with training with a single training set, and the null hypothesis was rejected.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.35

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8542

0.8647

0.8771

0.8643

0.8714

0.8668

0.8786

0.8615

0.8658

0.8628

0.8726

0.8774

0.8584

0.8609

0.8588

0.8644

0.8670

0.8787
0.8625

0.8783

0.7986

0.8105

0.8250

0.8100

0.8171

0.8113

0.8266
0.8069

0.8097

0.8071

0.8185

0.8251

0.8033

0.8046

0.8038

0.8083

0.8121

0.8248

0.8072

0.8257

0.8867
0.8904

0.8989
0.8913
0.8951

0.8909

0.8985

0.8883

0.8864

0.8900
0.8935

0.8982

0.8908

0.8883

0.8885

0.8892
0.8910

0.8959

0.8920

0.8977

0.8233

0.8284

0.8394
0.8295

0.8338

0.8293

0.8381

0.8263

0.8239

0.8283

0.8325

0.8386

0.8286

0.8252

0.8257

0.8263

0.8290

0.8354

0.8303

0.8377

0.8205

0.8343

0.8459
0.8229

0.8348

0.8211

0.8379

0.8284

0.8146

0.8187
0.8262

0.8413

0.8249

0.8236

0.8212

0.8158
0.8323

0.8405

0.8194

0.8454

0.7568

0.7706

0.7834
0.7592

0.7714

0.7574

0.7744

0.7636

0.7515

0.7545

0.7634

0.7788

0.7607

0.7595

0.7573

0.7531

0.7691

0.7765

0.7560

0.7826

0.8656

0.8673

0.8647

0.8713
0.8519

0.8691

0.8548

0.8570

0.8569

0.8621

0.8566

0.8623

0.8642

0.8570

0.8585

0.8623

0.8657

0.8498

0.8598

0.8598

0.8012

0.8031

0.7997

0.8079
0.7855

0.8050

0.7884

0.7907

0.7910

0.7970

0.7908

0.7970

0.7994

0.7912

0.7928

0.7975

0.8011

0.7832

0.7946

0.7943

0.9086

0.9118

0.9147
0.9130

0.9107

0.9122

0.9138

0.9089

0.9110
0.9123

0.9136

0.9138

0.9100

0.9092

0.9088

0.9102

0.9120

0.9111

0.9110
0.9135

0.8507

0.8541

0.8581
0.8561

0.8523

0.8548

0.8568

0.8505

0.8531

0.8549

0.8567

0.8570

0.8520

0.8514

0.8509

0.8523

0.8549

0.8530

0.8533

0.8565

0.4

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8530
0.8635

0.8771

0.8652

0.8722

0.8637

0.8784
0.8629

0.8642

0.8644

0.8714

0.8745

0.8621

0.8596

0.8632

0.8650

0.8700

0.8770

0.8623

0.8784

0.7973

0.8076

0.8252

0.8104

0.8173

0.8093

0.8260

0.8070

0.8087

0.8084

0.8169

0.8227

0.8075

0.8029

0.8078

0.8090

0.8157

0.8233

0.8068

0.8267

0.8865

0.8896
0.8975

0.8902
0.8935

0.8909
0.8989

0.8886

0.8887

0.8883

0.8916
0.8965

0.8923

0.8870

0.8883

0.8886
0.8922

0.8954

0.8917
0.8993

0.8233

0.8279

0.8378

0.8285

0.8321

0.8293

0.8390

0.8261

0.8265

0.8264

0.8303

0.8363

0.8304

0.8238

0.8262

0.8258

0.8304

0.8353

0.8298

0.8399

0.8154

0.8253

0.8403

0.8246

0.8360

0.8247

0.8402

0.8235

0.8203

0.8158
0.8287

0.8409

0.8210
0.8213

0.8217

0.8169

0.8343

0.8408

0.8180
0.8472

0.7524

0.7619

0.7772

0.7610

0.7713

0.7601

0.7767

0.7604

0.7570

0.7523

0.7641

0.7788

0.7575

0.7573

0.7575

0.7541

0.7719

0.7767

0.7543

0.7845

0.8642

0.8594

0.8582

0.8681

0.8484

0.8714
0.8558

0.8531

0.8593

0.8556

0.8557

0.8600

0.8641

0.8510

0.8610

0.8581

0.8690

0.8491

0.8636

0.8598

0.7994

0.7938

0.7923

0.8042

0.7813

0.8080
0.7895

0.7866

0.7939

0.7893

0.7897

0.7943

0.7991

0.7840

0.7959

0.7923

0.8051

0.7822

0.7990

0.7943

0.9097

0.9105

0.9144
0.9119

0.9096

0.9122

0.9140

0.9083

0.9106

0.9120

0.9135

0.9142

0.9103

0.9079

0.9092

0.9093
0.9124

0.9110

0.9123

0.9143

0.8517

0.8527

0.8575
0.8549

0.8505

0.8551

0.8570

0.8496

0.8527

0.8540

0.8564

0.8573

0.8528

0.8494

0.8515

0.8515

0.8554

0.8529

0.8552

0.8574

For probability 0.25, the unified training set achieved better values in 9 data augmentation

techniques in the MedSeg dataset, 17 in MosMed, and 15 in Zenodo. Similarly, for probability

0.3, the unified training set achieved better values in 9 data augmentation techniques in the

MedSeg dataset, 16 in MosMed, and 13 in Zenodo. In both probabilities of 0.25 and 0.3, all

data augmentation techniques achieved better values in the CC-CCII dataset through the unified

training strategy. At a probability of 0.35, the unified training set achieved higher valued in all
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Table 6.15: Results of the data augmentation evaluation when unifying the training sets (Continuation of Tables 6.11,

6.12, 6.13 and 6.14). 𝑝 stands for probability, the blue-colored values indicate the best F-score values, and the

red-colored values indicate the best IoU values. The values highlighted in green show the data augmentation

techniques in which the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e.,

there is a statistical difference and the results achieved are better than without data augmentation). The underscored

values show the techniques in which training with the combined training sets achieved a P-value lower than 0.05

when compared with training with a single training set, and the null hypothesis was rejected.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.45

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8524

0.8666

0.8778

0.8626

0.8722

0.8612

0.8771

0.8632

0.8610

0.8652

0.8726

0.8771

0.8611

0.8586

0.8608

0.8630

0.8628

0.8790
0.8604

0.8766

0.7972

0.8114

0.8256
0.8084

0.8176

0.8060

0.8253

0.8077

0.8054

0.8099

0.8199

0.8253

0.8054

0.8035

0.8064

0.8076

0.8091

0.8250

0.8055

0.8239

0.8851
0.8918

0.8991

0.8895
0.8935

0.8908

0.8994
0.8900

0.8878
0.8904

0.8962

0.8962

0.8905

0.8888

0.8863

0.8873
0.8926

0.8990

0.8914
0.8987

0.8217

0.8302

0.8392

0.8273

0.8322

0.8296

0.8393
0.8280

0.8253

0.8288

0.8361

0.8360

0.8282

0.8258

0.8231

0.8240

0.8306

0.8389

0.8298

0.8389

0.8177

0.8333

0.8454

0.8183
0.8339

0.8188

0.8452

0.8279

0.8218

0.8181

0.8322

0.8426

0.8204
0.8196

0.8180
0.8184

0.8347

0.8477
0.8251

0.8457

0.7537

0.7694

0.7831

0.7543

0.7707

0.7563

0.7826

0.7645

0.7582

0.7546

0.7693

0.7792

0.7570

0.7563

0.7538

0.7549

0.7716

0.7841
0.7608

0.7819

0.8543

0.8703

0.8633

0.8571

0.8486

0.8707
0.8620

0.8646

0.8588

0.8626

0.8672

0.8586

0.8599

0.8532

0.8548

0.8574

0.8681

0.8500

0.8704

0.8558

0.7878

0.8064

0.7981

0.7909

0.7817

0.8073
0.7967

0.7998

0.7935

0.7973

0.8030

0.7926

0.7944

0.7866

0.7885

0.7917

0.8041

0.7834

0.8069

0.7897

0.9081
0.9117

0.9152
0.9112

0.9084

0.9131

0.9151

0.9097

0.9106

0.9113

0.9146

0.9135

0.9098

0.9096

0.9088

0.9111
0.9125

0.9105

0.9136

0.9126

0.8494

0.8544

0.8587
0.8537

0.8489

0.8561

0.8585

0.8515

0.8527

0.8539

0.8585

0.8564

0.8518

0.8513

0.8505

0.8532

0.8555

0.8525

0.8570

0.8555

0.5

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8561

0.8585

0.8780

0.8662

0.8688

0.8649

0.8782

0.8628

0.8596

0.8662

0.8710

0.8800

0.8631

0.8566

0.8654

0.8644

0.8664

0.8806
0.8641

0.8780

0.8002

0.8031

0.8263

0.8112

0.8137

0.8098

0.8271

0.8070

0.8054

0.8113

0.8172

0.8283
0.8072

0.8004

0.8098

0.8081

0.8115

0.8273

0.8093

0.8261

0.8847
0.8921

0.8991

0.8894
0.8955

0.8905

0.9002
0.8887

0.8879
0.8896

0.8958

0.8994

0.8915

0.8891

0.8887

0.8889
0.8911

0.8986

0.8903
0.8996

0.8216

0.8306

0.8396

0.8277

0.8341

0.8287

0.8403

0.8263

0.8255

0.8278

0.8355

0.8401

0.8293

0.8265

0.8261

0.8261

0.8290

0.8384

0.8283

0.8405

0.8136

0.8329

0.8443

0.8221

0.8396

0.8214

0.8431

0.8244

0.8172

0.8206
0.8310

0.8453

0.8217
0.8225

0.8221

0.8203

0.8362

0.8470

0.8240

0.8477

0.7513

0.7692

0.7820

0.7591

0.7761

0.7582

0.7796

0.7616

0.7547

0.7565

0.7675

0.7833

0.7571

0.7581

0.7585

0.7568

0.7732

0.7826

0.7601

0.7852

0.8544

0.8604

0.8622

0.8646

0.8488

0.8681

0.8555

0.8586

0.8595

0.8615

0.8647

0.8636

0.8613

0.8499

0.8600

0.8569

0.8675

0.8487

0.8704
0.8586

0.7879

0.7950

0.7969

0.7999

0.7818

0.8040

0.7892

0.7926

0.7942

0.7963

0.7999

0.7987

0.7962

0.7827

0.7948

0.7910

0.8030

0.7820

0.8066
0.7929

0.9088
0.9112

0.9147

0.9116

0.9084
0.9124

0.9145

0.9073

0.9108
0.9120

0.9147

0.9153
0.9111

0.9084

0.9101
0.9095

0.9122

0.9098

0.9136

0.9137

0.8503

0.8535

0.8580

0.8544

0.8491

0.8548

0.8577

0.8487

0.8531

0.8547

0.8586
0.8586
0.8534

0.8501

0.8523

0.8514

0.8550

0.8514

0.8568

0.8568

augmentation techniques in CC-CCII, 10 data augmentation techniques in the MedSeg dataset,

15 in MosMed, and 14 in Zenodo. At a probability of 0.4, the unified training set achieved

higher valued in 19 augmentation techniques in CC-CCII, 7 data augmentation techniques in the

MedSeg dataset, 15 in MosMed, and 14 in Zenodo.

At a probability of 0.45, the unified training set achieved higher valued in all augmentation

techniques in CC-CCII, 12 data augmentation techniques in the MedSeg dataset, 14 in MosMed,
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and 12 in Zenodo. At a probability of 0.5, the unified training set achieved higher valued in all

augmentation techniques in CC-CCII, 9 data augmentation techniques in the MedSeg dataset, 17

in MosMed, and 12 in Zenodo. Besides the promising results achieved with the unified training

strategy and data augmentation in CC-CCII, MedSeg, MosMed, and Zenodo, the unified training

set did not improve the performance of the Ricord1a dataset, which could be attributed to the

balancing approach that prioritized the small datasets, which performed poorly in the traditional

training strategy compared to Ricord1a.

Moreover, data augmentation techniques were consistently more effective with this

training strategy in all ten probabilities evaluated. For a probability of 0.05, Elastic Transform and

Piecewise Affine achieved a higher F-score on the CC-CCII dataset. In the MedSeg dataset, seven

data augmentation techniques achieved a higher F-score. In the MosMed dataset, twelve data

augmentation techniques achieved a higher F-score, and Piecewise Affine increased the F-score

by 2%. As explained in Section 6.2.1, applying data augmentation to the Zenodo dataset using

standard training sets did not improve the results, with only one data augmentation technique

improving the F-score. However, twelve data augmentation techniques achieved a higher F-score

on the Zenodo dataset with this training strategy. In the Ricord1a dataset, four data augmentation

techniques achieved a higher F-score, and Piecewise Affine also increased the F-score by 2%.

For a probability of 0.1, 5 data augmentation techniques improved the F-score on the

CC-CCII, 7 on the MedSeg, 13 on the MosMed, 4 on the Ricord1a, and 12 on the Zenodo. Also,

in MosMed, the Elastic Transform, Grid Distortion, Piecewise Affine, and Rotate increased the

F-score by 2%. For a probability of 0.15, 6 data augmentation methods improved the F-score on

the CC-CCII, 12 on the MedSeg, 16 on the MosMed, 9 on the Ricord1a, and 13 on the Zenodo.

In MosMed, six data augmentation techniques increased the F-score by 2%. For a probability of

0.2, 5 data augmentation techniques improved the F-score on CC-CCII, 10 on MedSeg, 12 on the

MosMed, 8 on the Ricord1a, and 13 on Zenodo. In MosMed, six data augmentation techniques

increased the F-score by 2%, and the Shift Scale Rotate technique increased the F-score by 3%.

For a probability of 0.25, 6 data augmentation techniques improved the F-score on CC-CCII, 10

on the MedSeg, 16 on MosMed, 10 on Ricord1a, and 15 on Zenodo. In the MosMed dataset,

three data augmentation techniques increased the F-score by 3%. For a probability of 0.3, 7 data

augmentation techniques improved the F-score on CC-CCII, 12 on MedSeg, 14 on MosMed,

12 on Ricord1a, and 13 on Zenodo. In the MosMed dataset, four data augmentation techniques

increased the F-score by 3%.

