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RESUMO

Concept Drift é um problema comum quando lidamos com fluxos de dados. Como as distribuições

de probabilidade dos dados mudam com o passar do tempo, é essencial que modelos de

Aprendizado de Máquina consigam se adaptar. Na literatura, existem alguns métodos que tentam

se adaptar a essas mudanças. Entre eles, o Dynse, que é baseado em seleção dinâmica de

ensemble, é o foco deste trabalho. Ele mantém um pool de classificadores que é atualizado

sempre que um novo lote de dados chega. Esses classificadores são selecionados baseado em sua

performance em um dataset de validação para classificar uma instância. Duas mudanças foram

propostas, que são fazer o Dynse capaz de fazer processamento online, e adicionar um detector

de mudança, para auxiliar na adaptação para um novo conceito. Os resultados experimentais

mostram que, após a adaptação para processamento online, que chamamos de ODynse, tivemos

uma performance melhor do que o framework Dynse original em ambas mudanças de conceito

real e virtual. Após a adição do detector de mudança, resultando no Dynse+, tivemos resultados

melhores estatisticamente significativos do que o Dynse. O Dynse+ também foi o método

melhor classificado entre 7 outros métodos do estado-da-arte, com uma diferença estatisticamente

significativa para 4 deles. Também foram feitos testes considerando rótulos atrasados e parciais,

para simular um cenário mais próximo do mundo real. O Dynse+ também foi o melhor comparado

a outros métodos do estado da arte. Contudo, ele foi o método mais lento quando consideramos

tempo de processamento.

Palavras-chave: Mudança de Conceito. Seleção Dinâmica. Machine Learning.



ABSTRACT

Concept drift is a common problem when we are dealing with data streams. As the probability

distribution of data changes with time, it is crucial that Machine Learning models are able to

adapt. In the literature, there are some methods that try to adapt to these changes. Between them,

Dynse, which is based on Dynamic Ensemble Selection, is the focus of this work. It maintains a

pool of classifiers that is updated whenever a new batch of data arrives. These classifiers are

selected based on their performance in a validation dataset to classify an instance. Two changes

were proposed, which are making Dynse able to perform online processing, and to add a drift

detector to assist on the adaptation to a new concept. The experimental results show that, after

the adaptation to online processing, which we call ODynse, we had a best performance to the

original Dynse framework. After the addition of the drift detector, resulting on the Dynse+, we

had a statistically significant best results than Dynse. Dynse+ also was the best ranked method

among 7 other state-of-the-art methods, with a statistically significant difference to 4 of them.

There were also performed tests considering delayed and partial labels, to simulate a scenario

closer to the real world. Dynse+ was also the best one compared to other methods in the state of

the art. However, it was the slowest method when we take into account the processing time.

Keywords: Concept Drift. Dynamic Selection. Machine Learning.
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1 INTRODUCTION

Nowadays we have data being generated at every moment, which are used in Machine Learning

(ML) applications. In such applications, many works consider statically distributed data and do

not take into account the possibility of data changing with time, which is known as concept drift

(Lu et al., 2020). Concept drift impacts the performance of ML models, bringing the need for

strategies of adaptation to maintain the performance (Wang et al., 2024).

An example of a changing concept is the people’s opinion with time. We can cite the

change in the opinion about vaccination after the COVID-19 pandemic. Müller and Salathé

(2020) aims at this scenario and argues that such a crisis like the pandemic may have triggered a

concept drift regarding people’s opinions about vaccination. Yet in the 2020’s pandemic scenario,

we can cite the example where people began to wear masks. If a face-detection model was trained

only on people without masks, it needs to learn the new concept of people wearing masks, which

is not an anomaly anymore (Agate et al., 2022). This example is exposed in Figure 1.1.

Figure 1.1: Man Wearing Mask vs Man Not Wearing Mask. Adapted from DepositPhotos1.

In the cyber security context, Jordaney et al. (2017) shows how these changes impact

classifying malware, as malware manufacturers are constantly changing their techniques. Thus,

the ML model must be able to be on track with such changes to learn new concepts of malware.

The same happens on detecting e-mails as spam (Kuncheva, 2004), which varies according to

user preferences, and spam manufacturing methods are also constantly changing. The model

needs to adapt as well.

The need of our ML models adapting to the expected changes occurring in real life

shows the relevance on studying concept drift. In the literature, there are many ways to deal

with it. For example, methods that aim at the error rate of the ML model (Gama et al., 2004;

Baena-García et al., 2006), sliding windows (Kubát, 1989; Widmer and Kubat, 1992), ensembles

(Oza, 2005; Bifet et al., 2010b) and Dynamic Selection (Cavalheiro et al., 2021; Jiao et al., 2022).

In this work, we will address a Dynamic Selection-based approach called Dynse (Almeida et al.,

2018). Dynamic Selection-based methods are those which will try to select the best classifier(s)

depending on their performance on a Region of Competence (RoC) of the test instance, which

is gathered from the Dynamic Selection Dataset (DSEL) through, for instance, the 𝑘-nearest

neighbors of the test instance (Cruz et al., 2018).

Almeida et al. (2018) argue that any Dynamic Selection (DS) method can deal with

concept drift when the time-dependence is considered in it. They do this by adding a new

classifier to a pool 𝐶 whenever a batch of a predefined number of instances is completed. The

added classifier will then be selected based on the DS engine. However, a known limitation of

1Available at https://depositphotos.com/vector-images/no-entry-without-face-
mask.html. Accessed on 08/05/2023.
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(a) Big DSEL (Concept Drift Adaptation Takes Longer).
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Figure 1.2: How the Size of the DSEL Impacts on Dynse’s Adaptation to Concept Drift

the Dynse framework lies on the DSEL, which is the validation dataset that is used to extract

the RoC to measure the competence of classifiers. Its size must be defined by the user. A short

DSEL may not have enough information for an efficient DS. On the other hand, a larger DSEL

may postpone the adaptation to a new concept. This is known as the stability-plasticity dilemma

(Elwell and Polikar, 2011). Another point on the choice of the maximum size of the DSEL is

that we need to know in advance whether we are dealing with virtual or real concept drift (see

Section 2.2.1), as a larger DSEL is better for virtual concept drift, in which we may have a static

concept where we know different regions of the feature space over time, and it does not affect the

ideal decision boundary (Kolter and Maloof, 2007; Lu et al., 2020). A minor DSEL will help

adapting to real concept drift, as most likely the decision boundary will have changed, and our

classifier(s) must learn it (Lu et al., 2020; Gama et al., 2014). A scheme of how the size of the

DSEL may impact on the Dynse’s adaptation to concept drift is exposed in Figure 1.2.

In this work, we aim to soften the need to choose the right size of the DSEL, letting it

grow larger in cases of stable concepts or virtual concept drift. This is possible by the addition

of a concept drift detector. When a concept drift is detected, the DSEL shrinks to a minimum

size to adapt to the new concept. To do so, first, the Dynse framework is adapted to be able to

perform online processing of instances, i.e., update whenever a new data sample arrives, instead

of batch-processing. Then the concept drift detector will be added to it.

Dynse accepts any DS method and base classifiers, provides flexibility and is extensible.

In this work, we propose Dynse+, a novel framework which is an extension of the Dynse framework

(Almeida et al., 2018) that will maintain the characteristics of flexibility and extensibility, and

hope that it can help other authors to include a concept drift detector in their DS approaches for

non-stationary streaming data and give insights about the pros and cons of doing so.

1.1 OBJECTIVES

In this work, we address some limitations of the Dynse framework (Almeida et al., 2018), which

includes the batch processing and the limited size of the DSEL. By taking into account the need

to continuously update ML models under stream scenarios, the ability of the resulting framework

to perform online processing might be beneficial. Also, the ability to have the DSEL guided by

drift detection shall make Dynse able to react to concept drift actively, enabling the possibility to

have a larger estimation window in stable concepts and in cases of virtual concept drift, and a

shorter when a concept drift takes place. That said, the objectives of this work are:

• To propose ODynse, a version of Dynse capable of performing online processing.
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• To propose the adaptation of the DSEL through drift detection, resulting on the Dynse+

framework.

• To asses different drift detectors in the proposal.

1.2 HYPOTHESIS

Our hypothesis is that the usage of a trigger, i.e., a drift detector to help with the adaptation of

the DSEL will lead to better results in scenarios with real concept drift and perform no worse

than Dynse in scenarios with virtual concept drift. The authors of Dynse have proposed two

different configurations for Dynse: one to deal with real concept drift and the other for virtual
concept drift. The difference is that the DSEL for the virtual concept drift is larger. We argue

that there is no need to have two different configurations anymore, as in cases of virtual concept
drift the DSEL will keep growing, and when we have a real concept drift triggered by a drift

detector, the DSEL will shrink to forget an old concept. As it is difficult to know in advance if

we are dealing with virtual or real concept drift, to have only one setup that is able to deal with

both is rather beneficial.

1.3 CONTRIBUTIONS

This work has the following contributions:

• Improvement on the Dynse framework for performing online processing.

• Improvement on the Dynse framework for being able to actively react to concept drift

by automatically adjusting its DSEL.

• The availability of the resulting frameworks in a public repository.

• An evaluation of how good are common datasets in the literature for evaluating models

from the concept drift perspective.

• An evaluation of various drift detectors in the literature.

• Comparison of various methods in the state of the art in various datasets.

• Paper published on Brazilian Symposium on Databases (SBBD) (Barboza and Almeida,

2022).

• Paper published on International Joint Conference on Neural Networks (ĲCNN) 2023

(Barboza et al., 2023).

1.4 DOCUMENT STRUCTURE

The remainder of this work is structured as follows: in Section 2, there are presented key concepts

regarding data streams, characterized concept drift and its types, presented the performance

metrics used for comparison, explained what is a drift detector and how to evaluate them, there

is explained what DS is, and the Dynse Framework is presented. In Section 3, some works in

the literature of concept drift are presented. In Section 4 we describe Dynse+, the proposed

framework of this work, the datasets utilized for the experimental evaluation, and the experiments

guidelines. In Section 5 we report the results regarding Cramer’s V autocorrelation test, naïve



19

methods, a hyperparameter analysis of Dynse+, and the comparison of the proposed framework

to the state of the art. Finally, Section 6 concludes this work.
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2 THEORETICAL FOUNDATION

2.1 DATA STREAMS

Data streams are characterized as potentially infinite flows of data, that may be presented in the

form of individual patterns, also called online processing, or in batches, and may be evolving over

time (Komorniczak and Ksieniewicz, 2023; Bifet et al., 2013). A data stream of 𝑛 data points

may be defined as a sequence 𝑆 = {𝐼1, 𝐼2, ..., 𝐼𝑡−2, 𝐼𝑡−1, 𝐼𝑡 , }, where 𝐼𝑡 is the instance that arrived

at time 𝑡 denoted by 𝐼𝑡 = (𝑥𝑡, 𝑦𝑡), where 𝑥𝑡 is the feature vector from 𝐼𝑡 , and 𝑦𝑡 the label for 𝐼𝑡 .
Online processing algorithms process instances appearing one by one in time. In batches,

also called blocks or chunks, the examples come in portions, generally of the same size, and the

updating is done as these blocks of instances are available (Brzezinski and Stefanowski, 2014).

Figure 2.1(a) presents a scheme of a stream of individual patterns, Figure 2.1(b) shows a stream

of batches with 3 instances, where 𝐵𝑡 is the current batch and 𝐵𝑡−1 the previous.

The data stream literature relies on methods that deal with one of these two ways of

processing data instances. Examples of works of online processing are (Domingos and Hulten,

2000; Brzezinski and Stefanowski, 2014; Oza, 2005; Bifet et al., 2010b; Gomes et al., 2017), and

of batch processing (Brzeziński and Stefanowski, 2011; Wang et al., 2003; Kolter and Maloof,

2007; Almeida et al., 2018; Kozal et al., 2021).

. . . I𝑡−8 I𝑡−7 I𝑡−6 I𝑡−5 I𝑡−4 I𝑡−3 I𝑡−2 I𝑡−1 I𝑡

(a) Stream of Individual Patterns.

. . . I2 I1 I0 I2 I1 I0 I2 I1 I0

B𝑡B𝑡−1B𝑡−2

(b) Stream of Batches.

Figure 2.1: Stream of Instances vs Stream of Batches.

2.2 CONCEPT DRIFT

In this section, the different types of concept drift regarding probabilistic sources and transition

in time are explored. In data streams scenarios, as data arrives continuously, we may have some

scenarios that we do not encounter in the classic batch-learning ML. The natural trend data has

to change over time is best perceived in data streams. Changes may happen due to, for instance,

weather, people’s preferences, and politics. We can not neglect to adapt to changes in the data

distribution, which is called concept drift.

Concept drift happens when input data and classes’ relationship change with time (Gama

et al., 2014). It brings the need to look for ways for the ML model to adapt to such changes. The

formal definition of concept drift is as follows (Gama et al., 2014; Lu et al., 2020):

∃𝑡 : 𝑃𝑡 (𝑥, 𝑦) ≠ 𝑃𝑡+𝛿 (𝑥, 𝑦) (2.1)

where 𝑦 is the class of the instance, 𝑃𝑡 is the (𝑥, 𝑦) probability in time 𝑡, and 𝑥 is a feature vector.

Change happens in some time 𝑡 + 𝛿, for any 𝛿 > 0. 𝑃𝑡 (𝑥, 𝑦) can be unraveled by following the

Bayesian Decision Theory:
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Probabilistic

Fickle Concept Drift

Intersected Concept Drift

Severe Concept Drift

Local Concept Drift

Feature Evolution

Time

Abrupt Concept Drift

Gradual Concept Drift

Incremental Concept Drift

Recurrent Concept Drift

Figure 2.2: Types of Concept Drift From Different Sources.

𝑃𝑡 (𝑥, 𝑦) = 𝑃𝑡 (𝑦 |𝑥) × 𝑃𝑡 (𝑋) = 𝑃𝑡 (𝑥 |𝑦) × 𝑃𝑡 (𝑦) (2.2)

𝑃𝑡 (𝑦 |𝑋) refers to the a posteriori probability distribution of the target labels, and 𝑃𝑡 (𝑥)
is the probability distribution of the input data. 𝑃𝑡 (𝑦) refers to the a priori probability distribution

of the target labels, and 𝑃𝑡 (𝑥 |𝑦) refers to the probability density distribution conditioned to the

class.

Concept drift might have different sources and different types. There is no consensus in

the literature on the definition of different types of concept drift. Some authors split it into real
concept drift and virtual concept drift (Gama et al., 2014). However, other authors defined other

types (Bayram et al., 2022; Minku et al., 2010; Forman, 2006), as we explain in Section 2.2.1.

We also have different types of concept drift based on how it happens on a timestamp (Lu et al.,

2020; Gama et al., 2014; Minku et al., 2010), which we explore in Section 2.2.2. The division

of the types of concept drift between probabilistic criterion and on how the data distribution

changes with time is shown in Figure 2.2.

2.2.1 Types of Concept Drift – Probabilistic Source

In this section, we will see the terms real concept drift and virtual concept drift, as well as some

subcategories found in the literature, which have their source in the probability distribution of

data. The way real and virtual concept drifts may happen in a 2-dimensional space are exposed

in Figure 2.3.

(a) Original Data. (b) Real Concept Drift

(Changes the Ideal Decision

Boundary).

(c) Virtual Concept Drift (Does

not Change the Ideal Decision

Boundary).

Figure 2.3: Types of Concept Drift – Probabilistic Source.

1. Real Concept Drift it happens when 𝑃𝑡 (𝑦 |𝑥) ≠ 𝑃𝑡+𝛿 (𝑦 |𝑥) (Gama et al., 2014). Other

authors, like Lu et al. (2020) call it actual concept drift. Real concept drift changes the ideal

decision boundaries of data, as we can see in Figure 2.3(b), and leads to a decrease in ML model’s
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accuracy. It can accompany or not a virtual concept drift (Lu et al., 2020). An example is the

change of the weather on the outside environment (Almeida et al., 2015). Whether it is sunny,

rainy, or cloudy may affect the decisions of a ML model.

The following types of concept drift were set as subcategories of real concept drift
by Bayram et al. (2022). Fickle concept drift, in Figure 2.4 is characterized when an instance

belongs to two different classes in different moments in the timestamp (Forman, 2006). It can be

seen as a less severe concept drift, as defined by Minku et al. (2010), which defines severity as

how many of the instances have changed classes in different moments of the timestamp. On the

fickle concept drift, that happens only to one instance.

