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Os modelos de distribuição de espécies (SDMs) são ferramentas amplamente utilizadas para prever a distri-
buição potencial de espécies, com diversas aplicações em ecologia. Modelar espécies raras é desafiador devido
às suas áreas de distribuição restritas e pequenos conjuntos de dados, que podem levar ao sobreajuste do mo-
delo. A abordagem Ensemble of Small Models (ESMs) surgiu para mitigar essas limitações, utilizando conjuntos
de modelos pequenos e demonstrando resultados satisfatórios. Este estudo aplica ESMs para construir SDMs
para espécies comuns e raras, usando como modelo de estudo o gênero de roedores neotropicais Coendou,
que inclui 16 espécies variando de comuns (>100 localidades) a raras (<30 localidades). Utilizamos variáveis
climáticas, topográficas e de cobertura vegetal como preditores e o algoritmo Maxent. Numerosos pequenos
modelos (bivariados) foram calibrados e avaliados, formando um conjunto ponderado com base nos índices
AUC e Boyce’s, e suas previsões de conjunto avaliadas com o índice Somers’D. Para reduzir a sobrepredição,
aplicamos a metodologia MSDM “a posteriori”. Os modelos apresentaram bom desempenho (0,76 AUC - 0,63
Boyce’s), especialmente para espécies raras. A metodologia MSDM ajustou a sobrepredição, embora com
algumas restrições artificiais à realidade biológica das espécies. A abordagem ESM, com algoritmos como o
Maxent e ajustes de sobrepredição com MSDM, permitiu o desenvolvimento de modelos de alto desempenho,
melhorando a confiabilidade dos SDMs, especialmente para espécies raras.
Palavras-chave: Conjunto de dados pequeno, Desempenho do modelo, Sobreajuste, Sobrepredição.

Species Distribution Models (SDMs) are widely used tools for predicting the potential distribution of species,
with various applications in ecology. Modeling rare species is challenging due to their restricted distribution
areas and small datasets, which can lead to model overfitting. The Ensemble of Small Models (ESMs) approach
emerged to overcome these limitations by using small model ensembles and demonstrating satisfactory
results. This study applies ESMs to construct SDMs for both common and rare species, using the neotropical
rodent genus Coendou as a case study, which includes 16 species ranging from common (>100 locations)
to rare (<30 locations). We used climatic, topographic, and vegetation cover variables as predictors and the
Maxent algorithm. Numerous small (bivariate) models were calibrated and evaluated, forming a weighted
ensemble based on AUC and Boyce’s indices, and their ensemble predictions were assessed with the Somers’D
index. To reduce overprediction, we applied the MSDM “a posteriori” methodology. The models showed
good performance (0.76 AUC - 0.63 Boyce’s), particularly for rare species. The MSDM methodology adjusted
for overprediction, though with some artificial constraints on the biological reality of the species. We found
that the ESM approach, with algorithms like Maxent and overprediction adjustments with MSDM, enables
the development of high-performance models, thereby improving the reliability of SDMs, especially for rare
species.
Keywords: Model performance, Overfitting, Overprediction, Small dataset.

1. Introduction

Species distribution models (SDMs) are crucial tools
in ecology for analyzing the environmental factors that
determine the distribution of biological species and for

predicting the areas where a species might find suita-
ble environmental conditions for its distribution [13],
[62]. These models use a wide range of algorithms to
statistically describe the relationship between species
and their environment, supported by various software
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packages designed to connect ecological theory with
data analysis [11], [62]. The algorithms quantify the cor-
relation between species and environmental factors.
The choice of data types and analysis methods is cru-
cial, as it determines the resulting output. Therefore,
these choices should align with the model’s objectives
[35], [51].

Building on this, SDM methods include techniques
ranging from simple models based solely on presence
data [25], [40] to advanced approaches that differen-
tiate between probability predictions (e.g., logistic re-
gression, [61]) and fitness predictions (e.g., classifica-
tion trees, [49]). Some approaches, such as artificial
neural networks, are iterative and can be improved by
external iterative methods applied to machine learning
algorithms, such as decision trees, to increase accuracy
[54], [60], [61].

