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“Any sufficiently advanced technology is indistinguishable from magic.“
— Arthur C. Clarke



RESUMO

A evolução da direção autônoma é influenciada pela convergência de tecnologias que
moldam as capacidades dos sistemas de percepção. Este estudo reflete a interação en-
tre aprendizado profundo, aceleradores de hardware especializados e representações
numéricas avançadas, especificamente os Posits, no contexto do CenterFusion - um
método de fusão intermediária para integrar dados de radar e câmera, desenvolvido
para veículos autônomos. Posit é um tipo de representação e aritmética numérica em
ponto flutuante cujos campos têm tamanhos variáveis, resultando em precisão não
uniforme. Para otimizar o CenterFusion para sistemas embarcados, uma técnica de
quantização de parâmetros e inferência de hardware usando números Posit foi desen-
volvida, nomeada Posits4Torch e Posits4TorcHA. O principal objetivo deste estudo é
avaliar a redução no uso de memória, o ganho em velocidade de processamento e a
degradação de desempenho do CenterFusion, quando submetido à quantização com
Posit, em termos de erros médios e do NuScenes Detection Score. Os resultados de-
monstram que os erros de inferência para o modelo emulado Deep PeNSieve em uma
Unidade Central de Processamento (CPU) AMD EPYC 7413 de 24 núcleos e o modelo
baseado em Posits4TorcHA em um Arranjo de Portas Lógicas Campo-Programáveis
(FPGA) AMD Kria KV260 foram idênticos. O tempo de inferência do modelo baseado
em FPGA de 3,49 segundos foi aproximadamente 1000 vezes menor que os 3194,69
segundos do modelo baseado em CPU, mas 300 vezes maior que o modelo baseado
em Unidade de Processamento Gráfico (GPU) do PyTorch, executado em uma GPU
NVIDIA GeForce RTX 3090. Além disso, as métricas de implementação em FPGA
para o Arranjo de Unidades de Multiplicação e Acumulação (MAC) 2D 8x8 Posit no
AMD Kria KV260 mostraram um consumo de energia de 2,939 W, 3,033 W e 3,090
W para precisões Posit de 6, 7 e 8 bits, respectivamente, destacando a eficiência
de recursos da abordagem. Ao quantizar as cabeças de regressão do CenterFusion,
uma precisão Posit de 8 bits para Posit-como-Armazenamento (PaS) resultou em uma
degradação na Precisão Média (mAP) e no Escore de Detecção NuScenes (NDS) de,
respectivamente, 0,7% e 0,5%. Para Posit-como-Aritmética (PaA) na FPGA, certas
métricas como o Erro Médio de Velocidade (mAVE) e o Erro Médio de Translação
(mATE) foram mais afetadas, com precisão de 8 bits levando a degradações na mAP e
NDS de 9,8% e 7,7%, respectivamente, o que pode ser melhorado treinando o modelo
com uma precisão Posit mais alta e subsequentemente quantizando para uma precisão
Posit mais baixa usando Posits4Torch. Esta abordagem apresenta uma perspectiva
promissora para otimizar o desempenho de redes neurais em sistemas de percepção e
fusão de sensores para veículos autônomos. Ao melhorar a eficiência usando larguras
de bits menores sem comprometer muito a precisão, esta pesquisa contribui para o
desenvolvimento de soluções de IA de alta velocidade e mais eficientes em termos de



energia para sistemas embarcados de veículos autônomos, demonstrando o progresso
contínuo no campo da tecnologia de condução autônoma.

Palavras-chaves: posit; direção autônoma; aceleração de hardware.



ABSTRACT

The evolution of autonomous driving is influenced by the convergence of technolo-
gies shaping the capabilities of perception systems. This study reflects the interaction
between deep learning, specialized hardware accelerators, and advanced numerical
representations, specifically Posits, in the context of CenterFusion - a middle-fusion
method for fusing radar and camera data designed for autonomous vehicles. Posit
is a type of floating-point numerical representation and arithmetic whose fields have
variable sizes, resulting in non-uniform precision. In order to optimize the CenterFusion
for embedded systems, a parameter quantization and hardware inference technique
using Posit numbers was developed, named Posits4Torch and Posits4TorcHA. The main
objective of this study is to evaluate the reduction in memory usage, processing speed
gain, and degradation of CenterFusion performance, when subjected to Posit quanti-
zation, in terms of the average errors and the NuScenes Detection Score. The results
demonstrate that the inference errors for both the Deep PeNSieve-emulated model on an
AMD EPYC 7413 24-Core Central Processing Unit (CPU) and the Posits4TorcHA-based
model on an AMD Kria KV260 Vision Starter Kit Field-Programmable Gate Array (FPGA)
were identical. The FPGA-based model’s inference time of 3,49 seconds was nearly
1000 times lower than the 3194,69 seconds of the CPU model but 300 times higher than
the PyTorch Graphics Processing Unit (GPU) model, which ran on a NVIDIA GeForce
RTX 3090. Moreover, FPGA implementation metrics for the 2D 8x8 Posit MAC Unit
Array on the AMD Kria KV260 showed a power consumption of 2,939 W, 3,033 W, and
3,090 W for Posit precisions of 6, 7, and 8 bits, respectively, highlighting the approach’s
resource efficiency. When quantizing CenterFusion’s regression heads, an 8-bit Posit
precision for Posit-as-Storage (PaS) resulted in a degradation in the Mean Average
Precision (mAP) and NuScenes Detection Score (NDS) of, respectively, 0,7% and 0,5%.
For Posit-as-Arithmetic (PaA) on the FPGA, certain metrics like Mean Average Velocity
Error (mAVE) and Mean Average Translation Error (mATE) were more affected, with
8-bit precision leading to degradations in mAP and NDS by 9,8% and 7,7%, respectively,
which can be improved by training the model with a higher Posit precision and subse-
quently quantizing to a lower Posit precision using Posits4Torch. This approach presents
a promising perspective for optimizing neural network performance in perception and
sensor fusion systems for autonomous vehicles. By improving efficiency using lower
bit-widths without compromising too much accuracy, this research contributes to the
development of more energy-efficient high-speed AI solutions for autonomous vehicle’s
embedded systems, demonstrating ongoing progress in the field of autonomous driving
technology.

Key-words: posit. autonomous driving. hardware acceleration.
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1 INTRODUCTION

In the evolution of Autonomous Driving (AD), the convergence of technologies
defines the capabilities of perception systems. Deep Learning (DL) forms the basis of
these systems.

DL is a fundamental component of AD, 3D object detection and classification,
and sensor fusion, playing a crucial role in the development of Autonomous Vehicle (AV)
technology. It enables vehicles to process data from various sensors, recognize ob-
jects, interpret complex scenes, and adapt to diverse driving conditions. DL models,
especially CNNs , enhance the accuracy and robustness of the 3D object detection and
classification systems, facilitating precise object identification. Sensor fusion benefits
from DL’s ability to align and combine data from multiple sensors.

Based on this, Nabati e Qi (2021) introduces an intermediate sensor fusion
method aimed at improving the accuracy of 3D object detection and classification in
AD systems, called CenterFusion. By combining data from radar and camera sensors,
the system aims to improve the estimation of depth, rotation, and velocity of objects
in the environment. The performance evaluation of CenterFusion on the NuScenes
dataset (Caesar et al., 2020) - a large-scale dataset and evaluation for AD - highlights
its superior capability compared to existing camera-only algorithms, particularly in
velocity estimation and overall detection accuracy. Furthermore, the complexity and
computational demands of the NNs used in AVs introduce computational challenges,
necessitating the integration of specialized HAs to achieve real-time processing.

HAs, such as ASICs and FPGAs , bring a new dimension to the optimization of
DL models. These dedicated hardware solutions excel in parallel processing, enabling
the fast execution of NN computations. ASICs, with their application-specific design,
offer high performance and energy efficiency, while FPGAs provide a balance between
adaptability and rapid prototyping capabilities. Both contribute to the deployment of
efficient and high-performance perception systems in AVs.

Nevertheless, advanced numerical representations, such as Posit numbers
and arithmetic (Gustafson; Yonemoto, 2017), emerge as potential game-changers.
Posits offer an alternative to traditional floating-point and fixed-point representations,
providing a dynamic range that adapts to the magnitude of the numbers represented.
The emphasis on minimizing rounding errors and supporting a wider dynamic range
aligns well with the demands of AD, where diverse and dynamic sensor inputs require
precise numerical calculations.

Additionally, techniques such as pruning and quantization optimize DL models
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for deployment in HAs, ensuring efficiency both in computational terms and in the use
of memory resources. Posit arithmetic, with its potential to enhance numerical precision
and reduce bit-width, complements these efforts, further contributing to the overall
efficiency of the perception system.

With this in mind, this work investigates the use of inference with Posit-quantized
DNNs to optimize the efficiency of 3D object detection and classification in AD systems,
evaluating these techniques applied to the CenterFusion middle-fusion method, which
uses radar and camera data for 3D object detection and classification, and assessing
its performance to demonstrate potential improvements in AV perception technologies.

1.1 OBJECTIVES

The General Objective of this work is to evaluate the impact of the Posit Quanti-
zation on the accuracy of a DL-based Camera and RADAR Middle-Fusion Method, the
CenterFusion, when using Posit-as-Storage (PaS) on the GPU and Posit-as-Arithmetic
(PaA) on the FPGA.

The Specific Objectives are defined as:

• Develop Posits4Torch, an FPGA-enabled Application Programming Interface (API)
and Posit quantization customization for PyTorch;

• Quantize the Primary Regression Heads and Secondary Regression Heads of the
CenterFusion using Posits through Posits4Torch;

• Accelerate on GPU the inference of the Posit-quantized Primary Regression Heads
and Secondary Regression Heads of the CenterFusion using Posits4Torch and
PaS;

• Accelerate on FPGA the inference of the Posit-quantized Primary Regression
Heads and Secondary Regression Heads of the CenterFusion using Posits4Torch
and PaA;

• Evaluate the accuracy of the Posit-quantized CenterFusion for 3D Object Detection
and Classification, using the metrics from the NuScenes Detection Task, such
as Mean Average Precision (mAP), Mean Average Translation Error (mATE),
Mean Average Scale Error (mASE), Mean Average Orientation Error (mAOE),
Mean Average Velocity Error (mAVE), Mean Average Attribute Error (mAAE), and
NuScenes Detection Score (NDS).

Finally, this document is structured as follows: the theoretical foundations and
a review of relevant prior work are presented in CHAPTER 2 and CHAPTER 3, res-
pectively. In CHAPTER 4, the methodology and experimental approach of this work
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are detailed, including the tools used. In CHAPTER 5, the findings of the study are
displayed quantitatively and qualitatively, with visual aids and tables, and also provide
insights into how these findings align or diverge from established knowledge. Finally,
CHAPTER 6 encapsulates the research contributions and proposes directions for future
investigations.
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2 BACKGROUND

2.1 DEEP LEARNING NEURAL NETWORKS

A DNN is a computational model inspired by the human brain, composed
of interconnected artificial neurons organized into layers. Its basic unit, the Artificial
Neuron (AN), processes input data through weighted connections, introduces non-
linearities through an Activation Function (AF), and generates an output (Vasilev; Slater,
2019). The basic structure of an AN can be visualized in the FIGURE 1.

FIGURE 1 – REPRESENTATION OF AN ARTIFICIAL NEURON.

SOURCE: The Author.

For an AN with n inputs (see FIGURE 1), the output is given by EQUATION 2.1,

y = AF

(
n∑

i=1

wi · xi + wbias · bias
)

(2.1)

where y is the output, AF is the AF, wi is the weight assigned to input xi, and wbias is
the weight assigned to the bias, bias, of this neuron, usually equal to 1. The bias of
an artificial neuron is associated with the activation potential analogous to a biological
neuron.

The layers include the input layer for initial data, hidden layers for complex
calculations, and the output layer for final results, as shown in the FIGURE 2.
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FIGURE 2 – MODEL OF A FULLY CONNECTED NEURAL NETWORK (FCNN).

SOURCE: Belabed et al. (2021)

For a given layer, k, of the Fully Connected Neural Network (FCNN) in the
FIGURE 2, the output, xk

i , of the i-th neuron in that layer is given by the EQUATION 2.2,

xk
i = AF k

(
nk−1∑
j=1

wji · xk−1
j + bk · wbki

)
(2.2)

where nk−1 is the number of neurons in layer k − 1, wji is the weight assigned to the
connection from the output of neuron j in layer k − 1, given by xk−1

j , to the input of
neuron i in layer k, bk is the bias of layer k, wbki is the weight assigned to the bias of
layer k for neuron i, usually equal to 1, and AF k is the AF for layer k.

AFs, such as Sigmoid (EQUATION 2.3) or Rectified Linear Unit (ReLU) (EQUA-
TION 2.4), add crucial non-linearities to learn intricate patterns and also help NNs avoid
saturation of values flowing between layers. However, for this, AFs require adequate
precision of numerical formats used to represent the parameters of the NN.

NNs can take various forms, such as FCNNs for standard tasks, CNNs for
Image Processing, and RNNs for sequential data (Vasilev; Slater, 2019).

σ(x) =
1

1 + e−x
(2.3)

ReLU(x) = max(0, x) (2.4)
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Weights and biases, parameters associated with connections, are adjusted
during training to minimize the difference between predicted and actual results. Training
involves forward propagation and backpropagation, with the latter adjusting the NN
parameters based on the error between predicted and ground-truth results.

The flexibility of NNs allows them to excel in various applications, including
image and voice recognition, language translation, and AVs. Their ability to automatically
learn complex patterns makes them a powerful tool in the field of Machine Learning (ML).

In the context of AVs, NNs act as the brain behind the vehicle’s perception
and decision-making. They analyze visual data, identify objects, and merge sensor
information for a comprehensive understanding of the environment. Through semantic
segmentation and predictive models like RNNs, NNs facilitate trajectory planning, for
example. Reinforcement Learning (RL) guides decision-making, adapting behavior
based on rewards. NNs also contribute to mapping, localization, and driver monitoring,
ensuring a holistic approach to safe and adaptive AVs. NNs are the driving force behind
the vehicle’s ability to navigate, interpret, and respond intelligently to the dynamic road
environment.

2.1.1 Deep Learning Convolutional Neural Networks

CNNs are a specialized class of artificial NNs designed for visual data proces-
sing, especially in tasks like image classification and object recognition. The architecture
of a CNN is inspired by the human visual system and comprises several crucial compo-
nents (Goodfellow et al., 2016).

A convolutional layer is a fundamental component within CNNs, mainly em-
ployed in tasks related to image analysis and recognition (Vasilev; Slater, 2019). It
operates through a set of key elements: filters or kernels, convolution operation, stride,
padding, and handling multiple channels. Filters are small trainable matrices designed
to detect specific features, such as edges or textures in the input data. The convolution
operation involves sliding these filters over the input, performing element-wise multi-
plications and summations to create output FMs , as shown in FIGURE 3. The stride
controls the step size of this operation, affecting the spatial dimensions of the output
FMs, while padding can be applied to preserve or adjust these dimensions (Vasilev;
Slater, 2019; Goodfellow et al., 2016). It is important to note that convolutional layers
can easily process multi-channel data, such as color images, by applying filters inde-
pendently to each channel and combining the results, as visualized in FIGURE 4. This
hierarchical feature extraction process enables CNNs to recognize increasingly complex
and abstract patterns, making them invaluable for tasks like image classification and
object detection and classification in 2D or 3D.

