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RESUMO

Uma série de Ruddlesden-Popper consiste em empilhamentos de estruturas cristalinas
básicas de maneira periódica, chamando atenção da comunidade científica devido à rica
física que exibem e as promissoras aplicações, especialmente em dispositivos de energia
verde e catálise industrial. De fórmula geral An+1BnO3n+1, estes materiais compõe-se
de n camadas de perovskitas ABO3 entre filme de óxidos AO. Conforme n é abaixado
na série, o confinamento gradual das estruturas perovskitas leva a um caráter 2D mais
pronunciado nas propriedades do material, ocasionando o surgimento de magnetorresis-
tência gigante, estruturas magnéticas não colineares, transições metal-isolante e regimes
de transferência de carga negativa. Neste trabalho, nos focamos na série Srn+1TMnO3n+1,
para TM = Fe com n = ∞, 2, 1 e também para TM = V para n = ∞, 1. O material
Sr3FeNiO7 também foi considerado, consistindo em uma dopagem de Sr3Fe2O7 com Ni
na proporção 1:1. Realizamos cálculos no formalismo da Teoria do Funcional Densidade
(DFT) utilizando os potenciais de troca e correlação PBEsol e mBJ-Jishi para estudar os
efeitos da dimensionalidade na estrutura eletrônica dos materiais e identificar tendências
gerais nas séries, tendo simulado diversas estruturas magnéticas fisicamente relevantes.
Se determinou que a redução da dimensionalidade dos sistemas ou a introdução de um
dopante leva diretamente a uma maior localização na estrutura de bandas e uma mudança
no comportamento magnético e condutivo do material. O caráter de oxigênio 2p foi ana-
lizado, a partir do qual se pode ver que a presença das camadas de óxido de estrôncio
causa a diferenciação dos tipos de oxigênio em relação a sua posição no cristal e leva
a comportamentos químicos diferentes, com uma atividade mais expressiva ao longo do
plano ab do que ao longo do eixo c. Isso foi interpretado como evidência do comportamento
2D-like de tais materiais, nos quais a interação entre as camadas de perovskita separadas
pelo óxido são fortemente reduzidas. Para a série do ferro, uma comparação dos espectros
de absorção de raios-x (XAS) calculados forneceu uma boa concordância com os espectros
experimentais, melhorada quando se considerou uma abordagem variacional de função
de Green para introduzir o efeito do potencial atrativo do buraco de caroço (que não é
obtido diretamente da DFT). Considerando a série do vanádio, a comparação foi feita com
espectros de condutividade ótica, também mostrando uma boa concordância para ambos
os materiais, apesar de que para n = 1 uma translação rígida em energia foi necessária
por causa do gap que não pode ser reproduzido em nossos cálculos. Concluímos portanto
que mudanças na dimensionalidade são uma característica chave dessas séries, levando aos
diversos comportamentos físicos que exibem em sua estrutura eletrônica.

Palavras-chave: Série de Ruddlesden-Popper; Teoria do Funcional Densidade; Estrutura
Eletrônica.



ABSTRACT

Ruddlesden-Popper series consists on stacks of basic crystalline structures in a periodic
fashion, drawing scientific attention due to the rich physics they exhibit and their promising
applications, mainly in green energy devices and industrial catalysis. Of general formula
An+1BnO3n+1, these materials consist on n layers of ABO3 perovskites in between AO oxide
films. As n is lowered in the series, the gradual confinement of the perovskite structures leads
to a more pronounced 2D-character in the material’s properties, originating for example
giant magnetoresistance, non-collinear magnetic structures, metal-insulator transitions and
negative charge-transfer regimes. In this work, we focused on the series Srn+1TMnO3n+1,
for TM = Fe and n = ∞, 2, 1 as well as TM = V for n = ∞, 1. The material Sr3FeNiO7 was
also considered, consisting of a 1:1 doping with Ni of Sr3Fe2O7. We conducted calculations
within the Density Functional Theory (DFT) framework using the PBEsol and mBJ-
Jishi exchange-correlation potentials aiming to study the effects of dimensionality on
the electronic structure of the materials and identify general trends in the series, having
simulated several physically relevant magnetic structures. It was found that lowering the
dimensionality of the systems or introducing a dopant leads directly to a greater localization
of the band structure and a change in the material’s conductive and magnetic behavior.
The oxygen 2p character was analyzed, through which it could be seen that the presence
of the strontium oxide layers causes the differentiation of oxygen species in regards to their
position in the crystal and leads to different chemical behavior, with a more expressive
activity along the ab plane than along the c axis. This was interpreted as evidence of the
2D-like behavior of such materials, in which the interaction between perovskite layers
separated by the oxide is greatly reduced. For the iron series, experimental comparison
with X-Ray absorption (XAS) data yielded a good agreement with the calculated spectra,
enhanced when considering a Green’s function variational approach in order to introduce
the attractive core-hole potential effect that isn’t obtained directly from DFT. Considering
the vanadium series, the comparison was done with optical conductivity spectra, which
also showed a good agreement for both materials, however for n = 1 a rigid shift in energy
was needed to account for the band gap that couldn’t be reproduced in our calculations.
We conclude thus that dimensionality changes are a key characteristic of these series,
driving the various physical behavior they exhibit by directly impacting their electronic
structure.

Keywords: Ruddlesden-Popper Series; Density Functional Theory; Electronic Structure.
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1. Introduction

A great scientific effort is applied towards discovering, understanding and designing
materials with specific properties, which can be then used to propose solutions to existing
problems in society [1, 2, 3]. For this end, it is of utmost importance to understand how
the electrons in a system organize themselves and interact with one another and with
other degrees of freedom. It is this electronic structure that establishes the material’s
physical properties, so that many theories have been developed since the 19th century in
the attempt to explain how these complex interactions take place and give rise to each
system’s behavior. One of the first successful steps was taken by Drude, who considered
the already established at the time kinetic theory of gases to a electron gas in a metal
[4]. Drude’s theory assumes that valence electrons are free to wander in the material,
thus behaving like a gas of weakly bound electrons [5]. Even considering its very rough
simplifications, this approach gave satisfactory results for many systems, but failed to
predict correctly for example the contribution of each electron to the metal’s specific heat,
largely due to the fact that the free-electron approximation is too drastic.

With the development of quantum mechanics some years later, a series of other
theories were proposed in order to explain the discrepancies of Drude’s. By taking into
account the Coulomb repulsion between electrons and their fermionic nature (electronic
correlation), the spin degree of freedom and the effects of a periodic potential on the
electronic structure, more complicated physical behavior could be modelled and explained.
Special attention is given to band theory and Mott-Hubbard theory [5, 6, 7], which will be
explained in more detail in chapter 2.

Because the systems of interest involve many electrons, exact solutions to Schrödin-
ger’s equation can’t be found and thus computational methods are widely used. Historically,
Fock’s extension of Hartree’s method [8] became commonplace in the study of solids, mo-
lecules and clusters despite its computational costs, but other approaches such as Slater’s
linear combination of atomic orbitals (LCAO) [9] and linear muffin-tin orbitals (LMTO)
[10] were also proposed. A breakthrough development was done by Pierre Hohenberg and
Walter Kohn in 1964 [11] in the study of an uniform electron gas. They discovered that
in the ground state of any multielectronic system, there is an univocal relation between
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the electronic density and the wave function 1, so that efforts could be directed towards
finding this electronic density by alternative means and the same information contained in
the wave function could be obtained. This led directly to the development of the much
acclaimed Density Functional Theory (DFT) 2over the following years, one of the most
successful methods for the calculation of electronic structure and widely used in fields
that range from chemistry to physics, from geosciences to pharmacology [3]. A detailed
explanation of DFT is given on chapter 2.

Considering the theoretical methods mentioned above and the different classes of
studied materials, transition metal oxides (TMOs) have attracted great interest due to
the wide range of physical properties they can exhibit and the often complicated physics
behind them. These systems feature combinations of transition metals and oxygen, with
the presence of pre-transition or post-transition elements being a common occurrence.
A defining characteristic is the progressive filling of the d shells, which due to the more
localized nature of these orbitals and the influence of the electronic correlation can
lead to very distinct electronic and magnetic behavior. For example, TMOs can be
insulating (BaTiO3), metallic (LaNiO3), semiconductors (Fe0.9O), ferromagnetic (CrO2),
antiferromagnetic (LaCrO3) or even multiferroic (BiFeO3) [12, 7]. The discovery of high
temperature superconductivity in cuprates in the 1980’s sparked a renewed interest in the
area and showed that a comprehensive understanding of the electronic structure of such
materials is still lacking, although many important steps have been made since then [13].

The interplay between the different degrees of freedom in TMOs, such as charge,
spin, orbital and lattice properties give rise to the highly-correlated nature of these
materials. An illustration of these complex interactions is present in figure 1. When
external influences are considered, such as pressure, magnetic or electric fields, it is not
uncommon for TMOs to undergo transitions caused by changes in the nature of the
kinetic hopping of charge carriers and orbital bandwidth, leading to charge-transfer or
Mott-Hubbard regimes that can’t be explained by conventional band structure theory [14].
The study of these correlated phases is thus vital for possible applications of TMOs in the
most varied situations, often requiring innovative theoretical and experimental methods
due to the complexity and specificity of each system considered.

One subclass of TMOs that has been extensively studied are the perovskite oxides,
of general formula ABO3, where A is usually a pre-transition metal and B can be a
transition or post-transition element. These arrange themselves, ideally, in a perfect cubic
unit cell, with the A cation occupying the vertices of a cube, inside of which a face-centered
octahedron of oxygens is present. The B site cations are located on the center of this larger
structure. [15, 16]. These systems can be considered prototypical highly-correlated oxides
due to their tuneability and stability, their characteristics being discussed in more detail
1 The details of such relation will be discussed later on, on chapter 2.4.
2 Walter Kohn received the Nobel prize in Chemistry in 1998 for the devolpment of DFT.
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Figure 1 – The interactions between the different degrees of freedom in TMOs give rise to
highly-correlated phases. Taken from reference [14].

in chapter 3.
Ruddlesden and Popper synthesized in the late 1950s the material Sr3Ti2O7 [17],

which can be understood as a bilayer of strontium titanate perovskites SrTiO3 stacked
between strontium oxide SrO layers along the c axis. This layered perovskite structure
became known as a Ruddlesden-Popper (RP) phase, of general formula An+1BnO3n+1,
with several other materials organizing themselves in the same manner being discovered
shortly after. Here, n refers to the number of perovskite layers in between the AO oxide
layers, so that when n = ∞ only the perovskites are present. These systems are of special
importance as examples of TMOs with a 2D character [12, 18] due to the confinement of
the perovskites in the ab plane. Because of the amount of possible combinations and the
reduction in the dimensionality of the system, Ruddlesden-Popper materials have a wide
range of physical behavior and possible applications. As of the last decade, a great interest
has been directed towards applications in solar cells, optoelectronics and photocatalysis
[19, 20, 21, 22, 23], where the oxygen is often partially replaced for some element like N, S
or Cl. A more in depth explanation of the properties of a RP series is given in chapter 3.

1.1 Overview

In the present work, we focused our attention on two distinct RP series, namely
Srn+1FenO3n+1 for n = ∞, 2, 1 and Srn+1VnO3n+1 for n = ∞, 1. These present complicated
electronic and magnetic behavior that is still not fully understood and will be detailed in
the following chapters. Our main goal was to analyse the dependence of each material’s
electronic structure on the system’s dimensionality. In order to do so, we conducted
comprehensive DFT calculations in the collinear spin approximation, considering different
magnetic arrangements. This approximation was employed aiming to greatly reduce the
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computational costs associated with the calculations. The resultant density of states and
band structure was studied differentiating the oxygen contributions by their positions, the
O 2p character in the bands also being determined in relation to the projections along the
ab plane and along the c axis. In the case of n = 2 for the iron series, the nickel-doped
Sr3FeNiO7 material was also considered. In order to validate our results, experimental
comparisons involving oxygen X-Ray absorption spectra for the iron series and optical
conductivity measurements for the vanadium series were conducted.

In chapter 2, basic concepts regarding the theory of electronic structure and DFT
are introduced, which will be necessary for the following discussions. In chapter 3, general
properties of Ruddelsden-Popper series are outlined and a review of the reported properties
and characteristics of the materials of interest is detailed. The computational methods
applied in this work and the experimental techniques used to drawn comparisons are
explained in chapter 4, the results obtained and their analysis being conducted on chapter
5. Finally, concluding remarks are discussed in chapter 6. In appendices I and II (6,6)
additional information regarding the computational methods and further tests are shown.
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2. Theoretical Basis

2.1 Band Theory

Among the many theories proposed to explain the electronic structure of crystalline
solids, band theory has been one of the most successful. The cornerstone of this approach
lies on Bloch’s theorem, which states that the eigenfunctions Ψ(r) of an electronic system
under a periodic potential U(r+R) = U(r), where R is the lattice vector of a Bravais
lattice 1, can be written as the product of a plane wave times a function with the same
periodicity as that of the lattice [5]. This can be written as

Ψnk(r) = eik·runk(r), (2.1)

where k is a wave vector that characterises the translational symmetry of the periodic
potential and unk(r+R) = unk(r). To reproduce the crystal’s periodicity, one considers
unit cells, which are the basic structure that when replicated in all directions yields the
lattice. One special type of unit cell is the Wigner-Seitz primitive cell, consisting on the
region of space that is closer to one lattice point than to any other, containing exactly
one of these points in its interior. By doing a Fourier transform of the lattice vectors, one
obtains the unit cell in the reciprocal space, so that the same definitions can be applied to
obtain its k-space equivalents 2. The Wigner-Seitz cell in reciprocal space is known as the
first Brillouin zone, being of vital importance in the study of many properties [5].

The evaluation of Schrödinger’s equation considering Bloch’s theorem and k

restricted to the first Brillouin zone yields an infinite family of solutions with discretely
spaced eigenvalues. Much like the simple case of a particle in a box, one can define a
quantum number n to distinguish between each family of solutions. Here, n is called the
band index. Despite that, due to the nature of the Hamiltonian’s dependence on k, these
solutions vary continuously with the wave vector.
1 A Bravais lattice is the collection of all points spanned by a lattice vector R = n1a1 + n2a2 + n3a3,

where ai are any three vectors not in the same plane and n1 take on any integer value. The result is a
periodic spacing of points, which represent a crystalline system [5].

2 In k-space, the Bravais lattice vector K is given by K = x1b1+x2b2+x3b3, provided that ai ·bj = 2πδij ,
representing the period in the reciprocal lattice.
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By considering the lattice periodicity now on the k-space, we can use the band
index to specify each family of infinite solutions of Schrödinger’s equation by allowing
k to range through all of the space. The periodic condition implies that, for each n, the
eigenstates and eigenvalues are also periodic functions of k in the reciprocal lattice:

Ψn,k+K(r) = Ψnk(R), (2.2)

εn,k+K = εnk. (2.3)

Here εnk is called an energy band, a continuous function of k that contains all of the
information of a specific set of electronic levels, and K, given by the relation K =

x1b1 + x2b2 + x3b3, is the Bravais lattice vector in reciprocal space. The collection of
these bands and the information they represent is called the band structure of the solid.
The quantity of electronic states in a band in the energy interval [E,E + dE] is called the
density of states (DOS), and is a very useful tool to analyze the material’s characteristics.

In the ground state of any crystalline material, the filling of the bands dictates its
electronic behavior. It is usual to consider the reference energy to be that of the Fermi
level EF , that is, the chemical potential as the temperature approaches zero. The energy
difference between the top of the highest ocuppied band, called the valence band, and the
bottom of the lowest unoccupied band, called the conduction band, is known as the band
gap. The Fermi level can be shifted due to impurities in the crystal [5]. This shift can take
place, for example, by the introduction of extra electrons in the conduction band or holes
into the valence band, which increase the conductivity by increasing the carrier mobility
[6].

When an energy gap is present, there is a cost associated to promoting an
electron from the valence band to the conduction band. In this case, the material can
be characterized as an insulator, when the gap is large compared to the thermal energy
kBT , or as a semiconductor, when it is of the order of kBT . When no gap is present, the
electrons in the valence band can easily be excited to the conduction band, where they can
become delocalized and conduct electricity. Thus, in this case, the material is characterized
as a conductor. One can also think about these classifications in terms of the DOS: when
the density of states is non-zero around EF , the material is an conductor; when there
is a large energetic separation between the electronic state densities, the material is an
insulator and when this separation is intermediate one has a semiconductor. A schematic
representation of this in terms of the density of states is represented in figure 2. Also
depicted are the cases of semimetals, where the DOS approaches zero at the Fermi level,
impacting conduction, and the p and n-type semiconductors, which have the valence band
top or conduction band bottom at EF , respectively.

The determination of the periodic eigenfunctions Ψn,k is in general quite com-
plicated, thus approximations are made, the simplest of which consists of considering
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Figure 2 – Schematic representation of electronic density of states around the Fermi level
for different electronic behavior. Image taken from Nanite, CC0, via Wikimedia
Commons.

that the total wavefunctions can be written in terms of a linear combination of atomic
orbitals (LCAO). This method is called tight binding, as it considers that the orbitals are
“tightly bound” to the atoms themselves and the only appreciable overlap comes from first
neighbors [7]. For a transition metal oxide system, usually the most important orbitals to
consider as basis sets are the transition metal d and the oxygen 2p orbitals.

The mixing of the orbitals give rise to bonding and anti-bonding contributions,
meaning that for different k one obtains different energies associated. Due to this general
fact, it is common to represent the band structure on a band diagram as depending on the
wave vector along specific high-symmetry directions 3, highlighting the energy dispersion
along the (first) Brillouin zone. Such an example is given on figure 3. There one can see
that each band changes its energy level depending on the position k in reciprocal space
that is being considered, which are represented by letters like Γ and Z that represent high-
symmetry points following standard nomenclature, which can be found on any textbook
of the area such as the one by Ashcroft and Mermin [5].

Because the tight binding (or LCAO) method is very simplified, several other
methods for obtaining the band structure exist. One of such was derived directly from this
first method by Slater and Koster in 1954 [9], aptly called simplified LCAO. The basic
idea is to consider base functions with orbital-specific symmetries and replace the integrals
of the energy matrix elements by constants, which are fitted to accurate experimental
data. These constants refer to specific combinations of orbitals written in terms of cubic
harmonics, for example the combination of an s orbital with a px one. This allows the
3 Because the full band structure is tridimensional, it is impossible to plot it against the energy or

wave-vector dependency.
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Figure 3 – Example of a band structure for the RuO2 oxide in the tetragonal structure,
calculated using the augmented plane wave method. Adapted from reference
[7].

energy terms to be greatly simplified and calculated more directly, yielding a reasonable
agreement with experimental values.

Another method of great success is the augmented plane wave method (APW), also
proposed by Slater and outlined by himself in reference [24]. This consists on numerically
integrating the radial Schrödinger’s equation on a spheric region centered around each atom,
averaging over the angular dependence written in spherical harmonics, yielding a potential
that depends on radial distance alone, called the muffin tin approximation. The system’s
wavefunction is then expanded in terms of plane waves in the space between non-overlaping
spheres and made continuous by appropriate boundary conditions (augmentation). A
derived method called the linearized augmented plane wave with local orbitals (LAPW+lo)
is of special importance to this work, being outlined in the methodology chapter 4.1.

2.2 Effects of Electronic Localization

The approach of building a basis set of molecular orbitals, as described in the
previous section, and the usual band theory that follows breaks down when the interaction
between orbitals is weak enough. This can happen when there is not enough inter atomic
orbital overlap, which results in the electrons being much more localized [6]. In this case,
the bands that are generated do not show great dispersion and become quite narrow. As
a consequence, the mutual electronic repulsion needs to be treated more carefully and
not just as an averaged potential. As expected, this is no easy task, and many different
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approximations were proposed along the years. One model that proved itself to be quite
useful is known as the Hubbard model [25], being used to tackle many different problems.
A thorough review is outside the scope of this work, but can be found on the work by
Imada and collaborators [26].

