UNIVERSIDADE FEDERAL DO PARANA

MURILO FALLEIROS LEMOS SCHMITT

TOWARDS SCALABLE AND EVOLVING GRAPH-BASED COLLABORATIVE
FILTERING FOR DATA STREAM RECOMMENDATION

CURITIBA PR
2024

MURILO FALLEIROS LEMOS SCHMITT

TOWARDS SCALABLE AND EVOLVING GRAPH-BASED COLLABORATIVE
FILTERING FOR DATA STREAM RECOMMENDATION

Tese apresentada como requisito parcial & obtengdo do grau
de Doutor em Ciéncia da Computacdo no Programa de
P6s-Graduacdo em Informadtica, Setor de Ciéncias Exatas,
da Universidade Federal do Paran4.

Area de concentragio: Computagdo.

Orientador: Eduardo Jaques Spinosa.

CURITIBA PR
2024

DADOS INTERNACIONAIS DE CATALOGAGAO NA PUBLICAGAO (CIP)
UNIVERSIDADE FEDERAL DO PARANA
SISTEMA DE BIBLIOTECAS — BIBLIOTECA DE CIENCIA E TECNOLOGIA

Schmitt, Murilo Falleiros Lemos
Towards scalable and evolving graph-based collaborative filtering for data
stream recommendation / Murilo Falleiros Lemos Schmitt. — Curitiba, 2024.
1 recurso on-line : PDF.

Tese (Doutorado) - Universidade Federal do Parana, Setor de Ciéncias
Exatas, Programa de Pds-Graduacédo em Informatica.

Orientador: Eduardo Jaques Spinosa

1. Sistemas de recomendacéo (Filtragem de informacdes). 2. Fluxo de
dados (Computadores). 3. Aprendizado do computador. |. Universidade
Federal do Parana. Il. Programa de Pés-Graduacao em Informéatica. Ill.
Spinosa, Eduardo Jaques. IV. Titulo.

Bibliotecario: Elias Barbosa da Silva CRB-9/1894

MINISTERIO DA EDUCAGAO

SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANA

l ' I: P R PRO-REITORIA DE PESQUISA E POS-GRADUAGAO
ONIVERSIDADE FEDERAL DO FARANA PROGRAMA DE POS-GRADUACAO INFORMATICA -
40001016034P5

TERMO DE APROVAGCAO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pés-Graduagdo INFORMATICA da Universidade
Federal do Parana foram convocados para realizar a argui¢cao da tese de Doutorado de MURILO FALLEIROS LEMOS SCHMITT
intitulada: Towards Scalable and Evolving Graph-based Collaborative Filtering for Data Stream Recommendation, sob
orientacéo do Prof. Dr. EDUARDO JAQUES SPINOSA, que apds terem inquirido o aluno e realizada a avaliacao do trabalho, séao
de parecer pela sua APROVACAO no rito de defesa.

A outorga do titulo de doutor esta sujeita a homologacéo pelo colegiado, ao atendimento de todas as indicagdes e correcoes

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pés-Graduagéo.

CURITIBA, 22 de Fevereiro de 2024.

Assinatura Eletronica Assinatura Eletrénica
27/02/2024 16:26:19.0 27/02/2024 18:50:29.0
EDUARDO JAQUES SPINOSA JEAN PAUL BARDDAL
Presidente da Banca Examinadora Avaliador Externo (PONTIFICIA UNIVERSIDADE CATOLICA DO

PARANA- PUCPR)

Assinatura Eletronica Assinatura Eletronica
28/02/2024 09:25:24.0 28/02/2024 11:07:55.0
MARCOS AURELIO DOMINGUES ANDRE LUIZ PIRES GUEDES
Avaliador Externo (UNIVERSIDADE ESTADUAL DE MARINGA) Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANA)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Parana - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br
Documento assinado eletronicamente de acordo com o disposto na legislagéo federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificagcdo Unica: 338992
Para autenticar este documento/assinatura, acesse https://siga.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 338992

ACKNOWLEDGEMENTS

Ao longo do desenvolvimento desta Tese, contei com o apoio e contribuicio de diversas pessoas,
as quais gostaria de estender meus sinceros agradecimentos.

A Deus, pelo dom da vida e pelas indmeras e continuas béncaos cedidas.

Aos meus pais, Taila e Sandoval, a minha irma Marilia e meu irmao Danilo. Agradeco
pelo carinho, compreensao, apoio e amor incondicional. Obrigado por acreditarem em mim, por
sempre incentivarem meus estudos e auxiliarem nos momentos de dificuldade. Este trabalho nédo
teria acontecido sem voces.

A minha namorada Isabela, por ser minha companheira e aceitar todos os momentos
comigo, principalmente aqueles dificeis, aos quais seus incentivos e compreensdo foram
fundamentais. Agradeco também aos seus pais pelo apoio e acolhimento.

Ao meu orientador, professor Eduardo Jaques Spinosa, pela oportunidade de trabalho do
Mestrado ao Doutorado, pela disponibilidade, pelos conselhos e feedbacks que foram essenciais
ao trabalho, e que continuardo a impactar positivamente minha carreira. Agradeco também pela
motivagdo, paciéncia, e principalmente pela confianca.

Aos professores da banca examinadora, André Luiz Pires Guedes, Jean Paul Barddal
e Marcos Aurélio Domingues, pela disponibilidade, pela leitura cuidadosa da Tese, pelo
encorajamento e pelas sugestoes valiosas ao trabalho.

Aos amigos e colegas, agradeco o companheirismo, a ajuda, e os momentos de distracao.

A todos os meus professores, do ensino basico a pés-graduacio, pelo papel que tiveram
na minha formagao.

Por fim, a CAPES pelo apoio que permitiu o desenvolvimento deste trabalho.

RESUMO

Sistemas de recomendagdo sdo projetados para recomendar itens para usudrios com base em
seus interesses, a fim de aumentar seu engajamento ao interagir com sistemas online. O aumento
significativo no volume de dados gerados por usudrios em alta frequéncia resulta na necessidade
de projetar sistemas de recomendacdo escaldveis e capazes de aprender dinamicamente, com base
somente em dados recém gerados, ao menos tdo rapido quanto a sua chegada, e que também sejam
capazes de recomendar itens com base em informagdes atuais, com recursos de processamento e
memoria restritos. No entanto, algoritmos de recomendag¢@o bem sucedidos, que tradicionalmente
dependem de re-treinamento esporddico a partir de dados previamente armazenados, ndo sao
projetados para adaptar-se de tal maneira, gerando problemas de escalabilidade e adaptabilidade.
Uma alternativa € projetar sistemas de recomendacdo como uma tarefa de mineracao de fluxos
continuos de dados, usando aprendizado incremental. Tal abordagem permite processar feedback
de usudrios continuamente e atualizar modelos de recomendacdo com base apenas em novos
dados recebidos, sem a necessidade de armazenar estes dados, que podem entdo ser descartados
apo6s seu processamento. Embora sistemas de recomendacgdo baseados em fluxos continuos de
dados estejam recentemente tornando-se um tépico ativo de pesquisa, ainda sdo pouco frequentes
na literatura, e diversos problemas associados a sua aplicagdo, tais como esparsidade, precisao,
escalabilidade e desvio de conceito, seguem em aberto. Neste contexto, a principal contribui¢do
desta pesquisa € um modelo baseado em fluxo continuo de dados, IGSI;/, que consiste em um
grafo de intera¢des sequenciais com esquecimento para recomendacdo em fluxo continuo de dados
com feedback implicito. IGSI;: incorpora feedback em um grafo, cujos vértices representam itens,
de maneira incremental, com a suposi¢do de que o comportamento dos usudrios pode ser extraido
dessas sequéncias de interacdes com o passar do tempo, capturando interesses de curto prazo e
de longo prazo. Nossa proposta € robusta a esparsidade, possui alta capacidade incremental e
flexibilidade no processo de recomendagdo. A abordagem recomenda itens para usudrios com
base em simulacoes de passeios aleatérios curtos, o que permite a geracao de recomendagdes
escaldveis. Nosso trabalho também contribui com um mecanismo de esquecimento, local
neighborhood decay, projetado especificamente para explorar as vantagens de IGSI;:, e que pode
ser generalizada para abordagens relacionadas. Tal mecanismo reutiliza as amostras de passeios
aleatdrios geradas originalmente para recomendagao para capturar informagdes estruturais do
grafo, e inferir a relevancia dos itens. Arestas obsoletas sdo entdo eliminadas com base nessas
informagdes e em fatores de popularidade. Avaliamos nossa proposta utilizando varias métricas
e comparamos os resultados com varios algoritmos incrementais em fluxos de dados simulados.
Os resultados demonstram a eficdcia de nossa proposta, que em geral supera outros algoritmos
em taxa de acerto, com tempos de atualizacdo e recomendacao muito competitivos. Além disso,
os resultados demonstram que nossa técnica de esquecimento € capaz de aumentar escalabilidade,
taxa de acerto e diversidade.

Palavras-chave: Sistemas de recomendacao; Fluxo continuo de dados; Aprendizado incremental;
Esquecimento; Passeios aleatorios.

ABSTRACT

Recommender systems are designed to recommend items to users based on their interests,
enhancing their engagement and satisfaction when interacting with online systems. The explosion
of user-generated data at fast rates in online services leads to the need for designing scalable
recommender systems that are able to learn on-the-fly. Such design requires learning from
newly generated data on a single pass, at least as fast as data arrives, while also allowing the
recommendation of relevant items based on up-to-date information with restricted time and
processing requirements. However, successful recommendation algorithms, which traditionally
rely on batch processing, are not designed to adapt to continuous flow of data, raising scalability
and adaptability issues. An alternative approach is to view the recommendation problem under
a data stream framework and design Stream-Based Recommender Systems, using incremental
learning. This design allows continuous processing of user feedback and the update of models
solely with incoming data, without requiring storage of observations, which can be discarded
after processing. Although stream-based approaches are recently becoming an active topic
of research, recommendation under the lens of data streams is still infrequent, and several
issues still pertain, such as sparsity, accuracy, scalability and concept drift. Thus, the main
contribution of this research is a stream-based model, IGSI;:, that consists in an evolving graph
of sequential interactions with forgetting for data stream recommendation with implicit feedback.
IGSI; incorporates feedback into an item-graph in incremental manner with the assumption
that user behavior can be extracted from such sequence of interactions as time passes, capturing
short-term and long-term interests. By focusing on a graph-based approach, our proposal is
robust to sparsity, has natural incremental capability and flexibility on the recommendation
procedure. It recommends items to users based on simulations of short random walks, which
allows the generation of scalable recommendations. This work also contributes with a forgetting
mechanism, local neighborhood decay, specifically designed to explore the advantages of IGSI;,
that can be generalized to related approaches. This mechanism reuses the random walk samples
originally generated for recommendation to capture structural information from the graph and
infer the relevance of items. Obsolete connections are then faded based on this information and
popularity factors. We evaluated our proposal under several metrics and compared the results
with other related incremental algorithms on simulated data stream settings. The results suggest
the effectiveness of our proposal, which generally outperforms competing algorithms in accuracy,
with very competitive update and recommendation times. Also, the results suggest that our
proposed forgetting technique is able to increase scalability, accuracy and diversity.

Keywords: Recommender systems; Data streams; Incremental learning; Forgetting; Random
walks.

2.1

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

LIST OF FIGURES

Example of a rating matrix and corresponding user-item bipartite graph for a
movie-based dataset (Aggarwal et al.,2016)..

Overview of our proposed stream-based recommender system. This process is
repeated for every observation generated along the stream.

An example of graph update based on a few user interactions. Considering the
graph in (a) and a user u whose last interaction was with item r, (b) presents a
scenario where u interacts with item a by inserting the edge connecting r to a. In
(c), u interacts with item s after interacting with a, and the weight of the edge
connectingatosisupdated. oL

Application of our proposed forgetting mechanism on IGSIz. We omit edge
weights for ease of visualization and instead notate where to emphasize and where
to fade. The example considers a given user u whose most recent interactions
are with items a, b and ¢, i.e., rS, =< a, b, ¢ >, as highlighted by a dotted black
square. Thus, a recommendation would consist in performing #—step random
walks from these source nodes. Assuming that the next interaction from u is with
item i, we wish to emphasize neighbors of nodes in rS, that reached i as inferred
by the samples with Eq.(5.8) and fade neighbors that did not reach i with Eq.(5.4).
Assuming ¢ = 3, paths to i from nodes in S, are highlighted with dashed edges.
In this example i is reachable from a through s, thus edge (a, s) is emphasized
and its remaining neighbor r is faded; as i is also reachable from b through s, edge
(b, s) is emphasized and all its remaining neighbors 7 and w are faded; and as i is
reachable from ¢ through nodes s and y, edges (c, s) and (c, y) are emphasized,
while the remaining neighbors r and w are faded.

Evolution of HitRate @20 as events arrive for dataset ML-1M with window size n
=5000. . . . e

Evolution of HitRate @20 as events arrive for dataset ML-10M with window size
n=5000.

Evolution of HitRate @20 as events arrive for dataset PLC-PL with window size
n=5000.

Evolution of HitRate @20 as events arrive for dataset PLC-STR with window size
n=5000.

Evolution of HitRate @20 as events arrive for LFM dataset with window size

84

94

111

111

112

112

6.9 McNemar’s pairwise test results between LND and other forgetting approaches
for all datasets with a confidence level of 99%.. 128

6.10 Evolution of the number of edges with window size n = 5000. 130

6.11 Evolution of processing time per sample with window size n = 5000.. 131

2.1
2.2

3.1

4.1

4.2
4.3
4.4

5.1

6.1
6.2

6.3

6.4

6.5

LIST OF TABLES

Table of notation.

Example of explicit feedback matrix and implicit feedback matrix, respectively. .

Summary of the main differences between batch-based and data stream processing
(Gama, 2012).. e

Categorization of related work. Adapted and extended from Al-Ghossein et al.
(2021). Focus: MEM: memory module, LRN: learning module, CHG: change
detection module, EVAL: evaluation contribution; Technique: CLST: clustering,
ENS: ensemble methods, GRA: graph-based methods, KNN: neighborhood-based
methods, MF: matrix factorization, NN: Neural networks, RL: reinforcement
learning, SPM: stochastic process model, TREE: Context trees; Feedback: EXP:
explicit, IMP: implicit; Domains: EC: e-commerce, MOV: movies, MUS: music,

NEWS: news articles, POI: point of interest, VID: video, WWW: web navigation.

Summary of related work with focus on the memory module..
Summary of incremental neighborhood-based contributions.

Summary of incremental matrix factorization contributions..

Summary of the hyperparameters of our model. Hyperparameters p, t, M and
r relate to our SBRS described in Section 5.1. Hyperparameters «, 8, 7 and x
relate to our forgetting technique described in Section 5.2..

Dataset description.

Impact of parameter step-size ¢ in the accuracy of algorithm IGSI,: for datasets
ML-1M, ML-10M, PLC-PL and PLC-STR. Accuracy is measured by HitRate @20
(HR) and DCG@20 (DCG). HR@20 highlighted in bold indicate the highest
value for ¢ that is superior with statistical significance in comparison to lower
values.. . . . L e

Impact of parameter step-size ¢ in the accuracy of algorithm IGSI, for datasets
LFM, ELEC and GLOBO. Accuracy is measured by HitRate@20 (HR) and
DCG @20 (DCG). HR @20 highlighted in bold indicate the highest value for ¢
that is superior with statistical significance in comparison to lower values.

Impact of parameter p in the accuracy of algorithm IGSIfTi," for datasets ML-1M,
ML-10M, PLC-PL and PLC-STR. Accuracy is measured by HitRate @20 (HR)
and DCG@20 (DCG). o

Impact of parameter p in the accuracy of algorithm IGSIZ,” for datasets LFM,
ELEC and GLOBO. Accuracy is measured by HitRate @20 (HR) and DCG @20
(DCG). . . e

92

104

104

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Impact of parameter r in the accuracy of algorithm IGSI, for datasets ML-1M,
ML-10M, PLC-PL and PLC-STR. Accuracy is measured by HitRate @20 (HR)
and DCG@20 (DCG). HR @20 highlighted in bold indicate the highest value for
r that is superior with statistical significance in comparison to lower values. . . .

Impact of parameter r in the accuracy of algorithm IGSI’, for datasets LFM,
ELEC and GLOBO. Accuracy is measured by HitRate @20 (HR) and DCG @20
(DCG). HR @20 highlighted in bold indicate the highest value for r that is superior
with statistical significance in comparison to lower values.

Accuracy of algorithm IGSIZ;‘ with increasing number of random walks M for all

datasets. Accuracy is measured by HitRate@20..

Results for all algorithms for datasets ML-1M and ML-10M. Accuracy is measure
by HR @20 and DCG@20. Diversity is measure by ILD and time is reported by
average update and recommendation times in milliseconds, with the best results
highlightedinbold. L

Results for all algorithms for datasets PLC-PL and PLC-STR. Accuracy is measure
by HR@20 and DCG@20. Diversity is measure by ILD and time is reported by
average update and recommendation times in milliseconds, with the best results
highlightedinbold.

Results for all algorithms for dataset LFM. Accuracy is measure by HR @20 and
DCG@20. Diversity is measure by ILD and time is reported by average update
and recommendation times in milliseconds, with the best results highlighted in

Results for all algorithms for datasets ELEC and GLOBO. Accuracy is measure
by HR@20 and DCG@20. Diversity is measure by ILD and time is reported by
average update and recommendation times in milliseconds, with the best results
highlightedinbold.

Impact of parameter S on IGSI; with our proposed forgetting technique for
datasets ML-1M, ML-10M, PLC-PL and PLC-STR. Column g refers to the tested
values for hyperparameter g, while HR and ILD represents the HitRate @20 and
intra-list diversity, respectively, grouped by dataset. The first row of the results
refer to IGSI; without forgetting. Values highlighted in bold indicate the highest
value for S that is superior in accuracy with statistical significance in comparison
tohighervalues.. L

Impact of parameter S on IGSI; with our proposed forgetting technique for
datasets LFM-1K, BOOK, ELEC and GLOBO. Column g refers to the tested
values for hyperparameter 8, while HR and ILD represents the HitRate @20 and
intra-list diversity, respectively, grouped by dataset. The first row of the results
refer to IGSI; without forgetting. Values highlighted in bold indicate the highest
value for S that is superior in accuracy with statistical significance in comparison
tohighervalues..

105

105

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22
6.23

Impact of parameter v on IGSI; with our proposed forgetting technique for
datasets ML-1M, ML-10M, PLC-PL and PLC-STR. Column 7 refers to the tested
values for hyperparameter 7, while HR and DCG represents the HitRate @20 and
DCG @20, respectively, grouped by dataset. Results for 7 = 0 refers to the best
values for S obtained in Tables 6.13 and 6.14. Values highlighted in bold indicate
the highest value for 7 that is superior in accuracy with statistical significance in
comparison to lower values. L L L

Impact of parameter 7 on 1GSI; with our proposed forgetting technique for
datasets LFM-1K, BOOK, ELEC and GLOBO. Column 7 refers to the tested
values for hyperparameter 7, while HR and DCG represents the HitRate @20 and
DCG @20, respectively, grouped by dataset. Results for 7 = 0 refers to the best
values for S obtained in Tables 6.13 and 6.14. Values highlighted in bold indicate
the highest value for 7 that is superior in accuracy with statistical significance in
comparison to lower values. L L Lo

Impact of parameter x on IGSI;: with local neighborhood decay forgetting for
datasets ML-1M, ML-10M, PLC-PL and PLC-STR. Column x refers to the tested
values for hyperparameter x, while HR and |&| represents the HitRate @20 and
the number of edges on the underlying graph, respectively, grouped by dataset.
The first row of the results refer to IGSI; without forgetting. Values highlighted
in bold indicate the smallest value for x that is superior in accuracy with statistical
significance in comparison to lower values. L.

Impact of parameter x on IGSI;+ with local neighborhood decay forgetting for
datasets LFM-1K, BOOK, ELEC and GLOBO. Column x refers to the tested
values for hyperparameter x, while HR and |E| represents the HitRate @20 and
the number of edges on the underlying graph, respectively, grouped by dataset.
The first row of the results refer to IGSI;: without forgetting. Values highlighted
in bold indicate the smallest value for x that is superior in accuracy with statistical
significance in comparison to lower values. L.

Overall results for all techniques grouped by datasets ML-1M and ML-10M. Best
results are highlightedinbold.

Overall results for all techniques grouped by datasets PLC-PL, PLC-STR and
LFM-1K. Best results are highlightedinbold.

Overall results for all techniques grouped by datasets BOOK, ELEC and GLOBO.
Best results are highlightedinbold.

Optimal hyperparameters per algorithm grouped by dataset..

Graph’s properties per dataset. The reported properties are number of nodes
(|]V|), number of edges (|&|), density, average degree, average weighted degree,
minimum weighted degree (Min), maximum weighted degree (Max) and number
of low weighted degree nodes (#Low). For each dataset, cells from column
(Min, Max, #Low) are split into two rows, where the first refer to indegree node
information, and the second refers to outdegree node information.

119

119

126

6.24

Graph’s properties per dataset with LND. The reported properties are number of
nodes (|V|), number of edges (|&|), density, average degree, average weighted
degree, minimum weighted degree (Min), maximum weighted degree (Max)
and number of low weighted degree nodes (#Low). For each dataset, cells from
column (Min, Max, #Low) are split into two rows, where the first refer to indegree
node information, and the second refers to outdegree node information.

ALS
BPR
BPR-MF
BRISMF
CARS
CBF

CF
EASER
FIFO
GAN
IBPR-MF
IDF
IGSI
ItemKNN
ISGD
KNN
LND
MF
PMF
PPR
RMFX
RS

RWR
SBRS
SGD
SVD
TARS
TF
TF-IDF
UserKNN
WMF

LIST OF ACRONYMS

Alternating Least Squares
Bayesian Personalized Ranking
Bayesian Personalized Ranking Matrix Factorization
Biased Regularized Incremental Simultaneous Matrix Factorization
Context-Aware Recommender Systems
Content-Based Filtering

Collaborative Filtering

Embarrassingly Shallow Auto-Encoder
First-In-First-Out

Generative Adversarial Network

Incremental Bayesian Personalized Ranking Matrix Factorization
Inverse Document Frequency

Incremental Graph of Sequential Interactions
Item-Based K-Nearest-Neighbors

Incremental Stochastic Gradient Descent
K-Nearest-Neighbors

Local Neighborhood Decay

Matrix Factorization

Personalized Matrix Factorization
Personalized PageRank

Stream Ranking Matrix Factorization
Recommender Systems

Random Walk with Restart

Stream-Based Recommender Systems
Stochastic Gradient Descent

Singular Value Decomposition

Time-Aware Recommender Systems

Term Frequency

Term Frequency-Inverse Document Frequency
User-Based K-Nearest-Neighbors

Weighted Matrix Factorization

S © 4T Y A 0 R ™ R

LIST OF SYMBOLS

fading factor in forgetting

diversity parameter

teleportation/restart factor on random walks
upper bound on random walk sampling convergence
associated error with random walk sampling
learning rate

regularization factor

state probability distribution

time-window parameter

acceptance factor in forgetting

weight threshold parameter in forgetting

window size parameter in forgetting

1.1
1.2
1.3

2.1
2.1.1
22
2.3
2.3.1
232
24
2.5
25.1
252
2.6

3.1
3.1.1
3.2
33
34
3.5

4.1
4.2
4.2.1
422
423
43
4.4
45

CONTENTS

INTRODUCTION. ittt e e et e it e ittt e e e e 16
MOTIVATION s e 16
OBJECTIVE e 18
ORGANIZATION e 19
RECOMMENDER SYSTEMS o i it it i e i it i e e e e 21
PROBLEM FORMULATION o . 21
Typesof feedback. 23
CONTENT-BASED FILTERING 24
COLLABORATIVE FILTERING 25
Memory-based approaches Lo 25
Model-based approaches L 33
HYBRID METHODS. 36
CONTEXT-AWARE COLLABORATIVE FILTERING 37
Time-Aware Collaborative Filtering 38
Sequence-Aware Collaborative Filtering 39
DISCUSSION. 40
STREAM-BASED RECOMMENDER SYSTEMS 41
INCREMENTAL MEMORY-BASED APPROACHES 43
Incremental graph-based approaches 45
INCREMENTAL MATRIX FACTORIZATION APPROACHES 46
CONCEPT DRIFT o e 49
FORGETTING e e 50
DISCUSSION. e 51
RELATED WORK o it it i e e i et i et e e e 52
MEMORY MODULE 53
LEARNINGMODULE. s 60
Incremental neighborhood-based approaches. 61
IMF approaches. 66
Other model-based approaches 75
CHANGE DETECTION MODULE 77
EVALUATION CONTRIBUTIONS 78
DISCUSSION. 80

5.1.1
5.1.2
5.1.3
5.2
53

6.1

6.1.1
6.1.2
6.1.3
6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4

7.1
7.2
7.3

PROPOSED APPROACH. ittt it ittt ittt e 82

SCALABLE STREAM-BASED RECOMMENDATIONS WITH RANDOM
WALKS ON INCREMENTAL GRAPH OF SEQUENTIAL INTERACTIONS . 85

Item ranking methods. 86
Convergence of sampling 88
Recommendationmethodso oL oL 89
NOVEL FORGETTING TECHNIQUE WITH RANDOM WALK SAMPLING . 91
DISCUSSION. e 95
EXPERIMENTS. i i et i i e e e i i e e e e e 97
EVALUATION SETTING o o 97
Datasets 98
MEtriCs e e e 98
Experimental setup L. L 100
EVALUATIONOFIGSI o e 101
Related algorithms L 101
Effect of step-size parametero 102
Effect of time window parameter 103
Effect of recency parameter.o L oL 104
Sampling approximationl 105
Overallresults. 106
EVALUATIONOFLND e e 114
Related algorithms 115
IGSI Hyperparameterso ii i 115
Impact of diversity hyperparameter., 116
Impact of acceptance factor hyperparameter 117
Impact of weight threshold hyperparameter 118
Overallresults. 120
DISCUSSION. e 129
CONCLUSIONS. . . . ittt ittt it ittt ittt ettt e e e 134
CONTRIBUTIONS. e 134
LIST OF PUBLICATIONS o o 135
LIMITATIONS AND FUTUREWORK 135

REFERENCES it ittt ittt it iiiee s 137

16

1 INTRODUCTION

The ever-growing amount of information available on the Internet is overwhelming to users. In
many real-world systems, such as news portals and e-commerce websites, users are interested in
content that is unknown to them (Das et al., 2007), and rely on the system to present relevant
content and to alleviate information overload. To that end, online systems must be able to
match novel content to previous users’ interests in order to improve their satisfaction and
engagement when interacting with a system (Ricci et al., 2015). Systems designed to solve such
recommendation tasks are known as recommender systems. The general goal of recommender
systems is to present personalized sets of unknown and relevant items to users based on their past
interests in order to increase users’ satisfaction.

Significant attention has been given to the field of recommender systems since Netflix
launched the Netflix Prize competition in 2006, where the objective was to build algorithms
to beat their CineMatch algorithm by at least 10% for a grand prize (Bennett et al., 2007).
The grand prize and the availability of a dataset with more than 100 million ratings sparked
interest and activity from researchers in the field. Recommender systems have since been widely
researched, resulting in many important contributions, specially in collaborative filtering (Koren
and Bell, 2015), and are an integral part of several online systems from different domains, such
as e-commerce (Linden et al., 2003; Smith and Linden, 2017), social networks (Backstrom and
Leskovec, 2011; Gupta et al., 2013), videos and movies (Baluja et al., 2008; Davidson et al.,
2010; Gomez-Uribe and Hunt, 2015; Covington et al., 2016), music (Celma, 2010; Jannach et al.,
2015), touristic destinations (Cheng et al., 2013; Zhang et al., 2014a) and news (Das et al., 2007;
Garcin et al., 2013; Trevisiol et al., 2014).

Collaborative filtering algorithms are based on the assumption that users with prior
similar interests will share common interests in the future (Goldberg et al., 1992). Collaborative
filtering techniques such as k-nearest neighbors (KNN) (Sarwar et al., 2001; Deshpande and
Karypis, 2004) and matrix factorization (Koren et al., 2009; Rendle et al., 2009) are effective
for recommendation and modeling long-term user interests. These techniques are designed
to learn user’s interests and to predict unknown user preferences based on past user feedback,
i.e., interactions between users and items. Traditionally, predictive models are trained on static
datasets with previously collected data, and predictions are made based on the inferred model.

1.1 MOTIVATION

Although collaborative filtering models are effective in generating personalized recommendation
for users, they are usually designed as batch-learning algorithms. Batch-learning approaches
require static training data to always be available in order to infer a model that is used for prediction,
and the model remains unchanged until new data is available for retraining. Considering that in
real world systems data is generated continuously at unpredictable rate, batch-learning approaches
suffer from scalability and predictive capability issues inherently related to the assumption that
models can be inferred and updated with static training data.

Scalability issues are related to the amount of data that is generated. Since the amount of
data will always increase potentially at fast rates, it becomes unfeasible to retrain these models as
data is generated. Consequently, the impracticability of retraining models in batch also results in
increasingly less relevant recommendations. Assuming that batch updates are done sporadically
and that data is continuously generated, user feedback generated between updates are not taken

17

into consideration by the model, resulting in an outdated model that is not sensitive to changes in
user preferences and that disregards new incoming users and items into the system.

As highlighted by Vinagre et al. (2015b), recommender systems share several similarities
with the field of data stream mining, and a natural approximation exists between the two fields. In
data streams scenarios, data is generated as a chronologically ordered sequence at unpredictable
rate and are potentially unbounded, while also subject to changes over time. Algorithms that
learn from data streams must process data in a single-pass at least as fast as new data arrives
(Domingos and Hulten, 2001). Recommendation algorithms that acknowledge user feedback
as a chronological sequence are commonly referred to as time-dependent (Shi et al., 2014;
Vinagre et al., 2015b) or sequence-aware algorithms (Quadrana et al., 2018). Most research in
these algorithms, however, assume batch training to stay up-to-date, which eventually leads to
scalability issues since data is generated continuously.

Thus, an alternative approach to batch processing is to view the recommendation
problem under a data stream framework, and design Stream-Based Recommender Systems
(SBRS) (Vinagre et al., 2021; Al-Ghossein et al., 2021). SBRS assume that time-dependent
(sequential) user feedback is processed continuously, new users and items are constantly added
to the system, and an always-available model should learn from incoming observations as fast
as they arrive (Domingos and Hulten, 2001; Gama et al., 2009). This can be achieved through
incremental approaches, which are capable of learning and updating models with incoming data,
and observations can be discarded after processing. Consequently, incremental algorithms are
viable options for recommendation. However, most recommender systems are not designed to
deal with data as a stream, overlooking scalability and run time complexity issues (Vinagre et al.,
2015b).

Although SBRS is recently becoming an active topic of research (Al-Ghossein et al.,
2021; Vinagre et al., 2022a) and some incremental algorithms have been proposed (Papagelis
et al., 2005; Miranda and Jorge, 2009; Takacs et al., 2009; Vinagre et al., 2014b; Matuszyk
et al., 2015; Yagci et al., 2017; Anyosa et al., 2018; Al-Ghossein et al., 2018b), recommendation
approached as a data stream is still infrequent, thus posing a few research gaps that could be
explored.

During this research, we have identified that graph-based approaches for collaborative
filtering are well suited to solve the aforementioned issues related to batch processing, as the
graph structure naturally allows the incremental inclusion of continuous incoming user feedback.
Traditional approaches usually model user feedback in a bipartite graph, such that each user-item
interaction is represented as an edge in the graph connecting a user node to an item node.
However, even though incoming user feedback can be incrementally included in these models by
adding new nodes and edges, successful recommendation algorithms based on random walks
(Fouss et al., 2005, 2007; Gori and Pucci, 2007; Xiang et al., 2010) are not designed to adapt to a
continuous flow of incoming data, resulting in scalability issues and therefore are not suited for
data stream environments.

In the work of Cooper et al. (2014), it was suggested that simulation of random walks
can be used for scalable recommendations with short random walks, mainly three-steps (P
algorithm), outperforming previous methods and with similar accuracy to exact random walks
computations. Subsequently in the work of Christoffel et al. (2015), an extension of P> called
RP% was proposed, that performs a re-ranking of P2 based on item popularity in order to
increase diversity. The random walks are explored through sampling techniques, resulting in a
trade-off between diversity, efficiency and accuracy. Although these approaches are suited to
operate under a data stream framework, they are not evaluated in such framework, disregard
sequential information and recommend items to users based on long-term interests, i.e., there is

18

no consideration on the chronological order of the interactions and to when each interaction was
made, which disregards the shifts in concepts usually present in data streams (Domingos and
Hulten, 2001; Gama et al., 2009).

In this work we study the recommendation problem under a data stream framework by
considering implicit user feedback as a continuous and unbounded chronological sequence. In
such a setting, we consider that every incoming observation indicates a positive interaction from
a user towards an item. The algorithm must be able to update the model solely on the current
observation, and recommend relevant items to users, also known as top-N recommendation task,
with up-to-date information in scalable manner.

1.2 OBJECTIVE

The main objective and contribution of this research is to propose and evaluate recommender
systems that are designed to work in data streams scenarios, where user feedback is continuously
generated at unpredictable rates and is potentially unbounded. In such scenarios, incremental
models must be able to update in a single-pass over the incoming observations and generate
recommendations with up-to-date information. Besides the issues inherently related to recom-
mender systems and data stream mining, such as the cold-start problem and concept drift, these
considerations have direct impact in scalability and accuracy, since algorithms have limited time
and resources to update and recommend relevant items on-the-fly. Additionally, how to properly
evaluate recommender systems is still an open issue (Gunawardana et al., 2022), and related work
usually assesses the effectiveness of algorithms by only one aspect of recommendation quality,
which is accuracy.

Considering this problem scenario and the motivation described so far, the main objective
of this work is to propose a stream-based recommender system designed to work in online settings,
tackle the issues inherently related to recommender systems and data stream mining, such as
sparsity, accuracy, scalability and concept drift, and provide alternatives to the shortcomings of
previous algorithms.

To that end, our contributions are centered on our proposed stream-based model - IGSI;
- that consists in an evolving graph of sequential interactions with forgetting for data stream
recommendation with implicit feedback. We use the term evolving in the sense that the model
adapts and learns, continuously and incrementally, based on information generated along the
data stream, but also removes information that is deemed as obsolete. We focus on a graph-based
approach due to its robustness to sparsity, natural incremental capability and flexibility. The
aforementioned motivations and objective also leads us to the following research questions:

1. Can graph-based algorithms for collaborative filtering be used effectively in data
stream scenarios? How do they perform in scalability and accuracy compared to other
incremental models?

* Previous work show that graph-based algorithms present competitive results in
stationary settings (Dacrema et al., 2021). We have implemented and experimented
with incremental versions of graph-based algorithms P3 and RP;, using simulation
of random walks to provide scalable recommendations, and made comparisons with
several competing incremental approaches. Our experiments, presented in Chapter
6, highlight both the effectiveness of these approaches and also its shortcomings.
Mainly, that sequential information is not taken into account, i.e., short-term and
long-term interests are not distinguished.

19

2. How can time-related information be incorporated into graph-based models? Does
such information improve the quality of the recommendations?

* Our proposed SBRS, 1GSI;+, defined in Chapter 5, helps addressing this question.
IGSI;+ (Schmitt and Spinosa, 2020, 2022b) incorporates implicit user feedback into
an item-graph in incremental fashion with the assumption that user behavior can
be extracted from the sequence of user interactions as time progresses, capturing
short-term and long-term interests. To that end, edges are continuously included in
the graph and their weights are updated according to the sequential user interactions,
such that for each incoming user feedback in a data stream, a directed edge connects
the last item interacted by the user to the current interaction, and the relevance of
each sequential interaction is reinforced in the weight of the edge. Results discussed
in Chapter 6 highlight the importance of incorporating time-related information.

3. Are current incremental algorithms sufficient in providing accurate, diverse and scalable
recommendations? Can graph-based approaches effectively provide recommendations
that are relevant in practice?

* Evaluation is a key aspect of recommender systems research, and high accuracy
in offline experiments does not necessary leads to relevant recommendations in
practice (McNee et al., 2006; Cremonesi et al., 2010; Vinagre et al., 2015b). Thus,
evaluating other metrics such as diversity is necessary. In Chapter 6 we present
comparisons of several incremental algorithms under different metrics, and discuss
how these metrics may conflict. Also, we propose a forgetting mechanism in
Chapter 5 that specifically allows for an increase in diversity without compromising
accuracy. Our evaluation in Chapter 6 highlight its effectiveness.

4. Considering that learning incrementally based on continuous incoming data leads to
ever-growing models, what techniques can be used to remove obsolete information from
these models? Are evolving methods enough to deal with issues inherently related to
recommender systems and data stream mining, such as concept drift?

* Assuming that the volume of data will always grow and that users’ preferences are
not static, online models must adapt to changes by incorporating new information
and forgetting obsolete ones (Matuszyk et al., 2018). The challenge is how to
select information to be forgotten from already very sparse models, with the goal of
increasing scalability and accuracy. In Chapter 5, we propose a scalable forgetting
mechanism that removes obsolete information from graph-based (and neighborhood-
based) methods while allowing for increases in diversity. The incorporation of such
mechanism in IGSI;: increased scalability, accuracy and diversity, as suggested by
our results in Chapter 6.

1.3 ORGANIZATION

The remainder of this work is organized as follows. In Chapter 2, we present general background
concepts on recommender systems. Chapter 3 focuses on stream-based recommender systems,
defines constrains of operating in data stream scenarios and also presents algorithms designed to
operate under such scenarios. Chapter 4 reviews and discusses related work on stream-based
recommender systems. In Chapter 5 we present our contributions, centered on our proposed
SBRS, IGSI;. Chapter 6 presents the experimental evaluation of our proposed algorithms,

20

comparisons with competing algorithms and analysis of the obtained results. Finally, we present
concluding considerations and discuss future work in Chapter 7.

21

2 RECOMMENDER SYSTEMS

In this section we introduce relevant definitions that constitute the foundation of this work. We
first define notation and terminology used throughout this thesis. Then, we formulate the problem
to be explored, and then present relevant information related to recommender systems. We
also introduce important preliminary information on graphs. We note that algorithms discussed
throughout this chapter are batch-based, i.e., they operate under the assumptions that past data
is always available and that learned concepts are stationary. We discuss the limitations of such
assumptions and possible solutions in subsequent chapters.

Notation. Notation and terminology used throughout this work is summarized in Table 2.1.
All matrices are represented by bold upper case letters, e.g., A, W. Vectors are represented by
bold lower case letters, e.g. p, q. Unless otherwise specified, they are assumed to be row vectors.
Sets are represented by upper case calligraphic letters, e.g., U, 7. The i-th row of a given matrix
A is denoted by a;, the j-th column is denoted by aJT. and an element corresponding to the i-th
row and j-th column is denoted by a;;. Sets of user-item interactions are denoted by 9. Also, an
estimation of a random variable x is represented as X.

2.1 PROBLEM FORMULATION

Recommender systems (RS) are software tools and techniques designed to provide personalized
and useful suggestions of items from a large catalog to users (Ricci et al., 2015). Typically, when
users interact with online systems, they are interested in content that is unknown to them, but that
matches their previous interests. However, the number of items available is usually overwhelming.
Thus, RS must filter novel and relevant content to users in order to alleviate information overload
and increase their engagement and experience when interacting with such systems. Hence, the
impact of RS is directly related to user satisfaction and revenue (Jannach et al., 2010; Ricci et al.,
2015). In general, RS provide personalized recommendations to users by detecting patterns in
past user behavior encompassed through actions such as ratings, purchases and clicks, and such
behavior is used to recommend relevant content based on the inferred user profiles.

As outlined by Herlocker et al. (2004), RS are useful in a variety of tasks, such as rating
prediction, finding relevant items, recommending a sequence of items, recommending browsing
options, among others. Although all the aforementioned tasks generally consist in recommending
items to users (Ricci et al., 2015), each task has different implications in the problem formulation
and evaluation. In this work, we are interested in the task of recommending relevant items to
users, i.e., provide to users ranked lists of items based on their interests. This problem is usually
referred to as the top-N recommendation problem (Deshpande and Karypis, 2004).

The recommendation problem can be formalized as follows (Adomavicius and Tuzhilin,
2005). Let U denote the set of users, m the number of users |U|, I the set of items that can be
recommended and n the number of items |7 |. Let x : U X I — R denote a utility function that
measures the usefulness of item i € 7 to user u € U, where R is a totally ordered set. Then, for
a given user u, the recommendation problem consists in choosing the item i/, that maximizes the
user’s utility, as defined by the following equation:

i;, = argmax x(u, i) (2.1)
iel

22

Table 2.1: Table of notation.

Notation Description

set of users, U = {uy,un, ..., uy}
number of users
set of items, I = {i1,i2,...,in}
number of items
feedback matrix
set of user-item interactions
(u,i,t) user-item interaction at time ¢

S RN

Vv set of nodes
& set of edges
w(e) weight of edge e
A adjacency matrix
D diagonal degree matrix
P transition probability matrix
RW;, t-step random walk starting in node s
nt t-step random walk with restart vector starting in node s
Su ordered list of interactions by user u
li, last item interacted by user u
M number of walks in random walk sampling
N number of recommended items

The utility function x depends on the task. For rating prediction, the utility of an item
is represented by a rating, while for the top-N recommendation problem, the utility is given by
a relevance score. Thus, for the top-N recommendation problem, a recommender algorithm
predicts the relevance score of each item and recommends the N most relevant items. The key
problem of RS lies in that utility function x is only defined for a small subset of U X 7. Thus,
the utility function must be extrapolated to the whole U x I space (Adomavicius and Tuzhilin,
2005). In other words, users only interact with a small subset of items, and the RS must be able to
estimate unknown user-item interactions and make recommendations based on these predictions.
The estimation of unknown user-item interactions is performed through methods from machine
learning, approximation theory and various heuristics (Adomavicius and Tuzhilin, 2005).

Recommendation approaches, also referred to in this thesis as methods, techniques
and algorithms, can be classified according to the recommendation problem that they solve, the
approach to address the problem and the type of feedback that is used. The commonly used
classification is based on how the information regarding users and items is used to generate the
recommendations, and is defined as follows (Burke, 2007):

* Content-based filtering: these approaches recommend items similar to the ones the user
showed interest in the past.

* Collaborative filtering: these approaches recommend to the active user items that users
with similar behavior and interests liked previously.

* Hybrid methods: these approaches combine methods from both content-based and
collaborative filtering in order to avoid their shortcomings (Burke, 2007).

23

Table 2.2: Example of explicit feedback matrix and implicit feedback matrix, respectively.

Users/Items | iy | i2 | i3 | ia | I5 Users/Items | iy | i» | i3 | i4 | I5
uj 4 1 5 ui 1 1
uj 4 2 1 us 1 1 1
us 5 3 us 1 1
Ug 2 5 Ug 1 1

Collaborative filtering is the most successful and widely used technique (Shi et al.,
2014; Ricci et al., 2015), and is the main focus of this work, specifically collaborative filtering
with implicit feedback. Thus, next we describe the types of feedback and then discuss the
aforementioned recommendation approaches.

2.1.1 Types of feedback

The design of recommendation algorithms is directly dependent on the type of user feedback that
is available (Jawaheer et al., 2014; Aggarwal et al., 2016). User feedback can be categorized into
the two following groups.

Explicit feedback. Explicit feedback is obtained directly through the user and is often given in
the form of a rating for an item, expressing the user’s interest towards that item. Such rating is
usually measure through a numerical scale, such as 5-star scale, which conveniently details the
level of preference, and can be represented in the form (u, i, r), indicating that user u assigned
rating r to item i. Thus, explicit feedback is very informative. However, explicit feedback is not
always available, since users might be unwilling to provide ratings, and are usually sparse when
available. Consequently, RS can make use of implicit feedback as an alternative source of user
preferences.

Implicit feedback. Implicit feedback (Oard et al., 1998) is inferred from observable user
behavior and is collected from actions such as click-through data, music/movie streaming and item
purchases, and does not require direct user involvement. Implicit feedback can be represented in
the form (u, i), indicating a positive preference from user u towards item i. We will also refer to
implicit feedback in the remainder of this work as positive-only feedback. Although easier to
collect, implicit feedback is inherently sensitive to noise, which is related to the tools used for
capturing user feedback (Pan et al., 2008; Jawaheer et al., 2014; Jannach et al., 2018).

Table 2.2 presents an example of both explicit and implicit feedback matrices. These
examples highlight the sensitivity to noise related to implicit feedback and the differences in
problem formulation, since negative user preferences would be considered to be positive. With
explicit feedback, for the top-N recommendation problem the algorithm can predict the missing
ratings and sort items by decreasing predicted rating. With implicit feedback, the feedback matrix
assumes boolean values, where true values indicate a positive preference, and false values, i.e.
missing values, can be interpreted as unknown or negative (Pan et al., 2008), and the algorithm
must predict and rank the positive items to generate a recommendation list.

24

2.2 CONTENT-BASED FILTERING

Content-based filtering (CBF) techniques (Pazzani and Billsus, 2007) recommend items by
analyzing their descriptive attributes and matching these features with user profiles. These
attributes can be extracted from text, images, videos, audios and tags. By matching item attributes
to user profiles, the system recommends to users items that are similar to the ones they previously
showed interest. For example, if a user previously showed interest towards science fiction movies,
CBF systems can recommend other movies from this genre.

Content-based systems are generally composed of three main components (Aggarwal
et al., 2016). The first component is feature extraction, which is one of the main challenges of
content-based recommenders. This module extracts domain knowledge from various sources,
including unstructured data, and converts such information into vector-space representation (Lops
et al., 2011). The extraction of relevant features is crucial for the effectiveness of content-based
approaches (Aggarwal et al., 2016). The second module learns the user profile. Based on user
feedback and the attributes of items, vectors representing user preferences are created in the same
vector-space where items are represented. The final component is the filtering, which matches
the item attributes to the user profile in order to generate recommendations.

As an example, consider a CBF system that describes items through textual features,
e.g., movie summaries or product description. Each text document is represented by a vector
in an n-dimensional space, where each dimension represents a term from the vocabulary. The
importance of each word (term) in the document is usually determined by TF-IDF, which is the
product of the term frequency (TF) by the inverse document frequency (IDF). Denote a user
profile by Profile(u), which can be defined by aggregating the profiles of items rated by u, and an
item profile as Content(7). The utility function (Eq. (2.1)) for a CBF can be defined as follows
(Adomavicius and Tuzhilin, 2005):

x(u, i) = Profile(u) ® Content() (2.2)

where ® is a scoring function, such as the cosine similarity measure (Baeza-Yates et al., 1999).

These techniques offer two main advantages (Lops et al., 2011). The first is transparency.
The explanation behind the recommendations can be provided by the set of content features
that describe the items. The second advantage is the ability to recommend new items. CBF
approaches can recommend items that have yet to be interacted by any user, since items are
recommended based on their descriptive features. Thus, CBF systems can operate in item
cold-start scenarios, where items are not interacted by enough users in order to become a
candidate for recommendation (Schein et al., 2002).

However, CBF systems have several shortcomings (Adomavicius and Tuzhilin, 2005;
Lops et al., 2011). The main shortcoming is content availability. The performance of CBF
techniques is dependent on the features associated with users and items. Domain knowledge
is often needed to characterize items. However, such information is not always available and
automatic feature extraction is not a straightforward task to perform in domains such as videos,
images and audio. Another issue is overspecialization. CBF approaches recommend items
that are similar to the ones that the user has already rated, which limits the novelty of the
recommendations, since the recommended items are always similar to content the user has seen
before. The final shortcoming is user cold-start. In order to build a user profile and provide
accurate recommendations, the system must collect enough information about users. Thus, when
few interactions are available, the system will not be able to make relevant recommendations
(Lops et al., 2011).

