

EFEITO DO COMPORTAMENTO VISCOELÁSTICO EM REVESTIMENTO ASFÁLTICO DE UM PAVIMENTO RODOVIÁRIO

Eduardo Damin, Heloise Sasso Teixeira, Daniane Vicentini Programa de Pós-graduação em Construção Civil – PPGCC Universidade Federal do Paraná - UFPR Curitiba/BR

> Resumo— O revestimento asfáltico de um pavimento flexível apresenta comportamento viscoelástico, em que deformações crescentes com o tempo são observadas mesmo mantendo um nível de tensão constante. Nesse tipo de pavimento, os principais defeitos decorrentes são as deformações permanentes e as fissuras por fadiga, podendo ambos estar relacionados à sua natureza viscoelástica. Por simplificação, os métodos mecanicistas geralmente consideram o comportamento elástico linear na análise de pavimentos. O presente estudo trata do cálculo de tensões e deslocamentos em pavimentos asfálticos, para condições isotérmicas, onde a camada asfáltica comportamento viscoelástico apresenta е as subcamadas são consideradas elásticas. Essa análise é feita com o programa ANSYS, um software robusto para análise numérica via elementos finitos. Os resultados são comparados com os obtidos na literatura e permitiram observar que quando o comportamento viscoelástico do revestimento é considerado, a resposta do pavimento como um todo depende do tempo e da taxa de aplicação de carga.

Palavras-chave—viscoelasticidade; pavimento asfáltico; método dos elementos finitos; pavimento flexível.

Eclecielter Batista Moreira Programa de Pós-graduação em Engenharia Civil – PPGEC Universidade Tecnológica Federal do Paraná - UTFPR Curitiba/BR

I. INTRODUÇÃO

De acordo com Bernucci, Motta e Ceratti [1], o "pavimento é uma estrutura constituída por camadas de espessuras finitas, construídas sobre superfície plana." Sendo esta estrutura construída com a máxima qualidade e um custo mínimo, deverá resistir aos esforços do tráfego e clima ao qual são submetidos e ainda proporcionar melhores condições de rolamento, quanto ao conforto e a segurança do usuário. Os principais pavimentos utilizados no Brasil são os flexíveis (constituídos de material betuminoso na camada superior) que, dependendo dos esforços solicitantes e materiais disponíveis, podem apresentar quatro camadas: reforço (assentado sobre o subleito), sub-base, base e revestimento (camada superior). Nesta camada, onde há o contato direto com o tráfego, são visíveis os problemas mais comuns de deformação plástica. Sabe-se que os pavimentos brasileiros geralmente apresentam excessivos defeitos permanentes, os quais são causados principalmente por fadiga [2]. Esta por sua vez afeta o tempo útil dos pavimentos e deste modo é preciso realizar estudos que prevejam o comportamento de tais pavimentos com o objetivo de aumentar sua durabilidade.

Tendo como base dimensionar pavimentos com alta vida útil e reduzir os problemas de deformação causados pelo tráfego, inúmeros autores utilizam-se de métodos de dimensionamento mecanísticos, os quais consistem na utilização de métodos numéricos ou analíticos para prever o comportamento do pavimento sob determinadas condições, tendo como vantagem a otimização no dimensionamento e a melhoria de sua qualidade [3].

Neste sentido, os principais estudos já desenvolvidos admitem que todas as camadas constituintes do pavimento possuem comportamento elástico linear. Tal suposição ajuda a simplificar os cálculos de dimensionamento, porém sabe-se que o material asfáltico, constituinte do revestimento, possui um comportamento com características claramente viscoelásticas. Sendo assim, para um estudo mais aprofundado é preciso considerar o verdadeiro comportamento do material, como por exemplo, para avaliar as tensões exercidas sob o revestimento, normalmente em condições isotérmicas [2].

Para solucionar problemas como o descrito, na década de 1960 surgiu o Método dos Elementos Finitos (MEF) [3]. O MEF consiste em um método numérico de aproximação na resolução de um sistema de equações que carregam informações acerca da estrutura e solicitações a serem consideradas, tornando possível obter resultados para os inúmeros problemas da engenharia, tal como a deformação em pavimentos.

