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RESUMO

O uso de redes geodésicas para o monitoramento estrutural € amplamente
aplicado em projetos de engenharia e em outras areas. Esta tese examina alguns
aspectos relacionados as abordagens adotadas para determinar deslocamentos de
pontos de monitoramento, essenciais para interpretar deformacdes de estruturas.
Entre os aspectos mais relevantes estao as propriedades da rede, como geometria ou
configuragéo, e a qualidade das observagdes. Adicionalmente, os métodos usados
para a determinagdo de coordenadas, frequentemente associados a estimativa de
minimos quadrados (LSE), pré-analise por meio de analises de sensibilidade e testes
de deslocamento (testes de congruéncia) tém um papel crucial no monitoramento
geodésico. Este trabalho foca na investigagdo de algumas propriedades desses
aspectos. Inicialmente, foi estudado e analisado o ajuste de rede sob a abordagem
livre para dois métodos comuns: as restrigdes internas minimas e o método baseado
em inversdes generalizadas, especialmente o método inverso de Moore-Penrose. Os
resultados mostraram que ambos os métodos sao equivalentes para ajuste de rede,
e assim no passo de pré-analise. Posteriormente, a avaliagdo do teste de
sensibilidade para analise de deslocamento foi explorada. Para isto, o teste de
congruéncia foi modificado seguindo as propriedades de sensibilidade, em particular
0 uso do valor critico associado ao parametro de nao-centralidade ao invés do valor
critico do teste de congruéncia baseado no teste qui-quadrado. As andlises
consideraram a geometria da rede e as propriedades do modelo estocastico. Os
principais achados da pesquisa mostraram a influéncia das propriedades da rede na
capacidade de deteccdo de deslocamentos usando o teste de congruéncia
modificado. Por fim, foi realizada uma analise do método apresentado por Proszynski
e tapinski em 2021, que integra as propriedades de sensibilidade no teste de
congruéncia. Os principais achados relacionam-se a influéncia da configuracéo ou
geometria da rede, modelo estocastico, dimensao espacial, valores de limiar e tipos
de erros aceitos no método de Proszynski e Lapinski 2021. Por ultimo, desenvolveu-
se uma pré-analise de uma rede geodésica GNSS proposta para monitoramento,

baseada nos conceitos supracitados.

Palavras-chave: Monitoramento geodésico, minimos deslocamentos detectaveis, pre-
analises



ABSTRACT

The use of geodetic networks for structural monitoring is widely applied in engineering
projects and related areas. This thesis examines some aspects related to the
approaches adopted to determine displacements of monitoring points, which are
relevant for interpreting deformations of structures. Among the standout aspects are
the network properties, such as geometry or configuration, and the quality of
observations. Additionally, the methods used for coordinate determination, commonly
associated with least square estimation (LSE), pre-analysis through sensitivity
analyses, and displacement tests (congruence tests) play a key role in geodetic
monitoring. This work focuses on investigating some properties of these aspects.
Initially, network adjustment under the free approach was studied and analyzed for two
common methods: the minimum inner constraints and the method based on
generalized inverses, particularly the Moore-Penrose inverse method. The results
showed both methods are equivalent for network adjustment, and thus in the pre-
analysis step. Subsequently, the assessment of the sensitivity test for displacement
analysis was explored. For this, the congruence test was modified following the
sensitivity properties, particularly the use of the critical value associated with the non-
centrality parameter instead of the critical value of the congruence test based on the
chi-square test. The analyses considered network geometry and stochastic model
properties. The main findings of the research showed the influence of network
properties on the capacity to detect displacements using the modified congruence test.
Finally, an analysis of the method presented by Proszynski and tapinski in 2021, which
integrates the sensitivity properties in the congruence test, was conducted. The main
findings here relate to the influence of network configuration or geometry, stochastic
model, spatial dimension, threshold values, and types of errors accepted in the
Prészynski and tapinski 2021 method. Lastly, a pre-analysis of a proposed GNSS

geodetic network for monitoring was developed under the aforementioned concepts.

Keywords: Geodetic monitoring, minimal detectable displacements (MDD), pre-

analyses
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1 INTRODUCTION

The employment of geodetic networks for monitoring purposes is widely
recognized as an effective method to quantify displacements caused by structural
deformations. As outlined by Caspary and Rueger (1987) geodetic monitoring is
predominantly utilized in key areas including the observation of recent crustal
movements, the study of slope creep, the tracking of glacier and shelf ice movements,
the monitoring of ground subsidence, and the analysis of deformations in both man-
made and natural structures. The primary objective of geodetic monitoring lies in
substantiating hypotheses within disciplines such as geophysics, geology, glaciology,
and engineering sciences. Additionally, it plays a crucial role in the assessment of
engineering structures, specifically in Structural Health Monitoring (SHM), aiding in the
protection against hazards to populations, and in determining liability for damages
resulting from structural failures.

An important aspect concerning the properties of geodetic networks employed
for monitoring is their capability to detect displacements, which is approached by the
sensitivity analysis through the minimum detectable displacements (MDD)
computation. This analysis involves several factors such as the positioning of
monitoring targets on the structures or in proximity to them, a factor traditionally linked
with network geometry. The quality of observations, integral to the stochastic model, is
another key consideration. Furthermore, the methodology for calculating coordinate
positions typically associated with the least squares estimator approach and how the
sensitivity test is applied are essential components in the effective utilization of
geodetic networks for monitoring purposes. The process of integrating the
aforementioned elements to yield the most effective outcomes can be characterized
as the optimization of geodetic monitoring networks. The best scenario for the
displacements estimations through sensitivity analysis is defined.

The geometry and stochastic model influences could be exemplified by design
order problems discussed by Schmitt (1985). Here certain aspects related to the
geometry of the network and stochastic models could be applied to sensitivity analysis.
In particular, the first-order design (FOD) and second-order design (SOD) pertain to
the network's geometry and the precision of observations, respectively. Other aspects
of the design order problem, in particular the datum definition or zero-order design
(ZOD) have been studied (Even-Tzur, 2010). In this context, Grafarend and Sanso
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(2005) present a comprehensive exploration of various optimization processes for
design order problem, which can be extended to sensitivity analysis. Kuang (1996)
presents the fundamentals of the pre-analysis approaches for the design of geodetic
networks. Amiri-Simkooei, Asgari and Zaminpardaz (2012); Ogundare (2015) presents
a review of design stage of geodetic networks. All these principles are applicable to
the sensitivity analyzes to evaluate their influences on the displacements estimation
(Kuang, 1991).

The sensitivity analysis is carried out by the least squares estimation (LSE).
According to Amiri-Simkooei, Asgari and Zaminpardaz, (2012) the computation of the
cofactor matrix of the parameters for different network dimensions provides a priori
quality for the parameters, which permits the evaluation of the network in the design
step. In the case of the sensitivity analyses, the LSE provides the cofactor matrix to
compute the MDD and subsequently the network sensitivity. At this juncture, various
approaches offered by the least squares estimator methods are available for
conducting sensitivity analyses. Among these, the A-model and B-model stand out as
common models (Teunissen, 2000), along with the constraints or combined model
(Ghilani, 2017; Strang; Borre, 1997). Additionally, the free adjustment facilitated by
inner constraints or pseudo-inverse approaches is explored (Meissl, 1982; Ogundare,
2018; Welsch, 1979)

Some aspects related to the geometry and stochastic model and their
influence on the sensitivity analysis were presented by Kuang, (1991), in this study,
these elements influence the sensitivity magnitude improving or worsening its
detecting capacity. Regarding the least squares estimation method, the inner
constraints or pseudo-inverse approach are commonly used to estimate the pre-
analysis of the geodetic network and the sensitivity analysis (Kotsakis, 2013; Meissl,
1982; Aydin, 2014). The main idea besides the use of this model is to avoid the

influence of control points in these analyses.

The application of the sensitivity analysis can be find in several works, Hsu
and Hsiao, (2002) presented a study to determine the sensitivity of the GNSS network
designed for crustal deformation analyses. Even-Tzur, (2010) analyzes the influence
of the Datum definition in the sensitivity analysis. Kire¢ and Konak, (2014) present a
study to investigate the possibilities of monitoring crustal movement, during collective

evaluation of first-and second-order GPS densification networks. Yu et al., (2000)
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present the sensitivity analyses for volcano monitoring. Erdogan, Hekimoglu and
Durdag (2017) present a study comparing the empirical and theoretical MDD on
geodetic networks. Ksigzek and tapinski, (2022) present a study applied to the control
network based on sensitivity analysis.

Regarding the theoretical bases of the sensitivity analysis, a modification of
this was presented by Proszynski and tapinski, (2021). This approach searches the
integration of the accuracy and sensitivity criteria in a unique analysis supported by the
MDD and the computation of the significance and sensitivity ellipsoids. The method
called Variance factor option (l) is based in the determination of a specific value for
type Il probability error (f) such that critical value of the sensitivity and significance

approaches fulfilled the equality uy, o, = A4,y,» Where u is the critical value for the

@oYo,
significance test for h degrees of freedom and type | error probability (a,) . While 1
corresponds to the noncentrality parameter associated with the critical value of
sensitivity analysis. In this method, the key element is the degrees of freedom h, given
by the dimension of the displacement vector. In this model, aspects related to the
network properties are not explored.

Based on the previous concepts, this work firstly is focused on the analysis of
the least squares estimation method, in particular, the comparison of the inner
constraint approach and pseudo-inverse method to solve the inversion of normal
equation matrix for the network preanalysis, network adjustment and sensitivity
analysis. Here the main contribution is the application of different analysis of these
methods, in particular on the sensitivity analyses.

Subsequent studies focused on aspects of sensitivity analysis, particularly the
method presented by Proszynski and tapinski (2021). This research involved
analyzing network properties such as geometry, redundancy, stochastic models,
network dimension, and types of models (linear and nonlinear) within the context of the
Prészynski and tapinski approach. The primary contribution of this research lies in
examining the influence of network properties, specifically, the optimization of the

Prészynski and Lapinski method, which has not yet been addressed.

1.1 HYPOTHESIS

If the geodetic network properties, including geometry or configuration,

redundancy, quality of observations, spatial dimension, and model type (linear or
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nonlinear), are modified, then the accuracy analysis based on sensitivity
characteristics will not solely depend on the magnitude of the displacement vector but
also of the geodetic network properties (network configuration, network dimension) and

the accuracy of the observations.

1.2 OBJECTIVE

In the following items, the general and specific objectives proposed for the

development of this work will be addressed.

1.2.1 Main Objective

Evaluate the influence of the properties of a geodetic network on the

determination of confidence region supported by network sensitivity characteristics.

1.2.2 Specific objectives

a) Evaluate network configuration or geometry of the geodetic network on the
Prészynski and tapinski, (2021) theory

b) Evaluate network dimension properties of the geodetic network on the
Prészynski and tapinski, (2021) theory

c) Evaluate observation quality of the geodetic network on the Prészynski and
tapinski, (2021) theory

1.2.3 Materials and methods

a) Define the least square approach to apply the sensitivity analysis on geodetic
networks.

b) Compare the sensitivity analyses and congruence test.

c) Analyze the network properties and characteristics of the approach presented
by Prészynski and tapinski, (2021).

d) Apply the analysis to the designing of a geodetic monitoring network.

1.3 STRUCTURE OF THE WORK
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The thesis is structured into five sections, exploring the research through a
literature review, three articles embodying the proposed idea, and the conclusion. A

summary of each section is presented below:

1.3.1 Literature review:

This section presents the theoretical basis of the research goal. Specifically, it
covers the free adjustment network, which is content related to the first paper,
sensitivity analysis and deformation test associated with the second paper, and finally,

the method proposed by Prészynski and tapinski (2021) related to the third paper.

1.3.2 Developed papers section

This section presents the papers developed during this work. The names of
each paper are listed below:

Free network adjustment: Minimum inner constraints and Pseudo-inverse
approaches.

Influence of network configuration and stochastic model on the determination
of the minimum detectable displacements (MDD) through sensitivity analysis and
significance test.

Minimal Detectable Displacement in confidence region determination and

significance test of displacements regarding the design of geodetic networks.

1.3.3 Conclusions section:

This section presents the main conclusions of the research, integrating

insights from the three papers developed.
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2 LITERATURE REVIEW

2.1 FREE NETWORK ADJUSTMENT OF GEODETIC NETWORKS

The free adjustment is a least-squares estimation model in which no control
points are defined for the network. This means that the observations are adjusted
without a connection to the reference system (Ogundare, 2018). The use of the free
adjustment approach aims to analyze the internal quality of the network, specifically
whether the network observations are consistent and if they can provide high-quality
indicators without the influence of two or more control points (Welsch, 1979).

The absence of control points in the free adjustment leads to the datum defect
problem, which can be defined as the condition where there is no datum definition that
allows the network to connect with a reference system. Mathematically, the datum
defect is related to the rank defect problem, where the solution of the least-squares
estimator (LSE) cannot be solved due to the impossibility of inverting the normal
equation matrix using traditional methods. To analyze the free adjustment model, the
classical LSE solution for a Gauss-Markov model will be presented as a starting point,

as shown below.