(a) Original Data. (b) Fickle Concept Drift (One

Instance belongs to two Dif-

ferent Classes at Different

Moments in Time).

Figure 2.4: Fickle Concept Drift.

Yet talking about severity criterion to describe concept drift, Minku et al. (2010) divide

concept drift between severe and intersected. The drift is considered intersected if a part of the

input space has the same class in different concepts (Figure 2.5). If all of the classes of the input

space change, i.e., if ∀𝑋 : 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑡 (𝑦 |𝑥)) ≠ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑡+𝛿 (𝑦 |𝑥)), it is called severe concept
drift (Figure 2.6).

(a) Original Data. (b) Intersected Concept Drift

(Part of the Instances have

Different Classes in Different

Concepts).

Figure 2.5: Intersected Concept Drift.

2. Virtual Concept Drift, exposed in Figure 2.3(c), happens when 𝑃𝑡 (𝑥) ≠ 𝑃𝑡+𝛿 (𝑥).
𝑃𝑡 (𝑥) does not affect the target concept, so it does not affect the ideal decision boundaries (Lu

et al., 2020; Bayram et al., 2022). Even though this type of concept drift does not affect the ideal

decision boundary, we must still be careful with it, as we may have be losing useful information

that could be used. It may happen when the old data that has already been used for training is

still useful, but the new data supplies information that the model did not know before, like a new

region in the feature space. Gama et al. (2014) cited as an example the change of the editor of a

dwelling rental website. The writing style changes, but the houses are still relevant for the user.
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(a) Original Data. (b) Severe Concept Drift (All

of the Instances have Different

Classes in Different Concepts).

Figure 2.6: Severe Concept Drift.

We also can find some subcategories of virtual concept drift in the literature. Local
concept drift in Figure 2.7, for example, happens when the change takes place only in a region of

the feature space, or only in one feature (Bayram et al., 2022). We also have feature evolution,

which refers to the vanishing and/or the appearance of new features with time. In Figure 2.8 we

show the example of a new feature emerging (Bayram et al., 2022; Masud et al., 2010).

(a) Original Data. (b) Local Concept Drift

(Change Takes Place Only

in One Feature of the Input

Space).

Figure 2.7: Local Concept Drift.

(a) Original Data. (b) Feature Evolution (A New

Feature Emerges).

Figure 2.8: Feature Evolution.

2.2.2 Types of Concept Drift – Transition in Time

We can also differ between some types of concept drift when we look at the way it happens

in a timestamp. Like in the probabilistic source, authors have referred to different terms and

approaches to define how concept drift happens in a timestamp. Minku et al. (2010) cited two

types of concept drift according to speed: abrupt and gradual. Abrupt concept drift happens
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when the change occurs in one step in time, or when there is no period of uncertainty between

concepts.

On the other hand, a gradual concept drift might happen in two different ways. It might

have a period of failure, like when a sensor starts to present a defect, where it will periodically

send imprecise reads until it completely breaks. Minku et al. (2010) referred to this type of drift

as probabilistic gradual drift. In this work, we will use the term by Lu et al. (2020): gradual
drift. The other possibility is when there is some modification in every time step until the new

concept stabilizes. Minku et al. (2010) called it continuous gradual drift, and Lu et al. (2020)

used the term incremental drift, which we will also use when referring to this type of drift.

Concept drift may also present recurrence. Recurrent drift can have cyclic or non-cyclic

behavior (Minku et al., 2010). As an example of cyclic behavior, we can cite the preferences

of customers according to the seasons. For example, people might prefer buying a new coat

in winter, instead of a tank top. In winter people also tend to turn their heaters on, which will

influence energy consumption. When seasons change, an older concept might take place. The

change of seasons is a cyclic recurrence that can be told as predictable, and seasons are an

obvious influence on behavior. Random recurrent drift might happen as well, such as the change

of the weather during the day, which can go from sunny to rainy and then go back to sunny. The

types of concept drift by the way it happens in a timestamp are exposed in Figure 2.9.
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Figure 2.9: Types of Concept Drift – Transition in Time.

2.3 PERFORMANCE METRICS

Works related to concept drift tend to use different performance metrics. Such metrics tell us

how well a model performs on a data stream. Based on the problem we are approaching, we

must choose our metrics. Probably, the most known metric is Accuracy, which is the number of

instances correctly classified divided by the total number of instances, as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# Correct Predictions

# Instances
(2.3)

Many authors have used this metric (Oliveira et al., 2019; Krawczyk et al., 2018; Fischer

et al., 2016). However, accuracy is not suitable for imbalanced class problems.

In Data Streams scenarios, it is common calculating the accuracy in a prequential

manner, i.e., the Prequential Accuracy, which makes it able to evaluate the model’s decision

through a test-then-train manner, i.e., each individual instance is used to test the model before it is
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used for training. With this, the accuracy can be incrementally updated, enabling the possibility

of having a plot of accuracy over time (Gama et al., 2014). The prequential accuracy of the 𝑖-th
instance in the stream can be calculated as:

𝑃𝑟𝑒𝑞𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 =

∑𝑖
𝑗=𝑖−𝑁 ( �̂� 𝑗 )

𝑁
, (2.4)

where �̂� 𝑗 = 1 if the model predicts the instance 𝑗 correctly, and 0 otherwise. The prequential

accuracy is calculated on a sliding window of 𝑁 instances.

2.4 CONCEPT DRIFT DETECTION

The literature of concept drift relies, on the majority, on two types of drift adaptation: methods

that continuously update the system and are unaware of a concept drift, and those that try to

track concept drift (Ditzler et al., 2015). The latter mostly utilize some statistics to keep track

of changes and are constantly called as concept drift detectors (Page, 1954; Gama et al., 2004;

Baena-García et al., 2006). Most drift detectors require access to the true label of the data in

order to update such statistics, but in recent works the authors have been trying to overcome

the need of labeled data, which may be limited in data streams (Baier et al., 2021; Gulcan and

Can, 2023; Cerqueira et al., 2023). The idea behind using concept drift detectors is to update

the models after the drift is detected in order to adapt to the new concept. Thus, if the concept

is static, we can keep sending information to our model when available. If a concept drift has

happened, one must adapt to the new concept.

2.4.1 Evaluating Drift Detectors

One of the proposals of this work is to add a drift detector to the Dynse framework. Thus, we

must evaluate how a drift detector would behave along Dynse. We have three important measures

to evaluate drift detectors: True Positive, False Positive, and False Negative (Pesaranghader and

Viktor, 2016; Bifet and Gavaldà, 2007).

Firstly, we must define what is a True Positive (TP). We can say that a drift detector has

correctly detected a drift if it triggers a change within the range [𝑡 − Δ, 𝑡 + Δ], which may be

called the detection interval of True Positive. For reactive concept drift detectors, this range is

within [𝑡, 𝑡 + Δ]. A False Positive (FP) is given if a drift detector triggers a drift outside of the

detection interval, and a False Negative (FN) if there is no drift detection inside the detection

interval (Pesaranghader and Viktor, 2016). The authors recommend to use Δ = 250 for abrupt

concept drift, and Δ = 1000 for gradual concept drift.

2.5 DYNAMIC SELECTION AND THE DYNSE FRAMEWORK

There are two types of ensembles in ML: static and dynamic (Cruz et al., 2017). Static ensembles

are those in which the ensemble will be built during the training phase. Examples are the Bagging

(Breiman, 1996) and Boosting (Freund, 1995). On the other hand, dynamic ensembles will try to

select the best ensemble during the testing phase.

DS aims to estimate the competence of classifiers in a RoC in order to select the most

competent classifier(s) to label a given instance (Cruz et al., 2018). The RoC is extracted from

the DSEL through, for example, a 𝑘-nearest neighbors algorithm. The DSEL contains the data

that is used to measure the competence of classifiers. For neighborhood-based DS, the most

competent classifier(s) from 𝐶 in the 𝑘 instances nearest to the one to be classified will be chosen.
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Techniques used to select a single classifier are called Dynamic Classifier Selection (DCS), such

as Overall Local Accuracy (OLA) (Woods et al., 1997) and Local Accuracy Estimates (LAE)

(Woods et al., 1997), and those that aim to select various classifiers to form an ensemble are

called Dynamic Ensemble Selection (DES), such as K-nearest-oracles (KNORA) (Ko et al.,

2008). These techniques maintain a pool of classifiers 𝐶, and when a new unlabeled instance

arrives to be classified, the most competent classifier(s) is(are) chosen to label it. The selected

classifier(s) is a subset of 𝐶, i.e., 𝐶′ ⊆ 𝐶, where 𝐶′ can be either a single classifier or various

classifiers.

2.5.1 The Dynse Framework

On the Dynse Framework (Almeida et al., 2018), which is a core part of this work, whenever a new

batch 𝐵𝑡 of labeled instances arrives at time 𝑡, it trains a new classifier and adds it to the Pool of

classifiers 𝐶. When a new unlabeled instance 𝐼𝑡 comes for Dynse to classify it, the best classifiers

in 𝐶 are selected based on the DS method, creating a subset 𝐶′, i.e., 𝐶′ = 𝐷𝑆(𝐷𝑆𝐸𝐿, 𝐼𝑡 , 𝐶),
where the DSEL are the instances available for the DS method, 𝐼𝑡 is the instance to be classified,

and 𝐶 is the pool of classifiers. The process of updating Dynse is exposed in Figure 2.10. See

that the newest arrived batch 𝐵𝑡 is being used to train a new classifier to be added to 𝐶, and

when 𝐶 reaches its maximum size, a classifier is pruned based on a Pruning Engine (e.g., age or

accuracy-based)

. . . I2 I1 I0 I2 I1 I0 I2 I1 I0

B𝑡B𝑡−1B𝑡−2

DSEL

Pool of Classifiers

C1 C2 C3

C4
. . . C𝑘

Train Classifier

Figure 2.10: Dynse’s Scheme for Updating.

If we have a DCS method, the best classifier will label 𝐼𝑡 . If we have a DES method, the

selected classifiers form an ensemble (e.g., by majority voting) to classify the new instance 𝐼𝑡 .
For classifying an unlabeled instance, the scheme is in Figure 2.11, where an unlabeled instance

is given to the DS engine, or method, which selects the best classifiers in 𝐶 to form an ensemble

to classify that instance.

In Table 2.1, we have Dynse’s parameters. The Base Classifier is the classifier that will

be trained and added to 𝐶 whenever a new batch 𝐵𝑡 is completed. Train Size refers to the size of

𝐵𝑡 or the size of a batch utilized to train new classifiers to be added to 𝐶. The size of DSEL is

the number of instances in the window of instances that may be selected to the RoC. The authors

of Dynse referred to it as the accuracy estimation window. The DS engine is responsible for

selecting the classifiers in 𝐶 according to their competence. The pruning Engine says how the

classifiers will be dropped when 𝐶 is full. The Number of Classifiers is the maximum size of 𝐶.

Dynse was implemented on the Massive Online Analysis (MOA) framework (Bifet et al., 2010a).
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𝐶′

Predicted Label
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Figure 2.11: Dynse’s Scheme for Classifying an Instance.

Table 2.1: Dynse’s Parameters.

Parameter Description

Base Classifier Base classifier to be used that will compose

𝐶.

Training Size (𝐵𝑡 ) Batch size for training new classifiers

Size of DSEL Size of the DSEL for estimating the accuracy

of classifiers

DS Engine Dynamic Selection Engine for selecting

classifiers to form the ensemble of classifiers.

Pruning Engine The method utilized to prune classifiers out

of the pool of classifiers.

Number of Classifiers Maximum number of classifiers in the pool

of classifiers
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3 RELATED WORK

In this section, we pass through some methods in the literature concerning data stream classification

and concept drift. We will divide methods for dealing with concept drift between Passive, Active,

Ensembles (Ditzler et al., 2015), and an additional Section for the DS methods for concept

drift. In section 3.1, we discuss some passive methods in the literature, which update without

considering whether a concept drift happened. In Section 3.2 are the active methods, which try

to track concept drift. In Section 3.3 are the ensemble methods, which may be either passive or

active, and in Section 3.4 are the DS methods for concept drift. For the familiar reader, at the end

of each section there is a concept matrix summarizing the cited methods.

3.1 PASSIVE METHODS

Passive methods will continuously update themselves regardless a concept drift has happened.

The Hoeffding Tree (HT), also called Very Fast Decision Tree (VFDT) (Domingos and Hulten,

2000), is an online learner designed to process high-speed data streams much used in the literature

due to its ability to have earlier instances more important than the oldest ones. This is possible

because of the Hoeffding’s bound it uses for splitting the leaves (Hoeffding, 1963). Then we have

Concept-adapting Very Fast Decision Tree (CVFDT) (Hulten et al., 2001), which tries to add

the ability of drift adaptation to VFDT. It keeps a sliding window of examples, which makes

it able to keep consistent, even when changes happen. They argue that when concepts change,

old examples that used to pass the Hoeffding test will not do so anymore. When this happens,

new examples start to be stored. When the new subtree with more recent examples becomes

more accurate than the old one, it replaces it. One of its advantages is that it does not need to

learn a new model. It just updates the statistics of new incoming examples, while decrements the

counts of the oldest examples. Another extension of HT is the Hoeffding Option Tree (HOT),

which contains additional option nodes in trees, enabling the application of several tests and the

possibility of having multiple HT as separate paths.

Yet inside passive methods, there are window-based methods. They may consist of a

fixed-size window, like in the FLORA system (Kubát, 1989), where the oldest one is forgotten

when a new example arrives in the data stream. However, there is a problem with this because

the user must define the window’s length. Its consequence is that, if we have a short window

length, the model might not have enough information for a reliable training. If the window is too

large, otherwise, it might not adapt to a new concept. Taking into account this trade-off, Widmer

and Kubat (1992) proposed FLORA2, which basically makes that window adaptive by means of

heuristics. FLORA3 (Widmer and Kubat, 1993) has the ability to rescue old concepts in order to

best adapt to reoccurring concepts. However, FLORA3 has problems on dealing with noisy data,

as according to the authors, noise and concept drift have pretty much the same impact on the

prediction error. Widmer (1994) address this issue and propose FLORA4, which is robust to

noisy data and is, at the same time, flexible in adapting to concept drift.

The methods cited in this section rely on gradual forgetting by either discarding old

examples (window-based), or by decreasing the weight that oldest instances have through the

Hoeffding Bound. Other aim to perform statistical tests in order to know when to forget old

information. Table 3.1 summarizes the passive methods mentioned.
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Table 3.1: Concept Matrix of Passive Methods for Data Streams and Concept Drift.

Method Source Window-based Hoeffding Bound Statistical Control

FLORA Kubát (1989) X

FLORA2 Widmer and Kubat (1992) X

FLORA3 Widmer and Kubat (1993) X

FLORA4 Widmer (1994) X

HT Domingos and Hulten (2000) X

CVFDT Hulten et al. (2001) X X

HOT Pfahringer et al. (2007) X X

3.2 ACTIVE METHODS

Active methods are those that will react to a concept drift when it is detected. These methods

may be based on monitoring some statistics, like the error rate of model prediction, or statistical

difference between windows (Bayram et al., 2022). In this Section, we will divide the drift

detectors between supervised, which need access to the real labels of the data, and unsupervised,

which do not need it.

3.2.1 Supervised Drift Detection

Probably, the first work that considered data distribution changing with time was the Page-Hinkley

Test (PHT) (Page, 1954). It aims to determine where a change took place by continuously

applying statistical tests. When the statistical difference of errors is greater than a user-defined

threshold 𝜆, then it is said that a change has happened.

One of the most popular active methods is the Drift Detection Method (DDM) (Gama

et al., 2004). This method consists of monitoring the error of ML model predictions. When this

error rises above a certain level, a warning level is given. If the error keeps increasing until the

called drift level, the ML model is substituted for a new one trained with the data that arrived

between the warning level and drift level. For each instance 𝑖, the probability 𝑝𝑖 of misclassifying

is given by the standard deviation 𝑠𝑖 calculated by 𝑠𝑖 =
√
𝑝𝑖 (1 − 𝑝𝑖)/𝑖. The warning level is given

when 𝑝𝑡 + 𝑠𝑡 ≥ 𝑝min + 2 × 𝑠min and the drift level is given when 𝑝𝑡 + 𝑠𝑡 ≥ 𝑝min + 3 × 𝑠min.

