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RESUMO

Um dos conceitos-chave em que toda a física se baseia é o de referenciais bem definidos.

Se a mecânica quântica é uma teoria universal, então deve haver uma maneira de incorporar

completamente esse conceito na teoria. Diversos autores fornecem estruturas nas quais o

próprio referencial é um sistema quântico. Neste trabalho, argumentamos a favor de uma delas

usando o requisito de construir espaços de Hilbert com graus de liberdade relativos. Além disso,

mostramos que, para mais de dois subsistemas, não é possível encontrar uma transformação de

coordenadas que mude para o referencial de um deles de modo que todos os graus de liberdade

sejam relativos a ele. No lado informacional da mecânica quântica, existem recursos quânticos,

que são as características que conferem a ela a vantagem sobre a teoria clássica em várias tarefas.

Foi demonstrado que, em geral, os recursos quânticos não são invariáveis sob transformações

quânticas de referencial. Um desses recursos é uma certa noção de incompatibilidade de

contexto, que, quando combinada com coerência e discordância quântica, resulta no conteúdo

total de informação do estado, que é invariante sob transformações de referencial. Embora

o fenômeno da incompatibilidade quântica esteja no cerne da mecânica quântica, existem

múltiplas definições para ela, cada uma conceitualizando um aspecto de sua manifestação. As

primeiras definições eram declarações puramente sobre medições, mas recentemente o estado

do sistema também foi envolvido, dando origem ao termo: incompatibilidade de contexto.

Especificamente, a incompatibilidade de contexto independente da teoria é o recurso que

analisamos e encontramos que não é invariante. Ao comparar esta forma de incompatibilidade

entre um referencial de massa infinita bem localizado e um referencial quântico, descobrimos

que é possível obter mais incompatibilidade quando o observador é um sistema quântico,

mas, inevitavelmente, à medida que o estado do referencial quântico se torna mais e mais

delocalizado, o contexto tende a ser compatível.

Palavras-chaves: Incompatibilidade, recursos quânticos, referenciais quânticos.



ABSTRACT

One of the key concepts that all of physics rely on is of well established reference

frames. If quantum mechanics is a universal theory, then there must be a way to embed this

concept fully into the theory. Several authors provide frameworks in which the reference frame

itself is a quantum system. In this work we argue in favor of one of them using the requirement

of building Hilbert spaces with relative degrees of freedom. Furthermore, we show that, for

more than two subsystems it is not possible to find a coordinate transformation that jumps to

the reference frame of one of them such that all degrees of freedom are relative to it. On the

informational side of quantum mechanics, there are quantum resources, which are the features

that give it the advantage over classical theory in several tasks. It has been shown that, in

general, quantum resources are not invariant under quantum reference frame transformations.

One of these resources is a certain notion of context incompatibility, which, when combined

with coherence and quantum discord, results in the total information content of the state, which

is invariant under reference frame transformations. Although the phenomenon of quantum

incompatibility lies at the heart of quantum mechanics, there are multiple definitions for it,

each one conceptualizing an aspect of its manifestation. The first definitions were declarations

purely about measurements, but recently the state of the system was also involved, giving

rise to the term: context incompatibility. Specifically, the so called theory independent context

incompatibility is the resource we analyzed and found that it is not invariant. When comparing

this form of incompatibility betweenwell-localized infinite-mass reference frame and a quantum

reference frame, we find that it is possible to obtain more incompatibility when the observer is

a quantum system but, inevitably, as the state of the quantum reference frame gets more and

more delocalized, the context tends to be compatibile.

Key-words: Incompatibility, Quantum Resources, Quantum reference frames.



LIST OF FIGURES

Figure 1 – Stern-Gerlach experiment where 𝑎) the detector is far away from the setting

and 𝑏) the detector is close to the setting. . . . . . . . . . . . . . . . . . . . 9

Figure 2 – Diagram depiction of the intersection of the information contained in part

𝐴 and part 𝐵, which is the mutual information. . . . . . . . . . . . . . . . . 13

Figure 3 – Mach-Zehnder Interferometer: In part 𝐼 the particle enters the interferome-

ter and its state turns into an equally weighted superosition of branches. In

part 𝐼 𝐼 a relative phase of 𝜋 between the branches through reflections, so

that in part 𝐼 𝐼 𝐼 constructive interference occurs in 𝐷2 and destructive in 𝐷2

yielding 100% of clicks in 𝐷1. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4 – Distinct experiments involving Mach-Zehnder interferometers. In (𝑎) the
particle approaches in superposition as usual. In (𝑏) the interferometer is

in superposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 5 – The reference frame describing the positions of particles 1 and 2 and the

change to the perspective of particle 1, which describes the initial reference

frame 𝑅 and particle 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 6 – Wave-function of the system in reference frames 𝑅 and of particle 1. In 𝑎)
particle 1 is in a superposition of sharply localized stated in position 𝑎 and

𝑏 while particle 2 is in a general state. In 𝑏) particle 1 and particle 2 are

entangled such that in each branch of the superposition they are sharply

localized and a distance 𝐿 of each other. . . . . . . . . . . . . . . . . . . . . 37

Figure 7 – The gradient of color means that the particles are in superposition between

the situation where particle 1 is on the right side of the center of mass and

the situation where it is on the left of the center of mass. . . . . . . . . . . 46

Figure 8 – Left panel is the plot of incompatibility of the contexts� and�′ against Δ0

and right panel is the plot of position distributions of probability of particle

1 relative to particle 0 varying Δ0. . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 9 – Plot of incompatibility of the contexts � and �′ against Δ0 and plot of

position distributions of probability of particle 1 relative to particle 0 varying

Δ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 10 – Plot of incompatibility of the contexts � and �′ against Δ0 and plot of

position distributions of probability of particle 1 relative to particle 0 varying

Δ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 11 – Plot of incompatibility of the contexts � and �′ against Δ0 and plot of

position distributions of probability of particle 1 relative to particle 0 varying

Δ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 THEORETICAL FOUNDATIONS . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 QUANTUM THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 State vector in a Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Continuous degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 The Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 POVMS and the measurement process . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.5 The reduced state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 CLASSICAL AND QUANTUM ENTROPIES . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Shannon’s Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Von Neumann entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Quantum relative entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.5 Linear entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 QUANTUM RESOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Entanglement of pure bipartite states . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Quantum Discord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 INCOMPATIBILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Theory Independent Context Incompatibility . . . . . . . . . . . . . . . . . . . 20

2.5 DISCRETIZATION OF CONTINUOUS VARIABLES . . . . . . . . . . . . . . . . 21

3 REFERENCE FRAMES AND COORDINATE SYSTEMS . . . . . . . . . . 23

3.1 NON-QUANTUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Passive vs active picture for coordinates . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Coordinate transformations in Hilbert space . . . . . . . . . . . . . . . . . . . . 24

3.1.2.1 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2.2 Boosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 QUANTUM REFERENCE FRAMES . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Measuring device paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 One dimensional solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Center of mass transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3.1 Product of Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 Mach-Zehnder Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.5 Role of the center of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



viii

3.2.6 𝑁 + 1-particle system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.7 The relational approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.7.1 The dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.8 Perspective neutral framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.9 Quantum resource covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 THE DEGREES OF FREEDOM ACCESSIBLE TO OTHER OBSERVER . . . . . . 43

4.1.1 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.3 Different descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.4 There is no transformation for the relative degrees of freedom . . . . . . . . . 47

4.2 CONTEXT INCOMPATIBILITY UNDER REFERENCE FRAME TRANSFORMA-

TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Product of Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Product state; reference frame in superposition of Gaussian states . . . . . . . 50

4.2.3 Entangled state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Appendix 59

APPENDIX A HAMILTONIAN FROMA FINITE-MASS REFERENCE FRAME 60

APPENDIX B DIRAC’S DELTA MODEL . . . . . . . . . . . . . . . . . . . . 61



1

1 INTRODUCTION

Quantum information theory provides means for a faster realization of information

processing protocols in quantum computing relative to known protocols. It also enables the

realization of completely new ones, powerful enough to break the nonquantum cryptography

systems and even perform a teleportation of a quantum state. The quantum features that allow

the existence of such powerful protocols are called quantum resources [1].

The most important quantum resources are coherence, which gives birth to the qubit.

The latter serves as a resource for numerous computational algorithms [2], such as entangle-

ment, which is a form of strong correlation that serves as a resource for quantum teleportation

[3] [4] and, at last, quantum incompatibility, which serves as a resource necessary for the

observation of Bell inequality violations [5, 6]. The most primitive one comes with the uncer-

tainty principle, stating that two observables can only be measured with arbitrary precision

simultaneously only when they commute [7]. Moreover, with the generalization of the mea-

surement process to positive operator-valued measures POVMs, improvements for the concept

of incompatibility became necessary. Some propositions include joint measurability [8] and

nondisturbance [9]. The first one encompasses the idea that when two measurements cannot

be performed at the same time they are incompatible and the second one states that two

measurements are nondisturbing only when measuring one does not alter the probability

distribution of the other.

The definitions of incompatibility mentioned above regard only the measurements

and their algebraic structure. Nevertheless, a more recent approach [10] considers that as

the system becomes more and more classical, there should be no incompatibility. And the

manner in which quantum mechanics approaches classicality is through the quantum state,

thus incompatibility of physical contexts arises. It is based on an information leakage protocol

where Alice prepares a state measuring an observable and sends the system to Bob, promising

the amount of information in the resulting state but, Eve, a spy, attempts to retrieve some

information about the state by measuring another observable. If Bob notices a difference in

the amount of information in the state he receives, the context formed by the inicial state and

the observables is incompatible. Later on, the concept evolved to the so-called independent

context incompatibility, defined in [11], encompasses the physical state and takes a step further,

it concerns only probabilities, making it applicable not just to quantum mechanics, but also to

any probabilistic theories, be it classical or not.

On the other side of physics, reference frames are indispensable entities, since every

physical quantity needs to be defined relative to one of those for it to make sense. Quantum

mechanics does not escape this requirement, it is also built upon a Newtonian inertial reference

frame that is well-localized in momentum and position. In this sense, quantum mechanics
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apparently needs classical mechanics to be made sense of. Aharonov and Kaufherr [12] question

the need of classical massive objects relative to which quantum states are defined. They provide

a coordinate transformation to the quantum reference frame of a quantum particle.

Since Aharonov and Kaufherr’s work, at least two other approaches to quantum

reference frames have been developed. One approach that changes to the center of mass and

relative coordinates [13, 14], just like the hydrogen atom solution in any quantum mechanics

textbook, and another, that claims to be fully relational and independent of an external classical

reference frame, with changes only to relative position [15]. In this work, we argue in favor of

the first approach, particularly for the two-particle case, because it does not lead to Hilbert

spaces defined over degrees of freedom pertaining to different reference frames, while the

relational approach does. Moreover we show that, originating from a classical reference frame,

it is impossible to find a coordinate transformation that leads to the reference frame of a

quantum system such that all canonical degrees of freedom are defined relative to it.

Special relativity shows that quantities that were thought to be absolute such as

time and distances, in fact are not the same, they depend on the observer. It has already

been shown that indispensable quantum resources such as coherence and entanglement are

not invariant under quantum reference frame transformations [15–17]. But a combination

of quantum resources has been shown to be invariant under these transformations, namely

coherence, quantum discord and the incompatibility of a physical context [18].

As our second result, we show that, in general, the theory independent context incom-

patibility of the context composed of position, momentum and the physical state is not invariant

under quantum reference frame transformations. In fact, there are cases in which quantum

reference frames dispose of more incompatibility than classical ones. But, as the quantum

system serving as reference frame gets more delocalized relative to the starting reference frame,

the context inevitably tends to become compatible.
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2 THEORETICAL FOUNDATIONS

2.1 QUANTUM THEORY

2.1.1 State vector in a Hilbert Space

Classical physics granted perfect prediction of every experiment given the initial

conditions and the interactions in play due to the presumed objective existence of trajectories.

Later experiments, like Davisson and Germer’s (1927) [19] which is a Young’s double-slit

experiment but, performed with electrons instead of light. This experiment confirmed the de

Broglie hypothesis regarding the wave behavior of matter, demonstrating the intrinsic proba-

bilistic nature of measurement outcomes. Quantum mechanics accounts for this randomness

by promoting the position and momenta to Hermitian operators acting on a Hilbert space.

Therefore, Quantum Mechanics postulates that a given physical quantity A is represented by

a linear operator 𝐴 that is Hermitian (𝐴 = 𝐴†). Bounded nondegenerate Hermitian operators

have spectral decomposition, given by

𝐴 =
∑
𝑖

𝑎𝑖 |𝑎𝑖〉〈𝑎𝑖 | , (2.1)

with real eigenvalues 𝑎𝑖 that represent the possible results of a measurement of this physical

quantity. Its eigenvectors |𝑎𝑖〉 are orthogonal and the associated projectors satisfy the closure

relation 〈
𝑎𝑖
��𝑎𝑗

〉
= 𝛿𝑖 𝑗 , (2.2a)∑

𝑖

|𝑎𝑖〉〈𝑎𝑖 | = 1. (2.2b)

The probabilities of obtaining a certain outcome is encoded in the physical state of the system in

which the measurement is performed. The probabilistic character of the measurement outcome

of the observable is accounted for by the superposition principle, which states that a system

can occupy any normalized linear combination of the eigenvectors of the observable being

measured. Therefore we can assign a vector in a Hilbert space to every possible physical

state. Once a measurement of A is performed and an outcome 𝑎𝑖 is observed, the update

of the physical state is given according to the physical requirement of repeatability of the

measurement, i.e., a second ideal measurement of A must yield the same result. It follows that

the state after the measurement is the eigenstate |𝑎𝑖〉 of 𝐴:

|Ψ〉 𝑎𝑖−→ 𝐴𝑖 |Ψ〉√
〈Ψ|𝐴𝑖 |Ψ〉

, (2.3)

i.e., the normalized projection of |Ψ〉 in the 𝑖-th subspace of the𝐴 eigenbasis where𝐴𝑖 = |𝑎𝑖〉〈𝑎𝑖 |.
The probability 𝑝 (𝑎𝑖) of an outcome 𝑎𝑖 to occur is given by Born’s rule

𝑝 (𝑎𝑖) = | 〈𝑎𝑖 |Ψ〉 |2, (2.4)
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that is, the modulus squared of the coefficients of the expansion of the state on the𝐴 eigenbasis

|Ψ〉 = ∑
𝑖 𝑐𝑖 |𝑎𝑖〉, with

∑
𝑖 |𝑐𝑖 |2 = 1. This aligns with the requirement that the probabilities of all

outcomes sum up to 1, thus supporting the previously mentioned state normalization.

The expectation value of an observable 𝐴 can be computed through its definition in

statistics: the probability weighted average of the possible outcomes 𝑎𝑖

〈𝐴〉 =
∑
𝑖

𝑝 (𝑎𝑖)𝑎𝑖 (2.5)

= 〈Ψ|
∑
𝑖

𝑎𝑖𝐴𝑖 |Ψ〉

= 〈Ψ|𝐴 |Ψ〉 .

The temporal evolution is generated by the Hamiltonian 𝐻 , much like in classical

mechanics, which is the observable corresponding to the total energy of the system considering

that 𝐻 is explicitly time-independent. The equation that dictates the evolution of a physical

state |Ψ(𝑡)〉 is also a postulate and is named the Schrödinger equation

𝑖ℏ
𝜕

𝜕𝑡
|Ψ(𝑡)〉 = 𝐻 |Ψ(𝑡)〉 . (2.6)

In order to preserve normalization of the vector state, a unitary operator 𝑈 (𝑡, 𝑡0) can be

conceived to evolve the state vector from time 𝑡0 to 𝑡 , i.e. |Ψ(𝑡)〉 = 𝑈 (𝑡, 𝑡0) |Ψ(𝑡0)〉. This
evolution leads to the differential equation

𝑖ℏ
𝜕

𝜕𝑡
𝑈 = 𝐻𝑈 . (2.7)

If 𝐻 is time-independent, indicating conservative dynamics, solving for𝑈 yields

𝑈 (𝑡, 𝑡0) = 𝑒−
𝑖
ℏ𝐻 (𝑡−𝑡0) . (2.8)

The last postulate states that the state of a system composed of two subsystems with

Hilbert spacesH1 andH2 with dimensions 𝑑1 and 𝑑2, respectively, is a normalized vector in

the tensor product Hilbert space H1 ⊗ H2 of dimension 𝑑 = 𝑑1𝑑2. A basis {|𝑒𝑖〉} of H1 and a

basis {
��𝑓𝑗 〉} ofH2 may form the basis {|𝑒𝑖〉 ⊗

��𝑓𝑗 〉} ofH1 ⊗ H2 such that any state vector |𝜓 〉 of
the composite system can be expanded in this basis

|𝜓 〉 =
𝑑1∑
𝑖=1

𝑑2∑
𝑗=1

𝛼𝑖 𝑗 |𝑒𝑖〉
��𝑓𝑗 〉 , (2.9)

where we chose not to use the tensor product symbol "⊗" from here on.

The time evolution can be represented in two alternative ways, the Heisenberg and

Schrödinger picture. Here the state vector was considered as the time-dependent entity, defining

the Schrödinger pictures but, since the physical predictions are calculated as in Eq. (2.5) the

Heisenberg picture may as well be used:

〈𝜓 (𝑡) |𝐴 |𝜓 (𝑡)〉 = 〈𝜓 (0) |𝑈 (𝑡, 𝑡0)†𝐴𝑈 (𝑡, 𝑡0) |𝜓 (0)〉 = 〈𝜓 (0) |𝐴(𝑡) |𝜓 (0)〉 , (2.10)
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where the evolution is applied in the observable as 𝐴(𝑡) = 𝑈 †𝐴𝑈 while the state |𝜓 (0)〉 stays
static in time. Finally, the equation of motion for the Heisenberg operator 𝐴(𝑡) is

𝜕𝐴(𝑡)
𝜕𝑡

=
𝑖

ℏ
[𝐻,𝐴(𝑡)], (2.11)

where 𝐻 is time-independent.

2.1.2 Continuous degrees of freedom

Not all physical quantities are limited to discrete values, position and momentum are

continuous variables and can take any value in the real numbers. Therefore, these observables

must have an eigenbasis composed of an infinite set of eigenvectors resulting in an infinite-

dimensional uncountable Hilbert space. The analogue of Eq. (2.2) for continuous variables such

as position 𝑋 is

𝑋 =
∫

𝑥 |𝑥〉〈𝑥 | 𝑑𝑥, (2.12a)

〈𝑥 |𝑥′〉 = 𝛿 (𝑥 − 𝑥′), (2.12b)∫
|𝑥〉〈𝑥 | 𝑑𝑥 = 1, (2.12c)

where 𝛿 (𝑥 − 𝑥′) is Dirac’s delta distribution. Eq. (2.12a) is the spectral decomposition of 𝑋

and Eq. (2.12c) represents the orthogonality between the eigenstates and the closure relation,

respectively. One can expand a quantum state |Ψ〉 in terms of the position eigenstates

|Ψ〉 =
∫

Ψ(𝑥) |𝑥〉 𝑑𝑥, (2.13)

where the linear combination coefficient Ψ(𝑥) is the position wave function of the system. The

translation operator 𝑇 (𝑑) acts on a position eigenstate as

𝑇 (𝑑) |𝑥〉 = |𝑥 + 𝑑〉 . (2.14)

Acting on |Ψ〉, it yields the new wave function Ψ(𝑥 − 𝑑). Therefore the translation operator

𝑇 (𝑑) is given by

𝑇 (𝑑) = exp

(
− 𝑖

ℏ
𝑑𝑃

)
. (2.15)

Taking the canonical momentum to be the generator of spatial translations, it satisfies the

canonical commutation relation with the position operator

[𝑋, 𝑃] = 𝑖ℏ1. (2.16)

We can also start building the Hilbert space with the momentum observable 𝑃 using

its own set of eigenstates.