The basic idea of the model lies on assuming that the most important contribution
in energy arising from the electronic repulsion is that between electrons of the same atom.
Considering an isolated atom, the energy associated with repulsion U can be interpreted
as the energy required to remove an electron from somewhere else, the ionization energy I,
minus the lowering in energy by the reorganization of the electronic cloud of the receiving
atom, the electronic affinity A. This is simply written as

U = I − A, (2.4)

Where the repulsion U is also known as Hubbard’s U and can be considered a form of
electronic correlation, in the sense that the presence of an electron in an orbital alters the
probability density of electrons that are nearby.

As an example, a one dimensional chain of atoms with s valence orbitals as in
figure 4. When there is little overlap between the orbitals, i.e. the electrons are localized
and atoms are almost isolated, the ground state of the system consists of singly occupied
valence shells. Thus, if one electron is to jump to a neighboring atom, the Coulomb
repulsion between them implies an energy cost U as given by the equation above. In
this sense, the effect of electronic repulsion is to make the band of half-filled s orbitals
insulating if the interaction between adjacent orbitals is small enough. If this interaction
were to increase, that is, the overlap between the orbitals become greater, a delocalization
of the electrons would be favored and thus a conductive behavior would arise, turning the
band metallic. This kind of electronic behavior is know as metal-insulator transition, and
materials where the main cause of insulating nature is due to electronic localization are
known as Mott-Hubbard insulators [26].

A way of quantifying how much overlap is present is through a parameter known
as bandwidth W , the energy interval occupied by a given band. The presence of the
electronic repulsion U causes a separation known as Hubbard splitting into sub-bands
between the configuration of a single electron per orbital and the doubly occupied one,
which is schematically represented in figure 5, where the energy is plotted as a function of
the bandwidth W . For W = 0, the case of isolated atoms, the gap that separates the two
sub-bands is exactly the repulsion given by equation 4, but as the bandwidth increases and
more overlap between the orbitals happen, it becomes easier to delocalize the electrons
and thus the gap decreases. When the two bands meet at the Fermi level, that is, when the
bandwidth is of the same magnitude of the repulsion, there is no energy cost associated
with the delocalization and thus the material becomes metallic, as predicted by usual band
theory. Thus, one can argue that the electronic repulsion can only be overlooked when the
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Figure 4 – A linear chain of valence s electrons with little overlap. The ground state (a)
has half-filled orbitals with one electron on each atom, where any excitation
(b) implies an energetic cost due to electronic repulsion. Figure taken from
reference [6].

condition W > U is satisfied.
Naturally, the approximation proposed doesn’t take into account a series of other

phenomena that take place in real solids, such as the polarization of the electronic clouds
due to the presence of holes, which reduce the energy needed to excite the electrons
in the material. This polarization causes the Hubbard splitting to decrease faster in a
non-trivial manner, rendering direct calculations of U quite challenging, although it can
be determined by experimental comparison, at least approximately. The problem usually
lies on the very nature of the highly idealized model, with the assumption of localized
repulsion and single-band models [7]. Even with these difficulties, the model is effective on
the study of magnetic insulators and magnetic transitions, and several generalized models
have been proposed for specific problems, often with good success [26, 7].

When considering the effects of the repulsion U on transition metals, a wide
array of behavior can take place. For example, in the case of metallic elements, the d

orbitals bandwidth is usually enough to satisfy the condition W > U , so that band
theory shows a good agreement with experimental data, although U directly influences the
magnetic structure of the materials. It is in compounds of these transition metals however
that the rich behavior really manifests, with many examples of Mott-Hubbard induced
metal-insulator transitions [26, 6, 7].

Although dependence of the material’s properties is highly characteristic on the
material itself, some general properties can be outlined for transition metal compounds
[6]. Firstly, any kind of characteristic or interaction that increases the bandwidth of the d

orbitals or decreases the repulsion U will favor delocalization, which in turn favors (but
does not assure) metallicity. Thus, the larger the d orbital, the broader the band and the
smaller the U . It is also worthy of note that mixed stoichiometry compounds, such as
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Figure 5 – Schematic dependence of the Hubbard splitting on the bandwidth W . When
W equals the Hubbard U , the sub-bands fuse together and the predictions of
band theory, which do not take into account electronic repulsion, agree with
those of the model. The decrease of the splitting as W increases is not equal for
both sub-bands due to polarization effects. Figure adapted from reference [6].

Fe3O4 featuring Fe2+ and Fe3+, can favor metallic behavior despite electronic repulsion
due to the different oxidation states. This is represented in figure 6, where there is no
energy cost associated on the electron or hole motion through the lattice because of the
non-equal sites.

It is also worthy of note the influence of local symmetry on the d orbital charac-
teristics [6]. As these orbitals interact with those of other atoms, the ligands, molecular
orbitals are formed. When the metal-ligand orbitals point directly towards each other, the
bond is of σ type, otherwise being of π type. The ligand electrons occupy the bonding
orbitals, leaving the metal d electrons to occupy the antibonding ones. Because electronic
repulsion is greater in the σ bond, as there is a greater wavefunction overlap, the mole-
cular orbitals that derive from it have a higher energy than those of π bond origin. In a
octahedral symmetry (Oh), the d orbital degeneracy is broken and dz2 and dx2−y2 , which
are σ antibonding and labeled as eg, become higher in energy than dxz,dxy,dyz, which are
π antibonding and labeled as t2g. The shapes of these orbitals are depicted in figure 7.

The separation between eg and t2g levels depends on the intensity of the interaction
between metal and ligand, being quantified in a parameter 10Dq known as ligand field
splitting, and also on the intra-atomic exchange j, representing the energy cost associated
with two electrons occupying the same orbital 4. When 10Dq is sufficiently large, it is
4 A more in-depth explanation of exchange and its effects will be given in the following section, focusing

however on inter -atomic exchange.
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Figure 6 – For mixed valence compounds, metallic character can arise due to no cost in
electron (a) or hole (b) delocalization. Figure taken from reference [6].

Figure 7 – Spatial shapes of metal eg and t2g orbitals under octahedral symmetry. The
black dots along each direction represent the ligands, whose orbitals are not
depicted for visual clarity. Figure taken from reference [7].
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Figure 8 – Schematic representation of a d5 configuration in low, intermediate and high
spin states. The choice of ground state depends on the ligand field splitting
10Dq and the intra-atomic exchange j.

more energetically favorable to fully occupy the t2g orbitals even though there is electronic
repulsion and the energy cost due to j, which leads to a smaller total spin magnetic
moment. This is known as a low-spin configuration, in opposition to when 10Dq is small,
which favors the occupation of levels with spins in the same orientation to minimize j,
called high-spin configuration. When 10Dq and j are of the same order of magnitude, the
electronic configuration depends more on each specific case, being named intermediate
spin (see figure 8) [6].

As a consequence of the uneven occupation of the eg and t2g orbitals, that is,
a different number of electrons occupy each orbital, an asymmetrical charge density is
generated. This in turn yields a resultant force that tends to distort the local geometry.
This effect is known as Jahn-Teller distortion [6] and is responsible for a lowering of the
local symmetry from octahedral Oh towards tetragonal D4h and breaking the degeneracy
of either (or both) orbitals. It is more pronounced when the uneven occupation happens in
the eg orbitals due to their spatial dispersion, that is, when there are one or three electrons
in these orbitals. In the case of octahedral symmetry, this distortion often leads to the
elongation of the bonds along one of the axis, yielding a tetragonal structure. A schematic
depiction of this phenomenon is present in figure 9.
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Figure 9 – Schematic of the Jahn-Teller effect from an octahedral Oh symmetry towards a
tetragonal D4h symmetry, with degeneracy breaking of the eg and t2g orbitals.
Figure taken from reference [27].

2.3 Electronic Structure and Magnetism

As the electronic structure of a material defines what macroscopic and microscopic
physical behavior it can exhibit, the study of the specific interactions that lead to magnetic
ordering or the lack thereof are of great practical importance. These arise from the quantum-
mechanical nature of the electrons in the material, rendering full ab initio descriptions
quite difficult in some cases. In order to tackle this difficulty, several models have been
proposed over the years, with various degrees of applications and accuracy.

First off, one needs to take into account the fermionic nature of electrons. Pauli’s
exclusion principle forbids two fermions of occupying the same quantum state, or more
formally, requires that the wavefunctions of two fermions must be antisymmetric when
they are interchanged [28]. This constrains the number of electrons that can occupy the
same orbital and is fundamental to understand what drives magnetic ordering. In the
following sections, some specific interactions will be discussed.

2.3.1 Exchange

As a direct consequence of Pauli’s exclusion principle, an energy contribution
due to the indistinguishability of the electrons appears naturally in multi-electronic
systems because of the wavefunction’s antissymmetric nature. As an example, consider the
simple case of only two electrons interacting, which can represent for example a localized
interaction or an He atom. The total wave function needs to be antisymmetric, what can
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be realized by the combination of a symmetric spatial state with an antisymmetric singlet
spin state χS (s = 0), or a antisymmetric spatial state with a symmetric triplet spin state
χT (s = 1), written as

ΨS =
1√
2
[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS (2.5)

ΨT =
1√
2
[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]χT (2.6)

Here, ψa,b refer to the single wave functions of both electrons [29]. Calling ES and ET the
energies of both states, given by

ES =

∫
Ψ∗

SHΨSdr1dr2 (2.7)

ET =

∫
Ψ∗

THΨTdr1dr2, (2.8)

and H the interaction Hamiltonian, the difference in energy between both states is

ES − ET = 2

∫
ψ∗
a(r1)ψ

∗
b (r2) H ψa(r2)ψb(r1)dr1dr2, (2.9)

where it was assumed that the spin states are normalized. If the Hamiltonian for this two
electron system is given by a very general expression of the type

H = AS1 · S2, (2.10)

where A is some constant and S1,2 are the spin operators of each electron, it is easy to
show that the total spin quantum number s will take on only two values, namely s = 0 or
1. The former is associated with a singlet (i.e. antiparallel spins) state and the latter with
a triplet (i.e. parallel spins) state. The dot product is given by [29]

S1 · S2 =

{
1
4

if s = 1

−3
4

if s = 0
. (2.11)

The difference between the singlet and triplet states can be parametrized using this result,
leading to an effective Hamiltonian written as

H =
1

4
(ES + 3ET )− (ES − ET )S1 · S2. (2.12)

Direct substitution for each case returns the corresponding energy. In this effective ex-
pression, the first term is a constant that can be grouped in other constant energy terms,
leaving the second term which holds the spin dependency. The exchange integral J is
defined by

J =
ES − ET

2
=

∫
ψ∗
a(r1)ψ

∗
b (r2) H ψa(r2)ψb(r1)dr1dr2, (2.13)
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leading the effective spin Hamiltonian to be written as

H = −2JS1 · S2. (2.14)

Here, the relative spin orientation is governed by the sign of J . In the case of J > 0,
ES > ET and the triplet state (parallel) is favoured. On the other hand, if J < 0, the
singlet state (antiparallel) is favored as ES < ET .

Although this Hamiltonian was derived for a two electron system, it inspired a
generalization known as Heisenberg model

H = −
∑
ij

JijSi · Sj, (2.15)

where Jij is the exchange constant between an electron pair, which can be located on the
same atom or different atoms. The direct evaluation of Jij is quite complicated in general,
but the same interpretation of the favoured spin alignment can be done as in the two
electron case. This simple expression can be used to study many complex interactions and
is widely employed in the magnetism literature, either in form above or with additional
terms to account for more general cases. For example, a model with the same format,
called Anderson’s model, is used in the study of spin glasses. In this case, the complication
lies on assuming that Jij is no longer a constant, but a gaussian distribution of values to
tackle complexity [30].

In a nutshell, the exchange interaction arises as a consequence of Pauli’s exclusion
principle and has no classical analog. The energy associated with this interaction depends
on the relative orientation of any spin pair, thus driving magnetic ordering by lowering or
increasing the total energy of the magnetic system. In general, if the electron pair belongs
to the same atom, the exchange integral is usually positive and favoring triplet states. This
is due to the fact that an antisymmetric spatial state minimizes the Coulomb repulsion
and lowers the total energy of the system, being the physical origin of Hund’s first rule
[29].

In real materials, more complicated interactions may take place. One of such is
called the superexchange, which can be understood as the exchange interaction between
two magnetic atoms, mediated by a non-magnetic third. This is often the case for magnetic
oxides, such as MnO [28, 31]. In this situation, the magnetic ions are too far apart, so
that there is no significant overlap of the d orbitals. Instead, the exchange mechanism
happens, for example, through the hybridization of the metal d (e.g. Mn) electrons with
the p orbitals of the intermediary atom (e.g. O). This favors the delocalization of the p

electrons, which in turn lowers their kinetic energy. Additionally, due to Pauli’s exclusion
principle, this intermediary interaction can drive magnetic ordering by favoring the parallel
or antiparallel orientation of the spins of the metal atoms.
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Figure 10 – Schematic representation of superexchange interaction driving antiferromag-
netic ordering considering a situation with a half-filled (a) and a less than
half-filled shell (b). Adapted from reference [28]

.

A schematic example considering MnO is shown in figure 10. The covalent bonding
between one Mn2+ and O2− atoms leads to only the opposite spin being available for
another Mn-O bond, which requires by Pauli’s exclusion principle that the second Mn atom
orders itself antiferromagnetically in relation to the first, as is depicted in (a). When the
metal’s d orbitals are empty, the superexchange interaction also leads to antiferromagnetic
coupling as can be seen on (b). If the metals involved have different valences or impurities
are present, then the same mechanism can lead to ferromagnetism, although this interaction
is weaker and less common, being also referred to as double exchange [29].

Besides exchange and superexchange, other exchange-like interactions may take
place in specific situations. By considering the spin-orbit effect in a non-centrossymetric
crystal environment, the ground state of one magnetically active ion and the excited state
of another present an interaction called anisotropic exchange or Dzyaloshinskii-Moriya
(DM). This is modelled by a simple hamiltonian like HDM = D · (S1 × S2), where D is
a vector that has a non-zero value only when the two spin sites are not equivalent [31].
This favors the canting of the spins away from a collinear orientation, which can yield
a weak ferromagnetic behavior, while also being key in driving the material’s magnetic
structure towards more complicated spin textures such as spin helices [32]. A schematic
representation of this interaction is displayed on figure 11.

For materials that are based on rare earths, elements with semi-filled 4f shells, yet
another interaction can result in magnetic behavior. This is called the RKKY interaction,
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Figure 11 – The Dzyaloshinskii-Moriya interaction (DM) depends on the D vector, which
is only non-zero when inversion symmetry is not present in the material consi-
dered. In this case, a canting of the spins happens and a weak magnetization
can be generated. Image adapted from reference [32].

named after the discoverers of the effect, and is the result of an indirect exchange between
magnetic ions, mediated by conduction electrons. As the 4f orbitals are very localized, there
is no overlap between these orbitals for adjacent atoms, but their presence magnetically
polarizes conduction electrons in the vicinity, which in turn interact with the other atoms,
propagating through the lattice. This coupling has an oscillatory nature and may cause
both ferromagnetism or antiferromagnetism, depending on the distance between magnetic
moments [29, 31].

2.4 Density Functional Theory

Among the many methods developed over the years for the calculation of physical
properties of multi electronic systems, those based on Density Functional Theory (DFT)
have proven themselves to be quite powerful and with a wide range of applications. The
cornerstone of the theory lies on two theorems named after Pierre Hohenberg (1934-2017)
and Walter Kohn (1923-2016, Nobel Prize in Chemistry 1998), which can be summarized
as:

1. In the ground state of a multielectronic system, the total energy is a unique functional
of the electronic density E[n(r)];

2. The true electronic density, that corresponds to the solution of the Schrödinger’s
equation, is the one that minimizes the energy of E[n(r)].

These theorems assure us that the electronic density n(r) carries all the infor-
mation that can be derived from the multielectronic wave function Ψ(r1, r2, ...rn). Thus,
determining the electronic density is completely equivalent to solving the Schrödinger’s
equation for any multielectronic system, granted that it finds itself in the ground state.
In the words of Kohn himself [33], the advantages of focusing on the electronic density is
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that it is a real, three dimensional quantity that depends only on the spatial region of
interest, and is physical. In contrast, Ψ(r1, r2, ...rn) is a 3N -dimensional complex quantity,
thus not measurable, which depends on all of the electronic coordinates.

The proof of the first theorem is quite ingenious, although simple, relying on a
reductio ad absurdum strategy [33, 3]. Consider the following Hamiltonian:

H(r1, r2, ..., rN) = T + U +
∑
i

VN(ri), (2.16)

where T and U are respectively the kinetic energy and interaction energy operators and
V(ri) is an external potential. The energy of this system can be written as

E = 〈Ψ|H |Ψ〉 =
∫

VN(r)n(r) dr+ 〈Ψ| (T + U) |Ψ〉 , (2.17)

where n(r) is the electronic density. Now assume that Ψ is the ground-state corresponding
to VN , with energy E . Suppose that the same density can be generated by a different
potential V ′

n , with corresponding H ′, Ψ′ and E ′. Because Ψ is not the ground state for
this other potential, we have that

〈Ψ|H ′ |Ψ〉 = 〈Ψ| (T + U) |Ψ〉+
∫

drn(r)V
′
n(r) > E ′. (2.18)

Thus we can conclude that

E − E ′ >
∫

drn(r) [VN(r)− V ′
N(r)] (2.19)

as no assumptions were made on the nature of the external potentials, the same analysis
can be done considering Ψ′ on equation 2.18 , yielding

〈Ψ′|H |Ψ′〉 = E ′ − E >

∫
drn(r)[Vn(r)− V ′

n(r)]. (2.20)

By adding the two equations, one obtains 0 > 0. Thus, the initial assumption that two
different potentials can lead to the same electronic density in the ground state is false,
proving the first theorem.

With this in mind, Hohenberg and Kohn considered an extension of the Hartree-
Fock method for independent electrons. The Hamiltonian for this case can be written
as

[
−
∑
i

�

2me

∇2
i −

∑
I

�

2MI

∇2
I +

1

2

∑
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|ri − rj|+

+
1

2

∑
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e2

4πε0

ZIZJ

|RI −RJ | −
∑
i,I

e2
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ZI

|ri −RI |
]
Ψ = EtotΨ (2.21)
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In this expression, the first two terms are the kinetic energy of the electrons and the nuclei,
followed by the Coulomb repulsion of electron-electron pairs, nucleus-nucleus and lastly
the attraction between electrons and nuclei. This last term is very problematic to treat
mathematically due to the number of interactions it encodes and their complexity.

Naturally, this problem becomes very difficult to solve for all but the simplest
systems, thus several steps aimed at simplifying this expression can be done. They are listed
in detail in reference [3], but an outline of the process can be discussed. First off, one can
adopt atomic units 5 to get rid of the constants and also consider the Born-Oppenheimer
approximation, so that the nuclear coulomb interaction becomes a constant. By defining
single electron Hamiltonians and considering them as independent, one arrives at the
Hartree problem. The next step consists of satisfying the exclusion principle by means of
Slater determinants and averaging the electron-electron interactions as a mean field.

When one also considers the exchange potential between electrons explicitly,
that is, the energy associated with the indistinguishability of electrons (and all quantum
particles for that matter), one arrives at the Hartree-Fock theory. The last step is to
consider another potential ad hoc to take into account the correlation of electrons 6. The
basic idea is that, due to the Coulomb repulsion, the probability distribution of finding
an electron at a given point is influenced by the presence of another in the vicinity. In
other words, |Ψ(r1, r2)|2 < |φ(r1)φ(r)2|2 , meaning that the probability distribution of the
multielectronic wave function Ψ is different than the one obtained by the product of the
(independent) single electron wavefunctions φ.

