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“There are no real one-particle systems in nature, not even few-particle systems. The
existence of virtual pairs and of pair fluctuations shows that the days of fixed particle

numbers are over.”

V. Weisskopf



RESUMO
Neste trabalho apresentamos uma análise dos efeitos de uma correção quântica em um laço
originada de uma ação efetiva não-local na criação de partículas no vácuo. Este mecanismo
de produção de pares, conhecido como efeito Schwinger, surge de correções de um laço,
ou seja, proporcional à primeira ordem de �, para as equações de Maxwell e caracteriza
o decaimento do vácuo na presença de um campo elétrico de fundo. No presente estudo,
investigamos a produção de pares incorporando uma correção não-local de um laço para
campos de fundo caracterizados por uma onda plana e uma onda com corrente externa
constante. Obtivemos as expressões para a probabilidade de produção de pares e taxa de
decaimento do vácuo para ambos os campos de fundo. Observou-se que o vácuo quântico
não apresenta sinal de instabilidade em um fundo de onda plana, resultando em uma taxa
de produção de partículas nula, conforme também evidenciado no trabalho de Schwinger.
Em contraste, a produção de pares ocorre para uma quadricorrente externa constante no
espaço de momento que corresponde a uma quadricorrente externa pontual no espaço
de posição. Notamos que os campos magnéticos variáveis no tempo, induzidos por uma
densidade de corrente quando a densidade de carga tende a zero, induzem campos elétricos
que, por sua vez, produzem pares através do mecanismo de Schwinger.

Palavras-chaves: Ação efetiva não-local; Efeito de Schwinger; Eletrodinâmica quântica;
Produção de pares; Vácuo quântico.



ABSTRACT
In this work we present an analysis of the effects of a one-loop quantum correction
originating from a non-local effective action on particle creation in the vacuum. This pair
production mechanism, known as the Schwinger effect, arises from one-loop corrections, i.e.
proportional to the first order of �, to Maxwell’s equations and characterises the vacuum
decay in the presence of an electric field background. In the present study, we investigate pair
production by incorporating a non-local one-loop correction for backgrounds characterised
by a plane wave and a wave with constant external current. We obtained expressions
for the probability of pair production and the vacuum decay rate for both backgrounds.
It was observed that the quantum vacuum does not show any sign of instability in a
plane wave background, resulting in a null particle production rate, as also evidenced in
Schwinger’s work. In contrast, pair production occurs for a constant external four-current
in momentum space, which corresponds to a point-like four-current in position space. We
noted that time-varying magnetic fields, induced by a current density when the charge
density tends to zero, induce electric fields which, in turn, produce pairs via the Schwinger
mechanism.

Keywords: Non-local effective action; Pair production; Quantum electrodynamics; Quan-
tum vacuum; Schwinger effect.
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1 Introduction

The 20th century saw the consolidation of two major physical theories: quantum
mechanics (QM) and special relativity (SR). Whereas the former focuses on atomic
and subatomic scales, the latter is concerned with the relation between space and time,
especially under conditions approaching the speed of light.

Although each theory was successful within its domain, neither managed to effecti-
vely explain the dynamics of quantum particles in the relativistic regime. Consequently, no
theory could reconcile the principles of both domains. This is because both theories exhibit
inherent incompatibilities, including different interpretations of time and the asymmetry
between time and space derivatives in the Schrödinger equation.

Dirac addressed the description of relativistic spin-1/2 particles as an attempt to
reconcile both theories. His efforts led to the formulation of the so-called Dirac’s equation
and a theory partially compatible with both QM and SR [1]. However, his work also posed
problems, notably the presence of negative energy eigenvalues. Consequently, this raises
issues such as the absence of a ground state, implying that a positively charged electron
could emit one or even an infinite number of photons and then transition into negative
energy levels [2–4].

To address this issue, Dirac resorted to the Pauli exclusion principle, which prohibits
two identical fermions from occupying the same quantum state simultaneously [3, 5].
Assuming that all negative energy levels would already be occupied, Pauli’s principle
would prevent an electron with a positive energy state from transitioning into negative
energy states. However, this approach introduces other complications: representing a single
relativistic particle would require an infinite number of occupied states. Moreover, this
description cannot be extended to bosons as they do not obey the Pauli exclusion principle.

It is noteworthy that, despite his interpretation being incorrect, Dirac predicted
the existence of the positron [1, 6], a particle with the same mass as the electron but with
opposite charge. This prediction was experimentally confirmed in 1933 [7].

Despite Dirac’s significant contributions to the development of a relativistic quantum
theory, the presented problems were only resolved through the abandonment of the
quantisation of position and momentum, and the replacement of wave functions with the
so-called quantum fields, namely spacetime-dependent operators.

Similarly to quantisation in quantum mechanics, field quantisation occurs as fields,
functions of spacetime, are promoted to operators. These are subsequently subjected to
specific (anti)commutation relations in a process known as second quantisation or canonical
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(field) quantisation [2, 8–10]. However, as we shall explore in this dissertation, there exists
another prevalent quantisation method known as functional quantisation, whereby fields
undergo quantisation via path integration.

This quantisation process of fields resulted in a significant advancement in modern
physics, leading to the theoretical framework known as quantum field theory (QFT).
This theory successfully reconciled special relativity and quantum mechanics with the
integration of concepts from field theory, thus solving the previously mentioned problems.
It then culminated in the quantisation of light and its interaction with charged particles,
leading to the emergence of the first QFT, which is known as quantum electrodynamics
(QED).

To this day, QED, which extends the electromagnetic theory into the quantum
domain, stands out as one of the most precise theories ever developed. Recent experimental
measurements of the electron magnetic moment show an agreement within 1 part in 1012

with its theoretical prediction [11].

The success of QED heavily relies on approximation methods, such as perturbation
theory. In this approach, interactions between fields are treated as small perturbations.
This consequently simplifies the obtainment of observables of physical interest [4]. However,
as we increasingly depend on this method, certain aspects of nature may remain unexplored.
Thus, it is essential to develop methods to investigate the non-perturbative regime as well.

This is exemplified in the works of Euler and Heisenberg [12] and Weisskopf [13],
which represent a significant advancement in the non-perturbative regime of QED. In
their works, it is employed what is known as an effective Lagrangian, a mathematical
object that encodes quantum corrections to the classical Lagrangian. Equipped with
it, they established that the quantum vacuum is permeated with quantum fluctuations
arising from the creation and annihilation of virtual1 electron-positron pairs. These lead
to nonlinear dynamics of the electromagnetic fields in the vacuum, thereby revealing
previously unexplored properties [14], namely light-by-light scattering [15, 16], vacuum
birefringence [17, 18], and the phenomenon of interest in this dissertation: pair production
[19–23].

Pair production in non-perturbative QED is related to the instability of the vacuum
and its potential of decaying in the presence of a intense external electric field2, resulting in
the creation of real electron-positron pairs (see Figure 1). Although it had been recognised
by Euler and Heisenberg in their work [24], it was later reformulated within the framework
of QED by Schwinger in his paper on gauge invariance and vacuum polarisation [25]. Thus,
1 Here, “virtual” refers to particles that does not obey the dispersion relation and exist for only a short

time as dictated by the uncertainty principle ΔEΔt = �, where E is the particle’s energy and t is time.
2 Note that this effect can occur with an external electric field that is not purely electric, specifically in

the presence of an adjacent external external magnetic field [24].
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this effect is now referred to as the Schwinger effect.

Figure 1 – Representation of the Schwinger effect, wherein electron-positron pairs emerge
from a vacuum in response to an intense electric field. These particles, created
in pairs, are then accelerated and separated by the electric field’s influence.
Note that the direction in which these charges are created does not necessarily
match this representation. However, due to their charges, the particles tend to
align or show a tendency to align with the external field.

Concerning experimental aspects, the Schwinger effect is manifested when the
electric field strength reaches the theoretical critical value Ec ∼ 1.3 × 1018 V/m. Therefore,
observing this effect remains difficult, posing challenges for investigating vacuum non-
linearities (see the reviews in Refs.[21, 26]). Despite this obstacle, several experimental3

proposals [28–30] have been suggested, and numerous current and forthcoming facilities
are focused on studying this mechanism.

Regarding these facilities, we mention the LUXE (Laser Und XFEL Experiment)
[31, 32], the Extreme Light Infrastructure (ELI) [33], and the Rutherford Appleton Labo-
ratory [34], all located in Europe. Moving to the US, there are the Advanced Accelerator
Experimental Tests II (FACET-II) [35], and the Zettawatt-Equivalent Ultrashort pulse
laser System (ZEUS) at the University of Michigan [36]. Additionally, we find the Shanghai
Coherent Light Facility (SCLF) [37] in China.

As the Schwinger effect incorporates a wide range of theoretical tools, it can serve
as a theoretical laboratory to investigate not only the quantum vacuum in QED but also
other phenomena. For instance, it has application in studies on the uncertainty principle
[38], entanglement [39, 40], string theory [41], inflation [42–45], dark matter [46, 47], and
gravitational pair production and black holes [48–51].

As noted, the Schwinger effect emerges from an effective action (or effective
Lagrangian). In regimes where the field is weak but its derivatives are arbitrary, the
effective action becomes non-local. These actions differ from the local ones by featuring an
infinite number of derivatives or functions dependent on derivatives.

Non-local effective actions can be utilised to describe phenomena both within and
beyond the Standard Model, encompassing applications in quantum gravity and cosmology
[52–55], string theory [56, 57], conformal anomaly [58–60], quantum chromodynamics [61,
3 An experimental layout can be found in [27].



Chapter 1. Introduction 13

62], electroweak interaction and Higgs mechanism [63, 64], and QED [65–67]. Therefore,
this study aims to analyse the effects of quantum corrections originating from a non-
local effective action within the context of an effective field theory. Specifically, we shall
investigate these effects on the pair production mechanism under various electromagnetic
field configurations.

In this dissertation, we adopt the notation of Peskin and Schroeder [8], employing
natural units � = c = 1 and Heaviside-Lorentz conventions. The latter means that the
vacuum permittivity ε0 and vacuum magnetic permeability μ0 are set to 1. The former
means that the units of measurement are such that [length] = [time] = [energy]−1 =
[mass]−1. Furthermore, we work with the Minkowski metric with the convention gμν =
diag(+1, −1, −1, −1). Here, Greek indices range from μ = 0, . . . , 3, and repeated indices
imply summation.

This dissertation is divided into six chapters and can be delineated into two main
parts: a literature review and the research that we conducted.

The first part comprises several chapters. In Chapter 2, we provide a general
introduction to field quantisation through the functional formalism, i.e. via path integration.
In Chapter 3, we apply the concepts established in the previous chapter to quantise gauge
and spinor fields and then present the quantum theory of electromagnetism. Additionally,
Chapter 4 introduces Schwinger’s proper-time formulation and discusses the Schwinger
effect.

The final part of this dissertation includes Chapter 5, which discusses the effective
action containing a non-local quantum correction term. Here, we investigate the Schwinger
effect incorporating this correction term for backgrounds characterised by a plane wave
and a wave with a constant external current, presenting our results and analysis on the
particle production rate and probability for both backgrounds. After that, we present the
final considerations in Chapter 6, also offering directions for future research.
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2 Functional Quantisation

As previously mentioned, field quantisation can be accomplished through the cano-
nical approach, which holds historical significance as the first method for field quantisation.
Moreover, this approach is commonly employed in quantum field theory courses. However,
instead of utilising this formalism, this dissertation adopts the so-called functional quanti-
sation, in which Feynman’s path integrals are introduced. Rather than promoting fields to
operators and subjecting them to (anti)commutation rules, quantisation is achieved by
solving path integrals.

Following this quantisation procedure, we introduce the notion of effective action.
This action is a modification of the classical action, encapsulating all the quantum properties
of the system. Consequently, while the classical action yields classical equations of motion
for a system, the effective action provides the equations of motion that describe the
quantum dynamics.

In Section 2.1, we shall qualitatively derive the path integral for quantum mechanics,
using the double-slit experiment as a motivating example. Following that, in Section 2.2,
the same path integral will be formally derived for field theories, and a functional called
the generating functional, which provides all the physical information about the theory,
will be introduced. Afterwards, in Section 2.3, we will apply the concepts introduced in
the preceding sections to quantise scalar fields as an example, also serving as a bridge to
the subsequent sections. In Section 2.4, we shall present the so-called generating functional
of connected diagrams. Finally, the effective action will be discussed in Section 2.5.

2.1 Path Integral in Quantum Mechanics
Consider a non-relativistic particle moving in one dimension, characterised by an

initial position state |xi〉 at an initial time ti. The probability amplitude of finding it at a
final position state |xf〉, corresponding to a later time tf , is expressed in the Schrödinger
picture1 as

U(xf , tf ; xi, ti) = 〈xf |e−i Ĥ
�

(tf −ti)|xi〉S , (2.1)

where Ĥ is the Hamiltonian operator. Note that we shall use � �= 1 for now. In this
approach, the expression between the states is the time evolution operator, which is
responsible for evolving the initial state to the final state over the time interval tf − ti [3].

An alternative method for computing transition amplitudes is conceived through the
functional formalism. In this framework, these amplitudes are obtained through integration
1 Note that this probability amplitude can be represented with other pictures.
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over all possible amplitudes, also called paths, that a particle can present from its initial
state |xi〉 to its final state |xf〉 using the so-called Feynman path integral [68].

We emphasise that these paths are not observable trajectories, but rather transition
amplitudes. As we will see in the following construction, when considering a particle
transitioning from an initial to a final state, the idea is that to calculate this transition
fully, we need to consider all possible transitions that such a described particle might
undergo.

To illustrate this formalism and provide a qualitative derivation of the path integral,
let us use the double-slit experiment2. It is important to note that this derivation serves
as a didactic way to introduce the concept of Feynman’s path integral.

For the double-slit experiment, consider a single electron being emitted from a
source S and directed towards a screen with two parallel slits, namely A1 and A2. After
this electron passes through one of these slits, it is detected at the screen D, as depicted
in Figure 2. The fundamental idea of the path integral lies in the fact that, according to

Figure 2 – Diagram of the double-slit experiment, where S corresponds to the electron
source, A1 and A2 represent the parallel slits, D denotes the detector, and
the dotted straight lines represent the possible trajectories or paths that the
electron can go through. Note that these paths need not to be as shown here,
as particles can follow any path from S to any of the slits and from them to D.

the superposition principle, the total amplitude for this electron to reach the detector D

from the source S is the sum of two amplitudes: one for the electron passing through slit
A1 and then being detected at D, and the other for the electron passing through A2 and
then being detected at D (see Figure 2). Note that we must consider both amplitudes, as
we do not know which path the particle will choose or how that path will unfold.

Qualitatively, the total transition amplitude can be expressed as

UT = U1(S → A1 → D) + U2(S → A2 → D) =
∑

i

Ui(S → Ai → D), (2.2)

2 Note that the derivation of the path integral is for generalised coordinates. However, we choose position
as our generalised coordinates.
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where Ui represents each of the amplitudes, and Ai represents each of the slits. Observe
that UT is a didactic representation or simplification of the total transition amplitude
U(xf , tf ; xi, ti) in (2.1) and serves as a tool to understand the concept of path integral.

The need to sum all amplitudes can be understood with a basic notion of probability.
The total probability of the particle leaving S and being detected at D is the sum of the
probabilities of the particle leaving S, passing though A1 and then being detected at D,
and the probability of it leaving S, passing through A2, and subsequently being detected
at D.

As we introduce more screens with more slits, it becomes necessary to include the
new amplitudes for the electron’s additional paths between the screens. For instance, when
we insert a screen with slits Bj between the screen with slits Ai and the detector, we must
consider the amplitude of the electron passing through a slit Ai, then through a slit Bj,
and finally reaching the detector (see Figure 3).

Figure 3 – Diagram of the double-slit experiment with the additional parallel slits B1, B2
and B3. Observe that now we need to consider the additional paths that the
electron can take from Ai to Bj and then to D.

Consequently, the total amplitude is given by

UT =
∑
i,j

Uij(S → Ai → Bj → D). (2.3)

With the previous example in mind, we consider a more general system comprising
an infinite number of screens with infinite slits between the source S and the detector D.
In this configuration, the space between S and D can be regarded simply as empty space3.
Therefore, to compute the total amplitude for a particle to travel between the initial and
final states, corresponding to equation (2.1), we must consider all amplitudes or paths
from the source to the detector [8–10], as shown in Figure 4. Mathematically, this can be
3 Note that we could have considered the space between the source and the detector as empty even

without using the idea of the double-slit experiment.
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then expressed as
U(xf , tf ; xi, ti) =

∑
all paths

e
i
b

α =
∫

Dx e
i
b

α[x]. (2.4)

Here, the phase α[x] differs for the different paths the particle can take, b is a constant,
and Dx is the functional measure, with its integration meaning the integration over all
possible continuous spatial paths or functions x(t).

Figure 4 – As we consider a free particle propagating from S to D, we must account for the
infinite amplitudes or path that it can take. Here, we represent some of these
paths, illustrating the variety of trajectories, with the classical path shown as
the red dotted line.

Having found an expression for the total amplitude, the challenge ahead lies in
defining the phase to be integrated. To address this, we rely on two assumptions. Firstly,
in the classical limit, the classical path xc is the only path contributing to the total
amplitude, according to the principle of stationary action. Secondly, considering the form
of the integral (2.4), written as I =

∫
dq e

i
b

f(q), where b is a constant and f(q) is a function
dependent on the variable q, we can expect to employ the method of stationary phase [4,
8–10]. This method deals with integrals involving rapidly varying phases, a characteristic
that becomes apparent in (2.4) as b approaches zero.

Given these assumptions, we set that b = � and that we are approaching the
classical limit as � → 0. This decision of setting the constant as such is motivated by the
behaviour of the exponential within the integrand of the path integral. As we take the
limit to the classical regime, the rapid oscillations in the phase lead to cancellations that
significantly impact the total amplitude [4, 8, 9, 69, 70]. Nevertheless, we note that the
only path unaffected by these cancellations is the classical path since it remains stationary.

With these conditions in place, we apply the method of stationary phase. This
method entails identifying the critical points of f(q) [71], which, in our scenario, correspond
to determining the critical points of the phase α[x] that coincide with the classical path xc.
In other words, we need to determine the functional that satisfies the following stationary
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condition:
δ

δx(t) (α[x])
∣∣∣∣
x=xc

= 0, (2.5)

which is a functional derivative of the phase with respect to x(t). Due to Hamilton’s
principle, this stationary condition holds only when we equate α[x(t)] to the classical
action S[x(t)]. This functional is defined as

S[x] =
∫ tf

ti

dt L(ẋ, x),

where the Lagrangian L(ẋ, x) for a given system is integrated from an initial time ti to a
final time tf , and ẋ represents the time derivative of the position x.

Now that we have established the phase as the classical action, the transition
amplitude (2.1) in terms of a path integral reads

U(xf , tf ; xi, ti) = 〈xf |e−i Ĥ
�

(tf −ti)|xi〉S = C
∫ x(tf )=xf

x(ti)=xi

Dx(t) e
i
�

S[x]. (2.6)

In this equation, C is a constant, Dx(t) is the functional measure, an object that accounts
for all the possible paths in the configuration space that a particle can take, or all the
possible amplitudes, connecting the initial and final points xi and xf , respectively. We
stress that the functional and canonical quantisation formalism in QM are equivalent. This
means that the solution of this path integral corresponds to the transition amplitude of a
particle, as obtained in the operator-based approach4.

2.1.1 Gaussian integrals

In the next section, as we solve path integrals, we shall encounter integrands that
appear in the form of Gaussian functions. This indicates that we shall be dealing with
classical actions that are quadratic in the fields. Given this characteristic, we shall address
these Gaussian integrals here.

Consider a one-dimensional integral given by

I =
∫ ∞

−∞
dx e− 1

2 ax2+jx, (2.7)

where a and j are constants with respect to the integration variable5 x. To solve this
integral, we complete the square in the exponential term, obtaining

I =
∫

dx e− 1
2 a(x− j

a)2+ 1
2a

j2
. (2.8)

Note the decoupling of the variable x and the constant j. Moving forward, as we perform
a change of variables x → x + j

a
, the integral changes to

I = e
1
2

j2
a

∫
dx e− 1

2 ax2 = e
1
2

j2
a Ig. (2.9)

4 A proof of the equivalence of equation (2.6) with Schrödinger equation can be found in [3, 68].
5 As we will encounter multiple integrals in this and subsequent sections and chapters, we will specify

the integration limits only once.
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The next step is to solve Ig.

To achieve this, we start by squaring the integral and introducing a dummy
integration variable y for one of the integrals. This yields

I2
g =

(∫ ∞

−∞
dx e− 1

2 ax2
)2

=
∫ ∞

−∞
dx e− 1

2 ax2
∫ ∞

−∞
dy e− 1

2 ay2
. (2.10)

As the integration of one variable does not affect the other, we can rewrite it as

I2
g =

∫
dx
∫

dy e− 1
2 a(x2+y2) = 2π

∫ ∞

0
dr r e− 1

2 ar2
. (2.11)

Here, we transitioned to polar coordinates in the second equality, where 2π arises from the
integration over a solid angle. This integral is solved by employing a change of variables
u = ar2/2, resulting in Ig =

√
2π/a. Therefore, (2.9) is solved, yielding

∫ ∞

−∞
dx e− 1

2 ax2+jx =
√

2π

a
e

1
2

j2
a . (2.12)

Now consider an integral of N dimensions. In this generalisation, the constant a is
promoted to a N by N matrix Aij, namely A, j becomes the vector J, and x a vector xi,
also expressed as x, where i, j = 1, · · · , N . Therefore, the integral is now given as

I =
∫ ∞

−∞
dx e− 1

2 x†Ax+J†x, (2.13)

where x†Ax = xiA
ijxj, J†x = Jix

i, and dx = ∏
dxi indicating N integrals.

To solve this integral, the approach is similar to the one we used previously for
the one dimensional case. First, we need to decouple J† from x. To do this, we perform a
change of variables x → x + A−1J [72], so that the integral (2.13) can be rewritten as

I =
∫

dx e− 1
2 x†Ax+J†x = e

1
2 J†A−1J

∫
dx e− 1

2 x†Ax, (2.14)

where A−1 corresponds to the inverse of the matrix A. Diagonalising the matrix A
simplifies the integral (2.14) into a product of one-dimensional integrals over the variables
xi [9, 10, 72]. The result of these integrals is expressed in (2.12). Therefore, we have

∫
dx e− 1

2 x†Ax+J†x =
(

(2π)N

detA

) 1
2

e
1
2 J†A−1J. (2.15)

Here, the determinant of A arises from the product of the eigenvalues a of the matrix
A when solving N one-dimensional integrals [9, 72]. Additionally, we define a constant
C =

√
(2π)n

detA , yielding ∫
dx e− 1

2 x†Ax+J†x = C e
1
2 J†A−1J. (2.16)

As we aim to solve path integrals, such as (2.6), it becomes necessary to generalise
the result in (2.15). For this purpose, consider a time-dependent function x(t) and a
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differential operator Â. Assuming that the classical action in (2.6) takes the quadratic
form S =

∫∞
−∞ dt x(t)Â x(t), we arrive at the following path integral:

∫ xi

xf

Dx(t) e[ i
2

∫
dt dt′x(t)Â x(t′)+i

∫
dt J(t) x(t)] =

(
(2iπ)N

detÂ

) 1
2

e[− i
2

∫
dt dt′J(t)G(t−t′)J(t′)]. (2.17)

Here, Â G(t − t′) = δ(t − t′), where G(t − t′) is a Green’s function referred to as the
propagator, being the inverse of the differential operator Â, and δ(t − t′) represents a Dirac
delta function. Note that the factor (2iπ)N is divergent since we are integrating over an
infinite number of degrees of freedom. However, we need not concern ourselves with this
factor, as it will be cancelled out when computing n-point functions in Subsection 2.2.1.