𝑃 =
∫

𝑝 |𝑝〉〈𝑝 | 𝑑𝑝, (2.17a)

〈𝑝 |𝑝′〉 = 𝛿 (𝑝 − 𝑝′),
∫

|𝑝〉〈𝑝 | 𝑑𝑝 = 1. (2.17b)
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The state |Ψ〉 can be expanded in terms of momentum eigenstates as

|Ψ〉 =
∫

𝜙 (𝑝) |𝑝〉 𝑑𝑝, (2.18)

where 𝜙 (𝑝) is the momentum wave function of the system. The relationship between the

momentum and position wave functions is obtained knowing the inner product between each

element of the position and momentum basis, which is found imposing that 𝑃 is the generator

of translations:

〈𝑥 |𝑝〉 = 1

(2𝜋ℏ) 1
2

exp

[
𝑖𝑥𝑝

ℏ

]
. (2.19)

Using Eqs. (2.17b) and (2.18) we express the position wave function as the Fourier transform of

the momentum wave function

𝜓 (𝑥) = 1

(2𝜋ℏ) 1
2

∫
𝜙 (𝑝) exp

[
𝑖𝑥𝑝

ℏ

]
𝑑𝑝, (2.20a)

𝜙 (𝑝) = 1

(2𝜋ℏ) 1
2

∫
𝜓 (𝑥) exp

[−𝑖𝑥𝑝
ℏ

]
𝑑𝑥. (2.20b)

For a Gaussian wave function centered at 𝑎 with variance Δ

𝜓 (𝑥) =
(

1

2𝜋Δ2

) 1
4

exp

[
− (𝑥 − 𝑎)2

4Δ2

]
, (2.21)

the corresponding momentum wave function is

𝜙 (𝑝) =
(
2Δ2

𝜋ℏ2

) 1
4

exp

(
−Δ

2𝑝2

ℏ2

)
exp

(
𝑖𝑎𝑝

ℏ

)
, (2.22)

an imaginary exponential modulated by a Gaussian of null mean momentum.

In three dimensions, each spatial direction has its own Hilbert space and the total state

is treated as a composite system. This is due to the fact that translations in different directions

must commute. The defining algebra of the position and momenta operators is, then

[𝑋𝑗, 𝑃𝑘] = 𝛿 𝑗𝑘𝑖ℏ1, (2.23)

where 𝑗, 𝑘 = 1, 2, 3 labels three orthogonal spatial directions.

2.1.3 The Density Operator

To formulate an information theory based on quantum mechanics it is necessary

to introduce a structure which allows the existence of subjective ignorance in the quantum

state. This is accomplished assigning probabilities 𝑝𝑖 to the possible states the system can be

occupying as a reflection of the observer’s lack of information about it. We describe this as

an ensemble of quantum states {𝑝𝑖, |𝜓𝑖〉}, and lift the structure of the Hilbert space H to a
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Hilbert space S(H) = H ⊗H∗ composed of the bounded linear operators acting onH , where
∗ denotes the dual space. The quantum state is described by the density operator

𝜌 =
∑
𝑖

𝑝𝑖 |𝜓𝑖〉〈𝜓𝑖 | , (2.24)

formed by the convex combination of the projectors |𝜓𝑖〉〈𝜓𝑖 | with non-negative coefficients

𝑝𝑖 ∈ R such that
∑
𝑖

𝑝𝑖 = 1. In general, this convex combination is not unique and the number

of terms in the sum can vary.

The purity P(𝜌) of a density operator is defined to be a notion of the mixedness of

a state, i.e., the certainty about the preparation of the state. That is accomplished using the

squared norm of the density operator with the Hilbert-Schmidt norm 〈𝐴, 𝐵〉𝐻𝑆 = Tr
(
𝐴†𝐵

)
:

P(𝜌) = Tr
(
𝜌2
)
. (2.25)

In the case of having maximal knowledge about the state it is defined as a pure state given by

𝜌 = |𝜓 〉〈𝜓 |. In the case of minimal knowledge about the state 𝜌 = 1
𝑑 is said to be the maximally

mixed state. Hence, the upper bound of the purity is 1 and it is achieved by pure states, while

the lower bound is 1
𝑑 and it is achieved by the maximally mixed state.

The two properties1 that define a density operator are the positivity and the unit trace.

Tr 𝜌 = 1 (Unit trace), (2.26a)

〈𝜙 | 𝜌 |𝜙〉 ≥ 0, ∀ |𝜙〉 ∈ H (Positivity). (2.26b)

The postulates presented in section 2.1 can be translated to the density operator

language. A physical quantity is still represented by Hermitian operators 𝐴. The probability

𝑝 (𝑎𝑖) of obtaining the result 𝑎𝑖 from a measurement of 𝐴 is given by Born’s rule

𝑝 (𝑎𝑖) = Tr(𝐴𝑖𝜌) . (2.27)

The state immediately after the measurement undergoes the collapse represented by the map

𝜙𝑎𝑖 (𝜌) =
𝐴𝑖𝜌𝐴𝑖

Tr(𝐴𝑖𝜌)
. (2.28)

An important case is the nonselective measurement, where the measurement is performed, but

the result is forgotten or not even read. The density operator is then updated to a mixed state,

where the ensemble is {𝑝 (𝑎𝑖) = Tr(𝐴𝑖𝜌), 𝜙𝑎𝑖 (𝜌)} and the map is

𝜙𝐴 (𝜌) =
∑
𝑖

𝑝 (𝑎𝑖)𝜙𝑎𝑖 (𝜌) =
∑
𝑖

𝐴𝑖𝜌𝐴𝑖 . (2.29)

1 Standard textbooks [20] also present Hermiticity as a defining property of the density operator, but here we
take into consideration that positivity implies hermiticity [21].
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The Schrödinger equation is replaced by the Liouville-von Neumann equation,

𝜕

𝜕𝑡
𝜌 =

𝑖

ℏ
[𝐻, 𝜌] . (2.30)

The time evolution operator is the same as in section 2.1 and the state evolves from time 𝑡0 to 𝑡

as

𝜌 (𝑡) = 𝑈 (𝑡, 𝑡0)𝜌𝑈 †(𝑡, 𝑡0) . (2.31)

2.1.4 POVMS and the measurement process

Measurements, as presented in the fashion of the previous sections are projective

and the possible results are conclusive about the value of the measured physical quantity,

i.e., orthogonal, for that reason they are called projection-valued measurements (PVMs). A

closer look into the measurement process reveals that the experimental procedure that extracts

the sought after information about the system involves physical interactions. To illustrate it,

consider the Stern-Gerlach experiment depicted in figure 1. It involves a neutral particle with

spin 1
2 entering a non-homogeneous magnetic field 𝑩 pointing in the 𝑧 direction, or the direction

chosen to perform the spin measurement. A classical description of this physical situation

would reveal that the trajectory of this particle would be deflected upwards if the angular

momentum of the particle were aligned with 𝑩 and downwards if they were anti-aligned. The

quantum description results in a superposition of spin up and down. It can be shown that the

state |𝜓 〉 of the particle before the measurement is

|𝜓 〉 =
( |↑〉 |𝜓+〉 + |↓〉 |𝜓−〉

𝑁

)
, (2.32)

where 〈𝜓−|𝜓+〉 ≈ 0 and 𝑁 is the normalization constant. Since the detectors are sufficiently

distant, there is no significant overlap between |𝜓+〉 and |𝜓−〉, the first being a state completely

localized in the upper half of the detector and the second on the bottom half. What is truly

measured is the position degree of freedom, i.e., spin is measured indirectly through a PVM of

position. In this case, the measurement is perfect, i.e., the correlation between the deflection (up

or down) of the particle and the possible results of spin is perfect. If the detectors were placed

closer to the apparatus, the overlap would be different from zero, because the particle could

be detected nearer to the centerline, i.e., 〈𝜓−|𝜓+〉 ≠ 0. The result is an imperfect correlation

between the detection of the particle above (below) 𝑧 = 0 and spin up (down). This captures

the essence of a positive operator valued measurement POVM, a measurement that is made in

the system but does not necessarily retrieve a conclusive result of a physical quantity. In this

case, this manifests itself in the unreliability of the measurement to accurately represent the

spin observable.

The POVM can also extract information about other properties that are not physi-

cal observables. For instance, in a delayed choice Mach-Zehnder interferometer a POVM is

performed such that its possible outcomes are the wave and particle character of a physical
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fig/stern gerlach.png

Figure 1 – Stern-Gerlach experiment where 𝑎) the detector is far away from the setting and 𝑏) the
detector is close to the setting.

system, providing a counterexample to the famous Bohr’s complementarity principle, which

states that in an experiment a quantum system can exhibit either wave-like or particle-like

characteristics [22].

This generalization of PVM to POVM is formalized by relaxing the requirement of

orthogonality between the projector associated to the results of the measurements in Eq. (2.2)

in the following manner.

A POVM 𝐹 is represented by a set of 𝑛 Hermitian operators {𝐹𝑖} called elements of

the POVM, which follows the rules

1. Positivity: 〈𝐹𝑖〉 ≥ 0 for all states;

2. Completeness:
𝑛∑
𝑖

𝐹𝑖 = 1.

The 𝑖-th element, after the POVM 𝐹 is performed in the state 𝜌 , occurs with probability Tr(𝐹𝑖𝜌),
i.e., Born’s rule is also valid and the state is updated as

𝜌
𝐹𝑖−→ 𝐸†

𝑖 𝜌𝐸𝑖

Tr(𝐹𝑖𝜌)
, (2.33)

where 𝐹𝑖 = 𝐸𝑖𝐸
†
𝑖 . A POVM that follows these properties and in addition has orthogonal elements

𝐹𝑖𝐹 𝑗 = 𝛿𝑖 𝑗 𝐹𝑖 is a PVM. This indicates that POVMs are in fact a more general measurement

model since it has all the PVMs as a specific case.

POVMs can be implemented in different ways, each one of them is referred to as an

instrument ℑ [23], which is a collection of maps {ℑ𝑖 (𝜌)} that preserve the positivity of 𝜌 and

does not increase the trace and hold Tr[ℑ𝑖 (𝜌)] = Tr[𝜌𝐹𝑖]. The instrument ℑ updates the state

to ℑ𝑖 (𝜌)
Tr[ℑ𝑖 (𝜌)] , and if the outcome of the measurement is not revealed it is updated to the convex

combination

ℑ(𝜌) =
∑
𝑖

ℑ𝑖 (𝜌), (2.34)
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where the operator on the RHS of Eq. (2.34) has unitary trace and is a positive operator. Note

that the {𝐸𝑖} in Eq. (2.33) represents a specific instrument called Lüders instrument [24].

2.1.5 The reduced state

Consider a system𝐴𝐵 consisting of subsystems𝐴 and 𝐵. The density of the system acts

on the Hilbert space H = H𝐴 ⊗ H𝐵 . Given that the state of the system is 𝜌𝐴𝐵 but the observer

that assigned this state to the system can only access the subsystem 𝐵, e.g., the subsystem 𝐴

was sent to another laboratory that has no possibility of communication with the laboratory in

which part 𝐵 is located. The state 𝜌𝐵 assigned to the subsystem 𝐵 by the observer is given by

the partial trace of the state of the system 𝐴𝐵, eliminating the degrees of freedom that belongs

to subsystem 𝐴:

𝜌𝐵 = Tr𝐴 (𝜌𝐴𝐵) . (2.35)

The same is true for the description of subsystem 𝐴, but the partial trace is performed over the

space H𝐵 .

Initially, utilizing the partial trace operation to obtain the state of a subsystem seems

arbitrary, but invoking the fact that the description assigned to a system does not alter its

physical properties, the expectation value of a measurement of the observable 𝑂 performed on

subsystem 𝐵 must not change if we describe only subsystem 𝐵 or the whole system 𝐴𝐵

Tr𝐴𝐵 (𝑂𝜌𝐴𝐵) = Tr𝐵 (𝑂𝜌𝐵) . (2.36)

Therefore, it is clear that the partial trace is a good candidate in order to describe the state of

a subsystem ignoring subsystems inaccessible to the observer. In fact, the partial trace is not

only a good candidate, in fact, it is the only one that satisfy the requirement of Eq. (2.36).

2.2 CLASSICAL AND QUANTUM ENTROPIES

2.2.1 Shannon’s Entropy

In classical information theory, the quantity that measures the ignorance about a

random variable 𝑋 is Shannon’s entropy [25]

𝐻 (𝑋 ) = −
∑
𝑥∈𝑋

𝑝 (𝑥) log𝑝 (𝑥), (2.37)

where 𝑝 (𝑥) > 0 represents the probability of obtaining the outcome 𝑥 and they sum up to 1.

Shannon’s entropy is zero if and only if a certain outcome occurs with probability one, while is

maximal and reaches log𝑛 if and only if every outcome occurs with equal probability 1
𝑛 , where

𝑛 is the number of elements in the sample space of 𝑋 .

To understand the meaning of Shannon’s entropy it is worthwhile to list properties

that the information 𝐼 (𝑝 (𝑥)), obtained given that the outcome 𝑥 occurred, should satisfy
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1. 𝐼 (𝑝 (𝑥)) ≥ 0. Observing a random variable never yields loss of information;

2. 𝐼 (𝑝 (𝑥)) decreases as 𝑝 (𝑥) increases and is maximal if 𝑝 (𝑥) = 1. It means that little

information is gained when an event that has high probability to occur is observed;

3. 𝐼 (1) = 0. No information is gained from an outcome that is certain to occur;

4. 𝐼 (𝑝 (𝑥,𝑦)) ≤ 𝐼 (𝑝 (𝑥)) + 𝐼 (𝑝 (𝑦)), and the equality holds only for independent events,

that is, those satisfying 𝑝 (𝑥,𝑦) = 𝑝 (𝑥)𝑝 (𝑦). The information gained when observing

independent events is the sum of the information gained by the observation of each

event and if they are correlated, the information gain is always less.

It can be shown [26] that the function that satisfies these properties is

𝐼 (𝑝 (𝑥)) = − log(𝑝 (𝑥)), (2.38)

where the choice of the logarithm base determines the unit system and can be selected according

to the specific application. Bits are defined by base 2, nats are define by base 𝑒 , the Euler number.

The sum of all 𝐼 (𝑝 (𝑥)) with weight 𝑝 (𝑥), i.e. the mean information acquired by observing

a random variable, is 𝐻 (𝑋 ), as in Eq. (2.37). 𝐻 (𝑋 ) follows the same properties that 𝐼 (𝑝 (𝑥))
satisfies.

2.2.2 Kullback-Leibler divergence

Crucial for the definitions of incompatibility that will be analyzed in this work is the

relative entropy, also called Kullback-Leibler divergence 𝐷 (𝑝 | |𝑞) introduced in [27]. It captures

the notion of the discrepancy between the probability distributions 𝑝 and 𝑞 over a sample

space 𝑋 . A way to construct the divergence of 𝑝 from 𝑞 is to imagine using the distribution 𝑞

as a model for the real underlying distribution 𝑝 . Therefore, we utilize the probabilities 𝑝𝑖 to

weight the summation of the difference between apparent information 𝐼 (𝑞(𝑥)) and the real

information 𝐼 (𝑝 (𝑥)), resulting in
𝐷 (𝑝 | |𝑞) =

∑
𝑥∈𝑋

−𝑝 (𝑥) [log𝑞(𝑥) − log𝑝 (𝑥)]

= −𝐻 (𝑋 )
∑
𝑥∈𝑋

−𝑝 (𝑥) log𝑞(𝑥) ≥ 0. (2.39)

The relative entropy is zero if and only if the two probability distributions are identical, 𝑝 (𝑥) =
𝑞(𝑥). It is important to notice that the relative entropy is not symmetric, meaning 𝐷 (𝑝 | |𝑞) ≠
𝐷 (𝑞 | |𝑝) in general, thus it can’t represent a distance between probability distributions.

2.2.3 Von Neumann entropy

A possible generalization for quantum systems was given by von Neummann in [28].

The von Neumann entropy of a quantum state 𝜌 is given by

𝑆 (𝜌) = −Tr(𝜌 log 𝜌), (2.40)
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where by convention the base of the logarithm is equal to the dimension of the Hilbert space of

the system, although it can be chosen arbitrarily as well, so that it would fix the unit system as

in Shannon’s entropy. The von Neumann entropy reduces to the Shannon entropy if we write

the spectral decomposition of 𝜌 in terms of its eigenvectors |𝜆𝑖〉 having eigenvalue 𝜆𝑖

𝑆 (𝜌) = −
∑
𝑖, 𝑗

〈𝜆𝑖 | 𝜆𝑗

��𝜆𝑗

〉〈
𝜆𝑗

�� log(∑
𝑘

𝜆𝑘 |𝜆𝑘〉〈𝜆𝑘 |
)
|𝜆𝑖〉 (2.41)

= −
∑
𝑖

𝜆𝑖 log 𝜆𝑖 = 𝐻 (Λ), (2.42)

where Λ is any observable that is simultaneously diagonalizable with 𝜌 , i.e., Λ =
∑

𝑖 𝑎𝑖 |𝜆𝑖〉〈𝜆𝑖 |
and 𝐻 (Λ) is Shannon’s entropy associated to the probability distribution of Λ on the state 𝜌 .

Some properties of the von Neumann entropy are:

1. Non-negativity: 𝑆 (𝜌) ≥ 0, equality if and only if 𝜌 is pure;

2. Upper-bound: 𝑆 (𝜌) ≤ log𝑑 , equality is reached when 𝜌 = 1
𝑑 , i.e., 𝜌 is maximally mixed;

3. Invariance under unitary transformations: If𝑈 is unitary, then 𝑆 (𝑈𝜌𝑈 †) = 𝑆 (𝜌);

4. Subadditivity: For a composite system 𝐴𝐵, the triangle inequality holds

|𝑆 (𝜌𝐴) − 𝑆 (𝜌𝐵) | ≤ 𝑆 (𝜌𝐴𝐵) ≤ 𝑆 (𝜌𝐴) + 𝑆 (𝜌𝐵), (2.43)

where the LHS is the Araki-Lieb inequality and the equality holds for pure states while

in the RHS the equality holds for separable states 𝜌𝐴𝐵 = 𝜌𝐴 ⊗ 𝜌𝐵 .

One of the main conceptual differences between quantum and classical systems is that

in classical systems the entropy of the whole can never be smaller than the entropy of the parts,

as seen in property 4 of Shannon’s entropy, while for quantum systems, it is possible to have

ignorance about the parts while having full knowledge of the whole as shown in Eq. (2.43).

Similar to the interpretation of Shannon’s entropy, 𝑆 (𝜌) carries the meaning of the

ignorance about the system so to quantify the information 𝐼 (𝜌) we have about the system, we

sum the current information and the current ignorance resulting in the maximum information

of the system

𝐼 (𝜌) = log𝑑 − 𝑆 (𝜌), (2.44)

where 𝑑 = 𝑑𝑖𝑚(H). An important measure of total correlations is the quantum mutual infor-

mation between parts 𝐴 and 𝐵

𝐼𝐴:𝐵 (𝜌) = 𝑆 (𝜌𝐴) + 𝑆 (𝜌𝐵) − 𝑆 (𝜌), (2.45)

where 𝜌𝐴 and 𝜌𝐵 are the reduced states given by Eq. (2.35). This quantity may be understood

as the amount of information that is encoded in 𝐴 and also in 𝐵 by summing all information of

𝐴 and 𝐵 and subtracting the total 𝐴𝐵 information, resulting in the hatched part in figure 2.
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fig/Mutual information.jpg

Figure 2 – Diagram depiction of the intersection of the information contained in part 𝐴 and part 𝐵,
which is the mutual information.

