IV Simpósio Paranaense de Modelagem, Simulação e Controle de Processos

Artigo: 14

ISSN: 1984-7521

Páginas: 97 - 104

ANÁLISE DOS FORMATOS GEOMÉTRICOS DE ANÉIS DEFLETORES INTERNOS EM ESCOAMENTO GÁS-SÓLIDO EM *RISERS*

Eduarda Mueller, Julia Volkmann, Jonathan Utzig*, Henry França Meier

Laboratório de Fluidodinâmica Computacional (LFC) Universidade de Blumenau – FURB, Blumenau – SC E-mail para contato: jutzig@furb.br

Resumo - A estrutura "core-annulus" em escoamentos gás-sólido é caracterizada por uma região diluída no centro e uma região densa em partículas sólidas próxima às paredes. Anéis internos podem ser inseridos a fim de redirecionar o escoamento e reduzir o acúmulo da fase sólida nas paredes, por conseguinte evitando a distribuição irregular em relação à concentração preferencial de partículas. A partir da análise do coeficiente de dispersão para a fração volumétrica média de sólidos em três alturas de um trecho de riser e da perda de carga, o presente trabalho almeja analisar a influência de 7 formatos geométricos de anéis defletores internos sobre o escoamento gás-sólido em risers.

Palavras-chave: Anéis defletores. Escoamento gás-sólido. Coeficiente de dispersão. Perda de carga.

Introdução

O Craqueamento Catalítico Fluido (FCC) representa um importante processo na indústria petrolífera: converte, a partir de frações pesadas de hidrocarbonetos, produtos de maior valor agregado, como a gasolina. As reações químicas no FCC ocorrem no *riser* através do contato do gasóleo com partículas catalisadoras e o escoamento em tal reator possui comumente perfil *core-annulus*, caracterizado pelo acúmulo da fase sólida particulada nas paredes e uma região menos densa no centro do *riser* [1]. A heterogeneidade em relação à fração volumétrica resulta em uma pior conversão das reações, visto que há um contato menos eficaz entre a fase gasosa e a sólida, reduzindo tanto a transferência de calor quanto a de massa. Além disso, tal concentração pode induzir a geração de zonas quentes que favoreçam o craqueamento térmico, que leva à formação de coque e gases secos pouco valiosos.

A inserção de anéis defletores internos é realizada para redirecionar o escoamento das partículas de catalisador, e assim, deslocá-las para o centro do *riser*, originando maior homogeneidade na distribuição radial e axial da fase sólida. O ângulo de abertura do defletor, a espessura do anel, o espaçamento entre anéis, o número de anéis e a presença de um anel abaixo da entrada de catalisador são importantes variáveis que influenciam no escoamento [2,3]. A partir da análise estatística pelo desvio-padrão da fração volumétrica das fases e da análise visual de simulações numéricas, é possível determinar a influência das variáveis controladas em relação à distribuição de sólidos na seção transversal do *riser* [4].

Além das características relacionadas aos anéis, as condições operacionais atuam significativamente no perfil do escoamento. Impostos distintos parâmetros de operação, a região dos internos é caracterizada por baixa fração volumétrica e maior velocidade de gás [5]. Os anéis dispersam os sólidos da parede para a seção transversal, por conseguinte desenvolvem uma distribuição mais homogênea das partículas sólidas. Todavia, a inserção de tais dispositivos reduz a área interna do *riser*, podendo ocasionar aumento da perda de carga devido à maior dissipação viscosa [6], mas por outro lado a redução do inventário de sólidos pode também levar à redução da perda de carga.

O objetivo deste trabalho consiste em analisar, fundamentado na literatura, sete formatos geométricos de anéis defletores internos em *risers* e, através da fluidodinâmica

computacional (CFD), avaliar tanto a distribuição de partículas sólidas no reator quanto a perda de carga. O estudo referente ao grau de dispersão dos sólidos também tem como intuito determinar a posição mais apropriada de cada anel, sendo realizado em 3 alturas: 0,1 m, 1,0 m e 2,0 m a jusante do defletor.