O modelo viscoelástico pode ser caracterizado pelo módulo de relaxação (m) ou pela fluência (ε). O primeiro é obtido através do ensaio de relaxação, que consiste na aplicação de uma deformação uniaxial constante, ε_0 , sendo $E(t) = \sigma(t)/\varepsilon_0$. Já a função fluência, é obtida através do ensaio de fluência, que consiste na aplicação de uma tensão uniaxial constante, σ_0 , sendo, $D(t) = \varepsilon(t)/\sigma_0$.

Tendo em vista as proposições descritas anteriormente, o presente trabalho tem por objetivo construir um modelo tridimensional de um pavimento utilizando elementos finitos a fim de realizar um estudo comparativo com o modelo de relaxação proposto por Borges [3] – que estudou o comportamento de diferentes misturas asfálticas quanto a resistência à deformação permanente, de acordo com os princípios de superposição tempo-temperatura e tempo-tensão. Após a comparação dos resultados de relaxação, são obtidos gráficos para determinação do coeficiente de determinação e posterior validação dos resultados

II. METODOLOGIA

Neste trabalho foi modelado um pavimento flexível disponível na literatura [3] utilizando o *software Ansys* [4] e comparando-o com os resultados obtidos por Borges [3] através do *Shift Model*, o qual é um rigoroso modelo viscoelástico para análise de deformação permanente em misturas asfálticas. O pavimento foi modelado com dimensões de 1,0 m x 1,0 m x 1,2 m, com relação a um sistema cartesiano *x*, *y* e *z*, conforme a Fig. 2. As espessuras para as camadas de revestimento, base, sub-base e subleito foram assumidas de 50, 150, 200 e 800 cm, respectivamente, de acordo com Souza e Soares [2], conforme ilustrado na Fig. 1. Na Tabela I são apresentados os materiais, espessuras e suas propriedades mecânicas:

TABELA I: LARGURA DA CAMADAS E PROPRIEDADES ELÁSTICAS DO MATERIAL

Camada	Espessura (mm)	Módulo de elasticidade (MPa)	Coeficiente de Poisson
Asfalto	50	2300	0,30
Base	150	55	0,35
Sub-base	200	25	0,40
Subleito	800	10	0,45

Os materiais utilizados nas camadas foram o concreto betuminoso usinado a quente (CBUQ) para a camada de revestimento, base granular de rocha britada, sub-base granular de cascalho e subleito sem reforço, de acordo com Mulungye [5].

Para a solicitação do tráfego, foi considerada uma roda de caminhão (carga de eixo padrão, conforme o Manual de Pavimentação do Departamento Nacional de Infraestrutura de Transporte [6]), que imprime ao pavimento uma área aproximadamente retangular no contato pneu-pavimento, e cuja pressão é função da inflação dos pneus e da carga solicitante no eixo. Assim, foi considerada uma carga pontual resultante do contato do pneu com o pavimento de 10 kN, correspondente à condição de contorno na discretização, para 1/4 de roda. Foram aplicadas condições de contorno de simetria nas faces laterais do pavimento (a fim de simular o confinamento) e restrição vertical

na face inferior do subleito. A Fig. 2 apresenta (no plano yz) o modelo utilizado nas análises.

No modelo de elementos finitos foi considerado comportamento viscoelástico somente para o revestimento asfáltico e para as demais camadas foi considerada a lei de comportamento elástico-linear. Neste estudo, as respostas foram obtidas em termos de tensões e deslocamentos, e os resultados foram então comparados com a resposta do pavimento considerando apenas o comportamento elástico.

Fig. 2. Pavimento modelado

Foram utilizados elementos finitos do tipo SOLID185 com 18000 elementos (usado para a modelagem tridimensional de estruturas sólidas, definido por oito nós com três graus de liberdade em cada nó), que é capaz de simular problemas com plasticidade, rigidez, grandes deslocamentos e deformações, tanto no regime elástico como viscoelástico. Os parâmetros de viscoelasticidade podem ser obtidos através de ensaios estáticos e dinâmicos.