For a probability of 0.35, 7 data augmentation techniques improved the F-score on

CC-CCII, 13 on MedSeg, 14 on MosMed, 10 on Ricord1a, and 13 on Zenodo. For a probability

of 0.4, 7 data augmentation techniques improved the F-score on CC-CCII, 13 on MedSeg, 14

on MosMed, 7 on Ricord1a, and 13 on Zenodo. For a probability of 0.45, 7 data augmentation

techniques improved the F-score on CC-CCII, 14 on MedSeg, 12 on MosMed, 9 on Ricord1a, and

13 on Zenodo. For a probability of 0.5, 7 data augmentation techniques improved the F-score on

CC-CCII, 12 on MedSeg, 15 on MosMed, 9 on Ricord1a, and 13 on Zenodo. The probability 0.3
yielded better outcomes, considering the number of techniques that improved the F-score values.

The best result per dataset was: CC-CCII with Rotate applied with a probability of 0.5,

reaching an F-score of 0.8806; MedSeg with Grid Distortion applied with a probability of 0.5,

achieving an F-score of 0.9002; MosMed with Rotate applied with a probability of 0.45 and Shift

Scale Rotate applied with a probability of 0.5, attaining an F-score of 0.8477; Ricord1a with

Gaussian Blur applied with a probability of 0.15, achieving an F-score of 0.8729; Zenodo with

Piecewise Affine applied with a probability of 0.5, reaching an F-score of 0.9153. Thus, in the

CC-CCII, MedSeg, MosMed and Zenodo datasets the highest F-score value was attained through

a spatial transformation, while in Ricord1a it was achieved with a color transformation. With the
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unified training set, the spatial operations also provided the best results, confirming that these

operations are the best choices for the approached problem because they encourage shape variation

of the lesion regions. The Ricord1a dataset is an exception, with the Gaussian Blur achieving the

highest F-score value, suggesting that this dataset is more sensitive to color operations.

In general, the data augmentation techniques were consistently more effective (i.e., they

reached better F-score and IoU values) with this training strategy in four of five evaluated datasets.

The Ricord1a was the only dataset which did not achieved improvements with the unified training

set. This happened due to the balancing approach that prioritized the small datasets that achieved

poor results in the traditional training strategy when compared with the Ricord1a. Also, although

applying data augmentation techniques with a probability of 0.5 in the first evaluation did not

show interesting results, the same probability produced the highest number of data augmentation

techniques that improved the F-score when the datasets were combined into a single training set.

Furthermore, the slight difference achieved by the data augmentation process in the individual

training sets resulted in a small difference between the probabilities applied, making it unclear

which is the optimal probability in this case. Meanwhile, applying data augmentation in the

unified training set achieved overall higher results, clarifying that increasing the probability

of the data augmentation techniques generates better results, opposing previously works from

literature (Müller et al., 2021).

6.3 PROPOSED DATA AUGMENTATION EVALUATION

In the preceding sections, a comprehensive comparison of segmentation networks and data

augmentation techniques was conducted for the COVID-19 segmentation problem. The analysis

revealed that data augmentation is crucial for addressing the challenges encountered in this

particular problem. Due to the limited number of available images and the critical issue of

class imbalance in the COVID-19 segmentation datasets, a thorough examination of generic

data augmentation techniques was undertaken. However, the results demonstrated that these

techniques slightly improved segmentation performance.

Consequently, the next phase of this research focused on developing and evaluating a

domain-specific data augmentation technique specifically designed to address the COVID-19

segmentation problem. This technique is based on visual salience. The evaluation of this

approach is divided into three steps, as outlined in the following Subsections: 6.3.1, 6.3.2, and

6.3.3. In the first step of the proposed augmentation technique, two Generative Adversarial

Networks (GANs) are employed to generate healthy CT images. The second step involves

utilizing an encoder-decoder segmentation network to generate segmentation masks for the lung

regions in the healthy CT images generated by the GAN. This process enables the isolation

and delineation of the lung regions. Finally, the third step introduces new lesions within the

segmented lung regions, creating new CT images with COVID-19 lesions.

6.3.1 Healthy CT Generation

The initial phase of the proposed data augmentation method involves generating healthy CT

samples using GANs. To accomplish this, two GAN models, Stargan (Choi et al., 2020) and

Stylegan (Karras et al., 2020), were evaluated. These models were selected based on their

promising results during this work’s development (Ibrahim et al., 2024). The evaluation of

Stargan commenced by training the network for one million iterations, each involving a batch of

four samples. The evaluation of Stargan utilized the FID metric, and the corresponding training

curves are depicted in Figure 6.9. The figure includes two curves: FID latent (shown in red) and



115

Figure 6.9: The Stargan training curves. Two curves are presented: Fréchet Inception Distance (FID) latent (in red)

and FID reference (in blue). FID latent represents the FID values calculated using images generated with random

latent vectors, while FID reference represents the FID values calculated using images generated with reference

images. The FID reference curve demonstrated superior values in the first four hundred thousand iterations. After

that, both latent and reference curves achieved similar results, with a slight gain of the latent curve.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.10: Examples of healthy lung images generated by the Stargan. The images were generated with the weight

of the iteration two hundred thousand since it is the iteration that achieved the lower FID reference value.

FID reference (shown in blue). FID latent represents the FID values calculated using images

generated with random latent vectors, while FID reference represents the FID values calculated

using images generated with reference images. The FID reference curve demonstrated superior

values in the first four hundred thousand iterations. After that, both latent and reference curves

achieved similar results, with a slight gain of the latent curve.
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Figure 6.11: The Stylegan training curve. The Stylegan was trained twenty-five thousand kimgs, a metric that counts

the number of thousand images shown to the network. The Stylegan achieved the lowest FID at kimg three thousand

six hundred, not presented here due to space in the figure.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.12: Examples of healthy images generated with the Stylegan. The images generated with the Stylegan are

also promising to be used in the next steps of the data augmentation framework.

As Stargan is designed explicitly for image-to-image translation, it necessitates the

utilization of two distinct domains during the training process. In the context of this study, the

two domains correspond to healthy lung images and COVID-19-infected lung images. The

COVID-19-infected lung images were sourced from the Ricord1a dataset, while the healthy lung

images were sourced from Ricord1b. Figure 6.10 presents eight examples of healthy lung images

generated by the Stargan. The images were generated with the weight of the iteration two hundred

thousand, since it is the iteration that achieved the lower FID reference value (see Figure 6.9). In
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general, the images generated by the Stargan are promising to be used in the next steps of the

data augmentation framework.

The second GAN model evaluated was the Stylegan, and its training curve is depicted

in Figure 6.11. The training of Stylegan involved twenty-five thousand kimgs, representing the

count of a thousand images shown to the network. Stylegan achieved its lowest FID score at kimg

three thousand six hundred, which is not included in Figure 6.11 due to space limitations. Unlike

Stargan, Stylegan only required a single dataset for training the network. The Ricord1b dataset,

which provided healthy lung images, was employed in this case. Figure 6.12 showcases eight

examples of healthy images generated using Stylegan. These generated images exhibit promising

potential for utilization in the subsequent stages of the data augmentation framework.

As demonstrated, both GAN models achieved remarkable results by generating synthetic

healthy lung images that closely resemble real healthy lung images. However, Stargan attained

slightly superior performance, yielding a GAN score of 16.09, while Stylegan achieved a GAN

score of 16.78. The next phase of the proposed data augmentation process involves employing

a segmentation network to generate a segmentation mask of the lung regions in the images

generated by both GAN models.

6.3.2 Lung Segmentation

The second phase of the proposed data augmentation approach involves employing a segmentation

network to generate lung segmentation masks for the healthy CT images generated by the GAN

models. In this step, a dedicated segmentation model receives the images from the GAN models

and generates accurate lung segmentation masks for these newly generated images. These lung

segmentation masks ensure that any subsequently added lesions are placed exclusively within the

lung regions of the images.

Figure 6.13: The average F-score curves of the training and validation sets of the lung segmentation network. Even

for a mix of two datasets, the networks achieved impressive results, achieving an average F-score between 98% and

99%.
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Based on the findings highlighted in Section 6.1, the selected encoder-decoder archi-

tecture for this step is the combination of RegNetx-002 as the encoder and U-Net++ as the

decoder. This combination demonstrated outstanding performance in the experiments detailed in

Section 6.1. Furthermore, the utilization of RegNetx-002 as the encoder offers the advantage of

being a compact network (as indicated in Table 6.1), resulting in faster training and evaluation

times. The architecture was trained for up to 100 epochs with the patience of 10 epochs. The

initial learning rate was set to 0.001 and was divided by 10 every 10 epochs. The CC-CCII

and Zenodo datasets were merged to train the network. These datasets were chosen as they

were the only ones with labeled lung region data. The experiment was further validated using a

five-fold cross-validation strategy, while no data augmentation techniques were applied during

this process. Figure 6.13 presents the average F-score curves of the training and validation sets

of the lung segmentation network. It is worth pointing out that the lung segmentation network

was trained and validated with a mix of two datasets, CC-CCII and Zenodo, and was tested with

images generated by GANs trained in another dataset: Ricord1a and Ricord1b. Even for a mix of

two datasets, the networks achieved impressive results, achieving an average F-score between

98% and 99%.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.14: Examples of lung segmentation in the images generated by the Stargan. The blue colored regions are

the lung regions segmented by the network.

The generated images from Stargan and Stylegan served as the test sets for the segmenta-

tion network. Consequently, during the training and validation stages, the segmentation network

had no exposure to the images produced by the GAN models. As the test sets lacked ground-truth

labels for quantitative analysis, the evaluation of the segmentation network’s performance was

primarily qualitative. Figure 6.14 showcases eight examples of lung segmentation in the images

generated by Stargan, while Figure 6.15 displays eight examples of lung segmentation in the

images generated by Stylegan. The lung regions segmented by the network are highlighted in

blue. As illustrated in both figures, the segmentation network demonstrated promising qualitative

results, with the generated segmentation masks closely resembling the expected outcome of a

manual labeling process.

In this phase, the segmentation model was also utilized to generate segmentation masks

for the lung regions of the images in the Ricord1a dataset. These segmentation masks play
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.15: Examples of lung segmentation in the images generated by the Stylegan. The blue colored regions are

the lung regions segmented by the network.

a crucial role in the subsequent step of the workflow, as they are employed to align the lung

regions of the dataset images with the lung regions of the images generated by the GAN models.

Figure 6.16 displays eight examples of lung segmentation of images in the Ricord1a dataset.

As anticipated, the segmentation model produced promising segmentation masks that closely

resemble the expected masks generated through a manual labeling process.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.16: Examples of lung segmentation in the images from Ricord1a dataset. The blue colored regions are the

lung regions segmented by the network.
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6.3.3 Adding New Lesions

In this step, two versions of the proposed augmentation is evaluated. The first version, called

DACov, incorporates COVID-19 lesions in the healthy CT images through a random algorithm,

while the second version, called SalDACov, incorporates COVID-19 lesions in the healthy CT

images through a salience based algorithm.

6.3.3.1 Adding New Lesions - DACov version

The subsequent step involves incorporating COVID-19 lesions within the lung regions of CT

scans generated by the GANs (Subsection 6.3.1). In this DACov version, the match between the

healthy image generated by the GANs and the lesion from the dataset is made randomly. The

resulting images, displayed in Figure 6.17 for a Stargan-generated image and Figure 6.18 for

Stylegan-generated images, showcase the incorporation of COVID-19 lesions. Sub-figures (a) to

(d) exhibit examples of GAN-generated images with COVID-19 lesions in both sets of images.

At the same time, Sub-figures (e) to (h) present the corresponding segmentation masks, with

the lesion regions depicted in red. As anticipated, owing to the effective lung segmentation step

outlined in Subsection 6.3.2, the COVID-19 lesions are accurately positioned within the lung

regions.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.17: Examples of images generated by the Stargan after the addition of COVID-19 lesions. Sub-figures (a)

to (d) presents examples of images generated by the GAN with COVID-19 lesions and Sub-figures (e) to (h) presents

the respective segmentation masks, with the lesion regions presented in red.

6.3.3.2 Evaluation - DACov

The DACov version of the proposed data augmentation technique was evaluated using the unified

training strategy outlined in Subsection 6.2.2. That means that the proposed data augmentation

was applied after merging and balancing the training sets into a single, large training set. So, this

evaluation is a continuation of the evaluation presented in Subsection 6.2.2. However, unlike

previously tested data augmentation techniques which were applied online, the newly proposed

augmentation approach is not suitable for this strategy due to its multi-step image generation
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.18: Examples of images generated by the Stylegan after the addition of COVID-19 lesions. Sub-figures (a)

to (d) presents examples of images generated by the GAN with COVID-19 lesions and Sub-figures (e) to (h) presents

the respective segmentation masks, with the lesion regions presented in red.

process. Consequently, the proposed data augmentation assessment was conducted offline. Under

this methodology, the data augmentation was performed before the network training phase,

increasing the volume of training images available.

The online data augmentation strategy has a probability of applying the augmentation

technique within each batch presented to the network. As elaborated in Section 6.2, the data

augmentation techniques were evaluated using the following probabilities: 0.05, 0.1, 0.15, 0.2,

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5. This implies that roughly 5%, 10%, 15%, 20%,

25%, 30%, 35%, 40%, 45%, and 50% of the training set presented to the network consisted of

artificially generated data from the augmentation techniques. To maintain a consistent quantity

of artificially augmented data introduced to the network, the number of augmented training

images generated with the proposed augmentation approach follows the same probabilities. That

means that the training set was augmented in 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,

45%, and 50%.