Modelagem Matemática e Condições Numéricas

As simulações numéricas realizadas seguiram a abordagem euleriana-euleriana para representar o escoamento gás-sólido, através da mediação de Reynolds sobre as equações de Navier-Stokes e com modelo de turbulência k- ω SST (omitido para fins de brevidade), conforme a Tabela 1. A fase gasosa é tratada como incompressível, isotérmica e newtoniana. O comportamento tensorial da fase sólida é dado pela Teoria Cinética do Escoamento Granular (KTGF) na sua forma diferencial. A fim de garantir um custo computacional reduzido, a geometria axissimétrica dupla foi adotada para o *riser* (Fig. 1), realizando a simulação de cada formato geométrico com a inserção de apenas um anel em um trecho do equipamento. Testes para garantir a independência dos resultados em relação à malha numérica foram realizados, levando à escolha de uma discretização com 17604 nós, com atenção à concentração de nós próximos às paredes.

Tabela 1: Modelos matemáticos resolvidos no presente estudo

Equações da Continuidade das fases
Ease gasos: $\frac{\partial}{\partial t} (f \circ f) + \nabla \cdot (f \circ f) = 0$
$\frac{1}{dt} \frac{1}{dt} \frac$
Fase sólida: $\frac{\partial}{\partial t}(f_{s}\rho_{s}) + \nabla \cdot (f_{s}\rho_{s}\mathbf{v}_{s}) = 0$
Equações do Movimento
Fase gasosa: $\frac{\partial}{\partial t} (f_g \rho_g \mathbf{v}_g) + \nabla \cdot (f_g \rho_g \mathbf{v}_g \mathbf{v}_g) = \nabla \cdot \mathbf{\tau}_g + f_g \rho_g \mathbf{g} - f_g \nabla \mathbf{p} + \mathbf{F}_{gs}$
Fase sólida: $\frac{\partial}{\partial t}(f_s \rho_s \mathbf{v}_s) + \nabla \cdot (f_s \rho_s \mathbf{v}_s \mathbf{v}_s) = \nabla \cdot \mathbf{\tau}_s + f_s \rho_s \mathbf{g} - f_s \nabla \mathbf{p} - \nabla \mathbf{p}_s + \mathbf{F}_{sg}$
Tensores Tensão
Fase gasosa: $\mathbf{\tau}_{\mathbf{g}} = f_{g}\mu_{g} \left[\nabla \mathbf{v}_{\mathbf{g}} + (\nabla \mathbf{v}_{\mathbf{g}})^{\mathrm{T}} \right] - \frac{2}{3} f_{g}\mu_{g} (\nabla \cdot \mathbf{v}_{g}) \mathbf{I} + f_{g}\tau_{t}$
Fase sólida: $\mathbf{\tau}_{\mathbf{s}} = \mathbf{f}_{\mathbf{s}} \boldsymbol{\mu}_{\mathbf{s}} [\nabla \mathbf{v}_{\mathbf{s}} + (\nabla \mathbf{v}_{\mathbf{s}})^{\mathrm{T}}] - \frac{2}{3} \mathbf{f}_{\mathbf{s}} \boldsymbol{\mu}_{\mathbf{s}} (\nabla \cdot \mathbf{v}_{\mathbf{s}}) \mathbf{I}$
Modelo de Arrasto
Fase gasosa: $\mathbf{F}_{gs} = \beta(\mathbf{v}_s - \mathbf{v}_g)$
Fase sólida: $\mathbf{F}_{sg} = \beta(\mathbf{v}_g - \mathbf{v}_s)$
Se $f_g > 0.8$, $\beta = \frac{3}{4} C_D \frac{f_s f_g \rho_g v_s - v_g }{d_s} f_g^{-2.65}$ e $C_D = \frac{24}{f_g Re_s} \left[1 + 0.15 (f_g Re_s)^{0.687} \right]$
Se f _g ≤ 0,8, $\beta = 150 \frac{f_s(1-f_g)\mu_g}{f_g d_s^2} + 1,75 \frac{\rho_g f_s \mathbf{v}_s - \mathbf{v}_g }{d_s}$
Teoria Cinética do Escoamento Granular
Viscosidade dinâmica: $\mu_s = \mu_{s,col} + \mu_{s,kin} + \mu_{s,fr}$
Viscosidade colisional: $\mu_{s,col} = \frac{4}{5} f_s \rho_s d_s g_0 (1 + e_{ss}) \sqrt{\frac{\Theta}{\pi}}$
Viscosidade cinética: $\mu_{s,kin} = \frac{10\rho_s d_s \sqrt{\pi\Theta}}{96f_s(1+e_{ss})g_0} \left[1 + \frac{4}{5}g_0 f_s(1+e_{ss})\right]$
Viscosidade friccional: $\mu_{s,fr} = \frac{p_s \sin \varphi}{2\sqrt{I_{2D}}}$
Pressão na fase sólida: $p_s = f_s \rho_s \Theta + 2\rho_s (1 + e_{ss}) f_s^2 g_0 \Theta$
Função de distribuição radial: $g_0 = \left[1 - \left(\frac{f_s}{f_{s,max}}\right)^{\frac{1}{3}}\right]^{-1}$
Viscosidade <i>bulk</i> : $\lambda_s = \frac{4}{3} f_s \rho_s d_s g_0 (1 + e_{ss}) \sqrt{\frac{\Theta}{\pi}}$