2= (ATWA) 1AWy, (1)

Where X corresponds to the estimated parameters, A is the design or
configuration matrix, W is the weight matrix, and y is the vector of observations. From
eq.1let N = ATWA and u = ATWA where N is the normal equation matrix and u is the

vector of independent terms. Consequently, equation 1 can be reformulated as follows:
2= (N)tu. (2)
The structure of the normal equation matrix (N) depends on the A matrix and W

matrix (design matrix and weight matrix respectively). It's important to note that the W

matrix has a dimension of (n,n) where n corresponds to the number of observations.
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Similarly, the A matrix has a dimension of (n,u) with u representing the number of
unknowns in the system.

To successfully invert the normal equation matrix N, this matrix must be non-
singular, which means that its determinant is not zero (|N| # 0). When N singular,
inversion using traditional methods becomes impossible. In such instances, the datum
defect, typically arising in models without control points (as in free adjustment), leads
to this singularity in the N matrix (Deakin, 2005). To address the inversion of the normal

equation matrix under the free adjustment approach, two methods are presented:

2.1.1 Minimum Inner Constraints Approach

The Minimum Inner Constraints model incorporates the minimal number of
parameters necessary to define a reference system. In this model, known as the
Minimum Constraints model, the external geometry is not considered during the
adjustment procedure. Consequently, the shape and geometric size of the network are
defined solely by its internal geometry (Ogundare, 2018). The normal equations (N)

are given by:

N = ATWA + GGT (3)

In the normal equation N, the term GGT is added. The G matrix known as the
constraint matrix, spans the null space of A and contains the inner datum parameters,
which define the network's dimensionality. The configuration of the G matrix, as
outlined by Kotsakis (2018), Ogundare (2018), and Setan (1995), incorporates

considerations for rotation, translation, and scale within a 3D network, as follows:

1 0 0 1 0 0 0
0 1 0 o 1 0 0
o o0 1 o o0 1 1
¢gt=| 0o 2z, -y 0o Z, -V Y,
-Z, 0 X, : —Z, 0 X, X, @)
Y, -X, O Y, —-X, O 0
X v z X, Y, Z, Z,
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The first three rows of the ¢ matrix correspond to the 3D translations, the
subsequent three rows to the 3D rotations, and the final row to the scale parameters.
In both cases, X;,Y;,Z, represent the approximate coordinates of the network. The
number of columns in the G matrix equals the number of parameters to be estimated.
Therefore, for a level network requiring the estimation of five parameters, the
translation of the vertical component in the G matrix is expressed as ¢ = [11111]7

(Setan, 1995). The adjustment parameters are presented in Equation 5:
£=NT1ATWAN 'u (5)
The cofactor matrix is given by:
Qs = N 1ATWAN™? (6)
2.1.2 Pseudo inverse

In free network adjustment, the inversion of the normal equation (N) matrix can
be computed by the generalized inverses (Malzer; Schmitt; Zippelt, 1979; Rao; Mitra,
1972). In particular, The Moore-Penrose inverse is the main inverse used in geodetic
networks problems called minimum norm least squares g-inverse (Welsch, 1979).
Thus, for A€ R*** and the linear system A-X =y withx € R*;y € R™. The
Moore-Penrose pseudo-inverse provides a solution ¥ = ATy, where At is a pseudo

inverse of A . This matrix is unique and has the following properties (Equation 7):

a.A-AT-A=A
b. AT - A-AT = At (7)
c.(A-ANHt =441
d.(AT-At=A4T-4

For full rank matrices (rows or columns linearly independent) the pseudo inverse
can be obtained for non-square matrix. Therefore, ifm <n (rows linearly
independent), AT = At - (4- A*)~! and for m > n (columns linearly independent), AT =
(At - A)~1- A*. When AT = A™!. For matrices with deficient rank, the solution is

commonly obtained by the Singular Value decomposition (SVD). Where A can be



18

decomposed as A = UxV¢ and AT = V2TU¢ (Burdick, 2010). Thus, the solution for least

squares is

£=Nt-At-W-y (8)

While the variance-covariance matrix is given by:

Qs = N (©)

2.2 DEFORMATION ANALYSIS: GLOBAL CONGRUENCE TEST (GCT)

Aydin (2014) develops the theoretical bases for deformation test. Here a
displacement vector is given by:

dA:fz_fl (10)

Where x; and X, are the least squares solution for the monitoring network
parameters (point coordinates) in the first and second epoch respectively. The

covariance matrix is computed as:
Ca = 02Q4 (11)
Here O, is the cofactor matrix of the displacement vector, and o, is the a-

priori variance factor. Based on hypothesis testing, two hypotheses are formulated:

H,:E(d)=0 and H,:E(d)+0 (12)

While the test statistic is given by:
O=d'Cld. (13)

Which follows (central) »*-distribution with h degrees of freedom in H,, is
compared with the theoretical value of ;(fa,h) corresponding to the « -significance level.
If the test statistic ® is smaller than the critical value, the null hypothesis H, is not

rejected with the confidence level of -« , and it is concluded that there is no
deformation between the two epochs. Otherwise, it is decided that displacement has

occurred with the probability risk of a false positive given by « . This congruence test
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may be performed by considering the estimated variance factor. In this case, the test

follows F (Fisher)-distribution. More information can be found in Aydin (2014).

2.3 SENSITIVITY ANALYSIS

The capacity of the network to detect displacements can be quantified by
sensitivity analysis (Aydin, 2014). Based on the deformation test, a theoretical vector
of expected displacement, denoted by A, is related to the alternative hypothesis

defined as:

H,:E(d)#0=A (14)

Here the non-rejection of A, implies that the expected displacement values of

the vector A can be detected by the monitoring network. The theoretical relationship

of the non-centrality parameter (4 ) and the test statistic (7) is given by:
T=A=A"CiA (15)

The condition to define if the network is sensitive to displacements is given by:

A2, (16)

where /1, is the so-called lower bound of the non-centrality parameter which
fulfills the given power of the test y, being the complement of the type-Il error

probability g,: 7, =1-/4,. Here A4, is obtained from Aydin and Demirel (2004).

2.4 MINIMAL DETECTABLE DISPLACEMENTS (MDD)

To evaluate the MDD, firstly a vector with the expected displacements is

defined from a vector of directions g and a scale factor value denoted by b (Aydin,

2014). Thus, the condition A=bg is fulfilled. If b=0,, (Amm:bmm g), then the

determination of b, is given by:
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by = N oA (17)

where A _ is the maximum eigenvalue of the covariance matrix of C,.

According to Kure¢ and Konak (2014) b

min

is the best sensitivity level of the network.

On the other hand, the worst sensitivity level of the network can be computed as:

B = N Ao A (18)

Where A

‘min

is the minimum eigenvalue of C,. According to Hsu and Hsiao

(2002) the average between b, and b

. . can be interpreted as the global sensitivity
for the entire network.
To obtain the vector of directions of displacements, Aydin (2014) computed

the (unity) eigenvectors corresponding to the maximum eigenvalue (4 ) and the

max

minimum eigenvalue (A4 _ ) of the C, matrix (A, and A

min min

respectively). Thus:

A,,=b.A, and A, =b, A, .The MDD ineach i" element of the vector d is given

min min® ~“max max” = min

by the respective i" elementof A . or A . For details, we suggest (AYDIN, 2014).

2.5 CONFIDENCE REGION DETERMINATION SUPPORTED BY NETWORK
SENSITIVITY CHARACTERISTICS

The theoretical basis for the confidence region determination supported by

network sensitivity characteristics is developed for the scenarios where o is used.
Here, a specific value for the power of the test y, is determined through a value of g,
coordinated with the stipulated level of significance «, and the #-dimensional

displacement vector. This approach provides equality between the critical value for the

A

significance test and the non-centrality parameter of the sensitivity test: ®, . =4, .

) =
(Prészynski; Lapinski, 2021).

Initially for 7 =1the relation 2

van gy > P, 18 fulfilled. If the » value increases,
»&0-Po »&

both values 2, , and ®, , increase. However, for a specific value of » (namely n),

Bo

the relation ®, =1 is achieved (Proszynski; tapinski, 2021). The results

h,ay, B

presented by the authors show that for »" =7.3 the above equality holds to «, =0.05

and S,=0.20. In addition, for values greater than 4" = 7.3 (inflexion point), the relation
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®,, >4,

h,a

s, 18 fulfilled. Note that for different values for «, and j,, the value for &’

also changes. Also the dimension of h should be a integer value.
The approach proposed by Prészynski and tapinski (2021) is based on the size
comparison of three concentric ellipsoids; sensitivity ellipsoid, confidence ellipsoid, and

significance ellipsoid. This comparison is carried out by global sensitivity. For the

significance ellipsoid, the relation d’C*d =®,  is fulfilled for a o, significance level;
for the confidence ellipsoid, d"C'd = @, ., is fulfilled for a given confidence level (cL )
and the sensitivity eIIipsoid,c?TCjcf’:d)h,%,ﬁo. ConsideringCL =1-¢,, the significance

ellipsoid turns into the confidence ellipsoid and the analysis focuses on the

determination of®, , =4 In this case, two scenarios were defined: 4> h"and

h,ao,ﬁo )

h<h", where i’ is the value for hthat satisfies the equality @, , =24, , .. Then the

confidence and sensitivity ellipsoids were determined, for 7 <#4" the confidence

ellipsoid is smaller than the sensitivity ellipsoid (Figure 1) while for # > 4" the sensitivity

ellipsoid is smaller than the confidence ellipsoid (Figure 2).

Figure 1: Ellipse of confidence and sensitivity for 4 < /" .

l:l Ecwlﬁdenae

\ I"'-.Il'yo = 0.95, 8, = 0.20 0 Esensitivity
\ yo =0.95,8 =042

Source: The author.

Figure 2: Ellipse of confidence and sensitivity for > /" .

I:l Emn_ﬁdencxe
"\ yo=095§=0.08 e

N Sensitivity

\\ ¥ = 0.95, B, = 0.20

Source: The author.
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3 DEVELOPED PAPERS

For the composition of this thesis, 3 scientific articles were developed, of

which 2 have been published, and last is in the revision phase.

3.1 FREE NETWORK ADJUSTMENT: MINIMUM INNER CONSTRAINTS AND
PSEUDO-INVERSE APPROACHES

In this study, we conducted an in-depth examination of the two primary
methodologies employed for the free adjustment of geodetic networks: the Minimum
Inner Constraints method and the Pseudo Inverse technique. We provided a
comprehensive theoretical framework for both methods before implementing them on
a two-dimensional geodetic network. Our results demonstrated that, within the context
of this specific network, both methods yield equivalent outcomes. Additionally, we
delved into aspects of the iterative processes associated with these models,
particularly focusing on evaluating their nonlinearity conditions. This paper makes a
significant contribution to the field by elucidating the theoretical underpinnings of least
square models, which are frequently utilized in sensitivity analyses and deformation

testing within geodetic studies.
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ABSTRACT:

The least squares technique is a classic procedure to compute
the coordinates of a geodetic network. Different approaches of
this method have been developed to perform the least squares
adjustment and thus solve the linearized system that relates
the observations (internal geometry) and the reference system
(external geometry). The free adjustment is a model that does
not use fix coordinates in the design matrix, thus the solution
does not have connection with referential system or datum.
Therefore, the rank deficiency problem or datum defect, which
in terms of linear algebra defines a singular matrix in the system
of normal equations, must be solved. Two mainly approaches
of free adjustment are used to solve a geodetic network, the
minimum inner constraints and pseudo-inverse technique. Both
models provide results in an arbitrary reference system, there-
fore, the S-transformation is a typical procedure to transform
the result to a known datum. This paper presents a review
of both methods and the necessary methodology to perform
a free network adjustment. Finally, an example was presented
to analyze the equivalence between both methods. The results
obtained were compared with an estimation realized through the
constrained adjustment.

Keywords: Least squares, Free adjustment networks, Minimum
inner constrains, Pseudo-inverse, S- transformation.
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RESUMEN

El método de los minimos cuadrados es un procedimiento clasico
para calcular las coordenadas de una red geodésica. Se pueden
utilizar diferentes modelos para realizar el ajuste por minimos cua-
drados y asi resolver el sistema linealizado que relaciona las obser-
vaciones (geometria interna) y el sistema de referencia (geometria
externa). Uno de los métodos es el ajuste libre, el cual es un modelo
que no utiliza coordenadas fijas en la matriz de disefio, por lo que
la solucién no tiene conexién con el sistema de referencia o datum.
Por lo tanto, el problema de la deficiencia de rango o datum en
términos de alegra lineal define una matriz singular para el sistema
de ecuaciones normales que tiene que ser resuelto para ajustar una
red geodésica. Mediante este método se utilizan principalmente dos
enfoques de ajuste libre, la técnica de restriccion minima interna y
la técnica pseudo inversa. Ambos modelos proporcionan resultados
en un sistema de referencia arbitrario, por lo que la S-transforma-
cién es un procedimiento tipico para transformar los resultados a un
datum o sistema de referencia conocido. En este trabajo se presen-
ta una revisién de ambos métodos y la metodologia necesaria para
realizar un ajuste de red libre. Finalmente se presenté un ejemplo
para analizar la equivalencia entre ambos métodos. Los resultados
obtenidos se compararon con una estimacién realizada a través del
modelo de ajuste con constrefiimientos.

