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RESUMO

Melhorar o suporte ao usuário na integração de dados exige o tratamento de informações em tempo

real, um processo desafiador para sistemas de banco de dados convencionais. Muitas abordagens

de integração de dados realizam a integração em tempo de consulta (“on-the-fly”) para gerenciar

consultas situacionais. Os métodos variam desde mashups de serviços até abordagens baseadas

em cruzamento de dados. No entanto, lidar com a incerteza na descoberta automática de dados e

garantir a relevância e a integralidade da informação continuam a ser desafios chaves. Uma forma

de minimizar esses desafios é capturar o conhecimento do usuário para resolver ambiguidades e

melhorar a recuperação de bases similares. A presente tese propõe uma arquitetura conversacional

de Raciocínio Baseado em Casos (CBR), que visa melhorar o gerenciamento de dados situacionais,

incorporando feedback do usuário no processo através de um agente conversacional. Para incluir

um mecanismo de aprendizagem adaptável a feedbacks positivos e negativos, foi utilizada a

metodologia de Raciocínio Baseado em Casos, a qual resolve problemas utilizando ou adaptando

soluções passadas. A abordagem aproveita uma base de conhecimento histórica que é atualizada

dinamicamente com base no feedback do usuário, permitindo um sistema mais responsivo e

adaptável. Este feedback desempenha um papel crucial na recuperação, revisão e retenção

de casos dentro do ciclo CBR, permitindo que o sistema evolua com base nas interações do

usuário. Cada fase do CBR é retratada na presente tese e avaliada em três experimentos diferentes,

focados na recuperação de fontes, reutilização de soluções multidimensionais em uma aplicação

chatbot e aprendizagem baseada em conhecimento histórico, respectivamente. Neste último, foi

realizado um estudo empírico para avaliar o impacto do feedback dos usuários nas recomendações

do sistema, incluindo cenários de testes estáticos e dinâmicos, focando em aspectos como

visibilidade, suporte e utilidade. Os resultados destacaram uma preferência por recomendações

influenciadas pelas contribuições dos participantes, indicando a eficácia da incorporação do

feedback humano no processo de tomada de decisão. Como contribuição adicional, esta tese

também demonstra uma incompatibilidade terminológica envolvendo abordagens de integração

de dados on-the-fly, propondo uma nova terminologia e taxonomia para o gerenciamento de

dados situacionais. Com base na taxonomia proposta, a arquitetura baseada em CBR também é

avaliada em relação a critérios como Recuperação de Dados, Integração On-the-fly e Entrega de

Dados. No geral, a pesquisa realizada contribui para a gestão de dados situacionais, ilustrando

como uma estrutura conversacional baseada em CBR pode melhorar processos de integração e

descoberta, e evidenciando o potencial para um maior desenvolvimento na área.

Palavras-chave: Integração de Dados Situacionais. Sistemas Conversacionais. Feedback humano.

Aprendizagem incremental. Chatbots.



ABSTRACT

Enhancing user support in data integration demands addressing real time information, a chal-

lenging process for conventional database systems. Many data integration variants integrate

data “on-the-fly” for managing situational queries, i.e., queries that cover dynamic requirements.

The methods range, for example, from service mashups to traversal-based approaches; however,

the uncertainty in automatic data discovery and ensuring the relevance and completeness of

information remain as key challenges. One way to minimize these challenges is by capturing

user feedback, since it can help solving ambiguities and improving matching tasks. This thesis

introduces a conversational Case-Based Reasoning (CBR) architecture, aimed at improving

situational data management by incorporating user feedback into the process. The core of the

architecture is a “human-in-the-loop” approach implemented through a conversational agent,

which facilitates interaction between the user and the system. For including a learning mechanism

adaptable to both positive and negative feedback, the Case-Based Reasoning methodology

was used, which solves problems by using or adapting solutions from previous cases. The

CBR-based approach leverages a historical knowledge base that is dynamically updated based

on user feedback, allowing for a more responsive and adaptive system. This feedback plays a

crucial role for case retrieval, review, and retention within the CBR cycle, enabling the system

to evolve based on user interactions. Each CBR phase is depicted in the present thesis and

evaluated in three different experiments, focused on source retrieval, reuse of multidimensional

solutions within a chatbot application, and incremental learning based on historical knowledge,

respectively. In the latter, an empirical user study was conducted to assess the impact of user

feedback on system recommendations, including both static and dynamic test scenarios, and

focusing on aspects such as visibility, support, and usefulness. The results highlighted a general

preference for recommendations that were influenced by user input, indicating the effectiveness

of incorporating human feedback in the decision-making process. As an additional contribution,

this thesis also demonstrate a terminology mismatch involving on-the-fly data integration variants,

proposing a new terminology and taxonomy for managing situational data. On the light of the

proposed taxonomy, entitled Built-up Integration, the CBR-based architecture is also evaluated

regarding Data Retrieval, On-the-fly Integration, and Data Delivery features. Overall, the research

conducted contributes to situational data management by illustrating how a conversational CBR

framework can improve processes such as data integration and data discovery, and evidencing

the potential for further development in this area.

Keywords: Situational Data Integration. Question Answering Systems. Human Feedback.

Incremental Learning. Chatbots.
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1 INTRODUCTION

The last years have marked a paradigm shift in access to information, where the Big Data concept

raised the need to deal with large data volumes in various formats made available on the web

[51, 186]. Exploiting such large amounts of data makes the search for relevant information a truly

complex and time-expensive task: the difficulties lie at different levels including data capture,

storage, sharing, analysis, management, and visualization [186, 21].

To extract the full value of Big Data, solutions involving information retrieval, Natural

Language Processing (NLP), and Artificial Intelligence (AI) have been investigated for capturing

useful information and use it in diverse domains [203]. There is also a concern with the user’s

standpoint and experience, as the captured information should become valuable knowledge to

satisfy their specific needs [79]. Obtaining such valuable insights and actionable knowledge is not

a trivial task, as it requires cross-analysis of data coming typically from multiple sources [122].

In other words, satisfying user’s needs often demands some form of data integration [59].

Data integration aims at joining data from different sources and providing users with

a unified view [142]. In fact, useful insights can be extracted from integrated data, allowing

to improve services or make smarter decisions in several areas [35]. In the area of Business

Intelligence (BI), for example, integrated information can be used for obtaining competitive

advantages and leverage intraorganizational collaboration [123], while in Open Data, it favors

governmental transparency [170]. Usually, data integration involves some structured local data

and different ETL (Extract-Transform-Load) flows, which are periodically executed for adding

external information of interest [123].

However, applications are no longer limiting their analysis to structured databases, but

they are demanding actionable information for attending specific needs and improving decision

making [243]. In other words, when decisions must be made based on real-time analyzes, it may

be impractical to wait for information only when ETL flows are executed. In such cases, the

integration should be performed on-the-fly, i.e., with data discovered, extracted, and merged at
query time, so the information can become actionable [180]. Assuming that data can scattered

over multiple sources, on-the-fly integration makes it possible to provide the right information, at

the right time [182].

One umbrella concept related to on-the-fly integration is the Situational Data Inte-
gration (SDI), which is managed at query time in order to deal with specific and dynamic

query requirements that are challenging for traditional database management systems and search

engines [154, 99, 244]. Specifically, SDI integrates up-to-date external data with local data for

inferring solutions that enable accurate decisions [29, 244, 178]. This means that if a question

cannot only be answered with the current data, a SDI system might discover relevant sources that

contain the data needed. These data are called situational data, i.e., data that are not owned by

the user and have the role of providing a complete answer to a specific problem or need [244].

Situational challenges can be handled by many ways, e.g., by using service mashup

tools which combine data from different data sources into a single joint place [213, 248], or

through traversal-based approaches, which handle the source discovery process [103]. However,

an existing challenge in these situational applications is the uncertainty when discovering data

with automatic matchers [147, 81]. Purely automated methods cannot fully address this issue, and

beyond that, they infer the best way to integrate data sources based on the features of these sources,

which can output several errors [59]. A second challenge refers to ensuring that information

acquired from discovered and integrated data sources is in fact useful and complete to the user, i.e,
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once situational data are retrieved and returned, the user should be capable of deciding whether

they are suitable for the task at hand [3]. If they are not, the user should be provided with a

mechanism that learns from mistakes and improve future recommendations.

One way to minimize errors and uncertainties when manipulating information from

several data sources is by capturing user feedback, since integrating human knowledge in the loop

helps solving ambiguities, improving matching tasks, and even generating high-quality rules for

a system operation [142]. In cases where a system makes a recommendation, the user feedback

can help refine the results and fine-tune data models. This can be exemplified trough many

studies in the literature that use human feedback [228, 187, 273]. But despite the benefits that

human inclusion can bring to a system’s operation, when we are seeking appropriate solutions for

situational problems such as the ones mentioned before, two main questions arise: How to collect

user knowledge? And most importantly, how to use the collected knowledge to continuously

improve the use (discovery, integration, or recommendation) of data coming from multiples

sources?

For addressing the first question, conversational interfaces1 such as Question Answering
(QA) systems can be applied. QA systems aim at providing a precise answer for a specific

question [21, 71], and are currently integrated in virtually all personal assistants (e.g., Siri,

Cortana, Alexa Echo, and Google Home) [203]. By using a QA system as interaction and

mediation tool, human knowledge can be detected and used for improving many tasks within the

system operation [142]. Also, besides capturing user feedback, QA systems are user-friendly

solutions that could be used to access data sources and guide a data integration process, which

are usually restricted to experienced computer users [188]. They act as an access point to data

sources, obtaining fast results and delivering them in Natural Language (NL) [28, 243].

QA systems have proven to be good solutions for capturing human intentions [259, 193,

268, 165]. However, a QA system by itself does not address the second question on how to use the

collected knowledge to continuously improve situational data integration tasks. Let us consider

the source discovery challenge mentioned before in a QA scenario: if a QA system has the role

of discovering sources based on the posed question, how could it leverage the user feedback

to improve further recommendations? For that, it would be necessary to have a mechanism

that learns from failure and success cases, i.e., negative and positive feedback. Thus, when the

feedback is positive, the recommendation is reinforced, otherwise, a more suitable source is

retrieved and presented next time.

One learning mechanism that suits this type of situation is the Case-Based Reasoning
(CBR) [1], which is a paradigm of Artificial Intelligence (AI) that solves problems using or

adapting solutions to old problems [200]. This methodology draws on human reasoning for

problem solving, since in real life, once we have learned a solution to a problem, we often try to

reuse that solution in similar problems [223]. The problem solving in the CBR methodology goes

through a cycle of four activities demonstrated in Figure 1.1: retrieving cases that resemble the

description of the problem, reusing an existing solution for a similar case, reviewing this solution

in order to meet the new problem, and retaining this solution once it has been confirmed [253].

There are many advantages of applying CBR: the knowledge acquisition task is reduced,

there is flexibility in knowledge modeling, it is possible to reason when domains are not completely

understood or when data are imprecise, the cumulative experiences allow learning successes

and failures over time, thus mistakes made in the past can be avoided [196]. In addition, the

methodology is compatible with other AI (Artificial Intelligence) methods, so that systems that

rely on CBR can take advantage of several Machine Learning (ML) techniques to improve their

1Conversational interfaces are those that provide the front-end to a virtual assistant, allowing the user to interact

with the app using text, speech, touch, and other input methods [167].
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Figure 1.1: CBR cycle [1].

performance [6]. Most importantly, due to its four-activity cycle, CBR has potential to cover

some gaps observed in on-the-fly and situational approaches, as illustrated in Figure 1.2.

First, as CBR covers a review step which mostly involves human knowledge, it can be

used to attenuate difficulties when finding a suitable data source through automatic matchers.

This human inclusion can be used to directly measure whether additional and/or situational data

is useful (either for a personal task at hand or existing data that needs to be complemented). Also,

considering that on-the-fly integration inefficacy impairs the information delivery [222], it is

necessary to pursue a continuous improvement strategy, which can be provided by a learning-

oriented methodology such as CBR. Finally, decision support is a common goal in situational

approaches, but is still a key challenge (more details in Chapter 2). In contrast, CBR supports

interactive explanations to the users, including both the proposed solution and the reasoning

process [85].

Conversational interfaces are also compatible with CBR, as they are user-friendly

solutions that favor explainability. In fact, several conversational CBR approaches have been

proposed in the past, as they allow the user to inform problem descriptions step by step, facilitating

the use of the methodology for problem solving [108, 23]. The explainability is also linked to the

type of reply provided by conversational interfaces (e.g., QA systems), since the user is usually

looking for a concise and fast information. Thus, explaining the solution and the strategy to the

user, in a simple way, can help in decision processes. These characteristics make a conversational

CBR approach a promising combination for handling situational tasks, which are dependent of

the user immediate needs.

1.1 RESEARCH HYPOTHESIS AND OBJECTIVES

Considering the challenges raised in the previous section and the strengths observed in the

mentioned concepts, the central hypothesis raised in this thesis is: A conversational system that
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Figure 1.2: Concepts weaknesses and strengths.

captures user feedback and executes Case-Based Reasoning as feedback-based methodology for
learning can improve data source management in situational contexts and provide a better user
support.

This hypothesis considers that the concepts have correlated features that, when executing

together, could potentially benefit the end user when it comes to querying situational data. In a

particular way, it is based on the belief that human knowledge can be used within the CBR cycle

for incremental learning, i.e., if we can detect the knowledge from the human, then we can use

the knowledge to optimize data integration tasks [142]. The inclusion of human knowledge in a

system’s operation is a hot topic, especially considering the emergence of robust technologies

such as ChatGPT 2, which answers complex questions with human-level performance [145].

Although these approaches already exist, the focus of the present work is to gather human

knowledge by means of a CBR methodology, focusing on how situational data is managed.

Overtime, the improvement enabled by user feedback can to compensate a possible lack of quality

when retrieving situational data, inherent in the use of automation [37, 81].

Following the aforementioned motivations, this thesis has the main goal of modeling

and evaluating a conversational approach based on CBR for improving data source management

and recommendation. To achieve this objective, a set of specific activities were established:

• Investigate how situational integration (i.e., SDI) is handled in the related literature,

specially in Question Answering domain, in order to identify main features, challenges,

and opportunities;

• Model an architecture of conversational system which executes a Case-Based Reasoning

cycle and tackles some of the challenges identified in the first step;

• Propose and model novel activities that should be executed in each of the four phases of

the CBR cycle (Retrieve, Reuse, Revise, and Retain);

• Develop a QA-based prototype that bases on the architecture previously defined, and

interacts with the user to gather his/her feedback, which should be later used for learning

within CBR’s Retain step;

• Evaluate the QA-based prototype respecting the recommendation of solutions to the

user (Reuse step);

2Available at: <https://openai.com/chatgpt>.
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• Evaluate the QA-based prototype respecting the use of human feedback for continuous

improvement (particularly in data source management context);

• Confirm the research hypothesis previously established, which is based on the joint use

of so far independent concepts;

• Publish reliable results in the scientific community.

1.2 CONTRIBUTIONS

As main contributions, this thesis:

• Presents a survey of situational integration in QA systems which covers two decades of

related literature;

• Proposes a taxonomy that addresses the lack of consistency regarding situational

integration and other types of on-the-fly integration;

• Proposes a conversational CBR-based architecture which uses human knowledge for

a continuous learning process, and the multidimensional data model as strategy for

situational data management within a conversational interface;

• Presents a QA prototype that executes the architecture steps, discovering and recom-

mending data sources in situational contexts;

• Evaluates the CBR-based architecture through three experiments, covering source

discovery tasks, the reuse of multidimensional solutions, and the impact of user feedback

for future recommendations;

• Details evaluation tasks supported by real users and covering qualitative criteria observed

in consolidated studies from the literature;

• Demonstrates positive results in evaluations shaped by user feedback, evidencing the

value of the proposed CBR architecture, as well as the potential for expanding research

and development in the area;

• Shares the knowledge generated along its development, through scientific publications

mentioned in Appendix B.

1.3 THESIS STRUCTURE

The structure of this thesis is presented as follows. In the next chapter, a survey on Situational

Data Integration in Question Answering systems is presented, showing the connection between

the concepts and the lack of situational data management in more recent approaches. In Chapter 3,

a novel terminology and taxonomy is proposed, aiming at organizing similar characteristics

observed in data integration variants named differently. Based on the gaps and opportunities

previously mentioned, the Chapter 4 proposes a conversational approach based on the CBR

methodology, for promoting incremental learning and improve situational tasks. The architecture

is evaluated through three distinct experiments, which are detailed and discussed in chapters 5, 6,

and 7, respectively. The final considerations of this thesis are presented in Chapter 8.
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2 SITUATIONAL DATA INTEGRATION IN QUESTION ANSWERING SYSTEMS: A
SURVEY OVER TWO DECADES

Question Answering (QA) is a well known research field in computer science, with the first

QA systems designed in the 1960s [51]. At that time, these systems were limited to consulting

databases within a restricted domain [257, 90] and the analysis patterns were built manually,

so the questions could be translated into a structured query form needed to interrogate the

databases [132]. In contrast, the current years have shown a huge increase in the amount of

information available on the Internet, so that QA systems are no longer limiting their analysis

to structured databases, but they are demanding actionable information for attending specific

needs [243]. Advances in NLP and Artificial Intelligence have powered these systems with more

comprehensive interactions and effective analysis, driving QA-based proposals in many areas,

such as Business Intelligence [70], healthcare [28], and Open Data [254].

The fact that QA systems have presented an increasingly interactive nature (e.g.,

conversational settings, user feedback, and interpretability) and need to flexibly integrate

components to fulfill specific tasks [203, 221] makes situational data eligible for providing timely

and complete answers. In other words, in cases where a single source is not enough to answer

the question, a situational integration (SDI) could be triggered on-the-fly to obtain and validate

answers from multiple sources.

Despite that, situational and on-the-fly data integration is a big challenge in the

literature [180, 244, 235, 161], which may be an indication that its inclusion remains a gap

in QA-based systems. Most importantly, considering the main goal of this thesis (improving

situational data management by means of human knowledge collected and used for continuous

learning), the understanding of the current scenario and the relation between the QA domain

and situational approaches is highly desirable. By systematically investigating the association

between the concepts, it is possible to identify consolidated features and improvement points that

can make way for the conversational CBR architecture targeted in this research work.

Following the aforementioned motivations, this chapter surveys Situational Data Inte-

gration in Question Answering systems, covering two decades of research, aiming to establish

the state-of-art of data retrieval, data management, and decision support in these conversational

systems. As survey results, a timeline was constructed for highlighting the most prominent SDI

features in each time range. The survey also clarifies that some features are moving towards

consolidation in the QA domain (as they are often explored in the literature), while most of them

remain challenging in QA approaches.

2.1 SITUATIONAL DATA INTEGRATION (SDI)

Situational Data Integration (SDI) is an integration that uses data sources discovered on-the-fly

for dealing with specific and immediate queries and their dynamic requirements [99, 247]. The

term "Situational" in SDI comes from the concept Situation-Awareness (SA), which is the

perception of events related to an entity (i.e., the user) and the understanding of what is going

on around, allowing to make accurate decisions [126]. By following this concept, a Situational

Data Integration may be understood as an integration oriented by situations of interest to the user,

providing information that are at the basis of decision-making.

Although SA is a long-established concept [60], situational integration only gained

focus years later, in the Business Intelligence (BI) domain, where SDI was initially investigated
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due to its impact on operational decisions [154]. It came as an alternative to the traditional

integration settings1, aiming to analyze and combine large data sets (comprising both structured

and unstructured data) for dealing with dynamic requirements and data-intensive flows [154, 123].

The growing interest in obtaining and using real-time information motivated several

BI-related studies to present the characteristics of SDI [154, 244, 29, 99, 3, 247, 123, 7]. Based

on the related literature, SDI is composed by three main features: Ad-hoc Data Retrieval, Data
Management, and Timely Decision Support. Each feature, in turn, is associated with subfeatures,

i.e., specific tasks that are involved in SDI, as demonstrated in Table 2.1.

Table 2.1: Situational Data Integration Features

SDI Main Features Subfeatures
Ad-hoc Data Retrieval Ad-hoc Questions and Source Discovery

Data Management Unstructured Data Preprocessing and Situational Source Inclusion

Timely Decision Support User Guidance, Decision-making Support, and Response Time Improvement

Ad-hoc Data Retrieval refers to the abilities to retrieve suitable sources of information

for dealing with query requirements. It relies on Ad-hoc Questions and Source Discovery.
Frequently, ad-hoc questions involve situational data, which have a narrow focus on a specific

domain problem or a unique set of needs [3, 154]. Situational data are usually external to an

organization control and hence without guaranteed access [123]. Thus, in Source Discovery,

the goal is to find a provider for data not available internally, as well as systematically analyze

the different potential sources of information at hand for attending specific and dynamic

requirements [247, 3]. When data integration requests are changed or new requests are

submitted on-the-fly, a new round of integration should be quickly performed to meet the new

requirements [99]. Thus, we assume that a situational integration involves dynamic data, coming

from changeable sources.

Another main feature of SDI is Data Management. This feature refers to how an SDI

system deals with unstructured and heterogeneous information from a discovered source, which

is an essential step to ensure an effective situational integration. Two subfeatures are involved,

named Unstructured Data Preprocessing and Situational Source Inclusion. Situational data are

often scattered across heterogeneous and unstructured sources available on the Web [3, 244, 7],

so, the integration has to tackle the fact that data sources usually contain erroneous, out-of-date, or

conflicting data [176]. Unstructured Data Preprocessing deals with these challenges, making the

integration of the extracted information feasible. After the processing, situational data needs to

be integrated with the current information in order to extend the information previously available

and completely satisfy users’ specific needs [244, 154, 3, 19, 178, 56]. This often requires a

correlation analysis process for assessing whether the situational source is suitable for the task at

hand [154].

The last main feature of SDI is Timely Decision Support. A situational picture is

necessary to go beyond the simple perception of the elements in the environment, supporting the

overall comprehension of the current situation and the user’s decision making process [19, 56].

Thus, a situational data integration system provides Decision-making Support if it provides

information for alerting the decision makers of situations that can potentially affect their activities.

The support can also be achieved, for example, if the system leads the user through the sequence

of steps he has to apply, subsequently providing explanation of how resolutions were made, or

why a certain operator was selected [214]. Situational projects also require just-in-time delivery

1Based on the survey presented in [123], we refer to “traditional integration settings” as those where data sources

and query requirements are static, demanding a regular update of the data repository rather than real-time data flows.
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of good-enough solutions that are not addressed by traditional offerings [7], so Response Time
Improvement is a highly desirable feature. Useful techniques involve, e.g., provide new compute

nodes as needed, reduce data complexity for processing, or distribute computing tasks through

parallel computing [154]. By providing timely insight into situations, an appropriate action can

be taken in real time [29]. Concerning User Guidance subfeature, situational applications may

involve active human participation when solving specific needs [99, 154]. With human feedback,

for instance, the system is able to optimize its processes and responses.

After presenting the main features of SDI, the next subsections present a practical example

of SDI in QA domain and the methodology applied for conducting the review, respectively.

2.1.1 Visualizing SDI: A Practical Example in QA Domain

We can reason about SDI features in QA taking as example a scenario involving speech therapy,

since this domain has been explored in situational contexts [75]. Regarding Ad-hoc Data Retrieval,

suppose that a speech-language pathologist wants to know whether the government investment in

education affects children’s speech abilities. The professional owns a stationary database that

contains information about the patients (including their age, schooling, region), but this database

does not include any educational data associated with the regions, which would be necessary

to address the initial information need. So, he/she poses an ad-hoc question as input to a QA

system (either by natural language text or voice), and the system triggers a discovery process

in Web sources. Then, the system finds several open databases in official government portals

that provide data related to education, e.g., data on schools performance in national exams and

educational indicators. By verifying patterns in the question that match each candidate source,

the system selects the one that best fits the information need: a government open data source

that describes investments in basic education, which could provide a complete answer to the

professional’s question.

Regarding Data Management subfeatures, consider that the selected source contains raw

situational data that are difficult to process and analyze. So, a preprocessing step is performed

in order to obtain a smaller set of data that are relevant and applicable for the query. After this

process, the next step is to combine the situational data with the stationary data (i.e., the patients

data owned by the professional), by using correlation techniques that semantically map both

databases attributes. The result should be an augmented set of data that allows to identify all data

patterns between educational and clinical data.

Concluding the speech therapy example with Timely Decision Support, the QA system

now has a specialized data set where relations between educational data and patients data can be

extracted. Hence, the system can use ML and NLP techniques to rapidly infer these relations and

present some suggestions to the professional through a graphical interface, where the user can

also correct eventual wrong matches. During the interaction, the system could highlight a relevant

pattern found in the augmented data set, allowing the professional to infer that “most patients

with lower pronunciation performances are from regions with lower educational investments”.

This answer makes the speech-language pathologist better informed while saving time, and it

can be used to guide the therapeutic planning. In other words, the SDI+QA system allowed the

therapist to have a broader view on the patient’s case and make appropriate decisions based on

current context.

2.1.2 Searching for SDI in QA Systems

For adequately investigating the state-of-art of SDI in QA systems, keywords “Question Answer-

ing", “data integration", and “multiple data sources" were used to selected QA-based studies.
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Figure 2.1: SDI general amplitude in the surveyed studies.

Based on these keywords, studies from the last two decades were covered2, thus enabling to track

trends in time ranges (in terms of methods and data sources), as well as to raise hypotheses about

future developments. Scopus search engine3 and Google Scholar4 were used as data sources,

since they include other digital libraries such as ACM Digital Library5, IEEE Xplore6, and

Science Direct7.

For assessing the presence of SDI in the surveyed studies, the features shown in Table 2.1

were taken as basis. Specifically, given the particularities of the QA approaches, the survey

presents how each SDI feature is present in the studies, assessing whether its coverage occurs

in a complete or partial way. More than 50 studies in QA domain were surveyed, with respect

to SDI features. All papers and features coverage aspects are detailed in Appendix A. The

analyzes and discussion are provided in the next section.

2.2 TRENDS AND PATTERNS OF SITUATIONAL DATA INTEGRATION

This subsection presents analysis regarding SDI in QA domain. In a first moment, the overview

of SDI features in the area and methodological aspects are presented. Next, a timeline of SDI in

QA is shown, which organizes approaches and features overs two decades. Based on the timeline,

we discuss the evolution of SDI and trends in each period of time. The results are summarized in

Figure 2.1, and a detail description of all SDI features covered in each QA approach is given in

Table 2.4.

The features coverage in Figure 2.1 shows that Unstructured Data Preprocessing and

Response Time Improvement were addressed by most of the studies (71,43% and 58,93%,

respectively). Preprocessing is desirable in a SDI-based system, since situational data are often

spread over heterogeneous and unstructured sources and need to be accessible for efficiently

supporting the user. A summary of Preprocessing techniques in the surveyed papers is presented

in Table 2.2. Among the studies that presented Unstructured Data Preprocessing, most deal with

duplications and ambiguities in the data. Resolution of entities - as well as relations between them

- are also handled by a considerable number of studies. As regards Response Time Improvement,
almost 60% of the studies cover this feature to speed up the processing and delivery of responses

to the user. As shown in Table 2.3, indexing methods are the most used ones for data retrieval

2Priority was given to studies published between 2010 and 2020.

3Available at <https://www.scopus.com/>.

4Available at: <https://scholar.google.com.br/>.

5Available at: <https://dl.acm.org/>.

6Available at: <http://ieeexplore.ieee.org/Xplore/home.jsp/>.

7Available at: <https://www.sciencedirect.com/>.
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and, in this category, it is interesting to highlight that Lucene tool [166] is applied in more than

half of QA approaches using indexing.

Table 2.2: Preprocessing Techniques in QA-based Approaches

Preprocessing Techniques Application
Data conversions [70, 245, 237, 158]

Filtering [73, 38, 40]

Normalization [70, 163, 66]

Stopwords removal [252, 246, 63, 156, 24]

Noise removal/cleaning
[28, 152, 171, 239, 230]

[158]

Resolution/exclusion of duplications

and ambiguities

[177, 33, 28, 129, 107]

[209, 152, 189, 96, 160]

[77, 42, 24, 267, 230]

[271, 119]

POS tagging [155, 189, 171, 264]

Resolution of entities and relations
[155, 36, 73, 27]

[189, 156, 264]

Tokenization [246, 107, 27, 171]

Exclusion/pruning of irrelevant data [246, 88, 119]

Completeness verification [93, 152]

Semantic annotations
[177, 9, 96, 120]

[38]

Stemming and lemmatization [27, 63]

Table 2.3: Response Time Improvement (RTI) Techniques in QA-based Approaches

RTI Techniques Application

Search indexing

[70, 73, 53, 189]

[232, 63, 96, 264, 239]

[120, 27, 267, 8, 158]

[229, 107, 152]

Constrained data retrieval
[70, 129, 77, 72]

[88]

Parallel processing
[218, 129, 12, 38]

[119]

Query rewriting [12]

Graph-based optimizers [36, 229]

Cache-based optimizers [160, 12]

Complexity reduction [177, 28]

Training acceleration

(ML-based approaches)
[33, 229]

Redundancy removal [129, 209]

Mathematical optimizer [271]

Another prominent feature is Source Discovery, which represents the system’ ability to

find a provider for needed data on-the-fly, and process the data source according to new requests.

As shown in Figure 2.1, more than 35% of the studies fully cover this feature, and 25% of the

total partially includes it. This means that the majority of QA-based approaches (i.e., more than

60% of them) performs Source Discovery in some way. The use of a non-predefined source

is an important requirement for Source Discovery, thus in the papers where the partial feature

was covered, the sources were not predefined but they had a dynamic nature (e.g. they were

updated, exchanged, or “switched off” based on the posed query). Almost all discovered sources

are Web-based (including Websites, publicly available ontologies, and linked datasets), while

Knowledge Bases (KBs) such as DBpedia, Wikipedia, and Freebase are also widely applied. The

considerable amount of studies that partially covers Source Discovery indicates that this SDI

feature is still missing in QA systems, but is being increasingly explored in a way that could

become consolidated in future research.

All other SDI features shown in Figure 2.1, i.e., Ad-hoc Question, User Guidance,
Situational Source Inclusion, and Decision Support, are integrated less often in the studies. The
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main challenges lie in the last two mentioned, which means that QA systems do not usually

include a situational source for augmenting the data available internally, and are not able to

support the user in his actions or decisions. These characteristics allow us to establish some

research opportunities with respect to SDI, which will be addressed in Subsection 2.3.

Considering the main features of SDI and how they are distributed in the reviewed

papers, some characteristics stand out. When considering Ad-hoc Data Retrieval, the fact that

most studies that cover Ad-hoc Questions also cover Source Discovery (Figure A.1) reinforces

the idea that searching for a situational source is often triggered by a specific and momentary

need, even though it might also occur in order to answer a conventional query (e.g., a benchmark

query). With respect to Data Management (Figure A.2), besides the evidence of high coverage

of Unstructured Data Preprocessing, we can observe that this subfeature is also covered by more

than half of the studies that presented Situational Source Inclusion, demonstrating a concern

with the treatment of the data before their effective use. Furthermore, in what concerns Timely
Decision Support (Figure A.3), there is a strong correlation between Decision-making Support
and User Guidance. This is because these subfeatures are more applied together than in isolation,

indicating that authors concerned with developing decision support approaches will often take

into account the orientation of the end user, e.g., which interventions he finds interesting or how

the system can improve its assistance. In addition, Decision-making Support is mostly covered

in the partial way, indicating that it is still explored at an early level, e.g., without explicit and

accurate support.

Only two studies covered Situational Data Integration in a complete way (see Table 2.4):

the framework for enriching Data Warehouses (DWs) with QA data by [70] and the integration-

oriented ontology in [177]. Analyzing these works, we can acknowledge some similarities, such

as the use of web-based external sources. The framework described in [70] uses QA for retrieving

data from blogs and social networks, whereas [177] retrieves information from Web sources in

the form of REST APIs (Application Programming Interfaces). All external sources contain

unstructured data that complement the information of a structured source, i.e., a dataset [70] or

an ontology [177]. Both approaches performed ontological mappings as correlation method

when including the situational source. Regarding the query language, natural language queries

are considered in [70], whereas [177] manipulates SPARQL queries.

2.2.1 Timeline Evolution

For investigating the evolution of SDI throughout the years, a timeline was constructed, exposing

features that have been intensely researched in each time range. The timeline is shown in

Figure 2.2. For constructing it, the most relevant papers were prioritized, i.e., those with more

SDI features covered, besides their overall influence (based on number of citations). For space

reasons, 40 studies from the total of surveyed papers were chosen for composing the timeline,

inspired by the feature weighting approach in [231]. For each paper, a relevance score was

calculated based on its coverage of SDI features and overall influence, as demonstrated in

equations 2.1, 2.2 and 2.3.

𝑀𝐹𝑆𝑐𝑜𝑟𝑒(𝑝, 𝑚) =
𝑚𝑛

∑
𝑖=1

(
𝑝𝑐𝑖
𝑛
) (2.1)

𝐶𝑆𝑐𝑜𝑟𝑒(𝑝) =
𝑝𝑡𝑐

(𝑦 + 1) − 𝑝𝑝𝑢𝑏
(2.2)

𝑇𝑆𝑐𝑜𝑟𝑒(𝑝) = 𝑤𝑐 ⋅𝐶𝑆𝑐𝑜𝑟𝑒(𝑝) + 𝑤𝑀

𝑀

∑
𝑚=1

𝑀𝐹𝑆𝑐𝑜𝑟𝑒(𝑝, 𝑚) (2.3)
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The Equation 2.1 calculates the main feature score 𝑀𝐹𝑆𝑐𝑜𝑟𝑒 for a paper 𝑝, considering

a given main feature 𝑚. 𝑚𝑛 is the total number of subfeatures ∈ 𝑚 and 𝑝𝑐𝑖 is the paper coverage

of each subfeature, which may range from 0 to 10 where 10 means “fully covered”, 5 is “partially

covered”, and 0 stands for “not covered”. Not only SDI main features were considered for papers

ranking, but also their relevance by means of citations per paper age. So, in Equation 2.2, the

citation score 𝐶𝑆𝑐𝑜𝑟𝑒 is calculated for a paper 𝑝, where 𝑝𝑡𝑐 is the total citations of the paper8,

𝑦 is the current year (i.e. 2020), and 𝑝𝑝𝑢𝑏 is the paper publication year. Finally, Equation 2.3

determines the total score (𝑇𝑆𝑐𝑜𝑟𝑒) of a paper 𝑝; it considers the 𝐶𝑆𝑐𝑜𝑟𝑒 weighted by 𝑤𝑐, added

with the summing 𝑀𝐹𝑆𝑐𝑜𝑟𝑒 for all main features 𝑀 , considering 𝑤𝑀 as its weight. The weight

assigned for 𝑤𝑀 was 0.3 and the assigned weight for citations 𝑤𝑐 received 0.1. The top 40 papers

with highest 𝑇𝑆𝑐𝑜𝑟𝑒 were chosen to compose the SDI timeline.

The timeline shows the most relevant QA studies along with highlights, i.e., SDI features

that were frequent in each time range. From 2002 to 2005, the majority of the studies incorporated

Data Management. This means that both preprocessing and situational sources were present in

the proposals. Situational sources were included by merging components performing syntactic

and semantic matchings [107, 9, 127], axiom-based theories [9, 245], contextual and lexical

correlations [264], and pattern matching [40]. Situational sources are exploited again in 2010,

and included using ensembles of matching algorithms and evidence-gathering techniques [73],

as well as semantic mappings [237].

The first occurrence of Timely Decision Support was in 2007, with MedQA system [267].

This feature had the highest occurrence in 2011, and interestingly, all papers that covered it

in that year and in 2007 were restricted-domain ones, specifically medicine [27, 28, 267] and

biomedicine [120]. This fact demonstrates that decision support is being explored not only in

areas that involves human action, but also where such human action is decisive (i.e., with low

tolerance for errors), in a way that an assistive system can greatly impact the efficiency of the

offered services.

In 2010 and 2011 there were several new approaches exploring SDI features, and also in

these years, Ad-hoc Data Retrieval was present (at least partially) in almost all approaches. In

this period, knowledge bases and ontologies stood out either as internal sources [73, 224, 237,

171, 232, 72, 28] or external sources [73, 237, 93, 171, 120, 27, 42, 28], and correlation methods

were mostly based on semantic and ontological mappings in these studies. In addition, natural

language and SPARQL queries were predominant in all studies excepting [120], where the search

is performed using keywords.

Unstructured Data Preprocessing was predominant in all time ranges until 2019 and the

most consolidated SDI feature, as in every time range there was a concern about handling noisy

and raw data to obtain better system performance. The methods are diverse (consider Table 2.2):

in the previous years, they were less present and more focused on filtering [40, 38], pruning

resources [88, 119] and removing data duplications [129, 24, 119, 107]; as of 2007, NLP and

semantic-based methods (such as POS tagging, tokenization, entity resolution, stopwords and

noise removal) have gained focus.

