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RESUMO

Na última década os navegadores Web se tornaram um dos recursos indispensável para
usuários acessarem a Internet. Novos recursos e funcionalidades foram introduzidos,
visando trazer mais praticidade para os usuários. O WebAssembly é um formato que foi
criado para a execução de conteúdo dinâmico em navegadores web. Sendo um formato
binário e portátil que vem sendo bem aceito devido a oferecer ganhos de desempenho em
comparação com as soluções existentes. Atualmente o WebAssembly não está mais limitado
ao uso em aplicações Web, sendo adotado por um conjunto de áreas que conseguem
explorar características específicas do formato para algum tipo de ganho. Novos recursos
que visam trazer praticidade para os usuários também geram novas superfícies de ataque
que podem ser exploradas para comprometer a segurança do ambiente. Considerando
estratégias de detecção de intrusões em um navegador Web, as estratégias de detecção
estão limitadas à identificação de ataques que exploram JavaScript (JS) ou extensões.
A detecção de anomalias em aplicações WebAssembly é pouco explorada na literatura.
Trabalhos existentes têm foco na segurança do formato, adição de recursos e otimização do
compilador e não na detecção de aplicações maliciosas que poderiam estar sendo executadas
no ambiente. Visando esta lacuna na literatura, este trabalho visa propor uma estratégia
de detecção de intrusão baseada em anomalias utilizando dados categóricos para aplicações
WebAssembly. Através do uso de modelos de aprendizado de máquina, será realizada a
classificação dos dados e detecção de anomalias. O recurso observado para a realização
deste processo são as chamadas WebAssembly System Interface (WASI), que são chamadas
para o suporte em tempo de execução WebAssembly análogas às chamadas de sistema em
um sistema operacional. As chamadas serão modeladas usando dados categóricos, uma
abordagem que vem sendo usada com sucesso na identificação de anomalias em outros
contexto e que, apesar de promissora, ainda é pouco empregada em detecção de intrusões.
A representação dos dados considerando a categorização permite a adição de características
que não estão diretamente associadas com as chamadas WASI. Por fim, será possível
discutir como estas representações podem ser melhor utilizadas no contexto de segurança
computacional.

Palavras-chave: Detecção de Anomalias, WebAssembly, Aprendizado de Máquina e Dados
Categóricos.



ABSTRACT

In the last decade, Web browsers have become one of the essential resources for
users to access the Internet. New features and functionalities were introduced, aiming to
bring more practicality to users. WebAssembly is a format that was created for executing
dynamic content in web browsers. Being a binary and portable format that has been
well accepted due to offering performance gains compared to existing solutions. Currently
WebAssembly is no longer limited to use in Web applications, being adopted by a set of
areas that are able to exploit specific characteristics of the format for some type of gain.
New features that aim to bring convenience to users also generate new attack surfaces that
can be exploited to compromise the security of the environment. Considering intrusion
detection strategies in a Web browser, detection strategies are limited to identifying attacks
that exploit JS or extensions. Anomaly detection in WebAssembly applications is little
explored in the literature. Existing work focuses on format security, adding features and
optimizing the compiler and not on detecting malicious applications that could be running
in the environment. Aiming at this gap in the literature, this work aims to propose an
intrusion detection strategy based on anomalies using categorical data for WebAssembly
applications. Through the use of machine learning models, data classification and anomaly
detection will be carried out. The resource observed for carrying out this process are
WASI calls, which are calls to runtime support WebAssembly analogous to system calls
in an operating system. Calls will be modeled using categorical data, an approach that
has been used successfully in identifying anomalies in other contexts and which, despite
being promising, is still little used in intrusion detection. Data representation considering
categorization allows the addition of features that are not directly associated with WASI
calls. Finally, it will be possible to discuss how these representations can be better used in
the context of computational security.

Keywords: Anomaly Detection, WebAssembly, Machine Learning and Categorical Data.
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1 INTRODUCTION

This thesis describes and evaluates an approach for anomaly-based intrusion detection in
WebAssembly programs, using machine learning strategies on categorical data extracted
from WebAssembly executions. This chapter presents a brief contextualization of this
research work, the situation of the environment to be explored, together with the problem
to be solved. Section 1.1 presents the contextualization of the area. Section 1.2 describes
the motivation of this thesis, and Section 1.3 presents the research hypothesis and goals,
with the description of the objective for anomaly detection in WebAssembly through the
use of machine learning strategies on categorical data.

