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RESUMO

Desastres, naturais ou não, causam muitos danos em seu entorno. Em geral, afetam edificações,

geram impactos negativos na economia e resultam em perda de vidas. Para minimizar e diminuir

os efeitos causados por estes, planos de evacuação eficientes e eficazes são essenciais. Nesse

sentido, o processo de evacuação pode ser modelado de acordo com um Problema de Roteamento

de Veículos (PRV). Este tipo de problema é um problema NP-difícil de otimização combinatorial,

que visa minimizar o custo total (em geral, distância percorrida) na utilização de uma frota de

veículos para a realização de um determinado serviço. Portanto, em problemas de otimização

combinatória, como PRV, metaheurísticas podem obter soluções ótimas ou quase ótimas. No

contexto do PRV, muitas abordagens com metaheurística foram propostas nos últimos anos.

Algumas dessas abordagens apresentam excelentes desempenhos, tanto em termos de tempo de

processamento quanto de qualidade da solução. Recentemente, as técnicas de ensemble têm

chamado a atenção de pesquisadores de outros problemas de otimização combinatorial. As

técnicas de ensemble podem tirar vantagem de metaheurísticas robustas existentes através de

um mecanismo de seleção inteligente. Desta forma, este trabalho apresenta, diferenciando-se

das metodologias convencionais de ensemble, uma abordagem chamada GREEVO (Greedy
Randomized Adaptive Search Procedure Ensemble Evolutionary Algorithm) para resolver o

Problema de Roteamento de Veículos com Capacitade (CVRP). Nossa abordagem combina um

GRASP com o algoritmo Split e usa uma Hiper-Heurística com Aprendizagem por Reforço para

selecionar heurísticas de alto nível no ensemble. Nossos experimentos em benchmarks populares

da literatura e um estudo de caso mostraram que nossa abordagem supera outras abordagens

comparadas, ao mesmo tempo que fornece insights valiosos sobre como utilizar conjuntos e

componentes de aprendizado de máquina.

Palavras-chave: Otimização Combinatorial, Metaheurística, Hiper-Heurística, Reforço por

Aprendizagem, Problema de Roteamento de Veículo, Evacuação.



ABSTRACT

Disasters, natural or not, cause a lot of damage to their surroundings. In general, they affect

buildings, generate negative impacts on the economy, and result in loss of life. In order to

minimize and decrease the effects caused by these, efficient and effective evacuation plans are

essential. In this sense, the evacuation process can be modeled according to a Vehicle Routing

Problem (VRP). This kind of problem is an NP-hard problem of combinatorial optimization,

which aims to minimize the total cost (in general, distance covered) in the use of a vehicle

fleet to perform a particular service. Therefore, in combinatorial optimization problems such

as VRPs, metaheuristics can obtain optimal or near-optimal solutions. In the VRP context,

many approaches that use metaheuristics have been proposed over the past few years. Some

of those approaches have excellent performances, both in terms of processing time and quality

of the solution. Recently, ensemble techniques have drawn the attention of researchers to

other combinatorial optimization problems. Ensemble techniques can take advantage of robust

metaheuristics existing through an intelligent selection mechanism. Thus, this work presents,

distinguishing from the conventional ensemble methodologies, an approach called GREEVO

(Greedy Randomized Adaptive Search Procedure Ensemble Evolutionary Algorithm) to address

the Capacitated Vehicle Routing Problem (CVRP). Our approach combines a GRASP with the

Split algorithm and uses a Hyper-Heuristic with Reinforcement Learning to select high-level

heuristics in the ensemble. Our experiments on the popular literature benchmarks and a case

study have shown that our approach outperforms other compared approaches while providing

valuable insights on how to utilize ensembles and machine learning components.

Keywords: Combinatorial Optimization, Metaheuristic, Hyper-Heuristic, Reinforcement Learn-

ing, Ensemble, Vehicle Routing Problem, Evacuation.
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1 INTRODUCTION

Disasters can generate significant damage in their surroundings. In general, they affect buildings,

generate negative economic impacts, and result in the loss of human life. Since the 1990s, the

international community has studied disasters and their effects (Aitsi-Selmi et al., 2016). Disasters

are classified as natural or human-made (Esposito Amideo et al., 2019). As the number and

intensity of disasters increased, the international community was obligated to think about them

through a different perspective, which deals with preparedness and recovery beyond response

(Aitsi-Selmi et al., 2016).

The disaster risk management cycle is divided into four phases (Altay and Green, 2006):

(i) Mitigation, which aims to prevent and or minimize a future disaster threat; (ii) Preparedness,

which corresponds to achieving a satisfactory level of readiness to respond to an emergency

based on programs, plans and measures; (iii) Response, which focus on providing assistance,

improvement, and support to affected population; and (iv) Recovery, which deals with the

restoration of life and infrastructure that support affected people.

In this sense, evacuation plays a vital role, and it fits between the preparedness and

response phase (Bayram, 2016). An essential aspect of an evacuation scenario is to plan a

responsive routing to evacuate all people in an affected area, which involves the available vehicles,

pick-up points, and shelter locations. Thereby, those listed points are variables that can be

modeled as a Vehicle Routing Problem (VRP).

Vehicle Routing Problem (VRP) is a generalization of the Travel Salesman Problem

(TSP) and a well-known NP-hard problem in combinatorial optimization in the operations

research field (P. Toth and D. Vigo, 2014; Labadie et al., 2016). Also, the VRP has many

variations, representing different scenarios with specific constraints.

An NP-hard problem can not be solved in a possible computational time. As mentioned

before, the VPR has several constraints. In an evacuation scenario, uncertainty is another factor.

Hence, to solve a VRP, optimal or near-optimal solution can be reached through metaheuristics

(Toth et al., 2014; Luke, 2013). Also, a dynamic or stochastic approach can be added to a

metaheuristic to deal with uncertainty.

1.1 MOTIVATION

A hazard is a danger or risk, and it can be natural or human-made (Van Wassenhove, 2006).

When a hazard seriously affects a community or a society’s life, causing human, material, and

economic or environmental losses that exceed the community’s or society’s ability to cope using

its resources, it turns into a disaster (IFRC, 2019; UNDRR, 2019).

Disasters can inflict significant damage, especially to human life. According to Figure

1.1, natural disasters have grown in the last decade (2008-2018), and their consequences put

tremendous stress on a community or society. Hence, this context has attracted the attention of

researchers in the disaster management area.

In 2015 year, three main landmark agreements were settled: (a) the Sendai Framework

for Disaster Risk Reduction 2015–2030, (b) Sustainable Development Goals, and (c) the Paris

Agreement on Climate Change. In this sense, The United Nations International Strategy

for Disaster Reduction (UNISDR) Science and Technology Conference (2016) launched the

implementation of the Sendai Framework, discussed and endorsed its four priorities: (1)

Understanding disaster risk; (2) Strengthening disaster risk governance to manage disaster risk;
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Figure 1.1: Number of relevant natural loss events worldwide 2008 – 2018 (extracted from MunichRe (2019)).

(3) Investing in disaster risk reduction for resilience; (4) Enhancing disaster preparedness for

effective response and to "Build Back Better" in recovery, rehabilitation, and reconstruction.

Also, ways to monitor progress and review emerging needs, organizing in four workstreams

(Aitsi-Selmi et al., 2016):

• WS1 - Scientific and Technical Partnership to Support the Implementation of the Sendai

Framework

• WS2 - Understanding Disaster Risk, Risk Assessment, and Early Warning

• WS3 - Use of Science, Technology and Innovation Tools, Methods, and Standards to

Support the Implementation and Reporting of the Sendai Framework

• WS4 - Leveraging Science through Capacity Development and Research

WS1 is addressed to study how scientific and technical partnerships would leverage

national and international networks to promote multidisciplinary research and connect science,

policy, and practice. WS2 already deals with how disaster risk is comprehended, risks are

evaluated, and early warning systems are designed. WS3 addresses the study about data, standards,

and new practices needed to evaluate and report risk reduction. Furthermore, WS4 is responsible

for finding gaps in research and which approaches can be used to overcome difficulties in creating

and using science for Disaster Risk Reduction (DRR).

Given this, comparing the workstreams with the Disaster Operations Management

(DOM) framework (Altay and Green, 2006) phases of Figure 1.2, it noticed that WS2 and WS3
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Figure 1.2: Phases of Disaster Operations Management framework (extracted from Flanagan et al. (2011)).

are aligned with the first and second phases of the DOM framework. The DOM framework

has four phases (Neal, 1997): (i) Mitigation: related to preventing future disaster threats and or

minimizing damages taken by unavoidable threats; (ii) Preparedness: puts effort to achieve a

satisfactory level of readiness of an individual and communities to respond a threat through plans

and or preparations in advance of it; (iii) Response: include actions are taken to prevent the loss

of lives and property damages during a disaster; (iv) Recovery: corresponds to a life support

repair, reconstruction and restoration measures to a minimum operating standard.

In this sense, the evacuation plans, which are related to the preparedness and response

phases of the DOM (Bayram, 2016; Esposito Amideo et al., 2019), play an essential role in

saving lives from a possible disaster (Bayram, 2016). According to the United Office of DRR

(UNDRR), formally known as UNISDR, disaster management is the organization, planning, and

application of measures for a disaster scenario. In addition, especially the preparedness, response,

and recovery (DOM) aspect of decreasing the impact level of a disaster (UNDRR, 2017).

Therefore, to prevent people life’s loss, the main strategy used is the evacuation of the

disaster area (Bayram, 2016). Evacuation movement is categorized by London Resilience Group

(London, 2019) in three types:

1. self-evacuation: evacuees, by themselves and without any assistance from a responsible

community or agency, move towards safe places;

2. assisted evacuation: evacuees use their transportation and move towards shelters, or

safe sites, under some assistance from responsible authorities;

3. supported evacuation: evacuees with special needs (e.g., disabled, elderly) and or

without transportation, requiring support from public authorities to move towards

shelters or safe sites.

Also, a combination of any of these three types is called multi-modal evacuation. For

example, under a tsunami, an evacuation process may use a combination of land (buses and

evacuee vehicles) and air (helicopters) transport.

In that way, one point within the evacuation management context is effective traffic

assignment management (FEMA, 2019). Suppose an evacuation traffic management is poorly

designed and conducted in a disaster scenario. In that case, e.g., a traffic jam in the transportation

network could happen (Dixit and Wolshon, 2014), leaving evacuees in a dangerous situation that

may result in further life losses (Yao et al., 2009). However, for designing an effective evacuation

plan, an important aspect is evacuation routing planning related to a VRP approach, which is the

focus of this work.
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The VRP is a generalized form of the Traveling Salesman Problem (TSP) that aims to

determine the optimal feasible routes for a fleet of vehicles serving a set of customers. Researchers

across various fields have studied the VRP since its introduction by Dantzig and Ramser in 1959,

as evidenced by the extensive literature on the subject (Dantzig and Ramser, 1959; Vidal et al.,

2013; Esposito Amideo et al., 2019; Bortfeldt and Yi, 2020; Zhang et al., 2020).

In real-life scenarios, routing problems can have numerous constraints and aspects that

can significantly increase their complexity, with large numbers of customers often generating

considerable instances of the problem. For example, the supply chain (Bortfeldt and Yi, 2020),

fuel and battery consumption (Zhang et al., 2020), and emergency and disaster relief (Esposito

Amideo et al., 2019) have inspired various extensions to the VRP, including the VRP with Time

Window (VRPTW) (Nagata and Bräysy, 2009; Vidal et al., 2013) and the Multi-Depot VRP

(MDVRP and MDVRPTW) (Vidal et al., 2013).

Due to the complexity of such scenarios, their variations, and large instances, many

approaches utilizing heuristics and metaheuristics have been proposed. The Genetic Algorithm

(GA) is a frequently employed approach (Abdallah and Ennigrou, 2020; Zhen et al., 2020;

Rabbouch et al., 2019; Li et al., 2014a; Vidal et al., 2013; Nagata and Bräysy, 2009).

Notably, most VRP problems involve capacity and time window constraints, making

them particularly challenging. For example, in the Capacitated Vehicle Routing Problem (CVRP),

a single or fleet of identical vehicles undertake a tour through all customers, satisfying their

demands. The vehicle/fleet departs from the depot and returns to it once the vehicle’s capacity is

reached or when no more customers are available.

The No Free Lunch theorem (Wolpert and Macready, 1997) states that no algorithm

can outperform all other algorithms in solving every possible optimization problem. In essence,

this theorem suggests that it is theoretically impossible to create an algorithm that can solve

all optimization problems and their features better than any other algorithm (Mallipeddi et al.,

2011a).

In this sense, we would like to introduce GREEVO - a Greedy Randomized Adaptive

Search Procedure Ensemble Evolutionary Algorithm. GREEVO uses a combination of ensemble

techniques, hyper-heuristic (HH), and reinforcement learning (RL). It innovates in the VRP

context by utilizing machine learning (RL) to select high-level heuristics. The experiments that

were conducted in the CVRP datasets have shown promising results for GREEVO.

1.2 OBJECTIVES

This research aims to thoroughly investigate the applicability and advantages of the GREEVO

(Greedy Randomized Adaptive Search Procedure Ensemble Evolutionary Algorithm) in the

domain of routing problems, with a specific emphasis on its effectiveness in addressing challenges

related to the Capacitated Vehicle Routing Problem (CVRP) within the context of evacuation

scenarios. The core hypothesis driving this study is that GREEVO can offer a promising solution

for complex routing problems, particularly in the CVRP with application in evacuation scenarios,

by combining elements of Greedy Randomized Adaptive Search Procedure (GRASP), ensemble

techniques, and Hyper-Heuristic (HH). This research seeks to evaluate GREEVO’s performance

in generating optimal or near-optimal solutions in the classical CVRP and evacuation scenarios

considering the capacity constraint. Through comprehensive experiments and a case study,

the study aims to contribute valuable insights into the practical applicability of GREEVO

in addressing the classical capacitated routing problem challenge associated with evacuation

scenarios.

The specific objectives of this research include:
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• GREEVO Algorithm Introduction: Introduce the GREEVO algorithm, outlining its

components and detailing how the integration of GRASP, ensemble techniques, and HH

addresses the challenges posed by complex routing scenarios, with a specific focus on

the CVRP.

• Experimental Evaluation: Conduct a series of experiments to rigorously evaluate the

performance of GREEVO in solving the CVRP. Compare GREEVO against existing

state-of-the-art algorithms, assessing its efficiency and effectiveness across various

datasets.

• Case Study: New Orleans Evacuation Plan: Apply GREEVO to a practical case study

involving the evacuation plan for hurricanes in New Orleans, USA. Evaluate GREEVO’s

performance in providing feasible solutions for evacuating residents within specified

time windows, considering different fleet speeds and neighborhood sizes.

With this context, these objectives collectively aim to advance the understanding,

capabilities, and practical applicability of GREEVO in combinatorial optimization, providing

valuable contributions and insights into applying machine learning techniques, especially in the

VRP and evacuation scenarios.

1.3 HIGHLIGHTS

Based on our conducted experiments, we have ascertained that GREEVO exhibits considerable

potential in solving the classical CVRP, as well as presenting an opportunity to leverage machine

learning in the VRP. The significant highlights of GREEVO can be enumerated as follows:

• Efficient combination of ensemble and HH;

• Promising adopted strategy in the ensemble;

• Usage of HH to select high-level heuristics in the context of CVRP

• A promising application of machine learning by using the RL with HH in the context of

CVRP.

1.4 TEXT ORGANIZATION

The remainder of this text is organized as follows:

• Chapter 2 - VRP: Enunciates the Vehicle Routing Problem, focusing on the CVRP,

to contextualize our work. Furthermore, it describes its basic concepts and a brief

description of other variations of the VRP;

• Chapter 3 - Metaheuristics for VRP: Presents the theoretical background concerning

metaheuristics used in this work. It also describes some notable heuristics and most

used operators in the VRP context;

• Chapter 4 - Literature Review: Provides a literature review in the VRP, presenting the

main works. Additionally, it describes works in the evacuation context;

• Chapter 5 - Proposal: Describes the proposed approach, and its components;
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• Chapter 6 - Experiments: Presents the experiments and results. Moreover, a study case

considering the evacuation plan of New Orleans - US. In the end, a brief conclusion;

• Chapter 7 - Conclusion and Future Work: Summary the analysis from experiments

and their results. Furthermore, it highlights the contributions and limitations of GREEVO

and suggests some future works.
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2 VEHICLE ROUTING PROBLEM

The VRP is a generalization of the TSP (Talebian Sharif and Salari, 2015). Its objective is to find

the optimal set of feasible routes to be performed by a fleet of vehicles serving a set of customers.

The VRP still is an important and studied combinatorial optimization problem (P. Toth and D.

Vigo, 2014). For more than 50 years, since Dantzig and Ramser introduced the problem in 1959,

researchers from many fields, especially from operational research area, have studied the VRP (P.

Toth and D. Vigo, 2014; Labadie et al., 2016).

CUSTOMER DEPOT VEHICLE

UNTAKEN ROUTE PERFORMED ROUTE

Figure 2.1: Capacited Vehicle Routing Problem Illustration.