Finally, Situational Data Integration was completely covered for the first time in 2016,

in the framework proposed by [70]. It also occurred in 2017 [36] and 2019 [177]. However,

there is a trend starting in 2010, since other studies which covered most part of SDI features - not

necessarily the mandatory ones - were published after 2009 [73, 152, 27, 96, 237, 120, 158]. Of

these studies, the greater part (i.e., 5/7) was published between 2010 and 2012. In this time range,

Situational Source Inclusion was still a challenging feature, whereas Timely Decision Support
starts to become more frequent in the proposals. In this context, and considering the beginning

8The citations number exhibited in August 2020, on Google Scholar, was considered for each paper.
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Figure 2.2: Timeline of SDI in QA approaches.
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of SDI in the timeline, it is possible to infer that existing needs since 2010 were gradually being

addressed as strategic decisions in several areas became more urgent.

2.3 RESEARCH GAPS AND OPPORTUNITIES

This section discusses some research opportunities identified with the survey analyzes. First, the

SDI features that represent the greatest opportunities for development in QA domain are addressed,

based on the surveyed studies. In a second moment, hot topics are discussed, considering studies

published after 2020. Finally, a terminology mismatch is disclosed, involving the term Situational

Data Integration and other on-the-fly integration approaches, demanding a proper organization

of the related literature.

2.3.1 SDI Features in QA

Based on the previous analysis, this subsection exposes a set of characteristics that represent

directions for further research. As stated in Section 2.2, some SDI features are moving

towards consolidation in QA systems (such as Unstructured Data Preprocessing, Response Time
Improvement, and Source Discovery), even though they still involve many aspects to be explored.

Despite this fact, all other features are rarely covered (see Figure 2.1), e.g., Situational Source
Inclusion, User Guidance, Ad-hoc Question, and Decision Support, which are discussed in the

following paragraphs.

When analyzing Ad-hoc Question in Figure 2.1, we see that it is covered by more than

30% of the studies, but still this represents a low inclusion rate. In fact, a considerable part of the

approaches includes benchmarks of complex questions, which are quite valuable for evaluation

purposes, but since the questions are stored and reused, they do not reflect specific and momentary

needs the same way as ad-hoc questions. It is essential that this momentary need is captured and

managed in order to deliver dynamic and timely responses, as opposed to results that may suffer

depreciation (i.e., lose meaning or value) over time. Also, we identified that, among the question

benchmarks used by the reviewed proposals, there was no specific collection to evaluate SDI in

QA. With recent advances in NLP and deep learning, it is necessary to introduce new datasets for

testing the ability of language models to make inferences that rely on situation awareness [135].

Thus, comparative results involving SDI features in QA domain could be promoted.

With respect to User Guidance and Decision Support, although they are independent

features, the former has great impact on the latter’s efficiency. Consider, for example, the

application of SDI in a clinical QA system (see Subsection 2.1.1): after integrating situational

data with data owned by the therapist, the system can identify patterns and infer in which

therapeutic activities these patterns impact. Knowing this information, the therapist can make

appropriate decisions, considering the patient context. Although in this scenario Decision
Support is beneficial, this support can be optimized with User Guidance, e.g., if the physician

define portions of data that are of his interest, by including constraints or assigning weights

to sentences involved in the query. Following the example of user feedback applied to source

discovery and integration, here the guidance may also be a feedback from the professional: the

manual correction of mistaken correlations made by the system, or a manifestation about the

usefulness of the results. In both cases (instructions or feedbacks), Decision Support can be

leveraged, seeing that past experiences can be used to train the system to give better responses.

Another way to leverage Decision Support could be investing more on user experience,

through interfaces where the user can interact with results and recommendations. QA systems

also favor this interactivity. Some reviewed studies [120, 163] expressed future goals which we
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have taken as clues on how to strengthen the adoption of this feature: the former aims to improve

the user interface, whereas the latter aims to guide the exploration of available data resources

towards the one that are more appropriate for his needs. Both tasks can potentially improve

decision support. Similarly, [252] wants to explore a daily report for generating informative

sentences in a short period, which favors decision support in a timely manner.

Almost 65% of the studies did not cover Situational Source Inclusion. In the context

of SDI, it is strongly connected to Source Discovery since the situational source is not a source

known beforehand, but usually the result of a search for specific data. In other words, the core of

SDI is a discovered and dynamic situational source, meaning that situational data loses its value

if it is not retrieved when needed. Traversal-based query approaches might be investigated to

deal with this task, since they traverse data links on the Web of Linked Data, allowing to discover

data from initially unknown sources [103].

Another opportunity regarding discovery and inclusion of situational data is the explo-

ration of semi-automatic approaches for source matching. The semi-automated procedures could

involve, e.g., the integration of human knowledge in the system activities, since there are some

errors that are obvious to humans, but still not obvious for a machine. So, when the system is

searching for the “best” data source to be integrated, a manual intervention could identify the

presence of errors that cannot be identified by a completely automated procedure [81]. This

idea is the core of the current thesis, which considers conversational systems as propitious

environments for human feedback to be captured.

It is important to recall that the optimization of one feature can positively impact other

features. E.g., if Source Discovery is improved in the sense that relevant knowledge is mined and

summarized, the amount of time to provide answer could decrease, thus bettering the coverage

of Response Time Improvement. Likewise, promoting the inclusion of situational data sources

can leverage decision support, and especially when combined with QA systems, many areas

such as healthcare, education, e-Tourism, and BI can be benefited. On the other hand, trade-offs

among the features are also a possibility, e.g., focusing on achieving the finest Source Discovery

method, with great accuracy, might slow down the response time. Thus, investigating positive

and negative effects when working on SDI features, as well as assessing an ideal fine-tune, are

interesting research directions.

2.3.2 The Recent Years

Along this chapter a survey covering studies published over two decades (1990-2020) was

presented, as a way to track the SDI inclusion in these years. Considering this time range assumed

as requirement for the analyzes, papers published after 2020 were not considered, however, they

represent opportunities for future investigation.

Visual Question Answering (VQA) is a hot topic, specially in the medical area, where

the systems provide support (for both doctors and patients) during the treatment. The authors

in [55] point out that most of the existing medical VQA methods rely on external data for

transfer learning. In fact, there is a new trend to solve VQA by introducing external knowledge,

which has already achieved promising results [261], so that we can infer the SDI usefulness for

providing targeted external data to overcome eventual data limitation issues (either for training

a model or complementing a knowledge base). Recent VQA approaches seem to present SDI

features by, e.g., performing information fusion with different sources [272] or including human

collaboration [250].

Besides VQA, knowledge Graphs (KGs) are still on focus in recent QA studies, supported

by the continuous growth of Linked Open Data (LOD). The authors in [20] present a very

interesting approach that, instead of relying on data retrieval from static knowledge graphs,
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generates contextually relevant knowledge, which is needed for the integration but not often

available in current KBs. Graph completion for QA is also being widely studied in recent years,

as a way to better represent the knowledge [30, 148]. Situational sources could be investigated in

this context, in order to complete missing facts in KGs.

A recent survey [202] has proposed a taxonomy for classifying QA skills along five

dimensions: inference, retrieval, input interpretation/manipulation, world modeling, and multi-

step. SDI could be particularly interesting for the “world modeling” dimension, where knowledge

sources often need to be combined with spatial, temporal, causal and motivational elements.

When considering these elements for situational integration, features such as Source Discovery
and Decision Support could be potentially improved.

Besides the topics mentioned above, extensive advances involving deep learning models

must be evidenced [61, 2, 217, 145]. In fact, we have been witnessing the “explosion” of Large

Language Models (LLMs) such as GPTs (Generative Pre-trained Transformers), which can

understand and generate content according to the current context and specific situations [187].

Since LLMs are trained on vast amounts of data (including situational data), they have been

applied in several QA-based solutions that leverage context and memory to generate a specialized

conversation flow [204, 220, 22, 92]. An outstanding example is the ChatGPT9, a powerful chatbot

based on the GPT architecture that answers complex questions with human-level performance.

A system like ChatGPT differs from a QA system designed for situational integration

since it does not have direct access to databases, but operates based on the data it has been

trained on [234]. Also, it aims at simulating a human-like conversation through text generation,

rather than facilitating information retrieval or data manipulation (as occurs in a QA system

focused on situational tasks). Still, these models can be used to assist SDI in many innovative

ways. E.g., they can be an effective source of situational data due to API integration capabilities,

retrieving real-time information from heterogeneous sources, specially when data augmentation

is needed [114]. Also, LLMs can be customized for operating in specific scenarios, and their

ability of context interpretation represents a notable opportunity for enhancing Decision Support
for users. In clinical domain, for example, the use of ChatGPT as QA tool has proven valuable

for assisting the professional in diagnosis and treatment planning [67, 149]. Besides medicine,

there is a wide range of applications involving large language models that should be leveraged by

future studies for building QA interfaces with situational capabilities [95].

While the rapid evolution of NLP undoubtedly warrants attention, it is important to

emphasize that the focus on Situational Data Integration presented in this chapter serves a distinct

purpose that complements, rather than competes with, the advancements in QA facilitated by

LLMs. SDI addresses the complex challenge of integrating and synthesizing heterogeneous

data sources to provide contextually relevant responses, which can be assisted by a natural

language interface such as a QA system. While LLMs play a crucial role in enhancing question

answering capabilities, the current survey contributes to the broader NLP landscape by offering

insights into the practical application of SDI features within conversational systems. Future

researchers can take advantage of the challenging topics mentioned in this subsection, towards

the development of more dynamic QA systems that can make room for situational data inclusion

in several applications areas, with user support as ultimate goal.

2.3.3 A Terminology Mismatch

During the development of this thesis (and specifically the survey described in this chapter), it

was observed that, over the years, the term Situational Data Integration has been deprecated in

9Available at: <https://openai.com/chatgpt>.
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the literature. The concept culminated around the last decade, and gradually, other terminologies

started to be applied to talk about integration in situational scenarios [99, 32]. One example is the

study in [247], where the authors develop a data mashup process that allows the recommendation

of operators for performing situational integration.

Besides the term deprecation, it was observed that SDI is not the only concept in the

literature that covers the on-the-fly mode, i.e., the idea of data discovered, extracted, and merged

at query time. In other words, a terminology mismatch was identified in the literature involving

on-the-fly integration: core activities linked to the concept can be found in the literature under

many different names. E.g., when data integration is motivated by a specific context or situation,

it is often called SDI, so data is integrated on-the-fly to deal with ad-hoc requirements and

provide decision support [99, 29, 244]. In other cases, the integration targets a cost-effective

initialization, i.e., data is integrated as needed, postponing the addition of labor-intensive data, so

it is called pay-as-you-go integration [41, 14]. Following this principle, the system incrementally

understands and integrates the data over time by asking users to confirm matches on-the-fly, i.e.,

as the system runs [118].

On-the-fly integration also appears in the literature connected with mashup applications,
which integrate data on-the-fly to provide a unique service for addressing immediate need

in near real-time [213, 147, 172, 43]. Moreover, the idea of discovering and joining data

on-the-fly is often seen in the so-called traversal-based approaches, where the information is

obtained by looking up data links related to a query, and intertwining them with the query result

construction [103, 238, 104]. There is no unified nomenclature for embracing these concepts and

other similar ones. Although each has its own particularities, they address highly connected (or

even the same) activities: selecting and integrating data sources at query time, based on specific

requirements, aiming to deliver good results to the end user.

Possibly the biggest issue concerning this lack of standardization is the disorientation

it may cause to researchers of the area. E.g., if a researcher is interested in investigating one

concept and is not aware of very similar concepts, his/her work could be significantly impacted.

Furthermore, if different nomenclatures are frequently assigned to a common set of goals and

tasks, eventually we will obtain numerous branches related to the same concept, hampering the

search for features and their analysis in a comprehensive way. As a consequence, the development

in this domain may be impaired. Improving knowledge organization in this area is, therefore,

desirable.

Following this motivation, the next chapter of this thesis discusses the above-mentioned

concepts (mashups, pay-as-you-go integration, and traversal-based integration), similarities

and differences among them, and their relation with SDI. Based on this existing connection, the

chapter argues for the need to organize knowledge in the area by means of a novel taxonomy. The

taxonomy, in its turn, introduce a set of features that are latter used to evaluate the CBR-based

architecture proposed in thesis.
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Table 2.4: SDI features fully covered (�), partially covered (�), and not covered (�) in QA-based approaches

Ad-hoc Data Retrieval Data Management Timely Decision Support
Approach Ad-hoc

Question
Source

Discovery
Unstructured

Data
Preprocessing

Situational
Source
Inclusion

User
Guidance

Decision
Support

Response
Time

Improvement
[70] � � � � � � �
[252] � � � � � � �
[218] � � � � � � �
[212] � � � � � � �
[50] � � � � � � �
[163] � � � � � � �
[224] � � � � � � �
[155] � � � � � � �
[246] � � � � � � �
[36] � � � � � � �
[93] � � � � � � �
[177] � � � � � � �
[232] � � � � � � �
[153] � � � � � � �
[33] � � � � � � �
[258] � � � � � � �
[256] � � � � � � �
[28] � � � � � � �
[127] � � � � � � �
[129] � � � � � � �
[240] � � � � � � �
[107] � � � � � � �
[73] � � � � � � �
[209] � � � � � � �
[152] � � � � � � �
[27] � � � � � � �
[53] � � � � � � �
[189] � � � � � � �
[9] � � � � � � �
[63] � � � � � � �
[171] � � � � � � �
[245] � � � � � � �
[96] � � � � � � �
[160] � � � � � � �
[156] � � � � � � �
[66] � � � � � � �
[237] � � � � � � �
[264] � � � � � � �
[77] � � � � � � �
[239] � � � � � � �
[42] � � � � � � �
[12] � � � � � � �
[72] � � � � � � �
[24] � � � � � � �
[88] � � � � � � �
[120] � � � � � � �
[267] � � � � � � �
[38] � � � � � � �
[8] � � � � � � �

[207] � � � � � � �
[230] � � � � � � �
[158] � � � � � � �
[229] � � � � � � �
[271] � � � � � � �
[119] � � � � � � �
[40] � � � � � � �
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3 BUILT-UP INTEGRATION: A NEW TERMINOLOGY AND TAXONOMY FOR
MANAGING INFORMATION ON-THE-FLY

The investigation of Situational Data Integration features (discussed in the previous chapter)

allowed the identification of similar concepts in the area, where tasks related to data retrieval,

on-the-fly integration, and data delivery, despite being often used together, are recognized in the

literature under different names. This chapter addresses the lack of consistency regarding some

terminologies in related literature, and proposes a new term, Built-up Integration, as a knowledge

regulation approach. Beyond a formal definition, a taxonomy is proposed for organizing similar

characteristics found in the literature through features and subfeatures, which follow a unified

nomenclature.

The new term and taxonomy presented in this chapter is essential for the proposal of

this thesis, as it is used as a foundation and support for the system architecture described in the

subsequent chapters. Thus, as initial guidance to the reader, the next section presents an overview

of three data integration approaches that, just like SDI, manage data sources on-the-fly. The

existing connection between the terms is the main motivation for proposing a new terminology.

3.1 BEYOND SDI: OVERVIEW OF OTHER DATA INTEGRATION VARIANTS

This section presents an overview of three data integration concepts: mashups, pay-as-you-go
integration, and traversal-based integration. Besides being related to SDI and coping with data

augmented in an on-demand way, these concepts were chosen as they cover important tasks

included in this thesis proposal, such as data sources selection and user support.

3.1.1 Data Mashups

Data Mashups are usually Web-based applications that integrate data from multiple and heteroge-

neous sources, in order to provide a unique service [188]. They reuse and combine data sources

(encapsulated as data services) on the Web, being developed in a rapid and ad-hoc manner

to automate processes and mix information [89]. Unlike applications aimed at expert users,

mashups aim to move control over data closer to regular users, allowing to create applications

through the merge of several existing data sources [235]. In website mashups, for example, the

web page can be changed by removing elements, adding additional widgets, and changing their

appearances [89].

Mashups are not restricted to web applications, but they also support the development

of situational applications for providing solutions to specific problems [188]. IoT-based mashups,

e.g., support on-the-fly integration of contextual information such as real-time sensory data and

historical data, so the decision-making process can be executed based on the integration [34].

Another example comes from in [32]: the authors describe a highway emergency scenario, where

the emergency staff should transfer wounded people to different kinds of hospital according to

the injuries. In this case, the dispatcher needs to know estimated time of each ambulance to

the target hospital to implement the proper scheduling. Based on this motivating scenario, the

study proposes an approach for end users to discover data services and arrange them in a logical

order, to finally create data service mashup plans automatically. Data service discovery and

selection are performed among several candidate data services, e.g., getInjuredInfo, getPersonInfo,
getHospitalInfo, and so on.
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The source selection from the above example also allows us to highlight the dynamic

and auxiliary nature of mashups when interconnecting several data sources: the user can control

the services integration, in a way that he can use any service he wants, putting away the ones

that he does not use anymore [138]. With respect to finding sources in mashups, users can

mostly perform text-based searches, although context-specific suggestions can provide the needed

elements to the user without requiring a search [89]. Indeed, many approaches in the related

literature focus on discovering and providing services with minimal manual settings [213]. We

can mention, e.g., the studies in [140, 139], which propose algorithms to automate the discovery

and composition of Web APIs, and the situational mashup in [113], in which the user context

such as location and schedule determines the configuration of accessible widgets.

3.1.2 Traversal-based Integration

Traversal-based integration is a kind of virtual integration1 that executes queries over Linked Data,

traversing data links and merging up-to-date information from initially unknown sources [104,

176]. The exploration of data links is performed at query execution time: first, it searches for

URIs (Uniform Resource Identifiers) informed in the query body or as additional parameters.

Secondly, it searches for more URIs that can possibly enrich the query results. The most relevant

URIs and datasets for answering the query are selected, and finally, the answers from the sources

are combined to return a final answer [176].

An example of traversal-based integration is given in [102]: the authors consider a

SPARQL query that asks for people who authored a paper about ontology engineering at some

conference. This query cannot be answered from a single dataset, but requires data from the

conference corpus, the names of the paper topics and the authors names. Thus, the traversal based

query execution starts with some data retrieved from the conference corpus, by dereferencing the

URI that identifies the proceedings. This data contains a set of RDF triples that match one of the

triple patterns of the query, and results in Linked Data about published papers, including their

topics. In the newly retrieved data, the query engine finds matching triples for the publication
binding, so that solution mappings can be augmented with bindings for topic. Since the topics

are also denoted by URIs, additional data can be retrieved to generate bindings for the topic label

(e.g., ontology engineering). Following this strategy, it is possible to determine mappings that

cover the whole query pattern and get to an integrated solution.

As well as situational integration and data mashups, traversal-based approaches offer

up-to-date results, which are at the basis of user support [238]. That is because during the query

execution, query links are traversed to expand the set of data already discovered, so further

augmentations can be computed for partial solutions [103]. Concerning this expansion, the

interesting part is that query execution (i.e., the link traversal) can start without a prior knowledge

of available data sources. This zero-knowledge method is in line with the dynamic nature of the

Web, motivating decentralization and dispensing with the use of data providers to setup costly

endpoints [64].

Many traversal-based approaches for integration can be found in the literature. The

authors in [162] present a knowledge hypergraph-based approach, able to virtually integrate

heterogeneous data from multiple sources and enhance the query answering process in terms

of completeness. The SQUIN system [101] discovers relevant data sources within RDF triples

during the query execution, integrating the traversal of data links into the result construction.

The system may be used either as a Java library that can be integrated in Web applications or as a

Web interface. The proposal in [100] also supports on-the-fly integration, specifying the traversal

1A virtual integration assumes virtual repositories and the need for near real time data [116].
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method in rules. The approach sends requests to specific URIs, discovering links from where new

data can be retrieved. Also, a software interface allows to poll the current state of resources at

specific time intervals and react to updates, easing the transition from static to dynamic sources.

3.1.3 Pay-as-you-go Integration (Dataspaces)

Providing a coherent view of data is a classical challenge for data integration: although automatic

approaches can bring together lots of correct, valuable information, they also may present a

fair amount of misleading data [191]. Another classical challenge concerns the high cost of

integration initialization, which demands the automatic inference of schema matches and semantic

mappings [161]. These tasks are able to produce highly accurate results, but usually involve a

delayed start-up time.

To overcome these drawbacks and provide a cost-effective data integration, the variant

pay-as-you-go integration was proposed, also known as dataspaces [97]. The idea of this variant

is to distribute the costs of data integration creation to other stages of the integration process, by

starting the initialization of dataspaces at the earliest opportunity, and also gathering feedback

from the user to improve the integration [14]. In this approach, the assumption is that some

application contexts do not require full integration in order to provide useful services, so data is

integrated on an “as-needed” basis, with the labor-intensive aspects of data integration postponed

until they are required, and when tighter semantic integration is required, it can be achieved in an

incremental “pay-as-you-go” way [41, 46]. The user feedback is also gathered in a continuously

manner, throughout the entire lifespan of the dataspace, so a better quality in the integration is

achieved with lower upfront-cost.

Similar to other integration approaches such as SDI or mashups, pay-as-you-go inte-

gration aims to support the user by meeting his requirements. Hence, it is necessary to identify

and select data sources that can effectively provide complete answers or results [14]. The

pay-as-you-go integration is specially well suited to unstable query requirements and sources

that may change rapidly, as it consumes data at an on-demand recombination perspective [80].

Consider, e.g., an e-commerce company that wants to compare price among competitors; relevant

sources come and go frequently, and both format and contents change regularly. A classical

integration that produces perfect results would not be practical nor effective to integrate the

relevant sources and support well-informed decisions [190].

The literature shows several studies that address pay-as-you-go integration and data

management. E.g., the study in [106] proposes to query data using on-the-fly mappings, which

support a pay-as-you-go paradigm where data is embedded into the search process. Also, the

authors in [215] propose to quantify the quality of an integration: given a set of mappings and a

set of workers of unknown trustworthiness, feedback instances are collected in the extents of the

mappings that characterize the integration.

3.1.4 Compiling Concepts

As observed in the previous subsections, some data integration approaches share many functions

and goals, slightly differing from each other as some have a greater focus on one task than

others. This is shown on Table 3.1, which summarizes characteristics that best differentiate the

integration approaches, such as the type of input query, type of user support, and the level of

human involvement. These characteristics are mentioned in the related papers discussed in the

previous subsections. Besides these, the comparative table also shows dominant features (i.e.,

the main focus of each integration approach) and keywords (for which goal they are usually

applied). We can see that some concepts are more focused on the data discovery process (e.g.,
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Table 3.1: Comparison between different types of integration

Approach Dominant Fea-
tures

Input query Type of Sup-
port

Human In-
volvement

Keywords

Situational Data

Integration

Source discov-

ery, Data aug-

mentation, User

support

Necessarily situ-

ational, various

formats

Fresh data

for decision-

making

Mostly feed-

back

Business Intelli-

gence, decision-

making

Traversal-based

Integration

Source discov-

ery, Data aug-

mentation

Mostly conjunc-

tive queries

Data augmenta-

tion

Not required URI explo-

ration, zero-

knowledge

execution

Data Mashup Source se-

lection, Data

augmenta-

tion, Human

involvement

Mostly situ-

ational and

GUI-based

Single service

building, inter-

active interface

System opera-

tion (services

composition)

User experience,

control of the in-

tegration

Pay-as-you-go

Integration

Data augmenta-

tion, Human in-

volvement

Mostly conjunc-

tive queries

Fresh data

for decision-

making, dy-

namic adapta-

tion

Feedback and

training

Low cost execu-

tion, User Feed-

back, Gradual

improvement

traversal-based approaches) or the decision-making support (e.g., SDI). Also, in some of them

(such as Data Mashups and Pay-as-you-go integration), the user role is more significant.

But most importantly, with regard to the similarities between the approaches, they

generally perform source discovery and/or selection, some kind of data augmentation made at

query time, and have the common goal of supporting the end user (either by helping him to

make a decision, or by providing valuable visualization from the integrated data). All of them

may involve multiple and heterogeneous data sources in the integration process. In addition, it

is possible to find in the literature studies that mention more than one concept, i.e., SDI and

mashups [247, 34], mashups and pay-as-you-go integration [233, 78, 109], or even traversal-based

approaches and mashups [101, 164].

Despite the similarities found, there is still a lack of a nomenclature for unifying all

associated tasks. The problem with this gap is the confusion it generates for researchers that

may be interested on a concept often addressed in the literature under another name. Let us

suppose, for example, that a researcher wants to systematically review all studies in the literature

that address the term “Situational Data Integration” (SDI), to check how the discovery of data

sources takes place in a certain period of time. In this case, several studies that present the same

idea as SDI under a completely different name could be ignored, since the researcher is not aware

of the similarities and differences among the existing concepts. As a result, this “non-awareness”

would certainly impact on the reliability of the research produced. Thus, a taxonomy for properly

organizing the knowledge in this area is needed.

In the next section a novel terminology named Built-up integration is defined, aiming

to regulate similar aspects observed in several integration approaches. The section also presents

a taxonomy for Built-up integration, covering a set of features related to source selection and

discovery, data integration and information delivery.

3.2 REORGANIZING THE KNOWLEDGE: BUILT-UP INTEGRATION

Based on common features found in different integration methods (see Section 3.1), this section

proposes a novel term named Built-up Integration, which follows the following definition:
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Figure 3.1: Taxonomy for Built-up Integration

Built-up Integration selects and manages data sources on-the-fly for

dealing with specific query requirements, resulting in an augmented data set for

supporting the user.

The term is proposed to assign a common term to data management characteristics that

are found together in several integration approaches, such as the ones mentioned in Section 3.1.

In these approaches, the information value is often transient, so that applications consume data

on-the-fly to perform specific and/or additional analysis tasks demanded by user requirements.

We believe the term Built-up Integration is appropriate to accommodate such approaches, since

it expresses the idea of data being combined gradually and systematically, until reaching a set of

unified data, complete enough to support the end user. At this basis, a Built-up integration system

must systematically analyze potential data sources at hand and select the one(s) that can meet

the users needs. The selected sources must be reconciled and combined towards the delivery of

up-to-dated solutions, which cannot be addressed by loading data repositories from time to time.

The user has a central role in the integration, since data management occurs targeting a timely

support and, desirably, a positive impact in his decisions. In addition, the user can participate

actively in all tasks involved in Built-up integration, by deciding which information are relevant

or giving feedback on the responses received.

Beyond a formal definition of Built-up integration, this section also presents a taxonomy

that unifies a set of features that are found in related literature. The taxonomy (shown in Figure 3.1)

was created as a feature diagram using the Feature-Oriented Domain Analysis method [124]. A

feature diagram is a hierarchically arranged set of features, where relationships between a parent

feature and its child features may be categorized as: 𝑎𝑛𝑑 – all sub-features must be selected,

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 – only one subfeature can be selected, 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 𝑜𝑟 – one or more can be selected,

𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 – features that are required, and 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 – features that are optional [17].
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For building the taxonomy from related studies (see Section 3.1), we first searched

for integration-based approaches on Google Scholar search engine2, using keywords such as

situational integration, mashup systems, on-the-fly integration, linked data, traversal-based
query, pay-as-you-go integration, alternately and merging the keywords for filtering results. The

Connected Papers online tool3 was also used for verifying related and derivative papers.

Next, a set of characteristics was extracted from the related studies, grouping them by

similarity. A generic nomenclature was assigned for each group, so that similar characteristics in

a group were represented in an unified way. By following this process, the Built-up integration

taxonomy was built, composed by three main features: Data Retrieval, On-the-fly Integration,

and Data Delivery, which represent important steps executed by several recent data integration

systems. These features are detailed as follows.

The first main feature, Data Retrieval, covers the ability of retrieving useful sources of

information for dealing with specific domain problems. For doing this, it relies on two mandatory

subfeatures, named Input Query and Source Selection. Through the information

contained in the input query, a system can analyze different candidate sources of information and

select the ones that are most likely to provide a reliable answer. A user query can be expressed

through many ways: by using a particular language such as SQL or SPARQL (which are types of

conjunctive queries), through natural language, by interacting with GUI-based elements in an

interface, and so on.

Based on an input query, the integration system can perform Source Discovery.

This feature assumes that data sources must be discovered on-the-fly for dealing with users

requirements [4]. The discovery may be explored through table relatedness measures [270],

similarity joins between data collections [262], or general similarity methods that determine how

related the source is according to the query. Human Involvement may be present during

Data Retrieval, if the system allows the user to solve ambiguities in data sources attributes, or

choose one source among several good matches.

As the second main feature of the taxonomy (see Figure 3.1), there is On-the-fly

Integration. This feature refers to the ability of analyzing and combining, at query time,
heterogeneous data from the previously discovered sources. Hence, it should also consider

possible changes in users requests, adapting data sources and/or processes accordingly [123].

Due to these characteristics, an integration performed on-the-fly allows to retrieve situational data,

from which we can derive valuable insights that enable accurate decisions [244]. Regarding the

taxonomy, On-the-fly Integration has Data Preprocessing, Data Augmentation,

and Human Involvement as subfeatures.

Data Preprocessing is a step that aims to deal with heterogeneous data sources

that usually contain out-of-date, noisy, or conflicting data. In order to perform a proper

integration, the information extracted from a source needs to be accessible through data cleansing

methods, which should resolve unique entities or fill up missing information [154]. Also, data

integration often requires some sort of correlation, by means of obtaining the data schema from

the discovered sources, estimating available dimensions, facts, and measurements, performing

similarity calculation, and so on [180].

After cleaning the data and assessing how they can be used to meet the users needs, the

selected data sources are finally merged, causing an “extension” of the information previously

available. We call this featureData Augmentation, which can occur by combining stationary

data (e.g., a DW) with external data [244], or simply merging external resources [104]. The

2Available at: <https://scholar.google.com>.

3Available at: <https://www.connectedpapers.com/>.
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resulting augmented set is then used for answering requests that could not be properly answered,

due to lack or insufficiency of the current data [3].

During the integration, Human Involvement may be present to help the system to

improve the quality of data integration. When involved, the user can check the presence of errors,

decide which is the best action or option among the available ones, and even create quality rules

for the system [81]. Most importantly, the user feedback can be collected and used as training

tool, so the system can make better choices in the future, such as the recommendation of a service

based on personal preferences. This participation is not only valuable during the data integration,

but also in the Source Discovery step, where human knowledge can help in the identification of

relevant data sources to be retrieved.

Data Delivery is the last feature of the Built-up Integration taxonomy, and it refers

to the just-in-time delivery of valuable solutions to the user after completing the integration.

Particularly, Data Delivery demands User Support, i.e., making the user aware of situations

that can potentially affect his activities. This can be done by the system simply producing a

valuable response (e.g., providing some explanation of how calculations took place), or making

a recommendation (e.g., which sequence of steps the user should apply) [214]. This kind of

support can be assisted by a graphical interface, favoring the user interaction and feedback

collection. Also, another way to support the user is through methodologies for improving the

system’s response time by, e.g., reducing the processing complexity, implementing multi-thread

execution, and so on [154]. Finally, as well as the other main features, Data Delivery can also

have Human Involvement, where user feedback about the responses can refine the results

and fine-tune data models.

Several approaches in the literature perform Built-up integration, since they have

mechanisms to jointly execute Data Retrieval, On-the-fly integration, and Data Delivery (the

main features of the taxonomy). The next subsection presents examples of them, indicating how

Built-up integration can be found in data integration studies.

3.3 WHERE WE CAN FIND BUILT-UP INTEGRATION?

This section aims to correlate Built-up Integration with the types of data integration discussed in

Section 3.1, in order to provide an overview of how the proposed features can be identified in the

literature.

3.3.1 The Main Features

As mentioned in Section 3.2, three main features are often shared between integration approaches,

which are Data Retrieval, On-the-fly integration, and Data Delivery. The Table 3.2 exemplifies

where these features can be found, taking as a basis a set of related studies mentioned in the

Section 3.1. Besides the table, the main features identification is discussed in details next.

3.3.1.1 Data Retrieval

As mentioned in Section 3.2, Data Retrieval requires Input Queries and Source
Selection. Concerning the former, we assume that users needs may be expressed in

many different ways. Conjunctive queries (such as SQL and SPARQL) are the most common

class of queries used in database systems, and are used in traversal-based/pay-as-you-go ap-

proaches [11, 103, 105]. Source Selection in mashup approaches often relies on a graphical

interface, so the user can interact with components, and overload models until a satisfactory
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Table 3.2: Built-up Integration examples in the literature
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solution is found [213]. Mashups can be also built with programming languages such as EMML

(Enterprise Mashup Markup Language), Orc, and YQL (Yahoo Query Language) [188].

Regardless of query format, in SDI the input query is situational, i.e., it focuses on

a particular problem and cannot be defined in advance [3, 247]. Mashup queries can also be

situational, since a mashup is usually developed for rapidly address an immediate need or a

specific situation [138]. In pay-as-you-go integration, the querying service can be made through

keyword search, structured queries (assuming that the user understands the underlying data

schema), browsing of available datasets, and even through question-answering (which focus on

natural language interaction) [41].

The most challenging task related to source selection in Built-up integration is Source
Discovery. In some cases, users spend more time searching for relevant information than

analyzing it, and for facing this issue, Source Discovery automatically identifies and retrieves

one or more data sources suitable to a user query. This taxonomy feature can be found in several

integration systems. In SDI, a common assumption is the existence of a local database, although

it usually cannot provide an actionable information to the user by itself. Thus, a source discovery

engine should discover external information to be further integrated with the local data [244].

The data sources are determined according to particular query requirements, or to previous

integration results [247, 154]. Regarding traversal-based integration, existing approaches can

discover initially unknown data sources at runtime, so they start querying without first having

to populate a repository of data [104]. In data mashups, services can be discovered by, e.g.,

text-based searches and browsing of services’ structural properties, whereas the content is mostly

collected with the help of APIs (Application Programming Interfaces) [89, 213].

In pay-as-you-go approaches, new sources are included in the dataspace automatically.

In this kind of integration, the semantic relationships derived may be approximate, but the

inclusion of user feedback (Human Involvement) assists in gathering information about

the selected sources and dealing with data uncertainty [14]. In fact, Human Involvement
in Data Retrieval can also be observed in SDI approaches, because when situational data are

retrieved and returned, the user may decide that they are not suitable for the task at hand [3].

3.3.1.2 On-the-fly Integration

On-the-fly integration combines sources at query time, aiming to satisfy a situational need (i.e.,

a specific and ad-hoc requirement). This feature covers Data Preprocessing and Data
Augmentation as important subfeatures within Built-up integration, and it can be observed in

derived approaches.

In SDI, the integration joins situational/external data with an information previously

available, generating an augmented set of data, which is used to provide useful insights [244]. The

situational approaches described in [122, 177, 70] exemplify data preprocessing and augmentation

covered by Built-up integration. Pay-as-you-go integration implies that resource-intensive data

integration should be performed at much lower cost, thereby it occurs on demand, starting with a

lower data quality. As a result, the approaches make use of techniques that infer relationships

between resources and refine these relationships in the light of user feedback [105]. In relation to

Data Augmentation, pay-as-you-go approaches execute a data fusion step, where the dataspace

instances are transformed into a single and consistent representation instance, which will be later

available for user viewing [161].

Proposals that cover traversal-based integration also present some sort of Data Augmen-

tation. In link traversal, for example, data links may be traversed during the query execution to

expand discovered data, i.e., to augment a dataset [103]. Such augmentations can also be found

in graph-based approaches that execute traversal algorithms for integration [133, 192]. With
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respect to Mashups, data from different sources are merged into a single joint place. The result

from this augmentation can be visualized as a web page, a web application, or a service, which is

able to fulfill users requirements [213].

3.3.1.3 Data Delivery

After data integration, the user needs to receive and visualize problem solution in an effective

way. In the taxonomy, this feature is called Data Delivery, which covers User Support and

Human Involvement.

User support is a key feature for SDI: as it bases on Situation-Awareness, the integration

focuses on providing decision-making in complex and dynamic situations. The support can be

achieved by means of predictions, alerts, or recommendations given to the user [19]. The general

idea is that data integration can make users aware of the current situation, and hence they have the

opportunity to take immediate action [29]. Pay-as-you-go integration also focuses on supporting

decision-making in highly dynamic environments. In this setting, a practical and fast integration

is better than a perfect integration, since the user can revise the results and gradually improve the

process [161].

In Data Mashups, user support occurs mostly through an effective visualization of results,

i.e., graphical interfaces that allow the user to combine services and see solutions that meet

the initial requirements [213]. User support can also mean an improvement of user experience.