Temperatura Granular: $\frac{3}{2} \left[\frac{\partial}{\partial t} (\rho_{s} f_{s} \Theta_{s}) + \nabla \cdot (\rho_{s} f_{s} \mathbf{v}_{s} \Theta_{s}) \right] = (-P_{s} \mathbf{I} + \mathbf{\tau}_{s}) : \nabla \mathbf{v}_{s} + \nabla \cdot (\mu_{s} \nabla \Theta_{s}) - \gamma_{\Theta_{s}} + \phi_{gs}$

Dissipação de energia colisional: $\gamma_{\Theta_s} = \frac{12(1-e_{ss}^2)g_0}{d_s\sqrt{\pi}}\rho_s f_s^2 \Theta_s^{3/2}$ Transferência de energia cinética entre as fases gasosa e sólida devido às flutuações de velocidade: $\phi_{gs} = -3k_{gs}\Theta_s$ Parâmetros do modelo: $e_{ss} = 0.9$; $f_{s,max} = 0.63$

Entrada em Y Riser axissimétrico Figura 1 – Seção transversal da malha numérica pseudo-2D.

Através destas simulações de Fluidodinâmica Computacional (CFD, Computational Fluid Dynamics), resolveu-se o escoamento no riser sem anéis até identificar os campos estacionários e utilizá-los como condição de entrada nos casos com anéis, e posteriormente avaliar a redispersão de sólidos proporcionada pelos diferentes formatos de internos. Visto que o foco é analisar a influência dos internos sobre o escoamento core-annulus, a maior fração volumétrica de partículas sólidas foi deslocada para as paredes do trecho do riser, adotando um fluxo mássico de sólidos equivalente a Gs=8 kg/(m²s) na base. As simulações consideram ar atmosférico a 25°C e 1 atm como fase contínua e partículas de vidro, diâmetro médio de Sauter $d_{p,[3,2]} = 72 \ \mu m$ e massa específica $\rho_p = 2500 \ \text{kg/m^3}$. A velocidade do gás foi prédefinida na base do riser como $\bar{\mathbf{v}}_g = 7 \text{ m/s}$, os planos laterais receberam condição de simetria, nas paredes reais do riser a velocidade do gás é nula e as partículas têm deslizamento livre, enquanto no topo a saída recebe condição de gradiente de pressão nulo. O escoamento foi resolvido por 10 s após sua estabilização, com passo de tempo $\Delta t=0.001$ s, sobre os quais foram gravadas médias das variáveis. Os termos advectivos receberam tratamento de segunda ordem. O modelo matemático foi resolvido pelo código comercial ANSYS Fluent 14.0.