2.2 Path Integral in Quantum Field Theory
Having qualitatively derived the path integral for quantum mechanics early on,

we shall proceed by deriving it for fields. In essence, a field is a function that assigns
spacetime points to amplitudes. For example, a scalar field assigns a single scalar value to
each point in spacetime, while a vector field assigns a vector to each point in spacetime.

Mathematically, fields are characterised by their behaviour under Lorentz trans-
formations. In addition, the action that describe the dynamics of these fields are built
having in mind the invariance under such transformations, thereby consistent with special
relativity. We can represent a generic field as

φ(t, x) = φ(x), (2.18)

where we introduce the four-vector xμ = (x0, x), with x0 = t indicating the time component
and x = (x1, x2, x3) denoting the three-dimensional position vector. Note that by employing
this four-vector as the function argument, we are suppressing the spacetime index μ for
the sake of notation. It is noteworthy that fields may also have indices associated with
them. For example, vector fields Aμ(x) possess a spacetime index μ while a spinor field
ψa(x) includes a spinorial index a, and so forth6.

Before exploring the path integral for fields and consequently their quantisation,
it is necessary to define the so-called vacuum state |0〉. This state corresponds to a
state with no real particles and serves as the ground state of the quantum field theory.
Additionally, considering a Fock space and the creation and destruction operators â†

ki
and

âki
, respectively, the vacuum is defined as the state that is annihilated by all destruction

operators, and, by definition, has zero energy [2, 4]. This means that
n∏
i

âki
|0〉 = 0. (2.19)

6 See Section 3.1.1 and 3.1.2 for the definition of vector and spinor fields, respectively.
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Furthermore, by applying a product of creation operators to the vacuum state, we obtain
a multi-particle state, expressed as

|k1, · · · , kn〉 = M â†
k1 · · · â†

kn
|0〉 , (2.20)

where each particle is represented by its momentum ki, with i = 1, · · · , n. In (2.20), M
corresponds to a normalisation constant.

In QFT, our focus lies on the transition between vacuum states |0〉, representing a
transition between ground states. These are crucial as they allow us to derive observables
in QFT [2, 8, 10]. An important characteristic of such a transition is that the vacuum
states here considered are distinct as they are evaluated at different times. Thus, consider
an initial vacuum state |0; tf〉, at time ti and a final vacuum state |0; tf〉 at time tf , their
transition amplitude is written as〈

no particles no particles
at tf at ti

〉
= 〈0; tf |0; ti〉H = 〈0|e−iĤ(tf −ti)|0〉S , (2.21)

Observe that in the first equality, the states are in the Heisenberg picture. In contrast,
we are using the Schrödinger picture in the last equality, and the states there, although
written similarly, represent different states. Additionally, it is important to mention that
from now on, � = 1 will be utilised unless stated otherwise.

To express this transition amplitude in terms of a path integral, similar to what
we did for quantum mechanics, we first need to define the form of the Hamiltonian Ĥ. For
this derivation, we will focus on a real scalar field, a function that assigns a real number to
each point in spacetime. The reason behind this choice lies in the simplicity of this field,
as it allows us to avoid dealing with complexities related to gauge invariance, which we
will encounter in Chapter 3 when quantising gauge fields.

Hence, the Hamiltonian that describes a real scalar field is given as

Ĥ(t) =
∫ ∞

−∞
d3x

[1
2 π̂2(x) + 1

2(∇φ̂(x))2 + 1
2m2φ̂2(x) + · · ·

]

=
∫

d3x
[1
2 π̂2 + V [φ̂]

]
,

(2.22)

where π̂(x) ≡ ∂L
∂(∂tφ̂) is the momentum density conjugate to the real scalar field φ̂(x), similar

to the conjugated momentum for the canonical coordinates q, and m is the mass of the
field [8, 10]. Moreover, in the first line, the dots denote possible interaction terms, while in
the second line, we have grouped the terms dependent on spatial derivatives, the mass
term, and the interactions into a general potential defined as

V [φ̂] ≡ 1
2(∇φ̂(x))2 + 1

2m2φ̂2(x) + · · · . (2.23)

The derivation of the path integral involves discretising the time interval over
which the transition (2.21) occurs. This means dividing the interval between the initial
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and final times into n equal segments of infinitesimal length δt, such that tf − ti = n δt.
Subsequently, we take the continuum limit δt → 0 and n → ∞ to obtain the continuous
time interval.

Furthermore, this discretisation modifies how we use the field operators φ̂(x) and
π̂(x). This means that as time is divided into several segments, such operators will
present intermediate configurations or eigenstates |φj(x)〉 and |πj(x)〉, with respective
intermediate eigenvalues φj(x) and πj(x). Here, the subscript j represents an intermediate
time tj [68]. Given this discretisation, we can directly solve the matrix element (2.21)
using the Hamiltonian (2.22) at an intermediate time tj [10]. Without such, we would face
difficulties due to the time dependence of the Hamiltonian operator.

Before proceeding, it is important to note that the complete set of φ̂ obeys the
following eigenvalue equations7:

φ̂j(x) |φj〉 = φj(x) |φj〉 , (2.24)

which is equivalent to the position operator x̂ and its eigenstates |x〉 [10]. Likewise, the
operator π̂, analogous to the momentum operator p̂, fulfils

π̂j(x) |πj〉 = πj(x) |πj〉 . (2.25)

For clarity in notation, we have opted not to explicitly denote the position dependence on
the states.

To discretise the transition amplitude (2.21), we introduce intermediate states of
φ̂(x) at each intermediate time step, allowing us to write

〈0; tf |0; ti〉 =
∫ φn(x)

φ1(x)
Dφ1(x) · · · Dφn(x) 〈0|e−iδtĤ(tn)|φn〉 〈φn| · · · |φ1〉 〈φ1|e−iδtĤ(ti)|0〉 .

(2.26)
Here, Ĥ(tn) and Ĥ(ti) correspond to the Hamiltonian at the final and initial times,
respectively. In this discretisation, each insertion of an intermediate field configuration
corresponds to using the completeness relation of the states |φj〉:∫

Dφj(x) |φj〉 〈φj| = 1φj
. (2.27)

We then observe that given the discretisation, each “piece” or infinitesimal path is equivalent
to a matrix element separated by an infinitesimal time step δt.

Since we need to compute each piece, our first task is to find a way to express it.
This can be achieved by utilising the completeness relation of the states |πj〉:∫

Dπj(x) |πj〉 〈πj| = 1πj
. (2.28)

7 It is important to mention that these eigenstates can be constructed using destruction operators aki
,

such that aki |φ〉 = φki |φ〉. A detailed discussion on this can be found in [72].
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Hence, a matrix element can be expressed as

〈φj+1|e−iδtĤ(tj)|φj〉 = 〈φj+1|1πj
e−iδtĤ(tj)|φj〉

=
∫

Dπj(x) 〈φj+1|πj〉 〈πj|e[−iδt
∫

d3x ( 1
2 π̂2+V [φ̂])]|φj〉 .

(2.29)

Here, we substituted the Hamiltonian (2.22).

To compute the action of the Hamiltonian in the states |φj〉 and 〈πj|, we make use
of the of the Campbell-Baker-Hausdorff formula [2, 70, 73], which reads

eδt(Â+B̂) = eδtÂeδtB̂e− 1
2 (δt)2[Â,B̂]+···,

with the operators Â and B̂. It is important to mention that since δt is infinitesimal, terms
that depend on (δt)2 and higher-order ones are ignored, as the exponentials go to 1. Also,
by using the equation (2.25), the matrix element (2.29) is then written as

〈φj+1|e−iδtĤ(tj)|φj〉 =
∫

Dπj(x) 〈φj+1|πj〉 〈φj|πj〉 e[−iδt
∫

d3x ( 1
2 π2

j (x)+V [φj ])], (2.30)

where we used a consequence of the eigenvalue equation (2.24):

V [φ̂j(x)] |φj〉 = V [φj(x)] |φj〉 . (2.31)

Continuing, we need to compute 〈φj+1|πj〉 and 〈φj|πj〉. To achieve this, we utilise
the generalisation of the relation 〈p|x〉 = e−ipx from quantum mechanics to fields [10]:

〈π|φ〉 ≡ exp
(

−i
∫ ∞

−∞
d3x π(x)φ(x)

)
. (2.32)

Therefore, the matrix element (2.30) is finally expressed as

〈φj+1|e−iδtĤ(tj)|φj〉 =e(−iδt
∫

d3x V [φj ])

×
∫

Dπj(x) e{i
∫

d3x [πj(x)(φj+1(x)−φj(x))− 1
2 δtπ2

j (x)]}.
(2.33)

Observe that we factored out the exponential of the potential functional. As this integral
is Gaussian, it can be solved using the result (2.16).

By recognising that A = iδt and J = i(φj+1(x) − φj(x)), we obtain, through the
solution of the integral, the matrix element

〈φj+1|e−iδtH(tj)|φj〉 = e(−iδt
∫

d3x V (φj))Cj e[−
∫

d3x 1
2 (φj+1(x)−φj(x))2(iδt)−1], (2.34)

where Cj is a factor that depends on δt.

We can proceed by grouping the exponentials and factoring out iδt, resulting in

〈φj+1|e−iδtH(tj)|φj〉 = Cj exp
⎧⎨
⎩iδt

∫
d3x

⎡
⎣1

2

(
φj+1(x) − φj(x)

δt

)2

− V (φj)
⎤
⎦
⎫⎬
⎭. (2.35)
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It is interesting to observe that the term being integrated in the exponential is recognised
to be the Lagrangian density in an intermediate time tj,

L[φj, ∂tφj] = 1
2

(
φj+1(x) − φj(x)

δt

)2

− V (φj). (2.36)

After deriving the matrix element (2.35), the other pieces can be computed using
the same method. Substituting these derived elements back into the discretised amplitude
(2.26) gives us

〈0; tf |0; ti〉 = lim
δt→0
n→∞

∫
Dφ1(x) · · · Dφn(x)

n∏
j=1

Cj eiδt
∫

d3x L[φj ,∂tφj ]. (2.37)

Moving towards the continuum limit, we define the functional measure Dφ(x), similar to
the quantum mechanical case. This measure encapsulates all possible paths a field can
take in the field configuration space, and it is defined as

Dφ(x) =
∏
i,x

Dφi(x). (2.38)

Therefore, the continuum limit of equation (2.37) results in the path integral

〈0; tf |0; ti〉 = C
∫ φ(x,tf )=φf (x)

φ(x,ti)=φi(x)
Dφ(x) eiS[φ], (2.39)

where C is a divergent constant, as we took the continuum limit of Cj, that can be absorbed
by the functional measure Dφ(x). In this equation, φi(x) and φf(x) denote the initial
and final field configurations, respectively, and S[φ] is the classical action. This functional
integral is a generalisation of the quantum mechanical path integral (2.6), providing the
transition amplitude from an initial vacuum state |0; ti〉 to a final vacuum state |0; tf〉
through the integration over all possible field configurations between these states in the
field configuration space.

As a result, the process of field quantisation emerges from solving this path integral
for the specific field. It is worth mentioning that in QFT, we often use the expression
“integrating out a field” to describe this process of field quantisation, achieved through
solving the corresponding functional integral.

Before concluding this section, it is essential to define the classical action S[φ] as
introduced in the path integral (2.39). Let us focus on the Lagrangian density (2.36). We
can begin by reintroducing the terms dependent on spatial derivatives, the mass term, and
interactions through the potential V (φj), defined in (2.23), and then take the continuum
limit to obtain

L = 1
2 (∂tφ(t))2 − 1

2 (∇φ(x))2 − 1
2m2φ2(x) + · · · . (2.40)
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Additionally, the first and second terms can be combined by defining a four-gradient, a
derivative in 1 + 3 dimensions of the form

∂μ = ∂

∂xμ
=
(

∂

∂x0 , ∇
)

and ∂μ = ∂

∂xμ

=
(

∂

∂x0
, −∇

)
. (2.41)

The derivative with respect to x0 is a time derivative, whereas ∇ =
(

∂
∂x1 , ∂

∂x2 , ∂
∂x3

)
denotes

the gradient [4, 8, 10, 68]. Thus, the Lagrangian density becomes

L(φ, ∂μφ) = 1
2 (∂μφ)2 − 1

2m2φ2(x) + · · · . (2.42)

Making it possible to define the classical action S[φ] as

S[φ] =
∫ tf

ti

dt L =
∫ tf

ti

∫ ∞

−∞
d4x L(φ, ∂μφ), (2.43)

where L is the Lagrangian density that, from now on, will be just called Lagrangian, and
d4x = dt d3x. In general, it is common to set ti = −∞ and tf = +∞, allowing us to drop
the time labels in (2.39) and to write 〈0|0〉 instead of 〈0; tf |0; ti〉. In this case, the integral
over x in (2.43) spans all of spacetime. Although the derivation of the path integral was
performed for a real scalar field, φ(x) can correspond to any given field, as we shall see in
this and the next chapter.

2.2.1 n-point functions

In quantum field theories, an essential component in describing phenomena are
the so-called n-point functions or correlation functions. These functions encapsulate
information about the theory, enabling the computation of observables, such as scattering
amplitudes, through the Lehmann-Symanzik-Zimmermann (LSZ) formula [2, 10].

These n-point functions correspond to vacuum expectation values of the product
of n fields, denoted as 〈0|T̂

(
φ̂(x1) · · · φ̂(xn)

)
|0〉, where T̂ is known as the time ordering

operator [4, 8, 10, 68]. The operator T̂ is responsible for ensuring that the field operators
act on the state |0〉 in a specific time sequence, namely tf > t1 > · · · > tn > ti. This means
that the product of two bosonic fields is given as

T̂
(
φ̂(x1)φ̂(x2)

)
=

⎧⎪⎨
⎪⎩

φ̂(x1)φ̂(x2) for x0
1 > x0

2

φ̂(x2)φ̂(x1) for x0
2 > x0

1

. (2.44)

To derive a general expression for computing these expectation values, we begin by
obtaining the transition amplitude of the product of two fields. This is represented in the
Heisenberg picture as

〈0|T̂
(
φ̂(x1)φ̂(x2)

)
|0〉

H
with tf ≥ t1 > t2 ≥ ti, (2.45)
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where t1 and t2 correspond to the times of the operators φ̂(x1) and φ̂(x2), respectively. The
procedure for deriving this 2-point function is similar to that of obtaining the transition
amplitude between two vacuum states, as we did in the last section.

Therefore, we again divide the interval from the initial to the final time into n

segments of infinitesimal lengths δt. Moreover, we insert intermediate field configurations
using the field completeness relation of the operator φ̂(x), as given in (2.27). These steps
correspond to

〈0|T̂
(
φ̂(x1)φ̂(x2)

)
|0〉

H
=
∫

Dφ1(x) · · · Dφn(x) 〈0|e−iδtĤ(tn)|φn〉 〈φn| · · · |φ3〉
× 〈φ3|e−iδtĤ(t2)φ̂(x2)|φ2〉 〈φ2|e−iδtĤ(t1)φ̂(x1)|φ1〉
× 〈φ1|e−iδtĤ(tf )|0〉 .

(2.46)

Following this, we proceed by acting the operators φ̂(x1) and φ̂(x2) on the eigenstates |φ1〉
and |φ2〉, respectively, using the relation (2.24). This results in

〈0|T̂
(
φ̂(x1)φ̂(x2)

)
|0〉

H
=
∫

Dφ1(x) · · · Dφn(x) 〈0|e−iδtĤ(tn)|φn〉 〈φn| · · · |φ3〉
× 〈φ3|e−iδtĤ(t2)φ2(x2)|φ2〉 〈φ2|e−iδtĤ(t1)φ1(x1)|φ1〉
× 〈φ1|e−iδtĤ(tf )|0〉 .

(2.47)

Note that the subscriptions 1 and 2 in the eigenvalues correspond to times t1 and t2,
respectively. Factoring out these eigenvalues, we arrive at the integral

〈0|T̂
(
φ̂(x1)φ̂(x2)

)
|0〉

H
=
∫

Dφ1(x) · · · Dφn(Nx) φ1(x1)φ2(x2) 〈0|e−iδtĤ(tn)|φn〉
× 〈φn| · · · |φ3〉 〈φ3|e−iδtĤ(t2)|φ2〉
× 〈φ2|e−iδtĤ(t1)|φ1〉 〈φ1|e−iδtĤ(tf )|0〉 ,

(2.48)

which resembles (2.26). Here, each of the matrix elements within the integral must be
computed. However, since we have already done this in the previous section, we will not
repeat it here.

After computing each matrix element using (2.35), organising each computed
element, and taking the continuous limit as done in (2.37), we obtain the path integral

〈0|T̂
(
φ̂(x1)φ̂(x2)

)
|0〉

H
= C

∫
Dφ(x) φ(x1) φ(x2) eiS[φ]. (2.49)

Here, C is a divergent constant, as in (2.39). This result is easily generalised to a n-point
function with

〈0|T̂
(
φ̂(x1) · · · φ̂(xn)

)
|0〉 = C

∫
Dφ φ(x1) · · · φ(xn) eiS[φ]. (2.50)

In this result, we note that on the left side of the equal sign, the fields are operators8,
justifying the need for the time-ordering operator. In contrast, on the right side of the
8 Note that in QFT, field operators are not assigned to observables as in quantum mechanics. They need

not to be Hermitian. Here, observables are calculated with the n-point functions and the LSZ formula.
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equal sign, the path integral already takes care of this ordering, as the fields φ(x1) · · · φ(xn)
are only functions of spacetime [70], and their integration can be carried out in any chosen
order.

Furthermore, we can introduce sources J(x) to the path integral, thereby defining
a mathematical object known as generating functional

Z[J ] = 〈0|0〉J =
∫

Dφ ei(S[φ]+
∫

d4x J(x)φ(x)), (2.51)

which generates all n-point functions of a quantum field theory9. The sources we introduced
serve as a tool and have no physical significance here, being used to compute all the n-point
functions, the connected and disconnected diagrams10, through functional differentiations
with respect to J(x), as we shall explore shortly. Moreover, we note that when J = 0,
corresponding to Z[0], we return to the path integral (2.39).

Additionally, (2.51) establishes an analogy between quantum field theory and
statistical mechanics. Both the generating functional and partition function share a
similar structure involving integration over all possible configurations with an exponential
statistical weight [8]. In the context of QFT, this weight corresponds to the classical action,
while in statistical mechanics, it represents the total energy of the system in a respective
microstate [74].

The n-point functions are given by the functional differentiation of the generating
functional (2.51) with respect to the sources J(x). Before we start deriving this alternative
way of obtaining the n-point functions, we need to introduce the so-called functional
derivative

δ

δJ(x)J(x′) = δ(x − x′), (2.52)

where δ(x−x′) is the four-dimensional, unless stated otherwise, Dirac delta. This derivative
implies that

δ

δJ(x)

∫ ∞

−∞
d4x′ J(x′)φ(x′) =

∫ ∞

−∞
d4x′ φ(x′) δ(x − x′) = φ(x), (2.53)

which will be important in the following example.

Using these two relations, we differentiate the generating functional (2.51) with
respect to J(x1), giving

δ

δJ(x1)
Z[J ]

∣∣∣∣∣∣
J=0

= C
∫

Dφ ei(S[φ]+
∫

d4x J(x)φ(x)) i
δ

δJ(x1)

∫
d4x J(x)φ(x)

= iC
∫

Dφ φ(x1) ei(S[φ]+
∫

d4x J(x)φ(x))

= iC 〈0|φ̂(x1)|0〉 .

(2.54)

9 It is important to mention that this generator can also be defined in quantum mechanics.
10 The contrast between these diagrams will become apparent as we explore the scalar interacting theory

in Subsection 2.3.2.
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This expression represents the 1-point function. Differentiating again, now with respect to
J(x2), yields

δ

δJ(x2)

⎛
⎝ δ

δJ(x1)
Z[J ]

⎞
⎠
∣∣∣∣∣∣
J=0

= i2C
∫

Dφ φ(x1) ei(S[φ]+
∫

d4x J(x)φ(x)) δ

δJ(x2)

∫
d4x J(x)φ(x)

= i2C
∫

Dφ φ(x1) φ(x2) ei(S[φ]+
∫

d4x J(x)φ(x))

= i2C 〈0|φ̂(x1)φ̂(x2)|0〉 ,

(2.55)

the 2-point function. As we will see in the following section, this function is called a
propagator and its meaning will be explained there. Based on previous results, we observed
a recurring pattern in the differentiation of the generating functional. This pattern involves
incorporating fields into the integrand of Z[J ], thus increasing the number of fields to the
expectation value.

However, it is important to remember that Z[J ] contains a divergent constant C.
To get ride of it, we can define a normalised correlation function of n fields with

〈0|T̂
(
φ̂(x1) · · · φ̂(xn)

)
|0〉 = (−i)n

Z[J ]
δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣∣∣
J=0

, (2.56)

where the added term Z[J ] in the denominator is responsible for normalising the expectation
value of the vacuum, allowing the constant C to be cancelled out. Note that even though
this function is normalised, we are using the same notation as for the non-normalised
n-point function. From now on, the n-point functions to be calculated are the normalised
ones. Furthermore, after the differentiations, we set the source J(x) to zero since it is a
tool used in differentiating Z[J ]. In this way, the normalised expectation value of n fields
also reads

〈0|T̂
(
φ̂(x1) · · · φ̂(xn)

)
|0〉 =

∫
Dφ(x) φ(x1) · · · φ(xn)eiS[φ]∫

Dφ(x) eiS[φ] . (2.57)

2.3 Scalar Field Theory
The first field theory we shall quantise in this dissertation is the scalar field theory.

This theory elucidates the dynamics of scalar fields, i.e. fields that are invariant under
Lorentz transformations. Due to this invariance, these fields describe spin-zero particles.
In addition, the reason for choosing to begin with this field theory resembles the criterion
adopted for the selection of the Hamiltonian in the path integral derivation: simplicity.

2.3.1 Scalar free theory

We shall begin by considering the non-interacting case, where the scalar fields do
not couple to themselves or any other field. This theory is referred to as free scalar theory
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and is described by the Lagrangian

L0 = 1
2∂μϕ∂μϕ − 1

2m2ϕ2. (2.58)

Here, ϕ = ϕ(x) represents the scalar field in 1 + 3 dimensions, and m is the mass of the
field. The first term on the right-hand side is referred to as a kinetic term, while the second
one is known as the mass term11. Furthermore, the subscript in L0 is merely an indication
that it is in a free theory. From now on, this is what the subscript means unless stated
otherwise.

Recall that quantisation in the functional approach is given by the solution of path
integral (2.51) corresponding to Z[0]. This means that to quantise the free scalar field and
obtain the associated n-point functions, we must solve the path integral

Z0[0] =
∫

Dϕ exp
[
i
∫

d4x
(1

2∂μϕ∂μϕ − 1
2m2ϕ2

)]
. (2.59)

To solve this, we compare it with the Gaussian integral (2.16) and notice that the action
must take on a quadratic form

S[ϕ] =
∫

d4x ϕ(x) A ϕ(x). (2.60)

Upon comparison, we also observe that Z0[0] = C, which confirms our choice of normalisa-
tion in (2.56).

