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RESUMO 

 
A análise de imagem espectral é considerada a principal tecnologia emergente na 

avaliação da qualidade de sementes pois é capaz de capturar informações de diferentes 
naturezas, como espectrais, morfológicas e de autofluorescência. Assim, a tecnologia tem sido 
explorada com sucesso na indústria de sementes, visando complementar ou até substituir 
análises tradicionais, que são frequentemente demoradas, subjetivas e resultam na perda da 
semente. O objetivo principal dessa tese foi investigar a aplicação da análise de imagem 
espectral combinada com métodos de análise de dados multivariados na avaliação da qualidade 
de sementes. Os objetivos específicos de cada capítulo foram: (1) avaliar os principais 
procedimentos relacionados à análise de imagens espectrais e procedimentos quimiométricos 
aplicados na fenotipagem de sementes, bem como a sua aplicação prática; (2) identificar o 
potencial da análise de imagem espectral na distinção entre sementes híbridas de Eucalyptus 
urograndis (Eucalyptus grandis × Eucalyptus urophylla) e Corymbia maculata × Corymbia 
torelliana dos seus progenitores; e (3) avaliar a relação entre a respiração de sementes de soja 
e suas características biométricas do uso de imagens multiespectrais. Para avaliar o uso da 
técnica de imagens espectrais na fenotipagem de sementes, uma revisão sistemática baseada na 
metodologia PRISMA foi realizada. Um total de 1304 artigos foram inicialmente avaliados e 
44 artigos foram selecionados conforme os critérios estipulados. Os resultados indicaram que a 
análise possui alta capacidade (93,33%) para classificar genótipos de sementes, incluindo 
cultivares, híbridos interespecíficos, progenitores e linhagens. Em relação à distinção de 
sementes híbridas florestais, foram realizados quatro experimentos com dois lotes separados e 
um combinado de sementes de Eucalyptus urograndis e um lote de Corymbia maculata × 
Corymbia torelliana e seus progenitores. Imagens multiespectrais foram capturadas e 
características espectrais e morfológicas foram extraídas. Algoritmos SVM, LDA e RF, foram 
utilizados para compor os modelos de classificação das sementes. O algoritmo LDA, 
combinado com características morfo-espectrais das sementes, foi o mais eficaz para ambos os 
gêneros com acurácia de 98,15% para as sementes Corymbia spp. e 92,75%, 85,38% e 86,00% 
para cada um dos lotes de Eucalyptus spp. e para eles misturados, respectivamente. A técnica 
se mostrou eficaz para a separação de sementes híbridas de Corymbia spp. e Eucalyptus spp. 
no contexto de programas de melhoramento florestal. Para o experimento com sementes de 
soja, 1806 sementes de seis lotes diferentes foram avaliadas. Imagens multiespectrais seguidas 
pela medição individual do consumo de oxigênio das sementes durante a germinação foram 
realizadas. Ao todo, 2775 pares de 75 medidas biométricas foram analisadas. Ambas as medidas 
de respiração e biometria foram categorizadas e associadas usando tabelas de contingência e 
análise de entropia. Os resultados revelaram diferenças nos padrões de respiração, 
especialmente em autofluorescência (365/600 nm, 430/700 nm, 450/700 nm, e 470/700 nm) e 
refletância (365 nm, 690 nm, e 405 nm). As características da semente de soja, em especial, sua 
informação espectral, estão fortemente correlacionadas com a respiração e qualidade da 
semente, e a análise de imagem espectral é uma ferramenta eficaz e não invasiva para sua 
avaliação. 
 
Palavras-chave: Glycine max, análise multivariada de dados; análise de imagem multiespectral; 
aprendizado de máquina; Eucalyptus spp; Corymbia spp. 
 
 

  



 
 

ABSTRACT 

 

Spectral image analysis is considered the main emerging technology in seed quality 
assessment as it is capable of capturing information of different natures, such as spectral, 
morphological and autofluorescence information. The technology has therefore been 
successfully used in the seed industry to complement or even replace traditional analyses, which 
are often time-consuming, subjective and result in seed loss. The main objective of this thesis 
was to investigate the application of spectral image analysis combined with multivariate data 
analysis methods in seed quality assessment. The specific objectives of each chapter were: (1) 
to evaluate the main procedures related to spectral image analysis and chemometric procedures 
applied in seed phenotyping, as well as their practical application; (2) to identify the potential 
of spectral image analysis in distinguishing hybrid seeds of Eucalyptus urograndis (Eucalyptus 
grandis × Eucalyptus urophylla) and Corymbia maculata × Corymbia torelliana from their 
parents; and (3) to assess the relationship between soybean seeds respiration and its biometric 
features through multispectral imaging. To evaluate the use of spectral imaging techniques in 
seed phenotyping, a systematic review based on the PRISMA methodology was carried out. A 
total of 1304 articles were initially evaluated, and 44 articles were selected according to the 
stipulated criteria. The results indicated that the analysis has a high capacity (93.33%) for 
classifying seed genotypes, including cultivars, interspecific hybrids, parents and lines. 
Regarding distinguishing hybrid forest seeds, four experiments were carried out with two 
separate batches and one combined batch of Eucalyptus urograndis seeds and one batch of 
Corymbia maculata × Corymbia torelliana and their progenitors. Multispectral images were 
captured, and spectral and morphological characteristics were extracted. SVM, LDA and RF 
algorithms were used to compose the seed classification models. The LDA algorithm, combined 
with the morphological and spectral characteristics of the seeds, was the most effective for both 
genera, with an accuracy of 98.15% for the Corymbia spp. seeds and 92.75%, 85.38% and 
86.00% for each of the Eucalyptus spp. lots and for them mixed, respectively. The technique 
proved to be effective for separating hybrid seeds of Corymbia spp. and Eucalyptus spp. in the 
context of forestry breeding programs.  For the experiment with soybean seeds, 1806 seeds 
from six different lots were evaluated. Multispectral images followed by individual 
measurements of the seeds' oxygen consumption during germination were taken. In total, 2775 
pairs of 75 biometric measurements were analyzed. Both respiration and biometric 
measurements were categorized and associated using contingency tables and entropy analysis. 
The results revealed differences in respiration patterns, especially in autofluorescence (365/600 
nm, 430/700 nm, 450/700 nm, and 470/700 nm) and reflectance (365 nm, 690 nm, and 405 nm). 
Soybean seed characteristics, especially their spectral information, are strongly correlated with 
seed respiration and quality, and spectral image analysis is an effective and non-invasive tool 
for evaluating them. 
 
Keywords: Forest seeds; Glycine max; Machine learning; Multispectral imaging analysis; 

Multivariate data analysis. 
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INTRODUÇÃO GERAL 

 

Na agricultura contemporânea torna-se cada vez mais evidente a importância das 

sementes para o desenvolvimento econômico e a segurança alimentar. As sementes 

desempenham um papel fundamental no aumento constante da produção de alimentos, pois 

levam para o campo os ganhos obtidos pelo melhoramento genético realizado ao longo de anos 

de seleção. Consideradas como a forma natural mais eficaz de preservar a variabilidade 

genética, as sementes possibilitam o aprimoramento contínuo da espécie, garantindo a 

manutenção de níveis elevados na produção de alimentos e materiais essenciais. Essa 

característica é especialmente crucial diante dos desafios emergentes relacionados às mudanças 

climáticas (Bewley et al., 2013; Marcos-Filho, 2015). 

Sob a perspectiva da exploração agrícola comercial, a qualidade da semente é um 

elemento decisivo. Sem uma semente de alta qualidade, a aplicação de técnicas modernas de 

produção e insumos não é suficiente, uma vez que a produtividade é limitada pela qualidade da 

semente. Uma semente de alta qualidade deve apresentar capacidade de germinação e vigor, ou 

seja, deve germinar de maneira rápida e uniforme, mesmo em condições adversas, além de ser 

isenta de impurezas, materiais genéticos indesejados e livre de patógenos. (Bewley et al., 2013; 

Caverzan et al., 2018; Marcos-Filho, 2015). O uso de sementes de alto vigor resulta 

frequentemente em plântulas mais resistentes, promovendo campos de melhor desempenho e, 

possivelmente, uma maior produção (Cheng et al., 2023). 

No contexto dos programas de melhoramento vegetal, especialmente no setor florestal, 

torna-se crucial a identificação do material genético da semente a ser utilizado, dada a 

considerável demanda de tempo e custos envolvidos na produção. Para a produção de híbridos 

é necessário assegurar a identidade genética dos progenitores para a realização dos cruzamentos 

controlados e também confirmar a autenticidade dos genótipos resultantes Essa abordagem 

integrada, que engloba tanto a seleção criteriosa dos progenitores quanto a verificação pós-

cruzamento, fortalece a integridade genética do programa de melhoramento, assegurando 

consistência e confiabilidade no desenvolvimento de sementes de alta qualidade (da Silva et al., 

2022; Ramalho et al., 2022). 

Métodos de avaliação do potencial fisiológico de um lote de sementes, como os testes 

de germinação e vigor, bem como a confirmação do material genético por meio de testes 

moleculares, são amplamente empregados. Entretanto, tais testes geralmente envolvem 

avaliações demoradas, trabalhosas e frequentemente resultam na perda da semente. Diante disso 
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há necessidade crescente de testes rápidos e não subjetivos determinar o atributo fisiológico e 

genético da qualidade de sementes (Elmasry et al., 2019; Xia et al., 2019). 

Nesse contexto, a análise multiespectral de imagens surge como uma alternativa 

promissora, que combina a espetroscopia com a imagem digital. A particularidade desse método 

está na capacidade de diferentes objetos refletirem de maneira distinta quando expostos a 

determinados comprimentos de onda (por exemplo, ultravioleta ou infravermelho), 

influenciados por sua composição físico-química. Quando essa informação é integrada a uma 

imagem digital, a intensidade de luz refletida pode ser observada em cada pixel, proporcionando 

uma representação mais abrangente do objeto. A partir desse ponto, características como a 

informação espectral, juntamente com outras características extraídas da imagem, como textura 

e forma, podem ser empregadas para distinguir o objeto em questão de outros (Boelt et al., 

2018; França-Silva et al., 2023). 

A análise de imagem espectral é reconhecida como a principal tecnologia emergente 

na indústria de sementes, destacando-se por sua rapidez, flexibilidade e caráter não-destrutivo. 

Além disso, apresenta alta escalabilidade, uma vez que permite a automação do processo de 

coleta de informações e classificação das sementes de forma individualizada, especialmente 

quando integrada com a ciência de dados (Boelt et al., 2018; Elmasry et al., 2019; Xia et al., 

2019; França-Silva et al., 2023). 

Ao coletar informações de diversas naturezas, como espectrais, de autofluorescência e 

espaciais, a técnica tem sido rapidamente explorada em diversas áreas da indústria de sementes. 

Isso inclui sua aplicação na distinção de variedades, identificação de impurezas e separação de 

sementes híbridas de seus progenitores. A análise demonstrou sucesso ao distinguir 16 

variedades de aveia, utilizando o algoritmo Support Vector Machine (SVM), alcançando uma 

precisão de 92.7% (Fu et al., 2023), assim como na identificação de sementes híbridas de quiabo 

em relação aos seus progenitores, também atingindo uma precisão de 95% (SVM) (Zhang et 

al., 2018). 

Apesar de amplamente utilizada em estudos ligados à ciência de sementes, a aplicação 

da análise de imagens espectrais na avaliação do potencial fisiológico de sementes ainda está 

em desenvolvimento, devido à dificuldade de mensurar elementos ligados ao desempenho de 

uma semente.  

Dessa forma, o objetivo principal do presente trabalho foi investigar a aplicação da 

análise de imagem espectral combinada com métodos de análise de dados multivariada na 

avaliação da qualidade de sementes. Os objetivos específicos de cada capítulo desta tese foram: 
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(1) avaliar os principais procedimentos relacionados à análise de imagens espectrais e 

procedimentos quimiométricos aplicados na fenotipagem de sementes, bem como a sua 

aplicação prática; (2) identificar o potencial da análise de imagem espectral na distinção entre 

sementes híbridas de Eucalyptus urograndis (Eucalyptus grandis × Eucalyptus urophylla), e 

Corymbia maculata × Corymbia torelliana dos seus progenitores; e (3) avaliar a relação entre 

o potencial fisiológico de sementes de soja e suas características biométricas individualmente 

por meio da respiração e do uso de imagens multiespectrais.  
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Spectral Imaging and Chemometrics Applied at Phenotyping In Seed Science Studies: A 

Systematic Review1 
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Spectral imaging and chemometrics applied at phenotyping in seed science studies: a 

systematic review 

 

Abstract 

The evaluation of the genetic quality of a seed lot is crucial for the quality control process in its 

production and commercialization, as well as in the identification of superior genotypes and 

verification of the correct crossing in plant breeding programs. Current techniques, based on 

the identification of seed morphological characteristics, require skilled analysts, while 

biochemical methods are time-consuming and costly. The application of spectral imaging 

analysis, which combines digital imaging with spectroscopy, is gaining ground as a fast, 

accurate and non-destructive method. The success of this technique is closely linked to 

chemometric techniques, which use statistical and mathematical tools in data processing. The 

aim of the work was to evaluate the main procedures in terms of spectral imaging analysis and 

chemometric procedures applied in seed phenotyping and its practical application. A systematic 

review was conducted using PRISMA methodology, in which a total of 1304 articles were 

identified and screened to the inclusion of 44 articles pertaining to the scope. It was concluded 

that spectral imaging analysis has a high ability to classify seeds of different genotypes 

(93.33%) in a range of situations: between cultivars; hybrids and progenitors; and hybrids and 

lines, as well as in the separation of coated seeds. Accurate classification can be obtained by 

different strategies, such as the choice of the equipment type, the spectrum range and extra 

features, guided by the characteristics of the species. As well as in the choice of algorithms and 

dimensionality reduction procedures for the optimization of models when there is a large 

amount of data. Although the practical application of this technique in seed phenotyping still 

needs to be developed for use in laboratories with large volumes of analyses, lots, genotypes, 

and harvests. Research has been accelerated to overcome the practical challenges of this 

method, as seen in works using model update algorithms, online classification systems, and 

real-time classification maps. Thus, there are strong indications that the application of 

multispectral imaging analysis will reach the routine of seed analysis laboratories. 