Palabras clave: Minimos cuadrados, ajuste libre de redes, res-
triccién minima interna, Pseudo-inversa, Transformacién S.
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Introduction

The main technique for coordinates computation of a geo-
detic network is the least squares method. This method
relates the internal geometry (observations) and the ex-
ternal geometry (parameters). An important step on the
least square adjustment of networks is the definition of
a referential system or datum that allows connecting the
internal geometry with a reference system. An approach
for the definition of the datum is the selection of control
points belonging to the external geometry network, so the-
se points are considered fix in the design matrix during
the adjustment procedure (absolute constrains) (Mikhail &
Ackermann 1976, Mikhail & Gracie 1981, Teunissen 2011,
Gemael et al. 2015, Ghilani 2018, Ogundare 2019). For the
network adjustment process, the stability of the control
points that define the datum is relevant, because displace-
ments in them or changing in their positions can generate
influences on the coordinate comparison or in deformation
network analyses. Thus, the selected control points must
have a good stability.

There are alternative procedures to reduce the influen-
ce of the stability of the control points among them we
find the free adjustment. A main characteristic of the free
network adjustment is not to consider the influence of ex-
ternal factors, therefore the errors associate to the control
points are not considered (Milzer et al. 1979, Blaha 1982,
1982a, Papo 1985, Even-Tzur 2011, Even-Tzur 2015).
Thus, the stability and consistency problems of the coordi-
nates that define the datum do not affect the adjustment
results (Even-Tzur 2006). This characteristic is useful for
geodetic monitoring activity, where the deformation ele-
ments can be estimated only if the control points that
define the datum do not change between the measure-
ment epochs (Even-Tzur 2011). In general, the network is
treated as free network when all stations are assumed as
unstable, and hence a minimum trace datum is used trough
of free adjustment (Setan 2001).

The absences of datum parameters in the adjustment
procedure generates the datum defect problem. For ne-
twork adjustment by least square procedure this situation
means that inversion of the normal equation matrix (N)
cannot be computed by traditional techniques. Thus, the
adjustment solution can be obtained by specific methods.
Perelmuter (1979), Papo & Perlmutter (1981), Teunissen
(1981), Leick (1982) and Ogundare (2019), present the
free adjustment for networks using “minimum inner cons-
traints”, where are fixed a minimum quantity of approxi-
mate coordinates that permit the datum definition for
1D, 2D, and 3D networks. This coordinates are added to
design matrix A, thus de rank deficient is solved and the
inversion of the normal equation matrix is possible. Rao
(1972), Mittermayer (1972), Grafarend & Schaffrin (1974),
Perelmuter (1979), Teunissen (1981), Meissl (1982) and

Ogundare (2019), present another approach with gene-
ralized inverses, in particular the Moore-Penrose inverse,
this method provides a mathematical solution to inversion
of normal equation matrix. For Ogundare (2019), in the
context of network adjustment by least squares the mini-
mal inner constraints method provides similar results that
Pseudo-inverse. The goal of this work is to present a review
of both methods with the main characteristics and their
application in a geodetic network.

Least square estimation

The least square estimation provides a solution for an
equation system with redundancy measurements throu-
gh of a mathematical model. Particularly, for geodetic
applications, the solution of these systems provides the
parameters, mainly coordinates and heights (Vanicek &
Wells 1972, Mikhail & Ackermann 1976, Mikhail & Gracie
1981, Cross 1990, Krakiwsky 1994, Vanicek 1995, Strang
& Borre 1997, Wells & Krakiwsky 1997, Camargo 2000,
Nievergelt 2000, Aduol 2003, Teunissen 2011, Brinker &
Minnick 2013, Gemael et al. 2015, Ghilani 2018, Ogundare
2019, Schaffrin & Snow 2019). The basic functional model
is presented in Equation 1:

Ymxt = Aman * Xnx1 (1)

Where y corresponds to the observation vector of dx
dimension (m x 1), A is the design matrix (m x n) and is
the unknown parameters vector (n x 1). The y vector is
composed of surveying or geodetic measurements; there-
fore, this vector is contaminated by errors arising from
the measurement’s procedure. Thus, in order to reduce
these errors on the results, the observation data is greater
than the number of unknown parameters (m > n). This
condition, called redundancy, makes that system to be in-
consistent and the unknown parameters can be estimated
by different techniques. The network adjustment is the
common geodetic procedure where the data of observa-
tions is redundant, therefore, the parameter estimation or
adjustment process is necessary, the least squares solution
is the main technique used for the network adjustment
(Mikhail & Ackermann 1976, Mikhail & Gracie 1981,
Teunissen 2011, Gemael et al. 2015, Ghilani 2018, O gun-
dare 2019).

The least square solution is given by dx = N- U, where
N = (A*- W- A) (normal equations) and U = At W .y
(vector terms), W is the weight matrix (m x m). Therefore,
the inversion of the N matrix is possible only if its deter-
minant is different to zero (|N|#0). Thus, the non-singular
condition of N matrix means than the columns on the A
matrix are not linearly dependent (Welsch 1979, Caspary
et al 1987, Deakin 2005, Teunissen 2006, Ogundare 2019).
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Geodetic network datum

For a geodetic network, the datum is defined as the pa-
rameters (coordinates) that permit the positioning of the
network in an arbitrary referential system (Kuang 1996,
Strang & Borre 1997, Ogundare 2019). In other words, the
coordinates define the rotation, translation and scale of the
system. The number of coordinates necessary to the defi-
nition and their dimensionality depended on the network
type (1D, 2D, 3D) and the geodetic observables. For the
observables, each of them can define rotation, translation
or scale. The Table 1 presents the mainly geodetic observa-
bles and the datum element that define.

For the network type, Ghilani (2018), explains that to a
1D-network one vertical control point provides the datum
definition (vertical translation). In addition for 2D and 3D
classical networks, one control point (translation matrix)
with same dimensionality of the network and one direction
or azimuth (rotation matrix) are necessary, in both cases
the scale is provided by the EDM sensor (observable). A
particular case is the GNSS network, where the definition
is done by one point, because the coordinates x,y,z provide
the translation, the baseline components dx, dy, dz the
orientations and scale (Ogundare 2019). Different sets of
network configuration and parameters to define the survey
geodetic network datum are presented in the Table 2.

According to the number of parameters that define the
geodetic network we found two kinds of datums, over-con-
strained and minimum constrained. The over-constrained
definition (more points than necessary to datum defini-
tion), provides a connection with referential system, that is
an advantage. Conversely, the main problem for over-con-
straints definition is a stability and accuracy of controls
points because the network accuracy can be affected by
strains in the network geometry.

On the other hand, the minimum constrained datum is
a solution without external influences. Therefore, the mea-
surements or observations define the network geometry. A
disadvantage is the absence of control points, this means in
relative position for the coordinates. (Caspary et al., 1987,
Kuang 1996, Ogundare 2019).

Free adjustment

For the geodetic network, the internal geometry that is
defined by observations of distances, directions or heights
differences needs to be connected to a geodetic reference
frame. For this, the external geometry composed of con-
trol coordinates are part of the least square adjustment
process, commonly these coordinates are called constraints
or fix parameters. This process permits to connect the ob-
servations with a geodetic reference frame (Deakin 2005,
Teunissen 2006, Shahar & Even-Tzur 2014). For Deakin
(2005) and Teunissen (2006), the observations provide par-
tial definitions of a geodetic datum; therefore, the datum
definition is done when the constraints parameters are used
in the adjustment process.

The concept of free adjustment of geodetic networks is
defined as the absence of fixed parameters in the adjust-
ment process, in other words, there is no set of coordinates
of the external geometry of the network during adjustment.
Therefore, the elements of the internal geometry (obser-
vations) do not integrate the frame of reference during
adjustment (Mittermayer 1972, Malzer et al. 1979, Papo
1985, Deakin 2005, Teunissen 2006, Shahar & Even-Tzur
2014). The absences of datum parameters in the adjust-
ment procedure generates the datum defect problem or
rank deficient. In network adjustment by least square pro-
cedure this situation means that inversion of the normal
equation matrix (N) cannot be obtained by traditional
inverse procedure, because the matrix is singular, that is,
the matrix has columns that are linear combination of the
others. Two methods to compute the free adjustment net-
work prevail: the minimal constrained and free adjustment
through of generalized inverses. Both methods provide a
solution to inversion of the normal equation matrix.

Minimum inner constraints model
The minimum inner constraints model incorporates a mini-

mal amount of parameters necessary to define a referential
system. Thus, the external geometry is not considered in

Table 1: Observations that define datum parameters, Adapted from Kuang (1996)

Observable Translation (t) Rotation (o) Scale (s)
Distances - - s
Horizontal directions - - -
Azimuth - w-Z -
Zenith directions - w-X, w-Y -
GNSS/ Position t-X, t-Y, t-Z w-X, Y, o-Z s
2D position differences - w-Z s
Height differences - w-Y, w-Z s
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Table 2: Datum parameters, Adapted from Kuang (1996)

Network Observation Network Datum parameters
dimension type(s) name Translation Rotation Scale
1 .Helght Level network 1 — -
differences
. . . 1 0 yo
2 Distances Trilateration 01 _X',o -
. . 10 y? y!
2 Angles Triangulation 01 xo X0
. 1 00 0 —=z?f y?
3 D';tlf"fei / 3D network 01 0 200 —? -
& 00 1 50 x° 0

* The rotation matrix correspond to the vector representation of rotations ( Zeng et al., 2015)

the adjustment procedure, this model is called minimum
constraints model. Therefore, the shape and the geometric
size of the network is defined only by the internal geometry
(Mikhail & Ackermann 1976, Mikhail & Gracie 1981, Snow
2002, Teunissen 2011, Ogundare 2019, Ghilani 2018). The
normal equations (N) and the independent vector terms
(U) to minimum inner constraints adjustment are presen-
ted following:

N=A"-W-A+G G (2

3)

In the normal equation N, the term G - G' is added.
The G matrix called constrained matrix span the null space
of A and contains the inner datum parameters that define
the dimensionality of the network. The configuration of
the G matrix considers the rotation, translation and scale.
Koch (1985), Setan (1995), Kuang (1996), Acar (2006),
Rossikopoulos et al. (2016), Kotsakis (2018) and Ogundare
(2019) presented the set of the G matrix for 3D network
(Equation 4)

U=A"W-1

1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 1
Gt = 0 Zl _Yl H 0 Zz —Y2 —Y-n (4)
—Z 0 X1 —Z 0 X, X,
i -X 0 , -X 0 0
X h 4 X, h 4 Zn

The first three rows of the G matrix correspond to the
3D translations, the next three row correspond to the 3D
rotations and the last row to the scale parameters. For
both cases X, Y|, Z are approximate coordinates of the
network. The number of columns of the G matrix is equal
to the number of parameters to be estimated. Thus, for a
level network with five parameters to estimate, the transla-
tion of vertical component is expressed in the G matrix as

UD y la Geomatica ® No 15. ® 2020 e pp.

=[11111]*(Setan, 1995). The adjustment parameters
are presented in the Equation 5:

de=N1t-AW-A-N1U (5)
The variance covariance matrix is:
Q. =N1-AW-4-N1 (6

Generalized inverses

In free network adjustment, the inversion of the normal
equation (N) matrix can be computed by the generalized
inverses (Rao 1972, Grafarend et al. 1974, Malzer 1979,
Leick 1982, Meissl 1982). In particular, The Moore-Penrose
inverse is the main inverse used in geodetic networks
problems called “Minimum norm least squares g-inverse”
(Welsch 1979) Thus for A € R™ and the linear system
A-x=ywithx ER: y & IR’" The Moore-Penrose
pseudo—mverse provides a solution x = Aly, where Al is
a pseudo inverse of A. This matrix is unique and has the
following properties (Equation 7):

ad - At-A=A4
b.AT-A- AT = At
c.(A- ANt =4.4"
d.(At-A)t=AT-4

(7)

For full rank matrices (rows or columns linearly in-
dependent) the pseudo inverse can be obtained for non-
square matrix. Therefore, if m < n (rows linearly indepen-
dent), At = A*- (A- A and for m > n (columns linearly
independent), AT = (At~ A)? - At When = n, Al = AL,
For matrices with deficient rank, the solution is com-
monly obtained by the Singular Value decomposition
(SVD). Where A can be decomposed as A = UZV* and
(Burdick, 2010).
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The solution for least squares is

dx=Nt-At-W-y (8)

While the variance-covariance matrix is given by:

(9)

S-transformation

The datum independence on the free network adjustment
turns necessary the transformation of results of each epoch
to a common datum for the particular analysis as deforma-
tion or densification, also by defects in the network config-
uration or practical limitations (such as obstruction of the
line of sight or destruction of points) (Setan 1995, Setan
& Singh 2001). Thus, the S-transformation technique per-
mits the datum re-definition between referential systems or
epochs (Baarda 1981, Griindig et al. 1985, Caspary et al.
1987, Setan 1995, Setan & Singh 2001, Teunissen 2006,
Acar et al. 2008, Doganalp et al. 2010, Even-Tzur 2012).
For the S-transformation, the estimation of parameters
(dx) and the cofactor matrix @x are necessary (Baarda
1981, Griindig et al. 1985, Caspary et al. 1987, Erol et
al. 2006, Teunissen 2006, Acar et al. 2008, Doganalp et
al. 2010, Guo 2012, Even-Tzur 2012, Schmitt 2013). The
equations for the transformation are presented:

xj- =5f'xi
Quj =5 Qxj" S/

S=(-G (G- 6)t-6t-

(10)

Where:

X: Transformed parameters between referential system

ij.: Transformed cofactor matrix between referential
system

SJ_: Corresponds to the transformation matrix

I: Corresponds the diagonal matrix for defining the
base after S-transformation, the diagonal elements can be
one for elements that participate into datum definition or
zero for other points

I: ldentity matrix

G" Corresponds to the inner constraint matrix; this
matrix is composed by rotation, translation and scale.