A interferência dos defletores internos em relação ao escoamento gás-sólido foi examinada e ponderada de acordo com a homogeneidade de sólidos distribuídos radialmente no *riser*, analisando-a de acordo com o desvio padrão dessa variável através do Coeficiente de Dispersão (C_V), conforme apresentado na Eq. 1:

$$C_{V} = \frac{\sigma_{sd}}{f_{s}} = \frac{\sqrt{\frac{\Sigma(f_{s_{1}}\cdot\bar{f}_{s}})^{2}}{N}}{\frac{f_{s}}{f_{s}}}$$
(1)

onde σ_{sd} representa o desvio padrão da fração volumétrica no plano, $\overline{f_s}$ equivale à média das amostras em relação à fração volumétrica e N é a quantidade total de amostras. É interessante salientar que um menor coeficiente de dispersão corresponde à uma amostra mais homogênea em relação à variável de estudo.

A uniformidade do fluxo multifásico na seção radial também pode ser estudada pelo Índice Radial de Não-uniformidade (RNI, *Radial Nonuniformity Index*), calculado a partir da razão entre o desvio padrão da fração volumétrica ponderada e o fator de normalização $\sigma_{max}(f_s)$, como mostra a Eq. 2 [7]. Para um fluxo mais uniforme é esperado um menor valor de RNI, e vice-versa:

$$RNI = \frac{\sigma(f_s)}{\sigma_{max}(f_s)} = \frac{\sigma(f_s)}{\sqrt{\overline{f_s}(f_{smf} - \overline{f_s})}}$$
(2)

sendo f_{smf} a máxima fração de sólidos possível.

Os formatos geométricos escolhidos para os anéis foram fundamentados em patentes da UOP LLC (formato trapezoidal), da Phillips Petroleum Company e da Shell Oil Company (formato triangular), além de estudos prévios do grupo de pesquisa (formato aerodinâmico) [8]. As geometrias trapezoidais tiveram como referência o modelo US 9,283,532 B2 [9], já para a triangular, baseou-se nas patentes 5,851,380 e US 6,596,242 B1 [10,11].

Os sete formatos de anéis defletores simulados, suas dimensões e nomenclaturas adotadas estão ilustrados na Fig. 2. O tamanho do defletor foi definido obedecendo a relação 1:10 entre a espessura do anel e o diâmetro interno do *riser* [9]. Assim, a espessura máxima dos internos foi estipulada em 10 mm. Para cada tipo de anel há um ângulo de entrada e um de saída, por conseguinte existem alturas distintas dos defletores, resultando na menor altura para a geometria do Triângulo isósceles (10,18 mm) e a maior, para a do Trapézio 10° (80 mm).

Figura 2 – Desenhos dimensionais e nomenclaturas dos anéis defletores simulados: (a) Aerodinâmico; (b) Triângulo Phillips; (c) Triângulo Isósceles; (d) Trapézio 15°; (e) Trapézio 20°; (f) Trapézio Isósceles; (g) Trapézio Modificado.

Resultados e Discussão

A atuação dos anéis defletores testados foi analisada por meio da perda de carga causada no escoamento, do coeficiente de dispersão avaliado em relação à fração volumétrica de partículas sólidas e dos campos da fração volumétrica. As perdas de carga referentes aos sete tipos de internos são apresentadas na Tabela 2. Os valores se referem à variação total de pressão que ocorreu no trecho de riser anterior ao anel (2 m), no anel defletor e no trecho posterior ao anel (3 m com a inclusão do anel). As simulações resultaram em valores muito próximos para as condições operacionais adotadas - sendo que o maior e o menor valor referente à quantidade de energia perdida durante o escoamento está vinculada à geometria do Aerodinâmico (298,41 Pa) e do Trapézio modificado (255,09 Pa), respectivamente - tal que a maior diferença de resultados obtida foi igual a 43.32 Pa. O fato de o formato aerodinâmico ter apresentado a maior perda de carga é coerente, visto que foi o que apresentou maior dissipação das regiões concentradas de sólidos promovida pelo redirecionamento do fluxo para o centro do riser - representado na Fig. 5 -, ocasionando maior transferência de quantidade de movimento entre as fases e, assim, maior gasto energético. O trecho de riser sem defletor desenvolve um escoamento com 235 Pa de perda de carga, isso significa que um único anel com o formato Trapézio Modificado eleva o gasto energético em cerca de 55 Pa, o Trapézio 15° em 28 Pa e o Aerodinâmico, em 63 Pa.

