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"Aristotle said a bunch of stuff that was wrong. Galileo and Newton fixed things up.
Then Einstein broke everything again. Now, we’ve basically got it all worked out, except

for small stuff*, big stuff, hot stuff, cold stuff, fast stuff*, heavy stuff, dark stuff,
turbulence, and the concept of time*" .

(Zach Weinersmith, Science: Abridged Beyond the Point of Usefulness )
*Emphases made by the author of this work.



RESUMO

Avanços recentes na área de informação quântica parecem indicar que emaranhamento,
um dos recursos quânticos mais fundamentais, não é uma quantidade covariante. Isto é
comumente explicado como consequência da manifestação quântica de um fenômeno
da relatividade especial, as rotações de Wigner, que surgem na composição de dois
boosts de Lorentz não paralelos. Se dois observadores inerciais não concordarem
sobre a quantidade de emaranhamento presente num sistema físico, eles podem
concordar em quão direcionável (se direcionável) esse sistema é? Este trabalho se
propõe a responder essa pergunta para partículas massivas de spin 1/2. Os resultados
indicam que, apesar de direcionável, as correlações quânticas presentes no sistema
são limitadas por cima pela quantidade de informação armazenável no espaço do grau
de liberdade de menor dimensão, isto é, no spin. Isto motiva mais discussões sobre
as supossições fundamentais utilizados para alcançar os resultados, suposições estas
que são, muitas vezes, dadas como certas no formalismo em que esse trabalho se
baseia. Uma discussão profunda sobre o tópico e possibilidades de novos caminhos a
serem seguidos também se encontram neste trabalho.

Palavras-chaves: Relatividade; Transformações de Lorentz; Mecânica Quântica; Infor-
mação Quântica; Recursos Quânticos.



ABSTRACT

Recent advances in the field of quantum information suggest that entanglement, one
of the most fundamental quantum resources, is not a covariant quantity. This is often
attributed to the quantum manifestation of a known phenomenon of special relativity, the
Wigner rotations, which arise from the composition of two nonparallel Lorentz boosts. If
two inertial observers cannot agree on a system’s amount of entanglement, may they
agree on how steerable (if so) the system is? This work intends to answer this question
for massive spin 1/2 particles. The results indicate that although steerable, the system’s
quantum correlations are upper-bounded by the amount of information storable in the
space of the smaller dimensioned degree of freedom, namely the spin space. This
motivates further discussion on the fundamental suppositions used to reach the results,
suppositions that are, often, taken for granted in the formalism this work is based on. A
deep discussion about the topic and suggestions of paths to be taken in the future can
also be found within.

Key-words: Relativity; Lorentz Transformations; Quantum Mechanics; Quantum Infor-
mation; Quantum Resources.
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1 INTRODUCTION

The 20th century gave physics two prodigal daughters, Quantum Mechanics
(QM) and Relativity, both Special (SR) and General (GR). The former is widely regarded
as the most successful theory of nature, surviving rigorous experimental scrutiny and
giving rise to some of the most important technology of our time. QM, when put together
with SR, gave rise to Quantum Field Theory (WEINBERG, 1995), being responsible
for some of the most precise, already experimentally verified, predictions in history.
Although very popular, there are many problems not still solved by such theories.

For instance, GR and QM are not yet fully integrated since no Quantum Gra-
vity theory, that work in all energy regimes, has been successfully developed. This
represents one of the biggest, if not the biggest, challenge on the frontier of human
knowledge. As such, this work shall avoid problems where gravity cannot be disregarded.
Also, even within QM it is not all roses, as it turns out, no specific interpretation of the
theory has been singled out and what it truly says about the universe is still debated and
controversial. In this controversy another connection between QM and relativity can be
made, although indirect: the most avid critic of QM is also the most important figure to
the development of Relativity. No other than Albert Einstein, together with Podolsky and
Rosen (EPR) published a paper in 1935 (EINSTEIN et al., 1935) that questioned the
completeness of QM. Intending to verify the validity of EPR’s claim, John Stewart Bell
derived his famous theorem (BELL, 1964) and ended up demonstrating one of the most
fundamental yet non-trivial properties of QM: it cannot be simultaneously real, that is,
with defined underlying values for all degrees of freedom, independent of measurement,
and local, meaning that all information regarding a physical system is contained within
it.

Another conundrum, of more recent appearance, materialized when resear-
chers realized that, on one hand, SR requires that "The laws of physics must be the
same in all inertial reference frames" while, on the other, it has been shown that entan-
glement, a very fundamental quantum resource, varies with Lorentz transformations1.
This phenomenon was first demonstrated in the 2002 paper by Peres et al. (PERES
et al., 2002), where the authors proved that, after a boost, the entropy of the reduced
state of an electron’s spin, varied. This fact indicates that the amount of entanglement
between the spin and momentum degrees of freedom of a particle is dependent on the
boost that connects different inertial frames. This is in contradiction with SR, at least if
entanglement is to be considered as fundamental as any other, already known to be
covariant quantity (ENGELBERT, 2022). Since then, many works investigated boost-
1 Such transformations connect inertial frames of reference and are staples of special relativity.
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induced entanglement, some for single-particle systems and others for more complex
systems containing two or more particles, even extensions for similar phenomena in GR
have been proposed (DUNNINGHAM et al., 2009; CZACHOR, 1997; AHN et al., 2003;
STREITER et al., 2021; PETRECA et al., 2022; BASSO; MAZIERO, 2021a,b, 2022).

The main goal of this work is to introduce both theories up to the point where
the previous conundrum can be understood, followed by a discussion about possible
solutions and their very existence. Then, after understanding the conceptual difficulties
associated with spin-momentum entanglement, we will use quantum steering, a measure
of quantum correlations where one of the parties may be untrusted, to certify such
correlations in the states of interest. For that purpose, a physical system will be modeled
with the necessary characteristics for entanglement detection in relativistic systems.
After demonstrating such a process, we will consider more realistic models for the
physical system that are also compatible with both Reid’s variance (REID, 1989) and
the entropic uncertainty relation (SCHNEELOCH et al., 2013) criteria for steering. Each
of the chosen criteria has its advantages and disadvantages, as will be demonstrated.

Many problems were encountered on the path towards obtaining the results.
Steering was not detected using the variance criterion. The reasons for this were
somewhat understood. On the other hand, steering was certified using the entropic
uncertainty criterion and proven to be dependent on the state preparation parameters,
although no clear analytical dependence on them was successfully established. In sum,
in the relativistic regime, the statistical behavior of the physical system seems to change.
We use the quantum resource formalism to demonstrate as much, formulating in the
process a "relativistic quantum resource" formalism, more appropriate for the work at
hand. Due to the intrinsic difficulties of the work, it closes with a discussion about such
challenges and the way one might, as we did, go around them, without losing the ability
to describe nature with rigor.
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2 QUANTUM MECHANICAL FORMALISM

This chapter’s purpose is to introduce the standard mathematical tools used in
the construction of QM. Here lies the definition of later used concepts such as states,
both pure and mixed, how to define them over a Hilbert space, and how to describe such
spaces for both discrete and continuous degrees of freedom. Later, the definition of the
relevant quantum resources for this work, entanglement and quantum steering as well
as the criteria for their detection appear. Next, some examples that should make these
higher concepts better understandable appear. Most of the concepts presented in this
chapter are found in a much more extensively explored form in the textbook "Quantum
Computation and Quantum Information" (NIELSEN; CHUANG, 2010).

2.1 QUANTUMNESS 101

In QM, all information contained in a physical system is in its state1, hereafter
denoted by |ψ〉. Here the "ket" notation was used to indicate that the state is represented
as a vector in a Hilbert space, such space being defined as

Definition 1. A Hilbert space H is a complex inner product space that is complete with
respect to the norm induced by the inner product. That is, H is a vector space over the
field of complex numbers C equipped with an inner product 〈·, ·〉 : H ×H → C. Here
〈·, ·〉 satisfies the following properties for all u,v,w ∈ H and all a ∈ C:

1. Antilinearity in the second argument: 〈u, av + bw〉 = a∗〈u,v〉+ b∗〈u,w〉.

2. Conjugate symmetry: 〈u,v〉 = 〈v,u〉∗.

3. Positive-definiteness: 〈u,u〉 ≥ 0 for all u ∈ H, and 〈u,u〉 = 0 iff u = 0.

A space is complete if every Cauchy sequence2 in it converges to one of its
elements in the norm induced by the inner product.
1 Here the word "contained" could be exchanged by "accessible" without loss of meaning. This is so

because if a system has any information that is not accessible one cannot prove that such information
exists, therefore, it is not of physical significance.

2 A sequence (an)
∞
n=1 of elements in a metric space (X, d) is called a Cauchy sequence if, for any

positive number ε > 0, there exists a positive integer N such that d(an, am) < ε for all n,m ≥ N . In
other words, the terms of the sequence become arbitrarily close to each other as n and m becomes
large.
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Being QM a physical theory, it must allow the connection between the mathe-
matical formalism and observable phenomena in the physical world. Such connection is
done by the expectedly named observables, defined below.

Definition 2. In QM, an observable is a Hermitian operator A = A† acting on the Hilbert
space H of states. That is, for any state |ψ〉 ∈ H, the possible outcomes of measuring
the observable A on |ψ〉 are the eigenvalues of A that we denote by λ. The probability
of obtaining each eigenvalue is given by the Born rule:

• For an eigenvalue λ of A and eigenvectors |φi〉 corresponding to λ, the probability
of obtaining λ when A is measured on the prepared state |ψ〉, is given by

p(λ) =
∑
i

| 〈φi|ψ〉 |2. (2.1)

Here, if the state is not degenerate in relation to the eigenvalue, the sum is
unneeded. A slight notation adjustment was done, when denoting the inner product
between states, from here on out 〈·|·〉 will be used instead of 〈·, ·〉.

2.1.1 Discrete Observables

Since A is Hermitian, its eigenvalues are all real. Also, its eigenvectors form a
complete orthonormal basis of H. So, any state |ψ〉 can be written as a linear combina-
tion of its eigenvectors:

|ψ〉 =
∑
i

ci |φλ〉 . (2.2)

In (2.2), ci are complex coefficients.

Observables that live in countable spaces3 such as A are called discrete. Since
the basis {|φλ〉} of A is, by construction, orthogonal, it obeys

〈φj|φi〉 = δji. (2.3)

And, since it is complete, we have

d∑
λ

|φλ〉 〈φλ| = I, (2.4)

where d is the dimension of the space where A is defined on. Since all physical
information is "extracted" from a physical system using observables, it is most common
to represent any state on an observable’s basis. As long as one chooses any observable
of the same Hilbert space to represent the state, all information will be contained in
3 Spaces with observables that have countable eigenvalues.
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such state. But, sometimes, choosing the right basis helps in reading that information.
However let us not get ahead of ourselves: Firstly let the definition of a projector be
written in the following definition

Definition 3. Any state-vector paired with its dual, |ψ〉 〈ψ| is called a projector. When
projectors are written based on the eigenvectors of an operator, such as Aλ := |φλ〉 〈φλ|,
they are called projectors of that operator. Projectors are useful tools that obey certain
properties.

• A projector P is idempotent, which means that applying the projector twice is
equivalent to applying it once. Mathematically,

P2 = |ψ〉 〈ψ|ψ〉︸ ︷︷ ︸
=I

〈ψ| = |ψ〉 〈ψ| = P . (2.5)

• The eigenvalues of Aλ are either 0 or 1. This property allows the projector to select
specific subspaces by projecting onto eigenspaces associated with eigenvalues
equal to 1.

Geometrically, the action of a projector can be visualized as "projecting" a vector
onto a subspace spanned by its eigenvectors associated with eigenvalues of 1, while
orthogonalizing it to the subspace associated with eigenvalues of 0.

Going further into this work most operations will be written in terms of projectors.
Therefore, familiarizing oneself with them is primal to a good understanding of it. In this
sense, one may rewrite some of the previous relations using them:

A =
d∑
i

λiAi; (2.6a)

∑
i

Ai = I; (2.6b)

AiAj = δijAi; (2.6c)

p(λ) = 〈ψ| Aλ |ψ〉 . (2.6d)

The relation in (2.6c) is valid only for orthogonal projectors. Those are not the
most general, but are the most useful. From now on all projectors are of such kind. One
may also use the projectors to calculate the observable’s mean value, such as 〈A〉 that
is given by

〈A〉 =
d∑
i

λip(λi) =
d∑
i

〈ψ|λiAλ |ψ〉 = 〈ψ|A |ψ〉 . (2.7)
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Here we might do a small sanity check of this formalism. If QM is to be considered a
consistent probabilistic theory, the chance of all possible outcomes of a measurement
must add to unity. As it turns out

d∑
i

p(λi)
(2.6d)
=

d∑
i

〈ψ| Ai |ψ〉

= 〈ψ|
(

d∑
i

Ai

)
|ψ〉

(2.6a)
= 〈ψ|ψ〉 = 1,

(2.8)

guaranteeing that, as far as statistical consistency is regarded, QM presents no pro-
blems.

2.1.2 Continuous Observables

This work focuses on systems characterized by both discrete and continuous de-
grees of freedom (DoF). In the standard formulation of QM, the mathematical framework
primarily revolves around discrete observables, such as discrete energy levels or spin
states. In the previous section, the basics for discrete DoF have been laid out. However,
the physical systems of concern, particles in continuous position or momentum spaces,
require a more comprehensive treatment that extends the mathematical tools to the
continuous case.

The study of continuous degrees of freedom introduces various challenges
compared to discrete ones. In the continuous case, observables associated with position,
momentum, and other continuous quantities cannot be represented by discrete values
or eigenstates as in the discrete case. Instead, these observables span an infinite-
dimensional non-countable space (dim(H) = ∞), making the development of new
mathematical techniques necessary.

By extending the mathematical tools from discrete observables to the continuous
case, one can gain a deeper understanding of the behavior and the properties of actual
quantum systems. This extension allows one to explore phenomena such as wave-
particle duality, interference, and superposition in systems characterized by continuous
variables.

In this section, the mathematical formalism required to handle continuous
observables in QM is laid down starting with position: Each component of a particle’s
position vector has its own Hilbert space. That is, if �R is its position operator, then
�R : Hr → Hr where Hr = Hx ⊗Hy ⊗Hz. Let one begin with one of these spaces, Hy

for instance, to then, further ahead, extend to the more general Hr space.

In Hy, the operator that defines the y-axis position of a particle is simply denoted
by Y and its eigenvectors are |y〉, that correspond to eigenvalues Y = y. As expected,
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one may construct an eigenvalue relation with those two:

Y |y〉 = y |y〉 , (2.9)

where the eigenvalues y range from −∞ to ∞. All eigenvectors of Y are still orthogonal
and form an orthonormal basis4, both requirements of QM. That is,

〈y|y′〉 = δ(y − y′); (2.10a)ˆ ∞

−∞
dy |y〉 〈y| = I. (2.10b)

Here δ(y − y′) is the so called Dirac-delta function (actually a distribution). This function
is defined as,

δ(y − y′) =

⎧⎨
⎩∞, if y = y′

0, if y 
= y′
. (2.11)

Based on this, the generic state |ψ〉 may be expanded in the position basis as

|ψ〉 =
ˆ ∞

−∞
dy ψ(y) |y〉 . (2.12)

Here ψ(y) := 〈y|ψ〉 is just a coefficient, if all the coefficients in −∞ < y < ∞ can be
associated with a function of y, then ψ(y) is called the state’s wave function.

One may write the Y operator using projectors as well, the difference is that such
projectors can take the state into infinitesimally small spaces, so they must themselves
be infinitesimal. To obtain them, one can go from discrete to continuous in the following
manner,

A =
d∑
i

λi |φi〉 〈φi| d→∞−−−→ Y =

ˆ ∞

−∞
dy y |y〉 〈y| . (2.13)

Being this the case, clearly, the continuous projectors take the form of |y〉 〈y| dy. Having
this definition in hand, one might obtain the Born rule for the continuous case, being it
defined on an infinitesimal probability dp(y), i.e.

dp(y) = 〈ψ| (|y〉 〈y| dy) |ψ〉 = 〈ψ|y〉 〈y|ψ〉 dy = |ψ(y)|2dy. (2.14)

Equipped with this infinitesimal probability, one can extend (2.14) for any interval,
such as y ∈ [a, b], by means of

p(y ∈ [a, b]) =

ˆ b

a

|ψ(y)|2 dy. (2.15)

By remembering the QM requirement that probabilities add to unity (or integrate to unity,
in this case), it’s clear that

´∞
−∞ dy p(y) = 1.

4 Normality is required so probabilities can be infered from the state. Orthogonality is required so the
states are physically distinguishable.
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As it turns out, the position operator is not the only operator of interest in the
so-called spatial Hilbert space. The momentum operator P also lives there and has
quite an interesting relation with the aforementioned position operator. Before going
further on the properties of P , let’s talk about one of the first and most revolutionary
discoveries of QM: Heisenberg’s uncertainty principle.

2.1.2.1 Heisenberg’s uncertainty principle

The principle is well encapsulated in the maxim "To know all about position is to
know nothing about momentum, and vice-versa" (HEISENBERG, 1927). One can take
this to mean that a system in a position eigenstate is in a complete superposition5 of
all possible momentum eigenstates of the same space. Or, in layman’s terms, that a
measurement of the system position erases any knowledge about its former momentum,
being the degree of erasure proportional to the precision of the measurement.

Enough being said about it, how does the principle manifest mathematically?
Let’s find out, beginning with the definition of the standard deviation of an observable A:

ΔA =

√
〈A2〉 − 〈A〉2 → ΔA2 = 〈A2〉 − 〈A〉2 . (2.16)

In plain English, ΔA2 measures the average square difference from the mean 〈A〉. Now,
we must first note that

〈(A− 〈A〉)2〉 = 〈A2 − 2A 〈A〉+ A2〉
= 〈A2〉 − 2 〈A 〈A〉〉+ 〈A〉2

= 〈A2〉 − 2 〈A〉 〈A〉+ 〈A〉2

= 〈A2〉 − 〈A〉2 .