In the end, one arrives at the system known as Kohn-Sham equations (in atomic
units) [34]

[
− ∇2

2
+ Vn(r) + VH(r) + Vx(r) + Vc(r)

]
φi(r) = εiφi(r) (2.22)

where −∇2/2 is the kinetic energy operator, Vn the constant nuclear potential, VH the
Hartree potential, Vx the exchange potential and lastly Vc the correlation potential. Here,
φi and εi correspond respectively to single electron wavefunctions and eigenvalues.

Taking a look back at the Hohenberg-Kohn theorem, one can express the energy
as a functional of the electronic density by using the Kohn-Sham Hamiltonian in 2.22 as

E = F [n]

=

∫
drn(r)Vn(r)−

∑
i

∫
drφ∗

i (r)
∇2

2
φi(r) +

1

2

∫ ∫
dr dr′

n(r)n(r′)
|r− r′| + EXC [n]

(2.23)

5
� = e = me = 4πε0 = 1, where � is Planck’s reduced constant, e (me) the electron charge (mass) and
ε0 the vacuum’s permittivity.

6 This choice is highly dependent on the system under study. For DFT, possibilities will be discussed in
the following subsections.
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Figure 12 – Outline of a self-consistent algorithm.

where the first term relates to the external potential and the following to the kinetic energy,
the Hartree energy and lastly the exchange-correlation energy, which has been bundled
up in a single unknown functional EXC [n] . In order to find the electron density at the
ground state (as this is only valid for this situation), one utilizes the so called Kohn-Sham
variational principle [34] in regards to the electronic density, which can be written as a
functional derivative of the exchange-correlation energy,

VXC(r) =
δEXC(r)

δn(r)
, (2.24)

and arrives at the same set of equations obtained before, aptly called Kohn-Sham equations
2.22. This means that, in the ground state, the correct electronic density is that which
minimizes the energy functional, precisely the statement of the second Hohenberg-Kohn
theorem stated before.

The problem now lies elsewhere: how does one determine the electronic exchange
and correlation potential, the only unknown in equation 2.23? If this were known, one
would have exact solutions for the ground state of any multi-electronic system (barring
computational errors). Alas, that is not the case, so useful approximations must be
considered for specific cases. Also worthy of note is the recursiveness in the above equation:
n(r) is needed to calculate E, but in order to calculate E one needs the electronic densitY
to write the Hartree potential [2]. This can be solved using a self-consistent algorithm
which is explained in the following and summarized in figure 12.

Starting from an initial external potential, which can be derived from other
methods such as a Hartree-Fock calculation, one obtains the initial density as per the
Hohenberg-Kohn theorem. This initial density is used in the definition of the Hartree
and exchange-correlation potentials, which are then used to generate the Kohn-Sham
equations. Solving them yields a new electronic density, which is compared to the initial. If
the difference between them is lower than a given threshold, the calculation has converged
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Figure 13 – Different degrees of complexity for the treatment of the exchange-correlation
potential, from the simplest at the bottom (equivalent to Hartree theory)
towards the chemically exact at the top (extracted from reference [35]).

and thus the physical properties can be obtained. If that is not the case, then this new
density is used as input for another iteration and so on.

As mentioned before, the crux of the theory lies on the definition of the exchange-
correlation potential VXC , or equivalently, the exchange-correlation energy EXC . Although
its general form is unknown, several useful properties of the exact functional have been
discovered and thus serve as constraints to proposed functionals, such as the electronic
hole density and low/high density limits. Perdew [35] coined the term “Jacob’s ladder” in
reference to the increasingly more complex approximations one can consider, which are
summarized in the figure 13.

The exchange-correlation energy functional can be written generally as

EXC [n↑, n↓] =
∫

drn(r) εXC([n↑, n↓]; r) , (2.25)

where the integrand is the exchange-correlation energy density and εXC is the exchange-
correlation energy per electron. The different steps on the ladder refer to what kind of
ingredients one uses to define εXC [n↑, n↓]. The basic approximation is called the local spin
density approximation (LSD) or just local density approximation (LDA), that considers
the exchange-correlation energy of an homogeneous electron gas. In this case, the space is
separated in small units inside of which n is constant or near constant. The reason for
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such an assumption is that the exchange energy of this system is known exactly and the
correlation can be determined through numerical techniques [3].

As more ingredients are considered in the construction of εXC , such as the gradient
of the electronic densities ∇n(r) and the kinetic energy densities τ(r), taking care to
satisfy some constraints, one expects better descriptions of physical properties. For the
lower and higher steps in this hierarchy of functionals, no empirical fitting is used, but for
intermediate steps those can be quite handy. In summary, the choice of functional to use
depends on the system under study and available computational resources. Some lists of
types of functionals can be found in the paper by Perdew and Schmidt [35] and in the
open-source functional library LibXC [36]. We will focus our attention on a more in-depth
description of the two functionals used for this work, which are the solid adapted Perdew-
Burke-Ernzerhof (PBEsol) [37] and the modified Becke-Johnson potential parametrized by
Jishi et al. (Jishi - mBJ) [38]. The reasoning behind this choice will be explained in the
following subsections.

As can be seen in equation 2.25, the spin polarization can be taken into account
in the definition of the exchange correlation potential. The treatment of the spin degree
of freedom in the density functional theory framework is called spin-DFT and follows
more or less the same idea of non-relativistic DFT, only more mathematically involved.
This generalization can be done by starting not from the (non-relativistic) Schrödinger’s
equation but from Dirac’s equation, written for a one electron system as

i�
∂

∂t
Ψ(r, t) =

[
cα · (p+ eA)− eφ+ βmec

2
]
Ψ(r, t), (2.26)

where Ψ(r, t) is a column matrix of four different wave functions called the 4-spinor, which
can also be written as the array of two 2-spinors, Ψ and ψ , as

Ψ(r, t) =

[
Ψ(r, t)

ψ(r, t)

]
, withΨ(r, t) =

[
ψ(r, t; 1)

ψ(r, t; 2)

]
andψ(r, t) =

[
ψ(r, t; 3)

ψ(r, t; 4)

]
. (2.27)

In the above equation, the quantities α and β are 4×4 matrices involving the Pauli matrices
σi . After some extensive calculations [3] it can be shown that the ψ spinor, called the
small component of the Dirac 4-spinor, is much smaller than Ψ, the large component, and
is usually ignored. The equation for the large component recovers Schrödinger’s equation
but with an extra term, the spin term, which depends on the spin operator S given by

S =
�

2
σ. (2.28)

Because by construction Dirac’s equation is in agreement with special relativity, the spin
property shows up naturally and must not be postulated as in the case of the Schrödinger’s
quantum mechanical treatment.
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By applying the same logic that yields the Hohenberg-Kohn theorem 2.4 for the
non-relativistic case, it was shown that the total energy is a unique functional of not only
the electronic density n(r), but also of the so called spin density s(r) [3]. Both of these
quantities are now built considering independent 2-spinors, whose components are related
to up or down spin, as

n(r) =
∑
i

Ψ†
i (r)Ψi(r), (2.29)

s(r) =
∑
i

Ψ†
iS(r)Ψi(r), (2.30)

Ψi(r) =

[
φi(r; 1)

φi(r; 2)

]
(2.31)

where the sum runs over the N lowest-energy spinors and φi are the independent electron
wave functions. In this sense, to every point in space with non-zero electron density, an
element of magnetic dipole moment s(r)dr is associated. It is also very common to define
another object called the density matrix nαβ(r), which allows the densities above to be
written in a more compact manner, where α and β have values 1 or 2, referring to the
spinor up or down components, yielding

n(r) =
∑
α

nαα(r), s(r) =
�

2

∑
αβ

nαβ(r)σαβ. (2.32)

This allows to cast the Hohenberg-Kohn theorem into a single object, namely the
density matrix. That is, the total energy of the ground state of a multielectronic system is
a unique functional of the density matrix E = G[nαβ(r)]. In analogy to equation 2.24, now
the exchange correlation potential V XC

αβ is written as the functional derivative in regards
to the density matrix as

V XC
αβ =

δEXC

δnαβ

∣∣∣∣
nαβ(r)

. (2.33)

Finally, the Kohn-Sham equations 2.22 are now written with the subscripts α and β as

[
−1

2
∇2 + Vn(r) + VH(r)

]
φi(r;α) +

∑
β

V XC
αβ (r)φi(r; β) = εiφi(r;α). (2.34)

Through an apt manipulation [39], this equation can be recast as

[
−1

2
∇2 + Vn(r) + VH(r) + VXC(r) + μBσ ·BXC(r)

]
Ψi(r) = εiΨi(r), (2.35)

which is the basically the same as the non-spin-polarized version (2.22) with an additional
term BXC , called the “exchange and correlation magnetic field”. This can be understood
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as the effective magnetic field generated by the many electrons and can be the source of
magnetic ordering. In summary, the electronic spin degree of freedom can be taken into
account in DFT calculations through a new formulation based on Dirac’s equation and
spinors, resulting in equation 2.34, or equivalently 2.35.

One final remark must be made about spin-DFT in regards to how the spins
can be oriented in the material: collinear or non-collinear. For collinear calculations, one
considers that the spins can only orient themselves in a single direction (Ising spins).
Naturally, this approximation can simulate only ferromagnetic, antiferromagnetic and
ferrimagnetic materials. In this case, the spinors can be chosen to have only one non-zero
component and calculations are greatly simplified. For the non-collinear case, the spinors
have two non zero components and the spin density can oriented, in principle, along any
direction in the Bloch sphere. This approach is more versatile and can be used to study
more exotic spin arrangements such as spin helices and domain walls. Unfortunately, the
doubling of the functions needed to describe each electron causes an increase of about 64
times the computational cost [3].

2.4.1 PBEsol

Belonging to the class of generalized gradient approximations (GGA), the original
Perdew-Burke-Ernzerhof [40] is one of the most successful functionals proposed, combining
both computational efficiency and reliability. It uses not only the local electronic density
n(r) in the construction of the exchange and correlation energy per electron but also how
it varies spatially through its gradient ∇n(r). The main motivation behind the proposal of
this functional was, at the time, the necessity of improving another functional of the same
class, the Perdew-Wang 1991 or PW91 [41]. Among the problems that PW91 presented
were a complicated and overparametrized expression for the exchange-correlation energy
per electron, spurious variations for small and large density gradients and also a worse
description of the linear response of the density for a uniform electron gas than LDA [40].

In contrast to PW91, PBE focuses on satisfying only the constraints that are
“energetically relevant”. So, the solution proposed by the authors consists on writing εXC

in 2.25 as the product of the electronic density n by the exchange energy of the uniform
electron gas εunifX (n) and a non-local enhancement factor for exchange and correlation
FXC , which depends on a dimensionless density gradient s, the local Seitz radius rs and
on the relative spin polarization ζ = (n↑ − n↓)/n as :

EGGA
XC [n↑, n↓] =

∫
drn εunifX (n)FXC(rs, ζ, s). (2.36)

This approach is very interesting as it retains the correct features of the LSD
potentials while also addressing the most energetically important electronic density gradient
non-local aspects, yielding a potential that is relatively simple to study, implement and
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improve, justifying its enormous success 7. That being said, one of the key aspects that
PBE does not take into account is the correct second-order gradient coefficients for EX

and EC in the slow density varying limit.
Eleven years after the first paper, Perdew, Burke and other collaborators (but not

Ernzerhof), proposed an improvement on the PBE potential specially aimed at improving
results for solids [37]. Over the years, several studies showed that PBE overestimates
physical properties such as bulk moduli, phonon frequencies, magnetic and ferroelectric
ordering, while surface energies are underestimated. The authors show that a fundamental
dilemma is presented by GGA-type approximations. When the gradient dependence
is enhanced, atomization and total energies are improved at the cost of bond leghts,
whereas usual solid oriented GGAs, having reduced gradient dependence, improve lattice
parameters while worsening total energies. This is due to an intrinsic characteristic of
these functionals, where determining accurate exchange energies requires violating the
validity of the functional for slowly varying electronic densities, such as are found in solids.

The proposed solution was to compromise the value of the effective gradient
coefficient for exchange μ and consequently of a second coefficient β, related to the limit
correlation of an uniform electron gas, in order to improve surface energies by not restoring
completely the gradient expansion. In other words, a new parametrization of the already
existing parameters in the original PBE, dubbed PBEsol. The authors also point out that
such a solution becomes exact when the solids are placed under intense pressures, which
result in truly slow varying electronic densities n(r) in real solids and surfaces. The cost
comes as expected in the predictions of atomization energies, which are more relevant to
molecules than to solids

2.4.2 Jishi - mBJ

Another approach in building appropriate exchange-correlation potentials is star-
ting from the Hartree-Fock equation and adapting the exchange potential VXσ :

−1

2
∇2ψiσ + [Vnuc + Vel + V

(i)
Xσ]ψiσ = εiσψiσ. (2.37)

In this equation, Vnuc is the attractive Coulomb potential from the nucleus, Vel is the
repulsive Coulomb potential due to the electrons. The σ index refers to spin component
(up or down) and i to the orbital considered. The exchange potential is written as

V
(i)
Xσ(r1) = − 1

ψ∗
iσ(r1)ψiσ(r1)

∑
j

∫
ψ∗
iσ(r1)ψ

∗
jσ(r2)ψjσ(r1)ψiσr2)

r12
d3r2, (2.38)

7 To illustrate this, the original paper has been cited over 175.000 times as of 09/2023 accor-
ding to Google Scholar, ranking as the 16th most cited paper of all time according to Nature
(https://www.nature.com/news/the-top-100-papers-1.16224)
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which is manifestly spin and orbital dependent. This causes a series of difficulties for the
implementation and interpretation of the results. One of the ways this was treated was by
Slater in 1951 [42] through an orbital averaged exchange potential

V Slater
Xσ =

∑
i

ρiσ
ρσ

V
(i)
Xσ, (2.39)

where ρiσ is the density of the ith spin-orbital. Effectively, this means considering a local
potential. Also of importance is the concept of exchange-hole ρXσ(r1r2), that is, the smaller
electronic density of a given spin component (up or down) in the vicinity of an electron of
the same spin type, and defined as

ρXσ(r1r2) =
1

ρσ(r1)

∣∣∣∣∣
∑
i

ψ∗
iσ(r1)ψiσ(r2)

∣∣∣∣∣
2

. (2.40)

Thus, one can write 2.39 as

V Slater
Xσ = −

∫
ρXσ(r1r2)

r12
d3r2. (2.41)

As exchange potentials can be optimized to minimize the total energy of the Slater
determinants of the respective orbitals, and for spherically symmetrical atoms can be
solved exactly, a comparison between these exact exchange optimized effective potentials
(OEP) and the Slater potential was made by several groups [43]. The problem with OEPs
is that they require the same two electron integrals present in the Hartree-Fock method
and have numerical instabilities. With the goal of obtaining a simpler effective potential
to model exchange for DFT calculations, Becke and Johnson proposed in 2006 [43] an
exchange potential V BJ

Xσ that respects several interesting properties such as invariance to
unitary orbital transformations and exact treatment of any ground state hydrogenic atom.
It is given in terms of the kinetic energy density τσ =

∑
i |∇ψiσ|2, the total electronic

density ρσ =
∑

i |ψiσ|2 and the Slater potential as

V BJ
Xσ = V Slater

Xσ +
1

π

√
5

12

√
τσ
ρσ

. (2.42)

This is a purely density dependent exchange potential that has a simple form and is also
able to reproduce at lesser cost the properties of the more costly OEPs.

Focusing specifically at improving band gaps, a chronic problem in DFT, Tran
and Blaha proposed in 2009 [44] a modification of Becke-Johnson’s exchange potential
with a correlation term from LDA (TB-mBJ), which has a small effect. Their idea was
to develop a semi-local potential V mBJ

X,σ that mimics the behavior of orbital-dependent
potentials at a smaller computational cost when compared to methods such as hybrid
functionals or Green’s function + screened Coulomb’s interaction (GW ). This functional
is given by the expression
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V MBJ
X,σ (r) = cV BR

X,σ(r) + (3c− 2)

√
5

12

√
τσ(r)

ρσ(r)
, (2.43)

where V BR
X,σ is the Becke-Roussel potential [45], given by

V BR
X,σ = − 1

bσ

(
1− e−ρXσ(r1r2) − 1

2
ρXσ(r1r2)e

−ρXσ(r1r2)

)
, (2.44)

and c acts as a mixing parameter of “exact” exchange (considering the restrictions of V BJ
X,σ

[43]). The term bσ = [ρXσ(r1r2)
3eρXσ(r1r2)/(8πρσ)]

1/3 takes into account the exchange hole
from equation 2.40 but calculates it in another manner, adding the correlation term from
LDA [46]. It’s important to notice that, contrary to the original approach from Becke and
Johnson, Tran and Blaha used the Becke-Roussel potential instead of the Slater potential
(see eq. 2.42) , but it was shown that these potentials are quasi-identical for atoms. Thus,
for c = 1 the original Becke-Johnson potential is recovered. The mixing parameter c was
chosen to incorporate the semi-local dependence on the density ρ and its gradient ∇ρ

through

c = α + β

[
1

Vcell

∫
cell

|∇ρ(r′)|
ρ(r′)

d3r′
]1/2

. (2.45)

Here, α and β are free parameters that were fitted to several experimental and
theoretical band gap data, aiming to minimize mean absolute relative error, and Vcell is
the unit cell volume. This means that this potential adds two “empirical” quantities that,
in principle, depend on the choice of systems to fit. As mentioned before, semi empirical
approaches to DFT have shown to be successful for specific objectives and thus shouldn’t
be discarded on the basis of full ab initio only calculations. Of major importance are the
values of these parameters, given by

α = −0.012 , β = 1.023 bohr1/2 . (2.46)

Although well suited for a range of solids and molecules, the TB-mBJ potential
yield less satisfactory results for transition metal oxides. In order to fix this issue, Jishi
et al. [38] proposed a simple reparametrization of the modified Becke-Johnson potential
specifically tailored to improve the band gap of perovskite systems. The new parameters
were chosen (i.e. not fitted through error minimization) to be

α = 0.4 , β = 1.0 bohr1/2 . (2.47)

so as to better reproduce the experimental band gap of a series of halide perovskites. Thus,
the biggest change was done on the free parameter α, decreasing the relative influence
of the |∇ρ|/ρ dependence on the total exchange-correlation potential. It must be noted
that improving the band gap predictions is very relevant for the discussion of magnetic
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structures and their effect on the electronic structure of a material, thus the usage of a
very system specific functional is justified.
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3. Review of the Literature

3.1 General Properties

The perovskite oxide crystal structure is represented by the chemical formula
ABO3, where A is usually a pre-transition metal such as K, Sr or La, and B a transition
or post-transition metal [7]. It consists of a cube with A cations on the vertices, a face-
centered octahedra of oxygens and the B metal on the centre, as depicted in figure 14. The
versatility and stability of this structure is remarkable, exhibiting a very wide range of
phenomena depending on the combination of elements, dopings and vacancies, a few of
which are ferroelectricity and multiferroicity, magnetoresistance and very high dielectric
constants [15, 28].