Recent development includes generalized regression
and machine learning methods have been developed
or extended to handle presence-only data, often re-
quiring the use of "background"or pseudo-absence
data [40], [54]. Maximum entropy (Maxent) [43] has
been shown to be very effective in SDM studies with
presence-only data [14], [43], especially with small sam-
ple sizes [26], [43]. Additionally, it can model com-
plex and nonlinear relationships between response
variables and predictors [14]. However, its ease of use
and simplicity have driven Maxent to become one of
the most prominent and widely used SDM techniques
in scientific research [22], [26]. Despite criticisms re-
garding its incorrect application and oversimplifica-
tion [36], [59] and concerns about overfitting [19], [34],
Maxent continues to be frequently used for modeling
across various taxa, geographic areas, time periods,
and environmental scenarios [26].

In practical applications, SDMs are widely used in
several areas, being key tools in conservation planning
[4], testing biogeographic hypotheses [29], investiga-
ting evolutionary processes [27], identifying suitable
areas for species reintroduction [15], mapping fuels
and fire regimes [46], and increasing the probability of
detection of rare species [10], [18].

Modeling rare species, which have limited distribu-
tion range (small data set) compared to common and
widely distributed species (larger data set), presents
challenges. Modeling rare species generally presents
higher accuracy compared to common species [17], [6].
However, considering that model accuracy increases
asymptotically with sample size [50], [21], [6], several
studies have shown that with occurrences below ap-

proximately 30, model accuracy is often low and the
variability of model accuracy increases between spe-
cies [50], [21], [58], [6].

This can be explained because many times, with spe-
cies with a small data set, the number of explanatory
environmental variables is greater than the number
of occurrences, which can lead to overfitting of the
model, leading to a lower generalization of the model
restricting its applicability to new data [56], [6].

Considering that the rule of thumb indicates that
the sample size, number of occurrences, be 10 times
larger than the number of predictors used to make the
models [20], [6], the problem could be solved by redu-
cing the number of predictors by means of selection
methods (Akaike Information Criterion - AIC [2]; Baye-
sian Information Criterion - BIC, [47]; Lasso, [52], etc.).
However, this is not applicable for rare species since,
in order to maintain that relationship, it would imply
keeping only one or two predictors per 20 occurrences,
being that many times that number corresponds to the
total sample size [6].

For that Lomba and collaborators [31] proposed an
Ensemble of Small Models (ESMs) approach, which
is based on fitting a larger number of small bivariate
models (models with only two predictors at a time),
averaging them into an ensemble prediction using
weights based on model performances [6]. This makes
the predictor-occurrence relationship much improved
with this method because the number of predictors
used in each small model remains low [6], [7]. There-
fore, the estimation of model coefficients was expected
to be much more robust and the risk of model overfit-
ting was minimized without losing explanatory power
because the number of predictors remains low for a sin-
gle model, but high within the ensemble framework [7].
Therefore, this work aims to apply the ESMs approach
to construct SDMs for both common and rare species,
evaluating its effectiveness in handling datasets with
varying occurrences.

2. Materials and Methods

2.1. Study model

We use the Neotropical rodent genus Coendou as a
biological study model. This genus encompasses 16
recognized species [57], [44], [33], of which we have
identified localities for 13. Among these, some species
have been recorded in over 100 recorded localities (e.g.,
C. longicaudatus, n= 137; C. rufescens, n= 142; C. spino-
sus, n=160), while others have fewer than 60 confirmed
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localities (e.g., C. bicolor, n= 56 and C. quichua, n=56),
and others have less than 30 confirmed localities (e.g.,
C. baturitensis, n= 21; C. ichillus, n= 10; C. insidiosus,
n= 19; C. melanurus, n=23; C. nycthemera, n=29; C.
pruinosus, n= 25; C. prehensilis, n= 13 and C. vestitus,
n=10). The latter are considered rare species due to
their restricted distribution and limited available infor-
mation [45].