(2.17)

Therefore ΔA2 = 〈(A− 〈A〉)2〉 := σ2
A. The consequence of this fact that matters for this

work is that, being A Hermitian (A = A†), we can define

(A− 〈A〉) |ψ〉 = |k〉 , (2.18a)

〈ψ| (A− 〈A〉) = 〈k| , (2.18b)

such that
〈(A− 〈A〉)2〉 = 〈ψ| (A− 〈A〉)(A− 〈A〉) |ψ〉 = 〈k|k〉 . (2.19)

Knowing that both the X and P operators are Hermitian, we can use the relations in
(2.18) and (2.19) to write

σ2
Y = 〈(Y − 〈Y 〉)2〉 = 〈f |f〉 ; (2.20a)

σ2
PY = 〈(PY − 〈PY 〉)2〉 = 〈g|g〉 . (2.20b)

5 Meaning equiprobability for all eigenstates of momentum.
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Having the (2.20) equations in hand we can use the Cauchy-Schwarz inequality
(MINCULETE, 2021) as

σ2
Y σ

2
PY = 〈f |f〉 〈g|g〉 ≥ | 〈f |g〉 |2. (2.21)

Now by taking a better look at the 〈f |g〉 one may realize that

〈f |g〉 = 〈(Y − 〈Y 〉)(PY − 〈PY 〉)〉
= 〈(Y PY − Y 〈PY 〉 − 〈Y 〉PY + 〈Y 〉 〈PY 〉)〉
= 〈Y Py〉 − 〈Y 〉 〈PY 〉 − 〈Y 〉 〈PY 〉+ 〈Y 〉 〈PY 〉
= 〈Y Py〉 − 〈Y 〉 〈PY 〉
= 〈Y PY 〉 − 〈PY 〉 〈Y 〉 .

(2.22)

The last property we must import from mathematics is the following inequality that
complex numbers obey:

z∗z ≥
[
1

2i
(z − z∗)

]2
. (2.23)

Substituting z for 〈f |g〉 and z∗ for 〈g|f〉 in (2.23), together with (2.21) one gets

σ2
Y σ

2
PY

= 〈f |f〉 〈g|g〉 ≥ | 〈f |g〉 |2 = 〈g|f〉 〈f |g〉 ≥
[
1

2i
(〈f |g〉 − 〈g|f〉)

]2
∴

σ2
Y σ

2
PY

≥
[
1

2i
(〈f |g〉 − 〈g|f〉)

]2
.

(2.24)

The final step in the deduction of the general Heisenberg uncertainty principle, the
so-called Robertson relation (ROBERTSON, 1929), is the realization that

〈f |g〉 − 〈g|f〉 = (〈Y PY 〉 − 〈PY 〉 〈Y 〉)− (〈PY Y 〉 − 〈PY 〉 〈Y 〉)
= 〈Y PY 〉 − 〈PY Y 〉
= 〈(Y PY − PY Y )〉
= 〈[Y, PY ]〉 .

(2.25)

such that (2.24) becomes

σ2
Y σ

2
PY

≥
[
1

2i
〈[Y, PY ]〉

]2
. (2.26)

If one adds to the previous relation the canonical commutation relation [Y, PY ] = i�I, the
most widely known form of the principle comes out:

σ2
Y σ

2
PY

≥
[
1

2i
i�

]2
=

(
�

2

)2

=

(
h

4π

)2

→ σY σPY
≥ h

4π
. (2.27)

Although the relation in (2.27) is more famous, the one in (2.26) is more useful because
it is valid for any two operators that have the same restrictions we imposed on Y and PY ,
being such restrictions that they are Hermitian. Therefore any two Hermitian operators
will obey (2.26).
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2.1.3 Consequences for Momentum

This slight tangent into Heisenberg’s uncertainty principle had as objective the
demonstration of the fact that in QM observables that are not compatible6 can live in
the same Hilbert space and consequently act on the same states. This means that QM
dictates that one cannot know a system’s position and momentum with total precision at
any time. This is in total contradiction with Classical Mechanics, where the dynamics of
a physical system is exactly the process of total description of the time evolution of such
DoF.

Furthermore, momentum and position are maximally incompatible, which me-
ans that total knowledge about one requires total ignorance about the other. As a
consequence, the respective operator bases form a pair of Mutually Unbiased Bases
(MUB)7. Other consequences of the facts just shown are that, if the ψ(y) is the position
wave-function, then a momentum wave-function ψ(py) can be obtained via the Fourier
transform of ψ(y) :

ψ(py) =
1

N

ˆ ∞

−∞
dy ei

pyy

� ψ(y), (2.28)

where N = (2π�)−1/2 guarantees normalization. Being the previous equation true, the
relationship between the bases can be summed up as 〈y|py〉 = (2π�)−1/2eiypy/� (RIOS,
2018).

2.1.4 Composite Systems

Since each independent DoF has its own Hilbert space in QM, to fully describe
a physical system one must be able to describe many DoF together. The way the theory
does it is by composing the many spaces via the tensor product ⊗. If the system has
a DoF A associated with the space HA, and another B with its space HB, then the
system’s Hilbert space, HS, can be fully described by HS = HA ⊗HB. Furthermore, if
{|ai〉} is a basis of HA and {|bj〉} a basis of HB, then {|ai〉 ⊗ |bj〉 := |ai〉 |bj〉 = |ai, bj〉}
is a basis of HS. A property of the tensor product is such that if dim(HA) = dA and
dim(HB) = dB, then dim(HS) = dAdB. Equipped with all this information, one can write
a general state of HS as

|ψ〉 =
dA∑
i=1

dB∑
j=1

cij |ai〉 |bj〉 . (2.29)

The importance of the coefficients cij cannot be overstated, being the case where
cij = cicj only a special case. Being this true, the state is called separable and can be
6 Compatibility here takes the meaning of being able to do sequential measurements where the former

does not affect the latter. Mathematically this is represented by [A,B] = 0.
7 A system prepared in an eigenstate of one of the bases has outcomes of measurement for all the

vectors of the other basis predicted to occur with equal probability. Being this probability equal to one
over the space dimension (1/d) .
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described as |ψ〉 = |φ〉A ⊗ |φ〉B. Generally, this is not the case, when at least one of the
coefficients cannot be decomposed, the state will be called entangled. Entanglement is
one of, if not the most important property of QM, at least according to one of its founders,
Erwin Schrödinger, who wrote in 1935 in a letter addressed to Albert Einstein: "I would
not call [entanglement] one but rather the characteristic trait of quantum mechanics, the
one that enforces its entire departure from classical lines of thought. By the interaction
the two representatives (particles) have become entangled" (SCHRÖDINGER, 1935).
One can expect to hear more about entanglement further ahead on this work when
Quantum Resources are discussed.

The composition of the DoF of a system has been described for discrete spaces
only. But nothing keeps one from extending it to the case where one or both HA and
HB are continuous spaces. The standard example of this happening is the case of the
position vector of a single particle in 3D, as previously mentioned, if Hr = Hx ⊗Hy ⊗Hz

then a general position state can be written on the basis {|r〉 = |x〉⊗ |y〉⊗ |z〉 = |x, y, z〉}
as

|ψ〉 =
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
dx dy dz ψ(x, y, z) |x, y, z〉 =

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
d3r ψ(r) |r〉 . (2.30)

Once again there is a coefficient that describes entanglement or separability between
the DoF of the state. As it turns out, this time this coefficient is the 3D wave-function
ψ(x, y, z) being the state separable only when ψ(x, y, z) = φ(x)φ(y)φ(z). Since |r〉 forms
a base of Hr all base properties apply and

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
dx dy dz |x, y, z〉 〈x, y, z| =

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
d3r |r〉 〈r| = I. (2.31)

Furthermore, for an position eigenstate |r〉 it follows that

|r〉 =
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
d3r′ |r′〉 〈r′|r〉 =

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
d3r′f(r′, r) |r′〉 = |r〉 . (2.32)

For the previous equation to be valid, 〈r′|r〉 = f(r′, r) must be equal to δ(r − r′), the
3D extension of the Dirac function.

All the properties described to position in Hr are directly extendable to momen-
tum in a manner not different from the one in the previous chapter,

|ψ〉 =
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
dpx dpy dpz ψ(px, py, pz) |px, py, pz〉 =

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
d3p ψ(p) |p〉 ;

(2.33a)ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
dpx dpy dpz |px, py, pz〉 〈px, py, pz| = I; (2.33b)

〈p′|p〉 = δ(p− p′). (2.33c)
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No problem appears if the system is composed of more than one entity with its position
DoF and/or any other discrete or continuous DoF8. For example, let’s consider a case
of major importance for this work, the description of a spin-1/2 particle. For a particle
equipped with both momentum and spin, its state can be written as

|ψ〉 =
ds∑
i=1

ˆ ∞

−∞
dp ψi(p) |si, p〉 . (2.34)

Here the momentum has been restricted to be one-dimensional for simplicity. The spin s

can take any integer or half-integer value, being its dimension determined by ds = 2s+1.
In the case of s = 1/2, equation (2.34) can be rewritten as

|ψ〉 =
s=1/2∑
s=−1/2

ˆ ∞

−∞
dp ψs(p) |s, p〉 , (2.35)

where ψs(p) := 〈p, s|ψ〉 represents a wave function with two discrete components. By
evaluating their coefficients one will be able to account for the quantumness in the nature
that they represent. For such, a way to detect and measure such non-classicalities must
be presented. In that sense let’s talk about entanglement and its different manifestations.

2.2 QUANTUM RESOURCES

Any useful characteristic of a physical system can be called a resource. If a
system demonstrates to have qualities of that kind that turn out to be impossible to
model using classical physics, then the system is said to possess Quantum Resources.
Although many others exist, the focus of this work will be on entanglement and resources
rarer than entanglement9. Special attention is brought to the fact that entanglement is
the main resource for several quantum computation protocols. Therefore, it has clear
importance as far as applications are of concern (HORODECKI et al., 2009). Also,
historically, the first resource to be presented as changing in a relativistic context was
entanglement (PERES et al., 2002). As it will be argued, steering, the next resource
of interest, will serve mainly as entanglement detection with an untrustworthy player,
although this characteristic is fundamental to the motivation to use it in this work, as
shall be argued later.

The apex of resource rarity is Bell non-locality (BELL, 1964), the resource that
arose from Bell’s attempt to solve the polemic proposed in the EPR paper (EINSTEIN
et al., 1935). For Bell non-locality, the correlations may be of any nature, that is, no
8 As long as one is not concerned with changes of reference frame in which one of the entities is to be

regarded as the new origin, as is the case in quantum reference frame transformations. The difficulties
associated with such cases will be expanded upon later in this work.

9 In this context, being rarer means being present in a smaller set of states.
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assumption is made about the nature of a party’s measurements. The framework Bell
developed could serve to detect even post-quantum correlations if any were discovered
(PLÁVALA, 2023). This work will not investigate the presence of this resource in the
systems of interest because all interesting objections to the entanglement creation
process that it focuses on are solved by the requirements of quantum steering alone. The
search for Bell non-locality would only further complicate the process of obtaining results
without adding much depth to them. The interesting quality of Bell non-locality of most
concern for this work is that, for pure quantum states, it is equivalent to entanglement
(YU et al., 2012). Since Steering is a kind of hybrid between Bell non-locality and
entanglement, the same equivalence holds for it, that is, for pure states, the three
resources are equivalent. Put simply, all pure entangled states are steerable and Bell
non-local.

2.2.1 Entanglement

As previously mentioned, entanglement is the complementary concept to se-
parability (DAS et al., 2016). With this simple requirement in mind, we can define it
rigorously as follows.

Definition 4. Any state |ψ〉 living in a composite Hilbert space H = HA ⊗HB, will be
separable if and only if it can be written as the tensor product of two states living in each
of the sub-spaces, that is,

|ψ〉 = |φ〉A ⊗ |φ〉B , (2.36)

where |φ〉A ∈ HA and |φ〉B ∈ HB.
If a state is NOT separable it is entangled.

As it turns out, having a definition of entanglement on hands is not enough to fully
understand the nature of the system. That is so because different states in the same Hil-
bert space can possess different amounts of entanglement, and separability alone is not
capable of distinguishing among them. To evaluate a system’s degree of entanglement
new mathematical tools must be introduced, that of density matrices.

2.2.1.1 Density Matrices

There are different and more general ways to represent a quantum state than
state-vectors. The density matrix, for instance, can model ignorance about the states in
its formalism. Let us not rush into it, if the system is described by the state vector |ψ〉,
then the density matrix associated with it is

ρ = |ψ〉 〈ψ| . (2.37)
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All density matrices have trace one and are positive operators whose general form is

ρ =
∑
i

ai |ψi〉 〈ψi| . (2.38)

In principle, the sum in (2.38) can have infinite terms as long as it represents the statisti-
cal mixture of infinitely many different |ψi〉 states each with ai probability associated with
them. In practice, many different combinations of |ψi〉 and ai can generate the same ρ

such that they are not distinguishable from one another. The trivial case of a pure state
such as the one in (2.37) happens when only one of the ai is different from 0. If the
states |ψi〉 are all orthogonal they can be at most d, being d the Hilbert space dimension.
Being this the case as well as the statistical distribution of them being uniform, this
means all ai = 1/d, then the density matrix can be written as ρ = I/d. In this case, we
have the maximum mixture, or maximum ignorance state.

Since physicists assume nature to be quantum and QM says that physical
systems are represented as pure states in a Hilbert space, how come some systems
are better modeled by states like the one in (2.38)? As it turns out, one can understand
this state as one where different states |ψi〉 are unreliably prepared with probability ai.
That is, the state is definitely in one of the |ψi〉 options but "we" (the observers) do
not know in which one. This makes explicit the way density matrices can be used to
subjective ignorance together with objective information.

These operators were introduced with the promise that they could help to
evaluate the amount of steering a system possesses, but before doing so, let’s unders-
tand how probabilities and mean values are obtained using this new formalism. The
probability of measuring B and finding a value bi is, using the trace operation

Tr(X) =

dB∑
j=1

〈bj|X |bj〉 , (2.39)

simply
p(bi) = Tr(Biρ). (2.40)

Here Bi = |bi〉 〈bi| is the projector on state |bi〉. In this sense, the mean value of a B

measurement can be obtained via

〈B〉 = Tr(Bρ). (2.41)

Now comes the interesting part, by taking the partial trace10 over one of the tensor
spaces of a composite system ρAB, one obtains the partial state of the rest11. By partial
10 For a state in a {|ai, bj〉} basis the definition on (2.40) is already a partial trace over B (MAZIERO,

2017).
11 Although slightly circular this is sound logic. The partial state can be understood as the state containing

the marginal probabilities when marginalizing over the probabilities of the traced DoF.
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state, what is meant is the best possible description of the statistical behavior of this
part of the system. Given a pure bipartite state on the Hilbert space H = HA ⊗HB, one
has that

ρAB = |ψ〉 〈ψ|
=
∑
ij

cij |ai, bj〉
∑
mn

c∗mn 〈am, bn|

=
∑
ijmn

cijc
∗
mn |ai〉 〈am| ⊗ |bj〉 〈bn| .

(2.42)

Then, being {|bk〉} a basis of HB, the partial state on A, ρA, will simply be

ρA =TrB(ρAB)

=

dB∑
k=1

〈bk| ρAB |bk〉

=

dB∑
k=1

〈bk|
(∑

ijmn

cijc
∗
mn |ai〉 〈am| ⊗ |bj〉 〈bn|

)
|bk〉

=

dB∑
k=1

∑
ijmn

cijc
∗
mn |ai〉 〈am| 〈bk|bj〉 〈bn|bk〉

=

dB∑
k=1

∑
ijmn

cijc
∗
mn |ai〉 〈am| δkjδnk

=

dB∑
k=1

∑
im

cikc
∗
mk |ai〉 〈am|


=(|φ〉 〈φ|)A.

(2.43)

The intended meaning of the last line in equation (2.43) is that "in general" the partial
state is not a quantum(pure) state. If the state is separable, cik = cick and c∗mk = c∗mc

∗
k,

therefore

ρA =
∑
im

cic
∗
m |ai〉 〈am|

dB∑
k=1

ckc
∗
k

=
∑
im

cic
∗
m |ai〉 〈am|

=(|φ〉 〈φ|)A.

(2.44)

What the previous equations demonstrate is that a pure partial state is obtained from a
pure global state if this global state is separable. Even though this is the case, it is a fact
that

p(ai) =Tr(Ai ⊗ IBρAB)

=TrA(TrB(Ai ⊗ IBρAB))

=TrA(AiρA),

(2.45)

meaning that the statistics of a measurement in one of the subsystems is preserved in
its partial state. Since for a pure state, a suitable projective measurement can return
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results with probability one, it is possible to detect if one’s partial state is pure or, not
finding any measurement as such, mixed. This means that, under the assumption that
the total state is pure, if this formalism is to be believed, measurements on the partial
state serve to detect entanglement (entangled states will have NO partial projection
with probability one).

With this strong condition in hand, one can measure the "mixedness" of the
partial state to detect the degree of entanglement of the whole state. As it turns out,
there is a great way to do so, by measuring the partial state’s entropy!

2.2.1.2 Entropy

In classical information theory, entropy can be understood as a measure of
ignorance about a statistical quantity. The standard derivation of this concept is the
Shannon entropy H (SHANNON, 1948). For a random variable X that can take values
xi with i = 1, 2...N each with probability pi associated to them, the Shannon entropy is

H(X) = −
N∑
i=1

pi ln(pi). (2.46)

H(X) quantifies the amount of information obtained by measuring or revealing the value
of X. That is why it can be understood as the lack of knowledge or ignorance over the
distribution. To visualize this, consider the case in which the value of x is always known,
x = a for instance. In this case we have total knowledge of x. The probability that x = a,
p(x = a) = 1 and since it is a single outcome (N = 1), the entropy H(X) = −1 ln(1) = 0.
Therefore, total knowledge implies null entropy. The opposite case, when X is maximally
unknown, happens when, for a given number of possibilities N , the probability of any
given xi, pi, is equal to 1/N . This means that there is no preferential value for x and,
conveniently, this is the case in which the entropy takes its maximum value.

Using the density matrix formalism, an analogous quantity can be defined
for quantum states, that being the von Neumann entropy S (VON NEUMANN, 2013),
defined as

S(ρ) = −Tr(ρ ln(ρ)). (2.47)

The connection between both quantities is made by using the diagonal representation
of ρ so that (2.47) reduces to (2.46). For S to be equal to zero, ρ must be a pure state.
On the other hand, if ρ = I/d,then S(ρ) = ln(d), being this its maximum value.

One paying good attention will remember that a pure partial state is connected
to a separable global state and a mixed partial state to an entangled global one. S being
sensitive to state purity makes it a great candidate for a measure of entanglement and,
as it turns out, it is. Defining the partial state entropy as

SA(ρAB) := S(ρA) = −Tr(ρA ln(ρA)), (2.48)
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one gets a smooth function that goes from zero, in the separable state case, to ln(d) for
the maximally entangled state.