1.1 CONTEXTUALIZATION

The need for a tool to enable browsing and retrieval of content on World Wide Web
(WWW) was solved in 1990 with the first web browser (Grosskurth and Godfrey, 2006).
This application is responsible for retrieving the content of a web page when making
a request to a server and presenting this information in a user-friendly way. Currently
these applications are not limited to desktops (48.8%) having a relevant presence when
considering mobile (48.6%) and tablet (2.5%) devices, with 4.9 billion users in Q3 2020
(StatCounter, 2020; Internet World Stats, 2020).

The wide use of web browsers contributed to the development of numerous features
to bring convenience to users and developers. Feature-rich browsers constitute sizable
attack surfaces, prompting the need for security measures such as isolation between the
different pages accessed, treating each page as a separate application (Grier et al., 2008;
Reis et al., 2019). Even so, problems still exist, such as malicious extensions, application
limitations, and different interpretations of the security policy of the web browser (Ter Louw
et al., 2008; Karami et al., 2020).

While the early web was based on static content, active/dynamic content in which
the client-side (browser) runs a script to update content in the page is now pervasive
(Stock et al., 2017). An important aspect of the web environment is the programming
languages used for the development of applications and services, as they define and limit
the operations to be carried out, and consequently the security policies. Historically, three
languages have been proposed with a focus on client-side web development, these being:
Java applets, Flash, and JavaScript (JS) (Golsch, 2019). The Java applet and Flash have
been discontinued for web applications due to performance and security issues, respectively.
JS then earned exclusivity on web browsers, this factor was further aided by the growth
that the Internet has had in the last years (Feldman, 2019).

JS is the major player in the Web environment and is a language easy enough for
developers to build any type of small/medium application. However, when the front-end
requires a more complex application that needs to be efficient and secure, some problems
related to JS appear. Two main problems found in JS are the lack of types and runtime
interpreter overhead (due to the lack of a binary format). These problems were identified
in 2015, leading major developer organizations to propose WebAssembly as an alternative
to overcome the limitations found in JS.

WebAssembly had its first version released in 2017 with the goals of safeness, speed,
and portable semantics (Golsch, 2019). It is important to note that WebAssembly is not
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intended to be a replacement for JS, but rather to improve specific issues. WebAssembly
allows developers to use a wider range of programming languages in the web environment,
being faster to download, compile, and run (Battagline, 2021).

WebAssembly is a portable binary code format designed for safe and efficient
execution, with a compact representation (Rossberg, 2022). It is typically used as an
executable code format generated by compilers for high-level languages such as C, C++,
Go, and Rust. In this way, WebAssembly allows applications and libraries developed
in these languages to be executed in Web browsers (Wasm’s initial target) or in native
environments (Hoffman, 2019). WebAssembly bytecode typically runs inside a sandbox
called WebAssembly runtime. This design choice allows applications to run on a wider
range of platforms, reduces the size of messages to be exchanged with the server to retrieve
content, and provides greater security for the client environment running the content.

Attackers may try to exploit WebAssembly features and vulnerabilities to carry
out attacks with the intent of compromising the web browser and/or the underlying host.
In a web browsing session, it is not uncommon for a user to have several tabs or windows
open, some of which may hold sensitive data (such as authentication tokens, credit card
and other financial information, or personally identifiable information). A successful attack
against the browser may put such information at risk, and even enable the attacker to
access external resources (such as local files) visible to the browser (Guha et al., 2011;
Šilić et al., 2010).

In the client-side critical information is stored and handled. In the cloud environ-
ment, the risk is associated with applications running in the same environment, where one
vulnerable WebAssembly application could risk the security of the environment, putting
the cloud environment at risk.

Intrusion Detection System (IDS) is a strategy used to monitor and identify
malicious activities in an environment. The first approach exploited system logs to identify
unwanted activity (Anderson, 1972, 1980). Over the years, two sets of intrusion detection
strategies were defined, having wide use to detect malicious activities (Liu et al., 2018),
namely: (1) signature-based (or misuse-based) detection, which compares events observed
in the system to a database with information on known attacks; and (2) anomaly-based
detection, which seeks to characterize a default behavior for the system or applications,
treating inconsistencies (anomalies) as unexpected behavior or attacks to the system.

Anomaly-based detection is a common approach for intrusion detection in envi-
ronments such as cloud platforms, virtualized environments, Android systems (Liao et al.,
2013; Castanhel et al., 2021; Lemos et al., 2023). However, so far it has been little used
for detecting malicious behavior in WebAssembly code, with most proposals focusing on
the static evaluation of binaries. The flexiblity of the WebAssembly environment (where
an application can be executed inside a web browser, on the cloud, or on a local host) and
its security implications are also largely unexplored.