25

To overcome the shortcomings of content availability and overspecialization inherently
related to content-based systems, collaborative filtering techniques can be used to make recom-
mendations. These techniques are designed to find correlations between users and items based
solely on the available user feedback. Hence, next we describe collaborative filtering techniques,
which are the focus of this work. For more information regarding content-based filtering, we
refer the reader to the works of Pazzani and Billsus (2007), Lops et al. (2011) and Aggarwal et al.
(2016).

2.3 COLLABORATIVE FILTERING

Collaborative filtering (CF) models try to predict future user interests and make recommendations
based on all past user feedback. The key assumption behind these models is that users that
shared similar interests in the past are likely to have similar interests in the future (Ekstrand et al.,
2011). Thus, there is an indirect collaboration between users in order to improve the system in
generating relevant recommendations (Goldberg et al., 1992). Consider a system with m users
and n items. The available feedback provided by users, which can be explicit or implicit (Section
2.1.1), can be used to build a user-item feedback matrix R,,«,, as illustrated in Table 2.2. These
feedback matrices are typically very sparse, i.e., users only interact with a small proportion of
items available. Thus, the challenge of CF methods is to predict unknown user preferences based
on the known values in R and make recommendations based on these predictions.

By recommending items to users based on the feedback of other users, CF models are
able to overcome the content availability and overspecialization related to content-based systems
(Desrosiers and Karypis, 2011). CF methods can recommend items to users when the content of
items is not available. Also, the relevance of items is evaluated according to other users instead
of relying on content, thus reducing the overspecialization of the recommendations. However, an
issue that arises from CF methods is the item cold-start problem.

CF methods can be classified into two main classes: memory-based (or neighborhood-
based) and model-based methods (Breese et al., 1998; Koren and Bell, 2015; Ning et al., 2015).
Memory-based methods recommend items based directly on the known user-item interactions,
while model-based methods use these ratings to learn a predictive model. Next, we provide an
overview of both classes of methods.

2.3.1 Memory-based approaches

Memory-based collaborative filtering approaches, also known as neighborhood-based, use the
entire user-item feedback matrix R to generate recommendations by computing neighborhoods
of users or items using similarity measures such as cosine similarity or Pearson correlation.
Considering that the rows of a user-item feedback matrix R corresponds to users and the columns
corresponds to items, the similarity between two users u and v is obtained by their respective rows
r, and r,, while the similarity between two items i and j is obtained by their respective columns
rl.T and rJT.. After the neighborhoods are computed, these approaches combine the preferences of
neighbors to produce a top-N recommendation for the active user (Sarwar et al., 2001). These
algorithms are known as k-nearest-neighbors (KNN) and are divided into two classes: user-based
and item-based CF.

User-based. In the user-based recommendation approach, the algorithm first finds the neighbors
of a active user u based on a similarity measure. The k most similar users to u constitute the set
of neighbors Ny (u). The predicted rating 7,; of u for a candidate item i is given by the weighted

26

average of the ratings provided by the k users that belong in the neighborhood of u towards item
i (Resnick et al., 1994), where the weight of each rating is measured according to the similarity
function (Ekstrand et al., 2011):

A

_ ZveNk(u) sim(u, v)ry;
ZveN(w) Sim(u, v)

where r,; represents the rating given to item i by user v and sim(u, v) is the similarity function,
such as the cosine similarity, applied to users u and v:

(2.3)

r, T, 2ie(1,n,) Tuilvi

AR ; >
" Y Zie],, T Ziefv I

where 7, and 7, are the set of items rated by users u and v, respectively. Thus, ratings are
predicted based on the opinion of users that are similar to the active user.

(2.4)

sim(u,v) = cos(ry,,r,) =

Item-based. Usually, the number of users in a system is much higher than the number of items.
Thus, generating recommendations based on similarities between items results in scalability
improvements compared to recommendations based on user-based similarities (Sarwar et al.,
2001; Linden et al., 2003; Deshpande and Karypis, 2004). Analogously to the user-based
approach, to predict the rating of a user u to a candidate item i, i.e., 7,;, the item-based algorithm
finds the neighbors of item i and examine the ratings given by u to these neighbors. First, the
algorithm computes the similarity between item i and every other item in 7, and then selects
the k£ most similar items to 7 to constitute the set of neighbors N (i). The predicted rating 7,; is
computed as follows:

_ ZjeNe(Sim i, J)1u;

2jeng (i) sim(i, J)
where r,; is the rating given to item j by user u and sim(i, j) is the similarity function between
items 7 and j, such as the cosine similarity:

A

(2.5)

T T
Zue(w nU;) Tuiluj

r X l‘ ’Z ’Z
|| || || || 7/[1 rul ME(L{ r

where U; and U; are the set of users that rated items i and j, respectively. In addition to the
scalability advantages compared to user-based approaches (Linden et al., 2003; Deshpande and
Karypis, 2004), item-based methods often provide more relevant recommendations since they
are based directly on the ratings provided by the active user, while user-based methods predict
ratings based on the opinion of similar users (Aggarwal et al., 2016).

The user-based and item-based similarities defined in Eqgs.(2.4) and (2.6), respectively,
are designed to work with explicit feedback. They can be adapted to work with implicit feedback
by considering r,; = 1 for every known observation (u,i), and r,; = O for the remaining
unknown values in the feedback matrix R. With these considerations, the cosine measure and the
implementation can be simplified, since the similarities between users or items are computed
based on co-occurrence counts. For the user-based approach, Eq.(2.4) can be rewritten as:

sim(i, j) = cos(rl , J) (2.6)

Zie(fuﬂjv)ruirvi 3 |Z, N 1,|

\/Ziefu rii\/ZieI‘,r\%,‘) “|1;‘|X '|L|

sim(u,v) = cos(ry,r,) = 2.7)

27

For the item-based approach, Eq.(2.6) can be simplified similarly:

sim(i, j) = cos(r!,rl) = Due(intd;) Tuiluj U N U, |

o) \,Zue(bll ri[ﬂZue(Llj rli]) |%{l X |%{1|

Similar to the prediction with explicit feedback, the prediction with implicit feedback
can be made for the user-based and item-based approaches with Eqgs.(2.3) and (2.5), respectively.
The main difference is that 7,; becomes a score prediction, and a top-N recommendation list can
be generated by sorting candidate items by decreasing 7,,;.

The main advantages of the aforementioned methods are their simplicity, straightforward
implementation and explainability of recommendations. As these only require the computation
of similarities and have only one parameter, k number of neighbors, their implementation
and deployment is simple and straightforward. Also, it is easy to justify its underlying
recommendations, specially for the item-based approach, since the system will recommend items
that are similar to the ones the user previously interacted with (Linden et al., 2003; Aggarwal
et al., 2016).

However, these methods suffer from scalability issues, since their space and time
complexity grows with the number of users and items in the system (Sarwar et al., 2001). Another
disadvantage is their sensitivity to sparsity. Since these methods require sufficient user feedback
in order to characterize users and items and consequently generate relevant recommendations,
the similarity computation is difficult when the occurrence of mutually interacted items between
users is infrequent (Desrosiers and Karypis, 2011; Aggarwal et al., 2016).

Alternatively, graph-based models are suitable options to define similarities in memory-
based methods in order to overcome sparsity limitations (Aggarwal et al., 2016). Hence, we next
describe graph-based approaches.

(2.8)

2.3.1.1 Graph-based approaches

The sparsity of the user-item feedback matrix poses a major challenge in the computation of
similarity in the aforementioned memory-based methods. An alternative to overcome this
challenge is to define similarities with graph-based models, where similarities are inferred with
the use of either structural transitivity or ranking techniques (Aggarwal et al., 2016), which are
described in this section. In graph-based models, data is represented as a graph where nodes are
users, items or both, and edges connect nodes based on similarities or user-item interactions,
and weights can be assigned to edges to represent the strength of the connection (Desrosiers and
Karypis, 2011).

Figure 2.1 presents an example of a movie-based dataset modeled as a bipartite graph,
where the two sets of nodes represent users and items, and a user u is connected by an edge to
item { if u has interacted with i before. This example highlights the main difference between the
user-based and item-based nearest neighbors approaches described previously, and graph-based
approaches. In the former, the predicted rating #,; of user u to item i is given using only the nodes
connected directly to u or i. In sparse matrices, such direct connectivity exists only for a small
subset of nodes, and there is no distinction on the similarity of unconnected nodes. For instance,
consider item Ben-hur. By using a traditional nearest neighbors approach, the neighborhood
of Ben-hur will include only items Gladiator and Spartacus, and no distinction can be made on
the remaining items. In the latter, however, nodes that are not directly connected are allowed to
influence each other by propagating information through the edges of the graph. The weight of

28

wv)
g 5 2
[
= I:'—:] e (¥ [¥]
2 g 2 &5 T &
o w T o o |~
3 =] -] o <
o] w o s a
© 9O a 0 w =n USERS ITEMS
U, | 1 5 2 GLADIATOR
u, 5 4 Coenur >
U,| 5 3 1 ~(_ sPARTACUS
u, 3 a
GODFATHER
U, 3 |5
GOODFELLAS
Ug | 5 4
U, SCARFACE
(a) Example of a rating matrix. (b) Corresponding user-item bipartite graph.

Figure 2.1: Example of a rating matrix and corresponding user-item bipartite graph for a movie-based dataset
(Aggarwal et al., 2016).

an edge measures the amount of information that is allowed to pass through, and the influence
of nodes that are closer to a source node should be higher than the influence of nodes that are
further away in the graph, thus creating indirect connectivity between nodes (Desrosiers and
Karypis, 2011; Aggarwal et al., 2016). This can be achieved for instance with random walk-based
methods, described shortly after. We can see in Figure 2.1(b) that Ben-hur reaches every item on
the graph if we expand the number of steps in a random walk, thus resulting in more meaningful
neighborhoods. Hence, the exploitation of structural transitivity for the recommendation process
reduces the impact of sparse feedback matrices (Aggarwal et al., 2016).

The structural transitivity is associated with the manner in which data is used to model
the graph. In essence, items can be recommended to users with two different approaches:
path-based and random walk-based strategies. In the path-based approach, the similarity between
two nodes is inferred based on the number and length of paths connecting the two nodes. In the
random walk-based approach, the similarity between users or items is evaluated as the probability
of reaching these nodes in random walks (Desrosiers and Karypis, 2011; Aggarwal et al., 2016).
Before we discuss these two approaches, we introduce some notation.

Let G = (V, &, w) denote a weighted graph, where V = {v,v», ..., v, } denotes the set
of nodes and & C V X V denotes the set of edges. Without loss of generality, we assume that G
is strongly connected and directed, unless otherwise specified. Each edge e has an associated
weight w(e) € R,.

Let A denote the adjacency matrix of graph G, where each entry a;; specifies the weight
of the edge connecting nodes i and j:

w(i,j) if(i,j)e&

= 2.9
Y 0 otherwise 29)

For unweighted graphs, then a(i, j) = 1 if (i, j) € & and 0 otherwise. Let D denote the diagonal
degree matrix of G where the weighted out-degree of node i is: d;; = X.(; j)eE @ij-

29

A walk is a finite or infinite sequence of edges which joins a sequence of vertices.
A path is a walk in which all vertices and therefore edges are different. A random walk is a
process on G that begins at a given node, and at each step moves to an adjacent node selected
at random. A t-step random walk starting from node s € V is a random sequence of nodes
RWs; = (vo,v1,...v;) where vy = s and at the i-th step a node v, is randomly chosen from the
neighbors of v;.

The probability of transitioning from node i to j is proportional to the weight of the
corresponding edge (i, j):

(2.10)

PU:{meaMM) if (i,)) €&

0 otherwise

which can be simplified to p;; = a;;/d;;. The sequence of random nodes RW,; forms a Markov
chain (Lovdsz et al., 1993; Jin, 2019). The transition matrix for a random walk is given by
P = D7'A, and the t-step random walk transition probability matrix is given by:

P’ = (D7'A) (2.11)

Let 7' denote the state probability distribution at step 7, the rule of the walk can be
expressed by (Lovész et al., 1993):

atl=n'p (2.12)

Under the condition that the transition matrix P is row-stochastic, i.e.,), jev Pij =
1,Vi € V, this process converges to a stable distribution vector 7%, which corresponds to the
positive eigenvector of P with an eigenvalue of 1 (Desrosiers and Karypis, 2011). With the
stationary distribution 7%, items can be recommended according to their ranking in 7. This is
the basis of the seminal algorithm PageRank (Page et al., 1999).

PageRank (Page et al., 1999) is an algorithm originally designed to rank pages in
the Web, in order to list pages according to their relevance. PageRank is computed on the so
called web-graph. Web-graph is a directed graph with n nodes, representing web pages, and
edges representing hyperlinks, forming a n X n transition matrix. The underlying assumption in
PageRank is that the existence of a hyperlink connecting a node u to another node v implies that
page u votes for the relevance of page v, and a page that is connected to by many pages with high
PageRank also receives a high rank itself. PageRank is defined as the stationary distribution of a
random walk, such that the state space is the set of Web pages.

The web-graph, however, is not row-stochastic, i.e, several nodes do not have out-links.
Hence, in order to make the graph connected, it is assumed that a random surfer can teleport to
an arbitrary node with a small probability, rather than always follow an out-link from the current
node. The new transition matrix PR for the graph is then written as (Avrachenkov et al., 2007):

PR =P+ (1 —y)(1/n)E (2.13)

where E is a matrix such that all entries e;; = 1, y is the probability of selecting an adjacent node
and (1 —) is the probability of jumping to a random page. Thus, following Eq.(2.12), PageRank
vector pr can be computed as (Fogaras et al., 2005):

t+1

npr = ¥7prP+ (1 —y)e/n (2.14)

30

where e is a vector with size n where all values are 1 and n is the number of nodes in the
web-graph. The first term of the equation represents the case where the random walk follows an
adjacent link from the current node with probability vy, and the second term represents the case
where the random walk selects any page at random with probability (1 — y) (Leskovec et al.,
2020). Hence, a ranking of vertices can be produced with 7pR.

Instead of selecting any node from the graph at random, it is possible to bias the
probability distribution towards a set of nodes, resulting in a personalized ranking. This approach
is known as Personalized PageRank (PPR) (Jeh and Widom, 2002; Haveliwala, 2003). Another
possibility is to produce a ranking of nodes based on their relevance towards a source node. Then,
instead of randomly selecting any node from the graph, the walk restarts on the source node.
This approach is known as random walk with restart (RWR) (Leskovec et al., 2020).

In a random walk with restart, the walker moves from a node to one of its neighbors at
random based on Eq.(2.10) with probability y, and with (1 — y) probability the walker returns
back to the initial node s € V. Thus, nodes closer to the source node are considered to be more
relevant since the walker will visit such nodes more frequently due to the restart factor. Let e;
denote a row vector with 1 in the column for node s and 0’s elsewhere. The stationary distribution
nil, ast — oo, of the random walk with restart starting at node s can be expressed by (Andersen
et al., 2006):

= (1-y)e Z y'P! (2.15)
t=0

With these definitions, several algorithms can be used to rank vertices and consequently
produce recommendations. As briefly mentioned, these algorithms can be categorized into two
main approaches: path-based and random walk-based approaches. Next, we describe these
methods.

Path-based strategy. In these approaches the distance between two nodes of the graph is
measured as a function of the number of paths, and the lengths of these paths connecting the two
nodes (Desrosiers and Karypis, 2011).

The first graph-based approach for CF computes the similarity between two users based
on their shortest distance in a directed graph, termed user-graph, where nodes represent users and
edges are determined based on the concepts of horting and predictability (Aggarwal et al., 1999).
Horting is an asymmetric relation that measures the number of mutually rated items between two
users. A user u horts another user v if |1, N Z,| > y or % >, where 7, and 7, are the set of
items rated by users u# and v, respectively, and y and are predefined parameters. Predictability
measures the level of similarity between the ratings of u and v, where v predicts u if u horts v
and there exists a linear transformation /(-) such that

2ke(r,ng) [Tuk = 1(rve)|
<w
|7, N T, |

where w is another predefined parameter. Directed edges in the graph represent the relations of
predictability, such that an edge from u to v exists if v predicts u. The rating of a active user u for
an item 7 is predicted using all the shortest directed paths from u to other users that have rated i
(Aggarwal et al., 1999, 2016).

Data can also be modeled as an unweighted and undirected bipartite graph, defined
as G = (V=UUITI,E). We refer to such graphs throughout this thesis as user-item bipartite
graphs or simply user-item graphs . In such a graph, the number of paths between a user u and an

31

item 7 can be a measurement of their compatibility (Huang et al., 2004). More specifically, it is
possible to use the weighted number of distinctive paths between u and 7, whose length is smaller
than a given threshold K, in order to determine the affinity between them. Considering that the
graph is bipartite, K should be an odd number, i.e., a path starts in a user node and stops at an
item node. To decrease the influence of longer paths, the weight given to a path of length k is ¢,
where ¢ € [0, 1], and the number of k length paths between pairs of nodes is given by A*. Thus,
the weighted number of k-paths between two nodes, also referred to as Katz measure, results in a
user-item score matrix S¥ given by (Desrosiers and Karypis, 2011; Aggarwal et al., 2016):

K
SK = Z oFAF (2.16)
k=1

and recommendations can be made to a active user u by sorting candidate items based on the
descending values in sX.

Random walk-based strategy. In these approaches, the similarity between two nodes is
evaluated as the probability of reaching these nodes in a random walk. Several algorithms based
on random walks have been proposed for the recommendation problem. To measure distance
between two nodes in a graph, the hitting time and commute time measures can be used. Hitting
time is the average number of steps needed in a random walk starting from a node i to reach a
node j for the first time. The hitting time /;; can be expressed recursively as (Sarkar et al., 2008):

0 ifi=j
hij =) (2.17)
I+ X pichij otherwise

A limitation of hitting time is that it is not symmetric. A related measure that overcomes this
issue is the commute time, defined as ¢;; = h;; + hj; (Fouss et al., 2005; Sarkar et al., 2008), and
corresponds to the average number of steps required to reach a node j from a node 7, and go back
to i. In a user-item bipartite graph, recommendations are made by sorting candidate items based
on these metrics.

It is also possible to model user-item relations based on the correlation between items.
In such a case, a weighted and directed graph is constructed where each node corresponds to
an item from the catalog, and each edge corresponds to a relationship between two items. We
refer to such graphs throughout this thesis as item-graphs. ItemRank (Gori and Pucci, 2007)
is an effective algorithm based on PageRank (Page et al., 1999) that ranks the preferences of a
active user u for candidate items 7 as the probability of u to visit i in a random walk on a directed
item-graph, where nodes represent the items and edges connect items that have been rated by
similar users. The edge weights are defined as the number of users that have rated both items,
and a normalized correlation matrix C is defined, such that the correlation between two items is
proportional to the number of users that rated both items, resulting in asymmetric weights.

Similar to PageRank, the random walk can, at any step ¢, visit an adjacent node defined
in C with probability 7y, or teleport to another node according to a probability distribution e,
with probability (1 —). Thus, for an active user u, a personalized ranking vector IR, can be
iteratively computed until convergence as follows:

IR =y IR, -C+(1-7)-e, (2.18)

32

Finally, the algorithm recommends to the active user u items with the highest ranking in IR;’.
Experiments show that ItemRank is superior to other bipartite based algorithms, including hitting
time, commute time and Katz measure (Fouss et al., 2005, 2007).

The main advantage of graph-based approaches is that these methods are more effective
for sparse matrices, since they are able to capture indirect connectivity between nodes, specially
with random walk-based methods (Aggarwal et al., 2016). Several approaches have been designed
to rank nodes based on random walks (Baluja et al., 2008; Xiang et al., 2010; Vahedian et al.,
2017; Eksombatchai et al., 2018; Nikolakopoulos and Karypis, 2019). Despite their advantages,
the computation of stationary distributions is expensive and scalability issues arise for large
datasets. An alternative to deal with this issue is to generate recommendations based on short-step
random walks.

Cooper et al. (2014) proposed three ranking algorithms based on short-step random
walks on bipartite graphs: P?, P°> and Pi. LetG =(V =(UUT),E) denote a bipartite graph,
where U and I represent the set of users and items, respectively, and & represents the set of
edges, such that an unweighted edge exists between user # and item 7 if u interacted with i. This
formulation results ina (|U| + |Z|) X (|U| + | I |) adjacency matrix, where a,; = 1 if u interacted
with i and O otherwise. The ranking of items is made with the t-step random walk transition
probability matrix P defined in Eq.(2.11), and in the bipartite graph # must be an odd number,
so that the walk starts in a user node and finishes in an item node. Each entry p!. gives the
probability that user u reaches item i after ¢ steps. Thus, P* and P° are based on the distribution
of the random walk after three and five steps. Algorithm Pfl raises every entry from P to the
power of a parameter @. Experiments show that taking longer steps deteriorates accuracy, and
that P performs better than ItemRank (Gori and Pucci, 2007) and other bipartite graph-based
algorithms (Fouss et al., 2005, 2007), and further improvements can be obtained with Pi.

Additionally, the work of Cooper et al. (2014) also highlighted the impracticability of
implementing the aforementioned algorithms through matrix multiplication, since they require
O(|U|+|T]) x (]U| +|T]) in space. Hence, the paper explores an alternative approach, which
is to approximate the distributions through simulations of random walks. This method is much
more memory efficient, since it requires O (|V| + |E|) and the graphs are typically very sparse,
albeit at the expense of accuracy. Recommendations to a given user u are made by ranking items
based on information collected from samples of random walks starting from node u. Thus, the
number of samples in the simulation results in a trade-off between scalability and accuracy.

Christoffel et al. (2015) argues that the ranking of items produced by algorithm P*
is highly influenced by their popularity. To compensate for the influence of item-popularity,
they proposed algorithm RP3, which is based on P>. In order to increase diversity in the

recommendations, RP% re-ranks items based on their popularity. Let pi ; denote the probability

that a 3-step random walk starting in user u ends in item i. RP;; re-weight the score as follows:

3
pui

B
dy;
where d;; is the degree of node i and S € R, is a parameter that controls the influence of popularity,
such that when g8 = 0, RP;, produces the same score as P>. Experiments show that RP% increases

Pl = (2.19)

diversity and also accuracy compared to P* and Pfy. Another contribution from Christoffel et al.
(2015) is a sampling procedure to approximate algorithms P>, P?Y and RP;Z with simulations of
random walks as a Bernoulli process. We discuss this procedure in more detail in Chapter 3.

33

Overall, algorithms P?Z and RP% are shown to be viable and competitive for the top-N
recommendation problem (Dacrema et al., 2021). Next, we discuss model-based algorithms,
which are established as state-of-the-art.

2.3.2 Model-based approaches

Model-based collaborative filtering approaches use the collection of user interactions to infer a
predictive model that represents user preferences and item characteristics through a set of model
parameters. These parameters are learned from the available training data and then the predictive
model is used to provide recommendations (Adomavicius and Tuzhilin, 2005; Koren and Bell,
2015).

The main advantages of model-based algorithms in comparison to memory-based
methods are space-efficiency, since the size of the inferred model is typically much smaller
than the rating matrix, and also training and prediction speed, as memory-based methods must
compute the similarities and then generate the recommendations, while model-based methods
use the learned model to make predictions efficiently (Aggarwal et al., 2016). Despite these
advantages, similar to memory-based approaches, model-based methods are sensitive to sparsity.

Several model-based approaches have been explored, such as Bayesian classifiers (Chien
and George, 1999; Miyahara and Pazzani, 2000), clustering algorithms (Breese et al., 1998;
Ungar and Foster, 1998), Markov decision processes (Shani et al., 2005; Rendle et al., 2010) and
neural networks (Salakhutdinov et al., 2007; Wang et al., 2015; Wu et al., 2016; Zhang et al.,
2019). The most successful techniques among model-based approaches are matrix factorization
methods (Koren et al., 2009). Hence, next we discuss such techniques.

2.3.2.1 Matrix factorization approaches

Matrix Factorization (MF) methods (Koren et al., 2009) model both users and items to a common
latent factor space of dimensionality k where the interest from a user towards an item is measured
by the inner product of their embedded vectors. MF methods associates each user u with a vector
v, € Ry, and each item i is associated with a vector w; € R;. The latent factors measure the
characteristics that an item possesses and the interest of users in these features. These features
are inferred from past user behavior. Thus, the premise of MF methods is that the interest of user
u towards an item 7 is captured by the dot product between their corresponding latent factors.
The estimated value of the rating 7,; given by u to i is defined as:

Pui = Vu - WI (2.20)

1

The number of latent features k is a parameter that controls the model’s size. Thus,
MF methods decompose the original rating matrix R € R;,x, with m users and n items into two
low-rank matrices V € R,,,xx and W € R, representing user and item latent factors respectively,
and R is approximated as:

R ~ VW’ (2.21)

The major challenge is to compute the vectors v, and w; for each user « and item i,
respectively. The learned latent factors can then be used to predict unobserved ratings in R, and
recommendations are computed based on these predictions.

Earlier approaches relied on single value decomposition (SVD) for matrix decomposition.
SVD decomposes the rating matrix R into R = VEW!, where V € R,,xx 1s the matrix of left
singular vectors, W € R, is the matrix of right singular vectors and X € Ry is a diagonal

34

matrix containing the k singular values. By selecting the d < k largest singular values and the
corresponding singular vectors, matrix R can be approximated as R = R, = VdZdWLTi. Since
SVD requires a full matrix for decomposition, and matrices in the context of recommender
systems are typically very sparse, SVD approaches for CF relied on value imputation to fill
missing values in the rating matrix (Sarwar et al., 2000; Kurucz et al., 2007). However, imputation
makes the rating matrix dense, raising scalability problems, and introduces bias in the data
(Aggarwal et al., 2016).

An alternative to SVD is to learn the parameters V and W using only the observed
ratings (Funk, 2006; Takdcs et al., 2007; Koren, 2008). To learn the vectors v, and w;, training is
performed by minimizing the regularized squared error for known ratings in R and the predicted
rating (Koren et al., 2009):

min > (rui = Vi - W) + AVl + Iwil1?) (2.22)
vV,w

(u,i)eD

where D is the set of user-item pairs for which r,; is known and A is a parameter that controls
the amount of regularization in order to avoid overfitting. The two most popular methods to
minimize this objective function are Stochastic Gradient Descent (SGD) (Funk, 2006; Koren,
2009) and Alternating Least Squares (ALS) (Bell and Koren, 2007). SGD-based optimization
generally performs better in terms of accuracy and run time performance than ALS, although
ALS benefits from parallel execution (Koren, 2009).

Stochastic gradient descent. Stochastic gradient descent (SGD) is an iterative optimization
algorithm that approximates the true gradient based on an estimation computed from a randomly
selected subset of the available observations. SGD first initializes the user and item latent
factors V and W randomly, usually following a Gaussian distribution. Then, the algorithm
performs several iterations, also known as epochs, until reaching a stopping criteria, such as
convergence or maximum number of epochs. At each epoch, SGD loops over all observations
(u,i,r), i.e., the rating given by user u to item i, and modifies the corresponding parameters
v, and w; in the opposite direction of the gradient of the error by a magnitude proportional to
n < 1, a hyperparameter known as learning rate. For each given training observation (u, i, r), the
corresponding error is calculated as:

erry; = Tyi —Vy - W (2.23)

and the latent factors v, and w; are updated as:

Vu = Vy +n(erryiw; — Avy)
(2.24)
Wi = W; +n(erryv, — Aw;)

Algorithm 1 describes the training procedure of SGD (Funk, 2006). MF models are
considered to be state-of-the-art in recommender systems (Aggarwal et al., 2016), and several
extensions (Koren, 2008; Takécs et al., 2009; Koren, 2009) and algorithms have since been
proposed, such as Personalized Matrix Factorization (PMF) (Mnih and Salakhutdinov, 2007),
Weighted Matrix Factorization (WMF) (Hu et al., 2008), Bayesian PMF (Salakhutdinov and
Mnih, 2008) and Bayesian Personalized Ranking Matrix Factorization (BPR-MF) (Rendle et al.,
2009).

The SGD procedure described in Algorithm 1 is designed for explicit feedback, where
the training data is a set of observations (u, i,), each representing a rating r given by a user
u to an item i. Algorithm 1 can be easily adapted to work with implicit feedback by assuming

35

Algorithm 1 Batch SGD
Require:
D ={({u,i,r)),..., {u,i,r)),}: dataset
k: number of latent factors
it: number of iterations
A: regularization factor
n: learning rate

1: for u € users(D) do

2: v, < initializeVector(k)

3: v, ~N(0,0.1)

4: for i € items(D) do

5: w; « initializeVector(k)

6: w; ~ N(0,0.1)

7. for count <« 1to it do

8: D — Shuffle(D)

o: for (u,i,r) € D do
10: erry; < ryi— vy - Wl.T
11: vy =V, +n(err,w; — Avy,)
12: W; = W; +n(err,v, — AW;)

that » = 1 for all cases (Vinagre et al., 2014b). This assumption impacts the training data, as
the algorithm will assume » = 1 for every known (u, i), and the error calculation. For implicit
feedback, the error calculation (Eq.(2.23)) is adapted to err,; =1 —v,, - wl.T. Hence, instead of
predicting a rating, the prediction #,; becomes a value representing the preference level of user u
towards item i, measured as:

Jui = |1 = il (2.25)

and candidate items for each user are sorted by descending proximity to 1 according to f,;. In
other words, Eq.(2.25) measures the proximity of the predicted rating to 1, which would indicate
a positive preference of u towards i (Vinagre et al., 2014b).

Alternating least squares. Alternating least squares (ALS) alternates between fixing one of
the two unknown parameters, V and W, and repeatedly iterating over the remaining ones until
convergence or satisfying a stopping criterion (Bell and Koren, 2007). All entries of matrices V
and W are restricted to be non-negative, which avoids overfitting and guarantees convergence.
Denote by I the identity matrix. In essence, ALS repeatedly executes the following two steps
until convergence (Hu et al., 2008; Tak4cs and Tikk, 2012):

1. Fix item matrix W and solve the least-square problem for the user latent matrix V,
defined as (Hu et al., 2008):

V=(WW? + D)~ 'WR” (2.26)

2. Fix user matrix V and solve the least-square problem for the item latent matrix W,
defined as (Hu et al., 2008):

W = (VV! + D)~ 'VR? (2.27)

36

2.3.2.2 Learning to rank

Another possible formulation for the recommendation problem besides the classical matrix
completion one, is to generate a list of ranked items. In other words, instead of predicting the
value of given ratings, the recommendation problem is posed as providing a ranking of items to
users based on their perceived interests, i.e., top-N recommendation problem. The most popular
ranking approach is the pairwise one, which considers the relative ranking of predictions for pairs
of items. Such popularity is influenced by the proposal of Rendle et al. (2009).

BPR-MF. Rendle et al. (2009) proposed a Bayesian optimization method that generates
personalized ranking on a set of items on a user basis, which is then applied on both matrix
factorization and k-nearest-neighbors models. Their method, Bayesian Personalized Ranking
(BPR), uses item pairs as training data (implicit feedback), and provides to each user u a
personalized total ranking >,C 7 X 7, satisfying the three properties of a total order. An
important assumption in their method is that all items 7 that were consumed by u precede all
items j that were not consumed by u in the total ranking >,. Then, BPR is modeled to optimize
the posterior distribution p (6| >,), where 6 denotes the parameters of the underlying model,
such as matrix factorization, resulting in algorithm BPR-MF, where 6 = (V, W), and V and W
represent user and item latent factors, respectively.

Learning in BPR-MF relies on SGD, and uniform sampling to select so-called negative
items (unseen) and artificially introduce negative feedback in the dataset. Observations in the
dataset are defined as (u, i, j), where (u, i) represent an actual observation, and j represents an
item sampled from the set of unobserved items by u. Relative ranking of i and j by u is predicted
by:

A T T
ruij - Vu . Wi —_ VM . Wj (2.28)

For each observation (u, 7, j), latent factors for user u# and items 7 and j are updated as:

e_fuij 8
© — O+ ———— X —Fyi; + 16O (2.29)
l+euii o

where

w,—w; if® =y,

0 Vu if®=w,;

— i = 2.30

do |-, if®@=w; (230
0 otherwise

2.4 HYBRID METHODS

As discussed in the previous sections, CBF and CF techniques rely on different sources of
data to make predictions and provide recommendations. As such, CBF and CF have their own
advantages and shortcomings. CBF provides transparent recommendations and can operate in
cold-start scenarios, while it suffers from overspecialization and content availability. CF on the
other hand can recommend items when content is not available by estimating relevance based on
the preferences of other users, while it suffers from cold-start issues.

Hybrid methods aim to combine CBF and CF to take advantage of its strengths and
address its shortcomings. By combining different sources of data into a single model, the

37

limitation of content-based and collaborative systems, when used separately, can be reduced
(Adomavicius and Tuzhilin, 2005; Burke, 2007). In fact, there is no restriction on combining
recommender systems, and it is also possible to combine recommenders from the same class of
technique (Burke, 2007). A categorization for hybrid RS that combines CBF and CF methods is
presented as follows (Adomavicius and Tuzhilin, 2005):

* Combining separate recommenders. Separate collaborative and content-based systems
can be implemented and their predictions combined to provide one final recommendation,
using either linear combination, voting schemes, or selecting one of the recommenders
based on a prediction metric (Pazzani, 1999; Adomavicius and Tuzhilin, 2005).

* Adding content-based characteristics to CF models. Content-based profiles for users
can be maintained and used for similarity computation to reduce sparsity issues related
to collaborative approaches (Pazzani, 1999). These approaches can reduce the impact
of cold-start in CF methods (Burke, 2007).

* Adding collaborative characteristics to CBF models. Collaborative filtering models
can be used on a group of content-based profiles to perform dimensionality reduction
(Adomavicius and Tuzhilin, 2005).

* Developing a single unifying recommendation model combining CBF and CF. Many
approaches have been devised following this approach, such as a unified probabilistic
method for combining collaborative and content-based recommendations (Schein et al.,
2002) and Bayesian regression models (Adomavicius and Tuzhilin, 2005).

2.5 CONTEXT-AWARE COLLABORATIVE FILTERING

In several applications, contextual information affects the recommendation process as the
current circumstances impact the expectation of users and items’ suitability for recommendation.
For example, current user location is highly relevant when recommending points of interests.
Similarly, in travel recommendations, appropriate destinations change according to the season
and time of year. Another example is music consumption, where the preferences of user depend
on the activity at hand or time of day. Finally, social information (company of other people)
can affect the choice of movie to be watched. The assumption that context (location, temporal,
social information) should be taken into consideration when providing recommendations further
advanced the RS field. Recommender systems that somehow exploit such information are termed
context-aware RS (CARS).

CARS model and predict user preferences by integrating contextual information into
the recommendation process with additional dimensions of data besides user and item ones. The
utility function formalized in Section 2.1, which models ratings as the function of only users and
items, is adapted to x : U X I x C — R, where C covers the context domain, and represents the
set of contextual features. Adomavicius et al. (2021) categorizes three paradigms to incorporate
contextual information:

* Contextual pre-filtering. Context information filters data that are selected to be used as
input for the recommendation model. An example is to split user profiles into several
micro-profiles, each representing the given user in a particular context, such as time
span (morning, evening, weekdays) (Baltrunas and Amatriain, 2009).

38

* Contextual post-filtering. Context is initially ignored and predictions are made with a
conventional model. Then, the resulting recommendation list is adjusted to the active
user considering the contextual information, e.g., removing items that do not match the
current context or adjusting the ranking accordingly (Panniello and Gorgoglione, 2012).

* Contextual modeling. Directly uses contextual features at the learning module, resulting
in multidimensional recommendation models, as defined by CARS’ utility function.
Existing neighborhood-based (Sarwar et al., 2001) and model-based approaches (Koren,
2009) can be extended to include contextual information (Adomavicius et al., 2021).

The major advantage of contextual pre-filtering and post-filtering is that it allows the
usage of any two dimensional recommendation technique, i.e., modeled according to the original
utility function. Contextual modeling, on the other hand, essentially represents predictive models
that incorporate contextual information in the learning process in addition to the user and item
data (Adomavicius et al., 2021).

For more information on CARS, see Adomavicius et al. (2021). In this thesis, we
make use of temporal information by acknowledging that user feedback follows a naturally
chronological order. Intrinsically to this premise is the assumption that user preferences and
item dynamics, e.g. popularity, change over time at different rates based on different factors.
Also, new users and new items enter the system while old ones leave. These factors should
have directly influence on the design of recommender systems, as the user-item relations that
these models aim to learn are actually dynamic (Vinagre et al., 2015b). Moreover, temporal
information is generally easy to collect through timestamps and requires no additional effort from
users. These assumptions somewhat intersects with two subareas of CARS: time-aware RS and
sequence-aware RS. Although our work and contributions fundamentally differs from these two
areas, similarities are shared based on these premises. Hence, we discuss them next.

2.5.1 Time-Aware Collaborative Filtering

Time-aware recommender systems (TARS) are a specialized type of CARS, with its main feature
being the usage of time context information at some point of the prediction process, while
being able to provide appropriate recommendations depending on the target recommendation
time, based on previous preferences expressed by users at similar time contexts. In other words,
time-aware models exploit time information related to past user preferences, such as timestamps
associated with ratings/interactions (Campos et al., 2014).

Campos et al. (2014) identifies two ways of representing time variable: as a continuous
contextual variable, e.g. timestamps, and as categorical contextual variables, e.g. day of week or
season of year. Approaches that use timestamps - continuous time-aware approaches - include
adapting classic models such as k-nearest-neighbors (Sarwar et al., 2001) and matrix factorization
(Koren, 2009) to explicitly consider the target time in the predictions. Approaches that use
categorical variables include the aforementioned use of micro-profiles (Baltrunas and Amatriain,
2009).

One of the most successful approaches for time-aware recommendation is tensor
factorization (Karatzoglou et al., 2010; Rendle and Schmidt-Thieme, 2010; Xiong et al., 2010).
Tensor factorization is similar to traditional MF. However, instead of factorizing a matrix, it
factorizes a multidimensional tensor that includes extra dimensions, which represents contextual
information, such as time features. This way, ratings are directly modeled based on the time that
they occur, such that user, item and time latent factors are learned in the process. The rating
matrix is extended into a three dimensional tensor R € Ryq|x|7|x|7|, Where dimensions cover

39

the set of users U, the set of items J and the set of time features 7. Similar to the MF model,
users, items and time are modeled by latent factor vectors of k dimensions by minimizing the
prediction error on known ratings. Denote by x; the feature vector of time step #. The rating
matrix is approximated as:

k
RzZVu-wl--X, (2.31)
=0

Tensor factorization in general outperforms static MF models (that do not account for
time information) in terms of accuracy at the expense of higher time complexity (Xiong et al.,
2010). For more information on TARS, we refer the reader to the survey of Campos et al. (2014).

2.5.2 Sequence-Aware Collaborative Filtering

Sequence-aware CF (Quadrana et al., 2018), also termed as time-dependent CF in the literature
(Shi et al., 2014; Vinagre et al., 2015b), aim to capture and detect features attached to continuous
temporal dynamics. These features include drifts in user preferences, changes in item dynamics
such as popularity, short-term trends motivated by external factors and the emergence of new
users and items. This is achieved by looking at user generated data as a chronologically ordered
sequence of events (Vinagre et al., 2015b).

Sequence-aware CF shares several similarities to TARS, in that both are concerned with
time-related phenomena. The main difference is that TARS is often concerned with the exact
point of time of past user interactions, while sequence-aware is simply interested in the sequential
order of events (Quadrana et al., 2018), which naturally captures the aforementioned features
related to time, and try to detect patterns in the sequence itself.

Inherently related to sequence-aware CF are the notions of short-term and long-term
user preferences/profiles. Whereas long-term represents the preferences of a given user learned
from her past interactions, short-term represents her current interests, or even the interests of an
anonymous/unregistered user (Ricci et al., 2021). Short-term preferences are related to limited
periods of time when users interact with the systems called sessions.

Hence, two RS fields that intersect between time-aware and sequence-aware RS are
session-based and session-aware recommendation. While session-aware RS assume that the
system has knowledge about all past user sessions, thus being able to model long-term user
preferences, session-based RS considers only the last session, and users are generally anonymous.
One main advantage of modeling both short-term and long-term user preferences, when possible,
is that it allows detection of the continuous temporal dynamics previously discussed. Our
work investigates online incremental algorithms in a more generic setting, without explicitly
considering sessions, but treat user feedback as a sequence. Surveys related to sequence-aware
RS can be found in Vinagre et al. (2015b) and Quadrana et al. (2018), and a survey regarding
session-based recommendation can be seen in Wang et al. (2021).

On the lines of TARS, algorithms for sequence-aware recommendation include adap-
tations of neighborhood-based and matrix factorization methods. One way to adapt these
approaches to this setting is to emphasize more recent observations with less relevance given
to past ones (Ding and Li, 2005; Liu et al., 2010; Vinagre and Jorge, 2012). Other algorithm
approaches include frequent pattern mining, k-nearest-neighbors and first-order Markov chains
(Ludewig and Jannach, 2018), reinforcement learning (Li et al., 2010; Pereira et al., 2019) and
deep learning (Hidasi et al., 2016; Wu et al., 2019; Zhang et al., 2019). We note here that despite
their simplicity, k-nearest neighbors approaches are among the most effective approaches for
sequence-aware CF (Ludewig and Jannach, 2018).

40

Finally, treating data as a chronologically ordered sequence allows formulating the
recommendation problem under a data stream setting (Domingos and Hulten, 2001; Gama, 2012;
Vinagre et al., 2015b). Addressing the recommendation issue in such setting is the main focus of
our work, and we discuss it in greater detail in the following chapters.

2.6 DISCUSSION

In this chapter, we introduced several concepts related to the topic of recommender systems,
specially collaborative filtering techniques, which constitute the main focus of this work. These
techniques are based on the assumption that users that shared similar interests in the past are
likely to have similar interests in the future, thus creating an indirect collaboration between users
in order to improve the recommendations.

Although CF models are generally efficient in modeling long-term user preferences,
and short-term ones in the case of sequence-aware RS and its variants, they are traditionally
designed to learn from batch-data, i.e., they require retraining to account for new data, and
disregard runtime performance. This assumption results in several shortcomings, mainly related
to scalability and adaptability, since the amount of data always increases, becoming unfeasible to
retrain these models as data is generated.

To address these issues, we formulate the top-N recommendation problem under a data
stream setting (Domingos and Hulten, 2001; Gama, 2012), which assumes that user feedback
incomes continuously at fast rates, new users and items enter the system, known users change their
opinion and tastes over time (Koychev and Schwab, 2000; Koychev, 2000) and an always-available
and up-to-date model must provide recommendations when required. In the next chapter, we
discuss such setting and its approaches, termed stream-based recommender systems (Vinagre
et al., 2021; Al-Ghossein et al., 2021).

41

3 STREAM-BASED RECOMMENDER SYSTEMS

So far, we have discussed some of the most relevant collaborative filtering techniques. These
techniques are batch-based, i.e., they operate under the assumption that past data is always
available and that the learned concepts are stationary. Although they are generally effective for
modeling user preferences, they also have several shortcomings. In real-world systems, user
feedback is generated continuously at fast rates, unpredictable order, and is potentially unbounded.

Generally, most recommender systems built an initial model following a large static
dataset that is then rebuilt periodically according to the arrival of new sets of data that are added to
the original dataset. In order to incorporate such new information, batch-based algorithms require
frequent retraining to stay up-to-date. Such batch-based procedure faces two main limitations,
related to scalability and predictive capability.

First, considering that the amount of data will always increase, scalability issues arises
and it becomes unfeasible to retrain these models as data is generated. As such, one way
of overcoming this problem is to reduce the number of updates and only do so periodically.
Conversely, this approach raises a second limitation. Performing only periodical updates limits
the ability of these models in incorporating new information. In other words, the system
disregards user feedback generated between updates and only considers it after the next one. This
restricts its capabilities of tracking temporal dynamics, such as current user preferences and item
popularity, even though users continuously provided more feedback. Disregarding continuously
generated information means that the recommendation system is immediately outdated. An
outdated model fails to quickly adapt to changes and to consider recent feedback, which negatively
affects predictive performance, as recent user actions are not taken into consideration before
recommendation.

An alternative approach to overcome the limitations of batch algorithms is to address
recommendation as a data stream problem (Domingos and Hulten, 2001). In fact, recommender
systems process data that is generated similarly to a data stream. New users and new items
continuously enter the system, user feedback is generated at unpredictable rates and order,
and previously known concepts are subject to changes over time, i.e., concept drift (Vinagre
et al., 2015b). Therefore, scalability to deal with increasing amounts of data is a fundamental
requirement for data stream settings.

In data stream mining, algorithms are designed to work incrementally. Incremental
algorithms learn solely from incoming observations, and these can be discarded after processing.
This premise addresses the shortcomings in scalability and missing adaptability related to batch
algorithms, since new concepts will be incorporated in the model without retraining. Also,
incremental updates offers a natural way to account for drifts in user preferences, as these will
immediately be incorporated into the underlying recommendation model. Finally, by immediately
incorporating information, the model is always maintained up-to-date. This leads to online
adaptive learning (Gama et al., 2014). Essentially, online adaptive learning is formally defined
based on three steps as follows (Gama et al., 2014):

1. Predict. When a new example x; arrives, a prediction J; is made using the current
model;

2. Evaluate. After receiving the true label y,, the loss function f (¥, y;) can be estimated;

3. Update. The example (x;, y;) can be used to update the model.

Table 3.1: Summary of the main differences between batch-based and data stream processing (Gama, 2012).

Batch-based

Data streams

Data access

Number of passes
Processing time
Available memory

Result

Random
Multiple
Unlimited
Unlimited
Accurate

Sequential
Single
Restricted
Fixed
Approximate

In an online setting, such steps are repeated continuously. The main issue is that there
is no control over the rate at which data is generated, which usually is very fast, nor the order
that they arrive in. Also, data streams are potentially unbounded. Thus, in order to keep up with
a stream, data needs to be discarded once processed as computational resources are restricted,
since the model must be updated on the current example before performing the next prediction.

In order to operate under data streams, incremental algorithms must have the following
prerequisites, as outlined by Domingos and Hulten (2001):

* It must process each observation faster than the rate of arrival of subsequent elements;

* It must use only a fixed amount of main memory, independently of the number of
observations;

* It must be able to build a model with a single pass over the available data;

* A usable model must be available at any point in time, as opposed to when it finishes
processing the data, since such processing may never end;

* The model must adapt to changes and stay up-to-date, but also maintain information
that is not outdated.

The main characteristics of batch-based learning and data stream mining are summarized
in Table 3.1 (Gama, 2012). Whereas in batch-based learning it is acceptable to perform multiple
passes on the available data with random access, data stream processing must learn solely from
sequentially incoming data on a single pass with restricted processing time and available memory.
This difference directly affects predictive performance when we consider the three steps of online
adaptive learning.

In batch-based learning, it is impossible to update the underlying model for every new
example. As previously discussed, to overcome this problem a solution is to reduce the number
of updates, only doing so sporadically. By only updating the model periodically, the predict
and evaluate steps would consider an static model trained at a previous time point. Examples
generated between updates are disregard until the next update, and would require storage to be
used in the next update. Incremental learning, on the other hand, would immediately update the
model with the new example that could then be discarded, thus being more suitable for real-world
online scenarios.