Keywords: deep learning, hyperspectral imaging, machine learning, multispectral imaging, 

seed classification, spectroscopy 

 

Nomenclature 
BPNN - Back Propagation Neural Network  
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BPR - Biomimetic Pattern Recognition  

BULDP - Biomimetic Uncorrelated Locality Discriminant 

Projection 

CARS - Competitive Adaptive Reweighted Sampling 

CCM - Correlation Coefficient Matrix 

CDA - Canonical Discriminant Analysis  

CNN - Convolutional neural network  

DCNN - Deep convolutional neural network  

DLJ4 - Deep Learning J4  

EL - Ensemble learning  

ELM - Extreme Learning Machine  

FDA - Fisher’s discriminant analysis  

GDA - General Discriminant Analysis  

JSWSA - Joint Skewness-based Wavelength Selection Algorithm 

k-NN - k-nearest neighbor  

LDA - linear discriminant analysis 

LR - Logistic regression  

LS-SVM - Least Squares support vector machine  

MLDA - Multi-linear Discriminant Analysis 

MSC - Multiplicative Scatter Correction  

PCA - Principal Component Analysis 

PLS-DA - Partial least square discriminant analysis  

RBFNN - radial basis function neural network  

RF - Random Florest  

RSLD - random subspace linear discriminant  

SIMCA - Soft Independent Modeling of Class Analogy  

SNV - Standard Normal Variate 

SPA - Successive projection algorithm 

SVM - Support Vector Machine  

SVM-DA - Support Vector Machine Discriminant Analysis  

t-SNE - T-distributed stochastic neighborhood embedding 

 

Introduction 

Varietal sorting is an essential part of the quality control process of a seed lot, whether 

in germplasm bank management, production or commercialization, in order to identify its 

genetic quality and avoid species mixture (Elmasry et al., 2019). For plant breeding programs, 

cultivar discrimination is also crucial to prove the correct crossing between plants, identify 

superior genotypes, and guarantee seed homogeneity according to their minimum descriptors 

for the purposes of registering new cultivars. For all these purposes, the process of separating 
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seeds by its morphological characteristics, such as color, texture, and shape, requires well-

trained analysts and sometimes time-consuming and expensive biochemical and molecular 

techniques (Hansen et al., 2016; Zhu et al., 2020). 

Thus, non-destructive, rapid, and non-subjective methods are of great interest for 

determining seed quality. (Xia et al., 2019; Elmasry et al., 2019). In this regard, multispectral 

imaging analysis is a promising alternative that combines spectroscopy with digital image. The 

technique is based on the reflectance of an object - the intensity that a given surface reflects a 

wavelength. An object can be illuminated by different wavelengths (e.g., visible light, near 

infrared), and when combined with a digital image, the reflectance of each pixel of this object's 

image can be measured to differentiate it from another (Boelt et al., 2018; Xia et al., 2019). 

Since each pixel contains a dataset (reflectance from each wavelength) the result is a 

large amount of data proportional to the number of wavelengths used and the size of the image. 

As these data are considered chemical information, the role of chemometrics is to use statistical 

and mathematical tools to obtain the most important information from the dataset of each object 

(Amigo, 2020). 

Spectral imaging analysis is considered one of the major emerging technologies in 

seed analysis and technology. Its versatility, non-destructive characteristics and rapid 

determination of quality attributes of a seed lot, combined with data science, make it possible 

to automate the entire seed sorting process. (Elmasry et al., 2019; Xia et al., 2019; Amigo, 

2020; Zhou et al., 2020). 

The success in applying the technique lies in combining experimental issues with the 

process of extracting information from the seeds and the chemometric strategy used, which may 

include from the choice of classification algorithms to data dimensionality reduction processes. 

Therefore, the process of choosing each aspect involved in the analysis is not trivial and thus 

this systematic review aims to evaluate the main procedures in terms of spectral imaging 

analysis and chemometric procedures applied in seed phenotyping as well its practical 

application. 

 

Materials and Methods 

The study followed the Preferred Reporting Items for Systematic Reviews and Meta-

analyses (PRISMA) methodology (Moher et al., 2009; Page et al., 2020), as it presents a clear 

and systematic research method with a focus on reproducibility. 

Inclusion and exclusion criteria 
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The inclusion and exclusion criteria were based on literature type, access, period, 

language and scope (Table 1). The 15-year period was chosen to limit the search to new papers, 

given the recent expansion of spectral imaging technology in seed science. Regarding the scope, 

only papers on spectral imaging analysis (multispectral and hyperspectral) in seeds were 

considered; thus, papers using material not considered as seeds (i.e., grains) were not 

considered. Articles using spectral analysis only to quantify chemical components (e.g., oil, 

protein content) of seeds but did not classify them into different genotypes (e.g., cultivars or 

varieties) were not considered. Language was considered as a criterion to avoid bias in the 

translation of non-English language papers. 

 

Table 1. Inclusion and exclusion criteria 

Criterion Eligibility Exclusion 

Literature type Article 
Reviews, conference paper and book 

chapter 

Access Ful-text available  

Period Between 2006 and 2021 <2006 

Language English Non-English 

Scope 

Uses spectral imaging (e.g., 

hyperspectral, multispectral 

imaging) applied to seed 

phenotyping 

Did not use seeds; did not combine 

spectroscopy to image analysis; or just 

quantify certain component but did not 

differ cultivars, varieties, etc. 

   

 

Search methodology 

The keywords for the present work, as well as their synonyms, were obtained through 

prior review in studies related to the areas of seed science and technology and spectroscopy 

(Table 2). The databases used were the Web of Science Core Collection (WOS) and Scopus 

and were chosen according to previous research on the number of articles related to the scope 

present in each one. WOS is the database of Clarivate Analytics, has indexed more than 21,000 

papers covering 256 disciplines, while the Scopus database belongs to Elsevier and is one of 

the most related to plant science with peer reviewed articles. In addition to covering a large 

quantity of articles related to the topic, these databases allow the inclusion of boolean operators 
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for the search strategy, as well as symbols that allow the inclusion of all possible terms with the 

same root. 

 

Table 2. The search strategy used for the systematic review process. 

Database Search criteria 

Web of Science 

 

TS=((seed OR seeds) AND (multispectral OR hyperspectral OR spectral 

OR spectroscopy OR NIR OR "near infrared" OR nearinfrared OR 

"near-infrared" OR reflectance OR chemometrics) AND (variet* OR 

cultiv* OR phenot* OR breed* OR hybrid* OR transgenic*) AND 

(classification OR discrimination OR identification OR determination 

OR phenotyping)) 

 

Scopus 

 

TITLE-ABS-KEY((seed OR seeds) AND (multispectral OR 

hyperspectral OR spectral OR spectroscopy OR NIR OR "near infrared" 

OR nearinfrared OR "near-infrared" OR reflectance OR chemometrics) 

AND (variet* OR cultiv* OR phenot* OR breed* OR hybrid* OR 

transgenic*) AND (classification OR discrimination OR identification 

OR determination OR phenotyping)) 

 

The search consisted of three steps: identification of potential articles, screening, and 

inclusion of articles (Fig. 1). A total of 1,304 articles were identified and duplicates were 

removed with the aid of the Mendeley Reference Manager management program (Dearden et 

al., 2011). A total of 308 articles were eliminated based on their characteristics as per the 

exclusion criteria, while 508 articles were excluded as per the scope from the evaluation of the 

title and abstract. A total of 60 articles were evaluated in full and 44 were included in the review. 
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Figure 1. Selection of articles according to the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) framework. 

 

Statistical analysis 

From the articles evaluated, data were collected regarding the experiment, the best 

classification model obtained in each study, as well as other information deemed relevant (Table 

3), to identify possible factors influencing the accuracy of seed classification through spectral 

imaging analysis. A multiple generalized linear regression model with gamma distribution and 

log-link function was used, due to the non-normality of the data, in conjunction with the 

stepwise feature selection algorithm (backward and forward) to select the final model. The 

algorithm adds and removes features and compares the models by means of Akaike's Selection 

Criterion (AIC), in order to obtain a final model with the feature (or combination of features) 
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best fitted (with the lowest AIC value) to predict the accuracy of spectral imaging analysis 

applied to seed phenotyping. 

 

Table 3. Features that might affect the accuracy of seed distinction in spectral analysis applied 

to seed phenotyping. 

Features levels 

Crop type 
Agricultural crops, horticultural crops, fruit production, 

others 

Application 
Varietal discrimination, haploid, transgenic/non-

transgenic, hybrid/progenitors 

Spectrum NIR, VIS-NIR 

Sensor Multispectral imaging, hyperspectral imaging 

Number of wavelengths 19 - 700 

Number of seed groups 2 - 90 

Total seeds used 376 - 147096 

Algorithm class Machine learning, deep learning 

Extra features (e.g., 

morphology, texture, color) 
Present (1); Absent (0) 

Wavelength selection and/or 

dimensionality reduction 
Present (1); Absent (0) 

Wavelength preprocessing Present (1); Absent (0) 

 

Results and applications 

A total of 44 articles from the systematic review were included; since the authors 

reported more than one experiment in some papers, data from all the experiments performed 

was listed, including data from the best performing classification model (Table 4). 
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Accuracy, data splitting and validation methods 

The average accuracy of the reviewed studies (considering all experiments listed in 

Table 4) was 93.33% (±7.07%). In some studies, the application of spectral image analysis 

resulted in 100% classification accuracy, as in Zhu et al. (2019a), on 10 soybean seed varieties, 

using the Ensemble Learning classification algorithm. A similar result was found for Liu et al. 

(2014b), whose study on transgenic and non-transgenic rice seeds, by means of the Least-

Squares Support Vector Machine (LSSVM) algorithm, used both spectral information and 

biometric data regarding seed morphology. It was also the case of the study of Kong et al. 

(2013) on four rice seed varieties, using the Random Forest algorithm, and the study of 

Rodríguez-Pulido et al. (2013), which separated four grape varieties using General 

Discriminant Analysis (GDA). 

Their high accuracy suggests a promising feature of spectral image analysis in 

distinguishing genotypes, but there are some concerns. The first is about the amount of 

classification groups: only 46% and 23% of the experiments had more than 5 and 10 categories, 

respectively. In works that used many categories, e.g., Fabiyi et al. (2020), with 90 cultivars, 

although the overall accuracy was relatively high (79.64%) using the Random Forest algorithm, 

for some cultivars accuracy was only 30% to 50%. The same result was found in the study of 

Zhou et al. (2020a), in which the overall accuracy was 93.10% using a deep learning algorithm 

(Convolutional Neural Network - CNN) for the classification of 30 cultivars, while there was 

variation of more than 20% in classification accuracy for certain cultivars. 

It is not clear, in most of the reviewed papers, if spectral image analysis was applied 

owing to its agility and automation or if because of the ability to classify cultivars in situations 

in which classification by visual morphological characteristics was not possible. This point is 

important, because knowing whether the genotypes were chosen randomly or whether they 

were chosen arbitrarily from characteristics where separation would be possible even by eye, 

allows one to establish to what extent spectral image analysis is applicable in situations of 

cultivar diversity, as occurs in the seed industry. 

Another point of concern is test and validation data: in most works, there was (a) 

absence of test data and (b) absence of test and/or validation lots (e.g., seeds from other 

harvests). Ideally, when enough data is available, seed samples should be divided into training, 

validation, and test data. Training data is used by the algorithm to estimate the model; validation 

data is not to be used in training, in order to gather unbiased information about the quality of 

the models developed. Validation data is used for predicting errors of each model for the 
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purpose of selecting the best model. Since validation data is used constantly (depending on the 

number of models to be tested), test data (i.e., data not yet used) is commonly used to obtain 

the true error of the final model (i.e., generalization error), and these data is used only once so 

as not to overestimate accuracy (Hastie et al., 2017). 

In most works of the present review, despite the large number of seeds being used, test 

data were not used - only validation data (even when it was referred to as test data in the studies, 

owing to different definitions), which may lead to high accuracy. In studies with a small number 

of seeds, an alternative is to use cross-validation, in which samples go through n data splitting 

cycles (in training and validation), model building, and error computation, and final accuracy 

is determined from the average error of the n models obtained (Hastie et al., 2017). However, 

of the experiments that used approximately less than 100 seeds per classification category 

(referring to the first quartile of the variable number of seeds in Table 4), 37% did not perform 

cross-validation, which may cause overestimation of the resulting accuracy. 

Another aspect regarding data division is that only 6% of the studies used validation 

and/or test lots (i.e., from other harvests and/or regions). In the works that did not use validation 

lots, high accuracy may have been due to a model overfitted to the lot; consequently, there may 

not be such accuracy in the classification of the same cultivars from other harvests and regions 

(He et al., 2016; Huang et al., 2016a). For example, Huang et al. (2016a), when classifying 

seeds of four wheat varieties and using - as test data - seeds from the same year as those used 

for training, found 100% classification accuracy using the LSSVM algorithm. However, when 

using seeds from other years, accuracy was only 75.4%. Similarly, Shrestha et al. (2016a) used 

tomato seeds of four cultivars from three harvest years, in experiments with seeds only from 

the same year and with the mixture of seeds from the other years, both in the test and training 

data. For the fitted and validated model with seeds from the same year, they found accuracy per 

cultivar from 73 to 100 %, whereas for the sample with mixed seeds from other harvests, 

accuracy ranged from 34 to 88 %. 

There was great variation in the total number of seeds used per classified genotype, as 

observed in each experiment, even in those that used the same species. For example, in the 

works performed on wheat seeds, the number of seeds used per class ranged from 20 to 5,100 

seeds. Few of the reviewed studies evaluated the influence of seed quantity on training samples. 

For instance, Qiu et al. (2018) tested training samples with different amounts for designing their 

classification models, ranging from 100 to 3000 seeds, for each of the four cultivars. They found 

when using more than 1,500 seeds, the increment in accuracy was not significant. Certainly, 
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the accuracy determined in experiments that used larger samples leads to more confidence, but 

the approach of studying the ideal number of seeds has more practical applicability, since the 

increase in the amount of samples generates extra processing costs, without necessarily leading 

to a significant increase in the accuracy of the models. Thus, stipulating the optimal number of 

seeds is important to achieve a balance between cost and performance of a model, which would, 

thus, facilitate the applicability of the analysis (Qiu et al., 2018). 

One way to obtain more data without necessarily increasing the number of seeds in a 

sample is by using the spectral information of each seed pixel (i.e., pixel-wise spectrum), as 

opposed to averaging the seed spectrum (i.e., object-wise), as evaluated by Zhu et al. (2019c) 

in classifying three soybean cultivars. The authors used the pixel-wise spectrum of 60 seeds 

and reported equivalent performance of a sample with 810 seeds using object-wise spectrum. 

However, this technique requires a great deal of data processing, as there is a significant 

increase in the amount of information (i.e., equivalent to the number of pixels). Moreover, it 

also needs to be explored in different situations (e.g., species, cultivars, crops). 

Crop type application 

Out of the 44 articles evaluated, approximately 80% performed the analysis of 

agricultural crops species (e.g., soybean, maize, wheat), 11% of horticultural seeds, 5% of fruit 

production, and 5% of other classes (pasture and medicinal plants), while there was no work on 

forest seeds (Fig.2). 
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Figure 2. Species used in each article of the review. 

 

As with the present study, Raman and Cho (2016), in a narrative review with 32 papers 

that applied seed variety identification using image analysis techniques, 31 focused on 

agricultural crops. Given the emerging feature of the spectral imaging analysis technique in 

seed phenotyping, the use of it in agricultural crop seeds over other seeds may be mainly linked 

to the economic appeal of these species, as well as to the greater number of plant breeding 

programs related to them. 