However, rather than directly solving (2.59), our focus will be on the generating
functional with J �= 0. The reason for this will become more evident throughout this
subsection and in the next. Thus, we proceed by carrying out an integration by parts of
the fields ϕ with respect to x, implicitly assuming that these fields decay rapidly enough
at infinity, i.e. there are no boundary terms at infinity, resulting in

Z0[J ] =
∫

Dϕ exp
[
i
∫

d4x
(

−1
2ϕ∂μ∂μϕ − 1

2m2ϕ2 + Jϕ
)]

. (2.61)

We now proceed by expressing the action in quadratic form, which results in the generating
functional

Z0[J ] =
∫

Dϕ exp
{

i
∫

d4x
[
−1

2ϕ
(
� + m2

)
ϕ + Jϕ

]}
, (2.62)

where we used the d’Alembert operator, also known as the box operator, � = ∂μ∂μ. After
performing these steps, we see that this integral has the same form as the result (2.15),
thus enabling the identification of the operator A = i (� + m2).

Since the result depends on the inverse A−1, we can define a Green’s function
G(x − x′) such that the inverse is expressed as A−1 = G(x − x′), namely

(
� + m2

)
G(x − x′) = −iδ(x − x′). (2.63)

11 Solving the Euler-Lagrange equations for these fields revels that this term corresponds to the mass m
in the equations of motion.
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The simple way to solve this involves writing the Fourier transformations of the Green’s
function and the Dirac delta from the position to the momentum space. These transforma-
tions are given as

G(x − x′) =
∫ ∞

−∞
d4k

(2π)4 G(k)e−ik(x−x′) and δ(x − x′) =
∫ ∞

−∞
d4k

(2π)4 e−ik(x−x′), (2.64)

where G(k) is the Green’s function in momentum space. Here, we introduce the four-
momentum kμ = (k0, k), where k0 corresponds to energy E, and k = (k1, k2, k3) represents
the three-dimensional momentum vector. Replacing these relations back to (2.63) results
in

(� + m2)
∫ d4k

(2π)4 G(k)e−ik(x−x′) =
∫ d4k

(2π)4 G(k)e−ik(x−x′)
[
(−ik)2 + m2

]

=
∫ d4k

(2π)4 G(k)e−ik(x−x′)
(
−k2 + m2

)

= −i
∫ d4k

(2π)4 e−ik(x−x′).

(2.65)

In this equation, the term (−ik)2 arises from the second derivative of the exponential.
From these integrals, we obtain that

(
−k2 + m2

)
G(k) = −i, (2.66)

and then
G(k) = i

k2 − m2 . (2.67)

This Green’s function is the propagator in momentum space and corresponds to the
amplitude of a particle with momentum k in momentum space. In the free scalar theory,
this propagator represents a spin-zero particle in momentum space with mass m, emerging
from the quantisation of scalar fields ϕ(x).

Returning to position space, we find the propagator to be

A−1 = G(x − x′) = lim
ε→0

∫ d4k

(2π)4
i

k2 − m2 + iε
e−ik(x−x′). (2.68)

This Green’s function is known as the Feynman propagator GF (x − x′), representing the
amplitude for a free particle to travel between the points x and x′. Note that we introduced
a factor iε, with ε > 0 and infinitesimal, that shifts the poles k0 = ±Ep = ±

√
(k2 + m)

off the real axis [8, 10, 68, 73], as illustrated in Figure 5. This integration can occur by
closing the contour in the lower half-plane, corresponding to a particle propagating from
the point x′ to x when x0 > x′0, thus yielding the Green’s function G(x − x′). Conversely,
if the integration closes the upper half-plane, the particle propagates from point x to x′

with x′0 > x0, giving the Green’s function G(x′ − x). Therefore, the Feynman propagator
is obtained by combining these two solutions

GF (x − x′) = θ(x0 − x′0) G(x − x′) + θ(x′0 − x0) G(x′ − x), (2.69)
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Figure 5 – Illustration of the integral poles shifting by the factor iε.

where θ(x) is the Heaviside step function.

Since we obtained A−1, this term can be substituted into the result (2.15), hence
solving the Gaussian integral (2.62) and leading to

Z0[J ] = Z0[0] exp
(

−1
2

∫
d4x d4x′ J(x)GF (x − x′)J(x′)

)
. (2.70)

With this solution, we can obtain all the n-point functions of the theory described by
the Lagrangian (2.58), meaning that we have achieved the quantisation of these fields.
Furthermore, we observe the decoupling12 of the field ϕ and the source J , which will
facilitate obtaining the n-point functions by differentiating the generating functional (2.70)
with (2.56).

The factor Z[0] that corresponds to (2.59) does not need to be specified, as it
cancels out when calculating the n-point functions with (2.56). However, from it, we can
derive a property that holds for any functional integral that is quadratic in the fields.
Indeed, the integration of (2.59) gives

Z0[0] =
∫

Dϕ exp
[
i
∫

d4x
(1

2∂μϕ∂μϕ − 1
2m2ϕ2

)]

= C
[
det i

(
� + m2

)]− 1
2 ,

(2.71)

where we used (2.15) and defined the constant C =
√

(2π)n. By considering any bosonic
field, we obtain the determinant of a differential operator A related to that field, similar
to the result above. This operator is diagonal and has eigenvalues ai such that

detA =
∞∏

i=1
ai. (2.72)

We can proceed by writing these eigenvalues in exponential form, that is

detA =
∞∏

i=1
exp (log ai) = exp

( ∞∑
i

log ai

)
= exp (Tr log A) , (2.73)

12 Note that we no longer have terms like Jϕ.
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where log is a natural logarithm unless stated otherwise. Furthermore, Tr corresponds to
the functional trace over all spacetime indices of A. In position space, the trace corresponds
to

Tr log A =
∫ ∞

−∞
d4x 〈x| log A|x〉 . (2.74)

This property will be necessary as we explore effective actions in Section 2.5.

Redirecting our attention to the derivation of correlation functions, we aim to
obtain the vacuum expectation value of the product of two fields

〈0|T̂
(
φ̂(x1)φ̂(x2)

)
|0〉 = (−i)2

Z0[J ]
δ2Z0[J ]

δJ(x1)δJ(x2)

∣∣∣∣∣∣
J=0

. (2.75)

We start by differentiating (2.56) once with respect to J(x1):

δ

δJ(x1)
Z0[J ] = Z0[0] δ

δJ(x1)
exp

(
−1

2

∫
d4x d4x′ J(x)GF (x − x′)J(x′)

)

= −1
2Z0[J ] δ

δJ(x1)

(∫
d4x d4x′ J(x)GF (x − x′)J(x′)

)
,

(2.76)

and then proceed by using the relation (2.52), which results in

δ

δJ(x1)
Z0[J ] = −1

2Z0[J ]
{∫

d4x d4x′ GF (x − x′) [δ(x1 − x)J(x′) + J(x)δ(x1 − x′)]
}

= −1
2Z0[J ]

[∫
d4x′ GF (x1 − x′)J(x′) +

∫
d4x GF (x − x1)J(x)

]
.

(2.77)

Note that the vacuum expectation value for one scalar field, a 1-point function for this
field, is 〈0|ϕ(x)|0〉 = 0, which is associated with the phenomenon known as spontaneous
symmetry breaking. Since this topic is beyond the scope of this work, refer to the references
[4, 8, 10].

Continuing, differentiating once more, this time with respect to J(x2), yields

δ

δJ(x2)
δ

δJ(x1)
Z0[J ]

= −1
2

δ

δJ(x2)

[
Z0[J ]

(∫
d4x′ GF (x1 − x′)J(x′) +

∫
d4x GF (x − x1)J(x)

)]

= −1
2

[
Z0[J ] δ

δJ(x2)

(∫
d4x′ GF (x1 − x′)J(x′) +

∫
d4x GF (x − x1)J(x)

)]

= −1
2Z0[J ]

(∫
d4x′ GF (x1 − x′)δ(x2 − x′) +

∫
d4x GF (x − x1)δ(x2 − x)

)

= −1
2Z0[J ] (GF (x1 − x2) + GF (x2 − x1))

= −Z0[J ] GF (x1 − x2).

(2.78)

Here, we used the product rule from the second to the third line. However, since the
derivative of Z0[J ] includes sources, this term will be zero when substituted back into



Chapter 2. Functional Quantisation 33

(2.75) and J = 0 is applied. Therefore, we omit it in the third and subsequent lines. The
other steps follow the same as the derivative with respect to J(x1). However, in the last
line, we used the symmetry property of Green’s functions

GF (x1 − x2) = GF (x2 − x1). (2.79)

Substituting the result (2.78) back into (2.75) leads to

〈0|T̂
(
φ̂(x1)φ̂(x2)

)
|0〉 = −(−i)2

Z0[J ]Z0[J ]GF (x1 − x2)
∣∣∣∣∣∣
J=0

= GF (x1 − x2).
(2.80)

In this equation, we note that the 2-point function corresponds to the scalar free field
Feynman propagator (2.68). Therefore, the transition amplitude from one vacuum to
another with the product of two field corresponds to the amplitude of a particle propagating
between two points in spacetime.

Moreover, this result can be visually depicted through Feynman diagrams, which
serve as graphical tools for calculating amplitudes in quantum field theory. Consequently,
after obtaining all the diagrams, one can describe all phenomena related to a particular
quantum field theory.

Thus, we represent the correlation function of two fields, a two-point propagator,
for a free scalar field as

x1 x2 = GF (x1 − x2). (2.81)

This diagram is known as a tree-level diagram. As we consider interactions, other types
of diagrams will be represented. Among these are the so-called loop diagrams, which
scale proportionally with � and the coupling constant λ and are equivalent to quantum
corrections resulting from the quantisation of field interactions.

2.3.2 Scalar interacting theory

After quantising the free theory, we focus on addressing the interacting theory. Here,
additional complexity is introduced to the Lagrangian (2.58) by including a self-interaction
term ϕ4. This theory is described by the Lagrangian

L = L0 − λ

4!ϕ
4, (2.82)

where L0 represents the free Lagrangian (2.58), and λ denotes a dimensionless coupling
constant governing the self-interaction term [8, 68, 70]. Note that, due to the self-interaction
term, the particles described by these fields interact with each other. For instance, two
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bosons created from these fields interact with one another. As we will observe in this
subsection, these interactions lead to quantum corrections to the free theory.

Given that we are employing field quantisation via the functional approach, our
initial task involves formulating the generating functional Z[J ] for this theory, followed by
the computation of n-point functions. Thus, by recalling the generating functional (2.51),
we express it as

Z[J ] =
∫

Dϕ exp
[
−i

λ

4!

∫
d4x ϕ4(x)

]
eiS0[ϕ,J ], (2.83)

where S0[ϕ, J ] denotes the free classical action with sources J , this means

S0[ϕ, J ] =
∫

d4x
[
−1

2ϕ
(
� + m2

)
ϕ + Jϕ

]
. (2.84)

Due to the interaction term, we cannot solve this integral exactly, as we cannot
express the action in quadratic form and utilise the result (2.16). Hence, to quantise this
theory and derive the n-point functions, we will utilise an approximate method known as
perturbation theory.

In perturbation theory, we assume the coupling constant λ to be sufficiently small,
enabling a Taylor expansion around zero [8, 10, 68]. To proceed, we first acknowledge that

1
i

δ

δJ(x) → ϕ(x), (2.85)

which is related to the fact that differentiating Z[J ] with respect to J(x) leads to the
appearance of fields ϕ(x) [2, 68], as observed in equations (2.56) and (2.57). Hence, this
allows us to represent the quartic interaction term as

λ

4!ϕ
4 → λ

4!

(
1
i

δ

δJ(x)

)4

. (2.86)

Consequently, the generating functional (2.83) is rewriten as

Z[J ] =
∫

Dϕ exp
⎡
⎣−i

λ

4!

∫
d4x

(
1
i

δ

δJ(x)

)4
⎤
⎦ eiS0[ϕ,J ]. (2.87)

As the exponential term is now independent of the field ϕ(x), it can be factored
out from the path integral. This leads to the condensed expression

Z[J ] = exp
⎡
⎣−i

λ

4!

∫
d4x

(
1
i

δ

δJ(x)

)4
⎤
⎦ Z0[J ], (2.88)

where we observe that the remaining terms, once the interaction term is factored out,
correspond to the free-generating functional Z0[J ].
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By expanding the exponential with respect to the coupling constant λ, we obtain
the power series

exp
⎡
⎣− i

λ

4!

∫
d4x

⎛
⎝1

i

δ

δJ(x)

⎞
⎠

4⎤
⎦ ≈ 1 − i

λ

4!

∫
d4x

(
1
i

δ

δJ(x)

)4

+ 1
2!

(
−i

λ

4!

)2 ∫
d4x

(
1
i

δ

δJ(x)

)4 ∫
d4x′

(
1
i

δ

δJ(x′)

)4

+ · · · .

(2.89)

Each order of λ corresponds to a quantum correction to the free theory. This correspondence
is evident, as the first term of the expansion, which is 1, represents the free theory when
substituted back into Z[J ]. Subsequently, each successive term in the expansion corresponds
to a higher-order correction. Furthermore, these corrections manifest diagrammatically as
loops, corresponding to interactions between particles, hence the name “loop correction”.

Since our focus now solely lies on the physical implications, and for the sake of
simplicity, we shall explore interactions up to the first order in λ, thus, one-loop corrections.
The concepts arising from these interactions will serve as a foundation for higher-order
corrections and further studies in QFT. Additionally, since certain computations resem-
ble those of the free field, we shall omit the intermediate steps corresponding to the
differentiations to avoid repetition.

The generating functional with interactions up to the first order in λ is given as

Z[J ] ≈ exp
⎡
⎣1 − i

λ

4!

∫
d4x

(
δ

δJ(x)

)4
⎤
⎦ Z0[J ]. (2.90)

Note that we used (1/i)4 = 1. By expressing the derivative explicitly, we have

Z[J ] ≈Z0[0] exp
[
1 − i

λ

4!

∫
d4x

(
δ4

δJ4(x)

)]

× exp
(

−1
2

∫
d4x′ d4x′′ J(x′)GF (x′ − x′′)J(x′′)

)
,

(2.91)

and thus, upon performing the differentiations, we obtain the generating functional

Z[J ] ≈Z0[0]
⎡
⎣1 − i

λ

8 GF (0) GF (0)
∫

d4x

− i
λ

4 GF (0)
∫

d4x

⎛
⎝∫ d4x3GF (x − x3) J(x3)

∫
d4x4 GF (x − x4) J(x4)

⎞
⎠

− i
λ

4!

∫
d4x

⎛
⎝∫ d4x3 GF (x − x3) J(x3)

∫
d4x4 GF (x − x4) J(x4)

×
∫

d4x5 GF (x − x5) J(x5)
∫

d4x6 GF (x − x6) J(x6)
⎞
⎠
⎤
⎦

× exp
(

−1
2

∫
d4x d4x′J(x)GF (x − x′)J(x′)

)
.

(2.92)
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In this equation, we note that the integral in the second term on the right-hand side
corresponds to the volume of the entire spacetime, thus it is divergent. However, this
term can be absorbed by Z0[0], given that this term cancels out when computing n-point
functions.

Moreover, GF (0) is also divergent, indicating that quantum corrections diverge.
Consequently, methods such as renormalisation would be required to address this infinity
as we calculate observables. For further details on the topic, refer to [4, 8–10, 75]. However,
since our focus is not on computing these observables, this divergence can be ignored.

Thus, by rewriting the generating functional to “remove” the divergent term, we
obtain

Z[J ] ≈Z0[0]

×
⎡
⎣1 − i

λ

4 GF (0)
∫

d4x

⎛
⎝∫ d4x3GF (x − x3) J(x3)

∫
d4x4 GF (x − x4) J(x4)

⎞
⎠

− i
λ

4!

∫
d4x

⎛
⎝∫ d4x3 GF (x − x3) J(x3)

∫
d4x4 GF (x − x4) J(x4)

×
∫

d4x5 GF (x − x5) J(x5)
∫

d4x6 GF (x − x6) J(x6)
⎞
⎠
⎤
⎦

× exp
(

− i

2

∫
d4x d4x′J(x)GF (x − x′)J(x′)

)
.

(2.93)

Having this generating functional at our disposal, we can compute any n-point function
up to one-loop diagram using the relation (2.56).

Therefore, let us begin with a two-point function. By using the relation (2.56), we
obtain the following vacuum expectation value of two fields:

〈0|T̂ (ϕ̂(x1) ϕ̂(x2)) |0〉 = GF (x1 − x2) − i
λ

2 GF (0)
∫

d4x GF (x − x1) GF (x − x2), (2.94)

where we observe that the first term corresponds to the free propagator (2.80), while
the second term corresponds to quantum corrections due to interactions between fields.
It is noteworthy that the factor −iλ GF (0) represents interactions. To be precise, they
symbolise vertices where propagators intersect and interact.

Thus, we have a one-loop correction represented as

x1 x2
x

= −i
λ

2 GF (0)
∫

d4x GF (x − x1) GF (x − x2). (2.95)

From a purely pictorial standpoint, a loop diagram corresponds to a particle moving from
x1 to x, subsequently decaying into a virtual particle and its virtual antiparticle that
traverse the loop and ultimately annihilate into a real particle moving from x to x2.
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To proceed, we will explore the four-point correlation function. Therefore, upon
performing the differentiations, we arrive at the expectation value of the product of the
four fields

〈0|T̂ (ϕ̂(x1) ϕ̂(x2) ϕ̂(x3) ϕ̂(x4)) |0〉 =

+
(

GF (x1 − x2) GF (x3 − x4) + GF (x1 − x3) GF (x2 − x4) + GF (x1 − x4) GF (x2 − x3)
)

− iλ
∫

d4x
(

GF (x − x1) GF (x − x2) GF (x − x3) GF (x − x4)
)

− i
λ

2 GF (0)
∫

d4x
(

GF (x1 − x2) GF (x − x3) GF (x − x4)

+ GF (x1 − x3) GF (x − x2) GF (x − x4) + GF (x1 − x4) GF (x − x2) GF (x − x3)
+ GF (x2 − x3) GF (x − x1) GF (x − x4) + GF (x2 − x4) GF (x − x1) GF (x − x2)

+ GF (x3 − x4) GF (x − x1) GF (x − x2)
)

.

(2.96)

As evidenced here, while computing an expectation value with more points, we encounter
additional and distinct combinations of Green’s functions compared to (2.95). Furthermore,
by considering more points and higher orders in λ, we obtain more complex corrections.
However, since our goal is merely to gain a better understanding of the fundamentals of
QFT, this correlation function is already sufficient.

An important characteristic of the diagrams resulting from this four-point cor-
relation function is their classification into connected and disconnected types. In brief,
connected diagrams are characterised by their components being interconnected within the
diagram. Meanwhile, the disconnected ones consist of components that remain unconnected
to each other [68].

As an initial example of a disconnected diagram, let us consider the first term on
the second line on the right-hand side of (2.96). This term is illustrated as

x1 x2

x3 x4
= GF (x1 − x2) GF (x3 − x4). (2.97)

Here, we observe the presence of two Green’s functions, one propagating from x1 to x2 and
another from x3 to x4. Furthermore, as evident, these propagators do not have components
that connect as they are parallel. Hence, such a diagram is categorised as disconnected.

Meanwhile, the third line of (2.96) corresponds to a vertex, which is illustrated as

x1

x2

x4

x3

= −iλ
∫

d4x
(

GF (x − x1) GF (x − x2) GF (x − x3) GF (x − x4)
)

.

(2.98)
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Such a diagram is classified as connected since its constituents are interconnected, indicated
by their intersection at x as observed in the integral. This diagram represents interactions
between propagators and is used to the construction of more complex diagrams.

Upon examining the fourth line, we identify yet another disconnected diagram.
This becomes clearer as we look at its diagram

x3 x4

x1 x2

= −i
λ

2 GF (0)
∫

d4x GF (x1 − x2) GF (x − x3) GF (x − x4).

(2.99)
Here, there is a free propagator from x1 to x2 and a loop from x3 to x4. However, they are
not connected as none of their parts meet among themselves. Take note that GF (x1 −x2) is
just a constant with respect to the integral, which corresponds to a loop with the presence
of the factor −iλ

2 GF (0). The remaining terms in the subsequent lines follow a similar
representation and meaning.

2.4 Connected Diagrams
The motivation behind classifying the diagrams above stems from the fact that

only the connected diagrams are relevant for computing physical scattering amplitudes
[8–10, 68, 70]. Therefore, we introduce the so-called generating functional of connected
diagrams

W [J ] = −i log Z[J ]. (2.100)

To explore how this generating functional generates connected Green’s functions,
let us begin by considering that Z[J ] depends on a generic field φ(x). With this premise,
we proceed by differentiating (2.100) with respect to a source J(x1) and then comparing it
with the derivative of Z[J ] and the n-point functions (2.56).

This derivative and comparison lead us to observe that

δW [J ]
δJ(x1)

∣∣∣∣∣∣
J=0

= −i

Z[J ]
δZ[J ]
δJ(x1)

∣∣∣∣∣∣
J=0

= 〈0|φ(x1)|0〉 , (2.101)

which represents the vacuum expectation value of the field φ(x). It is worth noting that, in
this case, this value is zero. However, it may be a non-zero constant when there spontaneous
symmetry breaking takes place [4, 8, 68].

We proceed by differentiating W [J ] once more, this time with respect to the source
J(x2). This then gives

−i
δ2W [J ]

δJ(x1) δJ(x2)

∣∣∣∣∣∣
J=0

= (−i)2
(

1
Z[J ]

δ2Z[J ]
δJ(x1) δJ(x2)

− 1
Z2[J ]

δZ[J ]
δJ(x1)

δZ[J ]
δJ(x2)

) ∣∣∣∣∣∣
J=0

, (2.102)
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where the product rule has been applied. By employing (2.56), we recognise that the
first term on the right side corresponds to the two-point Green’s function, which may
include connected and disconnected diagrams. Conversely, the second term represents two
disconnected one-point correlation functions, similar to (2.97). Thus, we have

−i
δ2W [J ]

δJ(x1) δJ(x2)

∣∣∣∣∣∣
J=0

= 〈0|T̂ (ψ̂(x1)ψ̂(x2))|0〉 − 〈0|ψ̂(x1)|0〉 〈0|ψ̂(x2)|0〉

= 〈0|T̂ (ψ̂(x1)ψ̂(x2))|0〉connected .

(2.103)

In this outcome, we observe that the presence of disconnected diagrams is eliminated from
the n-point function that initially comprised both connected and disconnected diagrams.
Consequently, only connected diagrams are obtained, consistent with our expectations.

Furthermore, this finding can be generalised to connected correlation functions of
n points using the following differentiation relation [8, 9, 68, 70]:

〈0|T̂
(
φ̂(x1) · · · φ̂(xn)

)
|0〉

connected
= (−i)n−1 δnW [J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣∣∣
J=0

. (2.104)

This generating functional will be crucial in the next section, as it is necessary to define a
modification of the classical action that contains all the information on the system, namely
the effective action.

2.5 1PI Effective Action
As discussed in the previous section, the generating functional W [J ] generates

all connected n-point functions in the theory. However, we omitted the possibility that
these functions may be composed of two or more connected diagrams, which we shall call
one-particle irreducible (1PI) diagrams.