Under a data stream framework, the top-N recommendation problem can be formalized
as follows. Let U = {uy,us,...} denote the increasing set of users and 7 = {ij,i,...} the
increasing set of items. User feedback is modeled as a data stream, where each observation is
defined as (u, i, 1), indicating that user u interacted with item 7 at time 7. These interactions are

43

naturally a chronological sequence. The goal of an incremental model is to learn and update
itself based on the current observation (u, i, #) and recommend relevant unknown items to users
based on up-to-date information, allowing the continuous inclusion of new incoming users and
items into the model in scalable manner. Thus, for each received observation, the aforementioned
three steps of online adaptive learning (Gama et al., 2014) are adapted as follows for the top-N
recommendation problem (Al-Ghossein et al., 2021):

1. Predict. Recommend a ranked list of N items for the active user with the current model;

2. Evaluate. After collecting the actual interaction of user u, evaluate the quality of the
recommended list;

3. Update. The interaction (u,,t) can be used to update the recommendation model.

In this work, we focus on implicit feedback, since in real-world system they can be
easily collected from all users (Jannach et al., 2018), e.g., from click-through data. Hence, each
incoming observation (u, i, t) indicates a positive preference from user u towards item 7 at time ¢,
and no distinction can be made on the remaining unseen data, which can be negative or simply
unknown (Pan et al., 2008).

We refer to RS designed to work on the data stream setting as stream-based recommender
systems (SBRS) (Al-Ghossein et al., 2021). Although recommendation approached as a data
stream is still infrequent (Vinagre et al., 2015b; Matuszyk et al., 2018), the field of SBRS (which
is also posed as online recommender systems) has received increasingly interest in recent years
(Vinagre et al., 2022a,b), and different incremental algorithms have been proposed (Papagelis
et al., 2005; Miranda and Jorge, 2009; Takacs et al., 2009; Vinagre et al., 2014b; Matuszyk
et al., 2015; Yagci et al., 2017; Anyosa et al., 2018; Al-Ghossein et al., 2018b). In the following
sections, we describe classes of incremental algorithms designed to learn from implicit feedback
that are the most relevant within the scope of this thesis. We discuss related work on SBRS in the
next chapter.

3.1 INCREMENTAL MEMORY-BASED APPROACHES

In Section 2.3.1, we described two traditional memory-based approaches: user-based and
item-based KNN. These algorithms have been adapted to work incrementally, by maintaining
a similarity matrix in memory and updating the values based on new incoming interactions.
A user-based incremental KNN for explicit feedback is described in Papagelis et al. (2005),
and extended in Miranda and Jorge (2009) to learn with implicit feedback. Miranda and Jorge
(2009) also proposed an item-based algorithm for implicit feedback. We describe the item-based
algorithm since it is more scalable and more relevant to this work. We note that the user-based
algorithm can be obtained following the same formulation. In the remainder of this thesis, we
refer to the user-based KNN as UserKNN and to the item-based KNN as ItemKNN.

ItemKNN. The cosine similarity function for implicit feedback defined in Eq.(2.8) measures
the similarities between items based on user co-occurrence counts. The algorithm stores a matrix
IC with the number of users that interacted with each pair of items, such that the diagonal of
IC contains the number of users that interacted with each individual item. For each incoming
observation (u, i, t), the corresponding counts are incrementally updated, and based on these

counts, the similarities between items are recomputed and stored in an item-item similarity matrix
SM:

44

1C;;

VIC;; X \JIC;;

The algorithm for the incremental update of the similarity matrix SM is presented
in Algorithm 2. As the algorithm is based on co-occurrence counts, the update procedure
basically consists in incrementing these counts based on the current observation and previous
user interactions (lines 2-4), updating the similarity matrix (line 5) and the rating matrix (line 6).

The recommendation procedure for [temKNN is outlined in Algorithm 3. To provide
a recommendation list for the active user u, based on updated similarity matrices obtained in
the training procedure (Algorithm 2), a set of candidate items C is defined, containing all items
that u has not interacted with before (line 1). The algorithm then computes a relevance score for
each item i € C, calculated with Eq.(2.5), based on the k nearest neighbors of i and the items
previously interacted with by u (lines 2-4). Finally, candidate items are sorted by score and the N
with highest score are recommended (lines 5-6).

SM,']' = sim(i,j) = (31)

Algorithm 2 Training procedure for incremental ItemKNN (Miranda and Jorge, 2009)

Require:
D=A{(<u,i,t >),(<u,i,t >),,...}: data stream
R: user-item rating matrix

1: for < u,i,t >¢ D do
2 for j € {k|R,x =1} do
3: ICl'j — ICl'j +1
4 IC; « IC; + 1
» IC;;
5 SM;; « —mxm /I Eq.(3.1)
6: Rm' —1

Algorithm 3 Recommendation procedure for incremental ItemKNN (Miranda and Jorge, 2009)

Require:
SM: item-item similarity matrix
R: user-item rating matrix
u: active user
k: number of neighbors
N: number of items to be recommended

1: C « {x|R,x =0} // Candidate items

2: fori e Cdo

3: K; « getKNN(i, k)

4: score; «— % /' Eq.(2.5)
JEK; i

o

sorted, <« sortByScore(C)
return topN(sorted,,, N)

@

Despite its simplicity, ItemKNN is a strong competitor in several stream-based rec-
ommendation scenarios (Lommatzsch and Albayrak, 2015; Jugovac et al., 2018; Ludewig and
Jannach, 2018). The major shortcoming of this algorithm is that it requires the re-computation
of the k-nearest neighbors and hence the relevance scores after similarities are incrementally
updated. These computations can be performed at update or recommendation level, and this

45

decision therefore is dependent on the application. In our experiments, presented in Chapter 6,
we have included ItemKNN as a baseline and opted to compute neighborhoods after similarity
values are updated.

3.1.1 Incremental graph-based approaches

Although graph-based approaches for CF are well suited for sparsity problems and incremental
updates, since the graph structure naturally allows the incremental inclusion of continuous
incoming user feedback, successful recommendation algorithms are not designed to adapt to a
continuous flow of incoming data, resulting in scalability issues and therefore are not suited for
data stream environments.

P3, P?I and RP%. As discussed in Section 2.3.1.1, algorithms P3 , Pz (Cooper et al., 2014) and

RPz (Christoffel et al., 2015) rank items based on 3-step random walks in a user-item bipartite
graph, as defined in Eq.(2.11), outperforming previous graph-based methods (Fouss et al., 2007;
Gori and Pucci, 2007). Additionally, Cooper et al. (2014) highlighted the impracticability of
implementing these algorithms through matrix multiplication, and proposed to approximate the
distributions through simulations of random walks, which is more time and memory efficient
with only limited impact on accuracy. Christoffel et al. (2015) presents a sampling procedure to
approximate algorithms P, Pfy and RPZ modeled as a Bernoulli process.

While the sampling procedure is not evaluated on a data stream scenario, it is applicable
in such scenario and thus these algorithms can be implemented incrementally. We have adapted
these algorithms to operate in stream-based settings (Schmitt and Spinosa, 2022b) and consider
them as baselines in Chapter 6. The effectiveness of these methods has been highlighted in recent
comparative evaluation work (Dacrema et al., 2021). In the following, we describe this sampling

procedure (Christoffel et al., 2015), which is outlined in Algorithm 4. We denote by 133, 132 and
RAPZ) the approximate versions of P3, P?l and RP;, respectively.

Algorithm 4 Estimating item scores of P?, Pg and RP% with random walk sampling (Christoffel
et al., 2015).
1: procedure EstiMmATEITEMSCORE(V,, @, B) // v,: starting user vertex, a: hyperparameter, 3:
diversity hyperparameter

2: s «<— a score array with initial values 0
3: dy, < getDegree(vy)

4: while not converged(s) do

5: ve « getRandomNeighbor(v,)
6: dj; « getDegree(v.)

7: v < getRandomNeighbor(v,)
8: d,, «— getDegree(v,)

9: ve « getRandomNeighbor(v,)
10: di; — getDegree(vlc)

11 CRW = —(d””dfjlgw)

12: S[ve] < s[ve] + crw

13: return c

Since algorithms P and RP% can be directly obtained through Pz by considering a = 1
and 8 = 0, respectively, we outline the sampling procedure for Pi. Algorithm Pfl raises every

46

value in the transition probability matrix to the power of a parameter @. From Eqs.(2.10) and
(2.11), each value in matrix P' raised to the power of « is calculated as (pllu.)“ = (aui/duw)?,
such that a,; is an entry in the adjacency matrix and d,, is the degree of vertex u. The transition
probability (pii)“ € Pfl of user u reaching item 7 after a 3-step random walk is defined as:

V| [V A\ (ap\ [an
(pf,n“—ZZ(pu,) (P})" <pv,>“—ZZ() (”) (d—) (3.2)

v=1 j=1 v=1 j=1

Since the graph is bipartite, all values in the adjacency matrix are 1 or 0, and Eq.(3.2)
can be simplified to:

7] Ul

AyjdjyQyi
(Pa)® = O (3.3)
P ; ; (duudjjdvv)a

In Eq.(3.3), the term a,;a,a,; is 1 if a path from user u to item i through item j and
user v exists in the graph and 0 otherwise. Thus, (pz ;) is the aggregate of all paths with length
3 from u to i, where each path RW, = {U,, I;,U,, I;} contributes c;p‘;‘,")a = W to the
total transition probability. The sampling procedure aims to estimate the distribution based on
the contributions of each individual path.

Considering that a random walk sampling is more likely to follow paths traversing
nodes with low degree than to traverse nodes with high degree, it is necessary to increase the
contribution of paths with low probabilities and penalize the contribution of paths with high
probabilities. This is done by weighting a path contribution c g with the inverse of its occurrence
probability:

1

— wdydidy = (dyd;id,) 3.4
(duudjjdvv)a *Ayudjjdyy (JJj w) 3.4)

CRW =

Finally, f’z can be approximated with Algorithm 1 by performing M random walks
starting from a given user node u, and assigning the contribution of each walk, defined in Eq.(3.4),
into the score of the destination node. Considering that P* is equivalent to Pz with @ = 1, the

contribution of each random walk for f’3 can be simplified to (dy,d; jdw)o = 1, such that the
estimation becomes simply based on the number of visits to the destination nodes. To estimate
the item ranking of RPZ,, the contribution of the walk is divided by the degree of the destination
node raised to the power of parameter f3.

The aforementioned sampling procedure can be modeled as a Bernoulli process by
sampling M independent random walks starting from each user u. Christoffel et al. (2015) uses
Hoeffding’s inequality and Union bound to show that the rate of convergence is exponential, and
that the g—approximate estimate for any user is less than ¢, which provides a lower bound for M

as 3 v log (2|U|) where i is the maximum possible value for cgy. Thus, the number of walks
requlred increases with i/, which is defined by the algorithm at use.

3.2 INCREMENTAL MATRIX FACTORIZATION APPROACHES

Earlier incremental matrix factorization approaches relied on performing incremental updates
on models initialized in batch. One of the earliest work on this topic is presented in Sarwar
et al. (2002), where an incremental SVD algorithm was proposed, such that the calculation of

47

new latent vectors are based on the current decomposition and appended to their corresponding
matrices through the application of the fold-in method (Deerwester et al., 1990). However, as
discussed in Section 2.3.2.1, SVD for recommendation has important accuracy and scalability
limitations.

BRISMF. Tak4cs et al. (2009) proposed incremental updates on a SGD model. The proposed
algorithm, Biased Regularized Incremental Simultaneous Matrix Factorization (BRISMF), is
similar to the batch-based SGD procedure defined in Algorithm 1, with the addition of user and
item biases. Biases are meant to capture how the rating scale is used by users to evaluate items.
The main difference from BRISMF to the procedure defined in Algorithm 1 is that observations
are treated sequentially. After initially training BRISMF in batch, the algorithm retrains only the
user latent vectors every time new ratings are made available to each active user, while keeping
the item latent vectors fixed. Although incremental, this approach requires computation of an
initial model in batch, and the algorithm does not update item latent vectors, limiting its ability
to capture item dynamics. Thus, retraining is necessary to include new items into the model,
which in turn requires storing the rating matrix.

ISGD. To address the limitations related to maintaining models in batch, Vinagre et al. (2014b)
proposed an incremental version of the batch-based SGD procedure defined in Algorithm 1,
designed to learn from implicit feedback and update the latent factors V and W based solely on
the current observation (u, i, t). This algorithm, incremental stochastic gradient descent (ISGD),
is defined in Algorithm 5. Despite the similarities with batch-based SGD, ISGD presents two
fundamental differences. First, it requires only a single pass over the incoming data, as the
adjustments to the latent factors v, and w; are performed in a single step, which allows the
discarding of observations after they are processed. Second, ISGD does not shuffle the training
data and learns sequentially from the data as it is made available. This in turn allows ISGD to
continuously include new users and items into the system without the need of retraining. Since the
algorithm is designed to learn from implicit feedback, the error is calculated as err,; = 1 —v, - w;,
and updates are done following Eq.(2.24). To provide a recommendation list for an active user u,
candidate items are sorted based on Eq.(2.25), and the top-N items are then recommended to u.

Algorithm 5 ISGD (Vinagre et al., 2014b)
Require:
D=A{(<u,i,t >),(<u,i,t >),,...}: data stream
k: number of latent factors
A: regularization factor
n: learning rate
1: for < u,i,t > D do
2 if u ¢ U then
3 v, < initializeVector(k)
4 v, ~ N(0,0.1)
5: if i ¢ I then
6
7
8
9

w; <« initializeVector(k)

Ww; ~ N(O, 0.1)
erryi — 1—v, - wl
Vi = Vy +1(erry Wi — Avy)
10: W, =W, + n(erruivu - /IWI)

48

Experiments show that ISGD is able to update its concepts very fast compared to a
UserKNN (Miranda and Jorge, 2009) and presents competitive accuracy compared to algorithms
UserKNN and BPR-MF (Rendle et al., 2009). Another important contribution from Vinagre et al.
(2014b) is an experimental prequential protocol designed to evaluate incremental algorithms.
We discuss such protocol in more detail in Chapter 6.

RAISGD. A limitation of ISGD is that it learns solely from feedback considered to be
positive, leading the model to converge to the positive class and eventually degrading accuracy.
To overcome this issue, a follow-up algorithm artificially introduces negative feedback into the
model by maintaining a global FIFO (First-In-First-Out) queue of all items seen in the stream,
ordered according to the recency of item occurrences. For every new positive observation in the
stream, the / oldest items are selected from the queue to be considered as negative feedback by the
user, and the corresponding user latent factor is updated based on such negative feedback. After
updating the model based on the current positive observation, this observation is inserted into the
tail of the queue. In order to avoid penalizing infrequent items repeatedly, items that are used
as negative feedback are also moved to the tail of the queue. This procedure, recency-adjusted
ISGD (RAISGD) (Vinagre et al., 2015a), is presented in Algorithm 6.

Algorithm 6 RAISGD (Vinagre et al., 2015a)
Require:
D={(<u,i,t >),(<u,it>),..}: datastream
k: number of latent factors
A: regularization factor
n: learning rate
[: number of items to be considered as negative feedback

1: Q « queue()

2: for < u,i,t > D do

3 if u ¢ U then

4: v, <« initializeVector(k)
5: v, ~ N(0,0.1)

6 if i ¢ I then

7 w; « initializeVector(k)
8 w; ~ N(0,0.1)

9: for k < 1 to min(/,#Q) do
10: J « dequeue(Q)
11: erruj<—O—VM~WJT.
12: Vi = vy +n(err, jw; — Av,)
13: enqueue(Q, j)
14: erry — 1—v, -WiT
15: Vy =V +n(err,w; — Avy,)
16: W, =W, + n(errm-vu — Aw;)
17: if i € O then
18: remove(Q, 1)

19: enqueue(Q, 1)

Essentially, RAISGD gives greater importance to more recent events. The experimental
results show that RAISGD significantly outperforms ISGD, user-based KNN (Miranda and
Jorge, 2009) and BPR-MF (Rendle et al., 2009) in music domain datasets in terms of time and
accuracy, but is outperformed in accuracy in movie domain datasets. These results highlights

49

the importance of considering short-term (recent) and long-term interests when generating
recommendations.

Incremental BPR-MF. Algorithm BPR-MF (Rendle et al., 2009), defined in Section 2.3.2.2,
was originally designed for learning in batch. However, it can be implemented in incremental
manner (Gantner et al., 2011; Vinagre et al., 2014b; Viniski et al., 2021). Incremental BPR-MF
(IBPR-MF) is presented in Algorithm 7. Such implementation is similar to the update procedure
of ISGD: as each new observation in the stream is made available (line 1), new users and items
are included in the system without needing retraining (lines 2-7), and only affected user and
item latent factors are updated following the ranking described in Section 2.3.2.2. The update
procedure for a new observation (u, i, t) first uniformly samples an unseen item j by the active
user u to be used as negative feedback (line 8). Then, the relative ranking of i, the actual observed
item, and the negative item j is predicted based on Eq.(2.28) (line 9). Finally, latent factors
for user u (v,) and items 7 and j (w; and w;, respectively) are updated following Eqs.(2.29) and
(2.30) (lines 10-12). We note that the update procedure (lines 8-12) can be performed multiple
times for a single new observation, at the expense of higher computational cost.

Algorithm 7 IBPR-MF (Rendle et al., 2009; Gantner et al., 2011; Vinagre et al., 2014b; Viniski
et al., 2021)
Require:
D={(<u,i,t >)1,(<u,i,t >),,...}: data stream
k: number of latent factors
Au,,j: regularization factors
n: learning rate
1: for < u,i,t > D do

2: if u ¢ U then

3: v, « initializeVector(k)

4: v, ~N(0,0.1)

5: if i ¢ I then

6: w; < initializeVector(k)

7: wi ~ N(0,0.1)

8: J < UNIFORMSAMPLE({j|(u, j) € D})

90 Fuij & Vu W —Vu W, //Eq.(2.28)

10: VeVt n(H—’J X (Wi = W;) + /luvu) /1 Egs.(2.29) and (2.30)

-

11 W —w+ n(—’ XV, + A,-w,-) // Egs.(2.29) and (2.30)

1+ Fuij

1+e~uij

12: W <—wj+n(LAl x—vum,wj) // Eqs.(2.29) and (2.30)

3.3 CONCEPT DRIFT

In dynamic and non-stationary settings, the assumption that data distribution is static does not
hold, raising the problem of concept drift (Widmer and Kubat, 1996). Such problem relates
to changes that occur unexpectedly over time, where the conditional probability of the output

50

changes given the input, but the input distribution may stay unchanged (Gama et al., 2014).
Specifically, a concept drift occurs when a previously known concept change between any two
timestamps. Concept drift is innate to recommender systems, as the relationships between users
and items are not static and change over time (Koychev and Schwab, 2000; Koren, 2009; Gama
et al., 2014; Matuszyk et al., 2018).

User dynamics include changes in preferences, which may be permanent or temporary
based on some contextual influence, while item dynamics are highly influenced by popularity
and user perception. Predictive performance is put at risk if a model is unable to quickly detect
and adapt to drifts in previously known concepts. In other words, a model that correctly predicts
user preferences at a certain time may fail to do so at a later point if it is incapable of adapting.

Matuszyk et al. (2018) argues that there are two complementary ways of adapting
recommender systems to changes in previously known concepts:

1. incorporating new information into the underlying model;

2. forgetting obsolete information.

The first way is naturally accomplished by incremental algorithms, such as the ones
previously discussed. The learning procedure updates the model based solely on the most recent
observation in a stream of user feedback, and such observation is discarded after it is processed.
Hence, incremental algorithms are capable of learning new concepts and have the ability to
evolve over time.

Although incremental algorithms are able to process user feedback in real time,
continuous incorporation of information leads to ever-growing models, which eventually causes
the accumulation of obsolete and irrelevant information, and impacts accuracy and scalability.
Considering obsolete information introduces noise in the learning procedure, resulting in
distorted concepts, negatively affecting the recommendation process, and consequently degrading
predictive capability. Also, by maintaining obsolete and irrelevant information on models while
also accounting for continuously incoming observations leads to increasing time and memory
requirements, eventually raising scalability issues.

In that sense, application of forgetting mechanisms in order to remove obsolete informa-
tion from incremental algorithms can lead to improvements in accuracy and scalability (Vinagre
and Jorge, 2012; Matuszyk et al., 2018), and acts as the second complementary way of adapting
to changes in user and item dynamics.

3.4 FORGETTING

Forgetting mechanisms must select and remove obsolete information from the underlying
recommendation model. These two processes are performed during model update, together with
incremental procedure. Thus, selecting and removing information from online models incur in
important design decisions, as they should avoid introduction of more complexity in the update
process in order not to fall behind the data. Forgetting usually, but not necessarily, assume that
recent data is more representative of users preferences and thus more relevant than older data.
This assumption aligns to the benefits of considering short-term user interests.

Essentially, forgetting can be either abrupt or gradual (Gama et al., 2014; Matuszyk
et al., 2018), and both can be adapted for both memory-based and matrix factorization approaches.
The choice of forgetting mechanism depends on a trade-off between responsiveness to change
and robustness to noise. We next define these two mechanisms.

51

Abrupt forgetting. Abrupt forgetting completely discards information based on their perceived
relevance, measured by recency, and rely on fixed-size sliding windows. The idea is to repeatedly
train the model solely with data that pertains to the window at each time step, hence being updated
with new data. The main challenge is to define the appropriate window size: short windows
may capture a changing distribution more quickly, but may degrade performance in periods of
stability. Large windows on the other hand reacts slower to changes, but offers better predictive
performance in periods of stability (Gama et al., 2014). Sliding windows can be classified into
two basic types (Babcock et al., 2002): sequence-based windows, where the size of the window
is defined according to a predefined number of observations, and timestamp-based windows,
consisting of all observations whose timestamp are within a predetermined time interval of the
current time.

Gradual forgetting. Instead of completely discarding information, gradual forgetting assigns
weights to observations, or concepts, based on their relevance. By considering recent information
to be more relevant than older ones, gradual forgetting is achieved by simply decreasing the
importance of observations according to its age through some decay function (Vinagre and Jorge,
2012; Gama et al., 2014; Matuszyk et al., 2018). This process can be implemented by constantly
decaying observations by a positive fading factor T € (0, 1), which controls the rate of forgetting,
and ensures that older information continuously loses importance unless they are emphasized by
newly generated observations.

The application of forgetting mechanisms in SBRS is shown to positively impact
accuracy and scalability for both memory-based and factorization-based methods (Vinagre and
Jorge, 2012; Matuszyk et al., 2018; Al-Ghossein et al., 2021). We discuss relevant forgetting
contributions in the next chapter.

3.5 DISCUSSION

In this chapter, we posed the top-N recommendation problem as a data stream mining one, and
consequently defined the field of stream-based recommender systems. This formulation follows
the realistic assumption that in real-world systems user generated data possesses the characteristics
of a data stream. Specifically, that user feedback incomes continuously at unpredictable rates and
order, is potentially unbounded, new users and items enter the system at any point, and previously
learned user-item dynamics change over time (Koychev and Schwab, 2000; Koychev, 2000).

The design of RS in data stream settings, however, faces several challenges, as outlined
throughout the chapter. Mainly, SBRS must stay up-to-date with user generated data, ideally
processing each observation faster than the rate of arrival of subsequent elements. Therefore,
scalability to deal with increasing amounts of data is a fundamental requirement for data stream
settings, and SBRS rely on incremental algorithms in order to address the challenges of these
settings. Incremental algorithms are used to learn solely from incoming data that can then be
discarded after processing, and an always-available model provides recommendations. This
procedure overcomes the scalability and adaptability issues inherently related to batch-learning,
as the model is always up-to-date and adapted to temporal dynamics.

In this thesis, we address recommendation in data stream settings, as it is a realistic
and natural way of approaching it. Despite this, recommendation is not frequently addressed
as a data stream. Thus, our contributions pertains to SBRS, more specifically on incremental
memory-based models, as outlined in Chapter 5. In the next chapter, we discuss related work,
some limitations of current approaches, and situate our proposals among them.

52

4 RELATED WORK

In this chapter we review and discuss a number of works related to the topic of Stream-
Based Recommender Systems (SBRS). In Chapters 2 and 3, we mentioned categorizations of
recommender systems that somehow exploit temporal effects and/or model the time dimension,
such as Time-Aware Recommender Systems (Section 2.5.1), that exploits contextual information
in the form of time at some stage of the prediction process, and Sequence-Aware Recommender
Systems (Section 2.5.2), that learn sequential patterns from past user behavior with the goal
of detecting short-term preferences and predicting the users’ next interaction. Although these
approaches share similarities to SBRS, mainly that they both rely on the order of interactions,
they are not necessarily concerned with the following challenges, which are prerequisites of
SBRS (Al-Ghossein et al., 2021):

* The recommendation model should be built on a single pass over user-generated data
and updated after each received observation without access to past data;

* Observations should be processed faster than their rate of arrival and SBRS should be able
to generate recommendations when required, hence both learning and recommending
procedures must be done efficiently;

* Models must evolve over time, since previously learned concepts evolve and change in
different ways.

Although both TARS and sequence-aware RS share some characteristics with SBRS,
they assume that the whole dataset is available at any time for training with multiple passes
allowed, which is prohibitive for streaming scenarios and are consequently not applicable on
these scenarios. SBRS are specifically designed to operate on these restrict and specific streaming
scenarios. Thus, in this chapter we review works that are design to overcome the challenges
of dealing with streaming data, as discussed in Chapter 3. A detailed survey related to the
exploitation of time in collaborative filtering can be found in Vinagre et al. (2015b). Surveys
specific to the topics of TARS and sequence-aware RS can be found in Campos et al. (2014),
Vinagre et al. (2015b) and Quadrana et al. (2018), and Wang et al. (2021), respectively.

A survey that is highly relevant and directly related to this thesis is a recent bibliography
review in the context of SBRS done by Al-Ghossein et al. (2021). In their survey, the authors
reviewed works that approach the recommendation problem under a data stream framework with
the goal of overcoming the challenges of data stream mining discussed in Chapter 3. Based on a
general schema for online adaptive learning proposed by Gama et al. (2014), Al-Ghossein et al.
(2021) categorized existing work in SBRS in four modules:

* Memory module: selects data to be used for learning and also discards old data that has
become irrelevant;

* Learning module: defines how models are learned and updated based on incoming data,
which is mainly based on incremental learning;

e Change detection module: responsible for the active detection of drifts;

* Retrieval module: generates recommendations for users, usually by computing a
relevance score for each item and selecting the N items with highest score.

53

The main contributions of this thesis, outlined in Chapter 5, pertains to the memory and
learning modules. For that reason, we focus on these two when discussing related work. We also
briefly discuss change detection contributions as they affect memory and learning modules. We
do not discuss contributions from the retrieval module as such work falls outside the scope of this
thesis. Besides the four aforementioned modules, Al-Ghossein et al. (2021) further categorizes
SBRS work based on the used learning technique, the type of feedback and the evaluated domains.
In the following sections we use the same categorization. Table 4.1, which is an adaptation and
extension of their bibliography review, presents a summary of related work grouped by which
module it approaches, followed by the used learning algorithm, the type of feedback used and the
domain that it is explored. These contributions are discussed throughout this chapter. We split
related work in five main groups, delimited by two alternating colors in Table 4.1 for ease of
view:

1. Memory module (first group in gray): this group includes forgetting techniques and is
discussed in Section 4.1 and further summarized in Table 4.2;

2. Learning module, specifically incremental neighborhood-based methods (first group in
white): these contributions are further divided in nearest neighbors and graph-based
approaches, and are discussed in Sections 4.2.1 and 4.2.1.1, respectively, and further
summarized in Table 4.3;

3. Learning module, specifically incremental model-based methods (second group in gray):
these contributions are divided based on the type of feedback (explicit or implicit) and
strategy that they use (matrix factorization or others), and are discussed in Sections
4.2.2 and 4.2.3, and further summarized in Table 4.4;

4. Change detection module (second group in white): these contributions are discussed in
Section 4.3;

5. Evaluation contributions (third group in gray): this group include contributions that
raise relevant question towards evaluation of recommender systems on data stream
settings, and also comparisons between incremental and batch-based algorithms. These
works are discussed in Section 4.4.

We discussed in Section 2.1.1 the two types of feedback that are used by recommender
systems, explicit and implicit, and how the choice of feedback directly affects the problem
formulation, both learning and recommendation procedures, and consequently the entire design
of a RS model. We highlight work that deal with implicit feedback as it is the type of feedback
that we use in this thesis. In the following sections, we discuss subsets of related work and also
present detailed summaries of such work.

4.1 MEMORY MODULE

The memory module selects the data used for learning while also discarding obsolete data
that eventually becomes irrelevant. This module is fundamental given that in data streams
observations are expected to be received at uncontrollable rates, and also that previously known
concepts change over time and become obsolete (Domingos and Hulten, 2001; Gama et al., 2009),
1.e., concept drift (Gama et al., 2014). Thus, adaptation to changes is an important aspect of
online learning.

As discussed in the previous chapter, there are two complementary ways of adapting
to changes in RS (Matuszyk et al., 2018): (1) incorporate new information into a model; (2)

54

a3ed 1xou uo panunuo)) 7
SMAN ‘AON Dd dNT NN | N1 (220?7) ‘T8 12 uaunaf
SNIN dINT NS ‘NN | N¥1T (2202) 'Te 10 tuejoy,
SAMAN ‘D ‘AON dINT NN | NYT (L107) T8 10 103ex
od dINIT NN | N¥1 (S10T) 'Te 3 Sueny
SMAN dINT NN | N1 (LO0T) Te 1 seq
| B AL IREIN MMM | dINT ‘dXd NN | NYT| (6007) 95101 pue epueirjy
1910 dxd NN | NYT (S002) 'Te 3o siegedeq
(0102)
AOIN dxd NN | NYT | 19omS pue uIysouysoyy]
SMAN D4 dxd NN | NYT | (1102) 'Te 19 [[noweipuey)
AOW ‘Dd dXd | NNJLSTO | N¥T | (S007) nSnIdA pue 331090
SNIN ‘AO ‘D4 | dINI ‘dXd JAN | WHIN (8T07) ‘T8 19 AzsmeN
AON | dINI dXd NN | WHIN (0102) ‘Te ¥ NI
AOIN dxd NN | WHIN (#102) ‘Te 12 mbippis
AOIN dxd NN | WAN (S007) 11 pue Suigq
MMM DF dINI JN | AN (#107) 1019qY pue nry
SNIN ‘AOIN dINI NN | WAIN | (T107) 93101 pue 213eurp
I'H uondag SNIN dINT VIO | IWHIN (0202) 'Te 30 wnsseqe],
AON | dINI dXd AN | WHIN (L10T) T8 19 0SO[A
od dxd NN | WAIN (9102) ‘Te 30 uelqqng
MMM dxd NN | WHIN (L00T) "Te 39 moeiseN
MMM dxd LSTO | AN (LO0T) 'Te 39 uosueyeN
SNIN ‘AOIN dINI AN | WHIN (eS10T) ‘T8 9 d1TeUIA
SMAN dINT VIO | INHIN | (0T0T) ‘Te 19 SIpIuodwAS
UOISSNISIP JO UOI)IIS surewio(q | Yyoeqpaaqg anbruyday, | sndoq (1e3yx) Jadeq 7

"uonESIABU QoM MMM 09PIA ((JIA 1S9193ul Jo Jutod :[JO ‘SO[oNIE SMAU ISMHAN 1SN (SN ‘SOIAOW AQIA ‘@IQWWOI-I

:DF surewo(q orduwr (JINT 91dX9 (IXH PRQPI (S99 XU 'HTL ‘[epot $s2001d o1seyd0Is (NS ‘SUIUIB] JUSWDIOJUTSI T ‘SSI0MIU [eINaN (NN ‘UOTIBZIIOIOR]

XIIJBW : A ‘SPOYIoW Paseq-pooyIoqysSIat (NN ‘Spoyiowt paseq-yders 1y o ‘Spoyjowl S[quIasua :SNH ‘Surreisnid ;ST :9nbruyday, {uonnqruuods uoneneas " TyAH ‘Q[npow
uon)Rp ABueYd :HHD ‘ONpOou SUTUILS] (N ‘Q[Npoul ATowaw (AN SN0 (1707) T 19 UIesSOyD-Ty WOIJ PIpuXa pue paydepy SIom paje[al Jo uoneziiogale)) 'y d[qel

55

33ed 1xau uo panunuo)

MMM ‘AON dXxd AN | N1 (91027) ‘T8 19 nx
MMM ‘AOIN dxd AN | NI1 (A8107) ‘Te 32 Suepy
AOI dxd AN | NI1 (€107) ‘Te 30 Suepm
AOIW dxd AN | NYT (6007) 'Te 19 soeye],
AOIN dxd AN | NIT (8002) "Te 19 soeyeL
CTTYPUR T TTY ‘T'CTY “TTH SUONIDS AOIN dxd AN | NYT (S107) ‘Te 32 Suog
AOIN dxd AN | NI1 (2002) ‘Te 19 JemreS
(8007) Qwary L,
AOIN dxd AN | NYT | -pruydS pue 9[puoy
(L102)
AON Od dxd AN | NYT | nonodoridg pue jAzsnjey
AOIN dxd AN | NY1 (L107) ‘Te 3o Sueny
AOWN D4 dxd AN | NY1 (ST0T) "Te 32 1y300A (]
SIYIO dxd AN | NY1 (€007) puerg
AOIW dXd AN | NIT (0107) ‘T8 10 [emIedy
SO dINI VIO | NY1 (ey102) 'Te 10 Sueyy
Nelile) dINI VIO | NYT1 (0107) ‘Te 32 Suery
SMIN dINT VIO | NY1 (#102) 'Te 32 [OISIARI],
SMEAN dINT VIO | WHIN | (0207) ‘Te 39 SIpruoduwAg
S19Y10 dINT VID | NYT (8002) 'Te 1 IedjIRg
AOIN dINI VIO | NY1 (L102) "Te 19 [opned
| B G A (U EREIN SO ‘SNIN dINT VIO | NY1 (€107) 'Te 30 uelereieN
MMM dINT VID | NY1 (€100) 'Te 10 ®3dnn
S19YI0 dINT VIO | NYT | (8107) Te 19 Ieyoyequiosyy
AOIN dINT VID | NYT (ST0T) 'Te 39 [2goISLIY)
AOIN dINI VIO | N1 (107) ‘Te 32 1odoo)
(1102)
mu@-ﬁ@ dINT <NTU N1 o®>OMm®A Uﬁm EOmeO@@
UOISSNISIP JO UOI)IAS Surewio(q | Yyoeqpasqg anbruyday, | sndoy (1ed)) Jadeqg 7

3ged snorrdad woay panunuod — [dqe],

56

33ed 1xqu uo panunuo))

¢ UONDIS SMHAN ‘AOI dINI AN | DHD | (a8107) ¥ 12 UsSOyD-[y
’ AOIN dINI NN | DHD | (88107) 'Te 39 UIessoyn-1y
SNIN ‘AOIN | dINT dXd JN | DHD (0207) 'Te 32 9sof
SMAN dINI HIIL | NYT (€102) "[e 10 urdIRH
SNIN dINI TI | NY1 (2207) T8 19 uede))
SO ‘AOIN dINT TI | NYT | (6107) Te 10 opezni)-zues
€7 uondIg SN dINT TI | N1 (6107) Te 19 exrarod
SMAN dINIT TS| N1 (9102) BRI
SMAN dINT TS| NYT (0102) BRI
S1YIO ‘AO “Dd dINT AN | DHD (€207) 'Te 30 DISTUIA
SNIN ‘AOIN dINT AN | N1 (Q8107) ‘T8 19 213eUIA
SNIN ‘AOIN dINI AN | NY1 (e8107) 'Te 12 QITeUIA
SNIN ‘AOIN dINI AN | NY1 (eS107) T8 19 QI13eUIA
SNIN ‘AOIN dINT AN | N1 (A 102) T 30 d13eurp
SNIN dINI AN | NI1 (#102) "Te 19 sd1r0[ed
9T Ty PUR S TTY ‘P SUONIIS AOIN dINIT AN | NIT (9107) emezeirsy
diA dNT JN | NYT (9107) ‘Te 10 Sueny
10d D4 dINI AN | NI1 (9102) 'Te 9 9H
MMM dINT AN | NIT| (9Z102) ‘Te 39 so[IAy-Zeiq
MMM dINIT AN | NYT | (BZI02) T8 39 So[IAy-zeiq
MMM dINI AN | NIT (€102) 'Te R uayd
SN dNT AN | NYT (8107) ‘Te 12 SoAuy
AOIW dxd INdS | NYT (L102) T8 12 Suey)
SN dxd TI | NYT (#107) "Te 32 Suep
94 AL EREIN AOIW dxd NN | NY1 (e8102) 'Te 12 Suepmy
AOIN dxd NN | NY1 (6107) ‘T8 19 Suog
AOI dxd AN | NY1 (€102) Te 10 oeyZ
1910 dxd AN | NYT (a¥102) ¢ 32 Sueyyz
UOISSNISIP JO UOI)IAS Surewio(q | Yyoeqpasqg anbruyday, | sndoy (1ed)) Jadeqg 7

3ged snorrdad woay panunuod — [dqe],

57

SMAN dINT | NN ‘AN ‘NN | TVAd (8107) T8 19 deAOSN[

SNIN ‘AOIN dNT AN | TVAH (1207) ‘T8 19 213eUIA

SNIN ‘AOIN dINI JIN ‘NN | TVAA (e 107) ‘T8 19 QISeUIA

(S102)

14 AL IBEI SMAN dINT SNH ‘NN | TVAH | YeIkeq[y pue yoszjeuro |

MMM ‘SOIN ‘AOIN D dINT AN NN | TVAH (L10?7) T8 19 9311y

Od dXd NN AN | TVAH (12027) ‘T8 19 DISIUIA

AOIW dxXd d94L | DHD (LO0T) 'Te P I'T

UOISSNISIP JO UOI)IAS Surewio(q | Yyoeqpasqg anbruyday, | sndoy (1ed)) Jadeqg 7

3ged snorrdad woay panunuod — [dqe],

58

forgetting obsolete information. The first is accomplished by incremental algorithms, resulting in
models capable of evolving over time. The second way must include forgetting mechanisms in
order to remove obsolete information.

Forgetting mechanisms aim to remove obsolete information from models to potentially
improve accuracy and scalability (Vinagre and Jorge, 2012; Matuszyk et al., 2018), adapting to
changes complementary to incremental learning. These mechanisms must select and remove
obsolete information during model update while avoiding introduction of more complexity in the
process in order to not fall behind the data. Forgetting usually, but not necessarily, assume that
recent data is more representative of users preferences and thus more relevant than older data.
Table 4.2 presents contributions related to forgetting mechanisms for neighborhood-based and
matrix factorization methods.

Before we discuss these contributions, we mention two works that propose different
ways to select data used for learning. Liu and Aberer (2014) propose a framework with an online
component that is continuously updated, responsible for modeling short-term user preferences,
and an offline component that is sporadically trained after the arrival of 10,000 new items to
model long-term preferences. We note that this procedure must store the received observations
in order to allow sporadic retraining, which is undesirable for streaming environments. Subbian
et al. (2016) on the other hand presented a probabilistic neighborhood-based algorithm based on
min-hash schemes to approximately compute the similarities between items. This way, instead of
storing the full history of user interactions, only the hash functions necessary to compute the
similarities are stored.

Table 4.2: Summary of related work with focus on the memory module.

\ Strategy | Technique | Papers Description \
Sliding | KNN (Nathanson et al., | Considers only the most recent observa-
window 2007; Nasraoui et al., | tions as defined by the size of the windows,

2007; Siddiqui et al., | which can be a fixed size or a time period.
2014; Vinagre and
Jorge, 2012)
Decay KNN (Vinagre and Jorge, | Decreases similarities continuously over
function 2012; Tabassum | time as defined by a positive fading factor
et al., 2020) which are forgotten unless reinforced by
new data.
Time KNN (Ding and Li, 2005; | Time function are used to assign greater
function Koychev, 2000; Liu | importance to more recent data. Old data
etal.,2010; Symeoni- | is not removed from the model.
dis et al., 2020)
Rating- | MF (Matuszyk et al., | Selects ratings to be forgotten based on the
based 2018; Veloso et al., | list of ratings for each user.
2017)
Latent MF (Vinagre et al., | Adjust the latent factors of users to reduce
factor- 2015a; Matuszyk | the impact of past observations.
based et al., 2018)

Incremental neighborhood-based methods, discussed in Section 3.1, store similarities
between users or items that are updated based on each received observation, where neighborhoods

59

and ranking of items are computed before each recommendation. Forgetting strategies have been
devised to reduce the size of models used for neighborhood computation in order to improve
recommendation times and to remove obsolete information. Such forgetting can be either abrupt
or gradual.

Abrupt forgetting relies on sliding windows, defined by a number of interactions or
time intervals, where only recent observations included in the windows are considered, and
observations outside of the windows are forgotten. Sliding windows have been used both in
user-based (Nasraoui et al., 2007; Siddiqui et al., 2014) and item-based (Nathanson et al., 2007;
Vinagre and Jorge, 2012) neighborhood approaches. Regardless of the approach, performance
depends largely on the size of the window. While its advantages are simplicity and straightforward
application, a limitation of sliding windows is that past data is not necessarily obsolete, but such
information would be abruptly forgotten based on recency as defined by the window.

An alternative approach is to gradually forget observations. Gradual forgetting relies on
mechanisms to weight observations based on recency, by considering recent observations to be
more important than older ones. Koychev (2000) proposes a technique to assign higher weights
to more recent observations in a content-based method, thus gradually decreasing the importance
of observations over time. Such a technique results in faster adaptations to new user interests.

Similar approaches were explored in Ding and Li (2005) and Liu et al. (2010). In
Ding and Li (2005), a item-based CF algorithm is extended to predict new ratings based on
time-weighted ratings. A time function is used to assign greater importance to recent data and
less relevance to older data. Liu et al. (2010) proposed an online evolutionary CF framework
based on an incremental item-based nearest neighbors method that also considers temporal
relevance of ratings when generating recommendations, where a weighting function is used to
increase the similarity of items that are rated around the same time. In Symeonidis et al. (2020) a
Sigmoid-based function is used to assign weights to items according to their position in a session,
such that recent items are given greater relevance. In general, generation of recommendations
based on recent information results in accuracy improvements.

Vinagre and Jorge (2012) extends nearest neighbors methods using a decay function
in the similarity calculation, causing older items to lose relevance. Similarity matrices are
multiplied by a positive fading factor 7 < 1 before each update based on new information, where
7 controls the forgetting rate. This causes similarities to decrease continuously over time unless
reinforced by newly generated data. When the similarity values reach a low threshold value, it
is assumed to be zero, which reduces the model size and consequently improves scalability as
a result of lower computational requirements. The advantage of this method is its simplicity
and application in a single scan, while a shortcoming is reduced effectiveness in the presence of
subtle local changes, since forgetting is applied globally.

In the context of recurring link prediction in graph streams, Tabassum et al. (2020)
proposes a forgetting function that weights the links in a stream exponentially based on frequency
and recency. A exponential function is applied on every unique edge on the stream at predefined
time intervals, where the weight of the edge at a previous timestamp is multiplied by (1 — 7).
Parameter 7 € [0, 1] defines a bias rate, where higher values of 7 tends to forget previous edge
occurrences, biasing the weights according to their recency. The technique also includes a
threshold parameter that prunes edges based on their weights at a given time interval, where
higher values retains only strong and stable edges. This technique improved the performance of
recurring link prediction in the context of recommendation.

Incremental matrix factorization methods, discussed in Section 3.2, maps users and
items in a common latent feature space of low dimensionality, such that the affinity between users
and items is given by the inner product of their embedded vectors. Hence, a MF method must

60

learn these representations. Koren (2009) showed that user behavior presents temporal patterns,
and modeling temporal information in user latent vectors improves significantly the predictive
capabilities of MF methods.

Forgetting for incremental MF was first studied in Matuszyk and Spiliopoulou (2014);
Matuszyk et al. (2018). Matuszyk et al. (2018) proposes several forgetting strategies to select
obsolete information and remove their effect from the model, giving more importance to more
representative observations. These strategies are divided into two categories, rating-based and
latent factor-based forgetting. Rating-based strategies operates directly on the list of ratings for
each user, selecting and discarding ratings from these lists through sliding windows, using a fixed
size or time frame, or sensitivity analysis, e.g., by removing ratings that causes dramatic changes
in the user latent vector that are then not used to update the latent vectors.

Latent factor-based forgetting strategies adjust the latent factors of users to reduce the
impact of past observations, and are deployed for each incoming rating in a stream. These
strategies include user fading factors, that reduces the importance of past preferences based on
volatility and frequency, and forgetting popular or unpopular items. Experiments suggest that
latent factor-based forgetting, particularly user fading factor and forgetting unpopular items, are
successful both in predictive power and computation time.

Veloso et al. (2017) proposes forgetting techniques based on individual, fixed size
first in, first out (FIFO) queues, where for each user a queue containing their last n ratings is
maintained. With the arrival of new user ratings, these ratings are inserted in the user queue,
the queue is shifted and the user latent vector is faded according to the ratings on the queue.
Fading is performed based on four forgetting strategies: two time-based functions, that fade
the ratings according to the timestamps of both the faded rating and the current rating, and
two positional-based functions, that take into account the position of the rating on the queue.
These strategies improve accuracy when compared to the forget unpopular technique proposed in
Matuszyk et al. (2018).

Finally, a FIFO queue is also used in Vinagre et al. (2015a). In their work, a global
queue of all items seen in the stream, ordered based on the recency of item occurrences, is
deployed. For every new observation in the stream, a few older items at the head of the queue are
selected to be used as negative feedback to the current user, where only the user latent factor is
adjusted, before updating both the user and item latent factors with the new observation. The
items selected to be used as negative feedback are then reinserted at the tail of the queue. This
procedure, which gives greater importance to more recent events, is shown to improve accuracy
when compared to an incremental MF algorithm.

4.2 LEARNING MODULE

The learning module is responsible for defining how models are updated with incoming data,
which usually is done through incremental learning, as described in Chapter 3. In this thesis
we aim to design models capable of updating itself with each incoming observation, without
storing observations and also without the need for retraining, which represents a very strict
learning scenario, with tight time and processing requirements. In the following, we describe
contributions that generate recommendations considering a streaming setting, i.e., models that
recommend based on up-to-date information, and that are updated incrementally based on a
previously trained model. First we discuss incremental neighborhood-based (or memory-based)
models, followed by incremental matrix factorization ones.

61

4.2.1 Incremental neighborhood-based approaches

Table 4.3 presents contributions related to incremental neighborhood-based methods. These
models (Section 3.1) were first proposed in Papagelis et al. (2005), where an incremental user-
based CF algorithm for explicit feedback was presented. Similarities are stored and incrementally
updated for each new observation, which allows for high scalability in comparison to previous CF
approaches. The recommendation procedure consists of computing the nearest neighbors of the
active user and then predicting ratings for all candidate items using Pearson correlation (Eq. 2.3).

Following the work of Papagelis et al. (2005), Miranda and Jorge (2009) proposed
incremental user-based and item-based algorithms designed to learn from implicit feedback using
cosine similarities instead of Pearson correlation. Such change affects the similarity formulation
in a implicit feedback setting, which can be simplify to computing user and item co-occurrence
counts, as defined in Eqgs. (2.8) and (3.1). Two users co-occur when they both interact with
the same item, while two items are said to co-occur when a given user interacts with both of
them. Analogous to Papagelis et al. (2005), the rating matrix and the similarities are stored
and incrementally updated for each new observation. With co-occurrence counts, an update
is performed simply by incrementing these counters. Nearest neighbors computation and the
prediction of ratings are also performed at the time of recommendation.