Traversal-based integration, for instance, covers query optimization techniques and settings for

URI lookups that aim to reduce the response time [104].

In the proposed taxonomy of Built-up Integration, Human Involvement is not mandatory.

Some integration approaches (such as the traversal-based ones) do not require user guidance or

feedback, whereas for others, this kind of human participation is essential. E.g., in pay-as-you-go

approaches, human feedback is highly important to indicate the correctness of the received

answers, constantly improving the integration [59]. Similarly, in SDI, fused data may be

approved by the user, who can either confirm the results or propose alternatives [3]. Also, data

mashups can be executed in a semi-automated way, with user guidance during data discovery and

integration [188].

3.4 CHAPTER REMARKS

Built-up Integration was proposed for systematically grouping and labeling similar tasks found

in integration-based approaches. It is important to recall that the term does not come to fully

replace the terms already defined in the literature, since each one has its particularities (see

Table 3.1), especially considering the research context in which they were defined. In this sense,

it would be correct to affirm, e.g., that SDI is a type of Built-up Integration (as it contains the

characteristics defined in the proposed taxonomy), but keeping distinct characteristics, such as its

application in strategic decision processes and the premise of stationary data. Most importantly,

the Built-up Integration terminology highlights the similarities between the approaches already

available in the literature, and makes way to future approaches to be better categorized.

For demonstration purposes, Built-up Integration was only analyzed related to four

integration concepts existing in the literature, which were chosen due to the many common tasks

identified, and whose connection can be even more strengthened if we consider the joint mentions

in past publications (see Table 3.2). However, besides these concepts, other types of integration

executed on-demand (or considering situational problems) could also be considered and classified

within the taxonomy features. The taxonomy is generic, meaning that it can be extended in the
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future to cover more detailed aspects such as data sources types, adaptation methods for source

selection, or preprocessing techniques. In this case, the level of detail should consider the need

to specify optional edges, i.e., a feature optional on one side and mandatory on another [210].

Regardless of the taxonomy granularity, we consider that Built-up Integration features

are still very challenging. Considering that Built-up Integration represents an umbrella term for

several kinds of integration, some of the existing challenges involve how to execute its steps at

query time, considering the highly heterogeneous structure of datasets. More than that, the user

experience should be leveraged throughout the execution steps, targeting not only the delivery of

fast answers, but the improvement of tasks that favor smarter decisions. With the decision-making

goal in mind, discovering and merging information at query time through Built-up Integration

are steps that should be explored towards a proper delivery of services to the user.

However, as mentioned in Section 1, using a completely automated method to discover a

data source might result in ambiguities and errors within the retrieved data [147, 81], consequently

affecting analysis and user support. So, we raise the hypothesis that human knowledge can

be collected and used to solve ambiguities during data retrieval and, most importantly, to

systematically train a system on useful data to recommend [115]. Particularly, when considering

conversational interfaces as mediation tool (as proposed in this thesis), the agent is able to learn

from human evaluative feedback and demonstrations, using them to build or modify internal

execution rules [146]. As a consequence, Built-up Integration tasks such as source discovery and

on-the-fly integration could become more efficient.

Based on the opportunities exposed in this Chapter and research gaps previously

discussed in chapters 1 and 2, the next chapter presents a conversational Case-Based Reasoning

architecture for Situational Data Management. The system architecture covers a conversational

agent for enabling user interaction, and applies Case-Based Reasoning as learning methodology,

since it embraces a Review component that leverages human feedback. Being situational data

an essential component of the Built-up Integration concept, the proposal aims to support Data

Retrieval, On-the-fly integration, and Data Delivery tasks, using human knowledge as basis for

incremental learning. Thus, the importance of the current Chapter is evidenced in its closing,

relying not only on the organization proposed through the new taxonomy, but on the identification

of features that compose the thesis proposal.
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4 CONVERSATIONAL CBR ARCHITECTURE FOR SITUATIONAL DATA MAN-
AGEMENT

As mentioned in the previous chapter, promoting Built-up Integration involves several challenges,

such as discovering relevant data sources and supporting the user (either through a good interactive

experience or the delivery of useful insights). This chapter proposes a conversational CBR

architecture to alleviate these challenges, through a “human-in-the-loop” approach. Specifically,

it is based on the hypothesis that human feedback can be used for reinforcement learning (i.e.,

for guiding a system behavior), thus improving the delivered answer or result. To assess this

hypothesis, a conversational agent was chosen as a mediation tool to interact with the user and

collect feedback, and Case-Based Reasoning was chosen as reinforcement learning strategy.

The use of a conversational agent is inspired by a recent trend in computer science,

where conversational interfaces are investigated for democratizing data access and reducing

querying complexity, especially regarding Open Data [74, 174]. Thus, a conversational agent was

included in the proposed architecture to recognize conversation topics, use them to identify data

sets, recommend suitable attributes, and present the information to the user. In the identification

of datasets, the Multidimensional Data Model [111] was taken as reference, which assumes

that data is explicitly modeled with facts structured as data cubes. A cube, in turn, is defined

with respect to several dimensions and includes a number of measures, or metrics, to hold the

measurable aspects of facts1 [62, 241]. In short, the conversational agent uses database metrics,

dimensions, and filters to communicate with the user and gather the proper feedback. It is also

responsible for executing a Case-Based Reasoning methodology in order to retrieve a consistent

solution, reuse and adapt it according to the human review, and retain it for the system’s learning

(see Figure 1.1).

The use of CBR methodology can be justified in many ways. First, it has been

successfully applied for a long time in recommendation systems, and also recommendation

dialogs, through conversational interfaces [137, 23, 108, 45]. Second, it favors explainability to

users, which is a highly desirable feature when considering that machine learning techniques

are frequently complex and opaque (e.g., deep neural networks) [211, 85]. Also, it allows to

efficiently use the human knowledge to solve problems, which is particularly interesting for

Built-up Integration tasks: considering that humans cannot always remember relevant information

for problem solving, a CBR system augments the person’s memory by providing cases that can

be used as guidelines for decision making [131]. Thus, it is possible that the user makes better

decisions because the augmentation provides more cases (and perhaps better ones) than would be

available without the machine. As discussed in chapters 2 and 3, user support is a key feature for

situational approaches and Built-up Integration.

The conversational CBR architecture is presented in Figure 4.1, and has the main goal

of proposing suitable databases and attributes to be queried according to an input case. The

cycle execution is detailed as follows: First, a user queries a conversational system (let us assume

a chatbot) by posing an initial question, which is considered as a New Case inside the CBR

Cycle. When searching for a good database match for the input question, the chatbot maintains

a historic knowledge base containing previous cases, i.e., a set of triples <dbName, dbMetrics,
dbDimensions> from which we can extract the triple that best suits the new case. The best match

is supposed to satisfactorily answer the user question, and it is verified through a similarity score

1A cube containing demographic facts, for instance, could be defined by dimensions “region” and “population”.

Metrics could address, e.g., the total of citizens in a given city or the average number of cities per region.
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Figure 4.1: Functional view of the Conversational CBR approach for Built-up Integration Support.

associated with each triple: the higher the score, the more likely the triple matches the input

case. The selected triple represents the Retrieved Case. When there is no similar case in the

historic knowledge base, the system triggers a Source Discovery process, aiming at finding an

appropriate data source to answer the question. In this case, the selected/discovered source

should be preprocessed to extract relevant values for dbMetrics and dbDimensions, which then

represent the Retrieved Case in the cycle.

From the Retrieved Case, the conversational system proposes a solution to the user,

i.e., the database found as the most relevant one, along with metrics and dimensions that could

answer the New Case. Next, in a Revision step, the user has the opportunity to manage the

attributes suggested (e.g., replace them or add potentially useful attributes) and use them to build

a definitive query that should retrieve the final answer. In this context, the database and attributes

become a Repaired Case. Another repair possibility is when the answer contains only a part of

the information the user wants, so he/she could choose to complement it with a second source

(either discovered or selected among the available options), meaning a second execution of the

“Reuse” and “Revise” steps. After the second execution, the user has two partial answers that

could be integrated and visualized together in the chat. Thus, the integration of answers also

represent a Repaired Case, dependent on the user feedback. The Repaired Case, after all the

user checks, turns into a Learned Case, i.e., it is stored in the historic knowledge base to be

considered by the system every time a new case is received. It is important to highlight that, in

the architecture overview (Figure 4.1), the components bordered with a dashed line are secondary

within the CBR Cycle, meaning that they will be executed when previous cases are not enough

(Source Discovery), or the answer received is not complete, demanding a second round of the

cycle (Data Integration).

The next subsections focus on the isolated CBR steps shown in Figure 4.1, and how

their activities are executed in consonance with Built-up Integration support.
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4.1 RETRIEVAL: HANDLING A NEW CASE

Case retrieval in the CBR cycle involves measuring the similarity between the new case and

previous/historical cases. In the CBR architecture proposed in this thesis (Figure 4.1), all the

cycle relies on the Multidimensional Model, i.e., metrics and dimensions are used as basis for

retrieving cases, recommending solutions, and repairing a case that will be further retained.

The Retrieval step of the proposed CBR architecture relies on two activities: (1)

retrieving cases from a historic source, and (2) discovering and retrieving a new source to serve

as new reference, when the history itself is not enough. These activities will be addressed next.

4.1.1 General Knowledge (History of Previous Cases)

According to the CBR methodology, the use of memory (i.e., historical cases) is a good way to

quickly retrieve relevant knowledge to solve a new situation [157]. In the proposed architecture,

each previous case 𝑃𝐶𝑛 in the history is identified by a set of tokens 𝑇𝑃𝐶𝑛, stored from past

questions. Each 𝑃𝐶𝑛 is also represented by a database name and its most significant metrics
and dimensions according to 𝑇𝑃𝐶𝑛. Thus, given a new case 𝑄, the history retrieval determines

the most similar 𝑃𝐶𝑛 to be reused throughout the cycle. The retrieval process is represented in

Figure 4.2.

Let us consider, for example, that the user asked the following question𝑄: “How many
graduate students are enrolled in public schools?”, which is assumed as

a new case in the CBR cycle. The question is preprocessed (more details in Section 4.1.2.1) in order

to output a set of tokens 𝑇𝑄: <graduate, student, enroll, public, school>.

Next, the tokens 𝑇𝑄 are compared to the content of the the historical source in order to return the

best match. Two scores are considered in this phase: Similarity score and Usefulness score.

Figure 4.2: Case retrieval from history.

The first one, Similarity Score, considers the similarity between 𝑇𝑄 and all 𝑇𝑃𝐶𝑛.
Considering the example in Figure 4.2, and assuming a similarity based on common attributes,



45

the previous case PC3 would be retrieved, since 3 out of 4 tokens were found in 𝑇𝑄 . The

Usefulness Score, on the other hand, determines how much each case was retrieved and reused in

the past. Considering, for example, that each case is initialized with a𝑈𝑠𝑒 𝑓 𝑢𝑙𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒 = 10

when first included in the history, and𝑈𝑠𝑒 𝑓 𝑢𝑙𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒+ = 10 for each time the case is reused2,

PC3 would be chosen again, as its score is higher than the other previous cases. This two-step

verification (through different types of retrieval scores) aims at a more reliable recommendation

to the user, and execute a “tiebreaker” if there are two or more cases with the same similarity

score to the input question. In addition, as the history receives more cases, it is possible to have

two or more previous cases share the same Similarity Score and the same Usefulness Score. Then,

the temporal proximity becomes the tiebreaker criterion, and the last case inserted is retrieved.

Regarding text preprocessing within the Retrieval step, it is valid to highlight that the

input data must be consistent enough for searching a similar case in the history or external

sources. Online texts, for example, usually contain a lot of noise and uninformative parts (such

as HTML tags), which have low significance for the text analysis [168]. Similarly, user replies to

a conversational interface can be full of stop words and informal text that can not be effectively

analyzed. By removing irrelevant elements and cleaning the words during the Retrieval step,

performance and speed can be improved [65, 185].

Although the related literature discusses several approaches for text preprocessing [48,

168, 125], we highlight a small set of them, since they were chosen for composing this thesis’

methodology:

• Special characters removal: This technique aims at removing uninformative characters

from a text, such as tags, punctuation, extra white-space characters, and special characters

in general (such as $, %, or &) [48].

• Lowercasing: The existence of uppercase in a word usually does not affect its meaning,

so as the words “Door”, “door”, or “DoOr” should refer to the same object. Thus,

lowercasing sentences avoids differentiation based on character and ensures consistency

when, e.g., sentences are being compared.

• Stopwords removal: Stopwords are words that recur very frequently in documents, as

they are used to join words together [125]. It is the case of “and”, “are”, “this”, and

others. These words do not contribute to the text content, and most importantly, they

may confuse a retrieval system or classification algorithm. Their removal is therefore

highly recommended.

• Tokenization: Tokenization is the process of breaking a sentence into words, phrases,

symbols, or other elements called tokens [125]. This segmentation allows the lexical

exploration of the words in a sentence, and especially the extraction of meaningful

keywords for further processing. With tokenization, a new case “what are the colors of

the Brazilian flag?” generates the tokens “colors”, “Brazilian”, and “flag” (considering

that stopwords removal was also applied in a previous step).

• Stemming: This technique removes inflectional endings or suffixes from a word [168].

The word “stripes”, for example, would return “strip” when stemmed. This technique is

useful to normalize sentences when searching for a match in a target source.

2The number 10 is only for example purposes. The choice of a number for initialization and increment can be

based on a specific methodology or motivation.
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• Named Entity Recognition (NER): It aims to recognize mentions or proper names

from text, belonging to predefined semantic types such as person, location, and

organization [143]. If a user asks, for example, for "the gasoline price in Brazil", Brazil
will be recognized as as entity. In data retrieval contexts, NER can be highly useful to

capture entities and link them to a class of information being searched.

Preprocessing the user question is needed for the CBR Retrieval step, in which a relevant

match is returned from the historic source. There may be situations, however, where no case in

the history is good enough to match the new case, either due to Similarity and Usefulness scores

below the expected (in case a threshold has been defined), or because the user was not satisfied

with the system recommendation. Thus, the CBR Retrieval should consider a Source Discovery
mechanism, which will be discussed next.

4.1.2 Source Discovery

A data discovery problem occurs when users spend more time looking for relevant data than

analyzing it [68]. So, Source Discovery is a process that aims to mitigate this obstacle, finding

one or more relevant data sources (among many possible sources) suitable to a user query [76].

As shown in Figure 3.1, a Built-up Integration involves the selection of an appropriate data source,

and in many cases, the discovery of the “best match” for answering situational questions. This

subsection addresses the Source Discovery component, whose purpose is to achieve the most

adequate data source among a set of candidates. The component bases on Metadata Matching,

i.e., the similarity between an input question and the sources attributes, and it is demonstrated in

Figure 4.3.

First, it receives the input question 𝑄 (also called new case) that expresses the user’s

intention, and a set of candidates sources ([𝐶𝑆1, ..., 𝐶𝑆𝑛]) that are eligible to provide an answer.

The question, as mentioned in the previous subsection, is preprocessed to obtain the tokens 𝑇𝑄 ,

whereas the candidate sources are first given as input to a Metadata Extraction function that

extracts the attributes description, which are latter preprocessed. The result from the candidate

sources preprocessing are sets of tokens [𝑇𝐶𝑆1, ..., 𝑇𝐶𝑆𝑛]. Next, the sets go through a Source
Selection step, that systematically assesses how similar 𝑄 is to each 𝑇𝐶𝑆𝑛, returning the best

match.

To demonstrate the Source Discovery component based on metadata, let us consider

the tokens 𝑇𝑄 from the previous example (<graduate, student, enroll, public,
school>), which will be used to look for elements in the candidate sources schemas that indicate

potential to provide answers. Let us also consider three candidate sources, whose metadata are

represented in Table 4.1. When analyzing 𝑇𝑄 , we see a stronger connection to some attributes

from 𝑇𝐶𝑆2, with respect to value overlap. Based on this assumption, if we use all sets of tokens

(𝑇𝑄,𝑇𝐶𝑆1, 𝑇𝐶𝑆2, 𝑇𝐶𝑆3) as input to a source selection method, the highest similarity observed in

𝑇𝐶𝑆2 would result in 𝐶𝑆2 as the selected source.

Obviously, measuring similarity based on value overlap does not consider semantic
similarity, e.g., a token “school” is highly connected to “university”, although they have completely

different nomenclatures. This would mean that a source metadata set similar to the input question

could be eventually skipped. One way to avoid this kind of misinterpretations within the Source

Discovery component would be including some method that performs semantic similarity between

the tokens, besides the syntactic similarity [69, 134, 181].

The next subsection describes some syntactic and semantic methods investigated in this

thesis for source selection.
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Figure 4.3: Source Discovery Model.

Table 4.1: Metadata from candidate sources example and matches based on value overlap.

𝑇𝐶𝑆1 report_date, region, county, school_name, school_code, school_type, positive_students, posi-

tive_teachers, positive_staff, school_administered_tests, number_of_students, number_of_teachers,

number_of_staff

𝑇𝐶𝑆2 year, county_code, county_name, sector, school_type, school_level_code, school_level, le-

gal_name, undergraduate_fulltime_total, undergraduate_ft_enrolled_program, undergradu-
ate_ft_not_enrolled_program, undergraduate_parttime, undergraduate_pt_enrolled_program,
undergraduate_pt_not_enrolled_program, graduate_fulltime, graduate_parttime,
all_students_fulltime, all_students_parttime

𝑇𝐶𝑆3 american_community_survey_period, borough, borough_community_district_code, com-

munity_district_name, community_district_population, total_lep_population, percent-

age_population_proficient

4.1.2.1 Source Selection Methods

Accessing external data (e.g., Open Data) often represents an obstacle for regular users, due

to the amount of data made available, its format and diversity. This subsection discusses three

different methods that can act as source selection methods within the CBR’s Source Discovery

component: Cosine Similarity, Semantic Unionability Test, and LDA-W2V. Cosine Similarity is

a popular and simple method for measuring similarity between two sets of data, as it only requires

term-frequency vectors from the sets being compared. The Semantic Unionability Test [181]

was proposed to determine the unionability between two sets of attribute metadata, which can be

particularly interesting for measuring how close a data source is from a user question, based on

schema or source description. Finally, the LDA-W2V algorithm is discussed, which performs

topic modeling and extend the resulting topics with pre-trained word embeddings, allowing to

add semantic meaning to the inference. The methods are detailed next.

Cosine Similarity. Documents can be represented by thousands of attributes that record the

frequency of a particular word in the document. Thus, a document is an object that can be

represented by a term-frequency vector [98]. Given two vectors, one can measure similarity
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Figure 4.4: Term-Frequency Vector example. Adapted from [98].

between them by using Euclidean distance, angular separation, correlation, and others [216].

Among the existing methods, the Cosine Similarity is frequently used.

Cosine Similarity measures similarity as the angle between two vectors being compared,

assuming that each word in a text or document corresponds to a dimension in a multidimensional

space [87]. When measuring the angle of the documents, smaller the angle, higher the similarity.

So, considering that cosine of 0○ is 1, two vectors are said to be similar when cosine similarity

is 1 [91]. Cosine similarity calculation is represented in Equation 4.1. For exemplifying,

suppose that 𝐴 and 𝐵 are the first two term-frequency vectors from Figure 4.4, so that 𝐴 =

(5,0,3,0,2,0,0,2,0,0) and 𝐵 = (3,0,2,0,1,1,0,1,0,1). By applying Equation 4.1, the cosine similarity

between the two vectors is 0.94.

cos(𝐴, 𝐵) =
𝐴 ⋅ 𝐵

∣𝐴∣ ⋅ ∣𝐵∣
(4.1)

Cosine similarity has been widely studied in the past years and, besides Information

Retrieval, it reaches several other application domains, such as medical diagnosis (e.g., for

finding a probable disease based on a set of symptoms [195]), object tracking [175], and pattern

prediction [205].

Semantic Unionability Test. The Semantic Unionability test (or Sem-unionability) was pro-

posed by [181] and determines the probability of attributes being semantically unionable, i.e.,

belonging to the same domain. The proposal is applied in Open Data domain, aiming to find a

related table, given a query table.

Based on the mentioned study, suppose we want to determine if two sets of attribute

values, 𝐴 and 𝐵, are belonging to the same semantic domain 𝐷. Thus, 𝐴 and 𝐵, their metadata

sets, and the intersection size between these sets are used to calculate Sem-unionability. The

calculation follows a hypergeometric distribution [199]: suppose the semantic domain 𝐷 contains

the values of 𝐴 as success values, and 𝑛𝑎 samples are drawn from 𝐷 without replacement.

If a draw from 𝐷 is in the intersection of 𝐴 and 𝐵, it represents a successful draw. In the

hypergeometric test, the number of 𝑠 successful draws is used to calculate the probability that
𝐴 and 𝐵 belong to the same domain, being the intersection size ∣𝐴 ∩ 𝐵∣ the maximum value of

𝑠. Thus, if 𝐴 is in 𝐷 and 𝐵 is drawn from 𝐷, the cumulative distribution of a hypergeometric

distribution, 𝐹, using the actual intersection 𝑡 = ∣𝐴 ∩ 𝐵∣, is defined as:

𝐹(𝑡∣𝐴, 𝐵) = ∑
0≤𝑠≤𝑡

𝐶(𝑛𝑎, 𝑠)𝐶(𝑛𝐷 − 𝑛𝑎, 𝑛𝑏 − 𝑠)
𝐶(𝑛𝐷, 𝑛𝑏)

(4.2)
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where 𝐶(𝑚, 𝑛) is the combination of 𝑛 items out of 𝑚 items. Now, assuming Â and

B̂ as metadata sets from 𝐴 and 𝐵, respectively, and 𝐷 as the disjoint union of Â and B̂, the

Sem-unionability𝑈𝑠𝑒𝑚 of attributes 𝐴 and 𝐵 is defined as:

𝑈𝑠𝑒𝑚(𝐴, 𝐵) = 𝐹(t̂ | Â, B̂) (4.3)

where t̂ is the intersection size of Â and B̂.

Example3: Consider two data tables, 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑖𝑒𝑠 and 𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠, from two dif-

ferent datasets, and 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑖𝑒𝑠 = [Yale, Trinity, College of New Jersey, Butler University],
𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 = [Bryant, University of Portland, Harvard, University of Delaware, Princeton,

Columbia]. Suppose their metadata are ̂𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑖𝑒𝑠 = [east-universities, west-universities, north-

universities, midwest-universities], and ̂𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 = [north-universities, west-universities,

east-universities, south-universities]. Considering D̂ = ̂𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑖𝑒𝑠 ∪ ̂𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠, 𝑈𝑠𝑒𝑚(t̂=
3∣ ̂𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑖𝑒𝑠, ̂𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠, D̂) is 0.9857.

When querying open data tables, 𝑈𝑠𝑒𝑚 is a good alternative for determining the

likelihood of their attributes being related. Considering the Source Discovery model and the goal

of recommending a suitable data source based on the new case, the method can be investigated

for measuring the closeness of databases metadata to the user question.

LDA-W2V Hybrid Algorithm. Latent Dirichlet Allocation (LDA) is a generative probabilistic

model of a corpus, based on the idea that documents are represented as random mixtures over

latent topics, and each topic is characterized by a distribution over words [18]. Thus, given a

document, paragraph, or sentence, LDA performs topic modeling, allowing to predict the main

topics (e.g., subjects) covered by the text by assigning their probabilistic mixture.

A common LDA task is demonstrated in Figure 4.5: The document narrative is

summarized as a mixture of three topics, whose words receive weights (proportions) according

to their relevance, or frequency, in the narrative. We can observe that, in the example, LDA has

determined the most relevant topics, since the words in topic 1 appear more often in the narrative

compared to the words related to other topics [16]. The LDA model has clear internal structure

that allows efficient inference, and it is independent of the training documents number, thus being

suitable for handling large scale corpus [150]. In contrast, it presents a lower performance when

applied to short texts, and a frequent lack of definite meaning caused by the isolated analysis of

topic impact [251, 249].

For handling such drawbacks present in the classic LDA method, the authors in [117]

propose a hybrid model called LDA-W2V. Specifically, the model joins LDA with Word2Vec

algorithm [86], considering that word embeddings allow to capture semantics when processing

vast amounts of linguistic data. First, it assumes a set of documents, which are preprocessed

for obtaining a list of representative words or tokens. Each document set of tokens is given as

input to the LDA algorithm, which predicts the topics (i.e., words and their proportions) that

best describe the document content. For exemplifying, a document containing information on

universities could be represented by a topic containing the following words and proportions:

0.048*“high” + 0.047*“education” + 0.033*“students” + 0.033*“university” + 0.032*“course”
+ 0.032*“public” + 0.032*“federal” + 0.031*“private” + 0.031*“administrative.”

The next step of the approach performs a Word2Vec (W2V) Extension, which aims to

extend words in sources topics by using similar words acquired from Word2Vec model. The

similarity is measured by Cosine Similarity (see Subsection 4.1.2.1): Supposing a topic word

𝑊𝑛, the W2V model is traversed to find similar words [𝑤2𝑣𝑊𝑜𝑟𝑑1, ..., 𝑤2𝑣𝑊𝑜𝑟𝑑𝑛]. Then, the

3Adapted from [181].
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Figure 4.5: Illustrative example of LDA. Adapted from [16].

similarity score between a pair [𝑊𝑛, 𝑤2𝑣𝑊𝑜𝑟𝑑𝑛] is multiplied by the LDA proportion score for

𝑊𝑛, obtaining a derived proportion 𝐷𝑃𝑛. Each similar word found represents an extended word

𝐸𝑊𝑛. Following the previous topic example, the W2V model retrieves the word institution as

similar to the topic word university, with a similarity score 0.71. This score is multiplied by

LDA proportion score for university, 0.033, thus obtaining 𝐷𝑃𝑛=0.023. institution becomes an

extended word 𝐸𝑊𝑛, and generates a tuple [𝑊𝑛, 𝐷𝑃𝑛, 𝐸𝑊𝑛], e.g., [university, 0.023, institution].

After word extension, the approach tries to classify an input sentence (the test set) into a topic,

based on the probabilities (𝐷𝑃𝑛) within all possible tuples. In short, the input sentence is assigned

to the topic that contains the highest probabilities for each sentence word. As the extension with

pre-trained word embeddings allows to add semantic meaning to the inference, LDA-W2V can

be an accurate method in Source Discovery tasks.

For closing this subsection, we recall that Source Discovery is a well known research

challenge [227, 263], which has been tackled by several studies. To mention a few, the

Aurum system [68] flexibly finds relevant data through properties of the datasets and syntactic

relationships between them; The DataMed approach [31] includes a Source Discovery task

for finding relevant biomedical datasets from heterogeneous sources, making them searchable

through a web-based interface. Recent approaches have also incorporated human knowledge,

such as feedback, to improve discovery tasks [179, 269, 260]. This thesis aims to leverage human

knowledge to improve situational data management. Based on the CBR architecture, a retrieved

source should be used recommended data attributes gather proper feedback.

The next section addresses the Reuse phase of the architecture, explaining how the

multidimensional data model is used to make recommendations, and how they are visualized by

the user through a conversational interface.
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Figure 4.6: Reuse Activity Flow.

4.2 REUSE: SOLUTIONS BASED ON DIMENSIONAL DATA

In the Reuse phase, the case previously retrieved (either a database from the history or a database

discovered on-the-fly) should be used to build a proper solution and recommend it to the user. This

recommendation is based on Dimensional Data, i.e., the most suitable metrics and dimensions

within the retrieved source are used for executing a query and returning an answer.

The idea is that, given the new case 𝑄, the conversational system makes suggestions

such as “This is the metric most similar to your question” or “I found these dimensions as the
most relevant ones”. For achieving this, the first step is to differentiate metrics and dimensions

from a single set of attributes retrieved, as discussed next.

4.2.1 Differentiating and Recommending Data Attributes

Considering a case retrieved from the system history, and considering that the history maintains a

structure such as the one in Figure 4.2, we can easily determine the solution to be recommended,

since the sets of metrics and dimensions are already discriminated. However, considering that

Source Discovery was executed in the Retrieval step, and not all databases are made available

with a data dictionary, we may not have the same discrimination. Following the example from

Subsection 4.1.2, if the candidate source CS2 was the retrieved one, it would be necessary to deal

with the whole set of attributes 𝑇𝐶𝑆2 (i.e., the metadata, as shown in Table 4.1), by differentiating

the sets of metrics and dimensions. This process is illustrated in Figure 4.6.

With the similar case retrieved and the corresponding database schema at hand (let us

suppose a schema S), we first execute a searching procedure for obtaining the sets of metrics M
and dimensions D. The sets M and D are read from S as shown in Equations 4.4 and 4.5. The

function is_metric verifies whenever database scheme contains metrics (sum, min, max, average)

while the function is_dimension returns dimension information. Next, it is necessary to build the

set of meaningful attributes to be recommended to the user, gather his/her approval and proceed

with the query execution (see Figure 4.1). The recommendation process is based on the subset of

metrics and dimensions that are closer to the user input.

𝑀 ⊂ 𝑆 ∣𝑀 =
𝑆

∑
𝑗=0

𝑖𝑠_𝑚𝑒𝑡𝑟𝑖𝑐( 𝑗)∀ 𝑗 ∈ 𝑆 (4.4)

𝐷 ⊂ 𝑆 ∣ 𝐷 =
𝑆

∑
𝑖=0

𝑖𝑠_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝑖)∀𝑖 ∈ 𝑆 (4.5)

Considering the user input from the previous examples, after preprocessing it we obtain

a set of tokens 𝑇𝑄 . For recommending the most relevant dimensions and metrics, the metrics

set M is traversed for finding those related to 𝑇𝑄 , resulting in a list of related metrics RM (see

Equation 4.6). Similarly, the dimensions set D is matched with the 𝑇𝑄 , producing a set of related
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dimensions RD, as demonstrated in (Equation 4.7). At this point, the conversational system

should return RM and RD to the user, which should evaluate their usefulness.

𝑅𝑀 =
𝑇𝑄

∑
𝑤=0

𝑀

∑
𝑚=0

𝑤 ⊆ 𝑚∀𝑤 ∈ 𝑇𝑄,𝑚 ∈ 𝑀 (4.6)

𝑅𝐷 =
𝑇𝑄

∑
𝑤=0

𝐷

∑
𝑑=0

𝑤 ⊆ 𝑑∀𝑤 ∈ 𝑇𝑄, 𝑑 ∈ 𝐷 (4.7)

To exemplify, let us consider the previous 𝑇𝑄 <graduate, student, enroll,
public, school>) and the selected source CS2, whose attributes are described in Ta-

ble 4.1. Based on the 𝑇𝐶𝑆2, we have M = <undergraduate_fulltime_total, undergradu-
ate_ft_enrolled_program, undergraduate_ft_not_enrolled_program, undergraduate_parttime, un-
dergraduate_pt_enrolled_program, undergraduate_pt_not_enrolled_program, graduate_fulltime,
graduate_parttime, all_students_fulltime, all_students_parttime> and D = <year, county_code,
county_name, sector, school_type, school_level_code, school_level, legal_name>. Based on the

equations 4.7 and 4.6, RM = <graduate_fulltime, graduate_parttime> and RD = <school_type,
school_level_code, school_level>.

With RM and RD defined, the recommendation can take place. At this point, a

conversational agent that reproduces a conversation with the user is needed, both to deliver

information and to receive feedback. Thus, the next subsection presents the Question Answering

prototype used in the CBR architecture, and features of the development framework for translating

user inputs into intents.

4.2.2 Question Answering Prototype: Chatbot Application

For conducting the proposed CBR cycle, a Question Answering prototype was developed for

handling all the interactions from the input question (the new case) to the retained case. The

implementation covers a chatbot application.

The term chatbot indicates a software that simulates and reproduces an intelligent

conversation with a user, by capturing requests and replying accordingly [49]. A chatbot can

integrate a QA mechanism, but it has additional capabilities for exploring user experience and

improving usability, learning, and memory retention [130, 82]. Indeed, many QA systems

interact with the user in a way not yet compatible with how humans engage in conversations,

especially if the search result presented to the user is a lengthy text that demands locating the

needed answer [144]. On the other hand, chatbot interactions favor the incremental understanding

of the user need through explanations and feedback gathering. Also, unlike information retrieval

systems, chatbots do not need the user to have domain knowledge for formulating questions [151],

which encourages their application for reducing querying complexity and answering queries

related to information that might be unreachable [136].

For conducting a conversation, chatbots perform NLU tasks for extracting intentions,
entities, and context from user inputs. An intention, or intent, represents a mapping between

what a user says and what action should be taken by the chatbot [5]. An intention can be detected

through training sentences, i.e., different ways a user could express the same goal. For instance,

a “Greeting” intention can be recognized from training sentences such as “Hi”, “Hello”, or “Good

morning” [44]. Matched intentions usually carry parameters referring to entities, which can

be a city name, a date, or a location. Intentions also carry a context for storing current topic

information and maintaining past intentions that guide the conversation [58, 5].
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Typically, chatbots are extensively applied in businesses domains, for approximating

companies and users, as they present the ability to solve users problems by creating pleasant

conversations. However, their application has reached several other domains, including personal

assistants [203], education [255], and public administration [151]. Most recently, we have

witnessed the arrival and evolution ofChatGPT, a powerful chatbot based on the GPT architecture,

which uses a neural network to process natural language and generate responses based on the

input context [259, 145].

The chatbot prototype in this thesis was based on the Xatkit framework. Xatkit is an

open-source chatbot development framework4 that embeds a platform-independent modeling

language to specify user intentions, computable actions, and callable services [44]. Specifically,

the Xatkit modeling language is split up into two different Domain Specific Languages (DSLs)

named Intent and Execution packages, which are used by the chatbot designer to specify intentions

and actions. The Intent package is used to recognize the intention from training sentences, whereas

in the Execution package, the bot reactions to user intents are defined using the state-machine

formalism, comprising states and transitions. In the chatbot context, states can be understood as

functions containing the bot logic (which are triggered depending on the captured intention), and

transitions are used to navigate from one state to another.

Listing 4.1: Intention Definition within Xatkit.
1 val educationalData = intent("EducationalData")
2 .trainingSentence("I want to see schools in CITY")
3 .trainingSentence("Show me all schools in CITY")
4 .trainingSentence("How many students attended the ENEM exam in CITY?")
5 .trainingSentence("What is the literacy rate in CITY?")
6 .parameter("city-name").fromFragment("CITY").entity(city());

Xatkit has a mechanism for translating user inputs into intents, which is called Intent
Recognition Provider [44]. Specifically, this provider is an abstraction layer that represents any

NLP/NLU library that can be used with Xatkit for understanding the meaning of a question. In

our case, an Intention Recognition Provider was implemented based on regular expressions for

fast testing of the QA prototype, as demonstrated in Listing 4.1. So, if the user poses a question

similar to any of the above training sentences, the intention educationalData is recognized.

Also, when the recognition occurs, the Intention Recognition Provider triggers a corresponding

execution rule for handling the intention. This could be, e.g., a state that receives the CITY
parameter detected from the sentence and executes a query on a candidate source.

Considering the conversational approach architecture, the Intent and Execution packages

embedded in Xatkit assume an important mediating role in the Source Discovery model, since an

intention recognized from the 𝑄 sentence can call a state, or a sequence of states, for performing

schema reading of candidate sources and metadata matching. Thus, the chatbot application built

as QA prototype can execute all necessary procedures while maintaining a natural language

conversation with the user. In addition to Xatkit being suitable for these purposes, it can be used

with several NLP tools, ensuring its application in specific languages and vocabularies, such as

Brazilian Portuguese. With respect to open data mining foreseen in the conversational approach,

Xatkit is extensible, facilitating the integration of any external services as data sources, including

open data APIs [57, 58].

The chatbot prototype for conducting the CBR cycle should manipulate dimensional

data during the interaction, i.e, proposing metrics and dimensions of a retrieved database, based

on a new case inside the cycle. In the related literature, several Question-Answering approaches

explore data cubes for leveraging multiple aspects of data. The authors in [111] introduce the

4Available at: https://github.com/xatkit-bot-platform/xatkit
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CubeQA approach, which converts a NL question into a SPARQL query and generates answers by

indexing target datasets. Similarly, the study in [13] presents QA3, a QA system based on tagging

and a regex-like pattern language to describe query templates. So, the solution is able to choose

the dataset that better “covers” the user question. The authors in [194] explore conversational

interfaces for Business Intelligence applications by modeling the cube definition. This modeling

approach provides important information on metrics and dimensions, allowing to establish query

patterns used in dialog structures.

The CBR approach described in this thesis relates to the above-mentioned ones as it

focuses on multidimensional data, also relying on a chatbot as conversational interface. Especially,

the prototype serves as an access point to candidate databases, using their metadata to propose

solutions to the user. After the recommendations, the next step in the CBR cycle is Review,

where the user receives RD and RM, repairing (if necessary) the proposed solution.