Lastly, it is important to spotlight the fact that the partial trace entropy is symme-
tric, meaning that, for pure states, SA(ρAB) = SB(ρAB). This is rapidly proven by taking
into consideration the Araki-Lieb inequality (NIELSEN; CHUANG, 2010)

|S(ρA)− S(ρB)| ≤ S(ρAB) ≤ S(ρA) + S(ρA). (2.49)

Since the global state is pure, S(ρAB) = 0 making the equality SA(ρAB) = SB(ρAB)

unavoidable. As a consequence, for a pure global state that lives in a bipartite space
in which each partition has different dimensions, as will be the case for the states of
interest in this work, the entropy will be limited by the dimension of the smaller dimension
state. Having the benefit of hindsight, this fact can be said to have great consequences
for the species of phenomena being researched by this project.

Before advancing into more abstract concepts, let’s take time to appreciate the
meaning of the fact that the entropy of a partial state can be greater than the entropy of
its global counterpart. If entropy is ignorance, the reasonable conclusion is that there
can be more information about a system than the information contained in its parts.
Furthermore, a direct consequence of this is that the correct description of the physics
of a state accessible to an observer may, and in general does, depend on information
not contained within his or her grasp. No connection between a state and the spatial
position of the physical system it represents has been drawn. Therefore, in principle, the
partial states may be as distant as it is feasible and still carry information about each
other that a correct description of physics can’t be done without. It is based on facts of
this kind that QM is said to be a non-local theory.

Now, the formalism of entanglement has been introduced on the assumptions
that the global state is pure and completely known; what may one conclude if one or
both of these conditions are relaxed? Is it possible to detect entanglement only with
information about the partial state? Questions as such will be addressed next.

2.2.2 Quantum Steering

Beginning with the same bipartite state ρAB, if two different observers Alice
and Bob, receive the partial states ρA and ρB, respectively, working together they can
do quantum-state-tomography12 to discover both the partials and the global state they
are given. Having modeled out the states, to measure entanglement becomes a trivial
matter. But what if they do not work together?
12 The process of doing a large number of measurements of different observables to determine the

quantum state a source is producing.
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If only Bob, for instance, does state-tomography in its partial state, and Alice
affirms that she is doing measurements that somehow perturb Bob’s state, as would be
the case if the states were entangled, how can Bob falsify Alice’s statement? Or, put
differently, how may one observer certify quantum correlations, such as entanglement,
when only one of the players in the protocol is to be trusted?

To these questions, quantum steering is the answer (WISEMAN et al., 2007;
UOLA et al., 2020)! In a descriptive sense, steering is the ability of one party to alter,
in some way, the physical system that another party possesses, but certified only with
the latter party. For such a task, entanglement between both parties’ states is a must.
That is so because, as previously mentioned, all steerable states are entangled. With
such a definition in mind, a protocol for steering detection can be laid out. If all local,
where local means "that which is related to the partial state", statistics can be described
by a quantum state that in no way depends on another party’s influence, a so-called
"local hidden state" then the state is said to be unsteerable. In mathematical terms,
given the bipartite state ρAB, if Alice performs a choice x of measurement, obtaining a,
after informing both the choice and results of its measurements to Bob, he is left with
an unnormalized conditional state �a|x. The set of all �a|x is called an assemblage and
represents all of Bob’s information about his partial state. Such is made evident when
one realizes that ∑

a

�a|x = ρB = TrA(ρAB). (2.50)

Equation (2.50) is valid for cases where Alice is in possession of a quantum state just
like Bob. In general, Alice’s portion can be of any nature and its local nature may be
probed with any kind of measurement or none at all. Alice can, if she wishes to, just
inform Bob about a made-up result on a given choice. That’s why Alice is considered
"untrusted" in this formalism.

In possession of its assemblage, Bob will try to explain it with a hidden state σλ

associated with probabilities p(λ), with λ representing a hidden variable that parameteri-
zes the system. Being this the model of its assemblage, all Alice can do is update the
probability of the states such that

�a|x = p(a|x)
ˆ

dλ p(λ|a, x)σλ =

ˆ
dλ p(λ)p(a|x, λ)σλ. (2.51)

If the statistics obtained by Bob fit into a model of the kind in (2.51), then the state is not
steerable. The first integral on (2.51) coresponds to the case in which the information
on Alice’s side (choice x and result a) just gives new information about the distributions
of the states in σλ. This has the effect of updating p(λ) to the more restricted p(λ|a, x)
distribution. The second integral in equation (2.51) represents a situation where Alice is
in possession of the p(λ) distribution and decides to simulate the σλ states. With her
simulation, she can obtain �a|x drawing from the pool of local hidden states and, by
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FIGURE 1 – Diagram of a standard steering-detection setup. Alice (A), on the left, and Bob
(B), on the right, share a bipartite quantum state ρAB. Alice, using her black
box, chooses to measure the observable x obtaining a as a result. Bob performs
tomography in his local state and is informed of Alice’s procedures via classical
communication. Putting his and her results together, he produces the assemblage
�(a|x) and questions if it may be explained by a local hidden state model to falsify
steerability in the scenario.

choosing x, obtain the results a. Both interpretations can be made equivalent (UOLA
et al., 2020). A diagram of a standard setup for steering certification can be found
in figure 1. There, both parties receive quantum states since Nature is assumed to
be quantum and the experimental procedure will use quantum measurements. This
diagram is followed by the previously mentioned resource hierarchy (figure 2) that shows
the steering position relative to entanglement.

2.2.2.1 Steering Criteria

Though not too great in complexity, the difficulty surrounding the concept of
steering is to rigorously prove that no local hidden state is present given only the
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FIGURE 2 – Diagram of the quantum resource hierarchy for resources rarer than entanglement.
The diagram format does not have a one-to-one correspondence to the number of
states that possess each resource. It serves only to demonstrate that all non-local
states are steerable and entangled, all steerable states are entangled, but not
all entangled states are steerable or non-local. Just as not all steerable states
are non-local. Thanks to the well-defined hierarchy, steering always serves as
entanglement detection.

assemblage. Symmetries of the state may help reduce the complexity of the task,
but, given a general state, there is no known way to construct a specific local hidden
state model for it. Then, to make steering detection operationally feasible, the standard
strategy is to assume that the system does obey (2.51) and construct around the
assumption some kind of inequality that, when violated, will falsify the assumption. These
inequalities are called "steering criteria" and represent the usual way that steerable
states are found and measured in the literature (UOLA et al., 2020).

Although criteria for discrete states are more prevalent in the literature, there
are also criteria appropriated for continuous DoF and even for the discrete to continuous
case. In this work, the criteria of choice are "Reid’s variance criterion" (REID, 1989)
and the "entropic uncertainty criterion" (SCHNEELOCH et al., 2013), which will be
introduced next. Before beginning, it is important to call attention to the fact that Reid
was talking about more-than-classical correlations in her work before the concept of
steering had been formally established. The term used by the author for her work’s
results was "Einstein-Podolsky-Rosen paradox", later the community came to interpret
her proposed detection of this kind of paradox as the same as the detection of steering.
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2.2.2.2 Reid’s Variance Criterion

Considering a set of two continuous observables on Bob’s side, made up of
linear combinations of the usual canonical ones

Bβ1 = XB cos β1 + PB sin β1;

Bβ2 = XB cos β2 + PB sin β2.
(2.52)

Between Bβ1 and Bβ2 an uncertainty principle may be established using the general
formula (obtained on (2.26))

σ2
Xσ

2
Y ≥

(
1

2i
〈[X, Y ]〉

)2

, (2.53)

where σ2
X is just the variance of X and [X, Y ] is the commutator of X and Y . By setting

X = Bβ1 and X = Bβ2, one finds

σ2
Bβ1

σ2
Bβ2

≥
(

1

2i
〈[Bβ1, Bβ2]〉

)2

=

(
1

2i
〈[XB cos β1 + PB sin β1, XB cos β2 + PB sin β2]〉

)2

=

(
1

2i
〈cos β1 sin β2[XB, PB] + sin β1 cos β2[PB, XB]〉

)2

=

(
1

2i
〈cos β1 sin β2(i)I+ sin β1 cos β2(−i)I〉

)2

=

(
1

2
〈cos β1 sin β2I− sin β1 cos β2〉 I

)2

=
1

4
sin(β1 − β2)

2.

(2.54)

Here the canonical commutation relation was considered to be [X,P ] = iI. For simplicity,
this condition can be obtained by setting � = 1 or PB = P/�. Since those are observables
on Bob’s side, the side in which quantum measurements are to be taken, the bound of the
inequality being constructed should only depend on the qualities of these observables.
With the intent of maximizing this bound so that the criterion is as tight as possible,
meaning, able to detect steering as often as possible, the condition β1 − β2 = π/2 is
established guaranteeing that

σ2
Bβ1

σ2
Bβ2

≥ 1

4
. (2.55)

The derivation of (2.55) is based on the work present in Paulo Muraro’s thesis (FER-
REIRA, 2019). Given the relation in (2.55), Reid’s variance criterion can be put forth as:
If there are any choice of measurements on Alice’s side A, such that

σ2
min(Bβ1)σ

2
min(Bβ2) <

1

4
, (2.56)

where σ2
min(B) =

´
da p(a)σ2(B|a), being a and b measurement results of Alice and Bob

respectively and σ2(B|a) the conditional variance of Bob’s over Alice’s measurement of
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A obtaining a as result, the state is steerable13. Otherwise, if σ2
min(Bβ1)σ

2
min(Bβ2) ≥ 1

4
,

it is not. A level of intuition about this may be gained by understanding the following
argument: if X and P are incompatible, a maximal classical correlation between Alice’s
state and one of the DoF would imply no correlation with the other. Being this so,
for the variance of BOTH DoF to be brought bellow their limits together, a more than
classical correlation must be shared. Since the certification depends only on Bob’s
measurements, it qualifies as a steerign criterion.

Writing the condition explicitly one gets that, for steerable states and the right
choice of measurements

ˆ
da1p(a1)σ

2(Bβ1|a1)
ˆ

da2p(a2)σ
2(Bβ2|a2) < 1

4
. (2.57)

By making assumptions about the nature of Alice’s measurements the condition
could be further refined. This will be done later by taking into consideration the part of
the physical system being analyzed by Alice and its characteristics.

2.2.2.3 Entropic Uncertainty Criterion

Being QM a probabilistic theory, we can model a projective measurement
observable to behave not differently from the random variable used in (2.46). Being this
so, if B1 =

∑d1
i=1 λi |αi〉 〈αi| and B2 =

∑d2
i=1 λj |βj〉 〈βj|, for a given state (SCHNEELOCH

et al., 2013),
H(B1) +H(B2) ≥ − log2(ΞB), (2.58)

where ΞB = maxi,j(| 〈αi|βj〉 |2) is the maximized overlap between the projective eigens-
tates. As it is clear to see, if the observable are the same, ΞB = 1, its maximum value,
and log2(ΞB) = 0 so that both entropies can be zero simultaneously. If the observables
are somewhat different, ΞB < 1 and − ln(ΞB) > 0, meaning that both entropies are
never zero at the same time. In the case of completely distinct, continuous observables,
− log2(ΞB) = log2(πe) (BIAŁYNICKI-BIRULA; MYCIELSKI, 1975).
13 σ2(B|a) is the variance after Alice has informed Bob about A and a. Bob measures his variance

normally but is sure to tag it with Alice’s information to verify if she was able to successfully diminish it.
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Now, let’s consider the so-called conditional entropy

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y)

= −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log2(p(x|y))

= −
∑

y∈Y,x∈X
p(y)p(x|y) log2(p(x|y))

= −
∑

y∈Y,x∈X
p(x, y) log2

(
p(x, y)

p(y)

)

= −
∑

y∈Y,x∈X
p(x, y)[log2(p(x, y))− log2(p(y))]

= −
∑

y∈Y,x∈X
p(x, y) log2(p(x, y)) +

∑
y∈Y,x∈X

p(x, y) log2(p(y))

= −
∑

y∈Y,x∈X
p(x, y) log2(p(x, y)) +

∑
y∈Y

p(y) log2(p(y))

= H(X, Y )−H(Y ).

(2.59)

This entropy has interesting properties. If X and Y are independent, p(x, y) = p(x)p(y)

and

H(X|Y ) = −
∑

y∈Y,x∈X
p(x, y) log2(p(x, y)) +

∑
y∈Y

p(y) log2(p(y))

= −
∑

y∈Y,x∈X
p(x)p(y) log2(p(x)p(y)) +

∑
y∈Y

p(y) log2(p(y))

= −
∑

y∈Y,x∈X
p(x)p(y)[log2(p(x)) + log2(p(y))] +

∑
y∈Y

p(y) log2(p(y))

= −
∑

y∈Y,x∈X
p(x)p(y) log2(p(x))−

∑
y∈Y,x∈X

p(x)p(y) log2(p(y)) +
∑
y∈Y

p(y) log2(p(y))

= −
∑
x∈X

p(x) log2(p(x))−
∑
y∈Y,

p(y) log2(p(y)) +
∑
y∈Y

p(y) log2(p(y))

= −
∑
x∈X

p(x) log2(p(x)) = H(X).

(2.60)
This means that independence makes it so that Y cannot condition X. Such a fact
will be of major importance when this kind of conditionability translates to correlations
between both variables. Following this vein, if acquiring knowledge of Y gives the same
amount of knowledge about X, that is, x and y can be ordered such that p(x) = p(y)

implying p(x, y) = p(y), then

H(X|Y ) = −
∑

y∈Y,x∈X
p(x, y) log2(p(x, y)) +

∑
y∈Y

p(y) log2(p(y))

= −
∑
y∈Y,

p(y) log2(p(y)) +
∑
y∈Y

p(y) log2(p(y))

= 0.

(2.61)
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This means that the conditional entropy goes to zero only when X and Y are comple-
tely correlated. Thus, by summing the conditional entropies relative to incompatible
observables, and achieving diminishing values for both, one may only explain the corre-
lations using a quantum (at least more than classical) framework. Since the bound is
established over only one of the parties, this process serves to detect steering.

After this tangent on the properties of H(X|Y ), it should be clear that H(X|Y )

is, at maximum, equal to H(X). Therefore, exchanging X for B and Y for A one can
rewrite (2.58) as

H(B1|A1) +H(B2|A2) ≥ − log2(ΞB), (2.62)

where violations will occur only when the correlations between A and B are enough
to decrease the left-hand-side of (2.62) bellow the bound determined using only B1

and B2. The interpretation of this process as a steering criterion becomes clear when
one realizes that the B observables can be attributed to Bob who, by being trusted,
establishes the bound, and the A observables are given to Alice, that will, through
measurements, attempt to acquire enough information about Bob’s state so as to violate
the entropic uncertainty relation first established in (2.58). The way this criterion was
derived in this work varies from its historical appearance (WALBORN et al., 2009).
There the impossibility of local hidden states is taken as the focus rather than our
"one-party-verified more-than-quantum correlations" method. The results are the same.

This criterion has many advantages, it is known to be tighter than others
(SCHNEELOCH et al., 2013), meaning that it detects steering for all states other
criteria do and then some more. It is also appropriate for hybrid continous-discrete
systems, being this the type of system this work is interested in. The price paid for
these advantages is added mathematical complexity when evaluating the conditional
entropies. At times, no analytical solution can be obtained, in such cases, numerical
methods may be utilized.

2.3 CHAPTER CLOSING REMARKS

After careful study of this chapter, one should be familiar with the basic concepts
of quantum theory as well as the mathematical formalism that describes it. Furthermore,
laid over this knowledge one should be able to understand and identify quantum resour-
ces, those more-than-classical correlations. Cpncepts like entanglement and steering,
make QM a wonderful tool to, by deconstructing it, expand one’s intuition about Nature
and its phenomena. In the subject of intuition, it is not at all uncommon for an individual
to take time to grasp some of the more abstract concepts of QM. Do not be dismayed if
you find yourself on that camp, even the Nobel Laureate Richard Feynman, famous for
his contributions in quantum theory, once said "If you think you understand quantum
mechanics, you don’t understand quantum mechanics". Familiarizing oneself with the
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heretofore-presented concepts may take time, but the insight about nature obtained is
worth the effort.

If one has caught a taste for counter-intuitive concepts in theoretical physics, the
next chapter will be to this one’s liking. The theory of relativity has very little in common
with QM besides being born in the same period. Presenting concepts that intuition often
fails to capture may be their similarity.
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3 RELATIVISTIC FORMALISM

In the following chapter, one can find the tools of special relativity (SR) that are
needed in the derivation of this work results. Before mastering one’s understanding
about such theory, one must learn the mathematical tools it is based on, those of Group
theory. Group theory is a very extensive area of study in mathematics and essential
for the development of any sophisticated understanding of abstract algebra. For such
reasons, this work does not intend to describe all there is to know about group theory,
being content by just borrowing the useful concepts and ignoring the overwhelming rest.
Much of the formalism hereby presented is based on references such as (TUNG, 1985)
and (WEINBERG, 1995).

3.1 GROUP THEORY FORMALISM

3.1.1 Basics of Group Theory

Group theory is a branch of mathematics that studies the abstract structure of
groups. A group is a set of elements equipped with a binary operation that combines
any two elements, called composition, to form a third element of the same group. Such
property can be written as

∀ X, Y ∈ G∃ Z := X ◦ Y ∈ G. (3.1)

Here G is the group of interest and X, Y and Z are some of its elements. Also, ◦
represents composition. Although necessary, (3.1) is not enough to rigorously define a
group. For that ◦ must also obey three properties:

1. Association. If X, Y and Z are elements of G, then

(X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z). (3.2)

2. Identity. A group must have an unique element I, that when composed with any
other element leaves it unaltered. That is, for X ∈ G it follows that

X ◦ I = X. (3.3)

I is called the identity or neutral element of G.

3. Inverse. For every X ∈ G there exists X−1 ∈ G, such that

X−1 ◦X = X ◦X−1 = I. (3.4)

X−1 is called the inverse of X.
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From properties 2 and 3 it follows that

I
−1 = I ∴ (3.5a)

X ◦ I = I ◦X. (3.5b)

Now equipped with the basic concepts of what a group is, one can start to narrow down
into more useful cases. Since the intent of this chapter is to describe the formalism of
SR, where Lorentz Transformations are of major importance, let us learn a bit about
transformation groups.

3.1.2 Transformation groups

Transformation groups are closely related to symmetry groups: transformation
groups frequently consist of all transformations that preserve a certain inherent structure
(a symmetry). Recalling Noether’s theorem, one can say that, in a physical system, the
presence of a symmetry of the action is equivalent to a conservation law. Therefore
transformation groups can be understood as the groups of operators that conserve
quantities.

In the next section one can find the group that preserves space-time intervals
and its properties. Such group is called the Poincaré group and it is the place where
Lorentz Transformations live.