Wavelength spectrum 

Of the evaluated studies, 75% used hyperspectral equipment, and according to the 

density plot, the frequency distribution of the wavelengths applied in the studies varies 

according to type of equipment (Fig. 3). Commercial hyperspectral equipment operates in bands 

with greater amplitude in the near infrared (NIR) spectrum (750 - 2500 nm), whereas 

commercial multispectral imaging equipment concentrates on the visible light range up to the 

beginning of the NIR (350 - 950 nm). 
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Figure 3. Density plot of the wavelengths used according to the hyperspectral (HSI) or 

multispectral (MSI) method. 

 

The wavelength range used is closely linked with the components measured in the 

seeds, and the visible spectrum is related to superficial characteristics, such as pigmentation 

(e.g., flavonoids, carotenoids, chlorophyll) and oxidation. These characteristics are ideal for 

distinguishing seeds with marked physical characteristics, e.g., tegument color or texture. As 

regards the near infrared spectrum, this region is sensitive to the molecular overtone of 

hydrogen-containing groups, such as C-H, N-H, O-H chemical bonds, which represent seed 

starch, protein, and oil contents, and can penetrate deeper than visible light through the 

subsurface layer of seed coat (Rodríguez-Pulido et al., 2013; Li et al., 2014; Li et al., 2020; 

Mortensen et al., 2021). For works that used hyperspectral cameras, there was a peak near the 

1000 nm range. In this range, the 1122, 1200, and 1314 nm bands (related to organic C-H 

compounds, such as starch) stand out, while the 1402 nm wavelength is associated with the O-
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H region of carboxylic acids, as well as regions near the 1580 nm band (Osborne and Douglas, 

1981; Lammertyn et al., 1998; Serranti, et al., 2013; Zhao et al., 2014). 

Shrestha et al. (2016a), using hyperspectral image analysis in the near infrared region 

for classification of four tomato seed varieties, found that the 1417, 1901, 2102 and 2238 nm 

bands, associated with protein and water content, and the 1222 and 1695 nm bands, associated 

with fatty acid content, represent an important spectral signature for this species. Rodríguez-

Pulido et al. (2013), when separating seeds of three grape cultivars, with one coming from two 

different regions, using the Principal Component Analysis (PCA) score, found that the bands at 

928, 940, 1148, 1620 and 1652 nm, referring to organic compounds with C-H chemical bonds, 

were primarily responsible for distinguishing the seeds. Zhao et al. (2018b), based on the score 

of the first six principal components of PCA, selected the bands in the 1100 and 1390 nm region 

and the bands at 1436, 1453, and 1554 nm (with the latter three corresponding to the first 

overtone of O-H stretching, to classify grape seeds of three cultivars. Zhang et al. (2021), using 

multispectral equipment and classifying four maize cultivars, found that the wavelength bands 

with the greatest contribution to the distinction of cultivars were 450 to 700 nm, related to the 

chlorophyll and β-carotene content of the endosperm, 730 and 785 nm, related to organic 

compounds with O-H and N-H bonding, and 850-950 nm, related to C-H hydrocarbons. Huang 

et al. (2016b) found 92.65% accuracy when they classified 17 corn cultivars, using 11 

wavelengths selected by the Successive Projection Algorithm (SPA), located in the 500 to 750 

nm region, which are sensitive to seed starch and oil contents. Similarly, Xia et al. (2019) 

classified 17 corn cultivars based on 10 optimal wavelengths, belonging to the regions of 410 

to 470 nm, 524 to 790, and the wavelength of 988 nm, which represent seed texture, starch and 

oil content, and water content, respectively. 

Thus, since the near infrared region is sensitive to organic compounds in seeds in 

deeper layers than visible light, this region seems to be a good strategy to differentiate seeds 

with similar surface characteristics (i.e., where the visible spectrum region acts more intensely) 

(Willian and Norris, 2001, Rodríguez-Pulido et al., 2013). For example, Wang et al. (2018) 

separated haploid from diploid maize seeds, whose visual similarity makes it difficult to 

separate them by traditional or machine vision methods. Using hyperspectral image analysis in 

the near infrared region (860 - 1700 nm), they were able to identify differences in oil content 

and other organic components, differentiating the seeds with 99.85% accuracy. 

As for the equipment, the basic difference between multispectral and hyperspectral 

devices is in the number of wavelengths that each one can measure. Multispectral equipment 
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measures up to 20 wavelengths, while hyperspectral cameras can reach higher values, as 

reported in the work of Zhou et al. (2020b) with sweet corn and 700 wavelengths measured. 

The use of hyperspectral equipment results in a larger amount of data and, consequently, more 

time for processing and development of the classifier models. Therefore, all the studies that 

performed some form of wavelength selection or dimensionality reduction used hyperspectral 

equipment. Dimensionality reduction aims to mitigate the problem of correlation between 

predictor variables as well as model overfitting (Wu et al., 2019; Friend, 2020). For example, 

Gao et al. (2013) used SPA to reduce from 256 to 10 wavelengths and obtained 93.75% 

accuracy. 

Classifiers 

For seed classification based on the selected wavelength and other features, the 

evaluated papers used machine learning and deep learning class algorithms on 30 and 17 

occasions, respectively; in 2017, the percentage of papers that used machine learning was 95% 

(Fig. 4). 

 

 

Figure 4. Proportion and absolute quantity (number in square) of the classification algorithm 

classes used in each paper over the years. 

 

In 2018 and later, the number of papers using deep learning not only increased but was 

proportionally higher than the number of papers using machine learning. Deep learning is an 

unsupervised classification method (the class of seeds is not previously provided to the 
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algorithm) and brings the advantage of identifying abstract patterns in a large amount of data 

that supervised methods would not be able to find (i.e., deep features) (Gheisari et al., 2017; 

Wu et al., 2019). However, to achieve successful classification, deep learning algorithms 

preferentially need a larger volume of data, and this is represented in the average number of 

seeds used in the evaluated papers that applied machine learning: 3,897, compared to 22,765 in 

deep learning. 

The larger the amount of data, the greater the demand for technology and processing 

time, which may be linked to the low frequency of use of deep learning in previous studies. In 

contrast to processing time, this class of algorithms seems to be more advantageous in seed 

classification as highlighted by Zhu et al. (2020), who found that all tested deep learning 

algorithms had higher accuracy than machine learning algorithms. Similarly, Qiu et al. (2018), 

comparing deep learning algorithm CNN with the machine learning algorithms support vector 

machine (SVM) and K-nearest neighbor (K-NN), found that, as the training samples increased, 

the CNN model outperformed the others. Nie et al. (2019), when classifying hybrid okra and 

loofah seeds using the deep learning model deep convolutional neural network (DCNN) and 

comparing it to Partial least square discriminant analysis (PLS-DA) and SVM, found that the 

number of varieties increased from two to six. The authors reported that with increased 

complexity (number of varieties), the accuracy of the DCNN model remains more stable than 

that of the others. 

Thus, the main advantage of using deep learning algorithms lies in their ability to 

integrate the steps of feature learning, feature extraction, dimensionality reduction, and 

classification into just one system, which brings greater convenience in the use of data with 

more complexity (i.e., a larger number of features), as occurs when hyperspectral images are 

used (Wu et al., 2019). 

Chemometric features 

The adjusted model, which was identified by the stepwise algorithm with the lowest 

AIC (-07.9015), used the following features: number of seeds, seed classification groups, and 

use of methods for wavelength selection and/or data dimensionality reduction. Only the first 

feature was significant (Table 5). According to the estimated and exponentialized coefficient 

(to reverse the logarithmic scale) of the number of groups (0.998), as the number of seed 

classification groups increases, the final model accuracy tends to decrease by approximately 

0.2% with each new group. 
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Table 5. Coefficients estimated from the adjusted model identified by the stepwise algorithm 

with the features that may influence the accuracy of the spectral imaging analysis of the 

evaluated studies. 

Coefficients Estimate (log scale) Std. Error t p-value 

Intercept -0.0643 0.0138 -4.651 3.02E-05 

n. Groups -0.0020 0.0009 -2.263 0.0286 

WL Selection1* 0.0378 0.0256 1.476 0.1471 

* Papers that used wavelength selection or dimensionality reduction procedure to obtain the most accurate model. 

 

Classification accuracy tends to naturally decrease as the number of possible groups 

increases, but the non-significant influence of the other factors is due to the fact that the 

technique can result in high classification models using different strategies in the process (e.g., 

method, features selection, preprocessing), i.e., an isolated factor is not enough to determine 

the accuracy of an analysis. It must be clear that the final model only indicates a possible 

relationship between the variables, since other factors not listed may be relevant to determine 

classification accuracy (e.g., species, seed quality); moreover, further research is needed to 

make a robust analysis. 

 

Discussion 

Overall strengths 

In the 44 evaluated studies, it was clear that the information collected through spectral 

image analysis, both reflectance and biometric measures of morphology and texture, are 

sufficient to classify seeds of different genotypes. Although one needs to further explore the 

ability to generalize the use of the analysis between seeds from other regions and/or harvests, 

as well as make different combinations of genotypes in future work, the fact is that well-fitted 

classification models have high accuracy in several situations: between cultivars, hybrids and 

progenitors, and hybrids and lines; transgenic and non-transgenic seeds. 

Spectral image analysis allows the separation of genotypes even in coated seeds, 

mainly by using the near infrared, which penetrates beyond the surface of the seed. Coated 

seeds are common in the industry, as coating provides protection against fungi and 

microorganisms, and aids germination by supplying nutrients and amino acids, among other 

benefits. In the case of these treated seeds, even when dyes are applied for identification, 

classification using spectral image analysis has still proved possible (Jia et al., 2015; Zhang et 
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al., 2020). However, for small and/or non-uniform seeds, which are coated with thicker layers 

(which occurs by the encrustation or pelleting process), the analysis may not be applicable. 

Reflectance offers sufficient information for separation of the seeds of different 

genotypes, and spectral information can be collected quickly, through an image or set of images 

according to the number of bands measured; seeds remain intact and there is no need for prior 

treatment. Therefore, multispectral image analysis has a huge advantage over conventional 

tests, because its limitations refer to treatment and processing of data rather than data collection. 

Traditional methods, such as molecular markers, are indeed highly reliable, robust methods; 

thus, they can hardly be replaced. However, in routine work in seed analysis laboratories, when 

identifying hybrid seeds in breeding programs or in the identifying cultivar mixtures in purity 

testing, traditional methods are not necessary if there is an alternative way that is reliable, fast 

and agile enough to meet the industry’s demands (Bao et al., 2019; Zhang et al., 2020; Shrestha 

et al., 2015). 

Challenges and limitations 

a) Phenotypic variation 

The main challenge of the spectral image analysis technique applied to seed 

phenotyping surely lies in the extrapolation of the fitted model to seeds coming from other 

harvests/regions (Zhu et al., 2020). The development of a prediction model is somewhat 

difficult and laborious and requires professionals specialized in data analysis. In the process, 

seeds need to be used to train the proposed model, test different forms of data processing, and 

validate the model with new seeds. This is time consuming, and not easily adapted to the work 

routine in seed producing companies. Thus, the model created to classify produced cultivars, 

must be able to classify seeds over the years and also those grown in different regions (He et 

al., 2016). 

When it comes to biological data, there is great variation among seeds from different 

years and regions, since morphophysiological characteristics are highly affected by climate, 

soil, parent plant characteristics, among other factors. Importantly, the biometric data obtained 

by spectral image analysis are sensitive to morphophysiological characteristics (e.g., 

pigmentation and organic compounds); therefore, variations in the characteristics of cultivars 

obtained in other harvests may be enough to misclassify them (Shrestha et al., 2016). 

The intensity of phenotypic influence varies with species and the characteristics used 

for classification of cultivars. For some species, there are cultivars with outstanding 

characteristics that facilitate differentiation, as is the case with the tegument color of bean seeds 
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or peanut seeds. However, in many species, with subtle differences among cultivars, the 

influence on phenotypic variation can be a problem. For example, in some maize cultivars, the 

balance between sugar and amylopectin, which can be used as a spectral marker, can be affected 

by variations in water content in the seed from different regions, which can influence 

classification (Wang et al., 2016). 

An alternative would be to use seeds from cultivars from other years and/or regions to 

train the classification model, but this poses some difficulties. The first is to obtain a sufficient 

number of seeds from other years and/or regions, since a large volume of samples is needed to 

overcome the effect of location. In addition, the use of seeds from a seed bank or archive 

samples, which were stored in different periods, could influence the classification of newly 

harvested seeds (Shrestha et al., 2016).  

Some studies suggest the use of model updating, which seems to be a promising 

alternative. In this method, the original model, previously prepared using seeds from the same 

harvest, is updated with seeds from the following harvests, in order to have a more accurate 

model, without the need to perform the whole process of adjusting a new model. Some studies 

show 10 to 35% increase in overall accuracy when classifying cultivars coming from other 

years, when compared to a non-updated model (Guo et al., 2016; He et al., 2016; Huang et al., 

2016a). Such a practice would partly solve the model portability problem; however, most model 

updating methods need to be updated with previously classified seeds, which requires time for 

sampling and classification. An alternative to updating the model is through semi-supervised 

classification algorithms that use the pre-label approach, i.e., they use the original model to 

classify a new seed sample (from another year), based on retraining the model with seeds 

classified with a high degree of confidence. However, these methods still need to be evaluated 

for different species and situations (Guo et al., 2016). 

b) Seed shell influence 

The external structures of the seeds can cause great influence on the analysis, either by 

using the visible spectrum, which is sensitive to their surface characteristics, or by using the 

near infrared spectrum, which is able to penetrate to the subsurface layer and is sensitive to the 

organic compounds present in these structures, for example, the bands of 1180 and 1470 nm, 

which are sensitive to the presence of lignin and fiber, commonly present in the seed coat of 

several species. Thus, among species whose external structures are the same, as occurs in palea 

and lemma in hybrid and self-pollinating cereals, the influence of these structures can be a 

limiting factor (Blackwell et al., 1977; Gao et al., 2013; Feng et al., 2017; Caporaso et al., 2021). 
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Thus, when it comes to the differentiation of genotypes that present external structures 

without enough distinguishing characteristics, the use of spectral imaging is not the best choice, 

since it would merely describe the composition of these structures. For this type of seed, 

processing would be necessary, but the commercial use of spectral image analysis requires 

processing, which leads to extra costs and is time consuming. In addition, the removal of the 

husk in cereal seeds limits the use of them, since the husk has an important protective function 

against fungi and insects (Abebe et al., 2004; Mortensen et al., 2021). 

c) Seed orientation 

The area exposed to the analysis may influence classification accuracy, given the 

sensitivity of the spectra used by the analysis to seed surface and subsurface compounds. The 

influence of orientation was reported in work using models fitted with measurements obtained 

from corn caryopses with the embryo facing up and the face facing down. The endosperm and 

the embryo have different compositions; therefore, choosing between the face of the caryopsis 

that has both structures (i.e., the face in which the embryo is facing up) or the face with only 

the endosperm, can influence one’s ability to distinguish different genotypes. The influence of 

orientation can vary across genotypes, and in the case of differentiation between cultivars, there 

was an average variation of 10% (Miao et al., 2018; Tang et al., 2020). Sorting seeds with a 

certain orientation is a laborious job; therefore, when seed orientation plays a role but does not 

impair genotype differentiation, loss of accuracy can be accepted. 

