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RESUMO

Reconhecendo a crescente importância dos veículos aéreos não tripulados, mais
especificamente drones, nas operações de vigilância de tráfego urbano, este projeto de
pesquisa busca abordar os desafios associados à comunicação sem fio em ambientes
propensos a interferências no sinal de comunicação. Propõe-se o desenvolvimento
de uma rede neural artificial para prever a intensidade do sinal Wi-Fi durante voos de
drones, fornecendo suporte em cenários de emergência que envolvam operações de
resgate em locais de acidentes de trânsito. O algoritmo desenvolvido é um perceptron
multicamadas com uma camada oculta e as seguintes características de entrada:
altitude, ângulo de elevação, tipo de terreno, distância entre o drone e seu controlador,
velocidade e porcentagem de bateria. Para validar a confiabilidade da solução proposta,
os resultados obtidos com a rede neural foram comparados com simulações de voo
de drones utilizando o modelo Longley-Rice, por meio do Radio Mobile, um software
amplamente utilizado para o planejamento e modelagem de redes de comunicação
sem fio. Na região rural, o perceptron multicamadas obteve um RMSE de 1,95 dB,
enquanto o modelo Longley-Rice mostrou um RMSE significativamente maior de 8,23
dB. Na região suburbana, o perceptron multicamadas apresentou um RMSE de 2,93
dB, em comparação com o RMSE de 10,88 dB do modelo Longley-Rice. Na região
urbana, o perceptron multicamadas teve um RMSE de 2,39 dB, enquanto o modelo
Longley-Rice exibiu um RMSE de 12,84 dB. Esses resultados destacam o perceptron
multicamadas como uma alternativa promissora para a previsão da intensidade do sinal
em voos de drones em áreas com diferentes níveis de urbanização.

Palavras-chaves: vant; redes neurais artificiais; previsão de trajetória; intensidade do
sinal; radio-mobile.



ABSTRACT

Recognizing the growing importance of unmanned aerial vehicles, specifically drones,
in urban traffic surveillance operations, this research project aims to address the chal-
lenges associated with wireless communication in environments prone to signal interfer-
ence. The development of an artificial neural network is proposed to predict Wi-Fi signal
strength during drone flights, providing support in emergency scenarios involving rescue
operations at traffic accident sites. The developed algorithm is a multilayer perceptron
with one hidden layer and the following input features: altitude, elevation angle, terrain
type, distance between the drone and its controller, speed, and battery percentage.
To validate the reliability of the proposed solution, the results obtained with the neural
network were compared with drone flight simulations using the Longley-Rice model,
through Radio Mobile, a widely used software for planning and modeling wireless com-
munication networks. In the rural area, the multilayer perceptron achieved an RMSE
of 1.95 dB, while the Longley-Rice model showed a significantly higher RMSE of 8.23
dB. In the suburban area, the multilayer perceptron presented an RMSE of 2.93 dB,
compared to the RMSE of 10.88 dB from the Longley-Rice model. In the urban area, the
multilayer perceptron had an RMSE of 2.39 dB, while the Longley-Rice model exhibited
an RMSE of 12.84 dB. These results highlight the multilayer perceptron as a promising
alternative for predicting signal strength in drone flights in areas with varying levels of
urbanization.

Key-words: uav; artificial neural networks; path prediction; signal strength; radio-mobile.
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1 INTRODUCTION

Drones fall under the category of Unmanned Aerial Vehicles (UAVs) and have
gained prominence due to their applications across various fields. They are particularly
notable for their versatility and efficiency in areas such as agriculture, urban traffic
management, and public safety, where they are integral to surveillance and emergency
response operations (Shakoor et al., 2019).

Wireless communication, established in drone communication networks, provi-
des connectivity and coverage in hard-to-reach locations, such as mountainous regions,
where terrain characteristics can hinder communication, or in areas affected by natural
disasters, where phone and internet infrastructure may be compromised or nonexistent.
By eliminating the need for physical infrastructure installation, drones offer a flexible
solution for communication scenarios in various environments (Zeng et al., 2016).

The quality of the communication signal is essential to ensure the proper
functioning of drone operations, aiding in security functions such as real-time control
and collision management. Such measures are essential for accident prevention and
ensuring the integrity and safety of both the device and the areas over which they operate.
Thus, accurate prediction of wireless communication signal quality and intensity in drone
networks is essential for network planning and its components, considering their high
mobility, which poses challenges for ensuring stable and reliable communication (Yang
et al., 2019).

In this context, there is a balance between managing drone resources, ma-
ximizing flight duration, and energy efficiency, especially in densely populated and
structurally complex urban environments. Choosing the appropriate modulation tech-
nique and communication protocol is fundamental to ensuring the effective use of
available resources, considering possible signal interferences and obstacles without
compromising communication. Additionally, energy efficiency is a critical aspect, as
energy is a limited resource in drones (Shakoor et al., 2019).

Machine learning has emerged as a subfield of artificial intelligence, enabling
new problem-solving methods. Specifically, in the context of drones, integrating machine
learning techniques represents a promising and relatively unexplored horizon, offering a
vast field for research and innovation. While conventional methods provide satisfactory
solutions for scenarios involving terrestrial network planning, applying machine learning
techniques could offer more precise results for situations where one of the communica-
tion nodes is constantly moving, due to its potential to process large volumes of data
with notable speed and accuracy (Lahmeri et al., 2021).
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The investigation of the effectiveness of machine learning methods in predicting
Wi-Fi signal strength in drone flights is the central theme of this research, which proposes
the development of an artificial neural network capable of predicting Wi-Fi (Wireless
Fidelity) signal strength in drone flights. This research integrates the AMICA project
(Air Mobility for Intelligent Crash Assessment) developed by the CARISSMA Institute of
Safety in Future Mobility (C-ISAFE), which aims to integrate UAVs into traffic accident
rescue operations to provide real-time visual information to control centers. The project
focuses on the safe operation of drones from strategic bases, using advanced algorithms
to identify accident scenes from an aerial perspective. The goal is to improve the
coordination of rescue operations and demonstrate technical feasibility through drone
tests. In this context, signal strength prediction plays a fundamental role in ensuring
reliable communication between the drone and the control station in emergencies
involving rescue operations.

1.1 OBJECTIVES

1.1.1 Main Objective

This project aims to predict communication signal strength in drone flights to
optimize flight routes in urban environments, aiding rescue operations involving traffic
accidents. To achieve this objective, the development of a multilayer perceptron and
the calculation of received power with the Longley-Rice propagation model using Radio
Mobile software are proposed. Finally, the signal strength results obtained by both
methodologies will be comparatively analyzed.

1.1.2 Specific Objectives

The specific objectives of this project are:

• Deepen the understanding of essential concepts and the state of the art in artificial
neural networks, focusing on Wi-Fi signal strength prediction;

• Through data preprocessing, obtain a set of telemetry data suitable for neural
network training and simulation in Radio Mobile;

• Develop and refine the multilayer perceptron algorithm, including defining its
architecture and hyperparameters;

• Calculate Wi-Fi signal strength values with the Longley-Rice model using Radio
Mobile software;

• Obtain a more accurate artificial neural network in terms of signal strength than
the results obtained through Longley-Rice terrain model simulations.
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1.2 DOCUMENT STRUCTURE

This document is structured to include the CHAPTER 1, which aims to elucidate
the aspects that contribute to the relevance of the research and its purpose, containing
the Objectives section where the general and specific objectives of the project are
described, clarifying the expected results at the end of the project.

The following chapter pertains to the CHAPTER 2, which aims to contextualize
the reader on the fundamental concepts related to the project and the related works
section that contains publications similar to and references to the state of the art for the
development of this work.

Subsequently, the CHAPTER 3 describes the development stages and resour-
ces used to carry out the research project, being essential to understand how the
research was conducted, from conception to execution, including the tools and methods
employed to achieve the established objectives.

The CHAPTER 4 presents the obtained results of signal strength prediction
with the Longley-Rice model and the multilayer perceptron. The CHAPTER 5 refers to
the Conclusion and recommendations for future work.
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2 LITERATURE REVIEW

2.1 WIRELESS COMMUNICATION SIGNAL

The signal strength of a wireless communication network is crucial to the
system, significantly influencing reliability, transmission rate, and connection range.
Signal strength is typically measured in dBm, a unit that expresses absolute power on
the decibel (dB) scale, referenced to 1 milliwatt (mW) (Cheng et al., 2019).

The strength of the wireless signal can be attenuated by several factors, inclu-
ding the distance between the drone and the control station, the presence of obstacles
such as buildings or trees, and the frequency and transmission power of the propagated
signals. Interference from other wireless devices or electronic devices can also affect
signal quality. Wireless signal strength is a crucial factor determining the quality of wire-
less communication in a network, as a strong signal ensures a fast, reliable, and stable
connection, while a weak signal can result in slow speeds or connection interruptions
(Cheng et al., 2019).

In summary, signal strength emerges as a fundamental element in wireless
communication networks for drones, playing a fundamental role in determining the
effectiveness and reliability of data transmission to the control station. In this context, the
adoption of techniques that optimize flight parameters, such as altitude and elevation
angle, is essential for enhancing signal strength (Cheng et al., 2019).

Propagation loss models, essential in the analysis and design of wireless
communication systems, including those used in drones, can be categorized into seven
distinct groups, each with its characteristics and specific applications. Basic models offer
an overview of propagation loss and are useful for quick estimates and initial analyses
where a detailed understanding is not critical.

On the other hand, theoretical or fundamental models are based on physical
and mathematical principles, seeking to capture the underlying mechanisms of radio
wave propagation, such as reflection and diffraction, providing greater accuracy than
basic models.

Terrain models account for the specific characteristics of the terrain, such as
mountains and buildings, and are widely used in outdoor or urban environments where
the terrain significantly influences signal propagation (Phillips et al., 2013).