Before going further, it is important to bring attention to the fact that Matrix
Groups1 are a special kind of transformation group. This fact is majorly important for
this work because, as will be seen, Lorentz transformations can be written as matrices.

3.1.3 Poincaré group

The Poincaré group and its subgroups are the major focus of this chapter.The
Poincaré group is the group of minkowski space-time isometries2. This particular group
has some very important properties that must be listed even before we define operation
within it.

• Non-Commutativity. The Poincaré group is non-Abelian3, that is, in it exist at
least two elements a and b such that a ◦ b 
= b ◦ a.

1 A matrix group G consists of invertible matrices over a specified field K, where matrix multiplication is
a well-defined operation.

2 The minkowski space is a combination of spacial and time manifolds, the isometries referred are the
invariance of intervals between two distinct events.

3 One can understand this property by considering that this group contains the famous three-dimensional
rotation group SO(3), where two members (rotations) do not, generally, commute.
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• The cake is a Lie. The Poincaré group is a Lie-group. A direct consequence of
this is that this group is both continuous and a differentiable manifold4. Put simply,
Calculus applies!

• Isometric Interval. As said before, this is a group of transformations, but of a
special kind. These transformations are the Minkowski isometries, in other words,
they preserve space-time intervals.

3.1.4 Poincaré Symmetry

To define rigorously the members of a group it is quite useful to explore its
transformations. From now on, the notation used for the Poincaré group is P and it has
three types of transformations.

1. Translation. Displacements in both space and time (P) form an Abelian Lie-
subgroup of Poincaré’s. That is, P is symmetric under 4-translation.5

2. Rotations. Rotations on space (and not time) (R) are a symmetry of P. Rotations
also form a Lie-subgroup just like translations except by being not Abelian.

3. Boosts. Boosts (K) are the only transformation of P that do not form a subgroup6.
Anyhow, they are the transformations connecting any two uniformly moving bodies.

It is useful to separate and distinguish the three symmetries because the last
two, R and K, compose the Lorentz group (L). Most phenomena of this work are
described by L alone, it being a subgroup of P and simpler to work with.

The Poincaré symmetry is associated with ten generators, implying, by Noether’s
theorem, on ten conservation laws. As it turns out, it has one for the system’s energy,
one for each of its linear and angular momentum components, six in total, and lastly,
three for the velocity of the center of mass (BARNETT, 2011).

As shown, the allegorical "habit hole" of group theory runs quite deep. Having
listed enough characteristics of P, let us move toward defining operation within it and to
the derivation of its properties.
4 A manifold is a topological space that locally resembles Euclidean space. It is "flat" near to each point,

no sharp edges.
5 We use 4-translation to name a displacement in four dimensions, three spatial and one temporal.
6 The importance of this fact cannot be overstated. Such fact will become evident when Wigner rotations

are introduced further in the work.
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3.2 FROM POINCARÉ TO LORENTZ

3.2.1 Definitions within Poincaré’s group

Since this work interest is in space-time isometries, the fundamental element
will be a 4-vector, that is, a four dimensional vector. For instance, the coordinates in this
space are given by xμ = (ct, �x); here time is taken to be just another dimension, not so
different from the three spatial ones. The components of such vector are noted by xμ

where μ goes from zero to three to account for the four dimensions. The choice of a
Latin letter for the index, such as i or j instead of μ, would represent only the spatial
part, that is, the one to three components. One should also know that summation is
implied for repeated indices7. The last step is to define a "metric signature8". This can
be achieved by choosing a metric tensor η. We shall proceed with the quite standard
η = diag(1,−1,−1,−1).

Some terminology must also be introduced, when a 4-vector has upper indexed
components, such as xμ, it‘s called contravariant ; if instead it has a low index such as
pμ, it is called covariant. Both forms are connected by the metric tensor via

kμ = ημνk
ν . (3.6)

As an example, let us look at the covariant form of the coordinate vector:

xμ = ημνx
ν = (ct,−�x)T , (3.7)

in matrix notation this is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0

−x1

−x2

−x3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
x0

x1

x2

x3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (3.8)

The Mikowski space, M from now on, has as inner product 〈·, ·〉 defined as

〈x, y〉 = x0y0 − x · y =
∑
μ,ν

ημνx
μyν = xTηy. (3.9)

The previous equation contains the last example of explicit summation, from now on
Einstein’s notation takes over. The following equations will have both tensor and indexical
notations.

Finally, the generic element of the Poincaré group can be defined as Λ with
coordinates Λμ

ν such that, any two inertial frames with position vectors given by x′ (with
7 This is the so-called "Einstein notation".
8 A metric is a way to measure distances. In this context, the metric measures the distance between

points in Minkowski space-time.
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coordinates x′μ) and x (with coordinates xν)9 are connected by means of

xμ′ = Λμ
νx

ν + aμ, (3.10a)

x′ = Λx+ a. (3.10b)

In (3.10b), Λ is a 4x4 matrix defined by 16 coefficients (not all independent) and a is
a 4-translation. The major property of these elements is that they leave the interval
(ds2 = 〈dx, dx〉) invariant :

ds′2 := dx′μdx′
μ = dxνdxν = ds2. (3.11)

Written as a rigorous statement, Λ ∈ P ⇐⇒ ∀x′, x ∈ M, connected via (3.10), it follows
that 〈dx′, dx′〉 = 〈dx, dx〉. Knowing this, for (3.10) to obey (3.11) it suffices that

ημνΛα
μΛ

β
ν = ηαβ; (3.12a)

ΛTηΛ = η. (3.12b)

Such sufiency can be proven by taking the definition (3.11) together with the property
in (3.6):

ds′2 := dx′μdx′
μ = ηνμdx′

νdx
′
μ = ηαβdxαdxβ = dxβdxβ = ds2 ∴

ηνμdx′
νdx

′
μ = ηαβdxαdxβ

(3.10)−−−→ ηνμdx′
νdx

′
μ = ηνμΛα

νΛ
β
μdxαdxβ = ηαβdxαdxβ ∴

ηαβ = ηνμΛα
νΛ

β
μ,

(3.13)

or, for tensor notation,

ds′2 = 〈dx′, dx′〉 = dx′Tηdx′ = dxTηdx = 〈dx, dx〉 = ds2 ∴
dx′Tηdx′ = dxTΛTηΛdx = dxTηdx −→ ΛTηΛ = η.

(3.14)

The theory demands that its elements satisfy the following properties.

1. Scalars. Any quantity that has the same value in all reference frames connected
by Lorentz transformations is called an scalar or a invariant. The prime examples
of this concept are the notion of interval, the speed of light in the vacuum, as well
as fundamental properties of matter, such as charge and rest-mass.

2. Vector Transformation. The way a vector transform was defined in (3.10) for the
contravariant case. Let us extend it for the covariant one:

x′
ν = ηνμx

′μ

= ηνμ(Λ
μ
νx

ν + aμ)

= ηνμΛ
μ
ν (η

νμηνμ)x
ν + ηνμa

μ = Λν
μxμ + aν

= Λν
μxμ + aν .

(3.15)

Hopefully, one infers from (3.15) that Λν
μ is the transposed inverse of Λμ

ν .
9 The different coloring done to 4-vectors serves as a visual aid to help identifying wich frame of

reference they belong to. The same and more common "primed" notation is in use as well.
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3. inner Product Invariance. The inner product is always done between a covariant
and a contravariant vector through dual pairing. To know the product between
vectors V and W with components V μ and W ν is to realize the process given by

〈V,W 〉 = VνW
ν = ηνμV

μW ν = V 0W 0 − V 1W 1 − V 2W 2 − V 3W 3. (3.16)

Further restrictions on P are still required. Since space-time translations, such
as aμ, maintain the intervals invariant10, one can focus in the transformations where
aμ = 0 without losing neither generality nor the power to describe interesting phenomena.
The Poincaré subgroup with such restriction is called the homogeneous Lorentz group,
or Lorentz group for short. This group is denoted as L as foreshadowed in section
(3.1.4).

3.2.2 Definitions within Lorentz group

As previously noted, Lorentz group is a subgroup of Poincaré’s (L ⊂ P). As a
group, L obeys the properties (3.1) to (3.4). That is, given a set of Λs ∈ L, it follows that

For Λ1,Λ2 ∈ L, Λ3 := Λ1Λ2 ∈ L; (3.17a)

Λ3(Λ2Λ1) = (Λ3Λ2)Λ1; (3.17b)

I = Λ0 := Λ(v = 0); (3.17c)

Λ−1(v) = Λ(−v),∈ L, (3.17d)

where v is the parameter that defines Λ.

This is still quite general, but one can achieve further restrictions within this
group. By taking the determinant of (3.12b), with the fact that det(η) = −1, one obtains
that

det(ΛTηΛ) = det(η) = −1 ∴
det(ΛT ) det(η) det(Λ) = −1 −→ det(ΛT ) det(Λ) ∴

det(Λ)2 = 1 ∴ det(Λ) = ±1.

(3.18)

By doing a similar process for the case when α = 0 and β = 0 in (3.12a), one may note
that

ημνΛ0
μΛ

0
ν = η00 = 1 ∴
1 = η00Λ0

0Λ
0
0 + η11Λ0

1Λ
0
1 + η2Λ0

2Λ
0
2 + η33Λ0

3Λ
0
3;

1 = Λ0
0Λ

0
0 − Λ0

1Λ
0
1 − Λ0

2Λ
0
2 − Λ0

3Λ
0
3.

(3.19)

This means that
(Λ0

0)
2 = 1 + (Λ0

1)
2 + (Λ0

2)
2 + (Λ0

3)
2 ≥ 1. (3.20)

As it turns out, L can be subdivided neatly based on the conditions defined in (3.18)
and (3.20):
10 The intervals are defined by differentials (ds2), translations like aμ do not contribute because daμ = 0.
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• L1 = {Λ ∈ L : det(Λ) = 1}. This is the set of the proper 11 Lorentz transformations.

• L−1 = {Λ ∈ L : det(Λ) = −1}. This is the set of the improper 12 Lorentz transfor-
mations.

• L
+ = {Λ ∈ L : Λ0

0 ≥ 1}. This is the set of the orthochronous13 Lorentz transforma-
tions.

• L
− = {Λ ∈ L : Λ0

0 ≤ −1}. This is the set of the anachronous14 Lorentz transforma-
tions.

Some of these sets might intersect. But only one intersection between them forms a
group. The so-called restricted Lorentz group15

L
+
1 = L1∩L

+ = {Λ ∈ L : det Λ = 1,Λ0
0 ≥

1}. One great way to understand the fact that only L
+
1 forms a group is the fact that, to be

a group I ∈ L
+
1 is required. As it will be shown later, any infinitesimal transformation must

be infinitesimally close to identity. Therefore such transformations are also part of L+
1 .

Since finite transformations are constructed as successive infinitesimal transformations,
all finite Λ ∈ L

+
1 . Furthermore, it is useful to evaluate into which set, certain standard

transformations live:

• Parity Inversion (P̂ ). This operation flips the sign on all spatial coordinates
∴ P̂ = diag(1,−1,−1,−1). By evaluating the conditions that define the sets
previously defined, it is easy to identify that

P̂ ∈ L
+
−1. (3.21)

• Time Inversion (τ̂ ).This is the operations responsible for changing the sign on the
time component ∴ τ̂ = diag(−1, 1, 1, 1). This fact identifies the transformation with
a set by

τ̂ ∈ L
−
−1. (3.22)

• Time-Parity Inversion (-I := P̂ τ̂ ). Since both P̂ , τ̂ ∈ L, they obey composition. As
it turns out their composition also forms a symmetry that reverses the sign of all
components ∴ τ̂ = diag(−1,−1,−1,−1), making it easy to identify the fact that

−I ∈ L
−
1 . (3.23)

11 So-called because they preserve spatial directions, no parity change.
12 The negation of proper, invert spatial directions
13 This means "preserving time’s direction".
14 This set has no standard name in literature. The author choose to name it so as a negation of

orthochronous, that is, not preserving time’s direction.
15 A.K.A homogeneous Lorentz group or proper ortochronous Lorentz group.
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FIGURE 3 – The Poincaré group and its subgroups of importance presented on a Venn diagram.
The most particular one, the Restricted Lorentz Group, is composed by Boosts
and Rotations and can be extended to the Lorentz group via the symmetry related
elements, P̂ , τ̂ and P̂ τ̂ . Adding translations to the Lorentz group one obtains the
most general group in this work, Poincaré’s.

The earlier alluded fact that these transformations are important becomes
apparent when one realizes that L

+
1 = P̂L

+
−1, L

+
1 = τ̂L−

−1 and L
+
1 = −IL

−
1 . As a

consequence of the relations listed, one may realize that all the non-group forming sets
are actually the cosets of L in relation to L

+
1 , that is

L = L
+
1 ∪ L

−
1 ∪ L

+
−1 ∪ L

−
−1. (3.24)

To distillate in a more didactically useful manner, the results of the previous
section can be summed up in a diagram, such as the one showed in figure 3:

3.2.3 The Restricted Lorentz Group

Any member of L+
1 , the Restricted Lorentz Group (RLG), can be written as two

parts with distinct properties. They are Boosts (B(v)) and Rotations (Rn̂(θ)).

Boosts, as transformations, take vectors in a frame of reference into vectors
in another frame associated with an observer traveling away from the former with a
constant velocity v. A boost could take, for example, a 4-vector in S, such as xμ to
another vector x′μ in S’, where S’ is moving away from S with v and their spacial axes
are aligned. The matrix representation of a general boost is given by

B(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ −γ vx
c

−γ vy
c

−γ vz
c

−γ vx
c

1 + (γ − 1)v
2
x

v2
(γ − 1)vxvy

v2
(γ − 1)vxvz

v2

−γ vy
c

(γ − 1)vyvx
v2

1 + (γ − 1)
v2y
v2

(γ − 1)vyvz
v2

−γ vz
c

(γ − 1)vzvx
v2

(γ − 1)vzvy
v2

1 + (γ − 1)v
2
z

v2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (3.25)
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Different frames of reference may be required to have different orientations for
their axes in SR. Therefore rotations are part of L+

1 . Since they do nothing about the
time component, SR’s rotations are just three-dimensional rotations that operate like
identity on time: {

1 0

0 Rn̂(θ)

}
, (3.26)

Where Rn̂(θ) is an usual three-dimensional rotation, like the basic examples of

Rx̂(θ) =

⎧⎪⎨
⎪⎩
1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

⎫⎪⎬
⎪⎭ , Rŷ(θ) =

⎧⎪⎨
⎪⎩

cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

⎫⎪⎬
⎪⎭ ,

Rẑ(θ) =

⎧⎪⎨
⎪⎩
cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

⎫⎪⎬
⎪⎭ .

Boosts alone DO NOT form a group. We can‘t guarantee that B(u)B(w) = B(v).
Therefore, a general transformation in the RLG is written as:

Λ = Rn̂(θ)B(v). (3.27)

This fact is much more than an oddity, from it a phenomenon arises that will be funda-
mental for this work, the so called Thomas-Wigner Rotation16.

3.3 THOMAS-WIGNER ROTATION

Two boosts compound to a boost only when they are colinear, that is, B(v)B(w) =

B(u) only if v×w = 0. Being this the case, u will naturally be colinear to v and w. Since
speed in relativity is limited by the speed of light c, the composition between v and w is
not additive, it is instead given by

u =
v + w

1 + vw
c2

. (3.28)

In non-relativistic classical physics, speeds are additive. The classical regime can be
easily obtained by taking the limit vw/c2 −→ 0 in equation (3.28).

Alternatively, if boosts do not lie within the same line, they always compound
to a boost and a rotation. We will note this special kind of rotation as Rn̂(Ω) and call it
Wigner’s rotation. A representation of the phenomena appears in figure 4. As a logical
statement, one can write this fact as: If v ×w 
= 0 then

B(v)B(w) = B(u)Rn̂(Ω). (3.29)

16 The Wigner rotation, named after Eugene Wigner, a 20th century Hungarian-American physicist, was
actually discovered by Ludwik Silberstein, a Polish-American physicist of the same era.
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FIGURE 4 – Schematic representation of Wigner’s rotation. The number first spaceship travels
away from Earth with velocity v, the second spaceship travels away from the former
ship with velocity w. Although Earth’s axis are aligned with the first spaceship’s
axis and the first’s with the second spaceship’s, to Earth, ship number 2 travels
away with velocity v ⊕ w that has an angle that differs of Ω from the angle related
to w. That is the Wigner angle that appears from the Wigner rotation of the second
spaceship.

The determination of the components of the matrix of rotation, Rn̂(Ω), is difficult,
but known. A great derivation of the components can be found in (O’DONNELL; VISSER,
2011). As with any rotation, to know Rn̂(Ω) is to know n̂, that is, the axis of rotation, as
well as Ω the angle of rotation. The easiest of the two is undoubtedly the axis since it is
just the axis perpendicular to the plane described by both boost velocities. Being v̂ the
direction of B(v) and ŵ the direction of B(w), we can find n̂ using

n̂ = v̂ × ŵ, (3.30)

where × is the usual external product.

To determine Ω one might first multiply (3.29) by B−1(u) from the left, obtaining

B−1(u)B(v)B(w) = Rn̂(Ω). (3.31)

Next, to continue on the quest for Ω’s value, one can write u using the relativistic
composition of velocities, whose general formula is

u =
1

1− v·w
c2

[
w

γv
− v +

γv
1 + γv

w · v
c2

v

]
. (3.32)

Now, using (3.17d), it‘s easy to affirm that B−1(u) = B(−u). The direct consequence
of that is that, now, Rn̂(Ω) = B(−u)B(v)B(w). Finally, a rotation matrix as defined in
(3.26) obeys the trace-related equation

Tr(Rn̂(Ω)) = 2 + 2 cosΩ. (3.33)
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Hiding the algebra under the rug, one gets

cosΩ =
(γu + γv + γw + 1)2

(γu + 1)(γv + 1)(γw + 1)
− 1. (3.34)

Equation (3.34) is general. A special case that is of great interest for this work
is the rotation when the two boosts being composed are perpendicular, that is, when
|v̂ × ŵ| = 1. Being this the case, w · v = 0 and (3.32) reduces to

u =
w

γv
− v. (3.35)

In cases such as this, we have

cosΩ =
(γw + 1)(γv + 1)

γwγv + 1
− 1. (3.36)

In this work the general formula (3.34) will be used only when it proves useful to
demonstrate the dependence of the rotation on the angle-between-boosts. Such cases
are of less interest and therefore (3.36) will be the most useful of them both.