Recommendations based on co-occurrence counts were also explored in Das et al. (2007),
Yagci et al. (2017), Tofani et al. (2022) and Jeunen et al. (2022). Das et al. (2007) proposed one
of the first approaches to deal with online news recommendation in real time, that combines
two clustering approaches with a covisitation counts algorithm. The covisitation algorithm is
implemented as a graph, such that nodes represent items and edges represent covisitation of items
weighted according to time. For a given candidate item s, its near neighbors are the set of items
that have been covisited with it, weighted by the age discounted count of how often they were
covisited.

Yagci et al. (2017) proposed an item-based algorithm similar to the works of Deshpande
and Karypis (2004) and Miranda and Jorge (2009), that approximates frequent item co-occurrence
counts in order to avoid storing both the rating matrix R and item similarity matrix S, as done
in Miranda and Jorge (2009). Their approach stores a list UL of size |U| containing the item
interaction history of each user, and a list IL of size || that contains / counters for every item to
hold its frequency co-occurrences with other items, where [< |7 |, which significantly improves
space in comparison to storing a || X |7 | matrix in memory. Lists UL and /L are implemented
through the use of efficient data structures based on hash tables and linked lists. For every new
observation in the stream, these lists are updated and a hash function is used to sample the item
co-occurrences in the stream and update the counters if required. Candidate items are ranked
based on cosine similarities calculated on these approximated co-occurrence counts.

Tofani et al. (2022) proposes three dynamic approaches for session-based music
recommendation using information retrieval techniques, two of them based on TF-IDF weighting,
one of which (IR-INN) expands the nearest neighbors framework. A third method (IR-MC)
extends the first-order Markov chain, a frequency count-based approach, in order to consider
longer past sequences. Algorithm IR-1NN is a slight variation of session-based KNN (Ludewig
and Jannach, 2018) that considers only items that belong to the top-1 nearest neighbor, and these
items are ranked using a proximity ranking method that accounts for the overall proximity of
candidate items in sessions to items in the query. Algorithm IR-MC extends first-order Markov
chains by allowing it to consider the correspondence of past items in the context of previous
sessions, by exponentially rewarding candidate items according to the size of the shared sequence
of past items each session has in common with the current query.

62

93ed 1xou uo panunuo)

(0107 “'Te 39 uery) sydeasd anaediq
pue (¢10g “'[e 10 ueferejeN) paseq-wair (¢ 10¢
“re 10 vidno 1107 “99A0YST pue wonsyoey)
Paseq-Iasn Ipn[oul S[OPOW ASAY [, “SWAI JUeI
0} pandwod St YJd W1 UOHIBPUIWUIOIAT
e pue ‘oseyd auIpyo ue ur J[Inq I8 S[OPON

(€102
“Te 10 uefereieN €107 “Te 10
vlidnn ([107 ‘O9A0YSYT pue
wonsYdrg ‘0107 T8 19 Suery)

Addd

AD paseq-ydein

"SWA)I JO SJUNOD DUALINII0-0D Y} SP[OY Jey)
XLIJBW W)I-WIA)I UBIWERIL) UAIS B JO 9SIOAUL
oy} Sunndwiod ur SISISU0D Jey) [OpOoW paseq
-WL Jeaul] €, HSVH Uo sarepdn [ejuswarouy

(TTOT “1® 19 uaunaf)

IOPOOUH-0INY MO[[eYS A[SuIsselrequuyg

“UOTIBAIOSQO MU Yoed 10J pajepdn
are Jey) sydeid paseq-woir ur paIols SjUNOd
QOUALINDD0-00 U0 PISB] SUONEPUIWWOINY

(L0OOT T 19 seq)

SIUNOJ A2UALINID0-0))

‘KLIeIuars aursod s panduwod are sa100§
‘syuowraanbar L1owowr aroxdwir 0] sarnjonas
eiep oyroads pue suonounj ysey yirm pajewut
-xo1dde are $191un09 20UAILINII0-09 Aduanbai

(L10T “Te 10 103eX)

Ayrepruars dewrxoxdde yim NN

"SWA)I UIMIIQ SIUNOD JOUILINIIO
-00 0} payrduwrs are asay) “Yoeqpaay ord
-wir 1o AJLIe[IuuIs oursod ym payndwod
QJe $OI00S "UONBAIISQO MAU [OBd 10J pajep

(TT0T "B ¥
IUBJOL, ‘ST0Z “Te 10 Sueny
‘10T “Te 19 [noweipueyn

-dn A[[ejuowaIour pue paiols ale SANLIB[IWIS | ‘{6007 ‘95I0f pue BPURIIA) NN | D peseq-way
‘KLrerurs
QUISOD PUE UOIIB[ALIOD UOSIEd YIIM painduwod
QJe SAI0JS "UOIBAIISQO MAU [OBd 10J Pajep (600 “@310f pue epuel
-dn A[[ejuawaIour pue palols aIe sANLIB[IWIS | -I]A SO0 T8 10 siededeq) NN | AD poseq-1vsn)
uondrsa(q sradeq anbruyday, £331e0)S 7

'SUONNQLIUOD PASEq-POOYIOqUSIOU [BIUSUIAIOUT JO ATRWIWING :€'{ 9[qRL

63

"SWA)I pUE SIASN JO SAseIq
yIm SUO[E UOBPUSUILIOIAI JOJ PAsn I8 pue
pajepdn A[[eorperods are s1aisnjo asayy ‘aseyd

(010 199nS PUE UIYSAUYSOYS]

QUIJO U Ul PAIISN[O AIB SWA)I PUB SIAS() | ‘GOOZ ‘NSNIJA pue 93I1090)) 3uroIsnyo-0) 0
(0T0T T8
SIpIuoQwWAS) sydeid snooua3o1alay pue (810¢
“Ie 19 Teydequosyy) Antediq apnour S|
-pow 9saY], “SWA)I Juelt 0 pANdwod ST Y MY
W} UONBPUIWWOIAI & PUR ‘A[[BIUSWIOUT (0Z0T “'T® 12 SIPIUOdWAS
pajepdn ‘oseyd aurpyo ue ur [Ing I8 SPPOIA | (8107 'TB 10 TeydlequiosyyH) A
‘Surdwes y[em wopuer yim (L102
sydess anaediq uo ((11°7) "ba) sdais-T, 10358 | e 19 [opned S10T “'IB 12 [9}
x1ew uonnqguysip Aiqeqoad ayy sajewinsy | -JoIsuy) 410¢ e 12 12doo)) NN
"SUOT)BAIISQO
mau 10J parepdn Afpejuawarour st jey) ydei3
Poseq-wall ue uo paIndwod SWAI puIWWO
-031 0] Pasn ale sureyd AONIBJA IOpI0 UI-N (e10T “Te 32 Sueyy) Sureyo AONIBIA
"UONJBAIISQO MU [Je 10} pajepdn
are jey) sydel3 paseq-wall ur paIols Syunod
90UALINJJ0-00 UO PIskq SUOTIEPUIWWOINY (#107 “'Te 12 [OISIAQI]) SIUNOD QJUALINII0-0))
‘yde13 snooua3oraloy
UE UO SUIdI YUBI 0] pasn ‘sy[em wopuel sdajs
-1, 10ys ysnoay) pajewn}sd SI awr Sumiy (8007 “T® 12 IeyIes) own Sumiy
uondrsa(q srdeq anbruyoag, £33ens 7

3ged snoradad woay panunuod — ¢ dqeL,

64

Jeunen et al. (2022) proposes Dynamic EASEX, a method to incrementally update
models that are based on the Embarrassingly Shallow Auto-Encoder (EASER) (Steck, 2019).
EASER is a linear item-based model that consists in computing the inverse of a given Gramian
item-item matrix that holds the co-occurrence counts of items. Despite its conceptual simplicity,
EASER is capable of outperforming state-of-the-art approaches in several ranking tasks, while
being computationally efficient in some settings as it depends only on the size of the item catalog.
Considering dynamic scenarios, it becomes unfeasible to compute the inversion of the entire
item-item matrix with every update. To avoid such computation, Dynamic EASE® incrementally
updates an existing EASER model when new data arrives, by exploiting the assumption of
low-rank for the user-item interaction data. This allows the algorithm to target only parts of the
resulting model that requires updating.

Efficient frameworks based on the aforementioned item-based CF approaches for
data stream processing are described in Chandramouli et al. (2011) and Huang et al. (2015).
Chandramouli et al. (2011) describes StreamRec, an implementation of an item-based CF approach
for explicit feedback on a stream processing system that is deployed for the recommendation of
news and movies in real-time. Huang et al. (2015) proposed TencentRec, a framework designed
to deal with implicit feedback that implements an algorithm similar to the proposal of Miranda
and Jorge (2009) on Storm!. An important feature of TencentRec is the inclusion of real-time
pruning, done in order to reduce the computation costs of model update and recommendation
generation, where dissimilar items that likely will not be part of the set of top candidates for
recommendations are discarded.

We also note two neighborhood-based methods based on co-clustering. George and
Merugu (2005) designed incremental and parallel versions of a co-clustering algorithm that
simultaneously groups users and items. Predictions are made based on the average ratings
of the co-clusters, which represents the neighborhoods of users and items, and also on biases
of each user and item. Their approach requires an initial offline training that clusters users
and items, that is then sporadically updated based on new data. To account for new users and
items between updates, these are assigned to a global cluster before the next update. Several
improvements to these methods are suggested in Khoshneshin and Street (2010), where an
evolutionary co-clustering approach was proposed to overcome some accuracy limitations.

4.2.1.1 Graph-based approaches

In Section 2.3.1.1, we discussed the advantages of representing neighborhoods of users and
items with graph-based models. Mainly, that they present reduced sensitivity to data sparsity,
associated with structural transitivity, which allows similarities to be computed based on indirect
connections. In these methods, nodes that are not directly connected are allowed to influence each
other by propagating information through the edges of the graph, with their weights indicating the
amount of information that is allowed to pass through, and the influence of nodes that are closer
to a source node should be higher than the influence of nodes that are further away in the graph.

Personalized PageRank (PPR) (Page et al., 1999; Haveliwala, 2003) (Egs. (2.14) and
(2.15)) is a popular algorithm to rank nodes in a graph, and adaptations of it have been devised
for recommendation tasks (Gori and Pucci, 2007; Baluja et al., 2008; Vahedian et al., 2017;
Nikolakopoulos and Karypis, 2019). However, the application of PPR in data stream scenarios is
limited given scalability issues raised with the impracticability of constantly recomputing the
stationary distribution (Eq. (2.14)) on ever-changing graphs.

thttps://storm.apache.org/

65

An alternative approach to overcome this issue is to estimate the stationary distribution
with approximation algorithms at the expense of accuracy (Fogaras et al., 2005; Avrachenkov
etal.,2007; Bahmani et al., 2010; Lofgren et al., 2014; Ohsaka et al., 2015), which has been shown
to be effective in several contexts. In Backstrom and Leskovec (2011) and Gupta et al. (2013),
efficient implementations of recommendations based on PPR and random walk with restarts
computed on large bipartite graphs, representing relationships between friends in social media,
are described. These approaches are shown to outperform other machine learning techniques.

In Sarkar et al. (2008), the notion of truncated hitting time is introduced, which is an
approximation of the hitting time (Eq. (2.17)) with random walks limited to ¢ steps, which
reduces the sensitivity of the algorithm to long range paths. The algorithm is scalable and
accurate, and it is shown to perform well in ranking tasks.

Cooper et al. (2014) proposed three ranking methods on a bipartite graph based on
the t-step probability matrix (Eq.(2.11)): P3, P> and Pz, where Pz (Section 2.3.1.1) raises the
transition probabilities to the power of a parameter . The paper also provides approximations
obtained with random walk sampling, and show that algorithm P?l outperforms ItemRank and
the methods proposed by Fouss et al. (2007) in accuracy and scalability.

Christoffel et al. (2015) proposes algorithm RP?), (Section 2.3.1.1), a re-ranking of

P3 that penalizes items with high degree in order to recommend long-tail items and increase
diversity. The paper also describes a sampling procedure for algorithms Pz and RP%, and shows

that RP% outperforms Pg, although it requires more samples to converge. An extended version
of their algorithm is presented in Paudel et al. (2017), where a procedure to cache a variable
number of walks from each node is proposed. The idea is to induce t-step random walks based
on cached partial walks. Such procedure reduces the computational cost of sampling random
walks, improving scalability, at the expense of memory.

The methods described thus far are effective in ranking vertices and modeling long-term
user preference profiles. However, user preferences change over time and recommendations
should consider short-term preferences in order to stay up-to-date. We next discuss methods that
consider short-term information.

Xiang et al. (2010) incorporated short-term and long-term user preferences into a
bipartite graph, where nodes represents users, items and sessions, and edges balance the influence
of short-term and long-term preferences. User and item nodes are connected based on past user
interactions, representing long-term preferences. Item and user-session nodes are connected
based on user interactions in a time window, representing short-term interests. Recommendations
are generated through random walks in the graph with PPR, and the impact of short-term and
long-term preferences can be balanced parametrically.

In the context of next-app recommendation, Natarajan et al. (2013) proposed a method
that predicts sequential actions of users based on behavioral graphs. In an offline step, users
with similar sequential behavior, measured by first-order Markov chains between items, are
clustered together with k-means algorithm, resulting in several Markov graphs. Transition
probabilities are computed with the use of PPR on each of the resulting Markov graphs. To
generate a recommendation to a given user, she is first mapped to the corresponding cluster, and
recommendations are generated based on the probabilities computed by PPR.

Trevisiol et al. (2014) addresses cold-start issues in news recommendation domain by
ranking articles based on two users’ browsing graphs: BrowseGraph, which collects all user
browsing behavior, and ReferrerGraph, which is a subgraph of the BrowseGraph induced by
user sessions with the same referrer domain. To predict the next page to a newcoming user,
the neighbors of both graphs are considered as candidates, and four simple strategies to select

66

the next page are used: random, content-based, most popular and edge-weight-based, with the
edge-weight-based approach, which is similar to a co-occurrence count, obtaining the best results.

For location recommendations, Zhang et al. (2014a) proposed to incorporate sequential
patterns from users’ check-in behaviors in a location-location transition graph in incremental
manner, where nodes represent locations, edges represent transitions between locations, and
edge weights are based on transitions count. The proposed method, LORE, recommends new
locations based on an additive n-th order Markov chain deduced through all visited locations of a
given user, which reduces the impact of the data sparsity problem.

In Eksombatchai et al. (2018), sampling of short random walks in bipartite graphs are
used for recommendation in a large-scale graph. The random walks are biased based on user
features, such that walks traverse edges that are more relevant to the user. Recommendations
are generated dynamically after each user interaction, and more relevance is given to the most
recently interacted items. Their proposal also includes a strategy for early stopping, which
terminates the random walk sampling when a given number of nodes have been visited by a
predefined number of walks. The experimental results show that early stopping speeds up the
similarity computation by a factor of two with only minor losses in accuracy.

Symeonidis et al. (2020) exploits random walks on a time-evolving heterogeneous
information network for news recommendations. The information network is composed of
five entities: users, sessions, articles, categories and article locations, and random walk with
restarts are used to infer similarities between entities. The authors use a sliding time window in
order to forget obsolete articles, and test five different article weighting strategies to generate
recommendations, and show that the choice of strategy leads to different results in terms of
accuracy and diversity, with the best accuracy usually obtained by considering mainly the most
recently clicked item in the session.

4.2.2 IMEF approaches

The success of model-based approaches in rating prediction tasks (Koren, 2009), specifically
matrix factorization ones, has motivated several contributions to incrementally update MF models
to allow its application in online scenarios. Table 4.4 presents a summary of such contributions,
grouped by the manner in which updates are performed. The first incremental MF contributions
were based on SVD, defined in Section 2.3.2.1 (Sarwar et al., 2002; Brand, 2003).

Sarwar et al. (2002) proposes incremental updates by computing latent vectors of
new users and new items based on the current decomposition, and appending them to their
corresponding matrices through the application of the fold-in method (Deerwester et al., 1990).
Another contribution from Brand (2003) explores algebraic properties of SVD and defines
sequential update rules that allow addition, update and removal of data embedded in the current
decomposition. Despite the effectiveness of the aforementioned contributions, SVD has important
accuracy and scalability shortcomings, mainly that it requires an initial dense matrix that relies
on value imputation (Section 2.3.2.1).

4.2.2.1 Learning from explicit feedback

Analogously to the advances in MF for rating prediction, succeeding approaches adapted
the paradigm of minimizing the regularized squared error for known ratings, as defined in
Eq.(2.22), through SGD and ALS to the online setting. Rendle and Schmidt-Thieme (2008)
proposed an online SGD algorithm that trains the latent factors of new users and items based
on new ratings while it maintains the remaining latent factors fixed. Takdcs et al. (2008, 2009)
proposed incremental updates on a SGD model with algorithm Biased Regularized Incremental

67

93ed 1xou uo panunuo)

"poyjow
ueIsokeq [BUONBLIBA B UO Paseq s3unel umouy]
-un syo1paxd oseyd auruQ -ejep [BOLIOISIY WO

[opoW [enIul ue sp[Ing jey) UONBWNS J9JOWERI sassao01d
-ed QuUIJJO 1SNQOI UO SAI[OY °SI0}OBJ W) pUE Jasn AOYIRIA]
SurAIeA-awr) [pow $3ss2001d AONIBJA SnONUNRuo)) (L10Z e 12 Suey)) | snonunuo)
"XLIJBW QSUIP [enIUl
soxmboy uonisodwodsp JuALIND AY) UO paseq (A¥10T “Te 32 SueyZ ‘00T
SWIA)I puUB SIASN JO $I10)O8] JUe] sppe pue sajepdn | ‘pueag ‘zo0g “'Ie 10 Jemies) dAAS
‘paurenai Ajeorporrad | (G107 “Te 12 3Y300A(S10T
9q ued [9POJN 9[qB[IBAR JpRUW AIB SFUNBI MAU | “Te J2 SUOS ‘€107 T8 12 Suep, Sururenar [esrporrd + [opowr
uoym pajepdn are (Swajl pue s19sn) s10J0eJ JuAe[| {0107 T8 10 [emIe3y Q00T 3unsIxa Jo SapISs Y10q uo sajep
oY} JO SOpIS Ylog "Yoleq Ul paures) I [opoW [eNIU] | ‘QUIdIYJ-IPIWYDS PUB J[PUIy) dos | -dn [euowaIour [BJIPOLId]
LI RIARR
wolj Sururenal [eorporiad saxmbay -poxy 1day st
OpIS JOYIO Y} I[IYM ‘9[qR[IBAR 9peW I8 sTurjel Sururenai reorporrad + [opowr
MU UdYM pajepdn ST (SWII IO SIASN) SI0JILJ JUE| 3unsIxa Jo 9pIs AUO UO SIAep
9y} JO 9pIS QU "YdIeq UI paules) ST [opowl [enIu] (9107 TR 19 NRX) STV |-dn [ejuswardour [eOIpOLIdg
‘paurenax Sur
A[reorporrad sased owos ur pue paxy 3doy St oprs (L10T ‘nopnodoryidg -ureral [eds1rporrad + pajod[[od
IOYIO Y} 9[IYM ‘S[qe[IBAR 9peW I8 STUNBI MU | pue YAZSNBIN ‘€107 e 10 SI BJEP JULIDIYNS UdYM [opoul
uoym pajepdn SI (SWAIL IO SIASN) SI0JOBJ Judle] | SueAy €107 8 10 oryZ 3unsIxa Jo 9pIs AUO UO SIAAep
Y} JO 9PIs AUQ "YoJeq UL paure) st [9poul [eNIU] | ‘600 ‘800T “[® 19 SOBYRL) dos | -dn [ejuowaIour [edIPOLId] ordxyg
uondrsa(q srdeg anbruyda, £391eM)S | yorqpadyg 7

'SUOIINQLIIUOD UOT)BZIIO)OR] XINBUI [RJUSWIOUL JO ATRWWINS ' 9[qR],

68

93ed 1xou uo panunuo))

‘3ur
-urenas 9Jo[dwod 10y padu Ay} Sursuadsip ‘[opowr
oyy ojur popuadde pue pazijeniur Ajuopues aIe
SWIAI MU PUB SIOSN MU JO SIOJOBJ JUAILT "WIBANS
BJEp © Ul UONBAISSQO 3UIUOJUI OB JO [BALLIR
oy} 1) A[[eIuowaIour dpew a1e sajepdn [OpoIA

(€T0T “T® 19 DISIUIA
‘810T “Te 10 ESOAUY 9[0T
“Ie 1@ Sueny ‘BGIOZ B 1@
QI3RUIA ‘10T T8 12 SO1A0[Bd

‘Qploz e 10 Q1Svulp)

ans

UOIBAIOSqO SUIOdUl
yoea 10J soyepdn [ejuawaIou]

o1y

“IIOAJIISAI) UO paI0)s sojdures aaneIau pue oAn
-1s0d)1M puB UONBAIISQO SUTWOOUT MU (OB U0
paseq ‘A[rejuawarour pawrtojrad are sajepdn [9poN
“JIOAJOSQI © Ul paurejureus sI josejep jo ojdures

(€107 “Te 19 UaYD)

ans

II0A
-19SAI + UONBAIISQO Furuoour
yoeo 10j sojepdn [BIUQWIAIOU]

"IIOAJOSAI A} UO
paseq pauriojrad A[jesrporrad are sajepdn [9poJN
“JIOAJQSAI B Ul paurejurewr st josejep jo o[dwesg

(@810t
“Ie19 3uep L1107 Te 10 Sueny
‘qQBZI0T "B 19 S9[IAV-Zel(])

ans

SIIOAJIQSAI UO PISEq P[0
SI BJEp JUSIOLPYNS UAYM SIJBp
-dn [elUOWIOIOUT [BOIPOLIR]

‘saunpadod ayepdn aA1s
-uadxa saxmbar pue Sururen-aid 19owered uo sar|
-9y "o JOAO A[MO[S SALIBA JBY) S90udI)a1d 1osn
WLI9)-3U0] 1njded 0] SYIOMIAU [BINAU SATBIAD]|

(610T “Te 19
3uog ‘egIO7 1B 10 Suep)

SYI0M

U [ednaN

"oness
1doy a1® JeY) S2INJBI) SB UOIIBULIOJUT PASBq-Judju0d
SIS JOBQPAYJ Q[gB[IBAB UO PIseq A[QANBIdII
parepdn st A39jens ‘(uoneiojdxa) sdse} I1dy)
noqe a3pamoury urured osfe [ym (uoneyrojdxa)
UOTIEPUAWITIOIT OB 1M UOTIORJSIES JISN SIZIW
-IXeW Jey) A39)R1]S B UIRQ[03 SI [RON) pofnd oq
0) ULIe UE SB JOSe)ep) U0 Wl Yoed Judsaiday

($10T “T8 10 Suep)

sypueq
powIe-nA

| uondLsaq

srdeq

anbruyoay,

£39enS

Yoeqpady |

3ged snorrdad woay panunuod — 4 dqe],

69

OrqPa9J 9[qe[IeAR UO paseq A[oAlIe
-19)1 pajepdn st £391eng “(uoneIro[dxa) saise) Iy}
noqe a3pamouy surured osfe J[ym (uoneyrojdxa)
UOTEPUIWUIOIAI OB YIIM UOTOBJSIES JASN SOZIW
-IXeW Jey) A391e1)s B WIe9[01 SI [eon) pafind aq 03
ULIe Ue Se 19sejep Ay} U0 Wa)1/I1asn yoed Juasaidoy

(ceoz e ueded 610 "2 10
opezni)-zueS :(¢I0C T 19
®I19I3 ‘9[0T ‘010T "B 1 I'D

Sypueq
pauLIe-I A

‘A[reorporrad sa3ueyo jey) swall jo [ood aAnoe
uo paseq pajepdn A[[edrweuAp SI 93I], IXAIUOD
[oBd Y)IM PIJRIOOSSE SI S[opowt uonorpaid Jo 198
"SW)I JO SQ0UNDAs pue SWI)I [opOUl $I) JXAIUOD)

(€10T I8 10 UIRD)

$991) 1XIU0))

Pa109[[0d
ST BJep JUSIDIPYNS UYM SIJep
-dn [elUOWISIOUT [BOIPOLIS]

"doys o[3urs e ur weans

BIEp B Ul UONBAISSQO 3UIOdUI OB JO [BALLIR souryoew
Q) J9)Je A[eIuduWwaIoul dpew A1k sajepdn [OpoIN (910T ‘emezeiry]) | UOIBZIIONE]
‘Aiqereas Jo asuadxo je
Koeanooe soaoxdwr A[[eI0UQL) "Weans BIEp B Ul uon
-BAI9SQO SUTWIOJUT YOB3 JO [BALLIE U] Ja3Je pajepdn spoylowt
A[[RIUQWIRIOUT QI R} S[OPOW [BIIAIS SQUIqUIO)) (Q®810T “'Te 10 213eUIA) Jrquiasuyg
"PaXy souo Sururewas ay) Surdady rym
JOJOQA JUQJR[Y} JO 9JBUIPIOOD yoed Furzrundo
sanmbay -90ua310AUOD [TIUN SIOIOL) JUJE] WA)I pUB
Iosn Surpuodsariod ayi Sunepdn A[uo Aq ‘weans
BJEp B Ul UONBAISSQO 3UIUOJUI OB JO [BALLIR
AU} J19)Je A[eIUdWAIOUL dpeWw A1k sajepdn [OpOIN (9107 “Te 12 9H) STV
uondrisa(q srdeq anbruyoay, £39enS | Yoeqpadyg 7

3ged snorrdad woay panunuod — ' dqe],

70

Simultaneous MF (BRISMF). BRISMF is similar to a batch-based SGD with the addition of user
and item biases, used in order to capture how the rating scale is used by users to evaluate items.
After initially training BRISMF in batch, the algorithm retrains the user latent vectors every time
new ratings are made available to each active user, while item latent vectors are kept fixed.

Zhao et al. (2013) extends the Probabilistic Matrix Factorization (PMF) model (Mnih and
Salakhutdinov, 2007) to continuously recommend items to users based on up-to-date information,
where interactive feedback is immediately inserted into the model so that the recommendations
can be adjusted accordingly. In their proposal, PMF is used to capture the distributions of user
and item latent factors, and in order to account for drifts in user interests and user cold-start, their
proposal leverage exploitation-exploration algorithms, such as Thompson sampling (Chapelle
and Li, 2011), to allow continuous learning and detection of drifts in user profile while also
attempting to maximize their satisfaction. The proposed framework updates the corresponding
user latent factor for every new observation, while keeping the item factors fixed, only retraining
them periodically. Although incremental, the aforementioned approaches require computation of
initial models in batch. Thus, retraining is necessary to include new latent factors into the model,
or to update a side of the model that was kept fixed, which in turn requires storing the rating
matrix.

As opposed to incrementally updating a single vector based on each incoming observation,
Wang et al. (2013) proposed an framework that updates additional user vectors besides the one
directly affected by the newly generated observation, and also the affected item latent factor.
The framework exploits multi-task learning ideas (Phuong and Phuong, 2008), by incorporating
a measure of similarity between users in the user interaction matrix. Then, in addition to
incrementally adjusting the latent factor of the active user (affected by the current rating), the
framework treats latent factors of users similar to the active one as tasks to also be optimized.
Such extension comes at the cost of being less scalable, as the learning procedure has higher
time complexity, but results in accuracy improvements in comparison to updating only the user
and item latent factors directly related to the current observation.

Song et al. (2015) proposes an approach that re-learns the feature space, with auxiliary
feature learning and matrix sketching strategies. The prediction error of new data is normalized
and added to the existing feature matrices as auxiliary features. As such operation results in
continuously increasing the number of dimensions of said matrices, sketches of lower dimension
of these matrices are maintained. This approach is specifically designed to handle new users
and new items, and their approach outperforms the one by Rendle and Schmidt-Thieme (2008)
in these scenarios. Conversely, Agarwal et al. (2010) proposes to update user and item feature
spaces through online bilinear regression. Such proposal relies on a predictive model built offline
based on historical data, which is assumed to be comprehensive enough, that is then used to
initialize online models and to learn linear projections with the goal of reducing dimensionality,
which improves scalability.

Yu et al. (2016) proposes an incremental approach for MF models based on ALS, which
is another popular algorithm for updating latent factors (Section 2.3.2.1). Their approach, termed
one-sided least squares, consists in updating only one side of an existing model, i.e., either the
user or item side is updated, such that only the latent factor that is affected by a new rating is
updated. When a new user arrives, latent factors for items are fixed, and only the latent vector of
given user is updated. Similarly, when a new item arrives, latent factors for users are fixed, and
only the latent vector of given item is updated. Experimental results show that one-sided least
squares obtains similar accuracy to ALS trained from scratch, assuming that there are enough
ratings for incremental learning, but with reduced learning time. A limitation, however, is that it
does not dispense the need for retraining. Instead, when the amount of incremental data reaches

71

a certain threshold, the model is retrained from scratch, which is still undesirable in online
scenarios. The authors also describe a parallel implementation of one-sided ALS, which is able
to significantly reduce training costs. Although highly parallel, the computational complexity of
ALS is higher than SGD.

Matuszyk and Spiliopoulou (2017) proposed a semi-supervised framework that extends
BRISMF (Takacs et al., 2009) to alleviate sparsity problems in recommendation in streaming
scenarios. Their approach consists in a model, composed of several co-trainers, initially built
in batch and then updated incrementally for each observation generated in the stream. In the
initial training in batch, several co-trainers, all based on BRISMF, are built on different parts of
the training set, so that each co-trainer is specialized on a specific portion of the data and can
therefore teach other trainers. After the initial co-trainers are built, they operate in streaming
mode, where each co-trainer is updated continuously in supervised manner for each new rating
from the stream. Sporadically, unsupervised learning takes place, where several unlabelled
instances are selected, and predictions for these instances are made by the co-trainers. Based on
a measure that assesses how reliable is the prediction of each trainer, the model selects reliable
learners that provide labels for these instances that are then used to train unreliable ones in
incremental manner. Obtained results show that co-training with three learners significantly
outperformed supervised learning only, but that the number of co-trainers is strongly limited due
to computational requirements.

4.2.2.2 Tensor factorization approaches

Tensor factorization is one of the most successful approaches for context-aware recommendation
(Karatzoglou et al., 2010; Rendle and Schmidt-Thieme, 2010) (Section 2.5). Tensor factorization is
similar to traditional MF. However, instead of factorizing a matrix, it factorizes a multidimensional
tensor that includes extra dimensions, which represents contextual information, such as time
features. Zhang et al. (2014b) proposed an incremental tensor factorization approach for web
service recommendation. The approach uses three-dimensional tensors that represent users,
services and time dimensions, in order to capture the triadic relation between them, such that
tensors are updated incrementally following the incremental SVD procedure proposed by Sarwar
et al. (2002). Their results suggest that a higher number of latent factors increases predictive
capability, but at the expense of longer computation time and storage space, which is unsuitable
for streaming environments.

4.2.2.3 Exploiting information from missing observations

One important consideration in rating prediction is how to handle missing observations, as the
rating matrix is typically very sparse. Devooght et al. (2015) argues that the assumption that
the distribution of observed ratings, used to built a prediction model, is representative of the
distribution of unknown ones does not hold in most real-world scenarios. In turn, the authors
suggest that it is likely for unknown items to be weakly rated, as users tend to rate a limited
number of items that better reflect their interests. Thus, the authors extend several loss functions
to account for explicit priors on unknown values, by adding an additional term related to missing
ratings in the objective function. Online updates are performed in a single step, where only the
affected (current) user and item latent factors are updated with a gradient step.

72

4.2.2.4 Learning from implicit feedback

IMF methods were also proposed for the more realistic online setting with implicit feedback,
where the task becomes a top-N recommendation problem, i.e., a ranking task that consists in
recommending N relevant items to the active user. Vinagre et al. (2014b) proposed an incremental
version of the SGD method (ISGD) for positive-only feedback, which updates the model based
solely on the current observation in a data stream. Latent factors of new users and new items are
randomly initialized and appended into the model, that is updated for each incoming observation
(u,i,t) by adjusting latent factors p, and g, on a single pass. This procedure dispenses the need
for complete retraining as is done in previously mentioned approaches. ISGD is shown to be
very scalable, with competitive accuracy in several datasets.

A limitation of ISGD is that it converges globally to the positive class, given the absence
of negative examples, which eventually causes degradation in accuracy. To overcome this issue,
a follow-up study (Vinagre et al., 2015a) proposed a recency-based scheme to perform negative
preference imputation into ISGD (RAISGD), as discussed in Section 4.1. RAISGD selects
infrequent items seen in the stream to be used as negative feedback to the active user, avoiding
convergence to the positive class. Experiments suggest that RAISGD outperforms ISGD with
minor overhead in scalability.

Another contribution that aims to address the challenge of absent negative feedback
is presented in He et al. (2016). Instead of uniformly weighting missing data, as suggested by
Devooght et al. (2015), which in turns assumes that missing entries are equally likely to be
negative feedback, the authors propose to assign weights of missing data based on the popularity
of items. Such a strategy assumes that popular items that are constantly recommended to a given
user and are often ignored are more likely to be irrelevant, as opposed to unknown, by said user.
The objective function is extended to account for this effect, by introducing a confidence factor
that is parameterized based on item’s popularity. The authors then propose a element-wise ALS
procedure to reduce learning complexity and support online learning. This procedure optimizes
parameters at element level, i.e., optimizes each coordinate of the latent vector while keeping the
remaining ones fixed. An optimization procedure is proposed to avoid repeated computations
when updating latent factors for different users by pre-computing and storing some commonly
used terms. Incremental updates for new incoming observations can be performed by only
updating the corresponding user and item latent factors until convergence.

Attempts to improve the accuracy performance of ISGD with ensemble methods were
also explored. Ensemble methods attempt to obtain better predictive performance by combining
multiple learning algorithms or models with different techniques (Dietterich, 2000). In this
context, bagging (Vinagre et al., 2018a) and boosting (Vinagre et al., 2018b) techniques were
studied. Bagging trains several sub-models, each model on a generated bootstrap sample of
the original dataset. Boosting on the other hand trains several base models where each learner
(weak learner) attempts to correct the deficiencies of the previous one. The prediction phase then
aggregates the scores provided by the various sub-models.

To evaluate bagging in online settings, Vinagre et al. (2018a) trains a given number of
ISGD models that are aggregated to generated recommendations. Considering a continuous
flow of data, each incoming observation in the stream is used to train a subset of ISGD models,
selecting models following a Poisson distribution, which allows the usage of bagging in a single
pass over data and guarantees that each model is trained on a bootstrap sample of the dataset.
Results show that bagging improves accuracy with manageable overheads, and that the optimal
number of models depends on the desired trade-off between accuracy and computational cost.

A following study by Vinagre et al. (2018b) analyzes the impact of boosting in online
recommendation with two proposed algorithms, also with ISGD as its base learner. Both

73

algorithms maintain M weak models, where the first model learns the value of the target and
passes the residual (outcome of loss function) to the next model in order for it to learn the residual
of the previous one, such that this process is repeated until the end of the iteration. Results
suggest that accuracy can be improved with a small number of base models.

To account for changes in users preferences and items dynamics, which do not occur in
the entire dataset and only pertains to a few users or items, Viniski et al. (2023) uses specialized
parameters to adjust the learning rate for each user or item according to the observed performance
of the recommender, and proposes several specialized extensions of adaptive gradient descent-
based algorithms for IMF methods. Their proposal updates latent factors of users and items
considering a specific optimizer term learned for the current user or item in the data stream.
Results show that their proposed user-specialized variants outperforms ISGD and suggest that
they are well suited for scenarios where fewer interactions per user are available, at the expense
of an increased number of model parameters to store and update.

4.2.2.5 Usage of auxiliary data

Another extension to ISGD and RAISGD was explored in Anyosa et al. (2018), where an
incremental matrix co-factorization algorithm, CORAISGD, was proposed. CORAISGD
includes additional dimensions to be decomposed in the common latent factor space to consider
auxiliary data from users and items, as opposed to traditional ISGD that relies solely on the
user-item interactions. CORAISGD jointly factorizes users, items, user features and item features,
where for each additional relation user/item-feature, a new matrix is added alongside the feedback
matrix. CORAISGD is evaluated on music domain datasets, with one additional dimension
related to items (songs), that represents artists of such items. Results show that CORAISGD
significantly outperforms RAISGD, at the expense of higher update times.

Pélovics et al. (2014) investigate the impact of social influence between users in a
music-based social network to improve recommendations. The key concept is to recommend to a
given user artists that a similar friend has recently listened to. Their proposed matrix factorization
model includes the influence of similar users bounded by a predefined time frame that is trained
by a single SGD procedure. Results show that their proposed method outperforms static baseline
recommenders.

Kitazawa (2016), explored additional user and item features through incremental
factorization machines for online recommendation. Following the proposal of Vinagre et al.
(2014b), the author extends factorization machines (Rendle, 2012), by updating its parameters
for each received observation in a single step. Regularization parameters are also updated
incrementally, using the most recent observation as a validation sample. The proposal is evaluated
in a small movie-based domain dataset, and exploits features such as user demographics, movie
genre, timestamp of provided rating and time elapsed between current and last observation by the
user. Results show that the usage of additional information increases performance in comparison
to ISGD and its batch-based counterparts, but with significant increase in recommendation time.

Huang et al. (2016) describes a recommender system used in production for a large-
scale video recommendation service, Tencent Video, that has over 10 million active users and
generates about one billion user interactions daily. Such system combines an incremental matrix
factorization approach with additional features like video type and time factors to compute
similarities between items (videos). The incremental matrix factorization method is similar to
ISGD: an incoming observation indicates that the active user is interested in the interacted item,
and the affected latent factors are adjusted to account for this assumption in a single step. However,
in their system, implicit feedback is generated through many signals, such as clicks, views and
comments. To account for this fact, individual learning rates are introduced for every observation,

74

where each source of feedback is assigned a different confidence level, based on the behavior of
user that generates said feedback and features of the affected item. At recommendation time,
considering that it is impractical to compute similarities between millions of items at every step,
side information such as type similarity, time factor and demographic information are considered
to reduce the size of candidate sets.

4.2.2.6 Reservoir-based approaches

The main advantage of ISGD-based methods are their scalability, as they perform incremental
updates for every incoming observation in the stream. A potential shortcoming of performing
single updates in such manner is reduced prediction quality in comparison to batch-trained models.
However, memory usage is also of great concern for stream-based processing. To overcome such
issue, Diaz-Aviles et al. (2012b) proposed Stream Ranking Matrix Factorization (RMFX), an
online framework for topic recommendation in social streams that maintains a representative
sample of the dataset in a reservoir (Vitter, 1985). Such reservoir incrementally maintains a
random sample of fixed size |R| of the incoming observations in the stream, where observations
can occur more than once in order to reflect the distribution of observed data. The ' observation
in the stream is included in the reservoir with probability |R|/¢, replacing uniformly at random a
previously stored observation. The framework also includes a selective model update based on
personalized small buffers, that keeps negative items for each user. These items are then used to
update the MF model following a pairwise learning to rank approach, where items stored in the
reservoir are considered as positive feedback. RMFX periodically performs model updates based
on the reservoir, as opposed to ISGD that updates incrementally and continuously.

Diaz-Aviles et al. (2012a) extends RMFX by exploring additional sampling techniques.
These strategies include a single pass approach that updates the model at every iteration, a user
buffer that retains some of the most recent observations per user, and the aforementioned reservoir
sampling approach. The task of the proposed framework, trained on a dataset of tweets, is to
recommend hashtags to users. Results showed that reservoir sampling obtained the best results,
followed by the user buffer one, where increasing the buffer size boosted performance.

Another reservoir-based approach for recommendation in social media was studied in
Chen et al. (2013). Instead of periodically updating the model based on reservoir as done in
Diaz-Aviles et al. (2012b), the authors propose TeRec, a MF approach that performs incremental
updates after every observation, in order to always generate up-to-date lists. TeRec, which was
designed to recommend appropriate hashtags for tweets, maintains a reservoir of samples that,
instead of maintaining a sketch of the dataset, is updated based on recency, i.e., older observations
in the reservoir are more likely to be replaced. The idea of this update procedure is to capture
current user interests that better reflect their actions in real-time. Then, for every newly arrived
data, the model is updated with the new observation, and with positive and negative samples
stored in the reservoir. The authors report significant improvements in comparison to RMFX,
which are related to the model always being up-to-date with recent data.

Wang et al. (2018b) proposes the use of a reservoir to capture long-term user interests,
while also using new information incoming from streams as short-term ones. Their proposal,
which extends PMF (Mnih and Salakhutdinov, 2007), updates the model based on incoming
windows of data, by selecting samples from both the reservoir and the data stream. Samples
are ranked and selected based on a proposed Gaussian classification model, that estimates their
impact on the current model, where lower rank instances are assumed to be more informative
as they are more likely to cause higher changes in the existing model, and thus have higher
probability to be sampled. The authors report improvements when comparing their approach to

75

RMFX in movie-based and e-commerce datasets, at the expense of higher update time related to
their proposed sampling procedure.

An approach to reduce memory usage when updating a incremental model is presented
in Huang et al. (2017). Their proposal consists in a framework to perform incremental updates
on MF models by designing a linear transformation of user and item latent factors over time.
The idea is to have a model previously trained in batch, and update the latent factors with the
arrival of new data, with the assumption that the latent feature matrix over a time period can be
described as a linear function of its past value and by the factorization of the incremental matrix
of new observations. Hence, models are updated incrementally with new ratings handled in a
batch by batch basis, according to a time period defined by the application. Experiments showed
that their approach obtained competitive accuracy results, compared to the approach of Rendle
and Schmidt-Thieme (2008), with significant reduced memory usage.

4.2.3 Other model-based approaches

In this subsection we mention some of the efforts made outside of the scope of the MF setting for
online recommendation, such as Markov models, deep learning and reinforcement learning. These
models have also been explored in the somewhat related field of session-based recommendation,
a categorization of sequence-aware recommendation (Quadrana et al., 2018). In this thesis
we are interested in SBRS and incremental algorithms, specifically designed to the streaming
model. A recent survey of session-based recommender systems that discuss these other models
for recommendation can be found in Wang et al. (2021). As discussed by the authors in their
paper, most existing studies in session-based recommender systems work on offline and static
data, which is unrealistic given the naturally streaming nature of recommendation data. Thus, the
discussion of these papers falls outside of the scope of SBRS and we limit to those that made
specific contributions to our scope.

Garcin et al. (2013) proposed the use of context trees in the domain of news recommenda-
tion, which is characterized by frequent addition of new items with short lifespan and visits from
anonymous users. Thus, both user and item cold-start are pervasive in this domain. Context trees
partition the space of contexts organized in a hierarchy, where contexts are defined as sequences
of articles or topics, or distribution of topics. Each node in the tree is a context and correspond to
sequences within a partition, and contexts become increasingly specific deeper in the tree. A set
of prediction models (experts) is associated with each context, and recommendations are made by
combining the predictions of several experts. This combination is updated sequentially following
Bayes’ theorem. The tree is dynamically updated based on an active article pool that changes
periodically, where new branches are created with the addition of new articles, and nodes of old
articles are removed when these leave the current pool.

Chang et al. (2017) proposed a framework that deals with streams through a continuous-
time random process, that captures three types of events: user feedback activities, new users and
new items. Continuous Markov processes are used to model time-varying user and item factors,
with the goal of capturing time-related dynamics that naturally occur in streaming settings.
The framework is composed of two modules: an offline parameter estimation that builds an
initial model from historical data, and an online phase that predicts unknown ratings based on a
variational Bayesian method that performs efficient online inference. Experiments show that
their proposal outperforms batch algorithms in movie-based datasets with explicit feedback.

Song et al. (2019) proposed Coupled Variational Recurrent CF, a framework that
combines the previously mentioned Bayesian framework with deep learning methods. Latent
factors are modeled as the combination of a stationary term that captures long-term preferences
that varies slowly over time, and a dynamic one that captures short-term changes following a

76

Markov process. The variational inference algorithm then leverages two variational recurrent
neural networks, one for users and another one for items. Experiments show that the framework
models complex drifting patterns and slightly outperforms the one proposed in Chang et al.
(2017), albeit with higher complexity and sensitivity to updating intervals.

Wang et al. (2018a) argue that a limitation of sequential recommender models based
on recurrent neural networks is that they are limited in their capability of capturing long-
term information, as they are trained on recent data. To capture both dynamic (short-term)
and stable (long-term) interests in streaming scenarios, the authors proposed Neural Memory
Recommender Networks, a model that relies on key-value memory networks (Miller et al., 2016).
As the limitation of deploying deep learning based methods in streaming environments is its
costly training procedure, the authors also proposed a sampling procedure based on Generative
Adversarial Network (GAN) (Goodfellow et al., 2020) that generates informative negative samples
to the active user based on the current values of the model parameters. The authors report
improvements in movie-based datasets, but the model still relies on parameter pre-training and
expensive update procedures.

Finally, we mention some contributions based on reinforcement learning, in particular
the ones related to multi-armed bandits. Multi-armed bandit approaches (Sutton and Barto, 2018)
generally represent each item in the dataset as an arm to be pulled, and the goal of the model is to
learn a strategy that maximizes user satisfaction with each recommendation (exploitation) while
also gaining knowledge about their tastes to further maximize satisfaction over time (exploration).
The strategy is then updated iteratively based on the available feedback on the recommended
items: selecting an arm is equivalent to recommending an item, and the reward is the user
response to the recommendation. As noted in Al-Ghossein et al. (2021), the sequential update
procedure somewhat aligns to the scope of SBRS. A major consideration, however, is how
to efficiently update these models for new incoming observations to allow its deployment in
streaming settings.

Li et al. (2010) modeled personalized news recommendation as a contextual bandit
problem. To solve it, they introduced an algorithm, denoted LinUCB, that views articles as arms,
and sequentially selects articles to be recommended based on contextual information of both
users and articles (with disjointed and hybrid features), and leverages user clicks to optimize
such selection. The approach performs well in their evaluated setting, although exploration can
be hindered with a large article pool, and performance depends on feature construction.

Also in the context of news recommendation, Li et al. (2016) proposed the use of
collaborative information in multi-armed bandits through adaptive clustering, that dynamically
groups users according to the considered items, and at the same time groups items based on the
similarity of clusters generated over the users, which is similar to co-clustering (George and
Merugu, 2005). Their proposal is well-suited for user cold-start scenarios, as recommendation for
new users can be made based on information from old ones, although it has higher computational
cost compared to other multi-armed bandit methods such as LinUCB.

For music recommendation, Wang et al. (2014) proposed a multi-armed bandit approach
that aims to provide accurate and novel recommendations in interactive manner. Their work
investigates how to recommend repeated songs that are of interest to the current user (exploitation),
while also providing novel content (exploration), i.e., songs that might be of interest but are
unknown to the current user. The approach treats songs as arms, leverages explicit feedback
signals as payoffs, and uses content-based information as feature vectors. Parameters are updated
following a Bayesian regression model. While their approach is shown to perform well in
cold-start scenarios, since feature vectors represent content-based information, it leverages

77

explicit feedback, which is onerous to collect (specially in music-based domains), and it keeps
user’s preferences static, which is unrealistic in streaming settings.

Another Bayesian model for music recommendation is presented in Capan et al. (2022).
Their work follows the assumption that, while the goal of a recommendation algorithm is to
learn from previous interactions with users, the algorithm actually influences the interaction data
that is further used for training. In other words, feedback is generated in interactive manner:
users typically choose one item among a limited subset presented by the recommendation
algorithm, where the subset was learned based on previous interactions. Their proposal, the
Dirichlet-Luce choice model, accounts for such interactive characteristic, leading to an online
bandit algorithm based on Thompson sampling, that deals with biases inherently related to online
recommender systems, e.g., overestimation of user preferences and penalization of underexposed
or underrepresented items.