Table 6.16 presents the evaluation results for the proposed data augmentation technique

in the unified training set. The proposed augmentation was evaluated with two variations (with

and without flip). First, the lesions from the dataset were added to the healthy lung images

generated by the GANs without altering the lesion images. Then, in the second variation, the

lesion images were horizontally flipped before being added to the healthy image generated by

the GANs. The Wilcoxon Signed-Rank Test test was utilized to perform statistical analysis

between the segmentation model trained applying data augmentation technique and training

the segmentation model without applying data augmentation. The highlighted values in green

demonstrate the data augmentation techniques that yielded P-values less than 0.05, thus rejecting

the null hypothesis, indicating a statistical difference and the achieved results are superior to those

without data augmentation. In general, incorporating lesion flipping led to a slight enhancement

compared to images generated without lesion flipping. Furthermore, there was a minimal

disparity in the results obtained from images generated using Stargan and Stylegan.
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Table 6.16: Results of the random version of the proposed data augmentation evaluation when unifying the training

sets. 𝑝 stands for probability. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation). Two variations of the proposed

algorithm were evaluated. The + F indicates the variation in which the lesion images were horizontally flipped

before being added to the healthy image generated by the GANs.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8604

0.8596

0.8643

0.8646

0.8054

0.8053

0.8088

0.8092

0.8879

0.8877

0.8885

0.8887

0.8251

0.8249

0.8259

0.8261

0.8179

0.8196

0.8174

0.8211

0.7546

0.7559

0.7544

0.7584

0.8671

0.8610

0.8590

0.8696

0.8033

0.7962

0.7939

0.8065

0.9100

0.9099

0.9098

0.9106

0.8522

0.8521

0.8518

0.8530

0.1

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8657

0.8635

0.8657

0.8656

0.8100

0.8084

0.8101

0.8087

0.8852

0.8888

0.8873

0.8914

0.8224

0.8262

0.8244

0.8291

0.8163

0.8187

0.8182

0.8208

0.7530

0.7562

0.7545

0.7576

0.8577

0.8648

0.8561

0.8614

0.7924

0.8006

0.7906

0.7967

0.9091

0.9103

0.9085

0.9093

0.8508

0.8525

0.8502

0.8514

0.15

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8608

0.8631

0.8658

0.8641

0.8059

0.8072

0.8104

0.8096

0.8852

0.8887

0.8888

0.8897

0.8226

0.8261

0.8258

0.8270

0.8225

0.8186

0.8213

0.8254

0.7594

0.7551

0.7576

0.7617

0.8595

0.8681

0.8640

0.8708

0.7950

0.8047

0.8003

0.8077

0.9095

0.9100

0.9105

0.9112

0.8515

0.8522

0.8527

0.8537

0.2

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8637

0.8673

0.8646

0.8639

0.8075

0.8120

0.8095

0.8096

0.8889

0.8882

0.8893

0.8892

0.8264

0.8261

0.8264

0.8265

0.8217

0.8197

0.8168

0.8272

0.7584

0.7569

0.7535

0.7638

0.8684

0.8693

0.8621

0.8733

0.8050

0.8061

0.7979

0.8106

0.9104

0.9112

0.9096

0.9105

0.8527

0.8536

0.8516

0.8530

0.25

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8642

0.8660

0.8647

0.8659

0.8080

0.8098

0.8089

0.8100

0.8874

0.8891

0.8905

0.8887

0.8250

0.8271

0.8285

0.8258

0.8188

0.8254

0.8212

0.8185

0.7560

0.7619

0.7580

0.7553

0.8685

0.8739

0.8714

0.8683

0.8053

0.8118

0.8086

0.8049

0.9106

0.9106

0.9115

0.9103

0.8527

0.8531

0.8541

0.8526

0.3

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8665

0.8626

0.8649

0.8684

0.8109

0.8074

0.8094

0.8124

0.8877

0.8876

0.8893

0.8884

0.8255

0.8248

0.8270

0.8260

0.8190

0.8227

0.8198

0.8241

0.7555

0.7595

0.7566

0.7605

0.8654

0.8703

0.8666

0.8688

0.8018

0.8074

0.8031

0.8054

0.9096

0.9104

0.9101

0.9104

0.8516

0.8525

0.8526

0.8525

0.35

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8647

0.8651

0.8655

0.8688

0.8089

0.8095

0.8095

0.8136

0.8850

0.8909

0.8868

0.8899

0.8225

0.8286

0.8242

0.8273

0.8228

0.8242

0.8216

0.8271

0.7595

0.7608

0.7580

0.7638

0.8650

0.8732

0.8628

0.8769

0.8013

0.8107

0.7988

0.8150

0.9097

0.9116

0.9105

0.9122

0.8516

0.8541

0.8524

0.8551

0.4

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8642

0.8652

0.8629

0.8660

0.8083

0.8088

0.8076

0.8105

0.8885

0.8902

0.8891

0.8913

0.8266

0.8285

0.8274

0.8294

0.8231

0.8280

0.8250

0.8287

0.7605

0.7648

0.7624

0.7659

0.8744

0.8726

0.8769

0.8768

0.8122

0.8099

0.8152

0.8152

0.9117

0.9115

0.9125

0.9125

0.8542

0.8542

0.8557

0.8556

0.45

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8644

0.8627

0.8665

0.8674

0.8102

0.8078

0.8111

0.8115

0.8915

0.8886

0.8866

0.8900

0.8297

0.8266

0.8239

0.8280

0.8239

0.8240

0.8196

0.8259

0.7610

0.7600

0.7567

0.7629

0.8752

0.8737

0.8617

0.8782

0.8131

0.8116

0.7975

0.8165

0.9108

0.9110

0.9097

0.9120

0.8532

0.8534

0.8520

0.8548

0.5

Stargan

Stargan+ F

Stylegan

Stylegan+ F

0.8592

0.8646

0.8643

0.8669

0.8044

0.8087

0.8083

0.8110

0.8893

0.8914

0.8885

0.8907

0.8271

0.8292

0.8258

0.8288

0.8248

0.8303

0.8223

0.8293

0.7608

0.7669

0.7591

0.7670

0.8719

0.8782

0.8700

0.8783

0.8092

0.8168

0.8073

0.8167

0.9107

0.9123

0.9106

0.9123

0.8529

0.8553

0.8530

0.8552

In contrast to the baseline, the proposed data augmentation technique demonstrated

better F-scores across all five datasets. Specifically, within the Ricord1a dataset (previously

identified as more susceptible to color alterations), this augmentation approach yielded the

highest F-score among all assessed methods using the unified training strategy when probabilities



123

GT No Data Aug Stargan Stargan + F Stylegan Stylegan + F

Figure 6.19: Qualitative comparison between the proposed data augmentation and the baseline without data

augmentation. With the proposed data augmentation, the segmentation network found the lesion region closer to the

expected in the ground truth.

were set at 0.2, 0.25, 0.35, 0.4, 0.45, and 0.5. Also, it achieved competitive results compared to

the traditional approaches on the CC-CCII, MedSeg, MosMed, and Zenodo datasets, previously

identified as more susceptible to shape alterations. The underlying hypothesis suggests that

integrating real lesions (comprising a relatively small portion of pixels) onto entirely synthetic

backgrounds (constituting the majority of pixels) fosters a heightened divergence in both color and

shape, demonstrating greater effectiveness for this particular problem compared to conventional

methods concentrating solely on a single aspect.

Moreover, in certain instances, the newly generated samples led to a remarkable

enhancement in mask quality, as illustrated in Figure 6.19. In the first row, the segmentation

network trained without data augmentation failed to identify any lesion, a critical scenario with

profound biological implications. In the subsequent example depicted in the second row, the

absence of data augmentation resulted in the segmentation network displaying a meager recall

value, thus predicting a notably extensive false positive regions. The precision was notably low

within the third and fourth rows (images where the lesions almost entirely covered the lungs),

manifesting numerous false negative pixels and consequently yielding a low F-score value.

In medical problems, false negative outcomes typically represent the most critical

scenario, substantially elevating patient risks as indicated by several studies (Woloshin et al.,

2020; Wikramaratna et al., 2020; Kanji et al., 2021). In these instances, the proposed data

augmentation strategy is pivotal in enabling the network to identify a segmentation mask that

closely aligns with the ground truth, thereby reducing false positive outcomes. Additionally,

as depicted in Figure 6.19, the four variations of the proposed technique consistently yielded

improved outcomes using the same network architecture, outperforming the results achieved
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without integrating data augmentation. Consequently, the diversity introduced by the proposed

technique improved the generalization in some cases.

6.3.3.3 Adding New Lesions - SalDACov

In the SalDACov version of the proposed augmentation, the random matching algorithm that

chooses the lesions from the dataset is replaced by a visual salience-based algorithm to guide

the choice of the lesions that will be added to each lung. In total, nine versions of the proposed

augmentation were evaluated considering the lung side and the salience distance between the

healthy image generated by the GAN and the lesion image:

• The lesions are placed in the same lung side from the original image from the dataset

and the lesions are chosen considering the maximum salience distance between the

image generated by the GAN and the lesion image from the dataset. The results are

presented on Table 6.17.

• The lesions are placed in the same lung side from the original image from the dataset

and the lesions are chosen considering the minimum salience distance between the

image generated by the GAN and the lesion image from the dataset. The results are

presented on Table 6.18.

• The lesions are placed in the same lung side from the original image from the dataset

and the lesions are chosen considering a random salience distance between the image

generated by the GAN and the lesion image from the dataset. The results are presented

on Table 6.19.

• The lesions are placed in the opposite lung side from the original image from the dataset

and the lesions are chosen considering the maximum salience distance between the

image generated by the GAN and the lesion image from the dataset. The results are

presented on Table 6.20.

• The lesions are placed in the opposite lung side from the original image from the dataset

and the lesions are chosen considering the minimum salience distance between the

image generated by the GAN and the lesion image from the dataset. The results are

presented on Table 6.21.

• The lesions are placed in the opposite lung side from the original image from the dataset

and the lesions are chosen considering a random salience distance between the image

generated by the GAN and the lesion image from the dataset. The results are presented

on Table 6.22.

• The lesions are placed in a random lung side from the original image from the dataset

and the lesions are chosen considering the maximum salience distance between the

image generated by the GAN and the lesion image from the dataset. The results are

presented on Table 6.23.

• The lesions are placed in a random lung side from the original image from the dataset

and the lesions are chosen considering the minimum salience distance between the

image generated by the GAN and the lesion image from the dataset. The results are

presented on Table 6.24.



125

• The lesions are placed in a random lung side from the original image from the dataset

and the lesions are chosen considering a random salience distance between the image

generated by the GAN and the lesion image from the dataset. The results are presented

on Table 6.25.

Figure 6.20 and Figure 6.21 showcase the images generated by StarGAN and StyleGAN,

respectively, following the inclusion of COVID-19 lesions with the SalDACov version of the

proposed augmentation. These lesions were selected based on the maximum salience distance

between the GAN’s generated image and the dataset’s lesion image. This approach resulted in

new training samples emphasizing lesions in small-sized areas.

Figure 6.22 and Figure 6.23 showcase the images generated by StarGAN and StyleGAN,

respectively, following the inclusion of COVID-19 lesions with the SalDACov version of the

proposed augmentation. These lesions were selected based on the minimum salience distance

between the GAN’s generated image and the dataset’s lesion image. This approach resulted in

new training samples emphasizing lesions in small-sized areas.

Figure 6.24 and Figure 6.25 showcase the images generated by StarGAN and StyleGAN,

respectively, following the inclusion of COVID-19 lesions with the SalDACov version of the

proposed augmentation. These lesions were selected based on a random salience distance

between the GAN’s generated image and the dataset’s lesion image. This approach resulted in

new training samples emphasizing lesions in small-sized areas.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.20: Examples of images generated by the Stargan after the addition of COVID-19 lesions chosen considering

the maximum salience distance between the image generated by the GAN and the lesion image from the dataset.

Sub-figures (a) to (d) presents examples of images generated by the GAN with COVID-19 lesions and Sub-figures

(e) to (h) presents the respective segmentation masks, with the lesion regions presented in blue.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.21: Examples of images generated by the Stylegan after the addition of COVID-19 lesions chosen

considering the maximum salience distance between the image generated by the GAN and the lesion image from

the dataset. Sub-figures (a) to (d) presents examples of images generated by the GAN with COVID-19 lesions and

Sub-figures (e) to (h) presents the respective segmentation masks, with the lesion regions presented in blue.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.22: Examples of images generated by the Stargan after the addition of COVID-19 lesions chosen considering

the minimum salience distance between the image generated by the GAN and the lesion image from the dataset.

Sub-figures (a) to (d) presents examples of images generated by the GAN with COVID-19 lesions and Sub-figures

(e) to (h) presents the respective segmentation masks, with the lesion regions presented in blue.

6.3.3.4 Evaluation - SalDACov

The SalDACov version of the proposed data augmentation method was also evaluated using the

unified training approach detailed in Subsection 6.2.2, maintaining identical configurations to

the evaluation of the DACov version of the proposed augmentation. This evaluation extends the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.23: Examples of images generated by the Stylegan after the addition of COVID-19 lesions chosen

considering the minimum salience distance between the image generated by the GAN and the lesion image from

the dataset. Sub-figures (a) to (d) presents examples of images generated by the GAN with COVID-19 lesions and

Sub-figures (e) to (h) presents the respective segmentation masks, with the lesion regions presented in blue.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.24: Examples of images generated by the Stargan after the addition of COVID-19 lesions chosen considering

a random salience distance between the image generated by the GAN and the lesion image from the dataset. Sub-

figures (a) to (d) presents examples of images generated by the GAN with COVID-19 lesions and Sub-figures (e) to

(h) presents the respective segmentation masks, with the lesion regions presented in blue.

analysis presented in Subsection 6.2.2. Furthermore, the proposed data augmentation assessment

was performed offline, augmenting the training set by 5%, 10%, 15%, 20%, 25%, 30%, 35%,

40%, 45%, and 50%. The subsequent tables continue the findings depicted in Table 6.16,

explicitly focusing on the evaluation results for the enhanced version of the proposed data

augmentation technique within the unified training set. The F-scores highlighted in blue, and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.25: Examples of images generated by the Stylegan after the addition of COVID-19 lesions chosen

considering a random salience distance between the image generated by the GAN and the lesion image from the

dataset. Sub-figures (a) to (d) presents examples of images generated by the GAN with COVID-19 lesions and

Sub-figures (e) to (h) presents the respective segmentation masks, with the lesion regions presented in blue.

the IoUs highlighted in red indicate the metrics where the SalDACov version of the proposed

augmentation achieved higher results compared to both the generic data augmentation techniques

presented in Subsection 6.2.2 and the DACov version of the proposed augmentation presented in

Subsection 6.3.3.2.

The Wilcoxon Signed-Rank Test was utilized to perform statistical analysis between

the segmentation model trained by applying the data augmentation technique and training

the segmentation model without applying data augmentation. The green-highlighted values

indicate data augmentation techniques resulting in P-values below 0.05, thereby rejecting

the null hypothesis, signifying a statistical disparity and superior outcomes to those without

data augmentation. The Wilcoxon Signed-Rank Test was also utilized to perform statistical

analysis between training the segmentation model with the SalDACov version of the proposed

augmentation and the DACov version of the proposed augmentation. The underscored values

show when training with the SalDACov version of the proposed augmentation achieved a

P-value lower than 0.05 when compared with training with the DACov version of the proposed

augmentation, and the null hypothesis was rejected.

In the first evaluation, the image generation considered the maximum salience distance

between the image produced by the GAN and the lesion image from the dataset. The lesions

were positioned on the same lung side as the original image from the dataset. As highlighted

in Table 6.17, compared to training the segmentation model without any augmentation, this

configuration of the proposed augmentation method showcased statistical significance across

all five evaluated datasets when assessed with augmentation probabilities of 35% and 40%.