No modelo viscoelástico, a equação constitutiva para pequenas deformações de um material isotrópico e viscoelástico pode ser escrita como:

$$\sigma = \int_{0}^{t} 2G(t-\tau) \frac{de}{d\tau} d\tau + I \int_{0}^{t} K(t-\tau) \frac{d\Delta}{d\tau} d\tau, \qquad (1)$$

Onde σ é a tensão de Cauchy, *e* é a parcela desviatória da deformação, Δ é a parcela volumétrica da deformação, *G*(*t*) é a função de relaxação do cisalhamento, *K*(*t*) é a função do bulbo de relaxação, *t* é o tempo atual, τ é o tempo decorrido e *I* é o tensor unitário. Assume-se que as funções de núcleo satisfazem o

modelo de viscoelasticidade linear obtido através do modelo geral de Maxwell. O modelo clássico de Maxwell atende as condições de viscoelasticidade propostas. Os elementos do modelo SOLID185 apresentam como função de núcleo as seguintes equações:

$$G(t) = G_{\infty} \left[\alpha_{\infty}^{G} + \sum_{i=1}^{n_{G}} \alpha_{i}^{G} e^{-t/\tau_{i}^{G}} \right] e$$
(2)

$$K(t) = K_{\infty} \left[\alpha_{\infty}^{K} + \sum_{i=1}^{n_{K}} \alpha_{i}^{K} e^{-t/\tau_{i}^{K}} \right], \qquad (3)$$

Onde $G(t) \in K(t)$ são os módulos de relaxação no tempo zero, $n_G \in n_K$ são números de termos da função, $\propto_i^G \in \alpha_i^K$ são os módulos de relaxação e $\tau_i^G \in \tau_i^K$ são os tempos de relaxação.

Os parâmetros de viscoelasticidade do material foram inseridos no modelo através da ferramenta denominada *curve fitting tool*, e das constantes do material relacionadas ao módulo de cisalhamento e bulbo volumétrico, de acordo com os dados de ensaios experimentais de Mulungye [4], e indicados na Tabela II.

TABELA II: DADOS DE ENSAIO DE VISCOELASTICIDADE, DE ACORDO COM MULUNGYE [4].

Ciclos	Tempo [s]	Módulo de elasticidade	Módulo cisalhante
		E [MPa]	G [MPa]
10	2,5	2536	905,7
20	5	2383	851,1
30	7,5	2440	871,4
40	10	2437	870,4
50	12,5	2469	881,8
60	15	2495	891,1
70	17,5	2561	914,6
80	20	2528	902,9
90	22,5	2475	883,9
100	25	2392	854,3
200	50	1550	553,6
300	75	1521	543,2
400	100	1551	553,9
500	125	1563	558,2
550	137,5	1601	571,8
950	237,5	1402	500,7
1050	262,5	1390	496,4
1150	287,5	1408	502,9
1250	312,5	1420	507,1
1350	337,5	1462	522,1
1450	362,5	1481	528,9
1550	387,5	1474	526,4
2550	637,5	1298	463,6
3550	887,5	1043	372,5
4550	1137,5	589	210,4
4590	1147,5	551	196,8

Fonte: Mulungye [4]

Os valores do módulo cisalhante foram obtidos por:

$$G = \frac{E}{2(1+\upsilon)} \tag{4}$$

sendo que E é o módulo de elasticidade e v é o coeficiente de Poisson constante de acordo com a Tabela ITABELA I.

Com base nos resultados obtidos na modelagem, é possível traçar o gráfico de deflexão do pavimento em função da distância da aplicação da carga e calcular o raio de curvatura da bacia de deflexão, através da equação:

$$R = \frac{3125}{D_0 - D_{25}}$$
(5)

sendo que *R* é o raio de curvatura da deflexão, D_0 é a deflexão do pavimento (deflexão característica é igual a D_c) a 0 cm de distância da aplicação da carga e D_{25} é a deflexão do pavimento a 25 cm de distância da aplicação da carga.

