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RESUMO

Adquirir uma compreensão mais aprofundada da estrutura eletrônica dos óxidos de
metais de transição (MT ) continua sendo um desafio atual na física da matéria conden-
sada. Isso pode ser alcançado investigando a ampla gama de propriedades simples e
complexas exibidas por esses compostos. Entre as várias técnicas disponíveis para
estudar a estrutura eletrônica, o foco deste trabalho está na espectroscopia de absorção
de raios-X (XAS). Este método baseia-se em transições eletrônicas que ocorrem entre
estados do núcleo e estados não ocupados da banda de condução, mostrando alta sen-
sibilidade ao ambiente químico local. Uma análise completa é garantida ao considerar
os efeitos completos do multipleto na valência nominal. Além disso, o fator de covalên-
cia, frequentemente negligenciado entre o MT e seus ligantes, é considerado, o que
pode influenciar diretamente os resultados do estudo. Com o intuito de estender este
trabalho, exploram-se simetrias alternativas (reduzidas) em relação às esperadas para
óxidos de metais de transição. Neste trabalho, a XAS de diferentes óxidos de metais
de transição, nomeadamente, manganês, ferro e cobalto, com as valências nominais
de 2+, 3+ e 4+, respectivamente, é analisada. Ao empregar as teorias de multiplete
atômico e campo cristalino juntamente da implementação do método de interação de
configurações, a energia do estado fundamental, a contagem de elétrons da banda
3d, o momento magnético e as espectroscopias XAS das bordas 2p do MT e 1s do
O para ambos os sistemas são determinados, variando o número de configurações
eletrônicas. Essas configurações eletrônicas descrevem a base do estado fundamental
do sistema estudado e são o principal "ingrediente" para incluir adequadamente a
covalência. Os cálculos são conduzidos assumindo a simetria octaédrica (Oh), como
seria esperado para "clusters" de metais de transição da série 3d. Além disso, para
abranger simetrias reduzidas de Oh, tornou-se necessário incluir um novo MT na
lista, o vanádio, que manifesta a simetria piramidal quadrada (C4v) em seu estado de
oxidação 5+, juntamente com a simetria tetragonal (D4h) para Mn3+. Através da análise
dos resultados observa-se que, para descrever com precisão a estrutura eletrônica de
qualquer um desses sistemas, independentemente da simetria exibida, é necessário
um número maior de configurações eletrônicas em comparação com o que poderia ser
esperado com base puramente em comparações experimentais. Essa dependência
é particularmente influenciada pela valência nominal do metal de transição. Portanto,
a interação covalente entre o MT e íons ligantes mostra-se crucial para caracterizar
efetivamente a técnica XAS.

Palavras-chaves: Óxidos de metais de transição; estrutura eletrônica; espectroscopia
de absorção de raios-X; simetria; configurações eletrônicas; covalência.



ABSTRACT

Gaining a better understanding of the electronic structure of transition metal (TM )
oxides remains a current challenge in condensed matter physics. This can be achieved
by investigating the diverse range of simple and complex properties exhibited by these
compounds. Among the various techniques available for probing the electronic structure,
the focus of this work is on X-ray absorption spectroscopy (XAS). This method relies on
electronic transitions that occur between the core and unoccupied conduction states,
showcasing a high sensitivity to the local chemical environment. A complete analysis is
ensured by considering full multiplet effects on the nominal valence. Furthermore, the
often overlooked covalence factor between TM and its ligands is acknowledged, which
can directly influence the results of the study. In order to extend this work, alternative
(reduced) symmetries are explored from those expected for transition metal oxides.
In this work, the XAS of different transition metal oxides, namely manganese, iron,
and cobalt, with nominal valences of 2+, 3+ and 4+, respectively, is analyzed. By
employing atomic multiplet and crystal field theories alongside with the implementation
of the configuration interaction method, the ground state energy, 3d band electron
count, magnetic momentum and the TM 2p-edge, along with O 1s-edge XAS spectra
for both systems are determined, varying the number of electronic configurations. These
electronic configurations describe the ground state basis of the system studied and
are the main "ingredient" for properly accounting the covalence. The calculations are
conducted assuming octahedral (Oh) symmetry, as one would expect for transition metal
clusters of the 3d series. Additionally, to encompass reduced symmetries from Oh, it
became necessary to include a new TM in the list, vanadium, which manifests the
square pyramidal (C4v) symmetry in its oxidation state of 5+, along with the tetragonal
(D4h) symmetry for Mn3+. Through the results analysis, it is observed that, in order
to accurately describe the electronic structure of any of these systems, regardless
of the exhibited symmetry, a larger number of electronic configurations is necessary
compared to what might be expected based purely on experimental comparisons. This
dependency is particularly influenced by the nominal valency of the transition metal.
Therefore, the covalent interaction between TM and ligand ions proves to be crucial in
effectively characterizing the XAS technique.

Key-words: Transition metal oxides; electronic structure; X-ray absorption spectroscopy;
symmetry; electronic configurations; covalence.
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CHAPTER 1

Introduction

In this introductory chapter, we lay the groundwork for a comprehensive study
of transition metal oxides (TMOs), materials distinguished by their partially filled d-
electron bands and an impressive variety of intrinsic properties. This chapter presents
an introductory look at the electronic structure, a key to understanding the microscopical
origin of the varied physical properties that TMOs can present. Next, a dedicated section
on spectroscopic techniques unfolds, followed by a discussion about X-ray absorption
spectroscopy (XAS) and its pivotal role in uncovering the electronic structure (ES) of
TMOs. Further sections will articulate the objectives of the thesis, the motivations that
drive this study, and the theoretical frameworks that underpin this research.

1.1 Transition Metal Oxides

Transition metals can be described as elements that have a partially filled d-
electron band, or an element that can form stable cations with an incompletely filled
d band [1]. In addition to that, f -block elements comprising lanthanides and actinides
can be considered as transition metals as well. However, they are often called inner
transition metals, since they have a partially filled f orbital. Furthermore, the group
of elements zinc (Zn), cadmium (Cd) and mercury (Hg) is sometimes excluded from
transition metals [2]. This is because they have the electronic configuration Nd10Ms2

(N = 3, 4, 5, M = 4, 5, 6), where the d shell is complete and also the d shell is complete
in all their known oxidation states [2].
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Now, in oxides, it is often considered as transition metals the elements separated
in the three following series: 3d series (T i - Cu), 4d series (Zr - Ag) and 5d series (Hf -
Au), which can be seen in Figure 1. Many of these materials exhibit a crystalline structure

Figure 1 – Periodic Table with the relevant transition metals highlighted [3].

resembling perovskite or perovskite-like arrangements, featuring a BO6 octahedra,
with B being the transition metal studied. A broader variation of this cubic perovskite
structure can be expressed by the formula ATMO3 or even A2BO4, known as layered
perovskites, with A typically originating from a cation of the first or second columns of the
periodic table. Additionally, certain perovskites may deviate from the conventional cubic
configuration, displaying irregular or distorted octahedra, as exemplified by LaMnO3

or SrMn0.7Mo0.3O3, which will be explored further in subsequent chapters. Visual
representations of these structures are provided in Figure 2 and Figure 3.
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Figure 2 – (a) Crystal structure of a cubic perovskite with the ABO3 formula, where A is rep-
resented in green, B in orange, and O in red. (b) Crystal structure of a layered
perovskite with the A2BO4 formula, using the same color scheme for A, B, and O [4].

(a) (b)
Figure 3 – (a) Representation of the crystalline structure of the perovskite LaMnO3 which

presents a small distortion in the Mn cluster, but in this case it still can be considered
an Oh cluster. (b) Crystalline structure of the double perovskite SrMn0.7Mo0.3O3,
on which with this specific molybdenum concentration, the manganese cluster is
distorted sufficiently to be required to consider another type of symmetry that differs
from the expected for 3d transition metals.

These materials exhibit a wide array of physical properties, making them a
subject of great interest for both theoretical and experimental research. This array can
span electrical, magnetic, optical, and other domains. What sets TMOs apart is not
just these properties but also the complexity and unique ways in which they manifest.
For example, the magnetic phase diagram of the double perovskite La1−xSrxMnO3,
depicted in Figure 4, illustrates this diversity. The phase diagram for La1−xSrxMnO3

shows the full spectrum of strontium concentrations, mapping out the transition between
various crystal structures, from Jahn-Teller-distorted orthorhombic to hexagonal, and
magnetic states, ranging from paramagnetic to different antiferromagnetic configurations.
It highlights the transition of the material across different electronic states, distinguishing
insulating from metallic behaviors, thus illustrating the complex interplay of structural,
magnetic, and electronic phases in this compound. This example highlights the wide
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range of characteristics observable in TMOs, from various crystalline structures to
different spin ordering regimes, all within a single compound.

Figure 4 – Phase diagram of La1−xSrxMnO3 for the complete concentration regime. The crystal
structures (Jahn-Teller distorted orthorhombic: O’, orthorhombic O; orbital-ordered
orthorhombic: O”, rhombohedral: R, tetragonal: T, monoclinic: Mc, and hexagonal: H)
are indicated as well as the magnetic structures [paramagnetic: PM (green), short-
range order (SR), canted (CA), A-type antiferromagnetic structure: AFM (yellow),
ferromagnetic: FM (blue), phase separated (PS), and AFM C-type structure] and the
electronic state [insulating: I (dark), metallic: M (light)] [5].

This abundance of properties of TMOs can be credited to the relatively high
electron correlation that the transition metal d bands encounter. So, there is some kind
of intermediate state where these electrons are not delocalized, as for the s and p

bands, but also they are not totally localized like f band electrons [6]. Because of this,
these compounds can have a variety of classifications, such as insulators: SrT iO3 [7],
semiconductors: V O2 [8] and good conductors: ReO3 [9]. They can have paramagnetic
character: CaV O3 [10], antiferromagnetic: NiO [11] and ferromagnetic: SrFeO3 [12].
There are also some compounds with peculiar properties such as high-temperature
superconductivity: La2−xCaxCuO4 [13] and some have colossal magnetoresistance:
La1−xCaxMnO3 [14]. In addition, because they are in oxide form, the covalent contribu-
tion of the oxygen ions can be crucially important for the study of the TMOs.

In summary, understanding the microscopic origins of the properties of transition
metal oxides is central to this work and paves the way for deeper insights. This pursuit
naturally leads us to examine their electronic structure, a complex endeavor that depends
on the specific material under investigation and the property of interest. The next section
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will focus on unraveling the electronic structure, which is essential for understanding the
origin and how the various properties of TMOs are given.

1.2 Electronic Structure

The electronic structure of a material refers to the arrangement and energy
levels of the electrons within it. At its simplest, it is about which orbitals in an atom are
filled with electrons and how these electrons are distributed. But more fundamentally,
it is about how these electrons behave, how they move, interact with each other, and
respond to external forces like electric and/or magnetic fields. These interactions are
sensitive to the arrangement of atoms in a crystal lattice and can lead to a variety
of ground states and excitations, such as magnetism, superconductivity, and metal-
insulator transitions. The electronic structure dictates not only the material’s response
to external fields and stimuli but also its reactivity and stability.

The exploration of ES began around the dawn of the 20th century, and it has
been worked on ever since, from the development of the Drude Model by Paul Drude
[15, 16] where the kinetic theory of gases was employed to analyze the electrical
conductivity of metals around the year 1900, until the development of the electronic
band theory, revealing that the arrangement of valence electrons determines whether
a material exhibits metallic or insulating characteristics, where a visual explanation of
these characteristics can be seen in Figure 5.

Figure 5 – Depiction of the electronic energy bands. When the valence band is partially filled
or it overlaps with the conduction band for example, at absolute zero temperature,
the material demonstrates metallic behavior, whereas a fully occupied valence band,
creates an energy gap to an empty conduction band, transforming the material into
an insulator. At finite temperatures, insulators with a small gap can be turned into
semiconductors by temperature increase [17, 18].
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However, while this theory has successfully predicted or explained the physical
properties of numerous materials, it falls short for certain systems because of inherent
approximations, such as the one-electron approximation. For example, a significant
number of transition metal oxides featuring partially filled d valence bands were classified
as insulators, a perplexing observation at the time [19]. The role of d valence electrons
is crucial here, as they give rise to relatively localized bands, more so than p bands
but less so than f bands. In this case, the electron-electron interaction cannot be
ignored, leading to electronic correlation effects such as energy gaps among other
effects. Recognizing this deviation from the predictions of band theory, N. F. Mott and R.
Peierls postulated that strong Coulomb repulsion could be responsible for the insulating
behavior of partially filled d systems [20], creating the field of Strongly Correlated
Systems, which is the field of study of our research group. Mott further advanced the
understanding of this intriguing state, known as a Mott insulator [20–24]. One of the
primary methods employed to investigate the electronic structure of solids is the Density
Functional Theory (DFT). Although DFT is close to an exact approach, it relies on various
approximations that often hinder the accurate description of certain systems, especially
those necessitating the incorporation of relatively higher electronic correlation effects.
Another widely used approach involves model Hamiltonians such as the Anderson
model [25] and the Hubbard model [24]. These models have considerable success in
describing the electronic structure of materials, as they allow for the inclusion of effects
such as atomic multiplet, electronic correlation, charge transfer, and more [26–31].

The electronic structure of materials can be directly probed using a range
of X-ray spectroscopic techniques, including X-ray Absorption Spectroscopy, X-ray
Photoemission Spectroscopy (XPS), and X-ray emission spectroscopy (XES), among
others, as shown in Figure 6 [32]. Basically, the valence states consist of a filled
valence band and an empty conduction band. XAS analyzes unoccupied electronic
states, where X-rays are absorbed, causing core-level electrons to transition to higher
energy states. This provides details on the oxidation states and local environments. XPS
involves irradiating a material with X-rays to eject electrons, transitioning to continuum
states, thereby revealing elemental compositions and chemical states. In XES, the
core electron can be excited to either the continuum state, which is characterized
as normal XES (NXES), or a nearby state, leading to the resonant XES process
(RXES) [32]. NXES detects X-rays emitted during electron de-excitation, mapping both
occupied and unoccupied electronic states. Lastly, RXES observes the absorption and
subsequent reemission of X-rays, offering insights into dynamic electronic structures
and transitions. These techniques together enable a multifaceted understanding of the
electronic structure of materials, each contributing unique insights into their atomic and
molecular configurations.
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Figure 6 – Schematic representation, where the valence states consist of a filled valence band
and an empty conduction band, which shows how the spectroscopic processes of
XPS, XAS and XES work. In XPS, a core electron is excited by incident X-rays,
transitioning to continuum states, and is subsequently detected as a photoelectron.
In XAS, the core electron is excited to near energy states within the conduction band.
In XES, the core electron can be excited to either the continuum state, which is
characterized as normal XES, or a nearby state, giving rise to the resonant XES
process [32].

Furthermore, the continuous evolution of these spectroscopic experimental
techniques, propelled by the construction of advanced synchrotron light sources, en-
hanced equipment capabilities, and general technological progress, has fueled growing
interest in the study of electronic structures of materials. Consequently, theoretical
models employed to simulate and investigate the electronic structure must undergo
continuous improvement to accommodate and explain the novel findings emerging from
these advances. Understanding the electronic structure is thus not merely a theoretical
pursuit, it is a gateway to material innovation and technological advancement.

1.3 Spectroscopy

Spectroscopy is the study and measurement of spectra resulting from the in-
teraction of radiation with matter [33]. At its core, it revolves around the study of how
matter interacts with electromagnetic radiation [34, 35]. These interactions, whether
through absorption, emission, or scattering, offer profound insights into the structure and
properties of materials at the most fundamental level [33–35]. Spectroscopy enables the
study of the energy levels, chemical composition, and physical properties of a substance.
By examining the absorption, emission, or scattering of light across various wavelengths,
spectroscopy can reveal detailed information about the atomic and molecular struc-
ture of materials, as illustrated in Figure 7. This technique is pivotal in various fields,
including chemistry, physics, astronomy, and environmental science. Different types
of spectroscopy, such as infrared, ultraviolet-visible, and X-ray, are tailored to specific
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applications, making it an indispensable tool in both research and industry [33].

Figure 7 – An illustration depicting the concept of spectroscopy. The image shows a source that
emits radiation that is being passed through a sample material. The radiation can
interact with the sample in various ways, with two examples given: absorption and
emission. The radiation is then split into various wavelengths, and a detector captures
this spectrum, displaying a spectroscopy graph. This represents how spectroscopy
analyzes the interactions between radiation and matter, revealing information about
the composition and properties [33].

Since one of the focuses of this work revolves around the study of the electronic
structure of TMOs, there is one type of spectroscopy very interesting to consider, the
X-ray spectroscopy. It is a powerful tool for accessing and investigating the electronic
structure of materials because it facilitates the access to portions of the ES at the atomic
level, making it possible to study certain properties that conventional techniques, like
specific heat or electrical conductivity measurements, may not be able to probe. For
example, X-ray absorption spectroscopy can give access to the unoccupied portion of
the ES [32], providing information on the oxidation states, as mentioned in the previous
section.

But it is interesting to note that this technique, along with other X-ray techniques, is
not so simple. It can depend on some certain aspects, and it can cause numerous
interactions inside the structure of the sample that it is being studied, but its theoretical
analysis can also be made in different ways, as will be seen in the next section.
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1.4 X-ray absorption spectroscopy

X-ray Absorption Spectroscopy is a technique that focuses on the absorption of
X-rays [32]. This process, which is rich in information, provides insights into the chemical
and electronic properties of the materials studied. This makes XAS an indispensable
tool in the study of complex materials, particularly the transition metal oxides, which
are known for their intricate electronic structure and diverse physical properties as
mentioned in previous sections. Furthermore, XAS is element specific due to the unique
energy levels of core electrons in different elements, as shown in Figure 8, as an example
of XAS spectra for different TMOs, which will be detailed in the next chapter. The figure
shows that each TMO has its specific energy interval, making visible the specificity
mentioned before. This specificity allows researchers to target specific elements in a
compound or material, making it an invaluable tool in the study of complex systems
where multiple elements are present.

Figure 8 – XAS spectral profiles of various transition metal compounds, each showcased at dis-
tinct photon energies for each element, serving as a fingerprint for their identification
[36].

At its heart, XAS is based on the interaction between X-ray radiation and the
electrons within a material. When X-rays, with known and variable energy, h̄ω, are
absorbed by a material, they induce transitions of core electrons to higher unoccupied
energy states [32]. The subsequent relaxation of this state can occur through two primary
pathways: fluorescence decay or Auger decay. In fluorescence decay, the vacancy in
the core shell is filled by an electron from a higher energy level, emitting a photon
characteristic of the energy difference between these shells [32]. Alternatively, in Auger
decay, the energy released from the electron transition is transferred to another outer-
shell electron, resulting in its ejection as an Auger electron [32]. The final state of the
atom, post-relaxation, plays a significant role in determining the material’s properties and
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is a key aspect of the investigation in XAS, aiding in the comprehensive understanding
of materials at the atomic level.

One of the primary objectives of this research is to investigate the influence
of covalence effects on the XAS results of TMOs. Historically, theoretical calculations
used to interpret XAS results have often prioritized visually replicating experimental
spectra [37–42]. While these calculations have been successful in providing a superficial
resemblance to observed data, they often fail to fully account for covalence effects.
Covalence, which refers to the sharing of electrons between atoms, plays a crucial role
in determining the electronic structure and consequently the XAS results of TMOs, as
will be shown in the sequence. The partial consideration of these effects in traditional
models may lead to a gap in understanding the true nature of interactions within these
materials. This gap can be seen in Figure 9, where a comparison is presented between
theoretical spectra calculated considering the implementation used in this work (which
is explained in Chapter 3.3), and the theoretical spectrum extracted from the literature
[42].

Figure 9 – Comparison between experimental [42] and theoretical data considering the inclusion
of covalence in calculations taking into account the implementation used in this work
and the one used in the literature.

The experimental data is extracted from the same reference [42]. The theoretical
data calculated are divided into three types:

1. Ionic spectrum (black line) - In this case there is no interaction between TM and O
and, as a consequence, no presence of covalence.
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2. Covalence 1st approximation spectrum (red full line) - In this case, it is considered
the first step to include the covalence into the calculations, by increasing the size
of the basis that describes the system one step beyond the ionic configuration.
This case will be further studied in the next chapters.

3. Fully-converged spectrum (blue line) - Here, the calculation takes into account all
possible interactions present considering the implemented model, in other words,
it is considered the full multiplet effects and can be considered the most accurate
to reproduce the experimental data (this case is better delved into in Chapter 5).

As for the theoretical spectrum obtained from the reference [42] (red dashed line), it has
some aspects to be taken into account:

1. It is established in the field that parameters related to some atomic interactions (the
Slater-Condon parameters [43] which are explained in Chapter 3 and Appendix B)
are reduced to 80% of their atomic values to account for inherent charge screening
effects [44]. However, in the reference considered in this example and others in
the literature [45], the calculations were performed reducing these parameters
even more, in this case to 60% of their atomic values, which is historically made to
try to account for covalence effects.

2. In this case, the spectrum was obtained considering something similar to the
covalence 1st approximation used in this work. In this case, only the first step
beyond the ionic configuration was considered.

As was mentioned earlier, partial consideration of the covalence effects can cause the
clear difference between the two similar spectra, leading to an erroneous reproduction
of the experimental data.

1.5 Objectives

This thesis has as main objective the study of the electronic structure of transi-
tion metal oxides, primarily manganese, iron, and cobalt. The initial property of interest
of this work was only the covalence and how it could affect the results obtained by con-
sidering X-ray spectroscopy. By adopting an approach that fully incorporates covalence
effects into theoretical models, this study seeks to provide a more accurate and nuanced
interpretation of XAS data. Since an important part of the study of transition metal oxides
resides in the TM cluster, changing the symmetry that the cluster manifests became
another interest of this work, extending the analysis from only the covalence effects to
include symmetry lowering effects in the results as well. As a consequence, another
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transition metal was included in the list, vanadium. As mentioned previously, through
the use of X-ray absorption spectroscopy and the interpretation of the results along
with comparison with experimental data, this research intends not only to advance the
understanding on the electronic structure of TMOs but also to refine the methodologies
used in spectroscopic analysis, thereby contributing to the broader field of condensed
matter physics.

This thesis is divided in the following way: Chapter 2 presents a brief explanation
about the interaction of X-rays with matter and gives a general view of X-ray spectroscopy.
Then, a more detailed explanation about the specific technique used in this study is
presented. Chapter 3 delves into the theory used in this work. It brings all the required
"ingredients" utilized to perform all calculations and analysis about the effects of interest.

Chapter 4 has a bibliographic review of the systems studied. It has important
properties, such as the crystalline structure, spin configuration, and specific information
that each system can present that make them interesting to study.

Chapter 5 presents the results obtained considering the X-ray absorption spec-
troscopy of the TM 2p and O 1s edges of each system considered, for the related
symmetry that they manifest. It presents an extensive discussion on how covalence and
symmetry affect the outcomes of the technique used.

Chapter 6 presents the conclusions, and, finally, Appendix A has mathematical
details about the origin of the Fermi’s Golden Rule. Appendix B presents a more
extensive explanation about the atomic multiplet theory and Appendix C has detailed
calculations necessary in crystal field theory. Appendix D has a brief introduction
on group theory regarding molecules, Appendix E presents details on how the main
studied effects were implemented computationally, and, finally, Appendix F has the list
of attended events during the Master’s course.
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CHAPTER 2

Spectroscopy and Electronic Structure

This chapter provides an introductory overview of the technique central to this
study. It presents a brief explanation on the topic of interaction of X-rays with matter and
a general view of X-ray spectroscopy. Later, the main technique employed in this work,
X-ray absorption spectroscopy, is described in more detail.

2.1 Interaction of X-rays with matter

X-rays are defined as electromagnetic radiation with an energy in the range
of about 100 eV to around 100 keV or between approximately 10 nm and 10 pm in
terms of wavelength, as shown in Figure 10. It can be classified into two categories:
soft X-rays, between around 100 eV and approximately 3 keV , and hard X-rays, above
around 3 keV . The intermediate range with photon energies of several keV is often
referred to as tender X-rays [32, 46].

Figure 10 – Electromagnetic spectrum with the location of soft and hard X-rays between from
around 10 nm to approximately 10 pm in terms of wavelength, or from around
100 eV to approximately 100 keV in terms of energy [47].
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Upon striking a sample, an X-ray photon can undergo one of several interactions, with
the strength of these interactions being influenced by both the X-ray energy and the
elemental composition of the material. It may pass through without interaction, get
absorbed, or be scattered. In the soft X-ray regime and at lower hard X-ray energies, the
dominant interaction mechanism is typically photoabsorption or photoelectric absorption.
In contrast, at higher energy levels, Compton scattering is dominant, as shown in Figure
11.

(a) (b)
Figure 11 – (a) Scheme illustrating how the photoelectric effect or absorption occurs. In a

straightforward manner, a photon engages with the inner shell electron of an atom,
removing it from its shell [48]. (b) As for the Compton effect, it serves as the primary
driver of scattered radiation. This phenomenon arises from the interaction between
a photon and either free or outer shell electrons. In this process, the incident photon
undergoes scattering, changing its direction and transferring energy to the recoiling
electron. Consequently, the scattered photon exhibits alterations in both wavelength
and energy compared to their initial values[49].