Pereira et al. (2019) proposed a framework called Counterfactual Dueling Bandits,
designed for sequential music recommendation with continuous feedback. Their approach
encodes objects in a low-dimensional feature space, composed of collaborative and content-based
signals, i.e., textual, social and audio representations. On this space, multiple directions are
explored through duels of candidate recommendation models, defined as arms. To select the
winning model at some time point, the approach leverages user feedback through implicit signals,
song plays and skips, that are used as positive and negative feedback, respectively, and estimates
the effectiveness of each model based on their ranking of the next song listened by the user at
that time. Results show that it outperforms two variants of LinUCB (Li et al., 2010).

Sanz-Cruzado et al. (2019) proposed a simple multi-armed nearest-neighbors bandit
framework for interactive recommendation. The approach is similar to traditional nearest-
neighbors recommendation, with the addition of a stochastic exploration capability of neigh-
borhoods through the application of Thompson sampling. As opposed to general multi-armed
bandits, their approach model the arms as users (neighbors), and items to be recommended are
selected on the advise of chosen neighbors. Such procedure introduces a stochastic factor in the
neighborhood selection. Results show that their approach outperforms user-based KNN and
implicit MF in accuracy in small datasets, with updates performed after every 500 data points.

4.3 CHANGE DETECTION MODULE

The change detection module defines mechanisms to actively detect drifts in the learned concepts,
as opposed to memory and learning modules that passively adapt to changes (Gama et al., 2014;
Al-Ghossein et al., 2021). In other words, this module is specifically designed to detect changes
and is responsible for triggering procedures to adapt models to such changes. Contributions
related to this module for SBRS are still scarce in the literature (Al-Ghossein et al., 2021). We
next discuss some contributions towards this module.

Li et al. (2007) proposed an approach to detect drifting preferences of users with the use
of decision trees through CVFDT algorithm (Hulten et al., 2001). The key idea is to built two
decision trees for each item in the dataset based on ratings of correlated items: one built based
on current observations and another based on older observations. The old trees are then replaced
by new trees once their accuracy is surpassed by the new ones.

Al-Ghossein et al. (2018a) proposes dynamic local models (Christakopoulou and
Karypis, 2016) to adapt concepts based on drifts in user interests. Their proposal, DOLORES,
maintain several local item-based models and a global one, similar to the proposal of Miranda
and Jorge (2009), where each user is clustered to a single local model. Drifting interests for a
given user u are detected when a different local model starts to perform better than the one u was

78

previously assigned to. When u is reassigned to a different local model, a forgetting technique
proposed by Matuszyk and Spiliopoulou (2014) is used to remove old interactions of u, in order
to better reflect her current interests. Both the global model and the local model that the active
user is assigned to are updated for each incoming observation.

Al-Ghossein et al. (2018b) proposes a hybrid system that combines textual information
to reduce the impact of item cold-start in data streams to an incremental matrix factorization
method (Vinagre et al., 2014b) to keep users’ preferences up-to-date. The drift detection is made
on item textual descriptions with topic modeling of items and with the adaptive sliding window
algorithm (Bifet and Gavalda, 2007), such that the topic model is maintained up-to-date and
retrained in batch when a drift is detected using documents automatically selected by the adaptive
sliding window algorithm.

José et al. (2020) propose to extend incremental matrix factorization methods with
personalized learning rates on individual user and item basis. Their algorithm, ADADRIFT,
uses two moving window parameters to detect short-term and long-term changes, which are
used to increase the learning rate to quickly adapt to drifts, or decrease it in cases where the
concepts are stable. The reported experiments, which extended BRISMF (Takacs et al., 2009)
and ISGD (Vinagre et al., 2014b) with ADADRIFT, suggest a high correlation between the
impact of ADADRIFT and the average size of interaction history, i.e., it requires long lists of
interactions for drifts to become noticeable and for accuracy to increase with its application,
while a decrease in accuracy was obtained for scenarios with short lists.

4.4 EVALUATION CONTRIBUTIONS

Finally, we mention important contributions that raise relevant questions towards the evaluation
of recommender systems on data streams settings. Recommender systems can be evaluated
through online and offline methods (Gunawardana et al., 2022). Although online methods provide
stronger evidence towards the efficiency of a given RS, as it actually evaluates its impact on
user behavior, RS are usually evaluated through offline methods. The main advantage of such
methods is that user behavior can be simulated through finite datasets, and several algorithms
can then be evaluated and compared following the same protocols.

In an offline setting, hold-out methods are used. These methods split a dataset into two
non overlapping subsets - a training set and a testing set. The training set is used to build a
predictive model, and the test set is used to evaluate the performance of the predictive model built
from the training set, by comparing the predictions and the actual observations from the test set.

Vinagre et al. (2014a) discusses several limitations of evaluating stream-based RS with
hold-out, offline methods. First, if the dataset is randomly split, the time dimension is disregarded,
as it is naturally embedded in the sequential information that is shuffled. Besides losing dynamic
information regarding users and items that are related to time, some inconsistencies may be
introduced in the evaluation, such as predicting a past interaction based on future ones. Second,
a static hold-out method would limit the evaluation of incremental algorithms, since these are
updated based on newly available observations. As such, the model is dynamic and the datasets
splits should not be static. Finally, in online systems, users’ decisions are actually influenced by
the recommendations, i.e., the RS may direct the user towards the recommended items. This
impact is hardly trivial to simulate on offline settings.

Given the aforementioned problems with hold-out method, Vinagre et al. (2014a) then
proposes a prequential evaluation protocol, particularly suited for SBRS evaluation. The protocol
consists in a test-then-learn procedure that is executed for each new observation in the stream (or
finite dataset). In its basic form, for each new observation, a recommendation is generated for the

79

active user with the current model. The prediction is then tested against the actual observation,
and finally the model is updated with this observation. The main advantage of the protocol is that
it allows continuous monitoring of the RS’ performance over time through several metrics.

Another contribution from Vinagre et al. (2021) discusses the challenges of conducting
efficient statistical significance validation tests in stream-based settings, and proposes the use
of a k-fold validation framework with McNemar and Wilcoxon tests over adaptive-size sliding
windows (Bifet et al., 2015). Our experiments are evaluated through the test-then-learn protocol
proposed in Vinagre et al. (2014a), and statistical significance of the results are measured with
McNemar’s test. We discuss the evaluation protocol in more depth in Chapter 6.

Lommatzsch and Albayrak (2015) evaluated several features of user-item interaction
streams in the context of news recommendation. In these scenarios, new items are frequently
added and are typically only relevant for a few days. The work analyzes and describes different
properties of several news portals that were available in the ACM RecSys News Challenge 20132,
such as time dependent user behavior, e.g., number of interactions, content, time and day of the
week, and used device, and item properties, e.g., popularity and lifecycle, and show that these
features vary and are highly dependent on the domain.

An evaluation of different algorithms is also presented, both online and offline. In the
online evaluation, an algorithm must provide a few suggestions to each request within 100 ms
including the communication time, and the performance is measure with Click-Through-Rate
(CTR). The offline evaluation analyzes the effectiveness of algorithms in predicting the next
clicks of a user. Hence, in this context, algorithms must operate under strict time constraints
and account for recent information that is continuously generated at fast rates. The evaluated
algorithms include recommending the most popular articles, most popular sequence, recently
requested articles, user-based and item based CF, content-based and ensemble methods. The
results show that ensemble methods perform well in online scenarios, as there is no optimal
algorithm for all contexts, and incoming requests can be delegated to the current best-suited one.
The work also suggests that neighborhood-based methods are well suited for streams as they are
able to adapt to its changing properties without significant overheads during model update.

Also in the context of news recommendation, Jugovac et al. (2018) proposed Streamin-
gRec, an open-source framework for evaluating news SBRS in reproducible manner. StreamingRec
is based on a replay evaluation protocol that allows algorithms to update its underlying models in
real time when new observations are recorded and new items are available for recommendation.
The framework implements several baseline algorithms, including algorithms that can imme-
diately incorporate the incoming events into their predictions, with a focus on session-based
recommendation (Quadrana et al., 2018).

Their work evaluates the performance of several incremental algorithms on two datasets,
and compare their performance with two complex state-of-the-art models that are periodically
updated, BPR (Rendle et al., 2009) (Section 2.3.2.2) and GRU4REC (Hidasi and Karatzoglou,
2018), a state-of-the-art algorithm for session-based recommendation (Section 2.5.2). These
include recommending the most popular, recently popular, recently published and recently clicked
items, item-based CF (Deshpande and Karypis, 2004), session-based nearest neighbors (Jannach
and Ludewig, 2017), sequence-aware nearest neighbors (Ludewig and Jannach, 2018), pairwise
item co-occurrences in a session, sequential pattern mining and content-based methods. The
results show that the worst performing algorithms are the ones that do not consider item recency,
and that the best results are obtained by the neighborhood-based methods that do take into account
item recency, outperforming the complex models that are only periodically updated.

2https://recsys.acm.org/recsys13/nrs/

80

Frig6 et al. (2017) note that while in real-world scenarios recommender systems
processes data and provide suggestions following an online temporal sequence, the design
and evaluation of online learning methods in highly non-stationary environments is scarce in
the literature. To motivate the design of such algorithms, their work evaluates and compares
batch and online-based methods in non-stationary datasets. The evaluated algorithms include
popularity-based recommender, time-based nearest neighbors (Deshpande and Karypis, 2004;
Ding and Li, 2005), item-to-item transition model and batch, online and assymmetric MF. Their
work also proposes a sampling technique to generate positive and negative samples to update the
model in a single iteration in online manner, thus somewhat resembling a batch procedure.

The obtained results showed that although batch-based MF performs well in rating
prediction, they are outperformed by item-to-item nearest neighbor methods in ranking tasks,
and their performance drops considerably when data is non-stationary. Batch-based MF is also
significantly outperformed by its online counterparts. The transition model, despite its simplicity,
presented high competitiveness in non-stationary settings. Overall, their work showed that
simpler algorithms that can be efficiently updated online with the most recent data outperforms
more complex algorithms that require periodical updates.

Finally, Viniski et al. (2021) presents a case study comparing the performance of batch
and incremental algorithms under concept drifts and cold-start on a dataset that presents both
issues. The work compares batch versions of SVD (Sarwar et al., 2000), BPR-MF (Rendle et al.,
2009), Generalized Matrix Factorization, Multi-layer Perceptron and Neural Matrix Factorization
(He et al., 2017) to two incremental algorithms, ISGD (Vinagre et al., 2014b) and IBPR-MF
(Rendle et al., 2009). Results show that incremental algorithms, specially ISGD, outperformed
batch-based models, including neural ones, highlighting the significance of constantly updating
models as new data becomes available. As a consequence of such updates, incremental models are
also able to recover swiftly from cold-start issues and better adapt to concept drifts in comparison
to periodical training.

4.5 DISCUSSION

Throughout this chapter, we have outlined related work, particularly those that somehow
acknowledge that user generated data follows the properties of a data stream (Domingos and
Hulten, 2001). Specifically, that such data is generated in unpredictable order and is potentially
unbounded, new users and items continuously join the system, and models must evolve to
incorporate newly generated data and provide recommendations based on up-to-date information
in scalable manner.

We note that the vast majority of related work are generally not suitable for the online
setting, as they either require an initial robust model or only periodically update its underlying
models. Both approaches require storing historical data in some capacity, which in turn raises
the following issues: (1) increasing update time related to the retraining/updating of the current
model; (2) disregard of incoming observations and information from new users/items that are
only considered at the next update period, which in turn fails to track fast-changing trends, such
as user preferences and changes in item popularity; (3) increasing memory requirements to store
historical data.

Another consideration is the type of feedback available for training. While explicit
feedback is considerably more informative, it is onerous to collect as it requires direct labeling
from users. Implicit feedback on the other hand, can be easily collected from various signals and
it is continuously generated similarly to a data stream. We thus focus on learning from implicit
feedback in the following chapters.

81

A minor subset of work, that are more closely related to our present work, propose to
incorporate each incoming observation based on implicit feedback in the previously learned
model incrementally (Vinagre et al., 2014b), potentially at the expense of some accuracy, with
the added benefit of allowing models to stay up-to-date along the stream. These assumptions
form a more realistic setting and allow the application of these models in online scenarios.
Approaches adapted to this setting include neighborhood-based methods, based on the KNN
framework (Strategy item-based CF in Table 4.3) (Papagelis et al., 2005; Miranda and Jorge, 2009;
Chandramouli et al., 2011; Huang et al., 2015; Yagci et al., 2017), and model-based methods,
particularly matrix factorization (Strategy incremental updates for each incoming observation in
Table 4.4) (Vinagre et al., 2014b, 2015a; Anyosa et al., 2018; Vinagre et al., 2018a,b).

Despite the premise of obtaining scalable updates at the expense of accuracy, such
approaches are shown to outperform in accuracy others that are based on periodical retraining
(Section 4.4), including recent complex models based on deep learning. In fact, a recent array of
comparative work, as discussed in Section 4.4, has suggested that conceptually simpler algorithms
(e.g. item KNN) with appropriate configuration and parameter adjustment outperform more
complex neural methods both in accuracy and scalability (Dacrema et al., 2021; Ludewig et al.,
2021; Latifi and Jannach, 2022). How to efficiently update complex neural methods in streaming
settings is still an open challenge (Zhang et al., 2019) and falls outside the scope of this thesis.
On the other hand, recent surveys on RS calls for contributions on incremental learning on
non-stationary and streaming settings (Zhang et al., 2019; Wang et al., 2021).

Hence, in this thesis we focus on the top-N recommendation problem following the
more realistic setting of learning from data streams, defined in this context as a stream of user
interactions, and investigate ways of addressing the challenges related to stream-based learning
discussed so far. In such a setting, a model must be updated based on each incoming observation
that is subsequently discarded, while being able to provide recommendations based on up-to-date
information when required.

In particular, we focus on neighborhood-based models as they present competitive
accuracy in several recommendation scenarios (Vinagre et al., 2014b; Lommatzsch and Albayrak,
2015; Jugovac et al., 2018; Frigé et al., 2017). Two major considerations of these models,
besides the ones inherently related to the streaming setting, are scalability, since naively updating
similarity matrices results in impractical update times, and sparsity, since little information is
available for each user/item. On this note, graph-based approaches (Section 4.2.1.1) are well
suited, but seldom explored, as similarities can be induced based on indirect connections, i.e.,
nodes that are not directly connected can still influence other nodes by propagating information
through the edges of the graph. Such impact can be measured through its weights and also by the
algorithm in use.

In the following chapter we define our contributions, centered on a proposed graph-
based model, IGSI;:, that aims to overcome these limitations. IGSI;: is capable of continuously
incorporating user feedback, provides scalable recommendations based on simulations of random
walks that balances short-term and long-term user preferences. We also propose and incorporate
in our model forgetting techniques, which can be generalized to other neighborhood-based
methods. These remove obsolete information from models, which in turn improves scalability
and predictive performance.

82

S PROPOSED APPROACH

In this chapter we present our proposal and define our contributions. As described throughout
the previous chapters, we are interested in exploring and developing incremental algorithms for
data stream recommendation, or Stream-based Recommender Systems (SBRS) (Al-Ghossein
et al., 2021). The motivation behind this is three-fold: First, user generated data shares several
similarities to a data stream, i.e., user feedback is generated continuously at unpredictable rate
and order, is potentially unbounded, new users and items enter into the system and previously
learned concepts change over time, and is thus a natural way of designing the recommendation
problem. Second, incremental algorithms consistently outperform their batch-based counterparts
in online scenarios as shown in numerous works (Lommatzsch and Albayrak, 2015; Frigé et al.,
2017; Jugovac et al., 2018; Viniski et al., 2021). Third, recommendation is not yet frequently
addressed as a data stream problem, hence many open challenges exist in this research field
(Al-Ghossein et al., 2021).

Approaching the recommendation problem as a data stream requires designing algorithms
that learn from data in incremental manner, such that these incremental models must update
their concepts in a single-pass over the incoming observations, preferably without storing them,
include new users and items without retraining and generate recommendations with up-to-date
information with restricted processing time and available memory in order to avoid falling
behind the data. These constrains have direct impact in scalability and accuracy, since algorithms
have limited time and resources to update their underlying models, which are ever-growing, and
recommend relevant items on-the-fly with up-to-date information.

In Chapters 3 and 4 we detailed some of the most relevant approaches for recommendation
on data streams. We are particularly interested in those that continuously update their models
without storing observations. This way, the underlying model is always up-to-date without
requiring retraining. Approaches are categorized in neighborhood-based and model-based
approaches. We are interested in neighborhood-based methods as they present competitive
accuracy in several recommendation scenarios (Lommatzsch and Albayrak, 2015; Dacrema et al.,
2021; Ludewig et al., 2021; Latifi and Jannach, 2022). However, numerous challenges are still
present when designing models in data stream settings.

First, these approaches are prone to scalability issues. Although the similarities
between users or items can be updated incrementally, the inclusion of recent information in the
recommendations requires computing the nearest neighbors after these updates, which increases
update and recommendation times, specially for ever-growing models.

Second, recommender systems in general are prone to sparsity issues. These issues are
related to the amount of information available to learn user preferences. As users interact with
only a small subset of items in the catalog, little information is available from users and items.

Third, in many online systems the majority of interactions are centered in the most
popular items available, which form only a small fraction of the item catalog. This means that
there is even less information regarding the remaining set of less popular items, which form
the long-tail of the interaction distribution (Celma and Cano, 2008; Cremonesi et al., 2010).
Including items from the long-tail in the recommendation lists increases its novelty and diversity,
which serve as other relevant metrics of user engagement (Gunawardana et al., 2022).

Graph-based approaches, which form a subset of neighborhood-based ones, are well
suited for sparsity issues, as they easily allow incremental inclusion of data and are able to infer
relations between nodes that are not directly connected, resulting in accuracy improvements. The

83

main consideration is how to infer these relations, i.e, how to rank users and items based on their
connections. We described some strategies in Section 2.3.1.1, specifically random walk-based
ones that present competitive results. However, they are not necessarily designed for streaming
data.

We note here the contributions of Cooper et al. (2014) and Christoffel et al. (2015) that
represent user and item relations in user-item bipartite graphs. Although not originally designed
for data stream recommendation, their contributions raises concerns related to scalability and
limited resources, i.e., running time and memory usage. To avoid storing entire rating matrices
in main memory and the high computational time required in computing stationary distributions,
their proposals are centered on random walk sampling, or simulations of random walks, where
such distributions are approximated based on a predefined number of samples. This procedure
introduces a trade-off between accuracy and scalability, such that higher number of samples better
estimates the distribution at the expense of higher running times. Based on their findings, we
argue that it is beneficial to use graph-based models in order to overcome sparsity and scalability
issues related to recommendation and data stream mining.

One of the drawbacks of these methods is that although they can be adapted to learn
incrementally and approach data sequentially, they disregard time-related information. User
feedback is naturally a chronological sequence, and an intrinsic relation between data and time
exists, such that user preferences and trends adjust over time (Moore and Chen, 2013). The
sequential user logs can be informative of their long-term preferences, while recent events are
more relevant to predict short-term preferences (Quadrana et al., 2018), since the next action of a
user can be directly dependent on her recent actions (Shani et al., 2005). Thus, these methods
are effective in modeling long-term interests since they are constantly updated with new user
feedback, but fail to account for short-term interests that are represented by the most recent
actions.

Furthermore, the concepts extracted from data streams are not static, i.e., users change
their opinion over time (Koychev and Schwab, 2000; Koychev, 2000), meaning that while the
sudden change in short-term preferences may be temporary, it may also indicate a change in
interests, a phenomena known as concept drift (Gama et al., 2014). Incremental models are
constantly updated with new user feedback, but still retain concepts inferred from past data that
may eventually become outdated. Relying solely on incremental learning may lead to models that
are sensitive to noisy data. An alternative to overcome this issue is the deployment of forgetting
mechanisms to forget data that is no longer representative of the current concepts being learned,
i.e., to remove outdated information from models (Matuszyk et al., 2018).

Thus, the main objective of this research is the proposal of a stream-based recommender
system designed to work in online scenarios, tackle the issues inherently related to recommender
systems and data stream mining, such as sparsity, accuracy, scalability and concept drift, and
provide alternatives to the shortcomings of previous algorithms. To that end, our contributions
are centered on a stream-based model, that consists in an evolving graph of sequential interactions
with forgetting for data stream recommendation with implicit feedback. We use the term
evolving in the sense that the model adapts and learns, continuously and incrementally, based on
information generated along the data stream, but also removes information that is deemed as
obsolete. Figure 5.1 presents an overview of our proposal.

We focus on graph-based methods due to their robustness to sparsity, natural incremental
capability and flexibility. We split our proposal into two parts. First, we propose to incorporate
implicit user feedback into an item-graph in incremental manner with the assumption that user
behavior can be extracted from the sequence of user interactions as time progresses. With this
assumption, potentially relevant item recommendations can be made to users based on past user

84

Rank
items with Top-N
random
walk
sampling

Model

Incoming
at time ¢

observation
(u,i,t)

Request

recommendation items

Evaluate

prediction

Random walk

Substitutes

Modm Incremental
time 7 + 1 update .
@O Generates on single Forgetting?
edge based

on (u,i,t)

Subset of graph

Yes

Score

New edge

Remove weights

obsolete

(Fade edges |
based on

scores

edges

Item scores

items on
diversity

and
random

walk
L

Figure 5.1: Overview of our proposed stream-based recommender system. This process is repeated for every
observation generated along the stream.

behavior. As an example, the release of a film can lead a user to watch the director’s past work
before watching the film. Another example is the birth of a child. As time progresses, the family
can direct their purchases towards products intended for the children as they grow.

In that sense, we assume that the sequence of interactions can be useful in modeling
short-term and long-term user interest. To that end, edges are continuously included in the graph
and their weights are updated according to the sequential user interactions, such that for each
incoming user feedback in a data stream, a directed edge connects the last item interacted by the
user to the current interaction, and the relevance of each sequential interaction is reinforced in
the weight of the edge. We explore the use of random walk sampling (or simulation of random
walks) on the item-graph in order to generate recommendations to users in real-time based on
up-to-date information.

The item-graph offers two main differences to a user-item bipartite graph: it extracts
information from sequential data, and allows the recommendation of items based on short-term
and long-term interests. We refer to the proposed item-graph as IGSI (Incremental Graph of
Sequential Interactions). These contributions are described in Section 5.1.

Second, we propose a forgetting mechanism designed specifically to exploit the ad-
vantages of IGSI, but that could be generalized to other graph-based and neighborhood-based
approaches. We propose to use random walk sampling not only to rank items and generate
recommendations to users but also to capture structural information from the graph and infer the

85

relevance of items. This way, items that are perceived as irrelevant can be forgotten. We discuss
these contributions and the challenges of deploying forgetting mechanisms in Section 5.2.

5.1 SCALABLE STREAM-BASED RECOMMENDATIONS WITH RANDOM WALKS ON
INCREMENTAL GRAPH OF SEQUENTIAL INTERACTIONS

In order to continuously capture sequential interactions between users and items, we create a
directed item-graph, where nodes represent items and edges represent user interactions, such that
the edge direction indicates the order in which items where visited, i.e., sequential interaction.
Thus, an edge from item i to item j exists if a user interacted with item 7, and her next interaction
was with item j. Therefore, for each new user interaction, the feedback is included into the graph
by an edge that connects the last interacted item to the item of the new interaction.

To distinguish the relevance of edges, each edge has an associated weight. Edge weights
are updated every time a transition is made by a user, and the weight to be reinforced is associated
with the time elapsed between interactions. In other words, interactions that occur within a time
window (e.g. user session) are more relevant than interactions that occur further apart, and this
relevance is considered when updating the weights.

Figure 5.2 shows an example of IGSI online maintenance, illustrating two possible
scenarios based on an incoming event. Consider the graph presented in Figure 5.2(a) and a user
u, whose last interaction was with item r. At some time 7, u interacts with item a. Since there is
no edge connecting item r to item a, the edge from item r to item a is inserted, as illustrated by
the dashed edge in Figure 5.2(b). Now consider that at time 7 + 1, u interacts with item s. Since
an edge from item a to item s exists, its weight must be updated, as denoted in Figure 5.2(c).

Denote by G = (V, &, w) a weighted directed graph, where V = {v,vs,...,v,} € 1
denotes the set of nodes and & C V x V denotes the set of edges. Each edge e has an associated
weight w(e) € R,. We define S, = {(vy,11), (v2,12), ..., (v, 1)} as a list of items interacted by
user u € U ordered according to time 7. The last interacted item by u is defined as /i, € 7 and
the time of the last interaction by u is defined as /7, i.e., (li,, [t,) is the last element of S,. The
graph is updated incrementally considering /i,, [#, and the current observed interaction.

User feedback is modeled as a data stream, where each observation is defined as (u, i, t),
indicating that user u interacted with item 7 at time . When updating the graph considering the
current observation, the model must include feedback from new incoming users and items, while
also updating older concepts. To that end, edge weights are updated as:

w((liy, 1)) +1 ift—1It, <p

5.1
w((liu,i))+ﬁ otherwise .1

w((liy, 1)) = {

where p is a time window hyperparameter. Eq.(5.1) gives more weight to the edge if the
interactions occurred within a time window (e.g. user session) and decreases the weight to be
added to the edge based on user’s inactivity.

For each incoming observation (u, i, t), there are four possible scenarios to update the
model, as outlined in Algorithm 8:

1. User and item are unknown by the system (# ¢ U and i ¢ 7). In this case, user and
item are included in the system, a node for i is added to V and (i,) is included in S,;

2. User is unknown and item is known by the system (# ¢ U and i € 7). In this case, user
is included in the system and (i, ¢) is included in S,,. Given that i is the first interaction
of u and i is known, there is no change in the graph;

86

A0 10
(a) Example of a graph before updates based on user interactions. (b) Insertion of edge from item r to item a based on user interaction.

29

10

(c) Weight update of edge from item a to item s based on user
interaction.

Figure 5.2: An example of graph update based on a few user interactions. Considering the graph in (a) and a user u
whose last interaction was with item r, (b) presents a scenario where u interacts with item a by inserting the edge
connecting r to a. In (c), u interacts with item s after interacting with a, and the weight of the edge connecting a to
s is updated.

3. User is known and item is unknown by the system (u € U and i ¢ 1). In this case,
item is included in the system and a node for i is added into V. In this scenario, u has
already interacted with at least one item before. Since this is the first interaction by any
user with i, an edge (/i,,7) is included in &, where w((li,,i)) is defined by Eq.(5.1).
Lastly, (i,) is included in S,,;

4. User and item are known by the system (u € U and i € 7). In this case, the current
sequential interaction is /i, to i. If such interaction has happened before by any user,
ie., (liy,i) € &, then w((liy,, 1)) is updated according to Eq.(5.1). If this is the first time
such interaction happens, an edge (li,,) is included in &, and w((li,, i)) is defined by
Eq.(5.1).

5.1.1 Item ranking methods

Based on the incremental item-graph, relations between items can be inferred. Considering
that IGSI is updated in a way that relevant items are directly connected by an edge, and the
weight of such edge measures the relevance of the relation between items, we define that relevant
nodes to a source item v € V are nodes that are close to v. To capture relations between items,
random-walk based methods are naturally well-suited, since they can propagate information

Algorithm 8 Online incremental graph update

Require:
D={(<u,i,t >)1,(<u,i,t >),...}: data stream
U: set of users
I: set of items
Su: list of interactions by user u
li,: last item interacted by user u
[t,: time of last interaction by user u
(V,E,w): weighted directed graph
p: time window parameter
1: procedure INcREMENTALUPDATE(D, U, 1, S, iy, It,, (V,E,w), p)
2 for < u,i,t > D do
3 if u € U then
4: if i € 7 then
5: if (liy,i) € & then
6 ift -1/, < pthen //Eq.(5.1)
7 w((liy, i) <« w((liy, i) +1
8 else
9 w((liy, 1)) — w((liy, i) + ,_’ﬁ

10: else

11: E — EU{(liy,i)}

12: if t —t1, < pthen //Eq.(5.1)
13: w((liy, 1)) « w((li,,i))+1
14: else

15: w((liy, 1)) w((lin,) + 2
16: else

17: I — 1TU{i}

18: V «— 7 U{i}

19: E— EU{(li,i)}

20: if t —tl, < pthen //Eq.(5.1)

21: w((liy, i) «— w((liy,i))+1
22: else

23: w((liy, 0)) = w((lin) + 2
24: else

25: U — UV {u}

26: if i ¢ 7 then

27: I «— TU{i}

28: V — 1T U{i}

29: Sy — S, U{(i,0}

30: li, —1i

31: It, —t

32: return U, 71,S,,1i,,1t,(V,E w)

88

along the edges and thus are robust to sparsity, while providing such information in scalable
manner for short-step walks.

In Section 2.3.1.1, we described a few ranking procedures based on random walks. Two
of them possess the aforementioned desirable characteristics. The first ranking procedure is
based on the t-step random walk transition probability matrix P’, defined in Eq.(2.11). In this
procedure, nodes are ranked for a source node v based on the probability of being reached with a
fixed t-step walk starting in v. In the case of bipartite graphs, t must be an odd number starting
from a user node so that the walk ends in an item node. For IGSI, any ¢ is acceptable as the walks
start and finish in item nodes. The limitation of this procedure is that ranking is limited to a fixed
t-step walk, and the tendency is that larger steps deteriorate performance (Cooper et al., 2014;
Paudel et al., 2017). We include in our experiments this ranking procedure with ¢ = 1, which
results in an algorithm analogously to a frequent mining procedure that is easy to compute, as it
depends only on the weights of adjacent nodes. Despite the simplicity, the approach performs
well under certain scenarios and is able to outperform other stream-based approaches. We refer
to this ranking procedure on the item-graph as IGSIp:. The limitation of it is that ranking is
restricted to a fixed t-step walk, and the tendency is that larger steps deteriorate performance
(Cooper et al., 2014; Paudel et al., 2017).

Alternatively, we can rank items based on a given node s through a t-step random walk
with restart starting in s (Eq.(2.15)), which is a weighted sum of all landing probabilities. Thus,
we aim to produce recommendations based on 7.

However, it is impractical to constantly compute 7’ in an evolving graph. To allow the
ranking of items based on 7’ in a data stream framework, we approximate 7’ through simulation
of random walks. More specifically, we can estimate 7%, using Monte Carlo algorithms. Similar
to Avrachenkov et al. (2007, 2011), we approximate 7, by simulating M independent t-step

random walks starting from s, such that for each node v € V, ﬂ'i,,v is measured by the number of
(I1-y)

times v is visited by the M random walks multiplied by ;=

v can be expressed by:

. Hence, the estimator 7% for a node

M
1 -
#y =L > RWE() (5.2)
k=1

where RWs’f ;(v) is the number of visits to node v in the k-th run of a t-step random walk initiated
at s. Algorithm 9 describes the implementation of the approximation procedure defined in
Eq.(5.2). The algorithm samples M t-step random walks starting from a given vertex v; and at
each step selects a neighbor v, at random, where the transition probability is proportional to the
weight of the edges (Eq.(2.10)), and then in line 9 updates the visit count h[v.] by incrementing
h[v.] by one. The sampling returns the visit count # multiplied by %, where items with more
visits are considered to be more relevant to the source node v;. We refer to this ranking procedure

as IGSI;.

5.1.2 Convergence of sampling

Similar to Fogaras et al. (2005); Avrachenkov et al. (2007); Sarkar et al. (2008), we can show that
the rate of convergence of Eq.(5.2) is exponential. Recall that we run M independent t-step random
walks starting from s. Denote R as the set of i.i.d. variables R = {RW/,, RWZ,, .., RWM}.
For a given node v, the maximum number of visits in a single walk RW§,,(V) is bounded by
[0, (1 —y)t], where 7 is the length of the walk. Given the law of large numbers, if the number

of samples M — oo, then 7%, converges to n, . We can show that the rate of convergence is

89

Algorithm 9 Random walk sampling

Require:
v;: starting vertex
(V,E,w): weighted directed graph
t: length of walks
M number of walks
v: probability of continuing the random walk

1: procedure RANDOMWALK(v;, (V,E,w),t, M,7y)
2 totalWalks = 0

3 h[v]=0,Vv € V

4: while totalWalks < M do

5: ve =v; [/l v, 1sthe current node

6 fori e [1,2...,t] do

7 if RaANDOM() < 7y then

8 Ve = WEIGHTEDRANDOMNEIGHBOR(E [v.]) // Eq. (2.10)
9: hv.]++
10: else
11: break
12: totalWalks + +
13: return (I_Ty)h

exponential using Hoeffding’s inequality. We set the upper bound to be less than a small value ¢.
This gives:

2Me?
P<|ﬁ§,v—n§,v|zs>s2exp(-)

(1-y)2?

which provides a lower bound for M as - 7) & log ().

5.1.3 Recommendation methods

Scalable recommendations for users are generated by ranking items with algorithm IGSI;:.
This algorithm computes a relevance vector based on a source item. Recall that we store the
interactions made by each user through time in S,. Thus, for a user u we compute relevance
vectors based on items that the user has interacted before through algorithm IGSI;:, and average
these vectors to recommend the &k items with highest average relevance score. This procedure is
outlined in Algorithm 10.

The choice of relevant items in S, to infer user interest directly influences the scalability
and accuracy of the underlying recommendations. Computing relevance scores for several items
can easily lead to unfeasible recommendation time in data streams scenarios. Another relevant
aspect is that user preferences change over time, therefore including older data may deteriorate
accuracy. Hence, it might be practical to model users based only on a few recent events. To
address these issues, we test three approaches to recommend items to users in order to verify the
balance between accuracy and scalability.

To assess the influence of the most recent interaction on user interest, recommendations
to a user u are generated based only on the last item interacted by u, i.e., [i,. We refer to the
ranking algorithm based in /i, as IGSIl’”. Note that this approach results in non-personalized

90

Algorithm 10 Recommend k items

Require:
u: active user
Su: ordered list of interactions by u
r: number of most recent items to consider
k: number of items to recommend
(V,E,w): weighted directed graph
t: length of walks
M: number of walks
v: probability of continuing the random walk
1: procedure RecomMmenDITEMS(1t, Sy, 1, k, (V,E, W), t, M, 7y)
2 rS, =last r elements in S,
3: forierS, do
4: h; = RANDOMWALK(v;, (V,E,w),t, M,y) [/ Algorithm 9
5 for ve V do
6 if v¢ S, then
7 eVl = Siers, hilv] * e

8: return top k items in ¢

recommendations, and simply recommends the higher ranked items as inferred by random walks
started in /i,,.

To model long-term interest, recommendations to a user u are generated based on the
entire list of interactions S,,. We refer to this ranking algorithm based in S, as IGSI;;‘.

To model short-term interest, assuming that user preferences change over time, we rank
items based on the » most recent user interactions. We refer to this ranking algorithm as IGSL, .
The impact of hyperparameter r is evaluated through experiments reported in Section 6.2.4.

We note that for experimentation purposes, we store S, in its entirety for each user in
the dataset, to evaluate the impact of short-term and long-term interests in the recommendations.
However, memory usage can be optimized by storing only the necessary interactions per user,
e.g., its last r interactions.

Regarding space and time complexity of IGSI;:, the graph is implemented with an
adjacency list, and its space complexity is O (|'V| + |E]). As far as time complexity, Algorithm 9
depends on the number of random walk samples M and the function in line 8, and its complexity
is O(M - log|a|), where a is the set of adjacent nodes, with |a| < |V|. Algorithm 10 generates
the recommendations based on Algorithm 9 and depends on hyperparameter . Hence, the time
complexity for IGSI; to rank items and compute the recommendations is O(r - M - log |al),
where recommendation times can be controlled through the number of samples M.

Algorithm 11 presents the online functioning of IGSI;:, our proposed SBRS. IGSI;
processes each observation generated by the data stream sequentially, and performs two main
operations: recommendation of items to the active user u, as defined in Algorithms 9 and 10, and
an incremental update based on the previous interactions of u# and the new interaction of u with
item Z, as defined in Algorithm 8. Such a scope allows for continuous evaluation of the model,
following a test-then-learn scheme (Vinagre et al., 2021), i.e., first a recommendation is generated
and evaluated, and then the observation is used to update the model. We describe the evaluation
procedure, (line 4), in Chapter 6. We also present in Table 5.1 a summary of the hyperparameters
of our model. Note that in addition to the incremental update in line 6, a forgetting mechanism

91

(line 5) can also be deployed. We next discuss the need for such a mechanism and our proposed
technique.

Algorithm 11 Online IGSI;
Require:
D ={(<u,i,t >)p,...}: data stream
U: set of users
I set of items
S,: list of interactions by u
li,: last item interacted by u
(V,E,w): weighted directed graph
r: recency parameter
k: recommendation list size
t: length of walks
M : number of walks
v: probability of continuing the random walk
1: procedure IGSI;
2 for < u,i,t > D do
3: top_n_items = RECOMMENDITEMS(S,,, 7, k, (V,E,w), t, M, y) // Algorithm 10
4: EVALUATE(top_n_items) // Chapter 6
5
6

(V,&E,w) = ForRGETTINGMECHANISM // Optional
Uu,r1,s,, liy,lt,, (V,5,w) = INCREMENTALGRAPHUPDATE // Algorithm 8

5.2 NOVEL FORGETTING TECHNIQUE WITH RANDOM WALK SAMPLING

The aforementioned IGSI;+ model performs two main operations: updating its underlying graph,
and generating recommendations based on up-to-date information. The update procedure is
performed on a single edge in the graph, depending on the previously collected sample. If the
relation between two items as inferred by the most recent sample is new, an edge is created
between these two items; otherwise, edge connecting these two items already exists, and its
weight is increased to reinforce its importance. The recommendation procedure then ranks
candidate items through random walk sampling, such that nodes that are closer to the sources are
assumed to be more relevant. While continuous inclusion of new information allows the model
to stay up-to-date and immediately consider recent user preferences, which are likely to better
reflect their present ones, such preferences are dynamic and change over time, hence subject to
concept drift (Gama et al., 2014).

As such, information that is included in incremental manner may become obsolete,
which results in negative impact both on scalability and accuracy. Whereas scalability is impacted
by the continuous growth of the underlying graph, predictive performance is affected by the
inclusion of obsolete concepts in the recommendation procedure. The potential inclusion of new
edges based on every incoming observation leads to a graph that grows linearly to the number
of generated samples, which in turns raises time required for generation of recommendations.
While degrading accuracy is obviously undesirable, scalability issues may actually hinder the
applicability of models in data stream settings.

While one of the proposed recommendation procedures is based on the most recent user
interactions, as defined by a hyperparameter », somewhat accounts for the short-term interests of
users and adjusting the recommendations accordingly, the lack of mechanisms to remove obsolete

92

information means that IGSI;- is susceptible to the aforementioned concerns, as the incremental
updates results in an ever-growing graph.

To avoid these issues, we propose a novel forgetting mechanism, designed to exploit
the advantages of IGSI;:, and that could be generalized and extended to other graph-based
approaches (Cooper et al., 2014; Christoffel et al., 2015) or neighborhood-based ones (Miranda
and Jorge, 2009).

IGSI;: updates the edge connecting /i, the last interacted item by user u, to i, item of
new interaction. The most straightforward way to apply forgetting would be to simply fade all
neighbors of /i, before updating edge (li,, i), as defined by Eq.(5.3):

w((liy, $))e = - w((liy, 5))i-1 (5.3)

where a € [0, 1] is a fading factor that controls the rate of forgetting and s is a neighbor node of
li,,. This process, which is performed locally, ensures that recent data is emphasized over older
information, and avoids aggravation of sparsity issues, as forgetting only occurs for items that are
guaranteed to be updated with new information, i.e., concepts are replaced only in the presence
of newer ones.

Table 5.1: Summary of the hyperparameters of our model. Hyperparameters p, ¢, M and r relate to our SBRS
described in Section 5.1. Hyperparameters @, 8, T and x relate to our forgetting technique described in Section 5.2.

Hyperparameter | Description Values

Je, Time window hyperparameter used in the incremental | p € Z*
update procedure. Increases weight to be added to an
edge if interactions occurred within a time window, and
decreases based on user’s inactivity. Time is measured

in hours.
t Length of random walk. Used in both recommendation | ¢ € Z*
and forgetting processes.
M Number of independent t-step random walks samples. | M € Z*

Higher values for M increases accuracy at the expense
of recommendation time.

r Hyperparameter that filters user interactions. The r | r € Z*
most recent interactions of users are sources of random
walks used for both recommendation and forgetting
processes.

a Fading factor that controls the rate of gradual forgetting. | @ € [0, 1]
B Diversity parameter that balances diversity and explo- | 8 € [0, 1]
ration. Used to score and emphasize items from the

long-tail of item catalog.

T Acceptance parameter. Used to score and penalize | 7 € [0, 1]
items perceived as negative based on their acceptance
ratio.

X Controls the weight threshold ¢ = @*. Canbe seenas | x € Z*

number of forgetting interactions in the neighborhood
without reinforcement.

93

However, this forgetting mechanism does not further distinguish items and simply fades
those that are not reinforced by the current observation. Hence, we propose an improved forgetting
function that, besides recency, scores items based on popularity and structural information, fading
them proportionally to a predefined relevance score, as defined by Eq.(5.4):

(1-score)

“w((p,$))i-1 (5.4)

where p and s are adjacent nodes in the graph and score is a relevance score assigned to s from
p, such that items with low score are subject to faster forgetting.

We consider popularity information in order to increase the diversity of recommendation
lists and boost the inclusion of items from the long-tail, a known issue in recommender systems
(Celma and Cano, 2008). In recommender systems, the majority of interactions are related to
a small fraction of most popular items, while the remaining large portion of the catalog, the
long-tail of the distribution, only account for a small fraction of interactions (Cremonesi et al.,
2010).

w((p,s)) = a

We measure item popularity through node degree information, and are interested in
items with both low indegree and high outdegree. Items with low indegree are likely to be either
from the long-tail or new ones, while items with high outdegree encourage exploration of random
walks and penalize sink nodes, i.e., nodes without outgoing connections.

We also score items based on an acceptance factor, measured by the ratio between the
number of times an item is accepted (clicked) by users when recommended and the number
of times it is recommended. The premise behind it is that popular items which are constantly
ignored are assumed as irrelevant as opposed to unknown to users (He et al., 2016). Hence we
define the score for a given item in Eq.(5.5):

score = (ﬁxs,p + (1 _IB)ys,p) : (Z;,p) (55)

where S € [0, 1] is a diversity hyperparameter and a convex combination that balances diversity
and exploration, with emphasis on items from the long-tail that increase the exploration of random
walks and 7 € [0, 1] is the acceptance hyperparameter. x; , and y; , are the indegree factor and
outdegree factor of node s normalized according to the degree distribution of neighborhood of
node p, respectively, and z,), is the acceptance factor of item s normalized according to the
acceptance factors of neighbors of node p. Indegree factor x; , and outdegree factor y, , are
defined by Eq.(5.6) and Eq.(5.7), respectively:

_)0 if A(N*(p)) =6~ (N*(p))
Xop =) AN (p)—deg™(s) o (5.6)
)0 (V(py Otherwise
0 if A*(N*(p)) = 6" (N*(p))
Ys.p = deg*(s)—6*(N*(p) th . (5.7)
A (NF(p)-0* (N*(p)) OtHETWISE

where deg™(s) and deg™(s) are the indegree and outdegree of node s, respectively, N*(p) is
the set of neighbors of node p, A“(N*(p)) and 6~ (N*(p)) are the maximum and minimum
indegree among neighbors of p, respectively, and A*(N*(p)) and 6*(N*(p)) are the maximum
and minimum outdegree among neighbors of p, respectively.

Finally, we use random walk sampling not only to provide recommendations but also
to infer the structural information of the graph. To that end, while performing random walk
sampling in order to recommend relevant items, we store these samples to update the model after
receiving the actual observation (u, i,).

94

Denote by RW,; = {RW;J,RWl%J, ...,RW%} as the set of M t-step random walk
samples starting from node p, where RW[’,", = (vp, V1, ..., V¢) 1s the random sequence of nodes
generated by the k-th 7-step random walk started from p. In the end, we are interested in nodes
that are on paths from the M t-step random walks started from p that reached the desired item 7,
defined as RW),, = {v € RW;,‘,, ck=A1,...M},i e RWl’,‘J}. Items s not in any path that reached
i,i.e., s ¢ RWI’,J are deemed irrelevant and are faded based on Eq.(5.4), while items in paths that

reached i, i.e., s € RW;,,, are considered relevant, and emphasized based on Eq.(5.8):

w((p,s)e =™ - w((p, $))i-1 (5.8)

In this way, we avoid aggravation of sparsity issues and ensure that relevant and recent
information is kept in the graph, as perceived important connections are increased and irrelevant
ones are faded as induced by the walks, by popularity factors and by recent observations from the
data stream. The application of our proposed forgetting mechanism on IGSI;: is illustrated in
Figure 5.3.

Figure 5.3: Application of our proposed forgetting mechanism on IGSI;. We omit edge weights for ease of
visualization and instead notate where to emphasize and where to fade. The example considers a given user u whose
most recent interactions are with items a, b and c, i.e., rS,, =< a, b, ¢ >, as highlighted by a dotted black square.
Thus, a recommendation would consist in performing #—step random walks from these source nodes. Assuming that
the next interaction from u is with item i, we wish to emphasize neighbors of nodes in rS,, that reached i as inferred
by the samples with Eq.(5.8) and fade neighbors that did not reach i with Eq.(5.4). Assuming ¢ = 3, paths to i from
nodes in rS,, are highlighted with dashed edges. In this example i is reachable from a through s, thus edge (a, s) is
emphasized and its remaining neighbor r is faded; as i is also reachable from b through s, edge (b, s) is emphasized
and all its remaining neighbors 7 and w are faded; and as i is reachable from ¢ through nodes s and y, edges (c, s)
and (c, y) are emphasized, while the remaining neighbors ¢ and w are faded.

As this process ensures that irrelevant information is continuously faded unless reinforced
by new data, hence ensuring that relevant information is retained in the neighborhood of nodes,
we introduce a weight threshold ¢ = o that removes obsolete edges proportionally to the fading
factor a to account for the increasing scalability concerns related to ever-growing models, where
x is a hyperparameter that controls the weight threshold based on @, and can be seen as the
number of forgetting interactions in the neighborhood without reinforcement. This way, the
growth of the graph can be controlled parametrically.

Thus, our forgetting technique requires four hyperparameters: fading factor «, diversity
hyperparameter 3, acceptance hyperparameter 7 and x that controls weight threshold ¢. We refer

95

to this technique as local neighborhood decay (LND). The online procedure of IGSI;: with our
proposed forgetting mechanism LND is presented in Algorithm 12.

When a new observation (u,i,t) arrives from the data stream, we first produce a
recommendation to u for evaluation purposes, and also store the random walk samples generated
in this process in RW,g ;. Then, after evaluation, we apply forgetting over rS,, the last r
interacted items by user u that are used as sources in the random walks. Neighbors of nodes in
rS, that are in any path that reached i as inferred by the samples, RW), ,, are emphasized with
Eq.(5.8), while nodes that are not in RW,’,J are faded based on Eq.(5.4). Then, obsolete edges are
removed if necessary as defined by the weight threshold. Finally, we update the graph with the
new observation, as described in Section 5.1.