The equation for a convolutional layer in a CNN can be represented as follows:
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FIGURE 3 – EXAMPLE OF 2D CONVOLUTION OPERATION ON A GRAYSCALE IMAGE.

SOURCE: The Author.
NOTE: In the figure, the 2D Convolution Operation is characterized by having 1 Input

Channel (Grayscale Image) of 3x3 pixels, 1 Output Channel, 1-pixel padding,
1-pixel stride, and 3x3 pixel kernel.

Y (i, j, k) =
M−1∑
m=0

N−1∑
n=0

L−1∑
l=0

(X(i+m, j + n, l) ∗W (m,n, l, k)) + b(k) (2.5)

Where:

• Y (i, j, k) is the value of the output FM at position (i, j) in channel k.

• X(i+m, j + n, l) is the value of the input FM at position (i+m, j+n) in channel l.
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FIGURE 4 – EXAMPLE OF APPLYING A CONVOLUTIONAL LAYER TO A 3-CHANNEL CO-
LOR IMAGE (RED, GREEN, AND BLUE).

SOURCE: The Author.
NOTE: In the figure, the Convolutional Layer is characterized by having 3 Input

Channels, 16 Output Channels, 3-pixel padding, 1-pixel stride, and 7x7 pixel
kernels.

• W (m,n, l, k) is the value of the convolutional filter at position (m, n) in input channel
l and output channel k.

• b(k) is the bias term associated with output channel k.

The summation is performed over all possible positions (m, n) within the filter
size and all input channels l.

In practice, this equation can be implemented using efficient convolution opera-
tions, such as the "im2col"technique, which converts the input and filter into matrices
and then performs matrix multiplication followed by adding the bias term to obtain the
output FM (Lee et al., 2023). This allows for faster and optimized computations in DL
frameworks.

Pooling Layers in CNNs are used to reduce the input data size while preserving
important information. There are two main types: Max Pooling, which selects the ma-
ximum value from small regions, and Average Pooling, which computes the average
(Vasilev; Slater, 2019). Pooling Layers help create hierarchical representations of fea-
tures in CNNs, with initial layers capturing fine details and deeper layers recognizing
larger patterns. They introduce translation invariance, allowing the NN to identify featu-
res regardless of their exact location. Pooling layers have hyperparameters like window
size, stride, and padding that influence their behavior. An example of a Pooling layer,
specifically Max Pooling, can be seen in FIGURE 5. Essentially, pooling layers make
CNNs computationally efficient and effective for tasks like image recognition.
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FIGURE 5 – EXAMPLE OF APPLYING A MAX POOLING LAYER TO INPUT FEATURE MAPS.

SOURCE: The Author.
NOTE: In the figure, the Max Pooling Layer

is characterized by having 32 Input
Channels, 32 Output Channels,

0-pixel padding, 2-pixel stride, and
2x2 pixel Window Size.

The equation for a Max Pooling layer in a CNN is:

Y (i, j, k) = max
m,n

(X(i · s+m, j · s+ n, k)) (2.6)

For an Average Pooling layer, it is:

Y (i, j, k) =
1

w

∑
m,n

X(i · s+m, j · s+ n, k) (2.7)

In these equations, X represents the input FM, Y represents the output FM
after pooling, (i, j, k) are the indices in the output FM, and (m,n) are the indices within
the pooling window. s is the stride with which the pooling window moves, and w is the
pooling window size (e.g., 2x2 for typical max or average pooling).

These equations describe how Max Pooling and Average Pooling operations
are applied to the input FM to produce the output FM in a pooling layer of a CNN. A
visual representation of both operations can be seen in FIGURE 6 and FIGURE 7.

AFs, such as the popular ReLU, introduce non-linearities into the CNN. This is
essential for the model to understand intricate relationships in the data, contributing to
its ability to comprehend complex visual patterns.

Fully connected layers (see FIGURE 2) connect all neurons in one layer to all
neurons in the next, consolidating high-level features for final classification. The flattening
step transforms the multidimensional output of previous layers into a one-dimensional
vector suitable for these fully connected layers.

In the context of AD, CNNs are essential for interpreting sensor data. They excel
at object detection and classification in 2D or 3D, recognizing pedestrians and vehicles,
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FIGURE 6 – EXAMPLE OF MAX POOLING OPERATION ON AN INPUT CHANNEL.

SOURCE: (Vasilev; Slater, 2019)
NOTE: In the figure, the Max Pooling Operation is characterized by having 1 Input

Channel, 1 Output Channel, 0-pixel padding, 2-pixel stride, and 2x2 pixel
Window Size.

FIGURE 7 – EXAMPLE OF AVERAGE POOLING OPERATION ON AN INPUT CHANNEL.

SOURCE: (Vasilev; Slater, 2019)
NOTE: In the figure, the Average Pooling Operation is characterized by having 1 Input

Channel, 1 Output Channel, 0-pixel padding, 2-pixel stride, and 2x2 pixel
Window Size.

and contribute to tasks like lane detection and traffic sign recognition. By analyzing
images and enabling depth estimation, CNNs enhance the vehicle’s perception, ensuring
safe navigation. These networks also play a crucial role in sensor fusion, combining data
from various sources for a comprehensive understanding of the driving environment.
CNNs are instrumental in empowering AVs with the necessary skills for effective and
safe navigation.
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2.2 OPTIMIZATION OF DEEP LEARNING NEURAL NETWORKS

Optimizing DL models involves improving various components to achieve better
performance and efficiency. This includes choosing suitable architectures, fine-tuning
hyperparameters, handling weight initialization, applying normalization, selecting AFs,
optimizing learning rates, using enhanced data, exploring quantization and pruning tech-
niques, considering regularization, leveraging parallelization, utilizing HAs, and adopting
Transfer Learning (TL) (Lee et al., 2023). The iterative process of experimentation is
crucial to finding the ideal combination and enhancing the capabilities of models for
specific tasks.

2.2.1 Quantization

Quantization in DL involves reducing the precision of numerical representations,
specifically weights and activation values, to enhance model efficiency when deploying
on resource-constrained devices. Two main types of quantization are weight quanti-
zation, which focuses on reducing the precision of model parameters, and activation
quantization, which targets intermediate activation values during inference.

In weight quantization, the process involves mapping learned weights using
high-precision formats, such as 32-bit floating-point numbers, to lower-bit representa-
tions, such as 8-bit fixed-point or Posits. This minimizes memory requirements and
computational costs. Training models with quantization in mind and employing techni-
ques like fine-tuning help mitigate precision loss.

Activation quantization involves reducing the precision of activation values
flowing through the NN during inference. Training phase statistics guide the quantiza-
tion scheme, with techniques like fixed-point or dynamic quantization determining the
precision. Fine-tuning and training with quantization in mind can also be applied before
post-quantization to recover accuracy.

In general, quantization is a fundamental optimization strategy, balancing model
efficiency and accuracy, enabling DL model deployment on various platforms with
varying computational capabilities.

Quantization, which reduces precision in DL models, collaborates with hardware
acceleration for optimized deployment. Lower precision arithmetic benefits specialized
hardware such as GPUs , TPUs , FPGAs, and microcontrollers, enhancing efficiency
and enabling real-time inference on edge devices. Challenges include compatibility
and precision trade-offs, addressed through fine-tuning and dynamic quantization. In
summary, this integration optimizes performance and energy efficiency across a range
of devices, from edge devices to datacenters.
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2.3 CENTERFUSION

CenterFusion (Nabati; Qi, 2021) is an algorithm designed to enhance the 3D ob-
ject detection and classification in AVs through effective sensor fusion. It addresses the
challenges of combining radar and camera data by leveraging their complementarities.
It does this through a middle-fusion strategy to accurately associate radar detections
with the central points of objects in camera images, overcoming challenges of spatial
misalignment and object occlusion.

The algorithm uses CNNs as fundamental components in its architecture for 3D
object detection and classification in AVs. The key role of CNNs in CenterFusion is to
extract essential features from both radar and camera data.

To achieve this, CenterFusion adopts CenterNet (Zhou et al., 2019), an ap-
proach that utilizes a central point detection network for the preliminary detection of
objects in the image. For the camera data, a modified version of a Deep Layer Aggre-
gation (DLA) NN (Yu et al., 2018) serves as the backbone for the process of 3D object
detection and classification. The DLA is applied to the input images, generating FMs
that capture relevant information about objects in the scene. The main regression heads
of this CNN then use these features to predict object centroids, 2D size, 3D dimensions,
depth, rotation, and other properties.

To handle inaccuracies in radar height information, CenterFusion introduces a
preprocessing step called Pillar Expansion, providing a more accurate representation of
the physical objects detected by radar. The CNN plays a crucial role in processing these
expanded radar representations, which are then fused with image features to enhance
the accuracy of 3D object detection and classification.

Radar features are generated by associating the expanded radar represen-
tations with objects in the image using a frustum-based method that leverages the
properties of objects initially estimated by the primary regression heads. This frustum
association mechanism introduces a method that uses the object’s 2D bounding box,
its estimated depth, and its size to form a 3D Region of Interest (RoI) frustum. This
process, illustrated in FIGURE 8, significantly reduces the number of radar detections
that require association by ignoring points outside the frustum. During training, the actual
3D bounding box of the object is used for more accurate association. Conversely, in
testing, the RoI frustum is generated using estimated 3D bounding boxes, adjusted with
the δ parameter to accommodate inaccuracies in depth estimation. This approach helps
deal with overlapping objects, ensuring separate RoI frustums for distinct objects and
resolving multiple detection association issues by selecting the nearest radar detection
within the RoI frustum (Nabati; Qi, 2021).

Next, to incorporate radar data, the algorithm is extended with secondary



31

FIGURE 8 – CENTERFUSION’S FRUSTUM ASSOCIATION MECHANISM.

SOURCE: Nabati e Qi (2021)
NOTE: In the left image, an object is detected using image features. In the middle, the

RoI frustum is generated based on the object’s 3D bounding box. On the right,
the top view of the RoI shows radar detections within the frustum. The δ

parameter increases the frustum size, while d̂ is the actual depth during training
and the estimated one during testing.

regression heads dedicated to processing radar and camera-based features. The CNN
is then trained using this fusion of radar and image features, enabling it to learn joint
representations and effectively combine both sensing modalities, enhancing the initial
estimation of crucial object properties such as depth, speed, rotation, and attributes.
The overall architecture of CenterFusion can be visualized in FIGURE 9.

FIGURE 9 – OVERALL ARCHITECTURE OF CENTERFUSION.

SOURCE: Nabati e Qi (2021)

CenterFusion undergoes a comprehensive evaluation using the NuScenes
dataset, outperforming existing camera-only based algorithms and demonstrating sig-
nificant improvements in the NDS and speed estimation accuracy. Comparisons with
other approaches, including camera-based models like CenterNet and MonoDIS, as
well as a Light Detection and Ranging (LIDAR)-based method (InfoFocus), highlight
CenterFusion’s superiority in real-world scenarios (Nabati; Qi, 2021).

The overall architecture of CenterFusion demonstrates the integration of CNNs
as a useful tool for feature extraction and 3D object detection and classification, showing
its adaptability to handle various sensor data and achieve robust 3D object detection in
real-world scenarios.
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2.4 EVALUATION METRICS FOR OBJECT DETECTION AND CLASSIFICATION

In the context of object detection and classification, various metrics are used to
evaluate the performance of algorithms. These metrics are essential for understanding
how well a model can detect and classify objects in space. Among these metrics, those
corresponding to the evaluation of the NuScenes dataset are included, such as:

• Average Precision (AP): This is a commonly used metric in object detection
and classification. It measures the average precision at different levels of recall.
Precision refers to the proportion of true positive detections among all positive
detections, while recall is the proportion of true positive detections among all actual
positives. AP is often calculated for each class separately and then averaged
across classes. Thus,

AP =

∑n
k=1(Recallk −Recallk−1) · Precisionk

n
(2.8)

Where Precisionk and Recallk are the precision and recall at the kth threshold. n
is the number of thresholds.

• Average Translation Error (ATE): This metric is used to evaluate the accuracy of
the detected position of an object and measures the average Euclidean distance
between the centers of predicted and true bounding boxes. Lower values indicate
better performance. Thus,

ATE =
1

N

N∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2 (2.9)

Where, (xi, yi) are the true coordinates of the object’s center, and (x̂i, ŷi) are the
predicted coordinates. N is the number of samples.

• Average Scale Error (ASE): This metric evaluates how well the predicted bounding
box size matches the actual object size. Thus,

ASE = 1− IOU (2.10)

Where IOU is calculated as the ratio of the intersection area to the union area of
the estimated and true bounding boxes after aligning their centers and orientati-
ons. This metric of Intersection over Union (IOU) quantifies the overlap between
estimated and true bounding boxes and is given by

IOU =
agt ∩ ae
agt ∪ ae

(2.11)

In the expression, agt and ae are the areas of the true and estimated bounding
boxes, respectively. The IOU can range from 0 to 1, indicating the degree of
overlap of the bounding boxes: 0 for no overlap, 1 for perfect alignment.
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• Average Orientation Error (AOE): This measures the accuracy of the predicted
orientation of detected objects. It is often calculated as the average angular
difference between the orientations of the predicted and true bounding boxes.
Thus,

AOE =
1

N

N∑
i=1

min(Δθi, 2π −Δθi) (2.12)

Δθi is the difference in the predicted and actual orientation angle for each instance.

• Average Velocity Error (AVE): Relevant in scenarios where objects are in motion
(such as in AV applications), this metric measures the accuracy of the predicted
velocity of detected objects. Thus,

AV E =
1

N

N∑
i=1

|vi − v̂i| (2.13)

Where vi is the true velocity, and v̂i is the predicted velocity.

• Average Attribute Error (AAE): This metric evaluates the accuracy of attribute
predictions, such as the type of an object (e.g., car stopped or moving, pedestrian
sitting or walking). It is typically used when the detection task involves classifying
objects into multiple categories based on attributes. Thus,

AAE = 1− Acc (2.14)

Where Acc is the attribute classification accuracy (each class may have different
associated attributes that must also be predicted).

• NuScenes Detection Score (NDS): Specific to the evaluation of the NuScenes
Dataset, the NDS is a composite metric that combines several of the above metrics
(such as ATE, ASE, AOE) along with others like detection precision and recall. It
provides a measure of a model’s performance in object detection and classification
tasks, particularly in the context of AD. Thus,

NDS = 0.1 ·
⎛
⎝5 ·mAP +

∑
mAE∈{mATE,mASE,mAOE,mAV E,mAAE}

max(1−mAE, 0)

⎞
⎠

(2.15)
Where mAP is the mean AP across all possible object classes, given by Equation
2.16.

mAP =
1

c

c∑
i=1

APi (2.16)

Where c is the total number of classes. Metrics such as mATE, mASE, mAOE,
mAV E, and mAAE are defined in a similar way by using their associated average
errors.
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2.5 HARDWARE ACCELERATION

The optimization of specific tasks through HAs involves transferring these
activities to dedicated components, resulting in significant increases in performance
and energy efficiency. This approach encompasses a variety of applications, from using
GPUs for graphics processing to TPUs for machine learning. FPGAs offer customization,
ASICs handle specific functions, creating a scenario in which HAs simplify computing
across various domains. In essence, different accelerators are designed to meet specific
needs, improving efficiency in a wide range of applications.

In the realm of DL, HAs play a crucial role in optimizing computational operations
during the training and inference of DNNs. GPUs and TPUs offer high parallel processing
capacity and specialization in Artificial Intelligence (AI), while FPGAs provide flexibility
and ASICs high energy efficiency. These solutions result in notable improvements in
speed and efficiency, driving advances in complex tasks such as Natural Language
Processing (NLP) and pattern recognition (Goodfellow et al., 2016).