To grasp this concept, let us examine the following diagram corresponding to a
two-loop correction, a quantum correction proportional to λ2

x1 x2
. (2.105)

This diagram is classified as one-particle (1P) reducible because by cutting between the
loops, we observe that it can be constructed from two one-loop diagrams (2.95), which
can be classified as one-particle irreducible (1PI) diagrams. In other words, we note that
some diagrams are composed of “more fundamental” diagrams, or rather, from a basis of
1PI diagrams [10, 68, 70].

To derive the 1PI effective action, consider a generic field φ(x), whose dynamics
are described by a classical action S[φ]. When calculating the vacuum expectation value
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for a single field, this value may be zero, as in the case of the scalar theory (2.77), or
non-zero, in the context of spontaneous symmetry breaking. We know that these outcomes
vary as they may or may not depend on the source J(x).

Bearing this in mind, we can express this value as

δW [J ]
δJ(x) = 1

i

δ

δJ(x) log(Z[J ]) = 〈0|φ(x)|0〉J ≡ φc(x), (2.106)

where the superscript J in the expectation value indicates non-zero sources. Also, we
denote this value as φc(x), commonly referred to as the mean-field or classical field. The
reason behind the latter designation comes from the fact that when we take the classical
limit, � → 0, this expectation value corresponds to a classical field in a classical field
theory.

Furthermore, in (2.106), we notice that the mean-field and the source are conjugates,
allowing us to perform a Legendre transformation on W [J ] and define the so-called 1PI
effective action

Γ [φc(x)] ≡ W [J ] −
∫ ∞

−∞
d4x J(x)φc(x). (2.107)

As we shall further explore, this functional reproduces all the 1PI diagrams of the theory
and thus encompasses all of the physics of a quantum theory. Additionally, it emerges as a
modification of the classical action incorporating all loop corrections [8, 10, 68, 70].

To gain a better understanding of this effective action, we can examine it by
differentiating it with respect to φc(x), yielding

δΓ[φc]
δφc(x) = δW [J ]

δφc(x) −
∫

d4x′
(

φc(x′)δJ(x′)
δφc(x) + J(x′)δφc(x′)

δφc(x)

)
, (2.108)

where we applied the product rule to the second term on the right-hand side of the equation
(2.107). To proceed further, we apply the chain rule to the first term on the right side of
(2.108) and utilise the definition of the mean-field (2.106). These steps result in

δΓ[φc]
δφc(x) =

∫
d4x′ δW [J ]

δJ(x′)
δJ(x′)
δφc(x) −

∫
d4x′ δW [J ]

δJ(x′)
δJ(x′)
δφc(x) −

∫
d4x′ J(x′)δ(x − x′). (2.109)

Here, we simplified the last term using the functional derivative relation (2.52).

From this result, we obtain that

δΓ[φc]
δφc(x) = −J(x), (2.110)

which has the same structure as the classical Euler-Lagrange equation for a system in
the presence of an external source. However, this effective action includes, in addition to
classical properties, all quantum corrections that can arise from the quantisation of the
system. In other words, by solving the Euler-Lagrange equation for this action, we obtain
the equations governing the dynamics of the quantum theory.
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We can better observe this correspondence with the Euler-Lagrange equation as
we take the limit J(x) → 0, which results in φc → φc = constant. Then (2.110) reduces to

δΓ[φc]
δφc(x)

∣∣∣∣∣∣
φc(x)=φc

= 0, (2.111)

the stationary-action principle, yielding the quantum equations of motion for the field φc.
Furthermore, as we take the classical limit � → 0, φc becomes a classical field, and the
equation above becomes the stationary-action principle for a classical action.

Now that we understand that the effective action Γ[φc] is an object analogous to
the classical action S[φ], with the difference that the former is encompassed by quantum
corrections, we shall explore how this action leads to n-point functions for a QFT. To
accomplish this, we differentiate (2.110) with respect to J(x). This leads to

δ

δJ(x1)
δΓ[φc]
δφc(x) = −δ(x − x1), (2.112)

where we used the relation (2.52). Here, we realise that we can rewrite (2.112) as
∫

d4x′ δφc(x′)
δJ(x1)

δ2Γ[φc]
δφc(x′)δφc(x) = −δ(x − x1). (2.113)

Using the definition of the mean-field (2.106), we express the integral above as
∫

d4x′ δ2W [J ]
δJ(x1)δJ(x′)

δ2Γ[φc]
δφc(x′)δφc(x) = −δ(x − x1). (2.114)

For this equation to hold, we must have
(

δ2Γ[φc]
δφc(x′)δφc(x)

)−1

= − δ2W [J ]
δJ(x)δJ(x′) . (2.115)

As we take the limit where J = 0 and φc(x) = φc, we utilise (2.104) and then observe that
the right-hand side of the equation corresponds to the connected two-point propagator

⎛
⎜⎝ δ2Γ[φc]

δφc(x)δφc(x′)

∣∣∣∣∣∣
φc

⎞
⎟⎠

−1

= G(x − x′). (2.116)

This propagator is now known as the dressed propagator and corresponds to the propagator
filled with quantum corrections given by the quantisation of interactions between fields.
To observe this, we can parameterise the propagator [68, 70] as

G = 1
G−1

F − Σ
. (2.117)

Note that here, we are not explicitly expressing the dependence on x and x′ for the sake
of notation. The term GF corresponds to the free propagator, and Σ is a self-energy term
that represents a one-loop diagram (2.95).
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Upon expanding this dressed propagator, we obtain

G = GF + GF Σ GF + GF Σ GF Σ GF + · · · , (2.118)

and the diagrams

G(x1 − x2) =

+ + · · · .

(2.119)

This outcome illustrates that the propagator derived from the second derivative of the
effective action and its subsequent expansion corresponds precisely to a series of 1PI
diagrams, namely the diagrams (2.81) and (2.95). Hence, acquiring an effective action for
a field theory results in capturing all information from it.

To compute n-point correlation functions, the result (2.116) can be generalised to

i
δnΓ[φc]

δφc(x1) · · · δφc(xn) = G1PI(x1, · · · , xn), (2.120)

as we did for the generating functionals Z[J ] and W [J ].

2.5.1 Background field method

Having understood the concept of effective action, let us now explore the so-called
background field method [10, 70, 76, 77], which serves as a means to derive this effective
action for any field φ.

Essentially, the central idea of this method is to expand a generic field φ(x) into
two fields: the background field φc(x), which represents the classical part of the theory
we aim to quantise; and the fluctuations ϕ(x), which, upon quantisation, will account
for quantum corrections to the classical part. Thus, with this in mind, the field φ(x) is
decomposed as

φ(x) = φc(x) + ϕ(x), (2.121)

and its classical action is expressed as

S[φ(x)] = S[φc(x) + ϕ(x)]. (2.122)

To obtain the quantisation of fluctuations ϕ(x), we employ the functional approach
to quantisation, thereby writing the generating functional Z[J ] as

Z[J ] =
∫

Dϕ(x) ei[S[φc(x)+ϕ(x)]+
∫

d4x J(x)(φc(x)+ϕ(x))]. (2.123)

Here, we are integrating only over the field ϕ(x) as it is the one we want to quantise. Thus
the field φc(x) is constant with respect to this integration.
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Moving forward, we expand the exponential argument around the background field
φc(x), resulting in

I = S[φc(x) + ϕ(x)] +
∫

d4x J(x)(φc(x) + ϕ(x))

= S[φc] +
∫

d4x Jφc +
∫

d4x

⎛
⎜⎝ δS[φ]

δφ(x)

∣∣∣∣∣∣
φc

+ J

⎞
⎟⎠ϕ(x)

+ 1
2

∫
d4x d4x′ϕ(x)

⎛
⎜⎝ δ2S[φ]

δφ(x)δφ(x′)

∣∣∣∣∣∣
φc

⎞
⎟⎠ϕ(x′) + · · · .

(2.124)

In this expansion, we observe that the third term in the second line becomes zero, as it is
a solution of the equation of motion of the classical action S[φ], similar to what we have
seen in (2.111). Hence, we can rewrite the expansion as

I = S[φc] +
∫

d4x Jφc + 1
2

∫
d4x d4x′ϕ(x)

⎛
⎜⎝ δ2S[φ]

δφ(x)δφ(x′)

∣∣∣∣∣∣
φc

⎞
⎟⎠ϕ(x′) + · · · . (2.125)

As we are interested in corrections up to one loop, we will not include the higher-order
terms (· · · ) in the next steps. Nevertheless, it is worth mentioning that this method can
be employed to find effective actions with these higher-order corrections. However, some
difficulties associated with solving the path integral for these terms may arise.

As we substitute this result into the generating functional (2.123), we obtain

Z[J ] = ei(S[φc]+i
∫

d4x Jφc)
∫

Dϕ exp

⎡
⎢⎣ i

2

∫
d4x d4x′ϕ(x)

⎛
⎜⎝ δ2S[φ]

δφ(x)δφ(x′)

∣∣∣∣∣∣
φc

⎞
⎟⎠ϕ(x′)

⎤
⎥⎦, (2.126)

where we have factored out the terms that do not depend on the fluctuations ϕ(x), as they
remain constant with respect to integration. Furthermore, recognising that this integral is
Gaussian, we apply the result (2.15), yielding

Z[J ] = ei(S[φc]+
∫

d4x Jφc)

⎡
⎢⎣det

⎛
⎜⎝1

i

δ2S[φ]
δφ(x)δφ(x′)

∣∣∣∣∣∣
φc

⎞
⎟⎠
⎤
⎥⎦

− 1
2

, (2.127)

the quantisation of fluctuations ϕ with a background field φc.

To derive the effective action Γ[φc] from this result, we utilise the property of the
determinant (2.73), leading to

⎡
⎢⎣det

⎛
⎜⎝1

i

δ2S[φ]
δφ(x)δφ(x′)

∣∣∣∣∣∣
φc

⎞
⎟⎠
⎤
⎥⎦

− 1
2

= exp

⎡
⎢⎣−1

2Tr log

⎛
⎜⎝1

i

δ2S[φ]
δφ(x)δφ(x′)

∣∣∣∣∣∣
φc

⎞
⎟⎠
⎤
⎥⎦ . (2.128)

Here, we observe that the factor 1/i inside Tr log contributes only an additive constant,
thus we discard it. Upon substituting this outcome back into (2.127), we derive the
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generating functional up to one-loop corrections

Z[J ] = exp i

⎡
⎢⎣S[φc] + i

2Tr log

⎛
⎜⎝ δ2S[φ]

δφ(x)δφ(x′)

∣∣∣∣∣∣
φc

⎞
⎟⎠+

∫
d4x Jφc

⎤
⎥⎦ . (2.129)

Now that we have the generating functional, we can efficiently substitute it into
the generating functional of connected diagrams (2.100) and then perform a Legendre
transformation, thus obtaining the effective action

Γ[φc] = S[φc] + i

2�Tr log

⎛
⎜⎝ δ2S[φ]

δφ(x) δφ(x′)

∣∣∣∣∣∣
φc

⎞
⎟⎠ . (2.130)

Here, we observe that this functional appears as a modification of the classical action, as
the first term on the right-hand side corresponds to the classical action, while the second
term represents one-loop quantum corrections, i.e. proportional13 to the first order of
�, arising from the quantisation of the fluctuations ϕ. Therefore, upon deriving such an
effective action for the theory under our investigation, we encapsulate all the quantum
properties of the system up to the one-loop level.

13 We reintroduced � here for clarity.
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3 Quantum Electrodynamics

Quantum Electrodynamics (QED) stands as the extension of electrodynamics to
the quantum regime. It is responsible for describing the behaviour of photons, electrons
and positrons, along with their interactions. As previously discussed, it is the pioneering
theory in reconciling quantum mechanics and special relativity, representing one of the
most precise theories ever formulated.

We shall begin by introducing some notions of Lie groups, representations, and
Lie algebra in Section 3.1. There, we shall explore gauge invariance in the bosonic and
fermionic sectors of QED, as well as define the fields present in these sectors. Additionally,
the classical field equations of motion will be obtained from the QED Lagrangian in Section
3.2. Moving on to Sections 3.3 and 3.4, we shall quantise the so-called gauge and Dirac
fields, respectively.

3.1 Symmetries
Symmetries, denoting the preservation or invariance of a system’s dynamics under

a group of transformations, hold significant importance in quantum field theories. One
reason for its importance stems from the fact that Lagrangians in QFT are built from
selecting the symmetries we want the system of interest to possess.

For example, we exclusively deal with Lagrangians that remain invariant under
Lorentz transformations in QFT, thus ensuring the theory’s validity in relativistic regimes.
Another instance is found in quantum electrodynamics, where the focus lies on gauge
transformations, i.e local and continuous transformations, under which QED’s Lagrangian
is invariant.

The reason that we explore this invariance, known as gauge invariance, is because
it is an essential characteristic of classical electromagnetism. Consequently, it is expected
to also manifest in its quantum counterpart.

To be more precise, gauge invariance is not a symmetry per se, in the traditional
sense of the word, but rather an inherent ambiguity within the theory. This means that
different mathematical expressions describe the same physical configuration, leading to
some problems with quantisation, as we will further discuss in this chapter. However, for
the sake of nomenclature, we shall also call it symmetry.

From a mathematical standpoint, the transformations associated with this invari-
ance are based on the so-called Lie groups, which consist of elements represented by g

that depend on a set of continuous parameters αa, where a = 1, · · · , n and n is the group
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dimension [4, 78, 79].

Furthermore, the term “local transformation” refers to the fact that the parameters
αa depend on spacetime coordinates and are thus expressed as αa(x). In other words,
under a local transformation, the system changes by a different amount at every point in
spacetime. In contrast, a global transformation acts the same way at all points.

In summary, groups and their elements are abstract objects and do not inherently
possess physical meaning. Therefore, in order to utilise them in physics and give them
meaning, we must first define the so-called group representations.

A representation is an operation that assigns to a generic and abstract element g of
a group G, a linear operator DR(g), acting on a vector space V [4, 78–80]. This operation
ensures that the representation of the product of two group elements corresponds to the
product of the representation of each group element

DR(g1 · g2) = DR(g1)DR(g2). (3.1)

Note that representations preserve the group structure, meaning that the representation
DR(g) can be expressed in various forms as long as the underlying group structure, namely
the table for group operations, remains unchanged. Consequently, the operation of an
element g, given a representation DR(g), on a vector φi, i = 1, · · · , n, in the vector space
V , is given by

φi → (DR(g))i
j φj, (3.2)

where for a Lie group its elements are defined as g = g(α1, · · · , αn) ≡ g(α).

As the notion of representation has been established, a representation for the Lie
groups must be identified. Assuming that the parameter αa is infinitesimal, that is, αa � 1,
DR(g) is expressed as a Taylor series

DR(g(αa)) = 1 + ∂DR(g(αa))
∂αa

∣∣∣∣∣∣
α=0

dαa + O(α2)

= 1 + iT a
R dαa + O(α2).

(3.3)

Here, we define the so-called generators of the Lie group in the representation R,

T a
R ≡ −i

∂DR

∂αa

∣∣∣∣∣∣
α=0

, (3.4)

with the inclusion of the factor i to ensure that the generator is Hermitian. This object is
responsible for generating all transformations within a group. Further, equation (3.3) can
be represented by an exponential functional of the form

DR(g(αa)) = e−iαaT a
R , (3.5)

which in the case of a local transformation, we set that αa = αa(x).
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An essential feature of these Lie group generators is that they form a structure
called a Lie algebra. This structure is a vector space V equipped with the brackets operation
[·, ·] defined as

[·, ·] : V × V → V, (3.6)

which follows the Jacobi identity

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0. (3.7)

Here, A, B and C are matrices [4].

In addition, the Lie algebra can be expressed1 by

[T a
R, T b

R] = ifab
c T c

R, (3.8)

where the antisymmetric2 tensor denoted by fab
c is referred to as structure constants and

is responsible for defining the Lie algebra. As it is representation-independent, we have
the flexibility to choose any representation for a given group. This choice is subject to
the condition that they satisfy the commutation relation (3.8), dictated by the structure
constants obtained from the group operation table. Thus, with the structure constants
and the generators established, all the transformations of a group can be computed.

An important detail to note is that in the case of abelian symmetry transformations,
where the elements of the group commute among themselves, we have [T a

R, T b
R] = 0, resulting

in the vanishing of the structure constants.

3.1.1 Bosonic sector

As we previously reviewed some concepts of group theory, we shall explore in this
subsection the symmetries within the bosonic sector of QED, particularly those under
gauge transformations, i.e. local and continuous transformations.

The bosonic sector of QED is described by vector fields Aμ(x), also known as
gauge fields. In simple terms, a vector field assigns a vector to each point in spacetime.
A more precise definition is then provided by the way they transform under Lorentz
transformations Λμ

ν .

Let us recall that a four-vector xμ transforms under a Lorentz transformation Λμ
ν ,

preserving the length gμνxμxν , as follows:

xμ → x′μ = Λμ
ν xν , (3.9)

where x′μ is the transformed four-vector. This transformation is then extended to a vector
field Aμ(x) with

Aμ(x) → A′μ(x) = Λμ
νAν(Λ−1x). (3.10)

1 The derivation of this relation can be motivated by the product of two different transformations
DR(g(αa)), and can be found in [4, 80].

2 This means that permutations of indices introduce a negative sign to the tensor.
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Here, the coordinates x corresponding to the transformed points are kept fixed, and
Λ−1 denotes the inverse Lorentz transformation. Consequently, we observe that A′μ(x),
representing the transformed vector field evaluated at the transformed spacetime points,
equals, via the Lorentz transformation, the value of the original field evaluated at the
points before the transformation, thus (Λ−1x).

Given the way vector fields transform under a Lorentz transformation, as seen in
(3.10), they represent in QED the bosonic spin-1 particles such as photons. As we introduce
another field in the subsequent subsection, we will see that this field transforms differently
and thus describes other particles, such as electrons and positrons, which have spin-1/2.

Having defined the vector fields Aμ(x), we can now investigate their behaviour
under gauge transformations and the implications on the Lagrangian that governs the
bosonic sector in QED. This Lagrangian, known as Maxwell’s Lagrangian, is expressed as

LM = −1
4FμνF μν , (3.11)

where F μν = ∂μAν −∂νAμ represents the electromagnetic antisymmetric tensor, responsible
for describing the electromagnetic field in spacetime. In the context of QED, the gauge
fields Aμ(x) generalise the scalar electric potential φ and the magnetic vector A so that
Aμ = (φ, A), and are hence also known as the four-potential. [4, 8, 10, 81].

Concerning the gauge transformations in QED, these are based on the U(1) group, a
continuous group of 1×1 unitary matrices with the group operation of matrix multiplication
[78, 79]. Within this group, the group element U(x) is represented by an exponential phase
(3.5) as

U(x) = e−iα(x). (3.12)

Since it has dimension 1, U(1) possesses only one generator, conventionally set to 1. In
addition, it is an abelian group, meaning the order in which its transformations are applied
does not matter.

Under these transformations, a gauge field transforms as

Aμ → Aμ + ∂μα(x), (3.13)

which corresponds to a change of the potential vector by the gradient of any arbitrary
function α(x). In terms of the transformations U(x), we have

Aμ(x) → U(x)Aμ(x)U−1(x) + i (∂μU(x)) U−1(x). (3.14)

By applying these transformations to the field strength tensor Fμν , we observe the following:

Fμν → ∂μ (Aν + ∂να(x)) − ∂ν (Aμ + ∂μα(x)) = ∂μAν − ∂νAμ = Fμν . (3.15)

This implies that Fμν is invariant under these transformations, as is the Lagrangian (3.11).
In other words, electromagnetic fields, and consequently Maxwell’s equations, remain
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unaffected by a redefinition of the form of equation (3.13). They exhibit invariance under
gauge transformations.

3.1.2 The Dirac field

Before we begin with the examination of the impacts of gauge transformations
on the fermionic sector of quantum electrodynamics, we need to define the fields that
compose it. In this sector, we are interested in the so-called spinor fields, being responsible
for describing spin-1/2 particles, namely the electron and the positron.

In contrast to vector fields, which straightforwardly transform under Lorentz
transformations as seen in (3.10), spinor fields transform under the so-called spinorial
representation of dimension 2 of the Lorentz group.

To understand the significance of a dimension 2 representation in this context, let
us revisit the connection between the spin s of a particle and the dimension n of a rotation
group representation in quantum mechanics. This relation is expressed by

n = 2s + 1. (3.16)

As we observe, in order to describe spin-1/2 particles such as the electron, there exists
the necessity of finding a dimension 2 representation of the rotation group [3, 70]. This
representation is proportional to the Pauli matrices σi

σ1 =
⎛
⎝0 1

1 0

⎞
⎠ , σ2 =

⎛
⎝0 −i

i 0

⎞
⎠ and σ3 =

⎛
⎝1 0

0 −1

⎞
⎠ , (3.17)

which defines the Lie algebra of rotations

[J i, J j] = iεijkJk. (3.18)

Here, J i = σi/2 is the rotation generator, also known as the angular-momentum operator
[3], and εijk represents the Levi-Civita symbol.

With this representation in hand and the understanding that the Lorentz group
generalises the rotation group, it becomes evident that obtaining a dimension 2 represen-
tation of the Lorentz group is required, as such representation will enable us to define the
fields that accurately describe spin-1/2 particles.

Therefore, let us begin by defining the so-called Dirac matrices, also referred to as
gamma matrices γμ. These are 4 × 4 matrices that generalise the concept of Pauli matrices
to four dimensions (3.17). They are defined to satisfy the anti-commutation relation

{γμ, γν} = 2gμνI4. (3.19)

Here, I4 denotes the 4 × 4 identity matrix [4, 8–10].
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Furthermore, these matrices can be represented in various forms, with one of the
most common being the Weyl representation, also known as the chiral representation. In
this representation, they take the form

γ0 =
⎛
⎝0 I2

I2 0

⎞
⎠ and γi =

⎛
⎝ 0 σi

−σi 0

⎞
⎠ , (3.20)

where I2 is the 2 × 2 identity matrix and σi are the Pauli matrices. Before we proceed, it
may initially seem incorrect to use these matrices as they are 4× 4, considering that we are
seeking a 2 × 2 representation. However, as we shall see shortly, this does not lead to an
error once we define the field that transforms under this representation and its meaning.

As we need to focus on finding the spinorial representation of the Lorentz algebra
and its associated transformations, it is crucial to recall that the Lorentz algebra is written
as

[Mμν , Mρσ] = i(gνρMμσ − gμρM νσ − gνσMμρ + gμσM νρ), (3.21)

where the tensors Mμν are the generators of the Lorentz group [4, 8, 10, 70]. By defining
these tensors in a particular representation, we can then define the transformations
associated with these generators and the fields that transform under this representation.

With this in mind, we define the following representation of the Lorentz algebra:

Sμν = i

4[γμ, γν ] = i

2γμγν − i

2gμν , (3.22)

where we consider the gamma matrices that we defined in (3.19) since we are interested in
a representation corresponding to spin-1/2.