2.2. Pre-analysis

2.2.1. Data Acquisition

Occurrence data were obtained from global online
database such as the Mammal Networked Information
System (MaNIS) and the Global Biodiversity Informa-
tion Facility (GBIF). We performed distribution model-
ling using the confirmed localities as occurrence data
and environmental variables such climate, topographi-
cal (slope and elevation) and land cover (NDVI, Norma-
lized difference vegetation index). We obtained the 19
climatic variables from WorldClim (worldclim.org), the
2 topographic variables from EarthEnv (earthenv.org),
and NDVI from NEO Nasa Earth Observations (nasa.gov),
(Table S1 in Supplementary section).

As spatial limits for the cuts of the environmental
variables and spatial definition of the calibration area
of the models, shapefiles of the American continent, of
the countries of Central and South America obtained
from DIVA-GIS (diva-gis.org), as well as of the ecoregi-
ons obtained from Morrone and collaborators (2022)
[37] were used.

2.2.2. Data Preparation

The occurrence data were cleaned and duplicates
were removed using data manipulation packages such
as “dplyr” and “sf ” in R Software. Subsequently, with
the cleaned dataset, we corrected for spatial autocor-
relation. For this, we applied spatial filtering analysis,
retaining occurrences that were greater than 2km2 in
proximity to one another [38]. This analysis was perfor-
med using “spThin” package [1].

The variables were standardized 1km2 resolution
and comprised 22 environmental layers. To reduce er-
rors related to the correlation between the environ-
mental predictors, we used a Principal Component
Analysis (PCA) to synthesize the variation of environ-
mental predictors into principal components [9]. We
used the first seven principal components, as predictor
variables, which explained 96% of the original varia-
tion.

2.3. Species Distribution Models (SDMs)

To avoid model overfitting that occurs because of
the low number of occurrences and considering that
most of the species evaluated have few occurrences
(<30) or are considered rare, we adopted the Ensem-
bles of Small Models (ESM) [6],[7] as the modelling
framework. This approach uses small calibrated mo-
dels (usually bivariate) with different combinations of
predictors pairs making a final ensemble model [6] (Fi-
gure 1). We used Maximum Entropy method - Maxent
[43] because it has been good performance compared
with other algorithms and indicating for small datasets
[14], [43], [39]. Additionally, Maxent is a presence back-
ground algorithm (works only with presence data that
we have available), since it considers that compares the
environmental variables of the true presence with the
background pixel to create area predictions of environ-
mental suitability [43],[39], [42]. For the background
points, we created five sets of 10,000 random points in
the area included in the shapefile of the ecoregions.

Figura 1: A: Calibration and evaluation of all small (here biva-
riate) models. B: Weighted average of all predictions per each
ensemble and evaluation of ESM predictions. C: Weighted
average of ESM predictions and evaluation (Adapted from
Breiner et al. 2015)

Each model was calibrated and projected to the eco-
regions corresponding to the intersection of the oc-
currence points of each species [5]. For model valida-
tion, the occurrence data were randomly divided in
a proportion of 70% for model training and 30% for
model testing, and this procedure was repeated 5 ti-
mes. For each bivariate model we considered the AUC
and Boyce’s index as performance measures. The AUC
discriminates between presences and absences con-
sidered >0.5 acceptable model [16], [12]. The Boyce’s
index is a complement to the usual evaluation of pre-
sence/absence models and a reliable measure of presence-
only based predictions [23]. Boyce’s index is based on
Sperman’s correlation coefficient, and its values range
from -1 to 1 with positive values indicating that the
model is able to predict correctly according to the ac-
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tual presence of the evaluation data [23]. For the final
ensemble of each model, we used the Somers’D that
averages simple bivariate models by weighted means
to Ensemble Small Models [31], [6], [7]). Somers’D in-
dex gives more weight to models that perform well and
less to those that perform poorly. Bivariate models with
Somers’D less than 0 (i.e., AUC < 05) were set to zero
and were not used to construct ensembles [6].