2.5.1 Field-Programmable Gate Arrays

FPGAs represent a versatile and customizable solution in the realm of DL acce-
leration. These programmable integrated circuits provide a combination of resources
that make them suitable for specific applications within the DL domain.

One of the characteristics of FPGAs is their customizable architecture, com-
posed of programmable logic blocks and interconnections. This adaptability allows
users to design and implement custom hardware circuits through Hardware Description
Language (HDL), such as Very High-Speed Integrated Circuit Hardware Description
Language (VHDL), or High-Level Synthesis (HLS), tailoring the hardware to the specific
requirements of NN operations. This ability to create custom architectures is particularly
advantageous in scenarios where optimized hardware is crucial.

FPGAs excel in parallel processing, facilitating the simultaneous execution of
multiple operations. DL tasks, which frequently involve matrix multiplications and convo-
lutions, can be efficiently parallelized on FPGAs. Additionally, the pipelining capability of
FPGAs further enhances their throughput, making them adept at handling the parallel
nature of NN computations.

Low latency and real-time processing are strengths of FPGAs. The ability to
implement specific operations directly in hardware contributes to their suitability for
applications requiring rapid decision-making, such as AVs or real-time analysis.

Energy efficiency is another notable feature of FPGAs, although less so than
an ASIC. By enabling the customization of hardware for specific tasks, FPGAs avoid
the overhead associated with executing unnecessary instructions, resulting in improved
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energy efficiency compared to general-purpose processors. However, while they allow
adaptability to different architectures and NN models, the programming process can be
more complex compared to traditional GPUs.

FPGAs find application in cases where their unique combination of features
is advantageous, such as in edge computing, Internet of Things (IoT) devices, and
embedded systems. Some systems adopt a hybrid approach, combining FPGAs with
other accelerators to leverage the advantages of each type of hardware for different
aspects of DL-related workloads.

Finally, FPGAs offer a convenient solution for specific DL applications that
demand customization, low latency, and energy efficiency.

2.5.2 Multiply-Accumulate Units (MAC Units)

A Multiply-Accumulate (MAC) Unit is defined as a computational entity with the
inherent capability to properly execute both multiplication and accumulation operations.
In its fundamental operation, this unit receives two input values, usually labeled as
A and B, and proceeds to calculate their product A · B, subsequently incorporating
this product into an accumulation register, continuously updating its stored value. MAC
Units are highly relevant across a wide range of domains. These include, but are
not limited to, Digital Signal Processing (DSP), encompassing critical tasks such as
filtering and convolution, as well as supporting scientific computing, where complex
numerical problems, including differential equations and matrix multiplications, require
its functionality. Additionally, their influence extends to ML, particularly in the training
and inference of NNs, and is also crucial in graphics processing for rendering high-
quality visual content. Furthermore, MAC Units are essential in the field of cryptography,
where they enhance the performance and security of operations requiring complex
mathematical calculations, including modular arithmetic and exponentiation.

In the field of DL, MAC Units serve as the backbone of NN operations. Their
importance lies in their ability to efficiently perform multiply-accumulate operations,
which are the central mathematical processes in NN training and inference. MAC
Units excel at performing matrix multiplications, enabling the calculation of weighted
sums and activations throughout the network. During forward propagation in inference
and backpropagation in training, MAC Units play a fundamental role. They calculate
the weighted sums of inputs and weights, followed by AFs, and are instrumental in
calculating gradients to adjust network parameters. Such behavior is modeled in a
simplified manner in the diagram of FIGURE 10, for a generic MAC Unit corresponding
to a Processing Element (PE) of a DNN. In CNNs, MAC Units are specially adapted for
convolution operations. This involves the element-wise multiplication and accumulation
of filter weights by input data, allowing CNNs to extract features from images. Given
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the computational demands of DL, specialized hardware such as GPUs and TPUs
incorporate dedicated MAC Units designed for efficient parallel processing. These HAs
drastically improve the performance of DL applications.

FIGURE 10 – DIAGRAM OF A MULTIPLY-ACCUMULATE (MAC) UNIT.

SOURCE: The Author.

When designing a MAC Unit, optimizing efficiency and performance is crucial
and often manifested through hardware enhancements, utilizing techniques such as
pipelining, parallelism, and Single Instruction, Multiple Data (SIMD) methodologies
(Hennessy; Patterson, 2017). Additionally, the choice of data format, whether fixed-point,
floating-point, or Posit arithmetic, can be carefully adjusted to align with the specific
application requirements. In scenarios where high processing capability is essential,
such as in DL, adopting lower precision arithmetic like Posit numbers becomes an
attractive strategy to accelerate computations, albeit with minimal final precision cost.
Therefore, ongoing research and efforts focus on optimizing DL structures and models to
maximize the benefits of MAC Units, with techniques like model pruning and quantization
aimed at reducing computational complexity while preserving model accuracy.

2.6 POSIT

The Posit is a numerical representation scheme aimed at improving efficiency
in terms of precision, space, and speed compared to traditional floating-point represen-
tations, initially proposed by Gustafson e Yonemoto (2017). It also has a wider dynamic
range when compared to standard floating-point and other quantization standards.
Posit arithmetic is based on a unary representation, which means that all numbers are
represented as powers of a common base, usually 2.

A real number represented in Posit is composed of (see FIGURE 11): a sign
bit, s; a regime field, r, whose value is given by k; an exponent field, es, whose value is
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given by e; a fraction field, f , whose value is given by m.

The three-field structure of Posits - regime, exponent, and fraction - optimizes
representation efficiency. The regime field encodes the position of the first 1 bit, con-
tributing to a compact representation. The exponent field scales the number, similar
to floating-point, and the fraction field contains the remaining bits, representing the
fractional part.

FIGURE 11 – FIELDS OF POSIT NUMERICAL REPRESENTATION AND ARITHMETIC.

SOURCE: Cococcioni et al. (2021)

The function of the sign bit is to indicate whether the number represented is
positive when s = 0 or negative otherwise. The regime field r, in turn, determines the
range of values to which the number belongs. The regime of a Posit can be visualized
as a shift applied to the range of possible exponents of a number. This shift, which
occurs in steps of 2es bits, can go either left when k < 0 or right when k > 0. For a given
k, and knowing that the exponent field has up to es bits, the exponent ek, in base 2, of
the represented number is given by equation 2.17

ek = k · 2es bits + e (2.17)

Where e is the value, in decimal, of the exponent field in the bit sequence
representation, given by

e ∈ {0, 1, 2... 2es bits − 1} (2.18)

The value k of the regime r, in turn, is calculated by counting the number of
consecutive 0 bits or 1 bits, after the sign bit, until the first 1 bit after the 0 bits or the first
0 bit after the 1 bits is found, not including them. If the bits to be counted are 0 bits (the
bit after the sign bit, s, is a 0), then a countdown starts from -1, otherwise, a count-up
starts from 0. Finally, the value of a real number represented in Posit is given by the
expression
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x = (−1)s · 2ek · (1 + m

2f bits
)

= (−1)s · 2k·2es bits+e · (1 + m

2f bits
)

x = (−1)s · (22es bits

)k · 2e · (1 + m

2f bits
)

(2.19)

Some examples of mathematical constants represented using Posit (32, 2) can
be seen in TABLE 1.

TABLE 1 – EXAMPLES OF MATHEMATICAL CONSTANTS IN POSIT (32, 2).
Constant Value s r (k) es (e) f (m)
π 3.14159310 02 (+) 102 (010) 012 (110) 1001001000011111101101010102 (76, 610, 98610)
e 2.71828210 02 (+) 102 (010) 012 (110) 0101101111110000101010001102 (48, 203, 07810)

SOURCE: The Author.

The values of these constants can be obtained directly from the bit sequence
representation using expression 2.19, as follows

x = (−1)0 · (222)0 · 21 · (1 + 76.610.986

227
) = 3, 141593 (2.20)

for π, and as follows

x = (−1)0 · (222)0 · 21 · (1 + 48.203.078

227
) = 2, 718282 (2.21)

for Euler’s Number (e).

The Posit representation is a type of representation whose fields have variable
sizes, distinguishing it also from the standard floating-point. A Posit is characterized
only by its total size (width), in number of bits, and the maximum size, es bits, that its
respective exponent field can have. Implicit 0 bits are assumed to the left of the exponent
in cases where the number of bits in this field is smaller than es bits. In a Posit, the sizes
of both the exponent and fraction fields depend on the size of the regime field, as can
be seen in FIGURE 12.

However, this variable characteristic of Posits introduces a higher level of com-
plexity when implementing their respective operators and arithmetic units in hardware.
Nevertheless, the presence of the regime field in Posit representation is what gives it a
wider dynamic range when compared to the standard floating-point arithmetic. With this,



39

FIGURE 12 – EXAMPLES OF POSIT (16, 5), WITH 16-BIT BIT WIDTH AND UP TO 5 EXPO-
NENT BITS.

SOURCE: The Author.

Posit arithmetic introduces a dynamic and adaptable numerical representation, adjus-
ting precision based on the magnitude of the numbers. This contrasts with traditional
fixed-point and floating-point systems, which maintain uniform precision.

The decoding of a Posit begins with determining the sign bit s, and if this bit is
1, the two’s complement of the bit sequence that composes the Posit must be taken.
Subsequently, using the resulting bit sequence, the value k of the regime is calculated
as previously described. Next, the value, e, of the exponent, if present, is calculated.
Finally, the value of the fraction, f , of the mantissa can be obtained if this field exists for
this number.

As can be seen in FIGURE 13, for the statistical distribution of values commonly
obtained for the parameters of VGG-16 type NNs, the Posit format shows greater
capacity in representing these possible values compared to fixed-point quantization, for
example. This is due to the fact that the density of Posit representation for numbers close
to 0 is higher than the density obtained using fixed-point representations in the same
range for the same bit width (Nambi et al., 2021). Due to this, quantizing normalized
parameters of floating-point NNs using Posit results in significantly less degradation
in the final accuracy of the algorithm when compared to other types of fixed-point
quantization (Nambi et al., 2021).

A distinctive aspect of Posit arithmetic is the gradual handling of overflow and
underflow. Instead of abrupt saturation, Posits make a smooth transition to infinity or
zero, providing a more graceful degradation in extreme cases. This can be advanta-
geous when a gradual loss of precision is more acceptable than sudden failures. The
ability of Posits to satisfactorily handle extreme values is beneficial in DL applications,
where certain operations involve exceptionally large or small numerical values. The
gradual handling of overflow and underflow mitigates the risk of numerical instability.
Additionally, the absence of a special Not-a-Number (NaN) value simplifies the handling
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FIGURE 13 – WEIGHT DISTRIBUTION OF A VGG-16 NN FOR DIFFERENT NUMERICAL
REPRESENTATIONS.

SOURCE: Nambi et al. (2021)
NOTE: (a) 32-bit Floating-Point; (b) 8-bit Fixed-Point; (c) 8-bit

Posit.

of exceptional cases, contributing to more predictable behavior in numerical calculations.

Posit arithmetic aligns well with DL, offering potential advantages in terms
of adaptability to dynamic ranges in neural activations and efficient use of HAs. The
dynamic range of Posits aligns with the diverse magnitudes found in NN activations,
allowing adaptive precision allocation. This adaptability is crucial in DL tasks, where
input data and network parameters vary widely. Furthermore, the quire operation in
Posit arithmetic enhances the efficiency of accumulation and summation of products,
potentially resulting in faster and more accurate results. Faster and more accurate
accumulation of products in Posit arithmetic is particularly relevant for optimization
algorithms like gradient descent and operations involving matrix multiplication. This
contributes to both faster convergence during model training and improved performance
during inference.

In the context of HAs, the efficient handling of arithmetic operations by Posits
can result in faster inference times and greater energy efficiency. Additionally, the
variable precision of Posits allows for more efficient use of hardware resources, directing
higher precision when needed and conserving resources in other cases.

However, for the practical integration of Posit arithmetic into DL frameworks,
further research, standardization efforts, and industry consensus are required. Theore-
tical benefits need to translate into practical applications, considering factors such as
compatibility with existing ecosystems and frameworks.
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3 RELATED WORKS

3.1 SYSTEMATIC LITERATURE REVIEW

A Systematic Literature Review (SLR) involves defining a research question,
conducting a systematic search for relevant studies, selecting, assessing the quality,
synthesizing results, and transparently reporting the findings.

Initially, the research questions were defined as follows:

Q1) What models, datasets, and Posit quantization tools currently exist for NN
conversion and inference emulation using the format;

Q2) What arithmetic operators and accelerators for Posit have been developed,
as well as the tools used for such and the associated hardware platforms;

Next, the following search string was formulated to avoid limiting the search
results to only a few dozen studies:

("Artificial Intelligence"OR "Machine Learning"OR "Deep Learning"OR
"Neural Network") AND ("Posit Arithmetic"OR "Posit Encoding"OR "Posit For-
mat"OR "Posit Number"OR "Posit Operator"OR "Posit Quantization"OR "Posit
Representation")

Using this search string, 297 studies were retrieved from the indexing databases.
61 studies were selected for full analysis and data synthesis. The steps of the search
for related works can be seen in FIGURE 14.

3.1.1 Literature Distribution

Upon completing the stages of the Systematic Literature Review, a diagram
was created using VOSViewer software to visualize the distribution of literature across
different authors and to identify co-authorship networks. This is represented in Figure
FIGURE 15.

An analysis of the diagram shows that research on Posit numbers is still in its
early development and is notably fragmented, suggesting substantial opportunities for
further exploration into this emerging arithmetic approach, as proposed in this study. It’s
also interesting to note that since 2020, some of the most active authors in this field
have slowed their research output, although there are notable exceptions.

One standout observation in the diagram is the trajectory of J. Gustafson, who
originally introduced Posit numbers and arithmetic in Gustafson e Yonemoto (2017).
However, his influence appears to have declined from 2020 onward. Conversely, there
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FIGURE 14 – STEPS OF THE SLR.

SOURCE: The Author.

has been a noticeable increase in contributions from other authors in recent years.

This landscape underscores the continued need for research and provides
opportunities for new scholars to advance the field of Posit arithmetic and related
numerical approaches.
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FIGURE 15 – DISTRIBUTION OF LITERATURE BY AUTHOR / CO-AUTHOR.

SOURCE: The Author.

3.2 DISCUSSION ON THE STATE-OF-THE-ART

The analysis of the State-of-the-Art (SOTA) on Posit numbers reveals an inci-
pient panorama for this new numerical representation applied to DL. Firstly, there is a
noticeable absence in the analyzed works of NN models specifically developed for AV
applications. Most of the works prioritized the use of conventional networks, such as
LeNet-5, ResNet-50/18, and AlexNet, evaluated on commonly used datasets for ben-
chmarking these networks, mainly MNIST, Fashion MNIST, CIFAR-10, and ImageNet.
These include the works of Cococcioni et al. (2020a,b), Edavoor et al. (2023), Glint et al.
(2023), Gohil et al. (2021), Kumar e Gupta (2023), Langroudi et al. (2018), Langroudi
et al. (2020), Lu et al. (2019), Murillo et al. (2020b, 2021, 2022a,b), Raposo et al. (2021),
Walia et al. (2022), Wang et al. (2021), Zhang e Ko (2023) e Zolfagharinejad et al.
(2022). An exception to this is the work of Zolfagharinejad et al. (2022), where the
authors evaluate a Posit (8, 2) quantization on a ResNet-34 model, which relates to
CenterFusion’s DLA-34 backbone. Moreover, none of the methodologies exposed in
previous works explicitly considered sensor fusion through DL, as exemplified by the
CenterFusion method.