To demonstrate that such a representation satisfies the Lorentz algebra (3.21), we
first need to evaluate

[Sμν , γρ] =
[

i

4[γμ, γν ], γρ
]

. (3.23)

By considering μ �= ν, this relation simplifies to

[Sμν , γρ] = i

2[γμγν , γρ]

= i

2γμγνγρ − i

2γργμγν .
(3.24)

In the first line, we utilised (3.22), where the metric gμν vanishes as the indices are not
equal, while, in the second line, we computed the commutation relation. We proceed by
rewriting the action by adding and subtracting a factor i

2γμγργν , which gives

[Sμν , γρ] = i

2γμγνγρ + i

2γμγργν − i

2γμγργν

− i

2γργμγν − i

2γμγργν + i

2γμγργν .
(3.25)
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Here, we observe that we can group the first two terms of each line into anticommutation
relations, so

[Sμν , γρ] = i

2γμ{γρ, γν} − i

2γμγργν − i

2{γρ, γμ}γν + i

2γμγργν . (3.26)

By applying (3.19), we find that

[Sμν , γρ] = i(γμgνρ − γνgμρ). (3.27)

With this relation in hand, we can now compute [Sμν , Sρσ]. When σ �= ρ, we have

[Sμν , Sρσ] = i

2[Sμν , γργσ]

= i

2[Sμν , γρ]γσ + i

2γρ[Sμν , γσ].
(3.28)

From the first to the second line, we used the property [A, BC] = [A, B]C + B[A, C],
where A, B, and C are operators. To continue, we employ relation (3.27) and obtain

[Sμν , Sρσ] = −1
2γμγσgρν + 1

2γνγσgμρ − 1
2γργμgσν + 1

2γργνgσμ. (3.29)

From here, we can further simplify by using (3.22). Thus, we have

[Sμν , Sρσ] = i(gνρSμσ − gρμSνσ − gσνSμρ + gμσSνρ). (3.30)

Here, we used the antisymmetry property Sαβ = −Sβα in the last two terms on the right
side. This proves that such a representation is a representation of the Lorentz group. To
be more precise, this representation is the so-called spinorial representation of the Lorentz
algebra.

Given this representation, we can express the following Lorentz transformation
using the exponential form (3.5):

S(Λ) = exp
(

− i

2ωμνSμν
)

, (3.31)

where ωμν represents an antisymmetric tensor. This tensor specifies the type of Lorentz
transformation being applied, whether it is a boost, a rotation, or a combination of both
[4, 8].

With this transformation in hand, we can define the fields upon which it operates.
These fields are understood as spinor or Dirac fields, denoted by ψa(x). They are four-
component fields indexed by a = 1, . . . , 4, which is known as a spinor index. When
subjected to a Lorentz transformation, it transforms as

ψa(x) → ψ′a(x) = S(Λ)a
bψ

b(Λ−1x). (3.32)

It is worth noting that, throughout this work, we shall not explicitly indicate these indices.
An important feature of this field is that it does not describe just one spin-1/2 particle
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but rather two spin-1/2 particles, namely, a particle and its antiparticle. Therefore, we do
not encounter issues with the representation being 4 × 4.

This becomes more evident when we represent the Dirac matrices in the chiral
form, using the so-called Weyl spinors, as follows:

ψ =
⎛
⎝ψL

ψR

⎞
⎠ . (3.33)

In this form, the spinor is divided into two components: ψL(x), referred to as a left-handed
Weyl spinor, and ψR(x) a right-handed Weyl spinor [4, 8]. The subscriptions L and R

refer to the directions of the spin and linear momentum, where the former corresponds to
parallel and the latter antiparallel.

3.1.3 Fermionic sector

With the spinor fields ψ(x) defined to describe spin-1/2 particles, we can finally
explore their behaviour under gauge transformations and the consequences for the Lagran-
gian governing the fermionic sector in QED. This Lagrangian, commonly referred to as
Dirac’s Lagrangian, is given as

LD = ψ̄ (iγμ∂μ − m) ψ. (3.34)

Here, γμ represents the Dirac matrices, m stands for the mass of the fermionic fields,
and ψ̄(x) = ψ†(x)γ0 and ψ(x) denote the Dirac spinors3. As we shall explore in the next
section, this Lagrangian leads to Dirac’s equation. However, we must be aware that here
we are dealing with fields and not wave functions as initially regarded by Dirac [1] in his
attempt to develop a relativistic quantum theory of the electron.

Considering that the gauge transformations in QED are based on the U(1) group,
we begin by defining the transformation for the Dirac spinors as

ψ(x) → Ue(x)ψ(x) and ψ̄(x) → U−1
e (x)ψ̄(x). (3.35)

In simple terms, spinors ψ transform equivalently to local phase rotations. Here, contrary
to (3.12), the transformation is defined as U(x)e = e−ieα(x), where the parameter e is the
group generator and is interpreted as the charge of the field ψ(x). In QED, this parameter
corresponds to the electron charge.

Replacing this transformation in the Lagrangian yields

LD → eieα(x)ψ̄ (iγμ∂μ − m) e−ieα(x)ψ = ψ̄ (iγμ∂μ − m) ψ + eψ̄γμ∂μα(x) �= LD, (3.36)

which tells us that the Lagrangian is not invariant. Consequently, the theory described
by (3.34) is not a gauge theory since it is not invariant under local transformations. In
3 ψ̄ is defined in such a way that the quantity ψ̄ψ is a Lorentz scalar [8].
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addition, we note that it is at least invariant under global transformations of the U(1)
group

LD → eieαψ̄ (iγμ∂μ − m) e−ieαψ = ψ̄ (iγμ∂μ − m) ψ = LD. (3.37)

However, as we are interested in obtaining a fermionic gauge theory, some changes in the
Lagrangian must cancel the new extra term that arises in (3.36).

This issue is solved by coupling the Dirac fields with the gauge fields Aμ, establishing
the interaction between electromagnetic fields and matter. This method is named minimal
coupling and introduces an object Dμ referred to as covariant derivative [4, 8, 10, 70],
which replaces the usual derivative in the Dirac’s equation. Thus, this new derivative is
defined as

Dμ ≡ ∂μ + ieAμ(x). (3.38)

By substituting this covariant derivative into Dirac’s Lagrangian, we obtain

LD = ψ̄ (iγμ∂μ − m) ψ − eψ̄γμψAμ, (3.39)

where we observe that the last term corresponds to the coupling of the Dirac and gauge
fields.

Since we are introducing or modifying a term in the Lagrangian, it is necessary to
define how it transforms under the group U(1). Thus, this transforms as

Dμψ → Ue(x)Dμψ, (3.40)

not forgetting that the vector field within the derivative transforms according to (3.14).
Therefore, transforming both the gauge and the spinor fields using

ψ(x) → e−ieα(x)ψ(x) and Aμ → Aμ + ∂μα(x), (3.41)

in the Dirac Lagrangian (3.39) leads to

LD → eieα(x)ψ̄ (iγμ∂μ − m) e−ieα(x)ψ − eψ̄γμψ (Aμ + ∂μα(x))
= +ψ̄ (iγμ∂μ − m) ψ + eψ̄(x)γμψ(x)∂μα(x)

− eψ̄(x)γμψ(x)Aμ − eψ̄(x)γμψ(x)∂μα(x)
= ψ̄ (iγμ∂μ − m) ψ − eψ̄γμψAμ

= LD.

(3.42)

Finally, we observe that the Lagrangian becomes invariant to local transformations of the
U(1) group.

Now that we know that the Dirac and Maxwell Lagrangians are invariant under local
transformations based on the group U(1), we unite them into a single Lagrangian, which
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describes both the bosonic and fermionic sectors of QED, in addition to the interaction of
their fields. This Lagrangian reads

L = −1
4FμνF μν + ψ̄

(
i /D − m

)
ψ, (3.43)

where the covariant derivative is written in Feynman slash notation and corresponds to
/D = γμDμ, and Dμ = ∂μ + ieAμ(x). Rewriting the Lagrangian with the gauge covariant
derivative in its explicit form, we have

L = −1
4FμνF μν + ψ̄ (iγμ∂μ − m) ψ − eψ̄γμψAμ, (3.44)

which, again, the first term corresponds to electromagnetic fields, the second to Dirac
spinors, and the third is an interaction term between the electromagnetic and Dirac fields.
Furthermore, from this last term, we can define a current Jμ = ψ̄γμψ, which is conserved,
that is ∂μJμ = 0, as long as ψ(x) satisfies Dirac’s equation [8].

3.2 Equations of Motion
Since we have yet to quantise the gauge and Dirac fields, the Lagrangian (3.44)

merely provides a classical description of the dynamics of these fields. Bearing this in mind,
our focus in this section lies in examining the equations of motion that can be derived
from (3.44) and their meaning. To obtain these equations of motion, we shall use

∂ν

(
∂L

∂ (∂νΦ)

)
− ∂L

∂Φ = 0, (3.45)

the generalisation of the Euler-Lagrange equation for fields, with Φ = Φ(x) corresponding
to any field [80, 82].

3.2.1 Maxwell’s equations

Let us begin with the gauge fields Aμ, which are responsible for describing the
bosonic sector of QED. As we will demonstrate here, the Euler-Lagrange equations for
these fields lead to the derivation of the covariant Maxwell’s equations.

Expressing the Lagrangian (3.44) in terms of these fields and their derivatives by
computing the contraction of the electromagnetic tensors, we find

L = 1
2(∂μAν∂νAμ − ∂νAμ∂νAμ) − eψ̄γμψAμ. (3.46)

Note that we omitted the terms containing only Dirac fields, as derivatives of these fields
yield zero.

With this Lagrangian at our disposal, we proceed to solve the first term of equation
(3.45):

∂ν

(
∂L

∂ (∂νAμ)

)
= ∂ν (∂μAν − ∂νAμ) = ∂νF μν . (3.47)
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Note that we used here the product rule and the fact that [83]:

∂(∂αAβ)
∂(∂μAν) = δμ

αδν
β.

Solving for the second term of equation (3.45) involves finding the derivative of the
Lagrangian with respect to the gauge fields Aμ so that

∂L
∂Aμ

= −eψ̄γμψ. (3.48)

Substituting these into the Euler-Lagrange equation gives

∂νF μν + eψ̄γμψ = 0. (3.49)

To obtain the conventional form of covariant Maxwell’s equations, we use the
definition of conserved current from Subsection 3.1.3 and move it to the right side of the
equation. This step leads to

∂νF μν = −eJμ. (3.50)

Here, we notice that the derivative is contracted with the index ν of the electromagnetic
tensor. To contract it with the index μ, we recall that the electromagnetic tensor is
antisymmetric, meaning that F μν = −F νμ. Consequently, when we exchange the indices μ

and ν, we get
∂μF μν = eJν , (3.51)

where the change of indices changed the negative sign of the source. Hence, we arrive at
the inhomogeneous Maxwell’s equations in covariant form4, corresponding to Gauss’s law
and Ampère’s law.

The other Maxwell’s equations, the homogeneous ones, are derived from (3.51)
using the definition of the dual field-strength tensor F̃ μν provided by

F̃ μν = 1
2εμνρσFρσ. (3.52)

In this equation, εμνρσ is defined as a fully antisymmetric tensor of rank four [81]. In
simpler terms, this tensor is the generalised Levi-Civita symbol for four dimensions. To
proceed, we differentiate the dual field-strength tensor in the same way as in the equation
(3.51). So one obtains

∂μF̃ μν = 1
2εμνρσ∂μFρσ

= 1
2εμνρσ∂μ∂ρAσ − 1

2εμνρσ∂μ∂σAρ.
(3.53)

From the first to the second line, we used Fρσ = ∂ρAσ − ∂σAρ, and applied the distributive
property.
4 Remember that we are using the Heaviside-Lorentz convention, so μ0 = ε0 = 0.
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Given that the contraction of antisymmetric tensors, like εμνρσ, with symmetric
tensors, such as ∂μ∂ρ, yields zero, we find

∂μF̃ μν = 0. (3.54)

This is known as the homogeneous Maxwell’s equations, corresponding to Faraday’s law of
induction and Gauss’s law of magnetism. Therefore, by combining (3.51) and (3.54), we
arrive at the comprehensive classical description of the electromagnetic theory [81].

To demonstrate that the contraction of a symmetric tensor Aμν and an antisymme-
tric tensor Bμν equals zero, we express their contraction as

AμνBμν = −AνμBνμ = −AμνBμν . (3.55)

In the first equality, we swap the indices, resulting in Bνμ introducing a factor of −1.
Transitioning from the middle to the last equality, we perform index changes μ → ν and
ν → μ. The result we obtain implies that AμνBμν = 0. Hence, the contraction of symmetric
and antisymmetric tensors is zero.

3.2.2 Dirac’s equation

Upon deriving the equations of motion from the bosonic sector of QED, we now
turn our attention to the other sector and derive Dirac’s equation. As we did in the last
subsection, we rewrite the Lagrangian (3.44) in terms of the Dirac fields ψ and ψ̄ and
their derivatives

L = ψ̄iγμ∂μψ − ψ̄mψ − eψ̄γμψAμ. (3.56)

In this expression, we have omitted terms that solely involve gauge fields.

Let us compute the first term of the equation (3.45) for both fields, where the first
equation will always correspond to the field ψ and the second to the field ψ̄:

∂ν

(
∂L

∂ (∂νψ)

)
= ∂ν

(
ψ̄iγν

)
= iγν∂νψ̄ and ∂ν

⎛
⎝ ∂L

∂
(
∂νψ̄

)
⎞
⎠ = 0. (3.57)

Now, calculating the second term of the Euler-Lagrange equation, which is a simple
differentiation with respect to the fields, we have

∂L
∂ψ

= −ψ̄m − eψ̄γμAμ and ∂L
∂ψ̄

= iγμ∂μψ − mψ − eγμψAμ. (3.58)

Substituting these results into (3.45) leads to

iγν∂νψ̄ + mψ̄ + eψ̄γμAμ = 0 and − iγμ∂μψ + mψ + eγμψAμ = 0. (3.59)

To put these results in the usual form of Dirac’s equation, we move the last term
of each equation to the right side of the equal sign and multiply the second equation by
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−1. Following these steps, we obtain

iγν∂νψ̄ + mψ̄ = −eψ̄γμAμ and iγμ∂μψ − mψ = eγμψAμ. (3.60)

Additionally, in the second equation, we change the indices from γμ∂μ to γν∂ν , and factor
out the fields in both equations. These operations result in

(iγν∂ν + m)ψ̄ = −ψ̄γμAμ and (iγν∂ν − m)ψ = γμψAμ, (3.61)

Dirac’s equations in the presence of electromagnetic fields described by Aμ.

For Aμ = 0, these equations yield Dirac’s equations, one of the early attempts to
formulate a relativistic quantum theory of the electron. Note that in this attempt, ψ was
regarded as a wave function rather than a field as we derived. However, this formulation
came with several problems, including the issue of negative energy eigenstates.

3.3 Quantisation of Gauge Fields
The process of quantisation in the functional formalism, as discussed previously,

involves integrating out the fields that we aim to quantise. This procedure corresponds to
computing the n-point functions, or Green’s functions, of the theory using both equations
(2.57) and (2.56). Considering this, as we focus on the quantisation of gauge fields Aμ(x),
the following functional integral must be solved

Z[J ] =
∫

DA exp
(

iS[A] + i
∫

d4x Jμ(x)Aμ(x)
)

. (3.62)

In this expression, Jμ(x) denotes the sources, S[A] stands for the classical action dependent
on the gauge fields Aμ, and DA ≡ DA0DA1DA2DA3.

Following a similar approach to our treatment of scalar fields, the action for the
gauge fields should be expressed in quadratic form as in (2.60), namely

S[A] =
∫

d4x Aμ Oμν Aν . (3.63)

The reason for writing the action in this form is so that we can use the result (2.16) and
then obtain the generating functional

Z[Jμ] = Z[0] exp
(

−1
2

∫
d4x d4x′ Jμ(x)Dμν

F (x − x′)Jν(x′)
)

, (3.64)

where Dμν
F corresponds to the inverse of the operator Oμν . Note that specifying Z[0] is

unnecessary since this term is cancelled by the denominator in (2.56).

Therefore, we express the action for the gauge fields (3.11) that we shall quantise
as

S[A] =
∫

d4x
(

−1
4FμνF μν

)

= 1
2

∫
d4x (∂νAμ∂νAμ − ∂νAμ∂μAν) .

(3.65)
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Following this, we perform an integration by parts in the second line, which leads to the
action in the quadratic form

S[A] = 1
2

∫
d4x Aμ(x)

(
∂2gμν − ∂μ∂ν

)
Aν(x)

= 1
2

∫ d4k

(2π)4 Aμ(k)
(
−k2gμν + kμkν

)
Aν(−k).

(3.66)

In this equation, from the first to the second line, we applied a Fourier transformation
from position to moment space5 using

Aμ(x) =
∫ d4k

(2π)4 e−ik·xAμ(k), (3.67)

with Aμ(k) representing the gauge field in momentum space. The reason for this step is
to simplify the next operations to be performed, as we are now working with functions
rather than operators such as the derivative ∂μ. From this action in quadratic form, we
observe that

Oμν(x) = (∂2gμν − ∂μ∂ν) and Oμν(k) = (−k2gμν + kμkν). (3.68)

Since we have obtained the quadratic form of the action, Dνρ
F (x − x′) must be

determined so that we can find the generating functional (3.64). Similar to the scalar field
in the momentum space, Dνρ

F (k) must satisfy
(
−k2gμν + kμkν

)
Dνρ

F (k) = iδ ρ
μ . (3.69)

However, this equation has no solution because Oμν in both the position and momentum
spaces is singular due to gauge invariance. This becomes evident when considering eigen-
functions Aμ(k) = kμα(k), where α is any scalar function. By inserting these into (3.69),
we derive (

−k2gμν + kμkν

)
kνα(k) =

(
−k2gμνkν + kμkνkν

)
α(k)

=
(
−k2kμ + kμk2

)
α(k)

= 0.

(3.70)

Consequently, it presents eigenvalues equal to zero, indicating that its determinant is also
null, hence it is not invertible.

If we apply this result to (3.66), we find that the path integral is badly defined, as
we are integrating over a continuous infinity of physically equivalent field configurations,
leading to an overcounting of these configurations due to gauge invariance. Here, we can
better understand the ambiguity in the description of gauge fields in our theory. Since
there are infinitely many different possible choices for the function α(x), we encounter an
infinite number of field configurations that produce the same dynamics, as seen in (3.15).
5 This transformation is shown in more detail in Chapter 5.
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Essentially, the path integral treats Aμ and its gauge transformation A′
μ as two dis-

tinct field configurations. However, they should be considered the same as they correspond
to the same action, given the gauge invariance, and therefore represent the same physical
field configuration. To resolve this ambiguity, we employ a technique called gauge fixing.

The gauge fixing method developed by Faddeev and Popov in [84] involves elimi-
nating redundant terms from the path integral, thereby solving it for distinct physical
configurations [8–10, 70]. In essence, the concept aims to express a path integral as
something similar to

N
∫

Dα
∫

DĀ eiS[Ā], (3.71)

where N is a constant, the integral in DĀ corresponds to an integration over all gauge fields
that are not physically equivalent, whereas the one in Dα corresponds to an integration
over all other possible configurations that can be generated from α(x), through the gauge
transformations (3.13).

As the derivation of this technique falls outside the scope of this dissertation, we
present that it leads to a modified classical action that takes the following form:

S[A] =
∫

d4x

(
−1

4FμνF μν − 1
2ξ

(∂μAμ)2
)

, (3.72)

where the second term being integrated represents the gauge fixing term, ensuring that
Oμν remains non-singular. This allows for the computation of the path integral and,
consequently, the quantisation of the gauge fields Aμ. Here, ξ is an arbitrary constant that
parameterises any gauge choice. This choice depends on the specifics of the problems being
studied and can either facilitate or complicate the calculations that rely on it.

Proceeding, we reorganise the terms of the action (3.72) and integrate them by
parts. Afterwards, we performed a Fourier transform to momentum space, resulting in

S[A] = 1
2

∫
d4x Aμ(x)

(
∂2gμν − ∂μ∂ν + 1

ξ
∂μ∂ν

)
Aν(x)

= 1
2

∫ d4k

(2π)4 Aμ(k)
(

−k2gμν + kμkν − 1
ξ

kμkν

)
Aν(−k).

(3.73)

Therefore, we see that the addition of the gauge-fixing term leads to a modification of the
equation (3.69), which is changed to

[
−k2gμν +

(
1 − 1

ξ

)
kμkν

]
Dνρ

F (k) = iδ ρ
μ . (3.74)

The solution to this equation is straightforward by proposing an ansatz

Dνρ
F (k) = Agνρ + Bkνkρ, (3.75)
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where A and B are functions of k2. After substituting the proposed ansatz into (3.74) and
expanding the terms, we obtain

−k2gμνAgνρ +
(

1 − 1
ξ

)
kμkνAgνρ − k2gμνBkνkρ +

(
1 − 1

ξ

)
kμkνBkνkρ = iδ ρ

μ . (3.76)

By using the identity gμνgνρ = δ ρ
μ , along with other simplifications, we arrive at

−Ak2δ ρ
μ + Akμkρ − 1

ξ
Akμkρ − 1

ξ
Bk2kμkρ = iδ ρ

μ . (3.77)

To find the coefficients, we compare them to both sides of the equation. Thus, for
the coefficient A we recognise that −Ak2δ ρ

μ = iδ ρ
μ , leading to A = − i

k2 . Substituting this
value and isolating B yields

B = − ξ

k2kμkρ

i

k2 kμkρ + 1
k2kμkρ

i

k2 kμkρ = i

k4 (1 − ξ) . (3.78)

Therefore, we find that the functions A and B are given by

A = − i

k2 and B = i

k4 (1 − ξ) . (3.79)

These coefficients can be replaced in (3.75) leading to

Dνρ
F (k) = − i

k2 gνρ + i

k4 (1 − ξ) kνkρ. (3.80)

We can factor out − i
k2 , rename the indices, and add a term iε which tends to 0 in the

denominator, as we did in (2.68), which is necessary to specify the integral contour to
return to position space. Thus, obtaining

Dμν
F (k) = −i

k2 + iε

(
gμν − (1 − ξ)kμkν

k2

)
. (3.81)

Here, the constant ξ can assume any value as mentioned before, although the most
commonly used in QED are the Landau gauge ξ = 0 and the Feynman gauge ξ = 1 [4, 8].

In QED, as we consider interactions with matter, the quantisation of the gauge
fields Aμ(k) corresponds to the quantisation of the electromagnetic fields. The result we
obtained is known as the photon propagator. This expression describes the propagation of
a photon, an excitation of the quantised fields Aμ(k) with momentum k.

In position space, such a propagator corresponds to the amplitude for a photon
propagating between the points x and x′. Through a Fourier transformation, and by setting
ξ = 1, the photon propagator in position space is given as

Dμν
F (x − x′) =

∫ d4k

(2π)4
−igμν

k2 + iε
e−ik(x−x′). (3.82)

Such a propagator can be represented as a Feynman diagram:

Dμν
F (x1 − x2) = x1 x2 . (3.83)

As we substitute this result into (3.64), we arrive at the generating functional for gauge
fields.
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3.4 Quantisation of Dirac Fields
Before exploring the generating functional for the spinor fields ψ and ψ̄ and then

proceeding with their quantisation, we must first discuss the concept of anticommuting
numbers and their properties.

As Dirac fields obey Fermi-Dirac statistics, they exhibit canonical anticommutation
relations, unlike the bosonic fields previously discussed, which follow Bose-Einstein statistics
and thus commute. This statistical distinction dictates that the temporal ordering of field
operators in (2.56) entails a negative sign upon interchange of two operators [4, 8, 10, 70].

Consequently, certain concepts and notions introduced in Chapter 2, such as the
sources J(x) and the Gaussian integral result (2.15), require redefinition to accommodate
this anticommutation property. Additionally, it is pertinent to mention that the path
integral holds for any field, whether it is bosonic or fermionic.