For a level network composed of four points, the
S-transformation can be explained through an example.
For this, we considered the transformation between two
referential systems (Caspary et al. 1987, Setan 1995):

Ordinary minimum constraints with station 1 chosen as
the datum point

Minimum trace where all stations are used for datum
definition

The G matrix can be defined by scale constraint, there-
fore G = [1 11 1] and for case (a) /, = [1 0 0 0] and
for case (b) /, = [1 1 1 1]% The identity matrix has a
dimension of 4x4. Thus, the transformation from (a) to (b)

is defined by:

Xja = 9jb " Xi

_ 11
Sjbz(I_G(GEI]bG)IGthb ( )

Application

As an example, the free adjustment was applied in the
downstream geodetic network of Salto Caxias hydroelec-
tric power station located in the Parana state, Brazil
(Figure 1). The external geometry of this network have
four (4) stations while the internal geometry is composed
of six (6) distances, twelve (12) angles and one (1) azimuth
observation (Table 3) (Granemann, 2005).

The minimum inner constraints method and pseu-
do-inverse approach were applied in network adjustment
according to section 5 and 6 respectively. Additionally the
constrained adjustment was calculated with the P1 point
as fixed and oriented to point P3 (902). The stochastic
model of the observations corresponds to measures of va-
riability (standard deviation), therefore the weight matrix
was defined by the inverse of variance of the observations.

P6

P4

Z mmy

P1 P3

Figure 1: 2D network of Salto Caxias

The results for the constrained adjustment are present-
ed in the Table 4, in this case, the point P1 is the control
point or absolute constraint.

For the minimum inner constraints method the G
matrix has a dimension of 2x8 and is composed only of
translation parameters:

., 110101010
G_01010101 (12)
For free adjustment procedure applied to nonlinear
models, the determination of the initial coordinates and
iterative process are a critical step. Tsutomu (1986) & Kat-
sumi (1990) related the influence of the determination of
initial coordinates and the free adjustment results. Kotsakis

(2012) explains the relation between the stability of the
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Table 3: Network observation of downstream geodetic network of Salto Caxias hydroelectric power station

28

Network observations
Dis-
Line tance | o (mm) Angle Value c (" Angle Value a ("
(m)
_PPl3 232.809 1.0 P3 P1 P4 | 75° 49' 39.36" 14 P4 P6 P3 | 18° 17' 10.68" 1.5
-Plf4 653.555 4.0 P4 P1 P3 17° 6' 24.84" 1.7 P4 P6 P1 | 83° 58' 5.88" 2.0
P4 267° 03! e 1 1
_p3 205.711 3.0 P3 P1 P6 554411 1.2 P1 P4 P6 | 20° 12' 16.2 2.8
P3 276° 01' ° 1 1
P1 581.863 3.0 P1 P6 P4 53.76" 2.0 P3 P4 P1 | 56° 17' 1.32 1.8
_PPl4 670.340 4.0 P6 P4 P3 | 283° 30' 42.1" 2.2 P1 P3 P6 21° 23' 0.6" 0.9
o | esners | 30 | PaP3PL | 2537232070 | 11 | P6P3P4 | 8513 2892" | 08
Az P1 P3 90° 0'0" 1.0
Table 4: Constrained adjustment results
. Constrained least squares
Point
X (m) o (m) Y (m) o (m)
P1 1000.000 Control point 1000.000 Control point
P3 1581.8635 0.0018 1000.0000 0.0001
P4 1640.6799 0.0017 1197.1894 0.0019
P6 988.0811 0.0009 1232.5038 0.0009

network and the iterative convergent solution. Thus, the
free adjustment applied to networks with nonlinear models
should have a special treatment to represent the network
geometry. In this work, we used the procedure presented
by Tsutomu (1986), therefore the initial coordinates co-
rrespond to the adjustment coordinates obtained by the
constrained adjustment of the same network with the point
P3 fixed.

In Figure 2 from Kotsakis (2012), AB line is a distance,
the grey line represents the probable positions of point B
with respect to point A and the red line represents the
possible positions of B with respect to the reference sys-
tem. The B point is the real location of this coordinate.
Bl and B2 points are two different initial coordinates for
iterative process. In this case, the network stability is better
if the B1 is the initial coordinate due to the proximity
between the coordinates B1 and B. For Ipsen (2011), this
situation can be explained due to B1 or B2 is far from B.
the method may not converge. This means the solution
does not represent the network geometry. In other words,
for rank- deficient models the convergent solution is not
necessarily unique.

Y A

A v X
Figure 2: Adapted from Kotsakis (2012), position of initial coordinates

to free adjustment

The adjustment parameters and their precisions for both
approaches are presented in Table 5:

The global test (chi-square) was applied to each ad-
justment, the results are presented in Table 6 to confidence
level of 95% with (n-u)=(19-8)=11 degrees of freedom for
free adjustments and (n-u)=(19-6)=13 degrees of freedom
for the constrained adjustment.
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Table 5: Least square solution by Pseudo-inverse approach and Minimum inner constraints method

29

Pseudo inverse approach Minimum inner constraints
POl X m) | om) | Y |em) | Xm)  o@m) | Y@ | o(m
P1 999.9963 0.0011 999.9966 0.0016 999.9963 0.0009 999.9966 0.0005
P3 1581.8598 0.0010 999.9966 0.0015 1581.8598 0.0009 999.9966 0.0005
P4 1640.6762 0.0011 1197.1861 0.0022 1640.6762 0.0009 1197.1861 0.0014
P6 988.0775 0.0011 1232.5005 0.0017 988.0775 0.0009 1232.5005 0.0008

The S-transformation was applied to both adjustment

processes, so one control point was selected (P1) and

considered as constrained parameter, its coordinates are
(1000.00m, 1000.00m). The measured bearings and the
scale by the measured distances define the orientation of
the network. The dimension of the G' and | matrix is 2x8.

Both matrix are presented following:

t_[101
“lo1 0

0101()]
1010 1

=[10000000] (14)
01000000

The adjustment vector parameters transformed throu-

X=x,tx

gh S-Transformation is obtained through:

(15)

Where x, corresponds to initial vector of the param-
eters, the variance covariance matrix was obtained with
equation 5. The results and their precision are presented
in the Table 7:
Finally, differences between the free adjustments and
constrained adjustment are summarized in the Table 8.

Table 6: Global test to each adjustment approach

Method Estimate Critical value (95%) Status
Pseudo inverse 6.1648 19.67510 Pass
Minimum inner 6.1648 19.67510 Pass

constraints
Parametric adjustment 6.9851 24.73560 Pass

Table T7: S-transformation results to Pseudo-inverse approach and Minimum inner constraints

Point Pseudo inverse approach Minimum inner constraints
X (m) o (m) Y (m) o (m) X (m) g (m) Y (m) o (m)
P1 1000.000 0.0000 1000.000 0.0000 1000.000 0.0000 1000.000 0.0000
P3 1581.8635 0.0018 1000.000 0.0028 1581.8635 0.0018 1000.000 0.0000
P4 1640.6799 0.0020 1197.1894 0.0036 1640.6799 0.0017 1197.1894 0.0019
P6 988.0811 0.0015 1232.5038 0.0009 988.0811 0.0009 1232.5038 0.0009
Table 8: Summary of differences between free adjustments and constrained adjustment
Method / adjustment P . Minimum inner Constrained
seudo-inverse . .
elements constraints adjustment
Coordinate unknowns 8 8 6
XY Coordinates and X,Y Coordinates and X.,Y Coordinates and
Datum defect . . . . . .
orientation orientation orientation
Datum definition Free Free Fix
Degrees of freedom 11 11 13
Posterior variance 0.5604 0.5604 0.5373
x? estimate 6.1648 6.1648 6.9851
Critical value of %2 19.6751 19.6751 24.7356
Global test (one — tailed) Pass Pass Pass

UD y la Geomaéatica e No 15. 2020 e pp. 59-68 e p-ISSN: 2011-4990 e e-ISSN: 2344-8407

[65]



30

FREE NETWORK ADJUSTMENT: MINIMUM INNER CONSTRAINTS AND PSEUDO-INVERSE APPROACHES

Conclusions

Two approaches for free adjustment computations were
presented, the pseudo-inverse method that provides a
mathematical solution to compute the inverse of normal
equation matrix (N) and therefore maintains the classical
formulation to the least squares. On the other hand, the
minimum inners constraints method needs the addition of
the G matrix, which contains the minimum parameters to
datum definition. Thus, the G matrix spans null space to
the design matrix A, consequently the lack of information
of the network datum or the rank deficiency is solved and
the inversion of the normal equation matrix is done.

For the example presented, both methods provide equi-
valent results for the parameters, and global test, therefore
according to Ogundare (2019) it was verified the simila-
rity of both methods. The S-transformation is necessary
to transform datum from the arbitrary referential system
(provided by the free adjustment) to the reference datum.
The results of the S-transformation have equivalent results
for both methods.

One of the main differences between both methods
(free and parametric) is related to the definition of the
network geometry, which in the case of free adjustment is
obtained without the need to set coordinates in the design
matrix. Therefore, the network geometry is defined in an
arbitrary system from the observations themselves. This
feature is useful for evaluating the quality of a network
adjustment.
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3.2 INFLUENCE OF NETWORK CONFIGURATION AND STOCHASTIC MODEL ON
THE DETERMINATION OF THE MINIMUM DETECTABLE DISPLACEMENTS
(MDD) THROUGH SENSITIVITY ANALYSIS AND SIGNIFICANCE TEST

This research explores the impact of various factors on the detection of
minimum detectable displacements (MDD) in geodetic networks. Specifically, it
examines how the network's configuration, the choice of stochastic model and the
application of a local or global approach influence MDD determination. The study
introduces a methodology that incorporates sensitivity analysis and significance
testing, integrating sensitivity attributes to establish confidence regions based on MDD
according to Proszynski and tapinski, (2021)

A key aspect of this research involves assessing the correspondence between
the critical value in a significance test and the non-centrality parameter
obtained from a chi-square distribution. This assessment is crucial for
calculating concentric ellipsoids, which represent both sensitivity and
accuracy. The study meticulously analyzes how alterations in the network
configuration, the selected stochastic model, and the type of analysis
(local or global) affects the interplay between sensitivity and accuracy.

The findings underscore the importance of these factors in geodetic network
design and analysis. By highlighting the significant role these elements play, the
research offers vital insights for developing robust and effective geodetic networks in

practical scenarios.
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Abstract:

This study investigates the influence of geodetic network configuration, stochastic model, and the
approach local or global on the determination of minimum detectable displacements (MDD) using
sensitivity analyses and significance tests. The proposed approach integrates sensitivity
characteristics to establish confidence regions based on MDD. Also, we examine the equality
between the critical value of a significance test and the non-centrality parameter derived from a
chi-square distribution to compute concentric ellipsoids representing sensitivity and accuracy. The
analyses were focused to evaluate how variations in network configuration, stochastic model, and
the type of analysis (if global or local) affect the relationship between sensitivity and accuracy.
Our results showed the importance of considering these factors, providing valuable insights for
robust network design and analysis in practical applications.

Keywords: Statistical tests; deformation analysis; minimal detectable displacements; geodetic
monitoring

1. Introduction

In the pre-analysis of the geodetic monitoring networks, the sensitivity analysis provides valuable
insights related to the capacity of the geodetic network to detect deformations. The sensitivity
analysis is applied for specific probability levels based on the minimum detectable displacement
(MDD) of monitoring points (Even-Tzur, 2010). Here, some aspects such as the network
configuration, stochastic model, and the sensitivity analyses type, namely, global (for the entire
network), and local (for specific points) play a key role. Thus, if the computed MDD exceeds the
desired threshold based on the specified probability levels and the number of points tested
simultaneously, it indicates a need for design improvement. This can be achieved by adding new
observations and points, reducing their standard deviation, changing the probability levels or the
approach (global or local). The computation of MDD is essential in geodetic monitoring as it
accounts for both Type | errors (false positive) and Type Il errors (false negative). These error types
define a false alarm, namely, a deformation incorrectly detected and an undetected deformation.
The last one is a critical condition for geadetic monitoring (Carvajal et al., 2022).