The description of the structure of the Sr3Ti2O7 compound was first done by
Ruddlesden and Popper in 1958 [17], who noted that this material could be considered

Figure 14 – The simple perovskite structure, with the BO6 octahedra highlighted.
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n Ideal Structure Space group (number)
∞ cubic Pm/3̄m (221)
2 tetragonal I4/mmm (139)
1 tetragonal I4/mmm (139)

Table 1 – Structural information of ideal Ruddlesden-Popper unit cells.

an intermediate between SrTiO3 and Sr2TiO4. It consists on a double strontium titanate
perovskite (SrTiO3) layer, interweaved with strontium oxide (SrO) layers. The discovery
of other materials that share the same structure, such as Sr3Fe2O7 shortly after [47] drew
interest on the possible combinations of elements and the properties that these materials
could exhibit.

These systems became known as Ruddlesden-Popper (RP) compounds, of general
formula An+1BnO3n+1 or alternatively AO(ABO3)n, where n refers to the number of
perovskite layers stacked in-between the AO rock-salt layers. The perovskite-only case
can be understood as n → ∞. The A site usually corresponds to a rare or alkaline earth
element, whereas the B site can be occupied by transition or post transition metals [18].
The unit cells of the ideal structures (i.e. non-distorted) crystallize in the space groups
described in table 1, depending basically on the Goldschimdt tolerance factor t [48] of
Shannon’s ionic radii [49], given by

t =
rA + rO√
2(rA + rB)

. (3.1)

Here, rA and rB refer to the radii of the A and B cations while rO oxygen’s. For
n = ∞, the ideal cubic structure is obtained for t ≈ 1 and becomes distorted as t decreases,
with a stability interval of 0.75 < t < 1.00. For the n = 1 materials, the same relation
leads to the ideal tetragonal structure, also featuring distortions for smaller t, but the
stability interval is decreased to about 0.85 < t < 1.02 [23]. As n increases beyond three
perovskite layers, the RP stacking becomes thermodynamically less favorable and phase
transitions are expected. In the rare cases where higher n phases are stabilized, they are
usually present as defects on the bulk of the lower and more stable n compounds [50].

The defining characteristic of a Ruddlesden-Popper series is the progressive
confinement of the perovskite layers as n is lowered. In this sense, one can say that the
system’s dimensionality decreases with n, going from an isotropic (i.e. only perovskite)
3D material for n = ∞ towards a 2D-like slab stacking of rock salt and perovskites [23].
In the ideal n = ∞ structure, there is fundamentally no difference between the oxygen
crystallographic positions, but the introduction of the rock-salt layers is enough to break
this symmetry and separate the oxygens by their chemical neighborhood, as is graphically
represented in figure 15. Considering the oxygen octahedra, the oxygen ions that lie along
the ab plane will henceforward be referred to as basal, in contrast to the apical ones, which
lie along the c axis. As a further distinction, for n = 2, the apical oxygen that is shared
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Figure 15 – Example of the ideal structures for a given Ruddlesden-Popper series
An+1BnX3n+1 for different n. As n increases (left to right), the material
goes from a 2D-like confined structure towards an isotropic perovskite only
structure. It is important to note the different oxygen crystallographic sites,
here denoted as Xi, for the different n in the series. Figure taken from reference
[23].

between perovskites will be called apical prime.
In terms of electrical conductivity, metal-insulator transitions are common in RP

series. These stem from the different nature of the perovskites, usually metallic, and the
rock-salt, usually insulating. Thus, as n grows, so does the conductivity due to the increased
interaction between oxygen and the B cation along the c direction [23]. Interesting to
note is also that this conductivity is of mixed ionic-electronic origin, the ionic conduction
originating both from the apical oxygens as well as basal vacancies, and the electronic
conduction from the perovskite oxygen octahedra proper [51]. These characteristics can be
enhanced by controlled non-stoichiometric synthesis, where the lack or excess of oxygens
may lead also to a more stable structure [18, 23].

In the following, a more in depth review of the properties reported in the literature
for the specific materials we are focused in this study will be given.

3.2 SrFeO3

The n = ∞ member of the strontium-iron series consists of a tetragonal perovskite
structure with a small distortion along the c axis, deviating from the ideal cubic structure
and belonging to the space group P4/mmm, with cell parameters a = b = 3.857 Å
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and c = 3.869 Å [52]. As this distortion is small, hard to detect and doesn’t have a
Jahn-Teller origin, previous studies usually reported a perfect cubic perovskite structure
[53, 54, 55]. Due to the plethora of stable phases, non-stoichiometric SrFeO3±δ is also
heavily studied and can feature very different physical properties such as ferroelectricity
and semiconductivity [56].

In this compound, the unusual formal oxidation Fe+4 contrasts with the usual
Fe4+ that is expected of a B-site metal of perovskites, but can be better explained in a
more covalent picture. The compound is an example of a negative charge-transfer metal,
where the ground state is dominated by holes in the ligand, which are directly responsible
for electric conduction. This kind of regime takes place when the charge transfer energy
Δ, the cost associated with the localization of a ligand electron on the metal, is smaller
than on-site Coulomb correlation energy U (see section 2.2) 1. This makes it energetically
more favorable to have a ground state where the metal “steals” electrons from the ligand,
creating n holes denoted as Ln . In this sense, XAS studies coupled with cluster model
calculations showed that the ground state of SrFeO3 is best described by

|3d4〉 → 0.36 |3d4〉+ 0.58 |3d5L〉+ 0.06 |3d6L2〉 , (3.2)

where the coefficients refer to the percentage occupation of this configuration [55]. It is
interesting to notice that the occupation of the configuration with a ligand hole is greater
than the purely ionic one, meaning that the covalency in this compound is extremely
important and dominates the ground state character. As the Jahn-Teller effect is caused
by an asymmetric charge distribution in the t2g and eg orbitals, it would be energetically
favorable for the Fe4+ ions in the high t32ge

1
g (5E) configuration to undergo the geometrical

distortion away from Oh symmetry. This is suppressed due to the main contribution of
the |3d5L〉 configuration, the dominant contribution to the ground state, being in the
high-spin state t32ge

2
g (6A1) which can’t exhibit the effect as a result to the symmetric

charge distribution. Thus, the highly covalent (i.e. highly correlated) nature of the ground
state quenches the expected Jahn-Teller effect and maintains octahedral symmetry [55, 54].

The material’s magnetic structure is still yet to be fully understood as a con-
sequence of its great complexity. Neutron diffraction studies showed that the material
presents a helical spin structure, where long range magnetic interactions are important
and lead to spin-canting, the magnetically active iron atom having a magnetic moment of
about 2.7 μB [57]. The propagation wave vector of the spin wave is parallel to the 〈111〉
direction and the exchange integrals between n-th neighbors in the Heisenberg spin Jn

Hamiltonian are J1= 1.2, J2= -0.2 and J4 = -0.3 meV [58]. The changing signs mean
that the strongest exchange interaction is of ferromagnetic nature between first neighbors,
whereas between second and fourth neighbors it tends to order antiferromagnetically. This
long ranged (J4 > J2) interaction suffices to stabilize the screw spin structure with a Néel
1 When Δ > U , one has the Mott-Hubbard regime.
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temperature of about 134 K [59]. The magnitude of the wave vector is relatively small,
yielding a large wavelength for the helical structure, with an angle between adjacent spins
of about 40◦, suggesting that the material is close in energy to a ferromagnetic phase [55].

More recently, thin films of SrFeO3 have also drawn the attention of the spintronics
community due to the topological magnetic structure it presents. As temperature and
external field are varied, it was shown that the material undergoes complex magnetic
transitions that allow it to exhibit a superposition of noncollinear orderings, called a
multi-q spin structure. This takes place even in the absence of the Dzyaloshinskii-Moriya,
as the crystal is centrosymmetric, being the simplest system known to exhibit this behavior
[60, 61]. Further research is needed to ascertain the conditions and characteristics of these
exotic magnetic phases. Besides spintronics, the material and its oxygen rich/deficient
phases have shown remarkable applications in the field of green energy in technologies
such as solar cells, oxide fuel cells and decontamination processes [62].

3.3 Sr3Fe2O7

First proposed in the 60s as a hypothetical material [47] and successfully synthe-
sized in stoichiometric form in the 90s [63], Sr3Fe2O7 is a small gap semiconductor in
the negative charge transfer regime, whose gap is of p− p type [64, 65]. X-ray diffraction
shows that the material has the ideal structure corresponding to the I4/mmm space
group and no signs of Jahn-Teller distortion, with cell parameters a = b = 3.848 Å and
c = 20.140 Å [64, 66]. An interesting characteristic that this system exhibits is charge
disproportionation. Even at room temperature, the Fe4+ sites can be separated into Fe+3

and Fe+5 contributions, which can be studied by means of Mössbauer spectroscopy for
example, even though it seems that this characteristic has no structural implications. The
temperature TD for this disproportionation to happen is at about 343 K, being closely
followed by a metal-insulator transition at above 350 K [67, 68].

Much like the n = ∞ case, the ground state is dominated by holes in the ligand due
to the charge transfer effect. XAS studies show that the occupation of configurations with
ligand holes, mainly |3d5L〉, is greater than the fully ionic |3d4〉, being given (surprisingly)
by the same ratio as in equation 3.2 [65]. Thus, the same mechanism for suppressing
the Jahn-Teller distortion is present. The main difference between the two systems is
the confinement in a more 2D-like environment as mentioned, which is responsible for
increasing the localization of the electronic structure [18]. Because of this, even though
the expected behavior is metallic for a negative charge transfer regime like for n = ∞, the
reduction in the bandwidth W due to the change in dimensionality is enough to make it
smaller than the hybridization Tσ, generating a gap that involves O 2p holes and is thus
of the p− p type [69, 65].

The material orders itself antiferromagnetically at the Néel temperature of TN ≈
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115 K within a complex modulated helical spin structure [67, 63]. Detailed neutron
scattering measurements have shown a best fit for an elliptical modulation, yielding
magnetic moments on the c axis equal to 3.19 μB and along the ab plane 3.58μB for single
crystals [70]. This structure has a propagation vector in the direction (0.1416, 0.1416, 1),
showing a rotation axis of 〈111〉. This means that all spins lie in a plane perpendicular
to the 〈111〉 direction and, along the c axis, the spins of neighboring iron atoms are
antiparallel, fully analogous to the n = ∞ situation [70]. An analysis of the exchange
constants within the Heisenberg spin Hamiltonian between first, second and third neighbors
based on this data yielded J1 = −7.2 meV, J2 = 1.05 meV and J3 = 2.1 meV respectively.
The negative value of J1 implies that predominant interaction is ferromagnetic 2 , although
long ranged antiferromagnetic exchange is also significant and is, in fact, what stabilizes
the helical spin structure [70]. The competing exchange interactions near a metal-insulator
transition also indicate that the system has magnetic orderings that are relatively close in
energy.

The presence of a helical spin order in a quasi-2D system is rare, thus could
be of use for spintronics applications, specially taking into account the rich magnetic
phase diagram of a more general structure with oxygen vacancies Sr3Fe2O7−δ [68]. More
recently, studies on this general structure and various dopants have also found promising
applications in solid fuel cells, catalysis and environmental applications [71, 72, 73].

3.4 Sr3FeNiO7

There is plenty of evidence that the Ruddlesden-Popper series materials are highly
sensitive to doping and excess or lack of oxygen, as was argued in the previous sections.
Thus, it is expected that the substitution of an iron atom for a less magnetically active
ion can greatly alter the physical properties the system exhibits. The double perovskite
structure Sr3FeNiO7 crystallizes in a tetragonal structure, corresponding to the ideal
I4/mmm space group, a = b = 3.8415 Å and c = 20.040 Å, with highly regular stackings
along the c -axis and no signs extra long-range ordering [74]. The thermodynamical
conditions of growth favor a disposition in a tridimensional checkerboard pattern, such as
depicted in figure 16.

An important consequence of the doping is the reduction in many orders of
magnitude of the electrical resistivity, specially at low temperatures [74]. Theoretical cal-
culations could reproduce the experimental X-ray photoelectron spectra when considering
the occupations of the different Fe4+ electronic configurations as given by 3.2. In the case
of Ni3+, the ground state configuration obtained was
2 In the paper, the authors define the Heisenberg Hamiltonian without the usual − sign we considered

in section 2.3, so that the negative (positive) values of J imply ferromagnetism (antiferromagnetism).
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Figure 16 – Unit cell of the double perovskite structure Sr3FeNiO7. Each perovskite has
neighbors of the opposing type, forming a tridimensional checkerboard pattern.

|3d7〉 → 0.28 |3d7〉+ 0.60 |3d8L〉+ 0.10 |3d9L2〉 . (3.3)

The occupation of the configuration with a hole in the ligand being higher than the purely
ionic one both for iron and nickel is evidence of a negative charge transfer regime. The band
gap is of p− p type, in the same manner as the non-doped n = 2 compound, showing that
the nickel substitution isn’t enough to change the nature of the material’s semiconductive
behavior [74]. Also worthy of note is that the p− d charge transfer parameter is lowered
for the doped material while the bandwidth remains basically unchanged, which decreases
the band gap and thus leads to the much higher conductivity in comparison with Sr3Fe2O7

[75, 76].
When it comes to the magnetic structure, a linear response to applied field was

obtained at temperatures equal to 100K and 200K, a characteristic of a paramagnetic
material. There is evidence of a transition towards a spin-glass material for temperatures
lower than TSG = 40 K, with small hysteresis loops, whereas for temperatures over 300 K
the material behaves as a ferromagnet [74].

3.5 Sr2FeO4

Crystallizing in the ideal K2NiF4 structure, belonging to space group I4/mmm,
the n = 1 compound was first synthesized in the 90s following unsuccessful attempts at
growing single Sr2FeO4 crystals, with cell parameters given by a = b = 3.8642 Å and
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c = 12.3968 Å [77]. This is due to the previously mentioned stability of several intermediate
compounds, which tend to show up as parasitic phases in the growing process. This might
also be one of the reasons why this material is less studied than the other members of the
series.

As argued before for a Fe4+ system, the ground state of the material must be
dominated by holes in the ligand, characteristic of a negative charge transfer Δ < 0 regime.
Analysis of slightly oxygen deficient samples, general behavior of strongly correlated
systems, comparison with the properties of the n = 2 system, which are not expected
to change drastically, and pressure analysis support this claim [63, 78, 79]. In this sense,
Sr2FeO4 is characterized as a strongly correlated insulator in the negative charge transfer
regime, but studies that elucidate the contributions of each ligand-hole configuration to
the ground state are still lacking. The high-spin ground state appears to be stabilized by
some unidentified hidden distortion, which is invisible to standard diffraction techniques
[80].

The magnetic structure of the material is also markedly complex, with an antifer-
romagnetic ordering at TN = 56 K. The nature of this ordering has been the subject of
many studies [63, 78, 79], which indicated a helical spin ordering. More recently, Adler et
al. [80] showed that the best fit for the magnetic structure is an elliptical cycloidal spin
structure that is confined to the tetragonal ab plane, described by an incommensurate
wave vector k = (0.137, 0.137, 0) with minor and major magnetic moments of 1.9 and 3.46
μB respectively, which are tilted away from the c axis by an angle of about 70◦. The action
of an external magnetic field between 3 and 6 T is enough to drive a spin flop transition,
confining the spins in a plane perpendicular to the field direction, reorientating the ellipses
but without changing the magnetic moments, showing a robust structure.

Much like the n = 2 case, the combination of helical magnetism in a 2D system
might be of interest for spintronics applications, but the presence of a gap in the n = 1

system may be a complicating factor. In another direction, the study of oxygen vacancies
and doping is pointed as being of potential relevance for applications in anionic conductors
below 700◦C and various catalysis reactions [81].

3.6 SrVO3

The discovery of superconductivity in cuprates [82] led to interest in systems that
are similar and could be used as models to explain high-Tc behavior. One of these systems
is the strontium vanadate SrVO3 due to the electronic configuration 3d1 of the V4+ ion,
with a single electron in the valence band, which is analogous to the 3d9 configuration of
the cuprates, with a single hole in the valence band [83]. Thus, many efforts were directed
towards understanding this material and also its Ruddlesden-Popper phases.

SrVO3 (n = ∞) crystallizes in the perfect cubic perovskite structure, belonging



46

to the Pm/3̄m space group, with cell parameter a = 3.840 − 3.849 Å [84]. The single-
phase compound is of difficult growth due to instabilities in the Sr/V stoichiometry and
oxygen content, being only succesfully synthesized in the late 90s [85]. It is characterized
as a highly-correlated system near a Mott-Hubbard transition, the d1 electron partially
occupying orbitals of the t2g class and thus exhibiting a metallic behavior, which due to
effects of electronic correlation might lead to the appearance of a Mott gap [86]. Among
these effects are modifications of bond topology, charge distribution and effective mass
of charge carriers, which might arise from the reduced bandwidth this material exhibits
[87]. In this sense, even though there is electron delocalization in the occupied bands, the
size of their bandwidth is small enough to render correlation effects very significant. The
metallicity of the single crystal compound was observed for a variety of growth conditions
and seems to be unaffected by oxygen excess or vacancies, but no superconductivity was
observed [84, 83].

The magnetic susceptibility of the compound increases slightly with decreasing
temperature and saturates below 100 K, which is evident of paramagnetic behavior, with
deviations typically attributed to impurities or parasitic phases[84, 88].

As of lately, applications of SrVO3 in transparent conductors have been proposed
due to the material’s rare combination of both high electrical conductivity and acceptable
optical transparency, which can be further altered by tuning the correlation through film
thickness and external fields [87]. Doped species were also reported to be potentially useful
in fluorescence applications and high-performance anodes in lithium-ion batteries [89, 90].

3.7 Sr2VO4

Sr2VO4 is the layered perovskite phase of SrVO3 with n = ∞, crystallizing in a
tetragonal unit cell within the I4/mmm space group, with cell parameters a = b = 3.837

Å and c = 12.576 Å [91]. Much like in the case of the iron series, the presence of the
insulating SrO layers decouples the perovskite layers and turns the material an insulator
along the c axis, but conductivity may still take place in the ab plane [18, 83]. Being
the electronic equivalent of La2CuO4, an important compound in the family of high-Tc

superconductors, Sr2VO4 exhibits a similar layered two dimensional spin-1/2 lattice, but
the material in its bulk form has a very persistent insulating nature [92]. Thin-films studies
show that a Mott-Hubbard gap lower than 0.2 eV is present and may be removed by
doping with La [93].

A very unique property of this material, which gathered a lot of attention, is
the prediction of a complex ground state due to several competing interactions. Detailed
theoretical calculations showed that the material is simultaneously on the verge of a Mott
transition, a ferromagnetic-antiferromagnetic transition and an orbital-ordering transition
at about 100 K[94]. Because the vanadium dyz and dzx orbitals remain degenerate and
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the crystal field splitting of dxy is small, the material would arrange itself in a long period
2x4 structure where the valence orbitals are organized in a stripe-like structure, called
orbital ordering, stabilized also by long range exchange. [94]. This rare combination of
phenomena was reported experimentally not long after, happening only for samples close to
the nominal stoichiometry [95, 92]. At low temperatures below 10 K, a magnetic transition
signature was found corresponding to weak ferromagnetism or canted antiferromagnetism,
evolving towards an antiferromagnetic character in the orbital ordered state [95]. For
temperatures above 127 K the material becomes paramagnetic [92].
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4. Methodology

4.1 WIEN2K

All calculations were done using the WIEN2K [96] distribution, a comprehensive
DFT code developed by Peter Blaha and collaborators at TU-Wien in the 1980s and
constantly updated. It is based on a linearized augmented plane wave (LAPW) method,
which expands on Slater’s APW method [24] and includes local orbitals (lo) for improvement
of radial basis functions, thus being also dubbed as APW+lo. A more detailed explanation
is given in the following.