To reduce the overprediction of the model output
(continuous suitability map), we used the MSDM metho-
dology proposed by Mendes and collaborators (2020)
[32]. We applied "a posteriori"method Buffered Mini-
mum Convex Polygon (MCPB), compiled and adapted
from Kremen and collaborators (2008) [28] to the final
models of six species (C. ichillus, C. longicaudatus, C.
pruinosus, C. rufescens, C. quichua and C. vestitus). The
method uses presences to build a minimum convex
polygon, with interior angles less than 180o , and exclu-
des pixels outside the polygon. This method includes
a buffer zone around the polygon, with size based on
the maximum distance of minimal pairwise distances
between occurrences [32]. We kept the sensitivity at 1
(to avoid losing any locality) for species with less than
60 localities (C. ichillus, C. pruinosus, C. quichua and C.
vestitus) and sensitivity of 0.8 (chance of losing 20% lo-
calities) for C. longicaudatus and C. rufescens (133 and
129 localities, respectively). For all analyses we used R
software, the “Biomod2” and “Ecospat” packages for
the distribution models [6], [7], and "MSDM"package
to reduce overprediction [32].

3. Results and discussion

3.1. Modelling analysis

The models presented a good performance, with ave-
rage AUC and Boyce’s index of 0.76 and 0.63, respec-
tively (Figure 2 and 3, Table 1). The use of the ESM
modeling approach was adequate for the species data
set, considering that we obtained species with data
sets <30 localities, and some of them with <15 confir-
med localities. The use of ESM is widely recommended
in the literature for modeling small datasets or sub-
sampled species because they perform well in both
internal (the entire dataset) and external (the transfera-
bility assessment evaluation dataset) cross-validation
[6]. Consequently, species with fewer locations showed
the greatest improvement in model performance when
using ESM.

However, despite the recommendations for the ESM
approach [6], [7], it is important to note some addi-

tional shortcomings or considerations [6]. The first,
the ESM approach has a higher computational effort
compared to standard SDM approaches. Another limi-
tation is that we randomly selected 10,000 background
points located in the ecoregions defined for each spe-
cies to calibrate the models. Of the species modeled,
three of them were considered rare being restricted
to small geographic regions (C. ichillus, C. prehenislis
and C. vestitus). As a consequence, for these species
many background points could be located far from pre-
sence points, leading to high AUC values by easily dis-
tinguishing background from presence points [6], [55].
Therefore, other strategies for selecting background
data and the use of actual absence or abundance data
could be tested in future evaluations of the ESM appro-
ach [6].

The AUC score and Boyce’s index are both widely
used methods for evaluating distribution models, as
they provide a single numerical value from which the
best model can be selected based on the highest va-
lue [24]. In our results, the AUC score is greater than
0.5, indicating that Maxent models perform better than
random models. The highest AUC values (approx. 0.90),
corresponded to some of the species with <30 locali-
ties (C. baturitensis, C. insidiosus, C. nycthemera, C.
prehensilis and C. vestitus; Table 1), compared to the
more common species (C. longicaudatus and C. qui-
chua). In contrast to the AUC, rare species underper-
form compared to less rare species when evaluated
with Boyce’s index (e.g., C. vestitus; Table 1). This may
be mainly due as common assessment indices based
on presence-absence information, such as the AUC, ge-
nerally give higher scores than presence-only indices,
such as Boyce’s, when the number of presences is low
[6], [23]. It has been documented that the AUC index
being one of the most widely used, applied to mea-
sure performance of calibrated models for rare species
tends to overestimate the performance of these models
[30], [41], [48], [6].

The low Boyce’s values in the rare species should be
considered, given that both the model calibration and
its projection were performed in a spatial region where
there is confirmation of the presence of the species,
which is considered a highly informative space in the
construction of the models [24]. This could be a pro-
blem derived from how the Maxent algorithm assigns
suitability values, based on occurrences, to the rest of
the cells in the study area, rather than a problem with
the evaluation methods [24]. However, considering the
performance of AUC, the good performance of the mo-
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Tabela 1: Average and Standard deviation of AUC, Somers’D, and Boyce’s by each Coendou distribution model.