With probabilities ranging from 15% to 30%, the proposed augmentation achieved statistical

significance in three datasets: MosMed, Ricord1a, and Zenodo. Furthermore, the proposed

augmentation also achieved statistical difference in the MedSeg dataset when evaluated with

probabilities 45% and 50%.
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Table 6.17: Results of the salience version of the data augmentation evaluation when unifying the training sets. The

images were generated considering the maximum saliency distance between the image generated by the GAN and

the lesion image from the dataset. The lesions are placed in the same lung side from the original image from the

dataset. 𝑝 stands for probability. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation). The underscored values show when

training with the salience version of the proposed augmentation achieved a P-value lower than 0.05 when compared

with training with the random version of the proposed augmentation, and the null hypothesis was rejected.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05
Stargan

Stylegan

0.8642

0.8609

0.8090

0.8062

0.8862

0.8868

0.8233

0.8236

0.8200

0.8196

0.7564

0.7565

0.8536

0.8503

0.7878

0.7837

0.9091

0.9087

0.8507

0.8503

0.1
Stargan

Stylegan
0.8662

0.8653

0.8109

0.8099

0.8874

0.8881

0.8247

0.8248

0.8211

0.8202

0.7574

0.7564

0.8610

0.8586
0.7962

0.7930

0.9100

0.9087

0.8519

0.8502

0.15
Stargan

Stylegan
0.8621

0.8668

0.8069

0.8112

0.8878

0.8881

0.8247

0.8253

0.8257

0.8237

0.7630

0.7599

0.8736

0.8655

0.8107

0.8014

0.9113

0.9102

0.8537

0.8523

0.2
Stargan

Stylegan
0.8621

0.8643

0.8073

0.8091

0.8880

0.8898

0.8250

0.8270

0.8221
0.8234

0.7590

0.7604

0.8677
0.8665

0.8039

0.8028

0.9105
0.9109

0.8525

0.8530

0.25
Stargan

Stylegan
0.8628

0.8647

0.8066

0.8100

0.8875

0.8894

0.8247

0.8264

0.8253

0.8205

0.7624

0.7578

0.8736

0.8683

0.8107

0.8049

0.9110

0.9112

0.8533

0.8533

0.3
Stargan

Stylegan
0.8654

0.8609

0.8091

0.8048

0.8894

0.8904

0.8265

0.8276

0.8248

0.8259
0.7619

0.7617

0.8717

0.8668

0.8085

0.8031

0.9105

0.9101

0.8529

0.8522

0.35
Stargan

Stylegan

0.8690

0.8644

0.8130

0.8090

0.8895

0.8907
0.8270

0.8283

0.8275

0.8239

0.7642

0.7606

0.8745

0.8681
0.8119

0.8047

0.9111
0.9112

0.8532

0.8535

0.4
Stargan

Stylegan

0.8676

0.8622

0.8122

0.8055

0.8894

0.8907

0.8266

0.8281

0.8250

0.8250

0.7612

0.7619

0.8732

0.8689

0.8104

0.8053

0.9109

0.9112

0.8532

0.8534

0.45
Stargan

Stylegan
0.8643

0.8641

0.8088

0.8075

0.8896
0.8915

0.8271

0.8291

0.8273
0.8257

0.7640

0.7623

0.8755
0.8701

0.8132

0.8069

0.9118

0.9108

0.8540

0.8529

0.5
Stargan

Stylegan
0.8641

0.8646

0.8097

0.8086

0.8904

0.8904

0.8283

0.8278

0.8275

0.8268

0.7638

0.7633

0.8734

0.8697

0.8108

0.8066

0.9114

0.9108

0.8539

0.8528

In the second evaluation of the proposed augmentation, presented in Table 6.18, the

images were generated with the minimum salience distance between the image generated by

the GAN and the lesion image from the dataset. The lesions were positioned on the same lung

side as the original image from the dataset. Compared to training the segmentation model

without any augmentation, this variation of the proposed augmentation method yielded statistical

significance across all five evaluated datasets when assessed with a probability of 5% and achieved

statistical significance in four out of the five evaluated datasets when evaluated with probabilities

ranging from 10% to 50%. Moreover, this configuration demonstrated promising results in

the Ricord1a dataset, showing a notable improvement of 3% when evaluated with probabilities

of 35%, 45%, and 50%, and with probabilities 5%, 15%, 35%, and 50%, achieved the higher

values on Ricord1a dataset when compared with the generic data augmentation techniques

presented in Subsection 6.2.2 and the DACov version of the proposed augmentation presented in

Subsection 6.3.3.2.

In the third evaluation of the proposed augmentation, presented in Table 6.19, the images

were generated with a random salience distance between the image produced by the GAN and

the lesion image from the dataset, and the lesions were positioned on the same lung side as

the original image from the dataset. Compared to training the segmentation model without
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Table 6.18: Results of the salience version of the data augmentation evaluation when unifying the training sets. The

images were generated considering the minimum saliency distance between the image generated by the GAN and

the lesion image from the dataset. The lesions are placed in the same lung side from the original image from the

dataset. 𝑝 stands for probability. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation). The F-scores highlighted in blue, and

the IoUs highlighted in red indicate the metrics where the salience version of the proposed augmentation achieved

higher values compared to both the generic data augmentation techniques presented in Sub-section 6.2.2 and the

random version of the proposed augmentation presented in Sub-section 6.3.3.2. The underscored values show when

training with the salience version of the proposed augmentation achieved a P-value lower than 0.05 when compared

with training with the random version of the proposed augmentation, and the null hypothesis was rejected.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05
Stargan

Stylegan

0.8680

0.8664

0.8125

0.8096

0.8900

0.8886

0.8280

0.8260

0.8278

0.8213

0.7638

0.7582

0.8748
0.8691

0.8121
0.8054

0.9116

0.9100

0.8542

0.8521

0.1
Stargan

Stylegan
0.8640

0.8665

0.8080

0.8106

0.8902

0.8914
0.8277

0.8294

0.8228

0.8253
0.7593

0.7618

0.8704

0.8745
0.8071

0.8123

0.9105

0.9117
0.8529

0.8544

0.15
Stargan

Stylegan
0.8643

0.8652

0.8091

0.8099

0.8930

0.8911

0.8308

0.8290

0.8265

0.8302
0.7631

0.7668

0.8748

0.8781
0.8124

0.8162
0.9117

0.9120
0.8541

0.8547

0.2
Stargan

Stylegan
0.8652

0.8664

0.8098

0.8108

0.8914

0.8901

0.8289

0.8281

0.8255
0.8245

0.7622

0.7604

0.8742

0.8750
0.8116

0.8128

0.9120
0.9121

0.8545

0.8547

0.25
Stargan

Stylegan
0.8650

0.8630

0.8093

0.8082

0.8917

0.8902

0.8296

0.8281

0.8291

0.8239

0.7655

0.7614

0.8790

0.8774
0.8171

0.8159

0.9127

0.9124

0.8556

0.8550

0.3
Stargan

Stylegan
0.8633

0.8629

0.8079

0.8078

0.8908

0.8908

0.8293

0.8283

0.8259

0.8250
0.7622

0.7613

0.8739

0.8779
0.8116

0.8162

0.9118

0.9135
0.8543

0.8563

0.35
Stargan

Stylegan
0.8652

0.8638

0.8096

0.8084

0.8900

0.8930
0.8280

0.8310

0.8278

0.8307
0.7646

0.7674

0.8779

0.8811
0.8162

0.8201
0.9132

0.9131
0.8563

0.8561

0.4
Stargan

Stylegan
0.8621

0.8611

0.8070

0.8063

0.8909

0.8910

0.8288

0.8290

0.8305

0.8253

0.7672

0.7621

0.8780

0.8761

0.8163

0.8139

0.9123

0.9118

0.8549

0.8542

0.45
Stargan

Stylegan
0.8636

0.8638

0.8086

0.8082

0.8910
0.8918

0.8287

0.8301

0.8273
0.8265

0.7636

0.7633

0.8774

0.8804
0.8155

0.8193

0.9126

0.9137
0.8553

0.8568

0.5
Stargan

Stylegan
0.8638

0.8626

0.8074

0.8076

0.8916
0.8945

0.8291

0.8329

0.8304

0.8306
0.7675

0.7675

0.8783

0.8805
0.8167

0.8195
0.9133

0.9130
0.8562

0.8562

augmentation, this variant of the proposed augmentation method yielded statistical significance

in four of the five evaluated datasets when assessed with probabilities ranging from 20% to 50%.

Among these initial three evaluations of the proposed augmentation method, with the

lesions positioned on the same lung side of the original image from the dataset, the most promising

outcomes emerged from the approach where images were generated considering the minimum

salience distance between the image generated by the GAN and the lesion image from the dataset.

Notably, the results obtained on the Ricord1a dataset surpassed those achieved in this dataset with

the DACov version of the proposed augmentation, as presented in Subsection 6.3.3.2, as well as

the results obtained with generic data augmentation techniques detailed in Subsection 6.2.2. These

findings underscore the effectiveness and superiority of the SalDACov version of the proposed

augmentation method, particularly in enhancing performance across challenging datasets like

Ricord1a. The ability to surpass results obtained with the DACov version of the proposed

augmentation and generic augmentation techniques highlights this novel augmentation approach’s

significant impact and potential in the COVID-19 CT segmentation problem.
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Table 6.19: Results of the salience version of the data augmentation evaluation when unifying the training sets. The

images were generated considering the a random saliency distance between the image generated by the GAN and

the lesion image from the dataset. The lesions are placed in the same lung side from the original image from the

dataset. 𝑝 stands for probability. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation). The underscored values show when

training with the salience version of the proposed augmentation achieved a P-value lower than 0.05 when compared

with training with the random version of the proposed augmentation, and the null hypothesis was rejected.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05
Stargan

Stylegan

0.8657

0.8648

0.8106

0.8088

0.8891

0.8885

0.8269

0.8259

0.8224
0.8231

0.7582

0.7596

0.8624
0.8676

0.7980

0.8038

0.9098

0.9104

0.8518

0.8524

0.1
Stargan

Stylegan
0.8629

0.8636

0.8077

0.8080

0.8894

0.8900

0.8272

0.8280

0.8194

0.8255
0.7566

0.7622

0.8666

0.8716
0.8027

0.8086

0.9103
0.9116

0.8521

0.8537

0.15
Stargan

Stylegan

0.8633

0.8643

0.8078

0.8091

0.8889

0.8882

0.8267

0.8254

0.8245

0.8190

0.7609

0.7556

0.8706

0.8600

0.8073

0.7949

0.9104

0.9100

0.8525

0.8518

0.2
Stargan

Stylegan
0.8645

0.8676

0.8086

0.8110

0.8883

0.8907

0.8253

0.8282

0.8235
0.8199

0.7597

0.7579

0.8665
0.8714

0.8025

0.8083

0.9095

0.9105

0.8514

0.8527

0.25
Stargan

Stylegan
0.8639

0.8633

0.8077

0.8074

0.8891

0.8902

0.8265

0.8282

0.8268

0.8318
0.7626

0.7675

0.8761

0.8747
0.8139

0.8126

0.9116

0.9109

0.8543

0.8536

0.3
Stargan

Stylegan
0.8652

0.8662

0.8092

0.8096

0.8903

0.8892

0.8283

0.8269

0.8272

0.8251
0.7638

0.7614

0.8761

0.8723
0.8142

0.8094

0.9124

0.9108

0.8548

0.8530

0.35
Stargan

Stylegan
0.8631

0.8654

0.8072

0.8101

0.8919

0.8900
0.8298

0.8278

0.8303

0.8190

0.7667

0.7560

0.8765

0.8736
0.8144

0.8114

0.9119

0.9116
0.8545

0.8538

0.4
Stargan

Stylegan
0.8635

0.8641

0.8083

0.8079

0.8903

0.8920

0.8281

0.8300

0.8294

0.8250

0.7660

0.7615

0.8770

0.8755

0.8153

0.8135

0.9119

0.9113

0.8549

0.8539

0.45
Stargan

Stylegan
0.8648

0.8656

0.8091

0.8099

0.8892
0.8924

0.8271

0.8302

0.8234
0.8284

0.7607

0.7636

0.8762
0.8761

0.8142

0.8140

0.9128

0.9118
0.8555

0.8544

0.5
Stargan

Stylegan

0.8654

0.8660

0.8099

0.8097

0.8909
0.8928

0.8286

0.8309

0.8302

0.8258

0.7660

0.7625

0.8789

0.8765
0.8173

0.8145

0.9122

0.9108

0.8552

0.8535

In the evaluation presented in Table 6.20, image generation considered the maximum

salience distance between the image produced by the GAN and the lesion image from the dataset,

with lesions positioned on the opposite lung side compared to the original image from the dataset.

However, this configuration yielded the least favorable results, achieving statistical significance

only in the MosMed, Ricord1a, and Zenodo datasets compared to training the segmentation

model without augmentation. Specifically, in the MedSeg dataset, statistical significance was

attained solely with probabilities of 30% and 45%. This configuration failed to achieve statistical

significance in the CC-CCII dataset across all evaluated probabilities.

In the evaluation presented in Table 6.21, image generation considered the minimum

salience distance between the image produced by the GAN and the lesion image from the

dataset, with lesions positioned on the opposite lung side from the original image in the

dataset. Remarkably, when compared to training the segmentation model without augmentation,

this variant of the proposed augmentation method exhibited statistical significance across all

five evaluated datasets when assessed with a probability of 50%. Additionally, it achieved

statistical significance in four out of the five evaluated datasets when evaluated with probabilities

ranging from 5% to 45%. This evaluation yielded promising results in the Ricord1a dataset,

showcasing a notable improvement of 3% when assessed with probabilities of 35%, 40%, and
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Table 6.20: Results of the salience version of the data augmentation evaluation when unifying the training sets.

The images were generated considering the maximum saliency distance between the image generated by the GAN.

The lesions are placed in the opposite lung side from the original image from the dataset. 𝑝 stands for probability.