DDM motivated Early Drift Detection Method (EDDM) (Baena-García et al., 2006),

which is more suitable for slow and gradual changes, according to the authors. It takes into

account the distance between two prediction errors 𝑝
′

𝑖 , measured by some distance function, and

its standard deviation 𝑠
′

𝑖 . The maximum values of 𝑝
′
and 𝑠

′
are stored and are used to calculate

both warning and drift levels. The warning level is given when (𝑝
′

𝑖 +2× 𝑠
′

𝑖)/(𝑝
′

max+2× 𝑠
′

max) < 𝛼,

and the drift level is given when (𝑝
′

𝑖 + 2 × 𝑠
′

𝑖)/(𝑝
′

max + 2 × 𝑠
′

max) < 𝛽. Authors defined the values

of 𝛼 = 0.95 and 𝛽 = 0.90 after some experimentation, but they can be defined by the user.

Reactive Drift Detection Method (RDDM) (Barros et al., 2017) tries to improve DDM

by shortening the number of instances in large stable concepts, aiming to outline performance loss

known to happen in DDM. The authors argue that, in large concepts, it might take a large number

of instances to affect the prediction error, which may take DDM to delay drift detection. In

RDDM, when a concept reaches a maximum number of instances, DDM calculates the thresholds

by using only the most recent minimum instances. RDDM also will not detect drift in the warning

level, as there would be a possibility of having a short number of instances. Authors also forced a

DDM drift whenever the warning level became too large. They argue that, when a warning level

stands for a long time, the chances that a concept drift already have happened are big.
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Accurate Concept Drift Detection Method (ACDDM) aims the status of the prequential

error by using Hoeffding’s inequality and triggers concept drift based on the current error (Yan,

2020). EWMA for Concept Drift Detection (ECDD) (Ross et al., 2012) also aims to detect

concept drift, and it is based on Exponentially Weighted Moving Average (EWMA) chart. Like

other active methods, it monitors the classification error to get warning and drifting thresholds.

Hoeffding Drift Detection Method (HDDM) (Frías-Blanco et al., 2015) tracks concept

drift through two different statistical tests, which give two different versions: HDDM-A, which

uses A-test, and HDDM-W, with W-test. The A-test considers the possibility of Hoeffding’s

Inequality (Hoeffding, 1963) to detect significant changes in the moving average in streaming

data. The W-test uses weighted moving averages in the statistical tests based on McDiarmid’s

Inequality (McDiarmid, 1989), which is a generalization of Hoeffding’s Inequality for dependent

random variables.

The Fast Hoeffding Drift Detection Method (FHDDM) algorithm considers that the

classification accuracy over time must either increase or stay steady (Pesaranghader and Viktor,

2016). If it decreases, a concept drift is triggered. It uses a sliding window and Hoeffding’s

Inequality to compare the maximum probability of correct predictions to the current probability

of correct predictions. Stacking Fast Hoeffding Drift Detection Method (FHDDMS) extends

FHDDM by maintaining two windows of different sizes: a short and a long window. The rationale

is that a short window is best to cope with sudden concept drift and a larger one for gradual

concept drift (Pesaranghader et al., 2018b). In the same work, Additive FHDDMS (FHDDMS𝑎𝑑𝑑)

is proposed, where the binary indicators of calculations are substituted by the summation of the 5

most recent bits for the short window, and the 20 most recent bits for the long window.

We also have Hoeffding Adaptive Tree (HAT) (Bifet and Gavaldà, 2009), which extends

the idea from CVFDT, by using different estimators. There are HAT-INC, which uses a

linear incremental estimator, HAT-EWMA, with an Exponential Weight Moving Average, and

HAT-ADWIN, with Adaptive Windowing (ADWIN) as an estimator.

ADWIN (Bifet and Gavaldà, 2007) maintains a window𝑊 with the most recent instances,

a mean �̂�𝑊 of elements observed in this window and another mean 𝜇𝑊 of unknown elements.

In general, the idea behind ADWIN is as follows: when two sub-windows of 𝑊 show different

means, one can say that expected values will be different, and the oldest portion of the window,

also called the tail, is forgotten.

The SeqDrift1 detector (Sakthithasan et al., 2013) creates blocks of data and compares

the statistics between two batches 𝐵1 and 𝐵2 through a hypothesis test. If the hypothesis test is

rejected, 𝐵1 and 𝐵2 are concatenated into 𝐵12, and the hypothesis test is repeated when a new

block of data 𝐵3 is available. SeqDrift1 uses the Bernstein Bound, which the authors argue that

it provides a tighter bound when compared to the Hoeffding bound, much used in the concept

drift literature. In constrast, the SeqDrift2 detector (Pears et al., 2014) uses the same hypothesis

testsing strategy from SeqDrift1, but implements the usage of reservoir sampling employs a

tighter cut threshold.

Nishida and Yamauchi (2007) proposed Statistical Test of Equal Proportions (STEPD),

which considers a recent accuracy and an old one. The rationale is that, for stable concepts,

the accuracy of the new incoming examples will remain similar to the old ones. A decrease in

accuracy on new incoming instances is an indicator of concept drift. This difference is checked

by doing a statistical test and comparing its value to a percentile to get the P-value. If the P-value

is less than a significance level, then a concept drift was detected.

Authors of STEPD state that the best approach was to use Fisher’s Exact test. The reason

why they did not use it is because of its high computational cost. However, de Lima Cabral

and de Barros (2018) proposed ways to do the Fisher’s Exact test more efficiently, by making
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the size of the recent window equal to the size of the old window. This way, most of the

factorial calculations in the Fisher’s Exact test would be repeated. They simply stored the already

calculated factorials in an array. They can also be used as intermediates for calculating factorials

of bigger numbers. Then the author proposed three different methods: Fisher Proportions Drift

Detector (FPDD), Fisher Squared Drift Detector (FSDD), and Fisher Test Drift Detector (FTDD).

FPDD works by using the Fisher’s Exact test when the number of either correct or

incorrect predictions in any window is small. FSDD also applies the Fisher’s Exact test in

the same scenario of FPDD. The difference is that it applies the chi-square statistical test for

homogeneity proportions otherwise, instead of the test of equal proportions. FTDD detects

concept drift only by using the Fisher’s Exact test.

Oliveira et al. (2019) came with Gaussian Mixture Model for Dealing With Virtual

and Real Concept Drifts (GMM-VRD), which uses ECDD as drift detector, and Gaussian

Mixtures. The authors proposed two different approaches to deal with virtual and real concept

drift separately. To deal with virtual concept drift, authors propose to do the maintenance of

useful knowledge whenever a misclassification occurs. This is done by calculating the sample’s

location related to existing Gaussians. If there is any Gaussian near, the model is updated. On the

contrary, a new Gaussian is created. However, this approach looks sensitive to outliers, as it will

always update the model when misclassification occurs. In the real concept drift case, authors

used ECDD. They argue that real concept drift will degrade the model more than virtual concept

drift. By taking this point into account, they update its parameters of warning and drift levels.

The McDiarmid Drift Detection Method (MDDM) (Pesaranghader et al., 2018a) uses

the McDiarmid’s Inequality (McDiarmid, 1989) to detect concept drift. It has a sliding window

of size 𝑛, where each element in the window receives a weight 𝑤𝑖, where 𝑤𝑖 < 𝑤𝑖+1, i.e., earlier

instances have a higher weight. MDDM has three different versions, in which each one employs

different weighting functions. MDDMA uses the arithmetic weighting 𝑤𝑖 = 1+ (𝑖−1), MDDMG

the geometric weighting 𝑤𝑖 = 𝑟 (𝑖−1) , and MDDME the exponential 𝑤𝑖 = 𝑒𝜆(𝑖−1) .

Yang and Shami (2021) proposed Optimized Adaptive and Sliding Windowing (OASW),

which keeps two windows: one sliding window to detect drift, and an adaptive window, where

incoming data is stored. It also monitors the drops in accuracy between an old and a new window

in order to track warning and drifting alarms defined by thresholds. When a drift is detected,

a new LightGBM model is created on the instances between warning and drift levels, and the

hyperparameters of the drift detector are always updated by using Particle Swarm Optimization.

Yu et al. (2023) address group concept drift, i.e., different data streams correlate with each other

and propose Group Drift Detection Method (GDDM). It is also based on DDM, but it maintains

three different windows: initial, sliding, and detecting windows. A distribution-free statistical

test was developed by the authors, which is not susceptible to the underlying distribution of

multiple data streams.

3.2.2 Unsupervised Drift Detection

Lazarescu et al. (2004) propose Competing Windows Algorithm (CWA), which uses three

different windows of different sizes to track concept drift. The rationale is to have different

perspectives on data. They try to track concepts by measuring the difference between two

consecutive instances of the current concept, given by some distance function. If the difference

is smaller than a threshold, then no drift has happened. If a change persists for 𝑝 consecutive

instances and 𝑝 ≥ 𝑋
2
, where 𝑋 is the window size, then the change is said to be persistent. One

advantage of this method is that it does not need labeled data.

Label Dependency Drift Detector (LD3) is an unsupervised drift detection method that

takes into account the temporal difference of labels to track concept drift (Gulcan and Can, 2023).
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The idea was to use the correlation between the predicted labels, which the authors argued that if

there is a change in the autocorrelation of the predicted labels over time, a concept drift might

have happened.

Student-Teacher approach for Unsupervised Drift Detection (STUDD) is another un-

supervised method, that utilizes two classifiers, one called the teacher, and the other called the

student (Cerqueira et al., 2023). The idea is to train the teacher on an initial batch of the data, and

then use it to label the same dataset used to train it. The resulting dataset labeled by the teacher

is then used to train the student, with the objective of the student simulating the predictions of

the teacher. The error between the predictions of both the teacher and the student is used in a

drift detection method. The authors have used the PHT to this end.

Baier et al. (2021) uses neural network prediction uncertainty to track concept drift.

The rationale is that the uncertainty can be considered as an indicator of the error rate. This way,

there is no need for the true labels of data, which can be seen as an advantage over other drift

detectors, which need true labels of data to track the error rate, which is often unfeasible in the

real world. By combining the neural network model’s uncertainty with ADWIN, authors came

up with the Uncertainty Drift Detection (UDD) method.

A meta-learning approach for detecting concept drift was proposed by Yu et al. (2022).

In their method, called Active Drift Detection based on Meta learning (Meta-ADD), meta-features

are extracted based on the error rate of various concept drifts (they say that it is needed to

know the types of concept drift in advance). After that, a meta-detector is built with a neural

network that represents different concept drift classes. In the detection phase, the meta-detector

is fine-tuned to adapt to the corresponding data stream. This method seems not proper when we

have an unknown data stream, where we do not know the type or nature of the concept drift, as

Meta-ADD needs to extract the meta-features from different concepts.

The methods cited above say that they do not need labeled data. Let us remember the

real concept drift definition seen in Section 2.2.1: 𝑃𝑡 (𝑦 |𝑋) ≠ 𝑃𝑡+𝛿 (𝑦 |𝑋) for any 𝛿 > 0. So, it

acts directly on the data label. It is difficult to track this type of drift without access to the real

class label. The UDD (Baier et al., 2021) uses the uncertainty of neural networks prediction,

which authors argue it can be seen as the error rate. If the existing neural network starts to be

uncertain of its predictions, a concept drift might have taken place in their method. STUDD uses

the difference in prediction of two different models, instead of the error rate itself. The CWA

(Lazarescu et al., 2004) tracks the differences between windows of different sizes. They try to

track concept drift by measuring the distance between consecutive instances. This approach

looks more suitable in the cases of virtual concept drift. Meta-ADD uses a meta classifier with

meta-features from different concepts, but it needs to know the concepts in advance. Unsupervised

methods for dealing with drift try to overcome the issue of labeling in data streams, which tend

to be costly (Krawczyk et al., 2018), as they do not need access to the real labels of the data.

In Table 3.2 there is a concept matrix summarizing the cited methods in this section.

Notice that, recently, authors have been giving more attention for unsupervised drift detection

methods, due to the labelling problem in data streams.

3.3 ENSEMBLE METHODS

Ensemble approaches are among the most popular in ML works. Some of the online ensemble

algorithms adapt to either bagging (Breiman, 1996) or boosting (Freund, 1995). Ensemble

techniques in ML aim to combine classifiers in order to increase efficiency and accuracy (Kittler

et al., 1998).
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Table 3.2: Concept Matrix of Active Methods for Concept Drift.

Method Source
Error rate-

based

Data distribution-

based

Multiple Hypothesis

test-based
Unsupervised

DDM Gama et al. (2004) X

CWA Lazarescu et al. (2004) X X

EDDM Baena-García et al. (2006) X

ADWIN Bifet and Gavaldà (2007) X

STEPD Nishida and Yamauchi (2007) X

HAT Bifet and Gavaldà (2009) X

ECDD Ross et al. (2012) X

SeqDrift1 Sakthithasan et al. (2013) X

SeqDrift2 Pears et al. (2014) X

HDDM Frías-Blanco et al. (2015) X

FHDDM Pesaranghader and Viktor (2016) X

FHDDMS Pesaranghader et al. (2018b) X

FHDDMS𝑎𝑑𝑑 Pesaranghader et al. (2018b) X

FPDD de Lima Cabral and de Barros (2018) X

FSDD de Lima Cabral and de Barros (2018) X

FTDD de Lima Cabral and de Barros (2018) X

MDDM Pesaranghader et al. (2018a) X

GMM-VRD Oliveira et al. (2019) X

ACDDM Yan (2020) X

OASW Yang and Shami (2021) X

UDD Baier et al. (2021) X X

Meta-ADD Yu et al. (2022) X X

GDDM Yu et al. (2023) X

LD3 Gulcan and Can (2023) X X

STUDD Cerqueira et al. (2023) X X

Street and Kim (2001) proposed Streaming Ensemble Algorithm (SEA), a well-known

ensemble method for data streams, where different classifiers are built in different blocks of the

data and will form an ensemble of constant size (when new labeled instances arrive, a new classifier

takes place of another one based on its performance). Accuracy-Weighted Ensemble (AWE) is

similar to SEA, but it weights the classifiers based on its expected prediction error on testing

samples by assuming that the class distribution of the most recent batch of training data is similar

to the distribution of the current test data (Wang et al., 2003). They prove that by weighting the

classifiers by their expected accuracy on test data, we can improve an ensemble’s accuracy. The

authors also used instance-based pruning with the objective of selecting a subset of classifiers

in the ensemble. Accuracy Updated Ensemble (AUE) is an extension of AWE that updates

classifiers based on the current distribution (Brzeziński and Stefanowski, 2011). Brzezinski

and Stefanowski (2014) proposed the online version of AUE, called Online Accuracy Updated

Ensemble (OAUE), which utilizes incremental learners in order to enable the online processing

of instances, and updates the weight of classifiers whenever a new instance arrives.

Dynamic Weighted Majority (DWM) creates and removes classifiers from the ensemble

based on the changes in the performance of the ensemble (Kolter and Maloof, 2007). If the

ensemble makes a mistake, a new classifier is added to it, and if a single classifier makes a

mistake, its weight is reduced. The added classifiers have an initial weight of one, which will

be reduced if it start making mistakes. If a classifier reaches a weight minor than a predefined

threshold, it is removed from the ensemble. Any online classifier can be used with DWM.

The online version of bagging is the Oza Bagging (Oza, 2005). It considers the incoming

instances as a Poisson(𝜆 = 1). This way, each incoming instance has a chance of being selected

to train a new model to substitute another one in the ensemble. We also have Leveraging

Bagging (Bifet et al., 2010b), which tried to improve Oza Bagging by increasing resampling and

implementing output detection codes. To increase resampling, authors increased the 𝜆 value in

the Poisson distribution, which will increase the probability of an instance being chosen to train a
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classifier. The idea behind adding output detection codes is to add randomization at the output of

the ensemble.

Minku and Yao (2012) used ensemble diversity when addressing concept drift. By

taking into account that high diversity is better for dealing with drifting scenarios and low diversity

is better for stable concepts (Minku et al., 2010), the authors proposed Diversity for Dealing

with Drifts (DDD). DDD maintains a low and a high diversity ensembles. Both ensembles are

updated with incoming instances, but only the low-diversity ensemble is used for prediction. The

ensemble with high diversity starts to be used for predictions if concept drift is detected, and

then it starts to learn with low diversity. The diversity of learning of the ensembles is controlled

by a parameter 𝜆, which dictates how likely is that an instance will be used for training, such as

in Oza Bagging (Oza, 2005).