The VRP is an NP-hard problem, which means that exact algorithms can not solve it

depending on the data size. Pecin et al. (Pecin et al., 2017) have solved to optimally benchmark

instances for the Capacitated Vehicle Routing Problem (CVRP) with 199 customers and could

solve instances up to 360 customers before solved only by heuristics. Figure 2.1 shows the CVRP,

which aims to determine the optimal set of routes to be performed by a fleet of capacitated

vehicles to serve the demand of a given customer set (Labadie et al., 2016). Besides, Figure 2.1

defines the CVRP four components (Labadie et al., 2016), which is problem focus of this study:

• Route: usually described through a graph (lines);

• Sites to be visited: which can be customers, cities, bus stops, tasks, etc. Generally, is

also associated with it a specific request often called demand (customer house);

• Vehicles: which perform the task with a capacity (trucks);
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• Depot(s): from where the vehicles start and go (depot in the center).

From a mathematical perspective (Labadie et al., 2016), the CVRP can be modeled as

follows: Let 𝐺 = (𝑉, 𝐸) be a complete undirected graph. The 𝑉 is the node set with the depot

(𝑉0) from where a set 𝐾 of a homogeneous fleet of vehicles with capacity 𝑄 can start. Also,

customers 𝑛 have a given demand 𝑞𝑖, 𝑖 = 1, 2, ..., 𝑛. Further, each edge [𝑖, 𝑗] from 𝐸 represents

the shortest path between nodes 𝑖 and 𝑗 . Besides, an associated cost 𝑐𝑖 𝑗 is known.

Depending on the authors, the number of available vehicles can be fixed or not. Moreover,

a service time 𝑠𝑖 can be added for each customer 𝑖, and each route cost can be delimited by 𝐿
(corresponding to a limited working time, for instance). In this regard, the main difficulty stands

in eliminating sub-tours, i.e., cycles that do not go through the depot.

𝑚𝑖𝑛
𝑙∑
𝑘=1

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑐𝑖 𝑗 𝑥
𝑘
𝑖 𝑗 (2.1)

𝑥𝑘𝑖 𝑗 = 0,∀𝑖 = 𝑗 and ∀𝑘 ∈ 𝐾 (2.2)

𝑛∑
𝑗=1

𝑥𝑘𝑉0 𝑗
= 1,∀𝑘 ∈ 𝐾 (2.3)

𝑛∑
𝑖=1

𝑥𝑘𝑖𝑉0
= 1,∀𝑘 ∈ 𝐾 (2.4)

𝑛∑
𝑖=1

𝑥𝑖 𝑗 =
𝑛∑
ℎ=1

𝑥 𝑗ℎ = 1,∀ 𝑗 ≠ 𝑉0 (2.5)

𝑄 ≥

𝑛∑
𝑖=1

𝑤𝑘𝑖 ,∀𝑘 ∈ 𝐾 (2.6)

𝐿 ≥

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑥𝑘𝑖 𝑗 (𝑐𝑖 𝑗 + 𝑇),∀𝑘 ∈ 𝐾 (2.7)

𝑥𝑘𝑖 𝑗 =

{
1 if arc (i,j) is taken by vehicle k
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.8)

Our model presents in (2.1) the objective function. Equation (2.2) ensures that the

incoming and outgoing edges will be different nodes. (2.3) and (2.4) guarantee that all vehicles

start and finish their tour at depot 𝑉0. Equation (2.5) guarantees that all incoming and outgoing

edges, regardless of the vehicle, are equal. Inequations (2.6) and (2.7) ensure that the route

performed by vehicle k does not exceed its capacity and the maximum travel distance respectively.

Finally, equation (2.8) presents 𝑥𝑘𝑖 𝑗 as a binary variable.

Through this simple model, is noticed that an arc represents a link or a sub-route between

two vertices or cities/customers/points. Those vertices could also be a depot/warehouse/shel-

ter/hospital from where the vehicles leave and arrive. In that case, when a vertice is a depot, a

capacity may also be associated.

Still, according to our model, a sub-route could represent a physical (like a road) or

non-physical (like a movement) path from one point to another, it can be performed in one

direction or undirected. In all applications, a cost is associated with a link, usually resented
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by distance and/or time. Another mentioned point is the demand, for each vertice could be

associated with a demand, which can be the number and/or types of products/supplies that should

be delivered/picked up, the number of people at a bus stop, among others.

Additionally, we may have some restrictions or regulations that configure the problem.

In our example, each vehicle has a capacity, and once this capacity is reached, the vehicle must

go to the nearest depot. This is called a constraint, there examples are limited vehicles in a fleet,

time window to deliver/pick up, etc. A constraint can be soft or hard. A soft constraint means

that if a possible solution violates it, a penalty will be applied to this solution. On the other hand,

a hard constraint does not allow a solution that violates it to be chosen.

2.1 VEHICLE ROUTING PROBLEM WITH TIME WINDOW

The Vehicle Routing Problem with Time Window (VRPTW) is an extension of the CVRP, in

which the vehicle can only initiate its service once the customer time window is available, i.e.,

in the interval of time of each customer. If a vehicle arrives earlier than the time window of a

customer, it will have to wait until it can start the service in that customer. In terms of costs, a

waiting time will increase the total cost, which is the sum of the distances between customers, the

service time, and the waiting time. However, the vehicle can not serve a customer after the time

window, which is a restriction violation.

As mentioned before, a restriction violation can be soft or hard. In the case it would be

soft, then a penalty will be applied to those solutions in which the vehicle arrives after the time

window of a customer. Otherwise, infeasible solutions could be repaired.

2.2 HETEROGENEOUS OR MIX FLEET VEHICLE ROUTING PROBLEM

Since the early VRP literature, the Heterogeneous or Mixed fleet Vehicle Routing Problem

(HVRP) has been known, and the first to study it was Golden et al. (1984). Several variants have

been developed considering two points of this problem. On the one hand, the best set of vehicles

to be used is called Fleet Size and Mixed problem (the fleet size is assumed to be unlimited). On

the other hand, in the Heterogeneous VRP, the goal is to select the most appropriate vehicles in a

limited fleet.

2.3 MULTI-DEPOT VEHICLE ROUTING PROBLEM

Unlike the traditional CVRP, in which vehicles depart and arrive at the same single depot, in the

Multi-Depot Vehicle Routing Problem (MDVRP), there are two or more depots where vehicles

start and end their routes. Even though the literature on this problem is not as vast as in other

problems, the MDVRP has many applications (Vidal et al., 2013). As demonstrated in Chapter 5,

there are several shelters where refugees are taken by the rescue fleet or on their own vehicles in

an evacuation scenario.

2.4 SPLIT DELIVERY VEHICLE ROUTING PROBLEM

Dror and Trudeau (1989) introduced the SDVRP. The reason behind the interest in the Split

Delivery Vehicle Routing Problem (SDVRP) and its variants is the saving in costs and the number

of routes when compared to other problems without this condition (Toth et al., 2014).

In contrast to the classical VRP, in the SDVRP, a customer may be visited more than

once by two or more vehicles. Besides, it may be possible that customers with a demand larger
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than the capacity of the vehicle require split deliveries (Bortfeldt and Yi, 2020). Although this

particularity configures a relaxation of CVRP (Toth et al., 2014; Bortfeldt and Yi, 2020), it is still

an NP-hard problem.

2.5 STOCHASTIC VEHICLE ROUTING PROBLEM

Most of the studies assume that all the information is previously available, i.e., a deterministic

perspective. However, practical applications and real-world environments usually have an

uncertainty aspect that affects the parameters of the problem. The uncertainty could come from

several different sources, both from variations on known parameters and unknown or unexpected

events (Toth et al., 2014).

In this sense, if customers’ demands are uncertain, only known when the vehicle visits

them, a planned route could be infeasible if the sum of all demands of the customers that belong

to that route exceeds the vehicle’s capacity. When such a scenario happens, additional decisions

should be taken, and the costs usually get increased to produce a feasible solution. Hence, models

that explicitly all uncertain features are needed.

Therefore, the stochastic optimization models first define the decision variables based

on how and when the values of stochastic parameters throughout the information process are

observed. Once these variables are defined, there are two ways to model them: recourse function
and probabilistic constraints. Thereby, the recourse function approach is defined as the average

cost for a given priori solution, and it is considered in the objective function. Still, some particular

variables and events in the probabilistic constraints approach are described by a probabilistic

distribution (Toth et al., 2014).

According to Birge and Louveaux (2011), three parameters are commonly considered to

be stochastic:

• Stochastic demands: the volume or number of products (or rescuees, supplies) to be

delivered or collected are random;

• Stochastic customers: the number of customers is associated with a given probability;

• Stochastic times: service times and travel times are considered stochastic.

2.6 DYNAMIC VEHICLE ROUTING PROBLEM

As in the stochastic approach, uncertain information is also considered, but in contrast, the way

Dynamic VRP deals with it is different. Psaraftis (1988) pointed out that there are two aspects

in input data, namely evolution and quality of information (Toth et al., 2014; Psaraftis, 1988).

The first one is related to changes even after the route has been performed. The second reflects

the uncertainties in the available data. Although those aspects are different, they share some

commonalities, as the uncertainty in some input parameters revealed or updated with the routing

process.

While information evolves, decisions must be made continuously. Thus, the main goal is

to adapt to new information or events and anticipate future events as long as possible. Sometimes,

taking advantage of available stochastic information or inferring from past data.

In short, Dynamic VRP deals with decisions that can only be made during the execution

of the route plan, handling uncertainty in real time. However, it requires technological support to

enable real-time communication between the dispatcher and the vehicle (Toth et al., 2014).
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2.7 CONCLUDING REMARKS

This Chapter introduced the VRP concept and model focus of this study: the CVRP. Moreover, it

presented the essential components of a CVRP and its mathematical model. Lastly, presented

other VRP variations, such as VRPTW, HVRP, MDVRP, SDVRP, Stochastic, and Dynamic VRP.

Still, the definitions and concepts shown in this Chapter make clear that real-world

scenarios,e.g., evacuation or delivery of goods, can be modeled by a combination of some VRPs.

Additionally, this combination can generate new VRPs.
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3 METAHEURISTICS FOR VRP

In this Chapter, we present some metaheuristics, crossovers, and operators used in the context of

Vehicle Routing Problem (VRP) and or by some of the selected techniques that compound our

ensemble. Additionally, we detail these techniques, pointing out their benefits.

3.1 GENETIC ALGORITHM

Recently, many solutions using Integer Programming (IP) or Mixed IP have been proposed to

solve VRP problems (Amiri and Salari, 2019; Li et al., 2019). Despite this, Pecin et al. (2017)

optimally benchmarked instances for the Capacitated Vehicle Routing Problem (CVRP) up to

360 customers. However, real-world problems often involve large instances that require quick

solutions.

In this sense, metaheuristics can provide an optimal or near-optimal solution in a

reasonable computation time (Toth et al., 2014). Metaheuristics are algorithms and techniques

that apply some level of randomness to find optimal or near-optimal solutions to hard problems

(Luke, 2013).

The term Genetic Algorithm (GA) was first used by Holland (1992), and it is inspired

by natural processes, e.g., genetic evolution process (Luke, 2013). Mostly, it starts with an initial

population of solutions, then some evolutionary process is applied, e.g., crossover and mutation,

generating new solutions offspring. Usually, this process is done for some generations or another

stop criteria. Also, according to Hoos and Stützle (2007), population-based algorithms fit into the

formal definition above, considering search positions as a set of individual candidate solutions.

Population of individuals

Initialization
GA

Selection

Survival Selection

chromosome

8 50 154 201 421 18 n

Crossover Mutation

Repair

Solution

Fitness
Evaluation

TC

Figure 3.1: A general scheme of a Genetic Algorithm in VRP context.

According to Figure 3.1, a population of individuals (strings or vectors) is used, and

these individuals are often referred to as chromosomes. Besides, the recombination of individuals

is performed using analogies of genetic crossover and mutation. In addition, the search is guided

by the results of evaluating the objective function (Fitness Evaluation) for each individual in the

population. Based on this evaluation, individuals with better fitness (i.e., higher or lower, which
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depends on the type of problem: maximization or minimization) can be selected and receive

more opportunities to breed (Labadie et al., 2016). At last, once the Terminal Condition (TC) is

achieved, the process stops.

Hereupon, with this explanation, some concepts can be extracted as follows:

• Individual: Represents a possible solution to the problem. As mentioned before, an

individual is frequently referred to as a chromosome. Each chromosome is divided in

alleles, and each allele, usually in the VRP context, corresponds to a customer and or a

depot. The definition of an individual, namely representation, varies from one problem

to another. In this work, a permutation of customers (without delimiters), called giant

TSP tour (Prins, 2004; Vidal et al., 2012), is the representation of an individual.

• Initialization: A process that generates an individual. It can create individuals

randomly or use any problem-specific knowledge. For instance, this work uses a Greedy

Randomized Adaptive Search Procedure (GRASP) algorithm to generate good initial

solutions.

• Selection: When a population of individuals is evaluated, the next step is the selection

of parents. The selection is performed to pick up individuals that have good quality

or contribute to generating better individuals. The most popular technique is the

Tournament Selection (Luke, 2013), which is used in this work.

• Crossover: In this step, two individuals have their alleles mixed and matched to form

children. How the information of the parents is combined is crucial for the evolutionary

process to achieve better solutions (Luke, 2013).

• Mutation: In this procedure, small changes are performed in some individuals (Gendreau

and Potvin, 2010). Also, it is a common situation in VRP, applying a local search

procedure instead of using standard mutation operators (Prins, 2004; Vidal et al., 2012;

Nagata and Bräysy, 2009; Li et al., 2014a; Gutierrez et al., 2018).

• Survival Selection: This mechanism is responsible for the management of the population,

defining the individuals that will be part of the next generation (Luke, 2013).

Within this context, there is a relevant concept, which is the diversification. Diversity is

one of the keys to achieving a good performance in GAs, which is related to how different the

individuals in the population are. Therefore, depending on how the selection is performed, it

can reduce diversity very quickly (Gendreau and Potvin, 2010). In this work, it is considered as

diversity management two mechanisms: (a) clone deletion (individuals with the same fitness),

and (b) the average Hamming distance of the population.

Moreover, another important aspect is the repair mechanism, widespread on GAs (Prins,

2004; Nagata and Bräysy, 2009; Vidal et al., 2012). According to Gendreau and Potvin (2010),

in some cases, solutions generated by GRASP or GA may not be feasible. Therefore, to achieve

feasibility, a repair procedure is necessary. In our work, the repair mechanism is based on the

best insertion approach.

3.1.1 Crossovers

The crossover operator plays a crucial role in the GA. Following this principle, as TSP and VRP

are related problems, many efficient TSP crossovers can be used (Goldberg et al., 1985; Davis,

1985; Oliver et al., 1987; Syswerda, 1991). Here, we present seven crossovers that are considered

in our proposed approach.
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3.1.1.1 Partially Mapped Crossover

Presented by Goldberg et al. (1985), the Partially Mapped Crossover intends to pass some

ordering and value information to the offspring. First, a random sub-tour is copied from parent 1

to the offspring. This sub-tour is used to map the alleles of the sub-tour with the corresponding

index in parent 2. For example, the sub-tour is composed of alleles 4, 5, and 6. The corresponding

alleles in the same index in parent 2 are 1, 6, and 8. The mapping would be 4-1, 5-6, and 6-8.

After that, it is copied the alleles of parent 2 into offspring in the same index, and if the customer

is already present in the offspring, it is replaced by one in the mapping.

3.1.1.2 Edge Recombination

The Edge Recombination technique was first introduced by Whitley in 1989. It works by creating

a list of neighbors for each allele in both parents. The neighbor list is generated by recording

every allele’s immediate neighbors, including those that roll around the end of the chromosome,

for each parent. These two lists are then combined using a union process that ignores duplicates.

The next step involves randomly selecting an allele 𝑐 from either parent and adding it to

the offspring. This allele is then removed from the list of neighbors. If 𝑐 has no more neighbors, a

new random allele that is not present in the offspring is selected. However, if 𝑐 still has neighbors,

the one with the fewest neighbors is chosen (or a random one if there are multiple with the same

number of neighbors).

3.1.1.3 Order Crossover

Davis (1985) introduced the Order Crossover, which prioritizes the order of alleles. It builds an

offspring by choosing a sub-tour in parent 1 and preserving the relative order of alleles of parent

2 by copying the alleles that are not in the selected sub-tour, starting at the last cut point position

using the order of alleles of parent 2.

3.1.1.4 Order Based Crossover

The Order Based crossover was proposed by Syswerda (1991), and it selects several random

indexes slightly different from the order crossover of Davis (1985). It searches in parent 2 for the

alleles in these indexes, then searches in parent 1 for those alleles and replaces them by ordering

appearance in parent 2.

3.1.1.5 Cycle Crossover

In Cycle Crossover (Oliver et al., 1987) each allele comes from one parent along with its index.

For example, start with the allele in the first index of parent 1, go to parent 2 in the same index,

and check the allele on it. Search in parent 1 for the allele found in parent 2 and append it to

offspring.

3.1.1.6 Edge Assembly Crossover

Edge Assembly Crossover (EAX) was originally proposed for the traveling salesman problem

by Nagata and Kobayashi (1997). It has shown to be among the most efficient crossover, later

on, extended to CVRP by Nagata and Bräysy (2009). The EAX has two phases: the first one

involves the generation of an incomplete child via the so-called 𝐸-sets (sub-tours composed

of alternating edges from each parent); subsequently, these sub-tours are merged into a single
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feasible sub-tours using a greedy repair algorithm. It is worth mentioning, that EAX can link

edges that were not inherited. However, the offspring can be very similar to the parents, which

leads to a loss of diversity.