Nevertheless, from the analyzed works it is found that Posit numbers are indeed
successful in DL applications, allowing for parameters’ bit-width reduction with minimal
degradation in the precision of the studied models. A summary of the average accuracy
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obtained after inference by the most recurring types of NN models in terms of the most
frequent quantization formats in the analyzed works can be seen in FIGURE 16.

FIGURE 16 – AVERAGE ACCURACY X WEIGHT QUANTIZATION FORMAT.

SOURCE: The Author.

This was the case both when using the format solely for parameter storage in
memory, with Posit-as-Storage (PaS), and when performing inference through emulation
of arithmetic operations in Posit, with Posit-as-Arithmetic (PaA), either by executing
models with hardware Posit operators emulated through software or by emulating
Posit operations themselves using integer arithmetic or bitwise instructions running on
a Central Processing Unit (CPU), exclusively, as in the case of the SoftPosit library
(Leong, 2018). The Top-1 Accuracies obtained using both PaS and PaA strategies
can be seen, respectively, in TABLE 2 and TABLE 3. However, there is a noticeable
need for new tools that can support this new representation, facilitating its evaluation
in more specific scenarios and diverse applications, both in software and hardware.
Almost all the analyzed works propose custom methods, usually not openly disclosed
or not comprehensible, for studying the format, which complicates the reproducibility of
results and methodologies by other researchers. Moreover, there is a total absence of
support from major software and hardware companies in their development tools for
Posit numbers, whether in designing software models or implementing accelerators in
FPGA or ASIC using Posit operators and PEs. Exceptions to this exist and are available
online in open repositories, even though providing limited support for studying the
representation, such as PositNN from Raposo et al. (2021), which was developed for
training DNNs using Posit data formats with different precision levels. This open-source
framework for C++, similar to PyTorch (Paszke et al., 2019), supports mixed precision
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and has been successful in experiments with different datasets, revealing performance
improvements compared to traditional methods. Another significant contribution is
presented by Murillo et al. (2020b) in an earlier study from 2020 where Deep PeNSieve
is introduced, a framework that enables training and inference in DNNs using Posits.
This Python framework stands out for allowing training and inference with Posits, as well
as low-precision inference with 8-bit Posits through the use of fused operations. Deep
PeNSieve was successfully evaluated on two NN architectures across different datasets,
demonstrating flexibility and efficiency in handling Posits. Subsequently, Murillo et al.
(2021) trained DNN models in Posit (32, 2) format using the Deep PeNSieve framework.
After training, the models were quantized to Posit format (8, 0), and the research
compared the inference results when standard and fused operations were used. In
Nakahara et al. (2022), a library which integrates with PyTorch to optimize quire size for
posit-based DNN models was developed. It replaces standard functions with posit-based
ones, quantizes weights, and implements posit-based layers. Key operations, written
in Rust for efficiency, handle conversion between floating-point and posit formats and
perform arithmetic operations. The workflow involves converting models to posit-based
operations and conducting inference, achieving high accuracy with reduced hardware
area. This flexible and efficient library is valuable for optimizing posit-based DNNs in AI
and edge computing.

TABLE 2 – TOP-1 ACCURACIES FOR MODEL AND DATASET COMBINATIONS FOR POSIT-
AS-STORAGE (PAS).

Source Model Dataset Quantization Accuracy (%)
(Langroudi et al., 2018) LeNet-5 MNIST Posit (2, 0) 8.81
(Wang et al., 2021) MobileNet-V2 CIFAR-10 Posit (8, 1) 94.20
(Lu et al., 2019) ResNet-18 CIFAR-10 Posit ({8, 16}, [1, 2]) 92.87
(Langroudi et al., 2020) 8-Layer CNN Fashion MNIST Adap. Posit (6, [0, 1]) 92.48
(Langroudi et al., 2020) ResNet-50 CIFAR-10 Adap. Posit (6, [0, 1]) 72.56
(Langroudi et al., 2020) 11-Layer CNN Fashion MNIST Adap. Posit (5, [0, 1]) 73.29
(Wang et al., 2021) MobileNet-V2 ImageNet Posit (8, 1) 71.20
(Lu et al., 2019) ResNet-18 ImageNet Posit (16, [1, 2]) 71.09
(Langroudi et al., 2018) ConvNet CIFAR-10 Posit (8, 0) 67.54
(Langroudi et al., 2018) AlexNet ImageNet Posit (8, 0) 55.07

SOURCE: The Author.

A trend observed from the analysis is the proposition of modifying the repre-
sentation or using intermediate formats that facilitate the handling of Posit numbers,
especially in developing more efficient hardware operators. Some examples include:
Raw Posit (Zolfagharinejad et al., 2022), Generalized Posit (Langroudi et al., 2021),
Adaptive Posit (Langroudi et al., 2020), Fixed Posit (Gohil et al., 2021), and Approximate
Fixed Posit (Glint et al., 2023).
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TABLE 3 – TOP-1 ACCURACIES FOR MODEL AND DATASET COMBINATIONS FOR POSIT-
AS-ARITHMETIC (PAA).

Source Model Dataset Format Accuracy (%)
(Kumar; Gupta, 2023) ResNet-18 MNIST Posit (8, 0) 98.91
(Edavoor et al., 2023) 4-Layer CNN Alphabet Posit (8, 0) 97.00
(Langroudi et al., 2021) EfficientNet-B0 CIFAR-10 Gen. Posit (6, [0, 2]) 70.64
(Murillo et al., 2022b) ResNet-18 SVHN Posit (16, 2) 95.99
(Zhang; Ko, 2023) MobileNetV2 CIFAR-10 Posit (16, 2) 93.65
(Walia et al., 2022) 3-Layer FCNN MNIST Posit (5, 2) 94.50
(Zhang; Ko, 2023) ResNet-18 CIFAR-10 Posit (16, 2) 94.50
(Walia et al., 2022) ISOLET MNIST Fixed-Posit (6, 3, 2) 94.16
(Cococcioni et al., 2020a) LeNet-5 GTRSB Posit (12, 0) 94.20
(Zhang; Ko, 2023) VGG-16 CIFAR-10 Posit (16, 2) 94.06
(Immaneni et al., 2022) 784-100-64-10 MNIST Posit (8, 4) 58.98
(Murillo et al., 2022a) ResNet-50 CIFAR-10 Posit (16, 1) 89.87
(Nakahara et al., 2022) ResNet-9 CIFAR-10 Posit (8, 1) 17.39
(Zhang; Ko, 2023) AlexNet CIFAR-10 Posit (16, 2) 91.70
(Raposo et al., 2021) LeNet-5 FMNIST Posit (8, 0) 13.84
(Murillo et al., 2021) CifarNet SVHN Posit (8, 0) 89.13
(Murillo et al., 2022a) Pre-ResNet-20 CIFAR-10 Posit (16, 1) 87.58
(Zolfagharinejad et al., 2022) DPN92 CIFAR-10 Posit (8, 2) 86.64
(Zolfagharinejad et al., 2022) ResNet-34 CIFAR-10 Posit (8, 2) 74.01
(Edavoor et al., 2023) 5-Layer CNN CIFAR-10 Posit (32, 2) 85.00
(Langroudi et al., 2021) EfficientNet-B4 ImageNet Gen. Posit (8, [0, 2]) 81.39
(Walia et al., 2022) 19-Layer CNN CIFAR-10 Posit (8, 2) 83.43
(Murillo et al., 2022a) Cuda-ConvNet CIFAR-10 Posit (16, 1) 81.37
(Walia et al., 2022) Xception ImageNet Fixed-Posit (10, 4, 2) 77.31
(Walia et al., 2022) Inception-V3 ImageNet Fixed-Posit (10, 4, 2) 76.09
(Tambe et al., 2020) ResNet-50 ImageNet Posit (16, 1) 76.10
(Murillo et al., 2022a) ResNet-50 CIFAR-100 Posit (16, 1) 65.95
(Walia et al., 2022) VGG-16 ImageNet Fixed-Posit (8, 3, 2) 68.08
(Zhang; Ko, 2023) MobileNetV2 ImageNet Posit (16, 2) 70.52
(Walia et al., 2022) VGG-19 ImageNet Posit (8, 2) 70.92
(Gohil et al., 2021) ResNet-18 ImageNet Fixed-Posit (18, 6, 2) 70.26
(Raposo et al., 2021) CifarNet CIFAR-10 Mix. Posit (8, 2) 68.65
(Ciocirlan et al., 2021) 14-Layer CNN CIFAR-10 Posit (16, 2) 68.15
(Zolfagharinejad et al., 2022) LeNet-5 CIFAR-10 Posit (8, 2) 62.53
(Murillo et al., 2022a) Pre-ResNet-20 CIFAR-100 Posit (16, 1) 59.96
(Zhang; Ko, 2023) AlexNet ImageNet Posit (16, 2) 56.81
(Murillo et al., 2022a) Cuda-ConvNet CIFAR-100 Posit (16, 1) 52.36
(Cococcioni et al., 2020b) LeNet-5 MNIST Posit (16, 0) 99.10

SOURCE: The Author.

Regarding the development of hardware support for the Posit format, there is a
predominance of multiplication operators and MAC Units in the analyzed works, as it can
be seen in FIGURE 17. This is because multiplication operators are the most resource-
intensive in terms of hardware and latency. Nonetheless, these are the most critical
elements that significantly impact the performance of matrix multiplication operations —
fundamental in the inference and training of DL models — and consequently, MAC Units.
This justifies the focus of several works exclusively on optimizing Posit multiplication
operators, such as Essam et al. (2022), Glint et al. (2023), Gohil et al. (2021), Immaneni
et al. (2022), Kant e Thakur (2021), Murillo et al. (2020a, 2022a), Norris e Kim (2021),
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Shekhawat et al. (2021), Uguen et al. (2019), Walia et al. (2022) e Zhang e Ko (2020,
2021, 2023).

FIGURE 17 – DISTRIBUTION OF HARDWARE DISTRIBUTION FOR POSIT INFERENCE.

SOURCE: The Author.

For designing operators and PEs, a significant portion of the works utilized
HDLs at Register-Transfer Level (RTL), mainly VHDL, followed by HLS, as shown in
FIGURE 18, with the most common types of hardware platforms given in FIGURE 19. It
is interesting to note the presence of parameterized VHDL code generators in the works,
alowing the generation of arithmetic operators and MAC Units with various bit-width,
exponent field sizes, among other parameters. Podobas e Matsuoka (2018) introduces
POSGEN, a tool for creating custom Posit hardware operators, generating synthesizable
VHDL descriptions and facilitating FPGA integration into OpenCL flows. Jaiswal e So
(2019) presents PACoGen, an open-source hardware generator for customizable Posit
arithmetic operations, optimized for FPGA and ASIC platforms. Zhang et al. (2019)
describes a C-based generator for Posit MAC Units, producing and testing VHDL code
for various configurations, emphasizing its use in deep learning applications. Murillo
et al. (2020a) discusses parameterized Posit arithmetic units in the FloPoCo framework,
showcasing significant efficiency improvements. Murillo et al. (2021) and Murillo et al.
(2022a) further use FloPoCo to design and verify Posit MAC Units, ensuring accuracy
through extensive testing and synthesis. This corroborates the need for tools that
facilitate the study of the format, allowing iterative study and design space exploration for
Posit numbers, especially when developing HAs for specific DL models, each requiring
different values for the representation parameters.
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FIGURE 18 – DISTRIBUTION OF DESIGN LEVELS FOR POSIT HARDWARE.

SOURCE: The Author.

FIGURE 19 – DISTRIBUTION OF PLATFORM TYPES FOR POSIT HARDWARE.

SOURCE: The Author.

FIGURE 20 provides information about the distribution of specific categories
related to Posit PEs within the analyzed works. It reveals a prominent presence of
Posit Fused Multiply-Accumulate (FMA) Units as the most frequent category with the
second most common category being Posit Multiply-Accumulate Units (MAC Units).
FMA units and MAC Units differ mainly in precision and performance. MAC Units perform
multiplication followed by addition as two separate steps, which can introduce rounding
errors and result in higher latency. In contrast, FMA units combine multiplication and
addition into a single operation with full precision, rounding only the final result. This
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reduces rounding errors and improves accuracy. The presence of Posit Dot-Product
Units, although representing a smaller fraction, indicates the development of specialized
PEs for vector and matrix calculations. Interestingly, the occurrences also include
Hybrid Posit/Single-Precision MAC Units (Crespo et al., 2022), suggesting a hybrid
approach that supports both Posit and traditional floating-point formats. This flexibility is
advantageous in transition technologies or in applications that require multiple number
formats. The presence of Raw Posit MAC Units and Approximate Raw Posit MAC
Units, though less frequent, indicate niche or specialized applications where raw or
approximate Posit calculations are preferred, to prioritize speed or energy efficiency
over precision (Zolfagharinejad et al., 2022).

FIGURE 20 – TOP-6 CATEGORIES OF PROCESSING ELEMENTS IN POSIT.

SOURCE: The Author.

TABLE 4, TABLE 5, and TABLE 6 synthesize the occurrences corresponding to
MAC Units in terms of delay, area, and power, respectively, filtered by the lowest delay,
area, and power, by PE category.

Accelerators for Posit have also been developed. Wang et al. (2021) intro-
duces the Logarithm Posit Processing Element (LPE) accelerator, using the Posit
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TABLE 4 – TOP-1 DELAY BY PROCESSING ELEMENT CATEGORY.
Source Category Format Delay (ns)
(Mishra et al., 2022) BFloat FMA Unit Bfloat 16-bit 108.979
(Mishra et al., 2022) Fixed-Point FMA Unit Q6.10 88.113
(Zolfagharinejad et al., 2022) Fixed-Point MAC Unit Fixed-Point 8-bit 1.210
(Mishra et al., 2022) Floating-Point FMA Unit Single-Precision 211.572
(Li et al., 2023) Posit Dot-Product Unit Posit (13, 2) 1.600
(Crespo et al., 2022) Posit FMA Unit Posit (8, 2) 0.650
(Nakahara et al., 2022) Posit MAC Unit Posit (8, 1) 1.920
(Zolfagharinejad et al., 2022) Raw Posit MAC Unit Raw-Posit (11, 2) 0.600
(Crespo et al., 2022) Unified Posit/IEEE 754 VMA Unit 16-bit 1.500

SOURCE: The Author.

TABLE 5 – TOP-1 AREA BY PROCESSING ELEMENT CATEGORY.
Source Category Format Area (um2)
(Mishra et al., 2022) BFloat FMA Unit Bfloat 16-bit 113.038
(Mishra et al., 2022) Fixed-Point FMA Unit Q6.10 266.905
(Zolfagharinejad et al., 2022) Fixed-Point MAC Unit Fixed-Point 8-bit 1278.000
(Mishra et al., 2022) Floating-Point FMA Unit Single-Precision 359.736
(Li et al., 2023) Posit Dot-Product Unit Posit (13, 2) 7694.820
(Mishra et al., 2022) Posit FMA Unit Posit (16, 1) 115.721
(Nakahara et al., 2022) Posit MAC Unit Posit (8, 1) 509.380
(Lu et al., 2019) Posit/Single-Precision MAC Unit Posit (8, 2) 1032.000
(Zolfagharinejad et al., 2022) Raw Posit MAC Unit Raw-Posit (11, 2) 1481.000
(Crespo et al., 2022) Unified Posit/IEEE 754 VMA Unit 16-bit 51563.000

SOURCE: The Author.