Although not mathematically complicated, the phenomenon just laid out has
been described as paradoxical (MOCANU, 1992) and is almost impossible for someone
without relativity-trained intuition to understand. Put as a sentence the apparent contra-
diction comes forth straightforwardly: If observer B moves away from A rapidly, and a
third observer C moves rapidly away from B in a velocity perpendicular to the one that
connects A and B, then A and B can agree on the direction of their axes. And so can B
and C. But A and C cannot!

One familiar with logic will find that the previous sentence seems to violate the
transitive property of equality. This evades being a straight logic contradiction only when
one accounts for the fact that, if two sets of axes are "indistinguishable" they are not
necessarily "equal" and, as it turns out, boost-connected axes are indistinguishable but
cannot be equal thanks to the Wigner rotations.

Apparent paradoxes are no rarity in SR and definitely help "season" the theory
to the palate of many a dreaming physicist. For those captivated by the previous
paragraphs, a quick search on the topics of the twin paradox and barn paradox can
prove an exquisite food for thought.

The next and last stop on the train of SR is the "Unitary Representation Station".
In this station, the generators of the Lorentz transformation live, and understanding their
function is fundamental to extend SR to the quantum world.
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3.3.1 Unitary Representation of the Lorentz Group

A fact not explicitly mentioned before is that P is a continuous group17 (and so
is L, since it is a subgroup of P). A proper definition of a continuous group is as follows:

Definition 5. A continuous group is such that the composition of any two elements
is determined by analytical functions of the elements being composed. That is, if
y = (y1, ..., yn) parameterize G, this means that all elements of G are given by the same
function g(·), of parameter y, then

g(y′′) = g(y)g(y′), (3.37)

such that y′′ is an analytical function of y and y′, that is, y′′ = f(y, y′).

Since analytical functions are defined as being equivalent to a locally convergent power
series, they must be describable by elements infinitesimally close to identity, the first
term of the series. If the notation for an infinitesimal transformation is Λinf , then as
argued just earlier

Λinf = I4x4 +Π. (3.38)

Here Π is also infinitesimal and can have its properties and form discovered from the
previous properties of the transformations. If (3.38) is to be believed the composition
of many Λinf generates the finite transform Λ, since any power series will be just an
infinite linear combination of powers of I4x4 + Π. Also, one familiar with power series
could have noticed that (3.38) is just a truncation of eΠ as Π −→ 0. Both paths lead to
the same fact, which is that (3.38) implies that

Λ = eΠ. (3.39)

If one knows the form of the general finite transformation, one can start to
enforce some known conditions on it, for instance

Λ−1Λ = I ∴ Λ−1eΠ = I −→ Λ−1 = e−Π. (3.40)

We also have that
ΛT = (eΠ)T = eΠ

T

, (3.41)

consequently,
ΛTηΛ = η −→ ηΛTη = Λ−1 −→ ηeΠ

T

η = e−Π. (3.42)
17 It was said they are Lie groups, and all Lie groups are continuous.
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In this case,

eηΠ
T η = I+ ηΠTη +

1

2!
(ηΠTη)2 + ... (3.43a)

= I+ ηΠTη +
1

2!
ηΠTηηΠTη + ... (3.43b)

= I+ ηΠTη +
1

2!
η(ΠT )2η + ... (3.43c)

= η(I+ΠT +
1

2!
(ΠT )2 + ...)η (3.43d)

= ηeΠ
T

η, (3.43e)

resulting in
ηeΠ

T

η = eηΠ
T η = e−Π −→ ηΠTη = −Π. (3.44)

Quite a lot of information can be obtained about Π’s components using (3.44) together
with the signature η. For instance, one may note that

Π0i = Πi0, (3.45a)

Πij = Πji, (3.45b)

Πμμ = −Πμμ ∴ (3.45c)

Πμμ = 0. (3.45d)

With (3.45) in mind a general matrix representation of Π can be written as

Π =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ω01 ω02 ω03

ω10 0 ω12 ω13

ω20 −ω12 0 ω23

ω30 −ω13 −ω23 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= ω01

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ ω02

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ ω03

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ ω12

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ ω13

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ ω23

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= ω01M
01 + ω02M

02 + ω03M
03 + ω12M

12 + ω13M
13 + ω23M

23,

(3.46)

where the matrices M are the generators of the Lorentz group18. This matrices can be
separated into two distinct classes, those that are symmetric, namely, M0i and those
18 As momentum is the generator of translation, the generators of Lorentz transformations are the

components of the "relativistic angular momentum", it being the generalization of the classical angular
momentum.
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that are anti-symmetric M ij with i 
= 0. What maybe be hard to visualize is the fact
that these two classes are directly related to the two components of a general Lorentz
transformation, that is, Boosts and Rotations, their generators being, respectively, M0i

and M ij. For such a reason, it proves useful to redefine the notation used via

Qi = M0i, J i = εijkM
jk. (3.47)

Using the new notation one might realize that the following commutation relations apply:

[Qi, Qj] = −εijkJ
K , (3.48a)

[J i, J j] = εijkJ
k, (3.48b)

[J i, Qj] = εijkQ
k. (3.48c)

This demonstrates once again the fact that rotations, represented by their generators J ,
define a closed algebra and form a group19. Meanwhile, boost generators do not! Using
(3.39) and (3.48) one might rewrite a general Lorentz transform as

Λ = e−(�ω·J+�b·Q), (3.49)

where J = J1x̂+ J2ŷ + J3ẑ, Q = Q1x̂+Q2ŷ +Q3ẑ, �ω represents a rotation around a ω̂

axis and �b represents a boost on the b̂ direction.

3.3.2 Examples

Considering a boost in the x̂ direction, that is

�ω = �0 and �b = bx̂, (3.50)

consequently, we have

Λ = e−
�b·Q = I4x4 − (x̂ ·Q)b+

1

2!
(x̂ ·Q)2b2 − 1

3!
(x̂ ·Q)3b3 + ... (3.51)

19 The SO(3) group.
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Using the fact that (Qi)3 = Qi,

Λ = I4x4 − (x̂ ·Q)(b+
b3

3!
+

b5

5!
+ ...) + (x̂ ·Q)2(

b2

2!
+

b2

4!
+

b6

6!
+ ...)

= I4x4 − (x̂ ·Q) sinh(b) + (x̂ ·Q)2(cosh(b)− 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cosh(b) − sinh(b) 0 0

− sinh(b) cosh(b) 0 0

0 0 1 0

0 0 0 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if b = tanh−1(β).

(3.52)

The important takeaway from (3.52) is that �b = tanh−1(β)b̂ for the equality between the
last two matrices written to be verified.

Let us do the same for a rotation around the ẑ axis, for such

�ω = ωẑ and �b = �0. (3.53)

From this, it follows that:

Λ = e−�ω·J = I4x4 − (ẑ · J)ω +
1

2!
(ẑ · J)2ω2 − 1

3!
(ẑ · J)3ω3 + ... (3.54)

Using the fact that (J i)2 = −I → (J i)3 = −(J i),

Λ = I4x4 − (ẑ · J)(ω − ω3

3!
+

ω5

5!
+ ...) + (ẑ · J)2(ω

2

2!
− ω2

4!
+

ω6

6!
+ ...)

= I4x4 − (ẑ · J) sin(ω) + (ẑ · J)2(cos(ω)− 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 0 0 0

0 cos(ω) − sin(ω) 0

0 sin(ω) cos(ω) 0

0 0 0 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Rẑ(θ)

if ω = θ.

(3.55)

Both examples serve to illustrate how Λ = eΠ is truly the general form of a finite
Lorentz transformation, be it a boost, a rotation, or an amalgamation of both.

3.4 CHAPTER CLOSING REMARKS

Knowing the facts presented in this chapter, one ought to be ready to understand
how different observers are connected in the universe. The details about how different
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their description of a physical system is, or better put, the state of one, shall be presented
in the following chapters.

The essential takeaway from this chapter is that SR puts restrictions on frames
of reference and, therefore, on observers. Also, it is within this theory that one finds the
true definition of terms so often used in quantum information theory, such as Causality
and Locality. Therefore, without accommodating SR’s requirements, no physical theory
can be said complete and representing of nature.

Having obtained the formalism to represent the consequences of Lorentz trans-
formations for vectors and the unitary representation of such operations, the next step is
to import such description into the realm of QM. This way the grave consequences that
SR’s Wigner rotations have for quantum resources can be demonstrated and measured.
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4 RELATIVISTIC QUANTUM RESOURCES

Equipped with the formalism from the previous two chapters one can move
forward towards a quantum mechanical representation of Lorentz transformation for
spin-momentum states, as well as the consequences of such transformations for the
quantum resources of such states.

This chapter shaw demonstrate that the fundamental quantum resources of
interest for this work, entanglement and steering, are dependent on the frame of
reference they are being evaluated on. Being this so, in the relativistic regime, the same
state may have different statistical behavior. Let us see how.

4.1 RELATIVISTIC QUANTUM MECHANICS

To describe the physics of relativity in the formalism of QM, position and mo-
mentum, classically thought as vectors in R3 now must be extended to 4-vectors.
The extension is made simply by attaching a Hilbert space, corresponding to the ze-
roeth component of the 4-vectors to the usual position space. This is, if originally
Hr = Hx ⊗Hy ⊗Hz, now, the 4-position space is simply

HΛ = Ht ⊗Hx ⊗Hy ⊗Hz, (4.1)

where Ht is the time component Hilbert space, and the Λ subscript on HΛ serves only
to mark the fact that it is a relativistic Hilbert space.

Although the notion of a time state and a time operator are controversial in QM,
the polemic around it will be left for the "discussion" section. To ease the mind of the
reader about such issues, two things can already be said. Firstly, a time component is
required by SR because there, time is indistinguishable as a DoF from the usual three
spatial ones. Secondly, the polemic nature of time in QM arises from the dynamics, that
is so because the dynamics in QM are controlled by the time evolution operator which is
itself a function of the Hamiltonian operator, the latter having time in a place of distinction
from other DoF. The fact that time is detached from the spatial DoF can be made explicit
by looking at Schrödinger’s equation. The fact that differentiation on time occurs once
and on position twice, demonstrates the asymmetry just mentioned. Schrödinger’s
equation as well as the dependence the time evolution has on the Hamiltonian are
present in Appendix 1.

In the HΛ space the canonical operators are Xμ and P ν , their action on res-
pective 4-position states, |ct, x, y, z〉 := |xμ〉, and 4-momentum states, |E/c, px, py, pz〉 :=
|pμ〉, can be summed up as

Xμ |xμ〉 = xμ |xμ〉 , (4.2)
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and
P μ |pμ〉 = pμ |pμ〉 . (4.3)

4.1.1 Mass-Shell Constraint

In principle, the components of |xμ〉 can vary freely. The only requirement for
them being to be covariant between two states connected via Lorentz transformation1.
4-momentum states on the other hand have a restriction. The Ht component |E/c〉 must
be such that

pμpμ =
E2

c2
− (p2x + p2y + p2z) = m2

0c
2. (4.4)

This is so because the rest mass, m0, remains constant for a given particle. Being
m0c

2 a relativistic scalar (the inner product of the 4-momentum vector), no reference
frame may measure for the same particle a |pμ〉 that is in disagreement with (4.4). Being
this the case, the zeroeth component of the 4-momentum is p0 =

√
p2 +m2

0c
2, with

p2 = (p2x + p2y + p2z). Knowing that, one may take a general state of 4-momenta

|ψ〉 =
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
d4p ψ(pμ) |pμ〉 (4.5)

and rewrite it, using a Dirac delta2 function to represent the restriction as

|ψ〉 =
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
d4p δ(pμpμ −m2

0c
2)ψ(pμ) |pμ〉

=

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
d3pdp0 δ((p0)2 − p2 −m2

0c
2)ψ(p0, pi) |p0, pi〉

(4.6)

Before integrating over dp0, a new condition is added: the condition that only positive
energies are permitted. The appearance of negative energies in the context of relativistic
QM is a well-known fact and a meaningful one: in Dirac’s equation (DIRAC, 1928),
negative energy solutions led to the theoretical prediction of antiparticles, that were later
discovered. In the present context though, only positive energies are permitted since
we are modeling particles moving time-fowardly. More on this fact will be presented in
the discussion section as well. A Heavside function, θ(p0), defined as

θ(x− b) =

⎧⎨
⎩0, if x < b

1, if x ≥ b,
(4.7)

will take care of this,

|ψ〉 =
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
dpidp0 δ((p0)2 − p2 −m2

0c
2)ψ(p0, pi)θ(p0) |p0, pi〉

=

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
dpi

1

2
√

p2 +m0c2
ψ(
√
p2 −m2

0c
2, pi) |

√
p2 −m2

0c
2, pi〉 .

(4.8)

1 The relation between the values of the time and position components will tell about the nature of the
event they describe. That is so because it is with them that intervals are calculated.

2 The filtration property of the delta function will guarantee integration only over states that obey the
mass-shell restriction.
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Since p0 is no longer a free parameter, we can write the state free of any dependence
on it by introducing the invariant integration measure dμ(pi) := d3p/(2

√
p2 +m0c2). So

|ψ〉 =
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
dμ(pi)ψ(pi) |pi〉 . (4.9)

The properties of importance for the {|pi〉} basis are
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
dμ(pi) |pi〉 〈pi| = I, (4.10)

and
〈pi|pj〉 = 2p0δ(p

i − pj). (4.11)

The momentum wave equation normalization is given by
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
dμ(pi)|ψ(pi)|2 = 1. (4.12)

4.1.2 The relativistic spin-momentum state

The states of interest of this work are momentum-spin states; in equation (4.9)
a general momentum distribution was obtained. The addition of the spin DoF is made
straightforwardly so that the relativistic version of equation (2.35) is obtained

|ψ〉 =
s=+1/2∑
s=−1/2

ˆ ∞

−∞
dμ(pi)ψs(p

i) |s, pi〉 . (4.13)

Now, a small caveat must be brought up: spin is defined as the intrinsic angular mo-
mentum of a particle. At rest, that is, pi = 0, no orbital angular momentum can exist,
so all that is left is spin. For this reason, spin is usually defined on such rest-frames-of-
reference but, by writing a state of the kind |s, pi〉, another reference frame is already
being taken into consideration, the one that measures the values pi for P i. Naturally,
for a single value of momentum, a single Lorentz transformation, being the appropriate
boost, can access that frame, leaving spin unaltered since a single boost does not
cause rotation.

Unfortunately, no single transformation can take the particle from rest, whose
associated state is |pi = 0〉 to the distribution in (4.13). Only a superposition of infinitely
many, individually adjusted transformation operators could. Being this so, no single
definition of spin could be associated with a momentum distribution, and the separability
of both DoF, in the way done in (4.13) would be meaningless. So a hypothesis is laid
out as follows.
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Hypothesis. There exists a frame of reference different from rest in which spin
is well-defined and independent from momentum, even if the state is not in a
momentum eigenstate. Put straightforwardly, states such as

|ψ〉 =
ˆ ∞

−∞
dμ(pi)ψs(p

i) |pi〉 ⊗ |s〉 (4.14)

exist.

This hypothesis is equivalent to the hypothesis that it is possible to perturb the mo-
mentum state without perturbing the spin. For instance, if a particle with a defined
non-zero momentum and separable spin, that is, |ψ〉 = |pi〉 ⊗ |s〉, passes through
a semi-transparent mirror with a 50% chance of reflection, then the state becomes
|ψ〉mirror = 1√

2
(|pi〉 + |−pi〉) ⊗ |s〉, a seemingly reasonable proposition. Being this the

case, states like the one in (4.14) are preparable.

4.1.3 General State Transformation

Being in possession of the general spin-momentum state the next step is to
define how a Lorentz transformation acts over it. For such, one may consider that the
transformation Λpμ = p′μ is paralleled by the state transformation

U(Λ)|pμ〉 = |p′μ〉, (4.15)

where U(Λ) is the unitary operator that implements the Λ transformation. For spin,
the transformation is slightly more complex, starting in the rest frame |s, kμ〉, where
kμ = (p0, 0, 0, 0) and spin is well defined, we go to the lab frame |s, pμ〉 := |s, pμ〉 via

U(Λpμ) |s, kμ〉 = |s, pμ〉. (4.16)

Now, in possession of the lab eigenstate, one may ask how any observer, with a frame
connected to the lab by the transformation Λ, sees the vector. The formalism shows that
what happens is

U(Λ)|s, pμ〉 =
∑
s′

Rs′s(Λ, p
′μ)|s, p′μ〉, (4.17)

where Rs′s(Λ, p
′μ) := 〈s′|R|s〉 are the elements of the Wigner rotation matrix. It is

important to note that the rotation depends on p′μ. This is so because it supposedly acts
on the rest-frame that is obtained via U(Λp′μ)

−1. As previously discussed, although the
rotation is modeled to occur at rest, we hypothesize that the degrees of freedom are
accessible to the observer on the moving frame.

Before moving forward, it is important to show how the rotation represented by
Rs′s(Λ, p

′μ) acts on a spin-1/2 space, being it

Rs′s(Λ, p
′μ) = cos

(
Ω

2

)
I+ i sin

(
Ω

2

)
n̂ · �σ. (4.18)
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Here Ω is the Wigner angle, n̂ is the axis of rotation and �σ is the standard Pauli vector,
�σ = îσx + ĵσy + k̂σz.

Alright, being the transformation for an eigenstate well understood one can
begin to apply it to general states such as the one in equation (4.13), being |ψ〉 the state
in the lab and |ψ′〉 the transformed state:

U(Λ)|ψ〉 = |ψ′〉 = U(Λ)

s=+1/2∑
s=−1/2

ˆ ∞

−∞
dμ(pi)ψs(p

i)|s, pi〉

=
∑
s′

s=+1/2∑
s=−1/2

ˆ ∞

−∞
dμ(pi)ψs(p

i)Rs′s(Λ, p
′μ)|s, p′i〉.

(4.19)

At this point, generality must give way to especifity if the phenomena is to be unders-
tood. Let’s look at the effects of Lorentz transformation on less abstract states so the
consequences may be better visualized.

4.2 STATES OF INTEREST

After presenting the formalism of relativistic QM, the continuation of this work
comes in the form of applying it to concrete examples better paralleled by nature.
Following that, one should be able to better understand its importance and usefulness.