First off, as proposed by Slater, one divides the space in a system into two regions,
where different basis expansions are used for the Schrödinger’s equation. Around each
atom, a sphere is defined with some atom-dependent spherical potential V and the basis
set consists of the solutions of the radial equation for each type of atom. These spheres are
non-overlapping, which leaves some interstitial space of separation, where the wavefunctions
take on the form of planewaves that depend on the lattice wave-vectors. Mathematically,
one has

φ(r) =

⎧⎪⎨
⎪⎩

1√
ω

∑
n

Cne
ikn·r , inside interstitial∑

lm

Almul(r)Ylm(r) , inside spheres.
(4.1)

Here, φ is the wavefunction, ω is the cell volume, kn = k+Kn where Kn is the
lattice wave vector, k is the wave vector inside the first Brillouin zone, ul is the solution to
the radial Schrödinger equation and Ylm are the spherical harmonics. This approximation
is often called the “muffin-tin” approximation, being very apt for describing close packed
materials and losing reliability as coordination and symmetry decreases [97]. In order
to maintain the kinetic energy well defined, constraints at the boundary between the
two regions are needed. This yields after some calculations a relationship between the
coefficients Alm, the planewave coefficients Cn and an energy parameter El, which are
the variational coefficients of the APW method. The functions that satisfy the boundary
condition are called the augmented plane waves.
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Figure 17 – Schematic representation of the LAPW method, considering two types of
atoms in a given crystal system. The muffin-tin spheres are not overlapping.

The linearization process to turn the APW method to LAPW refers to a change
in the basis functions inside the spheres. Now, they are written in terms of a linear
combination of the radial functions, as previously, but also their derivatives with respect
to energy. Because of this change, equation 4.1 can be rewritten as

φ(r) =

⎧⎪⎨
⎪⎩

1√
ω

∑
n

Cne
ikn·r , inside interstitial∑

lm

[Almul(r) + Blmu̇l(r)]Ylm(r) , inside spheres
(4.2)

In this equation, Bm is just a coefficient for the energy derivative of the radial
function u̇(r), fully analogous to Alm. The reason to make this change is because the
linearized augmented plane waves have more variational freedom inside the sphere, reducing
the size of the basis required for a good convergence in comparison with the previous
definition [97]. A schematic representation of the method is present in figure 17.

An improvement on the method relies on increasing the efficiency of the lineariza-
tion by adding inside the spheres some local orbitals φlo

lm given by

φlo
lm = [Almul(r, E1,l) + Blm(̇u)l(r, E1,l)]Ylm(r), (4.3)

which have the same general form of the orbitals on 4.2 but whose coefficients do not depend
on the kn wavevectors and are additionally under the constraint of being normalized and
going to zero at the boundary [96]. With this optimized basis set of functions, standard
DFT calculations can be conducted as detailed in section 4. In this scheme, the convergence
of the basis set is determined by a cutoff parameter given by RmtKmax, where Rmt refers
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to the smallest atomic sphere radius in the unit cell of the system and Kmax is the modulus
of the largest reciprocal lattice vector in the plane wave expansion.

4.2 X-ray Spectroscopy

When radiation interacts with matter, several excitation and decay processes take
place. At specific incident photon energies called absorption edges, an electron from a
low-lying energy level (called core electron) can be promoted to a higher energy level.
As these core states are tightly bound to the atomic nucleus, the energy required for
this absorption to take place is on the X-ray region of the electromagnetic spectra, being
able to reach up to 30 keV [98]. Thus, X-ray absorption spectroscopy (XAS) refers to a
first order optical process (i.e. one photon only), where a core electron is excited to the
empty portion of the electronic structure and later decays to more internal levels following
two main distinct mechanisms: (i) the fluorescence process, emitting radiation equal to
difference in energy levels between the core hole and excited state, and (ii) Auger process,
where the energy emitted by the decay to the core hole excites a third electron, which is
then released from the sample.

A distinction is made for the cases where the excited electron reaches the con-
duction band, yielding the X-ray absorption near edge structure (XANES), and when
it reaches the continuum with energy just above that of XANES, yielding the extended
X-ray absorption fine structure (EXAFS). The radiation emitted via fluorescence or the
emitted Auger electrons are collected, resulting in the XAS spectrum. This is characteristic
of each element and contains important information regarding for example the chemical
environment, oxidation states, symmetry and structure of the compounds [99]. The signal
can also be obtained by the total electron yield (TEY) method, in which the current that
flows to the sample to neutralize the excess of positive charge is detected, being under
certain conditions proportional to the absorption cross section [98].

For relatively lower energies, the Auger mechanism is dominant whereas for higher
energies fluorescence becomes the main decay channel. It is important to note that the
decay leads to other core holes, which trigger subsequent emissions by fluorescence, Auger
and also low-energy decay processes such as luminescence until all core holes are filled, a
phenomenon known as electron cascade [98]. A schematic representation of XAS is present
in figure 18. A core electron is excited to the empty portion of the DOS by the absorption
of an incident photon with energy �Ω, reaching a state with energy εw. Also represented
is the X-ray photoelectron spectroscopy (XPS), a closely related technique where the
core-electron is ejected as a photoelectron with energy εk.

Due to historical reasons, the spectroscopy notation to identify specific electronic
states differs from the usual atomic orbitals notation. The correspondence is done in the
table 2. Instead of using the numbers (1,2,3,..) for the principal quantum number n, the
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Figure 18 – Schematic representation of XAS and XPS in terms of the density of states
(DOS). Figure taken from reference [98].

Orbital Spectroscopy
1s K
2s L1

2p1/2 L2

2p3/2 L3

3s M1

3p1/2 M2

: :

Table 2 – Correspondence between usual orbital notation and spectroscopical notation.

letters (K,L,M, ...) are used, and the orbital angular momentum labels (s, p, d, f) are
exchanged for (1,2,3,4,...), going from high to low energy. This takes into account the
possibility of spin-orbit coupling, so that the 2p1/2 state is labeled as L2 and the 2p3/2 state
as L3 and so on. Because of this, the presence of spin-orbit coupling splits the absorption
edges (when possible) into two peaks close in energy.

The interaction of X-rays with matter is best described by the so-called Fermi’s
Golden Rule, given by

Wfi =
2π

�
| 〈Φf |T |Φi〉 |2δ(Ef − Ei − �Ω), (4.4)
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in which the probability of a transition Wfi between the initial state Φi and final state Φf

depends on a transition operator T and is proportional to a delta function, which states
that the transition only takes place when the energy of the final state Ef is equal to the
sum of the energies of the initial state Ei and the incident photon �Ω. The operator T is
obtained by solving the Lippman-Schwinger equation, and considering only the first order
perturbation on the interaction Hamiltonian p ·A due to the one-photon nature of XAS
one obtains [98]

Wfi ∝ | 〈Φf | r |Φi〉 |2δ(Ef − Ei − �Ω). (4.5)

In equation 4.5, r is the electric dipole operator, which is the leading term of the interaction.
By expanding the wavefunctions of the initial and final states into radial and angular parts
according to Wigner-Eckart’s theorem, one obtains the following selection rules regarding
the respective quantum numbers:

ΔJ = ±1, 0 (4.6)

Δs = 0 (4.7)

Δl = ±1 (4.8)

For example, considering these rules a 1s core electron can only be excited to p states,
whereas a p electron can never transition to another p state. The forbidden transitions
can in fact take place, but with a very reduced probability, being the result of higher
order terms in the transition operator such as the electric quadrupole. An estimate of the
magnitude of the matrix element associated with this term yields a value smaller than
10−4 that of the electric dipole, justifying the dipolar approximation [98].

As mentioned, a characteristic of XAS spectra is that, although being an element
specific technique, it is also sensitive to the chemical environment. In this sense, considering
for example a transition metal oxide, the analysis of the oxygen K (1s) edge can also give
information regarding the metal, such as valence charges and covalent behavior [100, 101].

4.3 Optical Conductivity Spectrum

Considering Drude’s model for the electronic conduction in a metal, one obtains
the following equation of motion for the weakly bound electrons subjected to a spatially
uniform force field f(t) [5]:

dp(t)

dt
= −p(t)

τ
+ f(t). (4.9)

Here, p(t) is the electron’s linear momentum and τ is known as the relaxation time,
the average interval between scattering events with ions in the solid. Although derived
from a very simplified model, this equation is quite useful when considering several
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applications that have general validity, such as the current induced in a metal by a time-
dependent electric field, which can be due to an electromagnetic wave interacting with
the material. In this case, the electric field is written in terms of its complex extension as
E(t) = Re {E(ω)e−iωt} to account for the oscillatory nature of the field and the force field
is simply f(t) = −eE, e being the electronic charge. By writing the moment in terms of
the current density j as j = −nep/m, with n being the number of charge carriers and m

their mass, and taking into account that both the real and imaginary parts of the solution
must obey equation (4.9), one promptly arrives at the following results:

j(ω) = σ(ω)E(ω), (4.10)

σ(ω) =
σ0

1− iωτ
, (4.11)

σ0 =
ne2τ

m
. (4.12)

The quantity σ(ω) is the conductivity of the material, which makes the connection
between the time-varying electric field and the current density it causes on the metal. For
ω = 0 one obtains σ = σ0, which is known as the direct current Drude conductivity [5].
These equations are valid when the wavelength of the field is far larger than the electronic
mean free path, the average distance between scattering events, so that the electric field
does not vary appreciably over small distances. This condition is usually satisfied by the
interaction of a metal with light in the visible part of the electromagnetic spectrum, whose
wavelengths are of about 103 to 104 Å, so that σ is also called optical conductivity. By
considering the wave’s magnetic field, one arrives at a correction that is about 10−10 times
smaller than the leading electric field term, being thus usually ignored [5]. Taking the real
and imaginary parts of σ, one obtains

Re{σ(ω)} =
σ0

1 + ω2τ 2
, (4.13)

Im{σ(ω)} =
σ0ωτ

1 + ω2τ 2
. (4.14)

The real part is associated with transmission of the wave through the medium, whereas
the imaginary part is related to absorption. This can be more readily seen by analyzing
the complex dielectric constant ε(ω) that is derived from this theory [5]

ε(ω) = 1 +
4πiσ(ω)

ω
. (4.15)

If ωτ 
 1, this can be expressed in a first approximation by

ε(ω) = 1− ω2
p

ω2
; ω2

p =
4πne2

m
, (4.16)
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where ωp is a quantity known as the plasma frequency of the material. For ω < ωp, ε is
negative and thus the solutions to the wave equation decay exponentially, meaning the
material reflects the majority of the incoming wave. If ω = ωp, then most of the wave is
absorbed, whereas for ω > ωp the solutions become oscillatory and the wave can penetrate
the metal. Thus, even in this simple model one can study how light (with high enough
frequency) interacts with a metal, leading to the dispersion relation ω2 = ω2

p + c2k2 , where
ck is the wave number [102].

Naturally, Drude’s theory is limited and thus more complex theories taking into
account the electron’s quantum nature have been proposed to explain the behavior of the
electronic conductivity and dielectric constant in various media. In the review by Dagotto
[103] some possibilities are discussed. When considering models that take into account
lattice behavior explicitly, such as Hubbard’s model, the optical conductivity is defined
as a correlation function between the Fourier transforms of current density operators at
two different sites, yielding in the linear-response approximation an expression for the real
part of the optical conductivity σ1(ω) given by

σ1(ω) = Re {σxx(ω)} = Dδ(ω) +
e2π

N

∑
n �=0

| 〈φ0| ĵx |φn〉 |2
En − E0

δ(ω − (En − E0)). (4.17)

This is, as expected, a much more complicated relation for σ1. Here the first term refers to
the Drude part of the conductivity, D being known as Drude weight, yielding exactly σ0

defined in equation (4.12) for constant frequency. The second part expresses a relation
similar to Fermi’s Golden Rule of equation (4.4), with the transition rate between lattice
states being given by the current operator. The main consequence of this expression is that
the real part of the conductivity shows a delta function at zero frequency, showing that
the majority of the weight of the conductivity is located at this point in frequency-space.
It can be shown [103] that with increasing lattice size, D converges to a non-zero constant
if the material is a metal and to zero if it is an insulator, thus can be used to characterize
metal-insulator transitions. For a metallic system, the Drude term causes the appearance
of a structure at frequencies close to zero in the optical conductivity spectrum which are
associated with intraband transitions.

4.4 Computational Details

We conducted DFT calculations as implemented in the WIEN2K distribution,
based on the linearized augmented plane wave method. The materials studied are part of
the Ruddlesden-Popper series Srn+1TMnO3n+1, the transition metals TM considered being
Fe and V. We analyzed for the iron series the compounds SrFeO3, Sr3Fe2O7, Sr2FeO4,
corresponding respectively to n = ∞, 2, 1. Also for n = 2, the compound Sr3FeNiO7
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representing a 50-50% doping was considered. In the case of the vanadium series, only
SrVO3 and Sr2VO4 were considered, corresponding to n = ∞, 1.

All calculations were done using a two-step process: first, converged results were
obtained considering the Perdew-Burke-Ernzerhof potential adapted for solids (PBEsol)
[37]. These were then used as input for a second calculation, now with the modified
Becke-Johnson potential as parameterized by Jishi et. al. [38], which requires a previous
converged result as detailed in section 2.4. A minimization of internal parameters was
also conducted for the unit cells that have free parameters, aiming to obtain the relaxed
structure.

A convergence criterion of RmtKmax = 7 was used, where Rmt is the radius of the
smallest atomic sphere in the unit cell and Kmax the largest wave vector in the basis set.
These in turn are given by kn = k+Kn, where Kn are the reciprocal lattice vectors and k

the wave vector in the first Brillouin zone. For all calculations, except when determining
optical properties, a sampling of k-points was chosen as to have a difference between
adjacent points Δk equal to 0.1. For the optical a finer k-point mesh is needed, thus we
considered Δk = 0.05. The resulting mesh is then optimized by the program itself, yielding
different values for each material. The core hole cutoff was chosen to be equal to -7.0 Ry,
meaning that states whose energy are lower than this parameter have no core leakage
beyond the atomic sphere. All other parameters involved in the calculations were chosen
to be the default values.

Several physically relevant magnetic structures in the collinear approximation were
considered for each material and compared in order to better reproduce experimentally
observed ground-state ordering. This approximation was chosen in order to reduce compu-
tational costs which were already signficative due to the number of different structures
and systems being considered. As argued in section 2.4, when spins are allowed to take
on any direction in space and thus simulate helical magnetism, the computational costs
associated increase at least 64 times due to the theoretical constraints of DFT.

The magnetic structures considered are listed in table 3, as well as the supercell
size chosen for the antiferromagnetic (AFM) states. A supercell is composed of multiples
of the original cell along the directions of the crystal a× b× c, being needed to reproduce
the AFM states due to the differentiation between transition metal atoms with respect to
up/down spin. We chose the supercell sizes as the smallest that could replicate the desired
magnetic orderings.

A schematic depiction of the antiferromagnetic configurations in the n = 2

structure is shown in figure 19, with the ferromagnetic (FM) phase as comparison. The
antiferromagnetic type A structure (AFMA) consists on ferromagnetic orderings in each
perovskite bilayer and antiferromagnetic between bilayers 1. Type C (AFMC) on the other
1 There is no physical reason for each single layer to align itself in its entirety antiferromagnetically to

the next.
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Figure 19 – Antiferromagnetic orderings considered in the calculations. Represented are
only the n = 2 structures, but for n = ∞, 1 the same logic applies.

Table 3 – Calculated structures and supercells considered.

Material Magnetic structures Supercell size
SrFeO3 PM, FM, AFMA, AFMC, AFMG 2x2x2
Sr2FeO4 PM, FM, AFMA 2x2x1
Sr3Fe2O7 PM, FM, AFMA, AFMC, AFMG 2x2x1
Sr3FeNiO7 PM, FM, AFMA, AFMC, AFMG 2x2x1

SrVO3 PM, FM non-applicable
Sr2VO4 PM, FM, AFMA, AFMG 1x1x2 (AFMA), 2x2x4 (AFMG)

hand consists on antiferromagnetic orderings between first neighbors in each layer, but
ferromagnetic between layers. Finally, type G (AFMG) consists on antiferromagnetic first
neighbor orderings both inter and intralayers. The same idea is applied to the n = ∞, 1

materials.
For calculations which are set as paramagnetic initially (i.e. that did not converge

to a paramagnetic solution), the magnetic moment of each atom is artificially turned off
so that there is a lower amount of degrees of freedom being considered. For the ferro-
and antiferromagnetic structures, the spin directions are fixed but their values can vary,
allowing also spin flip transitions, where an atom with spin initially pointing downwards
can converge to a solution where it’s pointing upwards.

The positions of each atom on the unit cell are detailed in table 4, as reported in
experimental work. The structures for the iron series are depicted in figure 20 , where the
different positions of oxygen are highlighted. For Sr3FeNiO7, the original unit cell of the
non-doped material was used to create the supercell, where the iron atoms were replaced
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Material Atomic Positions

SrFeO3 [52] Sr (0,0,0) Fe (0.5,0.5,0.5) O Basal (0,0.5,0.5)
O Apical (0.5,0.5,0)

Sr3Fe2O7 [66] Sr1 (0,0,0.5)
Sr2 (0,0,0.31726) Fe (0,0,0.09741)

O Basal (0,0.5,0.09432)
O Apical (0,0,0.19329)

O Apical’ (0,0,0)

Sr2FeO4 [77] Sr (0,0.3570) Fe (0,0,0) O Basal (0,0.5,0)
O Apical (0,0,0.1573)

SrVO3 [84] Sr (0,0,0) V (0.5,0.5,0.5) O (0.5,0.0,0.5)

Sr2VO4 [91] Sr (0,0,0.35438) V (0,0,0) O Basal (0,0.5,0)
O Apical (0,0,0.15778)

Table 4 – Atomic positions for each material studied.

Figure 20 – Structures considered for the iron Ruddlesden-Popper series with different n.
In the case of vanadium, the structures are basically the same, with Fe → V.

by nickel in a tridimensional checkerboard pattern. A schematic can be seen in figure
16. In the case of the vanadium series, the only difference is that the n = ∞ material is
perfectly cubic, so the series can be represented in the same manner just by substituting
the iron ions for vanadium.

In order to obtain the oxygen K-edge XAS spectrum, the density of states obtained
from these calculations was then treated using a core-hole potential approach to simulate
the effects of an excitation process on a ground state result. For that end, the real part of
the Green’s function was obtained by means of a Hilbert transform, as implemented in
the SciPy library through analytical signal methods. Considering a variational approach,
a new Green’s function was obtained, corresponding to the effect of the potential V on
the original density of states. Because the excited electron must be attracted to the hole
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on the internal level, V must be negative. This leads the new density of states, calculated
from the new Green’s function, to be shifted towards smaller energy values and also change
its structure. Finally, a gaussian broadening of width = 0.4 eV was considered, and the
resultant density of states can be directly compared to the usual XAS spectrum. Further
details and justification of this method, as well as the computational implementation can
be found on appendix I.
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5. Results and Discussion

5.1 Iron Series

Considering the magnetic orderings for each material as defined in chapter 4, the
total energy, total and atomic magnetic moments were obtained. For SrFeO3 (n = ∞), this
data is listed in table 5 1. Likewise, the data for n = 2 and n = 1 can be found on tables 6
and 8. Contributions for different atom types are discriminated, with special attention
towards oxygen. For some materials there are two strontium types, which refer to atoms
that are more perovskite-like (Sr1) or oxide-like (Sr2). These results will be discussed in
more detail in the following.