However, when the difference between genotypes is found in the embryo, as occurs 

between haploid and diploid maize caryopses, and separation is performed in breeding 

programs of the species for different purposes, seed orientation is essential. Thus, seed 

orientation can be a limiting factor when it comes to haploid seed identification if there is no 

processing before the analysis is performed; however, on a large scale, processing the seeds 

may be impractical (De la Fuente et al., 2017; Wang et al., 2018). 

d) Specificity 

Unlike other techniques, such as molecular markers, in which we can state with great 

certainty that a seed belongs to a particular genotype from a segment of its genetic code, in 

spectral image analysis we cannot use reflectance as an absolute marker of species/cultivar, 

because it is influenced by seed composition. In other words, to identify an unknown seed, it 

must always come from a sample in which all the possible classifications are known, which 

were previously defined considering lot-specific issues (e.g., harvest, year, storage). This is not 

a major limitation in a seed producing company, where the cultivars produced are known, but 
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in situations when one must identify possible seeds and/or adulterants from an unknown sample, 

the use of spectral image analysis is impractical. 

Adulterant genotypes can be identified in a seed lot when this genotype is commonly 

used in the trade of the adulterated species. In this case, spectral image analysis tends to have 

good applicability, as the marked difference among species allows a model fitted to a particular 

variety or crop of the adulterated species to be distinguished with some ease from the adulterant 

species, as reported by Faqeerzada et al. (2020) in separating seeds of two varieties of almonds 

from adulterant apricot seeds. 

Perspectives 

a) Open data base and key wavelength 

There has been increased interest in sharing the data collected through spectral image 

analysis - be it reflectance or biometric data regarding morphological characteristics of the 

seeds of the species used in the experiments (e.g., diameter, texture) - through online 

repositories. Data sharing can leverage the use of the analysis by directly allowing researchers 

to (a) test different chemometric techniques (e.g., preprocessing, classifier algorithms) on real 

data, without the need to perform a new experiment, and (b) more accurately identify key bands 

in certain species and cultivars when comparing different experiments. 

The identification of key bands would help in the transition from hyperspectral 

equipment to multispectral equipment with more accurate and relevant bands in seed 

phenotyping. Hyperspectral equipment has the ability to measure many bands. However, many 

of these bands contain redundant or unnecessary information for the classification of most 

species; in addition, hyperspectral equipment is very expensive and more difficult to handle, 

since the reflectance of the various wavelengths are usually obtained by the point by point or 

line by line system, in which the object moves and reflectance is obtained for every pixel or 

line of pixels at a time, making the process more time consuming (Jaillais et al., 2015; Zhou et 

al., 2020a). 

Thus, the migration to multispectral equipment seems to be the most obvious trend, 

since it requires fewer wavelengths that are applied to all pixels of the image at once, and it is 

more agile and suitable for application in the seed industry, especially in sectors that work with 

large numbers of cultivars and lots. A fast identification system is essential, especially in real 

time, and multispectral equipment is ideal for this purpose, (Elmarsy et al., 2019). 

However, in order to efficiently develop multispectral equipment with key 

wavelengths, a deeper understanding is needed of the interaction of the different wavelengths 
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with the organic compounds of the different evaluated genotypes. To this end, an open database 

would facilitate such understanding (Elmarsy et al., 2019). Some technologies greatly benefit 

from an open database, e.g., to share data from Raman spectrometry and X-ray diffraction, 

which can be combined to identify different materials (Mendili et al., 2019). Naturally, when it 

comes to seeds, external factors have a great influence on the analysis (e.g., environment, parent 

plant) and consequently on their ability to be distinguished. However, with a large amount of 

data, one can identify relevant patterns between genotypes and at least direct the development 

of equipment, even if specific to certain species, to obtain a system capable of providing 

sufficient information for decision making in accepting or rejecting a seed lot, which would 

save a great deal of time and money (Elmarsy et al., 2019; Xia et al., 2019). 

b) Field of application 

One of the areas where spectral image analysis presents great potential is in breeding 

programs, especially in the production of hybrid seeds. Differentiating hybrid seeds from seeds 

generated by unwanted pollination, either from their parents or from self-pollination, is 

indispensable. This means differentiating between a few classes from samples with high genetic 

purity and coming from areas with production control and, thus with less variability among 

seeds, which is ideal for applying spectral analysis (Nie et al., 2019). 

Forest species, for example, have a great lack of quality control methods. For species 

with great economic importance, such as the species of the genus Eucalyptus spp, the use of 

seeds is especially important in breeding programs for production of hybrids. The correct 

hybridization must be confirmed, given the difficulties of controlling pollination, either in 

indoor orchards or in the field. Thus, spectral image analysis has a great potential to meet this 

need and bring great advances to forest improvement programs (Ribeiro-Oliveira and Ranal, 

2014). 

Another relevant point that makes spectral image analysis an important tool in 

breeding programs is that images show individual morphological features of seeds, since the 

analysis allows the collection of both reflectance and spatial biometric data. The use of 

morphological features is especially important to check the homogeneity of seed morphological 

descriptors, because morphology is an attribute relatively unaffected by environmental issues 

and could be used to evaluate the genetic quality of a lot, which decreases with every generation 

(Mortensen et al., 2021). 

c) Online and real time sorting systems 
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Probably the most promising aspect of spectral image analysis is the possibility of 

integration with an online system that allows real-time estimation of the quality of a seed lot. 

According to the International Seed Testing Association (ISTA, 2020), a certain amount of 

mixing of other cultivars is allowed in a seed lot. This is evaluated through purity analysis; 

however, there is great difficulty in determining the presence of other cultivars mixed in a lot 

in certain species, since the analysis depends on the analysts experience and their ability to 

identify cultivars by eye (Elmarsy et al., 2019). 

Although each company presents a specific situation (i.e., different combinations of 

genotypes, number of genotypes, presence of different years and/or regions) and it is not clear 

to what extent spectral image analysis is able to handle these different situations, the fact is that 

in the studies identified in the present review, the analysis was effective. This means that, at 

least in certain situations, the analysis could be integrated into a system to estimate the genetic 

quality of a seed lot, since the alternative way (i.e., through purity analysis) is extremely 

laborious and, in many situations, impractical (Elmarsy et al., 2019). 

Some researchers, such as Faqeerzada et al. (2020), reported the feasibility of an online 

system for real-time classification of seeds moved by a conveyor belt, in which the 

classification model previously adjusted using hyperspectral images in the infrared region was 

transferred to an online system. However, some problems still need to be overcome; for 

example, the speed of the conveyor belt, the variation in light, the overlapping of the seeds on 

the belt, among other points described by the authors. 

Several studies have shown that the models developed from spectral information of 

seeds are robust enough for large-scale application of the analysis in real-time seed 

phenotyping, through the design of classification maps. In this way, the seeds are determined 

in real time as to the probability of belonging to a certain class, based on the color scale 

stipulated for each class. This approach enables decision making by the analyst and would act 

as a powerful tool to differentiate cultivars that would hardly be identified with the naked eye 

(Wang et al., 2016; Zhao et al., 2018a; Zhao et al., 2018b; Zhang et al., 2021). 

 

Conclusions 

The present review evaluated 44 papers that applied spectral image analysis in seed 

phenotyping; they were selected among 1304 papers identified in the main journal databases. 

The review sought to identify the main characteristics of the experiments described in the 

published papers, as well as to guide researchers in the choice of strategies for experimental 
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design and data analysis, since there are many ways to obtain a highly accurate classification 

model. Thus, after analyzing the papers, the following points summarize the main findings: 

 All the evaluated studies presented satisfactory final accuracy; however, few used test 

data, as well as test and/or validation lots, which may have contributed to the high 

accuracy reported. 

 As the application of multispectral analysis is relatively new in seed phenotyping, the 

works are still focused on agricultural species with greater economic appeal. 

 Most studies have focused on the use of hyperspectral equipment, which works mainly 

in the near infrared region, and is sensitive to seed organic compounds and able to 

penetrate the subsurface layer. The use of the near infrared region seems to be a good 

strategy to identify differences between genotypes with similar surface structures, where 

visible light acts with greater intensity. 

 The use of deep learning algorithms has been a trend in recent years, mostly because of 

its ability to work with more complex data, e.g., data collected by using hyperspectral 

cameras. 

 Reflectance and biometric data on seed morphology provides sufficient information to 

separate different genotypes in several situations: among cultivars; hybrids and 

progenitors; and hybrids and lines, as well as in the separation of coated seeds. 

 The main challenge of the analysis is certainly the phenotypic variation of the seeds, 

which implies the difficulty of using the adjusted model in the classification of cultivars 

from other harvest, years and/or regions. The main limitations refer to the sensitivity of 

reflectance to seed compounds, which are highly influenced by environmental issues; 

the influence of seed coat on the classification of genotypes with similar external 

characteristics; and the influence of seed orientation when the information needed for 

classification is on a certain face of the seed (e.g., face with the embryo). 

Thus, the present review allowed a critical analysis of the use of spectral imaging in 

seed phenotyping, as well as a thorough evaluation of the limitations of this method. The 

practical application of this technique needs to be developed for use in laboratories with large 

volumes of analyses, lots, genotypes, and harvests. However, research has been accelerated to 

overcome the practical challenges of this method, as seen in work using model update 

algorithms, online classification systems, real-time classification maps; also, spectral 

information of genotypes is being shared through online repositories. Thus, there are strong 
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indications that the application of multispectral image analysis will become a part of the routine 

of seed analysis laboratories. 
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Abstract 

In the forest industry, interspecific hybridization, such as Eucalyptus urograndis (Eucalyptus 

grandis × Eucalyptus urophylla) and Corymbia maculata × Corymbia torelliana, has led to the 

development of high-performing F1 generations. The successful breeding of these hybrids 

relies on verifying progenitor origins and confirming post-crossing, but conventional genotype 

identification methods are resource-intensive and result in seed destruction. As an alternative, 

multispectral imaging analysis has emerged as an efficient and non-destructive tool for seed 

phenotyping. This approach has demonstrated success in various crop seeds. However, 

identifying seed species in the context of forest seeds presents unique challenges due to their 

natural phenotypic variability and the striking resemblance between different species. This 

study evaluates the efficacy of spectral imaging analysis in distinguishing hybrid seeds of E. 

urograndis and C. maculata × C. torelliana from their progenitors. Four experiments were 

conducted: one for Corymbia spp. seeds, one for each Eucalyptus spp. batch separately, and 

one for pooled batches. Multispectral images were acquired at 19 wavelengths within the 

spectral range of 365 to 970 nm. Classification models based on Linear Discriminant Analysis 
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(LDA), Random Forest (RF), and Support Vector Machine (SVM) was created using 

reflectance and reflectance features, combined with color, shape, and texture features, as well 

as nCDA transformed features. The LDA algorithm, combining all features, provided the 

highest accuracy, reaching 98.15% for Corymbia spp., and 92.75%, 85.38, and 86.00 for 

Eucalyptus batch one, two, and pooled batches, respectively. The study demonstrated the 

effectiveness of multispectral imaging in distinguishing hybrid seeds of Eucalyptus and 

Corymbia species. The seeds’ spectral signature played a key role in this differentiation. This 

technology holds great potential for non-invasively classifying forest seeds in breeding 

programs. 

 

Keywords: Breeding; Machine learning; Machine vision; Phenotyping; Spectral imaging. 

 

INTRODUCTION 

Interspecific hybridization has played a significant role in the advancement of the forest 

sector industry. Crossbreeding within genera consistently results in F1 generations that manifest 

heterotic effects, surpassing the performance of their progenitors in critical aspects such as 

growth rate, disease resistance, and overall wood quality, making them the preferred choice for 

plantation forestry (Ibarra et al., 2023; Ramalho et al., 2022). Notably, the cross between 

Eucalyptus grandis and Eucalyptus urophylla demonstrates heightened resistance to prevalent 

diseases, making it a widely embraced choice in both Brazilian and South African contexts. 

Furthermore, Corymbia torelliana hybrids have found extensive use in tropical and subtropical 

areas, primarily due to their significantly higher growth rate (da Silva et al., 2022; Ramalho et 

al., 2022; Van Den Berg et al., 2015). 

To ensure the production of hybrid seeds within the context of a breeding program, it is 

important to guarantee the origin of the selected progenitors, confirming their alignment with 

the desired genotypes. Additionally, post-crossing verification is essential to confirm the 

authenticity of the resulting genotypes and prevent the use of seeds from inadvertent crosses. 

This verification is crucial whether the crosses occur within controlled indoor environments or 

open field crossing orchards. In the latter case, the inherent challenges related to fertilization 

control, makes the risk of unintended crossbreeding with other species higher (Dickinson et al., 

2013; Ramalho et al., 2022). Moreover, the seed production process in tree cultivation is marked 

by high costs and extended growth timelines. Consequently, the ability to distinguish seeds 

plays a pivotal role in the success of breeding programs within the forest sector. 
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Traditionally, genotype identification hinges on resource-intensive methods involving 

molecular markers and biochemical assays, which not only incur high costs and demand 

significant labor but also result in the destruction of seeds (Boelt et al., 2018; Shrestha and 

Hardeberg, 2015). Therefore, an urgent demand exists for the development of non-invasive and 

efficient techniques to assess seed genotypes (Elmasry et al., 2019; Michelon et al., 2023; Xia 

et al., 2019). 

In the field of seed analysis and technology, spectral imaging analysis emerges as a cutting-

edge tool. This innovative technique seamlessly combines spectroscopy with digital imaging, 

empowering rapid quantification of unique phenotypic traits within individual seeds. This, in 

turn, expedites the efficient differentiation of seeds from one another. The swiftness and non-

destructive nature of this method, coupled with its capacity for automating seed identification 

processes, have led to its widespread adoption and utilization (Elmasry et al., 2019; Michelon 

et al., 2023; Xia et al., 2019; Zhou et al., 2020). 

Multispectral image analysis has proven to be an exceptional tool for distinguishing 

between various seed genotypes, as demonstrated by prior research (Elmasry et al., 2019). 

Notably, this technique achieved a remarkable 98% accuracy in distinguishing between 

conventional and glyphosate-resistant soybean seeds and their hybrid offspring (Liu et al., 

2014). Furthermore, in a study covering a wide range of cultivars, multispectral analysis 

effectively separated 12 distinct varieties of alfalfa, with an accuracy rate of 93.47%  (Yang et 

al., 2020). It is notable that a systematic review comprising 11 studies that employed 

multispectral analysis for seed phenotyping identified a surprising average accuracy of 91.34% 

(Michelon et al., 2023). 