Figure 3.2: The EAX steps illustration (extracted from Nagata et al. (2010)).

Figure 3.2 illustrates the steps performed by the EAX. Thereby, in the first step a graph

𝐺𝐴𝐵 is defined, 𝐺𝐴𝐵 = (𝑉, 𝐸𝐴 ∪ 𝐸𝐵 |𝐸𝐴 ∩ 𝐸𝐵) in which 𝐸𝐴 and 𝐸𝐵 are the edges included in

the parents 𝑝𝐴 and 𝑝𝐵, respectively. In other words, 𝐺𝐴𝐵 comprises the edges that are different

in the selected parents.

In the sequel, 𝐴𝐵-cycles are defined on𝐺𝐴𝐵 in the second step. Hereupon, an 𝐴𝐵-cycle

is as a cycle on 𝐺𝐴𝐵 where edges from 𝑝𝐴 and 𝑝𝐵 are linked alternately. So, 𝐴𝐵-cycles are

formed by randomly selecting a starting point on 𝐺𝐴𝐵. Then, edges belonging to 𝑝𝐴 and 𝑝𝐵
are selected in their turn until an 𝐴𝐵-cycle is completed. Also, each edge can belong to only one

𝐴𝐵-cycle. Thus, edges included in an 𝐴𝐵-cycle are deleted from 𝐺𝐴𝐵 every time an 𝐴𝐵-cycle

is completed. Therefore, 𝐴𝐵-cycles are generated until all edges in 𝐺𝐴𝐵 have been removed.

However, if several alternative edges are connected to a given node in 𝐺𝐴𝐵, the next edge is

selected randomly among the candidates.

In the third step, a combination of 𝐴𝐵-cycles is defined as 𝐸-sets. Here, two strategies

are applied to form E-sets (Nagata and Bräysy, 2009). After that, in the fourth step, 𝑝𝐴 is

selected as the base solution. Intermediate solutions (𝑎′ and 𝑏′) are created by removing from



31

𝑝𝐴 and adding from 𝑝𝐵 the edges in the selected 𝐸-set. As Figure 3.2 shows, based on the 𝐺𝐴𝐵
definition, common edges in the parents are necessarily included in the intermediate solutions

(𝑎′ and 𝑏′). The intermediate solutions are constrained by requiring that the number of edges

connected to the depot is 2𝑚 and the number of edges connected to all other nodes is two, where

𝑚 is the number of routes in the parents. As a result, intermediate solutions consist of 𝑚 routes

originating from the depot and possibly one or more sub-tours (cycles not including the depot).

Finally, the sub-tours are merged in random order with the routes using a greedy

approach or some local move in the fifth step. Accurately, for a randomly selected sub-tour, an

edge to be removed is selected from both the sub-tour and one of the routes, and then two new

edges are introduced to connect them. Here, all possible combinations are attempted, and the

move that minimizes the distance is executed. An offspring solution is obtained by repeating this

step.

3.1.2 Local Move Operators

A local search process starts from an initial solution (e.g., usually provided by some constructive

heuristic) and moves from the current solution to a solution in its neighborhood. Frequently, each

solution has a few feasible neighbor solutions, and a local move operator determines those moves

(Caric and Gold, 2008).

Also, in the literature, we found two groups of operators: Intra-Route and Inter-Route
operators. The first operator group moves one or more customers from one position to another in

the same route. The main goal of these operators is the reduction of the overall distance. The

Inter-Route operators group moves customers between two routes or more routes, and they are

used to reduce overall distance. Besides, in some cases, they can reduce the number of vehicles as

well (Toth et al., 2014). Additionally, they can also be viewed as destroying and repair operators,

which alternate between moves that destroy part of the solution and reconstruct it (Toth et al.,

2014).

Therefore, we present the most used local moves, which are considered and will be

evaluated to be part of the local search procedure in the GRASP.

3.1.2.1 Destroy and Repair Operators

Usually, these operators are applied in pairs. First, it is selected a destroy operator, then a repair

one. Thus, three destroy and two repair operators are presented as follows:

• Related Destroy: remove 𝑛 customers from the solution based on some similarity

measure. This approach makes the repair process easier and more likely to succeed.

Here, we present a Related Destroy that uses a similarity metric based on Shaw similarity

(Pisinger and Ropke, 2007), which was designed for the Pickup and Delivery Vehicle

Routing Problem (PDVRP). Therefore, we had to modify it to the CVRP as follows:

𝑠ℎ𝑎𝑤 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑎, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑏) + |𝑞𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑎 − 𝑞𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑏 | (3.1)

Thereby, randomly 𝑛 customers are selected (shaw candidates), next is picked up one

customer from the shaw candidates list and calculated the 𝑠ℎ𝑎𝑤 for each customer that

does not belong to the shaw candidates and inserted into the shaw sample. Next, the

shaw sample is sorted by the 𝑠ℎ𝑎𝑤 metric, and a customer is picked-up randomly by:

𝑚𝑎𝑥

((
𝑠𝑖𝑧𝑒_𝑜 𝑓 (shaw sample)

2
− 1

)
× 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛, 0

)
(3.2)
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The 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟 (𝑟𝑎𝑛𝑑𝑜𝑚_𝑛) is a float number between 0 and 1.

• Worst Destroy: remove 𝑛 customers with the highest cost (distance) from the solution.

For each pair (𝑖, 𝑖 + 1) of customers, the cost is calculated, and the 𝑛 highest is removed

from the solution.

• Random Destroy: remove 𝑛 randomly selected customers from the solution.

• Greedy Repair: inserts a customer in the least cost position in the solution (best

insertion).

• Noise Repair: inserts a customer in the least cost position in the solution given a noise

parameter. Therefore, the noise factor is used as a random ratio for the cost in the best

insertion method as follows:

𝑛𝑜𝑖𝑠𝑒_ 𝑓 𝑎𝑐𝑡𝑜𝑟 = 𝑐𝑜𝑠𝑡 ∗ (𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟 − 0.5) (3.3)

𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 + 𝑛𝑜𝑖𝑠𝑒_ 𝑓 𝑎𝑐𝑡𝑜𝑟 (3.4)

3.1.2.2 Relocate
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a1

a3a4

(a) Relocate intra-route

a2a0

a1

b1b0

a2a0

a1

b1b0

(b) Relocate inter-route

Figure 3.3: Relocate Illustrations.

As Figure 3.3(a) shows a relocate intra-route operation, 𝑎1 is relocated from the original

position (between customers 𝑎0 and 𝑎2) to between 𝑎4 and 𝑎3 the customer. The saving

calculation is the maximization of the subtraction 𝑥 − 𝑦, where 𝑥 is the result of three arc deletion

(𝑎0, 𝑎1), (𝑎1, 𝑎2), and (𝑎4, 𝑎3). And 𝑦 is the result of three arc addition of (𝑎0, 𝑎2), (𝑎3, 𝑎1),

and (𝑎1, 𝑎4) (Caric and Gold, 2008). For an inter-route operation, Figure 3.3(b), the saving is

calculated through the overall maximization of the subtraction mentioned. However, deleting

(𝑎0, 𝑎1) and (𝑎1, 𝑎2) arcs, and inserting (𝑏0, 𝑎1) and (𝑎1, 𝑏1) arcs.

3.1.2.3 Exchange

Exchange operation swaps two customers, 𝑎1 and 𝑎4 (Figure 3.4(a)), and 𝑎1 and 𝑏1 (Figure

3.4(b)). Therefore, in the intra-route movement, the (𝑎0, 𝑎1), (𝑎1, 𝑎2), (𝑎3, 𝑎4), and (𝑎4, 𝑎5) arcs

are deleted. After that, arcs (𝑎0, 𝑎4), (𝑎4, 𝑎2), (𝑎3, 𝑎1), and (𝑎1, 𝑎5) are inserted. Nevertheless,

in the inter-route operation, customer 𝑏1 is relocated to route 𝑎, and customer 𝑎1 to route 𝑏.
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Figure 3.4: Exchange Illustrations.

3.1.2.4 2-Opt

A 2-opt move consisted of removing two arcs from a route and reconnecting them in the same

route (if a cost-saving exists) while changing the orientation of the sub-path that is not connected

to the depot shown by Figure 3.5.

a2a0

a1a3

a2a0

a1a3

Figure 3.5: 2-Opt Illustration.

3.1.2.5 2-Opt Star (2-Opt*)

a1a0

b1b0

a1a0

b1b0

a2

b2

a2

b2

Figure 3.6: 2-Opt Star Illustration.

the 2-opt* move is very similar to the 2-opt, but two routes are modified instead of

one. As in the 2-opt, two arcs (𝑎1, 𝑎2) and (𝑏1, 𝑏2) from two distinct routes are deleted and

reconnected by inserting the arcs (𝑎1, 𝑏2) and (𝑏1, 𝑎2). According to Figure 3.6, the difference

from 2-opt is that the tails of the routes are affected, i.e., they are exchanged.

3.1.2.6 OR-Opt

Whenever savings exist, the intra-route operator Or-Opt relocates the sub-path (𝑎1,𝑎2) to a

different position in the route (inserting the sub-path between 𝑎4 and 𝑎5 as shown by Figure 3.7).

The Or-opt is a practical operator due to its speed (Caric and Gold, 2008).
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Figure 3.7: OR-Opt Illustration.

3.1.2.7 Cross-Exchange
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Figure 3.8: Cross-Exchange Illustration.

The swaps of two groups of customers from one route to another are called Cross-

Exchange (Figure 3.8). Therefore, this operation is done by deleting four arcs (𝑎0, 𝑎1), (𝑎2,

𝑎3), (𝑏0, 𝑏1), and (𝑏2, 𝑏3), after inserting (𝑎0, 𝑏1), (𝑏2, 𝑎3), (𝑏0, 𝑎1), and (𝑎2, 𝑏3). When

only sub-paths that contain a few customers are considered, the size of the cross-exchange

neighborhood is reduced (Toth et al., 2014). Figure 3.8 shows an inter-route operator, but the

cross-exchange can be used in an intra-route operation as well.

3.2 GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE

Feo and Resende (1989) presented the GRASP as an iterative metaheuristic (Feo and Resende,

1995), in which each iteration performs two phases: construction and a local search phase, as

shown by Figure 3.9. Additionally, the best overall solution is kept (Memory).

In the construction phase, a feasible solution is iteratively constructed. At each

construction iteration, the choice of the next element to be added is determined by ordering all

elements in a candidate list concerning a greedy function. The adaptive aspect of the GRASP is

that the benefits associated with every element are updated at each iteration of the construction

phase, reflecting the changes brought on by selecting the last element.

Moreover, the probabilistic component of the GRASP is characterized by randomly

choosing one of the best candidates in the list, but not necessarily the best candidate. Therefore,

the list of best candidates is called the Restricted Candidate List (RCL). Despite this choice

technique allowing for different solutions to be obtained at each GRASP iteration, the power of

the adaptive greedy component of the method is not necessarily compromised (Feo and Resende,

1989).

As in many deterministic methods, the solutions generated by a GRASP construction

are not guaranteed to be locally optimal concerning simple neighborhood definitions. Hence,

a local search phase starts to improve each constructed solution (Gendreau and Potvin, 2010;

Labadie et al., 2016).
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Figure 3.9: A general scheme of the GRASP.

3.3 SIMULATED ANNEALING

Simulated annealing (SA), proposed by Kirkpatrick et al. (1983) is a stochastic optimization

algorithm that belongs to the family of metaheuristic algorithms. This algorithm is based on

the annealing process of metallurgy, where a material is gradually cooled after being heated to

achieve a low-energy crystalline state.

Simulated annealing applies the same concept to navigate the solution space of an

optimization problem. The algorithm initiates with an initial solution and gradually explores

adjacent solutions while steadily reducing the exploration parameter, usually called temperature.

Figure 3.10 shows a general scheme of the SA. The process starts with the temperature’s

initialization and a copy of the initial solution to 𝑆∗. After, the heuristic is applied until the

terminal condition is achieved 𝑇 > 𝑇𝑓 𝑖𝑛𝑎𝑙 . The 𝑆∗ is evaluated by the object function given by

the heuristic and through a acceptance criterion, which usually uses the temperature 𝑇 as an

adaptive factor. Finally, the temperature is cooled and the solution is returned in case the terminal

condition was achieved.

Notably, as the temperature is gradually reduced, the inferior solutions (considering the

objective function) to the previous ones are more rejected during the acceptance criterion phase.

3.4 SPLIT ALGORITHM

The Split algorithm, proposed by Prins (2004), is a route-first cluster-second heuristics and

modern genetic algorithms for vehicle routing problems. In this respect, a route-first cluster-

second heuristic is a constructive method, in which in the first phase a giant TSP tour is created,

disregarding side constraints. Then, it is decomposed into feasible vehicle routes in a second

phase. As highlighted by the survey of Prins et al. (2014), around 70 recent articles use this

technique.

The objective of Split algorithm is to partition the giant TSP tour into 𝑚 disjoint

sequences of consecutive visits. Therefore, each sequence is associated with a route, which

originates from the depot. After, visits its respective customers and then returns to the depot.

Therefore, the total distance of all routes should be minimized.

The Split algorithm aims to find the delimiters for the route as a shortest path problem.

Define an auxiliary graph 𝐺 = (𝑉, 𝐴, 𝑐), where 𝑉 is the set of nodes with 𝑛 + 1 elements indexed

from 0 to 𝑛. 𝐴 an arc (𝑖, 𝑗) with 𝑖 < 𝑗 . Each arc represents a trip (𝑟𝑖+1, 𝑗 ) from depot 𝑉0, visiting
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Figure 3.10: A general scheme of the SA.
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Figure 3.11: Illustration of the split algorithm process (extracted from Prins (2004)).

customers 𝑉𝑖+1 to 𝑉𝑗 , and returning to the depot 𝑉0 with a 𝑑 cost associated. If a trip is feasible

according to load (equation 3.5) and cost (equation 3.6) conditions, the 𝐶𝑖 𝑗 is equal to the trip

cost.
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∀(𝑖, 𝑗) ∈ 𝐴 :

𝑗∑
𝑥=𝑖+1

𝑞𝑟𝑥 ≤ 𝑊, (3.5)

∀(𝑖, 𝑗) ∈ 𝐴 : 𝐶𝑖, 𝑗 = 𝑉0,𝑟𝑖+1
+

𝑗∑
𝑥=𝑖+1

(𝑑𝑟𝑥 +𝑉𝑉𝑥 ,𝑉𝑥+1
) + 𝑑𝑟 𝑗 +𝑉𝑟 𝑗 ,0 ≤ 𝐿. (3.6)

Figure 3.11 shows a sequence 𝑉 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) with𝑊 = 10 and 𝐿 = ∞, the demand

of each customer is in brackets (1). 𝐺 (2) contains, e.g., arcs (bold lines) 𝑎 − 𝑏 with 𝐶𝑎,𝑏 = 55 for

the trip 𝑟𝑎,𝑏 (0 − 𝑎 − 𝑏 − 0), 𝑐 with 𝐶𝑐 = 60 for the trip 𝑟𝑐 (0 − 𝑐 − 0), and 𝑑 − 𝑒 with 𝐶𝑑,𝑒 = 90

for the trip 𝑟𝑑,𝑒 (0− 𝑑 − 𝑒 − 0) with a total cost of 205. The lower part (3) gives the VRP solution

with three trips.

3.5 HYBRID GENETIC SEARCH WITH AN ADAPTIVE DIVERSITY CONTROL

(HGSADC)

One of the particular algorithms for solving several VRPs is the Hybrid Genetic Algorithm with

Adaptive Diversity Control (HGSADC) proposed by Vidal et al. (2012). The HGSADC is based

on the GA introduced by Holland (1975) but includes some advanced features in terms of solution

evaluation, offspring generation and improvement, and population management, contributing to

its originality and high-performance level.

According to Figure 3.12, the algorithm evolves two populations of individuals (feasible

and infeasible solutions). The two populations contain between 𝜇 and 𝜇+𝜆 individuals. Hereafter,

the populations are generated by the Initialization process, where 4𝜇 individuals are created

by a Random procedure. Then, the Education is performed, executing two local search-based

procedures. First, a route improvement procedure (RI) is executed, which explores for each

period a neighborhood based on relocations and exchanges of customer visit sequences, with

eventual inversions. After, the pattern improvement procedure (PI) evaluates the best combination

of re-insertions (Relocate) within periods for each customer in random order. Any improving

re-insertion is directly performed until no more improvement can be found. Lastly, the RI is

called again, providing efficient service sequencing and assignment characteristics. Finalizing

the Initialization process, a Repair procedure (which also calls the Education) is applied with a

certain probability to infeasible individuals.

Any individual 𝐼 in the population (Infeasible Population + Feasible Population) is

characterized by its solution cost (Equation 3.8), where 𝜔𝑄 and 𝜔𝐿 represent the penalties for

exceeding the vehicle capacity and the route maximum duration, respectively. Also, 𝑐𝑜𝑠𝑡 (𝑟),
𝑙 (𝑟), and 𝑞(𝑟) are the total distance, total duration, and total capacity of route 𝑟, respectively.