A strategy that has gained popularity in recent years is the use of Machine
Learning (ML) templates to identify attacks. These techniques can be used as an anomaly
detection strategy, as the method learns the behavior of the application through a dataset.
Such methods offer some advantages in comparison with other strategies (1) after the
process of learning, classifying an entry is quite efficient, (2) the evolution of the behavior
can be considered, and (3) if only one type of behavior is known (supposing that only one
good behavior of the applications is know) the strategy still can be applied.

The key factor behind any anomaly detection method consists of the data use
and representation applied. A well-fitted representation of the data will directly impact
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the capacity of the models to learn and understand the sample patterns. Categorization
is one option of data representation that allows the detection of anomalies and outliers
through the use of categories. It is a recurring approach in other fields of research, such as
economics and statistics (Powers and Xie, 2010).

The use of categorical data representation for cybersecurity solutions is limited, and
previous proposals presented good results using this type of data representation (Bernaschi
et al., 2002). Therefore, the study of this type of representation can be interesting for
cybersecurity strategies.

1.2 MOTIVATION

WebAssembly started as a resource aimed at solving the problem of limitations and
performance of languages for web development, offering a way to develop web applications
using languages like C++, Python, Rust, and Go. Thus developers are not limited to
one language like JS to develop web applications. However, WebAssembly also expanded
into a “sandboxed environment”, which aims to improve the cybersecurity of the runtime
environment, expanding the use of the format outside of the Web browser (Battagline,
2021).

Considering the adoption and expectations for WebAssembly, targeting cyberse-
curity in this new context is essential. Strategies for identifying anomalies using machine
learning have become popular in recent years due to the high rate of identification and
adaptation to new attacks. With this motivation, the focus of the research consists of the
proposal of a new strategy for identifying anomalies in WebAssembly.

In the literature, approaches focused on cybersecurity in WebAssembly are limited
to the development of new applications in a safe way, or dealing with problems present
in WebAssembly compilers. The identification of attacks performed by WebAssembly
applications is not yet an active research topic. An interesting perspective for anomaly
detection with the WebAssembly consists of the WebAssembly sandbox. Interactions
from the sandbox with the environment are required to use an Application Programming
Interface (API) that generates WebAssembly System Interface (WASI) calls to access
system resources. The monitoring of this API brings opportunities to better understand
the behavior of applications and allows the identification of threats.

The categorization of WASI calls provides an opportunity to introduce extra
information for the algorithms used in the anomaly detection process. Through cate-
gorization, extra operation and functionality information can be presented during the
identification process. This information allows a better understanding of the process of
executing WebAssembly applications. The use of categorical data also allows us to better
understand how the use of categorical information can improve cybersecurity solutions.

Considering proposals for anomaly detection and outlier detection, the use of
categorical data representations appears to be a good fit for the problem to be explored.
As categorical data representation is quite popular in other fields of research and machine
learning solutions can take advantage of this representation, we intend to assess the use of
categorical data representation for intrusion detection in WebAssembly applications.

1.3 RESEARCH GOALS

WebAssembly has gained popularity due to its performance for web applications and the
sandbox environment. Considering the cybersecurity side of WebAssembly applications,
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strategies for anomaly detection are limited. The available strategies focus on identifying
compiler threats, static evaluation of binaries, format flaws, or external flaws that do not
directly depend on WebAssembly.

A WebAssembly application uses WASI calls to request access to Operating System
(OS) resources, providing a means for monitoring running applications. This feature allows
Host-based Intrusion Detection System (HIDS) strategies to use this information offered
between the application’s interactions with the environment to identify anomalies that
could be attacks or unexpected behavior.

Thus, the main goal of the work is to propose and evaluate a strategy for anomaly
detection in WebAssembly applications. The hypothesis is that it is possible to differentiate
between benign and malicious WebAssembly applications based on the WASI calls they
invoke.

To identify such behaviors, the categorical representation of collected data appears
to be promising for identifying outliers and anomalies. Categorical approaches define
numerous strategies to find such behaviors, with wide use due to the type of data found
when dealing with this kind of problem. In the social sciences, these models are used due
to the type of data, and problems such as fraud identification exploit these strategies. In
computer security, few cases explore categorical strategies despite their wide use in other
areas.

By approaching WASI calls in a categorical way, a new interpretation of the data
can be performed, in addition to allowing the application of outlier identification models
aimed at categorical data. The use of categorical strategies also allows a new layer of
abstraction for the data. This level of abstraction allows calls like fread and read to be
classified as similar, not creating an additional level of complexity on the dataset. The
identification process with ML models also takes advantage of this representation format,
since information not present directly in the dataset can be added.