Although this technology has been explored with success in seed phenotyping over different 

crops, there appears to be a gap in the literature concerning its utilization in the phenotyping of 

forest seeds. Identifying seed genotypes presents an added layer of complexity in the realm of 

forest seeds, primarily due to the absence of domestication which amplifies the natural 

variability within species. This challenge is especially pronounced when dealing with the 

Eucalyptus spp. and Corymbia spp. seeds, which are inherently difficult to discern due to their 

diminutive size and striking similarity to seeds of other species (Ibarra et al., 2023). As such, 

this study seeks to assess the potential in distinguishing hybrid seeds of Eucalyptus urograndis 

(Eucalyptus grandis × Eucalyptus urophylla), as well Corymbia maculata × Corymbia 

torelliana from their progenitors through the spectral imaging analysis technique. 
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MATERIAL AND METHOD 

Seed Samples 

In the conducted experiment, two samples per seed genotype of Eucalyptus grandis, 

Eucalyptus urophylla, and the hybrid Eucalyptus urograndis (Eucalyptus grandis × Eucalyptus 

urophylla) as well as one sample of Corymbia maculata, Corymbia torelliana, and the hybrid 

Corymbia maculata × Corymbia torelliana were evaluated (Fig. 1). Each seed sample weighed 

approximately 50g and was obtained from the reduction of batches corresponding to each 

genotype. 
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Figure 1. Corymbia maculata, Corymbia torelliana, Corymbia maculata x Corymbia torelliana, 

Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus urograndis batch one and two seeds. 
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The seeds were obtained from forestry breeding programs, with parent trees located in 

the southern region of Brazil, and were produced in 2020. It is important to note that, in the 

case of Corymbia spp. seeds, they were obtained from five different parent trees. The 

Eucalyptus seeds were categorized into two batches, identified as batch one and batch two, each 

containing a sample of the hybrid and its progenitors. This classification took into account the 

respective breeding programs, resulting in samples with similar production characteristics, 

geographical origin, and harvest season, as illustrated in Fig. 2. All seeds were packaged in 

plastic containers and stored with temperature and humidity controlled until the start of the 

experimental activities. 

 

 

Figure 2. Corymbia maculata, Corymbia torelliana, Corymbia maculata x Corymbia torelliana, 

Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus urograndis batch one and two seed 

production sites. 

 

From each homogenized sample, seeds were separated from impurities (e.g., empty 

seeds and chaff) with a aim of tweezers, a magnifying glass, and sieves. Subsequently, only 

healthy seeds without visible damage were chosen to form the dataset, as indicated in Table 1. 
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Table 1. Overview of genotypes, batches and quantity of seeds used in the experiment. 

Batch Genotype 
Number 

of seeds 
Batch Genotype 

Number 

of seeds 
Genotype 

Number 

of seeds 

1 

E. grandis 245 

2 

E. grandis 311 C. maculata 495 

E. urophylla 245 E. urophylla 309 C. toreliana 500 

E. 

urograndis 
245 E. urograndis 310 

C. maculata x 

C. torelliana 
519 

Total 735 Total 930 Total 1514 

 

Each dataset was split into a training set (75%) and a validation set (25%) to assess the 

models' performance. 

 

Multispectral imaging system 

The VideometerLab4 system (Videometer, Hørsholm, Denmark) was used for capturing 

the multispectral image of the samples. The system consisted of a coated matte sphere with 

LEDs along the rim and a monochromatic camera with high spatial resolution (40 μm/pixel and 

2192 × 2192 pixels). The system underwent radiometric, geometric, and light setup calibration 

before capturing the images. The samples were illuminated by the LEDs at 19 wavelengths, 

which included ultraviolet (365, 405 nm), visible (430, 450, 470, 490, 515, 540, 570, 590, 630, 

645, 660, and 690 nm), and near-infrared (780, 850, 880, 890, and 970 nm), resulting in 19 

monochrome pictures per sample. 

 

Multispectral imaging analysis 

The VideometerLab software (version 3.24.11) was employed for image segmentation 

and feature extraction. A predetermined mask was utilized to isolate regions of interest (ROIs), 

which corresponded to seeds, while simultaneously eliminating the background (the blue plate 

and petri dish). Spectral features, including reflectance mean and standard deviation, were 

extracted from these ROIs. In addition, a set of morphological features was selected based on 

visual inspection of the seeds' characteristics. These morphological features encompassed area, 

autocorrelation energy, beta shape a and b, CIE color space components, compactness (circle 

and ellipse), eccentricity, hue intensity and saturation mean, length, max edge distance, moment 

y ratio, non-convex area, pointedness, width-to-length ratio, region color band local standard 

deviation, region horizontal length mean, skew (y and x), vertical orientation, vertical skewness, 
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and width. Additionally, Normalized Canonical Discriminant Analyses (nCDA) based on 

reflectance mean were used to create new features that increase the differences between the 

classes. The nCDA is a supervised model used to minimize the distance between observations 

within classes and maximize the distance between observations between classes (Cruz-Castillo 

et al., 1994). As a result, three extra features were created: hybrid vs. progenitor one, hybrid vs. 

progenitor two, and progenitor one vs. progenitor two. Features with near-zero variance were 

excluded, leaving a total of 89 features per seed, including 38 spectral, 48 morphological, and 

three nCDA-transformed features. All features were exported to an Excel file for data analysis. 

 

Multivariate analysis methods 

Seed samples were used to design four experiments: one for Corymbia spp. seeds, one for 

each Eucalyptus spp. batch separately, and one for pooled batches. Three algorithms, Linear 

Discriminant Analysis (LDA), Random Forest, and Support Vector Machine (SVM), were 

tested using two models each. The first model used only reflectance data (mean and standard 

deviation), resulting in 38 features, while the second model included all features (reflectance, 

morphology, and nCDA features), resulting in 89 features. In total, six models were created and 

evaluated for accuracy using the 10-fold cross-validation method. Sensitivity and specificity 

values were calculated for each class. The analyses were performed using R version 3.5.2 and 

RStudio software version 2022.02.3, along with caret package version 6.0-92. 

 

RESULTS 

The average spectral profiles of each Eucalyptus spp. and Corymbia spp., along with the 

Principal Component Analysis (PCA) plot derived from the set of 89 measured features per 

seed, are illustrated in Fig. 3. In Fig. 3A, the mean reflectance values for the Corymbia spp. 

species reveal a notable divergence among the species. Notably, Corymbia torelliana exhibits 

an overall higher reflectance than the other species, particularly in the wavelength range of 515 

– 970 nm. The Corymbia hybrid seeds share more spectral similarities with Corymbia maculata, 

particularly within the 370 – 690 nm region. Looking at the additional features through PCA 

plots (Fig. 3B), it becomes evident that the hybrid closely aligns with C. maculata, as indicated 

by the overlapped region, while C. torelliana exhibits distinct differences from both species, 

forming a separate cluster. In terms of Eucalyptus spp., both batches displayed consistent mean 

reflectance patterns within their respective species, as shown in Fig. 3C and Fig. 3E. In both 

batches, the hybrid seeds exhibited lower mean reflectance compared to their parental species, 
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resulting in a distinct gap between them, while the parental species showed a higher degree of 

similarity across the spectra range. The PCA plots (Fig. 3D and Fig. 3F) reveal a substantial 

overlap within species, with batch two exhibiting a more pronounced overlap. Both reflectance 

and PCA indicate high similarities within the genotypes from Eucalyptus spp. seeds. 
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Figure 3. The average reflectance spectrum (A, C, E) and PCA using all features (B, D, F) from 

C. maculata (C.m), C. maculata x torelliana (C.mt), C. torelliana (C.t), E. urophyllia (E.u), E. 

urograndis (E.ug) and E. grandis (E.g) seeds batch 1 and 2. 

 

Fig. 4 illustrates the distinctions between two genotypes within the reflectance spectrum 

of individual pixels, achieved through the application of normalized canonical discriminant 

analysis (nCDA) transformation. Comparing the hybrid genotype to its progenitor C. maculata 

(Fig. 4A), an array of pixels displaying colors spanning both extremes of the scale is noticeable 

within the seeds. This suggests greater similarity between their reflectance. Conversely, when 

comparing hybrid seeds from Corymbia spp. to C. torelliana (Fig. 4B), predominance of dark 

blue pixels is observed on the hybrid picture, reflecting a contrast to the predominantly 

red/yellow pixels of its progenitor. This discrepancy points to a notable divergence in spectral 

reflectance between these two genotypes. These results corroborate with Fig. 1A where the 

hybrid genotype's reflectance spectrum is more related to C. maculata than C. torelliana. 

The transformed reflectance images of the Eucalyptus seeds from lots 1 and 2 are 

depicted in Fig. 4C-F. Overall, a higher heterogeneity is observed among each contrast, 

indicated by pixels ranging from blue to red within seeds. Furthermore, a noteworthy aspect is 

the presence of seeds with uniform coloration but belonging to opposite classes on the rating 

scale. Those characteristics are more evident in lot 2 and suggest a stronger resemblance 

between hybrid genotypes and their progenitors. 
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Figure 4. nCDA transformed multispectral images from hybrid seeds of Corymbia spp. and 

Eucalyptus spp. batch one and batch two versus its progenitors. 

 

The performance of genotype classification algorithms for Eucalyptus spp., using both 

spectral and morphological features, is summarized in Tab. 2. The results indicate that the LDA 

algorithm outperformed the SVM and RF algorithms for both individual lots and their combined 

data. Lot 1 achieved a notable overall accuracy of 92.7%, with E. urograndis demonstrating the 

highest rate of correctly classified seeds, reaching 94.69% sensitivity. In contrast, Lot 2 

exhibited lower accuracy compared to Lot 1 and the combined lots, at 85.38%, with E. 

urophylla showing a higher incidence of misclassification, as evident in the confusion matrix. 

Ultimately, the combined lots attained an overall accuracy of 86.01%, with hybrid seeds 
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exhibiting the lowest error rates according to the confusion matrix and displaying higher indices 

of sensitivity and specificity at 89.91% and 94.05%, respectively. 

 

Table 2. Confusion matrix and overall accuracy based on Random Forest (RF), Support Vector 

Machine (SVM) and Linear Discriminant Analysis (LDA) with spectral and morphological 

features of Eucalyptus spp. batch 1, batch 2 and pooled batches. 

 

Batch 1 Batch 2 Pooled 

E. 

grand

is 

E. 

urophy

lla 

E. 

urogran

dis 

E. 

grand

is 

E. 

urophy

lla 

E. 

urogran

dis 

E. 

grand

is 

E. 

urophy

lla 

E. 

urogran

dis 

RF 

E. grandis 197 27 19 269 50 32 462 83 47 

E. urophylla 19 210 19 22 217 27 53 420 48 

E. urograndis 29 8 207 20 42 251 41 51 460 

Sensitivity 

(%)  80.41 85.71 84.49 86.50 70.23 80.97 83.09 75.81 82.88 

Specificity 

(%) 90.61 92.24 92.45 86.75 92.11 90.00 88.28 90.91 91.71 

Overwall 

accuracy (%) 
83.54 79.25 80.60 

SV

M 

E. grandis 210 13 12 266 29 22 463 58 36 

E. urophylla 15 226 11 26 252 24 56 451 26 

E. urograndis 20 6 222 19 28 264 37 45 493 

Sensitivity 

(%)  85.71 92.24 90.61 85.53 81.55 85.16 83.27 81.41 88.83 

Specificity 

(%) 94.90 94.69 94.69 91.76 91.95 92.42 91.52 92.62 92.61 

Overall 

accuracy (%) 89.52 84.09 84.50 

L

D

A 

E. grandis 221 11 5 276 32 29 478 59 34 

E. urophylla 9 229 8 25 253 16 52 455 22 

E. urograndis 15 5 232 10 24 265 26 40 499 

Sensitivity 

(%)  90.20 93.47 94.69 88.75 81.88 85.48 85.97 82.13 89.91 

Specificity 

(%) 96.73 96.53 95.92 90.15 93.40 94.52 91.61 93.34 94.05 

Overall 

accuracy (%) 92.79 85.38 86.01 
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Tab. 3 represents the performance of classification algorithms for Eucalyptus spp. seeds 

using only spectral variables in the model. The LDA algorithm showed higher accuracy in both 

isolated batches, as well as when combined, with respective accuracies of 91.70%, 82.15%, and 

82.94%, followed by SVM and the RF algorithm. When comparing the accuracy of the LDA 

algorithm with the results of the same algorithm using a combination of spectral and 

morphological features (Tab. 2), it is observed that the classification of genotypes was 

minimally affected by using only spectral features. This fact becomes more evident in batch 1, 

where the accuracy decreased by only 1.02%, while maintaining the same sensitivity and 

specificity for hybrid seeds. 

 

Table 3. Confusion matrix and overall accuracy based on Random Forest (RF), Support Vector 

Machine (SVM) and Linear Discriminant Analysis (LDA) with spectral features of Eucalyptus 

spp. batch 1, batch 2 and pooled batches. 

 

Batch 1 Batch 2 Pooled 

E. 

grand

is 

E. 

urophy

lla 

E. 

urogran

dis 

E. 

grand

is 

E. 

urophy

lla 

E. 

urogran

dis 

E. 

grand

is 

E. 

urophy

lla 

E. 

urogran

dis 

RF 

E. grandis 172 30 27 231 56 47 400 96 68 

E. urophylla 37 208 16 52 211 29 91 390 56 

E. urograndis 36 7 202 28 42 234 65 68 431 

Sensitivity 

(%)  70.20 84.90 82.45 74.28 68.28 75.48 71.94 70.40 77.66 

Specificity 

(%) 88.37 89.18 91.22 83.36 86.96 88.71 85.21 86.77 88.02 

Overall 

accuracy (%) 79.18 72.69 73.33 

SV

M 

E. grandis 213 19 8 258 36 28 442 68 37 

E. urophylla 14 222 7 34 226 29 72 420 45 

E. urograndis 18 4 230 19 47 253 42 66 473 

Sensitivity 

(%)  86.94 90.61 93.88 82.96 73.14 81.61 79.50 75.81 85.23 

Specificity 

(%) 94.49 95.71 95.51 89.66 89.86 89.35 90.53 89.47 90.27 

Overall 

accuracy (%) 90.48 79.25 80.18 

E. grandis 213 14 5 268 46 30 454 59 34 
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L

D

A 

E. urophylla 14 229 8 29 241 25 67 444 38 

E. urograndis 18 2 232 14 22 255 35 51 483 

Sensitivity 

(%)  86.94 93.47 94.69 86.17 77.99 82.26 81.65 80.14 87.03 

Specificity 

(%) 96.12 95.51 95.92 87.72 91.30 94.19 91.61 90.55 92.25 

Overwall 

accuracy (%) 
91.70 82.15 82.94 

 

The performance of models utilizing both morphological and reflectance features for 

the classification of Corymbia spp. genotypes is presented in Tab. 4. Overall, all the models 

exhibited exceptional performance, achieving an accuracy rate exceeding 90% across all 

algorithms. Notably, the RF algorithm demonstrated the lowest accuracy, with the SVM and 

LDA algorithms following suit. Remarkably, LDA achieved an accuracy of 98.71% in 

classification and excelled in classifying hybrid Corymbia seeds, with only 10 

misclassifications out of 519 seeds. C. torelliana seeds were consistently and accurately 

classified across all algorithms, with a sensitivity rate reaching 99%. 