TABLE 6 – TOP-1 POWER BY PROCESSING ELEMENT CATEGORY.
Source Category Format Power (mW)
(Mishra et al., 2022) BFloat FMA Unit Bfloat 16-bit 97.452
(Mishra et al., 2022) Fixed-Point FMA Unit Q6.10 211.912
(Zolfagharinejad et al., 2022) Fixed-Point MAC Unit Fixed-Point 8-bit 0.15
(Mishra et al., 2022) Floating-Point FMA Unit Single-Precision 285.866
(Li et al., 2023) Posit Dot-Product Unit Posit (13, 2) 3.66
(Murillo et al., 2021) Posit FMA Unit Posit (16, 2) 10.02
(Lu et al., 2019) Posit/Single-Precision MAC Unit Posit (8, 2) 0.35
(Zolfagharinejad et al., 2022) Raw Posit MAC Unit Raw-Posit (11, 2) 0.073
(Crespo et al., 2022) Unified Posit/IEEE 754 VMA Unit 16-bit 99

SOURCE: The Author.

format, logarithmic domain calculations, and a two-stage floating-point MAC Unit to
enhance energy efficiency. Implemented with a 28 nm Complementary Metal-Oxide-
Semiconductor (CMOS) process, LPE reduces power consumption and area while
maintaining the same dynamic range. Similarly, Neves et al. (2020) presents the Recon-
figurable Tensor Unit (RTU) with Variable Precision Vector Multiply-Accumulate (VMA)
Units, a reconfiguration mechanism for vector precisions, and an automatic data strea-
ming infrastructure. TABLE 7 and TABLE 8 summarize these accelerators in terms of
area and power.
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TABLE 7 – TOP-1 AREA BY ACCELERATOR CATEGORY.
Source Category Format Area (um2)
(Wang et al., 2021) Logarithm Posit PE (LPE) Posit (8, 1) 5280000
(Neves et al., 2020) Reconfigurable Tensor Unit (RTU) Posit (16, 1) 14204000

SOURCE: The Author.

TABLE 8 – TOP-1 POWER BY ACCELERATOR CATEGORY.
Source Category Format Power (mW)
(Wang et al., 2021) Logarithm Posit PE (LPE) Posit (8, 1) 11-343
(Neves et al., 2020) Reconfigurable Tensor Unit (RTU) Posit (16, 1) 11708

SOURCE: The Author.

Finally, there is a significant challenge in studying Posit numbers, mainly due
to the difficulty of implementing them in specific models and applications. Although
there are movements towards standardizing the format, the absence of robust tools that
provide generalized support for Posits in the DL domain, from design to implementation,
significantly hinders the study of the format and its practical application. Such tools would
allow for a fairer and more transparent comparison of methodologies and results, and
also promote the standardization of the most relevant metrics in the Posit representation
study field.

It is from this realization that this work is sustained, attempting to promote more
general and transparent tools for the use of Posit numbers in NN models, in conjunction
with well-established tools in the DL domain, and demonstrate their use in a specific and
unexplored context. The aim is to not reinvent the wheel as much as possible, exploring
the tools proposed in other works, modifying them if necessary in an intelligible way so
that other researchers and future works can use the same tools and follow a similar
methodology, continually improving them until there is a robust set of methodologies
and tools for the facilitated, comprehensive, and non-exclusive study of this numerical
format, both in software and hardware.
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4 METHODOLOGY

As previously mentioned, CenterFusion uses a middle-fusion approach for
fusing radar and camera data. The development of CenterFusion was carried out
using the PyTorch framework, which offers a quantization API. Leveraging PyTorch’s
Quantization API, custom quantization capabilities were explored

Specifically, a custom quantization and inference framework, Posits4Torch,
was developed. Posits4Torch is based on Deep PeNSieve (Murillo et al., 2020b), on
SoftPosit (Leong, 2018), and on Python Productivity for ZYNQ (PYNQ) (AMD, 2016).
Deep PeNSieve, a DL framework based on SoftPosit, is designed for training and
inference of NNs using Posit numbers and arithmetic. It stands out for its compatibility
with the TensorFlow framework but is also based on the NumPy library, which allowed its
integration with Posits4Torch. Nonetheless, Posits4Torch was later extended to support
FPGA-accelerated Posit inference through an auxiliary package - Posits4TorcHA - which
features a custom hardware accelerator.

CenterFusion’s Posit quantization was achieved through the application of Po-
sits4Torch / Posits4TorcHA. To evaluate the impact of this quantization, a comprehensive
comparison was made between the Posit-quantized CenterFusion and its non-quantized
counterpart. The evaluation mainly covered CenterFusion’s inference performance in
terms of accuracy, measured through NuScenes’ Detection Task Evaluation Metrics,
such as mAP, mATE, mASE, mAOE, mAVE, mAAE, and NDS, as discussed in CHAP-
TER 2, providing insights into the effectiveness and trade-offs associated with the Posit
quantization approach for this sensor fusion method.

4.1 TOOLS

4.1.1 PyTorch

PyTorch (Paszke et al., 2019) is an open-source ML library known for its flexibi-
lity, ease of use, and strong support for GPU-accelerated tensor computation. It stands
out for its dynamic computational graphs, enabling more intuitive development and de-
bugging of DL models. Deeply integrated with Python, PyTorch is easy to use and aligns
well with the Python ecosystem. Its modularity and broad community support have
fostered a rich ecosystem of tools and libraries, enhancing its functionality. Moreover,
PyTorch offers access to a wide range of pre-trained models, facilitating rapid develop-
ment and transfer learning. This combination of features makes PyTorch an effective
tool for various ML applications, from academic research to industry deployment.
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4.1.1.1 PyTorch’s Quantization API

The PyTorch quantization API allows the optimization of NNs for efficient de-
ployment in resource-constrained environments by reducing model size and increasing
computational speed. It achieves this through different quantization strategies: Dynamic
Quantization (mainly weights), Static Quantization (weights and activations with prior
calibration) or Post-Training Quantization (PTQ), and Quantization-Aware Training (QAT),
which integrates quantization into the training process to improve accuracy. While quan-
tization effectively reduces model memory footprint and accelerates inference, it may
sometimes lead to a slight decrease in model accuracy. The API is designed to be
user-friendly, facilitating the adaptation of existing models for deployment in scenarios
where low latency and reduced model size are crucial.

Developers working with PyTorch can adjust and customize the quantization
process to meet their specific needs. This customization encompasses several key
aspects. Firstly, it is possible to define custom quantization functions, allowing developers
to apply their quantization logic selectively to different parts of a model. Additionally,
PyTorch supports per-channel quantization for various types of layers such as conv1d(),
conv2d(), conv3d(), and linear().

The workflow involved in quantization includes modifying the model’s module
hierarchy by adding or replacing submodules. These submodules can include observers
or module conversions, but crucially, the model retains its nn.Module structure, ensuring
compatibility with broader PyTorch APIs. Developers can leverage the Quantization
Custom Module API to specify the Python types corresponding to the 32-bit floating-point
module, the observed module, and the quantized module, along with a configuration
describing these types to be passed to the quantization APIs.

Within this framework, modules are converted according to the specified types
during the preparation and conversion phases, facilitated by functions like from_float
and from_observed. It is important to note that, currently, an ObservedCustomModule
must have a single tensor output, and the framework automatically adds an observer as
needed.

These customizations provide developers with greater control and flexibility
over the quantization process, allowing model optimization to meet precise needs and
achieve performance goals.

4.1.2 PYNQ

PYNQ (AMD, 2016) is an open-source project by Advanced Micro Devices (AMD)
designed to simplify the use of ZYNQ systems, which combine an ARM processor with
FPGA logic. By enabling programming with Python, PYNQ reduces the entry barrier
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compared to traditional hardware languages like VHDL or Verilog. Its user-friendly
nature makes it ideal for education and research, allowing for rapid prototyping and
experimentation. With a rich library for tasks such as data acquisition and signal proces-
sing, PYNQ supports various interfaces, making it versatile for embedded systems, ML,
signal processing, and IoT applications.

Fundamental to PYNQ are its pre-built overlays, FPGA configurations for specific
functions like image processing or ML accelerators, controllable directly from Python. A
PYNQ overlay is a pre-designed FPGA configuration that simplifies the use of FPGA
capabilities, making them accessible to developers without extensive hardware design
knowledge. With seamless integration to Python, PYNQ overlays facilitate tasks like
data movement, hardware configuration, and executing hardware-accelerated functions.

The ease of loading and using these overlays through simple Python commands
allows users to focus on application development rather than FPGA details. PYNQ
overlays are modular and reusable, enabling the combination and swapping of different
overlays to create complex systems. This modularity also means they can be reused in
various projects, offering flexible solutions for different applications.

Developing a PYNQ overlay involves several key steps. Initially, the specific
hardware functionality is defined, such as image processing or ML acceleration. The
FPGA logic is then designed using HDLs like VHDL or Verilog or HLS tools. This logic
is integrated into a block design within the Vivado Design Suite, connecting the custom
logic with necessary interface components like AXI interfaces.

After the block design is completed, the FPGA bitstream is generated through
synthesis and implementation in Vivado. The next step involves creating the PYNQ
overlay package, which includes the bitstream, hardware handoff files, and Python
drivers. The Python API abstracts hardware details, providing direct methods to interact
with the FPGA. Finally, the overlay is loaded onto a PYNQ-compatible board, such as
the PYNQ-Z1, PYNQ-Z2, or KV260 for execution.

4.1.3 SoftPosit

The SoftPosit library (Leong, 2018) represents an open-source implementation
for emulating Posit numbers. This library was developed in the C language and integrated
into Python through associated extension mechanisms. Through SoftPosit, it is possible
to emulate a wide variety of operations, ranging from arithmetic and logical calculations
to conversions involving Posit numbers.

Natively, SoftPosit offers support for the emulation of Posits of different sizes,
including 8, 16, and 32 bits, each with 0, 1, and 2 bits to represent the exponent,
respectively. Additionally, the library also allows the emulation of operations in Posits
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with customized bit widths, ranging from 1 to 31 bits, all with 2 bits allocated for the
exponent. It is important to highlight that, regardless of the number of bits selected for
the representation of customized Posits, these values will be stored internally using 32
bits.

However, it is worth noting that this storage rule differs for Posits with fixed
configurations of (8,0), (16,1), and (32,2). These, specifically, are stored with the precise
amount of bits that their designations imply, that is, 8 bits, 16 bits, and 32 bits, respecti-
vely. It is important to note that this distinction has implications, albeit modest, on the
speed of operations performed by the SoftPosit library.

Specifically, during the encoding and decoding of Posit numbers, as well as
during the execution of the multiply-accumulate operation with quire, it was observed
that operations performed on customized Posits, stored with 32 bits, can be up to 5%
slower compared to operations executed on fixed Posits (8,0), (16,1), and (32,2).

4.2 POSITS4TORCH

Utilizing PyTorch’s Quantization Custom Module API, a Posit quantization fra-
mework for DL models has been conceived, namely Posits4Torch. Posits4Torch is based
on Deep PeNSieve and SoftPosit, and integrates with PyTorch through its Quantization
Custom Module API.

Posits4Torch is flexible, allowing users to choose to use Posit numbers only for
memory storage of module weights and biases, maintaining floating-point operations
during inference (PaS) - similar to the strategy presented in Langroudi et al. (2018), Lu
et al. (2019), and Langroudi et al. (2020) - or to use Posit numbers also for arithmetic
calculations (PaA). When the choice is made in favor of Posit arithmetic, the original
floating-point modules of the model are replaced by custom modules that support Posit
numbers, resembling the strategy used by Nakahara et al. (2022). In this case, hardware
acceleration in FPGA can also be utilized.

If the option is to use Posit numbers only as storage, a function is responsible
for quantizing the weights and biases of the models to the desired Posit format, with all
operations being executed on standard floating-point.

The structure of Posits4Torch can be visualized in FIGURE 21 and is organized
as a Python package, containing internal Python modules, which can be easily installed
via Package Installer for Python (PIP).

Posits4Torch is divided into six distinct modules:

1. Configuration Module ("Configurations.py"): This module includes various
possible configurations for quantizing PyTorch models in Posit.
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FIGURE 21 – STRUCTURE OF THE POSIT QUANTIZATION API.

SOURCE: The Author.

2. Layer Module ("Quantized.py"): Here are the custom PyTorch modules that
support Posit numbers during inference, based on Deep PeNSieve for CPU-emulated
Posit arithmetic, or on Posits4TorcHA for FPGA-based Posit arithmetic.

3. Methods Module ("Quantization.py"): This module contains the methods
responsible for executing the quantization process.

4. Utilities Module ("Utilities.py"): This module contains declarations of global
variables, constants, and various auxiliary methods and macros.

5. Observers Module ("Observers.py"): This module includes class declarations
responsible for determining the quantization scale and zero-point, allowing the selection
of the best quantization formats for a given module based on a sample input. It is
important to note that active observers are optional and not currently used; however,
the PyTorch quantization API requires some type of observer. Therefore, a "Lazy"or
passive observer was created, which does not interfere with the quantization process.

6. Remote Hardware Acceleration Module ("RemoteAccel.py"): This module
uses the Hypertext Transfer Protocol (HTTP) protocol for communication - through an
HTTP client - with an HTTP server on the remote device where the Posit hardware
accelerator responsible for executing operations during inference via PYNQ is deployed.

Additionally, modifications were made to both Deep PeNSieve and SoftPosit.
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The modifications to Deep PeNSieve were limited to changing the structure of the
original Python project so that Deep PeNSieve can be installed via PIP and, therefore,
used globally by other Python programs and packages, such as Posits4Torch.

The modifications to SoftPosit include the creation of explicit types for Posit
numbers ([1, 31], 2), making their use simpler and more user-friendly. Previously, the
library supported these formats only through a single type, Posit_2, which needed to be
instantiated with the number of representation bits at runtime, making its use impractical
in conjunction with Posits4Torch. Therefore, explicit types such as posit8_2, equivalent
to a Posit (8, 2), were created to facilitate the manipulation of these numbers.

4.2.1 Posits4TorcHA: Inference Acceleration on FPGA

With the aim of accelerating inference using Posit through the use of an FPGA,
an AMD Kria KV260 Vision AI Starter Kit development board was used to implement a
hardware accelerator consisting of an AXI Direct Memory Access (DMA)-compliant 2D
Posit MAC Unit Array PYNQ Overlay. The open-source PYNQ framework was employed
to facilitate interaction with the FPGA.

The main focus of the acceleration is on General Matrix Multiplication (GEMM)
operations. This effort aims to enhance the efficiency of Posit NN computations, contribu-
ting to improved performance of DL models used in Computer Vision (CV) applications,
such as CenterFusion.

As mentioned earlier, the hardware acceleration provided by Posits4TorcHA is
based on an AXI DMA-compliant 2D Posit MAC Unit Array PYNQ Overlay. Developed
in RTL using VHDL, this array is highly parameterized. It can be customized based on
various parameters, such as the number of rows and columns in the array, the precision
of Posit numbers (in bits), the bit-width of the exponent field in the Posit representation,
the size of the Posit MAC Units’ accumulator, the depth of the output First-In First-
Out (FIFO) buffers, and the model of the Posit MAC Units. This flexibility allows adapting
the array to specific computational needs, optimizing performance for different matrix
sizes and precisions. To maximize performance, Posits4TorcHA incorporates a Cython
module that accelerates the processing and data communication between the software
on the Application Processing Unit (APU) of the edge device and its respective array
of MAC Units in the Programmable Logic (PL), through compiled C code and parallel
processing. This module optimizes the speed of read/write operations to and from the
PYNQ buffers in the device’s Random Access Memory (RAM), which is essential for
efficient data transfer when using AMD’s AXI DMA Intellectual Property (IP) in PYNQ
overlays, as it is the case here. By accelerating these operations, the Cython module
ensures that hardware acceleration is as effective as possible.