For SrFeO3, the magnetic configuration with the lowest total energy, the ground
state, is the ferromagnetic ordering. In this case, iron is the most magnetically active
atom as is expected, with a magnetic moment of about 4 μB. The strontium and oxygen
atoms also exhibit some magnetic moment but a lot less expressive than the transition
metal. One thing to notice is that the basal and apical oxygens contribute differently to
the total magnetic moment of the material, a pattern which was found to be persistent
throughout the whole RP series. The experimental magnetic moments of iron and oxygen
are reported to be 2.7-3.1 μB and 0.1 μB respectively [104, 57], but the calculated values
described in the literature range from 2.5 to 3.7 μB for iron and 0.08 to 0.16 μB for oxygen
[105, 104, 106]. Considering that the experimental values are obtained in the true magnetic
ground state which is helical antiferromagnetic, the difference between both values is not
surprising. When subjected to extremely high magnetic fields (≈ 40 T), the AFM state
changes to a FM state with a total magnetic moment of about 3.5 μB [60], closer to our
calculation. Also worthy of note is that the strongest interaction between adjacent iron
atoms is of ferromagnetic nature [57], which agrees with our finding that FM ordering is
the most stable of the collinear magnetic structures.

It can also be seen for this material that the ground state magnetic ordering
lies close in energy to the paramagnetic and antiferromagnetic phases, which is a sign of
1 In these tables, energy is given in Rydberg units as is customary, where 1 Ry = 0.5 Ha = 13.6 eV. The

magnetic moment due to atomic multiplicities was also averaged for easier comparison.



60

Table 5 – Results obtained for SrFeO3. It can be seen that although the FM configuration is
the lowest in energy and thus is the calculated ground state, there is appreciable
competition with other magnetic structures. The magnetic moment of the iron
atom in this configuration is close to the experimentally reported 3.5 μB of
a ferromagnetic ordering [60]. Different contributions to the total magnetic
moment by each oxygen type were also observed.

SrFeO3 Total Energy (Ry) Total Magnetic Moment (μB) Sr (μB) Fe (μB) O (μB)
PARA -9340.3348 - - - -

FM -9340.4188 3.9999 -0.0047 4.0068 Basal = -0.0075
Apical = 0.0308

AFMA -9340.2896 0.0000 0.0000 Fe1 = 3.9573
Fe2 = -3.9573

Basal = 0.0000
Apical = 0.0000

AFMC -9340.1046 0.0000 0.0000 Fe1 = 4.0990
Fe2 = -4.0990

Basal = 0.0000
Apical = 0.0000

AFMG -9340.1660 0.0879 -0.0003 Fe1 = 1.6491
Fe2 = -1.6352

Basal = 0.0145
Apical = 0.0145

Table 6 – Obtained results for Sr3Fe2O7. The calculated ground state magnetic structure
is the AFMA configuration, corresponding to ferromagnetic alignments along
the plane and antiferromagnetic between the perovskite double-layers, predicted
to be much more stable than the others. There is a a significant decrease on the
Fe magnetic moment when compared to the FM phase, however it is still the
magnetically active ion in the material.

Sr3Fe2O7 Total Energy (Ry) Total Magnetic Moment (μB) Sr (μB) Fe (μB) O (μB)
PARA -25182.0024 - - - -

FM -25182.0276 7.9998 Sr1 = 0.0013
Sr2 = -0.0019 3.8304

Basal = 0.0286
Apical = 0.36041
Apical’ = -0.50581

AFMA -25205.3271 -0.0008 Sr1 = 0.0000
Sr2 = 0.0000

Fe1 = 2.7147
Fe2 = -2.7143

Basal = 0.0000
Apical = 0.0008
Apical’ = -0.0000

AFMC -25182.0775 -0.0185 Sr1 = 0.0001
Sr2 = 0.0011

Fe1 = 3.65763
Fe2 = -3.65903

Basal = -0.0386
Apical = 0.0217
Apical’ = -0.0060

AFMG -25180.8386 0.0000 Sr1 = 0.0086
Sr2 = 0.0081

Fe1 = 1.2006
Fe2 = -1.2515

Basal = -0.0587
Apical = 1.7119
Apical’ = -1.5556

competing magnetic interactions in a highly correlated compound [58]. It’s interesting
to notice that there is a very sharp decrease in the magnetic moments for the AFMG
structure, yielding in fact a weak ferromagnet. It could be argued that this phase combined
with the paramagnetic one represents interactions that contribute to a decrease in the
magnetic moment of the real material, which might be a mechanism towards driving the
onset of the helical spin structure.

As the dimensionality n is lowered in the series, a change in behavior is observed. As
can be seen on table 6, the ground state structure for n = 2 is that with antiferromagnetic
ordering of the A type, being much more stable than the other structures analyzed. A
calculation reported on the literature based on a GGA+ U approach, with U = 5 eV and
J = 1 eV, obtained the same arrangement very close to a FM ground state, the difference
between the two being about 0.01 eV [71]. This is consistent with other calculations that
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Table 7 – Obtained results for Sr3FeNiO7. Notice that the most stable phase is now a
paramagnetic configuration, hinting that breaking the potential’s periodicity
through the nickel doping is enough to break magnetic order. The initially FM
and AFMG converge to different ferrimagnetic orderings, with very distinct iron
and oxygen magnetic contributions.

Sr3FeNiO7 Total Energy (Ry) Total Magnetic Moment (μB) Sr (μB) Fe (μB) Ni (μB) O (μB)
PARA -25677.2831 - - - - -

FM -25677.0245 8.0001 Sr1 = -0.0092
Sr2 = -0.0331

Fe1 = 1.5063
Fe2 = 1.5053

Ni1 = 1.3414
Ni2 = 1.3445

Basal = 2.0667
Apical = -0.0739
Apical’ = -0.0399

AFMG -25677.0677 8.0001 Sr1 = 0.0091
Sr2 = -0.0029

Fe1 = 4.1088
Fe2 = 4.1081

Ni1 = 1.4914
Ni2 = 1.4911

Basal = -0.6833
Apical = -1.1975
Apical’ = -1.4173

showed that, for Sr3Fe2O7, the first neighbor interactions are of ferromagnetic ordering but
the longer ranged are antiferromagnetic, with smaller values [70]. The magnetic moment of
the iron atoms is experimentally reported at 3.1 and 3.5 μB due to the elliptical modulation,
with antiparallel ordering between Fe atoms at different double perovskite layers [70, 107],
not too distant from the calculated moments.

Considering that the true ferromagnetic state is non-collinear, meaning antifer-
romagnetic contributions are important, and that the strontium oxide layers effectively
cuts the connection between adjacent perovskite layers’ magnetic structures along the c

axis, we argue that the large difference obtained between the energy of the AFMA and the
other arrangements is significative and a result of an exchange-correlation potential that
is highly tailored to perovskites. Moreover, the only difference between the AFMA and
FM structures is, as can be seen on figure 19, exactly the opposing ferromagnetic ordering
between the double perovskite layers which is experimentally reported.

When the n = 2 system is doped with nickel in a 1:1 proportion, we obtained
different properties as can be seen on table 7. The lowest energy magnetic configuration
obtained was a paramagnetic phase, in agreement with the reported behavior of the system
[74]. Thus, we conclude that the introduction of Ni in the systems seems to be enough to
break the complex magnetic ordering of Sr3Fe2O7 and stabilize a simpler, paramagnetic
structure. The “ferromagnetic” and “antiferromagnetic-G” phases, which lie a bit higher in
energy than the ground state, are actually two distinct ferromagnetic orderings with two
magnetic sublattices. When considering an initially ferromagnetic (FM) configuration, the
magnetic moments of Fe and Ni converge to being quite close in magnitude (nickel’s being
slightly smaller) and a very significant resultant magnetic moment of the basal oxygens is
present. This would imply that the magnetically active sites in the lattice become more
distributed than in comparison to the other materials in the series.

The originally AFMG ordering converges to a different ferromagnetic ordering, in
which even though Fe and Ni point in the same direction, the iron magnetic moment is
much greater than nickel’s. Analysing the oxygens’ magnetic momenta, it can be seen that
this is accompanied by a significant shift in the contributions of each oxygen type, even
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though the total magnetic moment remains the same. The great lack of studies on this
material do not allow us to obtain much more intuition regarding its properties.

The second ferrimagnetic phase is closer to the ferromagnetic phase of the non-
doped material and is characterized by a very dominant Fe moment, having now apical
and apical prime oxygens with significant magnetic activity. These different scenarios could
be associated with the onset of spin-glass behavior at very low temperatures as argued
by Mogni et al. [74], which is a consequence of a highly frustated magnetic system. At a
temperature range of 350 to 570 K, the effective (i.e. resultant) magnetic moment of the
material was found to be of about 4.1 μB, close to the 8 μB we obtained with the doubled
unit-cell, which has double the magnetic moment of the single cell and thus is also close
to 4 μB [74].

Table 8 – Obtained results for Sr2FeO4. The calculated ground state obtained was the
FM arrangement, although the energy difference to the AFMA configuration is
small. This antiferromagnetic ordering was considered as the ground state for
following analysis, as it is closer to the experimentally reported elliptical spin
structure than the FM ordering.

Sr2FeO4 Total Energy (Ry) Total Magnetic Moment (μB) Sr (μB) Fe (μB) O (μB)
PARA -15841.6702 - - - -

FM -15841,7840 3.9996 -0.0008 3.8574 Basal = 0.1087
Apical = -0.0299

AFMA -15841.4031 0.0000 0.0000 Fe1 = 3.0012
Fe2 = -3.0008

Basal = -0.0001
Apical = -0.0001

When the perovskites are confined in the 2D structure of Sr2FeO4 (n = 1), we
obtained the FM phase as the phase with the lowest total energy. The experimentally
determined magnetic structure is an elliptical helix only slightly tilted away from the ab

plane with a relatively small angle between adjacent iron spins of 70◦ [80]. Taking into
account the same argument of the n = 2 material that the SrO do not allow for strong
interactions that tend to align the spins ferromagnetically along c, effect that should be
even more pronounced for n = 1, we considered the AFMA structure to be the magnetic
ground state in the collinear spins approximation. This is justified by taking into account
the (relatively) small energy differences between the structures analyzed.

Table 9 compiles the magnetic ground states considered for all materials that were
used for further calculations.

Table 9 – Resultant magnetic ground states for each material.

Material SrFeO3 Sr3Fe2O7 Sr3FeNiO7 Sr2FeO4

Magnetic Ground State FM AFMA PARA AFMA
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5.1.1 Density of States and Band Structure

By studying the density of states (DOS) and the projected density of states
(PDOS) on the valence orbitals of each atom, we can obtain the behavior of the electronic
structure of the entire series and more directly analyze the effects of dimensionality. The
comparison between all the materials is present in figure 21, where the Fermi level is taken
as zero energy, meaning states with negative energy are all occupied, forming the valence
band, and states with positive energy are all unoccupied, forming the conduction band.
It is also important to point that in this type of graph, positive (negative) values of the
DOS represent the states associated with up (down) spin. Some general characteristics
can be noted, such as that for all materials there is a large overlap between the energy
intervals with large oxygen and transition metals contributions, some between the oxygen
and strontium and little to none between the transition metals and strontium. This is a
measurement of covalency between the atoms, which indicates that the bond between the
transition metals and oxygen has a highly covalent nature, in agreement with the negative
charge-transfer regime characteristics highlighted on chapter 3.

One can observe that, due to the little covalency between strontium and transition
metals, the strontium bands are not as highly affected by the changes in the dimensionality
of the series as the other bands. Most notably, it can be seen that as n is lowered, the
density of states becomes more localized, that is, the energy intervals occupied by the
bands become smaller and the number of states becomes higher, with sharper peaks. This
is in agreement with the expected behavior of a Ruddlesden-Popper series and leads to the
progressive distinction between the material’s characteristics in the ab plane and the c axis
as dimensionality is reduced. Considering specifically n = 2, it can be seen that doping can
also be a mechanism to drive localization, which is expected as the local periodicity of the
crystal’s potential with only iron atoms is broken by the introduction of nickel, increasing
the effective bond distances between iron atoms.

In figures 22 to 26, the PDOS of figure 21 are plotted separately for each atom,
highlighting the different oxygen species. It can be seen that SrFeO3 shows a half-metallic
behavior, in which the density of states is highly sensible to spin orientation. This leads to
a energy gap of about 2.3 eV for the down spin component and no gap for the up spin,
meaning that the material behaves as a conductor for an up-polarized spin current and as
a semi-conductor for a down-polarized spin current. This behavior was also observed in a
study with a GGA+ U formalism [108] and other calculations reported in the literature,
although not displaying half-metallicity exactly, point towards this behavior with a much
more pronounced density of iron states for one spin than the other [104, 109]. To the
best of our knowledge, no experimental study exploring this predicted property have been
reported. It can also be seen that the structures of basal and apical oxygen are very similar
to one another, showing a great degree of covalence only with the iron atom. The slight
differences are attributed to the small apical distortion in the crystal unit cell.
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Figure 21 – Comparison between the total density of states (DOS) and its projections
onto valence orbitals (PDOS) for each material of the iron series, with the
ground state magnetic structures indicated. For all members of the series, a
great overlap between oxygen and transition metal states was observed, an
indicator of highly covalent interactions, which are also present in a lesser
degree between oxygen and strontium. The transition from a half-metallic
material with n = ∞ to a semiconductor for n = 1 showcases the effects of
2D confinement on the materials’ electronic structure. The presence of mostly
p− d levels near the Fermi level are indicators of the negative charge-transfer
the systems exhibit.
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Figure 22 – PDOS of SrFeO3, showcasing the different oxygen species and semi-metallic
character. It can be seen that there is almost no difference between the basal
and apical oxygen structures besides the intensity due to atom multiplicity,
even considering the slight apical elongation of the material’s structure. This
is due to the isotropic nature of the material, composed of only identical
perovskites in every direction.
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The DOS for n = 2 (figure 23) obtained does not show the expected semiconductive
behavior as is reported in the literature through thermodynamical studies [110, 72]. This
difficulty on reproducing the electronic behavior is also observed on other studies that
report the density of states using methods such as GGA+U [71, 111]. As these calculations
do not take into account the experimentally observed charge disproportionation of the
iron sites [67], it can be argued that it constitutes a key mechanism to turn the material
into a semiconductor. That being said, our results point towards a separation of the iron
structures close to the Fermi level, which could be improved by considering a non-collinear
magnetic structure that is closer to the material’s real arrangement.

One key difference between n = ∞ and n = 2 is that, due to the reduction in
dimensionality, the different oxygen species now have a quite distinct density of states
and thus must exhibit different physical behavior. The basal oxygens show a very covalent
2p− 3d bond when projected both in the ab plane and along the c axis, now with a larger
interaction with the strontium atoms, although still small. The apical oxygens on the other
hand show a much more localized structure that is more strongly covalent with the iron
atoms through the x and y projections of the 2p valence orbital than with z projection.
The same is observed with the apical prime species, the oxygens shared between each
perovskite layer in the bilayered structure, which has a smaller contribution to the overall
DOS due to having a smaller multiplicity. This change in behavior is evidence of the
relative independence between adjacent bilayers due to the presence of the strontium oxide
layer, which greatly reduces the available states associated with the 2pz orbitals, which
lie along the c axis. As a consequence, the material’s main characteristics (electronic,
magnetic, thermodynamical...) must be more pronounced in the plane and thus be of
2D-like nature.

The semiconductive behavior of the n = 2 phase is realized for the Ni substitution,
as presented in figure 24. It can be seen that a small gap of about 1.2 eV appears when
the less magnetically active nickel atom is introduced, which is concomitant with the
transition to a paramagnetic ordering as observed experimentally [74]. The local symmetry
breaking caused by this greatly localizes the structures of all atoms while at the same
time seemingly reducing slightly the covalency between the transition metals and oxygen
types. Regarding the different characteristics of basal and apical oxygens, the same logic
of the non-doped n = 2 material can be applied. Thus, apical oxygens exhibit a limited
interaction through the 2pz orbital due to the presence of the insulating SrO layers, with
apical prime oxygens showing a similar behavior but more influenced by the basal oxygens
close to the Fermi level. A comparison between the changes is the transition metals’ PDOS
is shown in figure 25, where it can be more clearly seen how the Ni doping creates sharper
peaks within narrower energy intervals in the Fe states.

When the perovskite layer is maximally confined in the n = 1 phase, the trend of
localization in the structures is followed, as can be seen on figure 26. Most notably, the Fe
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Figure 23 – PDOS of Sr3Fe2O7. It can be seen that the introduction of the SrO layers
has a profound effect on the structures of all atoms, especially the oxygens’,
which behave differently from another. The apical oxygen’s PDOS shows a
more localized structure and predominant character along the plane, direct
consequence of the presence of the oxide layers, whereas the basal and apical
prime species display more covalence with the transition metal. A metallic
character was observed, in contrast to the known semiconductive nature of the
material. This points towards the true non-collinear magnetic structure, not
considered in this calculation, playing an important role in its conductivity.
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Figure 24 – PDOS of Sr3FeNiO7. The introduction of Ni, which showcases a similar
structure to the Fe atoms, causes an expressive localization of the density of
states in comparison to the non-doped case. This is also enough to open the
expected gap that couldn’t be reproduced for the Fe-only material while also
destroying its complicated magnetic structure.
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Figure 25 – Comparison between the transition metals PDOS calculated for n = 2, fe-
aturing the system with only Fe on the upper panel and the Ni doped on
the lower panel. Localization of the structures becomes very evident, even
causing a separation that is enough to originate a small bandgap and thus
semiconductive behavior.
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states become less abundant near the Fermi level at the same time that a small gap of
about 1 eV appears, close to the 1.8 eV gap reported in a very recent theoretical study
within the hybrid DFT framework [112]. It can also be seen that the apical oxygens have
a stronger interaction with the strontium structure at E = 7 eV than the basal species, as
expected due to the proximity to the SrO layer.

In order to allow a more direct comparison of the different oxygen structures in
the series, the evolution of the DOS as n is lowered is depicted in figure 27, with only the
basal oxygens on the upper panels and the apical and apical’ oxygens on the lower panels.
The localization effects can be seen very clearly throughout the series. As the chemical
environment around each oxygen species changes with different n, the bands associated
with the 2p orbital and its components become increasingly more distinct, leading to the
different physical characteristics of each material.

Another way of visualizing the evolution of the electronic structure is through the
band structure, considered along points of high symmetry in the first Brillouin zone. It is
also possible to showcase, given the material’s bands, which have a higher contribution due
to each atom or specific orbitals, represented by smalls circles whose radius are weighted
by this contribution. Figures 28 to 31 showcase the character of oxygen 2p orbitals present
in the bands of each material, with the graphs on the left considering specifically the
character of px and py orbitals, and on the right the pz contribution. The more O 2p

states are available at a given energy interval, the higher is the character that the bands
in these intervals are going to have, which can be used to evaluate covalence effects. The
obtained plots are then compared with the material’s total DOS as presented before, in
which covalence is represented by the overlap in electronic states.

In figure 28, one can see that the projection’s characters for SrFeO3 change
depending on the majority or minority spin being considered, a consequence of the half-
metallic character of the n = ∞ material. In blue are depicted the spin down channel
contributions, which have a much more intense px + py character than the spin up channel,
but this behavior is flipped when considering the pz character. It is important to note here
that the distinction between apical and basal oxygens is not being considered, only the
difference between contributions on the plane and on the axis for all the oxygen species.
Also worthy of note is that near the Fermi level, the bands which have more px + py

character are flatter than the ones with pz character, which is yet another way to measure
localization, in this case not due to dimensionality but to the different conductive behavior
for different spin channels. This measurement of localization is based on the fact that the
band’s dependence on k is given by some dispersion relation which depends on the material,
as mentioned in chapter 2. So, bands which show less dispersion (i.e. more localized) won’t
have a significative dependence on k and thus be represented by straight horizontal lines
in band plots.