Supplementary models add information to other propagation loss models, pos-
sibly including factors such as atmospheric conditions and vegetation, which also affect
signal propagation. Stochastic fading models deal with the random nature of signal
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fading due to movements, environmental variations, and interferences. Multipath models
consider the propagation of waves in real environments and are based on the theory of
multipath, where the communication signal is reflected by obstacles during its path to
the receiver. Finally, measurement-based models are based on actual measurement
data, unlike theoretical models, and are employed to create propagation loss models
that accurately reflect the specific conditions of an environment or location (Phillips et al.,
2013). FIGURE 1 illustrates the main propagation loss models and their relationships.

FIGURE 1 – RELATIONAL TREE OF THE MAIN PROPAGATION LOSS MODELS.

SOURCE: Adapted from (Phillips et al., 2013).

In the radio communication process, the transmitter’s function is to produce a
signal, which is an electromagnetic wave, and this signal is then modulated by a carrier
frequency. This modulation is essential for the signal to be transmitted through space
(Phillips et al., 2013).

As it propagates from the transmitter to the receiver, the signal encounters
various obstacles until it is received at the receiving antenna and demodulated. These
obstacles can be buildings, mountains, trees, or even atmospheric variations, each
interacting with the signal causing reflection, refraction, or diffraction, which decreases
the received signal strength and causes scattering and secondary waves that can
interfere with the transmitted signal (Phillips et al., 2013).
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The combination of these secondary waves can generate slow fading or large-
scale fading, and if due to small transient obstacles and changes over time, it is called
decay, fast fading, or small-scale fading (Phillips et al., 2013).

The geometry of antennas, both transmitting and receiving, plays a crucial role
in determining how signals are transmitted and received. An antenna model is carefully
chosen to enhance signals received from directions of interest while attenuating or
minimizing signals from other directions. An omnidirectional antenna, for example, is
designed to prioritize the reception of signals in the horizontal plane, meaning it can
receive signals from all directions but has reduced capacity to capture signals from
higher or lower vertical angles. On the other hand, a directional antenna is designed to
highlight signals from a specific direction by having a defined beamwidth, which is the
area where the antenna can effectively receive or transmit signals (Phillips et al., 2013).

2.2 LONGLEY-RICE MODEL

Propagation models assist in predicting data transmission quality, which is
affected by factors such as signal loss due to physical obstacles, interference from
other signals, and variations in atmospheric conditions. Understanding these factors is
essential for optimizing network planning and infrastructure, aiding in the selection of sui-
table locations for antenna placement, and enabling the implementation of interference
mitigation techniques (Cheng et al., 2019).

Parameters related to the drone, such as altitude, speed, flight direction, and
elevation angle, directly impact the characteristics of the communication signal. For
example, the drone’s altitude may significantly influence the line of sight between the
drone and the receiver, as a higher altitude can reduce physical obstructions from
buildings or other structures, thereby improving signal quality. However, it can also
increase the distance the signal must travel, potentially resulting in greater attenuation.
The speed and direction of the drone’s flight are also critical factors. The drone’s
elevation angle, or the tilt of its antenna, can affect the direction and intensity of the
transmitted signal, influencing coverage area and reception quality. Additionally, abrupt
changes in speed or flight direction can also disrupt connection stability (Cheng et al.,
2019).

Flight environments also directly influence communication signal quality, which
varies according to the presence of natural and urban interferences. Therefore, both
the environment’s characteristics and the drone’s flight properties should be considered
together to predict communication network quality parameters (Cheng et al., 2019).

Terrain models represent an evolution from basic models by adding the comple-
xity of calculating diffraction losses along the path between the transmitter and receiver
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due to obstacles such as mountainous terrain or buildings. Diffraction is a phenomenon
that occurs when a signal interacts with physical obstacles, such as uneven terrain,
mountainous formations, or urban structures, resulting in changes in the signal’s tra-
jectory and intensity. Terrain models are characterized by a more comprehensive and
detailed approach, incorporating the analysis of topography and the structural charac-
teristics of the environment (Phillips et al., 2013). FIGURE 2 shows a schematic of
communication in terrain models:

FIGURE 2 – SCHEMATIC OF COMMUNICATION IN TERRAIN MODELS.

SOURCE: Adapted from (Phillips et al., 2013).

Among them, the Longley-Rice irregular terrain model, also known as ITM
(Irregular Terrain Model), stands out. Recognized as one of the widely used terrain
models, ITM is extensively utilized in various essential network planning tools. ITM
considers a series of environmental and geographical factors, including the height and
density of obstacles, signal frequency, antenna polarization, and atmospheric conditions.
This allows the model to provide accurate propagation loss estimates in environments
with irregular and urbanized terrain (Hufford et al., 1982).

ITM is notable for its ability to incorporate a series of complex environmental
and geographical factors into its calculations, making it particularly precise and relevant
for scenarios involving terrain topology. One of ITM’s distinctive aspects is its ability
to calculate signal loss considering diffraction caused by terrestrial obstacles. This
means that the model can predict how radio waves are influenced by elements such as
mountains, buildings, or other structures that can deflect or attenuate the signal.

Additionally, ITM considers the Earth’s curvature in its calculations, a factor
often neglected in simpler models but which can significantly impact signal propagation
over long distances. These elements contribute to the model’s accuracy and relevance
in specific applications, despite its complexity and limitations in certain urban contexts
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where the multiplicity and proximity of obstacles can compromise calculation accuracy
(Hufford et al., 1982).

ITM offers two prediction modes: "area prediction"and "point-to-point."In the
area prediction mode, the model uses a terrain irregularity parameter based on the
interdecile range of terrain elevations, which refers to a statistical measure used to
describe the variation in elevation of a specific terrain area. The process involves
analyzing terrain variation by removing the top 10% and bottom 10% of elevations to
obtain a more stable terrain representation.

On the other hand, the point-to-point mode employs a detailed analysis of the
terrain profile between the transmitter and the receiver, using a sample of up to 600
points along the straight line connecting both. This method is particularly useful for
evaluating signal loss on specific routes or in direct point-to-point connections (Hufford
et al., 1982).

The model requires several parameters such as the operating frequency fc

(MHz), the distance between the transmitter and receiver d (m), and the heights of the
transmitting and receiving antennas hB (m) and hM (m). An additional parameter, Δh

(m), indicates the roughness factor that is statistically linked to the actual heights of
obstacles and to a function Δh(d), which varies with the path distance d. This function
Δh(d) represents the interdecile range of terrain heights that are either above or below
a fitted straight line based on elevations relative to sea level (Delisle et al., 1985).

The relationship between Δh(d) and Δh is expressed by:

Δh(d) = Δh [1− 0.8 exp(−0.02d)] .

Furthermore, the model necessitates knowledge of classic parameters: dLB
,

which represents the distance from the base station to the radio horizon; dLM
, the

distance from the mobile station to the radio horizon; θeB , the horizon elevation perceived
by the base station antenna; θeM , the horizon elevation perceived by the mobile station
antenna; θi, the angular distance for a non-optical path; hB, the height of the base
station antenna; and hM , the height of the mobile station antenna.

The horizon distances in metric units are defined as:

dLSB =
√

17hB, dLSM =
√

17hM .

The total horizon distance can be calculated as:

dLS
= dLSB + dLSM .

Statistical estimates for the horizon distances are provided by:

dLB
= dLSB exp

(
−0.07

√
Δh

hB

)
, dLM

= dLSM exp

(
−0.07

√
Δh

hM

)
,
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with the effective antenna height defined as:

he =

⎧⎨
⎩hB, if hB, hM ≥ 5m,

5m, otherwise.

The total distance between the antennas and their horizons is:

dt = dLB
+ dLM

.

The horizon elevation angles are calculated as follows:

θeB =
0.0005

dLSB

[
1.3

(
dLSB

dLB

− 1

)
Δh− 4he

]
.

θeM is obtained by replacing the subscript B with M.

The angular distance for a non-optical path is given by:

θi = max

(
θeB + θeM − dt

8495

)
rad.

The diffraction loss terms for two ideal obstacles are computed as:

vB,i = 1.2915

√
dL(di − dL)

di − dL,B
, vM,i = 1.2915

√
dL(di − dL)

di − dL,B
.

The diffraction losses are defined as:

A(v) = 6.02 + 9v, 1.0 ≤ v ≤ 2.4,

A(v) = 12.953 + 20 log(v), v > 2.4.

Ak1 = A(vB,i) + A(vM,i), Ak2 = A(vB,i) + A(vM,i).

The path attenuation due to diffraction is expressed as:

LD = md × d+ A0 (dB),

where
md =

Ak2 − Ak1

d2 − d1
, A0 = A′

0 + Ak2 −md × d2.

The clutter factor is represented by:

A′
0 = min(A′

f , 15) (dB),

where the ruggedness function is given by:

A′
f = 5 log10

[
1 + 10−5 × khhBf

f0σ(ds)
]

(dB).

σ(d) = 0.78h(d) exp
{−0.5

[
Δh(d)1/4

]}
(m).
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2.3 ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Network (ANN) is employed in a variety of tasks, including
image and speech recognition, natural language processing, and autonomous vehicles.
An ANN is widely implemented in drones for a range of applications, such as object
recognition, image classification, path planning, and autonomous navigation.(Lahmeri
et al., 2021).

For applications involving drones, ANNs can assist in tasks such as object
recognition, image classification, route planning, and autonomous navigation, enabling
operation in complex environments, performing functions ranging from urban monitoring
to package delivery (Lahmeri et al., 2021).

An ANN is a class of machine learning algorithms modeled after the structure
and function of the human brain. They consist of interconnected processing nodes called
artificial neurons, which resemble biological neurons in their basic function, processing
information by performing calculations on inputs and assigning results to other neurons
(Lahmeri et al., 2021).