Com a deflexão característica (D_c) , multiplica-se com fator de correção sazonal para obter a deflexão de projeto (D_p) . O fator de correção sazonal (F_s) varia de 1,0 à 1,4, neste trabalho adotouse 1,0 que equivale à estação chuvosa e não se altera em função do tipo de solo nas camadas abaixo do revestimento [3].

A deflexão admissível do pavimento relaciona-se com o número N (número equivalente de operações do eixo padrão – 8200 kg) e pode ser calculado de acordo com o Departamento Nacional de Infraestrutura de Transportes [5] por:

$$\log D_{adm} = 3,01-0,176 \log N$$
 (6)

III. RESULTADOS

Uma vez definidas a geometria, as propriedades dos materiais com suas respectivas leis de comportamento e as condições de contorno (deslocamentos e carregamento), pode-se proceder ao cálculo das tensões e deslocamentos induzidos no pavimento. Os parâmetros adotados para comparação e validação foram a deflexão máxima na superfície (d_0), a tensão horizontal no fundo do revestimento e a tensão vertical no topo do subleito. Após a aplicação da carga *P* no modelo foi analisado o efeito da mesma nas camadas. A Fig. 3 mostra deflexão vertical, *Uz*, do pavimento.

Fig. 3. Efeito da carga no pavimento (deformação)

Obtendo-se os dados de deformação em função do tempo de aplicação da carga, é possível traçar o gráfico de deflexão do pavimento em função do tempo de relaxação (Fig. 4), e calcular o coeficiente de determinação comparando-se com os resultados obtidos por Borges [3].

Fig. 4. Gráfico de relaxação do pavimento (comparando-se os resultados obtidos por Borges [3] e no ANSYS 18.0

A partir dos dados obtidos é possível analisar o pavimento sob o ponto de vista estrutural.

Utilizando Borges [3] e com a determinação da deflexão, Uz, através do ANSYS, é possível estabelecer um gráfico de relação e descobrir o coeficiente de determinação dos valores determinando a validade, como é mostrado na Fig. 5 à Fig. 9.

Fig. 5. Resultados de Borges [3] versus ANSYS 18.0 a 0 mm de profundidade da aplicação da carga.

Os dados obtidos apresentam um coeficiente de determinação de 0,9977, aproximando-se de 1, ou seja, os resultados obtidos se aproximam de Borges [3].

Fig. 6. Resultados de Borges [3] versus ANSYS 18.0 a 50 mm de profundidade da aplicação da carga.

Os resultados da Fig. 6 mostram uma pequena dispersão resultante da mudança de camada do revestimento para camada granular da base, logo o coeficiente de determinação que era de 0,9977, passou para 0,9555.

Fig. 7. Resultados de Borges [3] versus ANSYS 18.0 a 200 mm de profundidade da aplicação da carga.

Conforme mostrado na Fig. 7 o coeficiente de determinação da relaxação no pavimento aumenta conforme a profundidade aumenta, haja vista que a uma profundidade de 200 mm, o coeficiente de determinação é 0,8665.

Fig. 8. Resultados de Borges [3] versus ANSYS 18.0 a 400 mm de profundidade da aplicação da carga.

Para uma profundidade de 400 mm o coeficiente de determinação cai para 0,2811, os valores obtidos pelo ANSYS 18.0 e os obtidos por Borges [3] divergem a partir de uma profundidade 400 mm. No entanto, é possível identificar uma tendência pelos dois métodos, através da Fig. 4., ou seja, apesar do coeficiente de determinação diminuir para 0,2811 à 400 mm, os valores de ambos autores apresentam uma mesma tendência. A deflexão, tanto a obtida pelo ANSYS 18.0 como a apresentada por Borges [3], não apresentou leitura na profundidade de 1200 mm da aplicação de carga, já que o nó na profundidade indicada está restringido no modelo.