To achieve the proposal, the following specific objectives were defined:

• The construction of a dataset with samples that represent WebAssembly applica-
tions;

• Evaluate the use of ML models for anomaly detection;

• Verify the effectiveness of using WASI calls to identify attacks in WebAssembly;
and

• Evaluate the effectiveness of the use of a categorical data representation in
cybersecurity.

1.4 OUTLINE

This document is organized as follows. Chapter 2 presents the theoretical foundation.
Chapter 3 presents a contextualization of WebAssembly concept. Chapter 4 discusses how
WebAssembly is being used, its cybersecurity problems, and its limitations. Chapter 5
details the proposal for an anomaly detection solution for WebAssembly. Chapter 6
presents the evaluation the proposal. Finally, we conclude our work in Chapter 7.
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2 THEORETICAL FOUNDATION

This chapter presents the theoretical foundation for understanding this work. Section 2.1
reviews Intrusion Detection System (IDS). Section 2.2 presents an overview of web browser
security. Section 2.3 describes system calls and exemplifies their functionality. Section 2.4
highlights machine learning concepts, focusing on the strategies used in this work.

2.1 INTRUSION DETECTION

An intrusion is a violation, misuse, or exploitation of a policy for the purpose of obtaining
some kind of benefit. This can be performed by an intruder either remotely or locally. In
order to protect environments and users, intrusion identification strategies were developed
(Stallings et al., 2012). An IDS is a security mechanism with the purpose of monitoring
networks, hosts, and/or applications looking for signs of attacks or intrusions. When an
indication of an attack is observed, an alert is issued for further analysis, and in some
cases the system can be programmed to take active countermeasures, like adjusting the
firewall to stop the attack.

Data source Sensors Analyzers Managers Operator

Administrator

Activities Events Alerts

Notification

Reply

Configuration

Security policies

Figure 2.1: Generic architecture of an IDS.
Source: (Erlinger and Wood, 2007).

Figure 2.1 presents a generic architecture of an IDS, which comprises sensors,
analyzers, and managers. The sensors are responsible for observing system activity from
data sources (such as the network or running applications) and extracting events of interest
which are sent to the analyzers, which will issue alerts for characteristics violating the
security policies. The generated alerts are received by the managers, which will decide
what action to take and notify the operator if the IDS components follow security policies
defined by an administrator.

Ideally, the analysis of events of interest results in a true positive, when an alert
is generated for a malicious event, or in a true negative, when an alert is not generated for
a benign event. However, an IDS is subject to error during the detection process. This
factor is commonly due to the complexity of the systems and operations being performed.
Thus, the analysis of events can also result in a false positive, when an alert is generated
for a benign event, or in a false negative, when an alert is not generated for a malicious
event (or for other malicious behavior that the sensors fail to capture correctly). In this
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way, the constant updating and study of new strategies contributes to the improvement of
the identification accuracy.

An IDS tries to distinguish different behaviors and patterns in order to identify
unwanted actions. Two strategies are popularly used to identify threats (Lam, 2005).
Signature-based intrusion detection uses a database of known attack samples to identify
unwanted behavior. These samples are known as signatures and are intended to store
information that represent threats or known attack behavior. On the other hand, an
anomaly-based IDS uses statistical models to define what would be a normal/usual activity
in the system/environment. Thus, an anomaly portrays some activity that deviates from
the previously defined normal model (Debar et al., 1999; Yassin et al., 2013).

It is important to note that the models are not limited to just these two strategies.
Stateful protocol analysis that can trace a protocol state to represent the operations to
be performed, and hybrid approaches that use mixed strategies, are also explored in the
literature. Table 2.1 briefly summarizes the four strategies presented.

Signature-based Anomaly-based Hybrid Stateful protocol analysis

Pros
• Simple and efficient

method
• Detailed analysis

• Effectiveness to identify
unknown attacks

• Less dependency on the
system type

• Explores more than one
method for better
efficiency

• More complete representa-
tions in relation to other
strategies

• Better understanding of
states

• Distinguish unexpected se-
quences of commands

Cons
• Ineffective for identifying

new or unknown attacks
• Little understanding of

states and protocols
• Maintaining and updating

signatures is difficult

• Assessment limited to
training dataset

• Difficult to work with large
and real-time datasets

• Greater limitations due to
model specialization

• Resource consumption to
evaluate data

• Unable to inspect similar
attacks

Table 2.1: Intrusion detection strategies.
Source: Based on (Liao et al., 2013).