 

Table 4. Confusion matrix and overall accuracy based on Random Forest (RF), Support Vector 

Machine (SVM) and Linear Discriminant Analysis (LDA) with spectral and morphological 

features of Corymbia spp. 

 
C. maculata C. maculata x C. torelliana C. torelliana 

RF 

C. maculata 448 52 5 

C. maculata x C. torelliana 44 465 0 

C. torelliana 3 2 495 

Sensitivity (%)  90.51 89.60 99.00 

Specificity (%) 94.41 95.58 99.51 

Overwall accuracy (%) 93.00 

SVM 

C. maculata 471 27 4 

C. maculata x C. torelliana 22 492 0 

C. torelliana 2 0 496 

Sensitivity (%)  95.15 94.80 99.20 

Specificity (%) 96.96 97.79 99.80 

Overall accuracy (%) 96.37 

LDA 
C. maculata 482 10 3 

C. maculata x C. torelliana 13 509 2 
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C. torelliana 0 0 495 

Sensitivity (%)  97.37 98.07 99.00 

Specificity (%) 98.72 98.49 100.00 

Overall accuracy (%) 98.15 

 

The performance of models using just the reflectance features for the classification of 

Corymbia spp. genotypes is presented in Tab. 5. The model employing the RF algorithm 

exhibited lower performance compared to SVM and LDA, primarily due to misclassifications 

between hybrid seeds and those of C. maculata. In contrast, SVM and LDA yielded similar 

results, achieving overall accuracies of 96.63% and 97.49%, respectively. Furthermore, when 

comparing these models to those incorporating all features (as shown in Tab. 4), RF 

demonstrates a substantial reduction in accuracy, while LDA effectively maintains its 

performance with only a marginal 0.66% reduction. Notably, SVM outperforms its previous 

model in this context. These results underscore the significance of seed spectrum reflectance as 

a primary component in the screening of Corymbia spp. genotypes. 

 

Table 5. Confusion matrix and overall accuracy based on Random Forest (RF), Support Vector 

Machine (SVM) and Linear Discriminant Analysis (LDA) with spectral features of Corymbia 

spp. 

 
C. maculata C. maculata x C. torelliana C. torelliana 

RF 

C. maculata 412 103 29 

C. maculata x C. torelliana 75 414 2 

C. torelliana 8 2 469 

Sensitivity (%)  83.23 79.77 93.80 

Specificity (%) 87.05 92.26 99.01 

Overall accuracy (%) 85.54 

SVM 

C. maculata 471 18 7 

C. maculata x C. torelliana 20 501 2 

C. torelliana 4 0 491 

Sensitivity (%)  95.15 96.53 98.20 

Specificity (%) 97.55 97.79 99.61 

Overall accuracy (%) 96.63 

LDA 

C. maculata 477 10 8 

C. maculata x C. torelliana 18 509 2 

C. torelliana 0 0 490 

Sensitivity (%)  96.36 98.07 98.00 
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Specificity (%) 98.23 97.99 100.00 

Overall accuracy (%) 97.49 

 

The bidimensional plot of LDA functions LD1 and LD2, based on spectral and 

morphological features of Corymbia spp. and Eucalyptus spp. seeds (pooled batches), as well 

as the individual feature contributions are present in Fig. 5. Overall, the LDA functions 

explained nearly 100% of the total variation and were successful in separating the Corymbia 

genotypes, particularly C. torelliana, with no overlapping observed within the 95% confidence 

interval (Fig. 5A). Notably, the spectral signature transformed by nCDA emerged as the feature 

with the highest contribution for all genotypes (Fig. 5C), followed by shape characteristics such 

as length and area, texture attributes, including moment ratio, as well as color and reflectance 

features from the red spectrum (645, 630, and 660 nm). Additionally, the wavelengths within 

the near-infrared spectrum, specifically those between 940 and 970 nm, made a substantial 

contribution to the model's performance regarding the hybrid genotype and C. torelliana. 
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Figure 5. Linear Discriminant Analysis (LDA) score plot based on spectral and morphological 

features from Corymbia spp. (A) and Eucalyptus spp. (B) seeds. The ellipse shows the 95% 

confidence interval. The individual contribution from the 40 more important variables from the 

LDA model for Corymbia spp. (C) and Eucalyptus spp. (D). C.m, C.mt, C.t stands for Corymbia 

maculata, Corymbia maculata × Corymbia torelliana, Corymbia torelliana, where E.g., E.u, 

and E.ug stand for Eucalyptus grandis, Eucalyptus urophylla, and Eucalyptus urograndis, 

respectively. 

 

For the Eucalyptus genotypes pooled batches, the LDA functions were able to explain 98% 

of the total variation (Fig. 5B). The plotting of both functions revealed overlapping cluster 

regions, indicating a notable degree of similarity among these classes. Notably, the nCDA-
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transformed spectral signature emerged as the most significant feature for distinguishing 

between the hybrids and their progenitors (Fig. 5D), followed by wavelengths' reflectance from 

the near-infrared range (780 and 850 nm), the red spectrum (660, 690 nm) and the seed color 

components. 

 

DISCUSSION 

In this study, we explored the application of multispectral imaging to distinguish hybrid 

forest seeds from their progenitors, specifically focusing on Corymbia and Eucalyptus species. 

The developed models exhibited exceptional performance, with accuracy consistently 

exceeding 90%. The utilization of single-seed multispectral information consistently sustained 

the high accuracy in genotype classification. Additionally, the nCDA supervised algorithm 

played a crucial role in discriminating between genotypes, by enhancing classification through 

the reduction of spectral redundancy between adjacent bands (Wei et al., 2020). It is worth 

noting the significance of specific wavelength ranges for each species, notably 630, 645, 660, 

690, 940, and 970 nm for Corymbia spp. and 630, 645, 660, 690, 780, 850, and 880 nm for 

Eucalyptus spp. The reflectance values at these wavelengths exhibited high sensitivity to 

distinguishing key features in the seed coat of hybrid genotypes from their progenitors. The 

region from 630 to 690 nm corresponds to the red spectrum and is associated with seed 

pigments, e.g., tannins and anthocyanin. In contrast, the near-infrared region (780 – 970 nm) is 

partially absorbed by C-H, N-H, and O-H bonds, while the remainder reflects and enable the 

measurement of water and organic compounds, including proteins, carbohydrates, and lipids 

(Esteve Agelet and Hurburgh, 2014; Mortensen et al., 2021; Sendin et al., 2018). 

The Eucalyptus spp. exhibited lower accuracy compared to the Corymbia seeds, and a 

significant variation in accuracy was observed between different seed batches. This observation 

aligns with the noise evident in the Eucalyptus nCDA images (Fig. 4 C-F). The noise in the 

nCDA images of Eucalyptus seeds can be attributed to several factors. Firstly, Eucalyptus is an 

allogamous plant with substantial genetic diversity, which can lead to the presence of seeds 

resulting from undesirable crosses and/or natural phenotypic variation. This variation may be 

due to the varying degree of resemblance to one of the parents for the hybrid genotype, in 

addition to the absence of domestication of the species. Oliveira et al. (2023) highlighted the 

presence of genetic admixture in Eucalyptus spp., which could result in an unexpected ancestral 

genomic composition of interspecific hybrids. This genetic admixture, especially among 

phylogenetically closer species that easily hybridize in exotic environments, is expected and 
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could contribute to some of the observed noise. Furthermore, Van der Berg (2015) estimated 

the genetic parameters based on a large population of E. urograndis seedlings and reported that 

the genetic variance mostly arises from non-additive variance, particularly dominance variance. 

High dominance variance often results in a greater range of phenotypic variation within a 

population, where individuals with the same genotype for a trait may exhibit a wide range of 

trait values due to the influence of dominant alleles. 

Despite the observed noise, the genotype signal seems to be significantly stronger. The 

mean reflectance patterns were similar between both batches of Eucalyptus spp. (Fig. 3 C and 

Fig. 3 E). Furthermore, the LDA model achieved an impressive 92.79% and 85.38% 

classification accuracy for Eucalyptus spp. batches one and two, respectively. These results 

indicate that the seeds within each batch exhibit clear similarities. The samples share similar 

production regions and harvest periods within their respective batches, strongly suggesting that 

genotype is the primary distinguishing factor. Identifying hybrid seeds can be challenging due 

to the potential overlap in material content inherited from the parent plants, which may cause 

difficulty in distinguishing them from their progenitors (Zhang et al., 2018). However, previous 

studies have revealed distinct spectral signatures within genotypes, leading to highly accurate 

classifications of parents and their offspring. This phenomenon has been observed in various 

crops and vegetables such as soybean, okra and tomatoes (Liu et al., 2016; Shrestha et al., 2015; 

Zhang et al., 2018). 

The combination of spatial and spectral features contributed to the model's accuracy and 

robustness, as exemplified by the noteworthy performance of the 98.15% LDA model applied 

to Corymbia spp (Fig. 5C). Parameters such as length, area, and texture contributed to the 

model's efficacy, a result that aligns with expectations, particularly considering the smaller size 

of C. torelliana seeds. Additionally, the model performed consistently well regardless of the 

seeds' orientation, showing that even differences observed between Corymbia seeds facing up 

or down did not present an obstacle. This feature could greatly enhance the scalability of the 

analysis. Furthermore, the common presence of impurities and empty seeds, a typical challenge 

encountered with forest seeds, may be a challenge to the initial phase of image segmentation. 

For Corymbia spp., this challenge is readily surmountable, as the discernible distinction 

between the seeds and impurities facilitates separation using a sieve. Conversely, when dealing 

with Eucalyptus seeds, the structural similarities necessitate more intricate screening 

procedures. However, it is worth noting that the presence of chaff and empty seeds, common 
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challenges in the context of Eucalyptus genus, and a pre-screening method can be justified 

particularly in the context of breeding programs. 

In summary, the combination of multispectral imaging with multivariate analysis methods 

emerges as a powerful tool for seed phenotyping in the context of hybrid forest seeds. The 

effectiveness and non-invasive characteristics of this technology play an innovative role in 

breeding programs, providing a new and straightforward step to verify the alignment of the 

genotype to be used. The analysis demonstrated a high classification accuracy for both genera, 

with Corymbia spp. standing out, where the seed spectrum proved to be the most significant 

factor. For future studies, we recommend the use of hybrid seeds obtained from controlled 

pollination orchards or incorporating a single-seed genotyping test to confirm the seed genotype 

in the training set. This step will enhance the model's reliability, increase its accuracy, and make 

it an even more robust tool for distinguishing hybrid seeds. 

 

CONCLUSION 

The study has demonstrated the effectiveness of multispectral imaging in distinguishing 

hybrid seeds of Eucalyptus urograndis and Corymbia maculata × Corymbia torelliana from 

their progenitors. The spectral signature of the seeds genotypes significantly contributes to the 

high performance of the models. These results highlight the potential of multispectral imaging 

as a powerful and non-invasive tool for classifying forest seed genotypes in the context of 

breeding programs. 
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Soybean single-seed respiration evaluation through spectral imaging 

 

ABSTRACT 

Soybean (Glycine max (L.) Merril) is an important global crop for oil and protein production, 

requiring high-vigor seeds for optimal growth in various conditions. Traditional seed quality 

assessments are time-consuming and subjective. Thus, spectral imaging, which combines 

spectroscopy and digital imaging, emerges as a promising tool for seed analysis. While widely 

used in seed technology, its application to physiological quality assessment is limited. The study 

aimed to assess. The study aimed to assess the relationship between soybean seeds respiration 

and its biometric features through multispectral imaging. Multispectral images were captured 

from 1808 seeds, and 75 features were extracted. The seeds, followed by oxygen consumption 

during germination, were computed individually. The respiration data and biometric 

measurements were categorized. The biometric measurements were paired and clustered, 

resulting in more than 8,000 unique traits, where the respiration curves were classified into 12 

groups and three clusters were selected. The association between respiration patterns and 

biometric features was conducted using contingency tables and entropy analysis. The results 

demonstrated differences among respiration patterns specially in autofluorescence excitation-

emission at 365/600 nm, 430/700 nm, 450/700 nm, and 470/700 nm, as well as differences in 

reflectance at 365 nm, 690 nm, and 405 nm. Additionally, two-way interaction of features 

highlighted different patterns on seed biometric features composition leading to the same 

physiological quality. In conclusion, soybean seed appearance and spectral data correlate 

strongly with respiration and seed quality. Multispectral imaging is non-invasive and efficient 

in identifying traits linked to respiration patterns and visualizing their relationship, enhanced 

by autofluorescence and reflectance. 

 

Keywords: Glycine max (L.) Merril, machine vision, multivariate analysis, oxygen 

consumption, seed respiration spectroscopy, vigor 

 

INTRODUCTION 

Soybean (Glycine max (L.) Merril) stands out as one of the most crucial crops globally, 

contributing significantly to oil and protein production and serving as a vital source of food for 

both humans and livestock. The success of soybean cultivation hinges significantly on the use 

of high-vigor seeds which enable the rapid and uniform establishment of plant stands, even in 



85 
 

diverse environmental conditions, including under biotic and abiotic stress. High-vigor seeds 

often lead to more resistant seedlings, promoting better field performance and potentially higher 

yields (Caverzan et al., 2018; Cheng et al., 2023; ISTA, 2020). Conventional methods for 

assessing a seed lot's physiological quality, such as germination and vigor tests, are widely 

applied in the seed industry. However, these methods rely heavily on time-consuming, labor-

intensive, and subjective assessments. Additionally, they lack automation, are destructive, and 

may require specialized training. Hence, there is a pressing need for rapid and non-subjective 

tests to efficiently determine the physiological quality of seeds (Elmasry et al., 2019; Xia et al., 

2019). 

Spectral imaging analysis has emerged as an innovative tool in the context of seed science. 

This technique combines spectroscopy with digital imaging, enabling the measurement of 

spatial characteristics, spectral features, and auto-fluorescence of individual seeds. Notably, the 

method is both rapid and non-destructive, facilitating automation and scalability in analysis 

processes (Boelt et al., 2018). By measuring various traits of a single seed, this technique is 

widely employed for seed classification in areas such as distinguishing varieties, identifying 

hybrid seeds from their progenitors and detecting adulterants in seed samples (Faqeerzada et 

al., 2020; Fu et al., 2023; Zhang et al., 2018). 

Although spectral image analysis is being widely used in seed technology, studies relating 

this analysis to physiological quality are incipient, as it is difficult to measure elements that are 

related to germination and vigor (Caverzan et al., 2018; Elmasry et al., 2019; França-Silva et 

al., 2023; Xia et al., 2019). Studies employing spectral imaging analysis in seed physiological 

quality have primarily focused on distinguishing pre-established viability and/or vigor classes 

through accelerated aging and tetrazolium tests, or by correlating them with biochemical 

compounds extracted from a seed population (Barboza da Silva et al., 2021; Jin et al., 2022; 

Kandpal et al., 2016; Olesen et al., 2015; Qi et al., 2023; Shrestha et al., 2017). While beneficial 

for distinguishing seed lots, measurements on seed populations have limited ability to link 

various characteristics with specific aspects of seed quality. Without assessing individual seeds, 

determining which seeds contribute to observed changes in characteristics becomes challenging 

(Bradford, 2018; Bradford et al., 2013). 