The package also includes an HTTP server, which processes requests from
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the Posits4Torch HTTP client package. This server-client configuration is crucial for
executing GEMM operations remotely, allowing heavy computational work to be handled
by dedicated hardware rather than the local CPU.

A complete overview of Posit4Torch / Posits4TorcHA functionallity in conjunction
with an AMD Kria KV260 Vision Starter Kit device, as described earlier, can be seen in
FIGURE 22.

FIGURE 22 – FUNCTIONALLITY OF POSITS4TORCH / POSITS4TORCHA WITH AN AMD
KRIA KV260 VISION STARTER KIT.

SOURCE: The Author.

Additionally, Posits4TorcHA offers off-the-shelf PYNQ overlay implementations
specifically synthesized for the AMD Kria KV260 Vision Starter Kit, which by itself is
composed of a Kria K26 System-On-Module (SOM) that has an embedded ZYNQ
UltraScale+ MPSoC. These implementations use a 2D Posit MAC Unit Array that is
compliant with the AXI4-Stream protocol and whose underlying Posit MAC Units design
is based on the work of Crespo et al. (2023), ensuring efficient data streaming and
processing. The overlays provided for this FPGA platform enhances its capability to
handle complex matrix multiplications efficiently, making it a possible solution for DL and
other data-intensive applications. Nonetheless, PYNQ overlays for hardware platforms
other than the AMD Kria KV260 Vision Starter Kit can be synthesized using AMD’s
Vivado Design Suite along with the project files, which include VHDL and/or Verilog
descriptions for both the AXI4-Stream-compliant Posit MAC Unit wrapper and the 2D
Posit MAC Unit Array in conjunction with their respectives parameterized IP packages,
and the top-level block diagram for the overlay.

4.2.1.1 Development of the Posit MAC Unit

The Posit MAC Unit is a specialized hardware component developed to perform
arithmetic operations using Posits. Developed in RTL using VHDL within the Vivado
Design Suite 2022.2, this Posit MAC Unit acts as an AXI4-Stream encapsulation for
previously developed Posit MAC Unit models documented in existing literature, such as
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in (Murillo et al., 2021), (Nakahara et al., 2022), and (Crespo et al., 2023), which were
designed to efficiently handle MAC operations in Posit numbers.

Key parameters of the Posit MAC Unit include its precision and bit width (N ),
which defines how many bits are used to represent each Posit number. The exponent
bit width (Es) specifies the length of the exponent field in the Posit format, helping to
adjust the dynamic range. The size of the accumulator (or quire) (QSize) is another
crucial parameter, representing the bit width of this accumulator, allowing for the exact
accumulation of intermediate results without rounding. The output FIFO buffer depth
(Depth) indicates the storage capacity for the output results of the MAC operations,
ensuring efficient data handling. The model (Model) specifies the underlying architecture
for the Posit MAC Unit.

The unit communicates through two main channels: the AXI4-Stream slave
interface and the AXI4-Stream master interface. The slave interface, with a data width
of 2 ·max(8, 2�log2(N)�) bits, carries the input data to the MAC Posit unit. These consist of
a sequence of pairs of Posit numbers (N,Es), which is further subdivided into a number
of segments less than or equal to the depth of the MAC Unit’s FIFO buffer. On the other
hand, the master interface, with a data width of max(8, 2�log2(N)�) bits, carries the output
data from the Posit MAC Unit. These are organized into a sequence of Posit numbers
(N,Es) accumulated in the quire and stored in the output FIFO buffer, each number
corresponding to a given input segment.

The central functionality of the MAC Unit involves multiplying pairs of Posit num-
bers and accurately accumulating the results using the quire. This ensures high precision
in the accumulation process, reducing errors typically associated with floating-point
arithmetic. The unit’s parameterized design allows extensive customization, making it
adaptable to various precision requirements and hardware configurations. Its compliance
with AXI4-Stream interfaces ensures compatibility with standard data communication
protocols, facilitating integration into larger systems.

4.2.1.2 Development of the 2D Posit MAC Unit Array

The 2D Posit MAC Unit Array is a digital design developed to enhance the
efficiency of matrix operations, specifically matrix multiplication, using the Posit format.
Developed using Vivado Design Suite 2022.2 at the RTL level with VHDL, this array of
units is characterized by its parameterized design, allowing flexibility and customization
to meet various computational requirements. The key parameters include the number of
rows (R) and columns (C) in the array, the precision or bit-width of the Posit format (N ),
the bit-width of the exponent field (Es), the size of the MAC Unit accumulators (QSize),
the depth of the output FIFO buffer (Depth), and the specific model of these Posit MAC
Units (Model).
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This array complies with the AXI4-Stream protocol, ensuring high-speed data
transfer capabilities. It includes both slave and master interfaces. The slave interface
carries input data to the array of MAC Units, consisting of a sequence of tuples of R+C

Posit (N, Es) numbers. This sequence of tuples is subdivided into a number of segments
corresponding to the output FIFO buffer depth configuration of the Posit MAC Units in
the array. These input segments, in turn, have a size equal to the number of columns in
the input matrix A (or the number of rows in the input matrix B), where matrices A and
B are the operands of a given matrix multiplication operation to be performed. Each of
these segments corresponds to a currently active region in the output matrix, Y , whose
elements are computed through a dot product operation between a specific row of matrix
A and a specific column of matrix B. The master interface, similarly configured, carries
the output data from the array of MAC Units, which is a sequence of tuples of R · C
Posit (N, Es) numbers representing the results of the multiplication and accumulation
(dot-product) operations of each of the Posit MAC Units in the 2D Posit MAC Unit Array,
for each input segment. This means that the sequence of output tuples is sized to match
the depth of the output FIFO buffers. A visual representation of this can be seen in
FIGURE 23.

FIGURE 23 – REPRESENTATION OF A 2D CONVOLUTION OPERATION USING GENERAL
MATRIX MULTIPLICATION (GEMM) THROUGH POSITS4TORCHA’S AXI DMA-
COMPLIANT 2D POSIT MAC UNIT ARRAY PYNQ OVERLAY.

SOURCE: The Author.

Functionally, each Posit MAC Unit within the array performs the multiplication
and accumulation of Posit numbers. The 2D structure of the array, as seen in FIGURE 24,
allows for the simultaneous processing of R · C dot products, each in a MAC Unit,
significantly enhancing computational efficiency. The results of these operations for
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each input segment are stored in the output FIFO buffer of each Posit MAC Unit,
ensuring availability for subsequent processing.

FIGURE 24 – STRUCTURE OF THE 2D POSIT MAC UNIT ARRAY.

SOURCE: The Author.

The 2D Posit MAC Unit Array is implemented on FPGA, leveraging the recon-
figurable nature of this device to optimize performance for specific applications. This
implementation supports hardware acceleration for GEMM tasks, making the array
particularly suitable for high-performance computing applications such as ML and DL
inference. By using the Posit format, the design aims to provide superior numerical
precision and dynamic range compared to traditional floating-point systems, which is
crucial in computational tasks.

The developed array is then included in a PYNQ overlay - along with an AMD
AXI DMA IP and auxiliary AMD AXI infrastructure IPs - to be loaded and executed on an
FPGA through the Posits4TorcHA package. The development of the overlay also took
place in Vivado Design Suite 2022.2.

4.3 CENTERFUSION QUANTIZATION

The case study on CenterFusion explores the integration of Posits4Torch to
enhance DL performance through Posit quantization and remote hardware accelera-
tion. CenterFusion is primarily developed in Python using PyTorch. By incorporating
Posits4Torch, Posit quantization of CenterFusion’s parameters can be achieved.

CenterFusion’s source code was modified to leverage Posits4Torch for both
quantization and inference of its primary and secondary regression heads. This mo-
dification involves two main methods: Posit-as-Storage (PaS) and Posit-as-Arithmetic
(PaA). In the PaS method, CenterFusion’s regression heads parameters are quantized
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using the Posit format. During inference, these Posit values are converted back to
floating-point format, allowing the use of floating-point arithmetic on a NVIDIA GeForce
RTX 3090 GPU. Various Posit configurations, such as Posit (8, 0), Posit (16, 1), Posit
(32, 2), and Posit ([2, 31], 2), are supported.

The PaA method enables remote hardware acceleration for Posit arithmetic
operations. This setup uses a PYNQ overlay running on an AMD Kria KV260 Vision
Starter Kit, with a 2D 8x8 Posit MAC Units Array with an output FIFO buffer depth of 512.
The underlying model of the Posit MAC Units is based on the work of (Crespo et al.,
2023). The overlay operates on the PL of a ZYNQ UltraScale+ MPSoC from a K26
SOM, at a clock speed of 100 MHz, significantly enhancing computational efficiency
for Posit arithmetic operations in CenterFusion compared to its single-threaded-CPU-
emulated-Posit-quantized counterpart via Deep PeNSieve on an AMD EPYC 7413
CPU.

However, Posits4Torch does not yet support DCNs (Dai et al., 2017), which are
essential for CenterFusion’s backbone. Consequently, Posit quantization of CenterFu-
sion’s backbone is not yet achievable. Despite this limitation, this integration allows for
Posit quantization and inference of CenterFusion’s regression heads, providing insights
into the network’s overall performance impact.

To execute and test the Posit-quantized CenterFusion model, the mini-validation
subset of the NuScenes dataset is used. The results are evaluated using the NuScenes
Detection Task Evaluation Metrics, as discussed in CHAPTER 2. These metrics help
assess the impact on inference performance brought by Posit quantization and hardware
acceleration.

CenterFusion’s regression heads consist of convolutional layers with ReLU
activation. Each primary regression head consists of two convolutional layers. The first
layer has 64 input channels, 256 output channels, and a 3x3 pixel kernel, with a stride of
1 pixel and padding of 1 pixel. The second convolutional layer has 256 input channels, a
1-pixel kernel, and a stride of 1 pixel (no padding). The number of output maps varies
according to the property to be regressed, such as heatmaps, rotations, dimensions,
heights, widths, offsets, and object depths. These primary regression heads can be
visualized in FIGURE 25.

The secondary regression heads differ from the primary regression heads and
consist of four consecutive convolutional layers. The first layer is similar to that of the
primary regression heads. The second and third layers have 256 input and output
channels, a 1-pixel kernel size, and a stride of 1 pixel, with no padding. The final layer
relates to the property being regressed, and also has 256 input channels, a 1-pixel
kernel size, and a stride of 1 pixel (no padding). The output channels of this final layer
correspond to the maps associated with specific object properties to be detected. The
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FIGURE 25 – PRIMARY REGRESSION HEADS OF CENTERFUSION.

SOURCE: The Author.

number of output maps varies depending on the property to be computed, such as object
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class attributes, velocity, re-estimated rotation, and re-estimated depth. CenterFusion’s
secondary regression heads can be seen in FIGURE 26.

CenterFusion’s quantization process effectively occurs during the initial stages
before the execution of the model’s inference. In order to do this, CenterFusion’s
source code was modified. These modifications added Posit quantization capabilities to
CenterFusion’s regression heads through customization options. New command-line
arguments were added to CenterFusion for this purpose. Specifically, the additional
arguments are:

• –quantize_heads, indicating that the user wishes to perform the regression heads
quantization process;

• –N <N>, the bit-width of the associated Posit format, in the range of [1, 32];

• –Es <es>, the maximum number of bits that the exponent can have in the Posit
number, belonging to the set {0, 1, 2};

• –qdevice, the device on which to run the Posit-quantized CenterFusion inference
(applies only to the PaA strategy);

• –fpga_host , the Internet Protocol Version 4 (IPv4) address of the FPGA device on
which the inference will be executed (applies only to the PaA strategy on FPGA);

• –fpga_port , the Transport Control Protocol (TCP)/User Datagram Protocol (UDP)
port of the device on which inference will be executed on FPGA, corresponding to
the associated HTTP server (applies only to the PaA strategy on FPGA);

• –fpga_conf , Posits4TorcHA’s AXI DMA-compliant 2D Posit MAC Unit Array PYNQ
Overlay configurations (applies only to the PaA strategy on FPGA);

• –inference_num_workers <num_workers>, the number of APU cores on the in-
ference device to be used by Cython to do R/W operations to and from PYNQ
Buffers on DRAM (applies only to the PaA strategy on FPGA).

After initialization of the inference process, quantization will occur following Cen-
terFusion’s model instantiation step, obeying the command-line arguments as described
previously. A visual representation of CenterFusion’s regression heads quantization
process can be seen in FIGURE 27.
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FIGURE 26 – SECONDARY REGRESSION HEADS OF CENTERFUSION.

SOURCE: The Author.
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FIGURE 27 – POSIT QUANTIZATION OF CENTERFUSION.

SOURCE: The Author.
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5 RESULTS

5.1 VALIDATION OF POSITS4TORCH’S / POSITS4TORCHA’S FUNCTIONALITY

Initially, the functionality of Posits4Torch and Posits4TorcHA was validated
through extensive testing. Posits4Torch allows for the quantization of PyTorch models
using PyTorch’s Quantization Custom Module API, while Posits4TorcHA provides an
AXI DMA-compliant 2D Posit MAC Unit Array PYNQ Overlay for the AMD Kria KV260
Vision Starter Kit.

The tests focused on Posit (8, 2) quantization for both the Deep PeNSieve’s
single-threaded-CPU-emulated backend, running on an AMD EPYC 7413 CPU, and
Posits4TorcHA’s FPGA-based backend, utilizing an AMD Kria KV260 Vision Starter
Kit running an AXI DMA-compliant 2D 8x8 Posit MAC Unit Array PYNQ Overlay. The
tested model, similar to CenterFusion’s secondary regression heads, was fed with a 4-D
2x64x80x45 random input tensor. The results in TABLE 9 indicate, as expected, that the
quantization-induced degradation in the inference accuracy for both the single-threaded-
CPU-emulated Posit model from Deep PeNSieve and the FPGA-based Posit model
from Posits4TorcHA are identical since both use exact Posit arithmetic. Notably, the
inference time for the FPGA-based model is almost 1000 times lower than that of the
CPU-emulated model, but approximately 300 times higher than PyTorch’s GPU-based
32-bit floating-point model running on a NVIDIA GeForce RTX 3090. These findings
confirm the superiority of the FPGA-based model over the CPU-emulated model in
terms of performance and efficiency, although it still has lower performance than the
original GPU-based model.

TABLE 9 – POSITS4TORCH / POSITS4TORCHA FUNCTIONALITY VALIDATION RESULTS.
Backend Inference Error (%) Inference Time (s)
CPU (AMD EPYC 7413) 4.97 3194.69
FPGA (AMD Kria KV260 Vision Starter Kit) 4.97 3.49

SOURCE: The Author.

AMD’s Kria KV260 Vision Starter Kit PL resource consumption for the 2D 8x8
Posit MAC Unit Array was evaluated using Vivado Design Suite Synthesis Utilization
Report and Place Design Utilization Report. The results - given in terms of LUTs , Block
RAM (BRAM), Ultra RAM (URAM), and DSP Slices - are detailed in TABLE 10 for the
resource utilization exclusively of the 2D 8x8 Posit MAC Unit Array after synthesis and
in TABLE 11 for the complete PYNQ overlay, which includes not only the 2D 8x8 Posit
MAC Unit Array but also AMD’s AXI DMA IP and AMD’s AXI Infrastructure IPs, after
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placement and routing. The total on-chip power consumption, as reported in the Vivado
Routing Design Power Report, increases, though marginally, with higher Posit precisions,
being 2.939 W, 3.033 W, and 3.090 W for 6, 7, and 8-bit precisions, respectively.