Species AUC Somers’D Boyce’s
average sd average sd average sd

C. ichillus 0.75 0.08 0.51 0.17 0.67 0.10
C. longicaudatus 0.69 0.03 0.38 0.06 0.78 0.08
C. pruinosus 0.81 0.08 0.63 0.16 0.62 0.18
C. quichua 0.63 0.06 0.26 0.13 0.44 0.17
C. rufescens 0.81 0.03 0.62 0.05 0.85 0.05
C.vestitus 0.89 0.04 0.78 0.07 0.42 0.42
C. bicolor 0.76 0.04 0.51 0.09 0.77 0.10
C. baturitensis 0.91 0.05 0.81 0.11 0.60 0.27
C. insidiosus 0.88 0.06 0.76 0.13 0.45 0.35
C. melanurus 0.66 0.08 0.33 0.15 0.35 0.31
C. nycthemera 0.90 0.05 0.81 0.10 0.79 0.11
C. prehensilis 0.91 0.06 0.82 0.12 0.80 0.12
C. spinosus 0.85 0.02 0.71 0.04 0.75 0.13

Figura 2: Environmental suitability maps of seven Coendou species resulting from the SDMs. Warm colors (red) indicate high
environmental suitability while cool colors (blue) indicate sites with less suitable environmental conditions for the presence of
the species.

dels could be explained by the algorithm used in the
ESM approach (Maxent), since it is an algorithm that
performs well when dealing with small data sets [14],
[43], [39], [24].

This illustrates the challenges associated with mode-
ling rare species as they are often not fully recognized

when only indices such as AUC are considered to mea-
sure model performance. Therefore, there are studies
that recommend not relying solely on the AUC if true
absences are not available [21]. It is also recommended
to use Boyce’s index more systematically and choosing
ESM when modeling rare species [6].
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Figura 3: Environmental suitability maps of six Coendou species resulting from the SDMs. Warm colors (red) indicate high
environmental suitability while cool colors (blue) indicate sites with less suitable environmental conditions for the presence of
the species.

For the models to which the overprediction adjust-
ment was applied by the MSDM "a posteriori"method,
the result was maps with straight cuts corresponding to
the polygons constructed based on the most extreme
occurrence points of the known localities for the spe-
cies, this being a method that only requires data on
the presence of species (Figure 4 and 5, [5]. This "a
posteriori"method as a spatial information strategy su-
perimposed on the suitability maps has purely visual
purposes.

These cuts were left with artificial visual, which does
not correspond to the biological and ecological rea-
lity of the distribution of a species [5], however as they
are constructed with the occurrence data themselves
as a proxy for accessibility, because the occurrences
of native species are found only in places they could
access [3], [8], this spatial filter, serves as a species dis-
persal distance constraint, which could help increase
the predictive power of the model [5].

4. Conclusions and future work

By applying the ESM approach, we obtained models
with good performance for small data sets. The intro-
duction of modern machine learning techniques, such
as Maxent, together with the application of the ESM
approach and its subsequent fitting using the “a poste-
riori” MSDM method, are important steps to improve
rare species distribution models. Small model ensem-
bles represent a powerful strategy applicable with se-
veral SDM techniques being ESM one of them. The
strength of ESMs is their high performance with small
sample sizes, a characteristic of rare and endangered
species data, or species that are difficult to detect. The
potential of ESMs was further demonstrated by their
ability to predict independent areas.

For future work, small model ensembles should not
be limited to bivariate models, but could consider uni-
variate or trivariate (or higher) models to build ESM
models. Regarding model performance evaluation me-
trics, the use of several indices is recommended to have
a clearer view of one’s own performance. It is also re-
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Figura 4: Environmental suitability maps of three Coendou species (C. ichillus, C. rufescens and C. quichua) resulting from the
overprediction adjustment with the MSDM “a posteriori” method. Warm colors (red) indicate high environmental suitability,
while cool colors (blue) indicate locations with less suitable environmental conditions for the presence of the species.

Figura 5: Environmental suitability maps of three Coendou species (C. vestitus, C. pruinosus and C. longicaudatus) resulting
from the overprediction adjustment with the MSDM “a posteriori” method. Warm colors (red) indicate high environmental
suitability, while cool colors (blue) indicate locations with less suitable environmental conditions for the presence of the
species.

commended to explore other methods of the MSDM
("a priori"and "a posteriori") for model overprediction
adjustments that are more in line with the biological
and ecological reality of the modeled species.
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