2.2.4 Quantum relative entropy

The quantum analogue of the Kullback-Leibler divergence is the quantum relative

entropy of a state 𝜌 from 𝜎

𝑆 (𝜌 | |𝜎) = Tr 𝜌 log 𝜌 − Tr 𝜌 log𝜎, (2.46)

which also encapsulates a notion of distance of 𝜌 from 𝜎 in a sense of how indistinguishable

they are in a unidirectional way, since 𝑆 (𝜌 | |𝜎) ≠ 𝑆 (𝜎 | |𝜌), in general. The nonnegativity is

granted by Klein’s inequality: 𝑆 (𝜌 | |𝜎) ≥ 0, reviewed in [29].

The mutual information between parts has an intimate connection with relative

entropy. Consider the same setting as in the previous section, now with 𝜎 = 𝜌𝐴 ⊗ 𝜌𝐵 ,

𝑆 (𝜌 | |𝜌𝐴 ⊗ 𝜌𝐵) = Tr[𝜌 log 𝜌 − 𝜌 log(𝜌𝐴 ⊗ 𝜌𝐵)]
= −𝑆 (𝜌) − Tr[𝜌 log(𝜌𝐴 ⊗ 1)] + Tr[𝜌 log(1 ⊗ 𝜌𝐵)]
= 𝑆 (𝜌𝐴) + 𝑆 (𝜌𝐵) − 𝑆 (𝜌) = 𝐼𝐴:𝐵 (𝜌) . (2.47)

Therefore, the mutual information between parts𝐴 and 𝐵 can be interpreted as the discrepancy

in using 𝜌𝐴 ⊗ 𝜌𝐵 as a model for 𝜌 .

2.2.5 Linear entropy

Expanding von Neumann’s entropy with the Mercator series

log(1 − 𝑥) =
∞∑
𝑛=1

(−1)𝑛+1𝑥𝑛
𝑛!

, (2.48)

around the identity

−Tr(𝜌 log 𝜌) = −Tr

{
𝜌 [(1 − 𝜌) − 1

2
(1 − 𝜌)2 + 1

6
(1 − 𝜌)3 + ...]

}
, (2.49)

where the first-order term of 1 − 𝜌 is defined as the linear entropy.

𝑆𝐿 (𝜌) = 1 − P(𝜌) . (2.50)
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It is important to notice that the linear entropy is not an approximation of the von Neumann

entropy, but the fact that when the von Neumann entropy differs from zero, the linear entropy is

also non-zero and vice versa grants us the possibility of using the linear entropy as a substitute

in entropic based resource quantifiers. In fact, a monotonical relationship between the two

is verified for a variety of parametrization of states of arbitrary dimension 𝑑 [30], where the

comparison can be made using 𝑑 as the base of the logarithm and multiplying the linear entropy

by 𝑑
𝑑−1 , in this way, the von Neumann and the linear entropy have the same maximum and

minimum values.

It is important to point out that the linear entropy does not satisfy the desired property

of additivity but it is considerably simpler to calculate than the von Neumann entropy and

the computational cost is drastically lower since it does not require diagonalization of density

operators to be computed.

2.3 QUANTUM RESOURCES

Quantum resources are features of quantum theory that can be exploited in order

to accomplish tasks in a more efficient way when compared to other information processing

methods, such as the advantage that quantum computation has over classical computation, the

promise of a worldwide quantum network to replace regular internet and quantum cryptog-

raphy, which is far safer than the classical couterpart. Some of the core quantum resources

that enable these accomplishments are coherence and entanglement. To characterize a quantum

resource in terms of a formal structure [1], there must be four consistent definitions:

1. The free states, i.e., states that possess no resource;

2. The free operations, i.e., operations that never increase the amount of resource in the

system;

3. A quantifier for the resource;

4. A task that is not possible to be accomplished without the resource.

2.3.1 Coherence

Coherence is understood as the amount of interference possible to be observed with a

given observable 𝐴 with eigenbasis {|𝑎𝑖〉} of a Hilbert space H of dimension 𝑑 . Starting from

the set of free states, or incoherent states, defined as all 𝜌 𝑓 𝑟𝑒𝑒 that are diagonal in the eigenbasis

of 𝐴, then the set of all incoherent states is

𝐼𝑛𝑐 =

{
𝜌 𝑓 𝑟𝑒𝑒 ∈ S(H), such that 𝜌 𝑓 𝑟𝑒𝑒 =

𝑑∑
𝑖=1

𝜆𝑖 |𝑎𝑖〉〈𝑎𝑖 |
}
, (2.51)
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where 𝜆𝑖 are the populations of |𝑎𝑖〉. In other words, if a state 𝜌 is a mixture of eigenstates

of 𝐴, it is an 𝐴-incoherent state. The free operations are any map 𝜙 (𝜌) : 𝐼𝑛𝑐 −→ 𝐼𝑛𝑐 , i.e., any

operation that produces no elements outside the diagonal of 𝜌 when written in the eigenbasis

of 𝐴.

In [31], the coherence quantifier 𝐶 (𝜌) is defined as the relative entropy between the

state of interest 𝜌 =
∑𝑑

𝑖, 𝑗=1 𝜆𝑖 𝑗
��𝑎𝑖〉〈𝑎𝑗

�� and 𝜌𝑑 =
∑𝑑

𝑖=1 𝜆𝑖𝑖 |𝑎𝑖〉〈𝑎𝑖 |, which is merely 𝜌 with all terms

outside the diagonal being zero

𝐶𝐴 (𝜌) = 𝑆 (𝜌𝑑 | |𝜌) = 𝑆 (𝜌𝑑) − 𝑆 (𝜌) . (2.52)

The state with the highest coherence has equal weight among all possible elements of the basis:

|𝜓 〉𝑚𝑎𝑥 =
𝑑∑
𝑖=1

1√
𝑑
|𝑎𝑖〉 . (2.53)

In fact, the procedure of eliminating the off-diagonal elements of 𝜌 is equivalent

of performing a nonselective measurement of 𝐴 with the map of Eq. (2.29), being a way of

understanding the fact that measurements destroy all coherence in that basis. In effect,

𝜙𝐴 (𝜌) =
𝑑∑

𝑖, 𝑗,𝑘=1

𝜆𝑖 𝑗 |𝑎𝑘〉〈𝑎𝑘 |
��𝑎𝑖〉〈𝑎𝑗

�� |𝑎𝑘〉〈𝑎𝑘 | (2.54)

=
∑
𝑘

𝜆𝑘𝑘 |𝑎𝑘〉〈𝑎𝑘 | = 𝜌𝑑 . (2.55)

2.3.2 Entanglement of pure bipartite states

The definition of bipartite entanglement for pure states is straightforward. Given two

systems 𝐴 and 𝐵 and their state space H𝐴 ⊗ H𝐵 , the vector state of the system is entangled if

and only if it is not separable, i.e., cannot be written as a product state. If the state is separable,

it is not entangled [4]. Note that if a state is entangled, by extracting information from one of

the subsystems, information about the other is also retrieved, i.e. entanglement is a form of

correlation between parts. The special feature about these correlations is that the knowledge

about the whole can be maximal while the knowledge of the parts is not. Take the singlet state

|𝜓 〉, for example,

|𝜓 〉 = 1√
2
( |↑〉𝐴 |↓〉𝐵 − |↓〉𝐴 |↑〉𝐵) . (2.56)

Measuring spin in particle 𝐴 immediately grants the observer the knowledge that the spin of

particle 𝐵 is anti-parallel to the result obtained in part 𝐴. However, any nonquantum physical

system can exhibit this kind of correlation. Here, the total spin is well defined while the spin

of each part is not well defined in any direction, in fact the expression above is rotationally

invariant, such that this strong correlation has no classical analogue. A way to quantify the

amount of entanglement in a bipartite system in a pure state 𝜌𝐴𝐵 is by calculating the von
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Neumann entropy of the reduced state,

𝐸 (𝜌𝐴𝐵) = 𝑆 (𝜌𝐴) = 𝑆 (𝜌𝐵) . (2.57)

Thanks to Eq. (2.43) the amount of entanglement is the same whether you calculate 𝑆 (𝜌𝐴) or
𝑆 (𝜌𝐵). This quantifier is called entropy of entanglement. This is an example of how one can

have full knowledge about the composite system’s state but maximum ignorance about the

parts 𝐴 and 𝐵 since the reduced density operators are maximally mixed.

For continuous variables, such as the spatial degrees of freedom, consider a generic

bipartite state

|𝜓 〉 =
∬

𝜓 (𝑥1, 𝑥2) |𝑥1〉 |𝑥2〉 𝑑𝑥1𝑑𝑥2. (2.58)

|𝜓 〉 is separable if and only if the wave function is separable in the coordinates, i.e.,𝜓 (𝑥1, 𝑥2) =
𝜓1(𝑥1)𝜓2(𝑥2), which results in two separate integrals

|𝜓 〉 =
∫

𝜓1(𝑥1) |𝑥1〉 𝑑𝑥1
∫

𝜓2(𝑥2) |𝑥2〉 𝑑𝑥2. (2.59)

The von Neumann entropy often diverges when considering continuous variables, whereas the

linear entropy never diverges. Therefore, the linear entropy of entanglement can be used as an

entanglement quantifier

𝐸𝐿 (𝜌𝐴𝐵) = 1 − P(𝜌𝐴) = 1 − P(𝜌𝐵) . (2.60)

We do not have to worry about any situation where one of the entropies is zero while the other

is not because when one is non zero, the other automatically is too.

2.3.3 Quantum Discord

Consider a system composed of parts 𝐴 and 𝐵, entanglement is not the cause, in

general, of all the correlations present in the system for there may be correlations due to

statistical mixtures. Imagine the correlation of the 𝑧 component of spin being zero in the singlet

state given in Eq. (2.56) but instead in a statistical mixing manner

𝜌𝑆 =
|↑〉〈↑|𝐴 |↓〉〈↓|𝐵 + |↓〉〈↓|𝐴 |↑〉〈↑|𝐵

2
. (2.61)

Ollivier and Zurek define the content of Quantum Discord in [32] as the measure of the

amount of information about part 𝐴 that cannot be extracted by revealing the outcome of

the measurement that was performed on part 𝐵. Keeping that in mind, consider that the

quantummutual information 𝐼𝐴:𝐵 (𝜌) presented in Eq. (2.45) is a good measure of all correlations

established in the state 𝜌 , afterall, it measures the information of part 𝐴 that is also encoded in

part 𝐵 and vice versa. Now we find the information content of part 𝐴 after a measurement of

Π𝐵 given that the 𝑘-th outcome occured, the reduced state is

𝜌𝐴|𝑘 =
Tr𝐴

(
Π𝐵𝑘𝜌

)
TrΠ𝐵𝑘𝜌

, (2.62)
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where Π𝐵𝑘 are the projectors of the spectral decomposition of Π𝐵 . The amount of ignorance

about part 𝐴 considering multiple rounds of the same experiment is, in average,

𝑆 (𝜌𝐴 |Π𝐵) =
∑
𝑘

Tr
(
Π𝐵𝑘𝜌

)
𝑆 (𝜌𝐴|𝑘), (2.63)

so that the average information gained about part 𝐴 after the measurement in part 𝐵 is

𝐽𝐴:𝐵 (𝜌) = 𝑆 (𝜌𝐴) − 𝑆 (𝜌𝐴 |Π𝐵) . (2.64)

The basis dependent Quantum Discord is defined as

𝐷𝐵 (𝜌) = 𝐼𝐴:𝐵 (𝜌) − 𝐽𝐴:𝐵 (𝜌). (2.65)

If Π𝐵 is the observable that maximizes the information to be obtained from part 𝐴 it turns into

Quantum Discord per se, but in this work only the basis dependent quantum discord will be of

interest.

In [33], Rulli and Sarandy symmetrize the notion of quantum discord by considering

measurements in both parts of the system. This goes by noticing that 𝐽𝐴:𝐵 (𝜌) can be written in

terms of a relative entropy

𝐽𝐴:𝐵 (Π𝐵) = 𝑆 (𝜌𝐴) + 𝑆 (𝜙Π𝐵 (𝜌𝐵)) − 𝑆 (𝜙Π𝐵 (𝜌)) (2.66)

= 𝑆 (𝜙Π𝐵 (𝜌) | |𝜌𝐴 ⊗ 𝜙Π𝐵 (𝜌Π𝐵 )), (2.67)

where 𝜙Π𝐵 is the nonselective measurement and

𝑆 (𝜙Π𝐵 (𝜌)) = 𝑆 (𝜙Π𝐵 (𝜌𝐵)) + 𝑆 (𝜌𝐴 |Π𝐵). (2.68)

Now, using the relationship between the relative entropy and mutual information in Eq. (2.47)

we write

𝐷𝐵 (𝜌) = 𝐼𝐴:𝐵 (𝜌) − 𝐼𝐴:𝐵 (𝜙Π𝐵 (𝜌)) . (2.69)

The next step is considering the measurement of the observables Π𝐴 ⊗ 1 and 1 ⊗ Π𝐵 instead of

only one measurement:

𝐷𝐴𝐵 (𝜌) = 𝐼𝐴:𝐵 (𝜌) − 𝐼𝐴:𝐵 (𝜙Π𝐴Π𝐵 (𝜌)), (2.70)

where 𝜙Π𝐴Π𝐵 (𝜌) = 𝜙Π𝐴 (𝜙Π𝐵 (𝜌)) where the order of the measurements does not matter because

they commute. Eq. (2.70) represents the 𝐴𝐵-discord. In the same way as the unsymmetrized

discord, to eliminate the dependece on the measured observables, symmetrized quantum discord

is defined as Eq. (2.70) minimized over all observables.

2.4 INCOMPATIBILITY

Measurement incompatibility is a feature that Quantum Mechanics exhibits that

makes it impossible to reduce the uncertainty associated to an observable to zero given that
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an incompatible observable was measured first. This becomes evident when the RHS of the

famous Robertson-Schrödinger uncertainty relation

Δ𝐴Δ𝐵 ≥ 1

2
| 〈𝜓 | [𝐴, 𝐵] |𝜓 〉 |, (2.71)

is non-zero [7], where 𝐴 and 𝐵 are observables acting on a Hilbert space H with dimension 𝑑

and Δ𝑂 =
√
〈𝑂2〉 − 〈𝑂〉2. A sufficient condition for the RHS to be non-zero is that 𝐴 and 𝐵 do

not commute and, which is, in fact, one of the definitions of measurement incompatibility. If

two observables [𝐴, 𝐵] ≠ 0, then 𝐴 and 𝐵 are said incompatible. In particular, if the basis {|𝑎𝑖〉}
formed by the eigenvectors of 𝐴 and the basis {|𝑏𝑖〉} formed by the eigenvetors of 𝐵 follow the

relation

| 〈𝑎𝑖 ��𝑏 𝑗

〉 |2 = 1

𝑑
, (2.72)

the two basis are said mutually unbiased, because the probability of transition between any

eigenstate of 𝐴 to 𝐵 is equal and vice-versa. This is a good motivation to define that if their

eigenbasis are mutually unbiased, 𝐴 and 𝐵 are said maximally incompatible. An important

property that these observables satisfy is that sequential measurements of 𝐴 and 𝐵 destroy all

information contained in any state 𝜌 , thus rendering a maximally mixed state 1
𝑑 ,

𝜙𝐵𝐴 (𝜌) =
𝑑∑

𝑖, 𝑗=1

��𝑏 𝑗

〉〈
𝑏 𝑗

�� |𝑎𝑖〉〈𝑎𝑖 | 𝜌 |𝑎𝑖〉〈𝑎𝑖 |
��𝑏 𝑗

〉〈
𝑏 𝑗

�� (2.73)

=
1

𝑑

𝑑∑
𝑗=1

��𝑏 𝑗

〉〈
𝑏 𝑗

��Tr{𝜌} = 1

𝑑
, (2.74)

where it was used the fact that the trace of a quantum state is 1, the completeness relation for

𝐵, and the unbiasedness of the basis.

Operationally, the definition of noncommutativity makes sense with the rationale of

the uncertainty principle. Performing a measurement of 𝐵 yields an eigenstate of 𝐵 and, if 𝐴

and 𝐵 do not commute, the new state is not necessarily an eigenstate of 𝐴, which results in

non-zero probabilities for the possible results of a measurement of 𝐴.

The notion of noncommutativity is not adequate to represent incompatibility with

the rise of POVMs, leading to more sophisticated definitions of incompatibility that involve

POVMs and even ones that reinvent the notion of incompatibility for PVMs. Some of them are:

joint measurability [8], nondisturbance [9], coexistence [34], etc.

Joint measurability aims to capture the idea that if two POVMs, 𝐴 with elements {𝐴𝑥 }
and 𝐵 with elements {𝐵𝑦}, can be performed by a mother POVM 𝐺 with elements {𝐺𝑥𝑦} such
that the marginalization of the elements of 𝐺 over the index of one retrieves the other POVM

𝐴𝑥 =
∑
𝑦

𝐺𝑥𝑦, 𝐵𝑦 =
∑
𝑥

𝐺𝑥𝑦 . (2.75)
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It can be shown that PVMs that commute are always jointly measurable and if they don’t

commute they are not jointly measurable. Joint measurability has been shown in [35] to be a

quantum resource for a specific class of quantum computing tasks.

Nondisturbance establishes the criterion that if there exists an instrument ℑ𝐴 that

implements POVM 𝐴 and does not disturb the probability distribution of a POVM 𝐵 over any

state 𝜌

Tr
[
𝐵𝑦ℑ𝐴 (𝜌)

]
= Tr

[
𝐵𝑦𝜌

]∀𝜌, (2.76)

then it is said that𝐴 can be measured without disturbing 𝐵. Note that it is an asymmetric concept,

meaning that if Eq. (2.76) holds it is not granted that 𝐵 can be measured without disturbing 𝐴.

Of course, if 𝐴 and 𝐵 commute and are PVMs, either one can be measured without disturbing

the other and the reverse is also valid. In addition, if 𝐴 and 𝐵 are mutually nondisturbant and

are PVMs, they commute.

The definitions above are all criteria based solely on the measurements and they do

not concern the state. However, classical theories do not exhibit incompatibility and the way to

approach classicality in quantum theory is through the quantum state, not the measurements

performed on it. This is a fundamental aspect inducing the search for further notions of

incompatibility, some that are able to apprehend the classical limit. Indeed, some authors have

recently conceived a paradigm of incompatibility which encompasses the role of the quntum

state [10], giving rise to the concept of context incompatibility.

The MSA (Martins-Savi-Angelo) context incompatibility is based on an information

leakage protocol. Alice prepares a state by measuring an observable 𝑋 in a state 𝜌 and promises

to Bob an amount of information 𝐼 (𝜙𝑋 (𝜌)), where 𝜙𝑋 (·) is the non selective measurement map

in Eq. (2.29). Eve, an eavesdropper, intercepts this state and attempts to extract information

about it measuring an observable 𝑌 . Then, Bob actually receives the amount 𝐼 (𝜙𝑌𝑋 (𝜌)) of
information. If he detects any difference between the received and the promised amount of

information, the context� = {𝑋,𝑌, 𝜌} is incompatible. The quantification of how incompatible

� is given by the amount of leaked information:

𝐼𝑀𝑆𝐴 = 𝐼 (𝜙𝑋 (𝜌)) − 𝐼 (𝜙𝑌𝑋 (𝜌)) (2.77)

= 𝑆 (𝜙𝑌𝑋 (𝜌)) − 𝑆 (𝜙𝑋 (𝜌)), (2.78)

which is zero, i.e., diagnoses compatibility of �, if and only if 𝜙𝑌𝑋 (𝜌) = 𝜙𝑋 (𝜌), that is, when
Eve does not extract any information (and therefore doesn’t learn anything about the commu-

nication).