The learning process in an ANN involves combining received inputs, weighted
by weights, which are used to assign an importance value to each neuron’s inputs.
The neurons are organized into layers, with the input layer responsible for receiving
raw data, the hidden layers processing the data, and the output layer providing the
network’s result. During training, the neural network adjusts the weights based on the
backpropagation process, which minimizes the difference between the network’s output
and the expected output. This procedure is repeated, allowing the network to become
progressively more accurate in its predictions or classifications (Lahmeri et al., 2021).
The weights adjust as follows:

wi ← wi +Δwi, (2.1)

Δwi = η(t− o)xi, (2.2)

where wi is the weight associated with input xi, Δwi is the change in weight wi, η is
the learning rate, t is the target output for the current training example, o is the output
generated by the perceptron, and xi is the input i (Mitchell, 1997).

The ability to produce suitable outputs for inputs not previously mapped in
training confers ANNs the ability to generalize, which aids in their effectiveness in
developing models for prediction problems due to their flexibility and capacity to learn
the underlying relationships between inputs and outputs of a process without requiring
explicit knowledge of how these variables are related (Eichie et al., 2017).
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Within the context of artificial neural networks, a neuron’s ability to operate
linearly or non-linearly is fundamental to the system’s performance and functionality.
The neural network is composed of the interconnection of multiple non-linear neurons,
resulting in a globally non-linear system, which contributes to the network’s ability to
process and model complex dynamics (Haykin, 2008).

The adaptability of neural networks allows the weights to be adjusted in res-
ponse to environmental changes, facilitating the network’s easy reconfiguration to
address variations in operational conditions and real-time adaptation in non-stationary
environments (Haykin, 2008). Fault tolerance is a property of neural networks that ensu-
res operational continuity under adverse conditions due to the distributed information
and processing throughout the network (Haykin, 2008).

An artificial neuron is an information processing unit in artificial neural networks,
consisting of three basic elements: a set of connections, a summing function, and an
activation function. FIGURE 3 exemplifies the model of an artificial neuron.

FIGURE 3 – MODEL OF AN ARTIFICIAL NEURON.

SOURCE: Adapted from (Haykin, 2008).

The input signals are weighted by weights, which assign an importance value
to each input parameter and are combined linearly through a summing function. The
activation function is used to limit the neuron’s output amplitude to a predefined finite
range. The bias function allows greater adaptability and flexibility to the neural network
and enables the displacement of the activation function (Haykin, 2008).

An artificial neuron can be mathematically described as:

uk =
m∑
j=1

wkjxj, (2.3)
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and:

yk = φ(uk + bk), (2.4)

where x1, x2, . . . , xm are the input signals, wk1, wk2, . . . , wkm are the weights of neuron k,
uk is the output of the linear combiner, bk is the bias, φ(·) is the activation function, and
yk is the neuron’s output signal.

Learning processes in neural networks are classified into two main categories:
supervised learning and unsupervised learning. Supervised learning is characterized
by adjusting the neural network’s parameters based on a predefined dataset with input
and output examples.

On the other hand, unsupervised learning subdivides into unsupervised learning,
where the neural network identifies intrinsic patterns in the input data without using
predefined outputs, and reinforcement learning, characterized by adjusting the model
based on the results of the network’s executions without using previously provided data.

In neural networks, the activation function gives the network the ability to
represent complexities and non-linear patterns in the data. Except for the input layer,
which receives the raw data, all layers of a neural network, including the hidden layers
and the output layer, use an activation function. The activation function is essentially a
mathematical transformation applied to the output of each neuron, capable of introducing
non-linearity, allowing the network to learn and model complex relationships (Ramchoun
et al., 2016b).

Among the most widespread activation functions are rectified linear unit (ReLU),
hyperbolic tangent, and sigmoid. The ReLU activation function is used to limit the output
values of neurons, allowing only positive results. The ReLU function is widely used to
introduce non-linearity into the model and is mathematically defined by the equation
below:

f(x) = max(0, x), (2.5)

where f(x) is the function’s output for an input x, and max is the mathematical operator
that returns the highest value from the set of associated values.

The hyperbolic tangent activation function is a mathematical function used in
artificial neural networks. Formally, it is defined by the following expression:

tanh(x) =
ex − e−x

ex + e−x
, (2.6)

where x is the input value.
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This function maps input values to a range between -1 and 1, making it useful
for normalizing neuron outputs in a neural network. The symmetric nature of the tanh
function, centering the data around zero, aims to facilitate the learning and convergence
process of the network during training.

The sigmoid activation function has an output range limited between 0 and 1
and is defined by:

σ(x) =
1

1 + e−x
, (2.7)

where x denotes the input to the sigmoid function and e is the base of the natural
logarithm.

2.4 MULTILAYER PERCEPTRON

The multilayer perceptron (MLP) has a wide range of applications in classifi-
cation and regression problems and is considered a fully connected class of artificial
neural networks. The MLP is recognized for its fully connected structure, meaning that
each neuron in one layer is connected to every neuron in the next layer, which gives
the MLP the ability to model complex relationships between input and output data,
making it a viable option for applications where these relationships are difficult to model
analytically (Ramchoun et al., 2016b).

The architecture of the multilayer perceptron (MLP) consists of an input layer,
an output layer, and one or more hidden layers. The choice of network architecture
greatly influences the final convergence of the network.

In the feed-forward multilayer perceptron network, information flows only from
input to output, with no feedback loops. In the MLP, neurons have connections that
always direct from lower layers to higher layers. The optimization of the number of
hidden layers and connections can lead to an increase in processing speed and,
consequently, network efficiency. Designing these parameters according to the needs
of each application is necessary (Ramchoun et al., 2016a).FIGURE 4 illustrates the
structure of an MLP with one hidden layer.

The neurons in the hidden layers of an MLP network are considered feature
detectors, as they process inputs through the encoding of patterns, which are then used
to generate the network’s output. The network’s ability to produce a representation for a
specific pattern from the input data set depends on the number of nodes in the hidden
layer (Haykin, 2008).

As demonstrated by Cybenko (1989), using one hidden layer can simulate any
continuous function, while two or more layers can approximate any function. Determining
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FIGURE 4 – MLP STRUCTURE WITH ONE HIDDEN LAYER.

SOURCE: Adapted from Popescu et al. (2006).

the ideal number of neurons in the layer requires considering the size of the input data
set, the presence of noise, the complexity of the output function, and the statistical
distribution of the data during network training. The number of neurons in a hidden
layer is generally chosen empirically, although methods exist to help find the best
hyperparameters for the system in question.

The MLP relies on supervised backpropagation training, which is based on
the gradient descent method on the error surface, where the weights are adjusted to
minimize the error between the desired output and the output produced by the network.
Supervised training of the MLP can be classified as static, where only the weights are
adjusted, and dynamic, where the network’s structure is also modified, including the
number of layers and neurons.

The learning process of an MLP involves adjusting the connection weights
until the neural network’s output approximates the expected result. Learning is typically
based on minimizing measurement errors between the network outputs and the desired
outputs. The training phases of the MLP involve the forward pass to determine the
network’s actual output and the backward pass to update the weights (Haykin, 2008).

The supervised backpropagation training process is usually performed in cycles
and starts with assigning random weights to the connections, which are adjusted to
minimize the found error (Ramchoun et al., 2016b).

Loss functions quantify a model’s performance by measuring the discrepancy
between predicted values and actual values. A loss function maps an event or values of
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one or more variables to a real number that represents the "cost"associated with the
event. In an optimization problem, the goal is to minimize this loss function (Mitchell,
1997).

The basic metric used to calculate the loss function involves the observed
error, which is the difference between the true and predicted values. These errors are
then averaged over the entire dataset to provide a single number that represents the
model’s performance. The objective is to minimize these errors by finding the parameters
(weights and biases) of the neural network that minimize the "loss"produced by the
errors (Mitchell, 1997).

The MSE (Mean Squared Error) loss cost function is one of the most common
loss functions used in machine learning, especially in regression problems. During
model training, the goal is to minimize the MSE loss by adjusting the parameters of the
neural network. A lower MSE loss value indicates that the model’s predictions are closer
to the actual values (Mitchell, 1997).

Considering the evaluation of results in regression problems, measures such
as mean squared error, root mean squared error (RMSE) and the mean absolute error
(MAE), along with techniques such as cross-validation and learning curve analysis, are
used.

To evaluate the accuracy of the predictions and measure their precision, i.e., the
number of correct predictions relative to the total number of predictions, error metrics
can be calculated to measure the difference between the network’s obtained values and
the expected results. Among the evaluation metrics, MSE is defined as the mean of the
squared error, calculated as the sum of the squared errors divided by the number of
training samples, as follows:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, (2.8)

where n represents the total number of observations, Yi is the actual value of the i-th
observation, and Ŷi is the model’s predicted value for the i-th observation.

RMSE is defined as the square root of the MSE value, as defined in equation
2.9, being one of the most commonly used methods for error calculation in artificial
neural networks. Another widely used performance metric is the correlation matrix,
which defines the linear relationship between the network’s results and the expected
results in regression problems.

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2, (2.9)
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MAE is a metric used to measure the accuracy of a predictive model by calcula-
ting the average absolute differences between predicted values and actual values. It is
given as:

MAE =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ , (2.10)

2.5 RELATED WORKS

The study conducted in (Behjati et al., 2021) proposes the development of an
advanced agricultural monitoring system through the integration of drones, IoT (Internet
of Things), and LPWAN (Low-Power Wide-Area Network). The research addresses the
effectiveness of LoRaWAN (Long Range Wide Area Network) technology in providing
wireless coverage in drone flights, evaluating the most accurate path loss model for
the scenario under analysis. The RSSI (Received Signal Strength Indicator) measure-
ment results demonstrated coverage exceeding 10 km, indicating the effectiveness of
LoRaWAN in applications involving drones.

The irregular terrain Longley-Rice model and the ECC-33 model were consi-
dered for calculating signal strength, and although initially, satisfactory results were
not obtained with these models, refinements in the ITM model significantly improved
the accuracy of the obtained RSSI results, demonstrating its suitability for coverage
prediction in rural environments.