The Learn++ (Polikar et al., 2001) family of algorithms has as a characteristic an

incrementally trained ensemble of classifiers. Here, we refer to Learn++.NSE (Elwell and Polikar,

2011), which uses weighted majority voting, where the weights are dynamically updated based

on the error of classifiers on new and old instances. Gomes et al. (2017) combined Online

Bagging (Oza, 2005) with HT (Domingos and Hulten, 2000) and proposed Adaptive Random

Forest (ARF). Drift detectors are used along with each HT. When a warning level is reached, a

new tree starts to be trained, and when drift is detected, the tree that originated the warning is

replaced. They use Online Bagging (Oza, 2005) with Poisson(𝜆 = 6), instead of Poisson(𝜆 = 1).

Just like in the Leveraging Bagging, it will increase the probability of an instance being selected

for training.

The Adaptive Block Chunk Size, by Kozal et al. (2021), in order to keep ensemble

models updated, trains new classifiers on new blocks and adds them to the group of classifiers,

while obsolete models are removed. The size of the data chunks is adapted when a concept drift

is detected. The authors argue that this decreases the restoration time of a model after a concept

drift is detected.

Selective Ensemble-based Online Adaptive Neural Network (SEOA) uses online shallow

and deep neural networks in different moments in the timestamp (Guo et al., 2021b). The shallow

neural network is used for classifying the data stream when there is a concept drift. In stable

concepts, the deep neural network is used for classification. The rationale is that shallow neural

networks have less weights, and because of that they are able to quickly learn a new concept.

On the other hand, a deep neural network needs more training data to be able to have a good

performance. In SEOA, the decision of using either a shallow or a deep neural network is made

by using a fluctuation metric, which calculates the difference of the error rate between the current

timestamp to the last five consecutive timestamps (batch or online). If the fluctuation is strong,

i.e., the difference in the error rate is too high, the deep neural network is frozen, and the shallow

neural network is used for classification. The deep neural network is used instead of the shallow

one if the fluctuation is small. There is also the moderate fluctuation level, where poor performing

classifiers are frozen.

Liu et al. (2021) propose CALMID, an active learning framework that deals with concept

drift in multiclass imbalanced data streams. It has an ensemble of classifiers and uses ADWIN

as a drift detector. The idea is to question the label given through a hybrid labeling strategy. If

the label is questioned, the correct label is given by experts and is combined with a new training

sample. A label sliding window is used to estimate the current imbalance status, and a given

instance is weighted according to the class imbalance status. The new weighted sample is used to

update the ensemble. When concept drift is detected, a new classifier is trained in the training

sample, where instances are weighted according to their arrival time. The new model replaces

the worst one in the ensemble.
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Hybrid Ensemble approach to concept drift-tolerate transfer learning (HE-CDTL) uses

class and domain-wise weighted ensemble in order to track concept drift in the transfer learning

domain (Yang et al., 2022). The authors proposed an adaptive weighted correlation alignment

to better promote the transfer of knowledge between different domains. In HE-CDTL, a new

classifier is created in each arrived data chunk (or batch) and combines it with different classifiers

with the class-wise ensemble strategy. In Table 3.3 there is a concept matrix of the cited ensemble

methods for concept drift.

Table 3.3: Concept Matrix of Ensemble Methods for Concept Drift.

Method Source Online Trigger

SEA Street and Kim (2001)

AWE Wang et al. (2003)

OzaBag Oza (2005) X

LevBag Bifet et al. (2010b) X

AUE Brzeziński and Stefanowski (2011)

Learn++.NSE Elwell and Polikar (2011)

DDD Minku and Yao (2012) X X

OAUE Brzezinski and Stefanowski (2014) X

ARF Gomes et al. (2017) X X

Adaptive Block Chunk Size Kozal et al. (2021) X

SEOA Guo et al. (2021b) X

CALMID Liu et al. (2021) X X

HE-CDTL Yang et al. (2022)

3.4 DYNAMIC SELECTION FOR CONCEPT DRIFT

As explained in Section 2.5, DS methods differ from the classic ML methods in that, instead of

having a classifier, or ensemble of classifiers defined at the training phase, they are defined at the

testing phase. Some authors have adapted DS for concept drift detection.

The Dynse Framework (Almeida et al., 2018) has already been explored in Section

2.5. It starts from the assumption that any DS technique can be used to cope with concept drift

if it considers the time dependence. This is done by continuously adding classifiers trained

in the most recent Batch to a pool of classifiers 𝐶, in which the competence of the classifiers

will be measured in the RoC of an unlabeled instance. The chosen classifiers according to a

Classification Engine will be used to compose an ensemble to classify the instance.

Double Dynamic Classifier Selection (DDCS) (Cavalheiro et al., 2021) is an example

of DES framework to deal with Data Streams. The idea is to use incremental classifiers, like

VFDT, in order to be able to continuously update the members of the ensemble whenever a new

labeled instance arrives. Authors argue that this makes older classifiers perform better on stable

concepts while creating new classifiers on the most recent chunks that are more proper to the

current concept. This approach looks a lot like an online version of Dynse, with some differences

from the proposed one in this work.

Jiao et al. (2022) aims at imbalanced data streams with concept drift, proposing Synthetic

Minority Oversampling Technique with Adaptive Nearest Neighbors (AnnSMOTE) with the

objective of generating new samples from the minority class instance that follows a new concept.

This is done by considering the degree of change in distribution between the current and the
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previous batch of data. The AnnSMOTE is applied to the last arrived batch of data, which is

also the DSEL in their resulting framework Dynamic Ensemble Selection for Imbalanced Data

Streams with Concept Drift (DES-ICD).

Dynamic Ensemble Selection based on Window over Imbalanced Drift Data Stream

(DESW-ID) also aims at the imbalanced data stream issue, but instead of using techniques such

as Synthetic Minimum Oversamples Technique (SMOTE), it adopts a resampling strategy with

different 𝜆 values for the different classes (Han et al., 2023). The selection is performed by using

a reverse search algorithm to determine the best number of classifiers in the ensemble, and the

classifiers are ranked and sorted by the error rate. The ADWIN is used as a drift detector, and

when a concept drift is detected, the adaptive window that is used to rank and train the classifiers

is shrunk. The DESW-ID only works with binary classification problems.

Abadifard et al. (2023) uses Maximal Marginal Relevance, a diversity-based ranking

method to perform the dynamic selection of the classifiers. Their method is called Dynamic

Ensemble Diversification (DynEd). The drift is monitored by the ADWIN drift detector, and

when it triggers a concept drift, a new classifier is created and trained on the last instances from a

sliding window 𝑊 and added to the pool. Classifiers in the pool are updated with resampling, in

which the 𝜆 value is constantly updated depending on the value of the diversity and on how the

accuracy changes. The classifiers are splitted in two groups by using K-Means clustering before

applying the DS method.

In Table 3.4 are exposed some key concepts of the DS methods for concept drift

described here. There are some distinguishing characteristics between them. For instance, the

DES-ICD and DESW-ID aim at the imbalanced class problem in data streams, but they are not

able to deal with multiclass classification problems directly. The DDCS, as Dynse, accepts

different DS techniques, making it flexible, but does not has a drift detector and uses resampling

for training. The DynEd also uses resampling for training and the ADWIN as a drift detector.

The classifiers are sorted based on their accuracy to a window 𝑊 and a diversity-based DS

is performed. Its difference to the proposed Dynse+ is on the training technique and that our

proposed framework can receive any DS method.

The proposed Dynse+ most differs on the aspect that it can accept any DS method and

any drift detector. Thus, there is the possibility to choose the best ones according to the scenario,

as different drift detectors may behave differently depending on the problem we are dealing with

and the type of concept drift (Sakurai et al., 2023). Furthermore, we use a different training

technique, that does not use a resampling strategy. The rationale is that we will have classifiers

trained in different regions of the feature space, which will follow the availability with time.

Table 3.4: Concept Matrix of DS Methods for Concept Drift.

Method Online Trigger Imb. Class Multiclass

Dynse X

DDCS X X

DES-ICD X X X

DynEd X X X

DESW-ID X X X

Dynse+ X X X
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4 METHODOLOGY

In this section, we describe how the Dynse framework was adapted to perform online processing,

and how a drift detector was added, resulting in the proposed framework Dynse+. Further, we

supply information about the datasets used in the experiments, and the experimental protocol for

comparing the proposal with the state of the art.

4.1 PROPOSED METHOD

In this work, we propose Dynse+, an extension of the Dynse framework described in Section

2.5. We start by making Dynse able to perform online processing, as explained in Section 4.1.1.

Incoming instances are used to maintain a DSEL that is used to estimate the competence of the

classifiers in 𝐶 through DS and to update a classifier that we call 𝐶𝑘 . The size of the DSEL

must be defined by the user, which can cause some problems when we take into account the

stability-plasticity dilemma (Elwell and Polikar, 2011). A short window causes the classifiers to

not have enough information to perform well. On the other hand, a large window may postpone

the drift adaptation, if it has happened. This problem is mitigated by adding a trigger, i.e., a drift

detector to Dynse, as explained in Section 4.1.2. We call the resulting framework with online

processing and the addition of a drift detector as Dynse+Trigger, or simply Dynse+.

Some other DS methods for concept drift rely on a resampling strategy for updating the

classifier in 𝐶. Dynse, on the other hand, maintains classifiers trained at different moments in

time. Whenever a new batch of size 𝑏 arrives, a new classifier is trained in it and added to 𝐶. The

rationale is that, this way, we can have classifiers trained in different regions of the feature space.

We can think of two characteristics of this approach. Firstly, we may have various classifiers

trained in old concepts, which may be more useful in cases of recurrent concept drift, as when an

old concept takes place, we already would have the classifiers trained in it. Secondly, the pool of

classifiers 𝐶 will need more time to create diversity, as the classifiers are added one by one by

following the availability of the instances. The advantage of this approach is that we will have

classifiers trained on different regions of the feature space, which will follow the availability with

time. Thus, the DS method would selected the best classifiers for a specific region.

4.1.1 Adapting to Online Processing

The first proposal is to make Dynse able to update after receiving a single instance (online

processing), i.e., there is no need to wait for a batch 𝐵𝑡 to be completed. This is done by using an

incremental learner as a base classifier, like the Hoeffding Tree (HT). The idea is to train each

classifier in 𝐶 on a maximum number of instances. When the incremental learner has received

its maximum corresponding instances, its training is stopped and, when the next instance arrives,

a new classifier is added to the pool and starts to be trained. This way, we have the benefits

of a pool with old classifiers, while having a new classifier being continuously updated to the

newest incoming instances. The scheme of this version of Dynse that can update with a single

instance is in Figure 4.1. The classifier 𝐶𝑘 refers to the last classifier added to 𝐶. Remind that

after a predefined number of instances, the training of 𝐶𝑘 is ended and a new classifier starts to

be trained. If 𝐶 reaches its maximum size when this happens, a classifier is dropped from 𝐶
according to the pruning engine.
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The incremental training proposed here differs from other methods that use resampling

strategies, such as OzaBag (Oza, 2005; Gomes et al., 2017) on the fact that we use every available

labeled instance to train only the last classifier added to 𝐶, instead of having a chance of training

each one of them. The idea of doing so is to have classifiers trained on different regions of the

feature space as they are available with time. Latter, the DS method will be in charge to select

the best classifiers to compose the ensemble based on the RoC of the test instance. In this work,

we will refer to the online version of Dynse as ODynse.
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C4
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Figure 4.1: Online Dynse’s Scheme.

4.1.2 Adding a Drift Detector

On Dynse, the DSEL is rather important for an efficient DS. However, the possibility of a

concept drift brings the need to be conservative on how big it can be. If the DSEL grows too

big, it is more likely to have instances from an old concept, which would be used to rank the

classifiers. However, a short DSEL would not have enough information for an efficient selection

of the classifiers, and useful data could be lost. We try to overcome this issue by adding a drift

detector to Dynse. We can let the DSEL grow bigger when the concept is stable, and shrink it

only when a concept drift is detected. Thus, we can have a more diverse DSEL in stable concepts,

which might improve the efficiency of the DS. This approach may help in both real and virtual
concept drifts, as in virtual concept drifts a larger DSEL will be better, as we can have instances

in different regions of the feature space, but on the same concept, while the drift detectors, which

most rely on the tracking of the error rate, will trigger whether a real concept drift has happened.

The proposed Dynse+ framework works as follows: an online classifier 𝐶𝑘 is trained

incrementally. Incoming instances are used to train 𝐶𝑘 and are added to the DSEL, which grows

until a predefined maximum size, and when it reaches its maximum size, the oldest instance is

dropped whenever a new one arrives. The DSEL has a maximum size due to memory constraints,

which we must be attentive to in streaming scenarios (Lu et al., 2020).

When a concept drift is detected, the DSEL is shrunk to 𝑁 instances (another possibility

is to use warning and drifting levels of drift detectors), and a new classifier is started to be trained

and added to 𝐶. Thus, the drift detector assists in adapting the DSEL to a new concept. The

rationale is that, when a drift detector does not trigger a drift, the concept is stable and the DSEL

can grow. When concept drift is detected, otherwise, we must discard some instances in the

DSEL to adapt to the new concept.

In Figure 4.2 there is a scheme of Dynse+. Notice that, when the drift detector triggers a

concept drift, the DSEL is shrunk to 𝑁 instances, as shown in Figure 4.3 considering 𝑁 = 3, and
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a new classifier starts to be trained. If that does not happen, we simply use the labeled instance 𝐼𝑡
to train 𝐶𝑘 .
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Figure 4.2: Dynse+’s Scheme When Concept Drift is Detected.
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Figure 4.3: Dynse+’s Scheme of Adapting the DSEL When Concept Drift is Detected Considering N=3.

4.1.3 Classification

Just like in the original Dynse framework, when a new unlabeled instance arrives, the best

classifiers according to the DS engine are selected to compose an ensemble to classify the

newly arrived instance. For convenience, we show again the scheme of Dynse for classifying an

unlabeled instance in Figure 4.4. The difference is that the competence of 𝐶𝑘 will be measured

in this phase.

The core part for the classification in the Dynse+ framework is the DS engine, which

chooses the ensemble to classify an instance. The resulting ensemble 𝐶′ is a subset of 𝐶, which

follows 𝐶′ = 𝐷𝑆(𝐶, 𝐷𝑆𝐸𝐿, 𝐼𝑡). 𝐼𝑡 is an unlabeled instance that arrived at time 𝑡, and the DS

engine can be any DES or DCS method. Notice that the DSEL is mandatory for an efficient

DS. In this work, we use the KNORA-Eliminate (Ko et al., 2008) version proposed by Almeida
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et al. (2018), which carries a slack variable 𝑠. We start with 𝑘 neighbors, and 𝐶′ will be the

classifiers that can classify all of the 𝑘 nearest instances to 𝐼𝑡 with 100% accuracy. If no classifier

satisfies this, the process is repeated to 𝑘 − 𝑠 until there are no neighbours left. If no classifier can

label the RoC resulting from any of the possible neighborhoods, then 𝐶′ = 𝐶, i.e., the resulting

ensemble is composed by all of the classifiers in 𝐶. The parameters of the proposed Dynse+

are presented in Table 4.1, and its pseudocode in Algorithm 1. We must state that it considers

neighborhood-based DS methods, but it can be easily adapted to other types of DS (Guo et al.,

2021a; Davtalab et al., 2024).
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Figure 4.4: Dynse’s Scheme for Classifying an Instance.

Table 4.1: Dynse+’s Parameters.

Parameter Description

Base Classifier (BC) Base classifier to be used that will

compose 𝐶.

Maximum Size of DSEL (𝑀) Maximum Size of the DSEL

Minimum Size of DSEL (𝑁) Size that the DSEL will be shrunk to

after drift detection

DS Engine (DS) Dynamic Selection Engine for select-

ing classifiers to form the ensemble

of classifiers.

Pruning Engine (PE) The method utilized to prune classi-

fiers out of the pool of classifiers.