3.4.1 Grassmann numbers

These particular numbers are known as Grassmann numbers, or variables, and are
defined by their anticommutative property. This means that two Grassmann numbers ηi

and ηj satisfy the condition
ηiηj = −ηjηi, (3.84)

where the subscripts i and j are employed to distinguish between the Grassmann numbers
[8–10, 70]. From this, it is straightforward to see that the square of a Grassmann number
equals zero

η2 = ηη = −ηη = 0. (3.85)

With these properties established, the most general function with one Grassmann
number η is given by a Taylor expansion up to the first power of η, namely

f(η) = a + bη, a, b ∈ R. (3.86)

Note that the constants a and b could be replaced by complex numbers, but unlike real
numbers, they do not commute with Grassmann numbers.

We must define the differentiation operation for these numbers. Accordingly, a
function f(η) can be differentiated with respect to η using the following defined rules:

∂

∂η
η = 1 and ∂

∂η
a = 0. (3.87)

Additionally, the derivative operator exhibits the anticommutation property, similar to
Grassmann numbers [8, 69, 70]. In other words, when considering the product of two
derivatives, we have

∂

∂ηi

∂

∂ηj

= − ∂

∂ηj

∂

∂ηi

. (3.88)
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This property also affects the usual differentiation properties. For example, the product
rule is expressed as

∂

∂ηi

(ηjηk) =
(

∂ηj

∂ηi

)
ηk − ηj

(
∂ηk

∂ηi

)
= δijηk − δikηj, (3.89)

in which δij and δik are Kronecker deltas.

Before moving on to the definition of the integration of Grassmann numbers,
we can perform an example in which we have a function of two Grassmann variables
g(ηi, ηj) = a + bηi + cηj + eηiηj, where the coefficients are real numbers [69]. Differentiating
g(ηi, ηj) with respect to ni leads to

∂

∂ηi

g(ηi, ηj) = b + eηj, (3.90)

while differentiating g(ηi, ηj) with respect to ηj leads to

∂

∂ηj

g(ηi, ηj) = c + e
∂

∂ηj

(ηiηj) = c − eηi, (3.91)

where we utilised the product rule (3.89). Therefore, we note that, unlike the usual
differentiation rules, a negative sign appears in the second term, given the anticommutation
property.

Since we have established the operation of differentiation for Grassmann numbers, it
is natural that we also define the integration operation as well. The integral of Grassmann
numbers is referred to as the Berezin integral and follows two axioms. Firstly, it needs to
be linear, so that ∫ ∞

−∞
dη α f(η) = α

∫ ∞

−∞
dη f(η), (3.92)

where α is a constant, f(η) is given by (3.86). Secondly, the integral of a total derivative
is null [9, 70]. This means that

∫ ∞

−∞
dη

∂

∂η
f(η) = 0. (3.93)

From these axioms, we define the following properties:
∫ ∞

−∞
dη η = 1 and

∫ ∞

−∞
dη = 0, (3.94)

Due to these properties, the integration of our most general function (3.86) gives
∫

dη f(η) =
∫

dη a + b
∫

dη η = b. (3.95)

In this integration, we notice that the outcome matches that of differentiating a Grassmann
number, thus ∫

dη f(η) = ∂

∂η
f(η). (3.96)
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This statement can be illustrated with the following example.

Given a function of two Grassmann variables, g(ηi, ηj) = a + bηi + cηj + eηiηj like
the one that was used as an example for differentiation, the integrating with respect to ηi

leads to
∫

dηi (a + bηi + cηj + eηiηj) = b + e
∫

dηi ηiηj = b + eηj

∫
dηi ηi = b + eηj. (3.97)

Note that ηj changed position with both ηi and dηi, thus changing the sign twice. However,
since (−1)2 = 1, the sign remains positive. Integrating g(ηi, ηj) with respect to ηj gives

∫
dηj (a + bηi + cηj + eηiηj) = c + e

∫
dηj ηiηj = c − eηi

∫
dηj ηj = c − eηi. (3.98)

Comparing these results with those of (3.90) and (3.91), we observe that the relation (3.96)
holds.

In addition to defining the integration and differentiation operations, we need to
generalise the notion of complex numbers to Grassmann numbers. Therefore, complex
Grassmann numbers are written as

η ≡ 1√
2

(η1 + iη2) and η∗ ≡ 1√
2

(η1 − iη2), (3.99)

where η∗ is the complex conjugated of η [8, 70]. Regarding the integration of the numbers,
we adopt the convention ∫

dη∗dη (ηη∗) = 1. (3.100)

This convention is related to the order of integration of Grassmann numbers. Here, we
choose to integrate first with respect to dη and then with respect to dη∗. This means the
innermost integral is evaluated first. If we were to perform these integrations in the reverse
order, the integration would result in −1. The same thing happens in the derivative (3.4.1),
which we choose to differentiate the Grassmann number first.

As we have already seen, the functional quantisation process involves integrating
an exponential with the classical action. Taking this into consideration, our attention
naturally turns to integrating functions involving complex Grassmann numbers in this
structure. Thus, our goal is to evaluate the following integral:

IM =
(∏

i

∫
dη∗

i dηi

)
e−η∗Bη, (3.101)

where we introduce the Grassmann-valued n-component vector η = (η1, η2, · · · , ηn) and its
complex conjugate η∗, along with a Hermitian matrix denoted as B with eigenvalues bi.

Before performing the multidimensional integral, let us first solve a simpler one-
dimensional case, which is

I =
∫

dη∗dη e−η∗aη. (3.102)
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This integral is solved by expanding the exponential using a Taylor series and then applying
the convention (3.100) so that

I =
∫

dη∗dη (1 − η∗aη) = a
∫

dη∗dη ηη∗ = a. (3.103)

Now we can address (3.101). To solve this integral, we employ unitary transforma-
tions of the form ηi → Uijηj to diagonalise the matrix B [8]. Applying this transformation
to (3.101) yields

IM =
(∏

i

∫
dη∗

i dηi

)
exp

(
−∑

i

η∗
i bijηi

)

=
∏

i

∫
dη∗

i dηi exp (−η∗
i bijηi) .

(3.104)

As we use the result from the simpler integral (3.103), we hence obtain∫
dη dη̄ eη̄Bη =

∏
i

bi = detB. (3.105)

With this established, the Gaussian integral (2.15) utilised in the quantisation of scalar
and gauge fields (bosonic fields) can be generalised to fermionic fields as follows:∫

Dψ Dψ̄ eψ̄Bψ+η̄ψ+ψ̄η = N detB e−η̄ B−1 η, (3.106)

where N is a constant result of the integration [8–10, 69, 70, 72]. Taking these results into
consideration, we can now write a generating functional for fermions, as detailed in the
subsequent subsection.

3.4.2 Functional integral for fermions

As previously mentioned, the spinors ψ(x) and ψ̄(x) obey Fermi statistics and thus
exhibit the anticommutation property. To further emphasise this property, we can represent
them as a linear combination of complex functions φi(x) and Grassmann numbers ψi [8,
69], yielding

ψ(x) =
∑

i

ψiφi(x). (3.107)

As we express them in this manner, these fields satisfy the anticommutation relation (3.84),
similar to Grassmann numbers. Based on this definition, along with the others established
throughout this section, we can express the generating functional for free spinor fields as

Z[η, η̄] =
∫

DψDψ̄ exp
[
i
∫

d4x ψ̄(x)
(
i/∂ − m

)
ψ(x) + η̄(x)ψ(x) + ψ̄(x)η(x)

]
, (3.108)

with Grassmann-valued sources η̄(x) and η(x). Solving this integral results in the quanti-
sation of Dirac fields. So, our goal here is to evaluate the integral (3.108), which presents
the quadratic form

S[ψ] =
∫

d4x ψ̄(x) O(x)ψ(x). (3.109)
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Here, O(x) =
(
i/∂ − m

)
, and its inverse is defined as BF (x − x′).

We can proceed by employing the relation (3.106), which solves the integral (3.108),
leading to

Z[η, η̄] = Z[0, 0] exp
(

−
∫

d4x d4x′ η̄(x)BF (x − x′)η(x′)
)

. (3.110)

In contrast to the quantisation of gauge fields, we will specify the fermionic generating
functional for η̄ = η = 0, that is Z[0, 0],

Z[0, 0] =
∫

DψDψ̄ exp
[
i
∫

d4x ψ̄(x)
(
i/∂ − m

)
ψ(x)

]

= N det
(
i/∂ − m

)
.

(3.111)

Here, we used the result (3.105), and N corresponds to a constant. The reason for this
computation will be better explained as we examine the effective Lagrangian for fermions
in Section 4.2.

The last step to have quantised spinor fields is the computation of the inverse
BF (x − x′). Similar to how we approached the quantisation of scalar and vector fields, we
need to solve (

i/∂ − m
)

BF (x − x′) = iδ(x − x′). (3.112)

To solve this equation, we perform the following Fourier transform for the momentum
space:

BF (x − x′) =
∫ d4k

(2π)4 e−ikxBF (k) and δ(x − x′) =
∫ d4k

(2π)4 e−ik(x−x′), (3.113)

where the function BF (k) is the operator BF (x − x′) in momentum space. Substituting
these equations back to (3.112) and substituting /∂ = γμ∂μ, we have

(iγμ∂μ − m)
∫ d4k

(2π)4 e−ikxS(k) =
∫ d4k

(2π)4 e−ikx (γμkμ − m) S(k)

= i
∫ d4k

(2π)4 .

(3.114)

From these integrals, we obtain

(/k − m) BF (k) = i, (3.115)

with /k = γμkμ. Therefore,
BF (k) = i

/k − m
. (3.116)

This result is known as the propagator of a fermion in momentum space. In other words,
the excitations of the quantised fermion fields ψ and ψ̄ produce fermions in momentum
space with momentum k and mass m.
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In position space, by performing a Fourier transformation, this propagator corres-
ponds to the probability amplitude of a fermion propagating between the points x to x′ as
we can see in

BF (x − x′) =
∫ d4k

(2π)4 e−ik(x−x′) i

/k − m + iε
. (3.117)

In this expression, we added a term iε that tends to 0, as we did in (2.68), to specify the
contour of the integration. Such a propagator can be represented as a Feynman diagram:

BF (x1 − x2) = x1 x2 . (3.118)

As we substitute this expression into (3.110), we obtain the generator of all n-point
functions for spinor fields.

After having explored the quantisation of free gauge fields in Section 3.3 and free
spinorial fields in this section, we can formulate the generating functional for interactive
QED as

Z[A, ψ, ψ̄] =
∫

DA Dψ Dψ̄ exp
(
iS0[A, ψ, ψ̄]

)
exp

(
1 − ie

∫
d4x ψ̄γμψAμ + · · ·

)
.

(3.119)
In this equation, we have utilised the perturbation method by considering the coupling
constant e small. Also, S0[A, ψ, ψ̄] represents the free classical action for the Lagrangian
(3.44) with source terms J(x), η(x) and η̄(x).

Upon solving the integrals in (3.119), we achieve the complete quantisation of
both the electromagnetic and Dirac fields, thereby establishing the quantum theory of
electromagnetism. However, due to the presence of the interaction term, there are no
techniques to solve this integral exactly. Consequently, in the next chapter, we shall
quantise Dirac fields, treating the electromagnetic fields as classical, in order to examine
their interactions.



67

4 Schwinger’s Proper-Time Formulation

The effective action plays a crucial role in QFT by encapsulating quantum correcti-
ons to the classical action. In quantum electrodynamics, for instance, these corrections can
emerge from integrating out massive fermionic fields in the presence of an electromagnetic
background, leading to modifications in the dynamics of these fields.

Note that the effective action we shall explore here is somewhat different from the
1PI effective action in Section 2.5. It is known as the low energy or Wilsonian effective
action1. While the 1PI effective action refers to the Legendre transformation of the
generating functional of connected diagrams W [J ], the Wilsonian effective action results
from the integration of only a few degrees of freedom. In this case, as we are only integrating
out the massive fermionic fields, our focus is solely on the system’s low energy scale rather
than encompassing the entirety of it, as we would with the 1PI effective action.

One phenomenon stemming from the corrections arising from the quantisation of
these fermionic fields is the Schwinger effect, which predicts the creation of real electron-
positron pairs in the vacuum when subjected to an intense electric field. This effect plays
an important role in understanding the vacuum in quantum electrodynamics, as it sheds
light on the vacuum’s instability and possible decay.

In Section 4.1, we shall begin by introducing the Schwinger proper-time formalism.
This will be followed by a derivation of the effective action for fermions in Section 4.2.
Proceeding this, the derivation of the Euler-Heisenberg effective action will be covered in
Section 4.3. Finally, we will discuss the Schwinger effect in Section 4.4.

4.1 Proper-Time Formalism
In order to study the Schwinger effect, it is necessary to first explore the so-called

Schwinger proper-time formalism. This is a technique for evaluating loop integrals in
quantum field theory and revolves around the following identity:

i

A + iε
=
∫ ∞

0
ds eis(A+iε), (4.1)

where the parameter s known as proper-time is introduced. It is important to be aware
that this integral is convergent as long as ε > 0 and A ∈ R [10, 25, 87].

As a first example, to familiarise ourselves with this formalism and derive some
physical meaning from a concept that we have already explored, we shall revisit the
1 For more on the topic, refer to [85, 86].
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Feynman propagator for a scalar field using this approach. Let us begin by recalling that
this propagator is expressed as

DF (x − x′) =
∫ d4k

(2π)4 eik(x−x′) i

k2 − m2 + iε
. (4.2)

This expression was derived in Subsection 2.3.1 through the quantisation of massive scalar
fields.

By employing the identity (4.1) and noting that A = k2 − m2, we arrive at

DF (x − x′) =
∫ d4k

(2π)4 eik(x−x′)
∫ ∞

0
ds eis(k2−m2+iε). (4.3)

As we are interested in gaining physical intuition from this formalism through this
propagator, we shall leave the resolution of the momentum integral for now.

To proceed, we will apply some concepts from non-relativistic quantum mechanics
to this propagator. As a first step, we introduce the one-particle Hilbert space spanned
by position eigenstates, denoted as |x〉 [10, 87, 88]. These eigenstates obey the following
eigenvalue equation:

x̂μ |x〉 = xμ |x〉 , (4.4)

where x̂μ is the position operator and xμ is its eigenvalue. Note that Schwinger’s method
does not specify whether the temporal coordinate is quantised, i.e. promoted to a “time
operator” or a “proper-time operator”. The introduction of this four-vector operator x̂μ

and its eigenstates is part of the method and serves only as an intermediate step. Likewise,
a momentum operator k̂ with eigenvalues kμ satisfies

k̂μ |k〉 = kμ |k〉 , (4.5)

where |k〉 is a momentum eigenstate. In addition, we recall that momentum and position
eigenvalues obey

〈k|x〉 = eikx. (4.6)

Having these equations established, we observe that the first exponential in (4.3)
can be rewritten in terms of position and momentum eigenstates using the relation (4.6),
leading to

DF (x − x′) =
∫ d4k

(2π)4

∫ ∞

0
ds 〈x′|k〉 〈k|x〉 eis(k2−m2+iε). (4.7)

To simplify the momentum integration, we note that

eisk2 〈k|x〉 = 〈k|e−isĤ |x〉 , (4.8)

where we define the Hamiltonian2 as Ĥ = −k̂2. Additionally, we can utilise the completeness
relation for momentum eigenstates

(2π)−4
∫

d4k |k〉 〈k| = 1. (4.9)
2 Note that in this definition of the Hamiltonian, we are not including the mass m.
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Thus, the propagator (4.7) can be further expressed as

DF (x − x′) =
∫ ∞

0
ds e−sε e−ism2 〈x′|e−isĤ |x〉 =

∫ ∞

0
ds e−sε e−ism2 〈x′; 0|x; s〉 , (4.10)

where |x; s〉 ≡ e−isĤ |x〉, showing that states can be represented in both the Heisenberg
and Schrödinger pictures. Here, the interpretation of the propagator shifts slightly from
what we observed in Section 2.3.1, as it now represents the amplitude for a particle to
propagate from one position, denoted by x, to another, x′, over a specific proper-time
interval s, integrated over all possible proper-time intervals [10].

Returning to the propagator (4.3), its Gaussian integral with respect to the mo-
mentum k can be solved exactly using the result (2.15). To begin, we separate the terms
that are multiplied with k and those that are not into two exponentials:

DF (x − x′) =
∫ ∞

0
ds
∫ d4k

(2π)4 eisk2+i(x−x′)k e(−ism2+i2sε). (4.11)

In addition, we identify that A = −2isgμν . This leads through (2.15) to

DF (x − x′) = 1
16π4

∫ ∞

0
ds

√√√√ (2π)4

det(−2isgμν)e− 1
2 i(x−x′)2 i

2is e(−ism2−sε), (4.12)

the propagator in position space with respect to the positions x and x′ in the proper-time
representation.

We can organise the terms of this result using some properties. First, by employing
the property det(cB) = cndetB, where c is a scalar and B is an n × n matrix, and noting
that the determinant of the metric is −1. Thus, the propagator simplifies to

DF (x − x′) = 1
16π4

∫ ∞

0
ds

√
16π4

−16s4 e−i
(x−x′)2

4s e(−ism2−sε). (4.13)

Observe that we have simplified certain terms within the exponentials. We then obtain
the free propagator of a scalar field in terms of proper-time:

DF (x − x′) = −i

16π2

∫ ∞

0

ds

s2 e
−i

[
(x−x′)2

4s
+sm2−iεs

]
. (4.14)

Solving this integral yields the propagator in position space. However, as our focus does
not lie on scalar fields, we will refrain from solving this integral.

4.2 Effective Lagrangian for Fermions
To obtain the effective Euler-Heisenberg Lagrangian and thus explore the pair

production mechanism, we first need to derive an effective action for QED resulting from
the quantisation of massive fermionic fields.
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As we have already performed the integration of Dirac fields in Section 3.4, we
shall generalise the result (3.111) by introducing interactions with electromagnetic fields,
replacing the usual derivative with a covariant one, expressed in (3.38). Therefore, the
path integral for fermionic fields and its result are expressed as

∫
Dψ Dψ̄ exp

(
i
∫

d4x ψ̄
(
i /D − m

)
ψ
)

= Cdet
(
i /D − m

)
. (4.15)

Here, we employed the relation (3.106), with C representing a constant. Henceforth, we will
ignore it, as it will only be an additive constant in the subsequent steps. Furthermore, it is
important to note that we are integrating only over the fermionic fields, adopting the gauge
fields Aμ(x) as a background since we did not solve the path integral for these fields. This
approach is adopted because our focus lies within an energy scale small enough to avoid
the need for the quantisation of electromagnetic fields and consideration of interactions
with photons.

As previously demonstrated in Section 2.3.1, the determinant of an operator can
be expressed in an exponential form. Therefore, (4.15) is now expressed as

∫
Dψ Dψ̄ exp

(
i
∫

d4 ψ̄
(
i /D − m

)
ψ
)

= exp Tr[tr(log(i /D − m))], (4.16)

where tr denotes a trace obtained by integrating over the states |x〉, while Tr represents a
Dirac trace, corresponding to a trace over the Dirac matrices γμ.

With this representation, we construct an effective action Γ[A] that includes both
the classical gauge fields and the quantised Dirac fields, expressed above, as

iΓ[A] = i
∫

d4x
(

−1
4FμνF μν

)
+ Tr[tr(log(i /D − m))]. (4.17)

To incorporate the quantum correction term into the integral and derive the effective
Lagrangian, we write the trace tr explicitly, leading to

iΓ[A] = i
∫

d4x
(

−1
4FμνF μν − iTr

[
〈x| log(i /D − m)|x〉

])
. (4.18)

Then, we identify the effective Lagrangian as

Leff = −1
4FμνF μν − iTr

[
〈x| log(i /D − m)|x〉

]
. (4.19)

Before we proceed, let us briefly analyse this effective Lagrangian. As discussed earlier,
the effective Lagrangian encodes quantum corrections to the classical Lagrangian. In our
case, the first term on the right-hand side of the equation describes the classical dynamics
of electromagnetic fields. In contrast, the second term arises from quantising fermionic
fields, representing these quantum corrections.

An important effect arising from the quantisation of these fermionic fields is the
creation and annihilation of virtual electron-positron pairs. By quantising these fields, the



Chapter 4. Schwinger’s Proper-Time Formulation 71

vacuum of our theory is now permeated by the so-called quantum fluctuations, a product
of these processes of production and annihilation.

The intriguing aspect here is that, due to the presence of an electromagnetic
background, these virtual pairs can polarise. Consequently, the vacuum begins to behave
as a polarisable medium, which induces modifications in the dynamics of classical electro-
magnetic fields, giving rise to phenomena discussed in Chapter 1, such as pair production,
which is of interest within this dissertation.

Having derived the effective Lagrangian (4.19), our focus turns to expressing it in
the proper-time representation. For this, we differentiate3 it with respect to m2, yielding

d

dm2 Leff = − i

2m
Tr
[
〈x| i

/D + im
|x〉
]

. (4.20)

To simplify this expression, we divide and multiply the term between states by (i /D + m),
resulting in

d

dm2 Leff = − i

2m
Tr
[
〈x| i

/D + im

(i /D + m)
(i /D + m)

|x〉
]

= − i

2m
Tr
[
〈x| m

/D
2 + m2

+
/D

/D
2 + m2

|x〉
]

.

(4.21)

Since the factor 1/m is a constant with respect to the trace, we can move it into the trace
and obtain

d

dm2 Leff = − i

2Tr
[
〈x| 1

/D
2 + m2

+
/D

/D
2
m + m3

|x〉
]

. (4.22)

Furthermore, it is worth noting that the Dirac trace of the second term between the states
is zero due to the property that the trace of any odd number of gamma matrices is null [4,
8, 10]. These operations lead to

d

dm2 Leff = i

2Tr
[
〈x| 1

− /D
2 − m2

|x〉
]

. (4.23)

After completing these steps, we use the identity (4.1) and express the above
equation in the proper-time formalism:

d

dm2 Leff = 1
2

∫ ∞

0
ds e−ism2 Tr

[
〈x|e−i /D

2
s|x〉

]
. (4.24)

Note that we separated the mass term and derivative into two exponentials in this
representation. Besides, since the exponential of m is a scalar and does not depend on
either x or gamma matrices, we do not need to compute its traces.

Upon integrating the equation above over m2 and reinstating the bosonic term
that was eliminated during differentiation, we arrive at the effective Lagrangian in the
3 Recall that dg

df = dg
dx ( df

dx )−1, where g and f are functions of x.
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proper-time representation

Leff = −1
4FμνF μν + i

2

∫ ∞

0

ds

s
e−ism2 Tr

[
〈x|e−i /D

2
s|x〉

]
. (4.25)

Observe that in this integration, a factor of i/s arises. By comparing with (4.10), we
identify that the operator /D

2 acts as the Hamiltonian of the system. To gain a better
understanding of this operator, we need to obtain its form.

4.2.1 The Hamiltonian /D
2

Let us begin by expressing the product of two covariant derivatives contracted with
Dirac matrices as

/D
2 = γμDμγνDν = (γμ∂μ + ieγμAμ)(γν∂ν + ieγνAν). (4.26)

Here, the gauge field is dependent on the position operator, that is Aμ = Aμ(x̂), given the
fact that this field acts on the position states |x〉 as expressed in the proper-time integral
(4.25).