The values highlighted in green show the data augmentation techniques in which the P-value achieved values lower

than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical difference and the results achieved are

better than without data augmentation). The underscored values show when training with the salience version of the

proposed augmentation achieved a P-value lower than 0.05 when compared with training with the random version of

the proposed augmentation, and the null hypothesis was rejected.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05
Stargan

Stylegan
0.8600

0.8633

0.8045

0.8084

0.8872

0.8864

0.8245

0.8234

0.8203

0.8215

0.7563

0.7576

0.8567

0.8558

0.7910

0.7899

0.9088

0.9094

0.8505

0.8510

0.1
Stargan

Stylegan
0.8675

0.8635

0.8125

0.8080

0.8882

0.8878

0.8254

0.8253

0.8177

0.8206

0.7539

0.7577

0.8618

0.8600

0.7970

0.7950

0.9111

0.9091

0.8533

0.8508

0.15
Stargan

Stylegan
0.8627

0.8660

0.8072

0.8100

0.8871

0.8873

0.8243

0.8248

0.8223

0.8217

0.7588

0.7589

0.8612

0.8607

0.7965

0.7957

0.9094

0.9099

0.8509

0.8515

0.2
Stargan

Stylegan
0.8632

0.8640

0.8077

0.8081

0.8879

0.8879

0.8252

0.8259

0.8227

0.8229

0.7590

0.7591

0.8600

0.8637

0.7949

0.7990

0.9100

0.9100

0.8521

0.8518

0.25
Stargan

Stylegan
0.8656

0.8651

0.8098

0.8092

0.8887

0.8880

0.8257

0.8255

0.8244
0.8225

0.7616

0.7587

0.8722

0.8640

0.8093

0.7996

0.9114

0.9098

0.8541

0.8519

0.3
Stargan

Stylegan
0.8649

0.8645

0.8094

0.8089

0.8908

0.8912

0.8276

0.8285

0.8250

0.8238

0.7612

0.7608

0.8720

0.8679

0.8090

0.8042

0.9112

0.9109

0.8535

0.8532

0.35
Stargan

Stylegan
0.8635

0.8642

0.8086

0.8088

0.8887

0.8894

0.8255

0.8267

0.8239

0.8228

0.7606

0.7594

0.8714

0.8716

0.8082

0.8087

0.9097

0.9104

0.8518

0.8523

0.4
Stargan

Stylegan
0.8655

0.8649

0.8096

0.8098

0.8882

0.8914

0.8258

0.8285

0.8274

0.8257

0.7634

0.7629

0.8727

0.8708

0.8100

0.8076

0.9115

0.9114

0.8535

0.8536

0.45
Stargan

Stylegan

0.8662

0.8666

0.8105

0.8101

0.8916

0.8888

0.8291

0.8262

0.8242

0.8247

0.7615

0.7613

0.8740

0.8715

0.8114

0.8082

0.9121

0.9113

0.8546

0.8535

0.5
Stargan

Stylegan
0.8643

0.8638

0.8085

0.8072

0.8885

0.8883

0.8258

0.8255

0.8284

0.8248

0.7654

0.7619

0.8736

0.8699

0.8109

0.8069

0.9120

0.9112

0.8544

0.8534

45%. Furthermore, with probabilities 10%, 40%, and 45%, the salience based on the proposed

augmentation achieved higher values on the Ricord1a dataset when compared with the generic

data augmentation techniques and the DACov version of the proposed augmentation presented.

With a probability of 10%, the salience augmentation achieved the highest F-score on the Zenodo

dataset.

In the subsequent evaluation, presented in Table 6.22, image generation considered

a random salience distance between the image produced by the GAN and the lesion image

from the dataset, with lesions positioned on the opposite lung side compared to the original

image in the dataset. Compared to training the segmentation model without any augmentation,

this variant of the proposed augmentation method demonstrated statistical significance in the

MosMed, Ricord1a, and Zenodo datasets when applied with probabilities ranging from 5% to

15%. When applied with a probability of 20%, the augmentation achieved statistical significance

in the CC-CCII, MosMed, Ricord1a, and Zenodo datasets. Moreover, the augmentation method

achieved statistical significance in the MedSeg, MosMed, Ricord1a, and Zenodo datasets with

higher evaluated probabilities.

Similar to the initial three evaluations, in these three evaluations of the proposed

augmentation method, with the lesions positioned on the opposite lung side from the original
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Table 6.21: Results of the salience version of the data augmentation evaluation when unifying the training sets. The

images were generated considering the minimum saliency distance between the image generated by the GAN and

the lesion image from the dataset. The lesions are placed in the opposite lung side from the original image from the

dataset. 𝑝 stands for probability. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation). The F-scores highlighted in blue, and

the IoUs highlighted in red indicate the metrics where the salience version of the proposed augmentation achieved

higher values compared to both the generic data augmentation techniques presented in Sub-section 6.2.2 and the

random version of the proposed augmentation presented in Sub-section 6.3.3.2. The underscored values show when

training with the salience version of the proposed augmentation achieved a P-value lower than 0.05 when compared

with training with the random version of the proposed augmentation, and the null hypothesis was rejected.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05
Stargan

Stylegan
0.8659

0.8643

0.8106

0.8089

0.8894

0.8885

0.8266

0.8258

0.8214

0.8230

0.7576

0.7597

0.8630

0.8706

0.7983

0.8073

0.9105

0.9101

0.8525

0.8519

0.1
Stargan

Stylegan

0.8669

0.8669

0.8115

0.8112

0.8894

0.8915

0.8264

0.8296

0.8226
0.8276

0.7598

0.7647

0.8729

0.8773
0.8099

0.8152
0.9107
0.9125

0.8529

0.8552

0.15
Stargan

Stylegan
0.8638

0.8638

0.8075

0.8073

0.8904

0.8898

0.8285

0.8278

0.8294

0.8258

0.7660

0.7620

0.8752

0.8773
0.8126

0.8152

0.9113

0.9123

0.8539

0.8550

0.2
Stargan

Stylegan
0.8669

0.8670

0.8118

0.8118

0.8917

0.8927
0.8296

0.8312

0.8239

0.8287

0.7601

0.7652

0.8751

0.8784
0.8127

0.8166

0.9120
0.9133

0.8543

0.8560

0.25
Stargan

Stylegan
0.8658

0.8612

0.8102

0.8057

0.8914

0.8896

0.8300

0.8270

0.8251
0.8263

0.7613

0.7634

0.8713
0.8784

0.8081

0.8169

0.9124

0.9118
0.8550

0.8544

0.3
Stargan

Stylegan

0.8656

0.8657

0.8098

0.8095

0.8927

0.8892

0.8308

0.8273

0.8293

0.8288
0.7649

0.7650

0.8790

0.8760
0.8176

0.8140

0.9133

0.9115
0.8563

0.8545

0.35
Stargan

Stylegan
0.8665

0.8665

0.8107

0.8103

0.8922
0.8926

0.8306

0.8311

0.8312

0.8296

0.7680

0.7660

0.8801

0.8795
0.8187

0.8181

0.9139

0.9129

0.8573

0.8556

0.4
Stargan

Stylegan
0.8652

0.8632

0.8096

0.8077

0.8927

0.8925

0.8306

0.8306

0.8282
0.8361

0.7646

0.7725

0.8785

0.8814
0.8170

0.8205
0.9127

0.9142
0.8553

0.8575

0.45
Stargan

Stylegan
0.8668

0.8591

0.8109

0.8049

0.8927

0.8894

0.8303

0.8269

0.8299

0.8254

0.7672

0.7619

0.8830
0.8776

0.8222
0.8156

0.9138

0.9129

0.8573

0.8557

0.5
Stargan

Stylegan
0.8654

0.8662

0.8104

0.8106

0.8918

0.8922

0.8297

0.8302

0.8300

0.8267

0.7665

0.7644

0.8794

0.8776

0.8182

0.8160

0.9138

0.9119

0.8569

0.8545

image from the dataset, the most promising outcomes were observed when images were generated

considering the minimum salience distance between the image generated by the GAN and the

lesion image from the dataset. Furthermore, the results obtained on the Ricord1a dataset also

surpassed those achieved in this dataset with the DACov version of the proposed augmentation,

as presented in Subsection 6.3.3.2, as well as the results obtained with generic data augmentation

techniques detailed in Subsection 6.2.2. However, this version achieved less promising results

than maintaining the lesions positioned on the same lung side from the original image from

the dataset.

In the evaluation, presented in Table 6.23, image generation involved considering the

maximum salience distance between the image generated by the GAN and the lesion image

from the dataset, with lesions randomly positioned on either lung side compared to the original

image in the dataset. Remarkably, compared to training the segmentation model without any

augmentation, this variant of the proposed augmentation method achieved statistical significance

in the MedSeg, MosMed, Ricord1a, and Zenodo datasets when applied with a probability higher

than 25%



134

Table 6.22: Results of the salience version of the data augmentation evaluation when unifying the training sets. The

images were generated considering the a random saliency distance between the image generated by the GAN and the

lesion image from the dataset. The lesions are placed in the opposite lung side from the original image from the

dataset. 𝑝 stands for probability. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation). The underscored values show when

training with the salience version of the proposed augmentation achieved a P-value lower than 0.05 when compared

with training with the random version of the proposed augmentation, and the null hypothesis was rejected.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05
Stargan

Stylegan
0.8620

0.8644

0.8072

0.8090

0.8896

0.8877

0.8271

0.8252

0.8257

0.8211

0.7633

0.7575

0.8678

0.8554

0.8044

0.7893

0.9104

0.9081

0.8527

0.8497

0.1
Stargan

Stylegan
0.8647

0.8662

0.8097

0.8107

0.8881

0.8888

0.8253

0.8261

0.8258

0.8220

0.7621

0.7583

0.8648
0.8644

0.8005

0.8002

0.9108

0.9092

0.8530

0.8509

0.15
Stargan

Stylegan
0.8628

0.8644

0.8071

0.8092

0.8889

0.8893

0.8266

0.8271

0.8282

0.8240

0.7641

0.7611

0.8695

0.8658

0.8060

0.8016

0.9111

0.9095

0.8532

0.8509

0.2
Stargan

Stylegan
0.8657
0.8701

0.8102

0.8149

0.8901

0.8891

0.8274

0.8262

0.8258

0.8236

0.7633

0.7601

0.8716

0.8723

0.8085

0.8093

0.9117

0.9101

0.8541

0.8524

0.25
Stargan

Stylegan
0.8606

0.8651

0.8050

0.8084

0.8895

0.8904

0.8267

0.8277

0.8252
0.8224

0.7620

0.7579

0.8738

0.8690

0.8112

0.8058

0.9113

0.9102

0.8536

0.8520

0.3
Stargan

Stylegan
0.8650

0.8628

0.8102

0.8068

0.8901

0.8910

0.8281

0.8284

0.8280

0.8264
0.7645

0.7635

0.8718
0.8737

0.8088

0.8113

0.9112

0.9111

0.8536

0.8531

0.35
Stargan

Stylegan
0.8647

0.8621

0.8088

0.8066

0.8909

0.8906

0.8287

0.8281

0.8294

0.8220

0.7663

0.7582

0.8774

0.8747

0.8154

0.8122

0.9129

0.9107

0.8558

0.8529

0.4
Stargan

Stylegan
0.8656

0.8657

0.8093

0.8111

0.8917

0.8906

0.8293

0.8285

0.8262

0.8235

0.7625

0.7596

0.8761

0.8734

0.8139

0.8109

0.9128

0.9118

0.8555

0.8542

0.45
Stargan

Stylegan
0.8632

0.8655

0.8078

0.8092

0.8915

0.8934

0.8293

0.8315

0.8296

0.8212

0.7661

0.7584

0.8787

0.8747

0.8172

0.8124

0.9137

0.9117

0.8567

0.8541

0.5
Stargan

Stylegan
0.8641

0.8653

0.8085

0.8092

0.8900

0.8918

0.8274

0.8297

0.8295

0.8212

0.7659

0.7576

0.8777

0.8750

0.8157

0.8131

0.9122

0.9123

0.8549

0.8549

Table 6.24 displays the evaluation results of the proposed augmentation method, with

images generated considering the minimum salience distance between the image generated

by the GAN and the lesion image from the dataset. The lesions were randomly placed on

either lung side compared to the original image in the dataset. Compared to training the

segmentation model without any augmentation, this variant of the proposed augmentation

achieved statistical significance in the MedSeg, MosMed, Ricord1a, and Zenodo datasets when

applied with a probability of 5% and over 15%. Additionally, statistical significance was

attained in the CC-CCII dataset when the augmentation was applied with a probability of 30%.

Furthermore, this evaluation yielded an improvement of 3% on the Ricord1a dataset when

evaluated with a probability of 30%. Furthermore, with probabilities 20%, 25%, and 30%, the

SalDACov version of the proposed augmentation achieved higher values on the Ricord1a dataset

compared to the generic data augmentation techniques and the DACov version of the proposed

augmentation presented.

In the following evaluation, presented in Table 6.25, image generation involved consid-

ering a random salience distance between the image generated by the GAN and the lesion image

from the dataset, with lesions randomly positioned on either lung side compared to the original

image in the dataset. Compared to training the segmentation model without augmentation, this
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Table 6.23: Results of the salience version of the data augmentation evaluation when unifying the training sets. The

images were generated considering the maximum saliency distance between the image generated by the GAN and

the lesion image from the dataset. The lesions are placed in a random lung side from the original image from the

dataset. 𝑝 stands for probability. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation).

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05
Stargan

Stylegan
0.8629

0.8645

0.8070

0.8090

0.8864

0.8873

0.8235

0.8241

0.8216

0.8173

0.7575

0.7536

0.8594

0.8603

0.7942

0.7956

0.9098

0.9096

0.8516

0.8514

0.1
Stargan

Stylegan
0.8648

0.8624

0.8089

0.8073

0.8863

0.8870

0.8235

0.8242

0.8177

0.8233

0.7546

0.7595

0.8616

0.8626

0.7969

0.7982

0.9107

0.9090

0.8526

0.8506

0.15
Stargan

Stylegan
0.8654

0.8642

0.8104

0.8080

0.8882

0.8875

0.8253

0.8244

0.8233

0.8192

0.7604

0.7558

0.8669

0.8619

0.8030

0.7973

0.9100

0.9097

0.8521

0.8512

0.2
Stargan

Stylegan
0.8638

0.8655

0.8087

0.8087

0.8885

0.8893

0.8257

0.8263

0.8235

0.8211

0.7603

0.7579

0.8686

0.8625

0.8046

0.7982

0.9099

0.9093

0.8517

0.8511

0.25
Stargan

Stylegan
0.8651

0.8656

0.8097

0.8093

0.8874

0.8903

0.8245

0.8278

0.8278

0.8278

0.7638

0.7626

0.8726

0.8698

0.8098

0.8067

0.9111

0.9114

0.8533

0.8536

0.3
Stargan

Stylegan
0.8639

0.8650

0.8088

0.8094

0.8907

0.8897

0.8285

0.8265

0.8275

0.8236

0.7642

0.7599

0.8732

0.8712

0.8107

0.8083

0.9113

0.9115

0.8535

0.8537

0.35
Stargan

Stylegan
0.8647

0.8628

0.8095

0.8077

0.8905

0.8898

0.8280

0.8269

0.8249

0.8213

0.7613

0.7582

0.8701

0.8704

0.8069

0.8073

0.9105

0.9116

0.8526

0.8539

0.4
Stargan

Stylegan
0.8641

0.8625

0.8084

0.8068

0.8900

0.8890

0.8280

0.8261

0.8243

0.8235

0.7609

0.7606

0.8717

0.8685

0.8088

0.8049

0.9108

0.9110

0.8532

0.8532

0.45
Stargan

Stylegan
0.8640

0.8643

0.8089

0.8080

0.8913

0.8912

0.8288

0.8287

0.8256

0.8280

0.7623

0.7649

0.8712

0.8716

0.8082

0.8085

0.9114

0.9115

0.8536

0.8536

0.5
Stargan

Stylegan
0.8624

0.8647

0.8069

0.8090

0.8911

0.8920

0.8290

0.8293

0.8236

0.8239

0.7606

0.7600

0.8715

0.8680

0.8085

0.8043

0.9116

0.9098

0.8542

0.8520

variant of the proposed augmentation method achieved statistical significance in the MedSeg,

MosMed, Ricord1a, and Zenodo datasets when applied with a probability of 20% and probabilities

exceeding 30%. Additionally, when applied with a probability of 25%, the augmentation method

achieved statistical significance in the CC-CCII, MosMed, Ricord1a, and Zenodo datasets.