Number of Classifiers (D) Maximum number of classifiers in

the pool of classifiers

Change Detector (CD) Concept Drift Detector

When we receive a labeled instance, it is added to the DSEL, in step 5. If the DSEL had

its maximum size before the arrival of the new instance, the oldest instance is removed from
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input :Stream of Instances {𝐼1, 𝐼2, ..., 𝐼𝑡},
Maximum Pool Size (D),

Maximum Size of DSEL (M),

Minimum Size of DSEL (N),

Dynamic Selection Method (DS),

Pruning Engine (PE),

Base Classifier (BC),

1 𝐷𝑆𝐸𝐿 ← ∅

2 𝐶 ← ∅

3 foreach Instance 𝐼 ∈ Stream do
4 if 𝐼 is labeled then
5 𝐷𝑆𝐸𝐿 ← 𝐷𝑆𝐸𝐿 ∪ 𝐼
6 if |𝐷𝑆𝐸𝐿 | > 𝑀 then
7 removeOldestInstance(DSEL)

8 if 𝐶 is ∅ then
9 𝐶𝑘 ← startNewClassifier(BC)

10 𝐶 ← 𝐶 ∪ 𝐶𝑘

11 updateDriftDetector(𝐼)
12 if driftIsDetected() then
13 shrinkDSEL()

14 𝐶𝑘 ← startNewClassifier(BC)

15 𝐶 ← 𝑃𝐸 (𝐶, 𝐷𝑆𝐸𝐿,𝐶𝑘−1, 𝐷)
16 𝐶 ← 𝐶 ∪ 𝐶𝑘

17 if lastClassifierIsTrainedOnMaximumInstances() then
18 𝐶𝑘 ← startNewClassifier(BC)

19 𝐶 ← 𝑃𝐸 (𝐶, 𝐷𝑆𝐸𝐿,𝐶𝑘−1, 𝐷)
20 𝐶 ← 𝐶 ∪ 𝐶𝑘

21 trainLastClassifier(𝐼)
22 updateCompetences(𝐶, 𝐼)

23 else
24 RoC← 𝑘𝑁𝑁 (𝐷𝑆𝐸𝐿, 𝐼)
25 measureCompetence(𝐶𝑘 , RoC)

26 𝐸𝐼 ← 𝐷𝑆(𝑅𝑜𝐶,𝐶)
27 𝐼class ← classify(𝐼, 𝐸𝐼)

28 makeAvailable(𝐼class)

Algorithm 1: The Dynse+ algorithm
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the DSEL in step 7. In step 9, a new classifier is started if there is no classifier in 𝐶, i.e., the

training has just started. The drift detector is updated in step 11, and if concept drift is detected,

the DSEL is shrunk in step 13, a new classifier will start to be trained in step 14, and we prune

the classifier according to the pruning engine in step 15 if 𝐶 was full. If 𝐶𝑘 was trained on a

maximum number of instances, its training is stopped and a new incremental classifier starts to

be trained in step 18, which becomes the new 𝐶𝑘 . Then, the pruning is done in step 19, if 𝐶 is

full. Finally, 𝐶𝑘 is trained on the newly arrived labeled instance in step 21 and the competences

of the classifiers in 𝐶 are measured to 𝐼𝑡 , except for the 𝐶𝑘 , which competences are updated on

the testing phase. If the new arriving instance is not labeled, we get its RoC in step 24, measure

the competence of 𝐶𝑘 on it in step 25, and build the ensemble according to the DS engine in

step 26, which classifies the instance in step 27. Its label then becomes available for the user for

further evaluation in step 28.
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4.2 EXPERIMENTAL PROTOCOL

In this section, we describe the datasets used for the tests, give information such as the number of

features, classes, instances, and type of concept drift, if known. We also present the experimental

protocol for the tests, which were followed with the objective of comparing the proposal to other

methods in the state of the art.

4.2.1 Datasets

Literature divides concept drift datasets into two: Synthetic datasets and real-world datasets.

Some authors have generated Synthetic datasets to have better control over how data distribution

changes (Schlimmer and Granger, 1986; Domingos and Hulten, 2000; Gama et al., 2004), so

they are able to evaluate how a given method behaves in a type of concept drift. Real-world

datasets give us more challenges as most real-world environments are unpredictable, and most of

the times we are not sure on how many drifts have happened, and its magnitude or severity (Lu

et al., 2020; Minku et al., 2010).

In this section, we present some datasets encountered in the concept drift literature, and

these datasets were used in the experiments of Dynse+. For the familiar reader, the datasets are

listed in Table 4.2.

Table 4.2: Datasets.

Dataset Reference Drift Types # Inst. # Feats # Classes

Synthetic
STAGGER Schlimmer and Granger (1986) Abrupt; Recurrent Custom 3 2

SEA Concepts Street and Kim (2001) Abrupt; Recurrent Custom 3 2

RandomRBF Bifet et al. (2009) Abrupt; Gradual; Incremental Custom Custom Custom

LED Breiman et al. (1988) Abrupt; Gradual Custom 24 10

Hyperplane Hulten et al. (2001) Incremental; Gradual Custom 10 2

Random Tree Domingos and Hulten (2000) Abrupt; Recurrent Custom Custom Custom

Sine Gama et al. (2004) Abrupt; Recurrent Custom 2 2

Agrawal Agrawal et al. (1993) Abrupt Custom 9 2

Real-World
Forest Covertype Blackard (1998) Unknown 581,012 54 7

Electricity Harries et al. (1999) Unknown 45,312 8 2

Airlines Bifet et al. (2010a) Unknown 539,384 7 2

NOAA Ditzler and Polikar (2013) Unknown 18,159 8 2

Outdoor Losing et al. (2015) Unknown 4,000 21 40

Ozone Zhang et al. (2008) Unknown 2,536 72 2

Insects Souza et al. (2020) Abrupt; Gradual; Incremental; Recurrent 905,145 33 6

Gas Sensor Vergara (2012) Unknown 13,910 128 6

Adult Becker and Kohavi (1996) Unknown 48,842 14 2

Yeast Nakai (1996) Unknown 1,484 8 10

Nursery Rajkovic (1997) Unknown 12,960 8 5

Letters Slate (1991) Virtual 20,000 16 26

Digits Alpaydin and Kaynak (1998) Virtual 5,620 64 10

Pen Digits Alpaydin and Kaynak (1998) Virtual 10,992 16 10

Dry Bean Koklu and Özkan (2020) Virtual 13,611 16 7

Rice Cinar and Koklu (2019) Virtual 3,810 7 2

4.2.1.1 Synthetic Datasets

Synthetic datasets bring ease to control the environment. We know when a concept drift happens,

and the type of concept drift. This way, we are able to understand how one method behaves

in known scenarios, and makes the evaluation of drift detectors easier, as we know exactly the

points where the concept drifts.
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STAGGER: it has three features: size ∈ {small, medium, large}, color ∈

{red, blue, green} and shape ∈ {circle, square, triangle} (Schlimmer and Granger, 1986).

The concepts are divided into three, which the positive class is given if:

1. size = small ∧ color = red.

2. color = green ∨ shape = circle.

3. size = (medium ∨ large).

Concepts are changed abruptly in the data stream. For the tests made in this work,

30,000 instances of the STAGGER dataset were generated, with the concept changing every

10,000 instances. There was also generated a version of the STAGGER dataset with a recurrent
concept drift, where 40,000 instances were generated and the concept drifts every 2,000 instances.

SEA Concepts: The SEA Concepts dataset (Street and Kim, 2001) also has concepts

that change abruptly. It has three features 𝑓1, 𝑓2, and 𝑓3 that vary in the interval [0, 10]. Their

concepts say that a given instance belongs to the positive class if:

1. 𝑓1 + 𝑓2 ≤ 8.

2. 𝑓1 + 𝑓2 ≤ 9.

3. 𝑓1 + 𝑓2 ≤ 7.

4. 𝑓1 + 𝑓2 ≤ 9.5.

Notice that 𝑓3 is noise. Figure 4.5 shows how the decision boundaries of the SEA

Concepts dataset change between the different concepts. We have generated two different versions

of SEA: The first one with 40,000 instances with the concept drifting abruptly every 10,000

instances, and the other with recurrent concept drift, which we called Sea-Rec, where we also

generated 40,000 instances, but the concept drifted every 2,000 instances in a cycle.

LED: The LED dataset (Breiman et al., 1988) is available at the UCI Repository (Dua

and Graff, 2017). In this version, we have 24 boolean features, of which only 7 of them are

relevant, and we have 10 different classes. It has a noise of 10%, and concept drift is introduced

by changing the relevant attributes. In this work, we have generated 20,000 instances on this

dataset, with a gradual drift starting on the 10,000th instance, with a width of 500 instances. Thus,

we have instances from two concepts being sent to our model between the 10,000th instance to

the 10,500th instance. After that, the second concept will have taken place completely. The

concepts differ between themselves by which are the significant features.

RandomRBF: The Random Radial Basis Function, or RandomRBF (Bifet et al., 2009),

generates a fixed number of random centroids where each one has a random position, a single

standard deviation, a class label, and a weight. New instances are generated by randomly selecting

a center. Centers with higher weights have more chances to be chosen. The instance class is

given by the centroid chosen, and drift happens by moving the centroids at a constant speed,

defined by a parameter. We have 20,000 instances generated, and the concept drifts incrementally

throughout the whole stream.

Hyperplane: The Hyperplane dataset is generated in a d-dimensional set that satisfies∑𝑑
𝑖=1 𝑤𝑖𝑥𝑖 = 𝑤0. For a start, a reference hyperplane is generated with some weight 𝑤, except for

𝑤0. Let 𝑠 =
∑𝑑

𝑖=1 𝑤𝑖𝑥𝑖. If |𝑠 | ≤ 0.1×𝑤0, the example is labeled as positive. If |𝑠 | ≤ 0.2×𝑤0 it is

labeled as negative. The feature 𝑥𝑖 ranges in the interval [0, 1]. For this dataset, 20,000 instances
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(a) SEA: Concept 1. (b) SEA: Concept 2.

(c) SEA: Concept 3. (d) SEA: Concept 4.

Figure 4.5: SEA Concepts’ Decision Boundaries.

were generated, with a gradual concept drift happening in the 10,000th instance with a width of

500 instances (Hulten et al., 2001).

Sine: The Sine dataset has two relevant attributes varying in the range [0, 1]. It has

four different concepts. In the first, the positive class is given for the labels below the curve of

𝑦 = 𝑠𝑖𝑛(𝑥). The second concept is the contrary of the first. In the third concept, the classification

function is positive if 𝑦 < 0.5 + 0.3 × 𝑠𝑖𝑛(3𝜋𝑥), and it is reversed for the fourth concept (Gama

et al., 2004). Two versions of this dataset were generated in the experiments, just like in the SEA

dataset. In the first one, 40,000 instances are generated with the concept drifting every 10,000

instances. In the second version, we have a recurrent concept drift, where 40,000 instances are

generated, and the concept drifts every 2,000 instances.

Agrawal: It generates nine features, of which six are numeric and three categorical.

There are 10 different classification functions that are drifted with time. Such functions put the

instances in one of two different groups, A or B, which were listed by Agrawal et al. (1993). We

have generated 40,000 instances with the concept drifting abruptly every 4,000 instances.

4.2.1.2 Real-world Datasets

Real-world datasets are different from synthetic datasets, as we usually do not know the nature of

concept drift, or how it happens. On these scenarios, we usually do not know the real starting

and ending points a concept drift took place, and we may have various types of concept drift

happening (Lu et al., 2020).

Forest Covertype: The Forest Covertype dataset, available in the UCI repository (Dua

and Graff, 2017), contains cartographic variables in 30 x 30-meter cells in forests located in the

Roosevelt National Forest, where there had minimal disturbance caused by human action. It
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includes 10 continuous features and 44 binary features (0, 1). It has 581,012 instances, and the

objective is to predict one between 7 different cover types.

NOAA: The NOAA dataset (Ditzler and Polikar, 2013), also known as the Nebraska

Weather dataset, contains climate data in the Offurt Air Force Base in Nebraska in an interval of

over 50 years, which may give us cyclic and long-term climate changes. Features include weather

information such as temperature, visibility, pressure, and wind speed. The main task is to predict

if it has rained that day.

Insects: In this dataset, the authors took into account that the behavior of different

types of insects may change when characteristics of the environment, such as temperature and

humidity, change. There are five different types of insects giving five different classes in this

dataset. The temperature changes in different manners, creating different datasets based on how

the change in the temperature was performed. We have Abrupt(A), Gradual(G), Incremental(I),

and Recurrent(R) concept drifts. The authors made available versions with balanced(B) and

imbalanced(I) classes (Souza et al., 2020). Information about each version of the Insects dataset

is in Table 4.3

Dataset # Instances

Insects-AB 52,848

Insects-AI 355,275

Insects-GB 24,150

Insects-GI 143,323

Insects-IB 57,018

Insects-II 452,044

Insects-IAB 79,986

Insects-IAI 452,044

Insects-IRB 79,986

Insects-IRI 452,044

Table 4.3: Instances of Each Version in the Insects Dataset.

Yeast: The Yeast dataset (Nakai, 1996) has 1,484 instances with 8 features containing

different measures regarding the domain of proteins, and 10 classes. The objective is to predict

where the proteins are localized.

Adult: It has 48,842 instances with 14 features including the education level, marital

status, occupation, race, etc. It is a binary classification problem, where the objective is to predict

if a person makes over 50K a year (Becker and Kohavi, 1996).

Ozone: A binary classification problem with 2,536 instances and 72 features which

contains information such as temperature and wind speed. The objective is to differentiate

between two different ground ozone levels (Zhang et al., 2008).

Gas Sensor: 13,910 instances and 128 features, gathered by using 16 chemical sensors.

The objective is to predict one between 6 gases at various levels of concentrations (Vergara,

2012).

Nursery: It has 12,960 instances and 8 features, which include parent’s occupation,

number of children, housing conditions, etc. This dataset was developed to rank candidates for

nursery school. The objective is to rank applications for nursery school into 5 different classes

(Rajkovic, 1997).
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Outdoor: It contains data of 40 outdoor objects such as dogs, shoes, basketball, etc.,

in sunny and cloudy environments. It has 21 features and 4,000 instances. The objective is to

predict which is the outdoor object (Losing et al., 2015).

Letters: In the Letters dataset (Slate, 1991), the objective is to differentiate between

the 26 capital letters in the alphabet in black-and-white pixel displays from 20 different fonts,

which were converted to 16 numerical attributes. Data was randomly distorted to generate 20,000

instances in total.

Digits: Consists of 5,620 instances of handwritten digits from 43 different people in an

8x8 matrix in the range [1, 16]. The objective is to predict one digit between 0 and 9 (10 classes)

(Alpaydin and Kaynak, 1998).

Pen Digits: 10,992 instances from 44 different writers. The digits were captured in a

sensitive tablet. The dataset contains 16 features in the range [1, 100] and the objective, just like

in the Digits dataset, is to predict one digit between 0 and 9 (Alpaydin and Kaynak, 1998).

Dry Bean: It contains 13,611 instances containing 16 features informing shape, type,

and structure. The objective is to predict one between 7 different dry beans (Koklu and Özkan,

2020).

Rice: It has 3,810 instances, with 7 features that supply information such as area,

perimeter, extent, etc. The objective is to predict one between two different species of grains of

rice (Cinar and Koklu, 2019).

4.2.2 Experiments Guidelines

The main purpose of the tests in this work is to compare Dynse+ with ODynse, the original Dynse,

and other state-of-the-art methods. As explained in Chapter 4, Dynse+ updates incrementally

and aims to improve the quality of the DSEL through the track of concept drift.

Before comparing Dynse+ to the other methods, there was performed an analysis of its

hyperparameters to choose the best ones. Each of the hyperparameters were assessed individually,

and those that achieved the highest accuracy have composed a default version to be compared

to different works in the literature. To do this analysis, the chosen real-world datasets were

the NOAA, Nursery, and Electricity. The Electricity, even though it is not good for comparing

methods from the concept drift perspective, as we explain in Section 5.1.1, was used for the

hyperparameter analysis.

The synthetic datasets were used to evaluate the effectiveness of different drift detectors

as well, in addition to the classification accuracy. The chosen synthetic datasets were the SEA

Concepts and the STAGGER. The measures for evaluating drift detectors were explained in

Section 2.4.1. The value for the Δ parameter of detection interval was set to 250 (Pesaranghader

and Viktor, 2016). The experiments were done in a test-then-train manner, and there are reported

both the overall accuracy and the prequential accuracy with a sliding window of 1000 instances,

as with it we can get a plot of accuracy over time. For some of the experiments, we have reported

the average processing time as well. After the hyperparameter tuning, the resulting Dynse+

framework is compared to ODynse, Dynse, and other methods from the literature by considering

the same metrics of overall accuracy and prequential accuracy.

Tests considering delayed and partial labels were performed as well, where we have

considered a delay of 50 instances, and only 1 every 2 labels are available for training, i.e., 50%

of the datasets are labeled. The rationale is that, in real-world environments, the access to the

true labels of the data is limited, and might arrive with a delay (Gomes et al., 2017; Cerqueira

et al., 2023).