4.2.1 Contrapropagating Momenta Eigenstates

The most trivial but interesting state in this context is the case in which the
system travels either to the left or right with equal probability and the same velocity, that
is, where the state is given by

|ψ〉 = (|pμ〉+ |−pμ〉)√
2

⊗ |σx = +〉. (4.20)

Here the spin could be defined in any direction as long as the state was separable, to
work this out as an example the x-direction was chosen. To guarantee normalization of
the state in (4.20), either momentum has to be taken to be discrete, as can be done
considering that the experimental observation of momentum always happens in finite
intervals, or take the path from its construction as a continuous DoF and use delta
functions as wave functions to select eigenstates of momenta. Respectively, these
approaches can be found in (FREIRE; ANGELO, 2019) and (ENGELBERT, 2022). One
of this state’s exquisite properties is the fact that it cannot be obtained from a single
boost out of a rest frame, that is

|ψ〉 
= U(Λ)(|kμ〉 ⊗ |σ〉). (4.21)
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Actually, if it is true that |ψ〉 = T (|kμ〉 ⊗ |σ〉), than, the generic transformation T must be
something of the kind of

T =
U(Λ) + U(−Λ)√

2
. (4.22)

What (4.22) shows is that T is a boost superposition. Being such, it is not a classical
frame of reference transformation. It is an all-different being that belongs to the genre
of quantum reference frame (QRF) transformations. Sidelining the nuanced discussion
around QRFs in the name of progress, one advances by noticing that

U(Λ)|ψ〉 = |ψ′〉 (4.18)−−−→ |pμ〉 ⊗R(Ω)|σx = +〉+ |−pμ〉 ⊗R(−Ω)|σx = +〉√
2

, (4.23)

here R(−Ω) is the same rotation as R(Ω), but in the opposite direction. The dependence
of the rotation on the boost and momentum has been made implicit by the Wigner angle
Ω. Moving forward in the path that goes from generality to specificity, one must fix both
Λ and pμ to define the way R(Ω) operates. Considering that pμ = (E/c, 0, 0, pz) and that
Λ = B(vî), a boost in the x-direction, the rotation will occur around the y-axis, and the
only momentum components to change under Λ will be p0 and p1. Therefore

|ψ′〉 = |p0, p1, p2〉 |pz〉 ⊗R(Ω)|σx = +〉+ |−pz〉 ⊗R(−Ω)|σx = +〉√
2

. (4.24)

In principle both |p2〉 and |pz〉 could be painted red since they remained unaltered
under Λ. But, since the blue frame of reference will measure the same values, painting
them blue is fine as well. Since the direction of rotation was controlled by the original
z-momentum sign, the way U(Λ) alters the spin state depends on each of the particle’s
momenta superposition branches. Such fact makes the operation of U(Λ) over |ψ〉 not
dissimilar to the operation of Ucnot over an informational QuBit, being the latter a standard
entanglement creation operator widely known in literature (NIELSEN; CHUANG, 2010).
In fact, for Λ(v) with v −→ c, Ω −→ π/2 and

|ψ′〉 v−→c−−−→ |pz〉 ⊗ |σz = +〉+ |−pz〉 ⊗ |σz = −〉√
2

, (4.25)

where the three separable momenta have been disregarded since the interest lies
in entanglement. Using the usual computational basis notation for spin, {|σz = +〉 =
|0〉 , |σz = −〉 = |1〉 , |σx = +〉 = |+〉 , |σx = −〉 = |−〉}, we can rewrite the previous
process as

|ψ〉 = (|pz〉+ |−pz〉)⊗ |+〉√
2

,

U(Λ(c))|ψ〉 = |pz〉 ⊗ |1〉+ |−pz〉 ⊗ |0〉√
2

.

(4.26)
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The way the U(Λ(c)) operator takes a separable state into an entangled one, on equation
(4.26), is easily comparable with

|φ〉 = |0〉+ |1〉√
2

⊗ |0〉 ,

Ucnot |φ〉 = |0〉 ⊗ |0〉+ |1〉 ⊗ |1〉√
2

,

(4.27)

being this the standard entanglement creation procedure in the context of quantum
computation (WILLIAMS, 2010).

Having proven that the Lorentz boost can take separable states into entangled
ones, one may ask how to account for its amount. Let’s apply to this state the entangle-
ment measure based on the partial state entropy, that we have introduced in equation
(2.48), using

R(Ω) |+〉 = cos(Ω/2) |0〉+ sin(Ω/2) |1〉 , (4.28)

we rewrite the state in (4.24) as

|ψ′〉 = |pz〉 ⊗ (cos(Ω/2)|0〉+ sin(Ω/2)|1〉) + |−pz〉 ⊗ (cos(Ω/2)|0〉 − sin(Ω/2)|1〉)√
2

, (4.29)

such that, on a {|pz, 0〉 , |pz, 1〉 , |−pz, 0〉 , |−pz, 1〉} basis3, we obtain

ρ = |ψ′〉 〈ψ′|

=
1

2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos2
(
Ω
2

)
cos
(
Ω
2

)
sin
(
Ω
2

)
cos2

(
Ω
2

) − cos
(
Ω
2

)
sin
(
Ω
2

)
cos
(
Ω
2

)
sin
(
Ω
2

)
sin2

(
Ω
2

)
cos
(
Ω
2

)
sin
(
Ω
2

) − sin2
(
Ω
2

)
cos2

(
Ω
2

)
cos
(
Ω
2

)
sin
(
Ω
2

)
cos2

(
Ω
2

) − cos
(
Ω
2

)
sin
(
Ω
2

)
− cos

(
Ω
2

)
sin
(
Ω
2

) − sin2
(
Ω
2

) − cos
(
Ω
2

)
sin
(
Ω
2

)
sin2

(
Ω
2

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(4.30)
Now, taking the partial trace over momentum, one obtains

ρs = Trp(|ψ′〉 〈ψ′|)

=
1

2

{
cos2

(
Ω
2

)
+ sin2

(
Ω
2

)
cos2

(
Ω
2

)− sin2
(
Ω
2

)
cos2

(
Ω
2

)− sin2
(
Ω
2

)
cos2

(
Ω
2

)
+ sin2

(
Ω
2

)
}

=
1

2

{
1 cos(Ω)

cos(Ω) 1

}
.

(4.31)

Being this matrix defined on the spin-z basis {|0〉 , |1〉}. The diagonal form of this matrix
is

ρs =
1

2

{
1 + cos(Ω) 0

0 1− cos(Ω)

}
, (4.32)

3 Since the momentum space is infinite, no finite matrix could rigorously represent this density matrix,
but all terms not represented in (4.30) are zero and would not alter the partial state after the trace
over the continuous space.
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FIGURE 5 – Plot of the dependence of the partial state entropy of a spin-momentum system
on the Wigner angle, in blue. The upper bound for a two-dimensional partial state
entropy appears in red. The state for Ω = 0 is separable and, therefore, the
entropy is null. For angles greater than zero, the entropy increases accounting for
entanglement. For Ω = π/2 the entropy reaches its maximum of S(ρs) = ln(2), and
the system has become fully entangled.

on the spin-x basis {|+〉 , |−〉}. Having a diagonal representation in hands, the von
Neumann entropy of the partial state is simply

S(ρs) = −
2∑

i=1

pi ln(pi)

= −
((

1 + cos(Ω)

2

)
ln

(
1 + cos(Ω)

2

)
+

(
1− cos(Ω)

2

)
ln

(
1− cos(Ω)

2

))
.

(4.33)
To better visualize this behavior, the plot of the function in (4.33) appears in figure 5.

Being it clear that entanglement increases as the Wigner angle tends to π/2,
reaching its maximum exactly for this angle, the natural next step for this work would
be to verify if this state violates a steering criterion and, if so, for which angle or other
parameter of preparation the violation first occurs. Unfortunately, although, for pure
states such as the one being studied, all steerable states are entangled, and vice-versa
(WISEMAN et al., 2007), not all criteria will detect it as such. The chosen criterion
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for this work, Reid’s variance criterion, for instance, will not. That is so because the
criterion depends on the variance of both momentum and position, and states like the
one in (4.23) have finite momentum variance but infinite position variance. This is a
consequence of the fact that an eigenstate in momentum is a maximally delocalized
state in position, as discussed in chapter 2. Furthermore, the amount of variance
reduction that spin measurements can induce is limited by its (small) dimension4, being
it so, it can never take an infinite dispersion state into one that violates the Heisenberg
uncertainty principle and Reid’s criterion, therefore.

Another disadvantage of this simple state is that it is not very realistically im-
plementable. Take the short discussion of the previous paragraph about the position
variance for instance. The state is totally positionally undefined, how will one "find" the
system within the walls of a laboratory to measure it? Also, no experimental instrument
has infinite precision as to access the very fine-grained structure of continuous momen-
tum, much more likely the system will be found in a small interval of momenta, being it
so, preparations such as the one in (4.23) are idealized and not implementable.

Both problems just mentioned can be worked on by having a different prepara-
tion for the system, let us look into it.

4.2.2 Gaussian Momenta Superposition

Rarely it is the case that a system in a momenta superposition state has its z-
momenta being either completely greater or lesser than zero, like the one is (4.24). The
more nuanced and likely case is the one where the momentum is a Gaussian distribution
around a center value that itself can be greater or lesser than zero (superpositions of
distribution around different centers are also allowed). Now, as long as the Gaussian
distributions are either very narrow (small dispersion) or centered around a value distant
from zero or, ideally, both, there will be a vanishing (although never null) chance that,
when making a measurement over a "negative" distribution, an experimentalist will
obtain a positive result and vice-versa. A general form for states obeying the properties
just listed are

|±p0〉 =
ˆ ∞

−∞

Δ1/2

π1/4
dp e−

Δ2

2
(p∓p0)2e−ipx0 |p〉 . (4.34)

There is much information about the state in this definition, ±p0 are the Gaussian
centers for both positive and negative momenta distribution. They are equally far from
the origin. Both momentum distributions are associated with a single position, one whose
Gaussian center is x0. This is to be understood as the particle having a reasonably
well-defined position independent of its momentum, for example, being contained inside
a laboratory. Finally, Δ is the inverse of the momentum dispersion, meaning that a very
4 This too will be elaborated in the discussion section.
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sharp Gaussian will have large values for Δ. All these parameters are set in arbitrary
units.

Now, the interest lies in states of systems that have both positive and negative
momenta in superposition, therefore the description that will be used is a superposition
of both |p0〉 and |−p0〉, as follows

|ψ〉 = Δ1/2

(2
√
π(1 + e−Δ2p20))1/2

ˆ ∞

−∞
dp (e−

Δ2

2
(p−p0)2 + e−

Δ2

2
(p+p0)2)e−ipx0 |p〉 ⊗ |+〉. (4.35)

Notice that the spin-state appeared already and that the normalization of the superposi-
tion is different than just 1/

√
2 times each Gaussian state normalization, that is thanks

to the interference between both Gaussians and is expected. The "usual" value appears
in the regime where Δ2p20 → ∞ such that e−Δ2p20 → 0. Also of importance is the fact that
only one of the four Hilbert spaces that are part of the full 4-position space is being
represented. That is so because spin-momentum entanglement is being created only
on the axis of the momentum superposition perpendicular to the boost. This is a choice
and depends on preparation, but being the state in equation (4.35) preparable, and it is,
this choice greatly simplifies the calculations yet to be done5.

Although calculations could be done, the separability of the spin and position
states guarantees that no action done by one party could alter the other’s dispersion
and, therefore, no steering can occur. Simply put, no entanglement means no steering.

Now the case in which the state is somewhat rotated will be considered so a
point where steerability appears, if so, based on either the rotation angle or the boost
parameter (since they are uniquely connected), may be found. If 0 < v < c, 0 < Ω < π/2

and following the rotation rules for spin-states, considering a boost-induced-rotation
around the y-axis, as is the case in which the state is in a x-momentum state and the
boost is on the z-direction, or vice-versa, that is controlled by the Gaussian centers6.
The state after the Lorentz transformation is

|ψ′〉 = Δ1/2

(2
√
π(1 + cos(Ω)e−Δ2p20))1/2

ˆ ∞

−∞
dp e−ipx0(e−

Δ2

2
(p−p0)2(α|+〉+ β|−〉)

+ e−
Δ2

2
(p+p0)2(α|+〉 − β|−〉))|p〉.

(4.36)

Here α = cos(Ω/2) and β = sin(Ω/2). The appearance of cos(Ω) in the normalization
factor is due to how the rotation was conducted (controlled by p0 and not p). Calling
5 The reasonability of this choice comes from the fact that, given any superposition of any two momentum

3-vectors, they will always live in either a line, when parallel or anti-parallel, or a plane, when not.
Being the case that they are in the same line, a single Hilbert space is already enough to describe
them, if in a plane, the two Hilbert spaces required to describe the vectors can be chosen such that
the superposition lies in only one of them. In other words, coherence is present only in one of the two.

6 The most rigorous case would have the rotation controlled by each infinitesimal interval of momentum.
This process would produce an all-too-complicated spin distribution that would be mathematically
unapproachable. Anyway, as e−Δ2p2

0 → 0 both approaches have the same meaning.
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Δ1/2/(2
√
π(1 + cos(Ω)e−Δ2p20))1/2 = N , and changing basis, first to z-spin and then to

position, one gets new versions of the state in (4.36), firstly

|ψ′〉 = N√
2

ˆ ∞

−∞
dp e−ipx0(e−

Δ2

2
(p−p0)2((α + β)|0〉+ (α− β)|1〉))

+ e−
Δ2

2
(p+p0)2((α− β)|0〉+ (α + β)|1〉))|p〉,

(4.37)

and then
|ψ′〉 = N

Δ

ˆ ∞

−∞
dx e

−(x−x0)
2

2Δ2 (eip0(x−x0)(α|+〉+ β|−〉)

+ e−ip0(x−x0)(α|+〉 − β|−〉))|x〉.
(4.38)

With these representations of the state in hand, one last step towards certifying steering
for it is still lacking, we must define the procedure each party, Alice and Bob, will perform.
Since steering has only one trusted party, usually Bob, the bound is defined over his
observables. Being the bound of both Reid’s and the entropic uncertainty criterion
based on, respectively, variance of the continuous DoF and their entropic uncertainty
relation, the designated observables for Bob are P and X, leaving Alice with the spin-
observables, namely σx and σz. The exclusion of σy occurs because the rotation is set
to occur around de y-axis, leaving the σy state unchanged7.

Another reason to give Alice the spin measurements is that, in the literature,
the relativistic spin is considered ill-defined (GIACOMINI et al., 2019b; SALDANHA; VE-
DRAL, 2007), being it so the choice to leave Alice with our model of spin measurements
leaves leeway to substitute it by any procedure that reproduces the statistics we expect,
without being the yet-undefined relativistic spin observable. A discussion on this topic is
sure to appear in the next chapter.

4.2.2.1 Reid’s Variance Criterion

Having chosen Bob’s and Alice’s observables, the bound presented in equation
(2.56) can be explicitly rewritten as

δ2min(XB)δ
2
min(PB) =∑

ε=±
p(σ(A)

n = ε) δ2(XB|σ(A)
n = ε)

∑
ε′=±

p(σ(A)
m = ε′) δ2(PB|σ(A)

m = ε′) <
1

4
,

(4.39)

where δ2min(XB) =
´

dxA p(xA) δ
2(XB|xA) has been adapted for spin measurements as

δ2min(XB) =
∑

ε=± p(σ
(A)
n = ε) δ2(XB|σ(A)

n = ε).

Let us begin by calculating the probabilities of a measurement performed by
Alice. From now on all results are related to the boosted frame of reference, making the
7 By unchanged the desired meaning is that, although phases may change, the probabilities of measu-

rement of spin-y states remain unchanged and no entanglement is created with momentum.
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color coding redundant. For the task of calculating the probabilities one can use Born’s
rule, remembering equation (2.1), such that

p(σx = +) = | 〈+|ψ〉 |2

=
N2

Δ2

ˆ ∞

−∞
dx e

−(x−x0)
2

Δ2 α2(e2ip0(x−x0)) + e−2ip0(x−x0) + 2)

=
(1 + e−Δ2p20)(1 + cos(Ω))

2(1 + cos(Ω)e−Δ2p20)

:=px+.

(4.40)

The state after measurement is

|ψx+〉 = N

p
1/2
x+Δ

ˆ ∞

−∞
dx e

−(x−x0)
2

2Δ2 2 cos(p0(x− x0))α |+〉 ⊗ |x〉 . (4.41)

We can do the exact same process to obtain

p(σx = −) = | 〈−|ψ〉 |2

=
N2

Δ2

ˆ ∞

−∞
dx e

−(x−x0)
2

Δ2 β2(−e2ip0(x−x0)) +−e−2ip0(x−x0) + 2)

=
(1− e−Δ2p20)(1− cos(Ω))

2(1 + cos(Ω)e−Δ2p20)

:=px−,

(4.42)

and
|ψx−〉 = N

p
1/2
x−Δ

ˆ ∞

−∞
dx e

−(x−x0)
2

2Δ2 2i sin(p0(x− x0))β |−〉 ⊗ |x〉 . (4.43)

Next, we can calculate the conditional position dispersion for these post-measurement
states:

p(σ(A)
x = +)δ2(XB|σ(A)

x = +) = p(σ(A)
x = +)(〈ψx+|X2

B|ψx+〉 − 〈ψx+|XB|ψx+〉2)

=
α2N2

Δ2

ˆ ∞

−∞
dx x2 e

−(x−x0)
2

Δ2 4 cos2(po(x− x0))

−
(

α2N2

p
1/2
x+Δ

2

ˆ ∞

−∞
dx x e

−(x−x0)
2

Δ2 4 cos2(po(x− x0))

)2

=
α2((1 + C)(x2

0 +Δ2/2)−Δ4p20 · C)
1 + cos(Ω) · C − 2α4x2

0(1 + C)
(1 + cos(Ω))(1 + cos(Ω) · C) .

(4.44)
Here, C = e−Δ2p20 just for ease of notation. One can straightforwardly do the same for
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the case in which Alice gets a spin-down measurement,

p(σ(A)
x = −)δ2(XB|σ(A)

x = −) = p(σ(A)
x = −)(〈ψx−|X2

B|ψx−〉 − 〈ψx−|XB|ψx−〉2)

=
β2N2

Δ2

ˆ ∞

−∞
dx x2 e

−(x−x0)
2

Δ2 4 sin2(po(x− x0))

−
(

α2N2

p
1/2
x−Δ2

ˆ ∞

−∞
dx x e

−(x−x0)
2

Δ2 4 sin2(po(x− x0))

)2

=
β2((1− C)(x2

0 +Δ2/2) + Δ4p20 · C)
1 + cos(Ω) · C − 2β4x2

0(1− C)
(1− cos(Ω))(1 + cos(Ω) · C) .

(4.45)
Now one must do the same process for measurements in σ

(A)
z and the dispersion on

momentum,

p(σz = +) = | 〈0|ψ〉 |2 = N2

2

ˆ ∞

−∞
dp (e−Δ2(p−p0)2(α + β)2

+ e−Δ2(p+p0)2(α− β)2 + 2e
Δ2

2
((p−p0)2+(p+p0)2)(α2 − β2))

=
1

2
.