A generalization on this concept was made in [36] for POVMs but the structure of the

protocol remains the same.
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2.4.1 Theory Independent Context Incompatibility

Recently, the interest in exploring general probabilistic theories (GPTs) that generalize

classical and quantum theory and encompass other theories has grown a lot, both to explore the

possibilities of a more fundamental theory and to acquire a deeper understanding of quantum

theory, rebuilding it from different sets of axioms. An extensive review of GPTs is found in

[37].

A notion of incompatibility based solely on probabilities called theory independent

context incompatibility (TICI) was recently developed in [11]. To embrace generality, TICI uses

the concept of nonselective measurements, which are measurements done without revealing

the result. Suppose a physical quantity 𝐴 = {𝑎𝑖} is measured in a preparation 𝜖 yielding the

result 𝑎𝑖 , the probability of a measurement of 𝐵 = {𝑏𝑖} yielding 𝑏 𝑗 is 𝑝𝜖 (𝑏 𝑗 |𝑎𝑖). Forgetting the
measurement result is akin to summing over all 𝑎𝑖 weighted by the probability 𝑝𝜖 (𝑎𝑖) of a
measurement of𝐴 yielding 𝑎𝑖 in the preparation 𝜖 . So, the nonselective measurement is defined

as the preparation𝑀𝐴 (𝜖) associated with the probability distribution

𝑝𝑀𝐴 (𝜖) (𝑏 𝑗 ) =
∑
𝑖

𝑝𝜖 (𝑏 𝑗 |𝑎𝑖)𝑝 (𝑎𝑖) . (2.79)

If a nonselective measurement of 𝐵 in a preparation 𝜖 does not disturb the probability distribu-

tion of 𝐴 and the inverse holds, that is,

𝑝𝜖 (𝑎𝑖) = 𝑝𝑀𝐵 (𝜖) (𝑎𝑖), (2.80a)

𝑝𝜖 (𝑏𝑖) = 𝑝𝑀𝐴 (𝜖) (𝑏𝑖), (2.80b)

then the context � = {𝐴, 𝐵, 𝜖} is compatible.

Much like how much quantum discord is quantified in a physical state by the quantum

relative entropy, a measure of how incompatible a certain context � = {𝜌,𝐴, 𝐵} is given by

how much the measurement of one physical quantity disturbes the probability distribution of

the other. This measure can be built by use of the Kullback-Leibler divergence (2.39) as follows

I� =
𝐷 (𝑝𝜖 (𝑎𝑖) | |𝑝𝑀𝐵 (𝜖) (𝑎𝑖)) + 𝐷 (𝑝𝜖 (𝑏𝑖) | |𝑝𝑀𝐴 (𝜖) (𝑏𝑖))

2
, (2.81)

where the Kullback-Leibler divergence for both of the expressions in the criteria were taken

into account where the violation of just one suffices to imply the incompatibility of the context

�. This quantifier is also consistent with the criteria in Eq. (2.4.1) recalling that the divergence

𝐷 (𝑝 | |𝑞) is zero if and only if 𝑝 = 𝑞.

In quantum theory, the preparation is the density operator 𝜌 ∈ H , the physical

quantities are the observables, the nonselective measurement is given by Eq. (2.29) and the

compatibility criteria translates to

𝑝𝜌 (𝑎𝑖) = 𝑝𝜙𝐵 (𝜌) (𝑎𝑖), (2.82)

𝑝𝜌 (𝑏𝑖) = 𝑝𝜙𝐴 (𝜌) (𝑏𝑖) . (2.83)
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Multiplying both equations by their respective projectors, 𝐴𝑖 and 𝐵𝑖 , summing over all 𝑖 and

recognizing the definition of the nonselective measurement map in Eq. (2.29), we get the criteria

expressed in terms of the states

𝜙𝐴 (𝜌) = 𝜙𝐴𝐵 (𝜌), (2.84)

𝜙𝐵 (𝜌) = 𝜙𝐵𝐴 (𝜌), (2.85)

where 𝜙𝐴𝐵 (·) = 𝜙𝐴 (𝜙𝐵 (·)) is the composition of the nonselective measurements. It is straight-

forward to verify that if [𝐴, 𝐵] = 0, then the criteria in Eq.(2.84) are always satisfied, granting

TICI a status of generalization of the concept of measurement incompatibility.

It is worth noting that for quantum theory the relative entropy would be the quantifier

of the difference between the density operators before and after the measurement and, in fact,

calculating the quantum analogue of Eq. (2.84),

I� =
𝑆 (𝜙𝐴 (𝜌) | |𝜙𝐴𝐵 (𝜌)) + 𝑆 (𝜙𝐵 (𝜌) | |𝜙𝐵𝐴 (𝜌))

2
, (2.86)

results in complete equivalence to the quantifier in Eq. (2.81) if𝐴 and 𝐵 are observables that act

on H . However, considering 𝜌 to be bipartite, and the measurements acting on each partition,

they are not equivalent.

2.5 DISCRETIZATION OF CONTINUOUS VARIABLES

The Kullback-Leibler divergence has some issues for continuous variables, such as

the possibility of going to infinity or being negative, therefore the method of discretization of

infinite dimensional Hilbert spaces introduced in [38] can be utilized to surpass these problems.

The method discretizes continuous infinite dimensional Hilbert spaces and turns its dimension

finite so that computing entropies and the Kullback-Leibler divergence becomes a feasible task.

The discretization method is the substitution of a continuous basis {|𝑞〉} with 𝑞 ∈ �
ranging from −∞ to +∞ of a basis 𝐵𝑞 = {

��𝑞𝑗

〉} with 𝑞𝑗 ∈ � such that 𝑗 = −Δ, ..., 0, ...,Δ, where
Δ is half the number of partitions, and 𝛿𝑞 = 𝑞𝑖 − 𝑞𝑖−1 for all 𝑖 . By definition, the basis vectors

are unnormalized 〈
𝑞𝑖
��𝑞𝑗

〉
=
𝛿𝑖 𝑗

𝛿𝑞
, (2.87)

where 𝛿𝑖 𝑗 is the Kronecker delta. The projector Π 𝑗 associated to the basis element
��𝑞𝑗

〉
is defined

as

Π 𝑗 = 𝛿𝑞
��𝑞𝑗

〉〈
𝑞𝑗

�� . (2.88)

With that machinery a general state |𝜓 〉 can be expanded in the basis 𝐵𝑞 as

|𝜓 〉 =
Δ∑

𝑗=−Δ
Π 𝑗 |𝜓 〉 =

Δ∑
𝑗=−Δ

𝛿𝑞
〈
𝑞𝑗

��𝜓 〉 ��𝑞𝑗

〉
=

Δ∑
𝑗=−Δ

𝛿𝑞𝜓 (𝑞𝑗 )
��𝑞𝑗

〉
, (2.89)
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where𝜓 (𝑞𝑗 ) is the discretized wave function with 𝑞𝑗 = 𝑗𝛿𝑞 . Therefore, for the position repre-

sentation, the probability of finding a particle in a position 𝑥 𝑗 is |𝜓 (𝑥 𝑗 ) |2𝛿𝑞 .
The amount of incompatibility in a context � = {𝜌,𝑋, 𝑃} reads

I� =
𝐷 (𝑝𝜌 (𝑥𝑖)) | |𝑝𝜙𝑃1 (𝜌) (𝑥𝑖)) + 𝐷 (𝑝𝜌 (𝑝𝑖) | |𝑝𝜙𝑋1 (𝜌) (𝑝𝑖))

2
, (2.90)

where 𝜌 may be a multipartite state.
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3 REFERENCE FRAMES AND COORDINATE SYSTEMS

A coordinate system is a set of parameters that uniquely labels an element of an

underlying set, such as the events composing space-time (of Galileo, Minkowski, or other)

points in a phase space or even vectors in a Hilbert space. The parameters used to describe the

physical system of interest are conveniently chosen to simplify its mathematical description,

e.g., spherical coordinates are the most suitable coordinates to describe a system that has

spherical symmetry. Here we aim to describe a physical system by means of coordinate systems

assigned by different reference frames and, most importanly, we want to get an intuition on

how quantum systems describe the physical world.

3.1 NON-QUANTUM

3.1.1 Passive vs active picture for coordinates

There are two physically equivalent ways to transform coordinate systems, the active

transformations, which acts on the object itself, therefore maintaining the coordinate system

intact whilst the object changes, and there are passive transformations, which preserve the

object while the coordinate system changes. Consider a vector 𝒓 in R3 written in the 𝐸 =

{𝒆1, 𝒆2, 𝒆3} basis in which the coordinates are the coefficients 𝑟 (𝑒)𝑖 of the linear combination

𝒓 =
∑
𝑖

𝑟 (𝑒)𝑖 𝒆𝑖 . (3.1)

Performing a passive transformation into a basis 𝐹 = {𝒇1,𝒇2,𝒇3}, in which 𝒇𝑖 =
∑

𝑗 𝑀𝑗𝑖𝒆 𝑗 , while

the basis vectors transform according to𝑀𝑇 , the coordinates transform according to𝑀−1, i.e.,
𝑟 (𝑓 ) = 𝑀−1𝑟 (𝑒) , in matrix notation, where the absence of bold vectors are to denote column

matrices. Moving on to the active transformation we have

𝑀−1𝑟 (𝑒) = 𝑟 ′(𝑒), (3.2)

the distinction between the two being that, in the active transformation, we are interpreting

the RHS as coordinates of a new vector 𝒓′. Therefore, we need to reinterpret the RHS as

coordinates of the same vector in a new basis in order to make the two approaches consistent.

The importance of the last step will be clearer when dealing with Hilbert spaces in which

the task is to find an operator that performs this coordinate transformation and, since an

operator transforms a vector, we are dealing with an active transformation and to make it

equivalent to the passive one, the action of the operator in a vector must be followed by a

reinterpretation of the meaning of the labels assigned to the new vector as the new coordinate

systems’ parameters.
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3.1.2 Coordinate transformations in Hilbert space

By choosing the observables responsible for building the Hilbert space that contains

the possible states of the system of interest, that is the representation space, a coordinate

system and therefore a reference frame is assumed. Take the Hilbert space H generated by the

position observable 𝑋 , for example, the parameter that labels each ket of the complete basis

{|𝒙〉} is the position relative to a reference frame previously assumed. A transformation to

another reference frame in a Hilbert space is accomplished by applying a unitary operator

suited to the case of interest.

3.1.2.1 Translation

Suppose we want to change from the reference frame 𝑆 , as described above, to a frame

𝑆′ that has its origin dislocated by a vector 𝒅. The unitary operator that suits the case is the

translation operator𝑇 (𝒅) = exp
(− 𝑖

ℏ𝒅 · 𝑷 ) , where 𝑷 is the momentum operator. Performing the

transformation on the position operator we have

𝑿 ′ = 𝑇 (𝒅)𝑿𝑇 †(𝒅)
= 𝑿 − 𝒅1, (3.3)

while the transformation has no effect on themomentumoperator, that is, 𝑷 ′ = 𝑇 (𝒅)𝑃𝑇 †(𝒅) = 𝑷 ,

because it commutes with the translation operator. The transformation of a general state

|𝜓 〉 =
∫
𝑑𝒙𝜓 (𝒙) |𝒙〉, where 𝑑𝒙 = 𝑑𝑥𝑑𝑦𝑑𝑧, results in

|𝜓 ′〉 = 𝑇 (𝒅) |𝜓 〉

=
∫

𝑑𝒙𝜓 (𝒙) |𝒙 + 𝒅〉

=
∫

𝑑𝒙𝜓 (𝒙 − 𝒅) |𝒙〉 . (3.4)

As expected, the wave function perceived by 𝑆′ maintains its functional form but is dislocated

by the vector 𝒅. Note that, considering Eq. (3.4), the operator 𝑿 now has the interpretation

of the position relative to the origin of 𝑆′, even not being transformed. In a similar manner,

considering 𝑿 ′ and the state |𝜓 〉, it also has the interpretation of position relative to 𝑆′. This
equivalence can also be highlighted with the expressions of the mean value for the relative

position

〈𝜓 |𝑋 ′ |𝜓 〉 = 〈𝑋 〉 − 𝑑 (3.5a)

〈𝜓 ′|𝑋 |𝜓 ′〉 = 〈𝑋 〉 − 𝑑. (3.5b)
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3.1.2.2 Boosts

In the case of 𝑆′ moving with a velocity 𝒗 relative to 𝑆 , we can employ the unitary

operator 𝐵(𝒗) = exp
[
𝑖
ℏ𝑣 (𝑡𝑷 −𝑚𝑿 )] to implement the usual Galilean transformation

𝑿 ′ = 𝑿 − 𝒗𝑡, (3.6a)

𝑷 ′ = 𝑷 −𝑚𝒗, (3.6b)

and the state perceived by 𝑆′ is

|𝜓 ′〉 = 𝐵(𝒗) |𝜓 〉

= exp

(
−𝑚𝑣2𝑡

2ℏ

) ∫
𝑑𝒙𝜓 (𝒙) exp

(
− 𝑖

ℏ
𝑚𝒗 · 𝒙

)
|𝒙 + 𝒗𝑡〉

= exp

(
−𝑚𝑣2𝑡

2ℏ

) ∫
𝑑𝒙𝜓 (𝒙 − 𝒗𝑡) exp

[
− 𝑖

ℏ
𝑚𝒗 · (𝒙 − 𝒗𝑡)

]
|𝒙〉 , (3.7)

where a phase now multiplies the original wave function, which is dislocated by 𝒗𝑡 as expected.

Explicitly, the new wave function is given by

𝜓 ′(𝑥′, 𝑡) = 𝑒−
𝑖
ℏ (𝑚𝑣𝑥 ′+𝑚𝑣2𝑡

2 )𝜓 (𝑥′, 𝑡) . (3.8)

This result was also obtained by Bargmann [39] by different means. The author analyzes the

free particle Schrödinger equation

𝑖ℏ𝜕𝑡Ψ(𝑥, 𝑡) = − ℏ2

2𝑚
𝜕2𝑥Ψ(𝑥, 𝑡), (3.9)

through the Galilean transformation of the position coordinates 𝑥′ = 𝑥 − 𝑣𝑡 and 𝑡 = 𝑡 ′, which
yields a modified equation with the addition of a potential,

𝑖ℏ𝜕𝑡Ψ(𝑥′, 𝑡) = ℏ
2𝑚

𝜕2𝑥 ′Ψ(𝑥′, 𝑡) − 𝑖ℏ𝑣𝜕𝑥 ′Ψ(𝑥′, 𝑡) . (3.10)

Finally, imposing the form invariance of Eq. (3.10) with respect to Eq.(3.9) we have a new wave

function Ψ′(𝑥′, 𝑡) that satisfies

𝑖ℏ𝜕𝑡Ψ
′(𝑥′, 𝑡) = − ℏ2

2𝑚
𝜕2𝑥 ′Ψ

′(𝑥′, 𝑡), (3.11a)

Ψ′(𝑥′, 𝑡) = 𝑒−
𝑖
ℏ (𝑚𝑣𝑥 ′+𝑚𝑣2𝑡

2ℏ )Ψ(𝑥′, 𝑡) . (3.11b)

Comparing Eqs. (3.11b) and (3.8) we find that both methods yield the same wave function. In

other words, applying the Galilean transformation with the unitary operator or performing the

coordinate transformation is equivalent and the form invariance of the Schrödinger equation

is granted both ways.

Notice that none of these transformations can accomplish the task of jumping to a

reference frame in which the quantum system is always at the origin and at rest, it does not

matter the choice of parameter of translation or boost. To do the job we need a more refined

theory of reference frames.
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3.2 QUANTUM REFERENCE FRAMES

To our knowledge, the first mention of the idea of quantum reference frames was

regarding charge superselection rules [40] and the observability of the sign change of spinors

under 2𝜋 rotations [41], both made by Aharonov and Susskind. The transformations between

the quantum reference frames are first introduced in Aharonov and Kaufherr’s work in [12] in

order to solve a supposed "paradox" regarding quantum systems playing the role of finite-mass

reference frames. In this section, we describe this approach followed by the contributions made

by Angelo et. al. [14], Giacomini et. al. [15], Vanrietvelde et. al. [42, 43] and Savi et. al. [18].

3.2.1 Measuring device paradox

In classical physics, the extraction of information about a system can be done via

an arbitrarily small exchange of energy between the system and the lab while in quantum

mechanics, a quantum of action must be exchanged in the process of extraction according

to the uncertainty principle in Eq. (2.71). Aharonov and Kaufherr emphasize that quantum

mechanics relies on the existence of a classical reference frame, which has perfectly localized

position and velocity. Although it seems to violate Heisenberg’s uncertainty principle, it is

possible to make sense of such classical feature within the quantum framework by requiring

that the reference frame has infinite mass𝑚 in

Δ

[
𝑑

𝑑𝑡
𝑋

]
Δ𝑋 ≥ ℏ

2𝑚
, (3.12)

which is a perfectly plausible hypothesis considering a heavy macroscopic laboratory as the

reference frame relative to which the quantum system is described. Consider the measuring

device to have finite mass, a measurement of the position of a particle relative to it yielding, e.g.

𝑥0, would disturb its own position relative to the external reference frame after some time 𝑡 as

Δ𝑋 (𝑡) = Δ𝑋 (0) + Δ𝑃

𝑚
𝑡, (3.13)

which would disturb also the position of the particle relative to it such that this measurement

would not be repeatable, contradicting the necessity of repeatability of a measurement implied

by the postulate in Eq. (2.3). Therefore, the authors conclude that a measuring device with

finite mass is inconsistent with quantum mechanics.

This inconsistency implies that quantum mechanics alone cannot describe the entire

universe, it requires a classical theory to complete the description. Besides, all measuring

devices have finite mass, and a measurement that involves amounts of energy capable of

disturbing its position and momentum in principe should be possible to describe with a single

theory.

This paradox can be presented in a more concrete and fundamental manner, as an

inconsistency when describing particle 1, which is a free particle, relative to a finite-mass
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reference frame consisting of particle 0, which is playing the role of the measuring device.

The starting reference frame will be referred to as the external reference frame and also has

finite mass. The authors postulate, supported by special and general relativity, that no observer

can perform an experiment that grants information about its own state of motion. Therefore,

particle 0 cannot distinguish between being in an eigenstate of position or momentum. By

consequence, the external reference frame should be able to measure the position of the center

of mass of particle 0 and particle 1 while particle 0 measures particle 1’s velocity simultaneously,

that is,

Δ𝑉 ′
1 = 0 𝑎𝑛𝑑 Δ𝑋𝐶𝑀 = 0. (3.14)

The fact that these quantities may be measured simultaneously implies that[
𝑉 ′
1 , 𝑋𝐶𝑀

]
= 0, (3.15)

where 𝑋𝐶𝑀 = 𝑚1𝑋1+𝑚0𝑋0
𝑚1+𝑚0

, 𝑉 ′
1 =

𝑃 ′
1

𝑚1
and 𝑚1 and 𝑚0 are the masses of partice 1 and particle

0, respectively. The positions of the external reference frame and of particle 1, 𝑋 ′
𝑒𝑥𝑡 and 𝑋 ′

1,

respectively, denoted by primed operators, are given relative to particle 0 and taken to be

𝑋 ′
𝑒𝑥𝑡 = −𝑋0, (3.16a)

𝑋 ′
1 = 𝑋1 − 𝑋0, (3.16b)

where 𝑋1 and 𝑋0 are the positions of particle 1 and 2, respectively, relative to the external

reference frame. When testing the expected reasonable commutation relation given in Eq. (3.15)

the authors found a result that differs from the expected one

[
𝑉 ′
1 , 𝑋𝐶𝑀

]
=

[
𝑃 ′1
𝑚1

,
𝑚1𝑋1 +𝑚0𝑋0

𝑚1 +𝑚0

]
=

[
𝑃 ′1
𝑚1

,
𝑚1𝑋

′
1

𝑚1 +𝑚0

]
+ [

𝑃 ′1,−𝑋 ′
𝑒𝑥𝑡

]
=

−𝑖ℏ
𝑚1 +𝑚0

1 ≠ 0. (3.17)

In the limit of infinite-mass reference frame,𝑚0 −→ ∞, Eq. (3.17) yields zero, in accordance

with Eq. (3.15). The lack of agreement of the mathematical description and the good reasoning

establishes the inconsistency of describing a system through a finite-mass reference frame.