The datasets that were utilized for the hyperparameter tuning are in Table 4.4, and for

comparing Dynse+ to the state of the art are in Table 4.5. These datasets have passed through
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a validation step involving a Cramer’s V autocorrelation test and tests comparing methods for

dealing with concept drift to naïve methods. To the static datasets (Letters, Digits, PenDigits,

DryBean, and Rice), there was induced a virtual concept drift as done by Almeida et al. (2018),

where, on the first step, a random instance is chosen from the dataset. Then, the 199 nearest

neighbors to it are sent first on the stream, making 200 instances at each step. This is repeated

until the dataset is empty. We have chosen 200 instances per step because it is also the initial

training size that we have used.

Table 4.4: Datasets Used for Hyperparameter Tuning.

Dataset Source

Electricity Harries et al. (1999)

NOAA Ditzler and Polikar (2013)

Nursery Rajkovic (1997)

SEA Street and Kim (2001)

STAGGER Schlimmer and Granger (1986)

Table 4.5: Datasets Used for the Tests Comparing Dynse+ to Other Methods.

Dataset Source

Airlines Bifet et al. (2010b)

Ozone Zhang et al. (2008)

Adult Becker and Kohavi (1996)

Insects-AB Souza et al. (2020)

Insects-AI Souza et al. (2020)

Insects-GB Souza et al. (2020)

Insects-GI Souza et al. (2020)

Insects-IB Souza et al. (2020)

Insects-II Souza et al. (2020)

Gas Sensor Vergara (2012)

Sine Gama et al. (2004)

Sine-Rec Gama et al. (2004)

SEA-Rec Street and Kim (2001)

STAGGER-Rec Schlimmer and Granger (1986)

Agrawal Agrawal et al. (1993)

Hyperplane Hulten et al. (2001)

LED Breiman et al. (1988)

RandomRBF Bifet and Gavaldà (2009)

Letters Slate (1991)

Digits Alpaydin and Kaynak (1998)

Pen Digits Alpaydin and Kaynak (1998)

Dry Bean Koklu and Özkan (2020)

Rice Cinar and Koklu (2019)

Further, the Friedman-Nemenyi test described by Demšar (2006) was performed on the

results comparing Dynse+ to Dynse, ODynse, and other methods in the literature. The equation
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used for calculating the Critical Difference is the same as presented by Demšar (2006), shown in

Equation 4.1. All of the tests were run 10 times.

𝐶𝐷 = 𝑞𝛼

√
𝑘 (𝑘 + 1)

6𝑁
(4.1)
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5 EXPERIMENTS AND RESULTS

5.1 PRELIMINARY TESTS

In this Section, there were performed various tests to eliminate datasets that do not seem to have

concept drift. To do so, a Cramer’s V autocorrelation test is performed. The objective is to check

how likely is that a class at the time 𝑡 is the same as in 𝑡 − 𝑘 , where 𝑘 is the lag. The lagged

Cramer’s V test was explained by Weiss (2018).

In addition to that, we have compared some naïve methods, such as a classifier that

predicts the instance 𝐼𝑡 to the same class as the instance 𝐼𝑡−1, as well as a HT classifier with a

random trigger, that triggers a concept drift with 𝑝% chance. These methods were compared to a

HT classifier along with the DDM detector. The rationale is that, if the naïve methods can get

better results than methods that were built to cope with concept drift, either that dataset is not

good for evaluating drifting scenarios, or the used method is not able to do so. These test are a

reproduction of the ones made by Almeida et al. (2020).

5.1.1 Cramer’s V Autocorrelation Test

In this Section is performed a Cramer’s V autocorrelation test on the datasets presented in Table

4.2. The lagged version of Cramer’s V is used. The objective here is to check the correlation level

of the labels of the instances 𝑘 lag far from each other. A high autocorrelation shows that we may

have some time dependence on the datasets, i.e., we would be able to label an instance by simply

looking to the past. The graphs of the Cramer’s V autocorrelation test are exposed in Figure 5.1.

Rea and Parker (1992) describes strengths of autocorrelation for the Cramer’s V test, which are

exposed in Table 5.1. To simplify, in the graphs we draw horizontal lines that divide the results

between a weak correlation, when 𝑣 < 0.2, a moderate correlation when 0.2 ≤ 𝑣 < 0.6, and a

strong correlation when 𝑣 ≥ 0.6. Static datasets, such as Digits, Letters, and Dry Bean, on which

virtual concept drift is induced, are excluded from these tests.

Table 5.1: Strength of Association of Different Intervals in the Cramer’s V Test.

Cramer’s V Interval Strength of Association

[0, 0.1) Negligible

[0.1, 0.2) Weak

[0.2, 0.4) Moderate

[0.4, 0.6) Relatively Strong

[0.6, 0.8) Strong

[0.8, 1.0] Very Strong

We must state that some time dependency is expected in Data Streams, especially on

pricing forecast, which is the case of the Electricity dataset, which may explain the high value

of 𝑣 for the lag 𝑘 = 1. That makes sense because in this case we are trying to predict if a price

will go up or down, and this type of scenario usually follows the inertia. We can also see a peak

in autocorrelation for the Electricity dataset every after 48 lags, i.e., every after 24 hours, as

shown in Figure 5.1(a). It is also expected that there are specific moments in the day that we

may have prices going up, at rush hours, to cover the high demand, or going down to cover a
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(o) Nursery.

Figure 5.1: Lagged Cramer’s V on Datasets.
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(t) Gas Sensor.

Figure 5.1: Lagged Cramer’s V on Datasets (continued).

low demand. The Forest Covertype dataset also had a strong autocorrelation for 𝑘 = 1, and a

moderate autocorrelation for most values of 𝑘 .

We can also cite weather forecasting, like the NOAA dataset, in Figure 5.1(c). We can

have an algorithm that predicts if tomorrow is going to rain based on if it has rained today. If our

ML model cannot surpass this algorithm, then there is no reason for using it. The NOAA dataset

had a weak correlation for every tested value of 𝑘 , thus this is good evidence that there is not

much correlation between the classes over time. The same can be said about the Adult dataset in

Figure 5.1(d).

Some of the Insects datasets, such as AB (Figure 5.1(e), GB (Figure 5.1(g), IAB (Figure

5.1(i), and IRB (Figure 5.1(m) had moderate correlation in some or all values of 𝑘 tested.

The other datasets from the Insects benchmark had a weak correlation for all 𝑘 values. The

Nursery dataset (Figure 5.1(o) had a moderate correlation most of the time, with some peaks

on the edge of the strong level of correlation. The outdoor dataset (Figure 5.1(p)) presented a

moderate correlation. The Ozone (Figure 5.1(q)), Yeast (Figure 5.1(r)), and Airlines (Figure

5.1(s)) presented a weak correlation between the labels, and the Gas Sensor (Figure 5.1(t)) had a

strong correlation for some early values of 𝑘 and a moderate correlation in most lags.

We see that many of the datasets used in the literature present some autocorrelation

between the labels. That by itself does not concludes that a dataset should not be used for

comparing methods from the concept drift perspective, but a high autocorrelation is a strong

indicative to be attentive to. To complete this analysis, there were performed tests considering

naïve methods in Section 5.1.2.

5.1.2 Naïve Methods

In this Section, tests were performed to understand how naïve methods behave on the datasets in

Table 4.2, except the ones with induced virtual concept drift. The objective of these tests, in

combination with the autocorrelation test performed in Section 5.1.1, is to help us deciding if the

datasets are proper for evaluating models from the concept drift perspective. A HT classifier



53

along with the DDM detector is compared to naïve classifiers, as done by Almeida et al. (2020)

and Bifet et al. (2013). These methods include a naïve classifier, which labels the instance at

time 𝑡 with the same label of the instance at time 𝑡 − 1, and a HT classifier along with a random

trigger, which randomly triggers a concept drift with 𝑝% chance. If a method made for dealing

with concept drift is not able to surpass the accuracy of these naïve methods, either that method

is not proper to do so, or the dataset is not proper to be used for evaluating methods for dealing

with concept drift (Almeida et al., 2020). Results are presented in Table 5.2.

Table 5.2: Accuracies of HT+DDM and Naïve Methods.

Dataset HT+DDM HT+RT (𝑝 = 1) Naïve Classifier

Electricity 84.15 83.27 85.33
Forest 84.94 85,60 95.06
NOAA 71.35 71.49 68.03

Insects AB 61.46 61.49 28.98

Insects AI 64.02 62.23 29.16

Insects GB 68.03 66.01 36.59

Insects GI 65.10 61.97 30.16

Insects IAB 65.02 65.66 42.38

Insects IAI 59.67 60.42 28.12

Insects IB 55.48 47.17 16.08

Insects II 67.16 60.46 28.20

Insects IRB 60.71 66.76 40.45

Insects IRI 59.02 60.49 28.18

Insects OOC 49.98 44.24 13.06

Gas Sensor 79.83 87.32 59.20

Airlines 65.33 62,01 58.05

Ozone 93.27 93.59 91.55

Adult 84.37 76.45 63.44

Yeast 46.57 49.63 51.65
Outdoor 59.26 57.25 90.25
Nursery 91.40 81.56 23.93

Starting with the Electricity dataset, we can see that the Naïve classifier performed better

than HT with DDM and with the random trigger. The same happened on the Forest dataset. This

is evidence that there is a high dependence of the current class on the last one, as we saw in

Section 5.1.1. The random trigger got a better accuracy than DDM on the NOAA dataset, but the

Naïve classifier did not perform better than any of them.

On the Insects benchmark, the Naïve Classifier was not better in any of the scenarios,

and on most of them the HT+DDM classifier was the best one, but the HT with a random trigger

got some of the best accuracies, even though in most of them there was not a huge difference.

The Insects where the HT+RT was the best accurate were the ones with recurrent concept drift
(Insects IRB and IRI) and with an incremental and abrupt concept drift (Insects IAB and IAI),

which are discarded, as we already have six versions of the Insects dataset as well. The Yeast and

Outdoor datasets were discarded, as the Naïve methods had a significantly better accuracy. We

will maintain the Gas Sensor, as the naïve classifier did not surpass any of the methods.
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5.2 HYPERPARAMETER ANALYSIS

In this Section we analyze the effects of different hyperparameters in Dynse+. The hyperparameters

to be tuned are 1) The 𝐹 parameter, which denotes how long Dynse+ can stay without start

training a new classifier; 2) the drift detector that will support on adapting the DSEL; 3) The

Maximum size of the DSEL (𝑀); 4) The minimum size of the DSEL (𝑁).

We have an initial set of parameters, exposed in Table 5.3, which were tuned throughout

the experiments. The maximum size of the DSEL (𝑀) is set to 4000 instances, and its minimum

size (𝑁) is 200 instances. The drift detector, for a start, is the DDM. The DS method utilized is

the KNORA-Eliminate (Ko et al., 2008) version proposed by Almeida et al. (2018), with 𝑘 = 9

and the slack variable 𝑠 = 2. The maximum size of C is to set to 𝐷 = 75. Regarding the distance

function, in an early paper of us, we have come to the conclusion that the Canberra Distance is

the best one for streaming scenarios. However, in this work we use the Euclidean Distance, as it

is the most used in the literature

Table 5.3: Initial Set of Hyperparameters

Parameter Initial Value

𝐹 200

Drift Detector DDM

𝑀 4000

𝑁 200

5.2.1 Frequency of Training New Classifiers

Firstly, let us analyze the impact of the 𝐹 parameter on the accuracy. The 𝐹 parameter dictates

how many instances without drift detection we can have without a new classifier being added to

the pool 𝐶. After 𝐹 instances without drift detection or a new classifier being trained, a new

classifier will start to be trained even though we did not have a drift detection. If 𝐹 is too high,

we may have less diversity in the pool, as the classifiers are more likely to know instances from

different regions in the feature space. For ensembles, it is preferred to have various classifiers

trained in different regions of the feature space (Kittler et al., 1998). On the other hand, a low 𝐹
may lead to underfitted models, even though the diversity would be higher.

The average accuracy for the selected datasets for each 𝐹 value is presented in Table 5.4.

As we can see, the 𝐹 with the greatest accuracy was 𝐹 = 200. Thus, it is the choice for the next

experiments. We must state that this parameter does not affect the maximum or the minimum

size of the DSEL.

Table 5.4: Accuracy (%) of Different 𝐹 values on Dynse+DDM.

Dataset 50 100 200 500 1000

NOAA 77.64 77.50 77.23 77.26 77.04

Nursery 93.67 92.96 93.43 93.01 92.69

Electricity 82.96 83.43 84.60 83.82 84.12

SEA 86.92 87.14 87.12 87.04 87.14
STAGGER 99.33 99.29 99.28 99.29 99.30

Average 88.10 88.06 88.33 88.08 88.06



55

5.2.2 Concept Drift Detectors

Next, we perform the analysis on the drift detectors. The drift detectors considered for these

tests are reported in Table 5.5. For a reminder, in addition to the average accuracy, we have

used the measurements of True Positive (TP), False Positive (FP), and False Negative (FN) on

the synthetic datasets, as explained in Section 2.4.1. As we are using the SEA and STAGGER

datasets with abrupt concept drifts, the acceptable interval of TP Δ is set to 250. In addition to

these measures, we also evaluate the average delay for detection of TPs of the detectors, if they

had any. The delay is gathered at the moment the concept drift is detected, if it was a TP. Thus, we

can understand if we may have instances from the old concept after the DSEL is shrunk. Remind

that the minimum size of the DSEL, at the moment, is set to 200 instances – this parameter is

tuned in Section 5.2.4.

The analysis of the drift detectors of the synthetic datasets were done separately to the

real-world datasets, as in the latest we do not know for sure whether or where concept drift

has happened. In practice, we want drift detectors that can track the drift at the right moments.

According to Komorniczak and Ksieniewicz (2023), valuable detectors have a low number of

FPs, while are still able to detect the moments of change.

Table 5.5: Tested Drift Detectors.

Detector Reference

PHT (Page, 1954)

DDM (Gama et al., 2004)

EDDM (Baena-García et al., 2006)

ADWIN (Bifet and Gavaldà, 2007)

STEPD (Nishida and Yamauchi, 2007)

ECDD (Ross et al., 2012)

SeqDrift1 (Sakthithasan et al., 2013)

SeqDrift2 (Pears et al., 2014)

HDDMA (Frías-Blanco et al., 2015)

HDDMW (Frías-Blanco et al., 2015)

FHDDM (Pesaranghader and Viktor, 2016)

FHDDMS (Pesaranghader and Viktor, 2016)

RDDM (Barros et al., 2017)

FHDDMS𝑎𝑑𝑑 (Pesaranghader et al., 2018b)

MDDMA (Pesaranghader et al., 2018a)

MDDME (Pesaranghader et al., 2018a)

MDDMG (Pesaranghader et al., 2018a)

5.2.2.1 Synthetic Datasets

The results of the tests of different drift detectors for the synthetic datasets are in Table 5.6. We

can see that the detectors with the lowest Delay to TP got the lowest accuracies (DDM, EDDM).

The reason for that is because 𝑁 is set to 200 instances. Thus, after a concept drift, these detectors

got to detect drift early, and we still had instances from the old concept on the DSEL after it has

shrank, on which the classifiers still would be ranked. The low accuracy of these detectors also

reflect the low number of TPs. The ADWIN detector had the best accuracy, but the difference

was not significant compared to some of the triggers.
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Table 5.6: Average Accuracy and Average Delay to TP of Drift Detectors on Synthetic Datasets.

Detector Av. Accuracy Av. TP Av. FP Av. FN Av. Delay to TP

DDM 93.21 1 0.4 1.5 31

EDDM 93.20 1 1.7 1.5 38

RDDM 93.64 1.35 2.2 1.2 108

STEPD 93.65 2 252.2 0.5 65

ADWIN 93.70 1.65 0.8 0.9 97

ECDD 93.20 2.15 56 0.4 27

PHT 93.46 1 0.9 1.5 166

HDDMA 93.53 1.4 0.7 1.1 103

HDDMW 93.29 1.1 0.1 1.4 62

FHDDM 93.55 1.45 0.3 1.1 97

FHDDMS 93.56 1.45 0.3 1.1 81

FHDDMS𝑎𝑑𝑑 93.48 1.45 0.3 1.1 91

MDDMA 93.61 1.4 0.4 1.1 112

MDDME 93.57 1.4 0.5 1.1 91

MDDMG 93.57 1.55 0.5 1 94

SeqDrift1 93.39 1.1 0.5 1.4 204

SeqDrift2 93.67 1.85 0.3 0.7 204

5.2.2.2 Real-world Datasets

Different from the synthetic datasets, we do not know the drifting points on the real-world

datasets. Thus, we cannot use the measurements of TP, FP, and FN. To compare the drift detectors

on the real-world datasets, we have used the classification accuracy and the average number of

detections. These results are in Table 5.7. On the real-world datasets, the EDDM was the most

accurate one, followed by the STEPD. The overall accuracy considering both real-world and

synthetic datasets is in Table 5.8. We see that the STEPD had the best overall accuracy among

the detectors, so it is the drift detector chosen for the next experiments.