Plotando os resultados obtidos no programa ANSYS 18.0 *versus* os resultados obtidos por Borges [3] através do *Shift Model*, nota-se, em função dos valores do coeficiente de determinação que o pavimento se comporta de forma semelhante, logo percebe-se que o modelo do ANSYS 18.0, da presente pesquisa, está aferido.

IV. CONSIDERAÇÕES FINAIS

O presente trabalho pesquisou os efeitos do comportamento viscoelástico dos materiais asfálticos no pavimento através da simulação numérica, uma vez que a consideração do real comportamento dos materiais permite um melhor entendimento dos fenômenos observados em campo.

Os resultados apresentados mostraram que as respostas obtidas em termos de deflexão, raio de curvatura e viscoelasticidade através dos dois softwares não apresentaram grandes discrepâncias, haja vista os valores do coeficiente de determinação, bem como a resposta do comportamento através das curvas de relaxação em função do tempo. A influência do tempo e da taxa de aplicação de carga no cálculo de tensões e deslocamentos em pavimentos asfálticos se torna uma variável de controle importante, pois influencia diretamente no tempo de relaxação do material viscoelástico. Observou-se que, quando se considera o comportamento viscoelástico no revestimento, a resposta do pavimento como um todo depende do tempo e da taxa de aplicação de carga, sendo mais benéfica/prejudicial a situação onde o comportamento viscoelástico foi considerado.

Além disso, observou-se que, para os casos analisados, a tensão horizontal no fundo do revestimento viscoelástico passou a ser compressiva em um determinado instante próximo ao final da aplicação do pulso de carga devido à ação das subcamadas assumidas elásticas. Verifica-se que para maiores tempos de aplicação de carga, obtém-se maiores deflexões, o que ocorre devido ao comportamento viscoelástico da camada de revestimento. Da Fig. 4, percebe-se que quanto maior é o tempo de pulso, menor é a tensão horizontal no fundo do revestimento. Isto ocorre devido ao fato de que para maiores tempos de pulso e um mesmo pico de pressão, há uma menor taxa de aplicação da pressão na superfície do revestimento e, consequentemente, uma menor taxa de variação da deformação horizontal no fundo do revestimento, o que provoca menores tensões horizontais.

AGRADECIMENTOS

Os autores agradecem o apoio do programa de pósgraduação em engenharia e construção civil da UFPR e da UTFPR, bem como ao CNPq e à CAPES pelo suporte financeiro dado aos autores Heloise Sasso Teixeira e Eclesielter Batista Moreira, respectivamente.

REFERÊNCIAS

[1] BERNUCCI, Liedi B.; MOTTA, Laura M. G.; CERATTI, Jorge Augusto P.; SOARES, Jorge B. *Pavimentação Asfáltica: Formação* básica para engenheiros. Rio de Janeiro: PETROBRAS: ABEDA, 2007.

[2] SOUZA, F. V.; SOARES, Jorge Barbosa. Efeito da consideração do comportamento viscoelástico linear do revestimento no cálculo de tensões e deslocamentos em pavimentos asfálticos. *In: Anais do Congresso de Pesquisa e Ensino em Transportes*. 2003

[3] BORGES, Rômulo Luiz. Deformação permanente em misturas asfálticas a partir do shift model viscoplástico e ensaios triaxiais de carga repetida. 214 f. Dissertação (Mestrado em Engenharia de Transportes), Universidade Federal do Ceará, Ceará, 2014.

[4] ANSYS 18 Student.(http://www.ansys.com/About-ANSYS/newscenter/05-16-17-ANSYS-18-1-Expands-Pervasive-Engineering-Simulation).

[5] MULUNGYE, R. M., OWENDE, P.M.O., MELLON, K. Finite element modelling of flexible pavements on soft soil subgrades. Material and Design, Volume 28, 2007. P. 739-756. Elsevier.

[6] DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES. *Manual de Pavimentação*, 3ª ed. Rio e Janeiro, 2006.