Still, the individual diversity is defined as the average distance from 𝐼 to its closest neighbors

𝑁𝑐𝑙𝑜𝑠𝑒 related to its population (Equation 3.9). Here, the distance 𝛿𝐻 (𝑃, 𝑃2) is the Hamming

distance. Therefore, the Equation 3.10 presents the evaluation of an individual, where 𝑛𝑏𝐸𝑙𝑖𝑡 is

the number of elite individuals one desires to survive to the next generation, and 𝑛𝑏𝐼𝑛𝑑𝑖𝑣 stands

for the rank of an individual 𝐼 in its population of size 𝑛𝑏𝐼𝑛𝑑𝑖𝑣.

𝜙(𝑟) = 𝑐𝑜𝑠𝑡 (𝑟) + 𝜔𝐿 × 𝑚𝑎𝑥(0, 𝑙 (𝑟) − 𝐿) + 𝜔𝑄 × 𝑚𝑎𝑥(0, 𝑞(𝑟) −𝑄) (3.7)

𝑓 𝑖𝑡 (𝐼) =
∑
∀𝑟𝑖𝑛𝐼

𝜙(𝑟) (3.8)
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Figure 3.12: A general scheme of the HGSADC.

𝑑𝑐(𝐼) =
1

𝑁𝑐𝑙𝑜𝑠𝑒
×

∑
𝐼2∈𝑁𝑐𝑙𝑜𝑠𝑒

𝛿𝐻 (𝐼, 𝐼2) (3.9)

𝐵𝐹 (𝐼) = 𝑓 𝑖𝑡 (𝐼) + (1 −
𝑛𝑏𝐸𝑙𝑖𝑡

𝑛𝑏𝐼𝑛𝑑𝑖𝑣
) × 𝑑𝑐(𝐼) (3.10)

Continuing with the process, two parents are selected (Parent Selection) by a binary

tournament in the union of both Infeasible Population and Feasible Population, then are

assigned to a crossover operator. The periodic crossover with insertions (PIX) is used for the

Periodic VRPTW (PVRPTW) and enables to inheritance of good sequences of visits from both

parents. Also, it recombines visit patterns. In contrast, for the other VRPs, the HGSADC relies

on the Ordered Crossover.

Thereafter, the offspring undergoes the Split algorithm to extract its routes. Then,

Education is applied, followed by a Repair phase (executed with a certain probability) if the

current solution is infeasible (I-I). Moreover, the Repair procedure increases the penalty values
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by a factor of 10, and the process is repeated with a penalty increase of 100 if the offspring

remains infeasible.

When the maximum size (𝜇 + 𝜆) of a population is reached (I-MPS), the Survival
Selection is applied, removing iteratively 𝜆 times the worst clone in terms of biased fitness (BF -

Equation 3.10), or the worst individual when no clone exists.

Also, a Diversity Control is triggered whenever 𝐼𝑡𝑖 = 0.4 × 𝐼𝑡𝑇𝑂𝑇𝐴𝐿 (I-NI) iterations

are performed without improving the best solution. For that reason, it is retained the best
𝜇
3

individuals of each population, and 4𝜇 new individuals are added (introducing new genetic

material). After that, the Survival Selection is executed again.

Lastly, the Adjust Parameter is performed every 100 iterations, where 𝜔𝐿 and 𝜔𝑄 are

the parameters to be updated. 𝜉𝑅𝐸𝐹 is a target proportion of entirely feasible individuals, and

𝜉𝐿,𝑄 is the proportion in the last 100 generated feasible individuals concerning route duration

and vehicle capacity, respectively. Thus, the parameters are updated as follows:

• if 𝜉𝐿,𝑄 ≤ 𝜉𝑅𝐸𝐹 − 0.05, then 𝜔𝐿,𝑄 = 𝜔𝐿,𝑄 × 1.20

• if 𝜉𝐿,𝑄 ≤ 𝜉𝑅𝐸𝐹 + 0.05, then 𝜔𝐿,𝑄 = 𝜔𝐿,𝑄 × 0.85

3.5.1 Benefits

The HGSADC presents as benefits the following aspects:

• Education: The utilization of the RI and PI methodology has proven to be effective in

optimizing movement by exploring the neighborhood for each period and evaluating the

most suitable combination to apply.

• Feasible and Infeasible population: The management of these two populations enlarged

the search space, which may have helped the HGSADC to escape from local optimums.

• Diversity Control: This mechanism works as a "shack procedure", keeping the

population at a certain level of diversity by introducing new genetic material. This

procedure may have helped the crossover phase combine a wide variety of genetic

material, generating better solutions.

3.6 FAST ITERATED LOCAL SEARCH LOCALIZED OPTIMIZATION (FILO)

The FILO metaheuristic, according to Figure 3.13, consists of a Initialization phase, which

builds an initial feasible solution using a restricted version of the savings algorithm. Then, it

follows an improvement phase aimed at further enhancing the initial solution quality. More

precisely, the improvement phase may first employ a Route minimization procedure to possibly

reduce the number of routes in the initial solution when it is considered to be using more

routes than necessary. After, a core Optimization procedure uses an iterative and localized

optimization scheme to improve the solution quality further. Both route minimization and core

optimization follow the Iterated Local Search paradigm (ILS) in which shakings, performed in

a ruin-and-recreate fashion, and local search applications interleave for a prefixed number of

iterations.

The initial solution is built using an adaptation of the well-known savings algorithm

by (Clarke and Wright, 1964a). It was set 𝑛𝑐𝑤 = 100 and computed the savings values for

the arcs connecting each customer 𝑖 to its 𝑛𝑐𝑤 neighbor customers 𝑗 using a lexicographic
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Figure 3.13: A general scheme of the FILO.

order for the customers to avoid symmetries. More precisely, this set is given by the arcs

{(𝑖, 𝑗) : 𝑖 ∈ 𝑉𝑐, 𝑗 ∈ 𝑁
𝑛𝑐𝑤
𝑖 ({ 𝑗 ∈ 𝑉𝑐 : 𝑖 < 𝑗})}.

After, the Route Minimization starts. This procedure is applied to a solution 𝑆 built by

the initial construction phase whenever the number size of 𝑆 (number of routes) is found to be

greater than an ideal estimated number of routes 𝑚. The value 𝑚 is computed by heuristically

solving a bin-packing problem with an item of weight 𝑞𝑖 for each customer 𝑖 ∈ 𝑉𝑐 and bins of

capacity 𝑄 through a simple greedy first-fit algorithm.

When the condition is triggered, the algorithm begins with the initialization of the

best-found solution 𝑆∗, which is set to the initial solution generated during the construction
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phase. During each iteration, pairs of routes 𝑟𝑖, 𝑟 𝑗 are selected from the solution. Customers

from these routes are temporarily removed from the solution and placed in a list of unrouted

customers𝑈. Route selection is guided by specific criteria. The first route 𝑟𝑖 is selected using a

random customer seed, while the second route 𝑟 𝑗 is determined based on customer neighbors

with increasing cost, defined by the cost function 𝑐𝑖 𝑗 .
Unrouted customers in list𝑈 undergo either a random shuffling or sorting based on their

demand. For each unrouted customer 𝑖 ∈ 𝑈, the algorithm endeavors to find a feasible position in

the existing routes that minimizes insertion costs. If a suitable position cannot be located and

capacity constraints are breached, a decision is made to create a new route. The choice to create

a new single-customer route hinges on the number of existing routes and a probability threshold

𝑃, calculated by Equation 3.11.

𝑃 = 𝑧 · 𝑃 where 𝑧 =

(
𝑃 𝑓

𝑃0

) 1
Δ𝑅𝑀

(3.11)

Where:

• 𝑃 is the updated probability threshold.

• 𝑃0 is the initial probability.

• 𝑃 𝑓 is the final probability.

• Δ𝑅𝑀 represents a specific number of iterations.

The algorithm further involves a mechanism for updating the threshold 𝑃 based on

an exponential schedule. Subsequently, following customer insertion, a restricted Hierarchical

Randomized Variable Neighborhood Descent (HRVND) is applied to the solution. This secondary

improvement phase is focused on the first tier of move generators and is executed for a limited

number of iterations Δ𝑅𝑀 .

The iterative procedure continues until a solution is obtained, where all customers are

routed. In this case, the best solution 𝑆∗ is replaced with the new solution if the latter offers a

lower cost or the same cost but fewer routes. The procedure also incorporates an early stopping

condition based on the number of routes in the best solution, preventing further iterations when a

desired route count is achieved.

Before moving on to the next iteration, if a partial or feasible solution has a cost higher

than the current best solution, it is reset to the best solution. The procedure continues for a

specified number of iterations Δ𝑅𝑀 . Ultimately, the final result is the best solution 𝑆∗ achieved

through the iterative process.

Moving forward to the Optimization module, the Hierarchical Randomized Variable

Neighborhood Descent (HRVND) combines the principles of random and fixed neighborhood

exploration strategies. It does this by using a slightly more structured approach whereby local

search operators are grouped into tiers, each of which is a compound operator that applies its

subset of local search operators by following the RVND principles. The overall HRVND links

the tiers together once they have been ordered according to the criteria defined by the VND. This

includes the overall computational complexity of the operators involved in the tier. The HRVND

can thus be seen as a standard VND in which each tier is a compound local search operator and

where successively more expensive tiers are used to escape from the local optima of the previous

ones.

The HRVND local search applies the following operators in two tiers: (1) 10EX, 11EX,

SPLIT, TAILS, TWOPT, 20EX, 21EX, 22EX, 20REX, 21REX, 22REX, 22REX*, 30EX, 31EX,
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32EX, 33EX, 30REX, 31REX, 32REX, 33REX, 32REX* and 33REX*, and (2) ejection-chain

(EJCH). The first tier contains operators defining neighborhoods of quadratic cardinality, and

they all have very similar execution times. On the other hand, the second tier contains the most

expensive operator employed by the local search engine.

The operator’s neighborhood is thoroughly explored, and all the enhancements are

implemented before moving on to the next operator on the list. The next level is only utilized

when the prior levels have reached a local optimum solution.

Still, the Optimization module involves a shaking step, where a random walk (of length

𝜔𝑖) is initiated. The walk begins from a randomly selected customer, denoted as 𝑖 ∈ 𝑉𝑐, within

the customer subgraph. The walk unfolds within a subgraph defined by 𝐺 (𝑉𝑐, 𝐴𝑐), where 𝑉𝑐
represents the set of customers, and 𝐴𝑐 comprises the arcs connecting these customers. As the

walk progresses, visited customers are removed from the solution, and the subgraph is updated

accordingly. This involves modifying 𝑉𝑐 and 𝐴𝑐 to reflect the removal of customer 𝑖.
The walk may be extended by moving either forward or backward within the same

route 𝑟𝑖. Alternatively, it may involve jumping to a neighboring route. The decision regarding

whether to continue on the same route or jump to another is made probabilistically, with equal

probabilities assigned to each choice. If a jump to a neighboring route is selected, the algorithm

assesses customers in the vicinity, focusing on those with increasing 𝑐𝑖 𝑗 cost. The goal is to

identify a suitable route, denoted as 𝑟 𝑗 , that meets specific requirements.

Following the shake phase, the algorithm proceeds to the recreate step. Here, the

previously removed customers are reintegrated into the solution, with a focus on minimizing the

insertion cost. The algorithm employs various strategies, including random shuffling or sorting

of customers based on demand, distance from the depot, or other relevant criteria.

Throughout the algorithm, there is a mechanism for controlling the ruin intensity. This

involves adaptively adjusting the length of the random walk, represented as 𝜔𝑖. The iterative

adaptation process aims to identify disruptive actions that align with the specific problem and

solution.

An integral part of the algorithm is the application of HRVND to the shaken solution 𝑆.

HRVND is used to identify a local optimum solution, denoted as 𝑆𝑟 .
The algorithm employs a Simulated Annealing (SA) acceptance strategy to determine

whether the new solution 𝑆𝑟 should be accepted as the next point in the search trajectory, which

is given by Equation 3.12 and temperature cooling by Equation 3.13.

𝑐(𝑆𝑟) < 𝑐(𝑆) + 𝑇 · lnU(0, 1) (3.12)

𝑇 = 𝑐 · 𝑇, 𝑤𝑖𝑡ℎ 𝑐 =
𝑇𝑓

𝑇0

1
Δ𝐶𝑂

(3.13)

This decision is influenced by factors such as cost differentials and a temperature

parameter, denoted as 𝑇 . The temperature parameter is initially set as 𝑇0 and is adjusted at the

end of each core optimization iteration.

The optimization process takes advantage of dynamic move generators on a vertex-wise

basis. Sparsification parameters, denoted as 𝛾𝑖, are utilized and adaptively adjusted based on

the number of non-improving iterations involving a particular vertex 𝑖, given by the Equation

3.14. The value of 𝛾𝑖 is reset to a base value, denoted as 𝛾base when a solution improving 𝑆∗ is

discovered during a local search involving vertex 𝑖.

𝛿 · Δ𝐶𝑂 · average( |�̄�𝑆 |)

|𝑉 |
(3.14)
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Where:

• 𝛿 is a reduction factor, and it belongs to the closed interval [0, 1].

• Δ𝐶𝑂 represents some change or cost related to the optimization problem being solved.

• average( |�̄�𝑆 |) denotes the average number of vertices cached after previous local search

executions.

• |𝑉 | is the total number of instance vertices.

The algorithm also incorporates cache size management, where a cache is maintained to

track vertices. This cache is updated based on conditions such as the number of non-improving

iterations or the discovery of a better solution. In cases where the cache size is smaller than the

total number of vertices, certain vertices may not be considered for updates. This is particularly

true when the cache size, denoted as 𝐶, is less than the total number of instance vertices, denoted

as |𝑉 |.

3.6.1 Benefits

Despite its complexity, FILO has some notable aspects:

• Adaptive Shake Procedure: This process involves adjusting the length of a random

walk iteratively to identify disruptive actions that align with the specific problem and

solution. This may help to destroy the parts of the solution that are more likely to be

improved.

• Sparsification combined with Local Search Engine: The application of the sparsifi-

cation factor in conjunction with the Local Search Engine warrants a more structured

approach that effectively blends the randomness of exploration strategies with fixed

neighborhood exploration strategies. This is achieved through the hierarchical grouping

of local search operators into tiers, each of which represents a compound operator that

applies a distinct subset of local search operators. In other words, this mechanism

facilitates the control of the application of the subset of local operators in the destroyed

solution.

3.7 SLACK INDUCTION BY STRING REMOVALS (SISR)

Despite being based on basic operators such as ruin and recreate, the SISR approach showcases a

performance that is comparable to FILO and HGSADC (Christiaens and Berghe, 2020).

Figure 3.14 shows the solution generation on the SISR algorithm. The initialization of

a solution, which is denoted as 𝑆 = {�,𝑈}, consisted of allocating one customer per tour. In

this context, � denotes the collection of tours, each of which fulfills at least one customer. On

the other hand, 𝑈 represents the group of customers who are not serviced by any tour 𝜏 ∈ �.

Following the algorithm process, the temperature 𝑇 is set to the initial temperature 𝑇0, then the

solution 𝑆 is saved as the best solution 𝑆∗ and checks if the fleet should be minimized or not.

The SISR algorithm utilizes simulated annealing to search through the neighborhood.

The algorithm starts with an initial temperature of 𝑇0, which is gradually reduced to its final

temperature 𝑇𝑓 in 𝑓 iterations using an exponential cooling schedule (Equation 3.15). The

cooling constant 𝐶 is determined using Equation 3.16.
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Figure 3.14: A general scheme of the SISR.

𝑇𝑥+1 = 𝐶 · 𝑇𝑥, 0 ≤ 𝑥 < 𝑓 (3.15)

𝐶 = (
𝑇𝑓

𝑇0
)

1
𝑓 , 𝑇0 > 𝑇𝑓 > 0 (3.16)

The fleet minimization procedure is shown in Figure 3.15. The optimal solution with

the fewest vehicles is denoted by 𝑆∗. Each client 𝑐 is monitored using the absence counter 𝑎𝑏𝑠𝑐
to keep track of the number of times they were not included in any tour (i.e. absent from the

solution). Initially, this counter is set to 0 for all clients. The following steps are taken in each

iteration. First, we obtain a new solution 𝑆∗𝑟 by using the Ruin and Recreate procedures. This

solution is accepted if either (1) the number of absent clients decreases or (2) the sum of absence

counters associated with the absent clients 𝑠𝑢𝑚𝐴𝑏𝑠(𝑈) =
∑
𝑐∈𝑈 (𝑎𝑏𝑠𝑐) decreases. If the current

solution is feasible (𝑈∗ = 0), the 𝑆∗ is updated. Afterward, the tour that serves clients with the

lowest sum of absence counters is removed from the current solution. Finally, each absent client

in the new solution has its associated absence counter incremented.

The Ruin operator (�−) is based on two concepts, capacity slack and spatial slack,

and three fundamental premises: (1) Remove a "Sufficient" Number of Customers, (2) Remove
“Adjacent” Customers, and (3) Remove Strings of Customers. According to Figure 3.16, the

process starts by computing 𝑙𝑚𝑎𝑥𝑠 (Equation 3.17), 𝑘𝑚𝑎𝑥𝑠 (Equation 3.18), and 𝑘𝑠 (Equation 3.19)

related to maximum string cardinality, the maximum number of strings, and the number of strings

to be removed respectively.

𝑙𝑚𝑎𝑥𝑠 = 𝑚𝑖𝑛{𝐿𝑚𝑎𝑥, |𝑡 ∈ 𝑇 |}, 𝑙𝑚𝑎𝑥𝑠 ∈ R+ (3.17)
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Figure 3.15: A general scheme of the Fleet Minimization of SISR.