In these three last evaluations of the proposed augmentation method, with the lesions

positioned on a random lung side from the original image from the dataset, the most promising

outcomes were also observed when images were generated considering the minimum salience

distance between the image generated by the GAN and the lesion image from the dataset, with

the results obtained on the Ricord1a dataset surpassing those achieved in this dataset with

the DACov version of the proposed augmentation and the results obtained with generic data

augmentation techniques.

The proposed augmentation showed promising results based on the nine experiments

conducted, particularly on the Ricord1a dataset. Like the generic augmentation, a 50% probability

yielded the best outcomes. Furthermore, similar to the DACov version of the proposed

augmentation, there was a minimal disparity in the results from images generated using Stargan

and Stylegan. It is also worth noting that augmentation using images generated based on the

minimum salience distance between the GAN-generated image and the lesion image from the

dataset produced the best results compared to using images based on maximum and random
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Table 6.24: Results of the salience version of the data augmentation evaluation when unifying the training sets. The

images were generated considering the minimum saliency distance between the image generated by the GAN and

the lesion image from the dataset. The lesions are placed in a random lung side from the original image from the

dataset. 𝑝 stands for probability. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation). The F-scores highlighted in blue, and

the IoUs highlighted in red indicate the metrics where the salience version of the proposed augmentation achieved

higher values compared to both the generic data augmentation techniques presented in Sub-section 6.2.2 and the

random version of the proposed augmentation presented in Sub-section 6.3.3.2.

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05
Stargan

Stylegan
0.8668

0.8590

0.8112

0.8032

0.8915

0.8884

0.8294

0.8263

0.8250

0.8199

0.7617

0.7567

0.8747

0.8692

0.8122

0.8057

0.9116

0.9114

0.8543

0.8539

0.1
Stargan

Stylegan
0.8673

0.8681

0.8116

0.8127

0.8896

0.8900

0.8273

0.8278

0.8233

0.8260

0.7601

0.7625

0.8721

0.8751

0.8092

0.8125

0.9119

0.9117

0.8542

0.8544

0.15
Stargan

Stylegan
0.8644

0.8636

0.8089

0.8083

0.8893

0.8905

0.8272

0.8278

0.8286

0.8228

0.7652

0.7592

0.8774

0.8779

0.8155

0.8162

0.9116

0.9115

0.8542

0.8538

0.2
Stargan

Stylegan
0.8670

0.8645

0.8115

0.8091

0.8914

0.8912

0.8297

0.8295

0.8298

0.8317

0.7654

0.7677

0.8787

0.8794
0.8169

0.8177
0.9125

0.9128

0.8553

0.8555

0.25
Stargan

Stylegan
0.8649

0.8637

0.8097

0.8078

0.8906

0.8918

0.8282

0.8298

0.8273

0.8323

0.7637

0.7686

0.8759

0.8793
0.8135

0.8177
0.9117

0.9132

0.8543

0.8563

0.3
Stargan

Stylegan
0.8670

0.8646

0.8110

0.8094

0.8914

0.8899

0.8295

0.8279

0.8278

0.8241

0.7649

0.7603

0.8810
0.8770

0.8195
0.8152

0.9126

0.9123

0.8556

0.8549

0.35
Stargan

Stylegan
0.8656

0.8649

0.8099

0.8096

0.8888

0.8913

0.8263

0.8294

0.8248

0.8263

0.7613

0.7618

0.8761

0.8762

0.8142

0.8144

0.9119

0.9116

0.8542

0.8542

0.4
Stargan

Stylegan
0.8641

0.8657

0.8088

0.8092

0.8928

0.8918

0.8309

0.8300

0.8301

0.8251

0.7668

0.7612

0.8776

0.8774

0.8159

0.8158

0.9132

0.9121

0.8561

0.8549

0.45
Stargan

Stylegan
0.8629

0.8655

0.8078

0.8094

0.8928

0.8925

0.8308

0.8307

0.8271

0.8327

0.7635

0.7689

0.8785

0.8789

0.8170

0.8173

0.9130

0.9129

0.8555

0.8557

0.5
Stargan

Stylegan
0.8640

0.8626

0.8080

0.8066

0.8890

0.8911

0.8266

0.8288

0.8238

0.8278

0.7606

0.7648

0.8763

0.8770

0.8144

0.8152

0.9120

0.9128

0.8543

0.8556

distances. However, changing the lesion’s position to the opposite lung or a random lung side

from the original image did not differ from keeping it on the same lung side.

6.3.3.5 Evaluation - SalDACov Version Plus Traditional Data Augmentation Techniques

The SalDACov version of the proposed data augmentation method was combined with traditional

data augmentation techniques and evaluated using the unified training approach detailed in

Subsection 6.2.2. This evaluation continues the experiments presented in Subsections 6.2.2

and 6.3.3.4. However, unlike the previous evaluation, the augmentation techniques were applied

only with a probability of 50%, as this probability yielded the most promising results in the prior

evaluation. Tables 6.26, 6.27, and 6.28 present the results of the proposed data augmentation

applied in combination with the traditional data augmentation techniques.

The proposed augmentation used images generated with the minimum salience distance

between the image produced by the GAN and the lesion image from the dataset due to the best

outcomes presented in 6.3.3.4. The Wilcoxon Signed-Rank Test was utilized to perform statistical

analysis between the segmentation model trained applying data augmentation technique and

training the segmentation model without applying data augmentation. The green-highlighted
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Table 6.25: Results of the salience version of the data augmentation evaluation when unifying the training sets.

The images were generated considering a random saliency distance between the image generated by the GAN and

the lesion image from the dataset. The lesions are placed in a random lung side from the original image from the

dataset. 𝑝 stands for probability. The values highlighted in green show the data augmentation techniques in which

the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e., there is a statistical

difference and the results achieved are better than without data augmentation).

𝑝 Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

0.05
Stargan

Stylegan
0.8635

0.8620

0.8084

0.8060

0.8884

0.8882

0.8256

0.8255

0.8224

0.8223

0.7592

0.7578

0.8622

0.8579

0.7974

0.7922

0.9102

0.9090

0.8519

0.8507

0.1
Stargan

Stylegan
0.8666

0.8626

0.8102

0.8067

0.8906

0.8869

0.8284

0.8241

0.8205

0.8214

0.7566

0.7572

0.8655

0.8605

0.8013

0.7955

0.9093

0.9093

0.8511

0.8512

0.15
Stargan

Stylegan
0.8662

0.8663

0.8109

0.8102

0.8881

0.8909

0.8258

0.8282

0.8184

0.8242

0.7550

0.7606

0.8626

0.8683

0.7980

0.8051

0.9107

0.9103

0.8525

0.8520

0.2
Stargan

Stylegan
0.8628

0.8671

0.8067

0.8121

0.8904

0.8907

0.8283

0.8281

0.8308

0.8250

0.7670

0.7612

0.8724

0.8732

0.8094

0.8105

0.9123

0.9113

0.8548

0.8535

0.25
Stargan

Stylegan
0.8692

0.8646

0.8129

0.8082

0.8892

0.8888

0.8269

0.8260

0.8281

0.8236

0.7649

0.7615

0.8760

0.8754

0.8139

0.8131

0.9114

0.9115

0.8539

0.8541

0.3
Stargan

Stylegan
0.8655

0.8642

0.8098

0.8086

0.8909

0.8902

0.8283

0.8278

0.8269

0.8270

0.7637

0.7637

0.8754

0.8764

0.8133

0.8146

0.9119

0.9112

0.8548

0.8535

0.35
Stargan

Stylegan
0.8636

0.8659

0.8087

0.8094

0.8916

0.8901

0.8293

0.8274

0.8303

0.8260

0.7672

0.7633

0.8792

0.8752

0.8178

0.8129

0.9136

0.9122

0.8566

0.8548

0.4
Stargan

Stylegan
0.8644

0.8638

0.8090

0.8088

0.8911

0.8916

0.8284

0.8296

0.8292

0.8266

0.7648

0.7634

0.8764

0.8761

0.8143

0.8142

0.9125

0.9117

0.8553

0.8543

0.45
Stargan

Stylegan
0.8640

0.8685

0.8077

0.8131

0.8914

0.8915

0.8297

0.8288

0.8292

0.8293

0.7652

0.7660

0.8787

0.8768

0.8170

0.8150

0.9132

0.9120

0.8562

0.8547

0.5
Stargan

Stylegan
0.8674

0.8669

0.8126

0.8117

0.8902

0.8909

0.8276

0.8287

0.8288

0.8240

0.7651

0.7610

0.8767

0.8756

0.8147

0.8136

0.9121

0.9122

0.8548

0.8549

values in the following tables indicate data augmentation techniques resulting in P-values below

0.05, thereby rejecting the null hypothesis, signifying a statistical disparity and superior outcomes

to those without data augmentation.

The F-scores highlighted in blue indicate the best F-score value, and the IoUs highlighted

in red indicate the best IoU values. The Wilcoxon Signed-Rank Test was also utilized to perform

statistical analysis between training the segmentation model with the combination of the proposed

augmentation and traditional augmentation techniques and training the segmentation model with

just the traditional augmentation techniques. The underscored values presented in Tables 6.26,

6.27, and 6.28 are the traditional augmentation techniques that combined with the proposed

augmentation resulted in a P-value lower than 0.05, thereby rejecting the null hypothesis,

suggesting that there is a statistical difference and the achieved results with the combination of the

proposed augmentation and the traditional augmentation technique achieved superior outcomes

compared to use just the tradition augmentation technique.

As presented in Tables 6.26, 6.27, and 6.28, the SalDACov version of the proposed

augmentation, combined with traditional data augmentation techniques, achieved statistical

significance across all five datasets and obtained better F-scores in the MosMed, Ricord1a, and

Zenodo datasets compared to applying traditional techniques alone. In Table 6.26, the proposed

augmentation used images with the lesions positioned on the same lung side as in the original

dataset image. For the images generated by Stargan, the proposed augmentation achieved the
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highest F-scores when combined with Rotate on the MosMed dataset, with Gaussian Blur on

the Ricord1a dataset, and Optical Distortion on the Zenodo dataset. For the images generated

by Stylegan, the proposed augmentation achieved the highest F-scores when combined with

Piecewise Affine on the MosMed dataset, Sharpen on the Ricord1a dataset, and Median Blur on

the Zenodo dataset.

Table 6.26: Results of the proposed data augmentation applied in combination with the traditional data augmentation

techniques in the unified training set. The images were generated considering the minimum saliency distance

between the image generated by the GAN and the lesion image from the dataset. The lesions are placed in the same

lung side from the original image from the dataset. The values highlighted in green show the data augmentation

techniques in which the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e.,

there is a statistical difference and the results achieved are better than without data augmentation). The blue-colored

values indicate the best F-score values, and the red-colored values indicate the best IoU values. The underscored

values show the techniques in which the proposed augmentation combined with the traditional data augmentation

techniques achieved a P-value lower than 0.05 when compared to just applying the generic data augmentation

techniques presented on Subsection 6.2.2, and the null hypothesis was rejected.