TABLE 10 – PROGRAMMABLE LOGIC (PL) RESOURCE CONSUMPTION OF THE 2D 8X8
POSIT MAC UNIT ARRAY AFTER SYNTHESIS.

Precision N LUT BRAM URAM DSP
6-bit 58283 0 0 0
7-bit 71163 0 0 0
8-bit 78129 32 0 0

SOURCE: The Author.

TABLE 11 – PROGRAMMABLE LOGIC (PL) RESOURCE CONSUMPTION OF PO-
SITS4TORCHA’S AXI DMA-COMPLIANT 2D POSIT MAC UNIT ARRAY PYNQ
OVERLAY, AFTER PLACEMENT AND ROUTING.

Precision N LUT BRAM URAM DSP
6-bit 64948 17 0 0
7-bit 77903 17 0 0
8-bit 85060 49 0 0

SOURCE: The Author.

5.2 CENTERFUSION CASE STUDY

In this section, the results obtained for the CenterFusion Case Study are dis-
cussed for both the PaS and PaA strategies, respectively.

5.2.1 Posit-as-Storage (PaS)

For the PaS strategy, the results from the evaluation of CenterFusion on the
NuScenes dataset after inference using both regression heads quantized through
Posits4Torch using Posit (8, 0), (16, 1), and (32, 2) are available in TABLE 12. These
metrics are presented for several Posit quantization formats as well as for the original
32-bit floating-point baseline format. As expected, larger bit-widths imply a more precise
approximation of the values to the baseline values for each metric, obtained using
floating-point 32-bit, with the worst case scenario being that of the Posit (8, 0), whose
degradation in the mAP and NDS are, respectively, of 5.6% and 3.8% from TABLE 12.

Similar results from the sole quantization of the primary regression heads are
available in TABLE 13. In this case, the degradation is less perceptible. The degradations
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TABLE 12 – MEAN AVERAGE ERRORS AND NUSCENES DETECTION SCORES (NDS)
OBTAINED WITH POSIT (8, 0), (16, 1), AND (32, 2), USING POSIT-AS-STORAGE
(PAS).

Format mAP ( - ) mATE (m) mASE ( - ) mAOE (rad) mAVE (m/s) mAAE ( - ) NDS ( - )
Baseline 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (8, 0) 0.258 0.766 0.455 0.595 0.778 0.304 0.339
Posit (16, 1) 0.311 0.666 0.463 0.596 0.767 0.308 0.376
Posit (32, 2) 0.314 0.664 0.463 0.597 0.767 0.308 0.377

SOURCE: The Author.

for the mAP and NDS are, respectively, of 0.7% and 0.2% for the 8-bit Posit quantization,
as per TABLE 13.

TABLE 13 – MEAN AVERAGE ERRORS AND NUSCENES DETECTION SCORES (NDS)
OBTAINED WITH POSIT (8, 0), (16, 1), AND (32, 2), FROM THE QUANTIZATION
OF THE PRIMARY REGRESSION HEADS, USING POSIT-AS-STORAGE (PAS).

Format mAP ( - ) mATE (m) mASE ( - ) mAOE (rad) mAVE (m/s) mAAE ( - ) NDS ( - )
Baseline 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (8, 0) 0.307 0.675 0.457 0.596 0.752 0.305 0.375
Posit (16, 1) 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (32, 2) 0.314 0.664 0.463 0.597 0.767 0.308 0.377

SOURCE: The Author.

Finally, the results from the individual quantization of the secondary regression
heads are available in TABLE 14. Here, the degradations of 5.4% in the mAP and
3.9% in the NDS for an 8-bit Posit precision resembles that which was obtained when
quantizing both regression heads simultaneously.

TABLE 14 – MEAN AVERAGE ERRORS AND NUSCENES DETECTION SCORES (NDS)
OBTAINED WITH POSIT (8, 0), (16, 1), AND (32, 2), FROM THE QUANTIZATION
OF THE SECONDARY REGRESSION HEADS, USING POSIT-AS-STORAGE
(PAS).

Format mAP ( - ) mATE (m) mASE ( - ) mAOE (rad) mAVE (m/s) mAAE ( - ) NDS ( - )
Baseline 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (8, 0) 0.260 0.761 0.460 0.603 0.793 0.304 0.338
Posit (16, 1) 0.311 0.666 0.463 0.596 0.767 0.308 0.376
Posit (32, 2) 0.314 0.664 0.463 0.597 0.767 0.308 0.377

SOURCE: The Author.

Furthermore, these same metrics can be visualized in the graphs shown in
FIGURE 28 and FIGURE 29 when Posits (N, 2) with a variable number of bits are
used for the joint quantization of CenterFusion’s regression heads. The specific values
for each bit width, in this case, can be read from TABLE 15. It is found that Posit (7,
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2) quantization is sufficient to achieve results comparable to those obtained with both
higher-bit-width Posit quantizations and 32-bit floating point numbers, with a degradation
in mAP of 2.5% and in NDS of 2.3% when compared to the baseline, as per TABLE 15.

FIGURE 28 – MEAN AVERAGE ERRORS OBTAINED WITH POSIT (N, 2) FROM THE QUANTI-
ZATION OF BOTH REGRESSION HEADS, USING POSIT-AS-STORAGE (PAS).

SOURCE: The Author.
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FIGURE 29 – NUSCENES DETECTION SCORES (NDS) OBTAINED WITH POSIT (N, 2)
FROM THE QUANTIZATION OF BOTH REGRESSION HEADS, USING POSIT-
AS-STORAGE (PAS).

SOURCE: The Author.

TABLE 15 – MEAN AVERAGE ERRORS AND NUSCENES DETECTION SCORES (NDS)
OBTAINED WITH POSIT (N, 2), FROM THE QUANTIZATION OF BOTH REGRES-
SION HEADS, USING POSIT-AS-STORAGE (PAS).

Format mAP ( - ) mATE (m) mASE ( - ) mAOE (rad) mAVE (m/s) mAAE ( - ) NDS ( - )
Baseline 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (2, 2) 0.000 1.000 1.000 1.000 1.000 1.000 0.000
Posit (3, 2) 0.000 1.030 0.997 1.000 1.000 1.000 0.000
Posit (4, 2) 0.000 1.062 0.976 1.000 1.000 1.000 0.002
Posit (5, 2) 0.014 1.227 0.650 1.000 0.808 0.434 0.118
Posit (6, 2) 0.130 1.103 0.525 0.725 0.874 0.317 0.221
Posit (7, 2) 0.289 0.727 0.479 0.610 0.781 0.305 0.354
Posit (8, 2) 0.309 0.678 0.453 0.600 0.760 0.310 0.375
Posit (16, 2) 0.311 0.666 0.463 0.596 0.767 0.308 0.376
Posit (32, 2) 0.314 0.664 0.463 0.597 0.767 0.308 0.377

SOURCE: The Author.

Additionally, it is important to mention that Posit (7, 2) quantization demonstrates
superior performance compared to Posit (8, 0) quantization, which showed a NDS
degradation of 3.9% in the worst case when compared to 32-bit floating point, despite
having a larger bit-width. This highlights the influence of the exponent field in this case. A
notable observation, derived from analyzing the curves for the mAVE and mATE metrics
from FIGURE 28, is that especially for the mATE metric and exclusively for the PaS
strategy, smaller bit-widths appear to exhibit superior performance compared to larger
bit-widths, up to 7 bits, although they are still considerably inferior to quantizations with
bit-widths equal to or greater than 7 bits. For those who cannot afford any reduction in
precision, Posit (8, 2) quantization emerges as a viable alternative. This format resulted
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in an NDS degradation of only 0.2%. This approach enables a substantial reduction
of up to 75% in weights storage size in memory, compared to the original model size.
Consequently, this results in an equivalent reduction in the bandwidth required for
memory read and write operations, since it uses 1/4 of the original number of bits
per parameter. Performing inference with these quantization settings presents notable
advantages from a hardware perspective, especially in terms of resources like logic units
in FPGAs and area in ASICs, as Posit arithmetic operators can operate with reduced
bit-widths.

Finally, as part of the qualitative results, FIGURE 30 illustrates the 3D bounding
box predictions and bird’s-eye views generated by the Posit-quantized CenterFusion
model on a single sample frame from the NuScenes minival dataset, using Posit
precision levels of 6, 7, and 8 bits. The results are shown for both the 32-bit floating-
point baseline and Posit precisions at 6, 7, and 8 bits.



73

FIGURE 30 – 3D BOUNDING BOXES AND BIRD-EYE VIEWS OBTAINED FROM THE QUAN-
TIZATION OF BOTH REGRESSION HEADS, USING POSIT-AS-STORAGE
(PAS).

SOURCE: The Author.
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Also, in FIGURE 31 and FIGURE 32 the curves obtained for these same metrics
can be visualized when solely CenterFusion’s primary regression heads are quantized
using Posit (N, 2). Again, the specific values for each bit width can be read from
TABLE 16. In this case, the Posit (7, 2) quantization does not show any perceptible
degradation to the NDS and mAP when compared to the baseline, and the Posit (6, 2)
quantization degrades the mAP on 1.8% and the NDS on 1.8%, as per TABLE 16.

FIGURE 31 – MEAN AVERAGE ERRORS OBTAINED WITH POSIT (N, 2) FROM THE QUAN-
TIZATION OF PRIMARY REGRESSION HEADS, USING POSIT-AS-STORAGE
(PAS).

SOURCE: The Author.
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FIGURE 32 – NUSCENES DETECTION SCORES (NDS) OBTAINED WITH POSIT (N, 2)
FROM THE QUANTIZATION OF PRIMARY REGRESSION HEADS, USING
POSIT-AS-STORAGE (PAS).

SOURCE: The Author.

TABLE 16 – MEAN AVERAGE ERRORS AND NUSCENES DETECTION SCORES (NDS)
OBTAINED WITH POSIT (N, 2), FROM THE QUANTIZATION OF PRIMARY
REGRESSION HEADS, USING POSIT-AS-STORAGE (PAS).

Format mAP ( - ) mATE (m) mASE ( - ) mAOE (rad) mAVE (m/s) mAAE ( - ) NDS ( - )
Baseline 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (2, 2) 0.000 1.065 1.000 1.044 0.891 0.875 0.023
Posit (3, 2) 0.207 0.841 0.864 0.678 1.299 0.309 0.234
Posit (4, 2) 0.276 0.762 0.684 0.656 1.192 0.300 0.298
Posit (5, 2) 0.245 0.795 0.561 0.641 1.200 0.389 0.284
Posit (6, 2) 0.296 0.710 0.472 0.623 0.780 0.306 0.359
Posit (7, 2) 0.315 0.659 0.477 0.597 0.772 0.299 0.377
Posit (8, 2) 0.313 0.664 0.454 0.600 0.758 0.306 0.378
Posit (16, 2) 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (32, 2) 0.314 0.664 0.463 0.597 0.767 0.308 0.377

SOURCE: The Author.

Additionally, FIGURE 33 presents the 3D bounding box predictions and bird’s-
eye views produced by the Posit-quantized CenterFusion model on a sample frame from
the NuScenes minival dataset, when only the primary regression heads are quantized.
These visualizations include Posit precision levels of 6, 7, and 8 bits, alongside the
32-bit floating-point baseline for comparison.
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FIGURE 33 – 3D BOUNDING BOXES AND BIRD-EYE VIEWS OBTAINED FROM THE QUAN-
TIZATION OF PRIMARY REGRESSION HEADS, USING POSIT-AS-STORAGE
(PAS).

SOURCE: The Author.
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Similar curves can be seen in FIGURE 34 and FIGURE 35, corresponding to
the sole quantization of CenterFusion’s secondary regression heads, and whose specific
values for each bit width can be read from TABLE 17. The corresponding degradations
to the mAP and NDS for the Posit (7, 2) quantization is similar to those obtained for
joint quantization of both regression heads, reaching 2.5% on the mAP and 2.5% on the
NDS. This is the first indicative that the secondary regression heads have more impact
on the quantization induced degradations to the metrics than the primary regression
heads.

FIGURE 34 – MEAN AVERAGE ERRORS OBTAINED WITH POSIT (N, 2) FROM THE QUANTI-
ZATION OF SECONDARY REGRESSION HEADS, USING POSIT-AS-STORAGE
(PAS).

SOURCE: The Author.
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FIGURE 35 – NUSCENES DETECTION SCORES (NDS) OBTAINED WITH POSIT (N, 2)
FROM THE QUANTIZATION OF SECONDARY REGRESSION HEADS, USING
POSIT-AS-STORAGE (PAS).

SOURCE: The Author.

TABLE 17 – MEAN AVERAGE ERRORS AND NUSCENES DETECTION SCORES (NDS)
OBTAINED WITH POSIT (N, 2), FROM QUANTIZATION OF SECONDARY RE-
GRESSION HEADS, USING POSIT-AS-STORAGE (PAS).

Format mAP ( - ) mATE (m) mASE ( - ) mAOE (rad) mAVE (m/s) mAAE ( - ) NDS ( - )
Baseline 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (2, 2) 0.000 1.000 1.000 1.000 1.000 1.000 0.000
Posit (3, 2) 0.000 1.000 1.000 1.000 1.000 1.000 0.000
Posit (4, 2) 0.000 1.068 0.931 1.000 1.000 1.000 0.007
Posit (5, 2) 0.020 1.186 0.597 1.034 0.782 0.431 0.129
Posit (6, 2) 0.132 1.104 0.506 0.675 0.759 0.341 0.238
Posit (7, 2) 0.289 0.734 0.465 0.610 0.802 0.311 0.352
Posit (8, 2) 0.307 0.677 0.462 0.600 0.767 0.311 0.372
Posit (16, 2) 0.311 0.666 0.463 0.596 0.767 0.308 0.376
Posit (32, 2) 0.314 0.664 0.463 0.597 0.767 0.308 0.377

SOURCE: The Author.

Again, FIGURE 36 shows the 3D bounding box predictions and bird’s-eye
views generated by the Posit-quantized CenterFusion model on a sample frame from
the NuScenes minival dataset, with only the secondary regression heads quantized.
These visualizations compare Posit precision levels of 6, 7, and 8 bits against the 32-bit
floating-point baseline.
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FIGURE 36 – 3D BOUNDING BOXES AND BIRD-EYE VIEWS OBTAINED FROM THE
QUANTIZATION OF SECONDARY REGRESSION HEADS, USING POSIT-AS-
STORAGE (PAS).

SOURCE: The Author.
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Additionally, the same curves discussed earlier are collectively presented in
FIGURE 37 and FIGURE 38 to facilitate a comparison of the effects of quantization
on each regression head individually. A notable finding from these figures is that the
behavior of the metrics is closely linked to the secondary regression heads in CenterFu-
sion. This relationship is confirmed by analyzing the error curves when each regression
head is quantized separately. The graphs in FIGURE 37 and the NDS curve in FI-
GURE 38 show that the metric patterns observed when only the secondary regression
heads are quantized closely resemble those seen when both regression heads undergo
quantization simultaneously.

FIGURE 37 – MEAN AVERAGE ERRORS OBTAINED WITH POSIT (N, 2) USING POSIT-AS-
STORAGE (PAS).