In the case of absorption, an electron can absorb the photon, potentially be-
coming excited, which forms the basis for X-ray absorption techniques. Eventually, the
photon can eject an electron as a photoelectron, giving rise to X-ray photoemission
spectroscopy [32]. In the next section we will delve into the X-ray spectroscopy.

2.2 X-ray spectroscopy

X-ray spectroscopy is a powerful tool for accessing and investigating the elec-
tronic structure of materials, which fundamentally encompasses their physical and
chemical characteristics. Although conventional techniques, such as measurements
of specific heat, magnetic susceptibility, and electrical conductivity, can yield targeted
insights into the ES, there are instances where the data from these methods may prove
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insufficient for a comprehensive understanding of the observed physical properties of a
certain material. In such scenarios, the incorporation of X-ray spectroscopy techniques
becomes necessary. For example, techniques like photoemission or X-ray absorption
can be implemented simultaneously, given that they are complementary since they
access the occupied and unoccupied ES, respectively. The depiction of this technique
is presented in Figure 12. A more detailed explanation on X-ray absorption is given in
the next section, since it is the technique used in this work.

(a) (b)
Figure 12 – (a) Visualization of the XPS technique: X-ray photons impact the sample, leading to

the ejection of electrons. Subsequently, an electron analyzer measures the kinetic
energy of these ejected electrons. (b) Incoming X-ray photons are absorbed by the
sample, causing the promotion of a core electron to the conduction band. Following
this, the ionized system undergoes decay, leading to the creation of an X-ray photon
or an electron.

2.3 X-ray absorption spectroscopy

X-ray absorption spectroscopy involves the irradiation of a sample with photons
of known and variable energy h̄ω. To achieve this variability, experiments employing this
technique are typically conducted using synchrotron radiation sources. At a specific
energy interval, known as the absorption edge (Eedge), the absorption rate undergoes
a sharp increase, defining the absorption edge. Photons with energies greater than
Eedge are absorbed and excite an electron from a particular core level of the sample to
unoccupied states within the conduction band [32].

Subsequent to the photon absorption, the core hole exists for approximately
10−15 seconds [32] before its decay, which can occur through either the emission of a
photon, in a process known as "fluorescence", or the emission of an electron from a
core or valence state in a process referred to as "Auger" decay, as shown in Figure
13. However, these are in a manner of speaking the main processes that can occur in
the absorption process. It is important to emphasize that any of the decay processes
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can generate a cascade effect. In practice, the most common is the collection of all the
electrons emitted from the grounding of the system and the connection of an ammeter
to measure the current, leading to the measurement technique Total Electron Yield. As
a consequence, the resulting spectrum should be given with current as a function of
energy, but the current is eventually proportional to intensity, which is why the intensity
is what appears in the results. The equation below depicts what happens to the sample,
with valence state of dn, when it is irradiated by photons with energy h̄ω. After the
absorption of a photon, an internal electron will get excited leaving a core hole, cdn+1,
and eventually it can decay through one of the processes described previously [32].

dn + h̄ω → cdn+1 →
⎧⎨
⎩dn + h̄ω (Fluorescence)

dn−1 + e− (Auger)
(2.1)

Figure 13 – Diagram showing how the decay processes in XAS are given. Following photon
absorption, the system undergoes decay through either the emission of a photon
(fluorescence) or the release of an electron (Auger).

The number of emitted photons in the case of fluorescence or Auger electrons
ejected during Auger decay is directly proportional to the availability of unoccupied
states that can be excited. Consequently, the X-ray absorption spectrum is directly
linked to the unoccupied portion of the electronic structure.
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Furthermore, the intensity of the spectrum is governed by the transition prob-
ability Wfi between initial (Φi) and final (Φf ) states, which is determined by Fermi’s
Golden Rule:

Wfi α
∑
f

|〈Φf | êq · r̂ |Φi〉|2 δ (Ef − Ei − h̄ω) . (2.2)

Here, êq denotes a unit vector for a polarization q and r̂ is the position operator originated
from dipole transition, Ei and Ef are the energies of the initial and final states, and h̄ω

is the incident photon energy. (For a detailed explanation on how this expression is
obtained, refer to Appendix A). It is customary to separate the matrix element into radial
and angular contributions, which can be accomplished with the use of the Wigner-Eckart
Theorem [32] where the wave functions can be given in terms of the quantum numbers
J and M , for both initial and final states. With this, the matrix element from equation 2.2
is written as:

〈Φf (JM)| êq · r̂ |Φi(J
′M ′)〉 = (−1)J−M

[
J 1 J ′

M q M ′

]
〈Φf (J)| êq · r̂ |Φi(J

′)〉 . (2.3)

The radial component determines the transition’s line strength, while the angular com-
ponent yields the dipole selection rules. These rules dictate that the overall momentum
quantum number J cannot change by more than 1 (ΔJ = ±1), or ΔL = ±1 when
neglecting spin-orbit coupling. Furthermore, the magnetic quantum number M changes
in accordance with X-ray polarization, with ΔM = q [32].

Figure 14 illustrates two examples of the XAS spectra addressed in this study.
Specifically, it focuses on the TM L2,3-edge and O K-edge or 2p and 1s edges, respec-
tively. When probing the TM 2p-edge, the unoccupied TM 3d states become discernible.
The key features of the L2,3-edge arise from dipole transitions originating from the core
TM 2p level to the vacant TM 3d states [50]. These spectra exhibit two broad multiplet
structures, distinguished by spin-orbit splitting [51] of the TM 2p3/2 (L3 edge) and TM

2p1/2 (L2 edge) [50]. Both edges are further divided into peaks with their intensity ratio
dictated by the interplay of crystal field effects and electronic interactions, elaborated
upon in the subsequent chapter.

With respect to the O 1s-edge, absorption in this region provides insight into
unoccupied states, primarily the O 2p band. For perovskite systems such as ATMO3,
the O 1s spectra typically manifest in three main segments, as shown in Figure 14 (b).
The spectra exhibit a general shape corresponding to oxygen 2p states hybridized with
metal 3d states. The configuration of these features correlates with the valency and spin
state of the transition metal ion. Subsequently, the oxygen 2p states hybridize with the
unoccupied states of A, which may vary depending on the rare-earth element present
in the system, for example, the La → 5d states. Finally, the spectra encompass the O

2p states hybridized with the TM 4sp states [4]. In the case of simple or double oxides
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like TMO or TMO2, the O 1s spectra reveal structures associated with TM 3d and TM

4sp states [4]. However, in this work, due to the limitations of the implemented methods,
the O 1s spectra only feature the first portion of the complete spectra, the probing of
the unoccupied TM 3d states hybridized with the O 2p states. In the next chapter, the
required theory for one to be able to understand this work will be introduced.

(a) (b)
Figure 14 – Illustration of the two types of XAS spectra analyzed in this study. (a) The main

spectral features of the L2,3-edge for iron originate from dipole transitions occurring
between the core level (Fe 2p) and empty states (Fe 3d). The spectra exhibit
two distinct multiplet structures, separated by the spin-orbit splitting effect in Fe
2p3/2 (L3 edge, approximately 705 eV to 715 eV ) and Fe 2p1/2 (L2 edge, around
715 eV to 725 eV ). These edges further divide into several peaks, depending on
the analyzed system, and their intensity ratio is determined by the interplay of
crystal field effects and electronic interactions [50]. (b) Oxygen K-edge spectra
from a series of LaTMO3 perovskites. The spectra exhibit a consistent general
shape, featuring an initial single or double peak corresponding to oxygen 2p states
hybridized with transition metal 3d states. The configuration of these features is
related to the valency and spin state of the transition metal ion. At approximately
535 eV , the hybridization between O 2p states with La 5d states manifested, followed
by oxygen 2p states hybridizing with the metal 4sp states [4].
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2.4 Electronic structure and covalence

Before going through complicated techniques and models, it is necessary to
know how to study the TMOs and their electronic structure. First, one must understand
the properties they present and can also be used to characterize them. There are
two important parameters that are essential to describe the ES of transition metal
oxides [52]. The first is the Coulomb repulsion energy (U ), which represents the energy
required for an electron to transfer between the energy levels of transition metals.
The second key parameter is the charge transfer energy (Δ), which describes the
energy necessary for an electron transfer between the transition metal and oxygen
sites [52]. The interplay of these values categorizes the system into distinct regimes.
These regimes are represented in a simpler adaptation of the diagram known as the
Zaanen-Sawatzky-Allen (ZSA) diagram [52, 53]. The diagram is present in Figure 15,
where the three main regions of the original diagram are represented by A, B, and C.

Figure 15 – Simplified ZSA diagram in terms of the repulsion energy U and the charge transfer
energy Δ, both in hybridization units (T ). The regions of the diagram are related to
three main regimes that TMOs can be characterized. A: Δ > U → Mott-Hubbard
regime; B: Δ < U → Charge Transfer regime; C: Δ < 0 → Negative Charge
Transfer regime.

In the ZSA diagram’s region A, where Δ > U , the system is in the Mott-Hubbard
regime. In this case, the electronic structure, particularly the d states, tends to lie next
to the Fermi level (EF ), which is defined as the highest energy level that an electron
can occupy at absolute zero temperature [54]. Thus, the electronic structure in the
Mott-Hubbard regime is dominated by transition metal d states. An illustration of this can
be seen in Figure 16 (a). Also, the occupied (unoccupied) bands are represented by
the solid (open) structures and the dashed lines are the Fermi level (EF ). It is possible
to see that the band gap value in the case of the Mott-Hubbard regime is proportional
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to the value of U . This means that electrons and holes move through the TM d bands
and are said to be heavy, due to the low dispersion of the d band. In region B, where
0 < Δ < U , the system is in the Charge-Transfer regime, where the band gap is now
proportional to Δ, as illustrated in Figure 16 (b). The ES has a mixed p-d character next
to the Fermi level EF . Here, the electrons are heavy due to the low dispersion of the
d bands, while the holes are light, due to the greater dispersion of the p bands. This
causes excitations to occur from occupied O 2p to unoccupied TM d states [52, 53, 55].

There is also the possibility that Δ exhibits negative values (Δ < 0), which
characterizes the Negative Charge Transfer regime, given by region C of Figure 15
and depicted in Figure 16 (c). Here, the band gap is again proportional to Δ and the
electronic structure has a p-p character. In this case, electron transfer from O 2p to the
TM d band is favorable, pushing the oxygen 2p band close to EF and pushing the TM

d band to negative energies. However, the region above the Fermi level also exhibits
both TM d and O 2p character [56].

Figure 16 – Illustration of the electronic structure of transition metal oxides in the Mott-Hubbard
(a), Charge Transfer (b) and Negative Charge Transfer (c) regimes.

Covalence, the sharing and transfer of electrons between transition metal and
oxygen ligand atoms, emerges as a pivotal factor in defining the electronic structure of
TMOs across the Mott-Hubbard, Charge-transfer, and Negative Charge-transfer regimes.
It plays a crucial role in determining the classification of TMOs within these regimes
[53], since with the increasing of this factor by including hybridization between TM d

and O 2p orbitals, the charge transfer effect become more important [55]. Covalence is
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not just a bonding mechanism, it is essential for understanding the complex electron
interactions and behaviors in TMOs. By examining covalence, we gain deeper insights
into the nature of charge transfer, the formation of electronic bands, and the resultant
physical properties of these materials, emphasizing its significance in the study of TMOs’
electronic structures.

After all this discussion, we are ready to see how and which theories are
required to perform the study on the electronic structure of TMOs. More specifically, how
the covalence can be included properly in theoretical simulations and how it is possible
to interpret the outcomes obtained.



41

CHAPTER 3

Theoretical Methods

This chapter introduces the theoretical methods used to interpret the experimen-
tal data extracted from the literature. The cluster model plays a central role, incorporating
a model Hamiltonian that effectively describes many-body effects. To ensure accuracy
in this approach, we took full multiplet effects into consideration by employing three
important theories: the atomic multiplet, crystal field, and charge-transfer multiplet. Ad-
ditionally, because one of the main focus of this work is to study the covalence effects
in the TMOs, it is required to account for possible charge transfer effects. For that, the
configuration interaction method was implemented, which, in a simple view, consists of
the expansion of the basis that describes the system studied. So, basically to produce
the results obtained in this work, it is necessary to consider two basic things, a model
Hamiltonian and the basis of the problem, which requires their specific ingredients to
be properly employed. This chapter, therefore, is structured around these aspects and
concludes with a discussion of the practical implementation of these theories.

3.1 Model Hamiltonian

In this work, the model we use is framed by a model Hamiltonian, which varies
based on the specific interactions we need to consider. It includes the usual kinetic
and potential energy components like a common problem given in undergraduate
modern physics books, but additional interactions depend on the particular system and
technique in use. Therefore, the next sections will detail the construction of the model
Hamiltonian for this study, focusing specifically on examining covalence effects in the
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XAS of transition metal oxides.

3.1.1 Multiplet Calculations

In order to perform calculations using X-ray absorption spectroscopy at the
L2,3-edge of 3d transition metals, it is necessary to consider transitions like 2p63dn →
2p53dn+1. Furthermore, to provide an accurate description of the absorption spectra of
these compounds, it is essential to consider the 3d-3d and 2p-3d interactions. Both inter-
actions define the ground state (GS) (2p63dn) and separate the final state (FS) (2p53dn+1)

in various configurations. It is possible to write the atomic multiplet Hamiltonian in a
more general way like [32]:

Ĥatomic = Ĥaverage + Ĥmultiplet. (3.1)

Here, Ĥaverage accounts for the kinetic energy and electron-nucleus interactions and is
considered a constant. In essence, it represents the system’s average energy or its
"center of gravity" within the multiplet. The multiplet separation, on the other hand, is
governed and addressed by Ĥmultiplet, which can be expressed as [32]:

Ĥmultiplet = Ĥdd + Ĥp�L·�S + Ĥpd + ĤCF , (3.2)

where Ĥdd represents the 3d− 3d Coulomb interactions, Ĥp�L·�S represents the spin-orbit
coupling of the 2p core hole, playing a crucial role in the separation of the 2p3/2 and
2p1/2 contributions at the XAS spectrum [51]. Ĥpd includes the Coulomb and exchange
interactions involved in the 2p− 3d transition. Lastly, ĤCF is responsible for the crystal
field effect exerted by the local environment in which the cluster is situated. Figure 17
presents the effect of each of the contributions of Ĥmultiplet.

In the top curve, there is only Ĥdd. In the second curve, the spin-orbit coupling
Ĥp�L·�S is included. It separates the Fe 2p level into the contributions Fe 2p3/2 and Fe

2p1/2 [50]. The third curve introduces the Ĥpd term, while the fourth and final curve
reflects the complete Ĥmultiplet, which includes the crystal field term. Notably, this last
effect is sensitive to the chemical environment, because it is the one where crystal field
effects are being introduced.

The calculations were carried out using the script language Quanty [57]. To
address the Coulomb and exchange contributions, the Slater Integrals [58, 59] (F and
G, as elaborated later), were deliberately reduced to 80% of their ab initio values, as is
customary in this field, to account for intra-atomic screening and electronic correlation
effects [44]. Now, the following sections will delve into the theories responsible for
explaining the effects present in the multiplet calculations and extend the discussion
about what are the "ingredients" necessary to compose the model Hamiltonian.
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Figure 17 – Multiplet calculation for the iron ion of valency Fe3+ (3d5). Each graph panel shows
the effects of each contribution of the multiplet Hamiltonian Ĥmultiplet.

3.1.2 Atomic Multiplet Theory

The atomic multiplet theory is the description of the atomic structure with
quantum mechanics. The main idea is to solve the Schrodinger equation for a N-electron
atom, given by:

ĤN |ψ〉 = EN |ψ〉 , (3.3)

where the Hamiltonian ĤN is given by [32]:

ĤN =
N∑
i

P̂ 2
i

2m
−

N∑
i

Ze2

|r̂i| +
∑
pairs

e2

r̂ij
+

N∑
i

ξ (r̂i) L̂i · Ŝi. (3.4)

Here, the first two terms contribute to the result as an average energy, or Ĥav. The
e-e interaction and spin-orbit terms define the relative energy of the different terms
within the specific configuration. When dealing with valence electrons, particularly in
light elements, spin-orbit coupling can often be neglected in favor of pure LS-coupling.
To obtain what is important for this work, it is required to evaluate the matrix elements of
the electron-electron interaction. There is a more detailed process to obtain the required
results, which is presented in Appendix B for reference. For now, let us attain to the
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important considerations. To get to the desired conclusions of this theory, it is possible
to make use of the two-electron state characterization to be able to write in a more
manageable way the e-e matrix elements, providing the following equation:

〈ψi;ψj| e
2

rij
|ψp;ψq〉 = 〈ψi;ψj|

∞∑
k=0

e2rk<
rk+1
>

Pk (cosΩ) |ψp;ψq〉 , (3.5)

where the indexes i, j, p and q represent the states of electrons 1 and 2. The sum
represents an expansion of the original e-e interaction term, e2

rij
, in terms of Legendre

polynomials (Pk), with r< and rk being the distance of electrons 1 and 2 (r1 and r2) and
Ω the angle between their distances.

It is possible to separate this solution into radial and angular parts. The real
interest lies in the radial part, where, through the use of the Slater-Condon (S-C)
Integrals [43] and some other approximations (some present in Appendix B), the desired
result is obtained in the form of the equation.

〈ψi;ψj| e
2

rij
|ψp;ψq〉 =

∞∑
k=0

⎡
⎢⎣

Direct︷ ︸︸ ︷
fkF

K +

Exchange︷ ︸︸ ︷
gkG

k

⎤
⎥⎦ . (3.6)

Due to the fact that transition metals have a valence state of dn, which has an orbital
angular momentum l = 2, the possible values of the k index of the Slater-Condon
integrals F and G are k = 0, 2, 4 for the direct term and k = 1, 3 for the exchange term,
respectively. It is common to express the matrix elements for the e-e repulsion in terms
of the normalized S-C parameters, or even in terms of the Racah parameters [32],
which are a simplified version of the S-C parameters, since they are defined as linear
combinations of the normalized S-C parameters. The relation between each parameter
mentioned can be seen in the following.

Slater − Condon Normalized S − C Racah

F 0 F0 = F 0 A = F0 − 49F4

F 2 F2 =
F 2

49
B = F2 − 5F4

F 4 F4 =
F 4

441
C = 35F4

It is more convenient to express the results in terms of the cubic harmonic basis rather
than the spherical harmonic basis, since the first describes, in a more useful way,
chemical orbitals. Because of that, it is possible to write either the normalized Slater-
Condon or Racah parameters using the Kanamori parameters [60, 61]. This new set of
parameters is also useful due to the fact that they describe in a good way the multiplet
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effects present in the e-e interaction [62].

u = A+ 4B + 3C,

u′ = A− B + C,

j =
5

2
B + C.

(3.7)

u = F0 + 4F2 + 36F4,

u′ = F0 − F2 − 9F4,

j =
5

2
F2 +

45

2
F4.

(3.8)

Where u corresponds to the intra-orbital repulsion, u′ is the inter-orbital repulsion and
j the intra-atomic exchange. Finally, it is possible to define the average e-e repulsion
energy U using any set of parameters, where, in this work specifically, the forms
considering the normalized S-C or Racah parameters were used:

U = A− 14

9
B +

7

9
C, (3.9)

or
U = F0 − 14

9
F2 − 14F4. (3.10)

3.1.3 Crystal Field Theory

The crystal field determines the energy states of the crystal orbitals together
with their hybridization to the electronic states of nearby ions. In crystal field theory, the
interaction of a local atom with its environment is given approximately by an effective
potential, as can be seen in the Appendix C. This potential does not quite exist in solids,
but can be seen as a description of the effective fields that depict the bounded states
of an atom. The electronic states depend strongly on not just the electron-electron
interaction but also in the crystal field and the hybridization of the metal’s d orbitals
and oxygen’s 2p orbitals, in the case of oxides. In summary, crystal field theory allows
one to find the energy eigenstates of the d orbitals of a TM , as in this case, when
they are under the influence of a crystal field and a given symmetry, which is exposed
in Appendix C as well. The main idea here is to solve Schrodinger’s equation for the
following Hamiltonian [32]:

Ĥ = ĤAtomic + ĤCF . (3.11)

The term ĤAtomic includes the electron’s kinetic energy, its interaction with the cores
involved, and the Coulomb interaction on site, as explained in the atomic multiplet
section. As for the term ĤCF , as stated before, it represents the interaction between
electrons and the ligand fields that surround the TM also, this term is highly dependent
on the symmetry of the system, since it is one of the main components to perform the



CHAPTER 3. THEORETICAL METHODS 46

calculations present in Appendix C. ĤCF is written in terms of a general crystal field
potential represented by the following equation.

ĤCF = VCF (
r) =
∞∑
l=0

l∑
m=−l

rlqlmYlm (θ, φ) . (3.12)

Where, in equation 3.12, r corresponds to the TM electron position, qlm is the term with
direct dependence on symmetry and Ylm (θ, φ) is a spherical harmonic originated from a
Legendre polynomials expansion, with θ and φ being the coordinates of 
r. In Appendix
C there are extensive calculations showing how this potential can be interpreted and
employed correctly in the analysis according to the symmetries studied in this work.

But what we use in practice from crystal field theory is the crystal field splitting
energy that is given by parameters specific to which symmetry it is being considered.
For example, in octahedral symmetry, for transition metals, the splitting is given by
a parameter called 10Dq, as it is extensively shown in Appendices C and D. But, if
considering another symmetry, for example, square pyramidal, considering still transition
metals, the splitting is given by a set of three parameters: Dq, Ds and Dt [62–64].

3.1.4 Cluster Model

Until now, only a portion of the theory behind this work has been presented. In
order to implement this, it is possible to make use of the Cluster Model. This model is
capable of including interactions such as electronic correlations or charge fluctuation
that occurs when transition metal and oxygen interact with each other. Historically, the
Cluster Model is applied to the cluster actually happens the effects and interactions
of interest, like the regular MO6 octahedron present in Figure 18. However, what if
the material being studied is composed by more than just TM and O, like a single
perovskite, similar to the one presented in Chapter 1 (LaMnO3)? In this case, we are
still analyzing the MO6 cluster and the rare-earth has as main task to establish the
oxidation state of the transition metal, in the case of the mentioned perovskite, the
lanthanum ensures that the manganese ion will be 3+.

This analysis encompasses the three oxygen p orbitals (px, py, pz) surrounding
the metal, as well as the five TM d orbitals (dxy, dxz, dyz, dz2 , dx2−y2), culminating in a total
of 23 orbitals. The p orbitals are described through a linear combination of atomic orbitals,
yielding in six molecular orbitals that exhibit A1g, T1g, T2u, T1u, T2g and Eg symmetries
[65, 66], as it is showcased in Appendices C and D. However, it is worth noting that
only two of these symmetries interact with the TM ions, T2g and Eg, as elucidated in
Appendix D. This distinction gives rise to "four" symmetries characterized by mixed TM

and oxygen contributions, categorized into bonding (predominantly 2p character) and
anti-bonding (predominantly TM d character) molecular orbitals bearing T2g and Eg
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Figure 18 – Octahedral cluster used to picture the main idea of the cluster model.

symmetries [65]. While the model explicitly includes these four symmetries, it is crucial
to acknowledge that all other orbitals exclusively featuring oxygen 2p character can be
effectively addressed using the independent particles approximation. This framework is
visually represented in Figure 19:

Figure 19 – Diagram illustrating the emergence of molecular orbitals resulting from the interac-
tion between TM d and O 2p orbitals within a TMO6 octahedron. In particular, it
presents orbitals characterized by T2g and Eg symmetries, exemplifying the interplay
between TM d and O 2p character in these selected orbitals.

The break of degeneracy within the TM d orbitals into only T2g and Eg symme-
tries originates from the consideration of specific symmetries, primarily driven by the
influence of crystal field effects. A simplified analysis of this phenomenon can be seen
from the interaction between the 5 d orbitals of the TM and the 3 p oxygen orbitals, as
illustrated in Figure 20.
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Figure 20 – Scheme depicting the origin of the bonding molecular orbitals T2g and Eg, elucidating
which kind of bonding is formed by each orbital. (a)-(b) Orbitals aligned directly to
oxygen orbitals assume the σ-character and are related to the Eg symmetry. (c)-(d)-
(e) On the other hand, orbitals aligned between oxygen p orbitals have π-character
and are related to the T2g symmetry.

In particular, orbitals bearing Eg symmetry, namely dx2−y2 and dz2, align them-
selves with the direction of oxygen orbitals, thus assuming a σ character. On the contrary,
orbitals characterized by T2g symmetry, specifically dxy, dxz, and dyz, direct themselves
between oxygen p orbitals, resulting in a π character, as depicted in Figure 20. Further-
more, it is essential to emphasize that each orbital that contributes to the Eg symmetry
experiences an increase in energy of +6Dq, while those that contribute to T2g exhibit a
decrease of −4Dq. Consequently, there exists a substantial energy difference of 10Dq

between the two states, a phenomenon known as crystal field unfolding, which can be
better visualized with the calculations present in Appendices C and D. But a diagram
illustrating this splitting is presented in Figure 21.
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Figure 21 – Diagram that visually represents the crystal field unfolding within the d level of
transition metals in octahedral symmetry.

The cluster model has long served as a tool for gaining deeper insight into experi-
mental spectra. Additionally, it has proven to be highly effective in clarifying electronic
correlations within the studied systems. Historically [67], the simple cluster model has
been used for only one octahedron of the form MO6. This model is elegantly described
through a model Hamiltonian, making use of Second Quantization techniques to repre-
sent its core principles.