In addition to the sensitivity analysis, the network accuracy is also analyzed in the pre-analysis or
design stage. Here, the thresholds for confidence and significance tests are defined to provide the
best network design according to requirements (Proszynski & tapinski, 2021). As in the sensitivity
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analysis, in accuracy analysis, the configuration of the network, the stochastic model, and the
probability levels are aspects can influence the results. In this context according to (Prészynski &
tapinski, 2021), the analysis of accuracy and sensitivity are traditionally applied separately due to
the lack of a theoretical basis to consider a unique analysis. Therefore, the same
authors(Proszynski & tapinski, 2021a)(Proszynski & tapinski, 2021a)(Prészynski & tapinski, 2021a)
provide a theoretical basis to consider the confidence region and significance test in sensitivity
analysis in a unified approach based on MDD determination.

The method called variance factor (I) supports the confidence region in a network sensitivity
characteristic. For this, the method provides equality between the critical value of the significance
test of displacements @, ., (associated with confidence region) and the non-centrality parameter
An,q,g based on x2-distribution for a specific value for the power of test y, determined by a Type
[l error probability By (o = 1 — By), coordinated with the stipulated Type | error probability or
level of significance @, and the h-dimensional displacement vector such that @, = Ay 4,5,
After the equality determination, the MDDs are computed and represented as concentric
ellipsoids where the MDD corresponds to the semi-major axis (Clneyt Aydin, 2014). Here the
relation between accuracy and sensitivity depends only on probabilistic concepts and does not
consider aspects such as the network configuration and the stochastic model.

In this study were carried out several experiments to analyze the relationship between accuracy
and sensitivity. Thus, initially, the sensitivity analysis characteristics were included in the
deformation detection analysis through the global congruence test. Furthermore, we presented
aspects related to the network configuration, stochastic model, and simultaneous displacements
(multivariate and univariate approaches). Here, our results showed that the configuration
network, stochastic model, and the type of analysis, namely, global or local influence the
deformation analysis (MDD value) for both approaches. Finally, we presented experiments to
analyze the influence of the network configuration, and the stochastic model in the relation
between sensitivity and significance analysis presented by (Prészynski & tapinski, 2021).

2. Theoretical basis

2.1 Deformation analysis: Global Congruence Test (GCT)

The theoretical approach initially considers the deformation test. Here a displacement vector
is given by:

d:XZ_Xl (1)

Where x4 and X, are the least squares solution for the monitoring network parameters (point
coordinates) in the first and second epoch respectively. The covariance matrix is computed as:
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Cq = 05Qq (2)

Here Qq is the cofactor matrix of the displacement vector, and o is the a-priori variance
factor. Based on hypothesis testing, two hypotheses are formulated:

Hy:E(d) = 0 and Hy: E(d) # 0 (3)
While the test statistic is given by:
@ =d"cid (4)

Which follows (central) y2-distribution with h degrees of freedom in Hy, is compared with the
theoretical value of)(éih corresponding to the a-significance level. If the test statistic @ is smaller
than the threshold value, the null hypothesis Hy is not rejected with the confidence level of 1 —
«, and it is concluded that there is no deformation between the two epochs. Otherwise, it is
decided that displacement has occurred with the probability risk of a false positive given by a. This
congruence test may be performed by considering the estimated variance factor. In this case, the
test follows F (Fisher)-distribution. Nonetheless, this case is outside the scope of this paper. More
information can be found in (Clineyt Aydin, 2014).

2.2 Sensitivity analysis

The capacity of the network to detect displacements can be quantified by sensitivity
analysis (Aydin, 2014). Based on the deformation test, a theoretical vector of expected
displacement, denoted by A, is related to the alternative hypothesis defined as:

HypE(d)#0=4A (5)

Here the non-rejection of Hy implies that the expected displacement values of the vector
A can be detected by the monitoring network. The theoretical relationship of the non-centrality
parameter (A) and the test statistic (T') is given by:

T=21=ATC;*A (6)

The condition to define if the network is sensitive to displacements is given by:

A=A (7)
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where A, is the so-called lower bound of the non-centrality parameter which fulfills the given
power of the test y, being the complement of the type-Il error probability fy: ¥ = 1 — B,. Here
Ay is obtained from (C. Aydin & Demirel, 2005).

2.3 Minimal detectable displacements (MDD)

To evaluate the MDD, firstly a vector with the expected displacements is defined from a vector of
directions g and a scale factor value denoted by b ( Aydin, 2014). Thus, the condition A = bg is
fulfilled. If b = byin (Apin= bming), then the determination of b,,,;,, is given by:

bpin = YV MoAmax (8)

where Apqy 1S the maximum eigenvalue of the covariance matrix of C4 . According to (Kirec¢ &
Konak, 2014) b,,;,, is the best sensitivity level of the network. On the other hand, the worst
sensitivity level of the network can be computed as:

bmax = A()}\'min (9)

where Ay, is the minimum eigenvalue of C,. According to (Hsu & Hsiao, 2002) the average
between by, 4, and b, can be interpreted as the global sensitivity for the entire network.

To obtain the vector of directions of displacements, (Aydin, 2014) computed the (unity)
eigenvectors corresponding to the maximum eigenvalue (A,,4,) and the minimum eigenvalue
(Amin) of the Cg4 matrix (Agx and Ay respectively). Thus: Ayin= bminAmax and Apax=
baxAmin. The MDD in each it" element of the vector d is given by the respective it" element of
Ajpin OF Ay gy For details, we suggest ( Aydin, 2014).

2.4 Global and Local sensitivity analysis

The sensitivity analysis can be carried out under a global or local approach. Here an
important analysis related to simultaneous and unitary displacements arises. If the global analysis
is applied the MDD represents simultaneous displacements of all the points that make up the
monitoring network. Conversely, if the local sensitivity is applied the MDD is computed for a
specific point. These conditions imply that the h-dimensional vector of displacements changes and
therefore the non-centrality parameter also. Here, for 2D and 3D networks, the local sensitivity
can be computed under multivariate (simultaneous displacements) or univariate approaches. For
example, a multivariate analysis for a 3D point with a, =5% and y, =80% implies
A(yo=80%,00=5%h=3) = 10.9. On another hand, if the univariate approach is used, the non-
centrality parameter is computed as Ay, =go%,a,=5%h=1) = 7-85. These conditions are fulfilled for

the significance test also (¥{y —s, n=3) = 7-81 and x(y —se, n=1y = 3.84) (Bandeira et al., 2021).

Thus, the multivariate and univariate approaches are related to aspects of detectability,
where the multivariate approach has more difficulty to detect deformation due to critical values
being calculated from stochastic models without covariance (e.g., GNSS). For the univariate
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approach, the neglect of covariance can be generated false positives and false negatives in
addition to providing only a displacement magnitude and not their directions. Based on this, the
multivariate approach is recommended (Bandeira et al., 2021).

2.6 Confidence region determination supported by network sensitivity
characteristics

The thearetical basis for the confidence region determination supported by network sensitivity
characteristics is developed for the scenarios where a¢ is used. Here, a specific value for the
power of test y, is determined through a value of 8, coordinated with the stipulated level of
significance a and the h-dimensional displacement vector. This approach provides equality
between the critical value for the significance test and the non-centrality parameter of the
sensitivity test:®y, o = Ap g5, (Proszynski & tapinski, 2021).

Initially for h = 1 the relation Ap 4, g, = Ph,q, is fulfilled. If the h value increases, both values
Anao B, and @pq, also increase. However, for a specific value of h (namely h*), the relation
Pp oy = Ana,,p, 1S achieved (Proszynski & tapinski, 2021). The results presented by the authors
show that for h* = 7.3 the above equality holds to @y, = 0.05 and £, = 0.20. In addition, for
values greater than h* = 7.3, the relation @y 4 > Ap 4,4, is fulfilled. Note that for different
values for ay and 8y, the value for h* also changes.

The approach proposed by Praszynski & tapinski (2021) is based on the size comparison of
three concentric ellipsoids; sensitivity ellipsoid, confidence ellipsoid, and significance ellipsoid.
This comparison is carried out by global sensitivity. For the significance ellipsoid, the relation
dTCHd = @y 4, is fulfilled for a ay significance level; for the confidence ellipsoid, d"C}d = @y, ¢,
is fulfilled for a given confidence level (CL) and for the sensitivity ellipsoid, aTC;a = Ahag,By-
Considering CL = 1 — a, the significance ellipsoid turns into the confidence ellipsoid and the
analysis focuses on the determination of @y 4 = Apq,p,- In this case, two scenarios were
defined: h > h”™ and h < h", where h” is the value for h that satisfies the equality @y, =
AhaoBo - Then the confidence and sensitivity ellipsoids were determined, for h <h® the
confidence ellipsoid is smaller than the sensitivity ellipsoid (Figure 1) while for A > h* the
sensitivity ellipsoid is smaller than the confidence ellipsoid (Figure 2).

D Emnﬁdence

. \Yo = 0.95, 8 = 0.20 ] Esensitivity

\ yo =0.95,8 =042

Figure 1: Ellipsoids of confidence and sensitivity for h < h*adapted from: (Proszynski &
tapinski, 2021)
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l:l Emnﬁdence
\ o = 0.95,4 = 0.08

\ \Yo B ‘:l Esensn‘nwry

Yo = 0.95, 8, = 0.20

Figure 2: Ellipsoids of confidence and sensitivity for h > h* adapted from (Prészynski &

tapinski, 2021)

3. Experiments and analyses

In this section, we conducted several experiments to evaluate the behavior of the MDD
under different scenarios, such as network configuration, number of observations, local or global
MDD, as well as different stochastic models. For this, we utilized two leveling networks: Network
A, which comprises 6 points as depicted in Figure 3, and Network B, which consists of 9 points as
shown in Figure 5. The number of observations for each network is denoted by n, while h
represents the dimensionality of the displacement vector. Table 1 provides a description of each

experiment.

Table 1: Summary of experiments

Experiment

Description

Experiment 1

Local MDD (h = 1) for network A withn = 11

Experiment 2

Local MDD (h = 1) for network A improved redundancy (n = 15)

Experiment 3

Test of local MDD values for n = 15 on network Awithn = 11

Experiment 4

MDD for three simultaneous points (h = 3) on network A withn = 15

Experiment 5

Global MDD (h = 6) on network A withn = 11

Experiment 6

Global MDD (h = 9) on network B withn = 12

Experiment 7

Global MDD for network A with n = 15 and network B withn = 20

Experiment 8

Global MDD for network A with n = 15 and network B withn = 20 with
gradients of different precisions
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For the first experiment, Figure 3 shows a leveling monitoring network with 11 height differences,
and a standard deviation of 1 mm from (Nowel, 2018). To evaluate the MDD, a trial and error
methodology presented by (Bandeira et al., 2021) was applied for each point of the network (local
sensitivity approach). In this step, in addition to the application of the significance test, which
considers only false positives in Hy; the sensitivity analysis was applied also, namely, the
occurrences of false positives in Hy and false negatives in Hy were considered, in both cases Q, =
2-Qx . In the last case, the critical value is determined by the non-centrality parameter

/1(},0,“0,11) instead of )((Zamh)

Figure 3: leveling network from (Nowel, 2018)

The results of the first experiment show that the MDD values are lower for the significance
approach (Table 2). These results are equivalent to the theoretical basis presented in (Proszynski
& tapinski, 2021) since h < h*. Another relevant aspect of this experiment is related to points 2
and 5. These points have a small magnitude for MDD in comparison with the points 1,3,4,6. The
main difference between these two groups is the number of observation connections which are 5
and 3 respectively.

Table 2: Local MDD for significance and sensitivity approach based on the GCT

Point d ;1) (mm) (Significance d ;1) (mm) (Sensitivity
analysis ) analysis )
1 1.5 2.1
2 1.1 1.5
3 1.5 2.1
4 1.5 2.1
5 1.1 1.5
6 1.5 2.1
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To evaluate the role of the network configuration, it was added observations between points 1-
3,1-4,3-6,4-6 with 1mm of standard deviation. Figure 4 shows the new network configuration.

e

Figure 4: 1D network adapted from example 1

From the new canfiguration, all the points have the same local MDD. Thus, the local MDD is 1.1
mm and 1.5 mm for the significance and sensitivity respectively. Therefore, here the configuration
of the network influences the MDD values. To evaluate this condition, the new local MDD found
in the network with 15 observations were tested in the first configuration (11 leveling differences).
The results are presented in Table 3

Table 3: Results for tested of MDD obtained in the second configuration inserted in the first
configuration

Deformation considered for Deformation considered for
significance analysis sensitivity analysis
L) d" i)
Point R Eé(u) Xirg=s,a=1) | Point e 25!12(1,1-) Ayo=80%,a0=5%h=1)
(mm) (mm)
"y "y
1 1.1 2.2926 3.8415 1 15 4.2632 7.8488
2 1.1 4.3560 3.8415 2 15 8.1000 7.8488
3 1.1 2.2926 3.8415 3 15 4.2632 7.8488
4 1.1 2.2926 3.8415 4 15 4.2632 7.8488
5 1.1 4.3560 3.8415 5 15 8.1000 7.8488
6 1.1 2.2926 3.8415 6 15 4.2632 7.8488
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From Table 3, the detection was successful for points 2 and 5 for both tests. Note that for these
points the local of MDD was the same as in the first experiment. For the rest of the points, the test
under the significance and sensitivity could not identify the deformations. These results showed
the importance of the network configuration in the design stage.