𝑘𝑚𝑎𝑥𝑠 =
4𝑐

1 + 𝑙𝑚𝑎𝑥𝑠
− 1, 𝑘𝑚𝑎𝑥𝑠 ∈ R+ (3.18)

𝑘𝑠 =
⌊
U(1, 𝑘𝑚𝑎𝑥𝑠 + 1)

⌋
, 𝑘𝑠 ∈ N

+ (3.19)

The process of removing strings begins by selecting a random customer, labeled as

𝑐𝑠𝑒𝑒𝑑𝑠 , to serve as the seed customer. At this point, the set 𝑅 of tours that have been ruined is

initialized. The Ruin operator then examines whether there is a customer 𝑐 in the adjacency list

from 𝑐𝑠𝑒𝑒𝑑𝑠 (𝑎𝑑𝑗 (𝑐𝑠𝑒𝑒𝑑𝑠 )) and whether the set 𝑅 is smaller than 𝑘𝑠. If these conditions are met, the

Ruin operator checks whether the customer 𝑐 is not already in the set𝑈 and whether the tour 𝜏 is

not in the set 𝑅. If these conditions are satisfied, the customer 𝑐 is stored as 𝑐∗𝑡 , which represents

the closest customer to 𝑐𝑠𝑒𝑒𝑑𝑠 in the tour 𝜏. The values of 𝑙𝑚𝑎𝑥𝑡 and 𝑙𝑡 are then calculated using

Equations 3.20 and 3.21 respectively. Finally, a string is removed from the tour 𝜏 based on 𝑐∗𝑡
and 𝑙𝑡 , and it is stored in the set𝑈. The tour 𝜏 is also stored in the set 𝑅.

𝑙𝑚𝑎𝑥𝑡 = 𝑚𝑖𝑛{|𝑡 |, 𝑙𝑚𝑎𝑥𝑠 }, 𝑙𝑚𝑎𝑥𝑡 ∈ R+ (3.20)
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Figure 3.16: A general scheme of the Ruin Operator of SISR.

𝑙𝑡 =
⌊
U(1, 𝑙𝑚𝑎𝑥𝑡 + 1)

⌋
, 𝑙𝑡 ∈ N

+ (3.21)

During the string removal process, a tour 𝜏 containing customer 𝑐∗𝑡 will have a randomly

selected string of customers removed, with the string’s cardinality being 𝑙𝑡 . The split string
removal procedure is similar but removes a string of customers with a cardinality of 𝑙 +𝑚, which

contains customer 𝑐∗𝑡 while preserving a random substring of 𝑚 customers. To determine the

value of 𝑚, the process starts with 𝑚 = 1 and will maintain that value if a random number

U(0, 1) is greater than the split depth parameter 𝛽, or if 𝑚 = 𝑚𝑚𝑎𝑥 = |𝑡 | − 𝑙. Otherwise, the

process will increment 𝑚 and repeat. The probability of using the split string removal process is

determined by the split rate 𝛼 parameter.

Still on SISR, the Recreate operator, which is shown in Figure 3.17, introduces the

concept of greedy insertion with blinks. The operator takes the solution 𝑆 as input and sorts the

set of absent customers 𝑈 based on random, demand, far, or close orders, which are weighted

four, four, two, and one, respectively. For each customer 𝑐 ∈ 𝑈, the algorithm tries to insert it

into solution 𝑆 at the optimal position 𝑝, initially set to 𝑛𝑢𝑙𝑙. The operator then searches through

all tours (𝜏 ∈ �) to locate one with adequate capacity slack to serve 𝑐. After finding such a tour,

the algorithm evaluates each position 𝑝𝑡 inside that tour with a probability of 1 − 𝛾, where 𝛾 is

the blink rate. If the cost of inserting 𝑐 at any position 𝑝𝑡 is lower than the current best position

𝑝, 𝑝𝑡 becomes the new best position. If no position is found in the existing tours, the algorithm

creates a new empty tour to serve 𝑐. Finally, 𝑐 is inserted at 𝑝 and removed from the set of

absent customers𝑈. A blink rate of 𝛾 = 0 indicates that customers are always inserted at the best

position.
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Figure 3.17: A general scheme of the Recreate Operator of SISR.

3.7.1 Benefits

The SISR is the simplest technique among the selected for our ensemble. However, its mechanism

to escape from local optimums is very interesting and may help to achieve good results throughout

the evolutionary process. We highlighted the following aspects:

• Strategies in the Ruin Operator: Through the application of string removal and split

string removal strategies, and by taking into consideration the customer closest to 𝑐𝑠𝑒𝑒𝑑

with a value smaller than 𝑘𝑠, the ruin operator has been observed to produce a solution

that enables the recreate operator to avoid getting trapped in a local optimum.

3.8 ENSEMBLE IN POPULATION-BASED ALGORITHMS

According to past items and Chapter 3, several operators and algorithms are used and can solve

many VRPs. As stated by the No Free Lunch theorem (Wolpert and Macready, 1997), there is no

better algorithm than the other algorithms in solving all possible optimization problems. In other

words, it indicates that it is impossible (theoretically) to develop an algorithm that is superior to

all other algorithms in solving different optimization problems and their features (Mallipeddi

et al., 2011a).

That said, an ensemble strategy could provide a powerful tool for implementing a

flexible approach. In this sense, regarding population-based algorithms, the ensemble can be

defined as a combination of different strategies, operators, parameter values, and methods. That

means an ensemble can generate better results on a set of optimization problems than a single set

of strategies, operators, parameter values, and methods (Wu et al., 2019).

In this sense, according to Figure 3.18, ensembles in population-based algorithms can

be classified into three strategies as follows (Wu et al., 2019):
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Figure 3.18: An overview of different ensemble strategies (adapted from Wu et al. (2019)).

• Categories

– Low-level Heuristics: It is the ensemble of multiple components, including search

strategies, parameter values, constraint handling techniques, and neighborhood

structures, among others;

– High-level Heuristics: It comprehends the ensemble of different population-based

algorithm variations. Also, it is possible to include low ensemble strategies.

• Application Areas

– Single-objective Bound Constrained Optimization: It refers to the selection of

strategies and their control parameters. However, the selection of a suitable

algorithmic configuration is not straightforward, and it requires extensive parameter

tuning. Additionally, throughout the evolution process, different algorithmic

configurations can be appropriate at different stages;

– Multi-objective Optimization: Concerning a group of solutions to represent the

whole Pareto Front appropriately, it is crucial to avoid the clustering of solutions so

that the diversity can be improved. In multi-objective optimization literature, 𝜖 non-

dominance sorting is one such technique that does not allow more than one solution

with a difference in all objective values less than 𝜖 to be non-dominated by each

other. However, the effectiveness of the 𝜖 non-domination sorting method depends

on the selection of the individual 𝜖 values. In other words, different objectives and

different optimization algorithms require different 𝜖 values to maintain the diversity

of the population;

– Dynamic Optimization: It deals with environmental changes. Therefore, it is

essential to increase the diversity of the population and guarantee that the algorithm

does not converge to react and evolve further when environmental change is detected;
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– Constrained Optimization: It is essential to select an appropriate constraint handling

technique to effectively solve a problem by exploiting the information present in

infeasible individuals. However, according to the No Free Lunch theorem, it is

difficult to pick a single constraint-handling technique that can efficiently solve

diverse constrained optimization problems. Moreover, while solving a single

constrained problem, different constraint-handling methods can be effective during

different stages of the search process;

– Multi-modal Optimization: These are related to niching methods, which are regularly

used to maintain a diverse population by forming subgroups. In literature, various

niching methods such as crowding, sharing, and clearing have been proposed (Wu

et al., 2019);

– Optimization with Surrogates: Approximations have been employed in conjunction

with population-based algorithms. Thereby, the surrogate models are commonly

used to evaluate the competitiveness of different constituent parameter/strategy

combinations (Gong et al., 2015; Mallipeddi and Lee, 2015). In other words,

surrogate models are an approximation of the original functions, and the accuracy

or performance of the surrogate models depends on many factors, such as the

availability of a sufficient number of samples.;

– Discrete Combinatorial Optimization: Solving optimization problems with discrete

variables depends on destruction and construction procedures that work as a

mutation operator and crossover operator.

• Techniques

– Competitive Single Population: In a competitive single population ensemble, the

individual methods/parameters/strategies compete for resources while operating on

a single population;

– Competitive Multi Population: In a competitive multi-population ensemble, each

of the constituent methods/parameters is assigned a population. Competitive

multi-population ensembles differ in the way the resources are allocated to the

different populations;

– Cooperative Multi Population: Generally, the cooperative ensembles are multi-

population in nature. In a cooperative ensemble, the individual methods are

allocated predefined (sometimes equal) resources, and they try to cooperate with

each other by exchanging information.

Regarding Techniques, there are three methods to implement them (Wu et al., 2019):

• Hyper-Heuristic (HH): Automates the heuristic design process based on the structure

of the problem to be solved. Hence, hyper-heuristics offer benefits such as exploring

novel heuristics for a given problem that is unlikely to be created by a human analyst.

Furthermore, different heuristics can create a different subset of solutions, which are

more likely to be better than those obtained by one general heuristic;

• Island models: They are also known as coarse-grained models, multi-deme models,

distributed algorithms or portfolio optimization (Huberman et al., 1997). Island models

parallelize the evolution process by splitting the population into multiple sub-populations

called islands. Thus, the sub-populations on each island evolve separately for most of
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the time. However, they exchange solutions between the islands periodically through a

process called migration;

• Adaptive operator selection: During the credit assignment and operator selection, it

is essential to assign a higher probability to operators that produce better offspring

(exploitation). Simultaneously, it needs to keep operators that perform poorly for the

future search (exploration) by assigning minimum probability (Li et al., 2014b).

3.9 HYPER-HEURISTIC AND REINFORCEMENT LEARNING

As previously mentioned, one of the techniques used to select the heuristics in an ensemble is the

Hyper-Heuristic (HH). HHs explore the search space of heuristics to avoid getting stuck in local

optima solutions. Good HHs must know which is the appropriate heuristic to explore a different

area of the search space at the time. Algorithm 1 shows a standard selection Hyper-Heuristic

algorithm. The algorithm iteratively selects and applies a heuristic to the current solution and

computes the reward. Then, the acceptance criteria decide if the new solution is accepted. Finally,

the HH calls the update method of the corresponding selection model.

Algorithm 1: Selection Hyper-Heuristic

Input: Initial solution 𝑆
while stop criteria is not met do

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐()
𝑆𝑟 ← 𝐴𝑝𝑝𝑙𝑦𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝑆, ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)
𝑟𝑒𝑤𝑎𝑟𝑑 ← 𝐺𝑒𝑡𝑅𝑒𝑤𝑎𝑟𝑑 ( 𝑓 (𝑆), 𝑓 (𝑆𝑟))
if AcceptSolution(𝑆𝑟) then

𝑆 ← 𝑆𝑟

end
UpdateSelectionModel(𝑟𝑒𝑤𝑎𝑟𝑑)

end
return Best found solution

The reward for the selected operator is normally based on recent performance using

fitness and diversity measures. Additionally, acceptance criteria must be defined.

reward
Rt

state
St

action
At

Agent

Rt+1

St+1 Environment

Figure 3.19: Agent-environment interaction of a Markov Decision Process (extracted from Sutton and Barto (2018)).

Reinforcement Learning (RL) techniques (Sutton and Barto, 2018) have been widely

researched for applications in HH and Agent-Operator Systems (AOS). RL is a computational

approach that learns how to map situations to actions by interacting with an environment (Sutton
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and Barto, 2018). Unlike other machine learning paradigms like supervised and unsupervised

learning, there is no pre-existing dataset. Instead, the learning agent must be able to sense the

state of its environment and decide which action to take based on its observations, with the goal

of maximizing a numerical reward signal (Sutton and Barto, 2018).

The task of learning from interaction to achieve a goal can be framed as a Markov

Decision Process (MDP). MDPs are a classical formalization of sequential decision-making,

in which actions influence not only the immediate rewards but also the subsequent situations

(Sutton and Barto, 2018). The interaction between the agent and the environment is illustrated in

Figure 3.19. At each time step 𝑡, the agent receives a representation of the environment’s state

𝑆𝑡 and selects an action 𝐴𝑡 based on that. After acting, the agent moves to a new state 𝑆𝑡+1 and

receives a numerical reward 𝑅𝑡+1.

The definition of the state is a fundamental component of a Reinforcement Learning

system. In general, the state can be any information available to the agent about its environment.

3.10 CONCLUDING REMARKS

Many metaheuristics, heuristics, and operators have been proposed to solve a variety of VRPs.

This Chapter presented some well-known metaheuristics, e.g., GRASP, GA, SA, and fascinating

state-of-the-art approaches. Further, some relevant heuristics (Split algorithm) and the EAX were

explained in detail.

It is worth mentioning that, although we mentioned the PIX and EAX, we will not use

them in this work since they either do not attend to the restrictions addressed in this work or do

not compose our approach.
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4 RELATED WORKS

In the last decades, disasters have been one of the major research subjects due to the significant

loss of human lives (Kim, 2014; Yu and Liu, 2014; Le et al., 2015; Maldonado et al., 2017; Kropat

and Meyer-Nieberg, 2016; Amit et al., 2016; Kitajima et al., 2016; Kaneko, 2017; Wang et al.,

2018). Several approaches of Machine Learning, Evolutionary Computing, and Bio-inspired

Computing have been used in several areas and, specifically, in the field of evacuation problem

(Shahparvari et al., 2019; Shahparvari and Abbasi, 2017; Goerigk et al., 2015; Atmojo and

Sachro, 2017; Zhao et al., 2017; Li and Zhou, 2018). In this literature review, we present some

of the most relevant works related to our proposal in the evacuation context and in the VRP.

4.1 EVACUATION WORKS

Using a variant of the VRP, Vitali et al. (2017) proposed a method based on the GRASP algorithm

to solve a so-called Bus Evacuation Problem (BEP), which uses only buses (public transportation)

as a fleet. After that, apply the solution to a real-world scenario based on the wildfire in Valparaiso

(Chile).

The solution is represented using an array, where each index corresponds to one of the

buses. Each bus is a list of 𝑡𝑟𝑖𝑝𝑠, which corresponds to the complete route schedule for the

respective bus. Therefore, as an initialization method, they use a custom one, which identifies all

the possible trips to perform on the graph, i.e., the arcs.

Thereafter, the solution is improved in the GRASP. Regarding the local search phase in

the GRASP, Vitali et al. (2017) use an improvement Hill Climbing, with a custom shift local

move (i.e., resembling a relocate classic local move). At last, experiments are conducted in two

sets of instances generated: (a) a random one and (b) one based on the real case of the Great

Valparaiso Fire in Chile 2014.

Still, in a disaster context, Penna et al. (2018) presents a hybridization of a Set Partitioning

formulation and a Multi-Start Iterated Local Search with a Randomised Variable Neighbourhood

Descent to solve the Heterogeneous Multi-Depot Multi-Trip VRP with Site Dependency, referred

to as the Last Mile Distribution Problem (LMDP). The motivation was the Port-au-Prince

earthquake in 2010.

Their approach, called MS-ILS-RNVD, is an extension of the work of Subramanian et al.

(2012). However, it adds a multi-start mechanism (MS) to diversify the search using different

initial solutions. It replaces the local search of classical ILS with an RVND. In addition, another

refinement step consisted of memorizing a pool of good routes during the metaheuristic phase to

solve a Set Partitioning (SP) problem periodically.

In this sense, as an initialization method, they use a randomized parallel insertion

method, which provides MS-ILS-RVND with good and diversified initial solutions. Furthermore,

in the perturbation phase, a diversification mechanism is applied based on multiple feasible

and randomized swaps or reinsertions, adding or removing 𝑡𝑟𝑖𝑝𝑠 in a route (multi-trip) and

splitting a route into several short routes. Concerning the local search procedure, it is applied

five variants of swaps and relocations. In the inter-route moves, Relocate(1,0), Relocate(2,0),

Swap(1,1), Swap(2,1) and SWAP(2,2) are used. Also, RVND employs intra-route moves, which

are Relocate(1,0), Relocate(2,0), Relocate(3,0), Swap(1,1) and 2-OPT.

Besides, every five ILS iterations, the SP model is built from the solutions gathered in

the pool and then solved using a black-box Mixed Integer Linear Programming (MILP) solver.
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Experiments are performed on data based on the Port-au-Prince earthquake and the Salhi and

Sari (1997) benchmark.

In the same context of the distribution of relief goods, Vieira et al. (2021) proposed

an Ant Colony Optimization (ACO) metaheuristic hybridized with an RVND (MACS-RVND)

to solve the Emergency Water Trucking (EWT). The EWT is the reactive response to address

droughts most adopted by developing countries (Vieira et al., 2021). Besides, the problem was

modeled as an MDVRP.

Therefore, the proposed method is designed in two steps. In step one, it used the

transportation model to assign demand points to a water source. In step two, it modeled the

problem as multiple CVRPs, to address its size and complexity. Hence, in the second step of the

developed procedure, results from the MACS-RVND are compared with those obtained by Clarke

and Wright heuristics (Clarke and Wright, 1964b) with 2-opt, and with results from an Adaptive

Large Neighborhood Search (ALNS) approach proposed by Erdoğan (2017). The ALNS of

Erdoğan (2017) diversifies the search by randomly removing customers from the solution and

intensifies through reinsertion of the customers and local search by utilization of four local search

operators: Exchange, 1-opt, 2-opt, and Vehicle-Exchange.