To use the distributive property in this product, we will first act these derivatives
on a function ψ dependent on x. After that, we shall evaluate the product and subsequently
omit the function as we are only interested in the derivative. Following these steps, we
obtain

/D
2
ψ = γμ∂μγν∂νψ + ieγμγν(∂μAν)ψ + ieγμAνγν∂μψ + ieγμAμγν∂νψ − e2γμAμγνAνψ,

(4.27)
and, therefore,

/D
2 = γμ∂μγν∂ν + ieγμγν∂μAν + ieγμAνγν∂μ + ieγμAμγν∂ν − e2γμAμγνAν . (4.28)

Since Dirac matrices commute with both fields and derivatives, we can rearrange the
given equation, bearing in mind that these matrices may not commute among themselves.
This rearrangement leads to

/D
2 = ∂μ∂νγμγν + ieγμγν∂μAν + ieAνγμγν∂μ + ieAμγμγν∂ν − e2AμAνγμγν . (4.29)

Due to contractions involving the gamma matrices, we can simplify this equation to find a
more compact form.

The first simplification arises from the initial term. Using the fact that derivatives
commute among themselves, we get

∂μ∂νγμγν = 1
2∂μ∂νγμγν + 1

2∂μ∂νγμγν

= 1
2∂μ∂νγμγν + 1

2∂ν∂μγνγμ.
(4.30)
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We can group the gamma matrices into an anticommutation operation, then obtaining

∂μ∂νγμγν = 1
2∂μ∂νγμγν + 1

2∂μ∂νγνγμ

= 1
2∂μ∂ν{γμ, γν}.

(4.31)

In addition, as the last term of (4.29) present gauge fields that commute among themselves,
we can perform the last steps and get

AμAνγμγν = 1
2AμAν{γμ, γν}. (4.32)

By substituting these simplifications back to (4.29), we obtain

/D
2 = 1

2∂μ∂ν{γμ, γν}+ieγμγν∂μAν +ieAνγμγν∂μ+ieAμγμγν∂ν −e2 1
2AμAν{γμ, γν}. (4.33)

This given equation can be further simplified by interchanging the indices in the fourth
term on the right side, swapping μ with ν and vice versa, as they are contracted indices.
This manipulation yields

/D
2 = 1

2∂μ∂ν{γμ, γν}+ieγμγν∂μAν +ieAνγμγν∂μ+ieAνγνγμ∂μ−e2 1
2AμAν{γμ, γν}. (4.34)

Furthermore, we observe that now the third and fourth terms can be grouped using the
anticommutator of the gamma matrices, which gives us

/D
2 = 1

2∂μ∂ν{γμ, γν} + ieγμγν∂μAν + ieAν{γμ, γν}∂μ − e2 1
2AμAν{γμ, γν}. (4.35)

We can simplify the anticommutations in equation (4.35) further, as these operations
are governed by the relation (3.19). Utilising this, we have contractions with the metric
gμν , resulting in index changes, as observed in

/D
2 = ∂μ∂μ + 2ieAμ∂μ − e2AμAμ + ieγμγν∂μAν . (4.36)

Our task now is to find a way to rewrite the last term. We can split it into two
terms, as done in (4.30). This yields

ieγμγν∂μAν = ie

2 (γμγν∂μAν + γμγν∂μAν)

= ie

2 (γμγν∂μAν + γνγμ∂νAμ).
(4.37)

To proceed, we can rewrite the relation (3.19) as γνγμ = 2gμν − γμγν , resulting in

ieγμγν∂μAν = ie

2 [γμγν∂μAν + (2gμν − γμγν)∂νAμ] , (4.38)

and then
ieγμγν∂μAν = ie

2 [γμγν∂μAν − γμγν∂νAμ + 2gμν∂νAμ] . (4.39)
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As a next step, we factor out the gamma matrices of the first and second terms between
square brackets and obtain

ieγμγν∂μAν = ie

2 [γμγν(∂μAν − ∂νAμ) + 2gμν∂νAμ]

= ie

2 [γμγνFμν + 2∂μAμ] .
(4.40)

To simplify this derivative even further, we split the first term between square
brackets into two:

ieγμγν∂μAν = ie

2

[1
2γμγνFμν + 1

2γμγνFμν + 2∂μAμ
]

. (4.41)

Since the electromagnetic tensor is antisymmetric, that is Fμν = −Fνμ, we rewrite the
second term on the right side as

ieγμγν∂μAν = ie

2

[1
2γμγνFμν − 1

2γμγνFνμ + 2∂μAμ
]

= ie

2

[1
2γμγνFμν − 1

2γνγμFμν + 2∂μAμ
]

.
(4.42)

Here, we realise that the electromagnetic tensor can be factored out, and the Dirac matrices
can be grouped in an anticommutation operation. This then results in

ieγμγν∂μAν = ie

4 [γμ, γν ]Fμν + ie∂μAμ. (4.43)

Furthermore, we introduce the antisymmetric tensor σμν = i
2 [γμ, γν ], which corresponds,

albeit without a 1/2 factor, to the spinorial representation of the Lorentz group, as
demonstrated in (3.22). Consequently, the transformation of the term under consideration
becomes

ieγμγν∂μAν = e

2σμνFμν + ie∂μAμ. (4.44)

In this relation, the first term on the right-hand side indicates a magnetic dipole moment
term [10], which arises from the coupling, or interaction, of fermionic particles with
electromagnetic fields.

With this term established, let us return to (4.36) and make all the necessary
substitutions. Thus, we obtain

/D
2 = ∂μ∂μ + 2ieAμ∂μ + ie∂μAμ − e2AμAμ + e

2σμνFμν . (4.45)

Before we conclude, we observe that the first four terms on the right side of the equality
correspond to the contraction of two covariant derivatives:

DμDμ = ∂μ∂μ + ie∂μAμ + 2ieAμ∂μ − e2AμAμ. (4.46)

Therefore, (4.45) can finally be expressed as

/D
2 = DμDμ + e

2Fμνσμν . (4.47)
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Consequently, it is written as

/D
2 = −(k̂μ − eAμ(x̂))2 + e

2Fμνσμν , (4.48)

where we used the operator notation by using the substitution ∂μ → −ik̂μ. Note that we
have factored out −i from the product of covariant derivatives.

Substituting this Hamiltonian back into the effective Lagrangian (4.25) in the
proper-time representation yields

Leff = −1
4FμνF μν + i

2

∫ ∞

0

ds

s
e−ism2 Tr

[
〈x|ei[(k̂−eA(x̂))2− e

2 Fμνσμν]s|x〉
]

. (4.49)

Here, the first term of the Hamiltonian, corresponding to the product of two covariant
derivatives, signifies the translation generator from one state to another in the presence
of electromagnetic fields due to the terms eA(x̂), thereby accounting for interactions
among fermionic particles and the background field. Considering that we are working with
spin-1/2 particles/fields and the interactions presented above, we observe the emergence
of a magnetic dipole moment term e

2Fμνσμν .

Moreover, it is interesting to note that if we were to consider scalar fields instead of
fermionic fields, there would be no terms dependent on the Dirac matrices. Consequently,
the only contribution from the Hamiltonian (4.48) would arise from the first term since
the second term would be null.

As we shall explore in Section 4.4, when an intense electromagnetic field is conside-
red, the polarised vacuum undergoes a process of decay, meaning that the virtual particles
become real in a mechanism known as the Schwinger effect [25, 87, 89, 90]. This significant
aspect of the quantum vacuum was initially investigated by Euler and Heisenberg and
described through their effective Lagrangian.

4.3 Euler-Heisenberg Effective Lagrangian
In the previous section, we established the effective Lagrangian governing the

interaction between fermionic fields and background electromagnetic fields, and elucidated
that the vacuum in QED is a polarisable medium due to virtual pair production.

In order to explore more properties of the quantum vacuum, the subsequent task
involves computing the traces specified in (4.49), for which we shall assume that Fμν

remains constant, i.e. constant electromagnetic fields.

This consideration is made because it represents a solvable case and leads to the
significant contributions from Euler and Heisenberg [12], as well as Weisskopf [13]. Their
work introduces a non-perturbative, renormalised, one-loop effective Lagrangian for QED
in a classical electromagnetic background of constant field strength, which offers several
important insights into the vacuum structure and non-perturbative QED.
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As the required computations are lengthy, we shall outline some essential steps in
deriving the Euler-Heisenberg effective Lagrangian. For a comprehensive derivation, we
refer to the original papers mentioned above as well as Schwinger’s in [25]. For more on
the topic, see also [10, 87, 88, 90].

The central idea, carried out by Schwinger, for computing 〈y|e−iĤs|x〉 in (4.49)
revolves around solving the operator differential equation

i∂s 〈y; 0|x; s〉 = i∂s 〈y|e−iĤs|x〉 = 〈y|e−iĤsĤ|x〉 , (4.50)

where s denotes the proper-time parameter, and the Hamiltonian Ĥ is given by (4.48).
For this, it is first necessary to express the Hamiltonian in terms of the Heisenberg-picture
position operators x̂μ(0) and x̂μ(s), thus transforming this equation into a differential
equation of functions.

Following Schwinger’s approach, we introduce the operator

Π̂μ = k̂μ(x) − eAμ(x̂), (4.51)

so that the Hamiltonian (4.48) can be written as

Ĥ(s) = −Π̂μ(s) Π̂μ(s) + e

2Fμνσμν . (4.52)

It is worth noting that since this operator depends on the momentum operator k̂μ(s), it
obeys the following commutation relation between position and momentum operators in
four dimensions:

[x̂μ(s), Π̂μ(s)] = −igμν . (4.53)

Having solved the Heisenberg equations for the operators x̂μ(s) and Π̂(s), the
Hamiltonian is determined and has the form

Ĥ = − xμ(s)Kμνxν(s) + 2xμ(s)Kμνxν(0) − xμ(0)Kμνxν(0) − i

2tr[eFμν coth(esF μν)]

− e

2tr(σμνFμν),

(4.54)

where
Kμν ≡ e2F μνFμν

4 sinh2(eF μνs)
. (4.55)

Note that this tensor is symmetric, since sinh2 x is an even function. With this Hamiltonian,
we express the differential equation (4.50) as

i∂s 〈x; 0|x; s〉 = −tr
[

i

2eFμν coth(esF μν) − e

2σμνFμν

]
〈x; 0|x; s〉 . (4.56)

Observe that x = y as presented in (4.49) and that this differential equation is now in terms
of functions rather than operators since it depends on the eigenvalues of the previously
mentioned operators through the action of the Hamiltonian on the states |x〉.
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The solution to this differential equation leads the following effective Lagrangian
[10, 25]:

Leff = − 1
4FμνF μν

+ 1
32π2

∫ ∞

0

ds

s3 e−ism2 Tr exp
[
−1

2tr log
(

sinh(esF μν)
esFμν

)
+ i

es

2 tr(σμνF μν)
]

,
(4.57)

whose traces are computed with the use of the identity 1/2{σμν , σαβ} = gμαgνβI4 −
gναgμβI4 + iγ5εμναβ, where I4 represents the 4 × 4 identity matrix, γ5 ≡ iγ0γ1γ2γ3, and
εμναβ denotes the Levi-Civita symbol for four dimensions. In addition, the following
function is introduced:

X =
√

1
2FμνF μν + i

2FμνF̃ μν , (4.58)

which is composed of Lorentz scalars.

Upon computing traces over spacetime indices, tr, and traces over Dirac matrices,
Tr, the effective action (4.57) becomes the so-called Euler-Heisenberg effective Lagrangian

Leff → LEH = −1
4FμνF μν + e2

32π2

∫ ∞

0

ds

s
ei s εe−s m2 Re cosh(esX)

Im cosh(esX)FμνF̃ μν , (4.59)

which is divergent due to the term Re cosh(esX)
Im cosh(esX)FμνF̃ μν . The divergent behaviour is observed

by expanding this term perturbatively in e, yielding

Re cosh(esX)
Im cosh(esX)FμνF̃ μν = − 4

e2s2 − 2
3FμνF μν + e2s2

45

[
(FμνF μν)2 + 7

4(FμνF̃ μν)2
]
+· · · . (4.60)

Here, we observe that the first two terms on the right side lead to a divergent result
upon integration in (4.59). Therefore, to address these divergences, we subtract them with
counterterms [10], yielding the renormalised Euler-Heisenberg effective Lagrangian

LEH = − 1
4FμνF μν

+ e2

32π2

∫ ∞

0

ds

s
ei s εe−s m2

[
Re cosh(esX)
Im cosh(esX)FμνF̃ μν + 4

e2 s2 + 2
3FμνF μν

]
,

(4.61)

which describes the dynamics of electromagnetic fields modified by quantum corrections,
arising from the integration of massive fermionic fields over a constant electromagnetic
background Fμν .

A notable feature of this effective Lagrangian is its non-perturbative nature in
the coupling constant e. This enables the exploration of the non-perturbative regime of
QED and, consequently, the effects presented in Chapter 1, particularly the Schwinger
effect. As we will see in the next section, this effect is associated with a non-zero imaginary
contribution arising from the ill-defined integral within the Euler-Heisenberg effective
Lagrangian due to poles on the real axis.
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To learn more about other physical implications of this effective Lagrangian, refer
to [10, 24, 88] in addition to the works presented in the Chapter 1. Furthermore, an
alternative derivation of the Euler-Heisenberg effective Lagrangian (4.61) is provided by
sums over Landau levels [10]. Essentially, these levels correspond to quantised energy
levels of a particle in a uniform magnetic field [91]. The reason to utilise this comes from
the form of the Hamiltonian (4.48) and the nature of the system we are studying, which
involves quantised fermionic particles interacting with electromagnetic fields.

4.4 Schwinger Effect
To begin the analysis of the Euler-Heisenberg effective Lagrangian, expressed in

(4.61), we first reformulate it in terms of the electric and magnetic fields, denoted as
E = |E| and B = |B|, respectively.

Since solving the integral in this effective Lagrangian may be challenging for various
configurations of electric and magnetic fields, we will first assume that the fields are
parallel4 and constant. Throughout our discussion, we shall consider the limit where
B → 0, rendering the configuration of parallel fields irrelevant. This assumption simplifies
the expressions for the contractions of electromagnetic tensors, which are now expressed as

FμνF μν = 2(B2 − E2) = 2(B2 − E2) and F̃μνF μν = −4E · B = −4EB. (4.62)

Moreover, the scalar function of the electric and magnetic fields (4.58) becomes

X2 = (B + iE)2. (4.63)

With these relations in place, the effective Lagrangian (4.61) is rewritten as

LEH =1
2(E2 − B2)

+ e2

32π2

∫ ∞

0

ds

s
eiεs e−m2s

[
−4EB

cos(esE) cosh(esB)
sin(esE) sinh(esB) + 4

e2s2 + 4
3(B2 − E2)

]
,

(4.64)

where we have employed cosh(Xs) = 1
2

(
e−Xs + eXs

)
, along with relations between trigo-

nometric and complex functions. After some simplifications, we arrive at

LEH = 1
2(E2 − B2)

− e2

8π2

∫ ∞

0

ds

s
eiεs e−m2s

[
E cot(esE)B coth(esB) − 1

e2s2 − B2 − E2

3

]
.

(4.65)

It is worth observing that the integral exhibits singularities in the function cot(esE),
associated with the electric field E. Conversely, the function coth(esB), linked to the
4 Note that this is an idealisation, a first approximation, to understand the Schwinger effect and obtain

some results. In addition, refer to [24] for perpendicular magnetic and electric background fields.
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magnetic field B, does not display singularities for s > 0. Hence, we will focus on
the scenario where B → 0, indicating a purely electric background field. As we will see
throughout this section, such singularities lead to an imaginary contribution to the effective
Lagrangian, which correlates with pair production and vacuum decay in QED.

Upon taking this limit, the effective Lagrangian (4.65) simplifies to

LEH =1
2E2 − 1

8π2

∫ ∞

0

ds

s3 eiεs e−m2s

[
esE cot(esE) − 1 + (esE)2

3

]
, (4.66)

where we have utilised
lim
B→0

B coth(esB) = 1
es

, (4.67)

and factored the term 1
e2s2 . In the same way as the integral in (4.65), we observe that the

Lagrangian exhibits poles for the electric field when the proper-time parameter s is equal
to sn = π

eE
n for n = 1, 2, . . . . Given these poles, we shall resort to the method of residues

to solve the integral.

In addition, it is important to note that there is no pole at s = 0, as can be seen
from expanding the integrand at small s

I = − 1
45s + 1

45s2 − 5
378s3 + · · · . (4.68)

In this expansion, I represents the integrand, and we have set E = e = m = 1 and ε → 0
to simplify obtaining the Taylor series.

To solve the integral in (4.66), we extend its integration limits to (−∞, +∞) and
then deform the integration contour to include the imaginary axis and the contributions
from each pole [10, 87, 90], as depicted in Figure 6. Since this integral has poles on the

Figure 6 – Integration contour, including the imaginary axis and considering the poles in
the real axis. Note that we are not showing the dependence on e and E.

real axis, its integration results in a non-zero imaginary contribution. Subsequently, we
will observe that these contributions are associated with vacuum instability and pair
production.

The motivation for employing this approach to evaluate the integral (4.66) along
the contour illustrated in Figure 6 arises from the use of identity

1
x ± iε

= P
1
x

∓ iπδ(x). (4.69)
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Here, P denotes the Cauchy principal value, and the term iε is employed to avoid hitting
the singularities [25]. In essence, an integral with a pole on the real axis at z = z0, with
this identity, can be expressed as

I =
∫ ∞

−∞
dz

f(z)
z − z0 + iε

=
[∫ z0−ε

−∞
dz +

∫ ∞

zo+ε
dz
]

f(z)
z − z0

− iπf(z0), (4.70)

where f(z) is a complex function. The integrals in the last equality correspond to the
Cauchy principal value, and the third term represents the residue calculated at z0. It is
important to note that it is imaginary, and accounts for half of the residue. For more on the
topic, refer to [90]. Therefore, our attention will be focused on this imaginary contribution,
and thus we shall compute Im LEH .

Employing the residue theorem and the identity (4.69), we find

Im LEH = − 1
8π2

∫ ∞

∞
ds

s2 e−m2s2 [eE cot(esE)] = π

8π2

∑
n=1

Res[f(s), sn]. (4.71)

Additionally, as we are integrating over the contour clockwise, there is a negative sign on
the residue term, which cancels out with the negative sign in the first equality. Since we
are dealing with simple poles, this residue is then given by

Im LEH = eE

8π

∑
n=1

lim
s→ π

eE
n

(
s − π

eE
n
) 1

s2 e−m2s2 cot(esE). (4.72)

After solving the limit, we find that

Im LEH = e2E2

8π3

∞∑
n=1

1
n2 exp

(
−m2π

eE
n

)
, (4.73)

meaning that the effective Euler-Heisenberg Lagrangian for the case of a pure constant
electric field exhibits a non-perturbative imaginary contribution. We can observe this
non-perturbative nature by noting that we cannot perform a Taylor expansion around the
coupling constant e.

The importance of this result lies in its connection to the vacuum instability5. To
observe this, we express the vacuum-to-vacuum transition, also known as the vacuum-
vacuum persistence amplitude [89], through the definitions of the connected diagram
generating functional (2.100) and its relation with the effective action Γ as

〈
no particles no particles
at tf = ∞ at ti = −∞

〉
= 〈0|0〉 = ei[Re(Γ)+iIm(Γ)]. (4.74)

Note that this transition amplitude is computed between different vacuum states: one at a
final time tf and another at an initial time ti. As these states are different, the transition
5 A parallel with unstable particles can be drawn here, as such particles exhibit imaginary contributions

in their propagators, causing such functions to decay. For more on the topic, refer to [4, 8, 10].
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amplitude between them is not necessarily 1, but it is an exponential of the effective
action.

By squaring this amplitude, we obtain, as interpreted by Schwinger [25], the
probability of no particle pair being produced:

| 〈0|0〉 |2 = e−2Im(Γ) = e−2V4ImLEH , (4.75)

where V4 represents the volume of spacetime, obtained by the integral over x from the
action. Consequently, the probability of pair production and vacuum decay is given by

P = 1 − e−2Im(Γ) = 1 − e−2V4ImLEH . (4.76)

In this equation, the factor 2Im LEH is interpreted as the decay rate per unit of time and
per unit of volume for the creation of an electron-positron pair by an external electric field.

Since this rate is non-zero in our scenario, as seen in (4.73), we find that the vacuum
state in QED is susceptible to decay due to the creation of on-shell6 electron-positron pairs
by an intense external electric field. In other words, the presence of the background electric
field accelerates and separates the pairs of virtual particles, leading to the emergence
of real electron and positron pairs, as illustrated in Figure 1. Such production occurs
as the work done by the external field to separate the virtual particles by a Compton
wavelength is of the order of the binding energy of the pair, which corresponds to 2m

[90, 92]. Consequently, this leads to an exceedingly small effect, achievable only when the
electric field E approaches a critical value Ec = m2/e ≈ 1018 V/m [10, 24, 93].

Bearing this in mind, we can illustrate the scenario where only a magnetic field
exists, as shown in Figure 7. In essence, a magnetic field fails to separate and accelerate
the virtual particle pairs as an electric field does, rendering the creation of asymptotic
particle pairs impossible. Therefore, as seen in the effective action (4.61), where the pure
magnetic field is not associated with any pole nor with the figure below, we observe the
impossibility of pair production.

Figure 7 – Representation of the impossibility of producing real particles in a pure magnetic
background. As the virtual particles are exposed to a magnetic field, they
undergo circular motion, which consequently leads them to their annihilation
instead of separation and acceleration.

6 This means that the particles obey the relativistic dispersion relation.
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5 Non-Local Correction

In this chapter, we present our developments for the analysis of a non-local effective
action within the context of the Schwinger mechanism. Here, we investigate pair production
for backgrounds characterised by a plane wave and by the presence of a constant external
current.

To asses whether these backgrounds lead to imaginary contributions and conse-
quently pair production rates, we shall compute the effective action on-shell. This involves
substituting these backgrounds, which are solutions of the classical equation of motion,
into the non-local effective action and integrating1 over them.

In Section 5.1, we will introduce the non-local effective action to be examined in
this chapter. After that, we shall investigate the impact of a non-local correction, resulting
from non-local effective action, on the pair production mechanics in Section 5.2. This
section is subdivided into two subsections: the first (5.2.1) explores pair production in a
background defined by plane waves, while the second (5.2.2) investigates pair production
within a background characterised by waves featuring a constant external current.

5.1 Non-Local Effective Action
In Section 2.5.1, we derived an expression for the effective action using the back-

ground field method. This method involves decomposing the field intended for quantisation
into a background field, treated classically, and fluctuations, which are quantised. Through
this process, we arrived at the effective action up to one-loop correction (2.130), which
can be represented as

Γ = S + Γone-loop. (5.1)

Here, S represents the classical action, and Γone-loop is the one-loop correction arising from
quantising fields of interest. This correction takes the form

Γone-loop = i

2Tr log
(

δ2S

δφ(x) δφ(x′)

)
. (5.2)

As discussed in Section 4.2, this one-loop correction can be computed using Schwinger’s
proper-time method. However, in this study, we adopt an alternative approach.

This approach, developed by Barvinsky, Vilkovisky, and collaborators, enables the
computation of loop2 corrections, and consequently general effective actions, through an
expansion in powers of generalised curvatures, including field strengths and potentials [63,
1 Recall that the effective action is described by an integral of the effective Lagrangian.
2 In this dissertation, we focus solely on the one-loop correction, as a first approximation.
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94–96]. Within this expansion, a one-loop correction term manifests itself as a non-local
term at the second order in the field strength. In the context of this work, “non-local”
refers to a term composed of non-polynomial functions or that depends on derivatives,
specifically the d’Alembertian operator �, or terms that involve an infinite number of
derivatives. This term takes the form

Γone-loop ∼
∫

d4x Ωμνγ(�)Ωμν . (5.3)

In this expression, Ωμν represents a field strength, which in this study, we consider to be
the electromagnetic tensor F μν , and γ(�) denotes the so-called form factor, which contains
the information in the quantum regime related to the specified quantum correction.