SOURCE: The Author.
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FIGURE 38 – NUSCENES DETECTION SCORES (NDS) OBTAINED WITH POSIT (N, 2)
USING POSIT-AS-STORAGE (PAS).

SOURCE: The Author.

5.2.2 Posit-as-Arithmetic (PaA)

The metrics for PaA can be visualized in FIGURE 39 and FIGURE 40, where
Posits (N, 2) with varying bit widths are used for joint quantization of CenterFusion’s
regression heads through Posits4TorcHA on the FPGA. For this strategy, the influence
of both the Posit quantization of network parameters and Posit arithmetic on the FPGA
is evident.
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FIGURE 39 – MEAN AVERAGE ERRORS OBTAINED WITH POSIT ({6, 7, 8}, 2) FROM
THE QUANTIZATION OF BOTH REGRESSION HEADS, USING POSIT-AS-
ARITHMETIC (PAA).

SOURCE: The Author.
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FIGURE 40 – NUSCENES DETECTION SCORES (NDS) OBTAINED WITH POSIT ({6, 7, 8}, 2)
FROM THE QUANTIZATION OF BOTH REGRESSION HEADS, USING POSIT-
AS-ARITHMETIC (PAA).

SOURCE: The Author.
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Specific values for each bit width are listed in TABLE 18. As expected, Posit
(7, 2) quantization shows greater degradation when compared to 8-bit Posits, of up to
17.7% in mAP and 12.1% in NDS, as per TABLE 18. A similar observation is made
for Posit (8, 2) quantization, which, when compared to its equivalent using PaS, shows
greater degradation of up to 9.8% in mAP and 7.7% in NDS.

TABLE 18 – MEAN AVERAGE ERRORS AND NUSCENES DETECTION SCORES (NDS)
OBTAINED WITH POSIT ({6, 7, 8}, 2), FROM THE QUANTIZATION OF BOTH
REGRESSION HEADS, USING POSIT-AS-ARITHMETIC (PAA).

Format mAP ( - ) mATE (m) mASE ( - ) mAOE (rad) mAVE (m/s) mAAE ( - ) NDS ( - )
Baseline 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (6, 2) 0.053 1.036 0.532 0.746 0.716 0.315 0.196
Posit (7, 2) 0.140 1.037 0.485 0.657 0.714 0.287 0.256
Posit (8, 2) 0.216 0.882 0.457 0.636 0.806 0.297 0.300

SOURCE: The Author.

Nevertheless, these results corroborate previous studies where similar confi-
gurations were successfully used for inference after quantizing other NN models, such
as in (Kumar; Gupta, 2023; Edavoor et al., 2023; Glint et al., 2023; Zolfagharinejad
et al., 2022; Immaneni et al., 2022; Langroudi et al., 2018; Cococcioni et al., 2020a,b;
Langroudi et al., 2020), achieving similar metric degradations as seen here. However, it
is important to note that direct comparisons are difficult due to differences in models
and tasks involved in each work.

Furthermore, FIGURE 41 displays the 3D bounding box predictions and bird’s-
eye views generated by the Posit-quantized CenterFusion model on a sample frame
from the NuScenes minival dataset, with both regression heads quantized. These
visualizations show Posit precision levels of 6, 7, and 8 bits, compared alongside the
32-bit floating-point baseline.
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FIGURE 41 – 3D BOUNDING BOXES AND BIRD-EYE VIEWS OBTAINED FROM THE QUAN-
TIZATION OF BOTH REGRESSION HEADS, USING POSIT-AS-ARITHMETIC
(PAA).

SOURCE: The Author.
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Similarly, FIGURE 42 and FIGURE 43 show the curves when only the primary
regression heads are quantized using Posit (N, 2). Values for each bit width are in
TABLE 19. In this case, a Posit (7, 2) quantization induces a degradation on the mAP
and NDS of, respectively, 3.1% and 3.3%. For the Posit (8, 2) quantization scheme, the
degradations to the mAP and NDS are of 1.1% and 1.7%, respectively.

FIGURE 42 – MEAN AVERAGE ERRORS OBTAINED WITH POSIT ({6, 7, 8}, 2) FROM
THE QUANTIZATION OF PRIMARY REGRESSION HEADS, USING POSIT-
AS-ARITHMETIC (PAA).

SOURCE: The Author.
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FIGURE 43 – NUSCENES DETECTION SCORES (NDS) OBTAINED WITH POSIT ({6, 7, 8},
2) FROM THE QUANTIZATION OF PRIMARY REGRESSION HEADS, USING
POSIT-AS-ARITHMETIC (PAA).

SOURCE: The Author.

TABLE 19 – MEAN AVERAGE ERRORS AND NUSCENES DETECTION SCORES (NDS)
OBTAINED WITH POSIT ({6, 7, 8}, 2), FROM THE QUANTIZATION OF PRIMARY
REGRESSION HEADS, USING POSIT-AS-ARITHMETIC (PAA).

Format mAP ( - ) mATE (m) mASE ( - ) mAOE (rad) mAVE (m/s) mAAE ( - ) NDS ( - )
Baseline 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (6, 2) 0.224 0.742 0.520 0.621 0.903 0.325 0.301
Posit (7, 2) 0.283 0.715 0.488 0.613 0.848 0.314 0.344
Posit (8, 2) 0.303 0.691 0.459 0.614 0.839 0.309 0.360

SOURCE: The Author.

In addition, FIGURE 44 presents the 3D bounding box predictions and bird’s-eye
views produced by the Posit-quantized CenterFusion model on a sample frame from
the NuScenes minival dataset, with solely primary regression heads quantized. These
visualizations compare Posit precision levels of 6, 7, and 8 bits alongside the 32-bit
floating-point baseline.
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FIGURE 44 – 3D BOUNDING BOXES AND BIRD-EYE VIEWS OBTAINED FROM THE
QUANTIZATION OF PRIMARY REGRESSION HEADS, USING POSIT-AS-
ARITHMETIC (PAA).

SOURCE: The Author.
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Moreover, FIGURE 45 and FIGURE 46 display the curves for the quantization
of the secondary regression heads, whose values for each bit width are shown in
TABLE 20. In this case, Posit (7, 2) quantization results in a decrease in mAP and
NDS by 17.2% and 12.8%, respectively. With the Posit (8, 2) quantization scheme, the
reductions in mAP and NDS are 9.1% and 6.8%, respectively.

FIGURE 45 – MEAN AVERAGE ERRORS OBTAINED WITH POSIT ({6, 7, 8}, 2) FROM THE
QUANTIZATION OF SECONDARY REGRESSION HEADS, USING POSIT-AS-
ARITHMETIC (PAA).

SOURCE: The Author.



90

FIGURE 46 – NUSCENES DETECTION SCORES (NDS) OBTAINED WITH POSIT ({6, 7, 8}, 2)
FROM THE QUANTIZATION OF SECONDARY REGRESSION HEADS, USING
POSIT-AS-ARITHMETIC (PAA).

SOURCE: The Author.

TABLE 20 – MEAN AVERAGE ERRORS AND NUSCENES DETECTION SCORES (NDS) OB-
TAINED WITH POSIT ({6, 7, 8}, 2) FROM THE QUANTIZATION OF SECONDARY
REGRESSION HEADS, USING POSIT-AS-ARITHMETIC (PAA).

Format mAP ( - ) mATE (m) mASE ( - ) mAOE (rad) mAVE (m/s) mAAE ( - ) NDS ( - )
Baseline 0.314 0.664 0.463 0.597 0.767 0.308 0.377
Posit (6, 2) 0.061 1.050 0.465 0.750 0.731 0.343 0.202
Posit (7, 2) 0.142 1.022 0.460 0.641 0.827 0.294 0.249
Posit (8, 2) 0.223 0.873 0.461 0.631 0.769 0.295 0.309

SOURCE: The Author.

Furthermore, FIGURE 47 illustrates the 3D bounding box predictions and bird’s-
eye views produced by the Posit-quantized CenterFusion model on a sample frame
from the NuScenes minival dataset, with only secondary regression heads quantized.
These visualizations include Posit precision levels of 6, 7, and 8 bits, alongside the
32-bit floating-point baseline for comparison.
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FIGURE 47 – 3D BOUNDING BOXES AND BIRD-EYE VIEWS OBTAINED FROM THE
QUANTIZATION OF SECONDARY REGRESSION HEADS, USING POSIT-AS-
ARITHMETIC (PAA).

SOURCE: The Author.
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Finally, FIGURE 48 and FIGURE 49 together illustrate the effects of quantization
on the metrics for each regression head. The behavior of the metrics under each
quantization scheme resembles the patterns observed in the PaS strategy, where
the metrics are closely tied to the secondary regression heads in CenterFusion. This
alignment is validated by analyzing the error curves when quantizing each regression
head individually. The graphs in FIGURE 48 and the NDS curve in FIGURE 49 show that
the metric curves observed with quantization of only the secondary regression heads
closely replicate those seen when both regression heads are quantized simultaneously.

FIGURE 48 – MEAN AVERAGE ERRORS OBTAINED WITH POSIT ({6, 7, 8}, 2) USING POSIT-
AS-ARITHMETIC (PAA).

SOURCE: The Author.
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FIGURE 49 – NUSCENES DETECTION SCORES (NDS) OBTAINED WITH POSIT ({6, 7, 8},
2) USING POSIT-AS-ARITHMETIC (PAA).

SOURCE: The Author.

This suggests that these metrics are especially sensitive to the quantization
of secondary regression heads, as previously noted, regardless of the quantization
strategy applied, whether PaS or PaA. This phenomenon can be attributed to the
different sensitivity to quantization between primary and secondary regression heads,
as secondary regression heads are intended to regress properties over the combined
camera and radar FMs, in contrast to primary regression heads, which regress object
properties only from the FMs extracted from camera images. Thus, this affects the
regressed value for velocity and translation metrics, the latter being related to the
distance to the object, as these variables are closely related to radar measurements and
are re-estimated through CenterFusion’s secondary regression heads. This invariably
leads to changes in the results obtained for the evaluation metrics corresponding to
these properties. Nonetheless, secondary regression heads may be more affected due
to having a larger number of convolutional layers and being closer to the network output.
This finding is significant as it suggests an alternative quantization strategy where the
primary and secondary regression heads are quantized using different Posit precisions.
In this approach, the secondary regression heads are quantized with higher Posit
precision than the primary regression heads, potentially mitigating quantization-induced
degradations in the metrics. This strategy can also be applied to various parts of the
model.

These results collectively demonstrate the effectiveness and potential appli-
cations of Posit quantization and hardware acceleration in DL models, particularly for
AV perception systems. However, more research and optimizations are needed to fully
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realize the benefits of these techniques.
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6 CONCLUSION AND FUTURE WORKS

The approach of Posit numbers is an innovation that aims to reduce the size
of NNs and consequently improve their energy efficiency and resource utilization,
especially in embedded systems, with minimal loss of inference accuracy. However, the
literature on this representation format is still incipient, and more in-depth studies are
needed, especially in the context of AVs and perception systems that use sensor fusion.

In this study, the functionality of Posits4Torch for quantization and inference
using Posit numbers was presented and validated for a radar and camera middle-fusion
method called CenterFusion, with applications in AV, especially in their perception
systems that use AI applied to CV for 3D object detection and classification, as well
as Posits4TorcHA for hardware-accelerated inference using the AMD Kria KV260 Vi-
sion Starter Kit. Functionallity validation results have demonstrated the potential of
Posit arithmetic, particularly with Posit (8, 2), to maintain inference accuracy across
different computation backends, including CPU-emulated and FPGA-based backends.
Performance evaluation revealed a significant reduction in inference time with the FPGA-
based Posit model, achieving an improvement of nearly 1000 times compared to the
CPU-emulated Posit model, although it remained 300 times slower than the GPU-
based floating-point model. This performance enhancement highlights the potential of
FPGA-based Posit arithmetic for high-speed applications.

The case study on the CenterFusion model for AVs’ perception systems further
highlighted the applicability of Posit quantization in DL-based sensor fusion methods.
Our findings indicate that an 8-bit Posit precision is sufficient to maintain comparable
performance to that of the unquantized 32-bit floating-point model in key evaluation
metrics, particularly when applied to secondary regression heads, when using the
PaS strategy and was comparable to some fixed-point and floating-point quantizations
from the literature when using the PaA strategy on an FPGA. However, we observed
that certain metrics, such as mean Average Velocity Error (mAVE) and mean Average
Translation Error (mATE), are more susceptible to quantization-induced degradation,
emphasizing the need for careful consideration in model design and training.

Hardware utilization and power consumption analyses of the AMD Kria KV260
Vision Starter Kit provided insights into the trade-offs associated with different Posit
precisions. Higher precisions, while offering better accuracy, resulted in a marginally
higher power consumption, which is a critical factor for embedded systems and energy-
constrained applications.

Finally, this work contributes to the advancement of research in AVs by in-
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troducing a new approach that optimizes the performance of NNs in perception and
sensor fusion systems, crucial elements for the safety and efficiency of AVs. It does
so through Posits4Torch and Posits4TorcHA, which offer a robust framework for Posit
quantization and hardware acceleration, enabling efficient and accurate inference of DL
models. The significant reduction in inference time and the feasibility of low-precision
Posit arithmetic to reasonably maintain model performance open new possibilities for
deploying high-speed, energy-efficient AI solutions in real-world applications.

The development of Posits4Torch and Posits4TorcHA has established a solid
foundation for the use of Posit arithmetic in DL libraries and hardware acceleration.
Based on this, several key areas for future work have been identified to improve perfor-
mance and applicability.

The plan is to extend the module coverage of Posits4Torch to include a broader
range of PyTorch modules, providing a comprehensive set of tools for NN architectures.
Additionally, implementing a deformable convolution module for DCNs will enhance
flexibility and efficiency in applications that require spatial adaptation, such as Center-
Fusion.

Also, the experimentation with more efficient Posit libraries, alternatives to the
current SoftPosit library, such as the Universal Numbers Library (Omtzigt; Quinlan,
2023), is planned. The development of a dedicated DL framework other than Deep
PeNSieve for software-emulated Posit numbers as a backend on CPU will also be a
priority to optimize performance and control.

Investigating alternative communication protocols to HTTP aims to enhance
remote hardware acceleration, reducing latency and improving throughput. There are
also plans to experiment with different Posit MAC unit models from the literature and
design a dedicated custom model for Posits4TorcHA, concurrently with the development
of an optimized design for the 2D Posit MAC unit array, possibly using systolic arrays,
aiming to increase overall performance. Transitioning from the overlay-style to the
dataflow-style such as in hardware NNs similar to FINN (Umuroglu et al., 2017) will
further improve performance through efficient data handling and greater parallelism.

Implementing hardware acceleration for a broader set of activation functions in
Posits4TorcHA will address computational bottlenecks and speed up NN inference as
well.

A case study on the posit quantization and inference of the DLA-34 backbone
of CenterFusion will provide more insights into the benefits and challenges of the Posit
arithmetic. Comparative analysis with 8-bit integer and fixed-point quantizations will
further highlight the strengths and limitations of the PNS in terms of precision and
resource efficiency.
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Finally, comprehensive coding standards will be established to ensure consis-
tency, maintainability, and high-quality code for the Posits4Torch and Posits4TorcHA
projects, guiding future development and facilitating collaboration within the research
community.

By addressing these areas, the aim is to solidify Posits4Torch and Posits4TorcHA
as robust platforms, improving performance and expanding the applicability of Posit-
based computations across various domains.
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