Ĥcluster =
∑
i,σ

εdi,σd̂
†
i,σd̂i,σ +

∑
i,σ

εpi,σp̂
†
i,σp̂i,σ +

∑
i,σ

Ti

(
d̂†i,σp̂i,σ + p̂†i,σd̂i,σ

)
+

∑
i,i

′
,σ,σ

′

(
U − Jδσ,σ′

)
d̂†i,σd̂i,σd̂

†
i
′ ,σ′ d̂i′ ,σ′ .

(3.13)

In this equation, the indices i and σ represent the orbital index and spin component,
respectively. The operators d̂†i,σ and d̂i,σ create and annihilate d electrons with energies
εdi,σ, while p̂†i,σ and p̂i,σ do the same for p electrons with energies εpi,σ. The first term in
the Hamiltonian accounts for the number of d electrons with energy εdi,σ, and the second
term represents the number of p electrons with energy εpi,σ. The third term describes
the hybridization between TM d and O 2p orbitals, denoted by Ti. This hybridization
depends only on the symmetries T2g and Eg and is computed accordingly. Hybridization
terms can be written as Tσ and Tπ, which are characterized as renormalizations of the
Slater-Koster two-center integrals [68], pdσ and pdπ, and can be expressed as:

Tσ =
√
3 pdσ, (3.14)

Tπ = 2 pdπ, (3.15)

Tπ ≈ −1

2
Tσ. (3.16)

The last term in the Hamiltonian accounts for the number of electron pairs in the d

band, adding a Coulomb repulsion energy U to each pair and subtracting J (intra-atomic
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exchange energy) for each pair of electrons with aligned spins. Now, it is necessary to
know how to implement this.

3.2 Basis

Up to this point, our discussion has focused on atomic and crystal field effects.
The next step is to understand how to effectively describe the system under study,
integrating covalence into our model. To do that, the configuration interaction method
enters the scene, as is presented in the following.

3.2.1 Configuration Interaction Method

To accurately account for charge transfer effects, the cluster model can be
solved by employing the Configuration Interaction (CI) method [28, 29, 69]. This method
involves expanding the ground state wave function beyond the ionic approximation,
allowing for the possibility of electron transfer between the ligand oxygen and the
transition metal. To illustrate this, consider a configuration beyond the ionic state in
which an O 2p electron transitions to a t2g or eg orbital of the TM . This transition
gives rise to the

∣∣dn+kLk
〉

state, where k can assume values of 1, 2, and so on, while
maintaining octahedral symmetry. As an illustrative example, let us examine the GS
wave function for the |d6〉 state:

|ΨGS〉 = α
∣∣d6〉+ β

∣∣d7L〉+ γ
∣∣d8L2

〉
+ δ

∣∣d9L3
〉
+ ε

∣∣d10L4
〉
, (3.17)

where, L denotes a hole in the O 2p band. In addition to representing the GS wave
function, |ΨGS〉 is considered as the basis that describes the system being studied. Since
one of the objectives of this work is to analyze the covalence influence, the way used to
include this effect is to expand the basis, including new electronic configurations (ECs)
until reaching the desired outcome or stop point. For example, if it is only considered 1

electronic configuration, the corresponding basis would be represented only by α |d6〉,
which corresponds to the ionic state where there is no interaction between TM and
O. If the number of electronic configurations is augmented, the basis will be expanded
considering the corresponding new states that describe the system. For example, if
there are 3 ECs, the basis will correspond to α |d6〉+ β |d7L〉+ γ

∣∣d8L2
〉
. It is possible to

add as many ECs as necessary to achieve the desired end, which in the case of this
work is the convergence of the Ground State energy of each material studied.

Finally, the essential parameters [70] of the model can be expressed as follows:
the Coulomb repulsion energy U ; the charge transfer energy Δ required to transfer one
electron from the O 2p orbital to an orbital with the same symmetry of the TM ; the



CHAPTER 3. THEORETICAL METHODS 51

matrix element of hybridization Ti between p and d electrons. All of these are defined as
[71]:

U = E
(
dn+1

)
+ E

(
dn−1

)− 2E (dn) , (3.18)

Δ = E
(
dn+1L

)− E (dn) = εdi,σ − εpi,σ + nU, (3.19)

Ti =
1√

Ni − n
〈dni | Ĥcluster

∣∣dn+1
i Li

〉
. (3.20)

In these expressions, E(ζ) represents the energy associated with the configuration ζ, εd

and εp denote the energies present in the Hamiltonian 3.13, and Ni represents the total
number of electrons residing in the i orbital. With all the "ingredients", the only thing
lacking is how to implement them computationally.

3.3 Implementation

To implement the cluster model in this work, extensive calculations were required
using computational implementation. There are two main programs used in this process;
the first was used to obtain results regarding X-ray absorption spectroscopy of the
2p-edge of the compounds explored in the next chapter, and the second program takes
care of the oxygen 1s-edge of the systems studied. In this chapter, there will be an
overview on how the programs work. More details on how some key features were
implemented, such as specific ways to account for covalence and symmetry effects, are
presented in Appendix E.

3.3.1 Programs used

The first program employed is Quanty [57], a Lua-based script language that
enables users to address quantum mechanical problems using second quantization. It
supports various applications, such as quantum chemistry such as post-Hartree-Fock,
LDA++ schemes by implementing self-consistent fields, configuration interaction, cou-
pled cluster, and more [72–77]. Therefore, Quanty is a very powerful tool, since it is
possible to include the full multiplet effects in the calculations made with it, obtaining
results that can very much resemble what really happens in the experiments and, with
that, achieve very accurate representations of the experimental results. To perform
accurate calculations with Quanty, fundamental components must be considered. Ex-
emplifications of how they are written in the code are given in Appendix E. The second
program employed to implement the cluster model in this thesis has developed using
MATLAB [78]. Although not as intricate as Quanty, the code is robust, providing valuable
results, particularly by incorporating covalence effects, despite its current state lacking
full multiplet effects.



CHAPTER 3. THEORETICAL METHODS 52

3.3.2 Parameters

Before proceeding, it is necessary to know the parameters used to obtain the
results presented in this thesis. Tables 1 and 2 present the parameters used in the cluster
model calculations for the TM 2p and O 1s edges, respectively. These values were
obtained by theoretical reproduction of experimental spectra retrieved from the literature.
Originally, they were retrieved from a list of references [37, 39, 41, 64, 65, 71, 79–82],
but as the simulations were performed, some adjustments had to be made to correctly
reproduce the experiments, as will be seen in Chapter 5. More precisely, the average
e-e repulsion energy, crystal field, charge transfer energy, and hybridization parameters
were adjusted accordingly to the necessary. The indices (I) and (F ) are related to the
ground and excited states, since it is possible to separate them in the codes, as was
shown previously. Each set of parameters is connected to its rightful transition metal,
where it is indicated which material had its experimental data reproduced. In particular,
the Slater-Condon parameters (F 2

(p/d)d, F
4
(p/d)d, G

1
pd and G3

pd) present in Table 1 are in
their original form, but, to perform the calculations, they were reduced to 80% of their
atomic values to account for inherent charge screening effects, as mentioned in earlier
sections. In the case of Table 2, there is the presence of the Racah parameter (B and C),
which were also reduced by 80% and it is worth noting the absence of spin-orbit coupling
parameters in this table, because of the fact that, in this case, it was not possible to
account for the full multiplet effects due to the nature of the code utilized.

Analyzing the values of the parameters in Tables 1 and 2, it is possible to see
that all compounds except CoO are in the charge transfer regime (Δ < U ), while this
exception is in the Mott-Hubbard regime (Δ > U ) [52], as explained in Chapter 2.4.
Furthermore, high values of pdσ indicate strong covalence between TM 3d - O 2p, which
is consistent with the results presented. The final step before presenting the results
obtained is to present the systems used and their interesting characteristics.
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CHAPTER 4

Studied Systems

This chapter provides a brief exploration of the physical properties exhibited by
the compounds chosen for this study. Given that one of the focal points of this research
is to analyze the symmetries exhibited by each material, this chapter separates them
based on their specific symmetry properties. For each symmetry group, in addition to
the general overview of their physical characteristics, the materials can present many
different and very interesting properties, but here we will only give a brief overview of
the most notorious ones for each TMO, serving also as a motivation for this research.

4.1 Octahedral (Oh) symmetry

4.1.1 Manganese - Mn

Manganese displays a wide range of valence states, spanning from 3d5 (2+) to
3d0 (7+). This study, however, concentrates on valence states within the range from 2+

to 4+. Starting with MnO, where the manganese ion has a nominal valence of 2+ and
can be visually represented by Figure 22.
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Figure 22 – Crystalline structure of the material MnO, where the manganese ion has an oxi-
dation state of 2+ and presents the octahedral symmetry. This is a cubic rocksalt
crystal structure and is characterized by the space group Fm3m. Figure made using
the Vesta software [83].

MnO is a halide with a rocksalt crystal structure and crystallizes in the cubic
Fm3m space group [84]. Notably, this compound exhibits a strong ionic character [4,
70]. MnO exhibits antiferromagnetic ordering [85], and Mn2+ ion presents a high-spin
state with a ground state configuration given by t32g↑e

2
g↑ [71]. There is a brief discussion

in Appendix E about what a high or low-spin state is.

In the case of the 3+ valence state, two materials were considered, one for
the TM 2p-edge XAS and another for the O K-edge XAS, namely LaMnO3 and Mn2O3,
respectively. Starting with the lanthanum perovskite, LaMnO3 presented in Figure 23.
This material adopts an orthorhombic crystal structure with the space group Pnma

[84, 86, 87]. The orthorhombic distortion arises due to the electron configuration of the
Mn atom (t32g↑eg↑ in a high-spin state), leading to a symmetry-breaking effect, while the
Mn3+ ions retain an octahedral-like structure [86, 88]. LaMnO3 exhibits characteristics
of an A-type antiferromagnetic insulator, [70, 86, 89].



CHAPTER 4. STUDIED SYSTEMS 57

Figure 23 – Crystalline structure of the material LaMnO3, where the manganese ion has an
oxidation state of 3+ and presents the octahedral symmetry. This is an orthorhombic
crystal structure and is characterized by the space group Pnma. Figure made using
the Vesta software [83].

Now, for the second material considered for the Mn3+ ion, manganese trioxide
(Mn2O3), which can be seen in Figure 24.

Figure 24 – Crystalline structure of the material Mn2O3, where the manganese ion has an
oxidation state of 3+ and presents the octahedral symmetry. This is a cubic bixbite
crystal structure and is characterized by the space group Ia3. Figure made using
the Vesta software [83].

Mn2O3 is stabilized in the body-centered cubic bixbite phase, characterized by the
space group Ia3 [90, 91]. It undergoes a ferromagnetic transition at 43 K and shifts to
an antiferromagnetic state at approximately 80 K [90, 92]. Furthermore, Mn2O3 exhibits
a valence band configuration of 3d4 with a high-spin state (t32g↑eg↑) [4, 93].

When exploring the valence state of 4+, we turned to another perovskite com-
pound, SrMnO3. This material presents a cubic structure at high temperatures that is
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formed by corner-sharing MnO6 octahedra as shown in Figure 25 [94, 95].

Figure 25 – Crystalline structure of the material SrMnO3, where the manganese ion has an
oxidation state of 4+ and presents the octahedral symmetry. This is a cubic crystal
structure, and it is characterized by the space group Pm3m. Figure made using the
Vesta software [83].

It is characterized by the space group Pm3m and features a high-spin state with a t32g↑
electron configuration [71, 96]. Furthermore, cubic SrMnO3 exhibits the properties of a
G-Type antiferromagnetic insulator [42, 94, 97, 98].

4.1.2 Iron - Fe

Iron oxides play a crucial role in various technological applications, such as
catalysis and data storage [44, 99, 100] and have been widely studied in recent decades.
Similarly to manganese, this study examines the oxidation states of iron, specifically 2+,
3+ and 4+. Starting with the 2+ oxidation state, we explore iron monoxide (FeO). FeO

possesses a cubic rocksalt crystal structure, characterized by the space group Fm3m

under ambient pressure [44, 101, 102], as illustrated in Figure 26.

Furthermore, FeO exhibits characteristics of an antiferromagnetic insulator [44, 101]. Its
ground state is described as having a 3d6 configuration, which can transition between
a high-spin state (t32g↑t2g↓e

2
g↑) and a low-spin state (t32g↑t

3
2g↓). This spin state transition

is induced by a substantial increase in external pressure applied to the FeO sample,
resulting in the electron transition from eg to t2g orbitals and the pairing of these d-
electrons [101, 103].
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Figure 26 – Crystalline structure of the material FeO, where the iron ion has an oxidation state of
2+ and presents the octahedral symmetry. This is a cubic rocksalt crystal structure
and is characterized by the space group Fm3m. Figure made using the Vesta
software [83].

Regarding the 3+ valence state, it was examined the lanthanum perovskite
LaFeO3, which is depicted in Figure 27. This material, at ambient conditions, adopts

Figure 27 – Crystalline structure of the material LaFeO3, where the iron ion has an oxidation
state of 3+ and presents the octahedral symmetry. This is an orthorhombic crystal
structure and is characterized by the space group Pnma. Figure made using the
Vesta software [83].

an orthorhombic crystalline structure in the space group Pnma [104–106]. LaFeO3 is
classified as a G-type antiferromagnetic insulator perovskite [107, 108]. Also, the Fe3+

ion adopts a high-spin state configuration (t32g↑e
2
g↑) [104].

For the 4+ valence state, much like in the manganese case, we examined a
strontium perovskite with the chemical formula SrFeO3, illustrated in Figure 28.
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Figure 28 – Crystalline structure of the material SrFeO3, where the iron ion has an oxidation
state of 4+ and presents the octahedral symmetry. This is a cubic crystal structure,
and it is characterized by the space group Pm3m. Figure made using the Vesta
software [83].

The material SrFeO3 assumes a cubic crystal structure with the space group Pm3m

and exhibits a G-type antiferromagnetic ordering [107, 109]. SrFeO3 demonstrates
strong covalent bonding, and its band gap is negligible, in other words, it is closed, as
was shown in Chapter 2.4. This is a clear behavior caused by the compound being in the
Negative Charge Transfer regime, which means that its ground state is mostly covalent
and contains considerable O 2p hole character [41, 56]. Its ground state configuration is
3d5, featuring a high-spin state (t32g↑eg↑) [37].

4.1.3 Cobalt - Co

Cobalt oxides exhibit not only intriguing structural and physical properties but is
also found in crucial applications, exemplified by the widely used compound LiCoO2

in lithium battery production [110–112]. This investigation, like the previous cases,
investigates the oxidation states of 2+, 3+, and 4+ for cobalt.

Starting with the 2+ valence state, represented by cobalt monoxide (CoO), this
material adopts a cubic rocksalt structure with the space group Fm3m at 300 K [113]. A
visual representation is provided in Figure 29.

Cobalt monoxide is characterized as an antiferromagnetic material and exhibits insulat-
ing properties, specifically as a Mott insulator [114–116]. The ground state configuration
of CoO is 3d7 with a high-spin state (t32g↑t

3
2g↓eg↑) [71].
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Figure 29 – Crystalline structure of the material CoO, where the cobalt ion has an oxidation
state of 2+ and presents the octahedral symmetry. This is a cubic rocksalt crystal
structure and is characterized by the space group Fm3m. Figure made using the
Vesta software [83].

Moving to the 3+ valence state, the lithium perovskite LiCoO2 was investigated,
displaying rhombohedral symmetry with the space group R3m [117]. Figure 30 visually
represents this material.

Figure 30 – Crystalline structure of the material LiCoO2, where the cobalt ion has an oxidation
state of 3+ and presents the octahedral symmetry. This is a rhombohedral crystal
structure and is characterized by the space group R3m. Figure made using the
Vesta software [83].

LiCoO2 exhibits antiferromagnetic order. It functions as a wide gap semiconductor [117]
and shares Mott insulator characteristics with cobalt in the 2+ oxidation state [118].
Finally, LiCoO2 has a strongly mixed ground state that makes it strongly covalent and,
in this material, the cobalt ion presents a low-spin valence state of 3d6 (t32g↑t

3
2g↓) [71].
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Finally, the 4+ oxidation state is explored through the strontium perovskite
SrCoO3, which crystallizes in a cubic structure with space group Pm3m and exhibits
ferromagnetic order [41, 110, 119–121]. Figure 31 provides a visual representation of
the crystal structure.

Figure 31 – Crystalline structure of the material SrCoO3, where the cobalt ion has an oxidation
state of 4+ and presents the octahedral symmetry. This is a cubic crystal structure
and is characterized by the space group Pm3m. Figure made using the Vesta
software [83].

SrCoO3 is metallic and, similarly to SrFeO3, it operates in the Negative Charge Transfer
regime [41]. Although an ionic perspective suggests a high-spin or low-spin ground
state for the Co4+ ion, experimental evidence indicates an intermediate spin state t42geg,
which can be specifically described by a high-spin Co3+ state (3d6 : t32g↑t2g↓e

2
g↑) with an

oxygen hole L [41, 80, 110].

4.2 Tetragonal (D4h) symmetry

4.2.1 SrMn0.7Mo0.3O3

The compound focused in this work originates from the study of the perovskite
SrMn1−xMoxO3 [42, 122], where the value of x varied from 0.0 to 0.75. In this thesis,
we work only with the case where x = 0.3. SrMn0.7Mo0.3O3 is a double perovskite
of the type ABB′O3. At room temperature, it exhibits a single-phase cubic perovskite
structure with space group Pm3m. As predicted in a previous study [42], this material
demonstrates insulating behavior and is characterized by a high-spin state with a d4

electron configuration. Furthermore, the manganese ion is encountered to be in the 3+

oxidation state. A visualization of the crystalline structure of this material can be seen in
Figure 32.
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Figure 32 – Schematic of the crystalline structure of the material SrMn0.7Mo0.3O3, where the
manganese ion has an oxidation state of 3+ and presents the tetragonal symmetry.
It is possible to visualize the distorted manganese octahedral in the center of the
image, which occurs only for this double perovskite in this specific molybdenum
concentration. This is a single-phase cubic crystal structure and is characterized by
the space group Pm3m. Figure made using the Vesta software [83].

As mentioned above, for this study a concentration of Mo of x = 0.3 was chosen.
In this specific case, the double perovskite exhibits a distorted octahedral behavior,
giving rise to a D4h symmetry, which is the interest of this work on this material. The
extent of distortion is approximately 1.11 times the regular lattice distance. This distortion
is attributed to the Jahn-Teller effect, which is more likely to impact a molecule of this
type due to the presence of an odd number of electrons in the eg orbital. A schematic
representation of the distortion in the Mn octahedral cluster under consideration can be
seen in Figure 33 [42].
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Figure 33 – Schematic illustrating the Jahn-Teller effect acting on an MnO6 octahedron with
perfect Oh symmetry (on the left) and transforming it into a distorted octahedron
with D4h symmetry (on the right). This distortion results in the splitting of the t2g and
eg orbitals.

4.3 Square pyramidal (C4v) symmetry

4.3.1 V2O5

V2O5 is a diamagnetic insulator at room temperature [123]. This material plays a
crucial role in heterogeneous catalysis, with widespread applications in various chemical
reactions, including partial oxidation reactions and selective reduction of NOx [123]. In
its crystalline form, V2O5 adopts an orthorhombic structure with the space group Pmmn

[64, 123–125]. The ground state of V2O5 exhibits a pronounced covalent character,
predominantly manifesting the 3d1L (1A1) configuration, where L represents a ligand
hole.

Transition metal oxides typically consist of BO6 blocks with octahedral local
symmetry. However, many of these compounds exhibit distortions within their octahedral
units. V2O5 is a notable example, as the V O6 block in this material deviates significantly
from the octahedral symmetry, resulting in a strongly distorted octahedra. This distortion
is especially evident in the elongation of one of the apical oxygen ions, leading to a
notably weakened V −O interaction, as visually depicted in Figure 34.
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Figure 34 – Illustration of the strongly distorted octahedral structure around the V ion of V2O5,
showing why it is possible to consider it as a square pyramid in C4v symmetry [123].

Hence, a more appropriate description of the compound utilizes a V O5 square-
based pyramid as a fundamental block cell, allowing characterizing V2O5 with C4v

symmetry, as shown in Figure 35 [126]. The resulting reduction in symmetry leads to
distinct energy level splitting in the crystal field, as visually demonstrated in Figure 36.

Figure 35 – Schematic of the crystalline structure of the material V2O5, where the vanadium
atoms are the black ones and oxygen atoms are the light, medium and dark gray
[126]. The vanadium ion has an oxidation state of 5+ and presents a square
pyramidal symmetry. This is an orthorhombic crystal structure and is characterized
by the space group Pmmn.



CHAPTER 4. STUDIED SYSTEMS 66

Figure 36 – Splitting of the transition metal d levels in Oh and C4v symmetries [64].

Now that all systems studied, the necessary theory, and the basics of computa-
tion implementation are presented, it is time to showcase the results obtained for this
thesis.
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CHAPTER 5

Results

This chapter unveils the theoretical findings and conducts a meticulous experi-
mental comparison to substantiate the central theme of this study: the potential impact
of covalence and symmetry lowering effects on X-ray absorption spectroscopy (XAS).
It is structured into two main sections, delineating the TM L2,3-edge XAS results and
the O K-edge XAS results, respectively. A similar organization of the results regarding
each TM studied mirroring the preceding chapter is also employed.

The chapter features two types of results:

1. Comparison with experimental data extracted from the literature [37–42, 64, 127–
131], offering a visual representation of how the identified effects can influence
the targeted technique;

2. Theoretical results derived solely from the executed calculations, encompassing
ground state and theoretical spectra data obtained for each TM studied.

5.1 TMs L2,3-edge X-ray absorption spectroscopy

This section delves into the outcomes obtained regarding the L2,3 or 2p edge
of the transition metal oxides studied. This analysis not only encompasses covalence
effects, but also takes into account various symmetries inherent in the system. The
spectra presented here are classified into L3 (2p3/2) and L2 (2p1/2) regions, due to the
influence of the 2p core-hole spin-orbit coupling effects [51]. To conclude, a thorough
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examination of the ground state of each system is conducted to perform a more robust
analysis about the effects studied by this thesis.

The calculations were carried out with the parameters outlined in Table 1 of
Chapter 3, employing the numerical convergence of the ground state energy as the
convergence criterion used to obtain the theoretical data. This criterion will be discussed
and explained in more detail in subsequent sections. This approach was adopted under
the assumption that given the consistency of these parameters, any change in values
would be correspondingly manifest in the spectra. Such constancy is demonstrated
throughout this chapter. The calculated spectra incorporate a Gaussian broadening of
0.1 eV to ensure a comprehensive visualization of all peaks associated with potential
final states, facilitating an analysis of spectrum evolution with increasing covalence
between transition metal and oxygen. Along with it, it was considered a Lorentzian
lifetime broadening of Γ = 0.2 eV (2p1/2 region) and Γ = 0.4 eV (2p3/2 region).

5.1.1 Experimental comparison

Let us start with results that take into account the transition metal oxides that
manifest the octahedral symmetry. Figures 37–39 present a comparative analysis
between calculated and experimental spectra for manganese, iron, and cobalt. The
experimental data, obtained from various references [37–41, 127, 128], were plotted
within the original energy range and normalized intensity. Calculations for these compar-
isons utilize the methodology previously outlined, with a rightward rigid shift applied to
align theoretical with experimental spectra. The graphs display two theoretical spectra,
along with their corresponding experimental spectra, for each oxidation state of the
transition metals studied in this work. The materials considered for the experimental
data are indicated in each graph. The theoretical results consist of the first electronic
configuration that corresponds to the ionic state (as explained in Chapter 3.2), described
by |ΨI〉 = α |dn〉. In this case there is no interaction between TM and O and, as a
consequence, no presence of covalence (depicted by the blue lines), and the elec-
tronic configuration at which convergence was achieved for both ground state results
(discussed in the next section). The second theoretical data is described by the consid-
eration of a, let us say, full basis. In this case, the maximum number of ECs is included
until achieving the convergence mentioned. These simulated spectra are denominated,
respectively, as ionic and fully-converged spectra, with the latter being considered to be
more accurate in replicating the experimental spectra.

The first comparison between theoretical and experimental spectra is related
to the manganese series [37, 38, 127] and is illustrated in Figure 37. The materials
considered are MnO, LaMnO3, and SrMnO3, representing the oxidation states 2+,
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3+, and 4+ of the manganese ion, respectively. The first thing to notice in Figure 37 is
the big evolution of the spectral shape when comparing ionic (blue) and fully-converged
(red) spectra in all three cases. This is more discernible and pronounced in the higher
oxidation state of manganese (Mn4+) where not only there is a greater difference
between theoretical data but also a greater displacement of the relative to the energy
axis, almost 1 eV from the ionic to the converged one. This difference can be explained
by the interactions that each spectrum takes into account. The ionic ones are purely
TM spectra, containing only atomic interactions (exchange and Coulomb), spin-orbit
coupling and crystal field effects. For the converged ones, the covalence is introduced
into the calculations where, by definition (fully converged → accounts for the full multiplet
effects), the covalence is included. Here, charge transfer and hybridization between
TM and O are present. A notable agreement is evident between the calculated and
experimental spectra for all three cases. The structures in both L3 (2p3/2) (between
640 eV and 647 eV ) and L2 (2p1/2) (between 650 eV and 656 eV ) peaks align with
those observed in the experimental data. The separation between (around 649 eV )
peaks induced by spin-orbit coupling is accurately replicated in the calculations, even
in the more covalent case of Mn4+, and the more subtle structures present in all
experimental data are well captured by the theoretical results. There is a discernible
trend in manganese, indicating an increase in the number of electronic configurations for
a more accurate representation of the experimental data (5, 6, and 6 ECs, respectively)
as the oxidation state increases. This trend reinforces the significance of the covalence
effects previously discussed in the analysis of the results.