A solution to the paradox is the introduction of a vector potential 𝐴 that aims to

restore the desired commutation relations and hopefully our intuition of the physical situation,

that is,

𝑚𝑉 ′
1 = 𝑃 ′

1 +𝑚1𝐴
′. (3.18)

Form invariance of the vector potential and Eq. (3.18) under reference frame transformation

yields

𝑚𝑉1 = 𝑃1 +𝑚1𝐴, (3.19)
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and, using the above equations and following extensive calculations available in [12] we find

that the velocity that follows the desirable commutation relation is

𝑉 ′
1 =

𝑃 ′1
𝑚1

+ 𝑃 ′
0 + 𝑃 ′

1

𝑚0
, (3.20)

and, according to the external reference frame

𝑉1 =
𝑃1
𝑚1

+ 𝑃0 + 𝑃1
𝑚0

, (3.21)

where we get the second term to vanish in the infinite mass reference frame limit (𝑚0 −→ ∞).
The authors point that all the quantities involved in the solution are relational and

the vector potential 𝐴 accounts for the noninertiality of the finite-mass reference frame. Eq.

(3.20) shows that a change in the velocity of particle 1 can be attributed to a change in the

momentum of either particle 0 or particle 1 relative to the external reference frame. The first

case is a consequence of the non-inertiality of particle 0.

3.2.2 One dimensional solution

The authors also present a fully covariant solution; they provide a transformation to a

quantum reference frame. It is given by a coordinate transformation to the relative coordinates

of one of the particles. Consider a system consisting of 𝑛 free particles with the Hamiltonian

𝐻 =
𝑛∑
𝑖=0

𝑃2
𝑖

2𝑚
, (3.22)

assigned by an external reference frame 𝑆 and we wish to obtain the description of the system

according to particle 0. The change in coordinates utilized was from the positions and momenta

𝑥𝑖 and 𝑝𝑖 , relative to 𝑆 , to the positions and momenta 𝑄𝑖 and 𝜋𝑖 relative to particle 0. In this

case, we have

𝑄0 = 𝑋0, 𝜋0 = 𝑃𝑇 =
𝑛∑
𝑖=0

𝑃𝑖, (3.23)

𝑄𝑖 = 𝑋𝑖 − 𝑋0, 𝜋𝑖 = 𝑃𝑖, 𝑖 = 1, ..., 𝑛, (3.24)

where
[
𝑄𝑖, 𝜋𝑗

]
= 𝛿𝑖 𝑗𝑖ℏ1 for 𝑖, 𝑗 = 1, ..., 𝑛. The unitary transformation that performs this change

in position and momenta coordinate is

𝑈 = exp

(
𝑖

ℏ

𝑛∑
𝑖=1

𝑃𝑖𝑋0

)
, (3.25)

where 𝑄𝑛 = 𝑈 †𝑋𝑛𝑈 and 𝜋𝑛 = 𝑈 †𝑃𝑛𝑈 for 𝑖 = 0, ..., 𝑛. In order to find the Hamiltonian 𝐻 ′

that particle 0 uses to calculate the dynamics, we should consider the form invariance of the

Schrödinger equation of a general operator 𝐴(𝑋𝑛, 𝑃𝑛) in the Heisenberg picture in Eq. (2.11).
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The calculations are done in appendix A. We have that 𝐻 ′(𝑄𝑛, 𝜋𝑛) = 𝑈𝐻 (𝑋𝑛, 𝑃𝑛)𝑈 †, so, in Eq.

(3.22) we get

𝐻 ′(𝑄𝑛, 𝜋𝑛) =

(
𝜋0 −

𝑛∑
𝑖=1

𝜋𝑖

)2
2𝑚0

+
𝑛∑
𝑖=1

𝜋2
𝑖

2𝑚𝑖
, (3.26)

where we can consider the system to be in an eigenstate of total momentum with 𝜋0 = 0 (in its

own reference frame its momentum is zero) and

𝐻 ′(𝑄𝑛, 𝜋𝑛) =
𝑛∑
𝑖=1

(𝜋𝑖 +𝑚𝑖Π/𝑚0)2
2𝑚𝑖

− 𝑀Π2

2𝑚2
0

, (3.27)

where Π =
𝑛∑
𝑖=1

𝜋𝑖 and𝑀 =
𝑛∑
𝑖=0

𝑚𝑖 . The elimination of particle 0 from the Hamiltonian comes

with the expense of introducing the vector potential 𝐴 = Π
𝑚0

to the momentum in the first term

inside the parenthesis. If we calculate the Heisenberg velocity of the 𝑖-th particle 𝑣𝑖 , we get

𝑣𝑖 =
[𝑄𝑖, 𝐻

′]
𝑖ℏ

=
𝜋𝑖
𝑚𝑖

+ Π

𝑚0
. (3.28)

Just as in the previous solution of the paradox in Eq. (3.20), the free particle does not move with

velocity equal its momentum divided by its mass, but now an initial operator𝑈 that changes

between quantum reference frames was introduced.

3.2.3 Center of mass transformation

In [13], the map to center of mass and relative coordinates of a closed system composed

by particles 0 and 1 was utilized, just as in solving the hydrogen atom in quantum mechanics

textbooks:

|𝑎〉0 |𝑏〉1 ↦→
����𝑚0𝑎 +𝑚1𝑏

𝑚0 +𝑚1

〉
𝐶𝑀

|𝑏 − 𝑎〉𝑟 . (3.29)

In [14], the authors showed that this map can be written via the application of the unitary

operator

𝑇𝐶𝑀 = exp

(
− 𝑖

ℏ
𝑚1

𝑀
𝑋1𝑃0

)
exp

{
𝑖

ℏ
𝑋0𝑃1

}
, (3.30)

where𝑀 =𝑚0 +𝑚1. The analysis of these two contributions made by Angelo et. al. [14], unlike

the one made by Aharonov and Kaufherr [12], also considers how quantum coordinate trans-

formations act on state vectors and density operators, which provides a better understanding

of the theory of quantum reference frames. This transformation acting on a state

|𝜓 〉 =
∫

𝜓 (𝑥0, 𝑥1) |𝑥0〉 |𝑥1〉 𝑑𝑥0𝑑𝑥1, (3.31)

yields the state |𝜓 ′〉 = 𝑇𝐶𝑀 |𝜓 〉

|𝜓 ′〉 =
∫

𝜓 (𝑥𝐶𝑀, 𝑥𝑟1) |𝑥𝐶𝑀〉
��𝑥𝑟1〉 𝑑𝑥𝐶𝑀𝑑𝑥𝑟1, (3.32)
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where 𝑥𝐶𝑀 = 𝑚0𝑥0+𝑚1𝑥1
𝑀 , 𝑥𝑟1 = 𝑥1 − 𝑥0, and𝜓 (𝑥𝐶𝑀, 𝑥𝑟1) = 𝜓 (𝑥𝐶𝑀 − 𝑚1

𝑀 𝑥𝑟1, 𝑥𝐶𝑀 + 𝑚0
𝑀 𝑥𝑟1). To obtain

state of particle 1 relative to particle 0, they invoke the fact that the center of mass is a quantity

defined relative to the external reference frame and particle 1 cannot discover its location much

less alter it. Therefore the center of mass degree of freedom may be discarded via partial trace

𝜌𝑟1 = Tr𝐶𝑀 ( |𝜓 ′〉〈𝜓 ′|)

𝜌𝑟1 =
∫

𝑑𝑥𝐶𝑀

∫
𝑑𝑥𝑟1𝑑𝑥𝑟1𝜓 (𝑥𝐶𝑀, 𝑥𝑟1)𝜓 ∗(𝑥𝐶𝑀, 𝑥𝑟1)

��𝑥𝑟1〉〈𝑥𝑟1 �� , (3.33)

resulting in the state that particle 0 assigns to particle 1.

3.2.3.1 Product of Gaussian states

From now on, states |𝑥0〉 refer to Gaussian wave packets centered at 𝑥0 with variance

Δ, that is

|𝑥0〉 = 1√
Δ
√
2𝜋

∫
𝑑𝑥 exp

[ (𝑥 − 𝑥0)2
4Δ2

]
|𝑥〉 . (3.34)

Consider a system of two particles in a product of Gaussian states relative to the external frame:

𝜓 (𝑥0)𝜙 (𝑥1) ∝ exp

[
− (𝑥0 − 𝑎)2

2Δ2
0

]
exp

[
− (𝑥1 − 𝑏)2

2Δ2
1

]
, (3.35)

where particle 0 is localized around 𝑎 with uncertainty Δ0 and particle 1 is localized around 𝑏

with uncertainty Δ1. Applying 𝑇𝐶𝑀 to Eq.(3.35) the wave-function of the system is

Ψ(𝑥𝐶𝑀, 𝑥𝑟1) ∝ exp

[
− (𝑥𝐶𝑀 − 𝛼)2

4Δ2
𝐶𝑀

]
exp

[
− (𝑥𝑟1 − 𝛽)2

4Δ2
𝑟1

]
exp

[
𝛾 (𝑥𝐶𝑀 − 𝛼) (𝑥𝑟1 − 𝛽)], (3.36)

where the parameters are given by

Δ2
𝐶𝑀 = Δ2

0Δ
2
1/(Δ2

0 + Δ2
1), (3.37a)

Δ2
𝑟1 = 𝑀2Δ2

0Δ
2
1/(𝑚2

0Δ
2
0 +𝑚2

1Δ
2
1), (3.37b)

𝛼 = (𝑚0𝑎 +𝑚1𝑏)/𝑀, (3.37c)

𝛽 = 𝑏 − 𝑎, (3.37d)

𝛾 = (𝑚1Δ
2
1 −𝑚0Δ

2
0)/(𝑀Δ2

0Δ
2
1) . (3.37e)

The transformation led a product state to other Gaussian states for the center of mass and for

the relative coordinates multiplied by an exponential. Note that if the system is prepared in

such a way that 𝛾 = 0, that is𝑚0Δ
2
0 =𝑚1Δ

2
1, the transformed state is localized around 𝛼 in the

center of mass with variance Δ𝐶𝑀 and around 𝛽 in the relative coordinate with variance Δ𝑟1 . In

this case there is no entanglement between the new coordinates. When transforming product

states the approximation |𝑎〉0 |𝑏〉1 ≈ |𝛼〉𝐶𝑀 |𝛽〉𝑟1 is utilized to show that in principle a choice

can be made such that the equality holds.

Note that, in general, a separable state can be transformed into an entagled state,

indicating that quantum resources may not be invariant under quantum reference frame
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transformations. Although it might seem counter-intuitive, remember that entanglement is a

form of correlation between subsystems. In this case, the positions of particle 0 and 1 relative

to the external reference frame are uncorrelated but that does not prevent the position of the

center of mass and relative position to be correlated. Therefore, a change in the amount of

entanglement is expected when changing quantum reference frames because in the new frame

entanglement is seen between other degrees of freedom, not the original ones.

3.2.4 Mach-Zehnder Interferometer

Unlike the double-slit experiment, the Mach-Zehnder Interferometer (MZI) [44], is

a typical, and mathematically simple, example of setup wherein path interference can be

observed. In this work, we use the qualitative result of the MZI, and hence, we omit the details

and follow an approach similar to the one made in [45]. In part 𝐼 of figure 3, a single particle

fig/MZI.png

Figure 3 – Mach-Zehnder Interferometer: In part 𝐼 the particle enters the interferometer and its state
turns into an equally weighted superosition of branches. In part 𝐼 𝐼 a relative phase of 𝜋
between the branches through reflections, so that in part 𝐼 𝐼 𝐼 constructive interference occurs
in 𝐷2 and destructive in 𝐷2 yielding 100% of clicks in 𝐷1.

is emitted and enters the interferometer encountering a beam-splitter, transforming the state

into an equal weighted superposition between the upper path and the lower path. Whenever

the wave-function is reflected, it gains a phase of 𝜋
2 . Part 𝐼 𝐼 is where the upper branch of the

wave-function gets a phase of 𝜋
2 relative to the other branch. In part 𝐼 𝐼 𝐼 , the branches have a

relative phase of 𝜋 , which fulfill the condition to occur destructive interference between the

branches of the wave function towards detector 𝐷1 and constructive interference towards 𝐷2

such that it clicks in 100% of times that the experiment is made.

3.2.5 Role of the center of mass

In classical mechanics, the momentum of the center of mass is a conserved quantity

in closed systems since it is conserved throughout the dynamics. In quantum reference frames
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theory, it plays even a bigger role which can be intuitively understood through the following

example. Consider two different physical situations, (𝑎) and (𝑏), depicted in figure 4(𝑎) and
4(𝑏), respectively. Experiment (𝑎) is a regular MZI but cut in half. Experiment (𝑏) involves no

fig/Superposition of MZI.jpg

Figure 4 – Distinct experiments involving Mach-Zehnder interferometers. In (𝑎) the particle approaches
in superposition as usual. In (𝑏) the interferometer is in superposition.

superposition for the particle while the interferometer is in superposition. Both experiments

are being described relative to an external classical reference frame. If we follow the possible

paths and evaluate the probabilities, we conclude that in experiment (𝑎) only one detector

clicks while in experiment (𝑏) both detectors are equally likely to click. One might think that

due to the symmetry of the situation, i.e., the interferometer observing the particle approaching

it in superposition in counterpart to the particle observing the interferometer in superposition,

the two experiments would be physically equivalent. Let us analyze the physical states of these

systems in order to check that. In (𝑎), consider the distance from the mirrors to the center of

the interferometer be 𝐿, then the state of the particle-interferometer system is

|𝜓𝑎〉 = |0〉𝑖
( |𝐿〉𝑝 + |−𝐿〉𝑝√

2

)
, (3.38)

where the subindex 𝑖 labels the interferometer’s states and 𝑝 labels the particle’s states. In

experiment (𝑏) the state of the system is

|𝜓𝑏〉 =
( |𝐿〉𝑖 + |−𝐿〉𝑖√

2

)
|0〉𝑝 . (3.39)

Since the probability of each detector clicking is a property of the physical system and the

relationship between the particle and the interferometer, not of the choice of reference frame,

if we switch to the reference frame of the particle in experiment (𝑎), interference is expected
and, switching to the reference frame of the interferometer in experiment (𝑏) should yield no

interference. It can be seen following the possible paths for the particle to take in figure 4. The
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transformed states are

|𝜓𝑎〉 ≈

���−𝑚𝑝𝐿
𝑀

〉
𝐶𝑀

|−𝐿〉𝑟1 +
���𝑚𝑝𝐿
𝑀

〉
𝐶𝑀

|𝐿〉𝑟1
√
2

, (3.40a)

|𝜓𝑏〉 ≈

���−𝑚𝑖𝐿
𝑀

〉
𝐶𝑀

|𝐿〉𝑟1 +
���𝑚𝑖𝐿
𝑀

〉
𝐶𝑀

|−𝐿〉𝑟1
√
2

. (3.40b)

Tracing the center of mass from Eqs. (3.40) would yield a mixture of |−𝐿〉 and |𝐿〉, which causes

both detectors to click, thus being the correct description of (𝑏) but incorrect for (𝑎). Assuming

that the interferometer is much heavier than the particle, i.e.,𝑚𝑖 � 𝑚𝑝 , then
𝑚𝑝𝐿
𝑀 −→ 0 and

𝑚𝑖𝐿
𝑀 −→ 𝐿, which results in

|𝜓𝑎〉 ≈ |0〉𝐶𝑀
( |−𝐿〉𝑟1 + |𝐿〉𝑟1√

2

)
, (3.41a)

|𝜓𝑏〉 ≈
|−𝐿〉𝐶𝑀 |𝐿〉𝑟1 + |𝐿〉𝐶𝑀 |−𝐿〉𝑟1√

2
. (3.41b)

Tracing the center of mass yields the relative states 𝜌𝑎 and 𝜌𝑏

𝜌𝑎 ≈
( |−𝐿〉𝑟1 + |𝐿〉𝑟1

) (〈−𝐿 |𝑟1 + 〈𝐿 |𝑟1
)

2
, (3.42a)

𝜌𝑏 ≈ |𝐿〉 〈𝐿 |𝑟1 + |−𝐿〉 〈−𝐿 |𝑟1
2

. (3.42b)

Now the differences become crystal clear, the superposition of |−𝐿〉 and |𝐿〉 in Eq. (3.42a)

indicates that interferece occurs, causing only one of the detectors to click and the mixture in

Eq. (3.42b) indicates the absence of interference.

Thus, the center of mass plays the role of distinguishing such similar and apparently

symmetric physical situations, for when it is entangled with the relative degrees of freedom,

mixed statistics is attributed to the relative state, while when it factorizes, the relative state

remains pure and therefore exhibits interference.

3.2.6 𝑁 + 1-particle system

One can also transition to the center of mass and relative coordinates,

𝑥𝐶𝑀 =
1

𝑀

𝑁∑
𝑖

𝑚𝑖𝑥𝑖, (3.43)

𝑥𝑟𝑖 = 𝑥𝑖 − 𝑥0, (3.44)

where𝑀 =
𝑁∑
𝑖=0

𝑚𝑖 . The associated operator for the transformation is constructed by writing

Eq. (3.43) as

𝑥𝐶𝑀 = 𝑥0 +
𝑁∑
𝑖=1

𝑚𝑖

𝑀
𝑥𝑟𝑖 , (3.45)
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therefore first we should translate all 𝑥𝑖 with 𝑖 > 0 of 𝑥0 and then multiply it by 𝑚𝑖
𝑀 and sum it

all to 𝑥0. Writing in terms of translation operators

𝑇𝐶𝑀 = exp

(
− 𝑖

ℏ

𝑁∑
𝑖=1

𝑚𝑖𝑋𝑖

𝑀

)
exp

(
𝑖

ℏ
𝑋0

𝑁∑
𝑖=1

𝑃𝑖

)
. (3.46)

Note that this change of coordinates is unitary and hence canonical. Consider 𝑁 = 2, for

example, acting on the positions and momenta operators as 𝑇 †
𝐶𝑀 ·𝑇𝐶𝑀 yields

𝑋𝐶𝑀 =
1

𝑀

𝑁∑
𝑖

𝑚𝑖𝑋𝑖, 𝑃𝐶𝑀 =
𝑁∑
𝑖=0

𝑃𝑖,

𝑋𝑟1 = 𝑋1 − 𝑋0, 𝑃𝑟1,𝐶𝑀 =𝑚1

(
𝑃1
𝑚1

− 𝑃𝐶𝑀
𝑀

)
, (3.47)

𝑋𝑟2 = 𝑋2 − 𝑋0, 𝑃𝑟2,𝐶𝑀 =𝑚2

(
𝑃2
𝑚2

− 𝑃𝐶𝑀
𝑀

)
,

where we interpret 𝑃𝑟𝑖 ,𝐶𝑀 as the momentum of particle 𝑖 relative to the center of mass of the

whole system. A canonical transformation 𝑇𝑃 that leads to the momentum relative to the new

reference frame, i.e., particle 0, which is given in [46] for 𝑁 = 2 and leads the position and

momentum operators to

𝑋𝐶𝑀 =
1

𝑀

𝑁∑
𝑖

𝑚𝑖𝑋𝑖, 𝑃𝐶𝑀 =
𝑁∑
𝑖=0

𝑃𝑖,

𝑋𝑟1,𝐶𝑀 = 𝑐

(
𝑋1 − 𝑚0𝑋0 +𝑚2𝑋2

𝑚0 +𝑚2

)
, 𝑃𝑟1 = 𝜇01

(
𝑃1
𝑚1

− 𝑃0
𝑚0

)
, (3.48)

𝑋𝑟2,𝐶𝑀 = 𝑐 (𝑋2 − 𝑚0𝑋0 +𝑚1𝑋1

𝑚0 +𝑚1
), 𝑃𝑟2 = 𝜇02

(
𝑃2
𝑚2

− 𝑃0
𝑚0

)
,

where 𝜇0𝑖 =
𝑚0𝑚𝑖
𝑚0+𝑚𝑖

is the reduced mass between particle 0 and 𝑖 and 𝑐 = 𝑚0𝑚1𝑚2
𝑀𝜇01𝜇02

. Whereas with

𝑇𝐶𝑀 , the momenta were relative to the center of mass, now the position operators are relative

to the center of mass of the other two particles up to the constant 𝑐 that depends on all masses.