Algorithm 12 Online local neighborhood decay forgetting

Require:
D ={(<u,i,t >),...}: data stream
U: set of users
I set of items
Su: list of interactions by u
[i,: last item interacted by u
(V,E,w): weighted directed graph
r: recency parameter
k: recommendation list size
t: length of walks
M: number of walks
a: decay parameter
B: diversity parameter
T: acceptance parameter
x: parameter for edge removal
1: procedure 1GSI ONLINE UPDATE
2 for < u,i,t >¢ D do
3 top_n_items, RW,s, ; = RECOMMENDITEMS(S,, r, k, V, &, t, M) /] Algorithm 10
4: EVALUATE(tOp_n_items)
5: for p € rS, do // Forgetting, for last r items interacted by u
6 for s € neighbors(p) do
7 if s ¢ RW), , then
8 w((p.) =@ w((p,s))-1 /1 EQ.(5.4)
9: if w((p,s)) < o then
10: E —E\(p,s)

11: else
12: w((p,s))=a*¢ -w((p,s))—1 //Eq.(58)
13: Uu,r,s, liy,,lt, (V,5, w) = INCREMENTALGRAPHUPDATE // Algorithm 8

5.3 DISCUSSION

In this chapter we presented our proposal, which aims to overcome the issues related to
recommendation and data stream mining, such as sparsity, accuracy, scalability and adaptability.
Our contribution is an SBRS based on an evolving item-graph that extracts information from
sequential data, i.e., sequential user interactions, and allows the recommendation of items based

96

on short-term and long-term interests in scalable manner through the use of simulation of
random walks. Our proposal also includes a forgetting mechanism that reuses the random walk
samples generated during the recommendation process. By reusing these samples, we reduce
computational costs, while being able to infer structural information from the graph in order to
score items based on their relevance, with minor additional processing. We also score items
based on its diversity and acceptance from users, fade connections between items based on these
scores and remove these connections when they become obsolete. In the next chapter we evaluate
our proposed SBRS method and the impact of our proposed forgetting method.

97

6 EXPERIMENTS

In this chapter we report the experiments performed to evaluate the proposed approach. First,
we describe the evaluation protocol, the datasets and evaluation metrics. Then, we split the
evaluation in two parts. The first part is concerned with evaluating our proposed stream-based
recommender system, IGSI;:, by comparing it with other competing algorithms under several
metrics. The second aims to evaluate the impact of our proposed forgetting mechanism, LND.
We extend IGSI; with LND and assess its impact on scalability, accuracy and diversity, and
also perform comparisons with other forgetting mechanisms. Besides the evaluation of IGSI;
and LND under the constrains of data stream settings, the experimental analysis provided in this
chapter is designed to address the research questions posed in Chapter 1:

1. Can graph-based algorithms for collaborative filtering be used effectively in data
stream scenarios? How do they perform in scalability and accuracy compared to other
incremental models?

2. How can time-related information be incorporated into graph-based models? Does
such information improve the quality of the recommendations?

3. Are current incremental algorithms sufficient in providing accurate, diverse and scalable
recommendations? Can graph-based approaches effectively provide recommendations
that are relevant in practice?

4. Considering that learning incrementally based on continuous incoming data leads to
ever-growing models, what techniques can be used to remove obsolete information from
these models? Are evolving methods enough to deal with issues inherently related to
recommender systems and data stream mining, such as concept drift?

6.1 EVALUATION SETTING

In order to evaluate the proposed approach on a data stream, a suitable evaluation methodology
is required. We employ the prequential evaluation protocol proposed by Vinagre et al. (2014a,
2021), which is a test-then-learn procedure that performs evaluation at every observation before it
is used to update the model, thus allowing continuous online monitoring of the predictive ability.
In other words, this protocol evaluates how well the algorithm predicts the next observation. For
each incoming event (u, i, t), the model is first tested and then updated based on the following
steps:

1. If u is a known user, use the current model to recommend N items to u, otherwise go to
step 3;

2. Score the recommendation list given the observed item i;
3. Update the model with the observed event;
4. Proceed to the next observation.

The aforementioned protocol offers several advantages, mainly, the continuous moni-
toring of a model’s performance, evaluation of several metrics simultaneously, and allows for
straightforward reproducibility if the same data sequence is available (Vinagre et al., 2014a).

98

6.1.1 Datasets

We use nine datasets from several domains in our experiments, as summarized in Table 6.1. The
two movie-domain datasets, ML-1M and ML-10M, are binary versions of the MovieLens-1M!
and MovieLens-10M? movie rating datasets (Harper and Konstan, 2015), respectively. These
datasets are composed of several observations in the form of (u, i, r,), indicating that a given
user u attributed rating r to item 7 at time ¢. As these are explicit feedback datasets, pre-processing
is required to ensure its usage in our setting. To that end, we discarded ratings below 5 and
sorted events chronologically, thus simulating continuous implicit feedback, with events defined
as (u,i,t).

We use four music-domain datasets: PLC-PL, PLC-STR, LFM and LFM-1K. The
PLC-PL and PLC-STR datasets® were extracted from the social network Palco Principal by
Vinagre et al. (2014b). PLC-STR consist of a timestamped log of music listening events, where
each incoming pair corresponds to a music track being listened to by the user. PLC-PL consist of
a timestamped log of track additions to personal playlists. LFM consist of the first 8 months of
events observed from the Last.fm# dataset collected by Celma (2010), while LFM-1K are the first
25% of events observed from the same original dataset. We perform no pre-processing in these
four datasets, only sorting events chronologically. We note that these datasets include repeated
interactions, i.e., a user may interact more than once with the same item. We skip the evaluation
in such cases but still use the events to update the models.

The two e-commerce datasets, BOOK and ELEC, are binary versions of categories
books and electronics from the Amazon dataset> (McAuley et al., 2015). The dataset consists of
several reviews from Amazon, spanning 18 years of activity up to March 2013, which include
product and user information, ratings, and a review. Similarly to ML-1M and ML-10M, these are
explicit feedback datasets, and we adapt BOOK and ELEC to our setting. The adaptation is done
by discarding ratings below 5 and sorting events chronologically, simplifying all events to the
form (u,i,t).

Finally, we use a news domain dataset, GLOBO, extracted from news portal globo.com®
by de Souza Pereira Moreira et al. (2018, 2019). In such a domain, the set of items goes through
constant churn, new items are continuously added to it and old ones are dropped. In other
words, in this domain items have a very short shelf life, and become old very quickly (Das
et al., 2007). Also, the user-item matrix is very sparse, and are prone to popularity factors, such
as breaking news or popular topics (Lommatzsch and Albayrak, 2015). We perform minimal
pre-processing on this dataset, only sorting events chronologically. We note that GLOBO is
originally a session-based dataset. We disregard session information in our experiments and only
consider user information, assuming that events are tuples in the form (u, i, 7).

6.1.2 Metrics

We measure accuracy through metrics HitRate@N (HR @N) and Discounted Cumulative Gain
(DCG@N). HitRate@N returns 1 if item 7 is within the N first recommended items, and O
otherwise. DCG@N measures the quality of the ranking by considering the position of a correct

Thttps://grouplens.org/datasets/movielens/1m/
2https://grouplens.org/datasets/movielens/10m/
Shttps://rdm.inesctec.pt/dataset/cs-2017-003
4https://last.fm
Shttp://snap.stanford.edu/data/web-Amazon-1links.html
Shttps://globo.com

99

Table 6.1: Dataset description.

Dataset Domain Events Users Items | Sparsity

ML-1M Movies 226.310 6.014 3.232 | 98.84%
ML-10M Movies 1.544.812 | 67.312 8.721 99.74%

PLC-PL Music 111.942 10.392 26.117 | 99.96%
PLC-STR Music 1,466,893 | 25,463 40,213 | 99.92%
LFM Music 493.067 164 65.010 | 99.11%

LFM-1K Music 4,234,033 546 399,171 | 99.46%
BOOK | E-commerce | 6,278,141 | 1,827,029 | 734,918 | 99.99%
ELEC E-commerce | 618,560 | 451,486 | 60,842 | 99.99%
GLOBO News 1,830,308 | 259,690 | 35,644 | 99.98%

item prediction in the recommendation list. For prequential evaluation, DCG@N is defined as
(Frigé6 et al., 2017):

DCG@N = {m lfl"(ll’lk(l) <N (61)
0 otherwise

where i is the positive item and rank (i) denotes the position of i in the recommendation list
of size N. As we use several datasets from different domains for evaluation, we set N = 20 for
all subsequent experiments, and use metrics HR@N and DCG@N in complementary manner:
HR@N measures if the evaluated algorithm was able to recommend the target item, while
DCG@N considers the actual position of the item in the recommendation list.

We measure scalability through average update time and recommendation time per
sample.

We also evaluate diversity through metric Intra-List Diversity (ILD) (Smyth and McClave,
2001). ILD of a given recommendation list is defined as the average pairwise distance of items in
the list (Castells et al., 2015):

1
ILD = ——— d(i,j) (6.2)
RI(R[- 1) ZR; ;
where R is the recommendation list and d(i, j) is a given distance measure between items i and
J. In this work, we use the cosine distance:

U; N U,

VU< T

where U; and U; denote the set of users that interacted with items i and j, respectively.

To assess the statistical significance of the results, we use the McNemar test over a
sliding window as described by Gama et al. (2009); Vinagre et al. (2014a, 2021). The prequential
process produces several metrics, including a sequence of hit rate values, representing the
learning process of the models, and the average hit rate can be continuously reported through
the use of sliding windows. Each window produces a sequence of hit rate € {0, 1} of size n.
Thus, the test can be used in each window to compare the performance of different models.
Given two algorithms A and B, the test requires computing two quantities: njg, denoting the

di,j) =1 (6.3)

100

number of observations correctly classified by algorithm A and not by B, and ng;, where the
opposite situation happens. At every step of the prequential process, the test can be performed by
calculating the statistic:

_ 2
Men = (n10 = n01)” (6.4)

njo + noi
where Mcn follows a y? distribution with 1 degree of freedom. For a significance level of
a = 0.01, the critical value is Mcn = 6.635.

6.1.3 Experimental setup

We split our experimental setup into two distinct parts. We want to evaluate the performance of
our incremental proposal, as described in Section 5.1, and also assess the performance of our
proposed forgetting technique, defined in 5.2. As our proposed forgetting technique is designed to
extend our incremental SBRS, IGSI,;:, we first evaluate IGSI,: in Section 6.2, and then evaluate
the impact of forgetting in Section 6.3.

In the first experimental analysis, we evaluate the performance of our incremental SBRS,
IGSI,/, comparing it to several algorithms defined in Chapters 3 and 4, under several metrics. In
this experimental setting, we built initial models on the first 10% of each dataset, and use the
remaining 90% for prequential evaluation, as suggested by Vinagre (2016). The reasoning for
such split is that we want to simulate a data stream as realistically as possible, and assess the
incremental capabilities of each algorithm. Thus, we use only a small part of the original dataset,
in this case 10%, to built initial models with batch training and avoid cold-start issues, and use
the remaining data to simulate a data stream.

We also evaluate the impact of each hyperparameter. Recall that IGSI;: has four: the
number of steps in a random walk ¢, the time window p, number of recent items r to generate
recommendations and number of independent t-step random walk samples M. We optimize
hyperparameters on the first 10% of the dataset that is used to initialize the models. We further
divide these 10% in another 10% to built the model and use the remaining 90% for validation.
The impact of each hyperparameter is discussed before we compare IGSI,; with other incremental
approaches.

After discussing the results of IGSI,/, we extend it with our proposed forgetting technique.
Such extension results in an evolving model that learns continuously and incrementally with
newly generated data, and also removes information that is deemed obsolete. We also compare
our proposal with other forgetting techniques, discussed in Section 4.1.

For this second experimental setting, we use a different dataset split. We conducted
initial experiments in the original 10-90 split. However, we verified that with such split forgetting
was deployed too quickly, as the models initially lacks data and are not stable enough. We
thus adopt the dataset split procedure proposed by Matuszyk et al. (2018), which is used to
evaluate forgetting: the first 20% are used to built initial models; the following 30% to optimize
hyperparameters and the remaining 50% for prequential evaluation. Similarly to the incremental
evaluation, we first assess the impact of each forgetting hyperparameter: fading factor a, diversity
parameter 3, acceptance parameter T and x that controls weight threshold ¢. Then, we compare
the performance of our proposal to other forgetting techniques.

All subsequent algorithms were implemented in Python 3 and the experiments were
executed on an Intel Core 17-4770 of 3.4 GHz with 16 GB RAM running Ubuntu.

101

6.2 EVALUATION OF IGSI

In this section, we evaluate our proposed SBRS, IGSI,, as defined in Section 5.1. The goal
of this section of experiments is to assess the influence of its different hyperparameters, and
compare its performance under several metrics with related incremental algorithms.

6.2.1 Related algorithms

We compare the performance of our proposed approach with two non-personalized baselines, four
incremental algorithms designed to work with data streams and two graph-based algorithms that
although not evaluated in data stream settings, can work incrementally and we have adapted them
to our setting. We limit the evaluation to algorithms that can be updated based on each incoming
observation, that is then discarded, in acceptable time. This eliminates complex algorithms that
either require storing training data or whose update procedure incurs infeasible processing time.

1. TOP-POP: Top popular (TOP-POP) is a non-personalized recommender systems that
simply recommends the N most popular items available in the catalog (Cremonesi et al.,
2010), which disregards preferences of the active user. It has no hyperparameters and is
very straightforward to implement.

2. RE-POP: Recently popular (RE-POP) is another non-personalized, popularity-based
strategy. The difference from TOP-POP is that RE-POP recommends the N most popular
items in the catalog considering events that occurred in the last pre-defined time window,
which is the only hyperparameter required by RE-POP. Despite its conceptual simplicity,
this method has been shown to be effective in news recommendation scenarios (Jugovac
et al., 2018).

3. ItemKNN: An incremental version of the traditional item-based nearest-neighbors
algorithm (Sarwar et al., 2001) for implicit feedback proposed by Miranda and Jorge
(2009) and described in Section 3.1. This algorithm recommends items by searching
for the & most similar items in terms of user preference based on cosine similarity.
Hyperparameter k defines the neighborhood size. We tested values for k£ € [10, 100]
in steps of 10. We defined k = 10 for datasets LFM and GLOBO, k = 20 for datasets
PLC-PL, PLC-STR and ML-1M, k = 40 for ML-10M and k = 100 for ELEC.

4. ISGD: An incremental matrix factorization algorithm for positive-only feedback pro-
posed in Vinagre et al. (2014b) and outlined in Section 3.2. ISGD decomposes the rating
matrix R into a user matrix P and an item matrix Q covering a common k-dimensional
latent feature space such that R ~ PQ”, and performs single-pass stochastic gradient
descent (SGD) updates on each incoming observation. Hyperparameters for ISGD are
learning rate, regularization, number of updates for each observation and number of
latent factors k. We adopt the optimal hyperparameters defined in Vinagre (2016).

5. RAISGD: An extension of ISGD proposed in Vinagre et al. (2015a) and described
in Section 3.2. RAISGD introduces negative feedback into ISGD by maintaining a
global queue of all items seen in the stream, ordered according to the recency of item
occurrences. For every new positive observation in the stream, the / oldest items are
selected from the queue to be considered as negative feedback by the user. In essence,
RAISGD gives greater importance to more recent events. Besides the hyperparameters
of ISGD, RAISGD has an extra hyperparameter /, which is the number of items from

102

the queue to be selected as negative feedback. We adopt the values for / defined in
Vinagre (2016).

6. BPR-MF: An incremental version of algorithm BPR-MF (Rendle et al., 2009), as
described in Sections 2.3.2.2 and 3.2. BPR-MF learns a personalized total ranking
>, C I X I for each user u, under the assumption that all items i that were consumed
by u precede all items j that were not consumed by u in the total ranking. BPR-MF is
modeled to optimize the posterior distribution p ((V, W)| >,), where V and W represent
user and item latent factors, respectively, which are the parameters of the model. The
incremental procedure for a new observation (u, i,) uniformly samples an unseen item
J by the active user u to be used as negative feedback, and updates latent factors for
user u (v,) and items i and j (w; and w;, respectively) based on the relative ranking of i
and j by u as predicted by Eq.(2.28). Hyperparameters for BPR-MF are learning rate,
regularization factors for u, i and j, number of updates for each observation and number
of latent factors k. We adopt the optimal hyperparameters defined in Vinagre (2016).

7. f’z: An approximation based on random walk sampling of algorithm P} (Cooper et al.,
2014), as described in Section 3.1.1. P} is a ranking algorithm based on short random
walks in a bipartite user-item graph (Section 2.3.1.1). Items for user u are ranked based
on the transition probability of a random walk with three steps starting from node u,
which is equivalent to computing matrix P* (Eq.(2.11)). Algorithm P} raises each
transition probability to the power of a parameter «, which improves the performance
in comparison to P>. We tested values for & € [0,2.0] in steps of 0.1. For datasets
PLC-PL, PLC-STR, LFM, GLOBO and ML-IM we set @ = 1.1, @ = 1.7 for ELEC and
a = 2.0 for ML-10M.

8. RAP;: An approximation based on random walk sampling of algorithm RPz (Christoftel

et al., 2015), described in Section 3.1.1. RP; is a re-ranking of algorithm P3 based on

item-popularity (Eq.(2.19)). RPZ re-weights the scores given by P? by dividing each
transition probability by the degree of the item raised to the power of a parameter £.
This procedure essentially reduces the score of popular items and increases the score of
items in the long-tail. If 8 = 0, the algorithm is equivalent to P>. We tested values for
B € [0,2.0] in steps of 0.1. We defined 8 = 0.1 for dataset LFM, GLOBO and ELEC,
B = 0.2 for datasets PLC-PL, PLC-STR and ML-1M, and g = 0.4 for ML-10M.

6.2.2 Effect of step-size parameter

We first analyze the performance of algorithm IGSIZ,“ with varying step-sizes . In this set

of experiments, recommendations are generated with random walks starting on the last item
interacted by the user. We tested values for r € [1,5] in steps of 1. The results of these
experiments for all datasets are presented in Tables 6.2 and 6.3, with accuracy measured by
HR @20 and DCG@20. We also evaluated the statistical significance of the results based on the
increasing values of 7. _

From Tables 6.2 and 6.3, we can see that for algorithm IGSIZ,“, with the exception of
datasets ML-10M and GLOBO, accuracy increases with ¢, where ¢ = 5 presents the highest
HR @20 results, and r = 2 presents the best results for ML-10M and GLOBO. We can also
see that accuracy increases considerably comparing ¢ = 1 to t = 4, with minor improvements
afterwards that are not statistically significant. HR @20 highlighted in bold indicate the highest
value for 7 that is superior with statistical significance in comparison to lower values.

103

Table 6.2: Impact of parameter step-size ¢ in the accuracy of algorithm IGSI, for datasets ML-1M, ML-10M,
PLC-PL and PLC-STR. Accuracy is measured by HitRate@20 (HR) and DCG@20 (DCG). HR @20 highlighted in
bold indicate the highest value for 7 that is superior with statistical significance in comparison to lower values.

ML-1M ML-10M PLC-PL PLC-STR
HR |DCG| HR | DCG | HR | DCG | HR | DCG
0.111 | 0.055 | 0.564 | 0.285 | 0.178 | 0.161 | 0.429 | 0.355
0.152 | 0.070 | 0.588 | 0.293 | 0.226 | 0.186 | 0.496 | 0.381
0.159 | 0.073 | 0.584 | 0.290 | 0.250 | 0.196 | 0.512 | 0.384
0.164 | 0.074 | 0.577 | 0.286 | 0.262 | 0.199 | 0.517 | 0.384
0.167 | 0.075 | 0.567 | 0.281 | 0.265 | 0.199 | 0.519 | 0.382

N B~ W N ==

Table 6.3: Impact of parameter step-size ¢ in the accuracy of algorithm IGSI,: for datasets LFM, ELEC and GLOBO.
Accuracy is measured by HitRate@20 (HR) and DCG@20 (DCG). HR@20 highlighted in bold indicate the highest
value for ¢ that is superior with statistical significance in comparison to lower values.

LFM ELEC GLOBO
HR | DCG | HR | DCG | HR | DCG
0.022 | 0.02 | 0.394 | 0.313 | 0.649 | 0.348
0.027 | 0.022 | 0.427 | 0.330 | 0.676 | 0.356
0.030 | 0.023 | 0.438 | 0.334 | 0.673 | 0.352
0.031 | 0.023 | 0.448 | 0.337 | 0.668 | 0.346
0.032 | 0.023 | 0.448 | 0.337 | 0.663 | 0.340

N B W DN e

These results suggest that short step-sizes are sufficient in providing relevant recommen-
dations. Thus, while noting that minor improvements in accuracy could be obtained with larger
step-sizes as reported in Tables 6.2 and 6.3, we set ¢ = 3 for all datasets for scalability reasons,
which is a major factor in data streams.

6.2.3 Effect of time window parameter

Next, we evaluate the impact of time window parameter p. Recall from Section 5.1 that Eq.(5.1)
updates edge weights incrementally, and gives more weight to the edge if the interactions occurred
within a time window and decreases the weight to be added based on users’ inactivity. The idea
of this parameter is to emphasize interactions that occurred within a time window as set by p.
We tested values (in hours) for p € {1, 2, 3,6, 12,24,48, 168, co}. Results of these experiments
for all datasets are presented in Tables 6.4 and 6.5.

From Tables 6.4 and 6.5, there is generally no difference between varying values for
p. When there are differences, we see that accuracy increases with p, as is the case for dataset
GLOBO, but these differences are not statistically significant. We believe that these results relate
to the sparsity of datasets. It seems that there is no clear advantage in differentiating information
that is already very sparse. Hence, for subsequent experiments, we simply set p = oo for all
datasets, which in essence does not consider time between interactions and simply increases the
weight based on the number of sequential interactions.

104

Table 6.4: Impact of parameter p in the accuracy of algorithm IGSIZ’,‘ for datasets ML-1M, ML-10M, PLC-PL and
PLC-STR. Accuracy is measured by HitRate @20 (HR) and DCG@20 (DCG).

ML-1M ML-10M PLC-PL PLC-STR

HR | DCG | HR | DCG | HR | DCG | HR | DCG
0.160 | 0.073 | 0.583 | 0.290 | 0.250 | 0.196 | 0.512 | 0.385
0.160 | 0.073 | 0.583 | 0.290 | 0.250 | 0.197 | 0.512 | 0.385
0.160 | 0.073 | 0.583 | 0.290 | 0.250 | 0.196 | 0.512 | 0.385
0.160 | 0.073 | 0.583 | 0.290 | 0.250 | 0.196 | 0.512 | 0.385
0.160 | 0.073 | 0.583 | 0.290 | 0.250 | 0.196 | 0.512 | 0.385
0.160 | 0.073 | 0.583 | 0.290 | 0.250 | 0.196 | 0.512 | 0.385
0.160 | 0.073 | 0.584 | 0.290 | 0.250 | 0.196 | 0.512 | 0.385
168 | 0.160 | 0.073 | 0.584 | 0.290 | 0.250 | 0.196 | 0.512 | 0.385
oo | 0.159 | 0.073 | 0.584 | 0.290 | 0.250 | 0.196 | 0.512 | 0.384

LR T owwo~o

Table 6.5: Impact of parameter p in the accuracy of algorithm IGSIZ’,‘ for datasets LFM, ELEC and GLOBO.
Accuracy is measured by HitRate @20 (HR) and DCG@20 (DCG).

LFM ELEC GLOBO
HR | DCG | HR | DCG | HR | DCG
0.030 | 0.023 | 0.425 | 0.327 | 0.657 | 0.344
0.030 | 0.023 | 0.425 | 0.327 | 0.662 | 0.346
0.030 | 0.023 | 0.425 | 0.327 | 0.664 | 0.348
0.030 | 0.023 | 0.425 | 0.327 | 0.669 | 0.350
0.030 | 0.023 | 0.425 | 0.327 | 0.672 | 0.351
0.030 | 0.023 | 0.426 | 0.328 | 0.673 | 0.352
0.030 | 0.023 | 0.427 | 0.328 | 0.673 | 0.352
168 | 0.030 | 0.023 | 0.429 | 0.329 | 0.673 | 0.352
oo | 0.030 | 0.023 | 0.438 | 0.334 | 0.673 | 0.352

£ —
o R0 QW=D

6.2.4 Effect of recency parameter

As discussed in Section 5.1.3, we propose the generation of recommendations to a user u based
on the r most recent interactions of u in order to evaluate the impact of short-term interests in
recommendations. To that extent, we conducted experiments to evaluate the impact of r in the
accuracy of algorithm IGSI’, with metrics HitRate @20 and DCG@20. We also evaluated the
statistical significance of the results based on the increasing values of r. We tested values for
r € [1,10] in steps of 1. The results of these experiments for all datasets are outlined in Tables
6.6 and 6.7. HR @20 highlighted in bold indicate the highest value for r that is superior with
statistical significance in comparison to lower values.

As shown in Tables 6.6 and 6.7, we can see that for all datasets accuracy tends to slightly
increase as r increases until reaching a threshold, and after that it tends to decrease. We can also
see that after a certain value for r, the increase in HR @20 is not statistically significant, and the
values for r that present statistically significant results for HR @20 also present the highest values
for DCG@20. These results suggest that including outdated information can be detrimental to
the accuracy of the algorithm, and modeling user interest on a few recent events can lead to

105

Table 6.6: Impact of parameter r in the accuracy of algorithm IGSI” , for datasets ML-1M, ML-10M, PLC-PL and
PLC-STR. Accuracy is measured by HitRate @20 (HR) and DCG @20 (DCG). HR @20 highlighted in bold indicate
the highest value for r that is superior with statistical significance in comparison to lower values.

ML-1M ML-10M PLC-PL PLC-STR

HR | DCG | HR | DCG | HR | DCG | HR | DCG
0.159 | 0.073 | 0.584 | 0.290 | 0.250 | 0.196 | 0.512 | 0.384
0.179 | 0.078 | 0.606 | 0.298 | 0.278 | 0.201 | 0.525 | 0.383
0.186 | 0.079 | 0.602 | 0.290 | 0.287 | 0.214 | 0.527 | 0.385
0.190 | 0.079 | 0.592 | 0.280 | 0.292 | 0.216 | 0.526 | 0.366
0.189 | 0.078 | 0.579 | 0.270 | 0.294 | 0.216 | 0.524 | 0.359
0.186 | 0.077 | 0.568 | 0.261 | 0.295 | 0.215 | 0.522 | 0.353
0.185 | 0.076 | 0.557 | 0.254 | 0.296 | 0.213 | 0.520 | 0.347
0.181 | 0.074 | 0.546 | 0.247 | 0.296 | 0.212 | 0.518 | 0.343
0.180 | 0.073 | 0.538 | 0.242 | 0.295 | 0.211 | 0.516 | 0.34
0.178 | 0.072 | 0.530 | 0.238 | 0.295 | 0.210 | 0.515 | 0.337

O 0 O N B W ==

—
)

Table 6.7: Impact of parameter r in the accuracy of algorithm IGSI’, for datasets LFM, ELEC and GLOBO.
Accuracy is measured by HitRate @20 (HR) and DCG@20 (DCG). HR@20 highlighted in bold indicate the highest
value for r that is superior with statistical significance in comparison to lower values.

LFM ELEC GLOBO
r | HR | DCG | HR | DCG | HR | DCG
1 | 0.030 | 0.023 | 0.438 | 0.334 | 0.673 | 0.349
2 10.035 | 0.025 | 0.445 | 0.338 | 0.676 | 0.352
3 10.037 | 0.026 | 0.447 | 0.339 | 0.671 | 0.344
4 10.039 | 0.026 | 0.446 | 0.338 | 0.668 | 0.340
5 10.039 | 0.026 | 0.446 | 0.338 | 0.666 | 0.339
6 | 0.039 | 0.026 | 0.446 | 0.338 | 0.665 | 0.338
7 10.040 | 0.026 | 0.446 | 0.338 | 0.664 | 0.337
8 10.040 | 0.026 | 0.446 | 0.338 | 0.664 | 0.337
9 10.040 | 0.026 | 0.446 | 0.338 | 0.663 | 0.336
10 | 0.040 | 0.025 | 0.446 | 0.338 | 0.663 | 0.336

improvement in accuracy. For overall results presented in Section 6.2.6, we set r = 2 for ML-10M
and GLOBO, r = 3 for PLC-STR and ELEC, r = 4 for LFM and ML-1M and r = 5 for PLC-PL.

6.2.5 Sampling approximation

In order to verify the performance of the sampling approach, described in Section 5.1.1, we
executed experiments with the sampling algorithm IGSIll” with varying number of random walks
per recommendation M € {100, 250, 500, 1000, 2500, 50()0 10000, 12500, 15000, 20000} and
compared the HR @20 of the approximations with the exact algorithm IGSIﬁT’f‘. The results of
these experiments are presented in Table 6.8.

From Table 6.8, we can see that as expected, the accuracy of IGSI:“ increases with the
number of samples, and for all datasets, it reaches the same HitRate @20 of the exact algorithm

106

Table 6.8: Accuracy of algorithm IGSI;’; with increasing number of random walks M for all datasets. Accuracy is
measured by HitRate @20.

ML-1M | ML-10M | PLC-PL | PLC-STR | LFM ELEC | GLOBO

M | HR@20 | HR@20 | HR@20 | HR@20 | HR@20 | HR@20 | HR@20
100 0.143 0.528 0.247 0.502 0.030 0.429 0.645
250 0.150 0.558 0.250 0.508 0.030 0.436 0.662
500 0.152 0.571 0.250 0.510 0.030 0.438 0.668
1000 0.156 0.578 0.250 0.511 0.030 0.437 0.671
2500 0.157 0.581 0.250 0.511 0.030 0.437 0.672
5000 0.158 0.583 0.250 0.512 0.030 0.437 0.673
10000 | 0.159 0.584 0.250 0.512 0.030 0.438 0.673
12500 | 0.159 0.584 0.250 0.512 0.030 0.438 0.673
15000 | 0.159 0.584 0.250 0.512 0.030 0.438 0.674
20000 | 0.159 0.584 0.250 0.512 0.030 0.438 0.673
00 0.159 0.584 0.250 0.512 0.030 0.438 0.673

within 20000 samples. Since for all datasets the amount of samples required for the percentage
deviation between the exact computation 7> and the approximation 7 to be less than 1% is
at least 5000 samples, for overall results presented next, we set the number of samples to the
approximate algorithm 73 as M = 5000.

6.2.6 Overall results

After evaluating the impact of different parameters on the accuracy of our model IGSI;:, we now
evaluate our model on the entire datasets with the defined parameters and present overall results.
We tested our model with the three recommendation strategies defined in Section 5.1.3 in order
to evaluate the impact of long-term and short-term interests. We also present results for related
incremental algorithms, outlined in Section 6.2.1. We also consider algorithm IGSI}, (Section
5.1), with t = 1. Such algorithm is analogous to a frequent mining procedure that is easy to
compute, as it depends only on the weights of adjacent nodes.

Tables 6.9, 6.10, 6.11 and 6.12 report overall results for all algorithms. Accuracy is
measured through metrics HR @20 and DCG @20, diversity is reported through metric ILD
and time is measured through average update and recommendation times, with the best results

highlighted in bold. For algorithms 152 and RAPz, we set the number of samples to 5000, which is
the same amount of samples that we set to our model.

As shown in Tables 6.9, 6.10, 6.11 and 6.12, IGSI;3-based algorithms outperform the
related algorithms for all datasets in terms of accuracy, except for ELEC for which it is second
best, with competitive diversity, update and recommendation times. An interesting insight from
the results is that generating recommendations based solely on the last item interacted by the
user, which results in a non-personalized approach, outperforms recommendations based on the
entire interaction history. In fact, for dataset GLOBO, it is the best resulting algorithm. This is
related to both the impact of short-term interests and to the fact that the recommendation list
changes substantially after every new interaction.

Further improvements in accuracy can be obtained by modeling user interest based
on a few recent interactions, as shown by the results obtained by algorithm IGSI’;, which is
the best performing method overall for metrics HitRate @20 and DCG @20, except for datasets

107

Table 6.9: Results for all algorithms for datasets ML-1M and ML-10M. Accuracy is measure by HR@20 and
DCG@20. Diversity is measure by ILD and time is reported by average update and recommendation times in
milliseconds, with the best results highlighted in bold.

T
Dataset | Algorithm | HR@20 | DCG@20 | ILD@20 | ¢ (MS)
Update | Rec.

TOP-POP | 0.133 | 0.053 0.682 | 0.001 | 02

RE-POP | 0.132 | 0.053 0.693 | 0.001 | 02

ISGD 0.055 0.022 0.912 0.2 5.0
RAISGD 0.054 0.022 0.897 0.2 5.0

BPR-MF | 0.183 0.072 0.820 06 | 4.1
ML-IM | ItemKNN | 0.171 0.066 0838 | 3.73 | 1336
p’ 0.162 0.066 0.713 | 0.002 | 10.06
RP} 0.165 0.067 0.736 | 0.002 | 10.06
IGST,, 0.228 0.101 0843 | 0.13 | 9.82
IGSIY* | 0222 0.101 0814 | 0.13 |24.70
IGSI, 0.240 0.106 0791 | 0.13 |24.74
IGSI | 0.180 0.074 0727 | 0.13 |2591
TOP-POP | 0.113 0.046 0.775 | 0.002 | 0.25
RE-POP | 0.150 0.062 0.802 | 0.002 | 0.16

ISGD 0.061 0.026 0.949 0.3 7.45
RAISGD 0.066 0.028 0.938 0.3 7.31

BPR-MF | 0.160 0.063 0817 | 0.66 | 6.52
ML-10M | ItemKNN | 0.159 0.061 0.894 73 | 51.75
p’ 0.133 0.053 0.879 | 0.002 | 10.61

RP} 0.084 0.032 0.950 | 0.002 | 10.61

IGST,, 0.219 0.099 0.872 04 |10.10

IGSIZ* | 0211 0.097 0.841 04 | 2832

IGSI, 0.222 0.100 0.833 04 | 2881

IGSI | 0.180 0.074 0.794 04 | 29.09

PLC-STR and GLOBO, for which the non-personalized IGSIZ;‘ obtained the best results. These
results highlight the importance of modeling short-term user interests, as also suggested by
the improvements of algorithm RAISGD in comparison to ISGD, which penalizes infrequent
items in the data stream. This is further evident in dataset GLOBO, which is characterized by a
dynamic set of items. Introducing negative feedback in the form of infrequent items significantly
increased accuracy when compared to ISGD.

As expected, the incremental algorithms generally outperforms non-personalized
popularity-based algorithms. We note, however, that both TOP-POP and RE-POP outperformed
ISGD and RAISGD on movie-domain datasets. Also, RE-POP obtained very competitive results

108

Table 6.10: Results for all algorithms for datasets PLC-PL and PLC-STR. Accuracy is measure by HR @20 and
DCG@20. Diversity is measure by ILD and time is reported by average update and recommendation times in

milliseconds, with the best results highlighted in bold.

Dataset | Algorithm | HR@20 | DCG@20 | ILD@20 | 1me (mS)
Update | Rec.

TOP-POP | 0.020 | 0.007 0.870 | 0.005 | 05

RE-POP | 0.041 0.018 0872 | 0.005 | 05

ISGD 0282 | 0.182 0863 | 09 | 2958

RAISGD | 0289 | 0.187 0863 | 09 | 2682

BPR-MF | 0082 | 0.039 0.841 13 | 23.53

PLC-PL | ItemKNN | 0298 | 0.145 0811 | 249 | 7691
p’ 0303 | 0.153 0.818 | 0.002 | 9.79

RP; 0310 | 0.57 | 0821 | 0.002 | 9.89

IGST,, | 0342 | 0.239 0.869 | 0.02 | 95

IGSI | 0358 | 0248 0.829 | 0.02 | 20.05

IGST, 0.404 | 0.261 0.836 | 0.02 | 2155

IGSE* | 0355 | 0.209 0851 | 0.02 | 21.99

TOP-POP | 0.011 0.003 0.822 | 0.003 | 5.7

RE-POP | 0.031 0.011 0.814 | 0.003 | 56

ISGD 0.331 0.228 0.842 | 0.18 | 44.28

RAISGD | 0340 | 0.229 0.844 | 0.18 | 43.20

BPR-MF | 0.002 | 0.001 0936 | 03 | 3542
PLC-STR | ItemKNN | 0.183 | 0.079 0779 | 18.17 | 150.77
p’ 0.159 | 0.075 0779 | 0.004 | 18.45

RP; 0.168 | 0.079 0.834 | 0.004 | 18.49

IGS,, | 0565 | 0425 0829 | 0.06 | 9.6

IGSI | 059 | 0.456 0791 | 0.06 | 23.75

IGST, 0.598 | 0433 0795 | 006 | 23.88

IGSE* | 0312 | o0.161 0822 | 006 | 25.09

on datasets ML-10 and GLOBO, only being outperformed by IGSI;S, and by BPR-MF on
ML-10M. Again, this relates to the dynamic set of items and popularity factors of a news-domain

dataset.

Considering the related incremental algorithms, ISGD and RAISGD present fast
recommendation times with competitive results for datasets from the music domain, with
RAISGD generally providing increases in accuracy compared to ISGD. The exceptions for these
increases are ML-1M and ELEC. BPR-MF on the other hand performed well for movie-domain
datasets and ELEC, and performed poorly on music-domain datasets and on GLOBO. We believe
that this pertains to the sampling of negative feedback. On ML-1M and ML-10M, we have

109

Table 6.11: Results for all algorithms for dataset LFM. Accuracy is measure by HR@20 and DCG@20. Diversity is
measure by ILD and time is reported by average update and recommendation times in milliseconds, with the best
results highlighted in bold.

Time (ms)
Update | Rec.
TOP-POP 0.001 0.0004 0.744 0.006 | 13.92

RE-POP 0.001 0.0003 0.755 0.006 | 12.58
ISGD 0.067 0.046 0.820 2.6 81.61
RAISGD 0.070 0.048 0.838 2.6 82.40

Dataset | Algorithm | HR@20 | DCG@20 | ILD@20

BPR-MF | 0.042 | 0.023 0.847 | 580 | 69.99
LFM | ItemKNN | 0.020 | 0.009 0.680 | 14.54 | 165.18
P 0.003 | 0.001 0.846 | 0.001 | 49.42

RP; 0.003 | 0.001 0.852 | 0.001 | 49.12

IGSI, | 0.087 | 0.069 0795 | 002 | 9.98

IGSI¥ | 0.090 | 0.070 0.705 | 0.02 | 21.95

IGST, 0.104 | 0.075 0.744 | 0.02 | 2273

IGSI;" 0.045 0.022 0.871 0.02 23.86

smaller sets of items, and users interact with more items. On the remaining datasets, we have
larger sets of items, but users interact with a very small number of items available. Hence, the
sampling procedure may be selecting irrelevant items as negative feedback, that provide little
information to the preferences of the active user.

ItemKNN, 132 and RAPz presented competitive results for datasets ML-1M, ML-10M and
ELEC. This is related to the characteristics of the datasets and the recommendations provided by
each algorithm. Since ISGD and RAISGD adjust the latent factors to give greater importance to
more recent observations, they are better suited for recommendation in domains such as music that

. . . ~3 ~ 3 . .
display short-term temporal dynamics, while ItemKNN, P, and RP; provide recommendations
based on long-term interests.

Comparing algorithms 152 and RAPZ, we can see that with the exception of datasets
ML-10M and ELEC, RAP; outperforms 132 in accuracy and diversity. Further improvements in
diversity can be obtained for algorithm RAPZ, by increasing parameter 5. However, as demonstrated

by the results obtained by RAPZ for the ML-10M, the number of samples required for the algorithm
to converge is highly dependent on the choice of parameter S, such that higher values for
requires more samples to converge (Paudel et al., 2017).

Another observation from the results is that there is no algorithm that presents the best
results for both accuracy and diversity. In fact, for all datasets the worst performing algorithm in
terms of accuracy presents the best results in terms of diversity. This is justified by the evaluated
metric, ILD, which measures the average distance between items in the recommendation list, by
cosine distance. Ideally, a model should increase diversity while at least maintaining its original

110

Table 6.12: Results for all algorithms for datasets ELEC and GLOBO. Accuracy is measure by HR@20 and
DCG@20. Diversity is measure by ILD and time is reported by average update and recommendation times in
milliseconds, with the best results highlighted in bold.

Dataset | Algorithm | HR@20 | DCG@20 | ILD@20 | e (mS)
Update | Rec.

TOP-POP | 0.043 | 0020 | 0986 | 0.004 | 1.00
REPOP | 0073 | 0032 | 0987 | 0.005 | 1.00

ISGD | 0.18 | 0160 | 0993 | 03 | 70.63

RAISGD | 0.183 | 0.161 0993 | 03 | 6971
BPR-MF | 0.194 | 0160 | 0993 | 504 | 62.11
ELEC | ItemKNN | 0.193 | 0.103 0975 | 03 | 14048
p’ 0228 | 0.185 0981 | 0.002 | 7.24

RP; 0226 | 0.184 | 0979 | 0.002 | 7.35

IGST,, | 0211 | 0.181 0994 | 001 | 8.57

IGSI | 0213 | 0179 | 0983 | 001 | 189

IGST, | 0225 | 0.187 0984 | 001 | 19.70

IGSE" | 0226 | 0188 | 0984 | 001 | 19.59
TOP-POP | 0.089 | 0.031 0912 | 0.002 | 0.6
REPOP | 0377 | 0.163 0924 | 0002 | 06

ISGD | 0007 | 0002 | 099 | 2.1 | 3471

RAISGD | 0290 | 0.146 | 0954 | 23 | 38.94
BPR-MF | 0.105 | 0036 | 0980 | 38 | 29.68
GLOBO | ItemKNN | 0.041 | 0.013 0999 | 486 | 58.94
p’ 0279 | 0.130 0932 | 0.002 | 9.60

RP, 0293 | 0137 | 0937 | 0.002 | 9.93

IGST,, | 0466 | 0242 | 0950 | 002 | 1023

IGSI | 0482 | 0250 | 0937 | 002 | 262

IGST, | 0470 | 0240 | 0936 | 002 | 261

IGSE" | 0347 | 0166 | 0930 | 002 | 272

accuracy, as is generally the case for algorithms lsi and RAPZ. For all datasets, our proposal
IGSI;s-based algorithms obtained better accuracy with competitive diversity.

In terms of update time, IGSI;;-based algorithms, ISZ, RAPZ, ISGD, BPR-MF and
RAISGD achieved competitive results, and are all suitable for data stream environments. Consid-
ering recommendation time, with the exception of ItemKNN, which is the most computationally
demanding algorithm, all algorithms present acceptable time, with ISGD, RAISGD and BPR-MF
outperforming all methods for both ML-1M and ML-10M datasets, ISZ and RAPZ outperforming

other methods for datasets PLC-PL, PLC-STR, ELEC and GLOBO, respectively, and IGSIZ;’

111

outperforming other methods for dataset LFM. We note that the recommendation procedure of
ISGD RAISGD BPR-MF and ItemKNN are linear to the number of items in the dataset, while
P RPﬁ and IGSI;;-based algorithms depend on the number of predefined samples.

In order to analyze the learning behavior of each algorithm over time, in Figures 6.1,
6.2,6.3,6.4,6.5, 6.6 and 6.7, we present the accuracy of all algorithms over time with a moving
average of the HitRate @20 metric for all datasets with a window of size n = 5000.

Algorithm

L0 rop-pop

—— ItemKNN
— &

0.8

— RP}
— IGSl}
— IGSIY
0.6 IGSI}
— IGSI3"

HitRate@20

0.4

0.2

0.0

0 50000 100000 150000
sample

Figure 6.1: Evolution of HitRate@20 as events arrive for dataset ML-1M with window size n = 5000.

'
Algorithm
—— TOP-POP

RE-POP

0.6

— ItemKNN
— B
R —]
— IGSlp
— IGSIY
1GSI}
— IGSI*

I
IS

HitRate@20

=3
w
—

0\ ‘
o Mu o W Wa‘ f ! W A
/ ‘W‘V‘{'w\}'\/\n{;‘ " \ wf".‘w" »\"“\‘ AU ‘M;"\w\ f‘.‘r‘ "Mﬂ’l" ‘ #"\. :} A t " ‘w&;ﬁ W "&‘M’M:’:‘\w
Nk s A A

SR AR ey MM "‘*WMM Mw\" A Vs

0.0 0.5 1.0
sample le6

0.0

Figure 6.2: Evolution of HitRate@20 as events arrive for dataset ML-10M with window size n = 5000.

From Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7 we can confirm that the proposed method
IGSI; consistently outperforms the related algorithms. Another interesting observation is the

similarity between algorithms IGSIS};, 133 and RAPz for the ML-1M and ML-10M (Figures 6.1 and

6.2). We can see improvement from IGSI % in accuracy in comparison to P and RPﬁ, which is

112

Algorithm
—— TOP-POP
RE-POP
— 1SGD
—— RAISGD
0.8 —— BPR-MF
— ItemKNN
-
— RP}
— 1GSlj
0.6 — iGsik
1GSI
o
) — IGSI?
2
g
T o4
02
PN
0.0
0 20000 40000 60000 80000
sample
Figure 6.3: Evolution of HitRate@20 as events arrive for dataset PLC-PL with window size n = 5000.
Algorithm
oy <~ ToppoP RE-POP —— ISGD —— RAISGD —— BPR-MF —— ItemKNN —— P} —— RP} — IGSI; — IGSIj' IGsly — IGSIZ"
‘ |
| \ \"\) vfn i\ A ,/'M A) VMN ‘)
\ e ol VAR AA i\ l\’ h ,/ \ | Wf" oy
06 W MN«\M”\)‘/ \ f\ ‘.v:" ™ \ ij/ A \“(‘\"" "V by “ -1, \Hﬂ.‘ ‘\ \' W \ \/W u “ \ﬁ‘; W !
Y 'J“ ‘A U“s.,/ A M !
V W
05 \ W

HitRate@20
)
=

o
w

)

W&WWW ™ wANG

0.2

0.1

AL S AT S Ve S W A T A S PN

0 100000 200000 300000 400000 500000 600000 700000
sample

Figure 6.4: Evolution of HitRate@20 as events arrive for dataset PLC-STR with window size n = 5000.

related to the sequential characteristics of IGSIﬁ‘;, whereas in P and RP there is no distinction
between the sequence of interactions in the graph. Another cons1derat10n is the popularity effect
present in dataset GLOBO, as seen in the spikes in accuracy obtained by the RE-POP algorithm,
which evidences the interests of users in fresh articles that quickly becomes irrelevant.

The aforementioned plots also allows us to evaluate the statistical significance of the
results. To assess it, we conducted McNemar tests (Section 6.1.2) between algorithm IGSI; and

the other related algorithms ISGD, RAISGD, ItemKNN, BPR-MF, f’z and RAPZ for every dataset
using sliding windows with size n = 5000, the same size used for the moving averages in Figures
6.1,6.2,6.3,6.4,6.5, 6.6 and 6.7.

We verified that IGSI;3 outperforms all competing approaches throughout 100% of
the prequential process on datasets ML-1M, PLC-PL, PLC-STR and LFM, as visible by the

113

0.20 f
Algorithm
—— TOP-POP

RE-POP

—— ItemKNN
015 — p3
— RP}
— IGSl}
— IGSIY
IGSI};
— IGSI3"

HitRate@20
o
o
o

0.05

0.00 b :
0 10000 20000 30000 40000 50000 60000 70000

Figure 6.5: Evolution of HitRate@20 as events arrive for LFM dataset with window size n = 5000.