In figure 29 are the O 2p band characters for Sr3Fe2O7. Because half-metallicity is
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Figure 26 – PDOS of Sr2FeO4. In comparison to the other n materials, here a much more
pronounced localization of the structures can be seen, even for the Fe atom.
The confinement of the perovskite layers leads to projections along the plane
to be enhanced, showcasing its 2D nature. This also leads to the appearance
of a small gap of about 1 eV.
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Figure 28 – Band structure of SrFeO3 with corresponding O 2p character weights. Due to
the material’s half-metallic nature, a further distinction was made between
down (blue) and up (red) spin. It can be seen that for the character along
the plane, there is a larger contribution from the the down spin, the opposite
being true for character along the axis. For both cases, a large dispersion is
observed along the high-symmetry path.

only present in the n = ∞ material, the up and down contributions to the band character
are the same. Thus we adopt blue circles to indicate only the px + py character and red
circles for pz, this convention being followed for all other materials. It can be seen that
the oxygen 2p contributions are quite similar when considering both characters, as can be
seen by the great overlap between oxygen and iron states on a large energy range. The
biggest difference between the two lies on the bands that are located at about -5 eV, whose
character is mainly px + py. This can be explained by looking at figure 27, in which it
can be seen that most occupied electronic states are due to the px + py contribution of
the basal oxygens. The presence of a higher number of bands overall, when compared to
n = ∞, can be attributed to the higher number of atoms in this material’s unit cell, which
renders a more complicated band structure. That being said, these bands have a flatter
behavior, which is expected due to the increased localization of electronic structure of
Sr3Fe2O7.

As could be seen with the DOS alone, in the case of the nickel-substituted n = 2

system, this localization is greatly increased. On figure 30 are the band structures, which
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Figure 29 – Band structure of Sr3Fe2O7 with corresponding O 2p character weights. In
comparison to the n = ∞ case, a much more complicated band structure
can be seen, where the oxygen character is noticeably smaller but also more
distributed. That being said, for the bands at about -5 eV the px+py character
is noticeably greater, a consequence of mainly basal oxygens states in this
range. The main feature to be observed is that the bands become, in general,
much flatter and thus less dispersion is observed, a direct effect of localization
by the lowering of n in the series.

are markedly flatter than the non-doped system, with a very intense px+py O 2p character
close to the Fermi level, whereas the pz character is more distributed and less pronounced.
In the case of Sr2FeO4, depicted in figure 31, a very strong px + py character is present
at about -1 eV, with lesser contributions distributed at other energy intervals. The pz

character is more concentrated below the Fermi level, also at about -1 eV, being less
evident for other intervals. One interesting characteristic is that just below the Fermi
level, the bands have basically only px + py character and have a relatively high dispersion,
which can be attributed to the mixed ionic and electronic conduction along the plane for
the n = 1 phase [18].

5.1.2 X-Ray Absorption

In order to validate our results, we conducted comparisons between our theoretical
results and experimental X-ray absorption (XAS) spectra. These were collected by the
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Figure 30 – Band structure of Sr3FeNiO7 with corresponding O 2p character weights. A
very significant localization can be seen, with nearly flat bands overall. A
strong px + py character is observed close to the Fermi level and crossing it,
with pz character being less predominant. In comparison with the iron-only
n = 2 material, it can be seen that doping can also lead to a great degree of
localization in the system.

group on the SGM beamline of the old brazilian synchrotron LNLS. The measurements were
made for the n = ∞, 2, 1 materials at room temperature using polycrystalline samples that
were scraped at pressures below 10−10 mbar aiming to remove superficial contamination.
The overall experimental resolution of the beamline was 0.5 eV.

As explained on chapter 2, XAS is a technique that probes the unnocupied part of
the density of states, identifying the conduction band near the Fermi level. Thus, one can
use DFT to estimate the spectra by treating the calculated DOS only beyond the Fermi
level. This can be done by summing up (in modulus) the contributions of up and down spin
densities and doing a rigid translation of the structure by a given energy corresponding
to the first absorption edge [98]. Such procedure should yield a rough estimate of the
true spectrum as DFT gives only the ground state density, whereas X-ray absorption is
an excited process. This approximation can be improved using the core-hole potential
procedure that was mentioned in chapter 4 and that is detailed in appendix I.

By analyzing the O 1s X-ray absorption spectrum, which corresponds to transitions
from the O 1s occupied band to the O 2p unoccupied states, one can indirectly obtain
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Figure 31 – Band structure of Sr2FeO4 with corresponding O 2p character weights. A
great degree of localization is also observed for this material. It is interesting
to notice that the pz character is very limited to narrow ranges in energy in
comparison with the dominant px + py character, especially close to the Fermi
level. This is a marked feature of a two-dimensional system, as is expected
considering the confinement it is subjected to due to presence of the strontium
oxide layers.

information regarding the transition metal due to hybridization effects [113]. This is
specially justified when considering systems with very strong covalent nature between
ligand and metal, such as the iron RP series considered, in which all materials are in
a negative charge-transfer regime. In figure 32 are the calculated XAS spectra for all
the materials and the respective experimental data. Cluster model calculations allow to
elucidate the main components of each structure [55, 75, 65]. Looking initially at the
experimental results, we see that at about 520 eV there is a steep increase in the intensity
detected, which is characteristic of the oxygen K-edge. This first structure is soon followed
by a satellite structure just a few eV after. These two initial peaks have the influence
of mainly the iron 3d orbital, the first corresponding to the Fe t2g band and the latter
to the eg band [65]. The peak around 533 eV corresponds to a Sr 4d band, whereas the
smaller structures after 540 eV are attributed to the transition metals 4sp bands. Naturally
absorption isn’t the only process that takes place when the sample is irradiated, the result
of all the other complicated interactions between matter and x-ray accounting for the
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rising background energy along the spectrum.
It can be seen that, as expected, the spectra derived from our theoretical calculati-

ons gives an approximation to the experimental data, with different degrees of accuracy. In
general, the correct structures are present, but their position and separation in energy as
well as relative intensities don’t correspond perfectly to the data. That being said, taking
into account the limitations of DFT, the agreement is already surprisingly good for a first
estimate. As n is lowered in the series, the evolution of the structures as a function of
dimensionality become evident, with a lowering of the first peak’s relative intensity with
the exception of the Ni doped n = 2. Most importantly, the contribution of the Sr 4d

bands become the more relevant the more the perovskite layers become confined, an effect
that can be attributed to the influence of the SrO layers and local symmetry breaking
on the electronic localization. This also allows us to explain why this peak becomes more
defined when comparing the spectra of Sr3Fe2O7 and Sr3FeNiO7.

As an additional analysis, we also studied how the band structure and its O 2p

character relates to the calculated and experimental XAS spectra. For n = ∞, given
on figure 33, it can be seen that the Fe 3d peaks have a strong oxygen character, as is
expected due to the great covalency between the two atom types observed. These peaks are
also associated with bands that have a relatively high dispersion, which is related to the
conductive nature of the material. It is also interesting to note that the Fe 4sp bands have
basically only px + py character, which indicate that these more internal iron orbitals bond
strongly with the oxygen atoms only along the plane. For Sr3Fe2O7 (figure 34), the diffuse
O 2p character is present throught the spectrum, with similar contributions of px + py and
pz orbitals, but the band structure becomes a lot more complicated to interpret.

When the Ni atoms are introduced, there is a great change in the band structure
compared to the iron-only system. It can be seen on figure 35 that the Fe/Ni 3d peaks
correspond to strongly localized (i.e. flat) bands, the same happening for the Sr 4d structure,
whereas the bumps on the spectra due to Fe/Ni 4sp orbitals are related to more dispersed
bands. As expected, this behavior is not homogeneous for the in plane and out of plane O
2p characters, being the pz character more present only for the 3d peaks. For the n = 1

material, we see that the first peaks are associated with bands that are very localized
and simultaneously with others that show a greater dispersion. Considering that the first
peak relates to the t2g and the second to the eg orbitals of iron, we can argue that our
calculations predict a very localized eg band that contrasts to the less localized eg one. The
O 2p character is also distinct for px + py and pz orbitals, the first having a more general
presence throught the spectrum, and the latter being only more pronounced for the 4d

peak. The qualitative similarities on the O 2p character between Sr3FeNiO7 and Sr2FeO4,
the materials with the most localized electronic structures, also support the conclusion
that local symmetry breaking greatly alters the covalent nature of the oxygen bonds in a
non-isotropical manner.
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Figure 32 – First approximation to the experimental X-ray absorption spectra as calculated
by Density Functional Theory. It can already be seen that there is a relatively
good agreement, with the right structures being present in the spectrum but
shifted in energy or with mismatched relative intensities. The differences are
expected considering that DFT gives the material’s ground state properties
whereas XAS is an excited state process.
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Figure 33 – Comparison between the band structure of SrFeO3 and its XAS spectrum. It
can be readily seen that the first peak, corresponding to the oxygen K-edge,
has a very strong oxygen character as expected, with the difference in spin up
and down contributions accounting for the secondary peak.
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Figure 34 – Comparison between the band structure of Sr3Fe2O7 and its XAS spectrum.
The oxygen character is more diffuse throughout the bands, with a slightly
stronger px + py character being present closer to the peak corresponding to
the influence of the Sr 4d bands.
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Figure 35 – Comparison between the band structure of Sr3FeNiO7 and its XAS spectrum.
It can be readily seen that the first peaks in the XAS spectrum correspond
to a mixed px + py and pz character, whereas the following structures have
mostly px + py character.
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Figure 36 – Comparison between the band structure of Sr2FeO4 and its XAS spectrum.
Like in the case of the Ni doping, the first peak associated with the Fe 3d
levels show a mixed px + py and pz character, while the rest of the structures
having a more dominant px + py character. This indicated that both doping
and dimensional-lowering tend to privilege interactions along the plane, fully
in agreement with our DOS analysis and reported behavior.
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In order to improve the theoretical predictions, further calculations using the
ground state DOS obtained from DFT and taking into account the attractive potential
V of the core-hole left by the promotion of an oxygen 1s electron to a higher state were
conducted. As mentioned, the theoretical details are left as an appendix to the interested
reader. An example of the results obtained is depicted in figure 37 for the maximally
confined n = 1 system. Several different V values are considered (in eV units), which
change not only the relative intensities of the structures but also their energy separations,
the resultant spectra being subjected to a gaussian broadening of 0.4 eV to smoothen out
the curves. When V = 0.0, one has the original spectrum from DFT but broadened, and
as V becomes more negative it becomes clear how the Fe 3d and Sr 4d peaks become more
pronounced at the cost of the reduction in intensity of the Fe 3sp peaks, closer to the
experimental data.

As the core-hole potential is inserted in a more or less ad hoc manner, its correct
value is not known. Thus, we determined the best fit by visually comparing the corrected
spectrum with the experimental data. This must be done carefully, as higher values of
V although reducing the energy separation between structures to values closer to the
experimental ones, tend to privilege one of the peaks and greatly reduce the intensity
of the others. It must be noted that the sensitivity to this potential is also not linear,
meaning that after some threshold that depends on the material, slight changes in the
value (∼ 0.1 eV) can result in very large changes to the resultant spectrum.

Finally, the comparison between core-hole adjusted theoretical XAS spectrum of
the iron series and experimental data is portrayed in figure 38, considering the best fit
V s determined individually. For n = ∞ we now see a very good agreement for the iron
3d peaks, the others being slightly shifted to higher energies by about 2 eV but with a
good relative intensity. For n = 2 (FeFe) , the energy positions of the structures are in
excellent agreement to the data, but the relative intensities of the first peaks are swapped.
The nickel-doped system shows a behavior similar to n = ∞ in the sense that the relative
intensities are mostly correct but the structures themselves show a small energy shift
towards higher energies. For n = 1 the comparison between theoretical and experimental
data is stellar, with only a slight swap in the predicted intensities of the iron 3d peaks.

5.2 Vanadium Series

As in the iron series, the resultant total energies, total and atomic magnetic
moments obtained for the different magnetic orderings considered are listed in tables 10
and 11. For SrVO3 (n = ∞), it can be seen that even if the system is initialized in the
ferromagnetic state, it converges to an essentially paramagnetic solution, very close in
energy to the calculation that is initialized as paramagnetic. Thus, we can conclude that
the system’s ground state shows in fact no magnetic ordering, which is consistent with



84

Figure 37 – Evolution of the calculated XAS spectra for Sr2FeO4 with the introduction of
the core-hole potential V , considering different values (in eV) with a gaussian
broadening of 0.4 eV. As V increases, the structures are shifted towards lower
energies and their relative intensities change, a consequence of the attractive
nature of the potential.
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Figure 38 – Comparison between core-hole adjusted XAS spectra as derived from DFT and
the experimentally measured curves. For n = ∞, 2 (FeNi), a great agreement
in the relative intensities is obtained but the structures themselves are slightly
shifted for higher energies. For n = 2, 1 (FeFe), the positions of the peaks are
in excellent agreement with the data but the relative intensities of the first
two peaks are swapped.
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data reported in the literature [86, 85, 83].
In the case of Sr2VO4, the calculated ground state magnetic structure is the

antiferromagnetic of type A. which lies very close in energy to the paramagnetic and
type G antiferromagnetic orderings. Reported theoretical predictions using an LDA+U ,
GW and path-integral renormalization group approach predicted that the competition
is instead mainly between the FM and AFM arrangements, with a coexistence of both
phases at temperatures around 100 K [94]. Measurements of the temperature dependence
of the magnetic susceptibility χ however show a behavior typical of weak ferromagnetism
and strongly enhanced Pauli paramagnetism, common for strongly correlated 3d systems
close to a metal-insulator transition [95]. Considering this, we argue that the paramagnetic
contribution to the orbitally-ordered ground state is more important than the contribution
associated with the ferromagnetic arrangement, which also agrees with the expected
diminished interaction along c due to the SrO layers. As can also be seen on table 11, the
atomic magnetic moments for both FM and AFM configurations are similar, with the
largest moment on the transition metal, in agreement with experimental measurements
that indicated a moment < 1μB [114] . In comparison to the iron series, we see that
these values are much smaller, which is expected considering that vanadium is not a very
magnetically active atom.

Table 10 – Obtained results for SrVO3. The FM calculation converged to an essentially
paramagnetic phase, with very similar energies. Thus, the ground state of the
system is undoubtedly paramagnetic, in agreement with the literature.

SrVO3 Total Energy (Ry) Total Magnetic Moment (μB) Sr (μB) V (μB) O (μB)
PARA -8694.6644 - - - -
FM -8694.6678 0.0902 0.0002 0.0637 0.0063

Table 11 – Obtained results for Sr2VO4. The close competition in energy between paramag-
netic, AFMA and AFMG phases is an indicator of a highly frustrated magnetic
system. The magnetic ground state considered for following analyses was the
AFMA ordering based on the reported properties of the material. A much
smaller magnetic moment is exhibited by the vanadium ion in comparison to
the iron series, as is expected due to V being less magnetically active. Different
contributions to the magnetic moment by basal and apical oxygens were also
determined.

Sr2VO4 Total Energy (Ry) Total Magnetic Moment (μB) Sr (μB) V (μB) O (μB)
PARA -15195.8792 - - - -

FM -15169.5119 1.0000 0.0016 0.8793 Basal = -0.0457
Apical = 0.0518

AFMA -15195.8672 -0,0370 Sr1 = 0.0002
Sr2 = -0.0007

V1 = 0.8307
V2 = -0.9266

Basal = 0.0383
Apical = 0.0200

AFMG -15195.7842 0.0000 Sr1 = -0.0008
Sr2 = 0.0010

V1 = -0.8378
V2 = 0.7396

Basal = -0.0335
Apical = 0.1299
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5.2.1 Density of States and Band Structure

Following the analysis, the DOS and PDOS of both materials were obtained and
are displayed on figure 39 as comparisons. Similar to the iron series, a large covalence
is observed between the oxygen and transition metals, the main difference lying on the
behavior close to the Fermi level. For the iron series, all materials are on the negative
charge transfer regime, thus the states around the Fermi level should be of p − p type,
with predominance of oxygen 2p. The vanadium series on the other hand is closer to the
Mott-Hubbard regime, and should have states around the Fermi level of d− d type, with
a predominance of vanadium 3d states [69]. Both statements agree with our results. The
general trend of localization with lower n is also observed for this series. A more detailed
analysis of each material is given on the following.

The PDOS of n = ∞ is depicted in figure 40. As SrVO3 crystallizes in the perfect
cubic perovskite structure, there is no chemical difference between the basal and apical
oxygens, thus the difference in the density of states is due solely to the multiplicity of each
oxygen species (2:1). The strontium states are located in pretty much the same energy
region as for SrFeO3, showing that the little covalent character between the strontium and
transition metals seem to be a general feature of the strontium perovskites. As expected,
the large density of vanadium states at the Fermi level yield the conductive nature of the
material.

Considering now the n = 1 material, as can be seen on figure 41, there is a
substantial difference that can be attributed to the introduction of the SrO layers. The
large vanadium structure present for n = ∞ at the Fermi level is separated into two
distinct structures with a small gap between them. As the first one is still located at
the Fermi level, our calculation yields a metallic behavior that contrasts to the known
semiconductor nature of the material, with an optical gap of about 2 eV [115]. This false
prediction turns out to be very persistent for many different initial magnetic structures
and calculation conditions, and reported DOS in an GGA+U scheme also exhibit the
same problem [116]. We conducted several other tests by changing the supercell size of the
antiferromagnetic calculations and also the exchange-correlation functional for a GGA+U

approach and none were able to correctly predict a small gap or fail in comparison to
experimental data of optical conductivity. These are detailed in appendix II. This intrinsic
difficulty can be attributed to the DFT calculations not taking into account explicitly
the known orbital-ordering behavior of the material, which greatly impacts the physical
properties it exhibits [92, 95].

Also worthy of note is the expected change in oxygen states according to their
basal or apical position. The basal oxygens have states associated with the projections of
the 2p orbitals on the plane distributed over a wider energy interval than the projection
along the axis, which show more narrow peaks and are shifted closer to the Fermi level
when compared to the n = ∞ case. The apical oxygens on the other hand show a more
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Figure 39 – Comparison between the DOS of n = ∞, 1 of the vanadium series. Close to
the fermi level there is a more pronounced d band influence, consistent with
materials close to a Mott-Hubbard transition. Great covalence is observed
between the oxygen and vanadium atoms, and to a lesser extent between
oxygen and strontium. For both materials a metallic character was predicted,
in contrast to the semiconductive nature expected for n = 1.
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Figure 40 – PDOS of SrVO3. The metallic nature of the material is attributed to the large
number of V 3d states near the Fermi level. No difference besides absolute
number of states is observed between the oxygen types, as expected considering
the material crystallizes in a perfectly cubic unit cell and is composed of only
perovskites, being equivalent in all directions.
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Figure 41 – PDOS of Sr2VO4. As in the case of the iron series, by lowering n a difference
between the structures of each oxygen type is observed, with the apical oxygens
showcasing more prevalent character along the plane as a consequence to the
proximity of oxide layers. The metallic character predicted contrasts with the
known semiconductive nature of the material.
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localized structure both for the projections along the plane and along the axis, with a
higher density for the px + py states. A comparison between the oxygen states for n = ∞, 1

is highlighted in figure 42, in which the evolution of the oxygens’ density of states can be
more readily analyzed.

The band structures of both materials were obtained and their O 2p character
characterized, following analyses that are similar to the ones conducted for the iron series.
In figure 43 are the bands corresponding to SrVO3, showing relatively high dispersion
considering the highly-correlated nature of the material. It is interesting to notice that,
below the Fermi level, the bands with the lowest energy have a strong pz character, whereas
the ones with slightly higher energy show a strong px + py. Moreover, the bands that cross
the Fermi level and thus are directly related to the conduction in the material exhibit
have basically only px + py character, pointing to a preference in conduction along the ab

plane even in the absence of the strontium oxide layers. For Sr2VO4 (figure 44), it can
be seen that the O 2p character is greatly increased, especially for the bands related to
the occupied states, the px + py being relatively more present also in the conduction band.
The confinement in a 2D environment also produces for this material much flatter bands,
which are a consequence of the localization of the electronic structure, although the states
at around -6 eV still retain the more delocalized behavior of the n = ∞ material.