Additionally, the performance of LoRaWAN was tested at different flight speeds
to quantify the impact of the Doppler effect on data transmission. The tests indicated
highly reliable data transmission, particularly using a spreading factor of 12, which
ensured a 100% packet delivery rate at all tested speeds, while the performance of the
spreading factor of 7 proved sensitive to speeds above 35 km/h. Overall, the research
conducted in (Behjati et al., 2021) demonstrates the applicability of the Longley-Rice
model for predicting signal strength in drone flights, especially in rural agricultural areas.

In the research presented by Saadi et al. (2022), an artificial neural network
is proposed for predicting signal strength in drone flights at high altitudes. Data was
collected from regions with various levels of urbanization using a standard smartphone
attached to a drone to record signal strength and GPS (Global Positioning System)
locations at altitudes of 10 m, 18 m, and 24 m with the drone at a fixed speed of 1 m/s.

For the development of the ANN, the data was divided into training (70%),
validation (20%), and test (10%) sets. The network was trained to predict ground signal
strength based on aerial measurements, using latitude, longitude, and signal strength
(in dBm) as input parameters, and the predicted ground signal strength as the output.
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The chosen ANN model included two hidden layers with 10 and 7 neurons, respectively.

The normalization method used was min-max, and the number of training
epochs was 500, aiming to optimize the neural network’s accuracy and training process
to achieve an MSE of 0.001, ending the training either when the network reached the
desired MSE or after 500 training steps. The number of neurons in the hidden layer
varied from 1 to 20, and for each iteration, the RMSE value was calculated, resulting in
the first hidden layer containing 10 neurons and the second hidden layer containing 7
neurons.

The authors opted for a regression approach where the network output re-
presents a continuous value of signal strength, classified into four signal coverage
quality categories (excellent, good, fair, and poor). The results showed that the ANN
successfully predicted ground signal strength, achieving an average accuracy of 97%.
Furthermore, measurements at an altitude of 10 m provided more accurate results than
measurements at higher altitudes. The MSE values found were 3.91% for 10 m, 4.20%
for 18 m, and 4.51% for 24 m.

The study also highlights the importance of geographic characteristics and
terrain nature in predicting signal strength, as urban areas with tall buildings and various
obstacles present additional complexities such as attenuation, reflection, diffraction,
scattering, and signal shadowing. The study compared the neural network’s effective-
ness in rural and open space environments, showing that location influences signal
prediction accuracy. The MSE was 2.82% in the agricultural location and 2.4% in the
open space area. This study demonstrates the feasibility of effectively predicting com-
munication signal strength in drone flights using artificial neural networks, ensuring a
low-cost and efficient approach for evaluating signal coverage in hard-to-reach areas.

In Park et al. (2019), an artificial neural network model is presented for predicting
propagation loss in urban environments, particularly in the 3 to 6 GHz frequency ranges.
The approach is based on using a multilayer perceptron, considering rectified linear unit,
hyperbolic tangent, and logistic sigmoid activation functions.

Data was collected from two urban areas in Korea, referred to as area A and
area B, and segmented into training (80%), validation (10%), and test (10%) sets using
uniform random sampling. The neural network had one hidden layer for the hyperbolic
tangent and logistic sigmoid activation functions and up to 8 hidden layers for the
ReLU activation function, as this function proved more stable with deeper network
architectures.

For each architecture, configurations with different numbers of neurons were
tested, with the most stable performance observed in layers with more than 20 neurons,
thus 40 neurons were used for the hidden layer. The chosen input parameters were
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frequency (MHz) and distance (m).

Performance analysis of the two datasets from areas A and B showed significant
variations concerning the activation function used. In dataset A, the hyperbolic tangent
function performed best, resulting in the lowest RMSE values for the 3.4GHz and 5.3GHz
frequencies. For the 6.4GHz frequency, however, the ReLU activation function showed
superior results. The results obtained in Park et al. (2019) demonstrate that the choice
of activation function is a crucial factor for the performance of artificial neural networks.

The results obtained with the neural network were compared with those obtained
with the COST-231 Hata model, and compared to the linear model, the neural network
showed an average improvement of 8.89% and 23.26% in accuracy in areas A and B,
respectively.

From the obtained results, it is possible to observe that the proposed neural
network achieved better results than the COST-231 Hata model, with the hyperbolic
tangent function yielding the best results. In conclusion, the article demonstrates that
neural networks offer a more accurate and flexible approach for predicting propagation
loss in urban environments compared to traditional signal propagation models.

In the work presented by Alsamhi et al. (2018), an artificial neural network
is proposed to predict signal strength and communication channel fading to optimize
service quality and data transmission in the integration of drones with IoT technologies.
Signal strength is influenced by weather conditions and environmental interferences,
which cause signal fading in drones flying closer to the ground. In this context, the line of
sight plays a fundamental role in achieving satisfactory coverage and quality of service
parameters.

Signal strength depends on distance, propagation loss, and drone flight altitude
and is an essential parameter for remote drone control to maintain the flight path, receive
commands from the base station, and detect objects.

In the study by Alsamhi et al. (2018), signal strength and channel fading were
first calculated using established axioms and concepts in telecommunications. The
Rice fading model was used to predict channel fading. Signal strength depends on
transmitter and receiver parameters as well as propagation loss. Propagation models
assist in predicting signal strength and propagation loss. For this study, the author used
the Okumura-Hata propagation model to calculate signal strength.

In this scenario, drone flight altitude is seen as an influential parameter in
predicting signal strength, as higher altitudes result in larger coverage areas and
consequently increased signal interference from environmental obstacles.

For the development of the artificial neural network in Alsamhi et al. (2018),
the input variables were the distance between the transmitter and receiver, drone flight
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altitude, signal frequency, and propagation loss to predict signal strength and channel
fading. The author proposed two observation scenarios: in the first, the drone is in
motion, and its flight altitude increases from 20 meters to 200 meters. In the second
scenario, the drone maintains its flight altitude while the distance between the transmitter
and receiver varies.

Considering the two analyzed scenarios involving altitude, the ANN model
demonstrated results closer to the expected signal strength than those found using
the Hata propagation model. The study also examined the probability of line of sight
relative to the drone’s elevation angle in rural, suburban, and urban environments, and
in this context, the ANN provided more accurate predictions than those based on Rician
fading.

The authors in Alsamhi et al. (2018) demonstrated that the probability of es-
tablishing a line of sight with the drone increases as the elevation angle and altitude
increase in all analyzed scenarios. The density of obstacles in the environment also
influences the line of sight probability, with more urban environments requiring higher
elevation angles and altitudes to achieve the same probability as rural environments.

In the research presented by Eichie et al. (2017), a comparative analysis is
performed between traditional Okumura-Hata, Egli, COST-231, and Ericsson models for
signal loss prediction and an artificial neural network-based model applied to calculating
signal loss in wireless communications with drones. The study begins with collecting
drone flight data using GPS and the Google Earth tool to classify flight areas as urban,
suburban, or rural based on criteria such as population density, urban building density,
building type, and spacing between buildings.

The study employs a multilayer perceptron consisting of three nodes in the
input layer, which are the distance between the transmitter and receiver, transmission
power, and the elevation of the measurement point above sea level. The hidden layer
refers to propagation loss. The project was developed in MATLAB with the Neural
Network Toolbox, with the number of neurons in the hidden layer varying from 31 to
39 in incremental steps of 2. The activation functions used were logsig, purelin, and
tansig, employed to create 9 pairs of activation functions. Thus, each of the 5 different
numbers of neurons was used with 9 different pairs of activation functions, resulting in
45 networks for each algorithm execution. The algorithm was run 20 times, resulting in
900 trained neural networks for performance evaluation. Performance was evaluated
through MSE, adjusting weights and biases for optimization.

The results show that for rural routes, the 9-39-4 network architecture (with
purelin/tansig activation functions) achieved the lowest MSE of 24.10, while for suburban
routes, the 1-37-3 architecture (with tansig/purelin functions) achieved an MSE of 8.36.
The correlation between the data predicted by the ANN and the actual data was 0.75 for
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rural environments and 0.95 for suburban environments, indicating superior accuracy in
suburban environments.

The 9-39-4 network architecture, with purelin/tansig activation functions, perfor-
med best with a minimum MSE of 24.10 for rural routes. For the suburban route, the
1-37-3 network architecture, with the tansig/purelin activation function pair, performed
best with a minimum MSE of 8.36. The correlation coefficient between the measured
and predicted propagation loss data by the neural network was 0.75 for the rural envi-
ronment and 0.95 for suburban environments, demonstrating that the developed neural
network can better predict propagation loss for suburban environments than for rural
environments.

Comparatively, traditional theoretical models showed variable performance. For
rural routes, the Okumura-Hata model had an RMSE ranging from 5.05 to 9.30 dB, and
for suburban routes, the Egli model had an RMSE of 3.81 to 8.18 dB. However, the
ANN models outperformed these results, with RMSE ranging from 3.96 to 7.07 for rural
routes and 1.22 to 6.16 dB for suburban routes, outperforming the Egli, COST-231, and
Ericsson models.

Next, the author compares the results obtained with the neural network and the
conventional Okumura-Hata, Egli, COST-231, and Ericsson models to the measured
propagation loss values in dB. For rural flight routes, the Okumura-Hata and Egli models
obtained values closer to the measured results but showed low precision. Considering
suburban routes, the Egli model was the closest to the actual measured values. In
summary, all considered theoretical models diverged from the expected result when
compared to the measured values, whereas the artificial neural network values were
able to match the measured results.

The Okumura-Hata model performed best on rural routes, with RMSE ranging
from 5.05 to 9.30 dB, while the Egli model, with RMSE ranging from 3.81 to 8.18 dB,
performed best on suburban routes. The ANN results for rural routes outperformed
the Okumura-Hata model, with RMSE ranging from 3.96 to 7.07, while the ANN-based
propagation loss model for suburban routes, with RMSE ranging from 1.22 to 6.16 dB,
performed better than the Egli model. The COST-231 and Ericsson models showed low
accuracy in predicting path loss values for both rural and suburban scenarios.