4.3 REVIEW AND RETAIN: REPAIRING A CASE BY USER ACTION

Human involvement is an important aspect of Case-Based Reasoning and Built-up Integration.

For example, in SDI (a branch of Built-up terminology), once situational data are retrieved, the

user may decide if they are suitable or not for the task at hand [3]. In the proposed architecture,

when the related metrics and dimensions (RM and RD, respectively) are suggested through the

conversational system, the user can make several case repairs following a conversation flow, until

the expected result is retrieved.

4.3.1 Case Repairing Flow

Occasionally, metrics and dimensions recommended for query execution might not retrieve the

answer the user is expecting. Besides, even before the query execution, the user might realize the

suggestions are not adequate, either because the retrieved database is not correct, or because the

attributes have divergent semantic respecting the input case.

Figure 4.7: Case Repairing Flow.

In such situations, it is possible to repair the proposed solution, as demonstrated in the

case repairing flow from Figure 4.7. The flow shows the CBR steps (identified as yellow boxes)

assigned to two roles: the user role and the conversational system role. The main repairing
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activity assigned to the user role refers to Attributes Management, where the user examines the

sets of dimensions and metrics suggested (RD and RM), and chooses the subsets d’ and m’ of

his interest. The reviewed subsets are then sent to the Query Execution process, where they are

used as query parameters.

Taking as example the initial question/case “How many graduate students
are enrolled in public schools?”, and the proposed sets RM = <gradu-
ate_fulltime, graduate_parttime> and RD = <school_type, school_level_code, school_level>,

the user could choose m’ = <graduate_fulltime> and d’ = <school_type> as the most related

attributes. Filters can be also chosen (e.g., school_type = ‘public’, so, after collecting these data

as query parameters, the query is built with them and executed in the database. Following the

example, a possible SQL query with m’ and d’ could be SELECT graduate_fulltime FROM
selected_source WHERE school_type =‘public’, being selected_source the one reused after the

Retrieval phase, from where RM and RD are derived.

After the Query Execution, the user receives the query results through the chat and

evaluates their usefulness. This evaluation is decisive for the proposed CBR approach, since

it determines whether the solution should be retained or discarded for future input cases. A

solution (i.e., the attributes and database linked to the input case) is only retained when a positive

feedback has been given, otherwise, if the answer was not satisfactory, the user can manage the

suggested attributes again, choosing another subset m’ and d’ to compose a new query.

Another possibility, when the answer is not the expected one, is requesting another
database to be queried, as demonstrated in Figure 4.7. Changing the database is a repairing

activity that aims to propose a new solution, when the Attributes Management is no longer useful

or viable. So, the user should be able to select another database manually, or choose the Source
Discovery mechanism for automatically retrieving a relevant source.

Requesting another database to be queried not only covers cases in which the query

results are wrong, but also cases in which the answer is incomplete. This topic will be addressed

in the next subsection.

4.3.2 When the Answer is Not Enough

The answer to a user question may be spread over several databases [54]. This is also an

assumption in Built-up Integration, which comprises, in addition to on-the-fly integration, an

integration built from complementary data.

Following the example from the previous subsections, the SQL query SELECT gradu-
ate_fulltime FROM selected_source WHERE school_type =‘public’, assumes that attributes of

interest come from a single database. However, it is important to consider that information on

“graduate students” might be available in one source, whereas information on “public schools”

might be in another one. At this basis, during the case repairing flow (Figure 4.7), the user can

state that the answer received is partial (i.e., incomplete), meaning that only a part of what was

asked was indeed answered.

This action triggers a new round of the CBR cycle in order to search for the “missing part”

of the answer in another database (which can be retrieved through Source Discovery or the history

itself). The answer considered as partial is temporarily stored, and another round Retrieve
→ Reuse → Revise → Query Execution is performed, bringing fresh additional data.

Several rounds can be performed in the Repair step, until a complete answer is found. When the

additional round(s) is(are) finished, the parts of information from different sources are combined

and sent to the user, and the case is ready to be Retained.
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4.3.3 The Learning Step

When a case is solved, it is desirable to retain the plan in order to use it later for a similar problem.

This if the task of improving the experience of the system [1, 226]. According to [226], the plan

retention involves the decision of what to use as source of learning, e.g., by storing the whole

case or an abstraction version of the case. The Retention phase proposed in this thesis bases on

the last technique, abstraction, and performs a memory arrangement so the system can become a

better recommender.

The Learning step relies on the history model shown in Figure 4.2. When a case is

solved, i.e., when the user explicitly state that the received answer was good enough, three types

of information are considered to rearrange the history: (1) the input case (i.e., the initial user

question), (2) the database used to retrieve the answer, and (3) the repaired solution (metrics

and dimensions) used in the Query Execution. When including this type of information in the

history, the system is able to recommend them in the future, when an input case is similar to the

one stored.

Based on the types of information mentioned above, two possibilities of memory

arrangement can be performed:

• Case Transformation: When (1), (2), and (3) are already in the history. In this case,

we assume the history was effectively used to propose a solution and no repair has been

made by the user. Thus, the Usefulness Score of the historic case should be incremented,

representing how much this case was reused in the past (see Subsection 4.1.1).

• Case Addition: When at least one of the information (1), (2), or (3) are not in the

history yet. In this case, we assume that either Source Discovery was used to retrieve a

solution, and/or the solution was repaired by the user (e.g., by changing the attributes to

be queried). Thus, a new line is inserted in the history, containing a newly initialized

Usefulness Score.

It is important to state that, when a new round of the CBR cycle is performed to repair

an incomplete answer (see Subsection 4.3.2), Case Transformation and Case Addition may occur

more than once. In other words, if we have, for the same user question, a partial answer from

the history complemented with additional information from Source Discovery, the historic case

would be transformed, whereas the external solution would be added to the case base. However,

triggering a new round in the cycle is an optional step, meaning that should occur less often.

Concluding the Retain step of the cycle, for both types of memory arrangement

(transformation and addition), the user question is abstracted in the case, meaning that the

questions tokens are considered, rather than the raw question. This abstraction aims at refrain

the lack of significance in stopwords, and the ambiguity they might cause when traversing the

historic knowledge base.

Along this chapter, a CBR-based architecture for situational data management was

presented and detailed regarding all its components. In the subsequent chapters, the experiments

of this thesis are presented, involving each step of the CBR cycle. The next chapter the Retrieval
step of the cycle, specifically the Source Discovery task.
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5 EVALUATING THE DISCOVERY OF INFORMATION

A Source Discovery strategy must be evaluated with respect to choosing, among several candidate

datasets, the most likely one to answer a situational question. This subsection describes the

experiments from the Source Discovery component shown in Figure 4.3, which is part of the

Retrieval step of the CBR architecture.

The objective of the experiment is comparing different similarity methods performing

Source Discovery in a matching context, where a new case in the cycle should be assigned to

the most similar dataset among the candidates given as input. For this, the methods Cosine

Similarity, Semantic Unionability Test, and LDA-W2V (presented in Subsection 4.1.2.1) are set

up, and the desired output is having an overview of their weaknesses and strengths. With this

examination, it is possible to latter choose which method should compose the Source Discovery

strategy in the conversational prototype.

This chapter is organized as follows: Implementation details such as candidate sources

for performing Source Discovery, the methods configuration, and test questions are described in

Subsection 5.1. The results are demonstrated in Subsection 5.2, first comparing the methods

(Subsection 5.2.1) and then blending two techniques (Subsection 5.2.2). Finally, Subsection 5.3

discusses the outcomes from the discovery tasks.

5.1 IMPLEMENTATION DETAILS

This subsection discusses all elements needed for performing Source Discovery tasks, i.e., the

candidate sources involved, the configuration of methods used for discovery, and the questions

elaborated to test the methods performance.

5.1.1 Candidate Sources and Competency Questions

For performing experiments involving the Source Discovery Model from the proposed approach,

eight candidate data sources were considered: FIES1, INEP2, PROUNI3, CadUnico4, School

Census5, IBGE6, DataSUS7, and Ibama8, all of them extracted from Brazilian Open Data

portals. This choice was made considering the many research opportunities involving Brazilian

Open Data, particularly the need of providing solutions that can quickly retrieve decisive

information [242, 184, 25].

Half of the data sources contain educational data from different contexts: INEP contains

data on public and private higher education in Brazil, which comprises students, courses,

institutions (e.g., universities) and their professionals. FIES and PROUNI store data on funding

and scholarships for higher education students, respectively. The School Census dataset stores

1Available at: <http://dadosabertos.mec.gov.br/fies>.

2Available at: <https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-
abertos/microdados/censo-da-educacao-superior>.

3Available at: <https://dados.gov.br/dataset/mec-prouni>.

4Available at: <https://dados.gov.br/dataset/microdados-amostrais-do-cadastro-
unico>.

5Available at: <https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-
abertos/microdados/censo-escolar>.

6Available at: <https://www.ibge.gov.br/>.

7Available at: <https://opendatasus.saude.gov.br/dataset>.

8Available at: <http://www.ibama.gov.br/dados-abertos>.
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Table 5.1: Examples of Test Questions (English Translation)

Query Source

How many rural schools have computers? School Census

What is the average investment in education per city? INEP

How many gypsy families in CadUnico attended a college course per year? CadUnico

How many FIES beneficiaries are there for the Medicine course? FIES

How many students that benefited from racial quotas dropped out of a course per year? INEP

data on basic education (i.e., Elementary School), containing information about schools and their

infrastructure, classes, enrollments, students and teachers. The other four datasets are of different

subjects: CadUnico contains socioeconomic information on low-income citizens and families

included in a government social program called Cadastro Único. The dataset covers information

such as family/citizen income, education level, type of employment, region, among others. IBGE
aggregates mainly social, economic and environmental indicators from Brazilian cities and states,

including data from the demographic census, being one of the largest data sources on Brazil.

DataSUS manages health information such as health indicators, epidemiological and morbidity

information, healthcare networks, and service providers in Brazilian localities. Finally, Ibama
dataset contains information related to environment actions: environmental quality control, use of

natural resources, guidelines, environmental monitoring, prevention and control of deforestation,

and so on.

For enabling the experiments, each candidate source schema description was manually

extracted either from a CSV (Comma-Separated Value) file or a data dictionary in its respective

open data portal. The extracted information was placed in an auxiliar CSV file that summarizes

metadata from all sources, so that each row contains information from a different source. For

simplicity reasons, along this chapter we will refer to this file as sourcesMetadata.csv.

Each source content within this file was preprocessed (see Figure 4.3) through lowercasing,

removal of special characters, stemming, and removal of stopwords, resulting in a set of

meaningful tokens (represented by 𝑇𝐶𝑆𝑛 in the Figure). All Source Discovery methods were

implemented in Python, taking sourcesMetadata.csv as input, along with competency
questions.

Based on the sources content, the competency questions were elaborated for assessing the

model effectiveness. Two test sets were considered, containing 48 and 74 questions, respectively,

from which a source should be inferred. The test questions and their correct answers (i.e., sources

names) were defined manually, based on indicators available on data monitoring platforms

SIMOPE9 and LDE10.

For composing the sets of competency questions, inclusion and exclusion criteria were

considered. As inclusion criteria, (I1) the question content should be related to at least one of

the candidate sources; (I2) the question should contain at least two entities (e.g., city, school); and

(I3) the question should cover at least one metric (e.g., counting, average, maximum, and so on).

As exclusion criterion, (E1) the question should not specify values for dimensions or entities,

e.g., the question could ask about universities in general, but not about the Federal University of

Paraná, specifically. This criterion was established to ensure an evaluation essentially based on

metadata rather than data. Examples of the competency/test questions are shown in Table 5.1.

As demonstrated in Figure 4.3, just as the candidate sources are preprocessed, resulting in sets of

tokens 𝑇𝐶𝑆𝑛, the competency questions are also preprocessed, resulting in sets of tokens 𝑇𝑄 .

9Available at: <https://seppirhomologa.c3sl.ufpr.br/>.

10Available at: <https://dadoseducacionais.c3sl.ufpr.br>.
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The Source Discovery component expects as input the tokens 𝑇𝑄 from the competency

questions along with the candidate sources tokens 𝑇𝐶𝑆𝑛, and outputs the source with highest

similarity respecting the input question. Next, we present how the methods were configured to

deal with the discovery tasks.

5.1.2 Methods Setting

For detailing methodological aspects of this thesis, the current subsection presents how the

methods Cosine Similarity, Semantic Unionability Test (𝑈𝑠𝑒𝑚), and LDA-W2V were implemented

and adapted for their operation in the context of the CBR architecture.

5.1.2.1 Semantic Unionability Test

As explained in Subsection 4.1.2.1, the Semantic Unionability Test, or 𝑈𝑠𝑒𝑚 measure [181],

aims to find a related data table given a query table 𝐴. Specifically, 𝑈𝑠𝑒𝑚(𝐴, 𝐵) calculates the

unionability between data tables 𝐴 and 𝐵, based on their metadata sets and intersection size.

Algorithm 1 Flexible Intersection Algorithm.

Input data:
Set 𝐴 (question tokens 𝑇𝑄)

Set 𝐵 (source metadata tokens 𝑇𝐶𝑆𝑛)

1: flexibleIntersection = 0;

2: for each tokenA in A do
3: for each tokenB in B do
4: if tokenB.contains(tokenA)

5: flexibleIntersection++;

6: end if
7: end for
8: end for

In this experiment, rather than determining how close two data tables are, we wanted

to determine how similar is a source to a query. So, we adapted the approach as a query-based

unionability test, considering 𝐴 = 𝑇𝑄 , and 𝐵 = 𝑇𝐶𝑆𝑛, as metadata represent one or more data tables

within a source. In short, each source information from sourcesMetadata.csv corresponds

to a 𝐵 set, and each test question corresponds to the 𝐴 set. For exemplifying, suppose the query

“How many rural schools have computer”, which results, after preprocessing, in a

set 𝐴 = [𝑟𝑢𝑟𝑎𝑙, 𝑠𝑐ℎ𝑜𝑜𝑙, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟]. We also retrieve, from the candidate source content, a list

of its metadata as 𝐵 set. If this source is, e.g., the School Census, 𝐵 could contain attributes such

as student_name, school_name, school_region, number_of_classrooms, number_of_computers,
and so on.

As stated in Subsection 4.1.2.1, the𝑈𝑠𝑒𝑚 measure calculates the probability of 𝐴 and 𝐵
belong to the same semantic domain D, by following the hypergeometric distribution. Based

on the study, the domain 𝐷 was considered as the disjoint union between 𝐴 and 𝐵. For the

hypergeometric calculation, the approach considers value overlap (i.e., intersection size) between

𝐴 and 𝐵, as demonstrated in equations 4.2 and 4.3. We realized that there might be no intersection
values between the sets, even though the values are semantically related. Considering our

example sets 𝐴 and 𝐵 (or simply 𝑇𝑄 and 𝑇𝐶𝑆𝑛), no intersection value would be returned, despite

the similarities between 𝑠𝑐ℎ𝑜𝑜𝑙 in 𝐴 and 𝑠𝑐ℎ𝑜𝑜𝑙_𝑛𝑎𝑚𝑒 in 𝐵, for example.

For handling this situation, a flexible intersection was performed, assuming that terms

from 𝐴 might be contained in terms from 𝐵 and vice versa, so that intersection does not need to
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contain exactly the same values in both sets. The process of finding the flexible intersection is

demonstrated in Algorithm 1, which basically searches for each 𝐴 token within a 𝐵 token, and

every time it is found, the flexible intersection is incremented.

At the end of the function, Sem-unionability can be calculated using flexibleIntersection
as 𝑡 value in Equation 4.3. For exemplifying, if we consider 𝐴=[rural, school, computer], 𝐵 =

[student_name, school_name, school_region, number_of_classrooms, number_of_computers],
and 𝐷 = 𝐴 ∪ 𝐵, 𝑈𝑠𝑒𝑚 = 0.8214. The Sem-unionability implementation is demonstrated in

Algorithm 2. It is worth recalling that 𝑈𝑠𝑒𝑚 should be calculated for all candidate sources in

the Source Discovery component, allowing to determine the most appropriate candidate source

within the Retrieval step.

Algorithm 2 Sem-unionability Algorithm.

Input data:
Set 𝐴 (questions tokens 𝑇𝑄)

Set 𝐵 (source metadata tokens 𝑇𝐶𝑆)

Flexible intersection 𝑓 𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
1: 𝑎𝑢𝑥 = 0;

2: 𝑈𝑠𝑒𝑚 = 0;

3: 𝑑𝑜𝑚𝑎𝑖𝑛𝑆𝑒𝑡 = 𝐴 + 𝐵;

4: while 𝑎𝑢𝑥 <= 𝑓 𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 do
5: 𝑈𝑠𝑒𝑚 += hypergeometricDistribution(𝑑𝑜𝑚𝑎𝑖𝑛𝑆𝑒𝑡, 𝐴, 𝐵, 𝑎𝑢𝑥);
6: 𝑎𝑢𝑥++;

7: end while
8: return𝑈𝑠𝑒𝑚;

5.1.2.2 LDA-W2V Algorithm

As shown in Subsection 4.1.2.1, the LDA-W2V approach joins LDA and word embeddings

for performing text matching. We based on this approach for assigning an input query to

one of the candidate sources in a Source Discovery task. First, each source information in

sourcesMetadata.csv is sent as a corpus to the LDA model (Gensim implementation11

was used). Multiple runs of the LDA were performed alternating the num_topics parameter in

the model, which determines the number of latent topics to be extracted from each corpus. The

parameter value ranged from 8 to 10, based on the coherence measure12 for each source, which

evaluates how coherent the produced topics are, by capturing their semantic interpretability on

the LDA distribution.

Since all candidate sources are from Brazilian open data portals, the W2V Extension

(see Figure 5.3) was implemented with a Portuguese pre-trained model from FastText13. The

model receives the LDA topic distribution (words and proportions) and searches for similar

words for the extension. For measuring the similarity between a topic word 𝑊𝑛 and a model

word, the Word2Vec’s similar_by_vector method was used for finding the top-N similar

words given a word vector. In the W2V Extension experiments, N ranged from 30 to 60, and the

retrieval of model words similar to topic words was based on a similarity threshold, represented

as 𝐾, which assumed value 0.45. Only similarity scores above 𝐾 were multiplied with the𝑊𝑛
proportion score to derive the proportion 𝐷𝑃𝑛 (see Subsection 4.1.2.1). All LDA-W2V models

and respective parameters are shown in Table 5.2.

11Available at: <https://radimrehurek.com/gensim/models/ldamulticore.html>.

12Available at: <https://radimrehurek.com/gensim/models/coherencemodel.html>.

13Available at: <https://fasttext.cc/>.
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Table 5.2: LDA-W2V models

Parameter LW1 LW2 LW3 LW4 LW5

num_topics 8 9 10 8, 10 8, 9, 10

top-N 30 30 60 50 50

K 0.45 0.45 0.45 0.45 0.45

After W2V Extension, we obtain tuples [𝑊𝑛, 𝐷𝑃𝑛, 𝐸𝑊𝑛] for each candidate source. So,

the Source Selection step of the implementation receives and traverses all tuples, aiming to find

the best correlations for an input sentence, i.e., a query. In other words, the query tokens 𝑇𝑄
(extracted after preprocessing) are used to search for equivalent𝑊𝑛 or 𝐸𝑊𝑛 with higher 𝐷𝑃𝑛.
When a match is found, an array for each candidate source is created, containing one 𝐷𝑃𝑛 for each

query token 𝑇𝑄 . Otherwise, if a query token is not found in the extension, a default probability

(0.000001) is inserted in the array.

For example, suppose the query tokens [rural, school, computer]. If all these tokens

are found in the extension for the source School Census, the array for this source could be,

e.g., [0.0024, 0.032, 0.0096]. The same query tokens for source IBGE could originate an array

[0.0012, 0.0018, 0.000001], considering that “computer” token was not found in the extension.

Thus, each source array will contain different probabilities, one for each query token. After all

arrays are arranged, the probabilities average is calculated for each source, so the source with

highest average is chosen as the most likely one to meet the input query.

5.1.2.3 Cosine Similarity

As stated in Subsection 4.1.2.1, Cosine Similarity 𝑐𝑜𝑠(𝐴, 𝐵) measures similarity as the angle

between two feature vectors 𝐴 and 𝐵. As we wanted to measure the similarity between a query and

a candidate source from sourcesMetadata.csv, we extracted the term-frequency vectors

for each query and source.

First, the query and the source content were preprocessed, obtaining a query list and a

source list. Then, Python Counter tool14 was applied in the lists, allowing to map elements as

dictionary keys and their counts as dictionary values, thus obtaining the term-frequency vectors.

The vectors (query and source) are sent to the Cosine function, which performs the calculation

shown in Equation 4.1. The calculation is performed for all candidate sources, so the source with

highest similarity score is chosen as the discovered one.

In the next section, the results from Source Discovery evaluation are presented, addressing

the methods discussed and the candidate sources from Brazilian Open Data.

5.2 RESULTS

The next subsections describe two analyzes that were conducted based on the methods previously

characterized: the first one examines the methods separately, from where we extract advantages

and challenging points of each method. Based on this comparative evaluation, the second analysis

is based on a blended approach executing under the same setting conditions.

14Available at: <https://docs.python.org/3/library/collections.html>.
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Table 5.3: Accuracy for different questions (Q) and sources (S)

Q/S 𝑈𝑠𝑒𝑚 Cosine LW1 LW2 LW3 LW4 LW5

48/5 83.33 85.42 77.08 75.00 81.25 81.25 77.08

48/8 83.33 85.42 72.92 75.00 77.08 81.25 75.00

74/8 86.49 85.14 71.62 71.62 75.68 81.08 72.97

5.2.1 Cosine Similarity, LDA-W2V, and U-Sem Test: Comparative Evaluation

This section describes the results obtained with Cosine Similarity, Unionability Test and LDA-

W2V performing Source Discovery tasks. The evaluation considered the competency questions

described in Subsection 5.1.1, and consisted of three parts: First, we evaluated the test questions

with a smaller set of candidate datasets; next, we added the remaining datasets, maintaining the

set of test questions; finally, we added more questions to the test set. The variations aimed to

investigate possible changes in matching results.

Thus, in the first moment, the evaluation was conducted with Prouni, School Census,
FIES, INEP, and CadUnico sources, being the latter the only source that does not contain

education data. The objective was to verify whether the accuracy would be satisfactory with

data sources containing similar metadata. Concerning the Semantic Unionability Test (𝑈𝑠𝑒𝑚), the

ideal source was chosen for 83.33% of the test questions. For Cosine similarity, the accuracy

rate reached 85.42%. For LDA-W2V models (see Table 5.2), the highest accuracy was 81.25%,

achieved by LW3 and LW4. The accuracy values obtained in the first evaluation are shown in

the first line of Table 5.3, with the highest values highlighted in bold. The results by source are

summarized in Figure 5.1.

In general, considering five data sources and a test set containing 48 questions, only one

question received the wrong match by all approaches. For six questions, most of the approaches

(including all LDA-W2V models) made the wrong match. However, for the remaining questions

(41), the correct match was given by the majority. It is interesting to highlight that four out of

five datasets contained information on Education, representing a more challenging matching task

compared to predicting distinct datasets; yet, the accuracy rate was over 81% for the best models.

Due to this content similarity, a second round of evaluations was conducted, adding

the remaining data sources (IBGE, Ibama, and DataSus) to investigate whether the inclusion

of sources, distinct from each other and from the first five, could impact the models accuracy.

For this execution round, the accuracy rates had no marginal loss: 72.92% for LW1, 77.08% for

LW3, and 75% for LW5. The other models had no score changes, and the best models were

𝑈𝑠𝑒𝑚, Cosine, and LW4, with accuracy values 83.33%, 85.42%, and 81.25%, respectively. In

this second run, 2 questions were incorrectly assigned by all approaches and 7 questions by the

majority. The remaining 39 questions were correctly assigned by the majority. Concerning the

best three models, 33 questions were correctly assigned by all of them, and 7 were correctly

assigned by at least two. This means that, even in cases where the right answer is not given by all

approaches, a Source Discovery task could be highly effective by applying a voting mechanism

such as Majority Rule [173], which determines the final result as the one selected by most

methods in a voting group.

In the third evaluation round, more questions were added to the test set, aiming to verify

the models consistency. In total, 74 questions were given as input to the models, considering all

eight candidate sources. The best models remained the same (see Figure 5.2): 𝑈𝑠𝑒𝑚 (86.49%),

Cosine (85.14%), and LW4 (81.08%), as demonstrated in the last line of Table 5.3. Two questions
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((a)) ((b))

((c))

Figure 5.1: Matching results with different methods.

were incorrectly assigned by all approaches. Considering only the best three models, 51 questions

were correctly assigned by all of them, and 12 questions were correctly assigned by at least two.

In general, most of the erroneous matches occurred for the same questions in the test set,

despite being resulting from different forms of processing. In addition, in some cases, different

datasets were predicted for the same question, allowing us to observe the particularities of each

method and infer their strengths in the Source Discovery context. Let us consider, e.g. the

input question “Which educational institutions offer full Prouni scholarship?”. All methods

(including all LDA-W2V models) made the correct match, i.e., Prouni, except for𝑈𝑠𝑒𝑚, where

INEP was the chosen source with similarity score of 100%.

In fact,𝑈𝑠𝑒𝑚(𝐴, 𝐵) is strongly influenced by the intersection size between the sets being

compared, as well as B size (which, in this experiment, assumed the source metadata size). The

intersection set found between the preprocessed question (set A) and INEP metadata ([education,
institution, offer, full, prouni, scholarship]) was larger than the intersection found between the

question and Prouni. Considering the hypergeometric calculation and the number of successful

draws that determine relatedness in𝑈𝑠𝑒𝑚 (see Subsection 4.1.2.1), INEP was chosen primarily.

Another example of 𝑈𝑠𝑒𝑚 miscomprehension was observed in question “Number of master’s and
doctoral courses offered by city”, whose ideal source was INEP. In this case, 𝑈𝑠𝑒𝑚 returned

School Census as the right source. Although the intersection set size was the same between the

question and INEP, and between the question and School Census, the metadata size of the latter

was smaller, which influenced in the probability calculation. These observations may indicate

that 𝑈𝑠𝑒𝑚 measure is more assertive when 𝐴 and 𝐵 sets have similar sizes. Despite that, the

adaptation showed promising results, especially in the last round of tests, where it obtained the

highest accuracy.
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Figure 5.2: Comparison between all approaches - third evaluation round

Cosine similarity was the most assertive method, performing correct matchings in more

than 85% of the cases. Although its results were satisfactory, we observed that most of erroneous

matches involved the INEP dataset (see Figure 5.1). Besides that, we observed that most of

mispredictions were quite understandable: for questions where INEP was chosen, the correct

source was actually very similar to INEP with respect to question content. E.g., the question

“What is the average monthly fee of funded courses?” has its answer in FIES dataset; Cosine has

chosen INEP for this query, which also contains information about funded courses. In contrast,

for that same question, LDA-W2V models choose Cadunico, which is a data source not related to

education.

LDA-W2V was the method with the lowest accuracy (around 81% for the best model).

When observing the erroneous matches, we realized that predictions made with this method

can be highly variable depending on the probabilities assigned in W2V Extension step (see

Subsection 5.1.2.2). Let us consider the preprocessed question [course, master, doctoral, offer,
city], whose predicted source was FIES, and ideal source was INEP. When searching for the

query tokens within INEP extension, the probability array average for this source was smaller

than the average for FIES. Specifically, FIES array contained higher probabilities corresponding

to similar words student and town, whereas smaller probabilities were found INEP extension for

similar words class and location, thus causing an erroneous match. As a consequence of this

behavior (observed for most error cases), we realized that the presence or absence of a single

word in a test question, and its respective probability value obtained in the W2V extension, could

significantly change the resulting array average and cause an unexpected match.

Despite the encouraging results with the methods (where half of the data sources used

were related to Education), it was observed that LDA-W2V performance might be improved

if its probability arrays were more informative. Similarly, Cosine Similarity might present

better results when considering context information. Thus, the next subsection presents a hybrid

approach that adapts LDA-W2V and Cosine methods, combining them for performing source

selection.

5.2.2 Blending Topic-Based Embeddings and Cosine Similarity

In the previous subsection, it was observed that Cosine similarity presented good coherence, but

it may fail in determining similarity when context information is not available. For LDA-W2V

method, we observed a large variation in the assignment of probabilities for similar words in the

sources, causing erroneous matches. These factors have motivated an additional investigation, by

combining LDA-W2V and Cosine Similarity to leverage both syntactic and semantic capabilities
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for discovering data sources that match a situational question. The approach is demonstrated in

Figure 5.3.

The approach takes as input a set of candidate sources and the new case (the user

question)𝑄. Each candidate source content is preprocessed (see the methods in Subsection 4.1.1),

resulting in a set of tokens for each source (𝑇𝐶𝑆𝑛). 𝑄 is also preprocessed, resulting in a set of

tokens 𝑇𝑄 . 𝑇𝐶𝑆𝑛 and 𝑇𝑄 are sent to a Vectorizer and a Cosine Similarity module, responsible for

the tasks described in Subsection 5.1.2.3. The output from the Vectorizer are term-frequency

vectors 𝑉𝑄 and 𝑉𝐶𝑆𝑛, so the Cosine Similarity 𝑐𝑜𝑠𝐶𝑆𝑛 is the distance measured between these

vectors. The output from this module is the Cosine Similarity for each candidate source.

While this process occurs, the sources tokens 𝑇𝐶𝑆𝑛 are given as input to the Topic

Detection task, which outputs several topics for each source, represented by words (𝑊𝑛) and

their proportions (𝑃𝑛). The component LDA-W2V receives the topics and performs Word2Vec

extension as described in Subsection 5.1.2.2. Next, in the Matching step, 𝑇𝑄 tokens are used to

search for equivalent𝑊𝑛 or 𝐸𝑊𝑛 with higher 𝐷𝑃𝑛, As already mentioned, whenever a match

is found, a probability array (represented by 𝑃𝐴𝐶𝑆𝑛 in Figure 5.3) is created for each candidate

source.

Figure 5.3: Overview of the hybrid approach based on Cosine Similarity and LDA-W2V.

In the LDA-W2V setting described in Subsection 5.1.2.2, an array 𝑃𝐴𝐶𝑆𝑛 contains one

derived probability 𝐷𝑃𝑛 for each query token in 𝑇𝑄 . As the objective of the present experiment
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Table 5.4: Source selection accuracy in three evaluation rounds with different sources (S) and questions (Q).

S Q Cosine Sim. LW4 (LDA-W2V) LDA-W2V + Cosine

5 48 85.42 81.25 93.75
8 48 85.42 81.25 93.75
8 74 85.14 81.08 87.74

was making the array more syntactically and semantically informative, the Cosine Similarity for

each source 𝑐𝑜𝑠𝐶𝑆𝑛 is also inserted in the array, and next, average probability for each array is

calculated. Finally, the source(s) most likely to meet 𝑄 is/are selected by considering maximum

average(s).

For exemplifying, let us extend the example from Subsection 5.1.2.2, with 𝑇𝑄 =

[rural, school, computer] and candidate sources CS1 (School Census) and CS2 (IBGE). After

W2V Extension and 𝑇𝑄 matching, the sources are represented by probability arrays 𝑃𝐴𝐶𝑆1 =
[0.0024, 0.032, 0.0096] and 𝑃𝐴𝐶𝑆2 = [0.0012, 0.0018, 0.000001], respectively. After Cosine

Similarity calculation, 𝑐𝑜𝑠𝐶𝑆1 is 0.85 for CS1, whereas 𝑐𝑜𝑠𝐶𝑆2 is 0.7 for CS2. Both values are

included in their respective probability arrays, resulting in 𝑃𝐴𝐶𝑆1 = [0.0024, 0.032, 0.0096, 0.85]
and 𝑃𝐴𝐶𝑆2 = [0.0012, 0.0018, 0.000001, 0.7]. After the arrays are arranged, the probabilities

average is calculated for each source, so the source with highest average is chosen as the most

likely one to meet the input query. In this example, CS1 would be the selected one.

For hybrid approach (LDA-W2V + Cosine Similarity) the eight candidate data sources

and competency questions from Subsection 5.1.1 were considered. For this experiment, only LW4

model was considered for LDA-W2V, since it presented superior results (see Table 5.3). Three

evaluation rounds were also performed, alternating between the test sets (48 and 74 questions)

for investigating possible changes in matching results. The blended LDA-W2V-Cosine was

compared with Cosine and LDA-W2V individually for observing accuracy variation; the results

are summarized in Table 5.4.

In the first evaluation round (with sources Prouni, School Census, FIES, INEP, and

Cadunico), Cosine and LDA-W2V reached 85.42% and 81.25% of accuracy, respectively, whereas

the blended model reached 93.75%. The result was promising, since four out of five datasets

contained information on Education, representing a more complex matching task compared to

inferring datasets with very distinct information. Moreover, as we can see in Figure 5.4, there was

a significant prediction improvement for each of the five datasets in comparison to Cosine and

LDA-W2V predictions, especially for School Census and Cadunico datasets, where no incorrect

match occurred.

In the second round, we conducted the evaluation with all data sources and the test

set containing 48 questions. No changes were observed; the blended model achieved the best

result, with 93.75% of correct matches. In the third round, using the test set containing 74

questions and the same eight open data sources, a small decrease was observed in all models.

LDA-W2V reached 81.08% and Cosine accuracy reached 85.14%, while the blended model

accuracy reached 87.74%. This decrease may be caused by the structure of some test questions,

with more general content. E.g., if a question is mostly composed by words that are common in

many candidate sources, an incorrect match might occur. The accuracy reduction can also be due

to the stemming method applied in preprocessing stage, since the reduction of some Portuguese

words may originate ambiguous tokens, thus confusing the algorithm. Despite that, the blended

approach had superior results than the isolated methods.
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Figure 5.4: Source selection accuracy with blended LDA-W2V-Cosine (1st evaluation round).

5.3 CHAPTER REMARKS

Source Discovery tasks can enhance the access to information, and most importantly, provide

support to the user by inferring the data set most likely to answer a query. Regarding the

access to Open Data, in a particular way, many challenges arise involving data format, size, and

visualization. Discovering the right source is a way to decrease users manual work and the

complexity of finding the right information.

As mentioned in the beginning of Section 5, the objective of Source Discovery experiment

was comparing different similarity methods performing source selection in the context of the

proposed CBR architecture, where a new case in the cycle should be assigned to the most similar

dataset among the candidates. Thus, a comparative study was conducted throughout this section,

involving three different approaches (Semantic Unionability Test or𝑈𝑠𝑒𝑚, Cosine Similarity, and

LDA-W2V) and evaluating their performance when inferring data sources suitable to a question.

Each method received the metadata of eight candidate datasets extracted from open data portals,

along with different test sets containing competency questions. Three evaluation rounds were

performed with each method by alternating the sources and test sets, which resulted in accuracy

values over 81%. Then, as an additional investigation, we presented a Source Discovery approach

that joined topic-based embeddings from the LDA-W2V algorithm and Cosine Similarity for

inferring a data source (based on the same eight candidate datasets and same test questions). By

blending both measures, the accuracy was above 93%.

By comparing the execution of the three methods applied, some characteristics were

observed. First, considering a pair (candidate_source, question), 𝑈𝑠𝑒𝑚 measure seems highly

influenced by the intersection size between the sets, as well as the size of source content. Cosine

similarity, besides good accuracy, presented good coherence: in cases where it did not predicted

the right source, it inferred a source of very similar content, unlike most LDA-W2V models. For

LDA-W2V, we observed a large variation in the assignment of probabilities for similar words in

the sources, causing some incorrect matches. Respecting the hybrid model proposed (LDA-W2V

+ Cosine), the accuracy rate was considerably superior than LDA-W2V and Cosine evaluated

separately, which demonstrates a good potential towards data transparency and user support.

In general, all methods showed good results: considering that half of the open datasets had

very similar content, and data itself were not used for prediction, the accuracy rates demonstrate

high value for Source Discovery tasks. Thus, they could be applied as discovery strategies within
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the CBR architecture, while observing development requirements and/or restrictions that may

exist in a prototype (e.g., computational cost). Taking as example the third evaluation round in the

comparative study (see Subsection 5.2.1), we observed that most of the questions were correctly

assigned by all of the best three models, whereas some questions were correctly assigned by at

least two models. As already mentioned, applying a voting method such as Majority Rule [173]

could solve eventual "disagreements" between the methods, by selecting the most voted source.