(4.46)

Curiously, the state is symmetric in a way that | 〈1|ψ〉 |2 = | 〈0|ψ〉 |2. That is so because
the integral on e−Δ2(p−p0)2 is the same as the one on e−Δ2(p+p0)2 . Not needing to calculate
it, one advances. The post-measurement states are

|ψz+〉 = N

ˆ ∞

−∞
dp e−ipx0(e−

Δ2

2
(p−p0)2(α + β) + e−

Δ2

2
(p+p0)2(α− β)) |0〉 ⊗ |p〉 , (4.47)

and

|ψz−〉 = N

ˆ ∞

−∞
dp e−ipx0(e−

Δ2

2
(p−p0)2(α− β) + e−

Δ2

2
(p+p0)2(α + β)) |1〉 ⊗ |p〉 . (4.48)

Now all is ready for the dispersion calculation. Luckily the same symmetry that gave
equal probabilities for the σz = + and σz = − cases will give the same dispersion for
both cases:

p(σ(A)
z = −)δ2(PB|σ(A)

z = −) = p(σ(A)
z = −)(〈ψz−|P 2

B|ψx−〉 − 〈ψz−|PB|ψz−〉2)

=
N2

2

ˆ ∞

−∞
dp p2 (e−Δ2(p−p0)2(α + β)2 + e−Δ2(p+p0)2(α + β)2 + 2e−

Δ2

2
((p−p0)2+(p+p0)2)

−
(
N2

2

ˆ ∞

−∞
dp p (e−Δ2(p−p0)2(α + β)2 + e−Δ2(p+p0)2(α + β)2 + 2e−

Δ2

2
((p−p0)2+(p+p0)2)

)2

=
1

2

(
1

2Δ2
+

p20
1 + cos(Ω) · C − p20 sin

2(Ω)

(1 + cos(Ω) · C)2
)
.

(4.49)
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Finally, with all relations in hand, we can check in what conditions the inequality in (4.39)
may occur:

δ2min(XB)δ
2
min(PB) =

∑
ε=±

p(σ(A)
n = ε) δ2(XB|σ(A)

n = ε)
∑
ε′=±

p(σ(A)
m = ε′) δ2(PB|σ(A)

m = ε′)

= p(σ(A)
x = −) δ2(XB|σ(A)

x = −) (p(σ(A)
z = +) δ2(PB|σ(A)

z = +) + p(σ(A)
z = −) δ2(PB|σ(A)

z = −)

+ p(σ(A)
x = +) δ2(XB|σ(A)

x = +) (p(σ(A)
z = +) δ2(PB|σ(A)

z = +) + p(σ(A)
z = −) δ2(PB|σ(A)

z = −)

=

(
α2((1 + C)(x2

0 +Δ2/2)−Δ4p20 · C)
1 + cos(Ω) · C − 2α4x2

0(1 + C)
(1 + cos(Ω))(1 + cos(Ω) · C)

)

×
(

1

2Δ2
+

p20
1 + cos(Ω) · C − p20 sin

2(Ω)

(1 + cos(Ω) · C)2
)

+

(
β2((1− C)(x2

0 +Δ2/2) + Δ4p20 · C)
1 + cos(Ω) · C − 2β4x2

0(1− C)
(1− cos(Ω))(1 + cos(Ω) · C)

)

×
(

1

2Δ2
+

p20
1 + cos(Ω) · C − p20 sin

2(Ω)

(1 + cos(Ω) · C)2
)
.

(4.50)
Let us keep going, some mathematical manipulation is needed to simplify the results,
no bother, one advances,

δ2min(XB)δ
2
min(PB) =

=

{
1

1 + cos(Ω) · C
[
C(β2 − α2)(Δ4p20 − (x2

0 +Δ2/2))− 2x2
0

(
α4(1 + C)
1 + cos(Ω)

+
β4(1− C)
1− cos(Ω)

)]}

×
{

1

2Δ2
+

p20
1 + cos(Ω) · C − p20 sin

2(Ω)

(1 + cos(Ω) · C)2
}
,

(4.51)
using α2 − β2 = cos(Ω), α4 = (1+cos(Ω))2

4
, and β4 = (1−cos(Ω))2

4
, plus some rearranging, we

get

δ2min(XB)δ
2
min(PB) =

(
Δ2

2
− CΔ4p20 cos(Ω)

(1 + cos(Ω) · C)
)(

1

2Δ2
+

p20
1 + cos(Ω) · C − p20 sin

2(Ω)

(1 + cos(Ω) · C)2
)

=
1

4
+

Δ2p20
2

(
1− cos(Ω)C
1 + cos(Ω)C − sin2(Ω) + Δ2p20 cos(Ω)C

(1 + cos(Ω)C)2 +
2Δ2p20 sin

2(Ω) cos(Ω)C
(1 + cos(Ω)C)3

)
.

(4.52)
After what seemed to be an unending calculation we reached the value of the minimized
dispersion as a function of the Wigner angle and the preparation parameters p0 and Δ.
A plot of equation (4.52) appears in figure 6.

As shown in figure 6, the lowest value the variance in equation (4.52) is exactly
1/4 for the maximally entangled case, that is, for Ω = π/2.

So, no absolute violation of the criterion was found, although unfortunate, it is
not problematic as it will shortly be argued. Before following such a path let us consider
the more general observables for Bob, like the ones defined in (2.52). In this case, the
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FIGURE 6 – Plot of the product of the minimized variances after spin measurements by Alice.
The state preparation was done with Δ = 1. The plane in which the variance equals
1/4 is plotted in red. No violation occurs, Reid’s criterion wasn’t able to certify
steering for any preparation-boost combination.

minimized variance is rewritten as

δ2min(Bβ1)δ
2
min(Bβ2) =

∑
ε=±

p(σ(A)
n = ε) δ2(Bβ1|σ(A)

n = ε)
∑
ε′=±

p(σ(A)
m = ε′) δ2(Bβ2|σ(A)

m = ε′).

(4.53)
Fixing σn = σx and σm = σz, in the same way just performed, we get, as e−Δ2p20 → 0, for
simplicity

δ2min(Bβ1) =
1

2

{
sin2(β1)(1 + 2Δ2p20)

Δ2
+ cos2(β1)

(
Δ2 + 2x2

0 −
α44x2

0

(1 + cos(Ω))
− β44x2

0

(1− cos(Ω))

)}
.

(4.54)
Good care must be taken not to mix up β1, the angle of the observable superposition,
and β that is simply cos(Ω/2). Moving on,

δ2min(Bβ2) = cos2(β2)
Δ2

2
+ sin2(β2)

(
1

2Δ2
+ p20(1− sin2(Ω))

)
. (4.55)

Multiplying both reduced variances and using the necessary condition that β1−β2 = π/2,
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FIGURE 7 – Plot of the product of the minimized variances after spin measurements by Alice
for preparation with Δ = p0 = 2. Here the observable Bβ1 is the generalized form
of Bob’s observables. The line in which the variance equals 1/4 is plotted in red.
The minimal variance occurs for values of β1 that are whole multiples of π.

we get

δ2min(Bβ1)δ
2
min(Bβ1+π/2) =

1

2

(
sin2(β1)(1 + 2Δ2p20)

Δ2
+ cos2(β1)

(
Δ2 + 2x2

0 −
(α4)4x2

0

(1 + cos(Ω))
− (β4)4x2

0

(1− cos(Ω))

))

×
(
cos2(β1 + π/2)

Δ2

2
+ sin2(β1 + π/2)

(
1

2Δ2
+ p20(1− sin2(Ω))

))
,

(4.56)
whose plot appears on figure 7.

The fact that the minimal variance occurs for choices of β1 that are multiples of
π shows that the best observables to choose from are exactly PB and XB. Thus, the
variance given in (4.52) is the best possible one. Before advancing a commentary must
be done, given different choices of preparation parameters as well as for different Wigner
angles, the minimal and maximal variances showed in figure 7 change. Nonetheless, the
minimal values are always for β1 being a whole multiple of π. The fact that the variance
in equation (4.52) is the best achievable truly stands.
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At this point, one may be satisfied and pack his or her things and go home,
but not us. It is known that, for pure states, entanglement and steering are equivalent.
So how may one detect steering, in the present context, without finding a violation
of the chosen inequality? We propose that the fact that the variance depends on the
Wigner angle and, consequently, on the degree of entanglement between spin and
momentum, already indicates a degree of control on Bob’s state, by Alice. Of course,
this work’s interest lies on the quantitative description of these phenomena rather than
the qualitative one. Being this the case, not all hope is lost.

If one considers the variance of the state without spin measurements, this is,
when Alice does nothing, and compares it to the case in which Alice acts, any change
in the variance that Bob may obtain must be caused by Alice. Being this so, what we
propose to do is to establish a "control" in the experiment to serve as background to the
"active" case. The way this is done is quite simple, one just has to calculate

δ2(Bβ1)δ
2(Bβ2), (4.57)

this being the variance without any spin influence, and compare it with δ2min(Bβ1)δ
2
min(Bβ2).

As it turns out, using the same state of interest, previously defined in (4.36), one obtains

δ2(Bβ1)δ
2(Bβ2) =

(
cos2(β1)

(
Δ2

2
− Δ4p20 cos(Ω)C

1 + cos(Ω)C
)
+ sin2(β1)

(
1

2Δ2
− p20

1 + cos(Ω)C
)

+ cos(β1) sin(β1)

(
iΔ2p20 cos(Ω)C
2(1 + cos(Ω)C)

))(
cos2(β2)

(
Δ2

2
− Δ4p20 cos(Ω)C

1 + cos(Ω)C
)

+ sin2(β2)

(
1

2Δ2
− p20

1 + cos(Ω)C
)
+ cos(β2) sin(β2)

(
iΔ2p20 cos(Ω)C
2(1 + cos(Ω)C)

))
.

(4.58)
This expression, for the most interesting case in which, e−Δ2p20 → 0 and β1 − β2 = π/2

reduces to

δ2(Bβ1)δ
2(Bβ2) = cos4(β1)

(
1

4
+

Δ2p20
2

)
+ sin4(β1)

(
1

4
+

Δ2p20
2

)

+ cos2(β1) sin
2(β1)

(
Δ4

4
+

1

4Δ4
+

p20
Δ2 + p40

)
.

(4.59)

But we mustn’t forget that the most important context, the one with minimal variance, is
the one in which β1 is a whole multiple of π, and that, therefore

δ2(XB)δ
2(PB) =

1

4
+

Δ2p20
2

. (4.60)

Now, having established a control variance, we can check if the spin-minimized variance
can reach smaller values, for such we can just take the difference between equations
(4.52), in the regime where C → 0, and equation (4.60), getting

δ2min(XB)δ
2
min(PB)− δ2(XB)δ

2(PB) =

(
1

4
+

Δ2p20(1− sin2(Ω))

2

)
−
(
1

4
+

Δ2p20
2

)
= − sin2(Ω).

(4.61)
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This simple and elegant solution is also easily interpreted. As the Wigner angle incre-
ases, entanglement also increases, and the ability that Alice has, by measuring spin,
to decrease Bob’s product of variances increases. Noticeably, the difference between
variances does not depend on anything but the Wigner angle, a fact that is of interest
because it guarantees preparation independence. The only care that must be taken is
to be sure that the approximations used are valid. Well, when it comes to that, the only
thing truly necessary is that C = e−Δ2p20 → 0. This condition is not all restrictive, since
both Δ and p0 are separately controllable and, being the function exponential, small
increments in either one of the parameters guarantee extreme decreases in the function
value.

Although steering and entanglement are equivalent for pure states, and we
are working with one, this bound was not able to distinguish our quantum-correlated
(entangled) state from one with classical correlations that could be described as a
local hidden state model on Bob’s side and therefore no steerable. We didn’t concern
ourselves with finding such a model, but undoubtedly the classical correlation that could
justify our results would have to depend on the Wigner angle in the way displayed
in equation (4.61). To guarantee steerability per se, either different, more appropriate
observables are chosen, such that violation is seen with the 1/4 bound, or another,
stronger, criterion is implemented. We propose to do the latter.

4.2.2.2 Entropic Uncertainty Criterion

Having failed to rigorously certify steering using the previous criterion our hopes
lay with the proven-to-be-tighter entropic uncertainty criterion (SCHNEELOCH et al.,
2013). A part of the calculations done previously will prove to be useful in this new
evaluation, but putting one foot in front of the other, let’s begin by defining the criterion
for the specific context of interest, this is, where Alice measures spin-x and spin-z and
Bob does X and P measurements:

h(PB|σA
z ) + h(XB|σA

x ) ≥ log2(πe). (4.62)

Here,

h(XB|σA
x ) = −

ˆ ∞

−∞
dx
∑
ε=±

p(XB = x, σA
x = ε) ln(p(XB = x|σA

x = ε)) (4.63)

is just the generalization of the conditional entropy for hybrid continuous-discrete obser-
vables.

To obtain the necessary conditional probabilities p(XB|σA
x = ε) and p(PB|σA

z = ε)

one may use the general conditional probability rule

p(A|B) =
p(A,B)

p(B)
. (4.64)
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Fortunately, we already know, from the calculations made in the last criterion, the
values of p(σA

z = ±1) = 1/2 and p(σA
z = ±) = px±. So we must only calculate the

joint infinitesimal probabilities dp(PB, σ
A
z ) and dp(XB, σ

A
x ). The probabilities here are

infinitesimal because they will be integrated to count for the whole distribution as first
demonstrated in (4.63). To calculate these infinitesimal entropies we simply use the
Born rule. For instance

dp(PB, σ
A
z = +)

p(σA
z = +)

=
| 〈p, 0|ψ〉 |2dp

1/2

= N2[(α + β)e−
Δ2

2
(p−p0)2 + (α− β)e−

Δ2

2
(p+p0)2 ]2dp.

(4.65)

Similarly

dp(PB, σ
A
z = −)

p(σA
z = −)

=
| 〈p, 1|ψ〉 |2dp

1/2

= N2[(α− β)e−
Δ2

2
(p−p0)2 + (α + β)e−

Δ2

2
(p+p0)2 ]2dp

(4.66)

and

dp(XB, σ
A
x = +)

p(σA
x = +)

=
| 〈x,+|ψ〉 |2dx

px+

=
1

px+

cos2
(
Ω
2

)
e− (x−x0)2

Δ2

Δ
√
π (1 + cos(Ω)C) (1 + cos (2p0(x− x0))) dx.

(4.67)

Also
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(4.68)

Great, having the probabilities in hand, the next step is to evaluate the integrals in the
form established in (4.63). Unfortunately, no analytical solution was achieved by the
standard methods of integration. Being this an oddly specific integral, pertaining to a
particular class of states, in a particular context (this particular criterion), the integrals
of interest could not even be found in integral tables. Being this the case, numerical
integration became necessary, and the results for different preparations appear in figures
8, 9, and 10.

The integrals were done in the p and x space from −1000 to 1000. Given the
choice of the parameters, being relatively small, Δ = p0 = x0 = 2 in their greatest, this
contemplates most of the integral space. This is so because the Gaussian distributions
decay quickly, even for big dispersions such as the one when Δ = 0.1.

For small values of the parameters, no steering was detectable. This is likely
caused by the indistinguishability of the left and right Gaussians of momentum. Being
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FIGURE 8 – Sum of Bob’s conditional entropies over measurements done by Alice for prepara-
tion parameters Δ = p0 = x0 = 0.1 as a function of the Wigner angle Ω. The red
line indicates the criterion bound log2 πe. No violation of the entropic criterion is
seen.

this so, spin does not entangle to a specific part of the wave function and is not capable
of carrying much information about it. For greater parameter values, steering was
certified after a given Wigner angle that depends on the preparation parameters. A
great avenue of investigation to be followed is the search for the dependence of such a
critical angle on the preparation parameters. The inability to deduce such dependence
is the major weakness of the numerical integration approach.

4.2.3 Chapter Closing Remarks

As the chapter reaches its end the message it wishes to tell is that Lorentz
transformations, the basis of SR, can be represented and act on quantum states and
not without consequences. A very significant consequence is the fact that this kind of
transformation acts over states with momentum coherence in a way that may entangle
this DoF with spin. Being the process of entanglement creation also described in the
chapter and exemplified within.
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FIGURE 9 – Sum of Bob’s conditional entropies over measurements done by Alice for prepa-
ration parameters Δ = p0 = x0 = 1 as a function of the Wigner angle Ω. The red
line indicates the criterion bound log2 πe. The entropic criterion gets violated and
steering is certified.

Following the previously established quantum resource hierarchy, the chapter
set out to discover if known steering criteria, Reid’s variance criterion and the entropic
uncertainty relation criterion, would be able to detect steering for the state of interest.
The state used for entanglement detection was overly simplistic and unrealistic in a
manner that would not allow detection by Reid’s criterion. The system model was then
improved by considering the superposition of Gaussian states of momentum.

Using the new state, the spin minimized product of variances was calculated
but did not violate the definite barrier established by Heisenberg’s uncertainty principle.
Guided by the fact that, for pure states, steering and entanglement are equivalent,
the decision was taken to compare the control variance, which is independent of
Alice’s influence, with the minimized one. From the comparison, a process of variance
decrease was identified and showed to be dependent on the Wigner angle, which was
previously related to the degree of entanglement between spin and momentum, as
expected. Unfortunately, since the bound was not violated, the criterion was not capable
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FIGURE 10 – Sum of Bob’s conditional entropies over measurements done by Alice for prepara-
tion parameters Δ = p0 = x0 = 2 as a function of the Wigner angle Ω. The red
line indicated the criterion bound log2 πe. The entropic criterion gets violated and
steering is certified.

of distinguishing entanglement from a classical correlation. The entropic uncertainty
criterion, on the other hand, was capable of detecting steering for a critical Wigner angle
depending on preparation parameters. Consequently, not all boosted observers would
be able to certify entanglement. The ones with such capacity are those whose boost
velocity exceeds the one related to the critical angle. To obtain results with this criterion,
the required integrals had to be evaluated numerically.

Many approximations had to be taken and many subtle concepts were taken
as understood for the work to advance. The nuanced nature of such concepts was
recognized and will be discussed in the following chapter. The path taken to reach the
work’s results is reasonable and many caveats still standing will find resolution shortly.
———————————————————-
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5 DISCUSSION AND CONCLUSION

This work is a short amalgamation of concepts, both old and new, from two
of the most successful descriptions of nature ever devised by the human mind. Since
the work within QM and SR itself is not over, no hope was had that this work would be
able to avoid or solve many of the difficulties associated with conjoining both theories.
Be that as it may, we still advanced, taking positions as they seemed reasonable to
us. It is in the hope that any reader shares the opinion about the reasonability of the
workarounds we proposed, and then used, that this chapter is written.