5.2.3 Maximum Size of DSEL (M)

In this Section, we evaluate the impact of the maximum size of the DSEL by taking into account

the accuracy and the time to process each dataset. A larger DSEL may give us better performance

in cases of virtual concept drift and stable concepts. However, as we have more data for

calculating the neighborhood, we hypothesize that the processing time will also be higher. The

results regarding the accuracy and processing time on different values of 𝑀 are in Table 5.9.

Notice that, different from the expected, a higher 𝑀 led to a minor processing time. The

reason behind that lies on the drift detector. When the DSEL is bigger, we are likelier to have

instances from an old concept in it. Thus, if a concept drift has happened, it will trigger the

change and shrink the DSEL. So, we can say that a larger DSEL will make the drift detector

more likely to trigger a concept drift. That is the reason why 𝑀 = 6000 got a lower processing

time overall. On the Nursery dataset, we could not see much difference in processing time after

𝑀 = 3000, as it is a dataset with fewer instances than the others. The DSEL never reached its

maximum size.

However, in the cases where our drift detector does not trigger a concept drift, the

DSEL maintains its size on the maximum, then depending on the dimensionality of our data, the

processing time may increase substantially, since we have a distance-based DS (KNORAE). We

consider that we have enough memory for 𝑀 = 4000, and that we can deal with the processing

time it may give us if it reaches the maximum size.
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Table 5.7: Average Accuracy of Drift Detectors on Real-world Datasets.

Detector Av. Accuracy Av # of Detections

DDM 85.12 7

EDDM 85.54 35

RDDM 85.35 21

STEPD 85.49 35

ADWIN 85.17 4

ECDD 85.38 141

PHT 84.48 1

HDDMA 85.39 6

HDDMW 84.52 5

FHDDM 85.09 5

FHDDMS 85.13 5

FHDDMS𝑎𝑑𝑑 85.09 4

MDDMA 85.06 5

MDDME 85.13 5

MDDMG 85.17 5

SeqDrift1 84.60 1

SeqDrift2 85.07 3

Table 5.8: Average Accuracy of Detectors on Real-world and Synthetic Datasets.

Detector Av. Accuracy

DDM 89.16

EDDM 89.37

RDDM 89.49

STEPD 89.57
ADWIN 89.44

ECDD 89.29

PHT 88.97

HDDMA 89.46

HDDMW 88.90

FHDDM 89.32

FHDDMS 89.34

FHDDMS𝑎𝑑𝑑 89.28

MDDMA 89.33

MDDME 89.35

MDDMG 89.37

SeqDrift1 88.99

SeqDrift2 89.37

5.2.4 Minimum Size of DSEL (N)

In this Section, we analyze how the minimum size of the DSEL, which we denote by 𝑁 , influences

the accuracy of Dynse+. The 𝑁 is the value that the DSEL is shrunk to when a drift is detected.

Thus, after a drift is detected, the instances in the DSEL are discarded until there are only 𝑁
instances. The results are in Table 5.10. We see that 𝑁 = 100 got the best overall accuracy



58

Table 5.9: Average Accuracies and Execution Time on Different Values of M.

M 1000 2000 3000 4000 5000 6000

Dataset Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time

NOAA 76.51 219.28 76.80 97.83 76.73 83.05 76.75 79.89 76.80 65.46 76.76 71.99

Nursery 92.95 51.21 93.12 29.04 93.09 25.50 92.93 23.72 93.09 21.77 93.06 23.87

Electricity 87.07 708.26 87.01 99.61 86.93 80.43 87.01 83.22 87.05 75.00 87.01 79.00

SEA 87.69 6584.47 87.76 4169.29 87.76 2453.00 87.89 801.93 87.84 1128.88 87.89 763.75
STAGGER 99.39 9.15 99.39 9.26 99.39 9.91 99.35 10.31 99.36 9.56 99.35 9.95

Average 88.72 1514.47 88.82 881.01 88.78 530.38 88.79 199.81 88.83 260.13 88.81 189.71

most of the times, and it also got the best average accuracy. Thus, we use 𝑁 = 100 for the

remaining experiments. In Table 5.11 is the final set of hyperparameters that compose the default

configuration of Dynse+ to compare it to the other methods.

Table 5.10: Average Accuracies on Different Values of N.

Dataset 100 200 300 400 500

NOAA 76.55 76.20 76.99 77.12 77.03

Nursery 92.88 93.11 93.02 93.03 92.84

Electricity 87.32 87.12 86.82 86.50 86.28

SEA 87.94 87.77 87.62 87.71 87.69

STAGGER 99.65 99.36 99.11 98.82 98.49

Average 88.87 88.82 88.71 88.64 88.47

Table 5.11: Final Set of Hyperparameters

Parameter Final Value

𝐹 200

Drift Detector STEPD

𝑀 4000

𝑁 100

5.3 THE IMPACT OF THE DRIFT DETECTOR

In this Section, we analyze the impact of the addition of the drift detector by comparing Dynse+

to the online version of the Dynse framework and the batch version proposed by Almeida et al.

(2018). For the Dynse Framework, we have used the same set of parameters proposed by

Almeida et al. (2018) for both real and virtual concept drifts. Notice that there are two different

configurations for Dynse and ODynse: one for real concept drift and other for virtual concept
drift, while Dynse+ only have one.

The Results are in Table 5.12. We can see that, most of the time, Dynse+ got better

accuracy than Dynse and ODynse. The exceptions were the Airlines, Adults, and Gas Sensor

datasets, and on four out of the five datasets with an induced virtual concept drift. We argue that

the reason for Dynse and ODynse getting better accuracy on the datasets with virtual concept
drift was because its maximum size of the DSEL was bigger (6400 instances, while Dynse+ had

4000 instances).
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However, we have used two different configurations for Dynse and ODynse, for real
and virtual concept drifts. The reason for that is because, when we have a virtual concept drift,
the ideal decision boundary has not changed, so the more information we have, the best (larger

DSEL). On the contrary, with real concept drift, the ideal decision boundary changes, and we

must adapt to the new concept. However, in most of the environments, we do not know which

kind of concept drift we are dealing with, so we would not know which configuration to use. We

do not have this problem with Dynse+, as it adapts only when a concept drift is triggered.

By looking at the graphs of the prequential accuracy in Figure 5.2, we can see that

Dynse+ has a faster adaptation to concept drift in some of the Insects dataset (we can notice

some points where the recovery of accuracy after a drop was quicker), and also on the synthetic

datasets. Dynse seems to struggle on some datasets as well, getting a lower accuracy in many

moments in the timestamp.

In the SEA dataset, in Figure 5.2(k), Dynse+ got a faster adaptation to concept drift, as

well as in the STAGGER-Rec (Figure 5.2(l)), Sine (Figure 5.2(m)), Sine-Rec (Figure 5.2(n)), and

Agrawal (Figure 5.2(q)) datasets. On the datasets with gradual concept drift (Hyperplane and

LED), we can notice a better prequential accuracy from Dynse+ over time as well. Dynse+ also

got better prequential accuracy throughout the stream on the RandomRBF dataset in Figure 5.2(r).

On the datasets with virtual concept drift, ODynse seems to be the best one most of the time.

Thus, we can say that the adaptation of the Dynse framework to perform online processing

led to better accuracy overall, and the addition of a drift detector led to a faster adaptation to

concept drift when compared to Dynse and ODynse.

Remembering the hypothesis set at the beginning of this work, it was told that the

adaptation of the DSEL would lead to better results in scenarios with real concept drift, and

perform no worse in scenarios with virtual concept drift. We can say that both statements were

accomplished, as Dynse+ had best accuracy overall on real concept drift, and got a competitive

accuracy to ODynse on virtual concept drift without the need of having two configurations for

the different types of concept drift.

5.3.1 Statistical Analysis

We have performed a Friedman-Nemenyi test to check how significant are the differences

regarding accuracy. We have used 𝑘 = 3, since we are comparing 3 different classifiers, and

𝑁 = 23, since we have 23 datasets. We have considered 𝛼 = 0.05 and used the values supplied in

Demšar’s paper for 3 classifiers, i.e., 𝑞0.05 = 2.343.

On the Friedman test, we had 𝑝 = 0.000144. Thus, we reject the Friedman test’s null

hypothesis that there is no significant difference between the classifiers. The Nemenyi post-hoc

Critical Difference diagram is shown in Figure 5.3. We follow the guideline presented by Demšar

(2006), where the best ranked methods are more on the right of the diagram.

By these results, we can conclude that ODynse and Dynse+ got better results than

Dynse. Dynse+ got better accuracy on 15 out of the 18 tested real-world and synthetic datasets

with real concept drift, but only on 1 out of 5 datasets with an induced virtual concept drift.
The Friedman-Nemenyi test show us that Dynse+ had a significant better accuracy than Dynse.

Remind that we have used two different configurations for Dynse and ODynse, but only one for

Dynse+. Thus, we got better results on real concept drift and a competitive performance on

virtual concept drift without the need to have two different configurations. For the remaining

tests that are performed to compare to the state of the art, in Section 5.4, we report only the

results of Dynse+.
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(a) Airlines. (b) Adult.

(c) Ozone. (d) Insects-AB.

(e) Insects-AI. (f) Insects-GB.

(g) Insects-GI. (h) Insects-IB.

Figure 5.2: Prequential Accuracies of Dynse, Online Dynse, and Dynse+.
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(i) Insects-II. (j) Gas Sensor.

(k) SEA Recurrent. (l) STAGGER Recurrent.

(m) Sine. (n) Sine Recurrent.

(o) Hyperplane. (p) LED.

Figure 5.2: Prequential Accuracies of Dynse, Online Dynse, and Dynse+ (Continued).
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(q) Agrawal. (r) Random RBF.

(s) Letters. (t) Digits.

(u) Pen Digits. (v) Dry Bean.

(w) Rice.

Figure 5.2: Prequential Accuracies of Dynse, Online Dynse, and Dynse+ (Continued).
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Table 5.12: Accuracies Comparing Dynse, ODynse, and Dynse+.

Dataset Dynse∗ ODynse∗ Dynse+

Real Concept Drift
Airlines 65.13 65.26 65.11

Ozone 94.04 94.09 94.22
Adults 83.07 83.07 83.04

Insects-AB 70.93 71.06 73.02
Insects-AI 76.30 76.33 77.24
Insects-GB 74.09 74.41 76.39
Insects-GI 76.69 76.69 77.40
Insects-IB 60.23 60.23 60.57
Insects-II 74.62 74.65 75.60
Gas Sensor 89.98 92.72 92.71

Sine 89.78 89.65 93.67
Sine-Rec 77.34 77.91 89.07
SEA-Rec 86.08 86.06 86.48
STAGGER-Rec 88.23 84.61 97.45
Agrawal 76.42 76.62 80.25
Hyperplane 89.42 89.22 89.70
LED 70.88 71.04 71.41
RandomRBF 86.59 87.01 88.99
Average 79.43 79.48 81.80
Virtual Concept Drift
Letters 90.35 91.64 88.16

Digits 89.97 91.42 90.67

Pen Digits 93.67 95.60 94.27

Dry Bean 90.33 91.19 90.73

Rice 91.15 91.93 92.19
Average 90.98 92.36 91.09

Total Average 81.94 82.28 83.82
*Different configurations for different types of concept drift.

5.4 TESTS COMPARING WITH THE STATE OF THE ART

In this Section, the proposed Dynse+ was compared to other methods in the literature. We have

used the default configuration available in the MOA framework (Bifet et al., 2010a) for such

methods. Results are exposed in Table 5.13, and graphs for the prequential accuracy in Figure

5.4. For visualization purposes, we show the graphs only for Dynse+, OAUE, LevBag, and ARF,

as they got the best accuracies.

These results indicate us that Dynse+ gets a better accuracy in some of the real-world

datasets and synthetic datasets with real concept drift. It got better accuracy on the Insects-AB

and Ozone datasets. OAUE was the best one on the Airlines, the OzaBag got the best accuracy

on the Adult dataset, and the ARF got on most of the Insects datasets. The ARF had the best

average accuracy on the datasets with real concept drift, with Dynse+ in the second place. By

looking at the synthetic datasets, Dynse+ got the best accuracy on the SEA concepts dataset with
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3 2 1

CD = 0.69

Dynse
ODynse
Dynse+

Figure 5.3: CD Diagram of the Nemenyi Test Comparing Dynse, ODynse, and Dynse+.

a recurrent concept drift, and on the Hyperplane dataset with a gradual concept drift. Despite

that, it did not have accuracy far from the best performing state-of-the-art methods.

Getting into the datasets with virtual concept drift, the Dynse+ got the best accuracy on

most of the datasets, with a high difference in some of them. On the Letters dataset, for example,

it got a difference of over 20 percentage points to the OAUE, which was the best one among the

other state-of-the-art methods. The only dataset with virtual concept drift that Dynse+ did not

get the best accuracy was the Rice dataset, in which ARF got the best accuracy. Dynse+ got the

best average accuracy among the datasets with an induced virtual concept drift, and also the best

average accuracy considering both real and virtual concept drifts.
By looking on the graphs of the prequential accuracy in Figure 5.4, Dynse+ got a

competitive accuracy to ARF on most of the datasets, while LevBag and OAUE had more drops

in accuracy. We notice that on the Airlines dataset in Figure 5.4(a), OAUE seemed to have a

higher accuracy in most of the timestamp. This also happened on the Adult dataset in Figure

5.4(b), where LevBag also got good performance. On the Ozone dataset, Dynse+ and ARF

seemed to have the same accuracy in many moments in the timestamp.

On the Insects-AB dataset in Figure 5.4(d), the OAUE dataset had a minor accuracy

and presented drops throughout the timestamp. The same we can say about LevBag, but the

drops in accuracy were not as big as OAUE. Dynse+ and ARF had similar drops and recovery

on the timestamp. On the Insects-AI, in Figure 5.4(e), ARF had the best accuracy on most of

the timestamp, and that was repeated for the remaining Insects datasets in Figures 5.4(f), 5.4(g),

5.4(h), and 5.4(i).

Getting into the synthetic datasets, Dynse+ seems to have a better recovery on the

SEA-Rec dataset in Figure 5.4(k) than ARF, LevBag, and OAUE. On the STAGGER-Rec dataset,

in Figure 5.4(l), the OAUE had higher drops in accuracy after concept drift, while Dynse+,

LevBag, and ARF got a better recovery, although the ARF seems to have a quicker recovery

on most of the concept drifts. LevBag and OAUE had big drops in accuracy on the Sine and

Sine-Rec datasets in Figures 5.4(m) and 5.4(n), where ARF seems to have a higher accuracy

when compared to Dynse+ at some points. On the Hyperplane dataset in Figure 5.4(o), Dynse+

had the best accuracy over time, and got a good recovery after the gradual concept drift. On

the LED dataset in Figure 5.4(p), Dynse+ was the worst-performing, while LevBag and OAUE

had best accuracy at the beginning of the timestamp, and a competitive accuracy related to ARF,

even though LevBag presented some drops throughout the timestamp. On the Agrawal dataset,

in Figure 5.4(q), OAUE had the best accuracy on most of the timestamp, being able to have the

best recovery on most concept drifts. On the RandomRBF in Figure 5.4(r), ARF had the best

accuracy over time.

On the datasets with an induced virtual concept drift, we saw that Dynse+ had the best

overall accuracy in Table 5.13. On the Letters dataset in Figure 5.4(s), it had a dominant accuracy

on most of the timestamp – it only had a minor accuracy compared to LevBag and OAUE on

the first instances. On the Digits, Pen Digits, and Dry Bean datasets in Figures 5.4(t), 5.4(u),
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(a) Airlines. (b) Adult.

(c) Ozone. (d) Insects-AB.

(e) Insects-AI. (f) Insects-GB.

(g) Insects-GI. (h) Insects-IB.

Figure 5.4: Prequential Accuracies of Dynse+, ARF, LevBag, and OAUE.
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(i) Insects-II. (j) Gas Sensor.

(k) SEA Recurrent. (l) STAGGER Recurrent.

(m) Sine. (n) Sine Recurrent.

(o) Hyperplane. (p) LED.

Figure 5.4: Prequential Accuracies of Dynse+, ARF, LevBag, and OAUE (Continued).
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(q) Agrawal. (r) Random RBF.