Here, the nonlocality that appeared in the Aharanov-Kaufherr formalism manifests itself in the

form of the Hilbert space nonlocality of the translation operator, for instance, for particle 1:

exp

(
− 𝑖

ℏ
𝛿𝑃𝑟1

)
|𝑥𝐶𝑀〉

��𝑥𝑟1〉 ��𝑥𝑟2〉 = |𝑥𝐶𝑀〉
��𝑥𝑟1 + 𝛿

〉 ����𝑥𝑟2 + 𝜇01
𝑚0

𝛿

〉
. (3.49)

Eq. (3.49) shows explicitly that displacing particle 1, relative to particle 0, causes a kickback in

the quantum reference frame due to the interaction necessary for the displacement to happen.

This kickback manifests itself in particle 2, even having not interacted with particle 0. Note

the subtlelty here, the states utilized in Eq. (3.49) are in the coordinate system reached with

𝑇𝐶𝑀 while 𝑃𝑟2 is reached with 𝑇𝑃 , i.e., the building blocks of the Hilbert space in question are

the relative positions and the momenta relative to the center of mass, therefore this translation

operator does not act merely shifting the position of particle 2 by 𝛿 . In fact, this is due to the

fact that 𝑋𝑟 𝑗 and 𝑃𝑟𝑘 are not canonically conjugated. Computing the commutation relations one
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gets [𝑋𝑟 𝑗 , 𝑋𝑟𝑘 ] = 0, [𝑃𝑟 𝑗 , 𝑃𝑟𝑘 ] = 0, [𝑋𝑟 𝑗 , 𝑃𝑟𝑘 ] = 𝑖ℏ1 for all 𝑗 and 𝑘 , but the crossed position and

momentum gives

[𝑋𝑟 𝑗 , 𝑃𝑟𝑘 ] = 𝑖ℏ
𝑚𝑘

𝑚0 +𝑚𝑘
1. (3.50)

Taking the limit of classical reference frame,𝑚0 −→ ∞, the canonical commutation relations

are regained. A nonintuitive consequence of Eq. (3.50) is that when describing particles 1 and

2 relative to another quantum system, it is not possible to assign a tensor product structure

H𝑟1 ⊗ H𝑟2 to the spatial relative degrees of freedom. That is because a necessary condition to

do so is that the operators that construct each Hilbert space must commute, which is not the

case of the relative position of a particle and the momentum of the other particle. Therefore

the Hilbert space built upon the relative degrees of freedom of the two spaces is joint. Two

potential decompositions into tensor products are H𝑥
𝑟1 ⊗ H𝑥

𝑟2 and H𝑝
𝑟1 ⊗ H𝑝

𝑟2 , where H𝑥
𝑟𝑖 and

H𝑥
𝑟3 are built upon the canonical conjugate operators given in Eq. (3.47) andH𝑝

𝑟1 andH𝑝
𝑟2 are

built upon Eq. (3.48).

3.2.7 The relational approach

More recent approaches [15, 47] have the philosophy that different observers may

assign different states to the same physical system such that no state has absolute meaning,

in addition they are related by a reference frame transformation. Much like Aharonov and

Kaufherr, Giacomini et. al. treat the reference frame as a finite-mass physical system [15] but, in

addition, they pursuit total covariance, which we shall refer to here as relationality. That is, they

want to make no reference whatsoever to an external classical reference frame by developing a

theory of quantum reference frames that is fully embedded in quantum mechanics. Instead, all

quantities must refer to a physical system and be defined relative to another physical system.

To obtain it, they postulate the universality of quantum mechanics, which imposes that the

reference frame should also be describable by other components of the system as a quantum

system, i.e. it may be in superposition of states or even entangled with other parts of the whole.

Let’s consider a system of two particles, labeled from 1 to 2. Given the state of the

system |𝜓 〉(𝑅)12 with respect to the laboratory 𝑅, the goal is to find a transformation 𝑆 that

promotes one of the particles, say particle 1, to a reference frame that describes 𝑅 and particle

2 with a quantum state |𝜓 〉(1)2𝑅 , as depicted in figure 5. The subscript indices are the components

of the system to be described and the superscript index denotes the component relative to

which the rest of the system is being described.

This can be accomplished by modifying the Aharonov-Kaufherr transformation given

by Eq. (3.25)

𝑆𝑥 = 𝜋𝑅1 exp

(
𝑖

ℏ
𝑃2𝑋𝑅

)
, (3.51)

where the parity-swap operator 𝜋𝑅1 : H1 −→ H𝑅 acts according to 𝜋†
𝑅1𝑋1𝜋𝑅1 = −𝑋𝑅 , reversing

the direction of the position vector and changing the associated Hilbert space, therefore
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fig/Relational Flaminia.jpg

Figure 5 – The reference frame describing the positions of particles 1 and 2 and the change to the
perspective of particle 1, which describes the initial reference frame 𝑅 and particle 2.

obtaining the sought after description of the initial reference frame 𝑅 relative to particle 1. The

transformation 𝑆𝑥 acts on vectors that belong to the Hilbert space of the system composed by

particles 1 and 2,H1 ⊗ H2, and returns vectors belonging to the Hilbert space of the system

composed of particle 2 and 𝑅, i.e. a state that describes particle 2 and 𝑅 relative to particle 1 in

H2 ⊗ H𝑅 . The transformation 𝑆𝑥 acting on a general state |𝜓 〉(𝑅)12 gives

|𝜓 〉(1)2𝑅 = 𝑆𝑥 |𝜓 〉(𝑅)12

= 𝑆𝑥

∫
𝜓 (𝑅)
12 (𝑥1, 𝑥2) |𝑥1〉1 |𝑥2〉2 𝑑𝑥1𝑑𝑥2

=
∫

𝜓 (1)
2𝑅 (𝑥𝑟2, 𝑥𝑅)

��𝑥𝑟2〉2 |𝑥𝑅〉𝑅 𝑑𝑥𝑟2𝑑𝑥𝑅, (3.52)

where the substitution 𝑥𝑅 = −𝑥1, 𝑥𝑟2 = 𝑥2 − 𝑥1 has been made and the wave functions that the

reference frames assign to the systems are related by𝜓 (1)
2𝑅 (𝑥𝑟2, 𝑥𝑅) = 𝜓 (𝑅)

12 (−𝑥𝑅, 𝑥𝑟2 − 𝑥𝑅). For a
pure density operator, it is true that 𝜌 (1)

2𝑅 = 𝑆𝑥 |𝜓 〉(1)2𝑅 〈𝜓 | (1)2𝑅 𝑆†𝑥 , and for an ensemble of density

operators, it also holds due to the linearity of the map 𝑆𝑥 · 𝑆†𝑥 , that

𝜌 (1)
2𝑅 = 𝑆𝑥𝜌

(𝑅)
12 𝑆†𝑥 , (3.53)

where the subscripts and superscripts carry the same meaning as for pure states. A first example

that highlights the fundamental difference between the approaches of Angelo et. al. [14] and

Giacomini et. al. [15] is a reference frame describing only one particle. While the transformation

𝑇𝐶𝑀 does not affect a one-particle state |𝜓 〉(𝑅)1 , the transformation 𝑆𝑥 acts as

𝑆𝑥 |𝜓 〉 =
∫

𝜓 (𝑅)
1 (𝑥1) |𝑥1〉 𝑑𝑥1 (3.54)

=
∫

𝜓 (𝑅)
1 (−𝑥𝑅) |𝑥𝑅〉 𝑑𝑥𝑅, (3.55)

such that the transformed wave function is 𝜓 (1)
𝑅 (𝑥𝑅) = 𝜓 (𝑅)

1 (−𝑥𝑅), i.e., it is the exact same

functional form but mirrored. That symmetry is worth highliting: if an observer prepares a

system in a quantum state𝜓 (𝑥), one can say that the system prepares the observer in a quantum

state𝜓 (−𝑥).
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Other important examples to gain intuition about this transformation are depicted in

figure 6. In figure 6(𝑎), the reference frame 𝑅 observes particle 1 in a superposition of states

fig/Exemplos TransformaÃğÃčo da Flaminia.jpg

Figure 6 – Wave-function of the system in reference frames 𝑅 and of particle 1. In 𝑎) particle 1 is
in a superposition of sharply localized stated in position 𝑎 and 𝑏 while particle 2 is in a
general state. In 𝑏) particle 1 and particle 2 are entangled such that in each branch of the
superposition they are sharply localized and a distance 𝐿 of each other.

that are sharply localized in 𝑎 and 𝑏, and particle 2 in a general state:

|Ψ〉(𝑅)12 =
1√
2

∫
[𝛿𝜖 (𝑥1 − 𝑎) + 𝛿𝜖 (𝑥1 − 𝑏)] |𝑥1〉1 𝑑𝑥1

∫
𝜓 (𝑥2) |𝑥2〉2 𝑑𝑥2, (3.56)

where 𝛿𝜖 (𝑥) is a Gaussian model for Dirac’s delta with arbitrarily small variance 𝜖 presented in

appendix B. Transforming it with 𝑆𝑥 yields

|Ψ〉(1)2𝑅 =
1√
2

∬
[𝛿𝜖 (𝑥𝑅 + 𝑎) + 𝛿𝜖 (𝑥𝑅 + 𝑏)]𝜓 (𝑥𝑟2 − 𝑥𝑅)

��𝑥𝑟2〉2 |𝑥𝑅〉𝑅 𝑑𝑥𝑟2𝑑𝑥𝑅 (3.57)

=
1√
2

∫ ��𝑥𝑟2〉2 (𝜓 (𝑥𝑟2 − 𝑎) |𝑎〉𝑅 +𝜓 (𝑥𝑟2 − 𝑏) |𝑏〉𝑅)𝑑𝑥𝑟2, (3.58)

where the second step is for better visualization of the fact that this is an entangled state where

the position −𝑎(−𝑏) of 𝑅 relative to particle 1 is correlated with a translation of −𝑎(−𝑏) of the
wave function of particle 2, maintaining its functional form.

Another example is that of entangled particles at a fixed distance 𝐿 from each other as

depicted in figure 6(𝑏):

|Ψ〉(𝑅)12 =
1√
2
( |𝑎〉1 |𝑎 + 𝐿〉2 + |𝑏〉1 |𝑏 + 𝐿〉2) . (3.59)

This state is transformed with 𝑆𝑥 to

|Ψ〉(1)2𝑅 =
1√
2
|𝐿〉𝑟2 ( |−𝑎〉 + |−𝑏〉)𝑅, (3.60)

which represents a superposition of positions −𝑎 and −𝑏 for 𝑅 completely uncorrelated with

particle 2 that is well localized at a distance 𝐿.
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3.2.7.1 The dynamics

Based on the assumption that the Schrödinger equation (2.30) holds in the quantum

reference frame 𝑅, i.e., it has enough mass so that it approximates a classical reference frame

while still being described by quantum mechanics, we have

𝑖ℏ
𝑑𝜌 (𝑅)

12

𝑑𝑡
= [𝐻 (𝑅)

12 , 𝜌 (𝑅)
12 ] . (3.61)

Transforming the state according to Eq. (3.53), the Hamiltonian must be transformed as

𝐻 (1)
2𝑅 = 𝑆𝑥𝐻

(𝑅)
12 𝑆†𝑥 + 𝑖ℏ

𝑑𝑆𝑥
𝑑𝑡

𝑆†𝑥 , (3.62)

in order to maintain form invariance of the Schrödinger equation. In this way, starting from a

massive quantum reference frame it is possible to jump to another quantum reference frame

and the dynamics will still be given unitarily by the Schrödinger equation. As the operator

𝑆𝑥 is not time-dependent, transforming dynamics with this unitary transformation yields the

same results as Aharonov and Kaufherr’s in subsection 3.2.1.

3.2.8 Perspective neutral framework

The approach of Vanrietvelde et. al. [42] aims to employ Mach’s principle, which

abandons the notion of an absolute inertial reference frame in favor of a completely relational

description of Physics [48]. Einstein himself took this principle quite seriously throughout

the development of the theory of general relativity. The result of this consideration was not

to postulate Mach’s principle, but to postulate the equivalence principle, which is a similar

statement. This reasoning led to the following Lagrangian of a system of 𝑁 particles of unit

mass:

𝐿 =
1

2

𝑁∑
𝑖=0

�𝑞2𝑖 −
1

2𝑁

(
𝑁∑
𝑖=0

�𝑞𝑖
)2

−𝑉 ({𝑞𝑖 − 𝑞𝑗 }𝑁𝑖≠ 𝑗 ), (3.63)

in which the second term is the kinetic energy of the center of mass, 𝑉 is an interaction that is

function of the relative positions of the particles and 𝑞𝑖 are positions relative to a completely

arbitrary reference frame. This is the Lagrangian in the center of mass reference frame but

expressed in generalized coordinates. One can see this by making the point transformation

𝑥𝑖 = 𝑞𝑖 −
𝑁∑
𝑖=1

𝑚𝑖𝑞𝑖/𝑀 and obtaining

𝐿 =
1

2

𝑁∑
𝑖=0

�𝑥2𝑖 −𝑉 ({𝑥𝑖 − 𝑥 𝑗 }𝑁𝑖≠ 𝑗 ) . (3.64)

The Lagrangian in Eq. (3.64) is fully relational in the sense that there is gauge freedom in

the generalized coordinates (𝑞𝑖, �𝑞𝑖), meaning that the Lagrangian is invariant under arbitrary

translations (𝑞𝑖 + 𝑓 (𝑡), �𝑞𝑖 + �𝑓 (𝑡)), where 𝑓 (𝑡) is an arbitrary function of time. These generalized
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coordinates come with the expense of a constraint in the conjugated momenta, namely that

the momentum of the center of mass 𝑃 is null and defines a constraint surface

𝑁∑
𝑖=0

𝑝𝑖 = 0. (3.65)

𝑃 is also a generator of global translations, which is a gauge transformation in this case and

{𝑃, 𝐻 } = 0 holds for the Hamiltonian 𝐻 following from the Lagrangian

𝐻 =
1

2

𝑁∑
𝑖

𝑝2𝑖 +𝑉 ({𝑞𝑖 − 𝑞𝑗 }𝑖≠ 𝑗 ) . (3.66)

The total Hamiltonian, which is the sum of 𝐻 with all gauge generators [49, 50] is given by

𝐻𝑡𝑜𝑡 =
1

2

𝑁∑
𝑖=0

𝑝2𝑖 +𝑉 ({𝑞𝑖 − 𝑞𝑗 }𝑖≠ 𝑗 ) + 𝜆
𝑁∑
𝑖=0

𝑝𝑖, (3.67)

where 𝜆 is an arbitrary time function, a Lagrange multiplier that represents the gauge freedom

of the system.

This Hamiltonian is the perspective neutral structure: it will be shown that fixing a

gauge determines a reference frame or, equivalently, a perspective. It is actually not surprising

since the gauge freedom is translational, it could be interpreted from the start as a freedom in

the origin of the coordinate system. Demanding that particle 0, the one we are promoting to

reference frame, stays at the origin at all times, we have

𝑞0 = 0, (3.68)

wich implies �𝑞𝑖 = 0. The Hamilton equations for 𝐻𝑡𝑜𝑡 reads

�𝑞𝑖 = 𝜕𝐻𝑡𝑜𝑡

𝜕𝑝𝑖
=
𝑝𝑖
𝑚

+ 𝜆, (3.69a)

�𝑝𝑖 = −𝜕𝐻𝑡𝑜𝑡

𝜕𝑞𝑖
= − 𝜕𝑉

𝜕𝑞𝑖
, (3.69b)

which fixes the gauge with

𝜆 = − 𝑝0
𝑚0

. (3.70)

The Hamiltonian with the fixed gauge in the perspective of particle 0 is

𝐻0 =
1

2

∑
𝑖≠0

(
1

𝑚𝑖
+ 1

𝑚0

)
𝑝2𝑖 +

∑
𝑖≠ 𝑗
𝑖, 𝑗≠0

𝑝𝑖𝑝 𝑗

𝑚0
+𝑉 ({𝑞𝑖}𝑖≠0) . (3.71)

It is worth noting that this Hamiltonian is not quadratic in the momenta as a consequence

of the noninertiality of particle 0 and, taking the limit𝑚0 −→ ∞ it reduces to the Hamiltonian

given in Eq. (3.67) but without particle 0, which describes all the other particles with quadratic
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momentum, i.e. from an inertial perspective. Therefore, fixing the gauge is equivalent to

jumping to the perspective of a particle of the system.