However, the results showed a few cases in which the wrong source was inferred by

most of the methods being analyzed. In these cases, applying a voting mechanism would be

ineffective, since the most voted source would be the undesirable one. In contrast, if we consider

a Source Discovery activity running in a conversational CBR solution, the user feedback could

be collected in the Review step and fix the inference. In other words, the user could state that the

recommended source is not the expected one, and indicate the adequate option, which would be

used for improving the system.

Thus, based on the proposed architecture, the next section discusses the implementation

of a conversational interface to interact with the user and propose solutions, so that human

feedback can be obtained aimed at incremental learning.
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6 EVALUATING THE REUSE OF SOLUTIONS

This section presents experiments related to the Reuse step of the conversational architecture

presented in Section 4. Reuse relies on the recommendation of solutions to the user, which

should be reviewed in the latter step, Review. For this to be possible, a proper mechanism for

interaction is necessary. Thus, the experiment involves a chatbot conversation flow that was

implemented in the conversational prototype (see Subsection 4.2.2) for interacting with the user

and making recommendations.

The objective of the second experiment is investigating how metrics and dimensions can

be proposed to the user within the Reuse step of the proposed CBR architecture, after a source

has been selected. As the chatbot prototype is used for proposing these solutions, a subgoal of

the experiment is also assess the user acceptance regarding visibility, support, usefulness, and

simplicity during the interaction. Thus, the experiment also presents an empirical user study

conducted for the chatbot evaluation, which addresses the target features in a systematic way.

Along this Chapter, implementation details such as the conversation flow implemented

within the chatbot prototype (which covers intention recognition functions, query building,

and additional requirements for the interaction) are described in Subsection 6.1. Besides the

prototype, the Reuse step evaluation is supported by real participants and thoroughly addressed

in Subsection 6.2. The subsection details how the evaluation took place, what qualitative criteria

were taken as basis, as well as statistics about the participants answers. The results are discussed

in Subsection 6.3.

6.1 IMPLEMENTATION DETAILS

The interaction between users and the chatbot prototype presented in Subsection 4.2.2 is based

on multidimensional querying. Specifically, the chatbot captures user intentions and implements

a conversation flow for linking these intentions to multidimensional metadata. For this task,

the bot should recognize terms informed by the user that match the retrieved source’s metadata,

using these correspondences for guiding the user along all interaction and for building query

parameters.

This subsection presents the implementation details involved in the second experiment,

such as the conversation flow that the chatbot executes for guiding the user through query

formulation, the database accessed for retrieving and suggesting attributes, and aspects of the

interaction regarding natural language.

6.1.1 Chatbot Conversation Flow

The user interaction with the chatbot is demonstrated in the flowchart in Figure 6.1, where the

bot actions are defined by states and transitions. States represent the chatbot methods triggered

according to the captured intention, whereas transitions are the interactions needed to create

dimensional queries and navigate from one state to another.

The conversation starts with a query sentence (i.e., an input), from which we recognize

the user intention. Assuming that the input sentence may contain terms related to database

attributes, it is preprocessed for finding all meaningful keywords, which will be used in the Reads
Database Schema state. This state searches the keywords in the database schema, aiming to

find related metadata. In this step, dimensions and metrics of interest are returned to the bot, so it
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Figure 6.1: Chatbot state flowchart for proposing a solution.

can make appropriate suggestions to the user. These attributes are represented by the sets RM
and RD, which are built as discussed in subsection 4.2.1.

The metrics set RM is the first one suggested to the user in the conversation. So,

following the flowchart sequence, the user chooses one metric of interest from this set (m’, as

explained in Subsection 4.3.1). The bot processes the chosen metric in Processes Metric state,

temporarily storing it as query parameter. Next, it asks for a dimension for complementing the

chosen metric, which is also processed as d’ in Processes Dimensions state, and stored for later

use. After choosing a dimension, the user is asked whether he wants to filter data, i.e, search

for specific values within the dimension. When the user specifies a filter, the chatbot processes

it in Processes Filters state. Otherwise, if no filter was specified, the chatbot will consider all

possible dimension values in its search. After deciding on a filter, the user also decides about

including more dimensions in the search; thus, if an additional dimension is chosen, the bot

returns to the state Processes Dimensions. When all dimensions have already been chosen, the

state Query Execution is called in the sequence, which is responsible for effectively accessing

the database. In this state, the chatbot has information on a metric, dimension(s), and filter(s) (if

specified), i.e., the query parameters. After query execution with the parameters, the chatbot

receives the results, finally presenting them to the user.

Practical Example: Suppose that a user inputs the query “show me schools per cities
and states”. After database schema reading performed from the query keywords, the chatbot

presents a list of related metrics (RM) such as schools count, schools average,

and so on. The user chooses schools count (m’). The bot then suggests a list of related

dimensions (RD), from which the user chooses city name (d’). The user does not want to

filter by city, but wants to include another dimension (state name) in the query, this time

filtering by the American state Texas. The bot then stores all dimensional information as query

parameters, executing it and returning an answer about schools count in each city of Texas.

With the steps described, the user is able to access multidimensional data through an

interface, exempting specific knowledge about the database content or data format.
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6.1.1.1 Intention Recognition and Query Building

As observed in Figure 6.1, the query execution state demands to process dimensions, filters, and

metrics informed by the user, storing them as parameters for query execution. In the conversational

interface (i.e., the chatbot), this task is assisted by an Intent Recognition Provider [44] that

translates user inputs into intents, which are then used for triggering actions. Every time the user

informs a dimension, metric, or filter, the Intent Recognition Provider uses regular expressions

to match these inputs to an intent by means of training sentences (see Subsection 4.2.2). Then,

assuming a matched intent, existing dimensional values in the input are recognized as entities

within the intent, so the bot is able to use these entities as query parameters.

Practical Example: Following the previous practical example, suppose that after the

user had chosen the state name dimension, the bot asked for filters related to it, to which

the user answered “filter by Texas”. Suppose, in addition, an intention called FiltersForQuery,
whose training sentence is “filter by FilterValue”. The user reply should match this training

sentence, and the value “Texas” fits in the parameter FilterValue. Hence, the intention

FiltersForQuery is recognized, triggering the action state Processes Filters (see Figure 6.1),

where the entity “Texas” is stored as a parameter for Query Building.

The Query Building depends on multidimensional information such as dimensions,

metrics, and filters. So, after collecting these data as query parameters, the query is built with

them and executed in the database. It is worth mentioning that if no filter was recognized in the

user’s intentions, the query returns an answer considering all possible values within the chosen

dimension(s). In the practical example, the lack of a filter means that the chosen metric (e.g.,

“schools count”) would be shown for every possible state value within the database.

With the query execution, the flowchart represented in Figure 6.1 is completed, and the

user is able to visualize the query answer on chat. Next, the case study and execution examples

are presented.

6.1.2 Database Characterization

The experiment comprised an integrated repository called BIOD (Blended Integrated Open

Data), which contains Brazilian open data from two open databases, named SIMMCTIC1 and

LDE2. The project was created by C3SL Research Group from Federal University of Paraná

(Brazil) for making open data more accessible, and it is publicly available as a microservice3. It

integrates and makes available more than 300Gb of data containing more than 1700 attributes

(dimensions and metrics) and about 2.5 billions of records from originally disconnected data sets.

The repository data is made available through BlenDB4, a tool that allows the repository to be

accessed through a RESTful API, by informing query parameters in the URL [206]. The queries

in the API consider the multidimensional data model, thus assuming the following format:

http://biod.c3sl.ufpr.br/api/v1/data?metrics= 𝑀𝐸𝑇𝑅𝐼𝐶1,𝑀𝐸𝑇𝑅𝐼𝐶𝑁&

dimensions= 𝐷𝐼𝑀𝐸𝑁𝑆𝐼𝑂𝑁1,𝐷𝐼𝑀𝐸𝑁𝑆𝐼𝑂𝑁𝑁&filters= 𝐹𝐼𝐿𝑇𝐸𝑅1,𝐹𝐼𝐿𝑇𝐸𝑅𝑁

Due to this access format and data structure comprising a clear database schema file,

BIOD was chosen as a suitable repository for metadata experiments. The database schema is

contained in a YAML file containing all available relations, metrics, and dimensions described in

1Available at: https://simmctic.c3sl.ufpr.br/
2Available at: https://dadoseducacionais.c3sl.ufpr.br/
3Available at: https://biod.c3sl.ufpr.br/index_en.html
4Available at: https://gitlab.c3sl.ufpr.br/c3sl/blendb
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Brazilian Portuguese [47]. An example of this YAML file is shown in Listing 6.1. For simplicity

reasons, it only shows information related to city dimension.

Listing 6.1: Snippet of YAML file containing the database schema (English translation).
1
2 alias : "view:city"
3 dimensions:

4 - "dim:city:id"
5 - "dim:city:name"
6 - "dim:state:id"
7 metrics:

8 - "met:count:city:id"
9 dimensions:

10 −
11 name: "dim:city:id"
12 dataType: "integer"
13 description : "Id of Brazilian city"
14 −
15 name: "dim:city:name"
16 dataType: "string"
17 description : "Name of Brazilian city"
18 ...

19 metrics:

20 −
21 name: "met:count:city:id"
22 dataType: "integer"
23 aggregation : "count"
24 description : "Count of cities"
25 ...

The YAML file containing the database schema description is used by the chatbot’s

Reads Database Schema state for accessing BIOD data through the RESTful API, thus retrieving

useful information to the user. All states demonstrated in the chatbot flowchart were implemented

considering the Xatkit environment and a natural language conversation.

6.1.3 Natural Language Interaction and Error Handling

This subsection presents how the chatbot prototype uses natural language for interacting with the

user and establishing query parameters. As demonstrated in Listing 6.1, the database schema file

has a separation of dimensions and metrics related to every data table. So, when iterating over

the file, we search for keys dimensions and metrics, and from them, we extract the sets

RD and RM, which are used for suggesting information of interest in the chat.

However, the names of metrics and dimensions within the database schema were not

adequate to interact with the user, who expects a natural language conversation instead of, e.g.,

dimensions suggested in a “dim:table:column” format. Thus, to overcome this, the description

in the YAML file is used for describing both dimensions and metrics. By using descriptions, a

dimension “dim:city:name” is suggested in the chat as “Name of Brazilian city”, i.e., a more

understandable sentence.

For achieving this, we first had to identify if a description string was referred to a

dimension or a metric, so, we examined the YAML file line by line, looking for all name keys.

Each time a name key was found, its value was stored in a temporary variable, and immediately

looked for the closest description key in the sequence. Thus, the value (metric or dimension)

within the temporary variable was put together with its respective description in a map structure,

used by the bot to conduct a natural language conversation.

After the iteration, the map structure should contain, e.g., [dim:city:id = Id of Brazilian

city, met:count:city:id = Total of cities, ...] and so on, according to the attributes contained in the

schema file. This allows dimensions and metrics to be suggested and chosen through descriptions
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in the chat, while their real names (needed to compose the query parameters) are manipulated

within the bot states.

Regarding error handling, the chatbot states contain specific programming logic for

handling unexpected inputs. E.g., when the bot suggests a set of metrics to the user and receives a

metric that is not contained in the suggested set, it replies that the information was not recognized,

so the user is able to rewrite his choice. The same occurs for dimensions suggestions. Also,

during the conversation, the bot is instructed to inform the user about some of its actions, i.e.,

about the metric/dimension it has received, information it has found, or process it is executing.

This kind of feedback is important for the interaction, so the user knows what is happening and

feels he can trust in what the chatbot is doing.

We assumed that, when formulating a multidimensional query, the user might feel

confused about choosing metrics and dimensions, so additional “help states” were implemented

in the chatbot for providing orientation messages. It means that, anytime the user replies “help”,

“I did not get it”, “what is that?”, or similar sentences, a help state is called for

giving information about the attribute (metric, dimension, or filter) that is being mentioned in the

conversation at that moment.

In addition, for simplifying the user replies to the bot, the DialogFlow NLP engine5 was

integrated with Xatkit6, as it bases on machine learning for translating user inputs into intents.

DialogFlow is an additional intent recognition provider that makes the conversation more flexible,

meaning that some syntax errors, missing words, or capital letters that might occur in entries are

ignored, thus improving the intention recognition process.

In the next section, the chatbot execution is demonstrated based on the flowchart and

tasks of intention recognition, schema reading, and query building.

6.1.4 Chatbot Running Example

This subsection demonstrates the execution of the implemented chatbot, considering BIOD

database, Xatkit Framework, and the procedures presented in the previous subsections.

As mentioned before, the YAML file demonstrated in Listing 6.1 contains a schema

description. So, this file is given as input to the Reads Database Schema state in order to retrieve

dimensional data sets. In a next step, user choices based on these sets are used to build the

database query. The chatbot execution is demonstrated in Figure 6.27, in accordance with the

state flowchart (Figure 6.1).

In the chat, the user informs an input aiming to find information about cities per
state. The chatbot, through database schema reading, returns the RM set with all metrics that

relate to the input. Based on this set, the user chooses count of cities, which is stored as

the first query parameter. Next, the chatbot suggests the RD set, to which the user replies the

dimension Brazilian state, also specifying the filter Acre (name of a Brazilian state). All

dimensional data chosen are added in a map of parameters for the query building. As mentioned

in Subsection 6.1.3, the interaction performed on the chat is based on descriptions of metrics and

dimensions, while their real names are manipulated within the bot states to compose the query.

Thus, the query resulting from the user choices is corresponding to:

5Available at: <https://dialogflow.cloud.google.com>.

6Available at: <https://github.com/xatkit-bot-platform/xatkit/wiki/Integrating-
DialogFlow>.

7The interaction with the chatbot was conducted in Portuguese, which is the language used by BIOD database.

For facilitating the reading of the running example, the Figure 6.2 shows all messages in English, with translation

performed through the browser developer tool.
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Figure 6.2: Proposing solutions (Chatbot execution example).

http://biod.c3sl.ufpr.br/api/v1/data?metrics=

met:count:city:id&dimensions=dim:state:name&

filters=dim:state:name==Acre

The result from this query is shown to the user in the chat: considering the state name

Acre, 22 cities were found. It is important to mention that it demonstrates a case where the user

specifies only one dimension and one metric from a set of more than 1000 dimensions and 700

metrics available. Indeed, for conducting an intention-guided conversation, the bot suggests RM
and RD sets to the user at first. However, the whole list of dimensions retrieved from the database

schema could be presented to the user during the interaction and used for querying. Since all

dimensional lists suggested by the bot during the execution are extracted from the schema file,

they are dependent on the nomenclature used for the database attributes. So, intention’s training

sentences described in the bot code are corresponding to the schema vocabulary.

This version of the chatbot is available online8. For evaluating its usefulness, the next

subsection presents an empirical evaluation performed with a group of participants that interacted

with the chatbot for querying the database.

6.2 RESULTS

This subsection details the empirical user study conducted for evaluation the chatbot prototype,

which performs the Reuse step of the CBR architecture. The study was conducted entirely online

with a heterogeneous group of 21 participants, performing a set of search tasks during the virtual

interaction.

The participants evaluated the chatbot in two different moments. In a first moment,

they received a document briefly stating the purpose of the assessment and providing initial

8Available at: <https://gitlab.c3sl.ufpr.br/simmctic/biod/chatbot>.
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Table 6.1: Chatbot Evaluation Form

Criteria Form Question Question Type
User profile Q1- What is your familiarity level with Informatics? Multiple choice

Q2- The information in the chat was shown in a well-structured way.

Q3- The instructions displayed by the bot were visible and understandable.Visibility

Q4- The bot communicated with me to inform status such as “looking for information”.

Q5- The bot guided me through the conversation so I knew what to do.

Q6- The bot alerted when I typed something unexpected, and instructed me on how to proceed.

Q7- When I needed help during the conversation, the bot provided instructions.
Support

Q8- The bot was able to recognize what I was talking about.

Q9- I was able to perform the query I wanted by selecting dimensions and metrics.

Q10- The answers the bot gave me were helpful and reliable.

Q11- The bot gave me fast answers.
Usefulness

Q12- The answers provided were quicker than if I had to search on the internet on my own.

Q13- It was easy to make a query using the bot.

Q14- It was fun using the bot to query a database.Simplicity

Q15- I would use the chatbot again to search for information in a database.

Linear Scale:

1 = disagree

5 = agree

Q16- The features I liked the most about the chatbot were: Selection boxes
General feedback

Q17- If you could change something in the chatbot, what would it be? Free text

instructions. In this document, each participant also received five different query examples for

starting a conversation with the bot: (1) Counting of states per region; (2) Sum of research
expenses per state; (3) Average of investments by institutions; (4) Counting of students who
received funding in a given year; (5) Counting of students by course and type of institution. All

questions allowed filter values freely chosen by the user, e.g., a region name or course name. The

query examples were elaborated and suggested to the users in order to guide them on the types

of information contained in the database and hence possible to be consulted. After reading the

instructions, each participant accessed the bot through an url to start the conversation.

In a second moment of the evaluation, after interacting with the bot, each participant

was requested to fill in a form about the queries he/she performed on the chat. The evaluation

form (demonstrated in Table 6.1) was designed based on previous studies [39, 121] and shows

evaluation questions that cover four distinct categories: Visibility, Support, Usefulness, and

Simplicity. Visibility criteria (questions Q2 to Q4) determine whether the information displayed

in the chat follows an adequate structure; Support criteria (questions Q5 to Q8) evaluates how

assertive is the bot when providing guidance; Usefulness (questions Q9 to Q12) measures user

satisfaction with the received answers; and Simplicity (questions Q13 to Q15) indicates how

intuitive is the interaction with the chatbot.

The answers to questions in these categories followed a linear scale, meaning that each

participant had to choose one option from a 1 to 5 scale that represents how much she/he agrees

with the current statement; the closer to the value 5, the greater the agreement. As shown in the

bottom part of Table 6.1, the form also covered two questions for gathering general feedback
about the chatbot (questions Q16 and Q17), thus allowing us to analyze features that can be

improved. The results from this empirical user study are demonstrated in Table 6.2 and Figure 6.3,

and are discussed as follows.

Starting by user profile (form question Q1), ten (10) participants (47.6%) declared

to have only basic computing knowledge, i.e., they use a computer mostly for composing text

documents and browsing the Web. Eight (8) participants (38.1%) have intermediate knowledge,

as they have some background on programming and/or interface design, but neither work nor

study in the Computer Science area. Only three (3) participants (14.3%) declared to have

proficient knowledge, by working and/or studying computing.

Concerning Visibility aspects, more than 66% of the participants scored 4 and 5 for Q2,

and more than 70% scored 4 and 5 for Q3. For question Q4, more than 85% have marked the

maximum score (5). From these answers, it is possible to infer that information shown in the
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Table 6.2: Score Percentage for Linear Scale Questions

(1/disagree - 5/agree)

Question Score 1 (%) Score 2 (%) Score 3 (%) Score 4 (%) Score 5 (%)
Q2 0 4.8 28.6 33.3 33.3

Q3 4.8 4.8 19 38.1 33.3

Q4 4.8 0 4.8 4.8 85.7

Q5 4.8 0 19 42.9 33.3

Q6 14.3 9.5 23.8 23.8 28.6

Q7 0 14.3 28.6 28.6 28.6

Q8 4.8 4.8 33.3 4.8 52.4

Q9 4.8 0 19 19 57.1

Q10 4.8 0 4.8 28.6 61.9

Q11 0 0 14.3 14.3 71.4

Q12 4.8 4.8 9.5 42.9 38.1

Q13 4.8 14.3 23.8 42.9 14.3

Q14 0 4.8 9.5 42.9 42.9

Q15 0 14.3 9.5 28.6 47.6

chat was understandable, as well as the bot status communication. However, the structure in

which the information was presented could be improved, since a considerable part (28.6%) of the

participants scored 3 for question Q2.

The Support criteria were evaluated through questions Q5 to Q8. The highest scores (4

and 5) were more informed in question Q5, meaning that most of users were able to follow the

conversation based on the bot orientation. The remaining questions ranged between scores 3

and 5, which indicates that the bot lacks some flexibility when receiving unexpected entries and

recognizing the user intention. The proportional percentage of scores 3, 4, and 5 for the questions

also indicates improvement needs in the bot assistance actions. However, it is possible to notice

that the recognition performed by the bot (question Q8) was adequate for most of participants

(52.4%).

Usefulness aspects were evaluated in questions Q9 to Q12, in which the maximum

score of agreement was the most informed among the participants for 3 of 4 questions. In

addition, Table 6.2 shows that more than 75% of the participants informed scores 4 and 5

for each Usefulness question. Considering these particular answers, Usefulness was the most

covered aspect of the chatbot evaluation, indicating that users, besides being able to compose a

dimensional query, received timely and helpful answers to their questions.

Questions Q13 to Q15 referred to Simplicity criteria of the evaluation. As we can

observe in Table 6.2, the scores for Q13 were mostly around 3 and 4, meaning that, despite

its usefulness, the chatbot is significantly complex for some users. For Q14 and Q15, most

participants agreed that interacting with the bot was fun, and the assistant deserves to be used

when searching for information, mostly because it prevents the users from searching the Web on

their own, as observed in the scores for question Q12.

In the General Feedback form section, the users pointed out what they liked the most

about the chatbot, and made some suggestions for improvement. For Q16, the participants could

choose more than an option considering: (1) Fast answers; (2) Help in finding information;
(3) Fun interaction; (4) Recognition of my intentions during the conversation. These options

received, respectively, 18, 13, 10, and 6 votes. There was also an “Other” option, where the

participant could inform a feature he liked, in case it was not on the options list. This option was

not filled in by any participant.

Finally, for question Q17, the participants could express in free text what they would

change in the chatbot if they could. This task was optional in the form and all suggestions
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Figure 6.3: Overview of the chatbot evaluation by categories.

received are shown in Table 6.3. The participants mentioned changes in some visualization

aspects such as letter formatting, arrangement of metrics and dimensions, and way of selecting

options in the chat. Others expressed that the bot could be improved through more flexibility and

dynamism, e.g., allowing to go back to some steps or access other databases through a broader

set of questions.

In the next subsection, the chatbot experiment is discussed in the CBR context and some

limitations found during the evaluation are presented.

6.3 CHAPTER REMARKS

The experiment described along this section aimed at investigating how dimensional-based

solutions such as metrics and dimensions of a database could be proposed to the user within the

CBR’s Reuse. For this task, a chatbot prototype was implemented for accessing an integrated

repository called BIOD, which contains open data from two independent databases. By gathering

information along the conversation, the bot recommends attributes, builds the query parameters,

and accesses the database data through its API, retrieving a response to the user. With the

implemented prototype, a subgoal of the experiment was assessing the acceptance of the bot

recommendations through four criteria (Visibility, Support, Usefulness, and Simplicity) captured

during the user interaction. Thus, the chatbot was assessed in a user study conducted with a set

of search tasks performed by 21 participants, and after interacting with the bot, they filled out an

evaluation form covering the qualitative criteria.

The answers collected from the participants showed that the chatbot was useful for

querying the open database, as it facilitates query formulation and retrieves a fast answer,

which would hardly happen in a manual search. In general, it exempts the user from knowing

database metadata and query languages (e.g., SQL), thus it can be adapted to improve data

clarity. Regarding the criteria Visibility, Support, Usefulness, and Simplicity, an overview of their

coverage in the chatbot is demonstrated in Figure 6.3, where we can observe a predominance

of the highest scores for all evaluated questions. In general, the empirical study showed that
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Table 6.3: Participants Suggestions for the Chatbot

Participant profile Suggestion
Basic “Metrics and filters that could be selected with one click.”
Intermediate “Buttons to select options would be better than typing information.”
Advanced “I would include a ’Return’ button to be used in all interaction levels, e.g., go back and

make another question after I choose a metric. I would also list one metric or dimension
per line in the chat to improve the visualization.”

Intermediate “Include a better explanation of what I need to do.”
Intermediate “I would add more flexibility when recognizing metrics and dimensions, when there are

writing errors.”
Basic “I would better highlighted the metrics and dimensions. Maybe enumerated the options.”
Basic “Change the term ’dimension’ for a more comprehensible one. I would like to see a more

complete answer too, e.g., ’the average value for x was y in the year 2019’.”
Basic “Expand possibilities for questions and databases.”
Basic “More dynamism.”
Advanced “Letter formatting could be lighter, more spaced and organized.”
Basic “I would arrange the metrics more clearly, not between commas.”

Visibility and Usefulness where the most effective features in the chatbot, whereas Support and

Simplicity represented major opportunities.

During the evaluation, however, some limitations were identified regarding the interaction

between participants and the chatbot prototype. The first limitation was the elaboration of query

examples (i.e., search tasks) that should be accomplished by the participants through the chat

(see Section 6.2). We opted for this limited number of queries rather than allowing an entirely

free querying, due to the large number of dimensional data available in BIOD database, which

could have added additional complexity to the user evaluation. In fact, users could take a long

time to obtain an answer, if they continually searched for unavailable metrics or dimensions. We

also chose to include queries up to 2 dimensions, as the evaluation focus was not on the query

size, but on monitoring users interaction with the bot and patterns they apply when following the

chatbot state flowchart (Figure 6.1) to compose dimensional queries.

Also, during the chatbot development, some challenges were faced when presenting

attributes in the chat, since a large volume of information could be eventually retrieved. So,

regarding the attributes visualization in the chat, we chose to separate the suggested metrics and

dimensions by a comma, and send the whole suggestion set in a single chatbot message (rather

than one metric or dimension per message), to prevent the user from taking too long to receive

a reply. In user evaluation, some participants suggested another way to present these sets (see

Table 6.3)9.

Despite the limitations, useful insights were derived from the experiment. Overall, the

participants were able to use the conversational interface for performing dimensional queries

in an open database. Most importantly, the experiment demonstrates the value of a CBR’s

Reuse process based on multidimensional data: the user intention triggers a state for reading the

database schema and finding related metadata. Through the metadata discovered, the bot guides

the conversation with the users and recommends information on dimensions, metrics, and filters

that are needed for building a database query. Since metrics and dimensions are are intertwined

with situational data, we can infer that the chatbot could be used as support tool for situational

data management.

Although the Reuse step was the core of the experiment, we can also see Retrieval
characteristics in the prototype, represented by the database schema reading and metadata

9Some visualization issues were handled in a third experiment (presented in the following chapter), which

covered a improved version of the chatbot prototype.
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retrieved. This reinforces the relevance of joining a conversational interface with a CBR cycle

and makes way to include a Source Discovery strategy and a historic knowledge base in the

approach, as a way to fully address the Retrieval presented in the architecture (see Figure 4.1).

Finally, the evaluation allowed us to visualize how users interact with a virtual assistant, and

how the bot acts in response to the entries. Based on the positive results achieved, a chatbot

modification for collecting human feedback and using it for continuous learning is encouraged.

Thus, the next chapter addresses the last experiment of this thesis, which encompasses the

Review and Retain steps of the CBR architecture. In these steps, the user has active participation,

as his feedback is used to boost future recommendations.
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7 EVALUATING THE REVIEW AND LEARNING OF A CASE

Unlike the previous section, which focused on proposing solutions based on multidimensional

data, the present section targets the Review and Retain steps of the thesis proposal. As illustrated

in Figure 4.7, in the Review step the user is able to repair the proposed case, by managing the

database to be queried and its respective attributes. After being repaired, the case is consistent

enough to be retained, i.e., to be used for system learning.

The objective of the current experiment is to investigate how human knowledge,

collected through the conversational prototype and following the CBR cycle, can impact the

recommendations given (especially regarding Built-up Integration tasks) after the reviewed

solutions are accommodated in the history. So, the experiment is essentially based on the user

action, particularly his/her feedback about the recommendations given, and how it affects the

system execution. At this point, it is important to highlight that repairing and learning a case, in

the context of the proposed architecture, cannot be seen as isolated activities, but necessarily

dependent on retrieving cases and proposing solutions. That is because, in case of negative

feedback, the user should be allowed to modify database attributes or even trigger a Source

Discovery mechanism to incorporate another case base in the system.

This Chapter starts by describing implementation details (Subsection 7.1) such as the

history file building, the databases involved, preprocessing methods, and states implemented within

the chatbot prototype for enabling Review and Retain activities. For assessing the impact of user

feedback collected during the CBR cycle, two evaluations with real participants were performed

and described in Subsection 7.2, being one based on a dynamic history (Subsection 7.2.1) and

another based on a static history (Subsection 7.2.2). The evaluation results were also analyzed

according to qualitative criteria and Built-up Integration features in subsections 7.2.3 and 7.2.4,

respectively. Discussions about the experiment are presented in Subsection 7.3.

7.1 IMPLEMENTATION DETAILS

Considering the experiment goals mentioned above, and for allowing the user to express

preferences (i.e., manage database and attributes, needed for properly assessing the Review and

Retain activities), the chatbot prototype applied in the previous experiment was extended as

follows:

• Inclusion of history file: For proposing solutions based on retrieval of previous cases,
several functions for managing historic data were included in the prototype, including

the history itself;

• Inclusion of a Source Discovery method: For proposing solutions based on retrieval

of external cases, a Source Discovery method was included in the prototype, aiming to

choose the most relevant database among the candidates;

• Improvement of interaction elements: Based on general feedback collected from the

first user evaluation (see Subsection 6.2), the chatbot application was modified to present

more intuitive elements and options to the user;

• Several changes in the chatbot states and transitions: For allowing the Case Repairing

Flow illustrated in Figure 4.7, the conversation flow exposed in the previous experiment
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(see Figure 6.1) was significantly extended, with states and transitions either removed,

added, or modified to allow the proper revision or even the request of another database.

In the next subsections, these upgrades are minutely addressed, along with chatbot

running examples that demonstrate the closing of the proposed CBR cycle.

7.1.1 Handling the History Retrieval

As previously mentioned, the chatbot version implemented in the current experiment includes a

series of functions to propose solutions to the users based on previous cases. The previous cases

should be retrieved from a history file, which was initialized as demonstrated in Table 7.1.

The history file is based on the structure shown in Figure 4.2, i.e., it contains the

tokens of previous input cases (𝑇𝑃𝐶), the database used for retrieving a solution, the attributes

(dimensions and metrics) used for building the query, and the Usefulness Score. The databases

listed in the history correspond to a set of data tables from United States Open Data portals1,

which were considered as candidate databases for assessing the recommendation of a data source

similar to the user question. The databases are detailed as follows:

• USA Enrollments (Fall 2020)2: Contains metrics about undergraduate students enroll-

ment, residence, and migration, grouped by state os jurisdiction;

• New York Enrollments (Fall 2010-Fall 2020)3: The data table includes fall degree

credit enrollment counts reported by institutions of higher education in New York State;

• New York COVID-19 (2020-2021 School Report)4: The dataset includes information

on school reported COVID-19 testing and case positive data from the 2020-2021

academic year;

• Limited English Proficiency Speakers in New York5: This dataset is derived from

the Census Bureau’s American Community Survey (ACS), and includes information on

limited English proficient (LEP) New York residents, grouped by community districts.

For performing an evaluation less restrictive in terms of language, the BIOD database

characterized in Subsection 6.1.2 and the databases described in Subsection 5.1.1 were not

included in this experiment, as they are Portuguese data sets. In fact, NLP tools can be significantly

more challenging when the data to be analyzed are not in English, mostly due to the lower quality

of processing tools for other languages [201, 236]. So, the current experiment involves open

databases available in English and following the CSV format. As observed in the list above,

the candidate databases mostly involve open data on New York city, and one of them on USA

country. This closeness is part of the experiment, in order to evaluate the eventual integration of

answers from different databases (which can occur in a Built-up Integration context).

1NYSED (New York State Education Department), NCES (National Center for Education Statistics), New York

State Health Data, and NYC Open Data.

2Available at: <https://nces.ed.gov/ipeds/Search?query=residence&query2=
residence&resultType=all&page=1&sortBy=date_desc&overlayTableId=29451>.

3Available at: <https://www.nysed.gov/information-reporting-services/higher-
education-reports>.

4Available at: <https://health.data.ny.gov/Health/New-York-State-Statewide-
School-COVID-19-Report-Ca/kaan-rxnd>.

5Available at: <https://data.cityofnewyork.us/City-Government/Population-of-
the-Limited-English-Proficient-LEP-S/9ji4-nien>.
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Table 7.1: Initialization of static history and dynamic storic (snippet).

𝑃𝐶 𝑇𝑃𝐶 Database Dimensions Metrics Score

1 student usa enrollment2020 state jurisdiction students migration into state 10

2 student, enrolled, city new york enrollments legal name all students fulltime, all stu-

dents parttime

10

3 enrollment new york enrollments year all students fulltime, all stu-

dents parttime

10

4 enrollment, public, school new york enrollments county name all students fulltime, all stu-

dents parttime

10

5 enrollment, school new york enrollments school type all students parttime,all stu-

dents fulltime

10

6 covid, cas, school ny covid19 school 2020 2021 School Type positive students,positive

teachers,positive staff

10

7 positive, covid, cas, student ny covid19 school 2020 2021 school name positive teachers 10

8 covid, cas, public, school ny covid19 school 2020 2021 report date positive students,positive

teachers,positive staff

10

9 fulltime, enrollment ny covid19 school 2020 2022 region number of students 10

10 undergraduate, enrollment,

public, school

new york enrollments school type graduate fulltime, graduate

parttime

10

11 migration, enrollment usa enrollment2020 state jurisdiction institutions enrollment 10

12 covid, test, applied ny covid19 school 2020 2021 school name school administered tests 10

13 school, covid, report ny covid19 school 2020 2021 region, report date 10

As mentioned in Subsection 4.1.1, retrieving a similar case from the historic knowledge

base requires comparing the new case 𝑄 with previous cases 𝑃𝐶𝑛, and then retrieving the most

relevant solution. The comparison is based on the new case tokens 𝑇𝑄 and the tokens of each

previous case in the history (𝑇𝑃𝐶𝑛), allowing to retrieve the best match based on Similarity
and Usefulness scores. Thus, considering an input question 𝑄 as a new case within the CBR

cycle, for deriving the tokens 𝑇𝑄 necessary for the further steps, an intent InputSearch was

implemented within the chatbot code (see Listing 7.1), which captures 𝑄 along with its metrics

and dimensions parameters ("QuestionMets" and "QuestionDims", respectively).

Listing 7.1: Obtaining the input question using Xatkit intents.
1 val inputSearch = intent("inputSearch")
2 .trainingSentence("show me how many METRIC there is DIMENSION")
3 .trainingSentence("Show me all schools in CITY")
4 .trainingSentence("show me the count of METRIC in DIMENSION")
5 .trainingSentence("show me the total of METRIC from DIMENSION")
6 .parameter("QuestionMets").fromFragment("METRIC").entity(any())
7 .parameter("QuestionDims").fromFragment("DIMENSION").entity(any());

Next, the following preprocessing techniques and Java functions6 were applied to 𝑄:

• Special characters removal: The new case was lowercased by using the Java function

toLowerCase();

• Stopwords removal: Stopwords were removed from 𝑄 by using a file containing all

possible stopwords as reference, and then replacing the eventual ocurrence of words

with an empty space in the sentence. The function replaceAll() was responsible for the

replacement;

• Tokenization: The Java function split() was applied to tokenize the input question;

6The preprocessing functions were implemented in Java, since it is the base language of Xatkit (the framework

used for developing the chatbot prototype).
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• Stemming: A function in Java was implemented from scratch to remove word suffixes

that could interfere in the match with databases metadata;

• Named Entity Recognition (NER): For the experiment described in this Section,

differently from the previous experiment, a NER method was implemented for allowing

the user to inform an entity still in the beginning of the conversation, allowing greater

flexibility. The Stanford Named Entity Recognizer [159]7 was used8, which is written

in Java, and hence suitable for the Xatkit environment.

In addition to the techniques above, an augmentation of the entities recognized with

NER was implemented as shown in Algorithm 3. Basically, for each class recognized within the

sentence (e.g., location, organization, or date), similar terms are included in the list of recognized

mentions. The implementation was included considering the Source Discovery model and

metadata search, since the returned list of entities is later used to search for matches based on

value overlap (see Table 4.1). Taking as example an input question "how many positive cases of

covid there were on 2021?", the probability of finding a metadata match for “2021” should be

higher if [date, year, day, month] is considered in the Source Discovery task than simply using

[date]. This augmentation would ensure, for example, that database attributes such as report_year
or referenceDay are also returned as matches for a question containing “2021”9. Finally, as result

from the preprocessing, 𝑇𝑄 is derived from 𝑄 and can be compared with each 𝑇𝑃𝐶𝑛 from the

history.

Algorithm 3 Entities Augmentation Algorithm.