Finally, the author concludes in Eichie et al. (2017) that among the theoretical
models for predicting signal loss, the Okumura-Hata model would be more suitable
for rural environments, and the Egli model would be closer to the expected results
for suburban environments. When compared to the results obtained by conventional
models, the artificial neural network showed a lower RMSE value, indicating it to be a
good alternative for signal loss prediction scenarios.
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The related works reveal the advances and challenges in using artificial neural
networks for predicting signal strength in diverse drone flight environments, highlighting
the ability of neural networks to overcome the limitations of signal propagation models in
urbanized environments, especially in scenarios involving drone communications where
one of the communication nodes is constantly moving.

The study by Saadi et al. (2022) illustrates the potential of neural networks in
predicting signal strength at different altitudes, emphasizing the importance of data
collection in varied environments and the influence of urbanization on predictions.
The average accuracy of 97% achieved highlights the effectiveness of the approach,
especially the finding that lower altitude measurements provide more accurate results,
pointing to the significant impact of altitude on prediction quality.

In Park et al. (2019), the authors expand the discussion to predicting propagation
loss in specific frequency bands, using an artificial neural network approach with different
activation functions. The variation in performance according to the activation function
highlights the importance of appropriate network parameter selection, demonstrating
the applicability of neural networks in complex urban environments.

The study by Alsamhi et al. (2018) focuses on optimizing service quality in
drone integrations with IoT technologies, where the neural network is used to predict
signal strength and channel fading under various conditions. This study highlights the
relevance of the line of sight and flight altitude, reinforcing the role of geographic and
environmental characteristics in prediction effectiveness.

The research conducted by Eichie et al. (2017) offers a comparative analysis
between conventional theoretical models and an artificial neural network in signal
loss prediction, demonstrating the superiority of neural networks, especially in urban
environments. This study reiterates the ability of neural networks to adapt to different
environmental conditions, providing more accurate predictions than traditional models.

Finally, the study proposed by Behjati et al. (2021) demonstrates the applicability
of using the Longley-Rice irregular terrain model for calculating signal strength in
drone flights, particularly in rural environments. The application of the ITM model with
LoRaWAN technologies allows the establishment of wireless coverage in extensive
areas with varied and irregular topographical characteristics.

In summary, the related works highlight the potential of neural networks for
predicting signal strength in various environments. The research also emphasizes the
importance of selecting hyperparameters and activation functions to optimize neural
network performance. Additionally, the effectiveness of the artificial neural network in
urban environments in the related studies underscores the importance of considering
specific environmental characteristics in network modeling and data collection.
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3 METHODOLOGY

3.1 TELEMETRY DATA ACQUISITION

The telemetry data used in this research project was provided by the C-ISAFE
laboratory of CARISSMA at the Technische Hochschule Ingolstadt. The Parrot ANAFI
AI drone was employed for data acquisition due to its ability to operate under different
climatic and environmental conditions. Flights were conducted in various regions of
Germany, including urban, rural, and suburban areas, to ensure a comprehensive
dataset with varied conditions.

This research project utilized telemetry data from 26 drone flights conducted in
three distinct regions of Germany. No pauses were made during the flights. This ensured
that the trajectory covered in each flight was continuous. The diversity and quality of
the collected data are crucial for the generalization of the neural network, ensuring
its robustness and reliability in different urban scenarios. The collected telemetry data
includes the information listed in TABLE 1.

TABLE 1 – DESCRIPTION OF DRONE TELEMETRY DATA
Name Description Unit

timestamp Time of data recording in seconds since the start of the flight. seconds
gps_lon Drone GPS longitude at the time of the record. degrees
gps_lat Drone GPS latitude at the time of the record. degrees

gps_altitude Drone altitude relative to the flight’s starting point. meters
speed_vx Drone speed on the x-axis. m/s
speed_vy Drone speed on the y-axis. m/s
speed_vz Drone speed on the z-axis. m/s

battery_percent Percentage of remaining battery. %
battery_voltage Total battery voltage of the drone. volts

battery_cell_voltage_0 Voltage of battery cell 0. volts
battery_cell_voltage_1 Voltage of battery cell 1 (if applicable). volts
battery_cell_voltage_2 Voltage of battery cell 2 (if applicable). volts

battery_current Battery current of the drone. amperes
wifi_signal Power received at the receiver. dBm

product_gps_available Indicates whether GPS is available (1) or not (0). binary
product_gps_position_error Estimated GPS position error in meters. meters

product_gps_sv_number Number of visible GPS satellites. count
angle_phi Drone roll angle. degrees
angle_psi Drone yaw angle. degrees

angle_theta Drone pitch angle. degrees
gps_amsl_altitude Drone altitude relative to mean sea level. meters

SOURCE: (Parrot Drone, 2023)

For the construction of the multilayer perceptron algorithm, the following infor-
mation will be considered: altitude (’gps_amsl_altitude’), elevation angle (’angle_phi’,
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’angle_psi’, and ’angle_theta’), speed (’speed_vx’, ’speed_vy’, and ’speed_vz’), battery
percentage (’battery_percent’), terrain type, and distance between the drone and the
controller. The terrain type and distance information were added to the dataset during
the preprocessing stage.

For simulations in the Radio Mobile software, the latitude (’gps_lat’), longitude
(’gps_lon’), and height information were considered. The height information was also
obtained during the preprocessing stage. The flights include the specifications listed in
TABLE 2.

TABLE 2 – DETAILS OF THE DRONE FLIGHTS.
Metric Rural Region Suburban Region Urban Region

Number of samples 14048 12453 13333
Maximum distance traveled (m) 240.64 259.09 578.88

Maximum height (m) 377.57 412.93 389.75
Minimum height (m) 103.73 123.41 108.31

SOURCE: The Author.

3.2 DATA PREPROCESSING

The data preprocessing stage requires cleaning, organizing, and transforming
telemetry data into a format suitable for training the neural network, which is essential
for ensuring that the neural network learns efficiently and accurately, directly influencing
the performance and reliability of the obtained results.

The first step in preprocessing involved converting the flight data, originally
in GUTMA (Global UTM Association) format, to JSON (JavaScript Object Notation)
format using the ’liblog2gutma’ library provided by the drone manufacturer, Parrot. The
GUTMA format is designed for drone telemetry, organizing flight data in a structured
and standardized manner, facilitating interoperability between different systems and
devices. However, to enhance flexibility and compatibility with the tools used, converting
the telemetry data to JSON format was necessary. JSON is a widely used data structure
in data science applications, known for its capacity to represent complex data in a
structured and hierarchical manner.

Next, it was necessary to filter the noise in the telemetry data to ensure data
integrity and accuracy. To achieve this, a statistical methodology based on dividing
the data into quartiles was adopted, a technique recognized for its effectiveness in
identifying and removing atypical or extreme variations.

This statistical approach involves segmenting the dataset into four equivalent
parts, called quartiles. The focus of this technique is the interquartile range, which spans
from the first to the third quartile (25th to 75th percentile), representing the central and
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most representative section of the dataset. Values outside this range are considered
outliers and are consequently excluded from the dataset to minimize noise influence.

The following equations exemplify the calculation of limits for filtering longitude
data:

qlow_lon = Percentile(gps_lon, 0.01), (3.1)

qhi_lon = Percentile(gps_lon, 0.99), (3.2)

where qlow_lon and qhi_lon represent the lower and upper limits, respectively, calculated as
the 1st and 99th percentiles of the longitude column (’gps_lon’). This methodology en-
sures that only data within a range considered normal or typical are retained, excluding
extreme variations that could compromise subsequent analysis.

For a more precise identification of noise, histograms were constructed for the
columns of interest present in the telemetry data, as shown in FIGURE 5 and FIGURE 6.
Histograms are efficient graphical tools for visualizing data distribution, facilitating the
detection of noise and unconventional patterns.

FIGURE 5 – HISTOGRAM OF THE COLUMN ’GPS_AMSL_ALTITUDE’ BEFORE OUTLIER
REMOVAL.

SOURCE: The Author.
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FIGURE 6 – HISTOGRAM OF THE COLUMN ’GPS_AMSL_ALTITUDE’ AFTER OUTLIER
REMOVAL.

SOURCE: The Author.

FIGURE 5 illustrates that the altitude value distribution was originally concentra-
ted around 0 and 400 meters, suggesting possible measurement errors. After outlier
removal, a more uniform distribution of altitude values between 380 and 415 meters can
be observed.

The terrain type information is not contained in the telemetry data provided by
the drone flights. Therefore, to consider this information in the neural network, terrain
type data were integrated into the telemetry data during the preprocessing stage. For this
purpose, the Copernicus Land Monitoring Service (CLMS), a geospatial data repository
maintained by the European Union, was utilized. The CLMS is part of the Copernicus
project, an Earth observation initiative that provides detailed information on land cover
and usage (Kosztra et al., 2019).

For this study, data from three specific regions, identified by the NUTS3 codes:
DE211, DE219, and DE266, were selected. The NUTS3 codes form part of the NUTS
classification (Nomenclature of Territorial Units for Statistics), used by the European
Union for collecting, developing, and harmonizing regional statistics. It is a geographical
hierarchy that divides the territories of EU member states into several layers for statistical,
planning, and funding allocation purposes.

Each of the selected regions presents distinct terrain characteristics, contributing



Chapter 3. Methodology 27

to the diversity of the analyzed data. The DE211 region is primarily characterized
by urban and industrial areas, offering a relevant context for studies in urbanized
environments. The DE219 region presents a combination of agricultural land and natural
areas, providing a mixed land use scenario characterizing a suburban region. On the
other hand, the DE266 region is notable for its extensive forested and natural areas,
offering a significant contrast with the other regions and allowing the analysis of data in
predominantly rural contexts.