Subsequently, simultaneous displacements were tested. For this, were defined three
displacements in the network with 15 leveling differences and 1 mm of standard deviation. In this
case, the critical value for significance and sensitivity analysis becomes )((Za0=5%1h=3) = 7.81and
X(2a0=5%,d=3) = 10.9, for both cases y, = 80%. Here two MDDs were computed, in the direction
of the largest and in the direction of the smallest variances. The results are presented in Tables 4
and 5 for significance and sensitivity analysis respectively.

Table 4: MDDs for simultaneous displacement for significance analysis

MDDs (largest variance direction) MDDs (smallest variance direction)
Point d;: dt-x-1 dt-x-1
(iL.pk) QQ 2 y QQ 2
(mm) -d X(ap=sa=3) |dajio (Mm)| d X(ag=5%d=3)
1,3,5 1.4,0.2,0.2  9.4800 7.8147 0.6,-0.1,1.3  9.4800 7.8147
2,46 1.4,02,02  9.4800 7.8147 0.7,-0.2,1.2  9.4800 7.8147

Table 5: MDDs for simultaneous displacement for sensitivity analysis

42

' MDDs (largest variance direction) MDDs (smallest variance direction)
Point dijiy (Mm) | d 250 d | Ago-gosae=s%h=3) | Leijio (MM)|d" - Zg5 - d | Ayo=sovao=5%n=3)
1,3,5 1.50.3,0.3 11.8200 10.903 0.7,-0.2,1.4 11.8200 10.903
2,46 15,03,03 11.8200 10.903 0.8,-0.1,1.3 11.8200 10.903

Form Tables 4 and 5 note that the local MDD from Table 3 can be less or greater than the global
MDD (univariate or multivariate analysis). These results show the importance of the type of
analysis (if local or global) to compute the MDD values in both significance and sensitivity
approaches.
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The next experiments are focused to evaluate (Proszynski & tapinski, 2021) method. Thus, we
used the leveling network from Figure 3 with a standard deviation of 1mm for each height
difference (11 observations). The inner-constrained approach is applied in the adjustment (see
Ogundare, 2018). The covariance matrix for the deformation vector d was obtained by Cy = 2Q,.
In case h = rank(Cy;) = 5. The values for the non-centrality parameter were obtained from
(Aydin & Demirel, 2004). Table 6 shows the results.

Table 6: non-centrality parameter for sensitivity and confidence for leveling network of Figure 3

Ellipsoid Qg I Anap
Sensitivity 0.05 0.20 12.828
Confidence 0.05 0.27 11.070

For the computation of the global sensitivity values (see Egs. 4 and 5), we used the maximum and
minimum eigenvalues of C; and the non-centrality parameters of Table 6. The results are
presented in Table 7:

Table 7: Global sensitivity values for the third experiment

bmin bmax Average
Ellipsoid
(mm) (mm) (mm)
Sensitivity 2.06 3.58 2.82
Confidence 1.92 3.32 2.62

By analyzing Table 7, we note that the size of the sensitivity ellipsoid is higher than the confidence
ellipsoid as expected, once that h =5 < h* = 7.3 (Figure 1). After, a new experiment was
developed with a leveling network with 9 points and 12 leveling differences with a standard
deviation of 1 mm (Figure 5).
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1 2 3
4 6
5
7 8 9

Figure 5: Leveling network with 9 points

The adjustment procedure, the determination of non-centrality parameter, and global sensitivity
values were carried out according to the previous experiment. The results are presented in Table
8.

Table 8: non-centrality parameter for sensitivity and confidence ellipsoids for leveling network
with 9 points and 12 height differences

Ellipsoid @o B An,ab
Sensitivity 0.05 0.20 15.022
Confidence 0.05 0.18 15.507

The global sensitivity values are presented in Table 9.

Table 9: Global sensitivity values for leveling network with 9 point and 12 height differences

biin bax Average
Ellipsoid
(mm) (mm) (mm)
Sensitivity 2.24 548 3.86
Confidence 2.27 5.67 3.97

The results in this experiment show that the non-centrality parameter (and thus the respective
ellipsoid) obtained for the confidence approach was higher than the sensitivity approach,
accordingto h = 8 > h* = 7.3. The difference between these experiments and those presented
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in (Prészynski & tapinski, 2021) is that here we addressed geodetic network applications rather
than a theoretical analysis without displacement values.

To evaluate the network configuration influence, observations were included in both networks
analyzed. Figures 4 and 6 showed the new configuration for each network.

1 2 3
4 6
7 8 9

Figure 6: 1D network adapted from example 2

In both cases, the new observations have a standard deviation of 1 mm. Note that the non-
centrality parameters are the same as Tables 6 and 8 respectively since we do not change the
number of network points (and thus the value of h). The new global sensitivity values are
presented in Tables 10 and 11.

Table 10: Global sensitivity values for the first

Network (6 network points) with new observations

biin brax Average
Ellipsoid
(mm) (mm) (mm)
Sensitivity 2.07 2.07 2.07
Confidence 1.92 1.92 1.92

Table 11: Global sensitivity values for the second network with new observations

binin Dinax Average
Ellipsoid

(mm) (mm) (mm)
Sensitivity 1.83 3.64 2.73

Bulletin of Geodetic Sciences, Vol(issue): pi-pf, Month, Year

45



13 Authors

Confidence 1.86 3.69 2.77

By Analyzing Tables 7 and 10 or Tables 9 and 11, we note that the global sensitivity values decrease
for both networks adding new observations, especially the b,,,. values for the first network. We
can also note that by, = byae for the network when all points are tied with each other as in
Figure 4 and all observations have the same precision (the same is not true for the second network
as shown in Figure 6). Furthermore, the differences between the global sensitivity values of the
sensitivity and the confidence approach decrease for both netwaorks.

This kind of analysis provides interesting tools for the pre-analysis or design of deformation
networks, being not covered befare in the theoretical experiments of Proszynski & tapinski (2021).
To evaluate the role of the stochastic model, the new observations in Figure 4 were now defined
with a standard deviation of 2 mm. The results are presented in Table 12.

Table 12: Global sensitivity values for network of Figure 4 with new observations with a standard
deviation of 2 mm

bmin bimax Average
Ellipsoid
(mm) (mm) (mm)
Sensitivity 2.07 2.93 2.50
Confidence 1.92 2.72 2.32

The same case was considered with the new observations in Figure 6. Each new observation has
now a standard deviation of 2 mm and the results are presented in Table 13.

Table 13: Global sensitivity values for the second network with new observations with a standard
deviation of 2 mm

bin bynax Average
Ellipsoid
(mm) (mm) (mm)
Sensitivity 2.18 4,76 3.47
Confidence 2.21 4.83 3.52

By Analyzing Tables 10 and 12 or Tables 11 and 13, we note that the global sensitivity values
increase if the standard deviation of the new observations increases from 1 mm to 2 mm as
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expected. However, the global sensitivity values decrease in relation to the original case without
new observations for both networks. Besides that, the differences between the global sensitivity
values of the sensitivity and the confidence approach decrease again for both networks (see Tables
7 and 12 or Tables 8 and 13). Therefare, these experiments also show the role of the stochastic
model in this kind of analysis, especially when designing deformation networks.

Therefore, the addition of new observations reduces the MDD values, even if these observations
are of poorer precision than the previous ones. Furthermore, increasing the network's redundancy
reduces the discrepancies between the results of significance and sensitivity analysis.

4. Conclusions

In this work we have studied the relationship between significance and sensitivity in MDDs
computation. First, under the GCT approach, we compare the detectability of significance and
sensitivity analysis Here we found that the network configuration, stochastic model, and the type
of analysis, i.e., if global or local influences on the MDD values.

Also, we analyzed the (Prdszynski & tapinski, 2021) method under the same conditions. Thus, the
influence of network configuration and stochastic model on the variance factor method (1), which
jointly analyzes aspects of sensitivity and accuracy in the pre-analysis of geodetic networks showed
that If the network and stochastic model improvement, namely, the addition of more observations
and better standard deviations for the observations, provides on average better values for MDD
and reduces the magnitude between the semi-major axis of the sensitivity and significance
ellipsoids. These results presented provides key information for the optimization of geodetic
network design.

Therefore, the geodesist must be aware of the following issue: only the occurrence of false
positives will be considered (significance analysis) or also the occurrence of false negatives
(sensitivity analysis). It should be noted that in the case of geodetic monitoring, the occurrence
of false negatives (undetected deformations) is generally more critical than the occurrence of false
positives (“false alarm"). For future studies, we recommend analyze some properties of the MDD
directions for the smallest and largest directions for simultaneous displacements (Table 4 and
Table 5) and the design or pre-analysis of a real monitoring geodetic network considering all the
aspects addressed here.
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3.3 MINIMAL DETECTABLE DISPLACEMENT IN CONFIDENCE REGION
DETERMINATION AND SIGNIFICANCE TEST OF DISPLACEMENTS
REGARDING THE DESIGN OF GEODETIC NETWORKS

This research is centered on evaluating the effectiveness of confidence region
determination, particularly through the lens of sensitivity characteristics in the context
of a priori analysis for geodetic monitoring networks. The study delves into several key
factors: the dimensionality of the displacement vector, the structural setup of the
network (including the number of observations), the spatial dimensions of network
points, and the functional model utilized.

The findings of this investigation reveal that these elements play a pivotal role
in influencing the overall Minimal Detectable Displacement (MDD) values when using
confidence and sensitivity methods. This, in turn, affects the network's ability to
accurately identify displacements. A notable observation is that an increase in the
number of observations within the network tends to minimize the differences in
displacement detection between the confidence and sensitivity methods.

Moreover, the study highlights that geodetic networks, even those with
identical parameter dimensionality, can exhibit different levels of displacement
detection efficiency based on their spatial dimensions (1D, 2D, or 3D). To provide a
practical application of these findings, the research includes a case study on the design
of a GNSS (Global Navigation Satellite System) network for geodetic monitoring. This
case study is modeled on the approach outlined by Proszynski and tapinski (2021),

demonstrating the real-world implications and utility of the study's insights.



Minimal Detectable Displacement in confidence region
determination and significance test of displacements
regarding the design of geodetic networks

Abstract:

This study aims to investigate the properties of confidence region determination supported
by the sensitivity characteristics method, with a focus on the a priori analysis of geodetic
monitoring networks. Various aspects such as displacement vector dimensionality, network
configuration (number of observations), spatial dimension of network points, and its
functional model were examined to achieve this objective. Our results demonstrate that
these aspects have a significant impact on the global Minimal Detectable Displacement
(MDD) values for confidence and sensitivity approaches, thereby influencing the network's
capacity to detect displacements. Specifically, increasing the number of observations
reduces the discrepancies between the displacements detected by the confidence and
sensitivity approaches. Furthermore, we show that geodetic networks with the same
parameter dimensionality but different spatial dimensions (1D, 2D or 3D) exhibit varying
capabilities for detecting displacements. Lastly, we present an example of GNSS (Global
Navigation Satellite System) network design for geodetic monitoring under the approach of

Proszynski & tapinski (2021).

1. Introduction

The a priori analyses of accuracy and sensitivity are important indicators for geodetic
monitoring networks. While the first provides information about the network's positional
quality, the second indicates the capacity of the network to detect displacements (G Even-
Tzur, 2002; Gilad Even-Tzur, 1999, 2010). According to (Prdszynski & tapiniski, 2021)
commonly both indicators are presented in the form of a confidence ellipsoid and a

sensitivity ellipsoid for each network point to represent the quality and sensitivity
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respectively. Here the axes of these ellipsoids are computed from Minimal Detectable

Displacement (MDD) values (Aydin, 2014).

According to (Proszynski & tapinski, 2021) the relation between accuracy and sensitivity
is concerned only with the size comparison of ellipsoids due to a lack of theoretical basis.
This condition extends to the significance tests of computed displacements where sensitivity
characteristics are not considered. Under this scenario, (Proszynski & tapinski, 2021) provide
a theoretical basis to connect the sensitivity to confidence and significance analysis in a

unigue approach based an MDD.

The method proposed by (Préoszynski & tapinski, 2021) called variance factor option (l)
provides the size of significance, sensitivity and confidence ellipsoids from MDD values which
are computed from an inequality between the critical values of displacement ¢}h'a and the
noncentrality parameter 4y, 4 g. For this, the h-dimensionality vector of displacements and
the probability levels, namely, significance level or Type | error probability (ag), Type Il error
or false negative probability (8,), and power of test (y, = 1 — ) are coordinated to obtain
a relation that permits include the sensitivity characteristics on confidence and significance
analysis. If the significance level is chosen as @y = 1 — CL, being CL the confidence level for
the confidence regions of the network points, then the confidence and significance
approaches given the same MDD values. This assumption is considered throughout the
whole paper. Note that, the relation focuses on the h-dimensionality vector of displacements
which provides two main scenarios, Apq > Pra and Apqap < ¢pq Where the inflection
point is given by h = 7.3 (Apap = @na) for ag = 5% and g, = 20%. Consequently, the
sensitivity ellipsoid will exceed the dimensions of both the confidence and significance

ellipsoids if h > 7.3 or vice-versa.