GAN Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

Stargan

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8556
0.8675

0.8789

0.8632

0.8709

0.8642

0.8759

0.8674

0.8655

0.8654

0.8742

0.8755

0.8621

0.8586

0.8629

0.8655

0.8666

0.8792
0.8643

0.8771

0.8000

0.8123

0.8274

0.8091

0.8160

0.8084

0.8241

0.8114

0.8105

0.8099

0.8194

0.8232

0.8065

0.8026

0.8073

0.8096

0.8103

0.8255
0.8087

0.8251

0.8917

0.8957

0.9001
0.8936

0.8965
0.8943

0.8993
0.8928

0.8936

0.8930

0.8964

0.8978
0.8938

0.8931

0.8922

0.8926

0.8950

0.8989
0.8963

0.8990

0.8296

0.8353

0.8407
0.8328

0.8355

0.8335

0.8395

0.8318

0.8323

0.8319

0.8363

0.8379

0.8319

0.8313

0.8300

0.8308

0.8333

0.8388

0.8349

0.8394

0.8323

0.8410

0.8528

0.8271
0.8483

0.8273

0.8505

0.8371

0.8306

0.8225

0.8412

0.8493

0.8323

0.8326

0.8304

0.8330

0.8416

0.8551
0.8290
0.8539

0.7682

0.7779

0.7897

0.7625

0.7862

0.7643

0.7867

0.7738

0.7669

0.7599

0.7790

0.7867

0.7687

0.7691

0.7673

0.7694

0.7782

0.7912
0.7647

0.7902

0.8815

0.8816

0.8753

0.8789

0.8683

0.8825
0.8760

0.8785

0.8817

0.8797

0.8793

0.8745

0.8783

0.8773

0.8791

0.8797

0.8785

0.8666

0.8803

0.8712

0.8195

0.8208

0.8130

0.8171

0.8045

0.8212
0.8137

0.8166

0.8206

0.8183

0.8177

0.8119

0.8164

0.8152

0.8176

0.8179

0.8160

0.8028

0.8189

0.8080

0.9121

0.9148

0.9159

0.9139

0.9114

0.9155

0.9159

0.9122

0.9138

0.9155

0.9168
0.9148
0.9142

0.9123

0.9125

0.9131

0.9140

0.9116

0.9156

0.9157

0.8551

0.8584

0.8597

0.8570

0.8532

0.8595

0.8596

0.8548

0.8573

0.8595

0.8610
0.8581

0.8575

0.8547

0.8553

0.8561

0.8572

0.8535

0.8595

0.8590

Stylegan

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8593
0.8660

0.8772

0.8671
0.8727

0.8625

0.8763

0.8652

0.8661

0.8634

0.8736

0.8769

0.8671

0.8591

0.8624

0.8651
0.8717

0.8808
0.8646

0.8790

0.8034

0.8110

0.8259

0.8122

0.8186

0.8070

0.8241

0.8097

0.8106

0.8084

0.8199

0.8245

0.8105

0.8024

0.8066

0.8083

0.8150

0.8271
0.8089

0.8267

0.8926

0.8957

0.9013
0.8941

0.8989

0.8948

0.9001
0.8928

0.8937

0.8949

0.8994

0.8999
0.8958

0.8976

0.8899

0.8909

0.8928

0.8993
0.8949

0.8989

0.8305

0.8351

0.8415
0.8331

0.8379

0.8339

0.8403

0.8314

0.8324

0.8339

0.8391

0.8398

0.8340

0.8360

0.8281

0.8287

0.8310

0.8394

0.8334

0.8391

0.8318

0.8422

0.8518

0.8264

0.8469

0.8258

0.8564

0.8348

0.8312

0.8318

0.8333
0.8574
0.8300

0.8357

0.8276

0.8277

0.8411
0.8553

0.8354

0.8569

0.7689

0.7790

0.7895

0.7631

0.7847

0.7626

0.7932

0.7717

0.7681

0.7696

0.7708

0.7947
0.7667

0.7724

0.7643

0.7635

0.7771

0.7925

0.7711

0.7935

0.8822

0.8802

0.8752

0.8787

0.8668

0.8819

0.8765

0.8773

0.8803

0.8829

0.8809

0.8777

0.8797

0.8785

0.8782

0.8791

0.8776

0.8664

0.8851
0.8726

0.8203

0.8190

0.8127

0.8174

0.8030

0.8207

0.8145

0.8156

0.8193

0.8216

0.8195

0.8158

0.8180

0.8162

0.8167

0.8176

0.8149

0.8026

0.8242

0.8096

0.9125

0.9141

0.9154

0.9140

0.9110

0.9145

0.9158

0.9120

0.9142

0.9161
0.9160

0.9156
0.9143

0.9125

0.9126

0.9124

0.9135

0.9129

0.9151

0.9144

0.8552

0.8578

0.8591

0.8572

0.8524

0.8581

0.8596

0.8548

0.8574

0.8602
0.8601

0.8593

0.8576

0.8554

0.8551

0.8549

0.8565

0.8551

0.8592

0.8574
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Table 6.27: Results of the proposed data augmentation applied in combination with the traditional data augmentation

techniques in the unified training set. The images were generated considering the minimum saliency distance between

the image generated by the GAN and the lesion image from the dataset. The lesions are placed in the opposite

lung side from the original image from the dataset. The values highlighted in green show the data augmentation

techniques in which the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e.,

there is a statistical difference and the results achieved are better than without data augmentation). The blue-colored

values indicate the best F-score values, and the red-colored values indicate the best IoU values. The underscored

values show the techniques in which the proposed augmentation combined with the traditional data augmentation

techniques achieved a P-value lower than 0.05 when compared to just applying the generic data augmentation

techniques presented on Subsection 6.2.2, and the null hypothesis was rejected.

GAN Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

Stargan

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8540
0.8654

0.8782

0.8667

0.8723

0.8628

0.8762

0.8634
0.8665

0.8642

0.8723

0.8772

0.8642

0.8599

0.8651

0.8634

0.8675

0.8812
0.8619

0.8773

0.7987

0.8115

0.8268

0.8126

0.8181

0.8082

0.8239

0.8086

0.8108

0.8094

0.8190

0.8255

0.8086

0.8039

0.8089

0.8082

0.8117

0.8285
0.8067

0.8251

0.8912

0.8935

0.8996
0.8943

0.8944
0.8957

0.9004
0.8943

0.8943

0.8945

0.8965

0.8983
0.8952

0.8951

0.8917

0.8911

0.8930

0.8988
0.8949

0.8986

0.8285

0.8329

0.8400

0.8332

0.8330

0.8354

0.8409
0.8325

0.8326

0.8334

0.8361

0.8383

0.8337

0.8333

0.8299

0.8292

0.8316

0.8391

0.8341

0.8394

0.8302

0.8356

0.8502

0.8339

0.8488

0.8255

0.8507

0.8389

0.8342

0.8329

0.8355

0.8524

0.8287

0.8359

0.8283

0.8293

0.8412
0.8578

0.8304

0.8600

0.7670

0.7724

0.7878

0.7697

0.7866

0.7617

0.7878

0.7754

0.7714

0.7693

0.7727

0.7903

0.7653

0.7712

0.7654

0.7654

0.7772

0.7942

0.7668

0.7968

0.8790

0.8791

0.8758

0.8827

0.8675

0.8819

0.8755

0.8764

0.8803

0.8815

0.8784

0.8761

0.8779

0.8758

0.8786

0.8798

0.8752

0.8667

0.8838
0.8742

0.8174

0.8177

0.8138

0.8220

0.8037

0.8208

0.8132

0.8147

0.8191

0.8203

0.8170

0.8137

0.8158

0.8134

0.8168

0.8181

0.8126

0.8030

0.8226
0.8114

0.9120

0.9139

0.9162

0.9150

0.9107

0.9150

0.9163
0.9122

0.9152

0.9163
0.9158

0.9149
0.9145

0.9125

0.9134

0.9134

0.9142

0.9125

0.9151

0.9157

0.8548

0.8573

0.8599

0.8586

0.8520

0.8589

0.8600

0.8547

0.8589

0.8607
0.8598

0.8584

0.8579

0.8552

0.8564

0.8563

0.8575

0.8546

0.8592

0.8593

Stylegan

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8594
0.8662

0.8793

0.8640

0.8721

0.8657

0.8782

0.8639
0.8682

0.8627

0.8716

0.8800

0.8642
0.8604

0.8658

0.8674

0.8669

0.8799
0.8641

0.8777

0.8022

0.8117

0.8278

0.8094

0.8173

0.8112

0.8265

0.8084

0.8130

0.8073

0.8175

0.8286

0.8095

0.8044

0.8098

0.8112

0.8112

0.8259
0.8085

0.8253

0.8939

0.8963

0.9006
0.8939

0.8972
0.8955

0.9004
0.8924

0.8935

0.8936

0.8964

0.8982
0.8954

0.8949

0.8926

0.8923

0.8937

0.8997
0.8962

0.8990

0.8314

0.8360

0.8413
0.8328

0.8364

0.8348

0.8405

0.8313

0.8320

0.8325

0.8359

0.8380

0.8339

0.8334

0.8307

0.8302

0.8319

0.8401

0.8349

0.8394

0.8329

0.8376

0.8486

0.8277

0.8457

0.8231
0.8537

0.8348

0.8367

0.8281

0.8385

0.8538

0.8321

0.8329

0.8312

0.8302

0.8388
0.8597
0.8364

0.8471

0.7696

0.7740

0.7862

0.7647

0.7832

0.7597

0.7903

0.7719

0.7734

0.7637

0.7762

0.7903

0.7684

0.7690

0.7680

0.7667

0.7751

0.7969
0.7734

0.7849

0.8797

0.8798

0.8763

0.8803

0.8656

0.8802

0.8757

0.8762

0.8819

0.8808

0.8800

0.8768

0.8777

0.8781

0.8800

0.8809

0.8750

0.8679

0.8844
0.8728

0.8184

0.8185

0.8144

0.8192

0.8016

0.8188

0.8136

0.8143

0.8212

0.8195

0.8188

0.8146

0.8161

0.8163

0.8190

0.8200

0.8127

0.8043

0.8236
0.8098

0.9133

0.9146

0.9157
0.9136

0.9106

0.9135

0.9154
0.9120

0.9150

0.9151

0.9156

0.9154
0.9141

0.9136

0.9123

0.9138

0.9131
0.9126

0.9160
0.9148

0.8563

0.8580

0.8594

0.8570

0.8519

0.8571

0.8589

0.8548

0.8586

0.8588

0.8594

0.8588

0.8571

0.8564

0.8555

0.8571

0.8563

0.8548

0.8602
0.8582

In Table 6.27, the proposed augmentation used images with the lesions positioned on

the opposite lung side from the original dataset image. For the images generated by Stargan, the

proposed augmentation achieved the highest F-scores when combined with Shift Scale Rotate

on the MosMed dataset, with Sharpen on the Ricord1a dataset, and with Grid Distortion and

Image Compression on the Zenodo dataset. For the images generated by Stylegan, the proposed
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augmentation achieved the highest F-scores when combined with Random Snow on the MosMed

dataset and Sharpen on the Ricord1a and Zenodo datasets.

Table 6.28: Results of the proposed data augmentation applied in combination with the traditional data augmentation

techniques in the unified training set. The images were generated considering the minimum saliency distance

between the image generated by the GAN and the lesion image from the dataset. The lesions are placed in a random

lung side from the original image from the dataset. The values highlighted in green show the data augmentation

techniques in which the P-value achieved values lower than 0.05, and thus the null hypothesis was rejected (i.e.,

there is a statistical difference and the results achieved are better than without data augmentation). The blue-colored

values indicate the best F-score values, and the red-colored values indicate the best IoU values. The underscored

values show the techniques in which the proposed augmentation combined with the traditional data augmentation

techniques achieved a P-value lower than 0.05 when compared to just applying the generic data augmentation

techniques presented on Subsection 6.2.2, and the null hypothesis was rejected.

GAN Augmentation CC-CCII MedSeg MosMed Ricord1a Zenodo
F-score IoU F-score IoU F-score IoU F-score IoU F-score IoU

No Augmentation 0.8636 0.8087 0.8881 0.8253 0.8185 0.7547 0.8599 0.7947 0.9096 0.8514

Stargan

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8573
0.8689

0.8769

0.8711

0.8717

0.8645

0.8781
0.8642

0.8639

0.8626

0.8748

0.8767

0.8623

0.8578

0.8669

0.8652

0.8698

0.8777

0.8638

0.8771

0.8014

0.8133

0.8251

0.8162

0.8175

0.8089

0.8256
0.8080

0.8084

0.8072

0.8206

0.8247

0.8071

0.8023

0.8110

0.8089

0.8142

0.8248

0.8088

0.8246

0.8924

0.8954

0.9010
0.8949

0.8960

0.8936

0.8999
0.8928

0.8918

0.8949

0.8970

0.9000
0.8946

0.8985

0.8938

0.8930

0.8933

0.8984
0.8957

0.8978

0.8302

0.8344

0.8415
0.8340

0.8351

0.8331

0.8399

0.8312

0.8302

0.8342

0.8365

0.8401

0.8331

0.8372

0.8319

0.8308

0.8313

0.8386

0.8342

0.8385

0.8303

0.8363

0.8535

0.8284

0.8487

0.8285

0.8555

0.8311

0.8283

0.8286

0.8337

0.8600
0.8332

0.8387

0.8336

0.8308

0.8370
0.8578

0.8298

0.8554

0.7668

0.7735

0.7914

0.7647

0.7860

0.7647

0.7928

0.7686

0.7641

0.7651

0.7708

0.7983
0.7690

0.7752

0.7708

0.7672

0.7745

0.7937

0.7665

0.7922

0.8793

0.8793

0.8754

0.8806

0.8681

0.8800

0.8769

0.8750

0.8791

0.8812

0.8792

0.8771

0.8771

0.8788

0.8809

0.8803

0.8749

0.8657

0.8840
0.8734

0.8175

0.8179

0.8132

0.8194

0.8045

0.8185

0.8147

0.8128

0.8177

0.8200

0.8177

0.8151

0.8154

0.8167

0.8199

0.8191

0.8120

0.8017

0.8227
0.8105

0.9118

0.9142

0.9159

0.9150

0.9106

0.9145

0.9162
0.9115

0.9131

0.9152

0.9158

0.9161

0.9132

0.9128

0.9128

0.9130

0.9137

0.9118

0.9160

0.9152

0.8543

0.8576

0.8596

0.8583

0.8523

0.8584

0.8599

0.8536

0.8565

0.8590

0.8597

0.8598

0.8564

0.8556

0.8561

0.8559

0.8568

0.8538

0.8600
0.8585

Stylegan

CLAHE
Coarse Dropout

Elastic Transform

Emboss
Flip

Gaussian Blur

Grid Distortion
Grid Dropout

Image Compression

Median Blur
Optical Distortion

Piecewise Affine

Posterize

RBC
Random Crop

Random Gamma

Random Snow

Rotate
Sharpen

Shift Scale Rotate

0.8554
0.8690

0.8794

0.8654
0.8746

0.8687

0.8783

0.8652
0.8682

0.8654

0.8722

0.8779

0.8633

0.8597

0.8650

0.8653

0.8652

0.8786

0.8651

0.8810

0.7999

0.8138

0.8278

0.8111

0.8206

0.8141

0.8264

0.8092

0.8134

0.8105

0.8188

0.8267

0.8070

0.8034

0.8096

0.8098

0.8090

0.8257

0.8103

0.8288

0.8910

0.8959

0.8999
0.8936

0.8982
0.8952

0.9013
0.8937

0.8948

0.8942

0.8990

0.8972
0.8952

0.8956

0.8918

0.8929

0.8941

0.8989
0.8941

0.8991

0.8281

0.8353

0.8404

0.8323

0.8376

0.8346

0.8414
0.8324

0.8332

0.8335

0.8390

0.8372

0.8338

0.8342

0.8298

0.8311

0.8323

0.8389

0.8330

0.8397

0.8343

0.8346

0.8496

0.8301

0.8466

0.8280

0.8582

0.8382

0.8344

0.8293

0.8361

0.8514

0.8313

0.8397

0.8264

0.8280

0.8415
0.8551

0.8308

0.8583

0.7704

0.7714

0.7873

0.7659

0.7851

0.7654

0.7948

0.7749

0.7717

0.7669

0.7731

0.7889

0.7674

0.7762

0.7631

0.7651

0.7777

0.7921

0.7675

0.7955

0.8757

0.8806

0.8751

0.8793

0.8678

0.8819

0.8768

0.8759

0.8819

0.8808

0.8807

0.8750

0.8765

0.8785

0.8794

0.8820

0.8763

0.8673

0.8827
0.8740

0.8137

0.8193

0.8126

0.8180

0.8043

0.8209

0.8147

0.8134

0.8209

0.8196

0.8194

0.8126

0.8144

0.8167

0.8177

0.8206

0.8137

0.8036

0.8217
0.8112

0.9121

0.9136

0.9158

0.9140

0.9109

0.9144

0.9167
0.9110

0.9132

0.9153

0.9159

0.9146
0.9130

0.9128

0.9135

0.9139

0.9135
0.9123

0.9155

0.9154

0.8546

0.8573

0.8595

0.8570

0.8523

0.8584

0.8607
0.8534

0.8567

0.8594

0.8599

0.8582

0.8558

0.8559

0.8565

0.8571

0.8563

0.8545

0.8596

0.8588

In Table 6.28, the proposed augmentation used images with the lesions positioned

on a random lung from the original dataset image. For the images generated by Stargan, the
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proposed augmentation achieved the highest F-scores when combined with Piecewise Affine

on the MosMed dataset, with Sharpen on the Ricord1a dataset, and with Grid Distortion on the

Zenodo dataset. For the images generated by Stylegan, the proposed augmentation achieved the

highest F-scores when combined with Shift Scale Rotate on the MosMed dataset, Sharpen on the

Ricord1a dataset, and Grid Distortion on the Zenodo dataset.