In this context single-seed respiration plays a key role in seed vigor evaluation. The 

relationship between seed quality and respiration is already known through direct and indirect 

measures, such as tetrazolium tests. The capacity of a dry seed in repairing its respiratory 

systems post-imbibition indicates seed quality, with high-vigor seeds typically exhibiting 
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elevated respiration rate patterns. While poor seed quality is often linked to either a delay in the 

onset of respiration or the incapacity of vital seed tissues to initiate respiratory activity (Bello 

and Bradford, 2016; Bradford et al., 2013). 

Connecting the characteristics of an individual seed, as revealed by its spectral image, with 

its respiration pattern could help in understanding the factors influencing this pattern. This 

linkage could enable predictions of the respiration patterns of seeds based on their 

characteristics, offering insights into their vigor. The study aimed to assess the relationship 

between soybean seeds respiration and its biometric features through multispectral imaging. 

 

MATERIAL AND METHODS 

Seed sample 

Six samples totaling 1808 soybean seeds of the cultivar 55i57 RSF ipro, harvested in the 

2021/2022 season and produced in the region of Ponta Grossa, southern Brazil (25°05'52.1"S 

50°09'25.7"W), were used (Fig. 1). The seeds obtained in a seed laboratory originated from the 

reduction of six distinct seed lots, resulting in six individual samples of approximately 500g 

each. Each sample was numbered from 1 to 6 and stored in plastic bags at 10 °C. 
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Figure 1. Six batches of dryseeds of soybean used on the experiment. 

 

The experiment was conducted in six rounds, determined by the measurement 

capabilities of the equipments. Each round involved approximately 300 seeds and comprised 

seeds from all six batches. 

 

Multispectral system 

The VideometerLab4 system (Videometer, Hørsholm, Denmark) was responsible for 

capturing the multispectral images. This system comprised a coated matte sphere with LEDs 

arranged along its perimeter and a monochromatic camera positioned on top, offering high 

spatial resolution (40 μm per pixel and a resolution of 2192 × 2192 pixels). Before capturing 

the images, the system underwent calibration to ensure radiometric accuracy, geometric 

alignment, and proper lighting setup. The samples were exposed to 19 distinct wavelengths of 

LED illumination, covering ultraviolet (365, 405 nm), visible (430, 450, 470, 490, 515, 540, 

570, 590, 630, 645, 660, and 690 nm), as well as near-infrared (780, 850, 880, 890, and 970 
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nm). Additionally, four long-pass filters with cut-off wavelengths at 400, 500, 600, and 700 nm 

were employed to measure fluorescence emitted from the seed surface. The filters were 

combined with different excitation wavelengths, providing 30 excitation-emission 

combinations (e.g., 365/400 nm). As a result, 19 images were collected for each illuminated 

wavelength, in addition to 31 images based on distinct excitation-emission combinations, 

resulting in a total of 50 monochromatic images for each sample. 

 

Multispectral Imaging 

The VideometerLab software (version 3.24.11) was utilized for image segmentation, 

seed labelling and feature extraction. A predefined mask was applied to isolate regions of 

interest (ROIs), specifically seeds, and to eliminate the background (consisting of the blue plate 

and petri dish). Autofluorescent-spectral features were extracted from these ROIs, in addition 

to morphological features, such as area, autocorrelation energy components, CIE color space 

components, width-to-length ratio, and width (Tab. 1). Subsequently, all the biometric features 

were exported to an Excel file for further data analysis. 

 

Table 1. Biometric features extracted from dry soybean seeds description. 

Feature 
n. 

features 
Description 

Autofluorescence (AF) 31 
Average autofluorescence signals from the combination of each wavelength 

excitation, with a cutoff emission at 400 nm, 500 nm, 600 nm, and 700 nm. 

360-970 (RF) 19 
Average reflectance of specific wavelengths (in nanometers) for individual 

seeds. 

CIELab/CIELCh (CIE) 10 

Refers to a color space defined by the International Commission on 

Illumination (CIE): L for lightness from black (0) to white (100), A from 

green (-) to red (+), and B from blue (-) to yellow (+). It calculates the mean 

and standard deviation of each L, a, B, C, and h component of CIE. 

Auto correlation 

energy (ACE) 
10 

Seed texture component. Returns auto-correlation energy for vertical and 

horizontal directions in the seed blob. Result[0]=vCorr/hCorr, [1]=hCorr, 

[2]=vCorr, [3]=(hCorr+vCorr)/2, [4]=hCov., [5]=vCov, 

[6]=(hCov+vCov)/2, [7]=hor.cv, [8]=ver.cv, [9]=(hor.cv+ver.cv)/2. 

Area 1 Individual projected area of the seed (mm2). 

Length 1 Individual projected length of the seed (mm). 

Ratio width lenght 

(RatioWL) 
1 Width-to-length ratio calculated per seed. 
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Width 1 Individual projected width of the seed (mm). 

Compactness circle 

(CC) 
1 

Ratio of the seed area to the area of a circle with the same length (isolength 

quotient). 

Total 75  

 

Seed respiration assessment 

After capturing multispectral images using VideometerLab, individual seeds were 

transferred to 5 mL screw-cap vials, each containing 800 μL of agar (0.4% w/v) and 0.2% Plant 

Preservative Mixture (PPMTM) to prevent fungal growth. The seeds were placed in vials within 

plates, maintaining the same position as they were initially positioned in VideometerLab. The 

vials were sealed with caps featuring a fluorescent polymer dot on their inner side. This polymer 

contains a dye that changes its fluorescence properties in response to oxygen concentration. 

The Seed Respiration Analyzer (Fytagoras B.V., Leiden, The Netherlands) was employed to 

measure the oxygen consumption (respiration) rates of the individual seeds during the processes 

of imbibition and germination. As the seeds respire, oxygen in the sealed vial is depleted, 

causing a detectable change in the fluorescence intensity of the dye. This change is monitored 

by a light source focused on the dot and a sensor that measures the fluorescence intensity. A 

robotic arm systematically guides the light source and sensor over each vial, enabling the 

measurement of oxygen concentration within (Bradford et al., 2013). Measurements were 

recorded at 30-minute intervals over a duration of 100 hours to construct time courses of oxygen 

consumption activity. The sample temperature was controlled at 20 ± 0.5°C using Peltier 

heating/cooling units and fans to maintain a stable environment. The recorded data was 

extracted into Excel files and subsequently subjected to data analysis. 

 

Clustering analysis 

In this study, both oxygen consumption curves and biometric features were converted into 

categorical variables through hierarchical clustering. The clustering of the oxygen consumption 

curves was performed using the 1st-order difference in O2 levels between two consecutive time 

points for each individual soybean, aiming to obtain less correlated data. The 1st-order 

difference in O2 respiration rate calculated for each i-th individual soybean was defined by 

ΔXi(t) = Xi(t) - Xi(t-1), where Xi represents the O2 level of the i-th soybean, t (≤ T) denotes a 

specific time point, and T is the total number of recorded time points. The O2 level 1st-order 

difference was computed at intervals of every 3 hours, starting from 6 hours after imbibition 

and continuing until 100 hours. The biometric feature clustering process involved analyzing 
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both one-way and two-way interactions of the features. The one-way analysis focused on each 

of the 75 individual features independently. On the other hand, the two-way interaction analysis 

considered the clustering of combinations formed by pairing every two features, resulting in a 

total of  combinations. 

The hierarchical clustering analysis was based on the Euclidean distance metric and 

Ward.D2 linkage method, sourced from the R package stats (version 4.2.0). This approach was 

applied to group oxygen consumption curves, as well as the one-way and two-way interactions 

of biometric features, into n distinct classes (Fig. 2A and Fig. 2B). The determination of the 

optimal number of categories involved a visual inspection of their distribution and the 

dendrogram generated from the clustering analysis. 
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The output from the clustering process was used to create contingency tables. The tables 

were designed with the one-way or two-way interaction of biometric features classes on the 

row-axis, while two oxygen consumption classes contrast were positioned on the column-axis 

(Fig. 2D). To quantify the association between the biometric features and the oxygen 

consumption classes, Shannon’s entropy of the contingency tables was computed both before 

and after the inclusion of each biometric features classes (Shannon, 1948). The conditional 

entropy of Г given C=c is denoted by . Here,  is the number 

of seeds with a biometric characteristic class c and within each respiration pattern of Г=  with 

 , where  is the total number of seeds with that biometric characteristic class. 

Entropy is a metric for uncertainty, capturing the degree of disorder and uncertainty in the 

association between variables. A decrease in entropy following the inclusion of a feature 

suggests a potential association with the respiration pattern. 

To assess the significance of entropy reduction within each biometric feature class, a 

simulation was conducted (Fig. 2C). This involved generating 4000 random contingency tables 

for each biometric feature, using a multinomial distribution to sample values based on the 

original table parameters. The multinomial distribution is denoted as , 

where  represents the total number of seeds on each respiration pattern , p is the probability 

of a seed being in each biometric class c, and k is the total number of biometric feature classes. 

Entropy reduction was computed for each randomly generated table and compared to the 

original values. Significance was determined by evaluating whether the observed entropy 

reduction exceeded 5% of the random entropy reduction values, corresponding to a significance 

level of 0.05. 

 

Visualization of O2 consumption and biometric measurements relationship 

Data mechanics visualization was implemented to explore the relationship between seeds 

based on the presence or absence of biometric characteristics previously identified when 

contrasting two respiration patterns. This was achieved by creating a binary matrix (1 – 

presence or 0 – absence of the biometric feature class) of size  were  were the seeds 

from the respiration patterns r1 and r2 and C denotes the significant biometric feature classes 

identified. 

The data mechanics procedure consisted of computing two Euclidean distance matrices: 

one quantifying the similarity between pairwise combinations of seeds, and the second 

quantifying the similarity between pairwise combinations of biometric characteristics. These 



93 
 

distance matrices were then used to generate two independent hierarchical clustering trees using 

the Ward D2 linkage method. By cutting both trees at a fixed number of clusters, the original 

distance matrices were updated. This involved using the clustering structure between seeds to 

create a weighted distance matrix between categories and vice versa (Fushing and Chen, 2014; 

McVey et al., 2021). This procedure allowed for the integration of information on seed 

similarities with biometric category similarities, thereby enhancing the visualization of the seed 

pattern. 

 

Inference process 

A voting-system inference process was developed to assess the predictability of an 

unknown respiration pattern based on the presence or absence of significant biometric features 

within a given seed. The leave-one-out cross-validation method was employed, utilizing binary 

matrices constructed. For each seed, the Euclidean distance was computed, identifying its 20 

nearest neighbors. Subsequently, for each of these nearest neighbors, their respective nearest 

neighbors were determined, and those that included the unknown seed were tallied as votes for 

its respiration pattern. The determination of the unknown seed's respiration pattern was made 

based on the class with the highest number of votes. The analyses were performed using R 

version 3.5.2 and RStudio software version 2022.02.3. 

 

RESULTS 

The normalized distribution of all 1808 seeds’ biometric features and their correlogram are 

presented in Fig. 3. Notably, the distribution of biometric features highlighted the heterogeneity 

within the seed population (Fig. 1A). For instance, the distribution of size attributes (area, 

width, and length) showed high deviation, indicating the presence of seeds from a broad size 

range. The spectral features (RF-365 to RF-970) exhibited similar distribution patterns, 

although they had distinct median values. In contrast, morphological, autofluorescence, and 

CIE components displayed diverse distribution patterns and median values. Furthermore, 

spectral features, autofluorescence, and autocorrelation components (ACE) features exhibited 

high correlation within each respective class (Fig. 1B). 
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The time-course oxygen consumption curves were classified into 12 categories based 

on a visual examination of the hierarchical cluster tree (Fig. 4A). This clustering revealed 

distinct patterns in the oxygen consumption of the seeds (Fig. 4B). Clusters one to five shared 

the same branch in the dendrogram and exhibited a common characteristic of rapid oxygen 

consumption initially, followed by stabilization. Clusters six and seven, located on the second 

branch of the dendrogram, shared a pattern characterized by a slight initial linear rate of 

respiration phase, with slower oxygen consumption at the beginning, followed by a steeper 

slope and a plateau. Finally, seeds from clusters eight to 12, positioned on the third dendrogram 

branch, displayed varying patterns among themselves but collectively demonstrated a slow and 

consistent oxygen consumption over time. The seeds extracted from cluster trees seven and ten 

exhibit a notable contrast in their respiration patterns, revealing both homogeneous patterns 

within each cluster and distinctive characteristics in terms of the transition from a fast (cluster 

three) to intermediate (cluster seven) to a slow (cluster ten) respiration rate (Fig. 4B). 
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Figure 4. Time course of oxygen consumption activity for individual soybean seeds, including 

a dendrogram (A) and curves segmented into 12 clusters (B). Each curve's color corresponds to 

a distinct seed. 

 

The evaluation of individual biometric features revealed distinctions among seeds with 

different respiration patterns (Fig. 5). Notably, 40 characteristics significantly (p-value<0.05) 

distinguished between seeds with a fast respiration pattern from those with a slow respiration 

pattern. Additionally, 23 characteristics differed between seeds with a slow and intermediate 

respiration pattern, while 51 characteristics distinguished between fast and intermediate 

respiration patterns. It is noteworthy that seeds with a certain level of attributes related to size, 

such as width, area, and lengths, as well as reflectance at 365, 405, 660, and 690 nm, along with 
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autofluorescence features, presented higher odds of displaying a particular respiration pattern. 

For instance, seeds with a smaller width are five times more likely to exhibit an intermediate 

respiration pattern compared to a faster respiration pattern, as well as among the seeds with 

smaller areas and lengths (Fig. 5C). This result corroborates with Fig. 5A, where seeds with 

larger areas or width are nearly twice as likely to demonstrate a fast respiration pattern, while 

smaller seeds are twice as likely to exhibit a slow respiration pattern. Additionally, seeds that 

presented higher values of autofluorescence 470/700 excitation-emission are less likely to 

present a fast respiration pattern. 
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Differences in the two-way interaction of biometric features between seeds displaying 

fast and intermediate respiration patterns are illustrated in Fig. 6. Notably, a total of 3296 

characteristics significantly (p-value < 0.05) distinguished between the respiration patterns, and 

these are arranged along the heatmap's column-axis. These distinctions are visually presented 

on the heatmap, where the presence or absence of the significant biometric features among 

seeds from the two respiration patterns is color-coded as red or blue, respectively. Seeds are 

grouped on the row-axis according to the similarities in their characteristics. Notably, seeds 

with the same respiration pattern tend to share a common branch on the dendrogram, while 

rounds and batches remain randomly distributed. This observation underscores the similarity 

among seeds from the same respiration pattern in terms of the presence or absence of selected 

characteristics, indicating a robust relationship between respiration and biometric features. 