To better organize this closing chapter, it will be separated into topics, divided
by subsections, about some of the contentious matters of the work. Many topics are
related and separated only arbitrarily to improve the ability of one to refer to a specific
problem later.

5.1 DISCUSSION

The majority of the points of contempt present in this work appear by contradic-
ting requirements of QM and SR, but not all. Being this so, let us begin with a devious
concept within QM itself, that of quantum reference frames.

5.1.1 Quantum Reference Frames

Changes of reference frame are important parts of all physical theories, being
physics assumed to be universal and unchanging in time1, a theory must be able to
accommodate the descriptions of other observers within the same universe, or, better
put, under the same laws. The process of jumping from one’s perspective to another’s
is a change, or transformation, of frame of reference. In SR these are the all too well
know Lorentz transformations Λ that, as demonstrated are paralleled in QM by U(Λ).
Now, within QM, other types of reference frame transformations exist (GIACOMINI et al.,
2019a).

The concept of Quantum Reference Frames was slightly touched on in the
previous chapter, but it is no shallow concept, although it can be represented in a few
words: Quantum theory is very accustomed to conceding physical systems, particles
for instance, states of nature that have no defined reality, a concept pinacled by super-
position. But, being the objects of the theory physical systems, and assuming that the
observer modeling nature is itself a physical system, what keeps the system from having
a description of the observer in a manner not different than the one the observer had of
1 Or at least able to predict its own changes in time and space.
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the system originally? If one has a description of an electron in a state of superposition,
may the electron have a description of them?

If within QM there are unitary operators that take a system composed of obser-
ver and object2, originally modeled in the observer frame, into the object’s frame, without
breaking the most important parts of the theory, such as the canonical structure3, then
the question of the previous paragraph will be answered.

Since this is an open topic in today’s physics, when we faced it, namely, when
the fact that spin is usually defined at rest and that no classical rest frame exists for
momentum superposition was encountered, we opted to leave as a hypothesis that
the spin structure is preserved in a momentum superposition, arguing then why such
hypothesis was reasonable.

If spin is inexorably associated with rest, as it might well be, then, a truly
fundamental description of the nature of such DoF will undoubtedly pass through the
understanding of quantum reference frames.

5.1.2 Relativistic Spin Observable

Being exposed to the fact that spin is usually defined at rest, one might ask why
that is so.

The answer is twofold. Firstly, at rest, no orbital angular momentum can exist.
Therefore, all angular momentum must be intrinsic. Being this the case, at rest, total
angular momentum and spin are one and the same, at least if the particle is the only
physical entity in this universe. Secondly and more significant for this particular discus-
sion, spin interactions4 occur when a particle is put in an inhomogeneous magnetic
field. However, the electromagnetic field itself is frame-dependent, being one of the facts
that led to the discovery of SR itself. Then, for the dynamic to be covariant, if the field
transforms, something about the spin interaction must transform as well.

The search for the correct description of the relativistic spin observable is still
on as this is written. As previously outlined, some authors believe that spin has no
momentum-independent meaning (GIACOMINI et al., 2019b), and if the problem is
complicated in the case of well-defined rest and momentum-possessing frames, it gets
much more complicated when quantum reference frames are of concern, as discussed
in the previous subsection.
2 Here some way for the observer to model itself is assumed. A "physical" observer may be just a

particle in the origin. The discussion of what qualities "physical" reference frames and/or observers
must have is also prominent in the literature.

3 In the sense of the canonical commutation relations.
4 Other types of spin interactions exist, the one being described here is the one associated with spin

measurements, that is, with the modeling of a Stern-Gerlach experiment.
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5.1.3 Time in QM

There are many difficulties associated with time in QM, some are not problematic
as far as this work is concerned. For instance, time evolution in QM is completely time-
reversible. Therefore, the derivation of an arrow of time is a hard task, one that many
set out to do (MACCONE, 2009; BASSO et al., 2023). Since this work is not concerned
with dynamics, our problem with time is of a different nature.

There is no known time observable and no time state is writable, although
many have been proposed (GOTŌ et al., 1980; SRINIVAS; VIJAYALAKSHMI, 1981;
OPPENHEIM et al., 1999). For QM time is only a parameter of evolution fixed out of the
dynamic by its Hamiltonian formalism, even for cases of time-dependent Hamiltonians
(MUGA et al., 2007). A possible attempt to defend QM is that, if it permitted time-states
it would allow for time superposition and time interference, concepts as hard to intuit as
any, not that lack of intuability was reason to stop QM before.

Relativity, on the other hand, is based on 4-vectors of both position and momen-
tum that are simultaneously well defined. In QM the uncertainty principle associates a
limit of precision for incompatible observables such as 3-momentum and 3-position but,
by extending the formalism to 4-vectors, an uncertainty principle arises between time
and energy, and energy states are writable, being them the states associated exactly
with the Hamiltonian operator. As of yet, the formalism does not go full circle.

This incongruity is avoided within this work when arguments are given on the
reason to ignore the zeroeth component of the momentum 4-state. Since we end up
being concerned only with the 3-momentum, rationally, only the 3-position is taken into
consideration. But, in the formalism, no concept serves as an objection to time-based
entanglement or steering. Finally, even the workaround found to discard the energy
space in the 4-momentum state is not that set in stone, as shall be elaborated on next.

5.1.4 Negative Mass

More controversy can be found in the fact that, in the same way, a perfectly
well-defined momentum state is associated with a completely undefined position. If a
particle is found at rest (3-momentum and 3-position equal to zero) and at a given time,
measured with enough precision, it must have a completely undefined rest mass. Being
it permitted to have negative energies, it might need to have negative masses as well,
being that whatever it is. Never mind the previously mentioned mass-shell constraint.

A way to ease the mind troubled by the previously discussed controversy is to
bring attention to the fact that, in Dirac’s equation (DIRAC, 1928), one of the best-known
descriptions of spin-1/2 massive particles, deemed by some as the "real seed of modern
physics" (ZICHICHI, 2000), negative solutions are known and have been interpreted
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as the solutions associated with antiparticles. But even then, these interpretations are
commonly done over unrealistic states of perfectly defined rest, for instance. Physics
describes the nature of a spin-1/2 particle beautifully, as long as it knows not where or
when to find such a particle!

5.1.5 End of Discussion!

Much more could be said on the topics surrounding troubles in QM, SR, and their
intersection. This work dares not, for instance, to go into the "Is quantum theory a theory
of nature or information?" debate. And then there is also the supermassive elephant
in the room, the fact that SR is not even the final word in classical physics5, being
generalized by general relativity, where commonly, not even the number of particles is
a frame-independent parameter6. But then again, if this work dares not to attempt to
solve smaller problems, quantum gravity is very out of scope.

Having followed the necessary tangents out of the important concepts needed
to achieve our results, let us look inward again and talk a little about what they tell us.

5.2 CONCLUSION

This research project set out to understand and then measure the way in which
Lorentz transformations altered the amount of resources a quantum state possesses.
The curiosity about the topic appeared when the view that momentum and spin could
become entangled via such transformations appeared in the literature (PERES et al.,
2002). For such reasons the systems of interest were those represented by spin-
momentum states, it is possible that similar effects could be found in states of different
nature, although none is known. Having chosen the system, the next choice would
have to be what resources to evaluate. The choice to go up the resource hierarchy
was partially motivated by the resource’s usefulness in applications, mostly in the
field of quantum information, and then also motivated by the polemic around the spin-
momentum separability problem, where the more loose requirements of only one
party trustability fitted well with the not completely known nature of the relativistic spin
observable. The chosen formalism does not require quantum measurements of spin
in the standard way. Instead, Alice’s measurements may be of any nature, as long as
they demonstrate correlations in a manner similar to our model, our results stand. A
small caveat should be brought to attention, since steering is to be evaluated for two
5 Many definitions of "classical physics" fit this description. In this context, what is being said is that

general relativity is the most successful local and realistic theory of nature, being the two fundamental
characteristics of the definition of "classical" used.

6 In specific cases the same pathology appears in SR.
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DoF of the same particle, a locality loophole7 will remain open. Allthough true, quantum
correlations of similar nature have been certified in a loophole free manner (STORZ
et al., 2023; CHRISTENSEN et al., 2013). Being this so, there is no reason to object to
the assumption that a measurement of one of the DoF will not perturb the other in a
classical information transfer way8. Having in hand an object, namely, spin-momentum
systems, and an objective, entanglement, and steering detection, the project advanced
toward the production of the results.

Beginning by reproducing the provocative results of boost-induced entangle-
ment, we then realized that the simple model of the physical system was a) too simplistic
to be implementable9 and b) would never allow for steering detection by one of the
chosen criteria. Then, the system’s modeling evolved and the criteria were applied. For
Reid’s criterion, no absolute violation was found since the variance never went below the
one established in Heisenberg’s uncertainty principle. As it turns out, the fact that the
reduced state entropy is limited by the dimension of the smaller space, spin in this case,
makes it so the amount of information one can codify in one space, about the other, is
limited. Spin measurements by Alice, in the optimal, maximally entangled, case, could,
at best, select in which of the two Gaussian in superposition Bob’s state would end up
in. Being Gaussians states of minimal variance, that is, with variance equal to 1/4, the
results become reasonably explained. Now, we also demonstrated that although the
final state is not one of violating variance, it still is one of diminished variance. Alice can
take Bob’s state from one of unbounded variance, as long as p0 and Δ are great enough,
to one of minimal variance, depending only on the degree of entanglement between
both states, as measured by the Wigner angle. In this sense, at the very least, a process
of creation of at-least-classical correlation was established, being the case that, as Ω

increased, the amount of Alice’s information about Bob’s state became greater reaching
the very limits of the bound although never surpassing them.

Concerned with the failure to certify entanglement for a pure and entangled
state, another, tighter, criterion was implemented. Using the entropic uncertainty relation
criterion we were able to find violations of the bound for certain preparations. The
Wigner angle where violations first appear depends on the preparation parameters. For
preparations that didn’t display steering, a reasonable explanation was given suggesting
that even entanglement creation would be hindered, being then, naturally, not enough
to violate the criterion.

As the previous section should have left clear, this work proposes more ques-
tions than it answers. The questions of most interest, those who might inspire future
7 This loophole is a consequence of the fact that, if the interval that separates Alice’s and Bob’s

measuring events is not space-like, information about a measurement could affect the other’s results.
8 That is, via sub-luminal information transportation.
9 Meaning experimentally feasible.
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works are the quest for quantities that, together with the known-to-change-resources,
form relativistic invariants. For entanglement, there are good candidates in coherence
and other correlations (SAVI; ANGELO, 2021), but for steering there is no known com-
plementary resource. Also, if relativity is to be believed. In the sense that the laws of
nature are equal in all frames of reference. If spin becomes entangled to momentum
for a boosted observer, it means that the transformed spin observable in the reference
frame where spin and momentum were originally separable must also be entangled
with the transformed momentum. This means that, given a system in the likeness of the
one that was used in this work, for a different DoF, one that is the transformation of the
standard spin observable, entanglement should already be present. By hypothesis, the
nature of such DoF might be accessible by studying the dynamics of a transformed spin
measurement. Basically, the dynamics of the system under the electromagnetic field of
a Stern-Gerlach experiment that is located in a frame of reference traveling away from
the system in a frame that would model the system as spin-momentum entangled.
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GOTŌ, T.; NAKA, S.; YAMAGUCHI, K. The time as an observable in quantum
mechanics. Progress of Theoretical Physics, Oxford University Press, v. 64, n. 1,
p. 1–17, 1980. Citado 1 vez na página 76.

HEISENBERG, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik. Zeitschrift für Physik, Springer, v. 43, n. 3-4, p. 172–198, 1927. Citado
1 vez na página 18.

HORODECKI, R.; HORODECKI, P.; HORODECKI, M.; HORODECKI, K. Quantum
entanglement. Reviews of modern physics, APS, v. 81, n. 2, p. 865, 2009. Citado 1
vez na página 22.

MACCONE, L. Quantum solution to the arrow-of-time dilemma. Physical review
letters, APS, v. 103, n. 8, p. 080401, 2009. Citado 1 vez na página 76.

MAZIERO, J. Computing partial traces and reduced density matrices. International
Journal of Modern Physics C, World Scientific, v. 28, n. 01, p. 1750005, 2017. Citado
1 vez na página 24.

MINCULETE, N. About the Cauchy–Bunyakovsky–Schwarz Inequality for Hilbert Space
Operators. Symmetry, MDPI, v. 13, n. 2, p. 305, 2021. Citado 1 vez na página 19.

MOCANU, C. I. On the relativistic velocity composition paradox and the Thomas
rotation. Foundations of Physics Letters, 5(5), 443–456. 1992. DOI:
https://doi.org/10.1007/bf00690425. Citado 1 vez na página 46.

MUGA, G.; MAYATO, R. S.; EGUSQUIZA, I. Time in quantum mechanics. [S.l.]:
Springer Science & Business Media, 2007. v. 734. Citado 1 vez na página 76.

NIELSEN, M. A.; CHUANG, I. L. Quantum computation and quantum information.
[S.l.]: Cambridge university press, 2010. Citado 3 vezes nas páginas 13, 27, 57.

O’DONNELL, K.; VISSER, M. Elementary analysis of the special relativistic
combination of velocities, wigner rotation and thomas precession. European Journal
of Physics, v. 32, n. 4, p. 1033–1047, 2011. Citado 1 vez na página 45.

OPPENHEIM, J.; REZNIK, B.; UNRUH, W. G. Time as an observable. In: SPRINGER.
QUANTUM Future From Volta and Como to the Present and Beyond: Proceedings of



83

the Xth Max Born Symposium Held in Przesieka, Poland, 24–27 September 1997.
[S.l.: s.n.], 1999. P. 204–219. Citado 1 vez na página 76.

PERES, A.; SCUDO, P. F.; TERNO, D. R. Quantum entropy and special relativity.
Physical review letters, APS, v. 88, n. 23, p. 230402, 2002. Citado 3 vezes nas
páginas 11, 22, 77.

PETRECA, A. T.; CARDOSO, G.; DEVECCHI, F. P.; ANGELO, R. M. Genuine
multipartite entanglement and quantum coherence in an electron-positron system:
Relativistic covariance. Physical Review A, APS, v. 105, n. 3, p. 032205, 2022. Citado
1 vez na página 12.

PLÁVALA, M. General probabilistic theories: An introduction. Physics Reports,
Elsevier, v. 1033, p. 1–64, 2023. Citado 1 vez na página 23.

REID, M. D. Demonstration of the Einstein-Podolsky-Rosen paradox using
nondegenerate parametric amplification. Physical Review A, APS, v. 40, n. 2, p. 913,
1989. Citado 2 vezes nas páginas 12, 30.

RIOS, S. Q. de los. Why is momentum the generator of translations?, 2018. Citado 1
vez na página 20.

ROBERTSON, H. P. The uncertainty principle. Physical Review, APS, v. 34, n. 1,
p. 163, 1929. Citado 1 vez na página 19.

SALDANHA, P. L.; VEDRAL, V. Wigner rotations and an apparent paradox in relativistic
quantum information. Physical Review A, APS, v. 76, n. 2, p. 022316, 2007. Citado 1
vez na página 62.

SAVI, M. F.; ANGELO, R. M. Quantum resource covariance. Physical Review A, APS,
v. 103, n. 2, p. 022220, 2021. Citado 1 vez na página 79.

SCHNEELOCH, J.; BROADBENT, C. J.; WALBORN, S. P.; CAVALCANTI, E. G.;
HOWELL, J. C. Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty
relations. Physical Review A, APS, v. 87, n. 6, p. 062103, 2013. Citado 5 vezes nas
páginas 12, 30, 32, 34, 69.

SCHRÖDINGER, E. Discussion of probability relations between separated systems. In:
CAMBRIDGE UNIVERSITY PRESS, 4. MATHEMATICAL Proceedings of the



84

Cambridge Philosophical Society. [S.l.: s.n.], 1935. v. 31, p. 555–563. Citado 1 vez na
página 21.

SHANNON, C. E. A mathematical theory of communication. The Bell system technical
journal, Nokia Bell Labs, v. 27, n. 3, p. 379–423, 1948. Citado 1 vez na página 26.

SRINIVAS, M.; VIJAYALAKSHMI, R. The ‘time of occurrence’in quantum mechanics.
Pramana, Springer, v. 16, p. 173–199, 1981. Citado 1 vez na página 76.

STORZ, S.; SCHÄR, J.; KULIKOV, A.; MAGNARD, P.; KURPIERS, P.; LÜTOLF, J.;
WALTER, T.; COPETUDO, A.; REUER, K.; AKIN, A. et al. Loophole-free Bell inequality
violation with superconducting circuits. Nature, Nature Publishing Group UK London,
v. 617, n. 7960, p. 265–270, 2023. Citado 1 vez na página 78.

STREITER, L. F.; GIACOMINI, F.; BRUKNER, Č. Relativistic Bell test within quantum
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APÊNDICE 1 – POSTULATES OF QUANTUM MECHANICS

1. State Postulate: The state of a quantum system is described by a normalized
state vector |ψ〉 in a complex Hilbert space.

2. Measurement Postulate: When a measurement is performed on a quantum
system described by the state vector |ψ〉, the outcome is one of the eigenvalues of
the corresponding observable. The probability of obtaining a specific eigenvalue is
given by the squared magnitude of the projection of |ψ〉 onto the corresponding
eigenvector.

3. Evolution Postulate: The time evolution of a quantum system is described by the
Schrödinger equation:

i�
∂

∂t
|ψ〉 = Ĥ |ψ〉

, where � is the reduced Planck’s constant, Ĥ is the Hamiltonian operator, and |ψ〉
is the state vector at timr t.

4. Superposition Postulate: The state vector of a quantum system can exist in a
superposition of multiple states. If |ψ1〉 and |ψ2〉 are valid state vectors, then any
linear combination α |ψ1〉+ β |ψ2〉, where α and β are complex numbers satisfying
the normalization condition, is also a valid state vector.

5. Composite Systems Postulate: The state space of a composite quantum system
is the tensor product of the individual state spaces of the constituent systems.

6. Entanglement Postulate: The composite system can exist in an entangled state,
where the state of the whole cannot be expressed as a simple product of the
individual states of its parts.

7. Measurement Collapse Postulate: After a measurement is made on a quantum
system, the system collapses into an eigenstate corresponding to the measured
eigenvalue.

Note that in the Schrödinger equation, the time derivative is with respect to t,
and Ĥ represents the Hamiltonian operator, which is associated with the total energy of
the system.

Other presentations of these postulates exist. This is just a quite usual presen-
tation of them.