Figure 38 presents the comparison between theoretical and experimental data
[37, 128] for the iron series. The materials considered are FeO, LaFeO3 and SrFeO3,
formally corresponding to the nominal valences 2+, 3+, and 4+ of iron. Like in the
manganese case, the evolution of the spectral shape is similarly present here, including
the more pronounced displacement to the left of the theoretical spectra (by around 1 eV )
related to the energy axis from the ionic to the converged spectrum. In this case, there is
good agreement between theoretical and experimental spectra in all three cases studied.
The structures present in both 2p3/2 (between 706 eV and 714 eV ) and 2p1/2 (between
718 eV and 726 eV ) regions, along with the spin-orbit separation (around 718 eV ) are
well reproduced. Again, the trend of increasing the covalence between TM and O is
observed, where the number of electronic configurations to achieve the converged (4, 5
and 6 ECs) spectra increases as the oxidation state of iron is also increased.
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Figure 37 – Comparison of calculated and experimental X-ray absorption spectra for the man-
ganese series (Mn2+, Mn3+, and Mn4+). Experimental data were collected from
MnO [127], LaMnO3 [37], and SrMnO3 [38] representing the oxidation states 2+,
3+, and 4+ of manganese.

Figure 38 – Comparison of calculated and experimental X-ray absorption spectra for the iron
series (Fe2+, Fe3+, and Fe4+). Experimental data were obtained from FeO [128],
LaFeO3 [37], and SrFeO3 [37] corresponding to the nominal valences 2+, 3+, and
4+ of iron.

The experimental [39–41] validation for the cobalt 2+, 3+ and 4+, respectively
represented by CoO, LiCoO2 and SrCoO3 is illustrated in Figure 39. Similar to the
previous transition metals, the evolution of the spectral format when comparing the
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spectra without covalence and those where the covalence is included is present as
well. This includes the dislodging of the theoretical spectra from ionic to converged to
the left of the energy axis, in response to the increase of the oxidation state of cobalt.
Like the previous cases, the theoretical calculations present a positive reproduction
of the experimental data for the three cases, even smaller structures present in the
experimental results are well obtained in both L3 (between 772 eV and 782 eV ) and L2

(between 792 eV and 798 eV ) regions. This is accompanied by a good acquisition of
the spin-orbit coupling separation (between the two regions mentioned before). The
consistent trend of increasing covalence between TM -O is observed in both cases
to the fully-converged spectra (3, 4, and 5 ECs). This emphasizes the importance of
accounting for covalence to achieve a more accurate representation of the experimental
data by theoretical results.

Figure 39 – Comparison of calculated and experimental X-ray absorption spectra for the cobalt
series (Co2+, Co3+, and Co4+). Experimental data were collected from CoO [39],
LiCoO2 [40], and SrCoO3 [41] representing the nominal valences 2+, 3+, and 4+
of cobalt.

At last, Figure 40 illustrates the evolution of the number of electronic configura-
tions required to achieve more accurate representations of the experimental spectra for
all oxidation states of each transition metal oxide studied in this work that manifest octa-
hedral symmetry. This visual representation confirms the previously identified tendency
and emphasizes its significance as a necessity. The increase in the number of electronic
configurations is essential to conduct a proper analysis using the XAS technique. Also,
the covalence contribution is more visible and accentuated in higher oxidation states
for all 3 cases treated until now, imposing that the higher the oxidation state, the more
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covalent the material is, and, as a consequence, the larger the covalence influence in
the results presented.

Figure 40 – Evolution of the number of electronic configurations required to achieve visual and
real representations of experimental spectra for all oxidation states of the transition
metal oxides studied.

With all that has been discussed until now, let us dive into the experimental
comparison in which the TM cluster has a different symmetry from the expected
octahedral. Here, we present the comparison between the calculated and experimental
spectra [42] with respect to the tetragonal symmetry of Mn3+, represented by the double
perovskite SrMn0.7Mo0.3O3 [42]. Similarly to the octahedral cases, the calculations
were performed following the procedure presented at the beginning of Section 5.1. The
plot was generated considering the original energy range and normalized intensity,
with a right rigid shift applied to the energy axis of the theoretical spectra until the
alignment with the experimental one. Figure 41 illustrates this comparison, and Figure
42 provides a direct comparison between the tetragonal and octahedral results. The
initial observation reveals striking similarities between both the octahedral and tetragonal
experimental spectra, since they relate to the same transition metal (Mn3+) with identical
oxidation states. The primary distinctions lie in the L3 peak (between 640 eV and 647 eV ),
particularly in the region around 640 eV , where the intensity of the structures is slightly
smaller in the D4h case. Additionally, the D4h spectra exhibit a slight leftward shift
compared to the octahedral spectra for all three spectra, which already manifests an
effect of the symmetry reduction. Nonetheless, these differences do not diminish the
fact that the calculations exhibit good agreement with the experimental results, affirming
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the correctness of the implementation. The consideration of atomic and spin-orbit
coupling effects, along with the crucial incorporation of symmetry effects, had been
performed accurately. Similarly to the Oh case, achieving an accurate representation of
the experimental data requires 6 electronic configurations. This reiterates that, despite
the symmetry reduction, covalence effects persist in these results.

Figure 41 – Comparison between calculated and experimental spectra for the tetragonal sym-
metry of Mn3+, represented by the double perovskite SrMn0.7Mo0.3O3 [42]

Figure 42 – Explicit comparison between calculated spectra for D4h and Oh symmetries for
Mn3+ represented by LaMnO3 [37] and SrMn0.7Mo0.3O3 [42].
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Now, lets see if the results for last TM studied in this section can reiterate the
arguments given until now about the covalence effects. Subsequently, the comparison
between calculated and experimental spectra [64] is presented, with respect to the
square pyramidal symmetry of V 5+ represented by vanadium pentoxide (V2O5) in its
metallic phase [64]. Similarly to previous symmetries, the calculations and the plot
follow the same line of thought. Figure 43 illustrates this comparison, accompanied
by Figure 44, which explicitly compares C4v and Oh results for the vanadium ion. A
notable point is the absence of experimental Oh data due to the fact that V2O5 does
not exhibit this symmetry, as discussed in Chapter 4. The octahedral calculations are
included as a reference to visualize the potential spectral format and understand the
impact of the symmetry change in the results, which is why the graph caption for Oh is
in quotation marks. Regarding the square pyramidal results, despite the experimental
data having a certain proportion of intensities very similar in both L3 and L2 structures
caused by the effects of the experiment. A good agreement between theoretical and
experimental spectra is evident, along with the clear difference between ionic (blue)
and fully-converged (red) for both symmetries. There is also another aspect to consider,
the left shift from ionic to converged spectra in both cases is considerably bigger than
in previous cases, showcasing the high covalent aspect of V 5+, which makes the
simulations much more sensible to the introduction of the covalence factor. The V 2p3/2

(between 516 eV and 521 eV ) and V 2p1/2 (between 523 eV and 528 eV ) peaks are
well reproduced and the spin-orbit effect (around 522 eV ) is well taken into account.
When comparing the symmetries, the Oh results bear some resemblance to the actual
symmetry of the material. However, for both ionic and fully-converged spectra, the V

2p1/2 region exhibits fewer structures in the Oh spectrum compared to the C4v results.
Furthermore, in the L3 region, the first peak at around 517 eV is much more prominent
in Oh symmetry, highlighting the direct effects of symmetry reduction. When considering
covalence effects, a similar behavior is observed as in the tetragonal case. To accurately
reproduce the experimental data, 7 electronic configurations are required, regardless of
symmetry. This further emphasizes that covalence effects persist even in theoretical
scenarios, reinforcing their relevance in the understanding of the obtained results.
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Figure 43 – Comparison between calculated and experimental spectra concerning the square
pyramidal symmetry of V 5+, represented by vanadium pentoxide V2O5 in its metallic
phase [64].

Figure 44 – Explicit comparison between calculated spectra for C4v and Oh symmetries for V 5+

in vanadium pentoxide V2O5 [64].

Now, in the following section, results regarding the ground state and theoretical
spectra calculated for each TMO studied until now will be presented.
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5.1.2 Ground state and theoretical details

Next in this discussion is the results concerning GS and the theoretical details
of the TM 2p-edge XAS. Here, the analysis will encompass results like the ground state
electronic composition, along with numerical results regarding information about the GS
energy, 3d electrons, and the spin state. Along with it, there will be a discussion regarding
theoretical spectra calculated considering the procedure exposed in the beginning of
the L2,3 section. Starting with Figure 45, which presents the calculated contributions of
the configurations to the ground state of each transition metal in octahedral symmetry.
The configurations are shown with the dn+m

TM Lp+m notation, with n and p being the initial
number of TM and oxygen electrons and m taking values of 1, 2, 3 etc. In particular,
an increase in nominal valence reveals a trend towards a covalent GS configuration,
specifically dn+1L. This trend is pronounced for Mn4+, Fe4+, Co3+ and Co4+ where
approximately 50% or more of the GS is characterized by this configuration, with the
second most prevalent being dn. This tendency intensifies in more covalent compounds,
marked by higher oxidation states and lower initial state valence. For other materials,
the dominant contribution comes from the dn configuration, which represents more than
53% of the contribution. Notably, an increase in nominal valence requires an increase in
the number of configurations required to accurately describe the GS. This variation is
more conspicuous in highly covalent compounds, but remains significant in less covalent
compounds, as shown in Table 3 for the iron series. It is possible to observe that in the
table with more details what was discussed previously. In Fe2+ (less covalent), the GS
is mainly described by the dn configuration (ionic character). However, as the nominal
valence increases, increasing the covalent factor of the TM , not only it is necessary to
include more configurations to describe the GS, but also the GS becomes more covalent
as well. Until reaching the highest oxidation sate (Fe4+), the GS becomes covalent,
described mainly by the dn+1L configuration. Similarly to Fe4+, in materials like Mn4+

and Co4+, a discernible need for a bigger number of configurations to describe their GS
is evident as well, underscoring their high covalency, and reinforcing the fact that they
are in the Negative Charge Transfer regime, characterized by their covalent GS. This is
shown in Figure 45 by the peaks present above the dn+1L configuration.
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Figure 45 – Calculated contributions of various electron configurations to the ground state of
each transition metal in octahedral symmetry.

Fe2+ Fe3+ Fe4+

Config. % Config. % Config. %
d6 88.02 d5 70.01 d4 26.54
d7L 11.71 d6L 28.11 d5L 64.19
d8L2 0.27 d7L2 1.85 d6L2 9.00
d9L3 1.45 · 10−3 d8L3 2.89 · 10−2 d7L3 0.27

d9L4 1.30 · 10−4 d8L4 2.30 · 10−3

d9L5 7.63 · 10−6

Table 3 – Configurational contributions to the ground state of the iron ions, namely Fe2+, Fe3+

and Fe4+ in octahedral symmetry.

The next result to be analyzed is the GS magnetic momentum of each TM

studied. The momenta values were obtained through the value of S2, calculated using
Quanty [57], where the formula μcalculated = 2

√
S2 was used in Bohr Magneton units and

the number of ECs capable of reaching the convergence of these values was considered.
To make an analysis of covalence effects, the expected magnetic momentum, which is
equivalent to the momentum related to the ionic configuration, was calculated according
to the spin configuration that describes the GS by considering the spin alignment and
estimation of the value of S. To do this, the equation μionic = 2

√
S(S + 1) was used,

giving the result, as in the previous case, in Bohr Magneton units [132]. Thus, the values
of μionic, μcalculated are presented in Table 4, along with the spin configuration and the
value of S considered for each compound presented in Chapter 4.

Comparing the values of ionic and calculated μ, presented in Table 4, it is
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Transition Metals Spin Config. S μionic (μB) μcalculated (μB)
Mn2+ (MnO) t32g↑e

2
g↑ → HS 5/2 5.92 5.81

Mn3+ (LaMnO3/Mn2O3) t32g↑eg↑ → HS 2 4.90 4.97

Mn4+ (SrMnO3) t32g↑ → HS 3/2 3.87 4.25

Fe2+ (FeO)
t32g↑t2g↓e

2
g↑ → HS 2 4.90

4.78
t32g↑t

3
2g↓ → LS 0 0.00

Fe3+ (LaFeO3) t32g↑e
2
g↑ → HS 5/2 5.92 5.61

Fe4+ (SrFeO3) t32g↑eg↑ → HS 2 4.90 5.30

Co2+ (CoO) t32g↑t
3
2g↓eg↑ → HS 1/2 1.73 1.92

Co3+ (LiCoO2) t32g↑t
3
2g↓ → LS 0 0.00 1.49

Co4+ (SrCoO3) t32g↑t2g↓e
2
g↑ → IS 3/2 3.87 5.28

Table 4 – Mean spin (S) value, ionic and calculated magnetic momentum (μ (μB)) values
considering the spin states ordering of each transition metal studied.

possible to see that no material has an equal momentum value to the ionic one, indicating
a direct effect of the covalence present in the TM -O cluster. Clearly, none of the values
are equal due to the presence of all interactions considered in the calculations. However,
these values can be used to verify what was discussed in Chapter 4, which makes it
possible to see if the transition metal ions respect the spin configuration imposed by the
materials being studied by this research. Furthermore, it is noticed that in cases where
the material is less covalent, the difference between the values is lower, but still present,
which is illustrated in Figure 46. The graph presents a direct comparison between the
ionic and calculated values of the magnetic momenta showcased in Table 4. They are
given as a function of the transition metal considered. The bigger difference between
the momenta values for more covalent compounds is well represented here, as well as
the small, but still visible difference in less covalent TMs.

Now, let us examine, in more detail, two peculiar cases– the ions Fe2+ and
Co4+. The first has a GS that can suffer a spin transition, as explained in Chapter 4, but
according to the calculations performed, this compound can be said to be in a high-spin
state, since the obtained μ is very close to the ionic in this spin state. As for Co4+ which
present a peculiar behavior of an intermediate-spin state, the difference between the
calculated and expected values is considerable compared to the other TMs. However,
if compared to an ion with a high-spin configuration like Fe2+, the calculated momentum
(μcalculated = 5.28 (μB)) is considerably close to the expected (μexpected = 4.90 (μB)). That
is why it can be said that Co4+ GS can be described by a high-spin state Co3+ with
an oxygen hole L. There are two more GS results that can be analyzed. The ground
state mean energy and the 3d band electron count. Figure 47 offers a comprehensive
visualization of the behavior exhibited by all materials calculated under octahedral
symmetry, revealing their relative ground state mean energy and the 3d band electron
count. The relative energy and number of 3d electrons are related to the ionic state of
each material, or just 1 EC.
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Figure 46 – Comparison between ionic and calculated magnetic momenta for the TMs with Oh

symmetry.

Figure 47 – Convergence analysis of the ground state relative mean energy, related to the ionic
state, and 3d band electron count. Both were calculated for each material that
manifests Oh symmetry.

The graph is intentionally structured to illustrate a significant trend: as the ox-
idation state of a transition metal increases, there is a proportional amplification in
the variation of calculated values, necessitating a higher number of ECs for conver-
gence. The chosen cutoff of 7 ECs stems from the highest number required to achieve
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convergence in both mean values and calculated spectra. Although considering more
than 6 ECs for the highest covalent transition metal (Mn4+ or Fe4+) may not have
physical relevance, it proves insightful. This not only serves as a validation check for
the employed program, but also allows for an exploration of how mean values converge
relative to expectations. So, in order to obtain the convergence of these values, it was
required, for the manganese series, 5, 6 and 6 ECs are needed. For Iron, 4, 5 and 6 EC
and, lastly, for cobalt, 3, 4 and 5. These numbers are given for the respectively nominal
valences of 2+, 3+ and 4+. The tendency to increase, or at least to keep, a high num-
ber of electronic configurations, and, as a consequence, the GS being predominately
covalent is present here. This gives further evidence that the covalence included in the
calculations does play a crucial role in the effects that need to be accounted for for the
correct interpretation of the results regarding X-ray absorption spectroscopy.

Following the discussion in Section 5.1.1 a valid question arises. Is it really nec-
essary to consider so many electronic configurations to correctly describe the property
effects of interest of this thesis? For that, Figure 48 is presented. This graph show-
cases the variation of mean energy and number 3d band electron count between ionic
(black lines) intermediate (green lines) and fully-converged (red lines) configurations,
accordingly to the increase of the oxidation state of each transition metal characterized
by the octahedral symmetry. The intermediate configuration was calculated using 2
electronic configurations (which is the first configuration to include the covalence into
the calculation, which we named as covalence first approximation).

There are two main aspects to analyze here, the first is the abrupt variation of
energy and 3d electrons as the metal’s nominal valence is augmented and covalence
is included. The other is the clear difference between values related to the ionic and
converged configurations. The higher displacement mentioned above for Figure 47 is
better visualized here, mainly for the more covalent cases. Starting from the fact that
the ionic configuration is the ideal scenario where there are no interactions but only
the ones related to the TM , and the fully-converged configuration theoretically includes
all interactions to be accounted for by the implemented cluster model. As already
mentioned in the experimental comparison section, the latter is the more accurate
calculation to represent the experimental data and what is actually happening to the
studied material under the influence of the XAS technique. It would be possible to
question whether the configurations between the two presented duos could be enough
to perform the analysis of the influence of covalence, here is where the intermediate
configuration plays its role in the visualization. Even in less covalent compounds where
the difference between the values is smaller, the results of Figures 47 and 48, when
put together, make it possible to state that covalence indeed plays a pivotal role in
the interpretation of the XAS technique. Because of this, answering the first proposed
question yes, it is necessary to add the extra ECs, even in less covalent cases, because
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without this, whatever small the hybridization between TM and O orbitals is, it is still
very important to account for to make the theoretical predictions more close to what is
really happening to the studied sample and better understanding what is really going on
with it.

Figure 48 – Illustration of the difference of the ground state mean energy and 3d band electron
count for the Oh TMs, between the ionic and fully-converged configurations.

With this, the discussion about the ground state results regarding the transition
metals with Oh symmetry is finished. Now let us delve into results containing the
calculated XAS spectra for Mn, Fe, and Co. After that, a discussion about the theoretical
results regarding reduced symmetries will be done.

The next set of results encompassed by Figures 49–51 provides an in-depth
analysis of the 2p X-ray absorption spectra, which were calculated utilizing the Quanty
implementation [57] and the same procedure explained in the beginning of this Chapter.
The graphs were plotted against the average energy related to the configuration energy;
a rigid shift along the intensity axis was applied to enhance the clarity of spectral shape
evolution. Also, the L3 and L2 peaks are indicated in each graph as well.

Firstly, Figure 49 displays the 2p X-ray absorption spectra calculated for the
manganese ions, namely Mn2+, Mn3+, and Mn4+. The evolution of the L3 (2p3/2) and
L2 (2p1/2) peaks, spanning −5 eV to 2 eV and 7 eV to 13 eV , respectively, is discernible
as the number of electronic configurations increases. The variation in spectral shape
becomes more pronounced with higher nominal valences. Although the difference in
shape between the ionic spectrum and subsequent configurations is less conspicuous
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for lower oxidation states, it remains noteworthy. Additionally, a distinct displacement
is observed from the ionic spectra to the first instance of covalence in the three cases,
becoming more visible as the nominal valence increases. Here, the whole spectrum
suffers a leftward displacement in relation to the energy axis, until achieving the correct
shape with three electronic configurations. This displacement is accompanied by a
chemical shift resulting from increased oxidation state. The shift is more pronounced
in the case of Mn4+, underscoring the impact of covalence of the ion. Moreover, as
the oxidation state rises, there is a tendency to increase the number of electronic
configurations required for convergence, and notably, it takes more configurations to
achieve even a first visual glimpse of the fully-converged spectrum.

Figure 49 – L2,3 − edge X-ray absorption spectra calculated for manganese ions, specifically
Mn2+, Mn3+ and Mn4+, using Quanty [57].

The 2p X-ray absorption spectra for the iron series, covering Fe2+, Fe3+, and
Fe4+, are presented in Figure 50. Similar to manganese, the L3 (2p3/2) and L2 (2p1/2)
peaks, in the region of −6 eV to 2 eV and 7 eV to 15 eV , respectively, become more
pronounced as the number of ECs is increased. This evolution is particularly noticeable
in the spectra related to the higher oxidation state (Fe4+). Additionally, the displacement
from ionic spectra until reaching the correct position in energy to the left of the energy
axis (approximately 1 eV leftward) is observed in the iron results, accompanied by
a chemical shift caused by the increase in nominal valence. These shifts become
more discernible as the nominal valence increases, underscoring the influence of
the covalent aspect of the system. There is a need, similar to that of manganese, to
increase the number of electronic configurations required for convergence. It takes
more configurations to achieve the fully-converged spectra with the increase in nominal
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valence.

Figure 50 – L2,3 − edge X-ray absorption spectra calculated for iron ions, specifically Fe2+, Fe3+

and Fe4+, using Quanty [57].

Lastly, for the Oh TM studied, Figure 51 presents the 2p X-ray absorption
spectra for the cobalt series, encompassing Co2+, Co3+, and Co4+. Similar to the two
previous cases, analogous effects are evident in these theoretical calculations. This
includes the evolution of both L3 (2p3/2) and L2 (2p1/2) peaks and their structures,
ranging from −10 eV to 1 eV and 10 eV to 16 eV , respectively. The spectral shape
changes are less apparent for less covalent materials (lower oxidation state) and more
pronounced for more covalent ones (higher oxidation state), with a tendency to increase
the number of electronic configurations for spectral convergence as the nominal valence
is increased. Notably for cobalt, which is less covalent than the others, as showed
in Figure 45, changes in the calculated spectra are less evident, but still significant.
This provides further evidence that even when the effects are less apparent, covalency
remains a crucial factor to consider in the study.
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Figure 51 – L2,3 − edge X-ray absorption spectra calculated for cobalt ions, specifically Co2+,
Co3+ and Co4+, using Quanty [57].

The analysis of these theoretical results underscores the clear influence of
covalence, evident not only in the inclusion of more TM -O interactions but also in
the metal atom itself through an increase in oxidation state. This is manifested more
substantially in the variations of the spectral format, where it becomes necessary to
include more electronic configurations to achieve a representation converging to the
actual spectrum. Now, the subsequent discussion will delve into the covalence effect in
conjunction with different symmetry considerations.

Now, analyzing the GS results considering the TMs with reduced symmetries,
namely Mn3+ and V 5+, Figure 52 displays the computed contributions of the config-
urations to the ground state of manganese 3+ in tetragonal symmetry and vanadium
5+ in square pyramidal symmetry. The notation used is the same as in the octahedral
case, dn+m

TM Lp+m. Starting with manganese, it should be noted that, compared to the
octahedral case with the same oxidation state of Mn3+, the D4h case exhibits a slight
decrease in covalent contributions, rendering it marginally less covalent than its prede-
cessor. However, the primary GS contributions, mainly dn orbitals, remain consistent,
accounting for more than 50% in both symmetries. While V 5+ predominantly exhibits
covalent configurations in both considered symmetries, particularly dn+1L and dn+2L2,
accounting for at least 70% of the GS configuration, when only around 16% is attributed
to dn. This result is very consistent with the one obtained in [52, 64], except for the small
difference that can be attributed to the fact that in the reference the calculations were
performed without considering full multiplet effects. The evolution of the contribution
values respects the tendency imposed previously with the augmentation of the oxidation
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state for the same atom, but no other material expressed the same diffusion of the GS
contribution as here presented by V 5+. It is important to remember that in this specific
case, the Oh results are only for reference; however, they are not less important, since
it is possible that regardless of a real or fake scenario, the vanadium ion still presents
covalent behavior.

Figure 52 – Calculated contributions of various electron configurations to the ground state of
Mn3+ in the D4h symmetry and V 5+ in the C4v symmetry, comparing with Oh data.

Now, with respect to the magnetic momenta analysis for these two TMs, a
similar graph to the one in Figure 46 is presented in Figure 53. However, in this case,
as in the previous analysis on GS contributions, the comparison was made not only
between calculated and ionic μ, but also between symmetries. An aspect to note
in the Mn3+ results is that, compared to the Oh case, both results are very close.
Although, in tetragonal symmetry, it increases slightly making it more distant from
the ionic value for Mn3+, μexpected ≈ 4.90 (μB). This contributes to the state that the
symmetry lowering affects the results regarding the XAS technique despite of the
symmetry considered, even though, when considering the same material the symmetry
effects need to be accounted for as well. In the case of V 5+, since it is characterized by
an initial configuration d0 in both symmetries, its ionic expected magnetic momentum
is 0. However, as the covalence is included in the system, it develops a magnetic
momentum. Due to this, it is possible to, again, state how important it is to consider
properly the covalence effects. Also, this reinforces the big difference between ionic and
fully-converged spectra that was seen in the experimental comparison of V 5+, in Figure
43.
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Figure 53 – Comparison between ionic and calculated magnetic momenta for Mn3+ and V 5+

comparing these values between tetragonal and square pyramidal symmetries to
octahedral results.