Moreover, examining the block-patterns on the presence of characteristics revealed by the row 

and column-axis dendrograms suggests that different combinations of characteristics contribute 

to either higher or intermediate respiration. 
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Figure 6. Data Mechanics visualization of the significant (p-value < 0.05) differences in the 

two-way interaction of biometric features between soybean seeds displaying fast (O2 cluster 3) 

and intermediate (O2 cluster 7) respiration patterns. The row-axis represents each soybean, 

color-coded according to its respiration pattern (O2 cluster), as well as its round and batch. The 

column-axis represents each significant biometric characteristic, color-coded based on its 

corresponding two-way interaction category. The presence or absence of the characteristic in 

the seed is color-coded as red or blue, respectively. 

 

A total of 2765 two-way interactions of biometric features differed significantly 

between seeds with fast and slow respiration patterns (Fig. 7). The seeds from the same 
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respiration pattern tend to share similar branches on the dendrogram, as observed in Fig. 6, 

indicating that the selected biometric feature characteristics are also associated to the seed 

respiration pattern. Notably, a high presence of characteristics linked to autofluorescence in 

seeds with a slower respiration pattern is observed in the block-pattern formation in the last 

row, third column. This result corroborates with Fig. 3A, where autofluorescence features 

showed higher odds toward slower oxygen consumption. 

 

 
Figure 7. Data Mechanics visualization of the significant (p-value < 0.05) differences in the 

two-way interaction of biometric features between soybean seeds displaying fast (O2 cluster 3) 

and slow (O2 cluster 10) respiration patterns. The row-axis represents each soybean, color-
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coded according to its respiration pattern (O2 cluster), as well as its round and batch. The 

column-axis represents each significant biometric characteristic, color-coded based on its 

corresponding two-way interaction category. 

 

Seeds with slow and intermediate respiration patterns significantly distinguished 

themselves in 1650 two-way biometric feature combinations. The fewer characteristics 

identified in those two respiration patterns, in comparison with the contrasts fast and 

intermediate, and fast and slow respiration patterns, suggest a higher similarity between them. 

This similarity is also observed in Fig. 4, where the time-course oxygen consumption curves 

from clusters 7 and 10 (intermediate and slow respiration patterns) share more similarities than 

with cluster 3 (fast). Notably, seeds from the same respiration pattern sharing branches on the 

dendrogram are observed, and a higher number of block patterns are formed. This indicates that 

seeds with the same respiration pattern share similar characteristics; however, not one selection 

of characteristics can be attributed to differentiate each respiration pattern. 
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Figure 8. Data Mechanics visualization of the significant (p-value < 0.05) differences in the 

two-way interaction of biometric features between soybean seeds displaying intermediate (O2 

cluster 7) and slow (O2 cluster 10) respiration patterns. The row-axis represents each soybean, 

color-coded according to its respiration pattern (O2 cluster), as well as its round and batch. The 

column-axis represents each significant biometric characteristic, color-coded based on its 

corresponding two-way interaction category. 

 

The performance of seed respiration pattern classification, based on significant two-way 

biometric features for each respiration contrast, is presented in Tab. 2. The mean accuracy for 

classifying seeds between two respiration patterns, according to selected biometric features, 
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achieved 76.17%. Overall, the tree contrast showed similar accuracy, and the result aligns with 

the observations in Figures 6 through 8, where seeds with the same respiration pattern tend to 

share similar branches on the dendrogram. 

 

Table 2. Confusion matrix and overall accuracy based on the inference procedure using 

significant biometric characteristics between seed respiration pattern contrast fast, intermediate 

and slow (O2 cluster 3, 7 and 10, respectively). 

 
O2 Cluster 3 (fast)  O2 Cluster 7 (intermediate) 

O2 Cluster 3 (fast) 89 40 

O2 Cluster 7 (intermediate) 34 143 

Sensitivity (%) 72.30% 

Specificity (%) 78.10% 

Overall accuracy (%) 75.80% 

 
O2 Cluster 3 (fast) O2 Cluster 10 (slow) 

O2 Cluster 3 (fast) 95 33 

O2 Cluster 10 (slow) 31 88 

Sensitivity (%) 75.40% 

Specificity (%) 72.70% 

Overall accuracy (%) 74.10% 

 
O2 Cluster 7 (intermediate) O2 Cluster 10 (slow) 

O2 Cluster 7 (intermediate) 150 27 

O2 Cluster 10 (slow) 36 82 

Sensitivity (%) 80.60% 

Specificity (%) 75.20% 

Overall accuracy (%) 78.60% 

 

DISCUSSION 

The study extensively explored the relationship between soybean seed respiration and its 

biometric features at the single-seed level. The research covered 75 biometric features, 

including morphological, textural, spectral, and autofluorescence aspects, considering both one-

way and two-way interactions, leading to a set of 2,775 feature combinations. Each feature and 
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feature pair were grouped, resulting in more than 8,000 unique seed biometric characteristics 

that were evaluated. The study focused on three distinctive respiration patterns, and the 

differences in the seed population characteristics from each pair of respiration patterns were 

efficiently identified. The selected two-way interaction features were able to distinguish 

between two respiration patterns with an overall accuracy of more than 75%, highlighting the 

potential for utilizing these shared traits as discriminative markers, facilitating a more efficient 

classification of seeds based on their respiratory behavior. 

The soybean seed population used in the study effectively highlighted a range of respiration 

patterns, as illustrated in Fig. 4. The differences observed in the respiration patterns are directly 

related to physiological status of the soybean seeds at various developmental stages. Typically, 

the time-course of oxygen consumption in seeds displays a sigmoid pattern. The initial stage 

involves a linear respiration rate, followed by a second stage characterized by a steep slope until 

oxygen is depleted. The seeds’ oxygen consumption during the imbibition process and prior to 

radicle emergence is frequently associated with seed vigor. (Bello and Bradford, 2021; 

Corbineau, 2012; Tu et al., 2023; Xin et al., 2013). A brief initial linear rate of respiration 

indicates seeds with a robust capacity to repair their respiratory system. On the other hand, a 

steeper slope is associated with embryo axis development, radicle emergence, and seedling 

growth, consequently accelerating oxygen consumption (Bello and Bradford, 2016; Bradford 

et al., 2013). Both situations are commonly linked to high-vigor seeds. For instance, studies 

with sweet-corn, pepper, wheat, watermelon, onion and Brassicas demonstrates that high vigor 

seeds tend to consume more oxygen during the germination process than low vigor seeds 

(Bradford et al., 2013; He et al., 2019; Tu et al., 2023). Interestingly, a linear rate of respiration 

was frequently observed among the seed population until the end of the measured time (Fig. 4B 

– clusters 9, 11, and 12). A linear respiration rate is often associated with absence of embryo 

axis growth and radicle emergence (i.e., germination strictu sensu) (Bello and Bradford, 2016). 

Clear distinctions emerged in the composition of characteristics between soybean seed 

populations exhibiting rapid oxygen consumption, indicating high-vigor seeds, and those 

displaying slower oxygen consumption. Notably, variations were observed in the size, 

autofluorescence, and seeds’ reflectance. Autofluorescence features are an established markers 

of seed maturity and quality, such as chlorophyll, lignin, carotenoids and phenols fluorescence 

(Barboza da Silva et al., 2021; Donaldson, 2020; França-Silva et al., 2023; Jalink et al., 1998). 

Autofluorescence excitation-emission combinations of 365/600 exhibited a positive correlation 
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with slower oxygen consumption. The excitation wavelength at UV-light (365 nm) has been 

primarily associated to chlorophyll fluorescence (Donaldson, 2020; Li et al., 2014). 

Additionally, a strong correlation (p=0.91) with hydrogen peroxide (H2O2) levels in soybeans 

has also been reported (Barboza da Silva et al., 2021). Previous studies have linked lower 

autofluorescence intensity at a 365 nm excitation with lower vigor seeds. For instance, Barboza 

da Silva et al. (2021) and Batista et al. (2022) noted reduced autofluorescence at 365 nm 

excitation in aged soybean seeds, which also presented a better discrimination among seed 

aging classes compared to early germination tests, corroborating with the present study. 

Similarly, Li et al. (2019) observed that aged and non-viable soybean seeds exhibited lower 

fluorescence intensity at the 365 nm excitation wavelength. An interesting finding was the 

similarities observed at excitation wavelengths of 430 nm, 450 nm, and 470 nm, where higher 

fluorescence signal was associated with lower oxygen consumption rates. This association was 

evident both between seeds with fast and intermediate respiration patterns and between seeds 

with fast and slower respiration patterns (Fig. 5A and 5C). The wavelength spectrum of 430-

470 nm has been reported to be associated with lignin, ferulic acid and flavonoids fluorescence 

and to exhibit a strong correlation (Pearson correlation > 0.95) with lignin content in soybean 

seed coats (Barboza da Silva et al., 2021; Batista et al., 2022; Donaldson, 2020). This is an 

interesting finding, since the role of those compounds is not completely elucidate on seed vigor 

(Batista et al., 2022). 

Concerning seed reflectance, wavelengths of 365 nm, 405 nm, and 690 nm exhibited a 

positive correlation with seed oxygen consumption. These wavelengths are associated with the 

absorbance peaks of chlorophyll a (Donaldson, 2020; França-Silva et al., 2023). Therefore, 

higher reflectance at these wavelengths indicates lower light absorption due to lower 

chlorophyll a content, likely attributable to the presence of more mature and vigorous seeds. 

Also, Barboza da Silva et al. (2021) reported that non-aged seeds have less chlorophyll a content 

than aged ones, suggesting that the aging process may also contribute to the signals observed 

at the aforementioned wavelengths Additionally, as expected, size-related features such as area, 

width, and length showed a direct correlation with faster oxygen consumption. Larger seeds 

typically have a greater mass and, consequently, more respiratory tissues, leading to increased 

oxygen consumption within the vial (Xin et al., 2013). 

Although the biometric characteristics investigated in this study serve as valuable 

indicators for estimating seed performance, the quality of soybean seeds is susceptible to 
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various factors, including its maturation stage, mechanical damage, seed aging, greenish seeds, 

and the presence of pathogens (de Medeiros et al., 2020). Consequently, individual markers 

often prove insufficient for a comprehensive evaluation of seed quality (Corbineau, 2012). This 

limitation is clearly observed in the biometric features two-way interactions map, where 

different compositions of seed characteristics lead to the same respiration rate (Figures 6 to 8). 

Additionally, different composition patterns of features were observed among seeds from the 

same batch, possibly due to the presence of subpopulations among them. It is known that seed 

baches present mixtures of multiple subpopulations, influenced by factors such as different 

genotypes, seed locations in the fruit or on the mother plant or commercial seed lots blending. 

Thus, the integrated assessment of different features in a single-seed approach is highly needed 

to understand whether a characteristic or combination of characteristics can lead to a certain 

seed performance (Bello and Bradford, 2016; Corbineau, 2012; de Medeiros et al., 2020). 

In summary, the described methodology proves efficient in mapping differences in seed 

characteristics within populations and tracing them back to individual seeds. It enables the 

visualization of seed clusters with similar physiological quality but distinct characteristics, 

which is valuable for seed vigor studies and subpopulation identification. Notably, despite 

focusing on the two-way interaction of biometric features, the methodology achieved an 

average 75% separation between classes. We suggest conducting studies to evaluate the 

interation of three or more factors, which could significantly enhance seed class separation, 

even among more similar respiration patterns. 

 

CONCLUSION 

In conclusion, soybean seed appearance, along with its spectral information, is strongly 

correlated with seed respiration and, consequently, with their physiological quality. 

Multispectral imaging is a convenient and non-invasive method that can be utilized to identify 

seed traits related to individual seed respiration patterns and to visually explore the relationship 

between these characteristics. Autofluorescence and seed reflectance significantly contribute to 

the differentiation of seed physiological qualities. 
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CONSIDERAÇÕES FINAIS 

Ao longo deste trabalho, o uso da análise de imagem espectral, em conjunto com 

técnicas de análise de dados multivariados, foi extensivamente explorado para avaliação de 

diferentes componentes da qualidade de sementes. Essa tecnologia permite a extração de uma 

grande quantidade de informações espaciais e espectrais de forma individual das sementes. Em 

especial, informações espectrais trazem informações importantes de pigmentação, reserva e 

estruturais das sementes. Dessa forma, demonstrou-se altamente capaz de distinguir genótipos 

de sementes, abrangendo diferentes espécies, sementes híbridas e variedades, como observado 

nos diversos trabalhos levantados. 

Foi demonstrado com sucesso que a análise de imagem espectral pode ser empregada 

na classificação de sementes híbridas de eucalipto, que apresentam desafios adicionais devido 

à grande quantidade de material inerte, ao seu pequeno tamanho  e a semelhança fenotípica com 

seus progenitores. Isso sugere que a aplicação dessa técnica por empresas de melhoramento 

florestal deve ser considerada. Os procedimentos de avaliação dos progenitores a serem 

cruzados e a confirmação do cruzamento, comuns no processo de melhoramento, podem ser 

realizados por meio dessa análise, com a vantagem significativa de evitar a perda da amostra 

analisada. Esse benefício é especialmente relevante em programas de melhoramento florestal, 

nos quais os custos e o tempo necessários são elevados.  

Além da capacidade de distinguir entre diferentes genótipos, este estudo também 

destacou o potencial da técnica na avaliação da qualidade fisiológica, estabelecendo relações 

entre características biométricas-chave e o processo de respiração de sementes de soja. Tais 

características fornecem informações valiosas para o controle de qualidade, permitindo a 

avaliação do estado de maturação das sementes e o nível de deterioração, o que é crucial para 

o monitoramento durante a pré-colheita, análise da qualidade e armazenamento, . 

A análise de imagem espectral oferece vantagens significativas em comparação com 

os métodos tradicionais. A integridade da semente é preservada, a avaliação é rápida e o método 

pode ser facilmente escalável. Além disso, sua aplicação traz possibilidades inovadoras, onde 

cada característica-chave identificada pode ser utilizada para o desenvolvimento de novos 

equipamentos especializados mais acessíveis e simplificados.  

A capacidade de extrair grandes volumes de dados individuais das sementes e 

transferi-los automaticamente para o meio virtual também abre grandes perspectivas na área da 
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tecnologia da informação. Informações extraídas das sementes, como características 

biométricas, geolocalização e dados climáticos, podem ser incluídas em bancos de dados 

colaborativos e utilizados por empresas produtoras de sementes para estimar a qualidade futura 

dos lotes 

Embora a análise de imagem espectral se mostre uma técnica promissora na análise de 

sementes, é importante ressaltar que não substitui o trabalho humano, mas o complementa. 

Apesar da possibilidade de extrair e selecionar informações automaticamente para compor 

modelos de classificação, os algoritmos não supervisionados dificilmente superarão o 

conhecimento e a experiência de um analista. Portanto, a tecnologia é mais eficiente quando 

guiada por conhecimento biológico prévio, otimizando sua aplicação em laboratórios com 

analistas experientes.  
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