Input data: List of recognized entities 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠
1: for each entity in 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 do
2: 𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝐿𝑖𝑠𝑡 = getEntityClass(entity);

3: end for
4: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝐿𝑖𝑠𝑡 = newList();

5: for each class in 𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝐿𝑖𝑠𝑡 do
6: if class.equals("LOCATION"):

7: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝐿𝑖𝑠𝑡.AddAll("location", "place", "address", "state", "country", "county");

8: else if class.equals("ORGANIZATION"):

9: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝐿𝑖𝑠𝑡.AddAll("organization", "department", "university", "org", "school");

10: else if class.equals("DATE"):

11: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝐿𝑖𝑠𝑡.AddAll("date", "year", "month", "day");

12: end if
13: end for
14: return 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝐿𝑖𝑠𝑡;

Next, basing on the history file represented in Table 7.1 , the history retrieval process

occurs as described in the Algorithm 4. The algorithm traverses each 𝑃𝐶, verifying whether

the column 𝑇𝑃𝐶 contains 𝑇𝑄 (line 8). If so, a disjunction function is used10 to get all differences

between the sets of tokens (line 9). The objective is to retrieve the previous case with the smallest

difference in terms of tokens, and thus with highest similarity score. Thus, the Similarity Score

7Available at: <https://nlp.stanford.edu/software/CRF-NER.shtml>.

8Besides adding flexibility to the interaction, the choice of including a NER method was also due to the candidate

databases considered for the experiment. As they are available fully in English, a wider range of methods could be

included as support, covering a more robust documentation than NLP methods for the Portuguese language.

9Semantic techniques such as Word2Vec could be used for metadata matching, however, the NER algorithm was

implemented as a simpler alternative, as an optimal retrieval mechanism is not the objective of the present thesis.

10Available at: <https://commons.apache.org/proper/commons-collections/apidocs/
org/apache/commons/collections4/CollectionUtils.html>.
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is initialized with a high number ("10", as shown in line 1), and every time a smaller disjunction

size is found, the Similarity Score is updated with its value (lines 10 to 12).

Algorithm 4 History Search Algorithm.

Input data: History file ℎ𝑖𝑠𝑡𝑜𝑟𝑦
Input data: User preprocessed question 𝑇𝑄
1: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = 10;

2: 𝑢𝑠𝑒 𝑓 𝑢𝑙𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒 = 0;

3: 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 = 0;

4: 𝑠𝑐𝑜𝑟𝑒𝐼𝑛𝑑𝑒𝑥 = 4;

5: 𝑏𝑒𝑠𝑡𝑀𝑎𝑡𝑐ℎ = "";

6: for each PC in ℎ𝑖𝑠𝑡𝑜𝑟𝑦 do
7: 𝑇𝑃𝐶 = PC[𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥];
8: if 𝑇𝑃𝐶 .contains(𝑇𝑄):

9: disjunctionList = CollectionUtils.disjunction(𝑇𝑄, 𝑇𝑃𝐶 );

10: scoreInCurrentCase = disjunctionList.size();

11: if scoreInCurrentCase <= 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒:
12: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = scoreInCurrentCase;

13: if PC[𝑠𝑐𝑜𝑟𝑒𝐼𝑛𝑑𝑒𝑥] >= 𝑢𝑠𝑒 𝑓 𝑢𝑙𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒:
14: 𝑢𝑠𝑒 𝑓 𝑢𝑙𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒 = PC[𝑠𝑐𝑜𝑟𝑒𝐼𝑛𝑑𝑒𝑥];
15: 𝑏𝑒𝑠𝑡𝑀𝑎𝑡𝑐ℎ = PC;

16: end if
17: end if
18: end if
19: end for
20: return 𝑏𝑒𝑠𝑡𝑀𝑎𝑡𝑐ℎ;

Besides the Similarity Score, the algorithm also includes the Usefulness Score, which

indicates how many times the previous case 𝑃𝐶 was reused in the past as a solution. Thus, a third

condition is added as part of the previous conditions (lines 13 to 16), assessing if the 𝑃𝐶’s score

is higher or equal to the current threshold (initialized as 0 in the line 2). Only after traversing the

whole history file and getting the highest scores (Similarity and Usefulness), the 𝑃𝐶 identified as

best match is returned as solution to be reused. In cases where there is more than one 𝑃𝐶 with

the same “winning” scores, the most recent 𝑃𝐶 is proposed to the user, who is able to give a

proper feedback and modify the history accordingly.

7.1.2 Source Discovery and Attributes Recommendation

As Source Discovery method, Sem-unionability (𝑈𝑠𝑒𝑚) was chosen (see Subsection 4.1.2.1).

Although it was not the most accurate method in the Source Discovery experiments (see Section 5),

it was chosen for the current experiment as it is a simple measure that works well within the

Java-based Xatkit environment. 𝑈𝑠𝑒𝑚 was configured as discussed in Subsection 5.1.2.1, using

the Java class CombinatoricsUtils11 an the method binomialCoefficientLog as a basis for𝑈𝑠𝑒𝑚’s

hypergeometric calculation.

After the data source is selected, the sets of metrics and dimensions need to be properly

defined for the interaction, as discussed in Subsection 4.2.1. This definition is exemplified

in Algorithm 5: given as input the data source in CSV format, we can extract the columns

(attributesList) and the first line of data (firstRecord). Then, for each value non numeric in

firstRecord, its respective column is added to the dimensions set. There might be cases in which

a numeric value is actually a dimension (such as “Year” or “Code”), so we can go through the

11Available at: <https://commons.apache.org/proper/commons-math/javadocs/api-3.
6.1/org/apache/commons/math3/util/CombinatoricsUtils.html>.
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attributesList and search for specific keywords, adding the appropriate values in the dimensions

set. After that, from the whole set attributesList, we can extract the dimensions, so the remaining

values can be considered as the metrics set. Finally, with the sets dimensions and metrics defined,

a proper recommendation can be given to the user through the conversational system.

Algorithm 5 Defining Metrics and Dimension.

Input data:
Source (CSV) metadata: attributesList
Source (CSV) first data record: firstRecord
1: DBmetrics = [];

2: DBdimensions = [];

3: for each index, value in firstRecord do
4: if isNumeric(value) == false

5: DBdimensions.add(attributesList[index]);

6: end if
7: end for
8: for each index, attr in attributesList do
9: if attr.containsAny([dimensionKeywords])

10: DBdimensions.add(attributesList[index]);

11: end if
12: end for
13: DBmetrics← attributesList.removeAll(DBdimensions);

Next, it is necessary to define the sets of the closest attributes to 𝑇𝑄 (i.e, RM and

RD) from the lists DBmetrics and DBdimensions. For this task, we use the parameters values

QuestionMets and QuestionDims from 𝑄 (see Listing 7.1), comparing them with DBmetrics and

DBdimensions, respectively, and searching for any overlaps. Thus, RM stores the overlapping

values between DBmetrics and QuestionMets, whereas RD stores the overlapping values between

DBdimensions and QuestionDims. It is important to recall that RM and RD are important

parts of the chatbot conversation flow, since they represent the sets managed by the user during

the interaction. The conversation flow and chatbot states implemented for the experiment are

addressed in the next subsection.

7.1.3 Chatbot Conversation Flow

The main goal of the current experiment is to assess how the user actions and feedback can

be used to repair a case and support the system learning. Thus, the interaction options along

the chatbot conversation flow were moved from the states shown in the Figure 6.1 (i.e., more

focused on proposing multidimensional solutions) to the ones illustrated in the Figure 4.7, which

cover attributes management and data integration. Thus, besides choosing a metric or dimension

among a set of options, the user is able to state their usefulness, based on the answer received.

For enabling the conversation flow discussed in Subsection 4.3.1 (and particularly the

attributes management), the initial question given as input in the chat triggers a set of chained

states, or functions:

1. handleInputSearch: It is mainly responsible for preprocessing the sentence and

search for it within the history. After preprocessing, the bot tries to retrieve a similar

case from the history, following the procedure explained in Figure 4.2. If a similar case

is found in the history, its related metrics and dimensions RM and RD are proposed to

the user. Otherwise, the state handleDBquery is called.
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2. handleDBquery: It is responsible for triggering the Source Discovery mechanism

(described in the previous subsection) when the history has not been useful. After the

source selection, RM and RD are suggested to the user.

3. handleRelatedAttributes: When RM and RD are suggested, the user can

choose among two options in the chat: ’Proceed with the matches’ or ’See all the

options’.

(a) Proceed with the matches: When choosing this option, the user is stating that the

suggestions seem good, so the subsets of interest m’ and d’ (see Subsection 4.3.1)

assume the RM and RD values. Next, the state handleSQLquery is called.

(b) See all the options: When choosing this option, the user is stating that he/she is not

sure about the suggestions adequacy and wants to see all attributes options within

the selected database. In this case, the list of available attributes are presented to

the user, and the state handleCaseRepair is called.

4. handleSQLquery: Responsible for building a SQL query using the retrieved source,

and m’ and d’ as parameters. The query can assume, e.g., formats such as <SELECT

m’ FROM source WHERE d’=filter12> or <SELECT d’ FROM source>. The query

built is submitted to a DBMS (Data Base Management System), and the state returns

the proper answer. PostgreSQL was chosen as DBMS, which contains the candidate

sources that are part of the experiment.

5. handleCaseRepair: When this state is called, the user can choose among the

following options:

(a) Proceed with the matches: see Item 3(a).

(b) Find another database to query: which calls the state handleDBquery (Item 2).

(c) Choose another database: In this case the user is presented to the candidate sources

available, being able to choose one option to query. When selecting a source, RM
and RD are built and the state handleRelatedAttributes is called (Item 3).

(d) Substitute attributes in the query: When choosing this option, the user can select

one metric or dimension among the available attributes, which will replace either

the RM set (in case of choosing a metric) or RD (in case of choosing a dimension).

The output of the state is the m’ and d’, which are used in handleSQLquery
state (Item 4).

(e) Add attributes in the query: As in (d), this option also allows the selection of one

metric or dimension, however, these will be added to the suggested attributes rather

than replacing them. This addition prepares m’ and d’ to be used in the query

execution. Additionally, when a dimension is chosen, the user can inform a filter so

the query is more specific. Filter are also allowed when (d) is chosen.

(f) Clear all matches: In this case, RM and RD should be reset, so the user can

compose a query with attributes selected from scratch.

6. handleUserFeedback: This state is called right after handleSQLquery. At

this point, the user should indicate the usefulness of the answer received (as illustrated

in the Repair Case component in Figure 4.7). The feedback can be given through the

following chat options:

12The filter could be, e.g., an entity recognized during the NER task.
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(a) Satisfactory answer: Here, the user gives a positive feedback about the query result,

and the case is retained as discussed in Subsection 4.3.3.

(b) Incorrect or incomplete answer: In contrast, stating an incorrect or incomplete

answer calls a personalized handleCaseRepair state, composed by the options

5(c-e) and the following additional options:

i. Change the filters: The user can try repeating the same query using a different

dimension filter, e.g., a different entity.

ii. Complement the answer with another database: This option ensures that

the answer received is not fully discarded, but complemented with a second

database. This concept is part of Built-up Integration and was implemented in

the state handleComplementaryAnswer.

7. handleComplementaryAnswer: As discussed in Subsection 4.3.2, the answer to

a user question may be scattered over two or more databases. So, in Built-up Integration,

data integration is executed towards the retrieval of complementary data. The current

state aims at covering this particular feature of the concept, considering the recently

received answer as a partial answer and triggering another round Retrieve → Reuse →
Revise → Query Execution. When the additional round is finalized (Item 4) and the

option 6(a) is chosen, the chatbot engine searches for the partial answer(s) previously

saved and integrates13 them in the chat for the user review. A positive feedback in this

state results in the case being retained with a memory arrangement (Case Transformation

and/or Case Addition), as stated in Subsection 4.3.3.

Figure 7.1: Chatbot state flowchart (CBR-based overview).

Finally, considering the CBR cycle and its four activities, the states described above can

be linked with the activities Retrieve, Reuse, Revise, and Retain as demonstrated in Figure 7.1. It

13In the prototype implementation, the integration does not mean, e.g., aggregating two metrics and presenting a

single value to the user, but presenting the answers from different sources together, so the user can reason about

their connection and use them to support personal activities, if applicable. Aside from this particularity, metrics

aggregation can be covered in a future work.
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is valid to mention that the states described in this subsection and illustrated in the figure are not

the totality of states implemented in the chatbot prototype, but an abstraction of the actual flow,

which contains much more states that handle all the particularities of the interaction14. Hence,

some transitions (i.e., state calls from another state) were also abstracted in Figure 7.1. Following

this context, the next subsection exemplifies the execution of the chatbot states, considering the

candidate sources presented and the Xatkit Framework.

7.1.4 Chatbot Running Example (Attributes Management)

This subsection demonstrates the execution of the chatbot prototype, considering the candidate

databases and the chained stated discussed in the previous subsection. The chatbot execution is

demonstrated in Figure 7.2.

Through the chat, the user informs his initial intent (“Show me how many positive cases
of covid there were on 2021”), which triggers the state handleInputSearch. This is the

preprocessing stage needed for case retrieval (either from history or source discovery, as shown

in figures 4.2 and 4.3). Based on the question tokens derived from preprocessing, a case similar

to the input case is found in the history file, associated with the New York COVID-19 School

Report dataset. According to the retrieved case, the chatbot presents both metrics and dimensions

that could be related to the user question, RM and RD, being RM = [positive_students] and

RD = [school_type], and asks for a confirmation. The user realizes that [school_type] does not

match with the requested year “2021”, so he chooses to see all the database attributes before

proceeding with the query, which is corresponding to the state handleRelatedAttributes
(b). After all attribute options are shown in the chat, the state handleCaseRepair is called,

whose options are displayed right below the question What should I do now?. The user chooses

to replace attributes in the query, as he wants to substitute the recommended [school_type] with

the dimension option report_date, which matches “2021”.

The interaction continues as illustrated in Figure 7.3. After replacing the recommended

dimension, d’ = [report_date] and m’ = [positive_students], so the state handleSQLquery is

called. With d’, m’, and the entity “2021”, the SQL query produced is corresponding to <SELECT

positive_students FROM ny_covid19_school_report WHERE report_date ilike ’%2021%’, which

outputs the result “1931”. However, the user only obtained information about positive covid

cases involving students, whereas the database also contains similar metrics related to teachers

and staff. Thus, he chooses the modify the query attributes again, by stating that the answer

received is not right or complete (state handleUserFeedback (b)). This time, he adds
the metric [positive_teachers] to the query, which modifies the SQL query to <SELECT SUM
(positive_students+ positive_teachers) FROM ny_covid19_school_report WHERE report_date
ilike ’%2021%’. With the new answer received (i.e., 2263), the user gives a positive feedback, so

the history can now be modified.

Considering the initially recommended attributes (RM = [positive_students] and RD
= [school_type]) and the attributes chosen by the user after review (m’ = [positive_students,

positive_teachers] and d’ = [report_date]), the history would be organized according to the

Table 7.2. The first line shows the possibly retrieved case containing RM and RD, and the third

line shows the recently added case containing m’ and d’. It is important to recall that the third

line represents a repaired and learned case, as the case retrieved from the history has proved to be

unsuitable for the initial question.

14All chatbot states and the complete implementation are available here.
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Figure 7.2: Managing attributes (Chatbot execution example - Part 1).

Table 7.2: Example of history file management.

Question tokens Database Metrics Dimensions Score

1 positive, covid, school NY_covid19_schoolR positive_students school_type 10

2 count, enrollment NY_enrollments all_students_fulltime legal_name 20

3 positive, case, covid NY_covid19_schoolR positive_students, posi-

tive_teachers

report_date 10

4 count, enrollment usa_enrollments institutions_enrollment state_jurisdiction 10

7.1.5 Chatbot Running Example (Handling Complementary Data)

This subsection presents a second execution example with the chatbot, which addresses a scenario

where the complete answer to a question is stored in more than one dataset. As discussed in

Subsection 4.3.2), this characteristic is observed in Built-up Integration approaches and demands

the search for complementary data.

The example is illustrated in Figure 7.4 and considers the initial question “show me the
count of enrollments in New York and Orange County Community College”, where information

about enrollments in the Orange County college is stored in a dataset (1)15 whereas information

about New York enrollments is in dataset (2)16. When the question is informed in the chat, the

15Available at: <https://www.nysed.gov/information-reporting-services/higher-
education-reports>.

16Available at: <https://nces.ed.gov/ipeds/Search?query=residence&query2=
residence&resultType=all&page=1&sortBy=date_desc&overlayTableId=29451>.
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Figure 7.3: Managing attributes (Chatbot execution example - Part 2).

initial recommendation of the chatbot covers the dataset (1), RM = [all_students_fulltime] and

RD = [legal_name], as shown in the top-left part of Figure 7.4.

However, the answer returned on the chat is incomplete, as it only contains information

about the college enrollments and lacks information related to New York. Thus, the user chooses

the option “Keep this answer but find another database to complement it”, which leads to the

state handleComplementaryAnswer. Within this state, the answer received is temporarily

stored as partial answer and the chatbot searches for its complement. A possible complement

is found in dataset (2) (represented in the Figure as usa_enrollment2020), along with RM =

[institutions_enrollment] and RD = [state_jurisdiction]. After seeing that the entity New York
has been found in RD, the user agrees with the proposed solution and the respective SQL query

is built. The answer for “New York enrollments” is displayed in the chat (i.e., 177.012) and a

positive feedback is given (handleUserFeedback (a)). As mentioned in Subsection 7.1.3,

it is now possible to visualize a complete answer in the chat, composed by two answers from

different databases.

The history modification is exemplified in lines 2 and 4 from Table 7.2: the second line

represents the first retrieved case recommended by the chatbot, which had an increment in its

score, due to its usefulness in the final answer. The fourth line is resulting from the execution of

the second round of the CBR cycle, which returned information about New York enrollments.

The modifications are equivalent to Case Transformation and Case Addition, respectively, as
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Figure 7.4: Handling complementary data (Chatbot execution example - Part 3).

discussed in Section 4.3.3. Next, the prototype evaluation with a group of participants will be

presented and discussed.

7.2 RESULTS

This subsection details the user study conducted with the chatbot prototype previously described.

Differently from the evaluation discussed in Chapter 6, which evaluated Reuse aspects through the

suggestion of multidimensional solutions, in the current experiment the objective was assessing

the impact of human feedback in the chatbot actions and the proper modification of the historic

knowledge, thus covering the Revise and Retain steps of the proposed CBR architecture (see

Figure 4.1).

The user study was conducted entirely online with 22 participants, recruited through

social networks and Amazon Mechanical Turk17. They received a detailed description of the

study and its objective, being informed that their feedback about the chatbot answers would be

collected during the interaction. For accomplishing the experiment, they received five specific

questions that they should ask, which included: (1) The number of students enrolled in New York
city; (2) The number of positive covid cases in Saint Ambrose School students; (3) The total of
enrollments in Bronx, in 2019; (4) The count of students migration in Alabama; and (5) The
number of full time enrollments and covid tests administered in Albany schools. Each question

had an expected answer that should be visualized at some point by the participants. They were

17Available at: <https://www.mturk.com/>.
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informed that eventually the chatbot could provide incorrect recommendations for the questions

(respecting metrics, dimensions, or databases to be queried), which they should identify and

correct (if necessary and as many times as necessary) until reaching the expected answer.

The questions were based on the candidate databases discussed in Subsection 7.1.3,

and considering the fact that, for reaching the experiment purposes, the elaboration of specific

tasks would be more effective than letting the users formulate questions freely. However, the

participants were informed that, after completing the specific tasks, they could ask any question

that could be related to the databases available, following some suggestions of attributes that

were listed in the document. Some examples of how to manage recommended attributes were

also illustrated in the study description, as a way to provide a better guidance to the participants.

As mentioned before, the chatbot was developed for proposing solutions to the users

based on previous cases from a history file. Thus, for investigating the impact of user feedback in

the historic case base and in the CBR context, two types of tests were organized: the first one, in

which the history was static (i.e., the user feedback could not modify the history file), and the

second one, dynamic (where the feedback changes the file, either by increasing the Usefulness

Score or adding a new case). Specifically, the two types of history were initialized the same way,

with the same previous cases as candidates for the retrieval, and each participant at the beginning

of his/her interaction, was randomly assigned to a evaluation code, 1 or 2, which defined the

use of a static history or a dynamic history, respectively. The users were not aware of the

code meaning, ensuring an unbiased evaluation. The code assignment is demonstrated in the

start of the interaction exemplified in Figure 7.2, and the initialization of the history files are

demonstrated in Table 7.1.

After concluding the interaction tasks with the chatbot, each participant was required

to fill in an evaluation form with questions designed on the light of previous studies [39, 121].

This means that some questions from the previous experiment evaluation form were kept or

adapted (see Table 6.1), regarding Visibility, Support, Usefulness and Simplicity aspects. In

addition, other categories of questions were included, in order to track the CBR goals of the

current experiment (see Table 7.3): Transparency, Justification, Relevance, and Data Integration.

Three of the categories added are based on a consolidated study about Case-Based

Reasoning goals [225] that presents a framework for explanation in CBR systems. According to

the framework, the Transparency feature refers to explaining how the system reached the answer,

which should be achieved by the chatbot when explaining, e.g., which attributes will compose

the query to be executed. The Justification feature refers to explaining why the answer or strategy

taken is a good one. In the chatbot, this was implemented in a state that correlates the proposed

solutions with previous cases in the history (e.g., “According to the history file, users usually

choose the metric M or dimension D”). Relevance, on the other hand, refers to explaining the

relevance of a question for reaching a solution.

The evaluation form also contained questions related toData Integration, and particularly,

Built-up Integration (questions Q24 to Q26). As observed in Table 7.3, the question Q24 makes

reference to an integrated answer, which should be achieved in the task (5). Thats is because

the task asks for "the number of full time enrollments and covid tests administered in Albany

schools", which involves information from two different datasets (New York Enrollments and

New York COVID-19 School Report). Thus, the user should follow an interaction similar to

the one shown in Figure 7.4 to complement the first partial answer received. As discussed in

Section 3.2, the idea of obtaining complementary data is a key factor for Built-up Integration

approaches, since an augmented data set can support particular tasks of the user and provide

insights that might not be clear before, by only using one source of data.
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Table 7.3: Chatbot Evaluation Form (Review and Retain steps)

Criteria Form Question Question Type

User Profile

and Initial

Checks

Q1- Your evaluation code during the interaction was:

Multiple Choice
Q2- How familiar are you with Information Technology?

Q3- What is the highest degree or level of school you have completed?

Q4- What is your age?

Q5- What is the difference between metrics and dimensions? Selection boxes

Q6- For the six specific tasks, did you get the expected answer in how many of them?
Multiple Choice

Q7- How many free questions did you ask the bot?

Visibility
Q8- Information in the chat was shown in a well-structured way.

(1-5) Linear Scale

Q9- The bot has communicated sometimes to inform the current status, such as “searching for

information” or “preprocessing sentence”.

Visibility/

Transparency
Q10- The instructions and options were visible and easy to understand.

Transparency
Q11- The bot explained how the answers were obtained, i.e., which attributes were used in the

query.

Support

Q12- The bot was able to follow the conversation and recognize my intention.

Q13- When interacting with the bot I was able to decide what is useful and what is not.

Q14- There was enough guidance (support options and sentences) throughout the conversation.

Support/

Usefulness

Q15- The possibility to review and change query attributes was useful to get to the expected

answer or improve the answer I received.

Usefulness

Q16- I was able to make a query by selecting dimensions and metrics.

Q17- The answers I received were compatilble with the dimensions and metrics I chose.

Q18- The answers I received were faster than if I had to search in Open Data portals on my own.

Justification

Q19- Sometimes the bot suggested metrics and dimensions based on historical information: it

seemed a good way to justify recommendations.

Q20- The bot justifications were enough to me.

Relevance
Q21- I believe the chatbot questions like "what do you think about these matches?" and "did this

make sense to you?" were relevant in the search for the answer.

Simplicity
Q22- It was easy to make a query using the chatbot.

Q23- I would use the chatbot again for seaching for information in databases.

Data Integration

Q24- For task number 5, you should use an option in the chat for searching a complement for you

answer in another database, so you could get to an integrated answer. Did the integrated answer

make sense?

Multiple choice/

Short Text

Q25- Was it interesting to visualize in the chat answers from different databases?

Q26- Did you let the bot choose a database for you at least once? How was the experience? Multiple choice

Final checks

Q27- Besides changing the database and attributes, would you add any other human decision

during the conversation?
Short Text

Q28- Leave your general feedback (the chatbot features you liked the most, the features you

would like to change or add, etc.)
Long Text

Q29- Was this evaluation form adequate according to your interaction experience? Multiple choice
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Most part of the questions in the evaluation form were linear scale questions, giving

the possibility to choose one option between 1 and 5 for stating the level of agreement. With

respect to Data Integration category, the questions were multiple choice followed by a text input,

allowing to justify the choices and express a point of view. Text inputs were also included

in the final checks of the form for gathering general feedback about the chatbot. Finally, the

evaluation results were monitored through log files built during the interactions for tracking the

participants actions: the static log maintained information about evaluations in which the static

history was assigned, whereas the dynamic log maintained information when the dynamic history

was used. Both logs were built as CSV files, containing the columns correct recommendation,
question tokens (𝑇𝑄), recommended database (R_DB), queried database (Q_DB), recommended
dimensions (RD), queried dimensions (d’), recommended metrics (RM), and queried metrics
(m’), being the term "recommended" referring to the solutions proposed by the chatbot and

"queried" the attributes actually queried after user review. When {𝑅𝐷 = 𝑑′ AND 𝑅𝑀 = 𝑚′ AND

𝑅_𝐷𝐵 = 𝑄_𝐷𝐵 AND 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_ 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 1}, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 = 1 in the log file;

otherwise, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 = 0. Regarding this condition, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_ 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 is 1

when the state handleUserFeedback(a) is called (see Subsection 7.1.3).

Lastly, a termination condition (i.e., a stopping criterion) was considered for the

evaluation, based on the Usefulness Score. In other words, the interactions could be finalized if

at least one previous case in the dynamic history reached the value "100", meaning that at least

one case was incremented ten or more times (assuming the value "10" at each increment), and the

recommendations were stable. The results from the static and dynamic evaluations are detailed

as follows.

7.2.1 Dynamic History Evaluations

As mentioned before, during the manipulation of the dynamic history, details of the users actions

were stored in a dynamic log file, which is demonstrated in Table 7.4. The file begins with question

(1)18 (assuming the five specific tasks given to the participants) and an incorrect recommendation

from the chatbot. The question, after preprocessing, results in the tokens "student, enrolled, city",

as shown in the first line of the log. The chatbot suggested the metrics <all_students_fulltime,

all_students_parttime>, which were not modified by the participant. However, the recommended

dimension <legal_name> was replaced by <county_name>, implying that the use of <legal_name>

as query parameter did not retrieved the expected result for the question, so the user chose

another attribute. Thus, the condition RD ≠ d’ results in an incorrect recommendation. As

observed in the snippet of the dynamic history (Table 7.5), the recommendation referred to the

previous case (PC) 2, which contains the replaced dimension <legal_name>. Since the repaired

case <student, enrolled, city; new_york_enrollments; county_name; all_students_fulltime,

all_students_parttime> is not yet in the history, Case Addition occurs (see Section 4.3.3), and PC

14 is included in the dynamic history19.

The incorrect recommendation is followed by other two incorrect recommendations in

the dynamic log, respecting the questions (2)20 and (3)21 from the list of participants tasks. In

the second line, the recommended metric <positive_teachers> (coming from PC 7) was replaced

by <positive_students> by the participant, which is supposed to return the expected answer for

18"Show me the number of students enrolled in New York city".
19Each repaired case is included in the dynamic history with a score initialized as "10", which is incremented

according to the case usefulness. The snippet in Table 7.5 shows the last version of the history (obtained after all the

interactions were concluded) with the final Usefulness Scores.

20"Show me the number of positive covid cases in Saint Ambrose School students".
21"Show me the total of enrollments in Bronx, in 2019".



95

the question "number of positive cases in Saint Ambrose School students". In the third line of

the log file, the dimension <county_name> was added to the recommended dimensions <year>

(from PC 3). The repaired cases are then added to the dynamic history (see PC 15 and PC 16 in

Table 7.5), both with an initialized Usefulness Score.

The first correct recommendation in the dynamic log refers to question (2), in which

RD = d’ and RM = m’. At that point, the history contained two cases with the exact tokens

"student, enrolled, city", with the same Usefulness Score, but recommended the most recent case

included, which was the one previously repaired by a participant (PC 15). The fifth line of the

log, on the other hand, shows an incorrect recommendation with empty recommended attributes

for the question (4)22. That is because no similar case to the input question was found in the

history, so Source Discovery was triggered, retrieving the dataset "usa_enrollment2020". The

participant achieved the expected answer for the question by using the discovered source and the

attributes <state_jurisdiction, students_migration_into_state, students_migration_out_state>23.

The case was added in the history as PC 17.

Next, we can observe in the dynamic log a correct recommendation associated with the

tokens "student, enrolled, city" from PC 14, followed by an incorrect recommendation for the

same input tokens. In the latter, we can see that that recommended database and attributes were

the same as the case right above, but the participant decided to change the database and attributes

(probably for testing purposes), resulting in an incorrect recommendation and a Case Addition in

the history (PC 18). We can assume that this specific case represents a false negative, since the

bot recommendation was actually the one that would result in the right answer.

The following lines in the dynamic log contain the tokens "fulltime, enrollment, covid,

test, administered, school" from question (5)24, which, as mentioned before, should be answered

with information from two different datasets. First, the bot recommends the dataset "New York

COVID-19 School Report" as no similar case is found in the history and the recommended

attributes are empty. The repaired case is included as PC 19 in the history. In the next line of

the log, a correct recommendation is shown, using the same database and attributes queried

in the previous interaction (from the recently added case 19), instead of a complementary

database, expected for question (5). Probably, during the interaction, the participant did not

choose the built-up integration options in sequence (i.e., It doesn’t seem right or complete →
Keep this answer but find another database to complement it, as demonstrated in Figure 7.4), but

ended the task with a positive feedback. So, starting the question (5) again, she/he was presented

to PC 19 as suggestion, which eventually resulted in the increase of the score for that previous case.

This time, seeking the expected integrated answer, the participant followed the built-up options in

the chat and the database "New York Enrollments" was queried as complement, as demonstrated

in the third log line involving the question (5). The fact that the "New York COVID-19 School

Report" was the recommended dataset in the log line demonstrates that the user did not interrupt

the query, but chose to complement it with another source, so the recommendation is linked to

the partial answer received (PC 19). Thus, assuming that the integrated answer was visualized in

the chat, the complementary answer was included in the dynamic history as PC 20.

The remaining lines of the dynamic log show a sequence of correct recommendations.

This indicates that repaired cases had their Usefulness Scores increased enough times for the

chatbot’s recommendations to be changed. Indeed, as we can see in the bottom of the history file,

some scores were incremented more than ten times, allowing the cases to be repeatedly suggested

22"Show me the count of students migration in Alabama".
23The empty fields in the log’s recommended attributes were not filled with attributes from the discovered source

because the implementation aimed at tracking the use of the history, specifically.

24"Show me the number of full time enrollments and covid tests administered in Albany schools".
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Table 7.4: Dynamic log file (snippet).

Correct 𝑇𝑄 R_DB Q_DB RM m’ RD d’

0 student, en-

rolled, city

new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

all students fulltime,

all students parttime

legal name county name

0 positive, covid,

cas, student

ny covid19

school

2020_2021

ny covid19

school

2020_2021

positive teach-

ers

positive students school name school name

0 enrollment new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

all students fulltime,

all students parttime

year county name,

year

1 positive, covid,

cas, student

ny covid19

school

2020_2021

ny covid19

school

2020_2021

positive stu-

dents

positive students school name school name

0 student, migra-

tion

usa enrollment

2020

usa enrollment

2020

students migration

into state, students

migration out state

state jurisdica-

tion

1 student, en-

rolled, city

new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

all students fulltime,

all students parttime

county name county name

0 student, en-

rolled, city

new york en-

rollments

usa enrollment

2020

all students full-

time, all stu-

dents parttime

residents enrolled

same state, students

migration into state,

students migration

out state, residents

enrolled any state

county name state jurisdic-

tion

0 fulltime, enroll-

ment, covid,

test, adminis-

tered, school

ny covid19

school

2020_2021

ny covid19

school

2020_2021

school administered

tests

school name

1 fulltime, enroll-

ment, covid,

test, adminis-

tered, school

ny covid19

school

2020_2021

ny covid19

school

2020_2021

school adminis-

tered tests

school administered

tests

school name school name

0 fulltime, enroll-

ment, covid,

test, adminis-

tered, school

ny covid19

school

2020_2021

new york en-

rollments

school adminis-

tered tests

all students fulltime school name county name

1 student, en-

rolled, city

new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

all students fulltime,

all students parttime

county name county name

1 positive, covid,

cas, student

ny covid19

school

2020_2021

ny covid19

school

2020_2021

positive stu-

dents

positive students school name school name

1 enrollment new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

all students fulltime,

all students parttime

county name,

year

county name,

year

1 positive, covid,

cas, student

ny covid19

school

2020_2021

ny covid19

school

2020_2021

positive stu-

dents

positive students school name school name

1 student, migra-

tion

usa enrollment

2020

usa enrollment

2020

students migra-

tion into state,

students migra-

tion out state

students migration

into state, students

migration out state

state jurisdica-

tion

state jurisdica-

tion

1 fulltime, enroll-

ment, covid,

test, adminis-

tered, school

ny covid19

school

2020_2021

ny covid19

school

2020_2021

school adminis-

tered tests

school administered

tests

school name school name

1 fulltime, enroll-

ment, covid,

test, adminis-

tered, school

new york en-

rollments

new york en-

rollments

all students full-

time

all students fulltime county name county name
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Table 7.5: Dynamic history (snippet).

𝑃𝐶 𝑇𝑃𝐶 Database Dimensions Metrics Score

1 student usa enrollment2020 state jurisdiction students migration into state 10

2 student, enrolled, city new york enrollments legal name all students fulltime, all stu-

dents parttime

10

3 enrollment new york enrollments year all students fulltime, all stu-

dents parttime

10

4 enrollment, public, school new york enrollments county name all students fulltime, all stu-

dents parttime

10

5 enrollment, school new york enrollments school type all students parttime,all stu-

dents fulltime

10

6 covid, cas, school ny covid19 school 2020 2021 School Type positive students,positive

teachers,positive staff

10

7 positive, covid, cas, student ny covid19 school 2020 2021 school name positive teachers 10

8 covid, cas, public, school ny covid19 school 2020 2021 report date positive students,positive

teachers,positive staff

10

9 fulltime, enrollment ny covid19 school 2020 2022 region number of students 10

10 undergraduate, enrollment,

public, school

new york enrollments school type graduate fulltime, graduate

parttime

10

11 migration, enrollment usa enrollment2020 state jurisdiction institutions enrollment 10

12 covid, test, applied ny covid19 school 2020 2021 school name school administered tests 10

13 school, covid, report ny covid19 school 2020 2021 region, report date 10

14 student, enrolled, city new york enrollments county name all students fulltime, all stu-

dents parttime

80

15 positive, covid, cas, student ny covid19 school 2020 2021 school name positive students 160
16 enrollment new york enrollments county name, year all students parttime, all stu-

dents fulltime

110

17 student, migration usa enrollment2020 state jurisdiction students migration into state,

students migration out state

100

18 student, enrolled, city usa enrollment2020 state jurisdiction residents enrolled same state,

students migration into state,

students migration out state,

residents enrolled any state

10

19 fulltime, enrollment, covid,

test, administered, school

ny covid19 school 2020 2021 school name school administered tests 120

20 fulltime, enrollment, covid,

test, administered, school

new york enrollments county name all students fulltime 90

21 student, enrolled, city new york enrollments county name all students fulltime 10
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and reinforced throughout the experiment. Based on the sequence of correct recommendations

and the termination condition for the evaluation (mentioned in Subsection 7.2), the experiment

with the participants was finalized.

Is is important to highlight that the dynamic log file presented in Table 7.4 shows the top

part of the complete log file generated during the experiment. Although the complete version was

much more extensive25, the lines not included in this thesis were not relevant to the discussion,

as they only show a long sequence of correct recommendations. Similarly, the Table 7.5 does

not show the entire history, but relevant cases for understanding the sequence of interactions.

Some other cases were included in the snippet to illustrate how the history was built (i.e., with

the purpose of giving recommendations that should be reviewed and corrected).

7.2.2 Static History Evaluations

After detailing the evaluations with code 2 and the manipulation of the dynamic history, the

evaluations that were assigned with code 1 are now described, which were associated with a

static history. As the static history remained unchanged during all interactions, its initialized

version shown in Table 7.1 should be considered for the present discussion. Each interaction

linked to a code 1 was detailed in a static log file, demonstrated in Table 7.6. The table, just like

the dynamic log from the previous subsection, contains the most relevant lines for interpreting

the interactions between the participants and the chatbot prototype26.