A graphical representation akin to Figure 47, portraying the evolution of relative
GS energy and 3d electron count values for the reduced symmetries, is presented in
Figure 54. This comparison aims to elucidate how varying symmetries, coupled with
covalent aspects, can impact the ground state of different transition metal oxides. In
particular, calculations for Oh symmetry are included for both compounds, despite V 5+

not possessing this specific symmetry as detailed in Chapter 4. It is evident that even
with a symmetry reduction, the variations in energy and 3d electrons are analogous
but not identical, as different effects are considered in each calculation. For instance,
if V 5+ had all six oxygen atoms in its cluster, the GS energy would be even lower
than observed. Similarly, for the manganese case, the difference in energy between
symmetries is not significant, but the Oh case has a lower GS energy, consistent with the
octahedral V 5+. This pattern is echoed in the 3d electrons results, where the difference
between symmetry outcomes is less pronounced than in the energy case, yet the
octahedral values stand out. Establishing a connection between the symmetry and
covalence effects, for a more covalent compound such as V 5+, the variation in both
mean values as the number of electronic configurations increases is more substantial.
Achieving convergence requires more electronic configurations for V 5+ compared to
manganese, although the number of configurations required remains consistent with
symmetry reduction: six electronic configurations for both symmetries for Mn3+ and
seven electronic configurations for both symmetries for V 5+.
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Figure 54 – Convergence analysis of the ground state relative mean energy, related to the ionic
state, and 3d band electron count. Both were calculated for Mn3+ and V 5+ in their
related lowered symmetries D4h and C4v, respectively. Including also octahedral
calculations for covalence and symmetry effects visualization.

In a similar line, though used in the Oh discussion, Figure 55 illustrates the
variation of the mean energy and 3d band electron count between the ionic, intermediate
and fully-converged configurations. This was done taking into account the symmetry
lowering effect in both TMs. An obvious aspect to note is that the initial number of 3d
electrons (ionic state) is the same. This is due to the fact that this characteristic does
not change regardless of the symmetry, since it is the same TM ion. Another thing to
extract from Figure 55 is the not so great variation in energy and 3d electrons for Mn3+

as the symmetry is reduced, compared to the vanadium ion. This can be extended
when comparing the values of the ionic, intermediate and converged configuration for
each TM . This not only showcases the effects, even if smaller ones, of the symmetry
lowering into the calculations, but also highlighting the influence of covalence in high
oxidation ions, like it was shown for Mn4+, Fe4+ and Co4+, for example. However, to be
clear, in less covalent materials, the effects treated can be smaller, but still not negligible.
With this, the plea that extra electronic configurations, especially the one related to
the fully-converged state, are of most importance to accurately study the effects of
covalence into the results regarding the XAS technique when applied to transition metal
oxides, regardless of the symmetry they manifest. This makes it possible to better
understand their electronic structure in a more in-depth way.
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Figure 55 – Illustration of the difference of the ground state mean energy and 3d band electron
count for Mn3+ and V 5+, between the ionic and fully-converged configurations.
Along with the comparison between Oh symmetry and reduced cases.

Starting the analysis regarding the theoretical XAS calculated considering the
reduced symmetries treated by this research, there is Figure 56. The calculations
presented in the graph follow the parameters of Table 1, with a Gaussian broadening
of 0.1 eV . The spectral shape in Figure 56 reveals a more pronounced evolution in
the L3 (from −4 eV to 2 eV ) peaks compared to the L2 (from 6 eV to 11 eV ) peaks.
The leftward shift in energy is evident not only in the overall 2p3/2 region but also in its
individual structures, leading to a convergence pattern. Although this shift is present in
the 2p1/2 peaks as well, it is less prominent. A similar shape evolution is observed in the
octahedral symmetry for the same material. Despite the similarities in spectra due to the
common material, distinctions emerge, such as fewer structures at the 2p3/2 peak and
the appearance of new features in 2p1/2, as demonstrated before, in the experimental
comparison. These differences are clear effects of the altered symmetry considered
in this analysis. By comparing the evolution of the spectra as the covalence between
the transition metal and oxygen increases in different symmetries, a consistent rate
of change is observed in both cases. Furthermore, it is required, as in the Oh case, 6
electronic configurations to achieve spectrum convergence. This indicates that, despite
the symmetry change, covalence effects persist in both results at a similar rate.
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Figure 56 – L2,3-edge X-ray absorption spectra calculated for the tetragonal Mn3+, using Quanty
[57].

The last discussion of this section details the X-ray absorption spectra calculated
using Quanty [57], focusing on the square pyramidal symmetry for V 5+. The cluster
model calculations follow the same procedure as used in the previous simulations
presented throughout this section. The spectral shape shown in Figure 57 exhibits
different characteristics. In particular, the intensity of the L2 peak in the ionic spectrum
(from 4 eV to 8 eV ) is particularly pronounced compared to other results. However,
as one progresses to the second spectrum and beyond, the intensities of the peaks
gradually diminish. Similarly to other cases, a leftward shift in energy is observed as
the number of electronic configurations increases by about 1 eV . However, consistent
with expectations for a material with a higher oxidation state, the number of electronic
configurations needed to achieve the final converged spectrum is 7 ECs. This heightened
requirement for additional electronic configurations underscores the significant covalent
aspect of V 5+, which contributes to the increased presence of covalence effects in the
calculated results.
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Figure 57 – X-ray absorption spectra calculated for the square pyramidal symmetry of V 5+,
using Quanty [57].

After this extensive discussion, it is already possible to draw some conclusions.
The main information is the clear influence of covalence on the results with respect
to the TMs 2p-edge, regardless of the symmetry they present. Now, let us see if the
observed behaviors in the 2p-edge repeat to another portion of the electronic structure
being analyzed, the O 1s-edge.

5.2 O K -edge X-ray absorption spectroscopy

This section delves into the outcomes obtained regarding the O K or 1s edge
X-ray absorption spectroscopy of the transition metal oxides studied. Like in the previous
sections, the analysis not only encompasses covalence effects but also accounts for
possible symmetry effects that can occur considering each system. The O 1s XAS
maps, in the first approximation, the O 2p character of the unoccupied portion of the
electronic structure of the system. These, in their instance, are covalently mixed with
different states of the TM via hybridization [130, 133]. Unlike the 2p-edge XAS, the
spectra present here are not divided by the peaks, since it is only related to the TM

d states. The structures present in the results correspond to the TM 3d states more
precisely, as the transition metals studied here belong to the 3d series of the periodic
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table. Also, the peaks present in the spectra have their separation given by crystal field
effects; because of this, it is possible to identify the orbital contributions in the spectra
intensities.

With the goal of establishing a comparison between the calculations performed
and the O 1s absorption spectra to reinforce the arguments of the previous section,
the calculations were made ignoring full multiplet effects, considering only transitions
such as dn → dn+1, without considering O 2p effects. Although it is a calculation of
the transition metals, the results should present the same structures as the oxygen
absorption spectra. This is made by considering a TM 2p hole that does not interact
with the d states and does not possess spin-orbit coupling. This procedure is already
well known [134, 135]. However, it is important to point out that the intensities generated
by these calculations come from dipole transition matrix elements between the TM

2p → 3d, so the relation between the resulting intensities will not be the same as the
absorption spectra related to transitions of the oxygen’s 1s → 2p.

The calculations present in the analysis of the O 1s-edge were computed using
the implementation of MATLAB [78] and carried out with the parameters described in
Table 2 of Chapter 3. The maximum number of electrons required to fill the d band of each
metal, determined by its oxidation and valence states, served as a stopping criterion. In
other words, the maximum number of electronic configurations was employed for each
case. The majority of spectra feature a Lorentzian broadening of Γ = 0.5 eV , except for
isolated cases of Fe2+ and Co4+ that incorporate Γ = 0.9 eV , representing one of the
effects caused by the absence of full multiplet effects.

5.2.1 Experimental comparison

The following results take into account the transition metal oxides that manifest
the octahedral symmetry. Due to this, the structures present in the spectra are related to
the contributions attributed to orbitals t2g and eg. Figures 58–62 showcase the compari-
son between the calculated and experimental spectra. The experimental data, obtained
from a series of references [37, 39, 41, 129–131], were plotted within the original energy
range and normalized intensity. The theoretical spectra were adjusted to align with the
experimental measurements with a rigid rightward shift in relation to the energy axis.

However, it was done something different here from the 2p-edge. In the previous
section, an experimental comparison was made considering two types of theoretical
spectra, the ionic and fully-converged. Although fully converged was maintained in the
present section, also obeying the same electronic configuration used in the 2p-edge
discussion, where the following assumption was made: Given the consistency of the
parameters and the study made throughout the L2,3-edge, any change in values should
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reflect in the spectra. Since the spectra is designated as fully-converged, it should not
change with extra ECs, which will be shown further in this section.

What has changed is the ionic spectrum. Since the ionic configuration is defined
as the configuration in which there is no interaction between TM and O, it should not
generate an O 1s XAS spectrum. This is what happens, in fact, as will be shown in
the theoretical details. Because of this, it becomes obvious that the covalence is of
extreme importance for studying the O 1s-edge, as without it it would not be possible to
obtain an absorption spectrum. So, to account for this, the experimental comparison is
made by the comparison between experimental data with the fully-converged spectrum
and the spectrum obtained considering the first configuration that makes it possible to
include covalence into the calculations, or 2 ECs, denoted as Covalence 1st approx., or
covalence first approximation. This is the same configuration used in the previous edge
to explain why it is so important to consider extra electronic configurations to perform a
more accurate study of the XAS technique.

Figure 58 presents the comparison between theoretical and experimental spec-
tra [129, 130] for the manganese series is presented. The materials considered are
MnO, Mn2O3, and SrMnO3, representing the oxidation states 2+, 3+, and 4+ of man-
ganese, respectively. Despite the fact that the considered implementation does not
consider full multiplet effects, the obtained results exhibit, in general, good agreement
with the experimental data for both manganese oxides. Although the experimental spec-
trum of MnO appears somewhat rugged, there is an overall good agreement between
the calculated and experimental data. The intensities of the structures related to the
t2g (532 eV ) and eg (534 eV ) contributions in each graph are well reproduced. However,
smaller peaks are not as well reproduced in the visual spectra as expected by their
definition. It is important to note that, due to the exclusion of full multiplet effects in
these calculations, not even the fully-converged spectra can fully replicate some subtle
structures present in the experimental results, as seen in the case of MnO.

Concerning the covalence effects included into the calculations, when only the
spectra related to the fully converged configuration are compared with the covalence
first approximation, their difference becomes more and more discernible as the oxidation
state of the manganese ion is increased. This already demonstrates a clear influence of
covalence onto the results regarding the O 1s edge XAS. However, when comparing
them with the experimental data, a similar analysis to the one made in the TM 2p-edge
can be done. For the less covalent compound, where the difference between theoretical
spectra is less pronounced, it is more difficult to make such an affirmation regarding
the covalence effects. But, as the nominal valence increases, it becomes visual that the
spectra obtained considering ECs smaller than the converged one could not be able to
reproduce the experimental data.
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Figure 58 – Comparison of theoretical and experimental O 1s X-ray absorption spectra for
manganese ions (MnO [129], Mn2O3 [129] and SrMnO3 [130]).

The comparison between theoretical and experimental data [37, 131] for the
iron series is showcased in Figure 59. The materials considered are FeO, LaFeO3

and SrFeO3, formally corresponding to the nominal valences 2+, 3+, and 4+ of iron.
Similarly to manganese, the results are mostly positive in reproducing the Fe 3d portion
of the O 1s-edge XAS in all three cases, even with the lack of full multiplet effects. The
major structures of t2g (530 eV ) and eg (532 eV ) peaks of the experimental spectra are
better captured by the calculations of the fully-converged configuration.

Now, when comparing the fully-converged (red lines) and covalence first ap-
proximation (blue lines) spectra, like in the manganese series, their difference becomes
more apparent as the oxidation state is increased. Like, for Fe2+ they are very similar,
but for Fe4+ the blue one presents a very different format, where even the intensities
of the peaks do not resembling the ones present in the red line. This again shows
how the covalence can affect the outcomes of the employed technique, reinforcing the
arguments proposed so far.
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Figure 59 – Comparison of theoretical and experimental O 1s X-ray absorption spectra for iron
ions (FeO [131], LaFeO3 [37] and SrFeO3 [41]).

As for the cobalt series, the comparison between theoretical and experimental
data [39, 41] of the O 1s edge XAS is presented in Figure 60. The materials considered
are CoO, LiCoO2, and SrCoO3, formally corresponding to the nominal valences 2+,
3+, and 4+ of cobalt. Like in the previous metals, there is a good reproduction of the
experimental data considering the position of the t2g (528 eV ) and eg (530 eV ) peaks and
their format, showing that the implementation was well computed. Finally, comparing
the two theoretical spectra, as in the two previous cases, for the less covalent ion (Co2+)
both theoretical spectra are very similar; however, as the oxidation state increases, they
become more different, again proving the clear influence of not only the covalent aspect
of each ion as the nominal valence is increased, but also the first approximation onto
the calculations performed.
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Figure 60 – Comparison of theoretical and experimental O 1s X-ray absorption spectra for cobalt
ions (CoO [39], LiCoO2 [39] and SrCoO3 [41]).

The consistency observed in the results presented in this section, similar to
those in previous sections regarding the TM 2p-edge, underscores the parallel behavior
and analogous analysis related to covalence. This consistent pattern further strengthens
the arguments put forth in this work, emphasizing that covalence can indeed exert an
influence on the outcomes of the X-ray absorption technique, irrespective of the specific
portion of the electronic structure under analysis.

Now, let us examine whether symmetry reduction can affect the O K-edge, and
be affected by covalence effects, similarly to the TM L2,3-edge. The following results,
presented in Figures 61 and 62, are related to the tetragonal and square pyramidal
symmetries, as was mentioned in Chapter 4, they present the same unfolding of the
states under crystal field effects, so as a consequence, the structures present in the
spectra are related to contributions attributed to the orbitals e, b2, a1 and b1.

Like in the previous section, let us start with Mn3+ in the D4h symmetry. Un-
fortunately, no experimental O K-edge measurements are available for the compound
SrMn1−xMoxO3 or, at least, for the specific molybdenum concentration required to
exhibit the desired symmetry in the manganese cluster. As a result, only a visual com-
parison between the spectra of tetragonal and octahedral symmetries, in contrast to the
experimental O 1s data of LaMnO3, is presented here in Figure 61. It is clearly visible
the symmetry lowering effects when comparing side-by-side these results.

Although the intensities are more pronounced in the D4h results, the energy
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positions of the e, b2, a1 and b1 (around 529 eV for the first two and 532 eV for the last
two) peaks closely resemble those of the octahedral symmetry (eg and t2g).

Also, when comparing between fully-converged (red lines) and covalence first
approximation (blue lines) spectra, the D4h spectra also present a small displacement,
similar to Oh, in relation to the energy axis leftwards. Furthermore, they have differences
in structure and format considering the a1 and b1 peaks mainly. Again, showing the
influence of covalence on the results, which will be of great importance when, eventually,
experimental data become available. It is worth noting the contrast with a similar
comparison made for the 2p XAS of V 5+, where the reference Oh was very similar to
the square pyramidal results, along with the experimental data. In the case of the O 1s

XAS of Mn3+, this is not the case; the tetragonal results can be similar to the Oh ones,
but they have their distinct differences caused by the symmetry reduction effects.

Figure 61 – Visual comparison between calculated O 1s X-ray absorption spectra for tetragonal
(no expt. data) and octahedral (Mn2O3 [129]) symmetries of Mn3+.

At last, Figure 62 presents the comparison between the calculated and experi-
mental spectra [64] with respect to the square pyramidal symmetry of V 5+ as exemplified
by vanadium pentoxide (V2O5) in its metallic phase [64]. One noticeable aspect of this
comparison is the inversion of peak intensities in the calculated spectra, primarily at-
tributed to the absence of full multiplet effects. Given the d0 valence state of the material,
the calculations are particularly sensitive to the parameter values. Despite the intensity
discrepancy and also, lacking of the effects disregarded onto the implementation, the
fully-converged spectrum exhibits good agreement in terms of energy positions with
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the experimental data be it with relation to the e and b2 or a1 and b1 (around 530 eV

for the first two and 533 eV for the last two) structures. When observing covalence
effects, as on the TM 2p-edge, the high discrepancy between theoretical spectra can
be attributed to the high covalent aspect of V 5+. In the first approximation spectrum
(blue line), the peaks related to e, b2, a1 and b1 are almost totally overlapped, making it
not only discrepant in terms of the intensities, when compared to the experimental one,
but also with the energy of the two regions. This once again underscores the persistent
influence of covalence, regardless of changes in symmetry or technique, and reinforces
what was already discussed in the L2,3 section. It is noted that the covalence effects
are not only considerably important when analyzing different types of spectra, but also
necessary to perform more accurate reproductions of experimental data regarding the
XAS technique, when applied to TMOs.

Figure 62 – Comparison between calculated and experimental (V2O5 [64]) O 1s X-ray absorption
spectra for V 5+ in the square pyramidal symmetry.

5.2.2 Theoretical details

Following a similar organization used in the TM L2,3-edge section, lets examine
the results regarding theoretical details concerning the O 1s-edge XAS. This part of
the discussion delves into the analysis of the O 1s X-ray absorption spectra, computed
using the MATLAB implementation [78] (refer to Chapter 2 and Appendix E for detailed
methodology). The calculations presented in Figures 63–57 were carried out using the
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procedure explained at the beginning of the section. The spectra were plotted against
the average energy related to the configuration energy, with a rigid shift along the
intensity axis applied to enhance the clarity of the spectral shape evolution.

Figure 63 illustrates the O 1s X-ray absorption spectra calculated for manganese
ions, specifically Mn2+, Mn3+, and Mn4+. The evolution of structures corresponding to
the t2g (around −43 eV ) and eg (around −41 eV ) orbitals contributions is observable. One
notable aspect is that their separation is not precisely equal to the crystal field parameter,
attributable to the inclusion of covalence. Due to the implementation on which (refer
to Appendix E) the local symmetry directly influences this. This observation provides
additional evidence of the impact of covalence on the spectra. Another noteworthy point
is that spectra related to the ionic state exhibit null intensities, indicating that there is
no interaction between the transition metal and oxygen, aligning with expectations for
this configuration. Additionally, similar to the TM 2p X-ray absorption spectra, there is a
discernible trend where an increase in the nominal valence corresponds to an increase
in the number of electronic configurations capable of visually producing a spectrum with
the approximated correct shape.

Figure 63 – O 1s X-ray absorption spectra calculated for manganese ions (Mn2+, Mn3+ and
Mn4+) using the MATLAB [78] implementation.

The O 1s X-ray absorption spectra calculated for iron ions, namely Fe2+, Fe3+

and Fe4+ are illustrated in Figure 64. Similarly to manganese, the evolution of the
t2g (around −50 eV ) and eg (around −52 eV ) structures is evident as the number
of electronic configurations increases. The ionic spectra also exhibit null intensity,
consistent with expectations. Furthermore, the observed trend of requiring a higher
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number of electronic configurations for visual convergence as the nominal valence
increases is repeated for iron as well.

Figure 64 – O 1s X-ray absorption spectra calculated for iron ions (Fe2+, Fe3+ and Fe4+) using
the MATLAB [78] implementation.

For the cobalt series, the O 1s X-ray absorption spectra calculated for Co2+,
Co3+, and Co4+ are presented in Figure 65. In line with the previous systems, the results
for the ionic state in the three oxidation states exhibit null intensities, consistent with
expectations. The clear evolution of the spectral shapes related to t2g (around −45 eV )
and eg (around −43 eV ) orbitals as the oxidation state increases is evident. Furthermore,
the convergence of the spectra is achieved only with an increase in the number of
electronic configurations as the nominal valence rises. This reiterates the impact of the
covalent aspect on the results, mirroring observations made in the 2p section.
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Figure 65 – O 1s X-ray absorption spectra calculated for cobalt ions (Co2+, Co3+ and Co4+)
using the MATLAB [78] implementation.

The examination of these theoretical results emphasizes once more the sub-
stantial influence of covalence, observed not only in the incorporation of more TM -O
interactions but also in the metal atom itself through an elevation in the oxidation state.
This corroborates the findings from the L2,3 edge results, giving greater strength to the
conclusions to be drawn. In the following, let us check if the theoretical observation
made in the 2p-edge can be brought to another portion of the ES. Starting with the
analysis of the O 1s XAS of Mn3+ in tetragonal symmetry. The cluster model calcula-
tions follow the same procedure presented for the Oh TM . Figure 66 reveals a spectral
format and shape evolution similar to the octahedral case (Figure 63). Once again, the
ionic spectrum is null, aligning with expectations. However, notable differences between
Oh and D4h symmetries arise in the structures related to the contributions a1 and b1

(around −39 eV ) in tetragonal symmetry and eg (around −41 eV ) in the octahedral
one. This variance in the theoretical spectra becomes more apparent compared to the
L2,3-edge results, emphasizing the sensitivity to symmetry changes. Another aspect is
that it shows the clear degeneracy breaking shown in Figure 33. Where the eg orbital
was separated into a1 and b1 and t2g separated into e and b2 (around −42 eV ) in the
D4h symmetry. Examining the evolution of the spectra as the covalence between the
transition metal and oxygen intensifies, a consistent rate of change, akin to the 2p-edge
of these materials, is evident. The spectrum related to 3 electronic configurations closely
resembles those related to 6 or 7, indicating that, regardless of the symmetry alterations
in the specific electronic structure segment analyzed, the covalence effects persist in
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both sets of results.

Figure 66 – O 1s X-ray absorption spectra calculated for Mn3+ ion considering the tetragonal
(D4h) symmetry using the MATLAB [78] implementation.

Finally, let us examine the O 1s XAS theoretical spectra of the vanadium ion, V 5+,
which manifests square pyramidal symmetry (C4v). Like in previous cases, the cluster
model calculations were, as well, computed using the MATLAB [78] implementation
and the same procedure as used in the previous simulations. Figure 67, as expected,
shows that the ionic state spectrum is null. In line with expectations for a material with a
higher oxidation state, a higher number of electronic configurations is required not just
to initiate convergence toward the spectral format considering both structures related
to e and b2 or a1 and b1 (around −7 eV and −5 eV , respectively), but also to achieve
convergence as well. This underscores the persistence of covalence effects, regardless
of the symmetry or the specific portion of the electronic structure under analysis.
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Figure 67 – O 1s X-ray absorption spectra calculated for V 5+ ion considering the square pyrami-
dal (C4v) symmetry using the MATLAB [78] implementation.

Through the analysis of this theoretical results it was possible to observe that,
indeed, covalence have a clear influence under the outcomes of the XAS technique,
regardless of symmetry considered (which have its own effects on the results) and
portion of the electronic structure studied. What is interesting to note from this last
analysis is that the assumption taken in the beginning of the section that the spectra
should not change beyond the fully converged one, despite the increase in the number
of electronic configurations, was proven to be accurate, since the stopping criterion used
in the calculations of the O 1s XAS theoretical spectra was the maximum number of ECs
possible to consider in relation to the initial value of 3d band occupation for each TM

studied in this work. Therefore, not only this discussion brought a better understanding
of the ES of TMOs, a deep explanation of how covalence can influence the results of the
spectroscopy technique used, but also technical aspects of the technique employed.
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CHAPTER 6

Conclusions

This thesis delves into the intricacies of X-ray absorption spectroscopy applied
to transition metal oxides with a particular focus on the O 1s and TM 2p edges. Through
detailed calculations and comparisons with experimental data, we aimed to unravel the
impact of covalence and symmetry effects on the accuracy and reliability of XAS results.
Originally, the transition metals studied were only manganese (Mn), iron (Fe) and cobalt
(Co), but as interest in reducing symmetry arose, it was necessary to include one more,
vanandium (V ). It helped to make even more stronger the argumentation on how the
covalence and symmetry lowering, even in the same metal, can affect the results of
this technique. By implementing the cluster model computationally, it was possible to
account for a gamma of effects that can influence the results of X-ray absorption, be it
by considering the full multiplet effects in the 2p-edge, or making an approximation of
not so trivial transitions in the O 1s-edge.

An overarching theme that emerged from the investigations is the undeniable
influence of covalence on the XAS spectra of TMOs. Regardless of the oxidation state,
symmetry, or the specific electronic structure being analyzed, the inclusion of covalent
interactions proved crucial for achieving agreement between theoretical calculations
and experimental observations.

The 2p-edge XAS results underscored the significance of covalence not only in
reproducing the experimental spectra accurately. But also, studies of effects on different
types of information extracted from the GS of each TM studied. The analysis of the
electronic contributions made it possible to verify the covalent (low or high) character of
each metal and how the increase in the nominal valence influences this directly. It was
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also possible to check the data regarding the spin-states of each material in relation to
what was introduced in the chapter 4. In addition to this, energy and 3d electron count
values were used to verify not only the covalent behavior of high oxidation state ions,
such as Mn4+, Fe4+ and V 5+, regardless of the symmetry they present. But to start the
study considering the covalence between TM and the ligand O, this helped to prove
that this covalence highly influences the outcomes with respect to the XAS technique.