Integrating this information into the telemetry dataset allows the developed
neural network to have a deeper understanding of the terrain characteristics over which
the drone operated, which is crucial for urban and spatial monitoring applications. The
types of regions mapped through the CLMS database are shown in TABLE 3.

The information on the distance between the controller and the drone is added in
the preprocessing stage and plays a crucial role in calculating signal strength prediction.
In this process, the first data point of each flight dataset is established as the reference
point, fixing the controller’s position. From this initial point, the distance between the
controller and the drone at each subsequent moment of the flight is calculated. To
perform this calculation, the Haversine function, a recognized mathematical method
for determining the distance between two points on the Earth’s surface considering
its curvature, was used. It provides a more accurate estimate of the actual distance
compared to a simple linear calculation.

For calculating the distance d between the controller and the drone, the Haver-
sine function is utilized. Additionally, the altitude of the flight is taken into account for a
three-dimensional distance calculation.

d = 2R arctan 2
(√

a,
√
1− a

)
, (3.3)

where:
a = sin2

(
Δφ

2

)
+ cos(φ1) cos(φ2) sin

2

(
Δλ

2

)
, (3.4)

R is the radius of the Earth (approximately 6,371 kilometers), φ1 and φ2 are the latitudes
of the points in radians, Δφ is the difference between the latitudes, and Δλ is the
difference between the longitudes of the two points.

To calculate the distance considering the flight altitude, the following was consi-
dered:

d3D =
√

d2 +Δh2
BD, (3.5)
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TABLE 3 – CODES AND TYPES OF TERRAIN AVAILABLE IN CLMS
Terrain Type Code
Continuous urban areas 111
Discontinuous urban areas 112
Industrial or commercial zones 121
Road and rail networks 122
Port areas 123
Airports 124
Mining areas 131
Landfills 132
Large-scale constructions 133
Urban green spaces 141
Sports and leisure facilities 142
Arable land 211
Permanent crops 212
Permanent grasslands 213
Fruit orchards 221
Vineyards 222
Olive groves 223
Pastures 231
Agro-forestry complexes 241
Cultivated and natural vegetation interspersed 242
Broad-leaved forests 311
Coniferous forests 312
Mixed forests 313
Natural scrubland 321
Shrub and/or herbaceous vegetation areas 322
Sparse vegetation 323
Burned areas 324
Beaches, dunes, and sands 331
Rocky outcrops and scree 332
Deserts 333
Inland wetlands 411
Marshes and peat bogs 412
Estuaries 421
Coastal zones 422
Marine areas 423
Lakes and ponds 511
Reservoirs 512
Rivers and watercourses 521
Glaciers and permanent snow 522

SOURCE: Kosztra et al. (2019)

where d3D represents the three-dimensional distance, d is the distance calculated by the
Haversine formula (on the Earth’s surface), and ΔhBD denotes the altitude difference
between the two points.

To optimize the flight simulation in the Radio Mobile software, since the flight
points must be manually entered, systematic sampling was used on the telemetry
data, considering a 90% confidence level and a 10% margin of error. These criteria
were established to ensure that the sampled data is representative of the total dataset,
maintaining the precision and fidelity of the information.

To calculate the sample size n in systematic sampling, considering a 90%
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confidence level and a 10% margin of error, and assuming p represents the proportion
of interest in the dataset, the following equation was used:

n =

(
Z2 × p× (1− p)

E2

)
, (3.6)

where Z represents the desired confidence level, which is 1.645 for 90%, p denotes
the estimated proportion of latitude, longitude, and altitude points in the dataset, E is
the margin of error, expressed as a decimal fraction (0.10 for 10%). The sample size
n is rounded to the nearest integer. After determining the sample size in systematic
sampling, every k-th element of the set is selected, where k is approximately the quotient
of the total dataset divided by n.

To minimize the impact of instantaneous power fluctuations, the average value
of the signal strength, measured in dBm, was calculated using:

Pm = 10
1

2m+1

∑idx+s
i=idx−s

wifi_signali
10 , (3.7)

where idx is the index of the sampled point, s represents half of the sampling interval, m
represents the number of observations on one side of the sampled point, ensuring the
averaging is performed over 2m+ 1 points, k is adjusted to be an odd number to ensure
that the average is calculated over a symmetric set of points around idx, and wifi_signali
are the measured power values at the points around the sampled point, covering the
interval from idx −m to idx +m.

3.3 FLIGHT ROUTE SIMULATION IN RADIO MOBILE

To support the analysis of signal strength prediction considering theoretical
terrain models, the Radio Mobile software was used. This software allows for modeling
and predicting the behavior of radio waves in diverse environmental and topographic
conditions. The software uses the Longley-Rice propagation model, which is recognized
for its accuracy in predicting radio signal propagation, considering variables such as
terrain topography, atmospheric conditions, operating frequency, and other relevant
geographical aspects.

Among the variables considered by the Longley-Rice model, terrain topography
is one of the most significant, including the height, shape, and continuity of the terrain,
which can significantly affect the propagation of the communication signal. The software
also considers other relevant geographical aspects, such as the presence of buildings,
vegetation, and other obstacles that can reflect, absorb, or diffract the signal during
transmission.
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To generate a coverage map of a specific region or city, it is necessary to first
extract the urban coverage and terrain elevation data of the region of interest from the
databases provided by the Radio Mobile software manufacturer. After downloading and
initial configurations, it is necessary to import the SRTM (Shuttle Radar Topography
Mission) data and urban coverage. The SRTM data provides detailed information
regarding terrain elevation, which is essential for modeling signal propagation in areas
with topographic variations. The urban coverage data offers details about land cover
that can affect signal propagation. The SRTM data details the urban elevation of almost
the entire Earth’s surface and has a resolution of 1/3 arcseconds (approximately 10
meters). The urban coverage data is provided by CLMS and has a resolution of 100
meters.

For this research project, three flights in regions with different levels of urbani-
zation were selected to obtain results considering different levels of signal interference.
Subsequently, the same flights will be used in the neural network testing phase to
compare the results obtained with the two approaches. FIGURE 7, FIGURE 8, and
FIGURE 9 illustrate Google Earth images of the cities of Großmehring, Heustreu, and
Ingolstadt selected for simulation in Radio Mobile.

The selection criterion for the simulated flight from each region was determined
by flight length, with the longest flight from each region being selected. In this context,
the city of Großmehring represents the rural region with a length of 240.64 meters,
Heustreu is an example of a suburban region with a flight length of 259.09 meters,
and Ingolstadt is classified as an urban region with a flight length of 578.88 meters.
The classification into types of environments was based on the level of urbanization
exhibited in each city regarding urban coverage.

The first geographical point in the telemetry dataset of each selected flight is
established as the location of the drone controller, serving as a reference for the entire
simulation. For subsequent points, latitude, longitude, and height information for each
location were input into Radio Mobile. The flight height added in the simulation for each
point is derived through the following relation:

hrelative = hamsl − eterrain, (3.8)

where hrelative denotes the relative height of the point above the terrain, hamsl indicates the
altitude of the point relative to sea level, and eterrain refers to the elevation of the terrain
above sea level. The altitude information above sea level is included in the telemetry
data in the ’gps_amsl_altitude’ column, and the terrain elevation data are the SRTM
data imported by Radio Mobile.

The latitude and longitude information is present in the telemetry data in the
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FIGURE 7 – SELECTED FLIGHT IN THE GROßMEHRING REGION (RURAL AREA).

SOURCE: The Author.

FIGURE 8 – SELECTED FLIGHT IN THE HEUSTREU REGION (SUBURBAN AREA).

SOURCE: The Author.

’gps_lat’ and ’gps_lon’ columns, respectively. In the context of Radio Mobile, each
geographical point is viewed as a unit, with the first unit representing to the drone
controller and the second unit referring to the drone’s flight points. Each of the drone’s
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FIGURE 9 – SELECTED FLIGHT IN THE INGOLSTADT REGION (URBAN AREA).

SOURCE: The Author.

flight points was input individually to calculate the radio link for each sampled point
separately.

To represent the communication parameters and drone specifications, the
network properties were calibrated to include aspects such as transmitter power, opera-
ting frequency, and antenna configurations. These adjustments are crucial for realistically
simulating flight and communication conditions. Table 4 presents the configured values
for the drone.

TABLE 4 – TECHNICAL SPECIFICATIONS OF THE DRONE
Metric Value
Transmission Power 20 dBm
Operating Frequency 2.4 GHz
Transmitter Antenna Gain 3.5 dBi
Receiver Antenna Gain 3.5 dBi
Receiver Sensitivity -94 dBm

SOURCE: The Author.

These parameters are configured in Radio Mobile as shown in FIGURE 10,
considering a cable loss of 0.5 dB and no additional losses.

For flights conducted in Heustreu and Großmehring, which were carried out
from the ground, the point corresponding to the drone controller was approximated
as an antenna with a height of 0.5 meters. In contrast, for the flights conducted in
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FIGURE 10 – DRONE PARAMETER CONFIGURATION IN RADIO MOBILE.

SOURCE: The Author.

the city of Ingolstadt, the drone controller was positioned on top of a 17-meter-high
building. Consequently, for the simulation of the flight in Ingolstadt, the antenna height
representing the controller was set to 17 meters in the Radio Mobile software to reflect
the building’s height.

All sampled latitude and longitude points were then entered into the software for
communication link simulation, considering the information provided for modeling radio
signal propagation in the specified areas using the Longley-Rice model in point-to-point
prediction mode. FIGURE 11 exemplifies the simulation of a communication point in
Radio Mobile.

Radio Mobile provides a range of information about the communication link, as
shown in FIGURE 11 at the top. The Azimuth is the azimuth angle of the transmitter’s
antenna to the receiver, based on geographical coordinates. Pathloss quantifies the
signal loss along the path between the two locations, in decibels, quantifying signal
attenuation. The Elevation Angle is the elevation angle of the signal when transmitted
from the transmitting antenna.