However, the research of (Proszyniski & tapinski, 2021) does not analyze aspects such as
displacement vector dimensionality (global or local MDD values), network spatial dimension
(1D, 2D, 3D), network configuration or redundancy and functional model (e.g., if linear or
nonlinear), neither their role in the a priori analysis or design of geodetic monitoring

networks. Although these aspects have been studied for sensitivity analysis, (Caspary &
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Rleger, 1987; Shan-long Kuang, 1991; J. O. Ogundare, 2015; Schmitt, 1982) ,their impact on
a unified approach for confidence and sensitivity MDD values has not been analyzed yet.
Thus, this work presents an analysis under the approach of (Prdszyriski & tapinski, 2021)
focused on the design of geodetic monitoring networks. The findings found in this research
show that these aspects have a significant impact on the global sensitivity values for
confidence and sensitivity approaches, thereby influencing the network's capacity to detect
displacements. In addition, we also provide an example of GNSS (Global Navigation Satellite
System) network design for monitoring purposes considering MDD values for both

confidence and sensitivity ellipsoids.

2. Sensitivity analyses of geodetic monitoring networks

For planning purposes, the design of geodetic monitoring networks can be addressed
through sensitivity analysis, which assesses the network's ability to detect displacements via
the MDD or deformation parameters (Aydin, 2014; duchnowski, 2011; Kire¢ & Konak, 2020).
Therefore, the network optimization can be based on a threshold displacement that will
define whether the network is suitable for its purposes or must be improved. The
optimization criteria for sensitivity analysis considers the displacement vector, denoted as d
which is analyzed under the null Hy: E(d) = 0 and the alternative hypothesis Hy: E(d) # 0
that implies deformation between two epochs (Aydin, 2014; Even-Tzur, 2010; Prészynski &

tapinski, 2021). The statistical test is given by:

T =d'Ctd~p2, (1)

In eq.1 A corresponds to the noncentrality parameter of the expected displacement
vector that the network can detect and Cg denotes the generalized inverse of the covariance
matrix Cz of the displacement vector d. Thus, the alternative hypothesis becomes
HA:E(&) #0=A and T =A=ETC§E. The network will be sensitive to the expected

displacements if 1 = A, where 1; corresponds to the lower bound of the noncentrality

52



parameter given for ay, ¥, and h-dimensional vector, where h is the rank of C (Aydin, 2014;

Ksigzek & tapinski, 2022).

Sensitivity analysis can be applied using either a local or a global approach, which entails
evaluating unitary or simultaneous displacements. In the case of global sensitivity analysis, it
is applied to the entire network, while local sensitivity analysis focuses on specific points. For
example, for a 3D point in a local analysis, h = 3, while for a 2D point h = 2 and for a 1D

pointh = 1.

The expected vector displacements A is composed by a vector of directions (g) and a
scale factor (b) such that A= bg. Thus, the condition of the MDD is given where b = by,
that implies the best sensitivity of the network, and therefore the relation A= A,;;;,= b;uing
is fulfilled. According to (Aydin, 2014; Garcia-Asenjo et al., 2023) the b,,,;, is given by b, =

VAoAmax Where 4,4, corresponds to the maximum eigenvalue of the covariance matrix Cg

. On another hand, the worst sensitivity of the network is given by b,ax = +/AoAmin Where
Amin corresponds to the minimum eigenvalue of the covariance matrix C5z (Aydin, 2014;

Erdogan et al., 2017; Hsu & Hsiao, 2002; Kire¢ Nehbit & Konak, 2014).

3. Confidence Region and Network Sensitivity Characteristics: Variance factor option (l)
For the significance tests of displacements, the alternative hypothesis (HA:E(CE) # 0)
has a statisticaltest T = ¢ = &TC‘;ﬁfv)(éolh with up, o, as critical value (Aydin, 2014). While

under the sensitivity analysis, the critical value is given by 15 = 4 . Thus, the main

ap.vo.h
difference is the negligence of Type Il Error in the significance approach (y, = 1 — f§y). The

basis of the variance factor option () method considers that the inequality up, o, = A yo.n

is fulfilled for a certain value of h = rank(Cy). For this, the type Il probability error given by

B, =1—y, is modified to @zl—zo which is computed from a specific value of

significance ag such that uy 4 = A4,y n 1s achieved (Proszynski & tapinski, 2021). In this

case, we say that 8, is coordinated with «aj.
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From the equality aforementioned and based on MDD values, the significance,
confidence, and sensitivity ellipsoids are computed. Here, the probability levels of Type |
error (ap), Type Il error (B,), power of the test (y, = 1 — f), and the confidence level (CL)
define each ellipsoid. Thus, the significance ellipsoid is obtained from &TCC%'& = Dy 4, the
confidence ellipsoid is obtained from &TCO{& =@, ¢; and the sensitivity ellipsoid is
obtained from &TCC'{& = Apa,,8,- From these definitions, some relations permit to reduce
the number of ellipsoids analyzed. In particular, the relation between confidence and
significance ellipsoids can be reduced considering CL = 1 — a, thatitinvolves uy ¢, = Up 4, .
Hence, the analysis solely relies on the relationship uy o = Adololh (Prészynski & tapinski,
2021). Thus, from now on confidence and significance analysis (or ellipsoids) will be

synonyms.

According to (Proszynski & tapiriski, 2021) the equality Uy o = Aggy,,n Is achieved for
h=7.3 = h* for ¢y = 5% and 8, = 20%. Thus, two scenarios are obtained: h > h* and
h < h*, which defined the relation between the sensitivity ellipsoid and the confidence
ellipsoid (Figure 1). In Figure 1, for h < h* the confidence ellipsoid is smaller than the
sensitivity ellipsoid (a) while for h > h* the sensitivity ellipsoid is smaller than the confidence
ellipsoid (b). The value of h* depends on the values for ay and g,. Here, we assume the a
priori variance factor to be known and the opposite case is outside the scope of this paper.

Details are found in (Prészynski & tapinski, 2021).

\¥o = 0.95.5, =020

; o | yo = 0.95,f = 0.08
\ yo = 0958 = 0.42 —

\
\¥g = 0.95,8, = 0.20

N c.,
i

Figure 1: Sensitivity and confidence ellipsoids adapted of (Proszyriski & tapinski, 2021)
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4. Experimental setup

Under the aforementioned relations, the objective of the experiments is to analyze the
influence of the following aspects on sensitivity and significance analyses: 1) network
configuration or redundancy; 2) spatial dimension of the network; and 3) functional model
of the network. Additionally, an example of GNSS monitoring network design is also

presented, considering the recent approach of Prdszynski and tapinski (2021).

5.1 Network configuration or redundancy

To analyze the effect of network configuration or redundancy, we considered a leveling
network with 8 points, where the number of connections per point varies from 2 (no
redundancy) to 7 (maximum redundancy), as illustrated in Figure 2. All height differences
were assumed to have a standard deviation of 1 mm. For the global MDD analysis with
rank(Cz) = 7, the significance level was set as ay = 5%, with f = 21% for the significance
analysis and § = 20% or 8 = 5% for the sensitivity analysis. The results of the maximum
and minimum MDD values are shown in Table 1. For the local MDD analysis, with h = 1, the
significance level was set as @y = 5%, with B= 50% for the significance analysis and § =
45% or B = 20% for the sensitivity analysis. The results of the local MDD values are shown

in Table 2.

7\ "
/ \
7 ,\a 3
f o
-N 5 5 | A7
LN}
2 connections 3 connections 7 connections

Figure 2: Sequential connections per point of the leveling network
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5.2 Spatial dimension of the network

To analyze the effect of the network's spatial dimension, we considered a one-dimensional
(1D) leveling network with 10 points, a two-dimensional (2D) triangulateration network with
6 points, and a three-dimensional (3D) GNSS network with 4 points, all withh = rank(C;) =
9 and no observation redundancy: r = n —u = 0 (Figure 3). Linear observations for all
networks were assumed to have a standard deviation of 1 mm. Angular observations for the
2D network were assumed to have a standard deviation of 0.001 / 100 rad to have equivalent
weights with linear observations considering distances of 100 m between network points.
For the global MDD values, the significance level was set as ag = 5%, , with § = 16% for
the significance analysis and § = 4% or f = 20% for the sensitivity analysis. The results of
the maximum and minimum MDD values are shown in Table 3. Subsequently, a one-
dimensional (1D) leveling network with 22 points, a two-dimensional (2D) triangulateration
network with 12 points, and a three-dimensional (3D) GNSS network with 8 points were
considered, all with h = rank(C4) = 21 and no observation redundancy: r=n—u =20

(Figure 4). For the global MDD values, the significance level was set as ag = 5%, with 8 =

4% for the significance analysis and f = 16% or f = 20% for the sensitivity analysis. The

results of the maximum and minimum MDD values are shown in Table 4.

ool

Figure 3: equal h-dimensional networks (h=9): | correspond to a 1D leveling network, Il corresponds to a 2D horizontal network and 11l
corresponds to a 3D GNSS network

DLW

Figure 4: equal h-dimensional networks (h=21): | correspond to a 1D leveling network, Il corresponds to a 2D horizontal network and Il

corresponds to a 3D GNSS network
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5.3 Functional model of the network

To analyze the effect of the network's functional model, we reconsidered the 2D networks
from the previous experiments (Figures 3 and 4, here referred as “Case 1”), with the
significance level @, = 5% and § = 20% for sensitivity analysis. However, instead of using
angle and distance equations, we now considered a linearized model based on coordinate
differences, similar to those of the 1D and 3D networks. (see, e.g. (Ghilani, 2017; S Kuang,
1996; J. Ogundare, 2015). For this, we assumed that the new observations (coordinate
differences Ax and Ay) have a standard deviation of 1 mm each (referred as “Case II”).
Additionally, we considered the networks with both null redundancy and maximum
redundancy (Figures 5 and 6). The results are presented in Table 5 for the 2D network with

6 points and in Table 6 for the 2D network with 12 points.

Finally, a last analysis was conducted regarding the functional model: considering a 2D
trilateration network (i.e. distance equations only), a 2D triangulateration network (angle
and distance equations), and a 3D GNSS network (coordinate difference equations) as in
Figure 7. In all networks, h = rank(Cz) =9, and linear observations have a standard
deviation of 1 mm, while angular observations in the triangulateration network have a
standard deviation of 0.001 / 100 rad. In the trilateration and GNSS networks, all points are
interconnected, while in the triangulateration network, there are 6 fewer distances than in
the trilateration network, but with the inclusion of six internal angles, to have the same
number of redundant observations in both cases. For the global MDD values, the significance

level was set as ¢y = 5% , with § = 16% for the significance analysis and § = 20% for the

sensitivity analysis. The results of the maximum and minimum MDD values are shown in

Table 7.
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Figure 5: A and B correspond to a 2D network of “Case I” without and with redundancy (respectively), Cand D correspond to a 2D

network of “Case II” without and with redundancy (respectively), h = rank (C&) = 9inall cases

58



>
O

w
o

e
i
S
e

Figure 6: A and B correspond to a 2D netwark of “Case I” without and with redundancy (respectively), C and D correspond to a 2D

network of “Case II” without and with redundancy (respectively), h = rank (Ca) = 21 in all cases

Figure 7: | correspond to a 2D trilateration network, Il corresponds to a 2D triangulateration network and Ill corresponds to a 3D GNSS

network, h = rank (Ca) = 9 inall cases

5.4 Example of geodetic monitoring network design

To demonstrate the practical application of the recent approach by Prészyriski and tapinski

(2021), we present an example of geodetic monitoring network design. In this case, the
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simulated GNSS network has 6 points, and it was stipulated that the local MDD value of each
network point should not exceed 20 mm (with b = 3 in a local analysis). To obtain a realistic
a priori covariance matrix with variances and covariances for the 3D components of the same
baseline, the very recent approach by (Koch et al., 2023) was applied, considering the case
of precise ephemerides. Two variables were analyzed: the time span of each tracking session
(1h or 2h) and the number of connections or 3D baselines per point (Figure 8). The

significance level was set as ay = 5% , with 8 = 36% for the significance analysis and § =

20% or [ = 5% for the sensitivity analysis. The results of the maximum local MDD values
are shown in Table 8. Considering a GNSS receiver at each network point, we have 6-1=5
independent baselines per tracking session, and the optimal solutions in terms of cost to

meet the 20 mm threshold value are presented in Table 9.