Quantizing the Hamiltonian in Eq. (3.66) for three particles gives

𝐻 =
1

2

(
𝑃2
0

𝑚0
+ 𝑃2

1

𝑚1
+ 𝑃2

2

𝑚2

)
+𝑉 (𝑋2 −𝑄1, 𝑄2 −𝑄0, 𝑄1 −𝑄0), (3.72)

and a general state |𝜙〉 𝑓 𝑟𝑒𝑒 can be decomposed in the momentum basis as

|𝜙〉 𝑓 𝑟𝑒𝑒 =
∭

𝜙 𝑓 𝑟𝑒𝑒 (𝑝0, 𝑝1, 𝑝2) |𝑝0〉 |𝑝1〉 |𝑝2〉 𝑑𝑝0𝑑𝑝1𝑑𝑝2. (3.73)

The analogue of the constraint surface (3.65) is the subspace composed by the states |𝜙〉𝑐𝑜𝑛 that
satisfy

𝑃 |𝜙〉𝑐𝑜𝑛 = (𝑃1 + 𝑃2 + 𝑃3) |𝜙〉𝑐𝑜𝑛 = 0, (3.74)

i.e. is the constrained subspace of eigenstates of total momentum 𝑃 = 𝑃1+𝑃2+𝑃3 with eigenvalue
zero. There are three ways in which we can write the same state

|𝜙〉𝑐𝑜𝑛 =
∬

𝜙 (0)
12 (𝑝1, 𝑝2) |−𝑝1 − 𝑝2〉0 |𝑝1〉1 |𝑝2〉2 𝑑𝑝1𝑑𝑝2

=
∬

𝜙 (1)
02 (𝑝0, 𝑝2) |𝑝0〉0 |−𝑝0 − 𝑝2〉1 |𝑝2〉2 𝑑𝑝0𝑑𝑝2 (3.75)

=
∬

𝜙 (2)
01 (𝑝0, 𝑝1) |𝑝0〉0 |𝑝1〉1 |−𝑝0 − 𝑝1〉2 𝑑𝑝0𝑑𝑝1,

where𝜙 (0)
12 (𝑝1, 𝑝2) = 𝜙 𝑓 𝑟𝑒𝑒 (−𝑝1−𝑝2, 𝑝1, 𝑝2),𝜙 (1)

02 (𝑝0, 𝑝2) = 𝜙 𝑓 𝑟𝑒𝑒 (𝑝0,−𝑝2−𝑝0, 𝑝2) and𝜙 (2)
01 (𝑝0, 𝑝1) =

𝜙 𝑓 𝑟𝑒𝑒 (𝑝0, 𝑝1,−𝑝0 −𝑝1). Here, the redundant Hilbert space, i.e., the correspondent to the variable
that was eliminated, is discarded using the partial trace, resulting in

|𝜙〉(0)12 =
∬

𝜙 (0)
12 (𝑝1, 𝑝2) |𝑝1〉1 |𝑝2〉2 𝑑𝑝1𝑑𝑝2,

|𝜙〉(1)02 =
∬

𝜙 (1)
02 (𝑝0, 𝑝2) |𝑝0〉0 |𝑝2〉2 𝑑𝑝0𝑑𝑝2, (3.76)

|𝜙〉(2)01 =
∬

𝜙 (2)
01 (𝑝0, 𝑝1) |𝑝0〉0 |𝑝1〉1 𝑑𝑝0𝑑𝑝1.

Each decomposition is considered a different perspective, first particle 0, then particle 1 and then

particle 2. To change from the perspective of particle 0 to particle 1 the operator 𝜋01 exp
( 𝑖
ℏ𝑄1𝑃2

)
,

which is exactly the same as the transformation found by Giacomini et. al. [15] with slightly

different notation accomplishes the task. This equivalence is no surprise since both approaches

are intended to be fully relational. The proof follows from direct application:

𝜋01 exp

(
𝑖

ℏ
𝑄1𝑃2

)
|𝜙〉(1)02 =

∬
𝜙 𝑓 𝑟𝑒𝑒 (−𝑝1 − 𝑝2, 𝑝1, 𝑝2) |−𝑝2 − 𝑝1〉0 |𝑝2〉2 𝑑𝑝1𝑑𝑝2

=
∬

𝜙 (2)
01 (𝑝0, 𝑝1) |𝑝0〉0 |𝑝1〉1 𝑑𝑝0𝑑𝑝1 (3.77)

= |𝜙〉(2)01

where the last steps are merely recognizing that 𝑝0 = −𝑝2 − 𝑝1.
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3.2.9 Quantum resource covariance

As we have seen until now, coherence and entanglement are not invariant under

reference frame transformations but can a combination of both form a scalar invariant quantity,

much like spatial separation Δ𝑥 and temporal separations Δ𝑡 between events 𝑎 and 𝑏 form an

invariant (Δ𝑥)2 − 𝑐2(Δ𝑡)2? That is the question that Savi et. al. raised and answered in [18].

Their strategy to tackle the problem is to begin with a known invariant under reference frame

transformations, the total information 𝐼 (𝜌) content of a state 𝜌 ∈ H𝐴 ⊗ H𝐵 , where 𝑑𝑖𝑚(H𝐴 ⊗
H𝐵) = 𝑑 = 𝑑𝐴𝑑𝐵 and 𝑑𝑖𝑚(H𝐴(𝐵)) = 𝑑𝐴(𝐵) . Note that any reference frame transformation

𝑇 is unitary 𝑇 †𝑇 = 𝑇𝑇 † = 1 and leaves the informational content of the system invariant

𝐼 (𝑇𝜌𝑇 †) = 𝐼 (𝜌). The goal here is to decompose 𝐼 (𝜌) into known quantum resources, the

procedure is accomplished in three steps

1. Perform a measurement of the observable 𝐴 =
∑𝑑𝐴

𝑖=1 𝑎𝑖𝐴𝑖 in part 𝐴 and compute the

information decrease 𝐼 (𝜙𝐴 (𝜌)) − 𝐼 (𝜌);

2. Perform a measurement of the observable 𝐵 =
∑𝑑𝐵

𝑖=1 𝑏𝑖𝐵𝑖 in part B and compute the

information decrease 𝐼 (𝜙𝐵𝐴 (𝜌)) − 𝐼 (𝜙𝐴 (𝜌));

3. Eliminate the rest of the information measuring observables 𝐴̃ ⊗ 𝐵̃ that form a mutually

unbiased basis with𝐴⊗𝐵, leading to the maximally mixed state (a state with no remaining

information).

The decrease in information in step 1 can be recognized as the negative of the sum

of the 𝐴-coherence in 𝜌𝐴 and the one-way quantum discord quantified using Eqs. (2.52) and

(2.69), respectively:

−[𝐶𝐴 (𝜌𝑎) + 𝐷𝐴 (𝜌)] = −[𝑆 (𝜙𝐴 (𝜌𝐴)) − 𝑆 (𝜌𝐴) − 𝑆 (Tr𝐴 𝜙𝐴 (𝜌)) − 𝑆 (𝜙𝐴 (𝜌𝐴))
+ 𝑆 (𝜙𝐴 (𝜌)) + 𝑆 (𝜌𝐴) + 𝑆 (𝜌𝐵) − 𝑆 (𝜌)]

= 𝑆 (𝜌) − 𝑆 (𝜙𝐴 (𝜌))
= 𝐼 (𝜙𝐴 (𝜌)) − 𝐼 (𝜌), (3.78)

where the fact that Tr𝐴 𝜙𝐴 (𝜌) = 𝜌𝐵 and Tr𝐴 𝜙𝐴 (𝜌) = 𝜙𝐴 (𝜌𝐴) was utilized.
The decrease in information in step 2 can be explained in the same manner,

−[𝐶𝐵 (𝜌𝐵) + 𝐷𝐵 (𝜙𝐴 (𝜌))] = 𝐼 (𝜙𝐵𝐴) − 𝐼 (𝜙𝐴 (𝜌)), (3.79)

which resultis in a decrease in information so far given by

𝐼 (𝜙𝐵𝐴) − 𝐼 (𝜌) = −[𝐶𝐴 (𝜌𝑎) +𝐶𝐵 (𝜌𝐵) + 𝐷𝐴𝐵 (𝜌)] . (3.80)

In step 3, an observable 𝐴̃ ⊗ 𝐵̃ that forms a MUB with𝐴 ⊗ 𝐵 is measured yielding the maximally

mixed state 1
𝑑 . The decrease in information is

𝐼 (𝜙𝐴̃𝐵̃𝐴𝐵 (𝜌)) − 𝐼 (𝜙𝐴𝐵 (𝜌)) = 𝐼𝑀𝑆𝐴, (3.81)
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where 𝐼𝑀𝑆𝐴 is the context incompatibility for the context {𝜌,𝐴 ⊗ 𝐵, 𝐴̃ ⊗ 𝐵̃} presented in section

2.4. Therefore, we have the information decomposed in three quantum features of the context:

coherence of each part according to the corresponding observable, 𝐴 or 𝐵; quantum discord

of the joint observable and the context incompatibility of the context formed by the joint

observable 𝐴 ⊗ 𝐵 and an observable that forms a MUB with it.

𝐼 (𝜌) = 𝐶𝐴 (𝜌𝑎) +𝐶𝐵 (𝜌𝐵) + 𝐷𝐴𝐵 (𝜌) + 𝐼𝑀𝑆𝐴. (3.82)

Covariance is ensured by the invariance of information under unitary transformations. Trans-

forming the context yields the same decomposition for the other reference frame characterized

by the context {𝜌′, 𝐴′ ⊗ 𝐵′, 𝐴̃′ ⊗ 𝐵̃′}.
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4 RESULTS

In this chapter, we compare the approaches of Angelo et. al. [14] and Giacomini et. al.

[15] showing that they lead to different physical descriptions relative to a quantum system,

and favoring one of them in the end. Furthermore, we demonstrate that a transformation that

results in the degrees of freedom relative to one particle does nos exists when the system is

composed of more than two particles. Finally, we analyze the theory-independent context

incompatibility under reference frame transformations to find that it is not invariant.

4.1 THE DEGREES OF FREEDOM ACCESSIBLE TO OTHER OBSERVER

To analyze a physical system using the tools available to other observer 𝑆′, i.e., change
reference frames. It’s fair that we perform a coordinate transformation 𝑇 on the observables

available to the first observer 𝑆 to obtain the observables available to 𝑆′ according to the

interpretation obtained in section 3.1.2. In view of Born’s rule we can make use of the cyclicity

of the trace to adopt two different points of view, the active and the passive version of the

transformation in analogy to section 3.1.1. In the passive version only the observables 𝑂 are

transformed, alluding to the basis change:

⎧⎪⎪⎨⎪⎪⎩
𝑂′ = 𝑇 †𝑂𝑇

𝜌′ = 𝜌,
(4.1)

while in the active version only the state is transformed in allusion to the transformation of

the vector, ⎧⎪⎪⎨⎪⎪⎩
𝑂′ = 𝑂

𝜌′ = 𝑇𝜌𝑇 †.
(4.2)

The active transformation is to be interpreted as an observer in the 𝑆′ reference frame assigning

a quantum state to the system by means of the degrees of freedom available to him.

The active and the passive versions are physically equivalent since the trace, which is

the mathematical operation that produces physical predictions, is cyclical:

𝑝′(𝑜𝑖) = Tr
(
𝑇 †𝑂𝑖𝑇 𝜌

)
(Passive version), (4.3a)

𝑝′(𝑜𝑖) = Tr
(
𝑂𝑖𝑇 𝜌𝑇

†
)

(Active version), (4.3b)

where 𝑂𝑖 are the orthogonal projectors that compose the observable 𝑂 . Eqs. (4.3a) and (4.3b)

should be interpreted in the same manner, the probability of a measurement of the observable

𝑂′ performed by the observer 𝑆′ yielding the result 𝑖 referring to the 𝑖-th eigenstate of 𝑂′.
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4.1.1 Time evolution

Suppose a physical system undergoes a unitary evolution 𝑈𝑡 , then the probability of

obtaining the result 𝑜𝑖 after some time 𝑡 can be calculated in the Schrödinger or Heisenberg

picture as

𝑝 (𝑜𝑖 |𝑡) = Tr(𝑂𝑖𝜌𝑡 ) (4.4a)

= Tr(𝑂𝑖,𝑡 𝜌), (4.4b)

where 𝑂𝑖,𝑡 = 𝑈 †
𝑡 𝑂𝑖𝑈𝑡 and 𝜌𝑡 = 𝑈𝑡𝜌𝑈

†
𝑡 represent the time evolution of the observable in the

Heisenberg picture and of the state operator in the Schrödinger picture, respectively. Applying

a transformation𝑇 from the current reference frame 𝑆 to a reference frame 𝑆′ in the Schrödinger
picture, Eq. (4.4a), we get

𝑝 (𝑜′𝑖 |𝑡) = Tr
(
𝑇 †𝑂𝑖𝑇 𝜌𝑡

)
= Tr

(
𝑈 †
𝑡 𝑇

†𝑂𝑖𝑇𝑈𝑡𝜌
)

= Tr
(
𝑇 †
𝑡 𝑂𝑖,𝑡𝑇𝑡 𝜌

)
, (4.5)

where 𝑇𝑡 = 𝑈 †
𝑡 𝑇𝑈𝑡 is the Heisenberg picture of the frame transformation. Hence, we have

that the reference frame transformation is consistent with the perspective of the Schrödinger

picture, and it suffices to use also the Heisenberg picture of the frame transformation. Notice

that if we intend to change reference frames in the Heisenberg picture we must transform

using the Heisenberg picture of the reference frame transformation operators to obtain Eq.

(4.5).

4.1.2 Collapse

Suppose a measurement of an observable𝑂 performed on a state 𝜌𝑡 at a time 𝑡 relative

to a reference frame 𝑆 and the outcome 𝑜𝑖 was produced. The collapse observed by the reference

frame 𝑆′, connected to 𝑆 through the transformation 𝑇 is

𝑇𝜙𝑜𝑖 (𝜌𝑡 )𝑇 † =
𝑇𝑂𝑖𝜌𝑡𝑂𝑖𝑇

†

Tr(𝑂𝑖𝜌𝑡 )

=
𝑇𝑂𝑖𝑇

†𝑇𝜌𝑡𝑇 †𝑇𝑂𝑖𝑇
†

Tr
(
𝑇𝑂𝑖𝑇 †𝑇𝜌𝑡𝑇 †)

=
𝑂̃𝑖𝜌

′
𝑡𝑂̃𝑖

Tr
(
𝑂̃𝑖𝜌′𝑡

) , (4.6)

where 𝑂̃𝑖 = 𝑇𝑂𝑖𝑇
†. Notice that the projectors of 𝑂 are transformed with the inverse trans-

formation in comparison to the passive version. It happens because the eigenbasis of the

observable 𝑂 has the meaning of the possible states to which the physical state might collapse

in a measurement and, therefore, their description according to 𝑆′ must be obtained in the

same way as the description of the states.
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4.1.3 Different descriptions

If we apply the transformation 𝑆𝑥 to the position and momenta coordinates we obtain

𝑆†𝑥𝑋1𝑆𝑥 = −𝑋𝑅, 𝑆†𝑥𝑃1𝑆𝑥 = −(𝑃𝑅 + 𝑃2), (4.7a)

𝑆†𝑥𝑋2𝑆𝑥 = 𝑋2 − 𝑋𝑅, 𝑆†𝑥𝑃2𝑆𝑥 = 𝑃2. (4.7b)

In Eqs. (4.7) the positions are relative to particle 1 but the momenta are still relative to the initial

reference frame 𝑅. Thus, the new coordinates do not provide a fully covariant description, the

position basis being privileged to be relative. This results in an ambiguity in the notion of

describing physics relative to a quantum reference frame. One needs to choose what physical

quantity will be described in a relative manner. An example of another choice is the eigenbasis

of relative momenta [15] according to the transformation given by Giacomini et. al.

𝑆†𝑝𝑋1𝑆𝑝 =, 𝑆†𝑝𝑃1𝑆𝑝 = −𝑃𝑅, (4.8a)

𝑆†𝑝𝑋2𝑆𝑝 = 𝑋2, 𝑆†𝑝𝑃2𝑆𝑝 = 𝑃2 − 𝑃𝑅. (4.8b)

The center of mass transformation 𝑇𝐶𝑀 given in Eq. (3.30) acts in the position and

momenta coordinates as

𝑇 †
𝐶𝑀𝑋0𝑇𝐶𝑀 =

𝑚0𝑋0 +𝑚1𝑋1

𝑚0 +𝑚1
= 𝑋 (𝑅)

𝐶𝑀, 𝑇 †
𝐶𝑀𝑋1𝑇 = 𝑋1 − 𝑋0, (4.9)

𝑇 †
𝐶𝑀𝑃0𝑇𝐶𝑀 = 𝑃0 + 𝑃1 = 𝑃 (𝑅)

𝐶𝑀, 𝑇 †
𝐶𝑀𝑃1𝑇𝐶𝑀 = 𝜇01

(
𝑃1
𝑚1

− 𝑃0
𝑚0

)
. (4.10)

These transformations aim to provide the physics relative to a new reference frame

but they are fundamentally different. To emphasize this point, we investigate the physical

system depicted in figure 7, where a well-localized body composed of particles 0 and 1 decays,

separating the particles in such away that the total momentum is conserved and by consequence

the position of the center of mass is preserved relative to an external reference frame 𝑅, whose

origin is located on the center of mass of the system and assigns to the system the state

|𝜓 〉 = |𝑥〉0 |𝑥 − 𝑑〉1 + |−𝑥〉0 |−𝑥 + 𝑑〉1√
2

. (4.11)

Performing the two transformations and defining |𝜓 〉𝐶𝑀,𝑟1
= 𝑇𝐶𝑀 |𝜓 〉 and |𝜓 〉(0)1𝑅 =

𝑆𝑥 |𝜓 〉 we have

|𝜓 〉𝐶𝑀,𝑟1
= |0〉𝐶𝑀

( |𝑑〉 + |−𝑑〉√
2

)
𝑟1

, (4.12a)

|𝜓 〉(0)1𝑅 =
|𝑥〉𝑅 |𝑑〉𝑟1 + |−𝑥〉𝑅 |−𝑑〉𝑟1√

2
. (4.12b)
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fig/Decaying Body.jpg

Figure 7 – The gradient of color means that the particles are in superposition between the situation
where particle 1 is on the right side of the center of mass and the situation where it is on the
left of the center of mass.

Computing the density operators and tracing out the degrees of freedom of the reference frame

𝑅 in Eq. (4.12b) and the 𝐶𝑀 in Eq. (4.12a) to attempt to eliminate the external reference frame

we have

𝜌𝑟1 =
( |𝑑〉 + |−𝑑〉)𝑟1 (〈𝑑 | + 〈−𝑑 |)𝑟1

2
, (4.13a)

𝜌 (0)
1 =

|𝑑〉〈𝑑 |1 + |−𝑑〉〈−𝑑 |1
2

. (4.13b)

At first sight both descriptions seem to agree, measurements of the relative position of particle 1

will result around −𝑑 and 𝑑 with equal probability. There is, however, a fundamental difference

in the reduced density operators: the first is a pure state while the second one is mixed. This

means that one (or none) of them must be the true description of the system relative to particle

0.

The solution to this conundrum is to look at the building blocks of the relative Hilbert

spaces.H𝑟1 is built upon the canonical pair (𝑋1 − 𝑋0, 𝜇01
(
𝑃1
𝑚1

− 𝑃0
𝑚0

)
), i.e., the relative position

and relative momentum while the canonical pair that buildsH1 is (𝑋1 − 𝑋0, 𝑃1), the relative
position but the momentum defined relative to the old reference frame. ThereforeH1 is not

defined solely on the physical quantities that are accessible to particle 0, it is a hybrid reference

frame, while H𝑟1 is purely relative and hence not hybrid.

It is worth noting that the total Hilbert spaceH𝐶𝑀 ⊗H𝑟1 is also hybrid, but the degrees

of freedom relative to the old reference frame, namely the center of mass, can be traced out,

while the hybridness inH𝑅⊗H1 cannot be traced out since bothH𝑅 andH1 are hybrid. It is also

worth acknowledging that both descriptions are equally valid and give the right predictions

provided they are interpreted correctly.
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4.1.4 There is no transformation for the relative degrees of freedom

Suppose there is a unitary transformation 𝑇 that leads each position and momentum

of a part of the system relative to 𝑅 in its position and momentum relative to particle 0, that is,

𝑇 †𝑋1𝑇 = 𝑋1 − 𝑋0, 𝑇 †𝑃1𝑇 = 𝜇10

(
𝑃1
𝑚1

− 𝑃0
𝑚0

)
,

𝑇 †𝑋2𝑇 = 𝑋2 − 𝑋0, 𝑇 †𝑃2𝑇 = 𝜇20

(
𝑃2
𝑚2

− 𝑃0
𝑚0

)
, (4.14)

𝑇 †𝑋𝑁𝑇 = 𝑋𝑁 − 𝑋0, 𝑇 †𝑃𝑁𝑇 = 𝜇𝑁 1

(
𝑃𝑁
𝑚𝑁

− 𝑃0
𝑚0

)
.