0.40
Algorithm

—— TOP-POP RE-POP —— ISGD —— RAISGD —— BPR-MF —— ItemKNN —— P} —— RP} — IGSl; — IGSI)’ 1GSl; — IGSI3
035

A
I

0.30 N/\ \
"/"t‘*‘ A o
4" "
b
., | A
R i A
A

i
g
N

o} \)
N ’:W‘:#’
A

=3
N
o

WA

o e \, o
~ A s
® M
Zo20 o A sef]
g AR Lo
z /,
ol
0.15
0.10
0-05 M
0.00
0 20000 40000 60000 80000 100000 120000 140000

sample

Figure 6.6: Evolution of HitRate@20 as events arrive for ELEC dataset with window size n = 5000.

differences in accuracy presented in Figures 6.1, 6.3, 6.4 and 6.5. For datasets ML-10M, ELEC
and GLOBO, IGSI;r3 generally outperforms all competing approaches throughout 100% of the
prequential process, as visible in Figures 6.2, 6.6 and 6.7 with a few exceptions.

First, for dataset ML-10M, IGSI;3 outperforms RE-POP, BPR-MF and ItemKNN
throughout 98.04%, 95.31% and 98.13% of the prequential process, respectively. On the
remaining parts, there are no significant difference between the compared algorithms.

Second, for dataset ELEC, IGSI;r3 outperforms BPR-MF and ItemKNN throughout
89.20% and 77.86% of the prequential process, respectively. On the remaining parts, there are no
significant difference between the compared algorithms. Also, there are no significant differences

between IGSI;3 and both f’i and RAPZ throughout 100% of the prequential process.

114

0.8
Algorithm

—— TOP-POP RE-POP —— ISGD —— RAISGD —— BPR-MF —— ltemKNN —— P2 —— RP} —— IGSI; — IGSI} IGSI; —— IGSIE

0.7 ’,\‘\[‘/\”\

0.6 J [

0.5 Y

\M\
|

0.3

HitRate@20

0.2

0.0
0.0 R
sample le6

Figure 6.7: Evolution of HitRate@20 as events arrive for GLOBO dataset with window size n = 5000.

Finally, for dataset GLOBO, IGSI;3 outperforms RE-POP throughout 76.48% of the
prequential process, is outperformed on 10.79% and there is no significant difference on the
remaining 12.72%. Parts of the prequential process where IGSI; does not outperform RE-POP
can be seen in Figure 6.7, as evident by the sudden spikes in accuracy obtained by RE-POP.

Overall, we conclude that our proposed SBRS, IGSI,:, is well suited for data stream
scenarios, as it meets the prerequisites outlined in Chapter 3. As it learns incrementally, a single
pass over the available data is required, which is done efficiently as suggested by the obtained
update times. This, in turn, allows the model to keep up with the incoming data and always
stay up-to-date. By staying up-to-date, an efficient procedure to generate recommendations is
required. This is achieved with the random walk simulation procedure, which brings a balance
between accuracy and scalability. As the datasets are very sparse, we found that such sampling
procedure comes close to convergence with a reasonable number of samples, which results in
very competitive recommendation times. Finally, our results suggest the effectiveness of our
proposal, which generally outperformed the compared algorithms throughout the simulated
streaming process in all datasets.

6.3 EVALUATION OF LND

In this section, we extend IGSI,: with our proposed forgetting technique, local neighborhood
decay (LND), defined in Section 5.2. Such extension results in an evolving model that learns
continuously and incrementally with newly generated data, and also removes information that
is deemed as obsolete, which in turn enables our proposal to fully meet the last requirement
posed in Chapter 3: the model must adapt to changes and stay up-to-date, but also maintain
information that is not outdated.

The goal of this section of experiments is to assess the effectiveness of our proposed
forgetting technique. We evaluate it under several metrics, comparing it with other forgetting
techniques, and also analyze the influence of its hyperparameters.

115

6.3.1 Related algorithms

To assess the effectiveness of our proposed forgetting technique, LND, we use IGSI;: as a base
model and extend it with LND, and also with the following ones to allow for comparisons:

1. Sliding window. A traditional abrupt forgetting technique (Nasraoui et al., 2007;
Vinagre and Jorge, 2012; Siddiqui et al., 2014). We define sliding windows based on
time intervals w, e.g., 30 days, where only observations included in the windows are
considered for the ranking of items, and observations outside of it are abruptly forgotten.
IGSI;: with sliding window would consist in a graph composed only by interactions
that occurred in the intervals defined by the window.

2. Time-decay. A gradual forgetting technique (Koychev, 2000; Tabassum et al., 2020) that
reduces the relevance of edges based on time intervals. We define a fixed time window
w, e.g., 30 days, and each time the predetermined window period elapses, edges are
gradually forgotten based on Eq.(5.3), and removed if necessary, i.e., w(e) < 1.0. With
this technique, forgetting is performed gradually and only based on the predefined time
window, as opposed to a sliding window that abruptly forgets information.

3. Recency queue. An adaptation of the algorithm proposed by Vinagre et al. (2015a)
designed to select negative feedback from the stream based on the frequency of items.
In this forgetting technique, a global FIFO queue is maintained, containing all items
seen in the stream, where the tail contains the most recent interacted items, and the
head contains the items that have not been interacted with for a while. For an incoming
interaction (u, i, t), item i is moved to the tail of the queue, and the item at the head of
the queue j is selected to lose relevance, by reducing the weight of the edges connecting
its predecessors to j, as defined in Eq.(5.3). If necessary, edges are removed from the
graph based on threshold ¢. Finally, j is reinserted at the tail of the queue. In essence,
this approach penalizes infrequent items along the stream and values recent information
as these will not be forgotten.

6.3.2 IGSI Hyperparameters

The original IGSI;: has four hyperparameters: the number of steps in a random walk 7, time
window parameter p, the number of random walk samples M and the number of most recent user
interactions to use as random walk source . We set hyperparameters #, p and r with the optimal
values reported in Sections 6.2.2, 6.2.3 and 6.2.4, respectively, and reduce the number of random
walk samples to M = 1000 due to computational restrictions. Also, in this set of experiments, we
introduce a new dataset, BOOK, from the e-commerce domain, and replace dataset LFM with
LEM-1K, which is about ten times larger. Following the same methodology used in the previous
section, we found the optimal values for r as r = 5 for BOOK and r = 4 for LFM-1K.

For parameters related to forgetting, we tested values for @ € [0.8,0.99] in steps of
0.01. Parameter « is the fading factor that controls the rate of forgetting, where higher values for
a results in slower forgetting. We observed that higher values for a presented the best results
for all techniques. Hence, we set @ = 0.99 for all forgetting approaches. Hyperparameters for
baselines were optimized based on grid search following the same methodology used to optimize
the hyperparameters of our proposal, and are reported in the overall results. Besides a, our
proposal has three other hyperparameters, and we discuss their impact next, before performing
comparisons with baselines.

116

6.3.3 Impact of diversity hyperparameter

First we evaluate the impact of diversity parameter S, that acts as a convex combination of
indegree and outdegree factors, x; , and y; ,, respectively. Nodes with low indegree are likely
to be items from the long-tail, or new ones, while nodes with high outdegree increases the
exploration of random walks. Thus, S introduces a balance between these two factors, and, based
on Eq.(5.5), higher values of 8 should increase the diversity of recommendations, as we are
including items from the long-tail in the recommendation lists. We tested values for 8 € [0, 1]
in steps of 0.1. Results of these experiments, measured by HR@20, DCG@20 and ILD are
presented in Tables 6.13 and 6.14.

Table 6.13: Impact of parameter 8 on IGSI;: with our proposed forgetting technique for datasets ML-1M, ML-10M,
PLC-PL and PLC-STR. Column g refers to the tested values for hyperparameter 8, while HR and ILD represents the
HitRate @20 and intra-list diversity, respectively, grouped by dataset. The first row of the results refer to IGSI ;
without forgetting. Values highlighted in bold indicate the highest value for § that is superior in accuracy with
statistical significance in comparison to higher values.

ML-1M ML-10M PLC-PL PLC-STR
B HR ILD | HR ILD | HR ILD | HR ILD
- 10234 0.813 | 0.198 0.829 | 0.396 0.826 | 0.590 0.817
1.0 | 0.232 0.839 | 0.199 0.874 | 0.396 0.827 | 0.591 0.819
0.9 | 0.235 0.833 | 0.212 0.863 | 0.396 0.827 | 0.591 0.819
0.8 | 0.235 0.826 | 0.220 0.854 | 0.396 0.827 | 0.591 0.818
0.7 1 0.237 0.819 | 0.224 0.844 | 0.396 0.826 | 0.591 0.818
0.6 | 0.236 0.812 | 0.225 0.835 | 0.397 0.826 | 0.592 0.818
0.5 10236 0.805 | 0.222 0.826 | 0.397 0.826 | 0.592 0.817
0410233 0.798 | 0.216 0.821 | 0.397 0.826 | 0.592 0.817
0.3 10232 0.792 | 0.209 0.819 | 0.397 0.826 | 0.592 0.817
0.2 10226 0.786 | 0.205 0.818 | 0.397 0.826 | 0.592 0.817
0.1 | 0.226 0.782 | 0.198 0.816 | 0.397 0.826 | 0.592 0.816
0.0 | 0.221 0.778 | 0.191 0.815 | 0.397 0.826 | 0.592 0.816

As shown in Tables 6.13 and 6.14, for all datasets diversity increases with parameter
B, as expected. The effect of 8 in accuracy depends on the dataset: for ML-1M, ML-10M and
GLOBO, it tends to increase as £ increases until reaching a certain threshold, after which it starts
to decrease, but generally is still higher than IGSI; without forgetting. For datasets PLC-PL
and LFM-1K, B does not affect accuracy, while for PLC-STR, BOOK and ELEC it only slightly
affects it.

Two interesting observations can be made from these results. First, that for all datasets
there is at least one value for 8 that increases diversity while maintaining accuracy, or even
increasing it. Second, the impact of 8 on accuracy is highly dependent on the dataset and
directly related to the degree distribution on the graph. This effect can be seen when we compare
results on ML-1M, ML-10M and GLOBO to the remaining datasets. There are greater changes
in accuracy on these datasets as they have higher average neighborhood size. Thus, 8 can be
adjusted according to the application.

For subsequent experiments, we select values for S that maximizes diversity without
decreasing accuracy. To that end, we assess the statistical significance of the results. We select
the maximum value for 8 whose difference to greater values of it results in statistically significant
differences in accuracy. In other words, starting from 8 = 1.0, we decrease $ until there are no

117

Table 6.14: Impact of parameter 8 on IGSI;: with our proposed forgetting technique for datasets LFM-1K, BOOK,
ELEC and GLOBO. Column g refers to the tested values for hyperparameter g, while HR and ILD represents the
HitRate @20 and intra-list diversity, respectively, grouped by dataset. The first row of the results refer to IGSI ;/
without forgetting. Values highlighted in bold indicate the highest value for 8 that is superior in accuracy with
statistical significance in comparison to higher values.

LFM-1K BOOK ELEC GLOBO
B HR ILD | HR ILD | HR ILD | HR ILD
- 1 0.182 0.841 | 0.661 0.827 | 0.268 0.986 | 0.456 0.940
1.0 | 0.182 0.842 | 0.661 0.832 | 0.267 0.987 | 0.490 0.950
0.9 | 0.182 0.842 | 0.662 0.831 | 0.267 0.987 | 0.527 0.945
0.8 10.182 0.842 | 0.662 0.830 | 0.267 0.987 | 0.555 0.944
0.7 1 0.182 0.842 | 0.662 0.829 | 0.267 0.987 | 0.574 0.943
0.6 | 0.182 0.842 | 0.662 0.829 | 0.268 0.987 | 0.583 0.943
0.5 0.182 0.841 | 0.662 0.828 | 0.269 0.986 | 0.594 0.942
04 |0.182 0.841 | 0.662 0.828 | 0.269 0.986 | 0.591 0.941
0.3] 0.182 0.841 | 0.662 0.828 | 0.269 0.986 | 0.587 0.941
0.2 10.182 0.841 | 0.662 0.828 | 0.269 0.986 | 0.581 0.941
0.1 | 0.182 0.841 | 0.662 0.828 | 0.270 0.986 | 0.576 0.941
0.0 | 0.182 0.841 | 0.662 0.828 | 0.269 0.986 | 0.562 0.941

statistically significant differences in accuracy. Thus, we set § = 0.7 for ML-1M and ML-10M,
B = 1.0 for LFM-1K and PLC-PL, g = 0.6 for PLC-STR, g = 0.9 for BOOK, g = 0.1 for ELEC
and 8 = 0.5 for GLOBO.

6.3.4 Impact of acceptance factor hyperparameter

The idea of acceptance factor z; , in Eq.(5.5) is to further decrease the score of popular items,
on the assumption that popular items which are constantly ignored are likely to be irrelevant
as opposed to unknown to users (He et al., 2016). As popular items are nodes in the graph
with several connections, further penalizing them with z; , should improve scalability when
combined with the weight threshold ¢, and should reduce the dominance of popular items in
recommendation lists. We tested values for 7 € [0, 1] in steps of 0.1, after first tuning 3. Note
that 7 = 0.0 ignores z; ;, and only score nodes based on x; , and y ,. Results of these experiments
in accuracy, measured by HR @20 and DCG @20 are presented in Tables 6.15 and 6.16.

From Tables 6.15 and 6.16, we see that for all datasets, apart from LFM-1K and BOOK,
there is a value for 7 > 0 that increases accuracy with statistical significance, and similarly to
B, the effect of 7 depends on the dataset. For dataset BOOK there are minor increases in DCG
that are not significant, while for LFM-1K there are no changes. Datasets ML-1M, ML-10M,
PLC-STR and ELEC benefit from small values of 7, while GLOBO is highly affected by the
hyperparameter and benefits from higher values of it. This results are related to the characteristics
of these datasets. GLOBO is a news domain dataset, with a dynamic set of items. New items
are constantly added to the set, and these items have a short lifespan. Thus, they benefit from
faster forgetting. On the other hand, datasets from domains characterized by stable relations, e.g.,
movies, benefit from slower forgetting, as these relations remain relevant even if not reinforced
by new data.

118

Table 6.15: Impact of parameter 7 on IGSI; with our proposed forgetting technique for datasets ML-1M, ML-10M,
PLC-PL and PLC-STR. Column 7 refers to the tested values for hyperparameter 7, while HR and DCG represents
the HitRate @20 and DCG @20, respectively, grouped by dataset. Results for 7 = 0 refers to the best values for 3
obtained in Tables 6.13 and 6.14. Values highlighted in bold indicate the highest value for 7 that is superior in
accuracy with statistical significance in comparison to lower values.

ML-1M ML-10M PLC-PL PLC-STR
T HR DCG | HR DCG | HR DCG | HR DCG
0 | 0237 0.104 | 0.225 0.100 | 0.396 0.260 | 0.592 0.432

0.1 | 0.238 0.105 | 0.226 0.101 | 0.397 0.261 | 0.592 0.432

0.2 | 0236 0.104 | 0.227 0.102 | 0.397 0.260 | 0.592 0.432

0.3 1 0.236 0.104 | 0.226 0.101 | 0.397 0.260 | 0.593 0.433

04| 0236 0.104 | 0.226 0.101 | 0.397 0.260 | 0.593 0.433

0.510.236 0.104 | 0.226 0.101 | 0.397 0.260 | 0.593 0.433

0.6 | 0235 0.104 | 0.226 0.101 | 0.397 0.260 | 0.593 0.433

0.7 | 0.235 0.104 | 0.226 0.101 | 0.397 0.260 | 0.593 0.433

0.8 | 0235 0.104 | 0.225 0.101 | 0.397 0.260 | 0.593 0.433

0.9 | 0.235 0.104 | 0.225 0.101 | 0.396 0.260 | 0.593 0.433

1.0 | 0.235 0.103 | 0.225 0.101 | 0.396 0.260 | 0.593 0.433

Table 6.16: Impact of parameter 7 on IGSI;: with our proposed forgetting technique for datasets LFM-1K, BOOK,
ELEC and GLOBO. Column 7 refers to the tested values for hyperparameter 7, while HR and DCG represents
the HitRate @20 and DCG @20, respectively, grouped by dataset. Results for 7 = O refers to the best values for
obtained in Tables 6.13 and 6.14. Values highlighted in bold indicate the highest value for 7 that is superior in
accuracy with statistical significance in comparison to lower values.

LFM-1K BOOK ELEC GLOBO

T HR DCG| HR DCG| HR DCG | HR DCG
0 | 0.182 0.141 | 0.662 0.452 | 0.269 0.215 | 0.591 0.294
0.1] 0.182 0.141 | 0.662 0.455 | 0.269 0.215 | 0.610 0.307
0.2 |0.182 0.141 | 0.662 0.455 | 0.270 0.215 | 0.615 0.312
0.3 0.182 0.141 | 0.662 0.455 | 0.269 0.215 | 0.619 0.314
0.4] 0.182 0.141 | 0.662 0.455 | 0.269 0.215 | 0.621 0.314
0.5 0.182 0.141 | 0.662 0.455 | 0.268 0.214 | 0.624 0.318
0.6 | 0.182 0.141 | 0.662 0.456 | 0.268 0.214 | 0.625 0.318
0.7 | 0.182 0.141 | 0.662 0.456 | 0.268 0.214 | 0.626 0.318
0.8 | 0.182 0.141 | 0.662 0.456 | 0.268 0.214 | 0.627 0.320
0.9 | 0.182 0.141 | 0.662 0.456 | 0.268 0.214 | 0.627 0.320
1.0 | 0.182 0.141 | 0.662 0.456 | 0.268 0.214 | 0.628 0.320

Essentially, setting higher values for 7 results in faster forgetting for items with low
acceptance. In subsequent experiments, we set 7 = 0.1 for ML-1M and PLC-PL, 7 = 0.2 for
ML-10M and ELEC, 7 = 0.3 for PLC-STR and 7 = 0.8 for GLOBO.

6.3.5 Impact of weight threshold hyperparameter

Next, based on the optimal values for 8 and 7, we evaluate the impact of weight threshold ¢ on
the performance of IGSI;: with the proposed forgetting technique, where ¢ removes obsolete
edges from the graph based on parameters @ and x. Results are presented in Tables 6.17 and

119

6.18, with accuracy measured through HR@20. We also report the average number of edges in
the graph.

Table 6.17: Impact of parameter x on IGSI;: with local neighborhood decay forgetting for datasets ML-1M,
ML-10M, PLC-PL and PLC-STR. Column x refers to the tested values for hyperparameter x, while HR and |&|
represents the HitRate @20 and the number of edges on the underlying graph, respectively, grouped by dataset. The
first row of the results refer to IGSI 4+ without forgetting. Values highlighted in bold indicate the smallest value for x
that is superior in accuracy with statistical significance in comparison to lower values.

ML-1M ML-10M PLC-PL PLC-STR
x | HR €| HR IE] | HR IE] | HR 1E]
- 10234 61,939 | 0.198 224,781 | 0.396 28,644 | 0.590 185,060
5 (0238 21,2838 |0221 532310395 26338 | 0.591 121,592
10 | 0242 27,832 | 0226 66,854 | 0.398 27,646 | 0.592 140,580
15| 0.244 32,864 | 0230 77,676 | 0.397 28,196 | 0.593 151,412
20 | 0.244 36,793 | 0.232 86,481 | 0.397 28,430 | 0.593 158,420
25| 0.243 39434 | 0233 94,019 | 0.397 28,539 | 0.593 163,266

Table 6.18: Impact of parameter x on IGSI 4 with local neighborhood decay forgetting for datasets LFM-1K, BOOK,
ELEC and GLOBO. Column x refers to the tested values for hyperparameter x, while HR and |&E| represents the
HitRate @20 and the number of edges on the underlying graph, respectively, grouped by dataset. The first row of the
results refer to IGSI 4+ without forgetting. Values highlighted in bold indicate the smallest value for x that is superior
in accuracy with statistical significance in comparison to lower values.

LFM-1K BOOK ELEC GLOBO

x | HR & | HR IE] | HR & | HR 1]
-~ [0.182 1,019,439 | 0.661 784,214 | 0.268 36,401 | 0.456 143,262
5 [0.182 1,003,435 | 0.660 670,291 | 0.268 29,715 | 0.614 63,163
10 | 0.182 1,015,856 | 0.661 713,342 | 0.269 32,022 | 0.622 73,394
15| 0.182 1,018,308 | 0.661 732,023 | 0.269 33,315 | 0.625 79,956
20 | 0.182 1,019,023 | 0.661 743,387 | 0.269 34,037 | 0.626 84,744
25| 0.182 1,019,262 | 0.662 750,876 | 0.269 34,539 | 0.626 88,451

From Tables 6.17 and 6.18, when comparing its first row, which is IGSI; without
forgetting, to increasing values of x, we can see that LND is able to considerably reduce the
number of edges on the graph, thus reducing memory requirements, while also obtaining major
improvements in accuracy for ML-1M, ML-10M and GLOBO, and slight improvements for
PLC-STR. For LEFM-1K, PLC-PL, BOOK and ELEC, LND reduces the size of the model without
decreases in accuracy. We note two main observations from these results. First, it is beneficial to
set a threshold to remove edges, as accuracy stagnates, or starts to decrease, after a certain value
of ¢, which suggests an accumulation of obsolete (or unnecessary) information on the graph.
The removal of these connections impacts directly accuracy and scalability.

Second, besides parameter x, the rate of forgetting is affected by hyperparameter 7.
Lower values for 7 reduces the discrepancies between scores of items, i.e., it increases the values
for acceptance factor z; , in Eq.(5.5) and thus it reduces its effect, which is to penalize popular
items. On the other hand, higher values for 7 increases the effect of z; ,, which results in faster

120

forgetting. Hence, we note here that if the objective would be to obtain the smallest possible
model, this could be achieved by setting 7 = 1.0.

For subsequent experiments, we select values for x that results in the smallest possible
models without losses in accuracy. To that end, we assess the statistical significance of the results.
We increase x until there are no significant difference in comparison to smaller values. We set
x = 5 for LFM, x = 10 for PLC-PL, BOOK and ELEC, x = 15 for ML-1M and PLC-STR, x = 20
for GLOBO and x = 25 for ML-10M.

6.3.6 Overall results

Tables 6.19, 6.20 and 6.21 presents overall results for IGSI; without forgetting, IGSI;# with
baseline forgetting techniques and IGSI; with our proposed technique. Accuracy is measured
through HR @20 and DCG @20, diversity through ILD, and scalability measured through average
update and recommendation times and number of edges in the graph. The best results are
highlighted in bold. Optimal hyperparameters used for each approach by dataset are reported in
Table 6.22.

To complement the experimental analysis we also present in Table 6.23 properties of
underlying graphs per dataset. These describe the obtained graphs without the application of
forgetting. We report general information, such as number of nodes, number of edges, density,
average degree and minimum, maximum and average weighted degree. We also report the
number of low degree nodes. We define a low degree node as one that is below the average
degree.

The first main observation is that the impact on the results is highly related to the datasets.
For the two movie-domain datasets, ML-1M and ML-10M, the proposed forgetting technique
LND obtained the best results in accuracy. Considering dataset ML-1M, the application of the
remaining ones generally decreased accuracy, with the exception of the time-decay approach.
We note, however, that all forgetting approaches significantly decrease the average number of
edges in the graph, which consequently impacts the recommendation time. For ML-10M, the
application of forgetting overall improved both accuracy and scalability. With the exception of
recency queue approach, the remaining ones improved accuracy with smaller models.

For the three music-domain datasets, LFM-1K, PLC-PL, PLC-STR, the impact of
forgetting varies with the approach. Considering LFM-1K, we see that forgetting reduces the
number of edges, at the expense of accuracy, specially for both time related approaches. The
exception is LND, which is capable of reducing the number of edges, while maintaining its
original accuracy.

For PLC-PL, the application of forgetting does not yield relevant results. We argue that
this relates to the characteristics of the dataset. It is composed of about 100,000 interactions
spread across close to four years of activity. Thus, the rate of data is very low, affecting the
behavior of all forgetting techniques. For the sliding window, it is difficult to set an ideal size,
as a smaller one does not include sufficient information, while a higher one does not actually
perform any forgetting. The time-decay approach suffers from the same issue. For the recency
queue and LND, there there are not sufficient interactions with the same items several times in
order for these approaches to detect what has become irrelevant. This is seen when we compare
accuracy and number of edges: these approaches are unable to perceive obsolete edges, hence
not providing any change in accuracy when compared to no forgetting.

PLC-STR, on the other hand, is composed of about 1,400,000 interactions also spread
across close to four years of activity. While the rate of data is not high, it has more information
and we can better observe the impact of forgetting. LND manages to reduce the number of
edges in the model without losses in accuracy. The same goes for the time-decay approach.

121

Table 6.19: Overall results for all techniques grouped by datasets ML-1M and ML-10M. Best results are highlighted
in bold.

Technique HR DCG ILD €] ~Ga. Tl:::’(ms) ot
ML-1M

IGSI; 0.233 0.103 0.788 109,901 02 53 5.5
0.248 0.110 0.817 52,735 0.5 4.6 5.1

LND (+6.4%) (+6.8%) (+3.7%) (-52%) (-7.3%)
0.231 0.102 0.771 68,373 0.7 49 5.6

recency_queue (-0.9%) (-1.0%) (-2.2%) (-37.8%) (+1.8%)
0.238 0.104 0.799 52,040 02 4.6 4.8

time_decay (+2.1%) (+1.0%) (+1.4%) (-52.6%) (-12.7%)
0.204 0.090 0.821 46,087 02 44 4.6

sliding_window (-12.4%) (-12.6%) (+4.2%) (-58.1%) (-16.4%0)

ML-10M

IGSI; 0.192 0.087 0.837 476,448 0.5 59 6.4
0.222 0.104 0.860 169,457 05 5.0 5.5

LND (+15.6%) (+19.5%) (+2.7%) (-64.6%) (-14.1%)
0.194 0.087 0.820 217,519 28 5.8 8.6

recency_queue (+1.0%) (0.0%) (-2.0%) (-54.3%) (+34.4%)
0.203 0.093 0.840 118,758 0.6 5.1 5.7

time_decay (+5.7%) (+6.9%) (+0.4%) (-75.1%) (-10.9%)
0.212 0.098 0.862 127,683 03 53 5.8

sliding_window (+10.4%) (+12.6%) (+3.0%) (-73.2%) (-9.4%)

Sliding window still suffer from the same issue present in PLC-PL, where it is difficult to set its
appropriate size.

Considering the e-commerce domain, the impact of forgetting is very similar on both its
datasets BOOK and ELEC. While recency queue fails to detect obsolete edges, LND removes it
without losses in accuracy. We can also see some limitations of time-based approaches in some
scenarios. In this case, long-term connections that are not co-occurring again in the stream, and
infrequent items that are seldom interacted by any user are abruptly forgotten, even thought they
are not obsolete. On the other hand, LND only removes connections from edges when newer
ones are available, or are updated again.

Finally, for the news-domain dataset GLOBO, forgetting has an important role. A
news-domain dataset is the exact opposite of what we have in the aforementioned ones. The
set of items goes through constant churn, new items are continuously added to it and old ones
are dropped. In other words, in this domain items have a very short shelf life, and become
old very quickly (Das et al., 2007). Also, the user-item matrix is very sparse, and are prone to
popularity factors, such as breaking news or popular topics (Lommatzsch and Albayrak, 2015).
Hence, news-domain datasets seems to benefit from forgetting, and we confirm that on the
obtained results. All techniques considerably reduce number of edges from its graphs, without
compromising accuracy in case of recency queue and time-decay. LND and sliding window, on
the other hand, significantly increased accuracy, with LND obtaining the best results while also
reducing the number of edges by about half of the original. An important consideration is the

122

Table 6.20: Overall results for all techniques grouped by datasets PLC-PL, PLC-STR and LEM-1K. Best results are

highlighted in bold.

. Time(ms)
Technique HR DCG ILD |E| Upd. Rec, Tot.
PLC-PL

IGSI;: 0.402 0.249 0.838 56,922 0.02 4.2 4.2
0.403 0.250 0.840 53,749 0.06 4.1 4.2

LND (+0.2%) (+0.4%) (+0.2%) (-5.6%) (0.0%)
0.402 0.249 0.838 56,922 0.3 4.3 4.6

recency_queue (0.0%) (0.0%) (0.0%) (0.0%) (+9.5%)
0.384 0.240 0.835 32,841 0.07 4.1 4.2

time_decay (-4.5%) (-3.6%) (-0.4%) (-42.3%) (0.0%)
0.355 0.221 0.853 25,365 0.05 4.0 4.1

sliding window (-11.7%) (-11.2%) (+1.8%) (-55.4%0) (-2.4%0)

PLC-STR

IGSI; 0.597 0.430 0.784 355,926 0.1 4.7 4.8
0.601 0.432 0.788 276,382 0.1 4.6 4.7

LND (+#0.7%) (+0.5%) (+0.4%) (-22.3%) (-2.1%)
0.595 0.429 0.786 322,699 1.0 49 5.9

recency_queue (-0.3%) (-0.2%) (+0.3%) (-9.3%) (+22.9%)

0.595 0.427 0.784 207,944 0.1 4.6 4.7

time_decay (-0.3%) (-0.7%) (0.0%) (-41.6%) (-2.1%)
0.570 0.416 0.800 118,604 0.1 4.5 4.6

sliding window (-4.5%) (-3.3%) (+2.0%) (-66.7%0) (-4.2%0)

LFM-1K

IGSI; 0.230 0.179 0.836 1,990,079 0.1 5.8 5.9
0.232 0.180 0.836 1,699,049 0.1 5.5 5.6

LND (+0.9%) (+0.6%) (0.0%) (-14.6%) (-5.1%)
0.220 0.172 0.834 1,581,937 156 5.6 21.2

recency_queue (-4.3%) (-3.9%) (-0.2%) (-20.5%) (+259.3%)

0.221 0.174 0.830 1,068,103 0.1 5.6 5.7

time_decay (-3.9%) (-2.8%) (-64.1%) (-46.3%0) (-3.4%)
0.202 0.156 0.846 1,162,618 0.1 5.5 5.6

sliding window (-12.2%) (-12.8%) (+1.2%) (-41.6%) (-5.1%0)

effectiveness of sliding window, as its advantages align with the properties of the news-domain,
and thus improved accuracy, with the smallest model by a wide margin.

We now present more general observations based on all obtained results, considering
the evaluated metrics and the competing forgetting techniques. In terms of recommendation
quality, measured by HR @20 and DCG, the proposed forgetting technique, local neighborhood
decay, obtained the best results. When comparing LND to IGSI;+ without forgetting, we note
that LND always reduces the number of edges from the models without compromising accuracy.
In fact, accuracy always increased, even if the improvements were minor. The effect of forgetting
largely depends on the properties of the underlying graph, which can be seen in Table 6.23.

123

Table 6.21: Overall results for all techniques grouped by datasets BOOK, ELEC and GLOBO. Best results are

highlighted in bold.

. Time(ms)
Technique HR DCG ILD 1] Upd. Rec. Tot.
BOOK

IGSI;: 0.647 0411 0.736 1,790,105 0.05 4.7 4.7
0.652 0.417 0.745 1,554,975 0.1 4.5 4.6
LND (+0.8%) (+1.5%) (+1.2%) (-13.1%) (-2.1%)
0.647 0411 0.736 1,783,292 30.1 4.7 34.8
recency_queue (0.0%) (0.0%) (0.0%) (-0.4%) (+640%0)
0.621 0.394 0.686 587,480 0.1 2.6 2.7
time_decay (-4.0%) (-4.1%) (-6.8%) (-67.2%) (-42.6%0)
0.559 0.346 0.680 259,018 0.1 3.0 3.1
sliding window (-7.4%) (-15.8%) (-7.6%) (-85.5%) (-34.0%)
ELEC
IGSI; 0.237 0.187 0.980 102,098 0.01 3.9 3.9
0.238 0.188 0.980 85,720 0.01 3.8 3.8
LND (+0.4%) (+0.5%) (0.0%) (-16.0%) (-2.6%)
0.236 0.187 0.980 101,789 1.0 4.1 5.1
recency_queue (-0.4%) (0.0%) (0.0%) (-0.3%) (+30.8%)
0.230 0.183 0.981 35,569 0.01 3.2 3.2
time_decay (-3.0%) (-2.1%) (+0.1%) (-65.2%) (-17.9%)
0.209 0.166 0.984 17,143 001 29 2.9
sliding window (-11.8%) (-11.2%) (+0.4%) (-83.2%) (-25.6%0)
GLOBO
IGSI; 0.443 0.228 0.938 340,327 0.2 5.0 5.2
0.628 0.327 0.941 195,755 0.2 4.6 4.8
LND (+41.8%) (+43.4%) (+0.3%) (-42.5%) (-7.7%)
0.442 0.228 0.938 211,555 02 5.0 5.2
recency_queue (-0.2%) (0.0%) (0.0%) (-37.8%) (0.0%)
0.443 0.227 0.938 150,933 0.2 49 5.1
time_decay (0.0%) (-0.4%) (0.0%) (-55.7%) (-1.9%)
0.592 0.297 0.940 20,189 0.1 4.4 4.5
sliding window (4+33.6%) (+30.3%) (+0.2%) (-94.1%) (-13.5%0)

Datasets with higher density and average degrees, ML-1M, ML-10M, PLC-STR and GLOBO
were better affected by forgetting. This highlights the difficulty of deploying forgetting and
removing obsolete information from already very sparse graphs.

In terms of diversity, the best performing technique is always the worst performer in
accuracy. This is justified by the evaluated metric, ILD, which measures the average distance
between items in the recommendation list, by cosine distance. Thus, these are in a sense conflicting
objectives, as IGSI;: is an item-based recommendation approach. Ideally, the desirable result
would be to increase both accuracy and diversity, or at least one in a controlled manner. This is
achieved with LND, where parameter S specifically allows for an increase in diversity. Also,

124

when comparing LND to no forgetting, we see that we never have the decrease of either accuracy
or diversity, and that in some cases there was an increase in both. We note that while the
remaining forgetting techniques did obtained greater diversity in some datasets, they only did so
at the expense of accuracy.

Besides parameter 3, the effect of LND on diversity is clearly correlated with the degree
distribution of the graph. Since nodes are scored based on popularity, measured by both indegree
and outdegree factors (Eqgs. (5.6) and (5.7)), the increases in diversity are more substantial
in graphs with higher density and higher average degree. This can be seen when comparing
the differences in diversity for ML-1M and ML-10 with BOOK and ELEC. For BOOK and
ELEC, the two datasets with smallest average degree, there are no differences in diversity. This
is because a large portion of nodes have low indegree and outdegree, and thus the options for
random walk exploration are very limited. Consequently, LND is unable to increase the diversity.
For ML-1M and ML-10M, which have the two highest average degree of all datasets, on the
other hand, LND improved diversity. As the average degree distribution is higher, resulting in a
larger number of neighbors, LND increases the likelihood of exploring less popular nodes in the
random walk simulation, which impacts both diversity and accuracy.

Considering update time, it changes based on technique at use, and generally it incurs
only a minor addition compared to no forgetting. The exception would be the recency queue
technique, which presents high update time for datasets with a large number of items. We
note that recency queue and LND are applied for each incoming observation in the stream,
while time-decay and sliding window are only deployed based on the predefined time window
hyperparameter, hence they have lower average update times of all forgetting techniques.

Although update time is increased for all forgetting techniques, a consequence of their
application is the removal of edges in the graph, reducing time and memory requirements. Hence,
recommendation times are improved, and the trade-off between accuracy and scalability can
be controlled parametrically based on weight threshold ¢. As the recommendation procedure
accounts for the majority of processing time per sample, the total processing time per sample
(update + recommendation times) is reduced with all techniques but recency queue. Even if there
is a minor overhead in update time with forgetting, its deployment is beneficial in the end as
the reduction in recommendation times reduces the overall processing time, which is associated
with the size of the graph. As is the case for accuracy and diversity, the influence of LND on
the number of edges and recommendation time depends on the density of the dataset, where the
reduction is more considerable in denser ones.

We note that these results are averages from the entire simulated stream process. To
better visualize the behavior of all algorithms, we plot moving averages of size 5000 for HR @20,
number of edges and processing time per sample over time for all datasets. These are presented
in Figures 6.8, 6.10 and 6.11, respectively.

From Figure 6.8, local neighborhood decay generally outperforms other techniques
throughout most of the time in accuracy. The increase obtained by our technique results from the
manner in which items are selected to lose relevance. Since it is applied locally, it ensures that
concepts are only forgotten in the presence of newer concepts and when they are not reinforced
by new data. The recency queue technique presents similar accuracy to IGSI; without forgetting
as it punishes infrequent items that do not seem to directly reflect the current interests of users.
Conversely, IGSI; without forgetting generally outperforms both time-decay and sliding window,
except for ML-10M and GLOBO. These techniques do not distinguish the relevance of edges and
simply forget information over time based on intervals.

We assess the statistical significance of these results through McNemar’s tests between
our proposal LND and every other competing approach, for every dataset using sliding windows

Table 6.22: Optimal hyperparameters per algorithm grouped by dataset.

Technique Parameter
ML-1M
LND B=07,7=0.1,¢=ab
recency_queue ¢ =a’
time_decay w =30
sliding_window w =90
ML-10M
LND B=006,7=02¢=a”
recency_queue ¢ =a’
time_decay w=14
sliding_window w = 365
LFM-1K
LND B=10,7=0.0,¢=0c’
recency_queue ¢=a
time_decay w =60
sliding_window w =180
PLC-PL
LND B=10,7=0.1,¢ =a'®
recency_queue ¢ =a'®
time_decay w =210
sliding_window w =365
PLC-STR
LND B=0.6,7=03,¢=al
recency_queue ¢ =a'
time_decay w =90
sliding_window w =180
BOOK
LND B=09,7=0.0,¢=a
recency_queue ¢ =a’
time_decay w = 365
sliding_window w = 365
ELEC
LND B=06,7=02¢=0a
recency_queue ¢ =a’
time_decay w = 365
sliding_window w = 365
GLOBO
LND B=051=0.8¢=a”
recency_queue ¢ =a'l
time_decay w=1
sliding_window w=1

125

126

Table 6.23: Graph’s properties per dataset. The reported properties are number of nodes (|V|), number of edges
(|&]), density, average degree, average weighted degree, minimum weighted degree (Min), maximum weighted
degree (Max) and number of low weighted degree nodes (#Low). For each dataset, cells from column (Min, Max,
#Low) are split into two rows, where the first refer to indegree node information, and the second refers to outdegree
node information.

Dataset IVl 16l Demsity g Avgoyeht Olimaradhoy
ML-1M 3,232 140,787 1.348 43.56 68.16 (0, 1813, 2473)
(0, 1916, 2487)

ML-10M 8,721 648,368 0.852 7434 169.40 (0, 15009, 7338)
(0, 15745, 7356)

PLC-PL 26,117 75,858 0.011 2.90 3.89 (0, 139, 19372)
(0, 148, 19389)
PLC-STR 40,213 469,825 0.029 11.68 35.84 (0, 11932, 32732)
(0, 11937, 32720)

LFM-1K 399,171 2,623,241 0.001 6.57 10.60 (0, 1698, 318626)
(0, 1698, 318625)

BOOK 734918 2,192,619 0.0004 2.98 6.05 (0, 2864, 644863)
(0, 2863, 644820)

ELEC 60,842 133,369 0.003 2.19 2.74 (0, 920, 49797)
(0, 802, 49496)

GLOBO 35,644 488,778 0.038 13.71 44.06 (0, 17516, 32689)

(0, 17904, 32842)

127

000008

991

000007 0000SE

00000£

000009

00000€

000009

0000s¢

00000§

a|dwes

0000

08019
ajdwes

J009
9|dwes

00000¢

Y1S-07d
a|dwes

000001

"000S = U 9ZIS MOPUIA (IIM ()T AIRYIH JO UONN[OAT :§°9 2InSL]

ananb Aousdal ——

(04

0000ST

00000¢€

00000¢

00000T

00000¢

MOpUIM BUIplS ——

0000S

00000T

0

0

0

WOT-TN

7’0

0Z®31eYIH

9'0

8'0

© <
o o
0Z®330Y1H

@
S

€0
70 <

n
S
z®91eH)

90 °
L0

0Z®31eY1H

Aedap awly ——

00008

00000S

0000S§

00000T

aNl —

00009

00000%

buiebio) ou ——

a)dwes

0000%

03713
ajdwes

00000€

AT-WAT
a)dwes

000s¢

1d-01d
a|dwes

0000S

WT-TW

00000¢

0000¢

00000T

0

0

0Z®31eYIH

€0

0

a0

0Z®31eY1IH

€0

mN
o o
0Z®331eY1IH

<
e

N
e

N
e

0Z@31eYH

<
e

128

"0/,66 JO [OAJ] QOUIPYUOD B (I SJoseIep [[e 1o seyoeoidde SumyeSio) 1oyjo pue (N U9amIaq SINsal 159} asimired s JBWINDIA (6'9 9InS1]

ANT UBY} JON19g W 9DURBMIP JuedyIubls ou 191190 S| ONT .

9|dwes

000008 00000L 000009 00000S 00000¥ 00000€ 00000¢ 00000T 0

991

I EEEE——
Lt el Bl Bl Iu 00 |§af B [B§N | Jig
I EEEE——
I —

08019

00000%

LI I I -
Jood

a|dwes
0000S€ 00000€ 000052 00000T 0000ST 00000T 0000§ 0

I | | INEENEE § | N Wi | | -
Y1S-01d
9|dwes

00000L 000009 00000S 00000 00000€ 00000¢ 00000T 0

I | -
WOT-TN

9|dwes
0000L 00009 0000S 0000t 0000€ 00002 0000T 0

)
- ananb Adusda.

.. | | I - Aedsp awn
m | - bumabioy ou
SERE!
9|dwes

00000S 00000% 00000€ 00000¢ 00000T 0

| - ananb Aduadal

I . | | I | - Aedap awny
1 1 1 I 11 I I | - bumabioy ou
AT-W41
9|dwes

0000t 0000€ 0000¢ 0000T 0

)
- @ananb~Aduadal

- MOPUIM BUIPIS

I | - Aedsp awn
[1] - bumsbio ou
1d-071d
a|dwes
00000T 00008 00009 00007 00002 0
. __I-_. | _I _|._ | _ snenbAousda1
I | - MOPUIM ™ BUIPIIS
I ' | I N | - Aedsp awn
] | _I] (Ll - bumabioy ou

WT-TN

129

with size n = 5000, the same size set for moving averages presented in Figure 6.8. These are
shown in Figure 6.9.

The statistical significance tests show that LND is rarely outperformed by any other
baseline. Some are clearly visible in Figure 6.8. For example, LND is outperformed by sliding
window in some parts of the prequential process for dataset GLOBO. Conversely, it generally
outperforms the remaining approaches throughout the prequential process, confirming some of
the visible superiority in Figure 6.8, and there is mostly no statistical significant differences where
there is overlap between accuracies. Even if there are instances without statistically significant
differences in accuracy, there are still other advantages in its deployment, such as potential
increases in diversity and reduction in size of the underlying models.

In Figure 6.10 we can see how the underlying graph grows based on the deployed
forgetting technique. For IGSI; without forgetting, the average number of edges tends to grow
proportionally to new samples over time. For local neighborhood decay and recency queue,
following an initial decrease resulting from the deletion of obsolete edges, it grows steadily, as
the insertions and deletions occur continuously, adding new information and removing outdated
ones based on recency. For time-decay and sliding window, there is usually a major decrease
based on the time interval, followed by increases proportional to the new data. A limitation of
these techniques is illustrated on the final samples of ML-1M, where the rate of forgetting is
faster than the arrival of new data. This could be corrected by using windows with size based on
number of interactions instead of time intervals.

Finally, Figure 6.11 shows the effect of removing edges on the average processing time
per sample. For IGSI; without forgetting, average time increases with the size of the model.
With forgetting, the reduction of edges decreases average recommendation time, as the complexity
of the recommendation procedure depends on the number of random walk samples and size of
neighborhoods. Although there is a minor increase in average update time, as shown in Tables
6.19, 6.20 and 6.21, with exception of recency queue for which is exceptionally high and omitted
from some plots, forgetting eventually reduces the average processing time per sample, and the
behavior of such reduction is directly related to the technique and dataset.

Overall, extending IGSI; with our proposed forgetting technique improved accuracy,
diversity and average processing time per sample. We present in Table 6.24 the properties of
underlying graphs per dataset after the application of LND. Comparing to the properties of the
original graphs presented in Table 6.23, LND impacts density and the degree distribution, as it
removes edges from the graph. Reductions are more significant for the outdegree distribution, as
expected, since LND when necessary prunes outgoing edges from a single source. Datasets with
a greater reduction in these properties are the ones that were better affected by LND in accuracy,
diversity and processing time per sample, e.g., ML-1M, ML-10M, PLC-STR and GLOBO.

We argue that a balance between the relevant evaluated metrics can be obtained through
parameter S, which increases accuracy and diversity, 7 that may increase accuracy, and the
weight threshold ¢ that allows controlling the growth of the graph, which tends to decrease
the recommendation time, at the expense of a minor increase in update time. Such decrease
may allow the usage of a higher number of random walk samples, which would likely improve
accuracy.

6.4 DISCUSSION

In this chapter we have conducted a series of experiments in order to evaluate our proposed
approach and related incremental algorithms under simulated data stream scenarios. Our results
highlight the effectiveness of our proposed SBRS - IGSI; - which generally outperformed

130

ananb Abuadas ——

a|dwes

"000S = U 9ZIS MOPUIM [JIM SOSPI JO JoquINu dy} JO UONN[OAT (]9 2INST]

MOpuIM Bulpl|s ——

000008 000009 00000% 00000¢ 0
08019
991 a|dwes

0'¢ ST 0T S0 00

Joo8 991

a|dwes

00000% 0000SE 00000€ 0000SC 00000C 0000ST 00000T 0000S 0
d1S-071d
ajdwes

00000 000009 000005 000001 00000€ 00000¢ 00000T 0

— — —

WOT- TN

Aedop awpy —— QN1 — buzebioy ou ——
ajdwes
00008 00009 00007 00002
0
00000Z &
3
000001
o313
9|dwes
000005 00000% 00000€ 000002 00000T
T
4
NT-WA1
ajdwes
00005 0000¥ 0000€ 0000¢ 00001
0
4
ooooom.m
[
00000%
1d-01d
ajdwes
00000T 00008 00009 0000% 00002
000002 \n i
% N —
000007 @
000009
WT-TW

991

0000S

sobpa#

00000T

sobpa#

0000¢

0000%

sabpa#

00009

0

0000S

sobpa#

00000T

131

000008

00000t

0000S€

00000L

000009

00000€

000009

0000S¢

00000S

'000S = u 9z1s mopuim s odwes 1od awry Surssadoid Jo uonnjoaq :11°9 N3

ananb Aousdas —— mopuim bulplls —— Aedap awil3 —— dN] —— bBuisbioy ou ——
a)dwes a|dwes
00000% 00000¢ 0 00008 00009 0000%
v 3
o
B
o g
3
8 2
2
0T ~
BERE]
a|dwes
00000S 00000t 00000€
s
o
B
vy
3
o
93
Joog AT-WAT
a)dwes ajdwes
00000C 0000ST 00000T 0000S 0 0000S 0000% 0000€
S'C .
3
0S 3
5L 3
o
00T W
d1S-01d . 1d-071d
a)dwes ajdwes
00000% 00000€ 00000¢ 00000T 0 00000T 00008 00009
14
) i
B AT T s
,%;«G}ﬁh}}.‘ A v 9 B
3
8 3
E
0T ~

WOT- 1N WT- TN

00000¢

0000¢

00007

0000¢

000001

00001

0000¢

(sw) a|dwes Jad awny

<
(sw) a|dwes Jad awny

S'¢C

0'€

'€

(sw) ajdwes sad awiy

(Va4

00
S'¢C
0's
S'L

(sw) ajdwes sad awiy

00T

132

competing algorithms in terms of accuracy, with very competitive update and recommendation
times, thus being a viable option for deployment in online scenarios. Its main limitation, the
fact that it stores data that eventually becomes obsolete, is overcome by our proposed forgetting
technique, LND. LND reuses the random walk sampling originally generated for providing
recommendations to infer structural information of the underlying graphs. This information,
together with recency and popularity factors, are used to select and remove obsolete concepts
from the graph. Our results suggest that LND is capable of improving scalability and accuracy,
by removing such obsolete information, and also diversity by punishing popular items.