The E-field denotes the signal level measured in dBμV/m (decibels microvolt
per meter), mainly used in transmission calculations and coverage mapping. Clearance
refers to the distance from the signal path to any potential obstructions. The Rx Level,
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FIGURE 11 – EXAMPLE OF POINT-TO-POINT COMMUNICATION IN RADIO MOBILE.

SOURCE: The Author.

expressed in dBm or μV , indicates the power at which the signal is received. Rx Relative
presents the signal level above the receiver’s threshold, effectively serving as a margin
against signal fading along the transmission path. Information about the Fresnel zone
and the distance between the transmitter and receiver, in kilometers, is also displayed
in the Worst Fresnel and Distance fields.

Considering the signal strength measurement, the values for all sampled flight
points calculated in the Rx Level field, in dBm, were accounted for to assign a result
obtained from the Radio Mobile simulations.

For each flight point simulated in Radio Mobile, the Rx Level value is conside-
red. The obtained values consider the transmitted signal power, inherent path losses,
including attenuation due to distance, obstructions, and interferences that can affect
signal quality. The results obtained from the Radio Mobile simulations are presented in
the CHAPTER 4.

3.4 MULTILAYER PERCEPTRON

The development of the artificial neural network begins with the acquisition and
preprocessing of flight telemetry data. The methodology includes stages of modeling,
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training, validation, testing, and inference of the multilayer perceptron. For the imple-
mentation of the algorithm, the PyTorch framework was used, a library widely adopted
in machine learning and computer vision applications.

The neural network is structured as a fully connected multilayer perceptron,
consisting of three layers: input, hidden, and output. The input layer has ten nodes,
while the output layer has a single node corresponding to the Wi-Fi signal strength.

For the selection of the neural network input parameters, a correlation matrix
was employed to identify the variables that illustrate the highest correlation with the signal
strength values present in the ’wifi_signal’ column. This process aims at dimensionality
reduction and the detection of multicollinearity among the variables.

The correlation matrix was obtained through Pearson’s correlation coefficient,
which measures the linear correlation between two continuous variables. Correlation
values range from -1 to 1, where 1 indicates perfect positive correlation, -1 indicates
perfect negative correlation, and 0 indicates no correlation between the variables.

Considering a correlation threshold of 0.70 in absolute value with the signal
strength data, the following were chosen as input parameters for the neural network:
terrain type (’landcover’), altitude (’gps_amsl_altitude’), elevation angle (’angle_phi’,
’angle_psi’, and ’angle_theta’), speed (’speed_vx’, ’speed_vy’, and ’speed_vz’), battery
percentage (’battery_percent’), and distance between the drone and the controller
(’distance_to_base’).

Collecting time-series received signal strength (RSS) observations and avera-
ging them is a common practice to manage RSS fluctuations. However, this approach is
compromised by the presence of outliers in the observations, which significantly impact
the averaging process and reduce its efficiency. To address this issue, the Z-score
method, based on the median absolute deviation scale estimator, has been used to
detect outliers (Yaro et al., 2024).

For this project, Z-score normalization was selected to minimize the impact of
outliers, providing a more robust and accurate representation of the RSS data. The
selected normalization method ensures that the values of columns such as altitude,
elevation angle, terrain type, distance between the drone and the controller, speed, and
battery percentage are normalized to have a mean of zero and a standard deviation of
one. This method ensures that the data share a common scale before being used for
training and testing the neural network.

The following equation illustrates the application of Z-normalization:

z =
x− μ

σ
, (3.9)
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where x is the original value, μ is the mean of the values, and σ is the standard deviation.

The hyperparameter configuration was defined through an exhaustive grid
search using the ’GridSearchCV’ tool from ’scikit-learn’. The objective of the hyperpara-
meter search is to identify the optimal parameters to maximize the model’s performance.
The tested combinations include the number of neurons in the hidden layer ranging
from 10 to 40, optimizers (ADAM, SGD, and NAdam), and activation functions (ReLU,
sigmoid, and hyperbolic tangent), with learning rates varying between 0.1 and 0.0001.

The results of the exhaustive grid search indicated the ideal hyperparameters
for the MLP as shown in TABLE 5.

TABLE 5 – HYPERPARAMETERS CONSIDERED IN THE MLP MODELING.
Metric Value
Number of Neurons 10
Optimizer Adam
Activation Function Sigmoid
Learning Rate 0.01

SOURCE: The Author.

The dataset was partitioned so that 70% (27.884 samples) were used for
training, 20% (7.967 samples) for validation, and 10% (3.983 samples) for test. This
division maintains the proportional representation of the regions under analysis. The
supervised training of the network used the backpropagation method for 500 epochs,
similar to what was done in the research by Saadi et al. (2022). Additionally, the early
stopping process is implemented to prevent overfitting, terminating the training when
the validation loss begins to increase after 100 consecutive epochs.

The training phase of the multilayer perceptron was executed twenty times,
with average values computed to find the best training and validation loss values. The
weights were randomly initialized using the ’randn’ function from PyTorch, which is used
to generate tensors filled with random numbers from a Gaussian distribution with mean
zero and standard deviation one. The loss function used was MSELoss as given in ??.

Additionally, three-fold cross-validation was employed to ensure the model’s
robustness. In this method, the dataset is randomly divided into three approximately
equal-sized subsets (or folds). In each of the three iterations, two subsets are used for
training and the third is used for validation. The model’s final performance is evaluated by
the average performance across the three iterations, providing a more reliable estimate
of the model’s generalization capability.

To perform inference with the previously trained neural network, data from
the same three flights in rural, suburban, and urban regions, previously used in the
simulations employing the Longley-Rice model, were utilized. At this stage, the data
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used had not been presented to the neural network during the training process, thus
allowing the evaluation of its effectiveness with new and unknown data.

The final signal strength values obtained from the neural network inference
were denormalized and then compared with the expected results, i.e., those derived
from the telemetry data collected during the drone flights. This comparison is crucial to
verify the model’s accuracy under real operating conditions, allowing the assessment
of whether the neural network’s predictions reflect the measurements taken during the
flights. Subsequently, the MLP results were compared with the values obtained from the
simulations in the Radio Mobile software using the Longley-Rice terrain model.
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4 RESULTS

4.1 RESULTS OF THE SIMULATIONS IN RADIO MOBILE

To quantify the accuracy of the simulation results obtained with the Radio Mobile
software, the relative error, RMSE, and MAE values were calculated.

The relative error was obtained using the following relation:

Relative Error =
1

n

n∑
i=1

|Ŷi − Yi|
|Yi| , (4.1)

where n represents the total number of samples, Ŷi is the received power value for the
i-th simulated sample, and Yi is the received power value for the i-th telemetry sample.

For the RMSE results, EQUATION 2.9 was used, where n represents the total
number of observations, Yi is the value measured by the drone for the i-th data point,
and Ŷi is the value predicted by the model. For the MAE results, EQUATION 2.10 was
used.

The results obtained with the simulation in Radio Mobile using the Longley-Rice
terrain model considering the three flights with different levels of urbanization are shown
in TABLE 6.

TABLE 6 – ERROR METRICS BY REGION USING LONGLEY-RICE MODEL
Flight Relative Error (dB) RMSE (dB) MAE (dB)

Rural region 5.05 8.23 6.04
Suburban region 8.16 10.88 8.74

Urban region 11.54 12.84 11.31

SOURCE: The Author.

In the rural region, the data indicate the lowest values for relative error, RMSE,
and MAE among the regions. This result indicates higher accuracy in the simulations
conducted in this area, implying a smaller variation and deviation of the values obtained
with the Longley-Rice model compared to the actual values measured during the drone
flight.

For the suburban region, the results exhibit an intermediate relative error, RMSE
and MAE values when compared to the rural and urban regions, reflecting a balance
between the characteristics of rural and urban environments.

In contrast, the urban region exhibits the highest relative error, RMSE, and
MAE values among the analyzed areas, reflecting lower accuracy in this region’s
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measurements. This outcome is likely due to the higher levels of signal interference
prevalent in urban scenarios.

FIGURE 12, FIGURE 13, and FIGURE 14 illustrate the results obtained consi-
dering the distance between the receiver and the transmitter.

FIGURE 12 – RESULTS OBTAINED WITH THE LONGLEY-RICE MODEL FOR THE RURAL
REGION.

SOURCE: The Author.

In the rural region, it is observed that the signal strength decreases with increa-
sing distance in both the measured and simulated values. This is expected, considering
the characteristics of signal propagation and the decay of received power with distance.
Additionally, the data obtained through the simulation with the Longley-Rice model exhi-
bits reduced dispersion, indicating consistency in the model used due to the nature of
the rural environment. Specifically, the MAE is 6.04 dB, which indicates a relatively small
average deviation of the predicted values from the actual values. The rural environment
has fewer elements that contribute to signal interference, resulting in more stable and
predictable transmission quality.

In the suburban region, it is noted that the variation of the signal strength points
simulated by the Radio Mobile software is more pronounced than that observed in the
rural region, indicating the presence of more elements causing interference in this area.
Such interferences result from the nature of the suburban environment, which, although
not as densely urbanized as an urban region, still has a sufficient number of obstacles,
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FIGURE 13 – RESULTS OBTAINED WITH THE LONGLEY-RICE MODEL FOR THE SUBUR-
BAN REGION.

SOURCE: The Author.

such as smaller buildings, vegetation, and varied topography, which can affect signal
propagation and, consequently, its received power.

In the urban region, it is found that the decline in signal strength as a function
of distance is more gradual compared to other regions, which is associated with urban
topography that tends to influence the signal behavior more uniformly. The results
obtained with Radio Mobile showed significant differences when compared to the power
received data measured by the drone, reflecting the limitations of the Longley-Rice model
in accurately predicting all interference variables inherent to the urban environment.