Examining the manganese, iron and cobalt series, along with the vanadium
ion results, a consistent trend was revealed: As the oxidation state increased, there
was not just a tendency but a necessity to increase the number of ECs to obtain the
fully-converged configuration. Although the addition of these extra ECs to the simulation
is highly expensive computationally, since this represents an increase on the size of
the basis that describes the studied system, it was shown to not be something merely
cosmetic. In fact, it is a necessary "evil" for the sake of a more precise study of the
properties treated in this thesis.

Moving to the O 1s edge, the analysis reinforced the omnipresence of the co-
valence effect. From manganese to vanadium series, the evolution of the XAS spectra
mirrored the 2p-edge findings. The inclusion of more electronic configurations became
imperative to capture the subtle nuances present in the experimental data. Even in
reduced symmetry cases, such as tetragonal and square pyramidal, covalence contin-
ued to play a pivotal role. In addition to covalence, the study addressed the impact of
reduced symmetry on the XAS results. Analyzing Mn3+ in tetragonal and V 5+ in square
pyramidal symmetry, distinct changes in spectral structures, intensities, and shifts were
observed compared to octahedral symmetry. While these variations were expected, they
highlighted the importance of adapting theoretical models to the specific symmetry of
the TMO under investigation to properly obtain the desired results.

This investigation sheds light on the nuanced interplay of covalence and symme-
try in the XAS of TMOs. Achieving a comprehensive understanding of these materials
requires meticulous consideration of both factors. The consistent patterns observed
in different transition metals and oxidation states underscore the generalizability of
the findings. In conclusion, this study not only enhances the accuracy of theoretical
predictions in XAS but also provides valuable insights for interpreting experimental
spectra. This work contributes to the ongoing discussion surrounding the intricacies of
transition metal oxides and sets the stage for further refinements in theoretical models
and experimental techniques such as X-ray absorption spectroscopy.
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APPENDIX A

The Fermi’s Golden Rule

One of the main tasks here is to determine how the Fermi’s Golden Rule
presented in Chapter 3 is obtained in that form. Here, some considerations will be
made to be able to achieve the ends necessary to obtain the desired equation. It is
assumed that the scattering is small and constant and that this approach limits only
to the photoelectric effect. X-ray acts on charged particles such as electrons. As an
X-ray wave passes by an electron, its electric field exerts forces in alternating directions,
leading to oscillations in both strength and direction. Traditionally, in most descriptions
of X-ray absorption, the electromagnetic wave is represented by the vector field 
A.
However, the transition from classical to quantum mechanics requires a fundamental
change. We move from the classical vector potential 
A( 
r, t) to a quantum mechanical
operator. To accomplish this transition, a powerful tool from quantum mechanics is
employed: second quantization. In this context, a creation operator is denoted as a†�kq,

which generates a photon with a specific wave vector 
k and polarization q. Similarly,
we have an annihilation operator, given as a�kq. Both of these operators adhere to the
commutation relation related to Bose particles:

a�kqa
†
�k′q′

− a†�k′q′a�kq = δ�k�k′δqq′ . (A.1)

The number operator of a photon with 
k and q is given by n�kq = a†�kqa�kq. Employing these
operators leads to the quantum-mechanical representation of the vector potential in the
Schrödinger representation as follows:


A(
r) =
∑
�kq

A0ê�kq

(
a�kqe

i�k·�r + a†�kqe
−i�k·�r

)
, (A.2)
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where A0 is defined as [32, 136]:

A0 =

√
2πh̄c2

Vsω�k

, (A.3)

with ω�k = c|
k| and Vs representing the system volume in which the photon is normalized,
ê�kq serves as a unit vector for polarization q. It is worth noting that, for brevity, it will not
delve into the explicit treatment of polarization effects in the subsequent discussion.
The Hamiltonian governing the interaction between X-rays and electrons can be ap-
proximated using perturbation theory. In particular, its first term can be expressed as
[32]:

Ĥ1 =
e

mc

∑
i

p̂i · 
A(
ri) + e

2mc

∑
i

σi · 
∇× 
A(
ri). (A.4)

The first term within the interaction Hamiltonian, Ĥ1, describes the influence of the vector
field 
A upon the momentum operator p̂ of an electron, or in other words, it describes
how the electric field 
E acts upon the electron’s momenta, with both fields sharing a
collinear relationship. The proportionality factor in this term encompasses the electron’s
charge e, its mass m, and the speed of light c. The second term in the Hamiltonian
characterizes the magnetic field 
B (which is derived from 
∇× 
A) acting on the electron’s
spin σ. When considering X-ray interaction with matter, a pivotal role is assigned to the
Golden Rule. This fundamental principle states that the transition probability W between
an initial state Φi and a final state Φf within a system, caused by the absorption of an
incident photon with energy h̄ω, can be expressed as:

Wfi =
2π

h̄

∑
f

∣∣∣〈Φf | T̂1 |Φi〉
∣∣∣2 δ (Ef − Ei− h̄ω) . (A.5)

The wave functions for the initial and final states are composed of two components: one
for the electron and one for the photon. The photon part of the wave function takes care
of the annihilation of a photon in the X-ray absorption process. However, for the sake
of brevity, it will not be delved into this aspect in this text. The delta function ensures
energy conservation, signifying that a transition occurs only if the energy of the final
state matches the sum of the energy in the initial state and the energy of the incident
photon. Additionally, the square of the matrix element provides the transition rate.

The transition operator T̂1 describes one-photon transmission such as X-ray
absorption. In the first-order approximation, this operator is equivalent to the interac-
tion Hamiltonian. Thus, by incorporating the vector field into Ĥ1 and disregarding the
summation over i:

T̂1 =
∑
�k,q

e

m

√
2πh̄

Vsω�k

[
a�kq

(
ê�kq · p̂

)
ei
�k·�r +

h̄

2
a†�kq

(
ê�kq · σ × k̂

)
e−i�k·�r

]
. (A.6)
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The terms within the brackets can be categorized into two components: the first term
signifies the electromagnetic interaction (a non-relativistic effect), while the second term
accounts for spin interaction (a relativistic effect). Given that the spin interaction has
minimal relevance in core-level spectroscopy, it will be omitted from these considerations.
Consequently, the transition operator T̂1 simplifies to:

T̂1 =
∑
�k,q

e

m

√
2πh̄

Vsω�k

[
a�kq

(
ê�kq · p̂

)
ei
�k·�r
]
. (A.7)

The above equation can be rewritten considering the Taylor expansion of the exponential,
given by:

ei
�k·�r = 1 + i
k · 
r + · · · . (A.8)

The expansion is truncated after the first two terms. This happens because starting
from the third term onward, the contributions become exceedingly small. Consequently,
it is possible to safely neglect terms beyond the second order, resulting in the simplified
transition operator T̂1:

T̂1 =
∑
�k,q

a�kq
e

m

√
2πh̄

Vsω�k

[(
ê�kq · p̂

)
+ i

(
ê�kq · p̂

)(

k · 
r

)]
, (A.9)

the first term within the brackets corresponds to the electric dipole (ED) approximation,
while the second term represents the electric quadrupole (EQ) approximation. There are
two key reasons for the decision to omit the consideration of the EQ approximation in
this text. The first reason comes from the fact that it is possible to calculate the value of

k ·
r using the edge energy in electron volts (eV ) and the atomic number of the analyzed
atom in the following way [32]:


k · 
r ≈
√
h̄ωedge

80Z
. (A.10)

As an illustrative example, let’s consider the K edge (1s core level) of Zinc with an atomic
number of Z = 30 and an edge energy of h̄ωedge = 9659 eV . In this case, the value of 
k ·
r
is approximately 0.04. This pattern holds true for other 3d TM as well. Given that the
transition probability is proportional to the square of the matrix element, the EQ transition
is smaller by approximately a factor of 10−3 compared to the ED transition. Additionally,
we can draw on an argument from electrodynamics [136, 137]. When the exponential
term of the form ei

�k·�r can be approximated as unity (ei�k·�r ≈ 1), while neglecting the other
terms from its expansion, it is important to recall that this exponential is present in the
vector potential 
A equation. This approximation corresponds to a scenario where all
terms in the multipole expansion of the field, except for the ED term, are effectively
disregarded Combining these arguments, we arrive at the electric dipole approximation,
and within this approximation, the transition operator T̂1 can be expressed as:

T̂1 =
∑
�k,q

a�kq
e

m

√
2πh̄

Vsω�k

[
ê�kq · p̂

]
. (A.11)
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But how is it possible to get to a more conventional form of the transition operator? For
this, let us again consider the interaction Hamiltonian Ĥ1:

Ĥ1 =
e

m

∑
�k,q

√
2πh̄

Vsω�k

(
p̂ · ê�kq

) [
a�kqe

i�k·�r + a†�kqe
−i�k·�r

]
. (A.12)

Taking into account that the Coulomb gauge 
∇ · 
A = 0 is being used, so Ĥ1 becomes,
by writing it in a form like Ĥ1 = Ĥ

(−)
1 + Ĥ

(+)
1 , where

Ĥ
(−)
1 =

e

m

∑
�k,q

√
2πh̄

Vsω�k

(
ê�kq · p̂

)
a�kqe

i�k·�r, (A.13)

and

Ĥ
(+)
1 =

e

m

∑
�k,q

√
2πh̄

Vsω�k

(
ê�kq · p̂

)
a†�kqe

−i�k·�r. (A.14)

From this point onward, only Ĥ
(−)
1 will be considered since for Ĥ(+)

1 there is a similar
line of thought. In the absence of any interaction, the wave function of the entire system
can be represented as the product of an atomic wave function and a wave function
describing the radiation field.

ψa |n1, n2, · · · , ni, · · ·〉 ≡ |ψa;n1, n2, · · · , ni, · · ·〉 . (A.15)

Here, ψa represents an eigenfunction of the atomic Hamiltonian given by:

Ĥatom. =
∑
i

(

p2i
2m

)
+ V. (A.16)

The wave function |n1, n2, · · · , ni, · · ·〉, with ni = n�ki,qi, characterizes the radiation field
in the occupation numbers (or Fock space) representation. Now, let us delve into the
analysis of the matrix elements of Ĥ(−)

1 :

〈ψb;n
′
1, n

′
2, · · · , n′

i, · · ·| Ĥ(−)
1 |ψa;n1, n2, · · · , ni, · · ·〉 .

Utilizing the orthogonality relation for the many-photon state:

〈n′
1, n

′
2, · · · , n′

i, · · ·|n1, n2, · · · , ni, · · ·〉 = δn′
1n1

δn′
2n2

· · · δn′
ini

· · · (A.17)

and substituting indices 
kiqi with a simpler notation i for the operators (creation and
annihilation), the action of these operators on many-photon states can be described as
follows:

ai |n1, n2, · · · , ni, · · ·〉 = √
ni |n1, n2, · · · , ni − 1, · · ·〉 ,

a†i |n1, n2, · · · , ni, · · ·〉 =
√
ni + 1 |n1, n2, · · · , ni + 1, · · ·〉 ,

ai |n1, n2, · · · , 0, · · ·〉 = 0.

(A.18)
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For the matrix element of Ĥ(−)1 to be non-zero, at least one mode must satisfy n′
i = ni−1.

For a single mode characterized by 
kq, or equivalently, photons with momentum h̄
k and
polarization q, the notation can be simplified to:

〈
b;n�kq − 1

∣∣∣ Ĥ(−)
1

∣∣∣a;n�kq

〉
=

e

m

√
2πh̄

Vsω�k

〈
b;n�kq − 1

∣∣∣ (ê�kq · p̂) a�kqei�k·�r ∣∣∣a;n�kq

〉
,

〈
b;n�kq − 1

∣∣∣ Ĥ(−)
1

∣∣∣a;n�kq

〉
=

e

m

√
2πh̄n�kq

Vsω�k

〈b|
(
ê�kq · p̂

)
ei
�k·�r |a〉 , (A.19)

where |a〉 ≡ |ψa〉 and |b〉 ≡ |ψb〉 represent the initial and final atomic states, respectively.

Let us examine the matrix element now. Again, using the same arguments to
take care of the exponential as before. With this, rewriting the matrix element:

〈b|
(
ê�kq · p̂

)
ei
�k·�r |a〉 =

eik̃·̃r≈1
〈b|

(
ê�kq · p̂

)
|a〉 = ê�kq · 〈b| p̂ |a〉 . (A.20)

For this, let’s express the momentum operator in terms of the position operator r̂ and the
atomic Hamiltonian A.16 . Knowing that the commutator of r̂ and Ĥatom. can be written
as: [

r̂, Ĥatom.

]
=

ih̄

m
p̂ (A.21)

p̂ =
m

ih̄

[
r̂, Ĥatom.

]
,

putting this into the matrix element:

ê�kq · 〈b| p̂ |a〉 =
m

ih̄
ê�kq · 〈b|

[
r̂, Ĥatom.

]
|a〉

=
m

ih̄
ê�kq · 〈b| r̂Ĥatom. − Ĥatom.r̂ |a〉

=
−im

h̄
ê�kq · 〈b| (Ea − Eb) r̂ |a〉 .

This leads to:
ê�kq · 〈b| p̂ |a〉 =

im

h̄
(Eb − Ea) ê�kq · 〈b| r̂ |a〉 . (A.22)

Here, Ea and Eb represent the eigenvalues of Ĥatom. corresponding to the eigenstates
|a〉 and |b〉. These eigenvalues, by virtue of energy conservation as discussed earlier,
must satisfy the relation:

Eb − Ea = h̄ωba = h̄ω�k.

Therefore, within the ED approximation, the matrix element simplifies to:

imh̄ω�k

h̄
ê�kq · 〈b| r̂ |a〉 , (A.23)

and returning to the matrix element for Ĥ(−)
1 :

〈
b;n�kq − 1

∣∣∣ Ĥ(−)
1

∣∣∣a;n�kq

〉
= 〈b| ie

√
2πh̄ω�kn�kq

Vs

(
ê�kq · r̂

)
|a〉 . (A.24)
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Since, in first order, the transition operator for X-ray absorption can be said to be equal
to the interaction Hamiltonian, it is obtained the following:

T̂1 = ie

√
2πh̄ω�kn�kq

Vs

(
ê�kq · r̂

)
. (A.25)

Returning to the Fermi’s Golden Rule, one obtain (omitting the summation over k):

Wfi =
4π2e2ωnq

Vs

∑
f

|〈Φf | (êq · r̂) |Φi〉|2 δ (Ef − Ei − h̄ω) . (A.26)

Or, more succinctly:

Wfi α
∑
f

|〈Φf | (êq · r̂) |Φi〉|2 δ (Ef − Ei − h̄ω) . (A.27)
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APPENDIX B

Atomic Multiplet Theory

B.1 The Atomic Hamiltonian

The atomic multiplet theory is the description of the atomic structure with
quantum mechanics. The starting point for this theory is to solve the Schrodinger
equation already known for a long time. It is usual to work with an N-electron atom,
where the Schrodinger equation becomes:

ĤN |ψ〉 = EN |ψ〉 , (B.1)

where the Hamiltonian ĤN is given by:

ĤN =
∑
N

P̂ 2
i

2m
−
∑
N

Ze2

|r̂i| +
∑
pairs

e2

r̂ij
+
∑
N

ξ (r̂i) L̂i · Ŝi. (B.2)

Here we have a new term different from the one-electron case, that referring to the
electron-electron repulsion. In addition, the first two terms are the same for all electrons
in a given electronic configuration, which contributes to the result as an average energy,
or Ĥav. Then, the e-e interaction and spin-orbit terms define the relative energy of
the different terms within the subjected configuration. In this way, we can write both
interactions as follows:

Hee =
∑

pairs
e2

r̂ij
, HLS =

∑
N ξ (r̂i) L̂i · Ŝi. (B.3)

Since we are dealing with multi-electron configurations that can be expressed with the
quantum numbers L, S, and J , in general we can represent these configurations with a
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term symbol written as
2S+1LJ

where L is the total orbital angular momentum, J is the total angular momentum and
2S+1 is the spin degeneracy (singlet, triplet, etc.). Usually we use this definition when the
spin-orbit coupling is considerable. Now, considering the interaction Hamiltonian, a usual
approach to solve it is to distinguish two situations, LS-coupling and jj-coupling. When
treating valence electrons, especially in light elements, it is possible to neglect the spin-
orbit coupling and use pure LS-coupling. Also, considering electrostatic interactions, they
are diagonal in L and S, thus, also in J . But the spin-orbit coupling is only diagonal with
J , which implies that if the spin-orbit is considerably important, the overall Hamiltonian
is only diagonal in J .

Resuming all the above, the result of spin-orbit coupling is that a term for the
free ion is split into states of different energies. For example, a 3P state of a carbon
atom with a p2 electron configuration would be split into three different energy states
(according to the three possible J values 0, 1, and 2): 3P0, 3P1, 3P2. Finally, the relative
energies of the states can be predicted from Hund’s Rules.

• Hund’s Rules:

– 1. Term symbol with maximum S.

– 2. Term symbol with maximum L.

– 3. Term symbol with maximum J (if the shell is more than half-full).

* For subshells that are less than half-filled, the lowest energy state has
the lowest J value.

* For subshells that are exactly half-filled, there is only one J value, thus it
is the lowest energy.

* For subshells that are more than half-filled, the lowest energy state has
the largest J value.

Now, the next step to take is to calculate the matrix elements of these states
with the Hamiltonian B.2. Looking more carefully at the e-e repulsion term, we have the
following:

〈Hee〉 =
〈
2S+1LJ

∣∣∑
pairs

e2

r̂ij

∣∣∣2S′
+1L

′
J ′

〉
. (B.4)

This represents the relative energy of the different terms. To evaluate this, we can make
use of basics of quantum mechanics to write the states that are going to be used here,
beginning with the one-electron state, without the spin-orbit interaction for a more simple
approach, so we have:

|ψ〉 = |n, l,ml,ms〉 = |Rn,l〉 |Y ml
l 〉 |χms〉 , (B.5)
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where R is related to the radial part, Y to the angular one and χ to the spin. But, since
we are dealing with the interaction between two different electrons, we can make use of
the two-electron state, which is written as

|ψi;ψj〉 = Â |ni, li,mli,msi;nj, lj,mlj,msj〉 , (B.6)

where i refers to the state ψi of the electron 1 and j to the state ψj of the electron 2.
Also, Â is the antisymmetric of the antisymmetrizer operator that makes sure that the
wave functions of the system obey the Pauli exclusion principle by making the wave
function of N identical fermions antisymmetric under the exchange of the coordinates of
any pair of fermions. Now returning to the matrix element, if we take a closer look at the
function, we can see that it is possible to expand it in terms of Legendre polynomials,
like

e2

r12
= e2√

r21+r22−2r1r2 cosΩ
(r1, r2 → r<, r>)

= e2

r>
1√

1+
(

r<
r>

)2−2
r<
r>

cosΩ

= e2

r>

∑∞
k=0

(
r<
r>

)k

Pk (cosΩ) ,

(B.7)

then
e2

r12
=

∞∑
k=0

e2rk<
rk+1
>

Pk (cosΩ) . (B.8)

Now, we can actually write the e-e repulsion matrix elements as

〈ψi;ψj| e
2

rij
|ψp;ψq〉 = 〈ψi;ψj|

∞∑
k=0

e2rk<
rk+1
>

Pk (cosΩ) |ψp;ψq〉 . (B.9)

Now, using the equation for one-electron state, that makes possible to separate the radial
from angular parts of each ψ state, and remembering that we have an antisymmetrizer
operator for the two-electron states, we will have the following equation describing the
e-e repulsion:

〈ψi;ψj | e2

rij
|ψp;ψq〉 =

∞∑
k=0

⎡
⎢⎢⎢⎣
〈
Rli

ni;R
lj
nj

∣∣∣ e2rk<
r >k+1

∣∣∣Rlp
np;R

lq
nq

〉
︸ ︷︷ ︸

Fk

〈
Y mli
li ;Y mlj

lj

∣∣∣Pk (cosΩ)
∣∣∣Y mlp

lp ;Y mlq
lq

〉
δmsp
msi δ

msq
msj︸ ︷︷ ︸

fk

−

−
〈
Rli

ni;R
lj
nj

∣∣∣ e2rk<
r >k+1

∣∣∣Rlq
nq ;R

lp
np

〉
︸ ︷︷ ︸

Gk

〈
Y mli
li ;Y mlj

lj

∣∣∣Pk (cosΩ)
∣∣∣Y mlq

lq ;Y mlp
lp

〉
δmsq
msi δ

msp
msj︸ ︷︷ ︸

gk

⎤
⎥⎥⎥⎦ .

(B.10)

Following this, if we see the under text in the above equation, we can separate the
angular from radial integrals, using the coefficients gk and fk and the Parameters F k

and Gk, the latter ones are known as the Slater-Condon Integrals or Slater-Condon
parameters [43]. Also, because gk and fk are related to the angular integrals of the
spherical harmonics, they can be expressed in terms of the Wigner’s 3j and 6j symbols
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(due to orthonormality conditions and properties of the Wigner’s symbols) [43]. The
coefficients are, then,

fk = (2l1 + 1)(2l2 + 1)(−1)L

(
l1 k l1

0 0 0

)(
l2 k l2

0 0 0

){
l1 l2 L

l2 l1 k

}
. (B.11)

And,

gk = (2l1 + 1)(2l2 + 1)(−1)S

(
l1 k l2

0 0 0

)(
l1 k l2

0 0 0

){
l1 l2 L

l1 l2 k

}
. (B.12)

Also there is a reminder to this, if we are treating about equivalent electrons (same nl)
the gk term vanishes due to the selection rules of the Wigner’s symbols! Finally, the
matrix elements for the electron-electron repulsion are given by:

〈ψi;ψj| e
2

rij
|ψp;ψq〉 =

∞∑
k=0

⎡
⎢⎣

Direct︷ ︸︸ ︷
fkF

K +

Exchange︷ ︸︸ ︷
gkG

k

⎤
⎥⎦ . (B.13)

Now something that will be established in here, since transition metals have, in their
majority, the valence state of dn (l = 2) for their ground state configuration, the following
calculations will proceed considering this specific configuration. For this case, the g term
will vanish, and, by the selection rules for the Wigner’s symbols, only the terms with
k = 0, 2, 4 are non-zero. If we considered transitions of 2p− 3d character, for example,
we would have the k = 0, 2, 4 for the f terms and k = 1, 3 for the g terms.
Now, it is usual to express the matrix elements for the e-e repulsion in terms of the
normalized S-C parameters, or even in terms of Racah parameters [32], which are a
simplified version of the S-C parameters, since they are defined as linear combinations
of the normalized S-C parameters. The transformation relations can be seen below.

Slater − Condon Normalized S − C Racah

F 0 F0 = F 0 A = F0 − 49F4

F 2 F2 =
F 2

49
B = F2 − 5F4

F 4 F4 =
F 4

441
C = 35F4

All terms present F0, F 0 or A in their energies, because of that, they can be interpreted
as a spherical term (a constant) in the e-e interaction and can be added to the 〈Hav〉.

Until now, we expressed all the e-e interaction within the spherical basis, because
of the expansions made using spherical harmonics and the way we wrote the wave
functions, using the atomic terms

∣∣2S+1LJ

〉
. But it is more useful to write our basis using

chemical orbitals, and for that we use cubic harmonics. To perform this is quite simple;
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it only takes a basis transformation. For the sake of continuity, we will continue to use
d(l = 2) states. Considering this, we have the following transformation relations:

|z2〉 = |Y 0
2 〉 ,

|zx〉 = 1√
2
(|Y 1

2 〉 −
∣∣Y −1

2

〉
),

|yz〉 = i√
2
(
∣∣Y −1

2

〉
+ |Y 1

2 〉),
|xy〉 = i√

2
(
∣∣Y −2

2

〉− |Y 2
2 〉),

|x2 − y2〉 = 1√
2
(
∣∣Y −2

2

〉
+ |Y 2

2 〉).

(B.14)

Now, since we are dealing with a new basis, it is convenient to use a new set of param-
eters that can express properly this basis, so, we will use the Kanamori Parameters.
Such parameters can be written as a linear combination both of Racah or normalized
Slater-Condon parameters, as given below

u = A+ 4B + 3C,

u′ = A− B + C,

j = 5
2
B + C.

(B.15)

u = F0 + 4F2 + 36F4,

u′ = F0 − F2 − 9F4,

j = 5
2
F2 +

45
2
F4.

(B.16)

These parameters are very useful because they describe multiplet effects to the e-e
interaction as being [62]:

• u (Intra Orbital Repulsion) -
add for each pair in the same orbital;

• u′ (Inter Orbital Repulsion) -
add for each pair in a different orbital;

• j (Intra Atomic Exchange) -
subtract for each pair with the same spin component.

Finally, with this, we can extract one last parameter, which is very useful to
explain the e-e repulsion and the atomic multiplet Hamiltonian. The average e-e repulsion
energy U . To do this, we need to acknowledge that a filled subshell, in the case of this
discussion, a d10 state must not present any multiplet effect. So to describe this we use
the Kanamori Parameters explained before. The parameters can be submitted in the
following way: there are 5 intraband pairs in the d band, 40 interband possible pairs and
20 pairs with same spin components, this results in 45 pairs with an average repulsion
energy. We can write the previous statement as the following equation:

E(d10) = 5u+ 40u′ − 20j = 45Udd. (B.17)
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Since the Kanamori Parameters can be given in terms of the Racah or normalized S-C,
the average e-e repulsion energy can be written as:

U = A− 14

9
B +

7

9
C, (B.18)

or
U = F0 − 14

9
F2 − 14F4. (B.19)
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APPENDIX C

Crystal Field Theory in Different Symmetries

C.1 Octahedral (Oh) symmetry

Since the objective here is to demonstrate how the crystal field affects the
calculations for the compounds used, let us start by solving the general crystal field
potential, where it is used as a first approximation, the octahedral symmetry. In this
case, it is considered a TM surrounded by a ligand octahedron, as shown in Figure 68.