The first six lines of the static log demonstrate recommendations from the history that

were corrected by the user. The first and third lines (retrieved from PC 2 and PC 3, respectively,

as shown in Table 7.1), had the dimensions set modified, whereas the second line (from PC 7)

had the metrics set modified. The lines 4 to 6 of the log show interactions already observed

during the dynamic evaluations, i.e., input cases with no satisfactory match in the history, so

that Source Discovery was performed. The lines 5 and 6, specifically, represent the question (5)

(from the list of evaluation tasks) that was answered with the content of two different databases.

Considering a static history, no case was added or transformed based on the corrections.

The sequence shows a correct recommendation associated with question (1), since the

condition {𝑅𝐷 = 𝑑′ AND 𝑅𝑀 = 𝑚′ AND 𝑅_𝐷𝐵 = 𝑄_𝐷𝐵 AND 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_ 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 1} was

fulfilled. We can observe, however, that the recommendation was the same as the first interaction,

i.e., the repaired case was not retained and used for further improvement, as expected with CBR

methodology. Moving forward, the static log file shows a set of wrong recommendations, where

the same pattern appears: the same set of metrics and dimensions are recommended every time,

despite all corrections made. In addition, in the last five lines of the log snippet, some empty

spaces appear in the recommended metric and dimension sets, for the questions that previously

involved Source Discovery. These gaps were supposed to be filled with newly recommendations

from the modified history, but considering a static history that bypass the CBR methodology, no

improvement has been made.

The comparison between static and dynamic evaluations is demonstrated in Figure 7.5.

The x axis shows the number of interactions during the experiment (considering that each

participant interacted more than one time with the chatbot, by asking different questions),

wheread the y axis shows a binary 0 or 1 that represents an incorrect or correct recommendation,

respectively. We can observe that, in the evaluations that used the static history (Figure 7.5(a)),

the chatbot had a very unstable performance, giving incorrect recommendations most of the times

25The complete dynamic log is available here.

26A snippet was chosen to demonstrate the static log file, since there were several case repetitions in the original

file that were irrelevant for the experiment discussion. The complete log file is available here.
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Table 7.6: Static log file (snippet).

Correct 𝑇𝑄 R_DB Q_DB RM m’ RD d’

0 student, en-

rolled, city

new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

all students fulltime,

all students parttime

legal name county name

0 positive, covid,

cas, student

ny covid19

school

2020_2021

ny covid19

school

2020_2021

positive teach-

ers

positive students school name school name

0 enrollment new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

all students fulltime,

all students parttime

year county name,

year

0 student, migra-

tion

usa enrollment

2020

usa enrollment

2020

students migration

into state, students

migration out state

state jurisdica-

tion

0 fulltime, enroll-

ment, covid,

test, adminis-

tered, school

new york en-

rollments

new york en-

rollments

all students fulltime county name

0 fulltime, enroll-

ment, covid,

test, adminis-

tered, school

new york en-

rollments

ny covid19

school

2020_2021

school administered

tests

school name

1 student, en-

rolled, city

new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

all students fulltime,

all students parttime

legal name legal name

0 student, en-

rolled, city

new york en-

rollments

usa enrollment

2020

all students full-

time, all stu-

dents parttime

residents enrolled

same state

legal name state jurisdic-

tion

0 enrollment new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

undergraduate_pt en-

rolled program, under-

graduate_ft enrolled

program

year county name,

year

0 enrollment new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

undergraduate_pt en-

rolled program, under-

graduate_ft enrolled

program

year county name

0 positive, covid,

cas, student

ny covid19

school

2020_2021

ny covid19

school

2020_2021

positive teach-

ers

positive students school name school name

0 student, migra-

tion

usa enrollment

2020

usa enrollment

2020

students migration

into state, students

migration out state

state jurisdica-

tion

0 student, en-

rolled, city

new york en-

rollments

usa enrollment

2020

all students full-

time, all stu-

dents parttime

all students fulltime legal name legal name

0 positive, covid,

cas, student

ny covid19

school

2020_2021

ny covid19

school

2020_2021

positive teach-

ers

positive students school name school name

1 student, en-

rolled, city

new york en-

rollments

new york en-

rollments

all students full-

time, all stu-

dents parttime

all students fulltime,

all students parttime

legal name legal name

0 fulltime, enroll-

ment, covid,

test, adminis-

tered, school

ny covid19

school

2020_2021

ny covid19

school

2020_2021

school administered

tests

school name
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((a)) ((b))

Figure 7.5: Comparison between static (a) and dynamic (b) evaluations.

(79.6%). On the other hand, for the evaluations that used the dynamic history (Figure 7.5(b)), the

correct recommendations were sustained after a determined number of interactions, showing

the suitability of a knowledge base constantly modified by means of the CBR cycle. For these

evaluations, the chatbot gave a correct recommendation in 89.7% of the times. It is important to

recall that the assignment of a static or dynamic evaluation was random among the participants,

and the experiment was concluded with 59% of static evaluations, against 41% of dynamic

evaluations.

The next subsection evaluates the collected results by analyzing the categories of

the questions in the evaluation form (Visibility, Support, Usefulness, Simplicity, Transparency,
Justification, Relevance, and Data Integration) and the participants answers.

7.2.3 Analyzing Questions by Category

As stated in the beginning of the Section 7.2, the participants of the experiment were required to

fill in an evaluation form that, in addition to containing some questions from the previous chatbot

experiment, was increased with questions to measure CBR objectives, specifically [225]. The

evaluation form is demostrated in Table 7.3 and the participants answers are now discussed.

Starting from user profile questions (questions Q1 to Q7), 50% of the participants

declared a basic IT knowledge, through activities such as accessing the Internet and editing

Word documents. 36.4% were IT students or professionals, whereas 13.5% have intermediate IT

knowledge although they do not work or study in the area. Most part of them declared to own a

Bachelor’s Degree (59.1%), while the minority declared to own either a Master’s Degree (18.2%),

a Doctorate Degree (9.09%), or completed High School (13.6%). 77.3% of the participants were

25 to 45 years old, while 22.7% was younger than 25 years old.

When asked about the difference between metrics and dimensions (question Q5),

approximately 88% has given the correct answer27 (i.e., "Metrics are calculated values and

dimensions are used to group the metrics" and/or "Number of schools is a metric"). For question

Q6, the expected answer for all of the specific tasks was reached by 54.5% of the participants, for
more than a half of the questions by 22.7% of the interviewed, and for half or less than a half of

the questions by 22.8%. Overall, the Q6 answers were positive for 77.2% of the participants,

demonstrating that they were able to gradually compose a query until reaching the expected

result. Regarding question Q7, 41% declared that asked more than 4 free questions to the bot,

while the remaining participants asked 0 to 4 free questions, which, as mentioned before, were

additional and optional questions, apart of the specific tasks of the experiment.

27This question was included in the form to check the participants understanding about the experiment description

and the requirements for building a query.
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Table 7.7: Score Percentage and Average for Linear Scale Questions

(1/disagree - 5/agree)

Question-Category Score 1 (%) Score 2 (%) Score 3 (%) Score 4 (%) Score 5 (%) Avg Static
Score

Avg Dy-
namic Score

Q8-VIS 0 13.6 22.7 40.9 22.7 3.84 3.55

Q9-VIS 0 4.55 4.55 22.7 68.2 4.23 5
Q10-VIS-TRAN 0 13.6 22.7 27.3 36.4 3.92 3.77

Q11-TRAN 0 0 9.09 27.3 63.6 4.3 4.88
Q12-SUP 0 4.55 18.2 31.8 45.5 4.15 4.22

Q13-SUP 0 13.6 9.09 50 27.3 4.07 3.66

Q14-SUP 9.09 4.55 13.6 40.9 31.8 3.84 3.77

Q15-SUP-USEF 0 13.6 9.09 31.8 45.5 4 4.22
Q16-USEF 0 4.55 13.6 40.9 40.9 4.3 4

Q17-USEF 0 18.2 0 36.4 45.5 3.84 4.44
Q18-USEF 0 4.55 18.2 31.8 45.5 3.84 4.66
Q19-JUS 4.55 4.55 18.2 40.9 31.8 3.76 4.11
Q20-JUS 4.55 4.55 9.09 40.9 40.9 3.84 4.33
Q21-REL 4.55 0 9.09 31.8 54.5 4.23 4.44

Q22-SIM 0 4.55 27.3 40.9 27.3 3.84 4

Q23-SIM 4.55 9.09 18.2 36.4 31.8 3.84 3.77

Respecting the linear scale questions, the results by category are summarized in

Figure 7.6, and questions details (scores percentage and average) are shown in Table 7.7. Some

highlights were added to the table to indicate the highest percentages and interesting differences

between static and dynamic evaluations. The answers for Visibility category were mostly around

the scores 4 and 5. While more than 80% of the participants scored 4 and 5 for question Q8, the

percentage is a little smaller for Q9 and Q10 (around 63%). These results mean that, although

the bot communication was satisfactory, the information in the chat was not following the proper

structure. The users impressions, in this case, might have been influenced by some lengthy replies

from the chatbot, which were eventually composed by many lines of text or clickable options (see

Figure 7.2). For question Q9, we can notice that its average score in the static evaluations was

4.23, while it reached a 5-score in dynamic evaluations. This significant difference demonstrates

that when the dynamic history was used to adapt further recommendations, the users were more

satisfied with the chatbot replies.

The Transparency questions were Q10 and Q11 in the evaluation form. As already

discussed, Q10 (which was also in the Visibility category) did not reached a satisfactory result,

but there is a positive change for question Q11. This question referred to the bot explanations

about how the answers were obtained, and reached a 5-score for 63.6% of the participants. A

comparison between average scores for this question is not relevant, since the chatbot gave

explanations equally for both types of evaluations. However, we observe a positive difference in

the dynamic evaluations, demonstrating that users tend to be more confident in the explanations

when the recommendations are adapted.

For Support questions (questions Q12 to Q15), the scores were mostly around 4. As

expected, no significant difference between the average scores was noticed for Q12 e Q14,

since the chatbot had the same actions for both static and dynamic evaluations. However, a

superior average score was obtained for Q13 (which aimed to measure decision-making about

the recommendations utility) in static evaluations. In fact, during the static evaluations, the

participants likely had to make many more decisions than the other group of participants to

correct the chatbot recommendations, which were predominantly erroneous. As a consequence,

they have managed more attributes than the dynamic evaluation participants and experienced a

clearer sense of decision-making. For question Q15, which measured the chatbot improvement

after human correction, a slightly superior average was observed in the dynamic evaluations.

For this question, the average score in static evaluations was expected to be much lower, but the

explanation may be linked to question Q13. Static evaluation participants might have perceived
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((a)) ((b))

Figure 7.6: Comparison between linear scale questions in static and dynamic evaluations.

some kind of improvement not because the recommendations were better, but because the chatbot

retrieved the expected answer for the question at hand, after consecutive corrections. In any case,

75% of the Support questions obtained a higher average score in evaluations where the history

was changed and used to adapt the conversation.

Usefulness questions covered Q15 to Q18. Q15, as already discussed, had a little

increase in the average score for dynamic evaluations. For question Q16, more than 80% of

the scores were around 4 and 5, and static evaluations had an average score slightly superior

than dynamic evaluations. This result is closely linked to question Q13 and reinforces the

hypothesis that the more manual corrections are made, the greater the users perception of their

decision-making control. Consequently, we can assume that the possibility to review and change

attributes was more useful to reach the right answer for static evaluations users than for the other

group (which received correct recommendations most of the times). For questions Q17 and

Q18, a significant improvement was observed in dynamic evaluations averages. These questions

measured, respectively, the answers compatibility with the chosen attributes and the speed in

receiving the final answer in comparison with a personal search in Open Data portals. The Q17

result demonstrates more compatible answer in dynamic evaluations, probably leveraged by the

correctness in the chatbot suggestions. For Q18, we observe that dynamic evaluation participants

received faster answers than the other group, which is the expected result considering that they

did not need to make many corrections to obtain the answers.

Q19 and Q20 were categorized as Justification questions, covering the chatbot expla-

nations about the strategies taken. These questions were mostly scored with 4 and 5 values,

with an advantage in dynamic evaluations. In general, the users tended to be more satisfied

with justifications when the bot learned from user feedback. In addition, the use of the history

seemed to make more sense for participants who experienced corrected recommendations along

with the explanation of the historical content. The Justification questions are correlated to the

Relevance question Q21, since the latter also addresses the correlation between historical content

and suggestions. For Q21, comparing the static and dynamic averages is not relevant, since the

chatbot inquiries such as "What do you think about these matches" were present in both types

of evaluations. However, it is interesting to observe that more than 85% of the participants

considered the chatbot questions relevant when searching for the answer.

The last category of linear questions was Simplicity, with questions Q22 and Q23. Q22

asked the participants how easy was to make a query using the chatbot. The dynamic evaluations

average was slightly superior for this question, but particularly, despite most of the participants
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agreed with the statement with a "4" score, a considerable part of them informed "3" for the

question (27.3%), indicating some kind of hesitation. We believe this particular result is linked

to Visibility aspects, since the way in which the elements are displayed in the chat deeply impacts

the sense of simplicity. Similar percentages were observed for question Q23, reinforcing the

importance of a good user experience in conversational interfaces.

An overview of linear question scores is demonstrated in Figure 7.6. We can notice that,

in general, the chatbot prototype was better rated in dynamic evaluations respecting Usefulness,
Transparency, Justification, and Relevance. No significant changes were observed for the

remaining categories (Visibility, Support, and Simplicity). Next, Data Integration questions will

be discussed in Built-up Integration context, as well as general feedback given by the participants

of the experiment.

7.2.4 Built-up Integration and General Feedback

By embracing Review and Retain activities of the CBR methodology, the proposed architecture

aimed at supporting Built-up Integration features such as Data Retrieval, On-the-fly Integration,

and Data Delivery, using human knowledge as learning strategy. Some criteria involved in

the three main features were covered by the questions Q24 to Q26 from evaluation form (see

Table 7.3). The questions had a focus on characteristics such as the use of a complementary

answer (when more than one data source is considered) and Source Discovery, which represent

valuable features for supporting specific user tasks (see Section 3.2). The questions Q24 to Q26

were set in multiple choice format, with the possibility to add a short comment in the first two.

For Built-up’s Data Retrieval feature, we can reason about the related criteria (Input
queries and Source Selection) included in the chatbot prototype. Regarding the former,

the approach supports situational queries, which focus on ad-hoc needs and may involve the joint

use of multiple databases. For Source Selection, the approach had a particular focus on

Source Discovery, evaluated through question Q26. 77.3% of the participants stated that letting

the chatbot choose/discover a database was interesting and/or useful, 9.09% had the opposite

opinion, and 13.6% did not let the chatbot make a database choice.

The questions Q24 and W25 were related to Built-up’s On-the-fly Integration feature,

that mainly involves some kind of data augmentation made at query time. The question Q24

requested the users a personal opinion about the chatbot option "Search for a complement to

your answer in another database", and specifically the significance of the integrated answer they

received in the chat. 86% of the participants gave a positive feedback, stating that the integrated

answer did make sense. One user (4.55% of total group) expressed a negative opinion about

the integrated answer, whereas 9,09% did not used the complement option in the chat. When

asked about the joint visualization of answers from different databases in the chat (Q25), 77.3%

of the users found it interesting, and 22,7% had an opposite opinion. Some users also left

textual comments in Data Integration questions that were associated with a text input, which can

be seen in Table 7.8. From Q24 and Q25 comments, we can see that a complete answer was

particularly interesting for a group of participants, and perhaps seen as a novelty in a QA context,

although the chat visualization may have interfered in the experience. In general, considering the

criteria associated with On-the-fly Integration feature (see Figure 3.1), the approach covered both

mandatory characteristics (such as Data Preprocessing and Data Augmentation)

and Human Involvement optional characteristic. The latter, although optional for Built-up

Integration, has proven to be essential in a CBR context, where the user helps refining the

selection of data sources.

For analyzing Built-up’s Data Delivery feature, it is valid to consider the final questions

of the evaluation form that addressed general feedback (Q27 to Q29). For these questions, the
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Table 7.8: General feedback for the chatbot prototype (highlights)

Question User Comment
Q24𝑎 “Yes - We were asking for two different questions and we want both solutions.”
Q24 “Yes - The bot showed the complete response in a simple way to understand, both information

needed.”
Q24 “Yes - The bot provided the first answer correctly, I asked to keep it and search for other databases

and then it provided the other question correctly as well.”
Q24 “Yes - The chatbot gave me the school administered tests first, and then the fulltime enrollments.

When I asked the full complemented answer the chat gave me it in a simple, organized way.”
Q25𝑏 “Yes - It is important to visualize answers like that because it’s useful to future searches.”
Q25 “Yes - Although you have to explicitly request to search another database to complete the answer.”
Q25 “No - Too much information in a small space to visualize, it required a lot of effort to keep the focus.”
Q25 “Yes - It was nice to know it could get answer from different databases.”
Q27𝑐 “The possibility to add query on an already answered query (at the end of the original query).”
Q27 “Choosing multiple attributes at once.”
Q27 “I would add an option to change the database right after it says what database it’s going to query.”
Q27 “Perhaps I would introduce a new option that presents a short description of each database.”
Q28𝑑 “Sharing links to knowledge base, articles, or other resources.”
Q28 “Wider layout for the chat when using on PC.”
Q28 “I liked the speed of the chatbot and the way of interaction. It would only improve the way of

presenting suggestions.”
Q28 “I would like to have the option to add/change more than one attribute at a time. There where

too many repetitions of the same questions. The bot seemed not to be learning from previous
interactions.”

Q28 “The colors were too tiring, sometimes the reply had too much information (maybe it could stay at
the start of the bot’s reply and then I could only scroll down).”

Q28 “I think that the chatbot should give the metrics and dimensions as options before trying to give
some answer.”

Q28 “I like how it sends short messages instead of long texts.”
Q28 “Very useful. Able to collect answers for specific questions that could take a longer period of time to

be collected by searching/scouting on the web. I would consider adding options to select more than
one attribute at a time.”

Q28 “The chatbot is efficient in quickly providing numbers for the given queries. It is faster than googling
it. However, for real-world usage, it requires improvement in natural language understanding and it
should use less technical terms.”

Q28 “I liked the possibility of changing metrics, visualizing the entities involved in the search, and the
database. It could be better: the description of the database entities, showing less of the technical
part involved in the search, for example: SUM(attribute). Overall, I really enjoyed the chat.”

Q28 “The color and design of the metrics and dimensions were the same as the clickable options, so
sometimes it got a little confusing. The data comes fast so you have to scroll up to check everything.”

𝑎 "Did the integrated answer make sense?"
𝑏 "Was it interesting to visualize in the chat answers from different databases?"
𝑐 "Besides changing the database and attributes, would you add any other human decision during the conversation?"
𝑑 "Leave your general feedback (features that you liked the most, features you would like to change, etc.)"
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users have expressed useful comments, from which the highlights are that are shown in Table 7.8.

Most part of the comments exposed weaknesses in the chat interface, such as the quantity of

information in the replies and the impossibility to choose more than one attribute at a time. Such

statements clarify the lower scores for Visibility and Support categories of questions, illustrated

in Figure 7.6. One user also stated that "the bot seemed not to be learning from previous

interactions", however, that was the expected situation, since the user received "1" as evaluation

code (i.e., a static evaluation). In contrast, positive comments were left in the evaluation form,

such as "very useful", "faster than googling", "I liked the possibility of changing attributes", and

"I really enjoyed the chat". From the users answers and comments, we can infer that the approach

was able to provide support (either by producing faster replies accessible through graphical

interface and by recommending useful attributes), but not in a sufficient level, due to deficiencies

observed in the prototype interface.

Figure 7.7: User feedback for Data Integration questions.

Overall, the results for the last category of questions in the evaluation form were

positive, since the positive answers reached, in average, approximately 80% of the participants

that evaluated the prototype. This allows us to establish a promising connection between

Built-up Integration features and the Question Answering domain, specially regarding Source

Discovery tasks that often rely on automatic methods for finding a source. In other words, user

feedback collected through a conversational interface can be used to determine the relevance of a

discovered source, and redirect the search, if necessary. Also, the sample of positive answers

about integrating information from different sources indicates that Built-up Integration makes

sense in QA tasks, i.e, a conversational interface is able bring the user closer to the integration

process and therefore closer to more informed decisions.

7.3 CHAPTER REMARKS

The objective of the experiment described in this chapter was to investigate the impact of human

knowledge on the recommendation of solutions, assuming a CBR context and a conversational

prototype. Being the history of previous cases indispensable for learning in the CBR methodology,

this chapter presented an empirical evaluation based on two types of tests that involved static and

dynamic histories, respectively. The difference between them was the possibility of changing

content based on user feedback, being the dynamic history the one that could improve future

recommendations after the user review.

The comparison between static and dynamic evaluations showed that recommendations

and user acceptance were improved when feedback was used to modify the case base. While

the static evaluations were unstable regarding the correctness of the attributes recommended,

the dynamic evaluations showed that, after a certain number of interactions, the correct recom-

mendations were sustained, corresponding to almost 90% of the interactions. Also, regarding
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the categories of linear questions presented in the user evaluation form, the scores were quite

superior for Usefulness, Transparency, Justification, and Relevance criteria. No improvements

were observed for the remaining categories (Visibility, Support, and Simplicity), mostly due to

limitations in the way that information was displayed in the interface (see Table 7.8).

One of the limitations was observed through some user comments exposing that,

occasionally, the chatbot presented too many options or texts in the chat, interfering with

usability. Compressing several options within the same chatbot state was a choice to deal with

the DialogFlow quotas28, which are predefined constraints applied to limit the service load per

customer. The more training sentences were defined in the prototype code, the more frequent the

quota limit caused exceptions in the execution. Thus, the number of states implemented was

reduced, implicating in less interactions and more sentences per interaction. Other comments

left in the evaluation form concerned the colors in the chat and layout dimensions. These features

are standard in the framework used for development (the Xatkit Framework), so they were not

modified. An additional limitation concerned the adaptation of the interaction to follow the

CBR methodology. One user mentioned, for example, that the chatbot should give metrics and

dimensions options before trying to give some answer. However, for testing the Retrieval step of

the CBR cycle, it was necessary to recommend attributes from the history or discovered source

based on a similarity/usefulness score. Also, with these recommendations, the user Review could

take place, thus allowing to fully collect human feedback.

Although the objective of the experiment (and the thesis itself) did not include the

implementation of an optimal conversational interface, we believe that, with a more consistent

interface, Visibility, Support, and Simplicity questions would be better rated by the participants.

Despite the limitations, the experiment results were positive, demonstrating that user feedback can

be used for improving systems recommendations, and the application of the CBR methodology

to conversational contexts is able to support Built-up Integration tasks.

28For example, requests per minute. Documentation available at <https://cloud.google.com/
dialogflow/quotas>.
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8 CONCLUSIONS

In response to the complexities of situational data management, this thesis presented a novel

conversational Case-Based Reasoning (CBR) architecture that integrates the user feedback into

the CBR cycle to refine the process of identifying and utilizing situational data. The feedback

was collected through a conversational interface implemented as a chatbot application.

First, in order to identify improvement points that could support the conversational

architecture, a survey on Situational Data Integration in Question Answering systems (a subdomain

of conversational interfaces) was conducted, covering two decades of literature studies. The

survey was motivated by several benefits that the joint use of the concepts can bring to end

users in terms of decision support and information completeness. Besides demonstrating SDI

characteristics that remain challenging, and others that are moving towards consolidation in the

QA domain, a lack of standardization involving SDI and other types of on-the-fly integration was

identified, were core activities were frequently found in the literature under many different names.

Addressing this issue, the Built-up Integration terminology and taxonomy was proposed,

as a knowledge regulation approach. The taxonomy is defined through three main features: Data

Retrieval, On-the-fly Integration, and Data Delivery, which as common activities present in

approaches such as SDI, pay-as-you-go integration, traversal-based integration, and mashup

services. All features are challenging when considering the need for real time information and the

heterogeneity of external datasets. In this context, it is necessary to leverage the user experience

towards the delivery of fast answers and effective management of situational data.

Based on the opportunities exposed with the conducted survey and Built-up Integration

taxonomy, the conversational CBR-based architecture was proposed based on four phases,

Retrieval, Reuse, Review, and Retain. The Retrieval step receives an input question as a new case

and retrieves from a historic knowledge base the source that best matches the question. The

process is based on multidimensional data (i.e., metrics and dimensions) that are similar to the

new case. When no similar case is found in the history, Source Discovery is performed to retrieve

a source on-the-fly. With the retrieved source, multidimensional solutions are recommended to

the user through a conversational interface (i.e., a chatbot), which is the Reuse step of the CBR

cycle. In the next step, Revision, the user can manage the attributes suggested, from which a SQL

query is executed to bring the final answer and display it in the chat. Finally, in the Retain step,

the case repaired is stored in the historic knowledge base to be considered in further interactions.

The CBR-based approach was evaluated through three different experiments that assessed

different phases of the cycle. The first one assessed a Source Discovery strategy to be included in

the proposal. Three methods were first compared regarding source retrieval, and then blended in

order to pursue a better performance. Although the matching tasks showed a higher accuracy for

the hybrid approach in comparison with the methods executed separately, all methods showed

good results, demonstrating its application potential to discover data within the architecture.

The second experiment (related to the Reuse step of the proposal) was based on a chatbot

prototype as the architecture’s conversational interface. A conversation flow that defines the

chatbot actions was designed to investigate how metrics and dimensions could be proposed to

the user. An empirical study was conducted for the chatbot evaluation, covering four qualitative

criteria (Visibility, Support, Usefulness, and Simplicity). The experiment results showed that

participants were able to use the chatbot for building dimensional queries, being Visibility and

Usefulness the most scored features. Based on the results, the chatbot was considered a suitable

option to interact with users, capture feedback, and execute the additional steps of the CBR cycle.
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The third experiment covered the Review and Retain phases of the proposed architecture.

Thus, for allowing the participants to express preferences about suggested attributes, and for

testing the learning strategy based on historic knowledge, a history file containing previous cases

was included in the experiment, and a set of modifications was made in the chatbot states. The

evaluation with participants addressed both static and dynamic testing environments, meaning

that the historic knowledge base could be transformed or not, based on the type of test assigned

to each user. Besides the criteria used as basis in the second experiment, the third experiment

focused on Data Integration aspects and CBR goals such as Transparency, Justification, and

Relevance. The results underscored a clear preference for recommendations shaped by user input,

demonstrating the importance of incorporating human knowledge in the learning process. Also,

the approach covers the Built-up Integration features previously identified, by performing source

discovery and selection, data augmentation made at query time, and user support through a useful

visualization of integrated data.

Based on the experiments conducted, the main contribution of this thesis is the joint

use of Case-Based Reasoning and a conversational interface as a valuable strategy to improve

situational data management. The capture of user knowledge and its use for incremental learning

within the approach sustain the fact that CBR and conversational interfaces make sense together,

and should be leveraged to optimize data retrieval, integration, and delivery. In addition to the

work contributions, many opportunities are linked to CBR approaches and deserve attention in

future researches. Regarding the proposed architecture, specifically, one interesting direction

would be adding weight-based retrieval in the cycle, so that sources could be retrieved according

not only to Usefulness and Similarity scores, but also features such as computational cost,

temporal evolution of the facts, and privacy. Considering LLMs as a huge trending topic, they

could be explored to this end, learning how to retrieve a source based on features that are relevant

for building a recommendation.

Also regarding LLMs, another opportunity for future work is investigating how Retrieval

Augmented Generation (RAG) models could be used to provide situational data within a CBR

architecture (specially in scenarios where real time decision making is needed). In situations

where the case details are constantly changing, RAG models can adapt to the new requirements

and change the search strategy to retrieve suitable sources. Also, RAG could be used to provide

case descriptions when there is a lack of real-world context, facilitating Source Discovery and

increasing the probability of returning relevant cases from the history.

Finally, the study conducted and described in this thesis contributes to the evolving

landscape of situational data management. The integration of conversational CBR with user

feedback showcases a promising direction for enhancing data integration processes. While

acknowledging the need for further development, this work marks a step forward in realizing the

potential of user-informed conversational systems in managing complex data environments.
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APPENDIX A – SITUATIONAL DATA INTEGRATION IN QA SYSTEMS

In this Appendix a Systematic Literature Review is presented, regarding Situational Data

Integration in Question Answering Systems. The review was based on the features shown in

Table 2.1.

A.1 AD-HOC DATA RETRIEVAL IN QA

Ad-hoc Data Retrieval refers to finding and accessing situational data, by discovering sources that

are suitable for an information need. Its subfeatures, Ad-hoc Questions and Source Discovery,

were evaluated in the surveyed QA studies as demonstrated in Table A.1. An overview of results

is shown in Figure A.1.

Table A.1: SDI’s Ad-hoc Data Retrieval Requirements

Ad-hoc Data Retrieval Features Requirement for “Complete Fea-
ture”

Requirement for “Partial Fea-
ture”

Ad-hoc Questions Situational data integration require-

ments are often immediate and

cannot be totally defined in ad-

vance [247, 7]. We consider this

feature fully supported if the ques-

tions or queries presented in the ap-

proach are not predefined nor recov-

ered from databases or benchmarks.

We consider this feature partially
supported if the question is built

with the help of other techniques,

e.g., auto-complete tools or param-

eters selection.

Source Discovery We consider this feature fully sup-

ported if (i) the situational data

source used in the approach is not
predefined, but chosen at query

time1 [154, 247, 123, 99, 274]

AND (ii) the approach includes

some change in the data source(s)

in order to meet query require-

ments [154, 99, 247, 274, 123].

The feature is partially consid-

ered when predefined sources are

changed or adapted to meet query

requirements.

A.1.1 Ad-hoc questions

SDI is usually motivated by ad-hoc questions, which are defined at a moment of need. They

closely relate to QA area, where users interact with a system looking for precise and fast answers.

Everyday questions do not come from any repository, and usually do not follow query formats

unfamiliar to the user, such as SQL or SPARQL. Users questions in QA are often informed in

natural language, and mainly, they are informed at the very moment of an information need.

Situational Data Integration aims to deal with this kind of questions (i.e., the ad-hoc questions),

providing support by discovering data sources that fit in the question requirements.

The study in [50] answers ad-hoc queries posed in a global schema by exploring

heterogeneous definitions of indicators formulas. Ad-hoc NL questions are answered in [189] by

means of a multi-source QA system. NL questions are also present in [93], which proposes a

QA system and an integration method based on ontologies, and in [42], through an interactive

NL Interface for querying ontologies. [27] and [183] present MiPACQ (Multi-Source Integrated
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Figure A.1: Ad-hoc Data Retrieval in Question Answering systems.

Platform for Answering Clinical Questions), an integrated framework for semantic-based QA

that accepts free-text clinical questions.

Ad-hoc questions may also be covered in a partial way if they are not asked freely, but

using selection and completion methods. E.g., the authors in [256] present a novel approach

for context-aware Sequential Question Answering, based on a knowledge graph (KG) that

integrates information from various sources. In their experiments, each participant receives a

first predefined query, and all subsequent ones require participants to select a subset of the KG

nodes that were displayed or to ask questions in natural language. Similarly, in [163] the query is

built by parameters selection in an interface. In [232] and [36], there are selection-based and

auto-complete approaches for query formulation, respectively.

A.1.2 Source Discovery

Besides ad-hoc questions, Ad-hoc Data Retrieval in SDI includes Source Discovery. Many QA

systems have to deal with complex questions that can only be answered using information from

more than one data source. In some cases, real time information is decisive for the users tasks,

but cannot be provided by stationary or predefined sources. SDI’s Source Discovery could fill

this gap, enabling to find the right sources that contain the information.

The study in [155] presents QUEST (QUEstion answering with Steiner Trees), a method

for answering complex questions from textual sources on-the-fly, by joining evidence from

different documents. QUEST constructs an ad-hoc, noisy knowledge graph by dynamically

retrieving many question-relevant text documents from the Web. Non-predefined and dynamic

pages from the Web are also accessed in the MedQA system proposed in [267], in the hybrid QA

system described in [8], and in the Quartz system [119].

The QA system proposed in [264] also presents Source Discovery as it accesses non-

predefined and dynamic websites that, in combination with WordNet [169], are able to find words

lexically related to the original query terms. The same occurs in [24], which proposes a system

that utilizes Google search engine to find answers on the Web. A set of potential answers is
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extracted from the summary text, then given a set of possible answers, an answer projection step

is performed for searching supporting documents in the TREC QA document collection2.

The authors in [239] present a novel approach that relies on a parse of the question

to produce a SPARQL template representing the internal structure of the question. The query

templates contain missing elements that have to be filled with URIs. For this task, a extraction

is performed through a framework that uses the Linked Data Web as background knowledge

and assumes a set of predicates for which equivalent NL expressions are to be detected from an

arbitrary corpus (e.g., Wikipedia or the whole Web), so that labels of instances linked by these

predicates determine the seed pages to be queried.

In [72] the authors present the QALL-ME framework, a reusable architecture for

multi-lingual QA systems working on structured data sources. The architecture is based on

Service Oriented Architecture (SOA), which uses web services for the framework components.

The data sources used to retrieve the answers are non-predefined databases or XML documents,

which are specified by the domain ontology. In addition, the web services accessed by the

SOA-based architecture are interchangeable.

In [207], Text2KB is introduced, a system that enriches QA over a knowledge base using

external text data. These data come from three sources: the whole Web, the Yahoo! Webscope

L6 dataset3 containing CQA (Community Question Answering) data, and text fragments with

entity mentions. Similarly, [267, 8] and [265] also perform searches on the whole Web, by

retrieving web pages according to information specified in the query.

Some studies partially handle Source Discovery, i.e., their data sources are dynamic,

even though predefined. The authors in [153] use several predefined Linked Open Data

sources including Wordnet and DBpedia4, and these sources are dynamic in handling query

requirements. The authors in [229] describe PullNet, an integrated neural framework that reasons

with heterogeneous information to find the best answer for an input question. PullNet constructs

a question-specific subgraph containing sentences from a corpus, and facts from a KB. Both data

sources are predefined but dynamically changed: the model might use the KB when the required

fact exists, and “back off” to text when the KB is missing information.

The QA system in [40] presents an “early-answering” strategy, in which a question can

be answered directly from a structured collection (a database containing knowledge gathered

from the Web), then a secondary corpus is used to support the answer found. In addition, if the

question cannot be answered with the structured collection, publicly corpora are accessed for

retrieving relevant passages. The sources are predefined, but not all of them are used for passage

retrieval: passages are retrieved from at least three corpora, considering that the results in the

early-answering process were insufficient. Therefore, there is source changing during the process.

Mishra A. et al. [171] present a context-aware geographical QA system that finds out

the semantic relations between the question and candidate answers. Web information about

various cities are collected and used to built an offline knowledge base used in the system.

Although there is no discovery, source changing can be easily performed manually. The Ephyra

QA system [208, 209] combines several techniques for question analysis and answer extraction,

and incorporates multiple knowledge bases. The system uses predefined sources and a API for

searching in dynamic sources. Similarly, the authors in [9] present a query answering system that

integrates multiple knowledge sources of specific domain. The sources are predefined, including

2The Text REtrieval Conference (TREC) is a well-known reference for QA approaches due to Question-Answering

tracks started in 1999.

3Available at: <https://webscope.sandbox.yahoo.com/>.

4Structured database of information extracted from Wikipedia. Available at <https://wiki.dbpedia.
org/>.
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a Mediator reasoner that extracts useful information from about two dozens of websites. The

access to all knowledge sources in the proposal is performed by a module called Query Manager,

which determines which knowledge source are required to produce the answers. The Query

Manager also considers each knowledge source as a reasoner, so that it can be recalled to provide

additional answers when needed.

A.1.3 Ad-hoc questions & Source Discovery

As we can see in Figure A.1, most of the QA-based approaches that cover Ad-hoc Questions

also deal with Source Discovery. The authors in [127] present a natural language QA system

that understands users’ ad-hoc queries and translates them into structured queries. Also, it

provides an interface to multiple non-predefined knowledge sources from the Web. Similarly,

the study in [36] ingests information from web crawls and articles to continuously stay abreast

of information around drones. Web sources are also external, non-predefined, and dynamic

in [232], [73], and [240]. These studies also allow the user to query data sources by means of

natural language questions.

The study in [53] introduces LODQA, an approach that exploits simultaneously hundreds

of linked datasets by means of a suite of services. The datasets are chosen at query time, according

to their similarity with the question, and they are dynamic with respect to query requirements.