GT No Data Aug Random + Stargan Salience + Stargan Random + Stylegan Salience + Stylegan

Figure 6.26: Qualitative comparison between the SalDACov version of the proposed data augmentation, the baseline

without data augmentation, and the DACov version of the proposed data augmentation. With the SalDACov version

of the proposed data augmentation, the segmentation network found the lesion region closer to the expected in the

ground truth.

Moreover, the SalDACov version significantly improved mask quality in some cases, as

illustrated in Figure 6.26. In the first row, the segmentation network failed to detect lesions without

data augmentation and with the method proposed in (Krinski et al., 2023). This case is very

challenging due to the small size of the lesion, with the segmentation network failing to identify

the lesion when trained without data augmentation and when trained with the augmentation

proposed by (Krinski et al., 2023). This case represents the initial stages of COVID-19, and,

without data augmentation or with the method proposed by (Krinski et al., 2023), it would not be

possible to provide an early diagnostic of positive for COVID-19, increasing the risks of virus

spreading and highly increasing risks for the patient (Woloshin et al., 2020; Wikramaratna et al.,

2020; Kanji et al., 2021).

In the second row, without data augmentation and the method proposed in (Krinski

et al., 2023), the network showed a low recall, predicting a false positive area in the left lung.

There was low precision in the third and fourth rows with many false negative pixels in the masks

generated with no data augmentation and the method proposed by (Krinski et al., 2023), resulting

in a low F-score on an image where the lesions nearly covered the entire lungs.
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6.4 CONCLUSION

The first experiment performed in this work was an evaluation of 120 segmentation models on

the COVID-19 CT segmentation problem. The findings of this first evaluation pointed out the

combination of the RegNetx-002 as encoder and U-Net++ as decoder, a promising segmentation

network to perform segmentation of COVID-19 CT images. The U-Net++ achieved the most

promising results. Meanwhile, the RegNetx-002 is a small network with fewer parameters,

requiring less training time.

The second experiment performed evaluated 20 augmentation techniques. Firstly, the

augmentation techniques were performed with the segmentation model trained in each dataset

individually. Then, all training sets were unified in one big training set, with the augmentation

techniques being applied on top of this unified training set. The first evaluation did not clear

the best augmentation techniques or the best probability to use when using data augmentation

on the COVID-19 CT segmentation problem. These questions were clarified only in the

second evaluation, with the results pointing to spatial transform augmentation techniques like

Elastic Transform, Flip, Grid Distortion, Piecewise Affine, Rotate, and Shift Scale Rotate as the

most promising techniques. Furthermore, the results indicated the higher probabilities as more

promising when applying an augmentation technique in the COVID-19 CT segmentation problem.

The third experiment evaluated a new data augmentation technique in the COVID-19

CT segmentation problem. The new data augmentation used two GANs to generate healthy lung

images, a segmentation model to generate lung masks to the healthy images, and two algorithms

to add new lesions to the healthy images: an initial version that randomly adds lesions to the

healthy images and an improved version which uses visual salience distance to add lesions to the

healthy images. The SalDACov version of the proposed augmentation improved the results on

the Ricord1a dataset and achieved higher results than the generic augmentation techniques in this

dataset. Furthermore, this version of the proposed augmentation was evaluated with the generic

augmentation, generating the highest results in three of five datasets.
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7 CONCLUSION AND FUTURE WORKS

Since 2019 the world has struggled with the coronavirus pandemic (COVID-19), with millions

of infections and deaths worldwide (Wang et al., 2020). In this scenario, automatic detection

of COVID-19 infections in Computed Tomography (CT) scans has shown to be a great help

for early diagnoses (Shi et al., 2021), with the Semantic Segmentation (Cao and Bao, 2020)

of CT scans with deep learning-based approaches being widely explored since the COVID-19

outbreak (Shi et al., 2021; Narin et al., 2021). Furthermore, performing automatic segmentation

of COVID-19 CT images assists doctors in diagnosing and quantifying COVID-19 lesions in a

way to avoid human subjectivity (Zhang et al., 2022; Anthimopoulos et al., 2016). The spreading

velocity of the virus increases the number of infected and causes a massive shortage of test kits

for Reverse-Transcription Polymerase Chain Reaction (RT-PCR), the primary tool for diagnosing

COVID-19. It is also worth mentioning that RT-PCR tests have high false negative rates (Ai

et al., 2020). Thus, deep learning methods for COVID-19 CT segmentation have become an

essential supplementary tool for RT-PCR tests (Zhang et al., 2022).

Aiming to perform the segmentation of COVID-19 CTs, many studies apply Deep

Learning techniques and Deep Neural Networks, achieving impressive results in the task (Shi et al.,

2021). Deep Neural Networks are widely applied in segmentation problems due to their great

generalization capacity, learning to represent different classes of objects (Garcia-Garcia et al.,

2018; Krinski et al., 2019). However, with new approaches being proposed quickly, an urgency

aggravated by the global pandemic, the need for an extensive evaluation becomes apparent. To

provide a standardized comparison of different architectures across multiple recently proposed

datasets, the first step of this work was an extensive benchmark of multiple encoders and decoders

with a total of 120 architectures evaluated. The models were trained and evaluated across five

different CTs datasets: MedSeg (MedSeg, 2021), Zenodo (Jun et al., 2020), CC-CCII (Zhang

et al., 2020), MosMed (Morozov et al., 2020), Ricord1a (Tsai et al., 2020). Each dataset was

validated through a five-fold cross-validation strategy, totaling 3.000 experiments.

As expected, the comparison of different architectures revealed that there is no definitive

answer for which encoder-decoder combination is the best to be applied in the approached problem.

However, the evaluation provided a robust guideline for future works as encoder-decoder selection,

setting of variables like the number of network parameters, and training time. In terms of

decoders, the U-Net and U-Net++, widely applied in the literature, achieved impressive results.

However, the LinkNet and the Multi-scale Attention Net (MA-Net) achieved very close results to

them. Also, the Feature Pyramid Network (FPN) and Pyramid Scene Parsing Network (PSPNet)

presented the worst results, appearing to be unsuitable for this problem. In terms of encoders, the

performance varied depending on decoder combination and dataset applied. In general, they

achieved close results, with none of them standing out.

Also, this analysis revealed some weak points to be approached. The major problem

is the critical class imbalance within the datasets, which affects the learning process of deep

neural networks. So, the next step of this work was an extensive analysis of how different

data augmentation techniques improve the training of encoder-decoder neural networks on the

COVID-19 CT segmentation. A total of 20 traditional different data augmentation techniques

were evaluated with two training strategy. Firstly, the augmentation techniques were applied to

the training set of each dataset separately, generating over 5.000 experiments. Than, the training

subsets are merged into a larger set while the testing procedure remained unchanged, generating

over 1.000 experiments. The impact of increasing the number of augmented images was also
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evaluated with 10 probabilities of applying data augmentation: 0.05, 0.1, 0.15, 0.2, 0.25, 0.30,

0.35, 0.4, 0.45, and 0.5.

The first data augmentation experiments revealed distinct trends across datasets. In CC-

CCII, MedSeg, MosMed, and Zenodo datasets, spatial transformations notably led to the highest

F-scores, likely due to their ability to introduce variations in lesion region shapes. Conversely,

spatial operations proved counterproductive in Ricord1a, characterized by images with minimal

lung position and shape alterations. Instead, a color operation (Median Blur) achieved the highest

F-score, indicating the dataset’s heightened sensitivity to color alterations. However, despite

these observations, the experiment yielded insignificant findings. Augmentation techniques,

when compared to the baseline where the network was trained without augmentation, resulted

in marginal improvements. Additionally, the slight differences observed in the effectiveness of

augmentation techniques at varying probabilities further clouded the determination of an optimal

probability in this context.

However, with the unified training strategy, the data augmentation techniques consistently

proved more effective, yielding better F-scores and Intersection over Union (IoU) values across

four out of five evaluated datasets, with the Ricord1a dataset standing out as an exception not

achieving better results with the addition of data augmentation. Furthermore, augmenting data

in the unified training set consistently yielded superior outcomes, clarifying that increasing the

probability of the data augmentation techniques generates better results, opposing previously

works from literature (Müller et al., 2020, 2021). Additionally, the results show that the best

operations in both training strategies are those that change shape instead of colors, such as Grid

Distortion, Optical Distortion, Flip, Piecewise Affine, and Shift Scale Rotate.

Beside the promising results achieved with the generic data augmentation techniques,

these techniques generally did not perform so well, and the Semantic Segmentation of COVID-19

CTs has been a challenging problem for data augmentation. So, this work focus on studying

and developing a domain-specific data augmentation that uses Visual Salience concepts. The

proposed data augmentation technique employs a Generative Adversarial Network (GAN) model

to produce new CT scans of healthy lungs and then combines existing labeled lesions with

those new images to generate new samples and boost the segmentation performance. In a first

implementation of the proposed augmentation, a matching algorithm randomly combines the new

images generated by GANs with an image with COVID-19 lesions from the dataset. Then, in a

second implementation, the random algorithm is replaced by a visual salience based algorithm.

Furthermore, a segmentation model trained with lung labels from the datasets automatically

generates the segmentation labels for the healthy CT images generated by both GANs. This step

guides the augmentation algorithm to place the lesions from the dataset inside the lung areas of

the generated healthy CT images.

Both version were evaluated through a 5-fold cross-validation strategy and 10 probabil-

ities of applying data augmentation: 0.05, 0.1, 0.15, 0.2, 0.25, 0.30, 0.35, 0.4, 0.45, and 0.5.

The DACov version of the proposed augmentation is limited to either flipping or not flipping the

image from the dataset before adding it to the healthy image generated by the GAN, resulting in

over 200 experiments. Meanwhile, nine variations of the proposed augmentation are evaluated

based on saliency distance (maximum, minimum, and random) and the side of the lesion in the

original dataset image (same side, opposite side, and random), resulting in over 900 experiments.

The DACov version of the proposed data augmentation technique demonstrated better

F-scores in the Ricord1a dataset (previously identified as more susceptible to color alterations)

when probabilities were set at 0.2, 0.25, 0.35, 0.4, 0.45, and 0.5. Also, it achieved competitive

results compared to the traditional approaches on the CC-CCII, MedSeg, MosMed, and Zenodo

datasets, which were previously identified as more susceptible to shape alterations. The SalDACov
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version of the proposed augmentation method yielded statistical significance in four out of the

five evaluated datasets compared to training the segmentation model without any augmentation.

Moreover, it demonstrated promising results in the Ricord1a dataset and achieved higher values

on the Ricord1a dataset compared with the generic data augmentation techniques and the

random version.

In general, changing the position of the lesion from the original dataset (opposite side

and random side) did not show a difference from maintaining it on the original side. Also,

the salience augmentation achieved close results with the images generated by the Stargan

and the Stylegan. However, when changing the saliency distance (maximum, minimum, and

random) presented the highest difference, with the minimum salience distance presenting the best

results. When the images were generated with the minimum salience distance between the image

generated by the GAN and the lesion image from the dataset, and the lesions were positioned on

the same lung side as the original image from the dataset, the proposed augmentation showed

an improvement of 3% when evaluated with probabilities of 35%, 45%, and 50%, and with

probabilities 5%, 15%, 35%, and 50%, achieved the higher values on Ricord1a dataset when

compared with the generic data augmentation techniques and the DACov version of the proposed

augmentation.

The proposed salience algorithm was combined with traditional data augmentation

techniques, resulting in over 600 experiments. It achieved statistical significance across all five

datasets and obtained better F-scores in the MosMed, Ricord1a, and Zenodo datasets compared to

traditional techniques alone. For the images generated by the Stargan, the proposed augmentation

achieved the highest F-scores when combined with Rotate on the MosMed dataset, Gaussian

Blur on the Ricord1a dataset, and Optical Distortion on the Zenodo dataset. For the images

generated by Stylegan, the proposed augmentation achieved the highest F-scores when combined

with Piecewise Affine on the MosMed dataset, Sharpen on the Ricord1a dataset, and Median

Blur on the Zenodo dataset.

Besides the new samples generated by the proposed augmentation helped to improve

the results on other datasets, it is a limitation of the proposed technique that the healthy images

and lesions are from the same dataset. This reduce the variability of the generated images.

Furthermore, the segmentation model was trained with the set of datasets evaluated in this work.

For new datasets it would be necessary to train the segmentation model again, which demands a

high amount of time and computacional resources.

7.1 FUTURE WORK

Beside the findings of this work, the segmentation of COVID-19 CT images is an open problem

with many study cases left for future works. Some of them are presented bellow:

• Evaluation of segmentation models with cross-datasets. This is an open evaluation

in the literature and no study has evaluated the behavior of the segmentation models

on cross-dataset training for the COVID-19 segmentation problem. Since the size of

the datasets available are a limiting factor, cross-dataset could be another solution to

mitigate this problem.

• Evaluation of ensemble of segmentation models. Ensemble of networks uses the

classification of more than one network to generate the final classification or segmentation.

By combining segmentation models, the final segmentation is generated through a voting

system where the combination of the majority suppress flaws of individual models.
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• Evaluation of mixing data augmentation techniques. This is another open evaluation left

for further steps. The objective of this evaluation is to increase the number of images in

the datasets by creating artificial data with different augmentation techniques and not

restricted to just one augmentation.

• Evaluation of more recent GAN models for healthy CT images generation using the

same methodology presented in this work.

• Evaluation of the proposed augmentation in others lungs segmentation problems. The

proposed method can also be used to increase the number of training samples in other

lung segmentation problems like Chronic Obstructive Pulmonary Disease (COPD), lung

cancer, pneumonia, and interstitial lung disease.

• Evaluate the proposed augmentation with different salience features. There are several

ways to represent visual salience, and other representations can be explored in future

works to make the feature vector more robust.

• Evaluated the proposed augmentation with healthy images generated by GANs trained

with other datasets and addition of COVID-19 lesions from other datasets.
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