3 connections 4 connections 5 connections

Figure 8: GNSS monitoring network with 3, 4 and 5 connections per point

60



5. Discussions:

Analyzing the results from Section 5.1 (Tables 1 and 2), we can conclude that the global max
MDD values are much more affected than those of global min MDD or local MDD values
when increasing the network redundancy. Convergence occurs at 5 connections per point
for local MDD values and at 6 connections per point for global min MDD values. That is, a
network with 5 connections per point (20 total observations) or with 7 connections per point
(28 total observations) provides the same local MDD values (Table 2). Additionally, the local
MDD values are smaller than those of global min MDD for the same number of connections
per point, even when the false negative probability is lower. Besides that, increasing the
network redundancy reduces the differences between the respective MDDs in significance
and sensitivity analysis. For example, for two connections per point, the differenceis 1.7 mm
for global max MDD values; while for seven connections per point, this difference drops to
only 0.4 mm (Table 1). Moreover, increasing the network redundancy also reduces the
differences between global min and max MDD values, with both becoming equal when all
points are interconnected (Table 1). Overall, the main conclusion here is: increasing network
redundancy is more effective in reducing the global max MDD values than for global min

MDD or local MDD values.

Analyzing the results from Section 5.2 (Tables 3 and 4), we can again conclude that the max
MDD values are more affected than the min MDD values. In case, the larger the spatial
dimension of the network, the smaller the max MDD value for a given h = rank(Cg) .
However, the min MDD values are equal for 1D and 3D networks, being larger than those of
2D networks. A hypothesis is the fact that the 2D network has a nonlinear model with
observations of different units (angles and distances). By linearizing the mathematical model
of the 2D network to make it similar to the mathematical models of the 1D and 3D networks,
i.e., only linear observations of equal precision, the min MDD values of the 2D network
become equal to the min MDD values of the 1D and 3D networks. This fact confirms the
previous hypothesis (see the respective results of “Case II” in Tables 5 and 6). Additionally,

the differences between the max MDD values for networks of different spatial dimensions
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increase with the value of h. For example, for h = 9 and £ = 20%, the difference between
the max MDD values of the 1D and 3D networks is 5.1 mm (Table 3); while for h =
21 and f = 20%, this difference increases to 14.5 mm (Table 4). Therefore, considering
the results of Sections 5.1 and 5.2 for network design purposes, the strategy of increasing
the network redundancy should be more efficient for 1D networks, which generally have
higher values of max MDD, than for 3D networks, which generally have lower values of max

MDD.

Analyzing the results from Section 5.3 (Tables 5 and 6), we conclude that when the networks
have no redundancy, Cases | and Il present the same maximum MDD values. However, when
the networks have redundancy, the maximum MDD values are lower for Case Il compared to
Case |. On the other hand, the minimum MDD values are higher for Case Il compared to Case
I. It should be noted that Case Ilis only hypothetical for 2D networks, but these experiments

demonstrate that the underlying functional model also influences the MDD values.

Analyzing the results of Tables 1 and 7, we note that when observations have equal precision
and all points are interconnected, the values of min MDD and max MDD are equal for
networks with a linear functional model such as leveling (1D) and GNSS (3D) networks, and
the same also occurs for the hypothetical Case Il in 2D networks (Tables 5 and 6). However,
this does not occur for networks with a nonlinear functional model such as trilateration
networks, where the values of maximum MDD are significantly higher (Table 7). The
hypothesis here is that the trilateration network has only one type of observation equation
(horizontal distance) for two types of unknowns (x, y coordinates in the 2D plane). By
removing 6 distances from the trilateration network and adding 6 angles, keeping the same
number of redundant observations (Figure 7), we conclude that the max MDD values
significantly reduce (see Table 7). This occurs because now we have two types of observation
equations (horizontal distances and angles) for two types of unknowns (x, y coordinates in
the 2D plane). Therefore, although trilateration is widely used in geodetic monitoring

because of the effects of atmospheric refraction on the measured (Garcia-Asenjo et al., 2023;
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Masoud et al., 2021; Mohammad et al., 2023), its functional model is worse for displacement

detection than triangulateration, even with the same number of redundant observations.

Analyzing the results of Section 5.4 (Tables 8 and 9), we note that displacements of 20 mm
can be detected between 3 hours of time span (at a false negative probability of around 36%)
and 6 hours of time span (at a false negative probability of around 5%). This is the first study
to show a direct relationship between time span and the false negative probability for a
GNSS monitoring network design. Therefore, this example demonstrates the practical
impartance of the recent approach of Prészynski and tapinski (2021) in the a priori analysis
of geodetic monitoring networks, where the optimal solution is obtained by not only

absolute MDD values, but also considering the respective false negative probability.

6. Conclusions

In this contribution, we demonstrated how the theoretical discussions of Prészynski and
tapinski (2021) can be applied in the a priori analysis of geodetic monitoring analysis,
investigating several aspects in numerical experiments that are not covered in the

aforementioned research. Our main findings can be sumarized as follows:

e increasing network redundancy is more effective in reducing the global max MDD
values than for global min MDD or local MDD values;

e increasing the network redundancy reduces the differences between the respective
MDDs in significance and sensitivity analysis;

e the larger the spatial dimension of the network, the smaller the max MDD value for
agiven h = rank(Cgy);

e the differences between the max MDD values for networks of different spatial
dimensions increase with the value of h for both significance and sensitivity analysis;

e the strategy of increasing the network redundancy should be more efficient for 1D
networks, which generally have higher values of max MDD, than for 3D networks,

which generally have lower values of max MDD;
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e although trilateration is widely used in geodetic monitoring because of the effects of
atmospheric refraction on the measured angles, its functional model is worse for
displacement detection than triangulateration, even with the same number of

redundant observations.

In addition, we also present an numerical example of GNSS monitoring network design where
a direct relationship between time span and the false negative probabiltiy is demonstrated.
Thus, this numerical experiments show the practical importance of the recent approach of

Proszynski and tapinski (2021) in the a priori analysis of geodetic monitoring networks.

For future studies, we recommend the design or a priori analysis of a real geodetic
monitoring network considering the aspects highlighted here. We also recommend
strategies to improve (reduce) the MDD values of trilaterations networks in both significance

and sensitivity analysis.

7. Appendix
Significance (f§ = Sensitivity ([ = 5%)
Connections o Sensitivity (f = 20%)
per point 21%)

MIN MAX MIN MAX MIN MAX
2 2.6 6.9 2.7 7.0 33 8.6
3 2.3 3.7 2.3 3.8 29 4.7
4 2.2 3.3 2.2 3.3 2.7 4.1
5 2.0 2.6 2.0 2.7 2.4 3.3
6 19 2.2 1.9 2.2 2.3 2.7
7 19 1.9 1.9 1.9 2.3 23

Table 1: MDD values (mm) for the number of connections (global analysis with &, = 5% and h = rank (Ca) =7)
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C(;ZTZCJ::: ® | significance (E =50%) | Sensitivity (8 = 45%) Sensitivity (§ = 20%)
2 1.4 1.5 2.0
3 1.2 1.3 1.7
4 1.1 1.2 16
5 1.0 1.0 1.4
6 1.0 1.0 1.4
7 1.0 1.0 1.4

Table 2: MDD values (mm) for the number of connections (local analysis with @, = 5% and h = 1)

spatial Sensitivity (8 = 4%) | Significance (E = 16%) | Sensitivity (8 = 20%)
dimension MIN MAX MIN MAX MIN MAX
1D a4 14.4 29 9.4 2.8 9.1
2D 25 8.9 1.7 5.8 1.6 5.6
3D 4.4 63 2.9 4.1 2.8 4.0

Table 3: MDD values (mm) for geodetic networks (global analysis with &, = 5% and h = rank (C&) =

Spatial Significance ([} = 4%) Sensitivity (3 = 16%) | Sensitivity (f = 20%)
dimension MIN MAX MIN MAX MIN MAX
10 4.0 28.4 36 24.9 33 23.0
20 21 15.6 18 136 17 126
3D 40 106 36 3.2 33 85

9)

Table 4: MDD values (mm) for geodetic networks (global analysis with &y = 5% and h = rank (Ca) =21)

Case | Casell
MIN MAX MIN MAX
Without redundancy 16 5.6 2.8 5.6
With redundancy 13 3.0 23 23

Table 5: MDD values (mm) for 2D horizontal networks (global analysis with @&, = 5%, [)’ = 20% and h = rank (C&) =9)

Case | Casell
MIN MAX MIN MAX
Without redundancy 17 126 3.3 126
With redundancy 1.0 26 19 1.9

Table 6: MDD values (mm) for 2D horizontal networks (global analysis with &, = 5%, ,8 = 20% and h = rank (Ca) =21)
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Trilateration 2D Triangulateration 2D GNSS 3D

MIN MAX MIN MAX MIN MAX
Significance (ﬁ = 16%) 25 5.6 1.8 4.4 29 2.9
sensitivity (f = 20%) 24 54 17 42 28 28

Table 7: MDD values (mm) for geodetic networks of Fig. 6 (global analysis with &, = 5% and h = rank(C;) = 9)

Time session: 1 hour Time session: 2 hours
C?)rgrrwepcgti\s:s Significance Sensitivity Sensitivity Significance Sensitivity Sensitivity
B =36% | (f=20% | (B=5% | (B=36% | (B=20% | (f=5%)
3 24.0 284 356 16.8 199 249
4 20.0 23.7 29.7 14.0 165 20.8
5 17.6 20.8 26.1 12.3 145 18.2

Table 8: Maximum MDD values (mm) for GNSS monitoring network (local analysis with &, = 5% and h = 3)

Significance (= 36%) Sensitivity (8 = 20%) Sensitivity (8 = 5%)
5 connections per point and 3 3 connections per point and 2 5 connections per point and 3
sessions with 1 hour each (3 sessions with 2 hours each (4 sessions with 2 hours each (6
hours in total) hours in total) hours in total)

Table 9: Optimal solutions for the GNSS monitoring network with a threshold of 20 mm for MDD values (local analysis with @y = 5% and

h=3)
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5 CONCLUSIONS

The thesis presented was oriented to analyze the least squares estimation
(LSE) the geodetic network proprieties on sensitivity analysis. Initially, the first paper
described the free adjustment through the pseudo inverse approach and minimum
inner constraints. Both methods are usually used to compute the sensitivity analyses
and focus of this paper is make a comparison between both methods. The first method,
the pseudo-inverse approach computes the inverse of the normal equation matrix (N),
based on the generalized inverses theory. On the other hand the minimum inner
constraints modify the classical solution of the LSE added the G matrix called inner
constraints matrix to the normal equation matrix to solve the inverse problem. As
presented in this paper, the results obtained to 2D geodetic network were equivalents.
Therefore, for sensitivity analysis both methods are applicable to determinate the
network sensitivity through the minimum detectable displacements (MDD).

In the second paper, we explored the interplay between significance and
sensitivity in computing Minimum Detectable Displacements (MDD). Initially,
employing the Global Congruence Test (GCT) approach, we assessed the efficacy of
significance and sensitivity analyses in detecting changes. Our findings indicate that
the network configuration, the stochastic model used, and the type of analysis (whether
global or local) significantly affect the MDD values. We also examined the methodology
proposed by Prészynski and tapinski (2021) under similar conditions. This involved
investigating the influence of network configuration and stochastic model on the
variance factor method (I), which considers both sensitivity and accuracy aspects in
the pre-analysis of geodetic networks. Our results showed that improvements in the
network and stochastic model, such as adding more observations and using better
standard deviations for these observations, generally lead to improved MDD values
and a decreased discrepancy between the semi-major axes of the sensitivity and
significance ellipsoids. These findings are crucial for optimizing geodetic network
designs. Therefore, these aspects should consider whether to focus solely on false
positives (significance analysis) or also include false negatives (sensitivity analysis).
Particularly in geodetic monitoring, the risk of false negatives (unnoticed deformations)

often outweighs the concern of false positives (false alarms).
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The third paper we applied the theoretical concepts of Proszynski and Lapinski
(2021) to the a priori analysis of geodetic monitoring networks, conducting numerical
experiments to explore areas not covered in their research. Thus, the main findings
include that increasing network redundancy effectively lowers global maximum MDD
values, outperforming its impact on global minimum and local MDD values, and
simultaneously reduces the discrepancy in MDDs observed in significance and
sensitivity analyses. Networks with larger spatial dimensions tend to exhibit smaller
maximum MDD values for a specified rank(h) of the C; matrix. However, as the spatial
dimensions of networks vary, the discrepancy in their maximum MDD values escalates
alongside the value of h, affecting both significance and sensitivity analyses. This
enhancement in redundancy proves particularly advantageous for 1D networks, which
generally show higher max MDD values, in contrast to 3D networks where these values
are typically lower. Despite its frequent use in geodetic monitoring, trilateration's
functional model falls short in displacement detection compared to triangulation, even
when the number of redundant observations is equal, largely due to the atmospheric
refraction's influence on measured angles. In addition, we presented a numerical
example of GNSS monitoring network design, demonstrating a direct correlation
between the time span and the probability of false negatives. These experiments
underscore the practical relevance of Prészynski and tapinski's (2021) approach in
the a priori analysis of geodetic monitoring networks. For future research, we suggest
designing or conducting a priori analysis of geodetic monitoring networks, considering
the aspects outlined in this paper. We also recommend exploring strategies to improve
(reduce) MDD values for significance and sensitivity analyses.

The findings found in this work provides guidelines to apply the Prészynski and
tapinski's method on different types of geodetic networks in a priori analysis of
sensitivity. Here also we analyze the least square model (free adjustment) used to

perform the sensitivity analysis.
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