(s) Letters. (t) Digits.

(u) Pen Digits. (v) Dry Bean.

(w) Rice.

Figure 5.4: Prequential Accuracies of Dynse+, ARF, LevBag, and OAUE (Continued).
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Table 5.13: Results of Dynse+ and the State of the Art on Real-world datasets.

Dataset Dynse+ OzaBag LevBag OAUE AUE AWE ARF Learn++.NSE

Real Concept Drift
Airlines 65.11 64.92 63.13 67.51 66.66 61.87 66.66 62.34

Ozone 94.22 93.96 93.89 93.96 93.96 75.28 94.16 78.66

Adult 83.00 84.67 84.25 84.16 84.10 82.84 83.70 81.60

Insects-AB 73.01 57.36 69.09 64.64 63.35 61.12 71.80 61.67

Insects-AI 77.24 68.94 73.22 71.90 70.72 67.06 80.58 63.93

Insects-GB 76.39 62.07 71.79 59.69 58.63 61.34 77.97 61.77

Insects-GI 77.40 64.94 72.47 69.43 68.95 69.76 80.07 65.27

Insects-IB 60.57 54.48 61.32 56.92 59.91 57.23 65.71 56.37

Insects-II 75.60 73.00 73.83 74.86 73.35 66.69 79.27 62.57

Gas Sensor 92.71 55.46 82.60 71.93 58.61 47.64 90.77 51.30

Sine 93.67 73.19 93.20 90.90 89.93 89.19 94.95 86.35

Sine-Rec 89.07 60.60 87.01 75.95 68.56 77.40 89.53 78.29

SEA-Rec 86.48 83.94 84.81 84.48 83.87 84.58 83.96 84.77

STAGGER-Rec 97.45 71.85 96.81 88.00 80.69 88.81 98.01 55.38

Agrawal 80.25 64.67 77.68 81.37 79.42 76.02 74.15 75.41

Hyperplane 89.70 85.76 85.99 86.49 86.14 89.20 84.08 86.21

LED 71.41 73.77 73.57 73.04 72.98 72.98 73.17 67.79

RandomRBF 88.99 85.32 91.63 88.23 88.47 72.07 93.58 70.25

Average 81.80 71.05 79.79 76.86 74.91 72.28 82.34 69.44

Virtual Concept Drift
Letters 87.94 62.23 63.83 65.54 63.99 60.20 56.15 42.04

Digits 90.67 87.92 88.27 85.39 83.10 83.57 84.80 71.51

Pen Digits 94.27 85.93 90.37 86.90 84.73 83.11 93.74 78.41

Dry Bean 90.73 89.29 89.20 87.82 87.61 88.01 88.58 85.50

Rice 92.26 91.67 91.59 88.57 88.16 87.42 92.34 89.32

Average 91.09 83.41 84.65 82.17 81.52 80.46 83.12 73.36

Total Average 83.82 73.74 80.85 78.01 76.34 74.06 82.51 70.29

and 5.4(v), respectively, Dynse+ still had a best accuracy on most of the timestamp, but it was

not such a significant difference as on the Letters dataset. Remember that the Rice dataset was

the only dataset with an induced virtual concept drift that Dynse+ did not have the best overall

accuracy, but we see that it got a similar accuracy over time compared to ARF.

5.4.1 Statistical Analysis

The Friedman-Nemenyi test is also performed for comparing the proposed Dynse+ with the

state-of-the-art methods. Here, we have used 𝑘 = 8, since we have 8 classifiers. We also have

used 𝛼 = 0.05, and 𝑞0.05 = 3.031, by following the Table provided by Demšar (2006).

The p-value for the Friedman test was 𝑝 = 2.032 × 10−11, Thus, we reject the null

hypothesis from Friedman’s test that there is no significant difference between the methods. The

diagram for the Nemenyi test is in Figure 5.5.

We see that Dynse+ was the best ranked method, with a significant difference to 4 out

of 7 methods: Learn++.NSE, AWE, OzaBag, and AUE. The difference was not statistically

significant to ARF, LevBag, and OAUE. Thus, the combination of dynamic selection and

drift detection seems to provide greater accuracy on both real and virtual concept drifts. The

possibility of saving useful information and to drop outdated knowledge led to best results when

comparing to the state of the art.



69

7 6 5 4 3 2

CD = 2.19

Dynse+
ARF
LevBag
OAUE

Learn++.NSE
AWE

OzaBag
AUE

Figure 5.5: CD Diagram of the Nemenyi Test Comparing State-of-the-art methods.

5.5 TESTS WITH DELAYED AND PARTIAL LABELS

In this Section, a comparison of Dynse+ to the state of the art considering delayed and partial

labels is performed. The results regarding accuracy are presented in Table 5.14. Here, ARF got

the best overall accuracy on real concept drift followed by Dynse+, and Dynse+ got the best

accuracy on virtual concept drift, followed by LevBag. Considering both types of concept drift,

Dynse+ had the best overall accuracy once more, and ARF got the second best accuracy. ARF

was dominant on the Insects dataset in these tests as well, while Dynse+ had the best accuracies

in some of the datasets, but with a competitive accuracy when comparing to most of the best

results.

Table 5.14: Accuracies of Dynse+ and the State of the Art With Delayed and Partial Labels.

Dataset Dynse+ OzaBag LevBag OAUE AUE AWE ARF Learn++.NSE

Real Concept Drift
Airlines 64.60 64.06 61.97 65.86 65.46 61.60 65.60 61.90

Ozone 93.92 93.96 93.16 93.96 93.96 71.55 93.84 73.95

Adults 83.01 83.96 83.73 83.55 83.34 82.23 83.31 81.61

Insects-AB 71.38 54.86 66.43 62.43 58.87 58.19 71.43 60.78

Insects-AI 77.05 66.12 70.10 67.95 67.13 66.15 79.57 63.93

Insects-GB 73.21 56.92 68.43 60.15 58.40 59.16 74.23 60.33

Insects-GI 77.15 63.20 70.51 66.34 66.40 68.49 78.74 65.01

Insects-IB 59.50 49.54 59.52 55.40 55.34 55.86 64.53 55.66

Insects-II 75.31 69.77 72.05 71.88 70.16 64.91 78.42 62.45

Gas Sensor 65.52 58.38 62.09 55.57 51.15 46.88 61.26 39.40

Sine 92.26 61.11 90.13 86.20 83.54 85.75 92.89 84.58

Sine-Rec 83.35 56.67 79.29 66.26 55.20 62.39 82.76 66.89

SEA-Rec 84.67 83.84 84.15 83.38 82.68 83.02 83.70 83.50

STAGGER-Rec 93.36 70.62 88.93 80.59 68.71 75.79 95.15 53.37

Agrawal 76.47 64.43 73.98 76.76 73.49 70.60 70.96 73.47

Hyperplane 88.86 86.38 85.01 85.17 84.91 86.13 83.30 85.94

LED 70.84 73.91 73.38 71.81 71.64 71.90 72.60 67.48

RandomRBF 88.66 80.65 89.39 85.41 84.42 71.91 92.86 70.11

Average 78.84 68.80 76.24 73.26 70.82 69.03 79.18 67.24

Virtual Concept Drift
Letters 59.92 59.55 58.28 58.64 57.50 60.38 46.32 41.93

Digits 83.22 84.45 85.45 79.42 76.01 75.69 82.00 73.24

Pen Digits 90.16 81.55 85.73 81.32 79.75 80.19 89.40 77.55

Dry Bean 89.72 88.78 88.38 85.76 85.36 85.49 87.99 85.73

Rice 91.24 90.52 91.53 83.22 83.22 81.74 91.82 88.13

Average 82.85 80.97 81.87 77.67 76.37 76.70 79.51 73.32

Total Average 79.71 71.44 77.46 74.22 72.03 70.70 79.25 68.56
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Regarding processing time in Table 5.15, Dynse+ was the slowest method. We can

notice that the processing time of Dynse+ tends to be higher when we have more instances and

high-dimensional data, which makes sense when we remember the need to calculate the distances

between data points. Overall, OzaBag was the method with the lowest processing time in average.

Table 5.15: Processing Time of Dynse+ and the State of the Art.

Dataset Dynse+ OzaBag LevBag OAUE AUE AWE ARF Learn++.NSE

Airlines 38288.04 33.40 329.09 198.05 163.33 195.86 2487.29 284.88

Ozone 2.99 0.25 1.09 0.23 0.19 0.52 14.26 0.17
Adults 1731.32 1.68 4.99 3.08 2.67 2.68 99.38 1.93

Insects-AB 164.00 9.57 17.54 11.96 11.71 17.55 136.72 13.12

Insects-AI 67634.57 33.46 72.34 65.14 68.60 138.48 874.87 440.13

Insects-GB 49.79 3.56 5.66 4.43 6.97 6.83 65.78 5.86

Insects-GI 9679.73 16.61 29.87 26.59 40.99 55.98 351.85 88.95

Insects-IB 1019.94 11.63 19.54 16.42 13.03 20.25 165.79 16.54

Insects-II 97976.81 56.17 85.71 73.56 80.19 177.63 1103.37 716.62

Gas Sensor 27.08 10.16 16.66 11.13 12.18 8.88 150.69 8.45
Sine 215.70 0.77 1.65 1.22 1.23 1.72 33.59 0.82

Sine-Rec 31.08 0.49 1.53 0.91 0.91 1.48 42.67 0.74

SEA-Rec 503.47 0.63 1.48 0.88 0.87 1.34 52.51 0.70
STAGGER-Rec 8.55 0.43 0.88 0.66 0.62 0.90 8.73 0.47

Agrawal 61.90 1.41 4.61 2.21 1.92 2.14 90.74 1.03
Hyperplane 77.25 1.49 3.11 2.32 2.07 2.70 60.76 1.18
LED 196.68 2.67 8.00 3.50 4.64 4.92 48.21 5.34

RandomRBF 1121.31 1.61 3.94 2.56 2.07 2.70 60.76 1.18
Letters 21.02 4.86 8.84 6.11 6.51 7.74 91.70 7.98

Digits 13.61 2.02 3.71 1.08 1.09 1.62 38.49 1.04
Pen Digits 16.64 1.24 2.95 1.61 1.79 2.09 29.95 1.66

Dry Bean 19.76 1.10 2.67 1.67 1.78 2.01 27.09 1.72

Rice 1.96 0.11 0.28 0.09 0.09 0.22 3.01 0.05
Average 9515.79 8.45 26.96 18.82 18.34 28.35 260.49 69.43

The prequential accuracies of Dynse+, LevBag, OAUE and ARF are shown in Figure

5.6. The OAUE, once more, seems to struggle on adapting to concept drift on most of the

datasets, as well as the LevBag. Dynse+ and ARF again seem to have a quick adaptation in

most scenarios. ARF appears as the best on the Insects datasets (Figures 5.6(d), 5.6(h), 5.6(f),

5.6(g), 5.6(h), and 5.6(i)). Mostly, the results on the prequential accuracy for the delayed tests

were repeated to the test-then-train configuration, with a quick adaptation of Dynse+ and ARF to

concept drift, and some drops in accuracy concerning OAUE and LevBag. OAUE still got the

best accuracy on the Airlines and Agrawal datasets. The biggest difference was on the Letters

dataset, where Dynse+ had a lower accuracy over time when compared to the test-then-train.

5.5.1 Statistical Analysis

The 𝑝-value for the Friedman test on the results considering Dynse+ and state-of-the-art methods

was 𝑝 = 8.52 × 10−12, so the null hypothesis is rejected. The CD diagram for the Nemenyi test is

in Figure 5.7. Again, Dynse+ comes as the best ranked method, followed by ARF and LevBag.

Just like on the test-then-train configuration, there was no statistically significant difference

to ARF, LevBag and OAUE. OzaBag also have surpassed AUE here when comparing to the

test-then-train. So we can say that, providing less information about the scenarios (partial and

delayed labeling), Dynse+ keeps performing best than other methods in terms of accuracy.
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(a) Airlines. (b) Adult.

(c) Ozone. (d) Insects-AB.

(e) Insects-AI. (f) Insects-GB.

(g) Insects-GI. (h) Insects-IB.

Figure 5.6: Prequential Accuracies of Dynse+, ARF, LevBag, and OAUE With Delayed and Partial Labels.
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(i) Insects-II. (j) Gas Sensor.

(k) SEA Recurrent. (l) STAGGER Recurrent.

(m) Sine. (n) Sine Recurrent.

(o) Hyperplane. (p) LED.

Figure 5.6: Prequential Accuracies of Dynse+, ARF, LevBag, and OAUE With Delayed and Partial Labels

(Continued).
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(q) Agrawal. (r) Random RBF.

(s) Letters. (t) Digits.

(u) Pen Digits. (v) Dry Bean.

(w) Rice.

Figure 5.6: Prequential Accuracies of Dynse+, ARF, LevBag, and OAUE With Delayed and Partial Labels

(Continued).
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Dynse+
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Figure 5.7: CD Diagram of the Nemenyi Test Comparing Dynse+ and the State Of The Art With Delayed and

Partial Labels.

5.6 DISCUSSION

In this Section, we have performed a Cramer’s V autocorrelation test on the datasets and compared

different approaches for classifying data streams. Further, a hyperparameter analysis on the

parameters of Dynse+ was performed, giving us a default configuration to be compared to other

methods.

Focusing on the results of the proposed framework Dynse+, we had an improvement

in accuracy comparing to Dynse and ODynse regarding real concept drift, and a competitive

accuracy to ODynse on virtual concept drift. The Friedman-Nemenyi test showed us that Dynse+

was the best placed when comparing with the two versions of Dynse, and to 7 other methods in

the literature. We got a quicker adaptation to concept drift, and kept a good performance on most

of the datasets with virtual concept drift. We can say the same on the tests with delayed and

partial labels, where we try to be closer to a real-world environment, in which the labels of the

data might arrive with some delay, and will not be fully available. Dynse+ was the best placed as

well.

The results indicate that the addition of a drift detector to the Dynse framework, in

addition to the adaptation to online processing, led to best results overall. The concept drift

detector helps on the maintenance of the information in the DSEL, while the ability to perform

online processing helps keeping the system up-to-date, as every incoming instance is used for

training an incremental classifier. Furthermore, we can conclude that there is no need of prior

knowledge on the type of concept drift anymore, an issue that the original Dynse has. The

adaptation of the DSEL now is in charge of the drift detector, which now is able to grow larger

on stable concepts, and shrink when a concept drift is triggered in order to forget an old concept.

The biggest drawback of the proposed framework is the processing time, as we use a

neighborhood-based DS method, with which we need to get the neighborhood of the test instance

to perform classification. As we have a drift detector, we must calculate the neighborhood on both

training and testing phases in order to update the drift detector, leading to a higher processing

time. To overcome this, we can consider 𝑘NN optimization algorithms, or different approaches

for DS, such as cluster-based (Guo et al., 2021a).
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6 CONCLUSION

In this work, we have proposed Dynse+, which uses triggers, i.e., drift detectors, to keep track of

the current concept. That opens space for the DSEL to grow larger, as the drift detector tracks

whether a concept drift has happened. It auxiliates on the adaptation of Dynse+ to a new concept.

In addition to that, Dynse was modified to be able to perform online processing, which we called

ODynse.

The results showed us that ODynse had a better performance than the batch version

of Dynse on both real and virtual concept drifts, and Dynse+ was the best ranked between

Dynse and ODynse according to the Friedman-Nemenyi test, but with a statistically significant

difference only to Dynse.

Dynse+ was also the best ranked method when compared to seven methods in the state

of the art according to the Nemenyi test. It had a statistically significant difference to 4 methods.

The advantages of Dynse+ is that it is able to track concept drift and has a faster adaptation when

compared to Dynse and ODynse, and maintains a good performance on virtual concept drift
when compared to other methods in the literature. Remember that Dynse and ODynse have two

configurations for two different types of concept drift, while Dynse+ has only one. Thus, there is

no need to know the type of concept drift in advance.

However, the more instances we have, and for high-dimensional data, the processing

time may be bigger, as we have a distance-based DS method. For future works, we intend to test

different DS methods that do not involve distance calculations to improve the processing time

of Dynse+. Some examples in the literature are cluster-based methods (Guo et al., 2021a) and

methods based on Fuzzy Hyperbox (Davtalab et al., 2024).

Furthermore, the Dynse+ framework, just like Dynse, is flexible and extensible, and

is able to receive more mechanisms to help on the adaptation to concept drift. Examples are

instance selection when pruning the DSEL, such as instance hardness measures, and different

measures to prune the classifiers from 𝐶, like diversity.
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