Geometria	Perda de carga (Pa)
Sem anel	235,00
Aerodinâmico	298,41
Trapézio 15°	262,84
Trapézio 20°	260,27
Trapézio isósceles	265,74
Trapézio modificado	255,09
Triângulo Phillips	267,18
Triângulo isósceles	273,44

Tabela 2 – Perdas de cargas referentes aos tipos de internos.

Para mensurar o grau de dispersão dos sólidos proporcionado por cada interno, o Coeficiente de Dispersão para a fração volumétrica média de sólidos foi calculado para três alturas do *riser* (0,1 m, 1 m e 2 m após o início do defletor) e os valores obtidos são apresentados na Fig. 3. Da mesma forma, a Fig. 4 apresenta o Índice Radial de Nãouniformidade. É possível verificar em todos os casos que quanto mais próximo dos defletores, maior é o coeficiente, e que essa variável decresce gradativamente quanto mais distante dos internos. Tal comportamento é previsto, pois os internos redirecionam para o centro o escoamento de partículas que estavam previamente concentradas próximas à parede do *riser*. Dada a similaridade entre as Figs. 3 e 4, percebe-se que os dois parâmetros são adequados para tal análise.

A geometria do Trapézio Modificado foi proposta baseada nas dimensões geométricas do Aerodinâmico, visando uma maior facilidade de construção e instalação em unidades industriais. O modelo trapezoidal apresentou coeficiente de dispersão maior nas três alturas em relação ao aerodinâmico que é, portanto, mais favorável entre os dois. Todavia, é constatado que quanto mais distante do interno for feita a obtenção de dados, menor será a diferença entre os coeficientes de dispersão desses dois formatos.

Com o menor coeficiente de dispersão nas alturas mais distantes do anel, o trapézio com ângulo de saída igual a 15° representou a geometria mais adequada, destacando-se por obter uma variação praticamente duas vezes melhor do que a segunda melhor geometria. Entretanto, é interessante notar que 0,1 m a jusante do interno, o modelo aerodinâmico obteve melhor resultado, visto que possibilita que as partículas sólidas sejam dissipadas mais rapidamente na seção transversal.

As geometrias triangulares obtiveram coeficientes de variação muito similares quando analisadas 2 m a jusante do anel no *riser*. Nas alturas mais próximas ao anel, o triângulo isósceles resultou em uma fração volumétrica um pouco mais homogênea. Já para a medição posterior, o Triângulo Phillips obteve uma menor variabilidade dos dados em comparação ao isósceles. Por sua vez, o Trapézio 20° e o Trapézio Isósceles também obtiveram perfis análogos referentes à homogeneidade da distribuição de sólidos na seção transversal do trecho do equipamento. Apresentando a maior diferença na altura de 4 m, o modelo com ângulo de 20° retratou resultados um pouco mais satisfatórios do que a geometria trapezoidal com ângulo de 62,25°.

Figura 3 – Coeficiente de dispersão em diferentes alturas do riser para cada defletor.

Figura 4 – Índice Radial de Não-uniformidade em diferentes alturas do riser para cada defletor.

Todos os tipos de formatos geométricos obtiveram campos de concentração muito parecidos, conforme apresentado na Fig. 5, sendo a fase sólida do escoamento direcionada para o centro do *riser*, reduzindo a fração volumétrica presente nas extremidades radiais do equipamento. De fato, a maior fração volumétrica de sólidos presente próxima às paredes a montante dos internos, deixa de ocorrer após estes. No entanto, pode-se observar regiões com baixa fração volumétrica logo após determinados anéis nas condições operacionais adotadas. Esse perfil representa o descolamento da camada limite do escoamento, responsável por causar zonas de recirculação do escoamento, potencializando demasiadamente a erosão sobre o anel, bem como a geração de pontos quentes e sobrecraqueamento de gasóleo. Tal incoveniente pode ser evitado a partir da redução do ângulo de saída do anel, caso dos anéis Trapézio 15°, Trapézio 20° e Trapézio Modificado.