Regarding MACS-RVND, which is an improved version of the MACS-VRPTW proposed

by da Silva Junior et al. (2021), in the RVND step, is used five inter-route moves: Shift(1,0),

Shift(2, 0), Swap(1,1), Swap(2,1), Swap (2,2), Cross-exchange and k-shift. Moreover, it uses five

intra-route moves: 2-opt, Exchange, and Or-opt1, Or-opt2, Or-opt3. Finally, the approach was

applied to a real water distribution case in the Brazilian semi-arid region.

4.2 VEHICLE ROUTING PROBLEM WORKS

Prins (2004) proposed a Hybrid GA or MA. Furthermore, he was the first to use a giant TSP tour

successfully. Concerning about the initialization method, Prins generates three chromosomes

with Clarke and Wright (1964b), Mole and Jameson (1976), and Gillett and Miller (1974). The

trips of each solution are concatenated into a chromosome, and then a local search process is

applied, followed by the application of the Split algorithm. The remaining population is generated

by a random permutation after the Split algorithm is applied for each one.

Besides, instead of using a mutation operator, he used a local search procedure with a

linear ordered crossover. In the local procedure, Prins used the Split algorithm combined with

insertion (relocate), swap (exchange), 2-opt (intra-route), and 2-opt* (inter-route) moves. Prins

also presents a population management mechanism by removing clones (chromosomes with the

same fitness) and inserting a new one from his initialization method.

Still on MA or Hybrid GA, Nagata and Bräysy (2009) presented an evolutionary

algorithm using the EAX. EAX crossover was originally proposed for the traveling salesman

problem by Nagata and Kobayashi (1997). It has shown to be among the most efficient crossover,

later extended to CVRP by Nagata and Bräysy (2009). The EAX combines two parents by

generating 𝐴𝐵− 𝑐𝑦𝑐𝑙𝑒𝑠, which are used to cut each parent solution. After this step, the sub-paths

in each parent are connected again with a greedy method (in Nagata and Kobayashi (1997, 2013))

or, in CVRP Nagata and Bräysy (2009), by 2-opt*. It is worth mentioning, that EAX can link

edges that were not inherited. However, the offspring can be very similar to the parents, which

leads to a loss of diversity.

Moreover, Nagata and Bräysy also used as a representation of a giant TSP tour, later

converted into sub-tours (routes). As an initialization method, they generate a solution through

saving costs heuristics, then apply a local search (slightly different from the original one, by

evaluating the moves with the penalty function). After, is performed a modification mechanism,
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followed by the original local search. The goal of the modification mechanism is to eliminate

capacity and duration violations of a solution.

Following through the process, once the EAX is applied, infeasible offspring can be

generated, then the modification mechanism is applied. After that, the local procedure is executed.

They extended the work to solve the VRPTW (Nagata and Bräysy, 2009). In this work, they

introduce a guided local search with ejections to improve the past approach.

Inspired by some ideas of Prins (2004) and Nagata and Bräysy (2009), Vidal et al.

(2013) proposed a Hybrid Genetic Search with an Adaptive Diversity Control (HGSADC). The

HGSADC follows the principle of using a giant TSP tour and a local procedure called Education.

In the Education procedure, they use Split algorithm (Prins, 2004) and four local movements:

swap (exchange), relocate, 2-opt, and 2-opt*. Thereby, the population is initialized randomly, and

then they apply the Education. If the solution is not feasible, they repair it. Still, in the crossover

phase, Vidal et al. uses an ordered crossover for most VRPs. For the Periodic VRP (PVRP), they

proposed a new crossover called Periodic Crossover with Insertions (PIX).

Further, they use relaxation as shown in (Nagata and Bräysy, 2009). The Adaptive
Diversity Control used the fitness function, called biased fitness function, which uses the Hamming

distance and a penalty function (due to relaxation) to evaluate the chromosome. Further, promotes

the survivor selection, which determines which pop size chromosomes will go to the next

generation. First, it removes the clones, which are chromosomes with the same fitness (biased
fitness), and then the worst chromosomes. Second, a diversification process, which keep the

best
pop size

3
chromosomes, and introduce new 4 × pop size chromosomes. Finally, the survivor

selection is applied again.

Li et al. (2014a) presented a hybridization of GA (HGA-ALS) and an Adaptive Local

Search. After generating the initial population, parents are selected by binary tournament and

then crossed by an improved ordered crossover. The mutation operator was substituted by an

Adaptive Large Neighborhood Search (ALNS), which uses ten local movements, two destroy

operators, and one repair operator called Greedy Insertion based on Probability Assignment
(GIPA). Rather than partition the solution into different sub-solutions, their adaptive mechanism

selects the best neighborhood method (local movements) to improve the current solution.

Concerning neighborhood metaheuristics, Sze et al. (2016) proposed a hybridization

of an Adaptive Variable Neighborhood Search (AVNS) with a Large Neighborhood Search

(LNS). Basically, their AVNS-LS has two phases: a learning phase (stage 1) and a multi-level

Variable Neighborhood Search (VNS) with a guided local search (stage 2). The adaptive feature

is performed in the local search process, which is a set of insertion, exchange, interchange, swap,

cross-exchange, 2-opt, 2-opt*, and a cross-tail (originally proposed by Jun and Kim (2012)).

The initial solution is generated by the saving method of Clarke and Wright (1964b),

and then it is refined using 2-opt and 2-op*. Thereafter, in stage 1, a shaking procedure is done

by three criteria: (a) distance between customers, (b) distance between the depot and customers,

and (c) angle between the depot and customers. Then, Best improvement local search is applied,

and for each operator, its score is stored along with the probability of selection. This information

is used in stage 2 and configures the learning phase. At the end of stage 1, Dĳkstra’s algorithm

is used as a post-optimiser. As a diversification strategy, Sze et al. (2016) uses an LNS, which

uses four destroy operators: Gain ratio deletion, Overlapping deletion, Worst-edge deletion, and

Conflicting sector deletion. They used a greedy least-cost insertion repair operator in the solution

reconstruction process.

On stage 2, all stage 1 steps are done, but a multi-level process is inserted in the place

of the Best improvement local search. The multi-level improvement approach mimics the local

search in the VNS. In addition, it adopts a mechanism that balances between the best and the
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first improvement strategies, which is defined as the 𝑘𝑡ℎ improvement. So, the main difference

between the two stages of the AVNS algorithm is in the local search procedure.

Again, on the population-based metaheuristics, Gutierrez et al. (2018) presents an MA

with a GRASP to solve the VRP with stochastic demands. As a chromosome, they used a twofold

representation, which is a giant TSP as in Prins (2004), and the detailed routes. Therefore, to

decode the giant TSP into a set of routes, they also use the Split algorithm from Prins (2004).

The initial population is generated by three methods: Clarke and Wright (1964b), Gillett and

Miller (1974) and best insertion heuristic. Moreover, a restart procedure is proposed based on

the GRASP, where the GRASP generates
(𝑃𝑜𝑝𝑠𝑖𝑧𝑒−1)

2
individuals, and the remaining ones are

randomly generated.

Still, individuals are selected by a binary tournament, and then an ordered crossover is

applied. They also apply a random mutation operator right after the Split algorithm. A Variable

Neighborhood Descent (VND) is used in the local search procedure, along with OR-opt, 2-opt,

and inter-cross local moves.

In turn, Rabbouch et al. (2019) proposed a GA with a recombination step for the

MDVRPTW with a heterogeneous fleet. Their GA is a typical GA, and the population is

generated by assigning customers to the nearest 𝑚 depots. After, a greedy heuristic is applied to

fulfill the routes. Also, it uses the route-based crossover (recombination) proposed byPotvin and

Bengio (1996), followed by a repair procedure right after, and then a swap as mutation operator.

Although their GA’s results are not competitive, in some instances of the tested benchmarks, it

achieved a GAP of 3.02% considering that Rabbouch et al. (2019) does not use any local search

mechanism.

On the other hand, Liu and Jiang (2019) presents a hybridization of ALNS with GA.

The initial solution is generated by a Quick insertion heuristic, and its representation is a set of

routes. After, a cross-exchange is applied, followed by an in-out heuristic. The in-out heuristic is

composed of two destroy operators (Shaw removal and Worst removal) and one repair operator

(best insertion repair). After, an intra-route process is applied, where is used the OR-opt local

move. If the solution generated by the ALNS meets the diversity criterion, then it is inserted into

the population.

In the GA phase, the parents are selected randomly, and an ordered crossover is applied.

In this process, the solution that came from the ALNS is converted into a giant TSP, and at the

end of the process, it is reconverted into a set of routes by the Split algorithm. At the end of the

GA phase, the worst
𝑝𝑜𝑝𝑠𝑖𝑧𝑒

2
are deleted, and the whole process starts again.

Later on, Abdallah and Ennigrou (2020) proposed a hybrid solution, composed of a

Particle Swarm Algorithm (PSO), a GA, and a MA, to solve the MDVRPTW with a heterogeneous

fleet. In the GA, they used the ordered crossover and exchange mutation operator, and in the

MA, in the local procedure, a Λ-exchange method inspired by Shi et al. (2017) is used. To

communicate between the metaheuristics called agents, they used an ACL message protocol

every time an agent improves its best result.

In the same sense, Zhen et al. (2020) formulated a MIP model to solve small instances

of the Multi-Depot Multi-Trip VRPTW and release dates. For large instances of the problem,

they presented two solutions, a PSO and a GA, both hybridized with a Local Search Variable

Neighborhood Descent (LS-VND). In the PSO, each particle is described as a two-dimensional

array, where the first array is with the customer id order, and the second corresponds to the

customer’s random position. Regarding the local search procedure, they used a VND with three

local moves: Reinsertion, Exchange, and Reverse.

In the GA, each chromosome has the same structure as a particle of the PSO, a two-

dimensional array. As a final step of the initialization, they group the customers by the depot.
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Moreover, they proposed a custom crossover. Instead of using a mutation operator, they apply the

same VND used with the PSO. Besides some customization at crossover, Most of their ideas for

the GA are inspired from Vidal et al. (2012).

Máximo and Nascimento (2021) proposed an Adaptive Iterated Local Search with a

Path Relinking (AILS-PR) to solve the CVRP. In their approach, an initial solution is generated

by a custom constructive heuristic, and it is a set of routes with a set of customers in each

route. The process continues with a perturbation mechanism composed of four removal operators

(Concentric removal, Proximity removal, and Vertex Sequence removal) and two reinsertion

operators (Proximity insertion and Cost insertion). After that, a local search procedure is

applied with four local moves: Shift, Swap, 2-opt, and 2-opt*. The local search procedure is

performed both in an intra and inter-route approach. Regarding the adaptive feature, Máximo

and Nascimento (2021) stores the information of how successfully each perturbation operator

was, followed by an acceptance criterion. It is worth mentioning that an elite set of solutions is

kept during this phase.

Thereafter, the Path Relinking phase starts. Two solutions with the same number of

routes are selected from the elite set of solutions, defining one as the initial solution and the other

as the guide solution. The Path Relininkg of Máximo and Nascimento (2021) is combined with a

Tabu Search metaheuristic. Hence, the main idea of this combination is to investigate the paths

between two solutions in order to find better-quality intermediate solutions.

The Slack Induction by String Removals (SISR) approach introduced by Christiaens

and Berghe (2020), while rooted in fundamental operators like ruin and recreate, demonstrates

competitive performance compared to FILO and HGSADC. The SISR algorithm initializes a

solution, denoted as 𝑆 = 𝑇, 𝐴, with tours and a set of unserved customers. Simulated annealing

is employed, gradually reducing temperature to explore the solution space. Fleet minimization is

conducted, aiming to minimize the number of vehicles. The fleet minimization process involves

iteratively updating a solution based on ruin and recreate procedures. The absence counter

monitors unserved customers, guiding solution changes. Simulated annealing acceptance criteria

determine solution updates.

The Ruin operator is based on capacity and spatial slack, removing strings of customers

following key premises. It dynamically determines string removal parameters, such as maximum

cardinality and number of strings. The Recreate operator introduces "greedy insertion with

blinks," sorting absent customers and probabilistically inserting them into tours, with blink rates

affecting insertion behavior. SISR’s effectiveness lies in its strategic use of ruin and recreates

procedures, simulated annealing, and innovative string removal and insertion strategies. This

combination contributes to its competitive performance in solving VRPs.

Recently, The Fast Iterated Local Search Localized Optimization (FILO), proposed by

Accorsi and Vigo (2021), follows a structured process for solving a set of VRPs. The algorithm

begins with an Initialization phase, constructing an initial feasible solution using a modified

savings algorithm of Clarke and Wright (1964a). Subsequently, an improvement phase employs

Route Minimization to reduce routes if necessary and an Optimization procedure using Iterated

Local Search (ILS) principles.

The Route Minimization procedure dynamically adjusts the number of routes in the

solution, guided by a heuristic solving a bin-packing problem. During iterations, pairs of routes

are selected, and customers are temporarily removed, enabling route reshaping. The algorithm

uses specific criteria for route selection and employs a probability-based decision for creating

new routes.

The Optimization module employs a Hierarchical Randomized Variable Neighborhood

Descent (HRVND), combining random and fixed neighborhood exploration. The HRVND
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explores tiers of local search operators, progressing to more expensive tiers if needed. A shaking

step initiates a random walk, altering routes, and a recreate step reintegrates removed customers

with cost minimization.

Ruin intensity control adapts the length of the random walk iteratively. Simulated

annealing guides the acceptance of new solutions based on cost differentials and a temperature

parameter. Dynamic move generators and sparsification parameters contribute to vertex-wise

adjustments during optimization.

The algorithm’s cache management tracks vertices for efficiency, updating based on non-

improving iterations or discovering better solutions. The entire process iterates until a solution

is obtained, maintaining the best solution throughout. Overall, FILO integrates constructive

heuristics, local search, and metaheuristics for effective combinatorial optimization.

4.3 CONCLUDING REMARKS

In the literature review, especially in the evacuation context, the works are not entirely clear about

their performance. Most of it is due to the lack of comparative studies with other approaches

in the same problem or related VRP approaches (Esposito Amideo et al., 2019; Shahparvari

et al., 2019; Shahparvari and Abbasi, 2017; Goerigk et al., 2015; Atmojo and Sachro, 2017; Zhao

et al., 2017; Li and Zhou, 2018; Vitali et al., 2017; Vieira et al., 2021). Although Penna et al.

(2018) perform a comparison with other related VRP approaches, their results are not good as

the state-of-the-art. Hence, we searched into related VRP works to comprehend better how the

problem is modeled, the metaheuristics involved in how they are combined (or not), and their

relation with used operators.

Tables 4.1 and 4.2 present the summarization of our literature review through two

perspectives as follows:

• The metaheuristic applied: Along with selection, diversity control mechanism, and

problems that the approach solves.

• The operators applied: Considering not just local movement operators but also

crossovers and mutation operators.

On the one hand, according to Table 4.1, the majority of works use GA or some

hybridization with it (i.e., MA). In this sense, there are some fascinating works (Nagata and

Bräysy, 2009; Vidal et al., 2013; Christiaens and Berghe, 2020; Máximo and Nascimento, 2021;

Accorsi and Vigo, 2021), which, some of them constitute our baseline in this study. Those works

share some important aspects of a sound performance of a GA as diversity control. However, only

Nagata and Bräysy (2009) had proposed an outstanding recombination method (EAX). Despite

that, as mentioned earlier, the EAX can generate infeasible and similar to the parent’s offspring.