The commutation relation of the position and momentum transforms as

𝑇 †[𝑋𝑗, 𝑃𝑘]𝑇 = 𝑖ℏ𝛿 𝑗𝑘𝑇
†𝑇, (4.15)

which, using the unitarity of 𝑇 , leads to

[𝑋𝑗 − 𝑋0, 𝜇 𝑗0

(
𝑃𝑗

𝑚𝑗
− 𝑃0
𝑚0

)
] = 𝑖ℏ𝛿 𝑗𝑘1. (4.16)

𝑚𝑗

𝑚1 +𝑚𝑗
𝑖ℏ1 = 𝑖ℏ𝛿 𝑗𝑘1 (4.17)

Eq. (4.16) contradicts the commutation relation between the relative position of a particle 𝑗

and the relative momentum of a particle 𝑘 with 𝑗 ≠ 𝑘 , which is not zero. Therefore, a unitary

transformation 𝑇 that satisfies Eq. (4.14) cannot exist.

4.2 CONTEXT INCOMPATIBILITY UNDER REFERENCE FRAME TRANSFORMATIONS

Considering the context � = {𝜌, 𝑋1, 𝑃1} where 𝜌 is the state of a system composed of

particles 0 and particle 1 in a classical reference frame and the Hilbert space discretization is

employed with interval 𝛿𝑞 , in addition, all sums are over the whole domain of the discretization.

The criteria of compatibility in Eq. (2.84) read

𝜙𝑋1 (𝜌) = 𝜙𝑋1𝑃1 (𝜌), (4.18a)

𝜙𝑃1 (𝜌) = 𝜙𝑃1𝑋1 (𝜌), (4.18b)

The RHS of Eqs. (4.18a) and (4.18b) are always the maximally mixed state, since 𝑋1 and 𝑃1 form

a MUB, see Eq. (2.73). For the LHS we have

𝜙𝑋1 (𝜌) =
∑

𝑥0,𝑥 ′0,𝑥1

𝛿𝑞𝜓 (𝑥0, 𝑥1)𝜓 ∗(𝑥′0, 𝑥1)
��𝑥0, 𝑥1〉〈𝑥′0, 𝑥1�� , (4.19a)

𝜙𝑃1 (𝜌) =
∑

𝑥0,𝑥 ′0,𝑝1

𝛿𝑞𝜙 (𝑥0, 𝑝1)𝜙∗(𝑥′0, 𝑝1)
��𝑥0, 𝑝1〉〈𝑥′0, 𝑝1�� , (4.19b)

where 𝜙 (𝑥0, 𝑝1) is the discrete Fourier transform of 𝜓 (𝑥0, 𝑥1). It’s clear that the context � =

{𝜌,𝑋1, 𝑃1} exhibits incompatibility since the states in Eq. (4.19) are not maximally mixed in

general.
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In the reference frame of particle 0 the context � transforms into �′ = {𝜌𝑟1, 𝑋1, 𝑃1}
and the criteria for compatibility reads

𝜙𝑋1 (𝜌𝑟1) = 𝜙𝑋1𝑃1 (𝜌𝑟1), (4.20a)

𝜙𝑃1 (𝜌𝑟1) = 𝜙𝑃1𝑋1 (𝜌𝑟1), (4.20b)

where, once again, the RHS of Eqs. (4.20a) and (4.20b) are the maximally mixed state, 𝜌𝑟1 =

Tr𝐶𝑀 (𝑇𝐶𝑀𝜌𝑇 †
𝐶𝑀 ) and

𝜙𝑋1 (𝜌𝑟1) =
∑

𝑥𝐶𝑀 ,𝑥𝑟1

𝛿𝑞𝜓 (𝑥𝐶𝑀, 𝑥𝑟1)𝜓 ∗(𝑥𝐶𝑀, 𝑥𝑟1)
��𝑥𝑟1〉〈𝑥𝑟1 �� , (4.21a)

𝜙𝑃1 (𝜌𝑟1) =
∑

𝑥𝐶𝑀 ,𝑥𝑟1

𝛿𝑞𝜙 (𝑥𝐶𝑀, 𝑝𝑟1)𝜙∗(𝑥𝐶𝑀, 𝑝𝑟1)
��𝑝𝑟1〉〈𝑝𝑟1 �� , (4.21b)

where𝜓 (𝑥𝐶𝑀, 𝑥𝑟1) = 𝜓 (𝑥𝐶𝑀 − 𝑚1
𝑀 𝑥𝑟1, 𝑥𝐶𝑀 + 𝑚0

𝑀 𝑥𝑟1) and 𝜙 (𝑥𝐶𝑀, 𝑝𝑟1) is the Fourier transform of𝜓

in the 𝑥𝑟1 coordinate.

To quantify the amount of incompatibility we use the Kullback-Leibler divergence

based quantifier with the Hilbert space discretization introduced in Eq. (2.90). In order to do

that, we calculate the probability distributions of position for the states 𝜌 and 𝜙𝑃1 (𝜌) given by

𝑝𝜌 (𝑥𝑖) =
∑
𝑥0

𝜓 (𝑥0, 𝑥𝑖)𝜓 ∗(𝑥0, 𝑥𝑖), (4.22)

𝑝𝜙𝑃1 (𝜌) (𝑥) =
1

Δ
, (4.23)

where the Hilbert space of particle 1 was discretized in Δ segments of lenght 𝛿𝑞 . For the

probability distribution in momentum of the states 𝜌 and 𝜙𝑋1 (𝜌)

𝑝𝜌 (𝑝𝑖) =
∑
𝑥0

𝜙 (𝑥0, 𝑥𝑖)𝜙∗(𝑥0, 𝑥𝑖), (4.24)

𝑝𝜙𝑃1 (𝜌) (𝑥) =
1

Δ
. (4.25)

The homogeneous probabilities 1
Δ arise because the probability distribution of an observable

that forms a MUB with the one previously measured is always homogeneous. Therefore, the

amount of incompatibility in the context � is given by

𝐼� =
Δ∑
𝑖=1

𝑝𝜌 (𝑥𝑖) log
(
𝑝𝜌 (𝑥𝑖)Δ

) + 𝑝𝜌 (𝑝𝑖) log
(
𝑝𝜌 (𝑝𝑖)Δ

)
2

, (4.26)

while the amount of incompatibility in C′ is given by

𝐼�′ =
Δ∑
𝑖=1

𝑝𝜌𝑟1 (𝑥𝑖) log
(
𝑝𝜌𝑟1 (𝑥𝑖)Δ

)
+ 𝑝𝜌𝑟1 (𝑝𝑖) log

(
𝑝𝜌𝑟1 (𝑝𝑖)Δ

)
2

, (4.27)
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where, from Eqs. (4.21a), the probabilities are homogeneous for the states that already have

been measured and the remaining probabilities are given by

𝑝𝜌𝑟1 (𝑥𝑖) =
∑
𝑥𝐶𝑀

𝜓 (𝑥𝐶𝑀, 𝑥𝑖)𝜓 ∗(𝑥𝐶𝑀, 𝑥𝑖), (4.28)

𝑝𝜌𝑟1 (𝑝𝑖) =
∑
𝑥𝐶𝑀

𝜙 (𝑥𝐶𝑀, 𝑝𝑖)𝜙∗(𝑥𝐶𝑀, 𝑝𝑖) . (4.29)

Now we calculate numerically the amount of incompatibility in each context because the

discretization method is a good approximation only for large Δ. To do that, the state must be

specified, so we present three case studies of interest. All the discrete Fourier transforms were

also numerically calculated.

4.2.1 Product of Gaussian states

Consider that the new reference frame is not entangled with particle 1 and both are in

Gaussian states centered in 𝑎 with variance Δ0 and 𝑏 with variance Δ1, respectively

Ψ(𝑥0, 𝑥1) =
(

1

2𝜋Δ2
0Δ

2
1

) 1
4

exp

[
− (𝑥0 − 𝑎)2

4Δ2
0

]
exp

[
− (𝑥1 − 𝑏)2

4Δ2
1

]
, (4.30)

Transforming to the center of mass and relative coordinates we have

Ψ̃(𝑥𝐶𝑀, 𝑥𝑟1) =
1√

2𝜋Δ0Δ1
exp

[
− (𝑥𝐶𝑀 − 𝛼)2

4Δ2
𝐶𝑀

]
exp

[
− (𝑥𝑟1 − 𝛽)2

4Δ2
𝑟1

]
×

× exp
[
𝛾 (𝑥𝐶𝑀 − 𝛼) (𝑥𝑟1 − 𝛽)], (4.31)

where the parameters 𝛼 , 𝛽 , Δ𝐶𝑀 and Δ𝑟1 are given by Eq. (3.37). In figure 8 the incompatibility

of context�, associated to the state in Eq. (4.30) and the incompatibility of context�′, which is

associated to the transformed state are calculated varying Δ0. The parameters chosen to define

the state were 𝑎 = 10, 𝑏 = 0, Δ1 = 4 and both masses equal to 1, all in arbitrary units.

As expected, the incompatibility of � does not vary with Δ0 because the probability

distributions for particle 1 do not depend on the state of particle 0. The incompatibility of�′, for
a well-localized quantum reference frame approaches the incompatibility of �. That happens

because for small Δ0 the coordinate transformation approaches a mere translation of origin,

causing the probability distributions to maintain its profile and, therefore, the incompatibility.

But when the QRF gets more and more delocalized relatively to the external reference

frame, it sees particle 1 more and more delocalized as well, i.e., the probability distributions

approach homogeneity as shown in figure 8, and, therefore, the context� tends to compatibility

when the state approaches the maximally mixed state, see Eq. (4.27), which is expected by the

criteria in Eq. (4.20). It is good to point out that the reduced state 𝜌𝑟1 is not pure in general,
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fig/pgentropy.png fig/pgprob.png

Figure 8 – Left panel is the plot of incompatibility of the contexts � and �′ against Δ0 and right panel
is the plot of position distributions of probability of particle 1 relative to particle 0 varying
Δ0.

therefore an argument such as "if probability distribution is homogeneous for position it must

be well-localized for momentum", does not hold in this situation.

We don’t see incompatibility actually reaching zero since the functional form of the

states is fixed and only Δ0 is changed, i.e., increasing Δ0 even more would exceed the fixed

range Δ of the simulation and the state would lose its normalization.

4.2.2 Product state; reference frame in superposition of Gaussian states

Now we put particle 0 in superposition of Gaussian states and particle 1 in a Gaussian

state, forming a product state, whose wave function reads

Ψ(𝑥0, 𝑥1) = 𝑁

{
exp

[
− (𝑥0 − 𝑎)2

4Δ2
0

]
+ exp

[
− (𝑥0 + 𝑎)2

4Δ2
0

]}
exp

[
− (𝑥1 − 𝑏)2

4Δ2
1

]
. (4.32)

The parameters chosen were the same as in the previous case and the normalization factor is

𝑁 =

(
1

2𝜋Δ2
0Δ

2
1

) 1
4 1√

2 + 2 exp
(
− 𝑎2

2Δ2
0

) . (4.33)

Transforming to the center of mass and relative coordinates we get a superposition of states

that are similar to Eq. (4.31).

Figure 9 is also a plot of incompatibility of � and �′ varying Δ0 and the probability

distribution of position of particle 1 relative to particle 0. We can see that while the external

reference frame assigns a Gaussian distribution for the position of particle 1, the new QRF,

which is in a superposition of well-localized states assigns a profile of two peaks centered at

𝑥 = 10 and 𝑥 = −10, therefore we would not expect that the incompatibility would be equal

for small Δ0. When Δ0 becomes comparable to the separation between the Gaussians, the two

peaks merge and the analysis becomes the same as the one made for the previous case.
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fig/psgentropy.png fig/psgprob.png

Figure 9 – Plot of incompatibility of the contexts� and�′ against Δ0 and plot of position distributions
of probability of particle 1 relative to particle 0 varying Δ0.

4.2.3 Entangled state

Here we considered the entangled state in Eq. (4.11)

Ψ(𝑥0, 𝑥1) = 𝑁

{
exp

[
− (𝑥0 − 𝑎)2

4Δ2
0

]
exp

[
− (𝑥1 + 𝑏)2

4Δ2
1

]
+

+ exp

[
− (𝑥0 + 𝑎)2

4Δ2
0

]
exp

[
− (𝑥1 − 𝑏)2

4Δ2
1

]}
, (4.34)

where 𝑎 = 10 and 𝑏 = 15 and the normalization factor is

𝑁 =

(
1

2𝜋Δ2
0Δ

2
1

) 1
4 1√

2 + 2 exp
(
− 𝑎2

2Δ0

)
exp

(
− 𝑏2

2Δ2
1

) . (4.35)

In figure 10 the incompatibilities of� and�′ are calculated varying Δ0 and the position

probability distributions are plotted. As in the first case, the position probability distribution for

fig/egentropy.png fig/egprob.png

Figure 10 – Plot of incompatibility of the contexts� and�′ against Δ0 and plot of position distributions
of probability of particle 1 relative to particle 0 varying Δ0.

small Δ0 is similar to the position probability distribution relative to the exernal reference frame.

As Δ0 grows, the incompatibility decreases and when the two peaks merge, the incompatibility
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decreases slower than before, happening around Δ0 = 11.25, as we can see in the figure. The

rest of the analysis (large Δ0), is the same as the two previous cases.

An interesting feature about entangled states is that one can build a state in which

the incompatibility in �′ is greater than the incompatibility in �. Consider a state such that in

all Gaussian product terms, the center of the Gaussian of particle 1 is always dislocated of 𝑏 to

the right of particle 0.

Ψ(𝑥0, 𝑥1) = 𝑁

{
exp

[
− (𝑥0 − 𝑎)2

4Δ2
0

]
exp

[
− (𝑥1 − 𝑎 − 𝑏)2

4Δ2
1

]
+

+ exp

[
− (𝑥0 + 𝑎)2

4Δ2
0

]
exp

[
− (𝑥1 + 𝑎 − 𝑏)2

4Δ2
1

]}
, (4.36)

with 𝑎 = 10 and 𝑏 = 10. Figure 11 shows incompatibilities of � and �′ and the position

probability distributions relative to particle 0 varying Δ0. Particle 0 sees only a Gaussian

fig/aegentropy.png fig/aegprob.png

Figure 11 – Plot of incompatibility of the contexts� and�′ against Δ0 and plot of position distributions
of probability of particle 1 relative to particle 0 varying Δ0.

distribution, which is a less distributed probability distribution than the two Gaussian peaks

seen by the external reference frame. The incompatibility therefore is greater in �′ than in �

for small Δ0.
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5 CONCLUSION

There are different approaches to quantum reference frames, the center of mass and

relative coordinates of Angelo et. al. [14] and the fully relational approach of Giacomini et. al.

[15] of a quantum particle. They yield different descriptions of the same physical system. We

find that it is because the fully relational approach utilizes a canonical transformation that

yields the relative positions but the momenta are still defined relative to the old reference frame

while the approach by Angelo et. al. transforms both position and momentum to the relative

degrees of freedom in the two particle case. Therefore, we favor the truly relative description

to be the physics relative to a quantum system.

When asking the question whether there is a unitary transformation that produces

the relative degrees of freedom for more than two particles, we found that it does not exist.

However, it doesn’t mean that we cannot use the relative observables in a passive picture to

find the physics relative to a quantum reference frame. It just means that given a state of more

than two particles, there is no clear connection between the wave function relative to the

initial reference frame and the wave function relative to the quantum system. It also does not

mean that such a wave function also does not exist. The relational and the perspective neutral

approaches exhibit the relative positions only and leaves the momenta untouched, which can

lead to erroneous conclusions if wrongly interpreted as completely relative. Our results shed

some light in this hybridness of the description by showing that the reduced relative state is

fundamentally different not in the analysis of position probabilities but in the analysis of the

noncommuting observables such as momentum, that reveals the coherence or it’s absence in

position basis.

We find that the theory-independent incompatibility is not invariant under quantum

reference frame transformations, corroborating the findings of Savi and Angelo [18]. The analy-

sis of the theory-independent incompatibility under quantum reference frame transformations

for the spatial degrees of freedom of a particle showed that when the quantum reference frame

is delocalized, it results in a broader probability distribution for the particle’s position, making

the context less compatible and reaching compatibility only for the maximally mixed state,

as expected since position and momentum form a MUB. An interesting feature is that it is

possible to jump to a reference frame in which the probability distribution is more localized

and, therefore disposes of more incompatibility but still, as the reference frame gets more

delocalized, the incompatibility goes to zero.

The question we pose after these findings is whether there is a way of finding a

quantum frame’s description of many particles, how it is built and what is the relation between

the perspectives of the particles. Furthermore we ask if, in light of the informational invariant

composed of coherence, correlations, and context incompatibility, is there a combination of
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features that, when combined with the theory-independent context incompatibility, also forms

an invariant under reference frame transformation.
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APPENDIX A – HAMILTONIAN FROM A FINITE-MASS REFERENCE FRAME

Considering the transformation of generic operators that are function of the position

and momenta in the external reference frame

𝐴′ = 𝑈 †𝐴(𝑋𝑛, 𝑃𝑛)𝑈 = 𝐴(𝑄𝑛, 𝜋𝑛) . (A.1)

If we consider that the Schrödinger equation for the Heisenberg operators must be form

invariant we have

𝑖ℏ �𝐴′ = 𝑖ℏ( �𝑈 †𝐴𝑈 +𝑈 † �𝐴𝑈 +𝑈 †𝐴 �𝑈 ) (A.2)

= (𝑈 †𝐻 − 𝐻𝑈 †)𝐴𝑈 +𝑈 (𝐴𝐻 − 𝐻𝐴)𝑈 † +𝑈 †𝐴(𝑈𝐻 − 𝐻𝑈 ) (A.3)

= 𝑈 †[𝐴,𝑈𝐻𝑈 †]𝑈 (A.4)

= 𝑈 †[𝐴,𝐻 ]𝑈 , (A.5)

where 𝐻 (𝑋𝑛, 𝑃𝑛) = 𝑈𝐻 (𝑋𝑛, 𝑃𝑛)𝑈 †, which implies that

𝑖ℏ �𝐴(𝑄𝑛, 𝜋𝑛) = [𝐴(𝑄𝑛, 𝜋𝑛), 𝐻 (𝑄𝑛, 𝜋𝑛)], (A.6)

and, hence 𝐻 ′ = 𝐻 (𝑄𝑛, 𝜋𝑛).
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APPENDIX B – DIRAC’S DELTA MODEL

Consider a function

𝛿𝜖 (𝑥) =
(

1

2𝜋𝜖2

) 1
4

exp

(
− 𝑥2

4𝜖2

)
, (B.1)

it’s can be a model for Dirac’s delta once the limit 𝜖 −→ 0 is taken. It suffices to prove that it

satisfies the defining property of Dirac’s delta, consider a function 𝑝ℎ𝑖 (𝑥) and the integral∫ +∞

−∞
𝛿2𝜖 (𝑥 − 𝑎)𝜙 (𝑥)𝑑𝑥 =

∫ +∞

−∞

(
1

2𝜋𝜖2

) 1
2

exp

(
− (𝑥 − 𝑎)2

2𝜖2

)
𝜙 (𝑥)𝑑𝑥, (B.2)

doing the substitution 𝑦 = 𝑥−𝑎
𝜖 we have

∫ +∞

−∞

(
1

2𝜋𝜖2

) 1
2

exp

(
−𝑦

2

2

)
𝜙 (𝜖𝑦 + 𝑎)𝑑𝑥 𝜖 −→ 0

= 𝜙 (𝑎) . (B.3)

Therefore, it serves as a good wave function for a well localized particle.