Besides the effectiveness of IGSI; and LND, these results allows us to revisit the
research questions posed in Chapter 1. The first research question asked if graph-based
algorithms for collaborative filtering can be used in data stream scenarios. Besides the positive

. A3 -3 o . .
results obtained by IGSIz, P, and RPj; were competitive in some domains, with very fast update
and recommendation times. Our evaluation suggest that graph-based models with sampling
algorithms for recommendation are strong approaches for data stream scenarios.

The performance of 152 and RAPZ, in other domains leads us to the second question,
which asks how to incorporate time-related information into graph-based models, and if such
information improves the quality of the recommendations. Our proposal, IGSI;, presents one
way of incorporating sequential information, which is to represent interactions in an incremental
directed item-graph, connecting the sequences of user interactions, and reinforcing the relevance
of each sequential interaction on the weight of the edges.

Moreover, our results suggest that considering sequential information indeed improves

the quality of recommendations, as seen when comparing IGSI; to 132 and RAP;. Also, by
comparing IGSI; with different recommendation strategies, we see that further increases can
be obtained by considering short-term information, as evident by the improvements obtained
by IGST, compared to IGSIfAr“. Our results in general showed some limitations of competing
approaches, which motivated our contributions that we believe have bridged the gap posed in
question three, which asked if current incremental algorithms are sufficient in providing accurate,
diverse and scalable recommendations.

Finally, the fourth question asks what techniques can be used to remove obsolete
information from ever-growing models and how to deal with issues inherently related to
recommender systems and data stream mining. We have shown in our experiments some
challenges of deploying forgetting mechanisms and limitations of current approaches, and
proposed LND to overcome these issues. The application of LND on IGSI; is able to increase its
scalability, by reducing the size of the model, its accuracy, by removing obsolete information
which is no longer considered in the recommendations, and its diversity, by punishing popular
items and boosting the recommendation of items from the long-tail.

133

Table 6.24: Graph’s properties per dataset with LND. The reported properties are number of nodes (|V|), number
of edges (|&|), density, average degree, average weighted degree, minimum weighted degree (Min), maximum
weighted degree (Max) and number of low weighted degree nodes (#Low). For each dataset, cells from column
(Min, Max, #Low) are split into two rows, where the first refer to indegree node information, and the second refers to
outdegree node information.

Dataset V| |E] Density déggée Av%ewelght (%V/[él b tee(’ixdgé‘r%‘g
ML-1M 3,232 47,540 0.455 14.70 19.21 (0, 490.51, 2307)
(0, 422.38, 1913)
ML-10M 8,721 185,777 0.244 21.30 25.65 (0, 1118.99, 7056)
(0, 609.92, 5584)
PLC-PL 26,117 73,028 0.010 2.79 3.68 (0, 132.0, 19374)
(0, 148.0, 19389)
PLC-STR 40,213 335,214 0.020 8.33 27.38 (0, 11655.94, 32141)
(0, 11778.08, 31469)
LEM-1K 399,171 2,030,271 0.001 5.08 8.77 (0, 1352.94, 312460)
(0, 1313.98, 303074)
BOOK 734,918 1,770,607 0.0003 2.40 3.97 (0, 555.06, 613482)
(0, 422.83, 598751)
ELEC 60,842 101,324 0.003 1.66 2.03 (0, 673.71, 51709)
(0, 314.41, 49552)
GLOBO 35,644 240,216 0.018 6.73 9.95 (0, 3894.54, 31556)

(0, 573.17, 28853)

134

7 CONCLUSIONS

In this chapter, we summarize this research and discuss our contributions, limitations of our
proposal and define possible improvements and future work.

7.1 CONTRIBUTIONS

The main objective of this research was to propose a stream-based recommender system designed
to work on online settings, tackle the issues inherently related to recommender systems and data
stream mining, such as sparsity, accuracy, scalability and concept drift, and provide alternatives
to shortcomings of previous algorithms. Throughout this thesis, we have discussed the challenges
of developing stream-based recommender systems, and pointed out the importance and relevance
of such research.

The main contributions of this research are:

* IGSI; - a stream-based recommender system that consists in an incremental item-graph
that continuously extracts information from the sequential user interactions, allowing
the recommendation of items based on short-term and long-term interests, designed to
work in data stream scenarios and deal with its underlying issues.

* IGSI; generates scalable recommendations through simulation of short random walks.
We have experimentally showed the advantages of using simulation of random walks
in data stream settings. As datasets are typically very sparse, the sampling procedure
comes close to convergence with a reasonable number of samples, which results in very
competitive recommendation times.

* IGSI; includes a set of hyperparameters that allows the generation of recommendations
based on short-term and long-term interests, and we have studied the impact of
such interests. We also have analyzed the impact of different hyperparameters in
recommendations. Our results suggest that including long-term information may
deteriorate accuracy over time compared to recommendations generated through short-
term interests, but a balance between short-term and long-term information can result in
improvements in accuracy, as evidenced by the effect of parameter r.

* We have implemented and evaluated two graph-based algorithms that are strong baselines
in several recommendation settings (Dacrema et al., 2021), IA’Z (Cooper et al., 2014) and

RAP; (Christoffel et al., 2015), in incremental manner and compared their performance
with IGSI; and other incremental algorithms;

* We evaluated several incremental algorithms on simulated data stream scenarios under
different metrics to assess their accuracy, scalability and diversity. Besides analyzing
the performance of several algorithms, the evaluation also suggested the effectiveness of
IGSI;:, which consistently outperformed related incremental algorithms with competitive
scalability.

* We proposed a forgetting mechanism, local neighborhood decay (LND), that considers
the relevance of items based not only on its recency, but also on popularity, acceptance
factors and structural information of the graph;

135

* LND is designed to overcome the limitations of IGSI; while also exploiting its
advantages, by using random walk sampling not only to recommend relevant items, but
to also capture structural information from the graph, and use it to forget obsolete edges.
Our results suggest the effectiveness of LND, which improved scalability, as the removal
of obsolete data reduces computational requirements, e.g., time and memory ones,
diversity, by including less popular items in the recommendation lists, and accuracy,
since it reduces the effect of obsolete data;

* The application of LND in IGSI; - results in an evolving SBRS, that incrementally
and continuously learns based on information generated along the data stream, and also
removes information that is deemed as obsolete. Our results suggest the effectiveness of
IGSI;: and the positive impact of LND.

7.2 LIST OF PUBLICATIONS
The following list contains the publications that were generated throughout this research:

e Schmitt, M. F. L. and Spinosa, E. J. (2020). Incremental graph of sequential interactions
for online recommendation with implicit feedback. In 3rd Workshop on Online
Recommender Systems and User Modeling.

e Schmitt, M. F. L. and Spinosa, E. J. (2022b). Scalable stream-based recommendations
with random walks on incremental graph of sequential interactions with implicit feedback.
User Modeling and User-Adapted Interaction, 32(4):543-573.

e Schmitt, M. F. L. and Spinosa, E. J. (2022a). Forgetting on evolving graphs for accurate
and diverse stream-based recommendation. In Anais do X Symposium on Knowledge
Discovery, Mining and Learning, pages 138—145, Porto Alegre, RS, Brasil. SBC.

e Schmitt, M. F. L. and Spinosa, E. J. (2024). A novel forgetting technique with random
walk sampling for scalable and adaptive stream-based recommender systems. Under
review.

7.3 LIMITATIONS AND FUTURE WORK
Some limitations and possible future work motivated by them are described in the following.

 Use of time information. Although our model processes data incrementally as it is
generated by the data stream, hence following a naturally chronological sequence, time
information could be further exploited and incorporated in our method. For instance,
in some domains, the duration of the interaction could be used to filter the relevance
of the information. Also, implementing IGSI;: as a session-aware (or session-based)
model (Quadrana et al., 2018) by explicitly considering the start and end of user sessions
could improve modeling of user interests, specially short-term interests, by inferring
such interests based on the most current user session, while long-term interests would
be based on all user sessions. Parameter » somewhat accounts for this information,
by limiting the generation of recommendations based only on the user’s most recent
interactions, but we expect that explicitly modeling session information could improve
its predictive capabilities.

136

* Automatic parameter adjustment. Every evaluated algorithm has its own set of
hyperparameters, that were optimized typically via grid search. Once these hyperpa-
rameters were set, the same values defined during training were used throughout the
simulated streaming process. However, in real-world systems, as the data distribution
is non-stationary and subject to concept drift, the optimal values of hyperparameters
are also likely to change over time. Automatically adjusting hyperparameters in the
presence of concept drifts are possible extensions that should improve performance
(Veloso et al., 2021).

* Concept drift and cold-start. These issues are inherently related to data streams and
recommender systems, respectively, and are expected to occur in non-stationary settings.
Our proposal accounts for concept drift by learning incrementally and also forgetting
obsolete information. Inclusion of active mechanisms to detect changes (Al-Ghossein
et al., 2018b) and evaluation of algorithms on specific scenarios where concept drift
and cold-start are prevalent (Viniski et al., 2021) would strength the applicability of our
proposal and SBRS approaches in general.

 Offline evaluation. Prequential evaluation works by assessing how well a given method
predicts the single next observation, which disregards relevant items that were selected
recently or that will be selected in the near future. Also, as users are affected by the
recommendations themselves, high predictive performance in offline settings do not
necessarily translate to relevant recommendations in practice (Al-Ghossein et al., 2021),
and the limitation of such settings should be considered. We have attempted to mitigate
this effect by considering datasets from several different scenarios, and evaluating
algorithms with different metrics apart from accuracy.

137

REFERENCES

Adomavicius, G., Bauman, K., Tuzhilin, A., and Unger, M. (2021). Context-aware recommender
systems: From foundations to recent developments context-aware recommender systems. In
Recommender Systems Handbook, pages 211-250. Springer.

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and
data engineering, 17(6):734-749.

Agarwal, D., Chen, B.-C., and Elango, P. (2010). Fast online learning through offline initialization
for time-sensitive recommendation. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 703-712.

Aggarwal, C. C. et al. (2016). Recommender systems: the textbook, volume 1. Springer.

Aggarwal, C. C., Wolf, J. L., Wu, K.-L., and Yu, P. S. (1999). Horting hatches an egg: A new
graph-theoretic approach to collaborative filtering. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 201-212.

Al-Ghossein, M., Abdessalem, T., and Barré, A. (2018a). Dynamic local models for online
recommendation. In Companion Proceedings of the The Web Conference 2018, pages
1419-1423.

Al-Ghossein, M., Abdessalem, T., and Barre, A. (2021). A survey on stream-based recommender
systems. ACM Computing Surveys (CSUR), 54(5):1-36.

Al-Ghossein, M., Murena, P.-A., Abdessalem, T., Barré, A., and Cornuéjols, A. (2018b). Adaptive
collaborative topic modeling for online recommendation. In Proceedings of the 12th ACM
Conference on Recommender Systems, pages 338-346.

Andersen, R., Chung, F., and Lang, K. (2006). Local graph partitioning using pagerank vectors.
In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages
475-486. IEEE.

Anyosa, S. C., Vinagre, J., and Jorge, A. M. (2018). Incremental matrix co-factorization for
recommender systems with implicit feedback. In Companion Proceedings of the The Web
Conference 2018, pages 1413-1418.

Avrachenkov, K., Litvak, N., Nemirovsky, D., and Osipova, N. (2007). Monte carlo methods in

pagerank computation: When one iteration is sufficient. SIAM Journal on Numerical Analysis,
45(2):890-904.

Avrachenkov, K., Litvak, N., Nemirovsky, D., Smirnova, E., and Sokol, M. (2011). Quick
detection of top-k personalized pagerank lists. In International Workshop on Algorithms and
Models for The Web-Graph, pages 50-61. Springer.

Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. (2002). Models and issues in
data stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 1-16.

138

Backstrom, L. and Leskovec, J. (2011). Supervised random walks: predicting and recommending
links in social networks. In Proceedings of the fourth ACM international conference on Web
search and data mining, pages 635-644.

Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999). Modern information retrieval, volume 463.
ACM press New York.

Bahmani, B., Chowdhury, A., and Goel, A. (2010). Fast incremental and personalized pagerank.
Proceedings of the VLDB Endowment, 4(3).

Baltrunas, L. and Amatriain, X. (2009). Towards time-dependant recommendation based on
implicit feedback. In Workshop on Context-Aware Recommender Systems (RecSys 2009).

Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., and Aly,
M. (2008). Video suggestion and discovery for youtube: taking random walks through the

view graph. In Proceedings of the 17th international conference on World Wide Web, pages
895-904.

Bell, R. M. and Koren, Y. (2007). Scalable collaborative filtering with jointly derived neighborhood
interpolation weights. In Seventh IEEE International Conference on Data Mining (ICDM
2007), pages 43-52. IEEE.

Bennett, J., Lanning, S., and Netflix, N. (2007). The netflix prize. In In KDD Cup and Workshop
in conjunction with KDD.

Bifet, A., de Francisci Morales, G., Read, J., Holmes, G., and Pfahringer, B. (2015). Efficient
online evaluation of big data stream classifiers. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 59—68.

Bifet, A. and Gavalda, R. (2007). Learning from time-changing data with adaptive windowing.
In Proceedings of the 2007 SIAM international conference on data mining, pages 443—448.
SIAM.

Brand, M. (2003). Fast online svd revisions for lightweight recommender systems. In Proceedings
of the 2003 SIAM international conference on data mining, pages 37-46. SIAM.

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in
artificial intelligence, pages 43-52.

Burke, R. (2007). Hybrid web recommender systems. The adaptive web, pages 377-408.

Campos, P. G., Diez, F., and Cantador, I. (2014). Time-aware recommender systems: a
comprehensive survey and analysis of existing evaluation protocols. User Modeling and
User-Adapted Interaction, 24(1):67-119.

Capan, G., Giindogdu, I., Tiirkmen, A. C., and Cemgil, A. T. (2022). Dirichlet-luce choice model
for learning from interactions. User Modeling and User-Adapted Interaction, pages 1-38.

Castells, P., Hurley, N. J., and Vargas, S. (2015). Novelty and diversity in recommender systems.
In Recommender systems handbook, pages 881-918. Springer.

Celma, O. (2010). Music recommendation. In Music recommendation and discovery, pages
43-85. Springer.

139

Celma, O. and Cano, P. (2008). From hits to niches? or how popular artists can bias music
recommendation and discovery. In Proceedings of the 2nd KDD Workshop on Large-Scale
Recommender Systems and the Netflix Prize Competition, pages 1-8.

Chandramouli, B., Levandoski, J. J., Eldawy, A., and Mokbel, M. F. (2011). Streamrec: a
real-time recommender system. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 1243—1246.

Chang, S., Zhang, Y., Tang, J., Yin, D., Chang, Y., Hasegawa-Johnson, M. A., and Huang, T. S.
(2017). Streaming recommender systems. In Proceedings of the 26th international conference
on world wide web, pages 381-389.

Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sampling. Advances in
neural information processing systems, 24.

Chen, C., Yin, H., Yao, J., and Cui, B. (2013). Terec: A temporal recommender system over
tweet stream. Proceedings of the VLDB Endowment, 6(12):1254—-1257.

Cheng, C., Yang, H., Lyu, M. R., and King, 1. (2013). Where you like to go next: Successive
point-of-interest recommendation. In Twenty-Third international joint conference on Artificial
Intelligence.

Chien, Y.-H. and George, E. I. (1999). A bayesian model for collaborative filtering. In AISTATS.

Christakopoulou, E. and Karypis, G. (2016). Local item-item models for top-n recommendation.
In Proceedings of the 10th ACM Conference on Recommender Systems, pages 67-74.

Christoffel, F., Paudel, B., Newell, C., and Bernstein, A. (2015). Blockbusters and wallflowers:
Accurate, diverse, and scalable recommendations with random walks. In Proceedings of the
9th ACM Conference on Recommender Systems, pages 163—170.

Cooper, C., Lee, S. H., Radzik, T., and Siantos, Y. (2014). Random walks in recommender systems:
exact computation and simulations. In Proceedings of the 23rd International Conference on
World Wide Web, pages 811-816.

Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for youtube recom-
mendations. In Proceedings of the 10th ACM conference on recommender systems, pages
191-198.

Cremonesi, P., Koren, Y., and Turrin, R. (2010). Performance of recommender algorithms on
top-n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender
systems, pages 39—46.

Dacrema, M. F., Boglio, S., Cremonesi, P., and Jannach, D. (2021). A troubling analysis
of reproducibility and progress in recommender systems research. ACM Transactions on
Information Systems (TOIS), 39(2):1-49.

Das, A. S., Datar, M., Garg, A., and Rajaram, S. (2007). Google news personalization: scalable
online collaborative filtering. In Proceedings of the 16th international conference on World
Wide Web, pages 271-280.

Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert,
M., Livingston, B., et al. (2010). The youtube video recommendation system. In Proceedings
of the fourth ACM conference on Recommender systems, pages 293-296.

140

de Souza Pereira Moreira, G., Ferreira, F., and da Cunha, A. M. (2018). News session-based
recommendations using deep neural networks. In Proceedings of the 3rd workshop on deep
learning for recommender systems, pages 15-23.

de Souza Pereira Moreira, G., Jannach, D., and Da Cunha, A. M. (2019). Contextual hybrid
session-based news recommendation with recurrent neural networks. IEEE Access, 7:169185—
169203.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).
Indexing by latent semantic analysis. Journal of the American society for information science,
41(6):391-407.

Deshpande, M. and Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS), 22(1):143-177.

Desrosiers, C. and Karypis, G. (2011). A comprehensive survey of neighborhood-based
recommendation methods. Recommender systems handbook, pages 107-144.

Devooght, R., Kourtellis, N., and Mantrach, A. (2015). Dynamic matrix factorization with priors
on unknown values. In Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pages 189-198.

Diaz-Aviles, E., Drumond, L., Gantner, Z., Schmidt-Thieme, L., and Nejdl, W. (2012a). What is
happening right now... that interests me? online topic discovery and recommendation in twitter.
In Proceedings of the 21st ACM international conference on Information and knowledge
management, pages 1592—1596.

Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L., and Nejdl, W. (2012b). Real-time top-
n recommendation in social streams. In Proceedings of the sixth ACM conference on
Recommender systems, pages 59—66.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on
multiple classifier systems, pages 1-15. Springer.

Ding, Y. and Li, X. (2005). Time weight collaborative filtering. In Proceedings of the 14th ACM
international conference on Information and knowledge management, pages 485-492.

Domingos, P. M. and Hulten, G. (2001). Catching up with the data: Research issues in mining
data streams. In DMKD.

Eksombatchai, C., Jindal, P., Liu, J. Z., Liu, Y., Sharma, R., Sugnet, C., Ulrich, M., and Leskovec,
J. (2018). Pixie: A system for recommending 3+ billion items to 200+ million users in
real-time. In Proceedings of the 2018 world wide web conference, pages 1775-1784.

Ekstrand, M. D., Riedl, J. T., and Konstan, J. A. (2011). Collaborative filtering recommender
systems. Now Publishers Inc.

Fogaras, D., Récz, B., Csalogény, K., and Sarl6s, T. (2005). Towards scaling fully personalized
pagerank: Algorithms, lower bounds, and experiments. Internet Mathematics, 2(3):333-358.

Fouss, F., Pirotte, A., Renders, J.-M., and Saerens, M. (2007). Random-walk computation of
similarities between nodes of a graph with application to collaborative recommendation. /EEE
Transactions on knowledge and data engineering, 19(3):355-369.

141

Fouss, F., Pirotte, A., and Saerens, M. (2005). A novel way of computing similarities between nodes
of a graph, with application to collaborative recommendation. In The 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (WI’05), pages 550-556. IEEE.

Frigé, E., Pélovics, R., Kelen, D., Kocsis, L., and Benczir, A. (2017). Online ranking prediction
in non-stationary environments. In Proceedings of the 1st Workshop on Temporal Reasoning
in Recommender Systems co-located with RecSys 17 (RecTemp ’17)., pages 28-34. CEUR-WS.
org.

Funk, S. (2006). Netflix update: Try this at home. https://sifter.org/simon/journal/
20061211.html. Accessed in May 2021.

Gama, J. (2012). A survey on learning from data streams: current and future trends. Progress in
Artificial Intelligence, 1(1):45-55.

Gama, J., Sebastidao, R., and Rodrigues, P. P. (2009). Issues in evaluation of stream learning
algorithms. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 329-338.

Gama, J., Zliobaité, 1., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2014). A survey on
concept drift adaptation. ACM computing surveys (CSUR), 46(4):1-37.

Gantner, Z., Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. (2011). Mymedialite: A free
recommender system library. In Proceedings of the fifth ACM conference on Recommender
systems, pages 305-308.

Garcin, F., Dimitrakakis, C., and Faltings, B. (2013). Personalized news recommendation with

context trees. In Proceedings of the 7th ACM Conference on Recommender Systems, pages
105-112.

George, T. and Merugu, S. (2005). A scalable collaborative filtering framework based on
co-clustering. In Fifth IEEE International Conference on Data Mining (ICDM’05), pages
4-—pp. IEEE.

Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collaborative filtering to
weave an information tapestry. Communications of the ACM, 35(12):61-70.

Gomez-Uribe, C. A. and Hunt, N. (2015). The netflix recommender system: Algorithms,
business value, and innovation. ACM Transactions on Management Information Systems

(TMIS), 6(4):1-19.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM,
63(11):139-144.

Gori, M. and Pucci, A. (2007). Itemrank: A random-walk based scoring algorithm for
recommender engines. In IJCAL

Gunawardana, A., Shani, G., and Yogev, S. (2022). Evaluating recommender systems. In
Recommender systems handbook, pages 547-601. Springer.

Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., and Zadeh, R. (2013). Wtf: The who to
follow service at twitter. In Proceedings of the 22nd international conference on World Wide
Web, pages 505-514.

142

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1-19.

Haveliwala, T. H. (2003). Topic-sensitive pagerank: A context-sensitive ranking algorithm for
web search. IEEE transactions on knowledge and data engineering, 15(4):784-796.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017). Neural collaborative filtering.
In Proceedings of the 26th international conference on world wide web, pages 173—182.

He, X., Zhang, H., Kan, M.-Y., and Chua, T.-S. (2016). Fast matrix factorization for online
recommendation with implicit feedback. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval, pages 549-558.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Ried]l, J. T. (2004). Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1):5-53.

Hidasi, B. and Karatzoglou, A. (2018). Recurrent neural networks with top-k gains for session-
based recommendations. In Proceedings of the 27th ACM international conference on
information and knowledge management, pages 843—852.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2016). Session-based recommendations
with recurrent neural networks. In /CLR’16.

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets.
In 2008 Eighth IEEE International Conference on Data Mining, pages 263-272. leee.

Huang, X., Wu, L., Chen, E., Zhu, H., Liu, Q., Wang, Y., and Center, B. T. . (2017). Incremental
matrix factorization: A linear feature transformation perspective. In IJCAI, pages 1901-1908.

Huang, Y., Cui, B., Jiang, J., Hong, K., Zhang, W., and Xie, Y. (2016). Real-time video
recommendation exploration. In Proceedings of the 2016 International Conference on
Management of Data, pages 35—46.

Huang, Y., Cui, B., Zhang, W., Jiang, J., and Xu, Y. (2015). Tencentrec: Real-time stream
recommendation in practice. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 227-238.

Huang, Z., Chen, H., and Zeng, D. (2004). Applying associative retrieval techniques to alleviate
the sparsity problem in collaborative filtering. ACM Transactions on Information Systems
(TOIS), 22(1):116-142.

Hulten, G., Spencer, L., and Domingos, P. (2001). Mining time-changing data streams. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 97-106.

Jannach, D., Lerche, L., and Kamehkhosh, I. (2015). Beyond" hitting the hits" generating
coherent music playlist continuations with the right tracks. In Proceedings of the 9th ACM
Conference on Recommender Systems, pages 187-194.

Jannach, D., Lerche, L., and Zanker, M. (2018). Recommending based on implicit feedback. In
Social Information Access, pages 510-569. Springer.

143

Jannach, D. and Ludewig, M. (2017). When recurrent neural networks meet the neighborhood
for session-based recommendation. In Proceedings of the eleventh ACM conference on
recommender systems, pages 306-310.

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender systems: an
introduction. Cambridge University Press.

Jawaheer, G., Weller, P., and Kostkova, P. (2014). Modeling user preferences in recommender
systems: A classification framework for explicit and implicit user feedback. ACM Transactions
on Interactive Intelligent Systems (TiiS), 4(2):1-26.

Jeh, G. and Widom, J. (2002). Simrank: a measure of structural-context similarity. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 538-543.

Jeunen, O., Van Balen, J., and Goethals, B. (2022). Embarrassingly shallow auto-encoders for
dynamic collaborative filtering. User Modeling and User-Adapted Interaction, pages 1-33.

Jin, C. (2019). Simulating random walks on graphs in the streaming model. In /0th Innovations
in Theoretical Computer Science Conference (ITCS 2019).

José, E. F., Enembreck, F., and Barddal, J. P. (2020). Adadrift: An adaptive learning technique
for long-history stream-based recommender systems. In 2020 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pages 2593-2600. IEEE.

Jugovac, M., Jannach, D., and Karimi, M. (2018). Streamingrec: a framework for benchmarking
stream-based news recommenders. In Proceedings of the 12th ACM conference on recommender
systems, pages 269-273.

Karatzoglou, A., Amatriain, X., Baltrunas, L., and Oliver, N. (2010). Multiverse recommendation:
n-dimensional tensor factorization for context-aware collaborative filtering. In Proceedings of
the fourth ACM conference on Recommender systems, pages 79-86.

Khoshneshin, M. and Street, W. N. (2010). Incremental collaborative filtering via evolutionary

co-clustering. In Proceedings of the fourth ACM conference on Recommender systems, pages
325-328.

Kitazawa, T. (2016). Incremental factorization machines for persistently cold-starting online
item recommendation. arXiv preprint arXiv:1607.02858.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 426—434.

Koren, Y. (2009). Collaborative filtering with temporal dynamics. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
447-456.

Koren, Y. and Bell, R. (2015). Advances in collaborative filtering. Recommender systems
handbook, pages 77-118.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender
systems. Computer, 42(8):30-37.

144

Koychey, I. (2000). Gradual forgetting for adaptation to concept drift. In Proceedings of ECAI
2000 Workshop on Current Issues in Spatio-Temporal Reasoning.

Koycheyv, 1. and Schwab, 1. (2000). Adaptation to drifting user’s interests. In Proceedings of
ECML2000 Workshop: Machine Learning in New Information Age, pages 39-46.

Kurucz, M., Benczir, A. A., and Csalogany, K. (2007). Methods for large scale svd with missing
values. In Proceedings of KDD cup and workshop, volume 12, pages 31-38. Citeseer.

Latifi, S. and Jannach, D. (2022). Streaming session-based recommendation: When graph
neural networks meet the neighborhood. In Proceedings of the 16th ACM Conference on
Recommender Systems, pages 420-426.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2020). Mining of massive data sets. Cambridge
university press.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661-670.

Li, S., Karatzoglou, A., and Gentile, C. (2016). Collaborative filtering bandits. In Proceedings of
the 39th International ACM SIGIR conference on Research and Development in Information
Retrieval, pages 539-548.

Li, X., Barajas, J. M., and Ding, Y. (2007). Collaborative filtering on streaming data with
interest-drifting. Intelligent Data Analysis, 11(1):75-87.

Linden, G., Smith, B., and York, J. (2003). Amazon. com recommendations: Item-to-item
collaborative filtering. IEEE Internet computing, 7(1):76-80.

Liu, N. N., Zhao, M., Xiang, E., and Yang, Q. (2010). Online evolutionary collaborative filtering.
In Proceedings of the fourth ACM conference on Recommender systems, pages 95—102.

Liu, X. and Aberer, K. (2014). Towards a dynamic top-n recommendation framework. In
Proceedings of the 8th ACM Conference on Recommender Systems, pages 217-224.

Lofgren, P. A., Banerjee, S., Goel, A., and Seshadhri, C. (2014). Fast-ppr: Scaling personalized
pagerank estimation for large graphs. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1436—-1445.

Lommatzsch, A. and Albayrak, S. (2015). Real-time recommendations for user-item streams. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing, pages 1039—1046.

Lops, P., De Gemmis, M., and Semeraro, G. (2011). Content-based recommender systems: State
of the art and trends. Recommender systems handbook, pages 73—105.

Lovész, L. et al. (1993). Random walks on graphs: A survey. Combinatorics, Paul erdos is
eighty, 2(1):1-46.

Ludewig, M. and Jannach, D. (2018). Evaluation of session-based recommendation algorithms.
User Modeling and User-Adapted Interaction, 28(4-5):331-390.

145

Ludewig, M., Mauro, N., Latifi, S., and Jannach, D. (2021). Empirical analysis of session-based
recommendation algorithms: A comparison of neural and non-neural approaches. User
Modeling and User-Adapted Interaction, 31:149—-181.

Matuszyk, P. and Spiliopoulou, M. (2014). Selective forgetting for incremental matrix factorization
in recommender systems. In Infernational conference on discovery science, pages 204-215.
Springer.

Matuszyk, P. and Spiliopoulou, M. (2017). Stream-based semi-supervised learning for recom-
mender systems. Machine Learning, 106(6):771-798.

Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A. M., and Gama, J. (2015). Forgetting
methods for incremental matrix factorization in recommender systems. In Proceedings of the
30th Annual ACM Symposium on Applied Computing, pages 947-953.

Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A. M., and Gama, J. (2018). Forgetting
techniques for stream-based matrix factorization in recommender systems. Knowledge and
Information Systems, 55(2):275-304.

McAuley, J., Pandey, R., and Leskovec, J. (2015). Inferring networks of substitutable and
complementary products. In Proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pages 785-794.

McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Being accurate is not enough: how accuracy
metrics have hurt recommender systems. In CHI’06 extended abstracts on Human factors in
computing systems, pages 1097-1101.

Miller, A., Fisch, A., Dodge, J., Karimi, A.-H., Bordes, A., and Weston, J. (2016). Key-value
memory networks for directly reading documents. arXiv preprint arXiv:1606.03126.

Miranda, C. and Jorge, A. M. (2009). Item-based and user-based incremental collaborative
filtering for web recommendations. In Portuguese Conference on Artificial Intelligence, pages
673—684. Springer.

Miyahara, K. and Pazzani, M. J. (2000). Collaborative filtering with the simple bayesian classifier.
In Pacific Rim International conference on artificial intelligence, pages 679—689. Springer.

Mnih, A. and Salakhutdinov, R. R. (2007). Probabilistic matrix factorization. Advances in neural
information processing systems, 20:1257-1264.

Moore, J. L. and Chen, S. (2013). Taste over time: The temporal dynamics of user preferences.
In ISMIR’13, pages 401-406.

Nasraoui, O., Cerwinske, J., Rojas, C., and Gonzalez, F. (2007). Performance of recommendation
systems in dynamic streaming environments. In Proceedings of the 2007 SIAM International
Conference on Data Mining, pages 569-574. SIAM.

Natarajan, N., Shin, D., and Dhillon, I. S. (2013). Which app will you use next? collaborative
filtering with interactional context. In Proceedings of the 7th ACM conference on Recommender
systems, pages 201-208.

Nathanson, T., Bitton, E., and Goldberg, K. (2007). Eigentaste 5.0: constant-time adaptability in
a recommender system using item clustering. In Proceedings of the 2007 ACM conference on
Recommender systems, pages 149—152.

146

Nikolakopoulos, A. N. and Karypis, G. (2019). Recwalk: Nearly uncoupled random walks for
top-n recommendation. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, pages 150—158.

Ning, X., Desrosiers, C., and Karypis, G. (2015). A comprehensive survey of neighborhood-based
recommendation methods. Recommender systems handbook, pages 37-76.

Oard, D. W., Kim, J., et al. (1998). Implicit feedback for recommender systems. In Proceedings
of the AAAI workshop on recommender systems, volume 83. WoUongong.

Ohsaka, N., Maehara, T., and Kawarabayashi, K.-1. (2015). Efficient pagerank tracking in evolving
networks. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 875—-884.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab.

Pélovics, R., Benczur, A. A., Kocsis, L., Kiss, T., and Frig6, E. (2014). Exploiting temporal influ-
ence in online recommendation. In Proceedings of the 8th ACM Conference on Recommender
systems, pages 273-280.

Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M., and Yang, Q. (2008). One-class
collaborative filtering. In 2008 Eighth IEEE International Conference on Data Mining, pages
502-511. IEEE.

Panniello, U. and Gorgoglione, M. (2012). Incorporating context into recommender systems: an
empirical comparison of context-based approaches. Electronic Commerce Research, 12:1-30.

Papagelis, M., Rousidis, 1., Plexousakis, D., and Theoharopoulos, E. (2005). Incremental
collaborative filtering for highly-scalable recommendation algorithms. In International
Symposium on Methodologies for Intelligent Systems, pages 553—561. Springer.

Paudel, B., Christoffel, F., Newell, C., and Bernstein, A. (2017). Updatable, accurate, diverse,
and scalable recommendations for interactive applications. ACM Transactions on Interactive
Intelligent Systems (TiiS), 7(1):1-34.

Pazzani, M. J. (1999). A framework for collaborative, content-based and demographic filtering.
Artificial intelligence review, 13:393—-408.

Pazzani, M. J. and Billsus, D. (2007). Content-based recommendation systems. In The adaptive
web, pages 325-341. Springer.

Pereira, B. L., Ueda, A., Penha, G., Santos, R. L., and Ziviani, N. (2019). Online learning to
rank for sequential music recommendation. In Proceedings of the 13th ACM Conference on
Recommender Systems, pages 237-245.

Phuong, N. D. and Phuong, T. M. (2008). Collaborative filtering by multi-task learning. In
2008 IEEE International Conference on Research, Innovation and Vision for the Future in
Computing and Communication Technologies, pages 227-232. IEEE.

Quadrana, M., Cremonesi, P., and Jannach, D. (2018). Sequence-aware recommender systems.
ACM Computing Surveys (CSUR), 51(4):1-36.

147

Rendle, S. (2012). Factorization machines with libfm. ACM Transactions on Intelligent Systems
and Technology (TIST), 3(3):1-22.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009). Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence, pages 452-461.

Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. (2010). Factorizing personalized markov
chains for next-basket recommendation. In Proceedings of the 19th international conference
on World wide web, pages 811-820.

Rendle, S. and Schmidt-Thieme, L. (2008). Online-updating regularized kernel matrix factoriza-
tion models for large-scale recommender systems. In Proceedings of the 2008 ACM conference
on Recommender systems, pages 251-258.

Rendle, S. and Schmidt-Thieme, L. (2010). Pairwise interaction tensor factorization for
personalized tag recommendation. In Proceedings of the third ACM international conference
on Web search and data mining, pages 81-90.

Resnick, P., Tacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). Grouplens: An open
architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference
on Computer supported cooperative work, pages 175—-186.

Ricci, F., Rokach, L., and Shapira, B. (2015). Recommender systems: introduction and challenges.
In Recommender systems handbook, pages 1-34. Springer.

Ricci, F., Rokach, L., and Shapira, B. (2021). Recommender systems: Techniques, applications,
and challenges. Recommender Systems Handbook, pages 1-35.

Salakhutdinov, R. and Mnih, A. (2008). Bayesian probabilistic matrix factorization using markov
chain monte carlo. In Proceedings of the 25th international conference on Machine learning,
pages 880—887.

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted boltzmann machines for
collaborative filtering. In Proceedings of the 24th international conference on Machine
learning, pages 791-798.

Sanz-Cruzado, J., Castells, P., and Lépez, E. (2019). A simple multi-armed nearest-neighbor
bandit for interactive recommendation. In Proceedings of the 13th ACM conference on
recommender systems, pages 358—-362.

Sarkar, P., Moore, A. W., and Prakash, A. (2008). Fast incremental proximity search in large
graphs. In Proceedings of the 25th international conference on Machine learning, pages
896-903.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000). Application of dimensionality reduction
in recommender system-a case study. Technical report, Minnesota Univ Minneapolis Dept of
Computer Science.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference on World
Wide Web, pages 285-295.

148

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2002). Incremental singular value decomposi-
tion algorithms for highly scalable recommender systems. In Fifth international conference on
computer and information science, volume 1, pages 27-8. Citeseer.

Schein, A. L., Popescul, A., Ungar, L. H., and Pennock, D. M. (2002). Methods and metrics for
cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 253-260.

Schmitt, M. F. L. and Spinosa, E. J. (2020). Incremental graph of sequential interactions for
online recommendation with implicit feedback. In 3rd Workshop on Online Recommender
Systems and User Modeling.

Schmitt, M. F. L. and Spinosa, E. J. (2022a). Forgetting on evolving graphs for accurate and
diverse stream-based recommendation. In Anais do X Symposium on Knowledge Discovery,
Mining and Learning, pages 138—145, Porto Alegre, RS, Brasil. SBC.

Schmitt, M. F. L. and Spinosa, E. J. (2022b). Scalable stream-based recommendations with
random walks on incremental graph of sequential interactions with implicit feedback. User
Modeling and User-Adapted Interaction, 32(4):543-573.

Schmitt, M. F. L. and Spinosa, E. J. (2024). A novel forgetting technique with random walk
sampling for scalable and adaptive stream-based recommender systems. Under review.

Shani, G., Heckerman, D., Brafman, R. L., and Boutilier, C. (2005). An mdp-based recommender
system. Journal of Machine Learning Research, 6(9).

Shi, Y., Larson, M., and Hanjalic, A. (2014). Collaborative filtering beyond the user-item matrix:
A survey of the state of the art and future challenges. ACM Computing Surveys (CSUR),
47(1):3.

Siddiqui, Z. F., Tiakas, E., Symeonidis, P., Spiliopoulou, M., and Manolopoulos, Y. (2014).
xstreams: Recommending items to users with time-evolving preferences. In Proceedings of
the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14), pages
1-12.

Smith, B. and Linden, G. (2017). Two decades of recommender systems at amazon. com. leee
internet computing, 21(3):12—18.

Smyth, B. and McClave, P. (2001). Similarity vs. diversity. In International conference on
case-based reasoning, pages 347-361. Springer.

Song, Q., Chang, S., and Hu, X. (2019). Coupled variational recurrent collaborative filtering. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 335-343.

Song, Q., Cheng, J., and Lu, H. (2015). Incremental matrix factorization via feature space re-
learning for recommender system. In Proceedings of the 9th ACM Conference on Recommender
Systems, pages 277-280.

Steck, H. (2019). Embarrassingly shallow autoencoders for sparse data. In The World Wide Web
Conference, pages 3251-3257.

149

Subbian, K., Aggarwal, C., and Hegde, K. (2016). Recommendations for streaming data. In
Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management, pages 2185-2190.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Symeonidis, P., Kirjackaja, L., and Zanker, M. (2020). Session-aware news recommendations
using random walks on time-evolving heterogeneous information networks. User Modeling
and User-Adapted Interaction, pages 1-29.

Tabassum, S., Veloso, B., and Gama, J. (2020). On fast and scalable recurring link’s prediction
in evolving multi-graph streams. Network Science, 8(S1):S65-S81.

Takécs, G., Pilaszy, 1., Németh, B., and Tikk, D. (2007). Major components of the gravity
recommendation system. Acm Sigkdd Explorations Newsletter, 9(2):80-83.

Takécs, G., Pilaszy, 1., Németh, B., and Tikk, D. (2008). Investigation of various matrix
factorization methods for large recommender systems. In 2008 IEEE International Conference
on Data Mining Workshops, pages 553-562. IEEE.

Takacs, G., Pilaszy, 1., Németh, B., and Tikk, D. (2009). Scalable collaborative filtering
approaches for large recommender systems. The Journal of Machine Learning Research,
10:623-656.

Takdcs, G. and Tikk, D. (2012). Alternating least squares for personalized ranking. In Proceedings
of the sixth ACM conference on Recommender systems, pages 83—90.

Tofani, A., Borges, R., and Queiroz, M. (2022). Dynamic session-based music recommendation
using information retrieval techniques. User Modeling and User-Adapted Interaction, pages
1-35.

Trevisiol, M., Aiello, L. M., Schifanella, R., and Jaimes, A. (2014). Cold-start news recommen-
dation with domain-dependent browse graph. In Proceedings of the 8th ACM Conference on
Recommender systems, pages 81-88.

Ungar, L. H. and Foster, D. P. (1998). Clustering methods for collaborative filtering. In AAAI
workshop on recommendation systems, volume 1, pages 114—-129. Menlo Park, CA.

Vahedian, F., Burke, R., and Mobasher, B. (2017). Weighted random walk sampling for
multi-relational recommendation. In Proceedings of the 25th Conference on User Modeling,
Adaptation and Personalization, pages 230-237.

Veloso, B., Gama, J., Malheiro, B., and Vinagre, J. (2021). Hyperparameter self-tuning for data
streams. Information Fusion, 76:75-86.

Veloso, B., Malheiro, B., Burguillo, J. C., and Foss, J. (2017). Personalised fading for stream
data. In Proceedings of the Symposium on Applied Computing, pages 870—872.

Vinagre, J. (2016). Scalable adaptive collaborative filtering. PhD thesis, Universidade do Porto
(Portugal).

Vinagre, J., Al-Ghossein, M., Jorge, A. M., Bifet, A., and Peska, L. (2022a). Orsum 2022-5th
workshop on online recommender systems and user modeling. In Proceedings of the 16th
ACM Conference on Recommender Systems, pages 661-662.

150

Vinagre, J., Jorge, A., and Gama, J. (2014a). Evaluation of recommender systems in streaming
environments. In Proceedings of the Workshop on Recommender Systems Evaluation: Di-
mensions and Design in conjunction with the 8th ACM Conference on Recommender Systems
(RecSys 2014).

Vinagre, J. and Jorge, A. M. (2012). Forgetting mechanisms for scalable collaborative filtering.
Journal of the Brazilian Computer Society, 18(4):271-282.

Vinagre, J., Jorge, A. M., Al-Ghossein, M., Bifet, A., and Cremonesi, P. (2022b). Preface to
the special issue on dynamic recommender systems and user models. User Modeling and
User-Adapted Interaction, 32(4):503-507.

Vinagre, J., Jorge, A. M., and Gama, J. (2014b). Fast incremental matrix factorization for
recommendation with positive-only feedback. In International Conference on User Modeling,
Adaptation, and Personalization, pages 459-470. Springer.

Vinagre, J., Jorge, A. M., and Gama, J. (2015a). Collaborative filtering with recency-based
negative feedback. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
pages 963-965.

Vinagre, J., Jorge, A. M., and Gama, J. (2015b). An overview on the exploitation of time in

collaborative filtering. Wiley interdisciplinary reviews: Data mining and knowledge discovery,
5(5):195-215.

Vinagre, J., Jorge, A. M., and Gama, J. (2018a). Online bagging for recommender systems.
Expert Systems, 35(4):12303.

Vinagre, J., Jorge, A. M., Rocha, C., and Gama, J. (2021). Statistically robust evaluation of

stream-based recommender systems. /IEEE Transactions on Knowledge and Data Engineering,
33(7):2971-2982.

Vinagre, J., Mério Jorge, A., and Gama, J. (2018b). Online gradient boosting for incremental
recommender systems. In International Conference on Discovery Science, pages 209-223.
Springer.

Viniski, A. D., Barddal, J. P., de Souza Britto Jr, A., and de Campos, H. V. A. (2023). Incremental
specialized and specialized-generalized matrix factorization models based on adaptive learning
rate optimizers. Neurocomputing, 552:126515.

Viniski, A. D., Barddal, J. P., de Souza Britto Jr, A., Enembreck, F., and de Campos, H. V. A.
(2021). A case study of batch and incremental recommender systems in supermarket data
under concept drifts and cold start. Expert Systems with Applications, 176:114890.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37-57.

Wang, H., Wang, N., and Yeung, D.-Y. (2015). Collaborative deep learning for recommender
systems. In Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1235-1244.

Wang, J., Hoi, S. C., Zhao, P., and Liu, Z.-Y. (2013). Online multi-task collaborative filtering for
on-the-fly recommender systems. In Proceedings of the 7th ACM conference on Recommender
systems, pages 237-244.

151

Wang, Q., Yin, H., Hu, Z., Lian, D., Wang, H., and Huang, Z. (2018a). Neural memory streaming
recommender networks with adversarial training. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 2467-2475.

Wang, S., Cao, L., Wang, Y., Sheng, Q. Z., Orgun, M. A., and Lian, D. (2021). A survey on
session-based recommender systems. ACM Computing Surveys (CSUR), 54(7):1-38.

Wang, W., Yin, H., Huang, Z., Wang, Q., Du, X., and Nguyen, Q. V. H. (2018b). Streaming
ranking based recommender systems. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, pages 525-534.

Wang, X., Wang, Y., Hsu, D., and Wang, Y. (2014). Exploration in interactive personalized
music recommendation: a reinforcement learning approach. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), 11(1):1-22.

Widmer, G. and Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts.
Machine learning, 23(1):69-101.

Wu, S, Tang, Y., Zhu, Y., Wang, L., Xie, X., and Tan, T. (2019). Session-based recommendation
with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 346-353.

Wu, Y., DuBois, C., Zheng, A. X., and Ester, M. (2016). Collaborative denoising auto-encoders
for top-n recommender systems. In Proceedings of the ninth ACM international conference on
web search and data mining, pages 153-162.

Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., and Sun, J. (2010). Temporal
recommendation on graphs via long-and short-term preference fusion. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
723-732.

Xiong, L., Chen, X., Huang, T.-K., Schneider, J., and Carbonell, J. G. (2010). Temporal
collaborative filtering with bayesian probabilistic tensor factorization. In Proceedings of the
2010 SIAM international conference on data mining, pages 211-222. SIAM.

Yagci, A. M., Aytekin, T., and Gurgen, F. S. (2017). Scalable and adaptive collaborative filtering
by mining frequent item co-occurrences in a user feedback stream. Engineering Applications
of Artificial Intelligence, 58:171-184.

Yu, T., Mengshoel, O. J., Jude, A., Feller, E., Forgeat, J., and Radia, N. (2016). Incremental
learning for matrix factorization in recommender systems. In 2016 IEEE International
Conference on Big Data (Big Data), pages 1056—-1063. IEEE.

Zhang, J.-D., Chow, C.-Y., and Li, Y. (2014a). Lore: Exploiting sequential influence for location
recommendations. In Proceedings of the 22nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 103—112.

Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019). Deep learning based recommender system: A
survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):1-38.

Zhang, W., Sun, H., Liu, X., et al. (2014b). An incremental tensor factorization approach for web
service recommendation. In 2014 IEEE International Conference on Data Mining Workshop,
pages 346-351. IEEE.

152

Zhao, X., Zhang, W., and Wang, J. (2013). Interactive collaborative filtering. In Proceedings of
the 22nd ACM international conference on Information & Knowledge Management, pages
1411-1420.