On the other hand, all works, except Rabbouch et al. (2019) (which results are not

competitive), rely on local move operators along the evolutionary process to achieve competitive

results, as shown by Table 4.2. Local move operators tend to be the bottleneck of the approach’s

performance.
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Table 4.2: Evacuation and related VRP approaches - Operators

Authors Local Move Operators Crossovers Mutation
Prins (2004)

Insertion (Relocate), Swap (Exchange),
2-opt, and 2-opt*

Linear Ordered
Crossover

not apply

Nagata and Bräysy
(2009); Nagata and
Kobayashi (2010)

2-opt, 2-opt*, Insertion (Relocate),
Or-exchange, and Swap (Exchange)

EAX not apply

Vidal et al. (2013)
Swap (Exchange), Relocate, 2-opt, and
2-opt*

Ordered Crossover
and Periodic
Crossover with
Insertions

not apply

Li et al. (2014a)

Inter-depot move (Relocate), Inter-depot
Exchange-Cross (Cross-Exchange),
Inter-depot 1-0 exchange (Relocate),
Inter-depot 1-1 exchange (Exchange),
Inter-depot LNS, Intra-depot move
(Relocate), Intra-depot Exchange-Cross
(Cross-Exchange), Intra-depot 1-0
(Relocate), Intra-depot 1-1 (Exchange),
Intra-depot LNS, Related removal,
Infeasible routes removal, Greedy Insertion
based on Probability Assignment (GIPA)

Improved Ordered
Crossover

ALNS

Sze et al. (2016)
Insertion, Exchange, Interchange, Swap,
Cross-exchange, 2-opt, 2-opt*, and
Cross-tail

not apply not apply

Vitali et al. (2017) Shift (Relocate) not apply not apply

Penna et al. (2018)

Inter-route: Relocate(1,0), Relocate(2,0),
Swap(1,1), Swap(2,1), and Swap(2,2);
Intra-route: Relocate(1,0), Relocate(2,0),
Relocate(3,0), Swap(1,1), and 2-OPT

not apply not apply

Gutierrez et al.
(2018)

OR-opt, 2-opt, and Inter-Cross Ordered Crossover RVND

Rabbouch et al.
(2019)

not apply
Route-based
Crossover

Swap

Liu and Jiang (2019)
Cross-exchange, Exchange, OR-opt, Shaw
removal, and Worst removal

Ordered Crossover not apply

Abdallah and
Ennigrou (2020)

Λ-Exchange method inspired by Shi et al.
(2017)

Ordered Crossover Exchange

Zhen et al. (2020) Reinsertion, Exchange, and Reverse Custom Crossover not apply

Vieira et al. (2021)

Exchange, 1-opt, 2-opt, Vehicle-Exchange,
Shift(1,0), Shift(2, 0), Swap(1,1),
Swap(2,1), Swap (2,2), Cross-exchange,
k-shift, Or-opt1, Or-opt2, and Or-opt3

not apply not apply

Christiaens and
Berghe (2020)

not apply not apply not apply

Máximo and
Nascimento (2021)

Concentric removal, Proximity removal,
Vertex Sequence removal, Proximity
insertion, Cost insertion, Shift, Swap,
2-opt, and 2-opt*

not apply not apply

Accorsi and Vigo
(2021)

10EX, 11EX, SPLIT, TAILS, TWOPT,
20EX, 21EX, 22EX, 20REX, 21REX,
22REX, 22REX*, 30EX, 31EX, 32EX,
33EX, 30REX, 31REX, 32REX, 33REX,
32REX*, 33REX*, and ejection-chain
(EJCH)

not apply not apply

Although it is possible to design better approaches for one or a set of specific VRPs,

evidence frequently shows that researchers can hardly design one that can generate better results

than all other state-of-the-art (Wu et al., 2019). In this sense, it could be difficult for a practicing
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engineer to know which algorithm is suitable for a new VRP. Further, one may find adapting a

particular algorithm to this new VRP unique feature hard.

With that being said, the ensemble approach is one of the most promising strategies

according to Wu et al. (2019). Besides, it has shown many robust and adaptable population-based

ensemble variants for many optimization problems (Wang and Li, 2010; Zhao et al., 2012; Wu

et al., 2016). Therefore, a refined population-based ensemble with practical and outstanding

components may deal with different variations of VRP. Moreover, as far as we know, there is

only one work with ensemble (Wang et al., 2021) in the VRP context.

After the discussion above, we proposed GREEVO - a GRASP Ensemble Evolutionary

Algorithm. GREEVO combines an ensemble of high-level techniques (HGSADC, FILO, and

SISR) with a Q-learning HH to select the appropriate technique during the evolutionary process

which will be detailed in the chapter 5.
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5 GREEVO: A GRASP ENSEMBLE EVOLUTIONARY ALGORITHM

The Capacitated Vehicle Routing Problem (CVRP) is a well-known optimization problem in

which a fleet of vehicles with limited capacity must serve a set of customers with known demands

while minimizing the total distance traveled. The problem is NP-hard, which means that finding

the optimal solution for large instances is computationally intractable.

According to past items, several operators and algorithms are used and can solve many

VRPs. As stated by the No Free Lunch theorem (Wolpert and Macready, 1997), there is no

better algorithm than the other algorithms in solving all possible optimization problems. In other

words, it indicates that it is impossible (theoretically) to develop an algorithm that is superior to

all other algorithms in solving different optimization problems and their features (Mallipeddi

et al., 2011a).

With that being said, we present the GREEVO, a Grasp Ensemble Evolutionary

algorithm. As shown by Figure 5.1, the flow of our approach starts with the Initialization, which

generates individuals through a GRASP. After, the Split Algorithm is applied.

Initialization

GRASP

Split Algorithm

Population

Optimization

Ensemble

HGSADC FILO

SISR

Q-Learning
Hyper-Heuristic

Population
Management

TCSolution

Entity

Process

Module / Approach

Figure 5.1: GREEVO Architecture

Once the population reaches its maximum size, the evolutive process is initiated. While

each baseline approach has its management solution and population mechanism, the Population
Management process adopts a cooperative strategy (as described in Section 5.3), resulting in a

single population. The Population Management is responsible for passing the solution or a

population of solutions to the selected approach and maintaining the best solutions found during

the evolutive process.
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The Q-Learning Module (Section 5.2) selects one of the baseline approaches. During

the Optimization process, the search strategy needs to be updated to suit the search process

as the search landscape changes during the population evolution towards the global optimal

solution. Hence, an ensemble of multiple strategies (baseline approaches) with a proper adaptation

mechanism (Q-Learning Module) could enable a selection of the most appropriate strategy

during the optimization process (Mallipeddi et al., 2011b).

Finally, by the end of the Optimization process, the best overall solution is retrieved.

5.1 GRASP - INITIALIZATION

The solution format that we adopted was inspired by Prins (2004), which was the first to use

this representation successfully. The format involves a giant TSP tour without delimiters as a

chromosome, where each allele in the chromosome represents a customer. However, it requires

an algorithm to find a chromosome segmentation in routes, retrieving the cost and the solution.

To achieve this, we used the Split algorithm from Prins (2004).

Our GRASP algorithm generates only feasible solutions. To randomize the selection of

the nearest customers to the depot, we use a custom restricted candidate list (RCL). The size

of the RCL is determined by an adaptive random factor (Equation 5.1), which is used in the

RandomChoice() method. The rest of the chromosome is constructed using a greedy approach.

Finally, the chromosome is optimized using the Split algorithm.

𝑟𝑎𝑛𝑑𝑜𝑚_ 𝑓 𝑎𝑐𝑡𝑜𝑟 =
𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑚𝑎𝑛𝑑

𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑚𝑎𝑥_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
(5.1)

The Algorithm 2 creates a set of available customers (𝑛) with all unserved customers

and the maximum number (𝑘) of available vehicles. The algorithm checks if the selected vehicle

still has the capacity to serve the available customers. Two methods are used to select the next

customer to be added to the 𝑡𝑟𝑖𝑝, namely, (i) Random Choice(𝑛) and (ii) Closest Customer(𝑡𝑟𝑖𝑝, 𝑛).
In the Random Choice method, the available customers are sorted by distance. Half of the

sorted available customers are chosen randomly (random factor) to ensure diversity in the initial

population. The ClosestCustomer() method prioritizes the distance between the last customer

added to the 𝑡𝑟𝑖𝑝 and the next one. The algorithm stops when it creates a feasible chromosome.

After a solution is generated by our GRASP, it is optimized by the Split Algorithm,

which was proposed by Prins (2004). The Split algorithm is a heuristic used for solving vehicle

routing problems. This algorithm follows a route-first cluster-second approach wherein a TSP

tour is constructed first, ignoring any side constraints. The tour is split into feasible vehicle routes

in the second phase. According to a survey conducted by Prins et al. (2014), around 70 recent

articles have used this technique.

The objective of Split Algorithm is to partition the giant TSP tour into 𝑚 disjoint

sequences of consecutive visits. Therefore, each sequence is associated with a route originating

from the depot. After, it visits its respective customers and then returns to the depot. In addition

to that, the total distance of all routes should be minimized.

5.2 Q-LEARNING HYPER-HEURISTIC

According to (Blum et al., 2011), heuristic approaches are extremely valuable for solving intricate

optimization problems in real-world situations where precise methods may be impractical.

However, the efficacy of these techniques is heavily reliant on appropriate configuration settings

that are tailored to fit the specific problem domain. To tackle this challenge, Burke et al. (2010)



64

Algorithm 2: GRASP algorithm

while chromosome is empty do
n ← available customers;

K ← max number of vehicles;

k ← 1;

𝑘𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ← 𝑄;

𝑘𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝐿;

while K > k and size of n > 0 do
𝑡𝑟𝑖𝑝← empty list;

while 𝑘𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 > 0 and 𝑘𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 > 0 do
if 𝑡𝑟𝑖𝑝 is empty then

𝑐← RandomChoice(𝑛);
end
else

𝑐← ClosestCustomer(𝑡𝑟𝑖𝑝, 𝑛);
end
𝑘𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ← 𝑘𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 - 𝑐𝑑𝑒𝑚𝑎𝑛𝑑;
𝑘𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑘𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 - distance(𝑡𝑟𝑖𝑝, 𝑐) - 𝑐𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒;
append 𝑐 into 𝑡𝑟𝑖𝑝;

remove 𝑐 from 𝑛;

end
𝑘 ← 𝑘 + 1;

if 𝑡𝑟𝑖𝑝 is not empty then
append 𝑡𝑟𝑖𝑝 into chromosome;

end
end
if chromosome is not feasible then

chromosome ← empty list;

end
end
return chromosome

said that there are a number of adaptive search methodologies available, which are commonly

referred to as Hyper-Heuristics (HH) or Adaptive Operator Selection (AOS) in the literature.

In this sense, Dantas and Pozo (2022) proposed an approximate Q-learning algorithm,

which uses an Artificial Neural Network as a function approximator. The Q-learning algorithm

of Dantas and Pozo (2022) was chosen according to the following criteria:

• Promising approach: In research conducted in collaboration with Dantas et al. (2021),

we carried out a series of experiments on some optimization problems using the Hyflex

Framework, comparing it with other heuristic methods, where Q-learning proved to be

a very promising alternative.

• Standout perform on VRP: In tests conducted to confirm this in our scenario, we

compared FRRMAB, which according to our knowledge was the state-of-the-art in

comparisons of heuristic methods, Q-learning had better performance.

We adapted their HH as shown by Figure 5.2.
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Figure 5.2: Diagram of the Q-learning (adapted from (Dantas and Pozo, 2022)).

Regarding the State Module, we followed the Dantas and Pozo (2022) recommendation

by using the Fitness Improvement Rate (𝐹𝐼𝑅) and Elapsed Time, given by the Equations 5.2 and

5.3 respectively.

𝐹𝐼𝑅𝑖,𝑡 =
𝑝 𝑓𝑖,𝑡 − 𝑐 𝑓 𝑖, 𝑡

𝑝 𝑓𝑖,𝑡
(5.2)

where 𝑝 𝑓𝑖,𝑡 , is the fitness value of the original solution, and 𝑐 𝑓 𝑖, 𝑡 is the fitness value of

the offspring.

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒

𝑚𝑎𝑥 𝑡𝑖𝑚𝑒
(5.3)

Additionally, the Reward Module is given by Equation 5.2 between the current and

the previous solutions. As stated by Dantas and Pozo (2022), by using the 𝐹𝐼𝑅 as a reward

mechanism and 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 as the policy, it was possible to obtain a balance between exploitation

and exploration.

Lastly, we used the Q-model, an Artificial Network model, to estimate the Q-values in

the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 Selection Policy. The weights of the network were updated using the Equation

5.4 according to the Q-Learning algorithm of Watkins and Dayan (1992).

𝑇𝑡+1 = 𝑅𝑡+1 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) (5.4)

where 𝑠𝑡+1 is the next state after performing an action, 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) is the highest

Q-value of all possible actions from state 𝑠𝑡+1. The discount factor 𝛾( [0, 1]) controls the influence

of future estimated rewards.

5.3 ENSEMBLE AND POPULATION MANAGEMENT

When it comes to ensemble, there are three approaches to population management: competitive

Single Population, competitive multi-population, and cooperative multi-population. GREEVO
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utilizes the cooperative multi-population strategy since HGSADC has its own population. The

Population Management of GREEVO stores the top 100 solutions in the main population entity.

Before the Q-Learning module selects the next approach to continue the evolutionary process,

the Population Management merges the main population with the retrieved solution (in case

the approach retrieves only one solution) or with the final population of the previously selected

approach. Finally, it keeps the 100 best solutions.

GREEVO’s ensemble module relies on three techniques: HGSADC, FILO, and SISR.

Each of them was described in the following Sections 3.5, 3.6, and 3.7 respectively. These

techniques were chosen according to the subsequent specifications:

• Being state-of-the-art approach. Based on the premise of machine learning: Garbage In

- Garbage Out.

• To have open-source code or a clear article with the components of the technique clearly

and thoroughly explained.

Moving forward, each technique is selected by the Q-Learning module, and at the end

of its process, receives a reward. Based on this reward, each technique will increase or decrease

the chances of being selected in a future iteration.

5.4 CONCLUDING REMARKS

The Capacitated Vehicle Routing Problem (CVRP) remains a challenging optimization problem

due to its NP-hard nature, especially when dealing with large instances. The No Free Lunch

theorem underscores the inherent trade-offs among different algorithms, emphasizing the need

for adaptive approaches to tackle diverse optimization problem characteristics.

GREEVO introduces a novel solution strategy for the CVRP. Combining elements of

GRASP, ensemble techniques, and a Q-learning hyper-heuristic, aiming to adapt to the evolving

search landscape during the optimization process.

The GRASP initialization module generates feasible solutions by employing a restricted

candidate list and a randomized selection mechanism. The subsequent optimization using the

Split Algorithm further refines the solutions, ensuring adherence to constraints and improving

overall quality, and proved to be a very promising initialization (Do Rego and Pozo, 2021).

The Q-learning hyper-heuristic module introduces adaptability to the optimization

process. The ensemble of baseline approaches managed cooperatively, allows GREEVO to

leverage the strengths of individual algorithms, enhancing overall performance.

The incorporation of adaptive Q-learning and ensemble techniques in GREEVO

contributes to its ability to handle a wide range of instances. While no algorithm can claim

superiority across all scenarios, GREEVO presents a promising solution for the CVRP, offering a

balance between exploration and exploitation.

In summary, GREEVO presents a robust and adaptive framework for addressing

the CVRP, showcasing the potential of combining high-level heuristics in an ensemble and

hyper-heuristic techniques for effective optimization in complex routing scenarios.
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6 EXPERIMENTS

To assess the efficiency of GREEVO, we conducted a series of experiments comparing it to

established approaches: HGSADC, SISR, and FILO. We were given access to the authors’

implementation of HGSADC and FILO. In the FILO implementation, we had to modify it to

handle duration constraints. We implemented the SISR based on (Christiaens and Berghe, 2020)

since the original implementation was unavailable, but the results did not match the original.

To ensure the integrity of our results, we ran each benchmark instance 30 times with

a 10-minute time limit. Our benchmark set, introduced by Golden et al. (1998), comprised 20

instances with customer counts ranging from 200 to 483, divided into two categories: those with

duration constraints (Instances 1-8) and those without (Instances 9-20). Notably, all instances in

this set maintained geometric symmetry.

We also incorporated Uchoa et al. (2017)’s dataset, encompassing 100 CVRP instances

with vertex sizes spanning from 100 to 1000.

Table 6.1: Experiment Configuration Set

Parameter Value
GRASP pop size 100

HGSADC max iter without improvement 20000

FILO max iter without improvement 20000

SISR max iter without improvement 3000

Q-Learning Epsilon (𝜖) 0.05

Q-Learning Reward Raw Improvement Penalty (RIP)

Q-Learning Acceptance Criteria ALL

Q-Learning State Fitness Improvement Rate and Elapsed Time

Table 6.1 displays the configuration set used in the experiments. The GRASP 𝑝𝑜𝑝
size was defined considering the HGSADC initialization method, which has a 𝑝𝑜𝑝 size 25 and

multiplies it by 4 before triggering the survival selection, resulting in a temporary 𝑝𝑜𝑝 size of

100.

All tested approaches (HGSADC, FILO, SISR, and GREEVO) were allocated a 10-

minute time limit per dataset instance and run 30 times each. Moreover, we empirically defined

stop criteria iterations for HGSADC 20000, FILO 20000, and SISR 3000 iterations without

improvements. The values were derived through empirical analysis, taking into account those

reported by the authors.

Meanwhile, for the Q-learning HH, we utilized an epsilon (𝜖) value of 0.5 for exploration,

𝑅𝐼𝑃 as the reward function, 𝐴𝐿𝐿 as the acceptance criteria, and 𝐹𝐼𝑅 and 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 as the

state. The values were obtained from the authors.

To evaluate GREEVO’s performance, we conducted various statistical tests. Our analysis

included the Friedman hypothesis test and a pairwise post-hoc test with the Bergmann correction.

We also utilized the Kruskall-Wallis and post-hoc Dunn test with Bonferroni correction. To further

understand the statistical difference, we conducted a Cliff’s Delta effect size test, comparing the

results of both the Friedman and Kruskall-Wallis tests.

The GREEVO was implemented in two different languages: Python 3.11 and C/C++
(compiled with g++ 12.3.0). To connect Python with C/C++, we used the Pybind11 library.
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The experiments were run in an Intel Xeon E5-2699 v3 (72) with a 3.6GHz clock and 128GB

RAM.

6.1 STATISTICAL ANALYSIS

The Friedman test is a statistical tool that identifies dissimilarities in treatments across multiple

trials. It is utilized when the assumptions of one-way ANOVA with repeated measures cannot be

satisfied. In contrast to comparing means, the Friedman test compares the median of the data.

After establishing that there are significant differences between groups through the

Friedman test, post-hoc pairwise comparisons are frequently carried out to identify which specific

groups are distinct from each other. To manage the familywise error rate, several post-hoc

correction methods have been developed. The Bergmann-Hommel correction is a prominent

example.