5.2.2 Optical Conductivity

Aiming at validating our calculations, we conducted experimental comparisons
of the optical conductivity behavior for both materials, as data regarding this property
has been widely reported. Our results were obtained following the method that is already
implemented in the WIEN2K package [117], and are displayed on figure 45. For n = ∞,
the experimental data was taken from the work of Makino et. al [118] and for n = 1 from
the work of Matsuno et. al [115]. Considering firstly the SrVO3 system, we see a very
good agreement between our calculations and the reported behavior. There is no difference
between the xx and zz components of the real part of the optical conductivity, as expected
for an isotropic system. For low energies it can also be seen that there is a feature called
a Drude tail, that happens for metallic states and is due to intraband transitions d− d

transitions in the occupied states [118, 100]. The width of this structure is directly related
to the plasma frequency ωp, the typical oscillation of the electronic motion in the absence
of external field, which is turn directly proportional to the density of electrons in the
conduction band. Thus, the more states that cross the Fermi level, which characterizes a
metal, the wider in energy will this tail be. There is a small bump in the values of the
conductivity at about 2 eV, which is associated with transitions to unoccupied V t2g states,
the transitions to the eg states being hidden by the more pronounced structure starting at
4 eV and associated with p− d charge-transfer transitions [100].
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Figure 42 – Evolution of the oxygen 2p PDOS for the vanadium series, separated by the
contributions of basal and apical oxygens and the projections along the ab
plane and along the c axis. The differences between the structures caused by
the reduction in dimensionality become evident, with a greater localization of
states associated with the apical oxygens.
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Figure 43 – Band structure of SrVO3 with highlighted O 2p character. A lot of dispersion
is observed, with different bands exhibiting markedly single-type character,
either px + py or pz.

The case of n = 1 is more complicated due to the non-isotropic environment along
ab plane and the c axis. This leads to a difference between the components of the real part
of the optical conductivity, showing a smaller optical gap of about 1 eV for transitions on
the plane in comparison to the 3 eV gap along the axis. As our calculation did not render
a semiconductor, a rigid shift of the theoretical obtained conductivity by about 1.4 eV
yielded a good agreement with the available data in relation to the energy positions, but
less so in terms of the relative intensities. Our calculations also predict the behavior of
this property for values beyond the experimentally measured. The first peak is associated
with intersite d− d transitions [115], called Mott-Hubbard transitions, whereas the peak
at about 3 eV is of charge-transfer nature and is attributed to the transitions from the
oxygen 2p bands to empty dxz+yz orbitals [116].
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Figure 44 – Band structure of SrVO3 with highlighted O 2p character. Features similar
to those observed in the iron series are also present, namely the flattening of
the band structures, evidence of localization, and the more evident px + py
character in a larger energy range.
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Figure 45 – Comparison between calculated and experimentally reported real parts of
the optical conductivity for SrVO3 and Sr2VO4. Data for n = ∞ taken
from reference [118] and for n = 1 taken from [115]. Good agreement with
experimental data is shown for both systems, n = 1 requiring a rigid shift of
1.4 eV in the spectrum to account for the gap that wasn’t reproduced in our
calculations. It can be seen that while for n = ∞ the optical conductivity is
isotropic, for n = 1 there are large differences between the components along
the x and z directions.
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6. Conclusions

In the present work, a comprehensive theoretical study on the electronic struc-
ture of two highly-correlated Ruddlesden-Popper series (RP) was conducted, namely
Srn+1FenO3n+1 for n = ∞, 2, 1 and Srn+1VnO3n+1 for n = ∞, 1. These can be understood
as the insertion of intergrown layers of strontium oxide SrO between the n strontium
ferrite/vanadate Sr(Fe/V)O3 perovskite layers. As n is lowered from infinity to one, repre-
senting the gradual change from an isotropic perovskite only system to a 2D-like stacking
of insulated perovskite layers, non-trivial transitions in the magnetic structure and con-
ductive nature of these materials are observed experimentally. Due to the complexity of
these systems, open questions regarding these properties and their underlying causes still
remain. Our goal with this work was to help shine light on the dependence of the physical
properties of these materials on the dimensionality of the system.

Our approach consisted on calculations based on Density Functional Theory
(DFT), which are standard in condensed matter physics in great part due of its ab
initio bottom-up nature and accuracy. For that end, we considered a two-step process
for obtaining the ground state properties, where first a converged calculation with the
PBEsol exchange-correlation potential was done and then used as the input for a second
calculation, now considering the mBJ potential, as parametrized by Jishi and collaborators.
The reasoning for this is that Jishi’s mBJ is specifically tailored to perovskite systems and
thus should yield better results, but requires a previous calculation as input. All of the
calculations were done using the WIEN2K distribution.

We managed to reproduce known general properties of the RP series, specially the
localization of the electronic structure with lower dimensionality, which indicates that the
interactions along the ab plane become dominant once the connection between adjacent
perovskite layers along c is made more difficult through the insertion of the SrO layers.
This localization is what drives the changes in the magnetic structure and conductivity of
the materials, being reflected on the several analyses that were conducted. Also observed
was the high degree of covalence between the transition metals and the oxygen, and to a
lesser degree between oxygen and strontium, typical of highly-correlated transition metal
systems.
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Considering specifically the iron series, it is characterized by complex magnetic
structures due to competing ferromagnetic-antiferromagnetic interactions and frustration,
while also exhibiting for all materials negative charge-transfer regimes, with a ground state
electronic configuration dominated by holes in the ligand. We obtained the experimentally
determined magnetic structures, in the collinear approximation, as the arrangements of
lowest energy, the exception being for n = 1, whose energy difference to the calculated
ground state configuration is of only about 5 eV. Thus, our calculations support the
reported degree of importance of the competing magnetic interactions even in a simplified
model with all spins lying along the same direction.

By analyzing the density of states projected onto the valence orbitals (PDOS)
of each atomic species, we were able to directly determine the effect of localization for
lower n. It could be seen that the band structure of the materials become progressively
more concentrated in smaller energy intervals, exhibiting sharper features and also less
dispersion along the high-symmetry points in the first Brillouin zone. The presence of
the strontium oxide layers provokes a differentiation between basal and apical oxygens,
which in turn leads to different chemical activity between them. The apical oxygens tend
to show structures that are more localized and more pronounced when projected along the
plane due to the presence of the oxide layers. This effect was also studied by considering
the oxygen 2p character on the band structures, where different behavior is observed for
the px + py and pz components. The influence of doping was also considered for the case
n = 2, where it was noticed that by breaking the periodicity of the potential with the
introduction of Ni atoms, the band structure can also become more localized, leading to a
disruption of the material’s magnetic ordering.

An experimental comparison was done considering X-Ray absorption spectrum
(XAS) data. For this end, we obtained approximate spectra directly from DFT, which were
then treated using a variational approach to the systems’ Green’s functions in order to
simulate the attractive potential of the core-hole. A significant improvement was observed
in comparison to the untreated spectra, leading to a good agreement with experimental
data considering the limitations of DFT to the ground state properties of a system.

In the case of the vanadium series, similar results were obtained. As n is lowered
the band structure also becomes more localized and a difference between the oxygen
types is observed. The n = 1 material turned out to be resistant to several attempts to
reproduce the semiconductor behavior observed experimentally. This is credited to the
calculations not taking into account the complicated orbital ordering it exhibits in the
ground state, reinforcing the importance attributed to the influence of this characteristic
on the material’s properties by other studies. The experimental comparison was conducted
using measurements of optical conductivity reported in the literature. Our calculations
show a very good agreement for the n = ∞ system, reproducing even small features of the
spectrum, whereas for n = 1 an agreement was observed only by doing a rigid shift of 1.4
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eV, close to the reported gap that wasn’t predicted by our calculation.
Thus, we conclude that the present study was successful in highlighting the effects

of the gradual 2D confinement as n in lowered in a Ruddlesden-Popper series, more
specifically the consequences on the electronic structure and the differentiation of the
oxygen species due to their position in the crystal. We were able to reproduce experimental
data both regarding XAS and optical conductivity spectra with a good accuracy, what
supports our calculations even in the collinear spin approximation. Possible future steps
consist on taking into account non-collinear DFT approaches, which should yield even
better results due to the known helical spin ordering several of the materials considered
exhibit. Another possibility is to consider the effects of non-stoichiometry on the electronic
structure, as these materials often show oxygen vacancies or excess which are known to
highly impact the physical properties such as electrical conductivity and magnetic ordering.
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I. Core-Hole Potential

Green’s Function Theory

1 Considering z to be a complex variable and L(r) a time-independent, linear and
hermitian differential operator, the Green’s function G(r, r′; z) is defined as the solution
to the inhomogeneous differential equation:

[z − L(r)]G(r, r′; z) = δ(r− r′). (1)

G is subjected to boundary conditions for r or r′ on the surface of the domain Ω. Define
λ ≡ Re{z} and s ≡ Im{z} such that L possesses a complete set of eigenfunctions {φn(r)}
so that

L(r)φn(r) = λnφn(r). (2)

One can represent these quantities in the bra-ket notation by projecting, for
exemple, in the position basis |r〉, leading to G(r, r′; z) ≡ 〈r|G(z) |r′〉 and δ(r− r′L(r)) ≡
〈r|L |r′〉. This allows us to rewrite 1 as

(z − L)G(z) = 1, (3)

where now L and G are representation independent. If all eigenvalues of (z − L) are
nonzero, condition satisfied for z not belonging to the spectra of eigenvalues {λn} of L,
then this equation can be written formally as

G(z) =
1

z − L
, (4)

which is to be understood when projected unto a basis. for example considering the
complete basis of eigenstates |φn〉

G(z) =
1

z − L

∑
n

|φn〉 〈φn| =
∑
n

|φn〉 〈φn|
z − λn

. (5)

1 This section is based entirely on the book Green’s Functions in Quantum Physics, by E. N. Economou
[119].
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Because L is hermitian, all of its eigenvalues are real and thus G(z) is analytic in the
whole complex plane except the points or intervals on the real axis that correspond to
its eigenvalues, that is, the poles of G(z) are the discrete eigenvalues of the operator. If
z on the other hand is part of the continuous spectrum of L, then the Green’s function
is not well defined and one has to resort to limiting procedures. Thus, the branch cuts
of G(z) are associated with the continuous spectrum of the operator. In this sense, all of
the information regarding eigenvalues and therefore eigenstates of an arbitrary operator
L that respects the properties defined in the beginning of this section is present in the
Green’s function G(z).

Defining the limiting Green’s functions G+ and G− as

G+(r, r′;λ) ≡ lim
s→0+

G(r, r′;λ+ is) (6)

G−(r, r′;λ) ≡ lim
s→0+

G(r, r′;λ− is), (7)

it can be shown that these quantities are directly associated with the density of states
(DOS) per unit volume ρ(r;λ) by the relation

ρ(r;λ) = ∓ 1

π
Im{G±(r, r′;λ)}. (8)

That is, given an operator L, which can be the hermitian operator of the time-independent
Schrödinger equation or Kohn-Sham equation 2.22, the density of states can be found
considering the operator’s associated Green’s function or vice-versa. This is key to the
next step, that is to consider a perturbation to this operator.

Let’s define the one-particle Hamiltonian H = H0 +H1, where H0 is the original
Hamiltonian, whose eigenvalues and eigenfunctions are already known or are easy to obtain,
and H1 is a perturbation. Considering equation 4, one can define the Green’s functions G0

and G(z) associated with these operators as

G0(z) = (z −H0)
−1 (9)

G(z) = (z −H)−1. (10)

Thus, one can write H as

G(z) = (z −H0 −H1)
−1 = {(z −H0

[
1− (z −H0)

−1H1

]
)}−1 (11)

= [1− (z −H0)H1]
−1 (z −H0)

−1 (12)

= [1−G0(z)H1]
−1G0(z). (13)

The operator (1−G0H1)
−1 can be written as a power series, justified as the matrix element

involving the perturbation must be small, yielding
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(1−G0H1)
−1 = 1 +G0H1 + (G0H1)

2 + (G0H1)
3 + ... (14)

= 1 +G0H1 +G0H1G0H1 +G0H1G0H1G0H1 + ... (15)

= 1 +G0H1 +G2
0H1 +G2

0H1G0H1 + ... (16)

Here the fact that [G0,H1] = 0 was used. Plugging (14) in (11), we have

G(z) = G0 +G0H1G0 +G0H1G0H1G0 + ... (17)

= G0 +G0H1(G0 +G0H1G0 + ...) (18)

= G0 +G0H1G (19)

This is a Dyson series for the unknown G(z), which becomes solvable once projected into
a basis. Thus, the procedure for the analysis of a perturbed Hamiltonian can be summed
up in the following:

1. First, one must determine the Green’s function associated with the unperturbed
Hamiltonian H0 through, for example, equation 5;

2. Write the perturbed Hamiltonian’s Green’s function G in terms of the G0 and H1 as
in equation (17);

3. Obtain information regarding the eigenvalues and eigenfunctions of the perturbed
Hamiltonian, for example the density of states (8).

This is the basis of the method to simulate the core-hole potential of chapter 4,
where the core-hole is to be taken as the perturbation and the density of states is the one
calculated from DFT.

Computational Implementation

To calculate the XAS spectra from DFT, we set the values of the DOS below the
Fermi level (E = 0) to zero and sum up the absolute values of up and down DOS for
energies above it. This is done because XAS gives information regarding the conduction
band near the Fermi level. Thus, because this density of states is already given per unit
cell volume, we must simply normalize by the number of unit cells considered in each
specific calculation and equation (8) can be applied. As the discontinuity lies at the Fermi
level due to the setting the values before it to zero, we consider G+, yielding

Im{G+(E)} = Im{G0(E)} = −πρ0(E). (20)
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The same relation can be applied for the perturbed function G and the corresponding
density of states ρ

Im{G(E)} = −πρ(E). (21)

The idea of the method can be summed up in the following:

1. With the original density of states that represents the XAS spectrum ρ0, the imaginary
part of the G0 is obtained. As a result of causality [119], these Green’s functions
respect the Kramers-Kronig relations, so that Re{G0} can be obtained by a Hilbert
transform;

2. With the numerical G0 resulting from the above procedure, we obtain G from
equation (17) considering that H1 = V . Because these operators are already acted
upon a basis, the equation is algebraic and thus G = G0(1− V G0)

−1 ;

3. The core-hole corrected density of states ρ is then given by taking the imaginary
part of the determined G(E) as in equation (21);

4. Finally, a gaussian broadening of 0.4 eV is applied to the entire DOS in order to
smooth its behavior and better compare to the experimental data.

In step 1, the integration was made using the scipy.signal.hilbert package of the
SciPy library [120]. The Hilbert transform of a function u(t) is given by the following
equation

H{u(t)} =
1

π
P

+∞∫
−∞

u(τ)

t− τ
dτ, (22)

where P indicates Cauchy’s principal value [121]. This transform is exactly the imaginary
term of the Kramers-Kronig relation for u(t), the real term being just −1 times this value.
The hilbert function of the SciPy library computes the analytical signal ua(t) of a given
signal u(t), defined by

ua(t) = u(t) + iH{u(t)}, (23)

where Im{ua(t)} is the Hilbert transform of u(t). Thus, for our specific case, since we
obtain the imaginary part of G0 by equation (21), we can write

Re{G0(E)} = −H{Im{G0(E)}} (24)

= +πH{ρ0(E)} (25)

= πIm{ρ0,a(E)}. (26)

Here, ρ0,a is the analytical signal of ρ0, which is calculated by the hilbert function
as mentioned.
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II. Additional Results for Sr2VO4

As mentioned in chapter 5, several attempts to produce a density of states (DOS)
for Sr2VO4 which displayed the expected semiconductive behavior were done without
success. This reinforces the argument of the importance of considering the known orbital-
ordering state this material presents in its ground state, which is not taken into account
by usual density functional theory (DFT) calculations. These results are reproduced in
the following.

First off, we observe that there is a sensible difference of the results with the size
of the supercell considered. Because the system is highly correlated and also magnetically
frustrated, a larger supercell can stabilize longer ranged interactions that may be spurious.
An example of this is depicted in figure 46, where the same type A antiferromagnetic
ordering (AFMA) of chapter 5 was considered but with an unit cell that is doubled only
along the ab plane (2x2x1) instead of only along the axis (1x1x2). It can be seen that
the predicted gap is of about 3.5 eV, over three times larger than the experimental gap
of about 1 eV [115]. The lack of significant d character close to the energy level that
the material must present considering it lies close to a Mott-Hubbard transition and the
much more pronounced overlap between metal and strontium levels show that this result,
consequence of a simple change in the supercell dimensions, is inconsistent with the known
properties of the material.

This inconsistency can also be analyzed when considering the optical conductivity
results (figure 47), which yield a completely different curve than the experimental data
[115], and most importantly show an isotropic behavior that is far from reality.

Among the tentative approaches to reveal the expected gap in the DOS, we
also conducted LDA+U studies initialized in an AFMA ordering for different values of
U , considering an effective exchange parameter J = 0.6 eV obtained by Hartree-Fock
calculations. The results for U = 0.2 eV and U = 1.0 eV are in figures 48 and 49 respectively,
where it can be seen that a metallic behavior similar to the one we reported on chapter
5 was obtained. Also worthy of note is that changes in the value of U have almost no
effect on this structure, so the problem in the comparison with the experimental data still
remains.

Additionally, due to the reported close competition in energy between the anti-
ferromagnetic and ferromagnetic states (FM) reported in other works [116] which we did
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Figure 46 – Density of States of the A-type antiferromagnetic structure for a 2x2x1 super-
cell. The calculated gap is far higher than the ∼ 1 eV gap that is reported
[115].

not observe, we also investigated the FM state prediction. The DOS obtained is depicted
on figure 50, where a very similar structure to 41 is observed at the Fermi level but
with a half-metallic character. Even though interesting, it is known that this material is
a semiconductor and has an antiferromagnetic-like behavior for low temperatures [94],
therefore this prediction has no basis in experimental data.

That being said, the obtained optical conductivity results for this configuration
show an agreement similar to the one we report in chapter 5 and can be seen on figure 51. A
shift of 1.2 eV was necessary to better compare the calculation and the experimental data,
which can be attributed to the energy gap that was not predicted by DFT. Considering
that both FM and AFMA (with a 1x1x2 supercell) yielded similar comparisons with the
optical conductivity but the material is definitely not in a ferromagnetic state according
to experiments, we believe that the AFMA results are more significative.

As a test to see if the FM state could predict a gap within the LDA+U scheme,
we considered several values of U and even for extreme and unrealistic values the gap is
still not observed. These results are depicted in figures 52 to 54, where it can be seen that
the higher the U utilized, the more the DOS tends towards the one calculated using the
Jishi-mBJ potential of figure 50.
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Figure 47 – Optical conductivity for the AFMA configuration with a 2x2x1 supercell,
deviating completely from the experimental curve [115].



115

Figure 48 – DOS obtained for AFMA calculation with U = 0.2 eV.

Figure 49 – DOS obtained for AFMA calculation with U = 1.0 eV.
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Figure 50 – DOS obtained for the ferromagnetic configuration of Sr2VO4, displaying half-
metallic character.
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Figure 51 – Optical conductivity obtained for the FM system. A good agreement is found
between the experimental data and calculated results when forcefully taking
into account the gap that wasn’t predicted.
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Figure 52 – DOS obtained considering U = 0.4 eV.

Figure 53 – DOS obtained considering U = 1.0 eV.
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Figure 54 – DOS obtained considering U = 5.0 eV.
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