In all regions, the received power decreases with increasing distance, which is
a standard behavior due to signal attenuation with distance. It was observed that the re-
sults obtained with the Longley-Rice model through the Radio Mobile software diverged
from the telemetry data obtained from the drone flights for the three scenarios, highligh-
ting the importance of developing more robust and comprehensive methodologies for
predicting received power in communication signals. In this context, the application of
artificial neural networks emerges as a promising solution for signal strength prediction
problems in environments characterized by different types of urbanization.
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FIGURE 14 – RESULTS OBTAINED WITH THE LONGLEY-RICE MODEL FOR THE URBAN
REGION.

SOURCE: The Author.

4.2 RESULTS OF THE MULTILAYER PERCEPTRON

After training, an average validation loss of 0.24 and a training loss of 0.18
were obtained. The small difference between the training and validation loss values is a
positive indicator of the model’s ability to generalize to unseen data.

Considering the results obtained from the inference after training the neural
network, the RMSE and MAE values for the three regions are shown in TABLE 7.

TABLE 7 – ERROR METRICS BY REGION USING MLP.
Region RMSE (dB) MAE (dB)

Rural region 1.95 9.89
Suburban region 2.93 7.77

Urban region 2.39 7.99

SOURCE: The Author.

The MLP model demonstrates varying levels of performance depending on
the geographical region. Specifically, in the rural region, the model exhibits the lowest
RMSE, indicating less variation in the prediction errors. However, this same region
exhibits the highest MAE, suggesting that the average errors are higher. In contrast,
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in the suburban region, the model has the highest RMSE, indicating greater variation
in the prediction errors, but it presents the lowest MAE, indicating that the average
errors are smaller. Finally, the urban region exhibits intermediate performance regarding
both RMSE and MAE, positioning itself between the values observed in the rural and
suburban regions.

In comparison with the findings of Saadi et al. (2022), who implemented an
ANN model to predict signal strength at varying altitudes with a reported accuracy of
97%, the performance achieved by the MLP developed in this research is similarly
robust. While their ANN achieved low MSE values (3.91% at 10 meters, 4.20% at 18
meters, and 4.51% at 24 meters) the MLP developed in this research demonstrated an
average RMSE of 1.95 dB for rural environments, 2.93 dB for suburban areas, and 2.39
dB for urban areas. These results align closely with the performance metrics of Saadi
et al. (2022) and suggest that the MLP developed in this research achieves comparable
accuracy across various environments, despite differences in input features and specific
network architectures.

Furthermore, when comparing with the findings of Eichie et al. (2017), who
examined both conventional models (Okumura-Hata, Egli, COST-231, and Ericsson) and
an ANN-based approach, similar improvements over traditional models are observed.
For rural and suburban settings, the ANN outperformed theoretical models, with Eichie
et al. (2017) reporting optimal RMSE values between 3.96 and 7.07 dB for rural routes
and between 1.22 and 6.16 dB for suburban routes. The results achieved by the MLP
developed in this research—1.95 dB for rural, 2.93 dB for suburban, and 2.39 dB for
urban environments—further confirm the enhanced accuracy of ANN-based models
over traditional approaches, aligning with the findings of Eichie et al. (2017) and high-
lighting the model’s efficacy for signal strength prediction across various environmental
conditions.

4.3 COMPARISON OF MULTILAYER PERCEPTRON AND LONGLEY-RICE MODEL
RESULTS

The MLP results were compared with the values obtained from simulations in
the Radio Mobile software using the Longley-Rice terrain model and with the values
measured with the drone. FIGURE 15, FIGURE 16, and FIGURE 17 illustrate the
received signal strength values obtained for rural, suburban, and urban regions.

For the rural area, there is a noticeable trend of decreasing Wi-Fi signal intensity
as the distance from the base increases, which is expected due to signal attenuation
with distance. In the first 50 meters, there is a significant variation between the measured
values and those predicted by the Longley-Rice model. Specifically, the values obtained
from the Radio Mobile simulation overestimate the received power, while the data
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FIGURE 15 – SIGNAL STRENGTH AS A FUNCTION OF DISTANCE FOR THE RURAL RE-
GION.

SOURCE: The Author.

measured by the drone indicate the presence of possible obstacles and interferences
in the first meters of the flight, factors not considered by the Longley-Rice model.
Beyond 50 meters, the predictions of the Longley-Rice model and the measured values
converge.

On the other hand, the signal intensity predictions made by the multilayer per-
ceptron align more closely with the actual values measured by the drone, demonstrating
greater accuracy in relation to the real data. From 100 meters onward, both models,
Longley-Rice and multilayer perceptron, exhibit better correspondence with the real
data, although some variations are still observed. However, the model proposed by the
multilayer perceptron offers superior correspondence with the measured data compared
to the Longley-Rice terrain model.

In the suburban area, comparing the drone’s actual measurements to the signal
strength predicted by the Radio Mobile model using Longley-Rice, it is shown that
these predictions follow the general trend of the measured data but exhibit a slightly
different pattern. The discrepancies may arise from the model’s inherent assumptions
and simplifications, which do not fully capture the actual environmental complexity.

The predicted signal strength from the multilayer perceptron also follows the
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FIGURE 16 – SIGNAL STRENGTH AS A FUNCTION OF DISTANCE FOR THE SUBURBAN
REGION.

SOURCE: The Author.

trend of decreasing signal strength with increasing distance and appears to align more
closely with the actual drone measurements than the Radio Mobile predictions.

The actual drone measurements exhibit greater variability compared to the
predicted datasets. This variability likely stems from real-world environmental factors
that the prediction models do not account for, such as buildings, trees, and other
obstacles causing signal reflections and scattering.

When comparing the predictions, the signal strength predicted by the multilayer
perceptron matches the actual data more closely than the values predicted by the
Longley-Rice model. This suggests that the multilayer perceptron prediction method
may be more accurate or better suited for this suburban environment.

For the urban area, the measured Wi-Fi signal demonstrates significant variabi-
lity, characterized by substantial fluctuations in signal strength across all distances. This
variability can be attributed to environmental factors prevalent in urban settings, such as
buildings, trees, and other obstacles.

The predictions from the Radio Mobile model also indicate a decrease in signal
strength with increasing distance. However, the Radio Mobile model tends to overes-
timate the signal strength compared to the actual drone measurements. Beyond 100
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FIGURE 17 – SIGNAL STRENGTH AS A FUNCTION OF DISTANCE FOR THE URBAN RE-
GION.

SOURCE: The Author.

meters, the model generally predicts higher signal strengths than the actual measure-
ments, although both trends decline with distance.

The multilayer perceptron predictions closely follow the general trend of the ac-
tual measurements more accurately than the Longley-Rice model. While discrepancies
still exist, this model appears to be more accurate or account for more real-world urban
environmental variables.

The actual Wi-Fi signal measurements exhibit significant variability, likely due to
urban obstructions. The Longley-Rice model generally overestimates signal strength
across all distances. In contrast, the multilayer perceptron model aligns more closely
with the actual drone measurements, albeit with a slight tendency to overestimate signal
strength. For practical applications, the multilayer perceptron model provides a more
realistic prediction of Wi-Fi signal strength in urban areas compared to the Longley-Rice
model.

The comparative analysis between Wi-Fi signal strength prediction models
reveals that the multilayer perceptron model aligns more closely with the real values
measured by drones compared to the Longley-Rice model. While the Longley-Rice
model tends to overestimate signal strength, the multilayer perceptron model exhibits a



Chapter 4. Results 46

more accurate correspondence with the real measurements, despite also displaying a
slight tendency to overestimate.

The real drone measurements exhibit significant variability due to interferences
and obstructions such as buildings and trees, which are not fully captured by the
predictive models. Therefore, the multilayer perceptron model is more suitable for
predicting Wi-Fi signal strength in the three regions, as it better captures the complexities
and environmental variations typical of the analyzed areas, adjusting more precisely to
the changes in signal strength caused by physical obstacles and interferences present
in the environment.
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5 CONCLUSION AND FUTURE WORK

The observed discrepancies between the outcomes generated by the Longley-
Rice model, implemented through the Radio Mobile software, and the telemetry data
acquired from drone flights across three distinct scenarios underscore the necessity
of developing more accurate methodologies for predicting signal strength during drone
flights. In this context, the application of artificial intelligence techniques emerges as an
alternative for scenarios involving the prediction of signal strength in drone flights.

The signal intensity values obtained with the multilayer perceptron, presented
in TABLE 7, indicate that in the rural region, the RMSE is 1.95 dB, suggesting a lower
variation in prediction errors. In contrast, the signal intensity values obtained with the
Longley-Rice model, shown in TABLE 6, indicate a significantly higher RMSE of 8.23
dB for the same region, indicating a greater variation in prediction errors.

For the suburban region, the multilayer perceptron presents an RMSE of 2.93
dB, indicating greater variation in prediction errors compared to the rural region. In turn,
the Longley-Rice model shows an RMSE of 10.88 dB, a considerably higher value than
the RMSE observed with the multilayer perceptron.

In the urban region, the multilayer perceptron demonstrates an RMSE of 2.39
dB, while the Longley-Rice model presents an RMSE of 12.84 dB, the highest among
all analyzed regions. This RMSE difference indicates that the Longley-Rice model has a
greater variation in prediction errors compared to the multilayer perceptron.

In conclusion, the RMSE values obtained through the two methodologies high-
light a significant discrepancy, with the Longley-Rice model consistently presenting
higher values for all regions. This disparity suggests that the Longley-Rice model’s
predictions overestimate the received power values by not adequately considering the
signal interferences and obstructions present in the analyzed regions.

For future work, it is recommended to obtain a more robust and varied data-
set, covering a larger number of regions and environments, in order to enhance the
generalization of the multilayer perceptron algorithm. Additionally, it is suggested to use
machine learning methods such as Random Forest or Support Vector Machine, which
are more suitable for scenarios with high noise presence. Another possibility for future
work is to employ the signal intensity prediction algorithm in scenarios of optimization
and prediction of drone flight trajectories, aiming to maximize available resources and
promote energy efficiency during UAV operations.
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