Figura 5 – Campo de fração volumétrica conforme os tipos de internos: (a) Aerodinâmico, (b) Trapézio 15°, (c) Trapézio 20°, (d) Trapézio Isósceles, (e) Trapézio Modificado, (f) Triângulo Phillips e (g) Triângulo Equilátero.

Conclusão

A capacidade de redirecionar o escoamento - os sólidos saindo das paredes e sendo dispersos para o centro do *riser*, assim favorecendo a distribuição das partículas na seção transversal - foi coerentemente simulada para cada anel defletor e analisada de acordo com o coeficiente de dispersão. A perda de pressão ocasionada pela redução da área disponível devido à inserção do interno também foi ponderada para todas as geometrias em estudo.

Dentre os sete formatos geométricos analisados, o Aerodinâmico e o Trapézio 15° foram os que obtiveram melhor desempenho. A altura de interesse no *riser* é a variável que definirá a geometria mais adequada, portanto para as condições operacionais adotadas e se a variação de coeficiente de dispersão for linear, há melhor redispersão dos sólidos causada pela geometria aerodinâmica até 0,7 m acima do anel, após esta altura a redispersão ocasionada pelo formato trapezoidal possui maior homogeneidade. Todavia vale ressaltar que por promover maior dissipação da fase

sólida, o modelo aerodinâmico ocasiona maior perda de carga, ou seja, maior gasto energético.

Agradecimentos

Os autores agradecem o suporte de Petróleo Brasileiro S.A. - PETROBRAS (termo de cooperação 5850.0103010.16.9).

Referências

[1] R.P. Brito. Análise Numérica da Influência de Defletores sobre o Escoamento Gás-Sólido em Risers de FCC via Fluidodinâmica Computacional, Dissertação de Mestrado, Universidade Estadual de Campinas, 2018.

[2] F.J. Sanchez Careaga; C. Briens; F. Berruti; J. McMillan; M. Gray. Agglomerate behavior in a recirculating fluidized bed with sheds: Effect of ring baffles. Particuology. 2018, v. 38, p. 143-151.

[3] V. Rossbach; J. Utzig; R.K. Decker; D. Noriler; C. Soares; W.P. Martignoni; H.F. Meier. Gas-solid flow in a ring-baffled CFB riser: Numerical and experimental analysis. Powder Technology. 2019, v. 345, p. 521-531.

[4] V. Rossbach; R.K. Decker; D. Noriler; J. Utzig; H.F. Meier. Análise Numérica do uso de Anéis Defletores Internos sobre o Escoamento Gás-Sólido em Risers de FCC. In: Congresso Brasileiro de Sistemas Particulados – ENEMP, São Carlos, 2015.

[5] B. Chalermsinsuwana; T. Samruamphianskun; P. Piumsomboon. Effect of operating parameters inside circulating fluidized bed reactor riser with ring baffles using CFD simulation and experimental design analysis. Chemical Engineering Research and Design. 2014, v. 92, p. 2479-2492.

[6] V. Rossbach; R.K. Decker; J. Utzig; H.F. Meier. Análise numérica de um riser de CFB com anéis defletores na região de entrada, in: Anais do Congresso Brasileiro de Engenharia Química – COBEQ, Florianópolis, 2016, v. 1.

[7] J. Zhu; S.V. Manyele. Radial Nonuniformity Index (RNI) in Fluidized Beds and Other Multiphase Flow Systems. The Canadian Journal of Chemical Engineering. 2001, v. 79, p. 203-213.

[8] V. Rossbach; J. Utzig; R.K. Decker; D. Noriler; H.F. Meier. Numerical gas-solid flow analysis of ring-baffled risers. Powder Technology. 2016, v. 297, p. 320-329.

[9] R.L. Mehlberg; M.S. Sandacz. Segmented baffle system for a riser. US n° 9,283,532 B2, 2016.

[10] J.W. Wells. Process and apparatus for fluidized catalytic cracking of a hydrocarbon feed. US n° 5,851,380, 1998.

[11] H.W.A. Dries. Reactor riser of a fluidized-bed catalytic cracking plant. US n° 6,596,242 B1, 2003.