Table 6.2: Friedman test with post-hoc using Bergmann-Hommel correction

SISR FILO HGSADC GREEVO
SISR NA 0 0 0

FILO NA 1.768346e-04 4.234828e-04

HGSADC NA 1.039169e-12

GREEVO NA

On the one hand, considering the Friedman test with post-hoc using Bergmann-Hommel

correction (Friedman, 1937; Bergmann and Hommel, 1988), as shown by Table 6.2, the obtained

𝑝-values, show a notable distinction between GREEVO and other approaches at conventional

significance levels, such as 0.05. The null hypothesis is declined for all mentioned hypotheses,

indicating a statistically significant difference between the approaches.

Table 6.3: Kruskal-Wallis using post-hoc Dunn’s Test with Bonferroni Correction

FILO GREEVO HGSADC SISR
FILO NA 0.020 1.000 7.9e-07

GREEVO NA 0.035 1.3e-15

HGSADC NA 2.8e-07

SISR NA

On the other hand, a Kruskal-Wallis test with Dunn’s Test and Bonferroni correction

(Kruskal and Wallis, 1952; Dewey and Seneta, 2001) offers a distinct perspective as shown in

Table 6.3. This non-parametric statistical test compares three or more unpaired groups to detect

any significant differences between them. The test is an extension of the Mann-Whitney U test

and is utilized when the assumptions of one-way ANOVA are not met due to non-normality or

heteroscedasticity of the data. Post-hoc tests like Dunn’s test are utilized to determine which

groups vary from each other.

The Kruskal-Wallis outcomes indicate that the 𝑝-value is exceptionally small, signifying

that at least two of the groups differ significantly in their medians.

After reviewing Table 6.3, it is apparent that FILO displays distinct performance

compared to GREEVO and SISR, while no significant difference is observed between HGSADC

and FILO. The data also indicates that GREEVO has notable differences in performance compared
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to both HGSADC and SISR, and HGSADC and SISR exhibit significant differences as well. The

low 𝑝-values provide solid evidence against the null hypothesis for those pairs, suggesting that

these methods have distinct performance levels.

To assess the variance between two non-parametric distributions, we utilized Cliff’s

Delta, also known as d or Cliff’s dominance statistic. This metric enables us to comprehend

the magnitude of the differences between the approaches by determining the probability of a

randomly selected value from one distribution being bigger or smaller than one from the other.

The outcome varies from 0 (representing identical distributions) to values closer to 1 or -1

(indicating more significant differences). This measure is highly correlated with the rank-biserial

correlation and can be easily transformed to and from it.

Figure 6.1: Friedman - Cliff’s Delta Comparison

Figure 6.1 shows the comparison between SISR and GREEVO, FILO and GREEVO, and

HGSADC and GREEVO, considering the Friedman test with post-hoc using Bergmann-Hommel

correction. The Cliff’s Delta value is 0.0722, indicating a small effect size but with a positive

sign showing that GREEVO tends to perform slightly better than SISR. However, the practical

significance of this effect size may be limited due to its small magnitude. For FILO vs. GREEVO,

the negative sign of the Cliff’s Delta value (-0.0039) suggested that FILO performed minimally

better than GREEVO. However, the effect size was so small that it was essentially negligible.

Lastly, in the comparison of HGSADC vs. GREEVO, the negative Cliff’s Delta value (-0.0065)

suggested that HGSADC performed slightly better than GREEVO, but the effect size was

negligible as well.

Considering the Kruskall-Wallis results, the Cliff’s Delta Comparison in Figure 6.2

shows GREEVO’s overall performance compared to other algorithms, the examination of Cliff’s

Delta values offers valuable insights into the nature and magnitude of observed differences.

When compared with HGSADC, Cliff’s Delta (0.0373) reveals a small positive effect, suggesting
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Figure 6.2: Kruskall-Wallis - Cliff’s Delta Comparison

a general tendency for GREEVO to outperform HGSADC. Similarly, in the comparison with

FILO, a positive value for Cliff’s Delta (0.0399) indicates a small yet favorable association

with GREEVO’s performance. Notably, the comparison with SISR demonstrates a larger value

for Cliff’s Delta (0.1090), pointing to a stronger positive effect. This suggests that GREEVO

consistently exhibits better overall performance when compared to SISR, with a more pronounced

positive association. Across all comparisons, the positive associations support GREEVO,

indicating its propensity for superior overall performance compared to HGSADC, SISR, and

FILO.

6.2 OVERALL PERFORMANCE ANALYSIS

The statistical tests show that there is a difference between the approaches. Upon examining

Figure 6.3, it becomes evident that the efficacy of GREEVO is well-founded. This visual

representation offers a more comprehensive understanding of the distribution of data.

Although HGSADC and GREEVO share the same median, their respective data

distributions can be quite disparate. GREEVO’s distribution is more condensed, implying less

variability and a lower upper quartile.

Still, in Figure 6.3, it illustrates that GREEVO outperforms HGSADC, boasting a lower

upper quartile. This suggests that while half of the data (the median) may be comparable to

HGSADC, GREEVO generally excels in the higher range of its data points (i.e., 50-75% of its

data).

Table 6.4 shows various statistics related to the solutions. These statistics include the

average (AVG), the difference between the average and the best-known solution (AVG GAP), the

best solution found (BEST), and the difference between the best solution and the best-known
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Figure 6.3: Overwall Performance Comparison of the Approaches

solution (BEST GAP). The bold values in the table are either equal to or lower than the best-known

solution. The underlined values represent the lowest values among all the approaches. Lastly,

the approach that performed the best statistically (determined using the Kruskal-Wallis test with

post-hoc Dunn’s test and Bonferroni correction) is highlighted in dark gray.

Based on the data presented in Table 6.4, it can be observed that HGSADC had the

lowest AVG GAP (0.25) compared to the other methods assessed. However, GREEVO achieved

the BEST GAP (0.11). HGSADC outperformed the others in 44 out of 120 cases, while GREEVO

surpassed them in 29 out of 120 and FILO in 4 out of 120. In terms of the lowest values achieved,

GREEVO had 61 out of 120, HGSADC had 60, and FILO had 33. Finally, concerning BKS,

both GREEVO and HGSADC achieved 16 out of 120, while FILO attained 13.
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6.3 CONVERGENCE AND DOMINANCE ANALYSIS

In this experiment, we aim to demonstrate how GREEVO compares to other approaches regarding

convergence. We also want to ensure that the Q-learning HH algorithm was not biased towards a

single technique. To achieve this, we conducted an independent run using instance X-n1001-43

from Uchoa et al. (2017). We tested each approach, including HGSADC, FILO, SISR, and

GREEVO, for 15 minutes.

Figure 6.4: Convergence for X-n1001-k43 instance

Figure 6.5: Convergence-Dominance for X-n1001-k43 instance
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Figure 6.4 displays the convergence of each approach. From it, we can observe that

GREEVO has a convergence rate similar to that of HGSADC and FILO. Additionally, these

approaches start from almost the same initial solution/population.

The observations made from Figure 6.5 reveal that Q-learning employs multiple

techniques during its evolutionary process. Additionally, even if one of the techniques does not

contribute to the overall fitness of the solution, it presents an alternative solution with a different

order of customer and route, which potentially helps the subsequent technique in enhancing the

overall solution.

6.4 CASE STUDY

We were inspired by Tsai et al. (2021), which proposed a case study that involves an evacuation

plan according to the City-Assisted Evacuation (CAE) guide for Hurricanes in New Orleans

(NOHSEP, 2023) and an impact evaluation on it when considering the social distance. However,

we will not consider the social distance aspect. Therefore, this case study characterized the

pre-hurricane evacuation procedure as a Capacitated Vehicle Routing Problem (CVRP). In this

context, a singular vehicle is assigned to each neighborhood, systematically initiating the process

from a local rescue center, traversing various residences to collect individuals, and concluding

the route by returning to the rescue center upon reaching its maximum capacity. This sequence

continues until the vehicle successfully picks up every resident listed on the special needs registry

within the designated neighborhood.

In structuring the problem, they use the city of New Orleans, Louisiana, USA, as the

reference case. In their study, they used the dataset of Augerat (1995). The first 20 locations

were selected from the A-n36-k5 dataset as Dataset 1, while Dataset 2 included all 35 locations

in the A-n36-k5 dataset. For Datasets 3 and 4, they used the A-n53-k7 and A-n69-k9 datasets,

respectively, which contain 52 and 68 houses. To account for the possibility that the depot is

located outside the neighborhood was included predetermined transit times (0, 0.5, 1.0, and 2.0

hours) to and from a central depot.

New Orleans experienced massive losses and disruption in Hurricane Katrina (2005)

(Dyson and Elliott, 2010) and has implemented comprehensive plans to prepare for a future

major hurricane. Figure 6.6 shows the 72-hour evacuation timeline announced by the City of

New Orleans, which specifies a window of 42 hours to collect evacuees from their houses and

transport them to the Smoothie King Center, which serves as a transfer and processing center.

From there, evacuees will board a bus to state or federal shelters in other cities (NOHSEP, 2023).

Finally, the city government will bring evacuees back to their homes or local shelters once it

becomes safe to return to New Orleans. As of February 23, 2021, the special needs registry for

New Orleans included approximately 4000 individuals (Tsai et al., 2021).

To estimate the number of people in each house, Tsai et al. (2021) used the average

household size (2014-2018), which is 2.44 persons per household in New Orleans, based on

the American Community Survey (ACS) of the U.S. Census Bureau (U.S. Census Bureau,

2020), assuming a normal distribution with 𝑚𝑒𝑎𝑛 = 2.44 and standard 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.5. If the

household size is not an integer, it is rounded to the nearest integer. So, the household size ranges

from 1-4 people. For simplicity, they assume that if one person in a house is on the special needs

registry, then all of the people in that house are also on the registry. An evacuation fleet was

defined as a fleet of unlimited buses with a capacity of up to 64 passengers, as stated by Tsai et al.

(2021). We also will use a range of 4 different speeds for the fleet, 5-20 km/h (ITF, 2018).
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72-hour Evacuation Timeline
This is an estimation for planning purposes. In an actual evacuation, the timeline may shift based on a number of variables

Mayor announces
mandatory evacuation.

Resident pickup at
Evacuspots begins.

Resident pickup at
Evacuspots ends.
Last evacuees are
     bussed out of the city.

Airport shuts down. Hurricane
landfall.

Visitors shuttled to
airport from

Sheraton & Harrah's

State evacuates
residents
from coastal regions

Contraflow begins.
All lanes travel out of the city

Tropical storm winds
reach the coast.

72 58 54 48 30 12 0 -12

Satisfactory

Residents who sign up for
the special needs registry

are shuttled from their
houses to the rescue center

Borderline

Continue
evacuation.
(Situational)

Not Allowed

Figure 6.6: Evacuation plan of New Orleans (extracted from Tsai et al. (2021))

6.4.1 Result Analysis

Table 6.5 displays the number of evacuees in each neighborhood. We ran each defined dataset

twice for five minutes. Furthermore, Figure 6.7 illustrates the average time that the vehicle with

the largest path would take to evacuate all evacuees in each neighborhood based on the maximum

speed for the fleet.

Table 6.5: Neighborhood Datasets

Dataset Neihgborhood Size Maximium Demand
A-n21-k5 20 64

A-n36-k5 35 100

A-n53-k7 52 64

A-n69-k9 68 100

For instance, one bus was allocated for A-n21-k5, two for A-n36-k5, three for A-n53-k7,

and two for A-n69-k9. In most neighborhoods, the speed of 5 km/h is not sufficient to evacuate

all evacuees in the time window available according to the New Orleans evacuation plan Tsai

et al. (2021)). However, if we consider a speed of 10 km/h, with the allocated vehicles, it would

be feasible to evacuate all evacuees. Lastly, if we consider 15 km/h, which is close to the average

speed reported by ITF (2018) (16.1 km/h), it would be possible to conduct the evacuation within

the satisfactory time window. Therefore, given the unpredictability of evacuation scenarios, it

may be necessary to apply more resources to avoid any loss of life, and with the solution provided

by GREEVO that could be done without excessively expending resources.
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Figure 6.7: Neighborhood Evacuation Evaluation

6.5 CONCLUDING REMARKS

The experiments conducted to evaluate the efficiency of GREEVO in comparison to established

approaches such as HGSADC, SISR, and FILO have provided valuable insights. These insights

are not limited to the algorithm’s performance across various benchmark instances and datasets

but also include a possible way of using Hyper-heuristics with an ensemble method to tackle

combinatorial optimization problems.

The statistical analysis, including the Friedman test and Kruskal-Wallis test with post-

hoc comparisons, revealed that although GREEVO performs better when compared to the

other algorithms, there is still room for improvement, especially related to consistency. This

improvement may help approximate the average results obtained in the classical problem datasets.

The overall performance analysis, including a comprehensive examination of various

statistics related to the solutions, indicated that GREEVO performed well in terms of average

gaps, best solutions found, and overall competitiveness against other algorithms. The results

suggest that GREEVO can be a valuable tool for addressing complex routing problems in practical

scenarios.

The case study involving the evacuation plan for hurricanes in New Orleans provided a

practical application of GREEVO, showcasing its effectiveness in solving a real-world Capacitated

Vehicle Routing Problem. The results of the case study, particularly in the context of the New

Orleans evacuation plan, demonstrated that GREEVO could provide feasible solutions for

evacuating residents within specified time windows, considering different fleet speeds and

neighborhood sizes. Regrettably, we were unable to conduct a comparative study between

GREEVO and the disaster approaches referenced in Chapter 4 due to the unavailability of data,

which was either not provided by the author or the referenced source.

It would be interesting if GREEVO could solve problems with more restrictions, such as

time windows, multi-depot, and split delivery. However, due to the need to adapt the techniques

present in both the ensemble (FILO and SISR) and the initialization (GRASP) of the population,

it would require more time and testing to ensure that they would be able to solve the problems
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either with all restrictions at the same time or separately. Unfortunately, this extension of the

work has not been possible until now.

In the future, research efforts could be directed toward exploring and developing new

policies for Q-learning. This could involve designing reward functions that align with the

specific objectives of the problem, such as reducing costs or meeting time constraints. Moreover,

conducting case studies in diverse contexts that involve more restrictions. Furthermore, it would

be useful to investigate the scalability of GREEVO for larger problem instances and evaluate its

performance under different constraints. Such efforts would contribute to a more comprehensive

understanding of the applicability of Q-Learning and GREEVO in problem-solving contexts.

In conclusion, the combination of experimental evaluations and practical case studies

positions GREEVO as a promising solution for addressing routing problems, with potential

applications in various domains, including logistics, transportation, and emergency evacuation

planning.
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7 CONCLUSION AND FUTURE WORK

The study introduces GREEVO, a novel ensemble approach for solving the Capacitated Vehicle

Routing Problem (CVRP). GREEVO combines elements of the Greedy Randomized Adaptive

Search Procedure (GRASP), ensemble techniques, and a Q-learning hyper-heuristic. Typically,

hyper-heuristics are used to select low-level heuristics, but in this study, we propose a new use

for them by selecting high-level heuristics. This combination allows GREEVO to adapt to the

dynamic search landscape during optimization, making it effective and efficient in providing

competitive state-of-the-art results for CVRP.

In the past and nowadays, researchers have tried to use machine learning either on the

dataset, searching for insights, or in the evolutionary process without achieving significant results

(Queiroga et al., 2022; Sadana et al., 2024; Greif et al., 2024). GREEVO presents a way of using

machine learning by applying an HH with reinforcement learning to select outstanding techniques

(motivated by the machine learning statement: garbage in - garbage out) on an ensemble.

Experimental evaluations and practical case studies demonstrate GREEVO’s promising

performance across benchmark instances and datasets. Regarding GREEVO’s performance, it

outperforms HGSADC with a lower upper quartile and a more condensed distribution. This

is further supported by the BEST GAP, which is the lowest among all approaches. However,

there is room for improvement, particularly in terms of consistency. The comprehensive analysis

of GREEVO’s overall performance underscores its potential as a valuable tool for addressing

complex routing problems in practical scenarios.

A case study involving the evacuation plan for hurricanes in New Orleans demonstrates

GREEVO’s effectiveness in providing feasible solutions for evacuating residents within specified

time windows, considering different fleet speeds, and neighborhood sizes. Although the designed

evacuation scenario only considers the CVRP, it demonstrates GREEVO’s potential to provide

efficient evacuation solutions while saving resources. Unfortunately, our efforts to undertake a

comparative analysis between GREEVO and the disaster management methodologies outlined

in Chapter 4 were impeded by the unavailability of pertinent data. This data, crucial for such

a comparison, was either not furnished by the author or was inaccessible from the referenced

sources. As a result, a comprehensive evaluation of GREEVO in relation to existing disaster

management approaches could not be executed.

Further research should aim at improving GREEVO’s consistency across a wider

range of problem instances and datasets. Additionally, exploring GREEVO’s suitability for

problems with extra constraints, like time windows, multi-depot, and split delivery, is a promising

direction for future work. The AVG GAP obtained by GREEVO provides insights into how

the hyper-heuristic was applied, which includes refining reward functions and developing new

selection policies for Q-learning that align more closely with specific problem objectives,

as well as evaluating the scalability of GREEVO for larger problem instances. Moreover,

testing different population management strategies and assessing the algorithm’s adaptability to

other combinatorial optimization problems beyond CVRP can help enhance its versatility and

effectiveness.

In conclusion, continued research and exploration in these areas can further enhance the

capabilities of GREEVO, contributing to its evolution as a versatile and powerful solution for

addressing various combinatorial optimization challenges in different domains.
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