Given the complexity of the subject, which extends beyond the scope of this
dissertation, we will refrain from demonstrating the derivation of these terms and instead
refer the reader to the references provided in this section.

As a first approximation, we shall consider the massless limit or the limit where
the field mass is small, meaning that the fields in the classical Lagrangian are massless.
Taking this into consideration, the renormalised non-local correction term, computed by
Barvinsky and Vilkovisky [94–96], appears as

Γone-loop ∼
∫

d4x Ωμν log
(
�
μ2

)
Ωμν , (5.4)

where μ is a renormalisation scale that has dimension of energy, introduced through the
process of dimensional regularisation to derive this correction term and the corresponding
effective action, namely (5.5).

In this dissertation, we are interested in analysing the effects of an effective action
that incorporates a one-loop correction (5.3) with the form factor specified in (5.4) on the
Schwinger effect. To achieve this, we have the following general effective action up to one
loop [60]:

Γ[A] =
∫

d4x

[
−1

4F μνFμν + αF μν log
(
�
μ2

)
Fμν

]
. (5.5)

Here, the first term to be integrated corresponds to Maxwell’s Lagrangian and accounts for
classical electromagnetic fields while the second term is the non-local quantum correction.
The coefficient α depends on the number and types of fields integrated out, thus quantised
[63]. For the purpose of this work, α will be considered a free parameter, which enables
the choice of fields to be introduced into the theory. Naturally, a future analysis of the
effects of such a coefficient on pair production will be necessary.

Note that, since we can choose the quantised fields in this effective action, the
quantum fluctuations arising from the creating of annihilation of virtual particles can
manifest as any particle pair of choice. For instance, if we consider the quantisation of
spin-1/2 particles, these quantum fluctuations are manifested by electron-positron pairs.
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In addition, note that the effective action (5.5) presents a similar form to Eq. (4.17),
where the first term corresponds to the background fields and the second to the quantum
corrections, which alter the dynamics of the classical background fields.

5.1.1 Non-local effective action in momentum space

To analyse pair production for different configurations of the background field,
through the computation of 2Im L, let us first express the effective action (5.5) in momen-
tum space. This shift is motivated by the convenience of working with the momentum kμ

rather than operators such as the derivatives ∂μ.

We start by employing the Fourier transformation for the gauge field Aμ(x) to
transform the first term of the effective action, which corresponds to the Maxwell’s
Lagrangian. This transformation is given by

Aμ(x) =
∫ d4k

(2π)4 e−ik·xAμ(k), (5.6)

where Aμ(k) denotes the gauge field in momentum space. Substituting this expression into
the electromagnetic tensor F μν gives

F μν = ∂μ
∫ d4k

(2π)4 e−ik·xAν(k) − ∂ν
∫ d4k

(2π)4 e−ik·xAμ(k). (5.7)

By applying derivatives to exponentials, we obtain factors of the form −ikμ, leading to
the following:

F μν = −i
∫ d4k

(2π)4 e−ik·x (kμAν(k) − kνAμ(k)) . (5.8)

It is important to note that in this expression, we are not explicitly indicating the
integration with respect to x, as we shall in the next step.

We proceed by writing the contraction F μνFμν in the momentum space and indica-
ting integration with respect to x, yielding

∫
d4x F μνFμν = −

∫
d4x

∫ d4k

(2π)4
d4k′

(2π)4 e−ix·(k′+k) (kμAν(k) − kνAμ(k))

× (k′
μAν(k′) − k′

νAμ(k′)).
(5.9)

By employing the identity
∫

d4x e−i(k+k′)·x = (2π)4δ(k + k′), (5.10)

and subsequently integrating with respect to k, we obtain
∫

d4x F μνFμν = −
∫ d4k

(2π)4 [kμAν(k) − kνAμ(k)] [−kμAν(−k) + kνAμ(−k)] . (5.11)
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Notice that this integration results in the change of variables k′ → −k due to the delta.
After performing the product within the integrand of (5.11) and factoring out the gauge
fields using the relation Aμgμν = Aν , we arrive at

∫
d4x F μνFμν = 2

∫ d4k

(2π)4 Aμ(k)
(
k2gμν − kνkμ

)
Aν(−k). (5.12)

Thus, the first term of the effective action is given by
∫

d4x
[
−1

4FμνF μν
]

= 1
2

∫ d4k

(2π)4 Aμ(k)
(
−k2gμν + kνkμ

)
Aν(−k). (5.13)

Before representing the quantum correction term, the second term in the effective
action, in momentum space, we need to establish a way to express the logarithmic operator
in this space as well. One approach is to write it as

log
(
�
μ2

)
=
∫ ∞

0
ds

(
2s

−� − s2 + 2s

s2 + μ2

)
, (5.14)

where s is just a parameter for integration. As we transition to momentum space, we have

log
(
�
μ2

)
=
∫ ∞

0
ds
∫ d4k

(2π)4 e−ik·x
(

2s

k2 − s2 + 2s

s2 + μ2

)
. (5.15)

Integrating now with respect to the parameter s leads to

log
(
�
μ2

)
=
∫ d4k

(2π)4 e−ik·x log
(−k2

μ2

)
. (5.16)

After expressing this operator in this manner, we can multiply it with an electro-
magnetic tensor, as given in (5.8). This product results in

log
(
�
μ2

)
Fμν = −i

∫ d4k

(2π)4 log
(−k2

μ2

)
[ kμAν(k) − kνAμ(k)] e−ik·x. (5.17)

When contracted with another electromagnetic tensor, as the correction term in the
effective action (5.5), we obtain
∫

d4x αF μν log
(
�
μ2

)
Fμν =

∫
d4x α

∫ d4k′

(2π)4
d4k

(2π)4 [ −k′μAν(k′) + k′νAμ(k′)]

× log
(−k2

μ2

)
[ kμAν(k) − kνAμ(k)] e−ix·(k′+k).

(5.18)

We can simplify this equation by utilising the identity (5.10) and integrating with respect
to k, resulting in a change of variables k → −k′. This then yields
∫

d4x αF μν log
(
�
μ2

)
Fμν = 2α

∫ d4k

(2π)4 log
(−k2

μ2

)

× [kμAν(k)kμAν(−k) − kμAν(k)kνAμ(−k)] .

(5.19)
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We can proceed by following the same steps used to derive (5.12). This leads to
∫

d4x αF μν log
(
�
μ2

)
Fμν = −4

2α
∫ d4k

(2π)4 log
(−k2

μ2

)
Aμ(k)

(
−k2gμν + kνkμ

)
Aν(−k).

(5.20)

With the terms (5.13) and (5.20) at hand, we can rewrite the effective action (5.5)
in momentum space as

Γ[A] = 1
2

∫ ∞

−∞
d4k

(2π)4 Aμ(k)
⎧⎨
⎩(−k2gμν + kνkμ)

[
1 − 4α log

(−k2

μ2

)]⎫⎬
⎭Aν(−k). (5.21)

Therefore, with this formulation of the effective action, we are now able to analyse the
Schwinger effect and derive the vacuum decay rates for different configurations of the
electromagnetic background.

5.2 Wave Equation
To analyse the phenomenon of pair production in electromagnetic backgrounds, it is

necessary first to find the classical equation describing the dynamics of these backgrounds.
We can start with the covariant Maxwell’s equation

∂μF μν = eJν , (5.22)

derived in the Subsection 3.2.1. Here, Jν = (ρ, j) represents the (external) four-current
that generalises the notion of electric charge density ρ and electric current density j.

We can express the electromagnetic tensor in terms of gauge fields Aμ, such that
equation (5.22) is written as

∂μ (∂μAν − ∂νAμ) = eJν . (5.23)

Upon applying the distributive property and performing the contraction of the derivative
∂μ with the other terms, we arrive at

�Aν − ∂μ∂νAμ = eJν . (5.24)

To simplify this differential equation, we can make use of gauge invariance, thus imposing
the Lorentz gauge condition

∂μAμ = 0. (5.25)

This then reduces (5.24) to the wave equation for electromagnetic fields in the presence of
an external source:

�Aμ(x) = eJμ(x). (5.26)

In the following subsections, we will work with the system where the source is null, thus
reducing this differential equation to the plane wave equation. Additionally, we will also
consider the case where the source is constant in momentum space.
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5.2.1 Plane wave

The most basic scenario we can investigate is provided by a background characterised
by a monochromatic plane wave. This field configuration is obtained by solving equation
(5.26) without external sources, i.e. Jμ = 0. This case yields the following equation:

�Aμ = 0. (5.27)

This equation is accompanied by the plane wave solution

Aμ(x) = Āμ e−ik·x, (5.28)

where Āμ is the position-independent wave amplitude. We can verify this solution by
substituting it back into (5.27). Upon doing so, we observe that

Āμ� e−ik·x = 0. (5.29)

Applying the d’Alembertian operator on the exponential leads to

−Āμk2e−ik·x = 0. (5.30)

Here the factor k2 originates from the operation of the d’Alembertian operator on the
exponential term. This factor is crucial as we must have k2 = 0 for this solution to hold
true. Also it signifies that the solution is light-like, indicating that k2 = m2 = 0.

In the scenario of a background characterised by a monochromatic plane wave, as
described by equation (5.28), we find that the effective action (5.21) becomes identically
zero:

Γ[A] = 1
2

∫ ∞

−∞
d4k

(2π)4

{
(−k2AμgμνAν + AμkμkνAν)

[
1 − 4α log

(−k2

μ2

)]}
= 0. (5.31)

This occurs due to the specific gauge choice (5.25) that we adopted in deriving equation
(5.26). In momentum space, this gauge corresponds to the contraction

kμAμ = 0. (5.32)

As a result, the terms in equation (5.31) associated with this gauge choice become zero.
Additionally, we must recall that k2 = 0, as we utilised this condition to solve equation
(5.27). Consequently, the terms in the integral corresponding to this condition also become
zero. Note that we used

lim
k2→0

k2 log(k2) = 0.

For this effective action, the decay probability (4.76) is

P = 0. (5.33)
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Consequently the vacuum for the plane wave background is stable, rendering no pair
production. This result aligns with Schwinger’s findings in [25], where he computed the
pair production rate for a single monochromatic plane wave background, yielding the same
null result.

A reason for the production rate being zero for a plane wave background is that
such a background solution to the wave equation is a free solution, meaning that it lacks
interactions. If there is no interactions of this background with the quantised particles in
the vacuum, there is no polarisation and consequently no pair production.

We can further confirm the result that the pair production probability is null by
examining the Euler-Heisenberg effective Lagrangian (4.61), where we recall that the
integration of fermions in a background electromagnetic field is expressed in terms of the
Lorentz invariants F μνFμν and F̃ μνFμν . In the case of the monochromatic plane wave,
these invariants3 are

F μνFμν = 2Aμ (� gμν − ∂μ∂ν) Aν = 0 and F̃ μνFμν = εμνρσ∂ρ(AσFμν) = 0. (5.34)

Here, we used the Lorentz gauge choice (5.25), the time-like condition k2 = 0 and the
symmetry properties of the tensor εμνρσ. Since these Lorentz invariants are zero, so is the
imaginary contribution of the Euler-Heisenberg effective Lagrangian (4.61).

5.2.2 Constant external current

To investigate the non-local effective action in the presence of an external source,
we must first solve the wave equation (5.26). This can be easily done by transitioning to
momentum space, and thus obtaining

Aμ(k) = −e
Jμ(k)

k2 . (5.35)

As we substitute this result into (5.21), considering the gauge choice (5.32), we find

Γ[A] = e2

2

∫ d4k

(2π)4

[
−Jμ(k)Jμ(−k)

k2 + 4α
Jμ(k)Jμ(−k)

k2 log
(−k2

μ2

)]
. (5.36)

We emphasise that this effective action is valid for any background described by an external
current Jμ, unlike the Euler-Heisenberg effective Lagrangian (4.61), which considers only
constant electromagnetic fields as the background. For our study, we will assume that the
external current Jμ(k) is independent of k and constant. Therefore, we need to solve the
integral

Γ[A] = e2

32π4 JμJμ
∫

d4k

[
− 1

k2 + 4α

k2 log
(−k2

μ2

)]
. (5.37)

It is important to note that here we are performing an integration in momentum space.
If we were in position space, such a constant external current could be interpreted as a
3 A demonstration of the second equation can be found in Appendix A.
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constant point-like current. Furthermore, we will solve these integrals in Euclidean space,
enabling us to evaluate the integral using four-dimensional spherical coordinates.

To transition this integral from Minkowski space to Euclidean space, we shall
employ the so-called Wick rotation. Essentially, this technique is a continuation to the
complex plane, which involves rotating the first component of the four-vector in the
complex plane by an angle of −π/2 such that we have

k0 → ik0
E and k → kE. (5.38)

Here, the subscript E denotes Euclidean space [8, 10]. Therefore, as the function that we
are integrating presents poles along the real axis, after the Wick rotation, these poles are
repositioned onto the imaginary axis, as depicted in Figure 8. Additionally, it is worth
noting that the spatial components k remain unchanged during this rotation.

Figure 8 – Representation of Wick rotation, where poles along the real axis are rotated
and thus repositioned onto the imaginary axis.

Hence, given a four-momentum kμ, it undergoes the rotation described in (5.38),
resulting in k2 being expressed as

k2 = (k0)2 − |k|2 = (ik0
E)2 − |kE|2 = −k2

E. (5.39)

Notice that with this rotation, the Minkowski metric with signature (+, −, −, −), which
we previously employed, transforms into the Euclidean metric with signature (+, +, +, +).
Additionally, it is important to observe that d4k = id4kE. Consequently, the integral (5.37)
can be reformulated in Euclidean space as

Γ[A] = − e2

32π4 J2
E i
∫ i∞

−i∞
d4kE

[
1

k2
E

− 4α

k2
E

log
(

k2
E

μ2

)]
. (5.40)

Note that as a result of the rotation, the integration limits also undergo a change, and the
source is also in the Euclidean space, J2 = −J2

E = −[ρ2
E + j2].

To evaluate this integral, we perform a transformation to 4-dimensional spherical co-
ordinates. In this transformation, we use the integration measure d4x = r3 sin2 ω sin θ dφdθdωdr.
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Expressing it in terms of the four-dimensional solid angle dΩ4, we have d4x = dΩ4 dr r3.
Thus, the integral (5.40) is rewritten as

Γ[A] = − e2

32π4 J2
E i
∫

dΩ4

∫ i∞

0
dkE k3

E

[
1

k2
E

− 4α

k2
E

log
(

k2
E

μ2

)]
. (5.41)

The integration over the solid angle in 4 dimensions corresponds to 2π2, with this factor
being simplified by the term 1/32π4, thus leading to the following effective action in
Euclidean space and spherical coordinates:

Γ[A] = − ie2

16π2 J2
E

∫ i∞

0
dkE

[
kE − 4αkE log

(
k2

E

μ2

)]
. (5.42)

Before proceeding with the integration, it is important to observe that these
integrals are all divergent. This divergence arises due to integration from 0 to ∞. To
address this issue, we can introduce a cutoff Λ on the upper limit, effectively limiting the
momentum from above. Given the Wick rotation, the cutoff is represented as ΛE = i∞,
and the effective action becomes

Γ[A] = − ie2

16π2 J2
E

∫ ΛE

0
dkE

[
kE − 4α kE log

(
k2

E

μ2

)]
. (5.43)

Additionally, the cutoff introduced here is a physical energy scale that determines the
range of validity of our theory. This implies that when exploring an energy scale surpassing
this cutoff, it becomes necessary to formulate a more fundamental theory to precisely
describe phenomena beyond this limit.

As the integration is straightforward, we will refrain from performing it step by
step here. The important point to note is that to integrate the second term, we perform a
change of variables u = k2

E/μ2. Thus, we obtain the effective action

Γ[A] = − ie2

16π2 J2
E

[
k2

E

2 − 4α

2 k2
E log

(
k2

E

μ2

)
+ 4α

2 k2
E

]ΛE

0
. (5.44)

By utilising
lim

kE→0
k2

E log(k2
E) = 0,

and performing the necessary simplifications, we get

Γ[A] = − ie2

32π2 J2
E Λ2

E

[
1 + 4α − 4α log

(
Λ2

E

μ2

)]
. (5.45)

To proceed, we can recall that the cutoff ΛE is very large, as we can consider that ΛE → ∞.
Given this, we can observe that the first two terms within square brackets grow slower
compared to the last term. Therefore, in the limit where the cutoff is large, we can consider
that the only significant contribution to the pair production rate comes from the last term
in (5.45). Thus, we have

2Im Γ[A] = α
e2

4π2 J2
E Λ2

E log
(

Λ2
E

μ2

)
, (5.46)
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the production rate for a constant external current background. Note that this outcome
can be treated perturbatively in e, differently from Schwinger’s result in (4.73). It relies on
the parameter α, which depends on the number and type of quantised fields, the constant
external source J2

E, and the cutoff ΛE, dependent on the energy scale.

It is interesting to note that although the effective action (5.5) is already renorma-
lised and depends on the parameter μ, it revels unconventional divergences highlighted by
the cutoff ΛE when its imaginary part is calculated, as seen in (5.46). These divergences can
be traced back to the on-shell calculations of (5.36) and the choice of the external current
Jμ. As the integration spans all momenta, from −∞ to ∞, it is natural for divergences
to appear, unless we have an external current function whose integral converges to some
value.

Regarding a renormalisation process, we could argue that the production rate,
namely 2Im L, does not depend on the cutoff ΛE. Since this production rate is a physical
observable, representing also the probability of pair production through (4.76), it should
not depend on ΛE. Thus, we can impose that

dIm L
dΛ2

E

= 0, (5.47)

and therefore utilising the renormalisation group. Consequently, the dependence on ΛE

would come from the external current Jμ
E, the electric charge e, or the parameter α, in such

a way that (5.47) holds. One idea would be to introduce the dependence on the electric
charge e. However, in this approach, this parameter would depend on two energy scales
μ and ΛE, such that e = e (μ, ΛE). However, the concept of a renormalised parameter
in the effective action or Lagrangian that depends on two energy scales or two running
parameters needs yet to be analysed and discussed. Nevertheless, we are unsure whether
this is the path to follow, whether it is viable, or how to proceed by introducing the ΛE

dependence on Jμ
E or αE. Naturally, each option will probably have different implications

for the theory and its renormalisation, and it is crucial to study how each choice affects
the consistency and predictions of the model.

It is important to mention that renormalisation processes and methods are common
in QFT and are well documented in fundamental texts such as [8, 10, 70, 75]. However, a
study on a potential second renormalisation is necessary.

Another analysis of the production rate (5.46) concerns the constant external current
J2

E. Given that the external current depends solely on the current density, specifically
J2

E = j2, and considering that our background has no charge density (ρ = 0), we observe
that the production rate (5.46) remains non-zero. This indicates that even in the absence
of electric fields from the charge density, pair production occurs.

However, it is important to remember that as the external current is constant in
momentum space, it corresponds, in position space, to a point-like external current (a
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delta function) in position and time. This external current can lead to the generation of
both magnetic and electric fields. Specifically, since the magnetic fields produced by the
current density are not constant in time due to a rapid variation in the external current,
electric fields are induced. These electric fields can, in turn, lead to pair production. If the
current density were constant, the background field would be purely magnetic, and pair
production would not occur as described by Schwinger’s formalism.
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6 Conclusions

In this work, we investigated the effects of a one-loop quantum correction derived
from a non-local effective action on pair production in the vacuum. This mechanism, also
known as the Schwinger effect, exemplifies the instability of the quantum vacuum in QED
in the presence of an intense external electric field and demonstrates the so-called vacuum
decay.

The analysis presented here focused on two backgrounds: the plane wave and a
wave with a constant external current. To obtain the pair production rates, we considered
a non-local effective action resulting from the quantisation of generic fields coupled with
background electromagnetic fields through a parameter α.

In the scenario where the background field was composed of plane waves, we
obtained a null production rate, indicating that the vacuum state remains stable under
this background. Such a background does not produce imaginary contributions to the
effective action, thus preventing vacuum decay, as observed by Schwinger. Conversely, in
the scenario featuring a constant external current, we observed a non-zero pair production
rate, indicating instability of the vacuum in the presence of this background.

As an extension of this work, we suggest an exploration of the free parameter
α, given that this coefficient relies on the number and type of quantised fields in the
theory. We expect changes in pair production rates and, consequently, in the vacuum
decay probability. Another suggestion is to investigate the second renormalisation process
that can occur in order to remove the cutoff dependence of the production rate for the
constant external current.

Furthermore, we propose an examination of pair production, accounting for the non-
local quantum correction, across other backgrounds. These include backgrounds defined
by constant electromagnetic fields, similar to Schwinger’s investigation. We anticipate that
in this background, the imaginary contribution of the effective action will arise from the
correction term, as the integration of the contraction of electromagnetic tensors does not
present any poles. Other backgrounds that could be explored include inhomogeneous ones,
which have been examined in the literature [21, 24].
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APPENDIX A – Lorentz invariant for a
monochromatic plane wave

Here we want to demonstrate how F̃ μνFμν = 0 for plane waves. To do so, we employ
the definition of the dual field-strength tensor (3.52) and express this contraction as

F̃ μνFμν = 1
2εμνρσFρσFμν . (A.1)

By expressing the dual electromagnetic tensor in terms of the gauge fields, we obtain

F̃ μνFμν = 1
2εμνρσ (∂ρAσ − ∂σAρ) Fμν

= εμνρσ (∂ρAσ) Fμν ,
(A.2)

where we used the antisymmetric property of the Levi-Civita symbol from the first to
the second line. Additionally, we observe that this equation can be rewritten using the
product rule ∂ρ(AσFμν) = (∂ρAσ)Fμν + Aσ∂ρFμν , yielding

F̃ μνFμν = εμνρσ [∂ρ(AσFμν) − Aσ∂ρFμν ] . (A.3)

We can further simplify this equation by noticing that the last term of this equation is null
due to the contraction between antisymmetric and symmetric tensors, as done in (3.54).
Therefore, we have

F̃ μνFμν = εμνρσ∂ρ(AσFμν). (A.4)

Upon substituting the plane wave solution (5.28) into equation (A.4), we obtain

εμνρσ∂ρ(AσFμν) = εμνρσ∂ρ

{
Āσe−ikx

[
∂μ

(
Āνe−ikx

)
− ∂ν

(
Āμe−ikx

)]}
= −iεμνρσ∂ρ

[
Āσe−ikx

(
kμĀνe−ikx − kνĀμe−ikx

)]
= −iεμνρσ∂ρ

[
Āσ

(
kμĀνe−2ikx − kνĀμe−2ikx

)]
.

(A.5)

From the first to the second line, we performed the differentiations and factored out
−i, and from the second to the third line, we multiplied the exponentials. Also, recall
that Āρ denotes the position-independent wave amplitude, which remains constant under
differentiations. Upon differentiation with respect to ∂ρ, we proceed to

εμνρσ∂ρ(AσFμν) = −2εμνρσkρĀσ

(
kμĀν − kνĀμ

)
e−2ikx

= 0.
(A.6)

Note that the factor −2ikρ arises from the differentiation of the exponentials and that we
have again a contraction of symmetric and antisymmetric tensors, yielding a null outcome.