Although LODQA was evaluated through a collection of predefined questions, the approach

allows the user to type a query in natural language or RDF format. The QA system in [158]

uses a novel hybrid answering model for providing IT support. The user can interact with a

platform by asking a question or uploading a screenshot of the error he is facing. Predefined and

heterogeneous data sources are used for answering the questions, with an orchestrator module

that decides which source to call under what circumstances, in order to maximize the likelihood

of getting a correct answer.

Graphical interfaces for users’ ad-hoc queries are also present in [12] and [120]. In the

former, the SIMS (Services and Information Management for decision Systems) is proposed: the

system dynamically retrieves and integrates information from external and predefined databases,

which can also be changed through the interface. In the latter, an ontology-based resource index

called NCBO (National Center for Biomedical Ontology) provides unified access to more than

twenty heterogeneous biomedical resources. Both ontologies and resources are changing often,

so NCBO tables are regularly and automatically updated. Based on the user input, the index

uses an auto-complete mechanism for suggesting terms and resources. True Knowledge [237] is

another QA platform with an interface for submitting ad-hoc queries. For the answering process,

the proposal combines a structured knowledge base, a NL translation system, and an inference

system. The user may also provide additional knowledge sources, and a System Assessment
module can switch off the conflicting ones.

Ad-hoc Data Retrieval in SDI is well represented in [70]: the authors argue that BI

applications should consider external data sources for achieving crucial information that help

taking the right decisions, thus they integrate the DW internal structured data with external

unstructured data obtained with QA techniques to answer ad-hoc questions. A question is posed

through a GUI element by the user, who also identifies the sources where to search the required

information, and the sources are accessed by the QA system dynamically.

In [160], the authors present openQA, a modular and extensible open-source QA

framework that integrates other QA systems [219, 239] for accessing DBpedia endpoint. The

proposal covers an answer formulation process that receives an ad-hoc query, which can be

interpreted in different formats such as SPARQL and SQL. New modules can be integrated

within openQA via a plug-in architecture, and the user can enable and disable instances used for
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searching. The study in [224] presents a dialogue-based QA system that integrates several linked

data sources at SPARQL endpoints. The user’s ad-hoc question is analyzed and mapped to one or

more suitable services found, which may answer parts of the query. With the information found

in the result, additional services can be triggered for finding more information about the first

result.

The work in [177] presents a Big Data Integration ontology and a query answering

algorithm that converts ad-hoc queries posed over the ontology to queries over multiple sources.

The approach builds upon two RDF named graphs (Global and Source graphs) and wrappers

that accommodate different kinds of no-predefined data sources. The approach also deals with

changes in the source schema via semi-automated transformations on the ontology. Ontologies

are also present in [152] with PowerAqua, an ontology-based system that explores multiple and

heterogeneous sources on the web. PowerAqua accesses the Semantic Web through the Watson

SW Gateway, thus it only retrieves information if this has been crawled and indexed by Watson

or in specified online repositories. PowerAqua provides plugins for accessing the repositories,

which are loaded on demand. The system accepts users’ queries expressed in NL and retrieves

precise answers by dynamically selecting and combining information from the resources.

The studies in [129, 141] describe Information Manifold (IM), a system for browsing

and querying multiple web sources. The system determines exactly the set of information sources

relevant to a query, adding their descriptions to the knowledge base by means of a representation

language, allowing multiple sources to be accessed. Users can formulate queries either using

templates that are available for the information categories, or by combining such templates into

an arbitrary conjunctive query. The Data Lake proposed in [96], named Constance, manages

QA based on metadata. In an unified interface, the users can define their queries by using a

formal structured query language or simple keywords. Constance has an Ingestion Layer, which

is responsible for importing data from heterogeneous sources into the DL system, and generic

extractors adapt to data source formats. Through the interface, users can import local files,

databases or remote data via web services, and new extractors can be easily added using a plug-in

mechanism.

The QA system proposed by [189] merges a KB-based QA (KBQA), a IR-based QA

(IRQA), and a keyword QA in its architecture. Multiple information sources are used, including

curated KB, raw text, and auto-generated triples. The sources are predefined but they are

alternated according to the input question, e.g., when the questions is a sentence, it is sent

to the sources accessed by the KBQA/IRQA system; otherwise, it is sent to the keyword QA

system. Multiple information sources are also observed in [245]: the authors develop a prototype

called QUARK (Question Answering through Reasoning and Knowledge), which uses several

knowledge resources. Ad-hoc NL questions are submitted to the automated deduction system

SNARK, a general-purpose theorem equipped with an application-domain theory, which invokes

the sources when appropriate. When a new resource is introduced to the system, it is provided

one or more axioms in the theory that expresses what the resource can do.

Finally, the study in [163] presents an approach to support integrated search of distributed

biomedical-molecular data, aimed at answering multi-topic complex biomedical questions. A

Bioinformatics Search Computing application (Bio-SeCo) is modelled and published, in which

bioinformatics services are registered. Bio-SeCo provides a platform which allows the user

to express requests over the multiple services registered and find answers to his/her questions.

Although the sources are predefined, the user can easily inspect the sources and obtained results,

select the most appropriate, expand or refine them.

Retrieved data loses its value if not refined and integrated with current data to form a

complete information. Thus, SDI’s Data Management feature is addressed as follows.
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A.2 DATA MANAGEMENT IN QA

Data Management in SDI includes the system’s ability to deal with heterogeneous and noisy

information from situational data source, and combine this source with the stationary data, in

order to support decision-making. These abilities refer to two features, named Unstructured Data
Preprocessing and Situational Source Inclusion requirements are detailed in Table A.2. The

feature results in QA are shown in Figure A.2.

Table A.2: SDI’s Data Management Requirements

Data Management Features Requirement for “Complete Fea-
ture”

Requirement for “Partial Fea-
ture”

Unstructured Data Preprocessing We consider full coverage in ap-

proaches that apply preprocessing

techniques in data sources, such

as cleaning, normalization, noise

removing, entity/link resolution,

among others. We did not consider

this feature when it occurs in the

input question only.

Not applicable.

Situational Source Inclusion Situational Source Inclusion is fully
supported by papers that add a data

source which (i) covers a target-

ed/specific information need AND
(ii) is integrated with current data in

order to provide complete insights

or solutions5 [3, 154, 7, 244, 274].

Situational Source Inclusion is par-
tially considered when there is a

situational source, but it does not

complement the available data.

A.2.1 Unstructured Data Processing

The QA of next generation will have to take into consideration presently heterogeneous and un-

structured data [94]. Although data preprocessing is already a common task in QA systems [197],

handling unstructured data, in particular, is essential for successfully integrating discovered data

sources. Consequently, a well-performed integration may determine the value of the QA system

to the user.

With respect to Data Preprocessing, different techniques are used by QA-based systems.

The novel framework named HSIN (Heterogeneous Social Influential Network) proposed in [33]

integrates and simultaneously learns the questions textual contents, their related categories

information and user’s social interaction. The experiments were based on a large dataset

from Quora service and Twitter social network, in which duplicated data were removed before

composing training and testing sets. Duplicates and ambiguous data are also handled in [271],

which presents a model based on Integer Linear Programming (ILP) for exploring multiple KBs

in QA. The approach unites the construction of alignments among KBs, and query construction

for translating a NL query into a SPARQL query. These tasks can involve ambiguous data, so the

approach combines potential alignments to obtain a Disambiguation Graph.

Many other studies also perform disambiguation and summarization tasks for pre-

processing data: The IR-based system in [189] uses a multi-source tagged text database that

includes disambiguation results, types of named entities and NLP results. The system in [77]

is embedded in a hybrid QA system architecture called QUETAL, which selects one or more

information data sources to retrieve answer candidates and prepare a final answer. These processes

include disambiguation of concepts and database tables, based on recognized entities. In the
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Ephyra system [208, 209], answer candidates (extracted from external sources) that contain

frequent keywords are favored, and additional filtering techniques are used to drop redundant

and non-informative answers. Similarly, the QA model in [88] prunes candidate answers that

are incompatible with the question, using a convergence mechanism and an arc-search to reach

the most relevant answers. Irrelevant sources are also pruned in the Information Manifold

system [129, 141], which helps to solve completeness and redundancy issues.

The Constance system [96] discovers, extracts and summarizes structural metadata from

the data sources, also annotating data with semantic information to resolve ambiguities. The

MedQA approach [267] includes a Text Summarization step that removes redundant sentences

by clustering similarities into the same group. In the OpenQA system [160], answers may be

extracted from different sources, so it can be ambiguous and redundant. To alleviate this issue,

results that appear multiple times are fused by means of clustering and ranking. The FREyA

system [42] also covers a desambiguation step, and in case of the system failing to automatically

interpret the question, the disambiguation may occur manually, i.e., with the user interacting

with a dialog box.

The study in [246] focuses on capturing the full views of user topical expertise in CQA

services, by considering information from other social media websites in which they participate,

e.g. the GitHub. For data preprocessing, the text from social media is tokenized, and all code

snippets, stopwords and HTML tags are discarded. In fact, tokenization and stopwords removal

are very frequent preprocessing methods in QA. E.g., in [27, 183], both the question and candidate

answer are processed through tokenization, stemming, part of speech detection, named entity

recognition and dependency parsing. In [252], the authors present a QA approach that allows

precise browsing from web news data by using text and multimedia information simultaneously.

The crawled news documents were parsed by using a language processing toolkit, and filtered

with a stopword list.

In [24], stopwords are not permitted to appear in any potential n-gram answers when

searching for candidate answers. Also, an answer tiling algorithm is applied for solving overlap

in shorter n-grams. For example, “A B C” and “B C D” are tiled to “A B C D”. Answer tiling is

also used in the Quartz system [119]. The system analyzes an incoming question, sends it to six

streams in parallel, and each stream produces a ranked list of relevant answer candidates. The

answer tiling is a subsequent process, where similar answer candidates from the six streams are

identified and merged to obtain the highest confidence answer.

Noise removal is another technique that frequently appears in QA proposals. The

PowerAqua’s architecture [152], e.g., deals with noisy and incomplete data throughout the

retrieval process. Noise removal from audio files occurs in [158]. The clinical QA system

AskHERMES [28] handles complex questions through the use of a structured domain-specific

ontology that integrates five types of external sources. The system removes noise from texts,

and merges relevant passages as parts of a potential answer, so it can retain semantic content

of the data sources. In [171], the extracted documents are preprocessed through noise removal,

tokenization, sentence splitting and tagging. The system architecture proposed in [239] includes

a cleaner module for removing noise from crawled text. In this study, an indexer is also present.

Indexes are frequent in the analyzed proposals. The study in [38] presents PIQUANT,

a modular architecture that allows for multiple answering agents to address the same question

in parallel. Among the answering agents in PIQUANT, a knowledge-based agent performs

predictive annotation for indexing the information with semantic classes. The QA system in [158]

comprises many preprocessing techniques by running the Ingestor Component, responsible for

converting raw data into structured knowledge. In the document ingestion phase, structural

heuristics and Latent Semantic Indexing [112] are used to induce formatting into the documents.
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Figure A.2: Data Management in Question Answering systems.

In the NCBO Resource Index [120], after retrieving the resource elements, there are steps of

concept recognition, resolution of references, data annotations, as well as semantic expansion for

making the data elements more informative.

In the QA system proposed in [93], the Pervasive Agent Ontology is constructed by

means of concept extraction methods and analysis methods, used for discovering internal relations

between concepts and making the ontology more complete and consistent. The authors in [156]

propose to extract evidence from heterogeneous knowledge sources, and use it for question

answering. Preprocessing was performed on the information from the two sources, by means of

identification of entities, Semantic Role Labeling (SRL) and stopwords removal.

In the Bio-Seco application proposed by [163], attributes of the connected services were

normalized in order to join their values semantically. In the QUEST system presented in [155],

a knowledge graph was constructed by retrieving many question-relevant text documents from

the Web. These documents were preprocessed through POS tagging, named entity recognition

and lightweight coreference resolution for linking pronouns to entities. The resulting graph is

treated as the knowledge source for answering questions. Finally, the authors in [63] present an

Open Question Answering (OQA) approach that leverages both curated and extracted knowledge

bases. The union of these KBs forms a single resource containing a billion noisy, redundant,

and inconsistent assertions. The approach includes lemmatization and stopwords removal before

computing cosine similarity.

A.2.2 Situational Source Inclusion

Other feature in SDI’s Data Management is Situational Source Inclusion. This step is what

makes Source Discovery effective, since it includes situational data into the answering process.

The capability of incorporating situational data could make the QA system aware of current

situations, thus being able to respond complex and specific questions more precisely.

In this sense, the dialogue-based QA system presented in [224] implements an interface

to linked data sources, which relies on mapping between a given data source to corresponding

Web resources. The dialogue platform is based on ontology structures for processing dialogue

grammars and a external service connector. When a query is informed, the appropriate Web
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resources are retrieved dynamically through semantic search. These resources cover specific

information needs, which are combined with the stationary data (the ontology) for providing

complete answers.

In [232], the questions are answered using semantic knowledge stored in ontology

schemas, by means of query triples mapped to ontology elements. The approach covers Situational

Source Inclusion since external information are retrieved when there is a need for complementing

the current data: if the question cannot be answered solely from the ontology, SemanticQA detects

the failing parts and send them to a document web search engine, for extracting answers from

snippets of web documents. After the extraction, they are matched against ontology instances.

The hybrid QA system in [8] aims to combine textual and structured knowledge base

data for question answering. The system consists of three main modules: a Knowledge base,

an online module, and a Text-To-KB transformer. The NL question is taken as input, and the

knowledge base (e.g., DBpedia) is used to retrieve the answer. As there is no context information

for KB-based QA modules, a Web search is performed in order to fill this gap. In its turn, the

online module searches text to find answers, and the candidate answers from the Web are merged

with those in the KB. This process is concluded by the Text-To-KB transformer, which detects

KB triples in both snippets and documents and then store them in the KB.

The study in [207] also presents a hybrid QA system, named Text2KB, that extends the

information in an existing knowledge base. The KB used as baseline corpus is Aqqu KBQA

system [15], which accesses Freebase data. However, some tasks such as question interpretation,

candidate answer generation and candidate ranking are challenging for a KBQA system due to

lack of information for solving redundancies or composing a complete answer. Thus, external

web-based sources are employed, providing additional edges in the KB and allowing to produce

a final answer.

The approach in [50] is based on a query reformulation procedure that correlates and

adapts the global query to the schema of the local sources by using the materialized views of the

local data mart. The materialized views are accessed by exploiting a state space that integrates a

dimensional lattice with a formula graph. The formula graph is an additional source generated

automatically, containing specific data that complement the dimensional lattice in order to answer

specific queries.

In the QuerioDALI QA system proposed by [153], Linked Open Data and Knowledge

Graphs (KGs) are exploited to answer complex NL queries. Given the query, Predicate Argument

Structures (PAS) are extracted for finding entities and links that matter. Relevant graphs are

selected based on their coverage for a given PAS and the candidate URIs are found based on

this correlation. From these candidates, PAS triples are translated into Graph Patterns (GPs),

which convey into a formal query executed against the KGs. If the query can only be answered

by merging across graphs, the GPs from the same or different sources are merged, i.e., the GP

search is expanded only if required and the situational sources are included when the current data

are insufficient.

In [258] is proposed a LSTM framework for VQA (Visual Question Answering) that

combines an internal representation of an image’s content with text-based information extracted

from a general KB to answer a broad range of image-based questions. Given a image-question

pair, a set of image attributes are predicted and used to extract relevant information from the

external KB (DBpedia). Then, the paragraphs extracted from the KB are encoded and used to

train an LSTM, by maximizing the probability of the correct answer. DBpedia is therefore used

as situational source for providing targeted data which, integrated with current data, is able to

answer questions referred to information not contained in the image.
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The AQUA system [240] partially covers Situational Source Inclusion, i.e., it retrieves

external information when is needed, but the retrieved data does not complement the existing

Knowledge Base. AQUA’s algorithm executes the query against the knowledge base, and if it

does no succeed, the query is reformulated and used for launching a search engine that retrieve

documents which satisfy the new query. So, these data are situational, since they are retrieved

motivated by the insufficiency of the KB.

A.2.3 Unstructured Data Preprocessing & Situational Source Inclusion

A set of QA approaches fully cover Data Management by handling Unstructured Data Pre-
processing and Situational Source Inclusion simultaneously. E.g., the work in [177] applies

Local-As-View mappings to characterize elements of the sources schemata in an ontology. The

ontology is semantically annotated, enabling to resolve problems of ambiguity. Also, the ontology

accommodates situational data and is able to deal with their evolution, by exploiting the impact

of feedback and monitored data for improving the user’s quality of experience.

The study in [36] presents a framework to build domain specialized knowledge graphs,

by fusing curated KBs with extracted knowledge, in a way that the resulting graph is used to

answer a set of queries. In the use case, given the existing information about use of drones in the

KB (YAGO2 ontology [110]), texts are retrieved from the Web and preprocessed for entity and

relation extraction. The extracted triples are mapped to entities present in YAGO2, generating a

drone graph that allows to continuously stay abreast of information around drones.

In [9], the knowledge sources are accessed by a Query Manager which is based on

a shared ontology called CALO. The approach also has a Mediator reasoner, responsible for

extracting information from the Web, so that extracted data are mapped into CALO ontology

by means of translation axioms. In addition to this correlation, the Mediator provides suitable

semantics to the data returned by Web extraction. The Situational Source Inclusion is motivated

by insufficiency of current data: first, the answer is searched locally, and when the answering

requires facts residing in other sources, the system breaks down for searching partial proofs in

the the appropriate sources.

The authors in [107] present an approach to answering definition questions, in which

the goal is to return as many relevant “nuggets” of information about a target concept as possible,

by using a relational database and a Web dictionary as corpus. The retrieved documents are

tokenized into individual sentences, discarding candidate sentences that do not contain the target

term. If no answers are found by using database and dictionary lookup, the system employs

traditional document retrieval to extract relevant nuggets, and then the results from all sources

are integrated to produce a final answer.

In [230] is presented QuASE (QUestion Answering via Semantic Enrichment), a

QA system that mines answers directly from the Web, and meanwhile employs Freebase as a

significant auxiliary to further boost the QA performance. Answer candidates are detected from

sentences extracted from the Web and linked to entities in Freebase, by means of entity linking

tools. By linking answer candidates to the KB, similar answer candidates can be automatically

merged, significantly reducing redundancy and noise. Freebase is used as situational source

when integrated into a ML model, since it provides the information required for completely

answering questions.

One problem faced in the QUARK system proposed by [245] is the lack of uniform

conventions in notation by the knowledge resources. For example, for resources that deal with

latitudes and longitudes, some may adopt a decimal notation, while others employ degrees,

minutes, and seconds. Due to this, QUARK includes important agents that preprocess notations,

converting one to another. Each knowledge resource acts as a situational source, invoked when is
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needed, and the axiomatic theory is responsible for their correlation and integration. In True

Knowledge [237], knowledge extraction includes a four-stage process of sentence extraction,

simplification, translation, and bootstrapping that allows to extract high-quality facts for the

knowledge base. The proposal has a general inference system that dynamically generates fact as

needed. These facts can be seen as situational data, since they are generated based on a need, and

complement the current knowledge for presenting the user with a concise explanation.

As previously mentioned, the QA system in [40] uses an early-answering strategy for

answering a question from structured data and justifying the answer with a secondary corpus.

However, if no acceptable justification can be found, or if the question cannot be answered with

the structured collection, situational sources are invoked through a basic question strategy, and

merged in order to produce a final result. Moreover, the approach includes an Entity Extractor

component to eliminate unacceptable or unlike answer candidates (i.e., n-grams) from a retrieved

passage, which includes, e.g., removing stopwords and n-grams that only appear in a single

passage.

The study in [73] describes the implementation of Watson, the IBM’s well-known QA

system based on DeepQA, an architecture that performs at human expert levels of precision,

confidence and speed. The sources for Watson include a wide range of encyclopedias, dictionaries,

articles, literary works, including sources of specific information. Given a baseline corpus,

DeepQA identifies related Web documents, extracts text nuggets from them, score the nuggets

by relevance and merge the most informative ones into the expanded corpus. Preprocessing

techniques are used to get more detailed analysis of the search results, such as named entity

detection and soft filtering (to prune candidate answers).

The proposal in [70] integrates an internal DW with an external and unstructured data

source. The external data are obtained through QA techniques, thus given a question, it is

sent to a set of specialized nodes (DW and QA nodes, composed by ontologies) that process

it. An Information Retrieval tool in the QA node retrieves the set of documents that is more

likely to contain the answer and, once the running of each specialized node is finished, a

semi-automatic mapping process is carried out for detecting connections between the QA and

DW ontologies. Preprocessing is performed through a normalization process for obtaining the

lemma of ontologies’ classes and properties.

The following studies fully cover Preprocessing and partially cover Situational Source

Inclusion. The medical QA system (MQAS) proposed in [66] establishes a mapping process

between the question and answers on the basis of the datasets. Situational and specific-domain

sources are employed for expanding the terms in the question, allowing to use these terms for

discovering relationships in the knowledge sources. These sources, although situational, are not

used for complementing the existing datasets. In a later preprocessing step, all textual descriptions

of the data fields from the datasets are normalized and combined.

Similarly, the proposal in [264] investigates the integration of lexical and external

knowledge (Wordnet and Web, respectively) to bridge the gap between query space and document

space in QA. The Web can only provide words that occur frequently with the original query

terms, but it lacks information on lexical relationships between these terms. To overcome this

need, Wordnet is used as situational source to expand the query that are used for searching answer

candidates. NL analysis is performed on the candidate answers to extract POS, base noun phrases,

and named entities, thus minimizing the noise introduced by the external resources.

Discovering and including a situational source in an approach usually has a definite

motivation: supporting human actions and decisions by offering a complete information. In this

context, the next subsection presents the Timely Decision Support and discuss how QA systems

handle this feature.
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A.3 TIMELY DECISION SUPPORT IN QA

The last SDI feature (see Table 2.1) is Timely Decision Support. As stated by [29], if users were

aware of events that impact their operations and relationships that are affected by such events,

they would have the opportunity to take immediate action. Thus, a situational integration system

must provide means to assist users in their decision processes. This involves three subfeatures,

which we call User Guidance, Decision-making Support, and Response Time Improvement. Their

requirements are detailed in Table A.3, and results are shown in Figure A.3.

Table A.3: SDI’s Timely Decision Support Requirements

Timely Decision Support Fea-
tures

Requirement for “Complete Fea-
ture”

Requirement for “Partial Fea-
ture”

Decision-making Support Approaches present full coverage

of this feature if (i) they provide

valuable responses (such as alerts,

recommendations, reports or pre-

dictions) that (ii) provide Situation

Awareness to the user AND support

his actions or decisions [19, 178,

56].

This feature is partially supported

in approaches that do not provide

explicit action support, but do pro-

vide opportune Situation Awareness

to the user [178, 29, 244].

User Guidance We have considered User Guidance

in QA systems that presented user

participation both in the system op-

eration OR evaluation, i.e., by decid-

ing which information are relevant

or giving feedback on the responses

returned [99, 3].

Not applicable.

Response Time Improvement We consider this feature fully sup-

ported in studies that present any

technique of time optimization for

retrieving answers, e.g., search in-

dexing or parallel processing.

Not applicable.

A.3.1 Decision-Making Support

Question answering and decision support systems have been independently developed for decades.

However, the QA scenario is a friendly environment for decision processes to occur: with the

development of high-performance QA systems, which combine natural language processing and

information retrieval, users can directly interact with an information system to evaluate evidence

gathered automatically [266]. With SDI, this evidence may contain situational data that are at the

basis of decision-making, and most importantly, can be used to recommend an action to the user

or trigger an alert about the situation identified.

Analyzing studies that only covered Decision-Making Support, the proposal in [50]

presents a query answering mechanism for answering ad-hoc queries, and by exploring het-

erogeneous definitions of indicators formulas, it supports evaluation of cross-organizations

performances and produces meaningful comparisons. In [246], the topical interest and expertise

from the cross CQA sources are integrated with the Bayesian model in an unified probabilistic,

called MultiTEM. MultiTEM is applied to a specific task of expert user recommendation for a

given a question, since an expert user tends to provide a good answer.

The algorithm of the medical QA system proposed in [66] creates answers that bridges

the question and the corresponding datasets. Optimal answers for decision support are returned
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Figure A.3: Timely Decision Support in Question Answering systems.

to users, including the question, the topic searched, and the knowledge extracted from the

datasets. For example, an output of the medical question Why is my son having a continuous
chest congestion? generates a topic “symptom” and a set of the selected data fields from the

datasets “procedure, diagnosis”.

The QuerioDALI QA system in [153] was evaluated in two scenarios: an open-domain

scenario (using DBpedia and Freebase datasets as QA KGs) and a Smarter Care scenario

(containing enterprise data about patient conditions and biomedical ontologies). In the Smarter

Care scenario, specifically, the situational integration satisfies the information need of healthcare

professionals, by answering questions e.g. related to what are the side-effects for all the

medications of a patient.

A.3.2 User Guidance

Once situational data are retrieved and returned, the user may decide that they are not suitable for

the task at hand [3]. This feedback is useful, for example, for the QA system to redirect its search

based on learning (i.e., ML techniques). Besides, user guidance can reduce system mistakes if

the user informs it, before the Source Discovery process, which information he is not looking for.

A few approaches cover User Guidance individually. In the experiments of the study

described in [256], each participant receives a first predefined query, and all subsequent ones

require participants to write a question or select a subset of the KG nodes that were displayed.

These experiments were based on a specific scenario (domain of books) and had a group of 5

participants that performed exploratory searches on the KG.

In [258], the model was evaluated on two publicly available VQA datasets6 and involved

ground truth answers generated by 10 human subjects. Similarly, in [171], human participants

6Toronto COCO-QA [198] and VQA [10].
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have elaborated a database of questions containing 152 questions related to city domain, in order

to evaluate the geographical system proposed.

In the FREyA system [42], the user has an important role to improve the performance

of NLIs to ontologies. When the system fails to automatically generate the answer, it will prompt

the user with a dialog comprising two tasks: disambiguation, in which the user resolves identified

ambiguities; and mapping, in which the user maps query terms to ontology concepts suggested.

Thus, the system learns from the user’s selections, and improves its performance over time.

A.3.3 User Guidance & Decision-Making Support

Some studies have covered both Decision Support and User Guidance: [212] presents an

approach for natural language QA over a knowledge base containing medical texts information.

For conducting the work, an EHR (Electronic Health Record) system dedicated to Oncology was

used, which provided EHR records containing medical appointment data. From the involvement

of professionals, it was possible to define sentences of interest, e.g. “what symptoms does the

patient report?” and “is the symptom associated with which diagnoses?”. The QA process

returned a set of answers from the KB, with indication of the correct tuples that support the

professional’s needs.

In [252], Decision-Making Support is covered since relevant news’ documents and

representative images are retrieved and presented to the user, who can be aware of the current

news. The experiments involved fifteen participants; each one of them selected three query

questions from a list of questions provided, and gave evaluation scores to the results returned

from the system. The Bio-SeCo application presented in [163] uses a highly efficient algorithm

for rank aggregation, and consensus ranking methods to get a global ranking of results. The

results are shown in the interface, so that users can find answers to their biomedical questions,

and provide feedback about the relevance of the system and its ranking strategy.

In [93], historical data in medicine were used to structure an automatic diagnosis decision-

making table, i.e., a kind of knowledge expression system where conditions are associated with

decision rules. Potential diagnosis rules were extracted from the decision-making table, which

can offer effective diagnosis service. The PAO ontology (see Subsection A.1.1) was provided to

users as an access interface, where they entered the system and raised NL questions. Also, PAO

was tested on the QA system in medicine and the generated answers were compared with manual

answers of authoritative experts.

In [237], User Guidance is present by means of a process called User Assessment, in

which users are able to contradict or endorse existing facts, optionally providing additional sources

for the knowledge in platform. The system identifies whether there is a missing knowledge and

provides the user with a link to add it, so the user may guide the process. Also, a query-processing

engine is capable of tracing the path it followed to generate answers, in order to create a detailed

explanation of how those answers were generated. The facts used as part of that proof can be

extracted and presented to the user as concise explanation.

A.3.4 Response Time Improvement

Considering a QA system running on a server, the time required to compute answers and the

overhead of the network requests must be taken into account, mainly because the user expects

response times of around 1 second [52]. Since agility is crucial for SDI, it could favor the

response delivery in QA. Moreover, the situation-aware aspect of SDI favors the acquisition of

immediate information, and consequently, a holistic view of various activities, which will be an
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important factor for making the “best” decision, especially when allied to the interaction feature

of QA [84].

This subfeature is the most present one in the reviewed approaches. In the work proposed

by [218] (an extension work of [219]), it was implemented parallelization over some components

of the system, in order to speedup runtime. Parallelization is also present in [38] (multiple

answering agents address the same question in parallel, with results combined) and in [119] (the

system sends the question to six streams in parallel).

The QUEST system [155] computes answers in interactive time, with median run-time

of 1.5 seconds. The PullNet framework [229] applies ADAM optimizer [128] in the learning

process, as well as indexing for fast retrieval. In the Ephyra system [208, 209], duplicated text

snippets retrieved from the Web are removed, in order to reduce the processing time. Response
Time Improvement also appears in the OpenQA framework [160], where a cache service stores

the results of processes, so that future requests to the same process can be executed faster.

In the IM system proposed by [129, 141], the query planning algorithms used provides a

query interface to distributed structured information sources. The plan executor tries to access the

sources in parallel, minimizing the time taken to provide answers. Also, a query processor allows

to prune information sources in order to solve completeness and redundancy issues. Dealing

with redundancy also improves time, since a minimal set of information sources is determined

for answering the query.

Databases and ontologies are queried in the QA system proposed by [77]. Thus, answers

can be returned by both MySQL and Sesame [26], which includes the SeRQL query language for

handling RDF data. In the search process, path constraints are specified and added as further

constraints to the WHERE clause of the SeRQL query, simplifying it and speeding up the query

performance.

Given a query, the SIMS system [12] generates and executes a query plan for accessing

the appropriate information sources. Before executing a query, the system performs a query

reformulation to minimize the cost and the amount of data processed, so that generated subqueries

are executed in parallel. Besides the reformulation and parallelism, the approach presents a cache

mechanism for data that are required frequently or are very expensive to retrieve.

In IBM Watson [73] fast runtime indices are created using the Hadoop map-reduce

framework7, so that the system is able to answer more than 85% of the questions in 5 seconds

or less. The systems in [53] and [189] include search indexes for offering faster question

responses. Similarly, the OQA system in [63] uses a simple KB abstraction where ground facts

are represented as string triples (argument1, relation, argument2). Triples are used from curated

and extracted KBs, and they are stored in an inverted index that allows for efficient keyword search.

Indexes are also used in the QA system proposed in [264], in the SemanticQA system [232],

in [107], and in the hybrid QA system described in [8].

A.3.5 Decision-Making Support & Response Time Improvement

Some studies cover both features, although they do not cover User Guidance. The NOUS

framework presented in [36] builds domain specialized KGs by fusing curated KBs with extracted

knowledge. The user can visualize the resultant graph and a summarization of quality-related

statistics, which provides an overview of the current situation (Situation Awareness). Also, the

streaming graph mining algorithm developed in the proposal increases the execution speed of the

proposal when discovering trends in streaming data.

7Available at: <https://hadoop.apache.org/>.
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The HSIN framework developed in [33] for CQA platforms integrates and simultaneously

learns the questions textual contents, their related categories information and user’s social

interaction. When a user poses a new question, HSIN uses the integrated information for ranking

similar historical questions proposed by other users, along with corresponding answers. This

recommendation provides Decision-Making Support through Situation Awareness. In addition,

the authors used an optimization method to speed up for training time in their HSIN framework.

The proposal in [239] implements a prototype as a freely accessible web application,

which allows users to enter their questions and receive answers. The answers are show in a

tabular view if appropriate, and the view allows the user to enrich the generated answers by

displaying further information for the returned resources. The web application thus contributes

to Situation Awareness. With respect to Response Time Improvement, a BOA index [83] was

created based on Lucene indexer8, which allows for time-efficient search, e.g., it improves the

mapping of properties in natural language queries compared to using a text index.

In all cases where Decision-Making Support was covered in addition to Response Time
Improvement, the support was partial through Situation Awareness, which means that there

was not an explicit assistance, but the approach was able to make the user aware of the current

situation, thus contributing to Decision-Making Support.

A.3.6 User Guidance & Response Time Improvement

The study in [152] covers User Guidance and Response Time Improvement, since the user

participates in the evaluation of the system, and the Triple Mapping Component improves time by

handling indexing and computational expensive queries. In [96], users can define quality metrics

for data quality management in the Constance system. Also, the approach identifies potential

foreign keys from the user query, and builds indexes on the corresponding attributes to improve

the performance.

In the evaluation of QALL-ME framework [72], users received a brief description of the

system (just to make them aware of its capabilities) and elaborated a set of questions containing

304 cinema questions referred to Italy region. The QALL-ME workflow is managed by the QA

Planner, which orchestrates the web service components by receiving input parameters, including

spatial-temporal context and pattern mappings. As the system response time is directly related to

the size of the question pattern set, this set is reduced as much as possible to contain only the

essential patterns, thus improving the response time.

In the model proposed by [88], the information sources were constructed with User

Guidance: the authors simply approached 10 adults, asked them questions, and tape-recorded

their answers. Also, as already mentioned, the model includes arc-search procedures and a

constraint propagation component that provide a satisfactory solution to the convergence problem,

since they reduce the node space to a minimal set of good answers. Pruning down non-informative

answers enables Response Time Improvement.

The joint model proposed in [271] employs User Guidance as five questioners were

asked to pose questions independently, in order to enrich the evaluation dataset. The model is

based on Integer Linear Programming, which was implemented by using Gurobi9, a fast and

powerful mathematical optimization solver that has shown efficiency w.r.t. the average speed in

processing questions.

8Available at: <http://lucene.apache.org/>.

9Available at: <https://www.gurobi.com/>.
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A.3.7 User Guidance, Decision-Making Support & Response Time Improvement

Some approaches cover all features of SDI’s Timely Decision Support together. One of them

is [28], which presents the AskHERMES system for answering complex clinical questions. In the

Summarization module of the system, the answers are grouped by content terms, thus helping

physicians quickly and effectively browsing answer clusters (Response Time Improvement). In

the evaluation phase, AskHERMES was compared with state-of-the-art systems, and manual

evaluation of the output was performed by three physicians, aiming to examine how well each of

the three systems answer the questions. The evaluation found that AskHERMES is competitive

with the state-of-the-art systems and its answer presentation interface helps physicians easily

obtain information from different points of view (Decision Support).

The work in [177] exploits end-user feedback and runtime data, with the overall goal

of improving the quality of experience. Also, wrappers are modeled to accommodate different

sources, which deal with query complexity, so that runtime is improved. The results of the

study have shown that a great number of changes performed in real-world APIs could be

semi-automatically handled by the proposed wrappers and the ontology, thus providing Decision

Support when ingesting and analyzing the data.

The MiPACQ system proposed by [27, 183] was evaluated through a clinical dataset and

human-annotated answers (User Guidance). The approach includes an Answer Summarization

process that performs answer ranking and decides whether to present statistical information about

subsets of the results or other potentially interesting aspects of the set of patient records returned

(Decision Support). Lucene was used as indexing tool in the Information Retrieval module as

time improvement method.

The QA system for IT support in [158] monitors the user’s feedback after every dialog

turn, and uses this feedback to improve its knowledge. W.r.t. Decision Support, the system

provides IT support to users’ questions by exploring multimedia data, and furthermore, it

comprises a Resolution Automation process, i.e., the platform supports an automation to be

attached to an answer. Response Time Improvement is achieved by means of Apache Lucene

indexing that enables fast retrieval.

In [120], wrappers are developed for accessing the biomedical resources. This process

is performed with a subject matter expert to determine which metadata fields must be processed

(User Guidance). The approach provides Situation Awareness by means of the graphical interface

that suggests relevant resources to be explored. Also, the Resource Index improves runtime

information retrieval.

The MedQA system [267] presents a user with both Web definitions and MEDLINE

sentences suitable for his question. These results are shown in an interface, which displays a

summary of potential clusters of sentences, along with other relevant sentences that might be

additionally important to the biologists or the physicians. The approach uses the indexing tool

Lucene in the Document Retrieval step, a technique for Response Time Improvement. User

Guidance was also covered in MedQA, since a group of physicians volunteered to participate in

the study, evaluating the performance of the system and comparing it with other online information

systems. Lastly, in the framework proposed by [70], the question is sent to specialized nodes

and the fused output information is sent back to a GUI element, where a dashboard integrates

external and internal data as result. The result provides Decision Support and allows the user to

correct the information if needed. In the experiments, the QA system consisted of a indexation

phase that aimed to prepare all the information required for the search phase, thus optimizing the

time response.
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