Figure 68 – Scheme showing the metal ion surrounded by its oxygen ligands in Oh symmetry.
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In this scheme, the TM is in position (0,0,0), while the ligands are in the positions (±a,
0, 0), (0,±a, 0), (0, 0, ±a), where a is the lattice parameter or the distance from the
central TM . Also, the ligands will be treated as point charges, so a static environment
approximation is used [62]. Proceeding to the calculation part, it is possible to define
the potential of one electron that is interacting with the ligands as:

VCF (
r) =
6∑

i=1

Ze2

|
Ri − 
r| , (C.1)

where 
r and 
Ri are the position vectors of the electron and the ligand ions, respectively.
The expression given by C.1 can be considered as a small perturbation, because it is
too small compared to other interactions such as electron-core and electron-electron
interactions on the TM . One way to solve for this potential is to expand the above
equation in terms of Legendre polynomials, then it becomes

VCF (
r) = Ze2
6∑

i=1

∞∑
l=0

rl<
rl+1
>

Pl cosωi, (C.2)

where r< and r> are the lesser and greater value between a and r, respectively, and
ωi corresponds to the angle between 
r and 
Ri. Now, given the odd properties of the d

orbitals, it is possible to consider here the values r< = r and r> = a, so,

VCF (
r) = Ze2
6∑

i=1

∞∑
l=0

rl

al+1
Pl cosωi. (C.3)

Now, we can make use of the addition theorem for spherical harmonics, where

Pl cosωi =
4π

2l + 1

l∑
m=−l

Y ∗
l,m(θ

′
i, φ

′
i)Ylm(θ, φ). (C.4)

where (θ
′
i, φ

′
i) and (θ, φ) are the coordinates of 
Ri and 
r. Finally, the equation for the

potential is

VCF (
r) = Ze24π
6∑

i=1

∞∑
l=0

l∑
m=−l

rl

(2l + 1)al+1
Y ∗
lm(θ

′
i, φ

′
i)Ylm(θ, φ). (C.5)

Since we only deal with cubic symmetries, it is possible to rewrite the equation above
in the way that it is possible to separate the part of it that only has the symmetry
dependence. This dependence lies on the lattice distance a, and the angular positions
of the ligand ions (θ

′
i, φ

′
i), with this, we can write the following expression.

qlm =
Ze24π

(2l + 1)al+1

6∑
i=1

Y ∗
lm(θ

′
i, φ

′
i). (C.6)
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Finally, we have the general equation for the crystal field potential.

VCF (
r) =
∞∑
l=0

l∑
m=−l

rlqlmYlm(θ, φ). (C.7)

Now, the last part of the general method that can be applied to the cubic symmetries is
the process of obtaining the potential matrix elements. With them, it is possible to obtain
the potential’s eigenvalues and eigenvectors that can be used to make a more complete
analysis of this type of interaction. To obtain these matrix elements, it is necessary to
consider the general solution for the crystal field problem, given by

Ψnlm(
r) = Rnl(r)Ylm(θ, φ). (C.8)

Using basic concepts of quantum mechanics, one can obtain the matrix elements
through the following equation

〈Ψn′ l′m′ |VCF (
r) |Ψn′′ l′′m′′ 〉 =
∫

Ψ∗
n
′ l′m′ (
r)VCF (
r)Ψn′′ l′′m′′ (
r)d
r. (C.9)

After substituting C.7 and C.6 into C.9, we will have a radial and an angular integrals
to solve, but the radial contribution will remain unsolved and will be denoted as

〈
rl
〉
.

Also, since the radial part will be left aside, the quantum number n will be left like this
because it will not affect further calculations. As for the angular portion, we will have an
integral of the type:∫ ∫

dθdφ sin θY ∗
l′m′(θ, φ)Ylm(θ, φ)Yl′′m′′(θ, φ) = Cl′m′lml′′m′′ . (C.10)

But it is possible to relate an integral like the one above with what is called Wigner 3− j

symbols [138, 139], which can be related to spherical harmonics through the following
equation ∫ ∫

dθdφ sin θYl1m1(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ) =

=
√

(2l1+1)(2l2+1)(2l3+1)
4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

) . (C.11)

So, using the property for the complex conjugate spherical harmonics and applying
C.10 to C.11, we have the following result

Cl′m′lml′′m′′ = (−1)m
′
√

(2l′ + 1)(2l + 1)(2l′′ + 1)

4π

(
l
′

l l
′′

0 0 0

)(
l
′

l l
′′

−m
′

m m
′′

)
. (C.12)

Now, before writing the matrix elements, let us impose some things that are necessary
for this work. Since it is dealt with transition metals and, more specifically, TM of the
3d series, we see that the quantum numbers l

′ and l
′′ are equal to 2 and n in a general

form is 3. This restricts the value of l in the range between 0 and 4. Now, we can
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pay more attention to Wigner’s 3 − j symbols, which have some selection rules, like
l
′
+ l + l

′′
= even. Since l

′
= l

′′
= 2, for the rule to be satisfied, l must be 0, 2 or 4. With

the previous arguments given, we can write the general formula for the crystal field
potential matrix elements, when 3d orbitals are considered.

〈
2m

′
∣∣∣VCF (
r)

∣∣∣2m′′
〉
= (−1)m

′
qlm

〈
rl
〉 5
2

√
(2l + 1)

π

(
2 l 2

0 0 0

)(
2 l 2

−m
′

m m
′′

)
,

(C.13)
finally, using a known selection rule for orbital angular momentum in quantum mechanics
[140], we find that the allowed values for quantum numbers m

′, m′′ and m are (0,±2)
and (0, ±2,±4). Now that all the general method is exposed, let’s look again at Figure
68, considering that we are dealing with a regular octahedron, the ligand angles (θ′

i, φ
′
i)

are denoted by(
θ
′
i, φ

′
i

)
=
(
π
2
, 0
)
,
(
π
2
, π
2

)
,
(
π
2
, π
)
,
(
π
2
, 3π

2

)
, (0, 0) , (π, 0) ; i = {1, · · · , 6} . (C.14)

Taking into account the selection rules above and the ligand angles given, it is possible
to obtain the values for the solution part that depends only on the symmetry given by
equation C.6. In the end, due to the angles considered for the octahedral symmetry, not
all possible values o l and m will be different from zero, only the following remained

q00 = 6
√
4π

Ze2

a
,

q40 =
7

3

√
π
Ze2

a5
,

q4±4 =

√
70π

6

Ze2

a5
.

(C.15)

At last, for the matrix elements, before substituting C.15 into C.13, it is necessary to
take into account some other selection rules for the 3− j symbols, which are:

mi ∈ {−li,−li+1,−li+2, · · · , li} , i = { ,′ ,′′ } ,
m = m

′ −m
′′
,

(C.16)

here, we have only the values 0 and 4 for l and 0 and ±4 for m. Using the results of
C.15 and considering C.16, we can evaluate the matrix elements. Also, since the term
q00 is considered as a constant and will be present in all diagonal elements, it will be
omitted because it will not be a real contribution to the potential. Thus, the non-zero
matrix elements are

〈2± 2|VCF (
r) |2± 2〉 = 1

6

Ze2

a5
〈
r4
〉
,

〈2± 1|VCF (
r) |2± 1〉 = −2

3

Ze2

a5
〈
r4
〉
,

〈2 0|VCF (
r) |2 0〉 = Ze2

a5
〈
r4
〉
,

〈2± 2|VCF (
r) |2∓ 2〉 = 5

6

Ze2

a5
〈
r4
〉
.

(C.17)
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However, since we are dealing with octahedral symmetry and the crystal field parameter
for this symmetry is usually given by "10Dq", it is possible to write the matrix elements in
terms of Dq, where D refers to the ligand ions and q to the TM electrons. Their values
are known and are given below

D = 35
4

Ze2

a5
; q = 2

105
〈r4〉 . (C.18)

Therefore, the crystal field potential matrix in octahedral symmetry for a TM is given as⎛
⎜⎜⎜⎜⎜⎜⎝

Dq 0 0 0 5Dq

0 −4Dq 0 0 0

0 0 6Dq 0 0

0 0 0 −4Dq 0

5Dq 0 0 0 Dq

⎞
⎟⎟⎟⎟⎟⎟⎠ (C.19)

Finally, it is possible to derive the crystal field unfolding of the d levels for a transition
metal ion situated in an octahedral field, a concept briefly introduced in Chapter 3. This
is accomplished by diagonalizing the matrix mentioned earlier. When this is done, two
degenerate eigenvectors with an energy of +6Dq emerge:

|ψ20〉 = |dz2〉 ,
1√
2
(|ψ2+2〉+ |ψ2−2〉) = |dx2−y2〉 .

(C.20)

Additionally, three degenerate eigenvectors with energy −4Dq appear:

i√
2
(|ψ22〉 − |ψ2−2〉) = |dxy〉 ,

i√
2
(|ψ2+1〉+ |ψ2−1〉) = |dyz〉 ,

1√
2
(|ψ2+1〉 − |ψ2−1〉) = |dxz〉 .

(C.21)

It should be noted that these eigenvectors are presented here in both the l,m basis,
but also in cubic basis. The basis transformation will be explored more in the following
section. For now, it is important to recognize that these eigenvectors correspond to
the doubly degenerate and triply degenerate eg and t2g orbitals, which, as previously
discussed, are separated in energy by a factor of 10Dq.

C.2 Tetragonal (D4h) symmetry

Here, almost everything that was explained in the Oh subsection will be used
until equation C.13, but there is one small change that is needed. Previously it was
considered a regular octahedron for calculations development. But it is not always
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like that. Usually in cubic symmetries, there can be a distortion in the apical oxygens,
bringing the consequence that equation C.6 cannot be used since not all ligands are at
a distance a from the central TM , as it is showcased in Figure 69. Because of that, it is
necessary to take into account this new parameter in our calculations.

Figure 69 – Scheme showing the metal ion surrounded by its oxygen ligands in D4h symmetry.

Since we are dealing only with the distortion on the apical ligands, we can adapt the
symmetry part equation and include this new adjustable quantity. Taking into account
Figure 69 and the previous argument, the qlm equation can be written in the form

qlm =
Ze24π

(2l + 1)

[
6∑

i=1

Y ∗
lm(θ

′
i, φ

′
i)

al+1
+

2∑
j=1

Y ∗
lm(θ

′
j, φ

′
j)

(βa)l+1

]
, (C.22)

where the j index refers to the apical ligands that are distorted by a distance of βa,
where beta can represent a contraction (0 < β < 1) or an expansion (β > 1). There
are two special cases of values that β can assume, those are when β → ∞ and β = 1.
The first one represents the special case of the square planar symmetry, and the latter
is when the compound takes the regular octahedral symmetry and all the previous
calculations are valid. To perform similar calculations to the octahedral subsection, it will
only be considered the general tetragonal case, where the pairs of ligand angles are
given next (

θ
′
i, φ

′
i

)
=
(
π
2
, 0
)
,
(
π
2
, π
2

)
,
(
π
2
, π
)
,
(
π
2
, 3π

2

)
; i = {1, · · · , 6} ,

(
θ
′
j, φ

′
j

)
= (0, 0) , (π, 0) ; j = {1, 2} .

(C.23)
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Again, considering the selection rules given before and the ligand angles above, we find
that the symmetry terms, qlm for the D4h symmetry are

q00 =
Ze2

a
4
√
π

{
2 +

1

β

}
,

q20 =
Ze2

a3
4

√
π

5

{
−1 +

1

β3

}
,

q40 =
Ze2

a5
2

3

√
π

{
3

2
+

2

β5

}
,

q4±4 =
Ze2

a5

√
70π

6
.

(C.24)

Using the selection rules for the 3− j symbols C.16, one can obtain the matrix elements
for the tetragonal symmetry

〈2± 2|VCF (
r) |2± 2〉 = 4

7

Ze2

a3

{
1− 1

β3

}〈
r2
〉
+

1

21

Ze2

a5

{
3

2
− 2

β5

}〈
r4
〉
,

〈2± 1|VCF (
r) |2± 1〉 = 2

7

Ze2

a3

{
−1 +

1

β3

}〈
r2
〉− 4

21

Ze2

a5

{
3

2
+

2

β5

}〈
r4
〉
,

〈2 0|VCF (
r) |2 0〉 = 4

7

Ze2

a3

{
−1 +

1

β3

}〈
r2
〉
+

2

7

Ze2

a5

{
3

2
+

2

β5

}〈
r4
〉
,

〈2± 2|VCF (
r) |2∓ 2〉 = 5

6

Ze2

a5
〈
r4
〉
.

(C.25)

Next, we need to write the energy matrix for this case. To do that, we are going to use
a potential matrix for the symmetry D4h written on the basis of cubic harmonics [32].
Then, using some conversion relations for d orbitals [141], the first matrix can be written
on the spherical harmonics basis, as the one done in the Oh case. First, there are the
conversion relations from cubic harmonics to spherical harmonics for the d orbitals, in a
more complete way than the one presented in Appendix B:

dz2 =

√
15

4π

3z2 − r2

2r3
√
3

= Y20,

dxz =

√
15

4π

xz

r2
=

1√
2
(Y2−1 − Y21),

dyz =

√
15

4π

yz

r2
=

i√
2
(Y2−1 + Y21),

dxy =

√
15

4π

xy

r2
=

i√
2
(Y2−2 − Y22),

dx2−y2 =

√
15

4π

x2 − y2

2r2
=

1√
2
(Y2−2 + Y22).

(C.26)

The cubic base energy matrix is given by

H
D4h
C =

⎛
⎜⎜⎜⎜⎜⎜⎝

6Dq + 2Ds−Dt 0 0 0 0

0 6Dq − 2Ds− 6Dt 0 0 0

0 0 −4Dq + 2Ds−Dt 0 0

0 0 0 −4Dq −Ds+ 4Dt 0

0 0 0 0 −4Dq −Ds+ 4Dt

⎞
⎟⎟⎟⎟⎟⎟⎠

(C.27)
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Through this, it is possible to perform a base transformation to obtain, from C.27 a
matrix in the spherical harmonics basis, making it possible to perform some comparison
with the Oh case, thus, obtaining the required relations for the crystal field parameters
in tetragonal symmetry (Dq, Ds, Dt). Therefore, for the transformation, the following
matrix will be used:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 1√
2

0 0 1 0 0
i√
2

0 0 0 − i√
2

0 1√
2

0 − 1√
2

0

0 i√
2

0 i√
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C.28)

Finally, after the base transformation, we have the potential matrix for the crystal field in
the D4h symmetry

⎛
⎜⎜⎜⎜⎜⎜⎝

Dq + 2Ds−Dt 0 0 0 5Dq

0 −4Dq −Ds+ 4Dt 0 0 0

0 0 6Dq − 2Ds− 6Dt 0 0

0 0 0 −4Dq −Ds+ 4Dt 0

5Dq 0 0 0 Dq + 2Ds−Dt

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C.29)

If the Ds and Dt are manually brought to zero, we get something very similar to the Oh

case, but it is necessary to confirm that the Dq parameter here is the same as in the
octahedral case, for this the following relations can be used.

Dq + 2Ds−Dt = 〈2± 2|VCF (
r) |2± 2〉 , (C.30.a)

−4Dq −Ds+ 4Dt = 〈2± 1|VCF (
r) |2± 1〉 , (C.30.b)

6Dq − 2Ds− 6Dt = 〈2 0|VCF (
r) |2 0〉 , (C.30.c)

5Dq = 〈2± 2|VCF (
r) |2∓ 2〉 . (C.30.d)

From C.30.d we can confirm that the Dq present in the tetragonal case is the same as
in the octahedral case. But to be able to perform the theoretical calculations present in
this work, it is necessary to establish the values of Ds and Dt. Then, using C.17, C.18
into C.30.a, C.30.b, C.30.c and C.30.d we get the following.

Dt = 2
21

Ze2

a5
〈r4〉

{
1− 1

β5

}
,

Ds = 2
7
Ze2

a3
〈r2〉

{
1− 1

β3

}
+ 2

7
Ze2

a5
〈r4〉

{
−1 + 1

β5

}
,

Dq = 1
6
Ze2

a5
〈r4〉 .

(C.31)

Finally, if we tend the distortion parameter to 1, there is only the Dq term left, so the Oh

condition is satisfied. Also, we can write when the distortion tends to ∞, corresponding
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to the square planar symmetry, thus

Dt = 2
21

Ze2

a5
〈r4〉 ,

Ds = 2
7
Ze2

{〈r2〉
a3

− 〈r4〉
a5

}
,

Dq = 1
6
Ze2

a5
〈r4〉 .

(C.32)

C.3 Square pyramidal (C4v) symmetry

Again, some of the considerations used in the previous cases will be used, but
now we will consider a different type of cubic symmetry, the square pyramidal symmetry,
represented by Figure 70.

Figure 70 – Scheme showing the metal ion surrounded by its oxygen ligands in C4v symmetry.

In this case, it is necessary to consider the schematic above, which represents the
oxygen positions in relation to the central TM , taking into account their position and
angles in the Cartesian axis. It is possible to see that in this symmetry there is only 5

ligand oxygen bonded to the central TM . With this, and considering the line of thought
used in the previous symmetries, the symmetry factor qlm can be written as:

qlm =
Ze24π

al+1 (2l + 1)

5∑
i=1

(−1)m Yl−m

(
θ
′
i, φ

′
i

)
, (C.33)

and the ligand angles θ
′
i and φ

′
i are given by:(

θ
′
i, φ

′
i

)
=
(π
2
, 0
)
,
(π
2
,
π

2

)
,
(π
2
, π
)
,

(
π

2
,
3π

2

)
, (0, 0) ; i = {1, · · · , 5} . (C.34)
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Finally, again considering the selection rules explained in the octahedral case
for l and m due to Wigner’s 3− j symbols used to obtain the matrix elements, and also
using the new group of bonding angles given above, the non-vanishing symmetry terms
,qlm, for the C4v case will be:

q00 =
Ze2

a
10
√
π,

q20 = −Ze2

a3

√
20π

5
,

q40 =
Ze2

a5
5

3

√
π,

q4±4 =
Ze2

a5

√
70π

6
.

(C.35)

Finally, from the selection rules given in equation C.16 and the equation for the matrix
elements C.13, one can obtain the non-zero matrix elements for the C4v symmetry,
which are:

〈2± 2|VCF (
r) |2± 2〉 = 2

7

Ze2

a3
〈
r2
〉
+

5

42

Ze2

a5
〈
r4
〉
,

〈2± 1|VCF (
r) |2± 1〉 = −1

7

Ze2

a3
〈
r2
〉− 10

21

Ze2

a5
〈
r4
〉
,

〈2 0|VCF (
r) |2 0〉 = −2

7

Ze2

a3
〈
r2
〉
+

5

7

Ze2

a5
〈
r4
〉
,

〈2± 2|VCF (
r) |2∓ 2〉 = 5

6

Ze2

a5
〈
r4
〉
.

(C.36)

As it was done for the D4h symmetry, it is necessary to write the energy matrix
for this case. From [64] it is known that the C4v symmetry unfolds into b1, a1, b2 and e

states. The numbers coincidently are the same as in the tetragonal case. It is possible
to express these states using crystal field parameters like:

b1
(
x2 − y2

) → +6Dq + 2Ds− 1Dt

a1
(
z2
) → +6Dq − 2Ds− 6Dt

b2 (xy) → −4Dq + 2Ds− 1Dt

e (yz, xz) → +6Dq + 2Ds− 1Dt

These energy values for each state coincide with the energy splitting related to
the D4h symmetry. Thus, it is possible to use again the same basis transformation used
in the last case, resulting in the following matrix for the crystal field potential, now in C4v

symmetry:
⎛
⎜⎜⎜⎜⎜⎜⎝

Dq + 2Ds−Dt 0 0 0 5Dq

0 −4Dq −Ds+ 4Dt 0 0 0

0 0 6Dq − 2Ds− 6Dt 0 0

0 0 0 −4Dq −Ds+ 4Dt 0

5Dq 0 0 0 Dq + 2Ds−Dt

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C.37)

Therefore, as in the case D4h, the matrix elements for the CF potential VCF (
r) consider-
ing the C4v symmetry can be written in terms of the parameters Dq, Ds and Dt in a way
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like equations C.30.a–C.30.d :

Dq + 2Ds−Dt = 〈2± 2|VCF (
r) |2± 2〉 , (C.38.a)

−4Dq −Ds+ 4Dt = 〈2± 1|VCF (
r) |2± 1〉 , (C.38.b)

6Dq − 2Ds− 6Dt = 〈2 0|VCF (
r) |2 0〉 , (C.38.c)

5Dq = 〈2± 2|VCF (
r) |2∓ 2〉 .. (C.38.d)

From C.38.d it is visible that the parameter Dq present here is the same for the tetragonal
and octahedral cases. Again, it is required to find out how to write the other two
parameters, Ds and Dt in this symmetry. For this, let us consider equations C.18 and
C.36 and substituting with values into C.38.a, C.38.b, C.38.c and C.38.d, one obtains,
finally, the following relations:

Dq = 1
6
Ze2

a5
〈r4〉 ,

Dt = 1
21

Ze2

a5
〈r4〉 = 2

7
Dq,

Ds = 1
7
Ze2

a3
〈r2〉 .

(C.39)
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APPENDIX D

Group Theory Applied to Molecules

Incorporating concepts from group theory enhances the study of crystal field
theory, offering a fresh and valuable perspective for theoretically interpreting essential
characteristics, especially in the investigation of transition metal oxides. Since a signifi-
cant focus of this work lies on interpreting spectral results, with meticulous attention to
the symmetry aspect of the analyzed compounds, this emphasizes the importance of
integrating knowledge about group theory applied to molecules, thus building a more
comprehensive analysis of the results and bringing a better understanding about the
electronic structure of the transition metal oxides.

D.1 Splitting of atomic levels in a crystal field

Let us begin by considering atoms exposed to a null field, which is equivalent
to treating an isolated atom in free space. In this scenario, the group representing the
situation is that of a sphere [63]. To determine the group representations, spherical
harmonics are traditionally employed:

Y m
l (θ, φ) α Pm

l (θ) eimφ. (D.1)

A relationship can be written as [63]:

PRY
m
l (θ, φ) =

∑
m

′
Y m

′

l (θ, φ)D
(l)

m
′ ,m (R) . (D.2)

where the rotation operator PR acts on the spherical harmonics as PRf (x) = f (R−1x)

for a rotation of the form defined by an angle α around the z-axis. The effect of this
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rotation on the spherical harmonics is as follows:

PαY
m
l (θ, φ) = Y m

l (θ, φ− α) = e−imαY m
l (θ, φ) , (D.3)

and it demonstrates that Y m
l (θ, φ) is an eigenfunction of the rotation operator with an

angle α around the z-axis having eigenvalues e−imα.

Upon comparing Equation D.2 with Equation D.3, it becomes evident that the represen-
tation of this particular rotation is a diagonal matrix [63]:

D(l) (α) =

⎛
⎜⎜⎜⎜⎝
e−ilα 0 . . . 0

0 e−i(l−1)α . . . 0
...

... . . . ...
0 0 . . . eilα

⎞
⎟⎟⎟⎟⎠ (D.4)

The character related to this representation can be expressed using the following
equation.

χl (α) = TrDl (α) = e−ilα + . . .+ eilα

This summation can be understood as a geometric progression:

χ(l) (α) = e−ilα

2l∑
k=0

(
eiα
)k

= e−ilα e
i(2l+1)α − 1

eiα − 1
=

ei(l+
1
2)α − e−i(l+ 1

2)α

ei
α
2 − e−iα

2

Simplifying, we obtain [63]:

χ(l) (α) =
sin

[(
l + 1

2

)
α
]

sin
(
α
2

) . (D.5)

All rotations with an angle α belong to the same class, regardless of the rotation axis.
Consequently, when an atom is subjected to a non-spherical field, it becomes important
to identify the rotations that maintain the system invariant.

Again, let’s consider the octahedral scheme in Figure 62. The symmetry group that this
molecule belongs is the Oh, which have the character table given below:

Oh E 6C4 3C2
4 8C3 6C2 i 6S4 3σh 8S6 6σd

A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 -1 1 1 -1 1 -1 1 1 -1
Eg 2 0 2 -1 0 2 0 2 -1 0
T1g 3 1 -1 0 -1 3 1 -1 0 -1
T2g 3 -1 -1 0 1 3 1 -1 0 -1
A1u 1 1 1 1 1 -1 -1 -1 -1 -1
A2u 1 -1 1 1 -1 -1 1 -1 -1 1
Eu 2 0 2 -1 0 -2 0 -2 1 0
T1u 3 1 -1 0 -1 -3 -1 1 0 1
T2u 3 -1 -1 0 1 -3 1 1 0 -1
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Now, let’s consider the case l = 2 (d orbitals) and utilize Equation D.5, to
determine how the orbitals are represented in terms of the irreducible representations
of the Oh symmetry group.

Oh E 6C4 3C2
4 8C3 6C2 i 6S4 3σh 8S6 6σd

Γd 5 -1 1 -1 1 5 -1 1 -1 1

Making the correct calculations, one can obtain that the representation Γd can unfold in
the symmetry operations eg and t2g in a way like Γd = Eg ⊕ T2g, as represented in Figure
71.

Figure 71 – Unfolding of a d orbital under influence of a crystal field with octahedral (Oh) sym-
metry.

Continuing with the octahedrum for the calculations which simplifies explanations, we
represent the basis functions ψlm (
r − 
rn), where 
rn indicates the center where the six
ligand atoms are displayed. When these functions are spanned, the result is [63]:

PRψlm (
r − 
rn) = ψlm

(
R−1
r − 
rn

)
= ψlm

[
R−1 (
r − 
rn)

]
,

considering 
rnR ≡ R�rn, using the following equation:

PRΨ
(n)
ν =

ln∑
μ=1

Ψ(n)
μ D(n)

μν (R) . (D.6)

Consequently,

PRϕlm (
r − 
rn) = ϕlm

[
R−1 (
r − 
rnR)

]
=
∑
m′

ϕlm
′ (
r − 
rnR)D

(l)

m
′m, (D.7)

which can also be written as:

PRϕlm (
r − 
rn) =
∑
m′n′

ϕlm′ (
r − 
rn′ ) D̃
(l)

m′m,n′n (R) . (D.8)

Comparing Equation D.7 with Equation D.8,

D̃
(l)

m′m,n′n (R) = D
(l)

m′m,n′n (R) δn′nR
. (D.9)
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Denoting χ
(l)
c (R) as the characters related to the shell atoms for a given angular

momentum l,

χ(l)
c (R) =

∑
mn

D̃
(l)

m′m,n′n (R) =

(∑
m

Dl
mm (R)

)(∑
n

δnn

)
. (D.10)

The first factor in parentheses is χl (R), and the second factor gives the number of
atoms that did not change position when the R operation was applied. Since χ0 (R) = 1,
for any R,

χ0
c =

∑
n

δnnR
. (D.11)

Thus, Equation D.10 can be written as

χl
c (R) = χl (R)χ0

c (R) . (D.12)

Finally, in the case of d orbitals (l = 2), the characters are:

Oh E 6C4 3C2
4 8C3 6C2 i 6S4 3σh 8S6 6σd

χl=2 5 -1 1 -1 1 5 -1 1 -1 1
χ2
c 30 -2 2 0 0 0 0 4 0 2

Denoting by Γd
shell, the correspondent representation of the characters χ2

c , it is possible
to see all possible symmetry operations present in an octahedrum when taking into
account the d orbital.

D.2 Multielectronic states

The interplay between multielectronic states and monoelectronic configurations
allows us to establish a correlation diagram that bridges the gap between the free ion
and the ion subjected to an infinite interaction.

D.2.1 Ligand field theory

In a crystalline environment, the spin multiplicity of the total state of a free
ion remains preserved. Let us take the example of a d2 configuration subjected to an
octahedral field. Figure 72 illustrates all the permissible terms for this configuration and
how they can be unfolded [63].
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Figure 72 – (a) Multielectronic state of a ion without the presence of a field. (b) Unfolding of
the multielectronic state under the influence of a weak octahedral field. (c) Possible
configurations for the ion on the strong octahedral field limit.

There are three possible electron configurations: (1) both electrons in the
t2g orbital, (2) one electron in t2g and one in eg , and (3) both electrons in eg. Each
configuration results in a final state that needs to be accounted for in the direct product
of the participating orbitals. Thus, the characters table of the possible products is as
follows:

E 6C4 3C2
4 8C3 6C2 i 6S4 3σh 8S6 6σd

t2g ⊗ t2g 9 1 1 0 1 9 1 1 0 1
t2g ⊗ eg 6 0 -2 0 0 6 0 -2 0 0
eg ⊗ eg 4 0 4 1 0 4 0 4 1 0

If the decomposition is made, it is possible to identify which irreducible representations
can be used to represent each operation,

t2g ⊗ t2g → A1g ⊕ Eg ⊕ T1g ⊕ T2g

t2g ⊗ eg → T1g ⊕ T2g

eg ⊗ eg → A1g ⊕ A2g ⊕ Eg

The Pauli’s exclusion principle determines whether a state is a singlet or a triplet. When
considering the configuration t22g, it is possible to visualize the orbital t2g as a group of
six boxes, as depicted in Figure 73 [63]:
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Figure 73 – Visual representation of the t2g orbital considering the number of orbital and spin
states.

The number of possible states is given by:

6!

(6− 2)!2!
= 15.

The total degeneracy of the t2g orbital is 15 and can be distributed as [63]:

aA1g ,
bEg ,

cT1g ,
dT2g

Since the orbitals degeneracy are: for a1g 1, eg 2, t1g 3 and t2g 3, the equation

a+ 2b+ 3c+ 3d = 15, (D.13)

must be satisfied with a, b, c and d being 1 or 3. The possible solutions are:

a b c d
1. 1 1 1 3
2. 1 1 3 1
3. 3 3 1 1

The possible sets of total states generated by t22g are:

1A1g
1Eg

1T1g
3T2g;

1A1g
1Eg

3T1g
1T2g;

3A1g
3Eg

1T1g
1T2g.

A similar procedure is followed for e2g, however, in this case, the electrons are distributed
across four equivalent boxes. The possible sets for this configuration are as follows:

1A1g
3A2g

1Eg;
3A1g

1A2g
3Eg.

Moving on to the configuration t2geg, one electron can occupy any of the six possibilities
while the other can independently occupy any of the four possibilities. This leads to a
total of 6 · 4 = 24 possibilities. By applying the same process as explained before, we
obtain the following.

1T1g ,
3T1g ,

1T2g ,
3T2g.
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The task now is to determine the spin multiplicity of the states formed from the electronic
interactions of the configurations e2g and t22g. Considering the case of e2g, let us reduce
the symmetry from Oh to D4h. To do this, we consider an octahedron of the same
type as before, MX6. When the distance between the apical ligands in relation to the
central atom is varied, the symmetry is reduced from Oh to D4h. During this process,
some operations of octahedral symmetry are lost, while others are transformed into
different classes. As a result, the characters of the eg representation under Oh operations
disassemble into the representations of the D4h operations, such as:

D4h E 2C4 C2 2C
′
2 2C

′′
2 i 2S4 σh 2σv 2σd

eg (Oh) 2 0 2 2 0 2 0 2 2 0

The characters above break up into a1g ⊕ b1g of D4h. The degeneracy of the eg orbital
under Oh symmetry is lifted, leading to the formation of the orbitals a1g and b1g under
D4h symmetry, with the orbital b1g having the lower energy. Thus, the two electrons that
occupie the eg orbital can now be redistributed among the configurations b21g, b1ga1g or
a21g.

⊗ (2S + 1) possibilidades
b21g A1g

1A1g

b1ga1g B1g
1B1g,

3 B1g

a21g A1g
1A1g

The total number of possible combinations under Oh, which is 4, is kept in the D4h

symmetry.

The behaviour analysis of the total state, when the symmetry is reduced, results in the
relation between the Oh and D4h states:

Oh → D4h

A1g → A1g

A2g → B1g

Eg →
⎧⎨
⎩A1g

B1g

The spin degeneracy remains unchanged during symmetry reduction. For
instance, if A1g is a singlet in Oh, it retains its singlet nature in D4h. Furthermore,
regardless of the spin multiplicity of Eg in Oh, the unfolded states A1g and B1g must have
the same multiplicity in D4h. Let us consider a triplet for Eg under the Oh symmetry. In
D4h, the unfolding yields two triplets, one in A1g and the other in B1g.

3Eg →3 A1g ⊕3 B1g
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Since A1g is generated by the configurations a21g and b21g, the triplet state is not allowed
by the Pauli’s principle. Consequently, both states A1g in D4h cannot be singlets. Due to
this fact, the states A1g and Eg in Oh can only be singlets. Therefore, the possible total
states that arise from e2g in Oh are solely:

1A1g ,
3A2g ,

1Eg

In this case, when the symmetry is reduced, the possible total states in D4h are, 1A1g,
3B1g, 1A1g and 1B1g. Continuing in a similar manner, we obtain the possible total states
for the configurations t22g:

1A1g ,
1Eg ,

1T2g,
3T1g

and t2geg:
1T1g ,

1T2g ,
3T1g,

3T2g

D.2.2 The Jahn-Teller effect

The Jahn-Teller effect, also known as Jahn-Teller distortion, refers to the geo-
metrical distortion of molecules and ions resulting from specific electron configurations.
This effect is most commonly observed in octahedral complexes of transition metals
[63]. The distortion typically involves the elongation of bonds with ligands lying along
the z-axis, but occasionally it can also result in shortening of these bonds. Elongations
reduce the electrostatic repulsion between the electron pair on the Lewis basis ligand
and any electrons in orbitals with a z component, leading to a decrease in the energy of
the complex. Importantly, the distortion maintains the inversion center of the molecule.
The Jahn-Teller effect is most pronounced when an odd number of electrons occupy
the eg orbitals. This scenario arises in complexes with configurations d9, low-spin d7 or
high-spin d4, all of which have doubly degenerate ground states, where high-spin fills
d orbitals to maximize spin, whereas low-spin prioritizes electron pairing before filling
higher energy levels. In such compounds, the eg orbitals involved in the degeneracy are
directed towards the ligands, resulting in significant energetic stabilization upon distor-
tion. The effect can also occur due to degeneracy caused by electrons in the t2g orbitals.
However, in such cases, the effect is less noticeable, as there is minimal lowering of
repulsion when the ligands are moved further away from the t2g orbitals, which do not
directly point at the ligands. Similarly, in tetragonal complexes, the distortion is subtle
because there is less potential for stabilization because the ligands are not directly
oriented toward the orbitals.
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APPENDIX E

Computational Implementation

Several specific, yet crucial considerations were incorporated into the codes
to adequately address the effects studied in this dissertation. By adding certain extra
considerations to the programs, it was possible to achieve the results presented in this
work. Here, these additional details will be prompted.

E.1 Quanty

In Quanty [57], various versions of the code are dedicated to computing results
for X-ray absorption spectroscopy, including spectra, expected values, and eigenvectors.
These capabilities allow for a wide range of results, providing robust evidence of the
influence of the effects explored in this work. However, implementing these effects in the
code is not straightforward. For a better understating of this powerful toll, this section
will be divided into explaining the basic concepts, examples of these basic concepts,
and the illustration of how the implementation of the effects studied in this dissertation
was given.

E.1.1 Basic concepts of Quanty

First it is necessary to define the basis set of the studied system. Quanty needs,
at a minimum, the number of Fermionic and Bosonic modes. For clarity and ease in
creating operators in subsequent steps, these modes can be grouped into shells. For
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instance, a d-shell can be characterized by two groups: one that contains electrons with
spin up and the other with spin down.

Another crucial component are Operators, defined in Quanty using second
quantization. Any operator can be expressed in a general form like:

Ô = α(0,0)1

+
∑
i

[
α
(1,0)
i a†i + α

(0,0)
i ai

]
+
∑
ij

[
α
(2,0)
ij a†ia

†
j + α

(1,1)
ij a†iaj + α

(0,2)
ij aiaj

]
+ · · ·

For example, the creation operator on the 0 orbital can be written using the NewOpera-
tor() function. Quanty also allows the creation of wave functions and the calculation of
their related eigenstates, as well as the determination of expectation values for a given
wave function. Wave functions can be generated from a string containing 1’s (occupied
orbitals) and 0’s (unoccupied orbitals). For instance, a wave function representing a
single electron in a px orbital with a spin down state is created considering the number
of Fermionic and Bosonic modes, and the definition on how the orbitals are occupied,
for example, 000010.

Given an operator Ô, one can calculate the eigenstates related to the operator
using the Eigensystem() function. This function uses iterative methods to obtain results
and requires a starting point as the main input. It is not mandatory to have a set of
starting functions as input, but rather a set of restrictions, as used in this work. For
example, to obtain the eigenstates related to the Hamiltonian Ĥ of a system with a basis
size of Npsis = 210 states, considering that all orbitals in the d shell are filled with an
occupation range of 2 to 2, such as:

StartRestrictions = {NFermions, NBosons, {"1111111111",2,2}}

Psi_list_d = Eigensystem(H, StartRestrictions, 210)

where NFermions and NBosons are the number of Fermionic and Bosonic modes.
Therefore, with this information, one can calculate expectation values, mathematically
expressed as:

〈ψi| Ô |ψj〉 =
∫
r1

∫
r2

· · ·
∫
rn

ψ∗
i (
r1, 
r2, · · · , 
rn) Ôψj (
r1, 
r2, · · · , 
rn) dr1dr2 · · · drn

In Quanty, complex conjugates are automatically assumed, and expectation values
are implemented simply as the multiplication of single, or sets, of wave functions and
operators. For example, to find the expected energy value of a given system , it is
sufficient to multiply it by the wave functions obtained, such as:
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for i, Psi in ipairs(Psi_list_d) do

exp_val_E = Psi * Hamiltonian * Psi

end

Finally, considering the spectroscopy technique under study, obtaining spectra
in Quanty can be done in two ways: by obtaining it step by step, in other words, in a
more "old school" way, or using the method already implemented in Quanty way, the
CreateSpectra() function. This function takes the Hamiltonian Ĥ, the transition operator
T̂ that better describes the transition related to the specific technique that is being
simulated, and the list of calculated wave functions as arguments. The spectrum can
be further customized by specifying an energy range, the number of points, Lorentzian
broadening for simulating lifetime, and the restrictions established to the specific type of
spectra desired.

E.1.2 Implementing the basic concepts of Quanty

Figures 74–84 present the basic concepts that are needed to properly use
Quanty. Beginning with the most simple things such as defining a shell, creating an
operator or a wave function, as presented in Figures 74, 75 and 76. Or even more
elaborated aspects, like the creation of the basis of the system considered, calculating
the eigenvalues of the system’s Hamiltonian and finally creating the spectra to the
considered technique, as showcased in Figures 77, 78 and 79.

Figure 74 – This figure visually explains the crucial step of grouping Fermionic modes within a
d-shell in Quanty. This grouping is fundamental for accurately defining the basis set
of the studied system.
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Figure 75 – Illustration of creating a creation operator in Quanty.

Figure 76 – Creation of a wave function for a single electron in a px orbital with a spin down
state.

Figure 77 – Specifying input for eigenstate calculation in Quanty.

Figure 78 – Illustration of the calculation of the expected value of energy of a given system in
Quanty.
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Figure 79 – Creating the a spectrum in Quanty with previously defined and obtained parameters
such as the Hamiltonian, transition operator and basis size, it also includes the
spectrum layout editing.

E.1.3 Implementing the covalence and symmetry effects in Quanty

To address the covalence effect, the code incorporates concepts from a software
called Crispy [142], which utilizes a graphical user interface to calculate core-level spec-
tra using semi-empirical multiplet approaches. In this case, the covalence is accounted
by the implementation of the configuration interaction method, where it is considered
a number of electronic configurations that commands which kind of configuration it
is being considered in the calculations, for example, 1 electronic configuration stands
for the ionic state, from 2 electronic configurations and so forth it is being considered
electron exchange. Also there are sets of restrictions to let the code "know" when to
include the charge transfer effects (Δ and hybridization parameters, for example) in
the Hamiltonian evaluation. Figure 80 illustrates the set of restrictions in the code that
accounts for covalence effects.

Figure 80 – Covalence effects in Quanty code. There are three restrictions present here; the first
two accounts for the initial and excited states of the system. The third one defines
whether there is any charge transfer occurring. It dictates how the ligand electrons
should vary according to the number of electronic configurations.

One of the gracious aspects about Quanty is the the flexibility to modify its
code according to specific needs. That is the reason why it was possible to include
the symmetries treated in this dissertation. Originally, Quanty only supported Oh and
D4h symmetries, among others. To account for symmetry effects, the code utilizes tools
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for writing crystal field and hybridization operators, crucial components dependent on
symmetry in calculations. Two key aspects of the code are relevant here: crystal field
and hybridization evaluations. For the crystal field, the potential that describes this
interaction in Quanty is expanded on the renormalized spherical harmonics basis and
denoted as potential Ak,m. Figure 81 shows the original Ak,m values for octahedral and
tetragonal symmetries. Although in the case of the Oh symmetry there is no problem in
the definition of this potential, for the tetragonal symmetry there are some things that
should be considered. For example, it does not account for the distortion parameter β
that was shown in Appendix C, and also, not always all three crystal field parameters
(Dq, Ds and Dt) are available in the literature. Because of that, a way to define the
crystal field parameters in function of Dq (it is more easily found) and also include the
distortion parameter to make it more general and applicable to any system that displays
the D4h symmetry was developed.

Figure 81 – Showcase of how the original effective crystal field potentials are defined for the
Oh and D4h symmetries. They are expanded on renormalized spherical harmonics
basis.

From this it is possible to make some calculations to obtain the desired potential.
Considering Akm_D4h:

A4,0 = 21Dq − 21Dt,

A2,0 = −7Ds,

A4,4 = A4,4 =
3

2

√
70Dq.

(E.1)

Remembering the results from Appendix C.2 for the values of Dq, Ds and Dt for the
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D4h symmetry,

Dq =
1

6

Ze2

a5
〈
r4
〉
,

Ds =
2

7

{
ze2

a3

[
1− 1

β3

] 〈
r3
〉
+

Ze2

a5

[
−1 +

1

β5

] 〈
r4
〉}

,

Dt =
2

21

Ze2

a5

[
1− 1

β5

] 〈
r4
〉
.

(E.2)

where β represents the distortion parameter of the apical oxygens as it was already
delved in Appendix C. So, there will be the following for the Ak,m’s, since Dt =
4
7
Dq

[
1− 1

β5

]
:

A4,0 = 21Dq − 21
4

7
Dq

[
1− 1

β5

]
= 21Dq − 12Dq +

12

β5
Dq

= 9Dq + 12Dq
1

β5

= 3Dq

(
3 +

4

β5

)
.

(E.3)

In the case of A2,0, if β → 1 : Ds → 0, but if β → ∞

Ds∞ → 2

7

Ze2

a3
〈
r2
〉− 12

7
Dq.

Thus,
2

7

Ze2

a3
〈
r2
〉
= Ds∞ +

12

7
Dq. (E.4)

With this, it is possible to write Ds in terms of this new parameter called Ds∞ and Dq.

Ds =

(
Ds∞ +

12

7
Dq

)(
1− 1

β3

)
+

12

7
Dq

(
1

β5
− 1

)
. (E.5)

And, finally, rewrite A2,0 with this new definition,

A2,0 = −7Ds = (−7Ds∞ − 12Dq)

(
1− 1

β3

)
− 12Dq

(
1

β5
− 1

)
= −7Ds∞ − 12Dq + 12Dq + (7Ds∞ + 12Dq)

1

β3
− 12Dq

1

β5

A2,0 = −7Ds∞ + (7Ds∞ + 12Dq)
1

β3
− 12Dq

1

β5
.

(E.6)

In addition, as shown in this work, both D4h and C4v symmetries have the same
crystal field unfolding, which means that the Ak,m related to the C4v symmetry is the
same as for the D4h case but without the β distortion parameter. Since for this symmetry,
it is more easily found the three crystal field parameters (Dq, Ds and Dt coincidentally),
the original form of the potential was kept. Thus, Figure 82 illustrates how the crystal
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Figure 82 – Adapted crystal field potentials for the symmetries considered in this work (D4h,
C4v) with the inclusion of the distortion parameter beta and the created crystal field
parameter Ds∞.

field potential expanded on renormalized spherical harmonics are written in the program
utilized to obtain the XAS results for these two reduced symmetries.

Moving forward, the hybridization evaluation takes into account two crucial
factors to ensure the accurate treatment of symmetry. First there is the definition of
the operators associated with the specific unfolding of orbitals within each symmetry.
For the symmetries D4h and C4v, four orbitals come into play, namely A1g, B1g, B2g,
and Eg. Furthermore, it is imperative to obtain precise hybridization energy values for
each of these orbitals. These energy values are expressed in terms of Slater-Koster
integrals [68] and can vary depending on the specific case. Regarding the operators,
the existing implementation for D4h symmetry serves as a foundation. Taking advantage
of the shared orbital unfolding between D4h symmetry and the square pyramidal case,
the same operator definitions were seamlessly applied. This consistency is illustrated in
Figure 83, where the operators for this section are depicted alongside the definition for
octahedral symmetry.

Figure 83 – Illustration showcasing the operators created for hybridization within the context of
D4h symmetry, leveraging the shared orbital unfolding with the square pyramidal
case. The figure also includes the definition of symmetry for octahedral symmetry,
providing a comprehensive overview of the implemented approach.

Concerning the definition of orbital energies, in both scenarios, the eigenvalues
of the charge transfer matrix were computed. This matrix was constructed utilizing the
findings detailed in the Slater-Koster article [68], augmented with additional elements,
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such as the distortion parameter β, to align with the specific objectives of this study.
Figure 84 encapsulates the comprehensive definitions of all symmetries examined in
this dissertation.

Figure 84 – Illustration depicting the determination of orbital energies in function of the Slater-
Koster integrals. They were computed considering the elements required to approxi-
mate the symmetry being studied, such as the distortion parameter β in D4h.

E.2 MATLAB

In the case of the MATLAB code [78], it was developed with the intuit of obtaining
results regarding the XAS technique, more precisely the O 1s edge of the compounds
studied in this work. The code was originally already existent in the group, however,
it did not have the covalence implemeted in the way possible to control the number
of electronic configurations considered for each calculation, like it is done in Quanty.
According to a determined number of electronic configurations, the program created
basis files to be used in the evaluation of the ground and excited states. It is possible
to consider from only 1 configuration until the maximum number required of ECs to
account for all possible electron transitions until the d shell is complete.

The program encompasses four key functional steps. It begins with an initial
filling state that corresponds to the nominal valence pertinent to the studied system,
generating basis files. With these basis files, along with variable parameters, it is possible
to create the ground and excited states for the system. This involves constructing the
Hamiltonian and determining the eigenvalues and eigenvectors for both states. In
addition, the program involves creating transition operators specific to the technique
employed. Notably, for the focus of this thesis on X-ray Absorption Spectroscopy, the
code simulates the oxygen 1s-edge of the compounds presented in Chapter 4. Having
covered two steps of the code, the ground and excited states of the system, along with
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their energies obtained through the diagonalization of energy matrices, are now known.
This knowledge enables the calculation of intensities crucial to the generation of the
final spectrum. The inclusion of Lorentzian and Gaussian functions to address lifetime
and resolution effects results in the attainment of the desired outcomes, and this is
done through a specific function created in the code. Originally, the program already
contained the octahedral symmetry in the evaluations. In this case, it is a bit more
simple to include the reduced cases, although it is similar to what was done in Quanty.
Basically, it is required to modify the function responsible for creating the Hamiltonian
operator by including the crystal field and hybridization factors that can be influenced by
the symmetry being considered. Regarding the crystal field part, the results obtained for
the parameters Dq, Ds, and Dt, where the latter two are written in terms of Ds∞ and
Dq. Then, the contribution to the crystal field contribution is built by identifying in the
basis which type of orbital the electrons present are and relating them with the correct
relation of crystal field parameters, which can be seen in equation C.30, in Appendix
C.2. Since it is quite an extensive code line, it will not be present here. Finally, to include
the hybridization correctly according to the symmetry considered, a similar process was
used. There is no need to create operators; however, the charge transfer process is
accounted for by orbital energies written in terms of the Slater-Koster integrals [68], just
as shown in Figure 85.

Figure 85 – Illustration on how the covalence is accounted in the MATLAB code. By defining a
number of electronic configurations, the program is able to create the basis files that
will be used to create the information about the ground and final states.

With all four steps here, it is possible to obtain information regarding ground and excited
states like mean energy, number of electrons, and, of course, the XAS spectrum related
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to the O K-edge.
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APPENDIX F

Curricular Data

F.1 Events Attended

1. IX Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Brasília, Brazil.
Poster presentation: Covalence Influence On X-ray Absorption Spectra On The 2p
Edge Of Transition Metal Oxides (2022).

2. IV Workshop of the Graduate Program in Physics of UFPR. Curitiba, Brazil.
Poster presentation: Covalence Influence On X-ray Absorption Spectra On The 2p
Edge Of Transition Metal Oxides (2022).

3. Brazilian Physics Society Autumn Meeting. Ouro Preto, Brazil. Oral presenta-
tion: L2,3 X-ray absorption spectra of transition metal oxides (Mn, Fe, Co): The
influence of covalence effects (2023).

4. 41st International Conference on Vacuum Ultraviolet and X-ray Physics
(VUVX 2023). Campinas, Brazil. Oral presentation: L2,3 X-ray absorption spectra
of transition metal oxides (Mn, Fe, Co): The influence of covalence effects (2023).

5. 15th International Conference on Electronic Spectroscopy and Structures.
Oulu, Finland. Poster presentation: L2,3 X-ray absorption spectra of transition
metal oxides (Mn, Fe, Co): The influence of covalence effects (2023).

6. XVIII Escola Brasileira de Estrutura Eletrônica. Campinas, Brazil. Poster pre-
sentation: Covalence effects on L2,3 X-ray absorption spectra of transition metal
oxides (V , Mn) with different symmetries (2023).
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7. V Workshop of the Graduate Program in Physics of UFPR. Curitiba, Brazil.
Oral presentation: Covalence effects on L2,3 X-ray absorption spectra of transition
metal oxides (V , Mn) with different symmetries (2023).