Intrusion detection systems can be classified according to their data sources into:
Host-based Intrusion Detection System (HIDS) and Network Intrusion Detection System
(NIDS). HIDS is aimed at monitoring one or more hosts. It observes the file system, system
calls, processing, memory operations, applications, among others, looking for changes or
irregularities that may be related to a breach of security policies (Brown et al., 2002; Liu
et al., 2018).

NIDS is an approach to monitor the network, usually by observing network
traffic. Different strategies are possible to observe this environment, such as using malware
signatures to perform monitoring (Kumar, 2007). This network-oriented approach must
place sensors in strategic positions, allowing inbound, outbound, and local network
operations to be observed.

Studies about IDS solutions are motivated by (I) speed in identifying attacks,
identifying and blocking an attack before any damage is done; (II) an efficient detection
system; and (III) in addition to performing detection, the system must be able to collect
information and store it (Stallings et al., 2012).
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2.2 BROWSER SECURITY

A browser or “web browser” is an application intended to allow access to the World Wide
Web (WWW). Its ultimate goal is to retrieve and present remote content in a user-friendly
way. Due to their importance, complexity, and widespread use, these applications receive
a great deal of attention from attackers, who aim to exploit them to gain access, extract
information, or even carry out phishing attacks on users (Reis et al., 2009).

Web Browsers are used in a wide range of devices, including desktops, laptops,
TVs, and smartphones. This also reflects the complexity behind these applications that
will run a multitude of functionalities for users, without the requirement of external
applications and dependencies. Therefore, today these applications are not only used
to browse the Internet, but also for querying databases, processing data, and running
operations that in the past would require an entire Operating System (OS) (Taivalsaari
et al., 2008).

2.2.1 Browser Architecture

A browser is composed of an interface, which is responsible for the interaction between
the user and the application, and an engine, which will interconnect the interface with
other components such as network, storage, and interpreters. The engine is responsible
for the heavy work of sending and receiving messages, storing desired content, and
executing/interpreting content found on web pages to present to the user.

Figure 2.2 presents the architecture of the Firefox web browser. The top-down
view, describes how a user interacts with the browser from the Interface to the engine.
This architecture can vary a little in other browsers, it is also possible to highlight that
the position of each resource is a representation of its “desired position”. Numerous
components are needed in several regions of the application and, consequently, isolating
them in a single position turns out to be impossible (Grosskurth and Godfrey, 2006; Barth
et al., 2008).

Figure 2.3 shows a five-step process in how a browser processes web content by
interacting with a tree data structure known as Document Object Model (DOM) (Mozilla,
2022a). The DOM is an interface that handles Extensible Markup Language (XML) and
HTML after the content has been loaded and parsed. Cascading Style Sheets (CSS), XML,
HyperText Markup Language (HTML), and JavaScript (JS) manipulate web page contents
by reading and modifying DOM attributes.

JS uses the DOM Application Programming Interface (API) to obtain knowledge
about the components of a web page (other components as WebAssembly also do the same
process). This allows scripts running on a web page to access, manipulate, and perform
the operations expected from the web page (Mozilla, 2022b). As shown in Figure 2.3,
DOM is created after the parsing step, and ends up being accessed both by the compiler
and by other components of the page to fulfill its duties.

2.2.2 Execution Environment

Browsers use the same engine to run WebAssembly and JS applications, despite the
different execution models (Yan et al., 2021). JS employs dynamic typing, with variable
types being inferred by the runtime during execution. As a consequence, optimization is
a complex task since each time a function or variable is being used, the typing must be
checked, to guarantee that JS can understand what kind of information it is dealing with.
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Figure 2.2: Architecture of Firefox web browser.
Source: Based on (Grosskurth and Godfrey, 2006; Zhang et al., 2015).
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Figure 2.3: Representation of DOM.
Source: Built using information from (Mozilla, 2022a).

This problem does not occur in WebAssembly, in which four variable types exist, and the
compiler does not have to worry about type changes during the execution.

Just-In-Time (JIT) compilation was proposed for JS before the emergence of
WebAssembly, with the idea of using binary code to improve performance. Thus, functions
that are repeated could be compiled to get a performance gain. This solution was
implemented and is being used, but it is limited due to type changing, since there is the
possibility of changing the type of a variable in a function at any time. Another relevant
factor contributing to performance overhead in JS is the existence of a garbage collector,
responsible for managing memory usage.

Unlike JS, WebAssembly does not need to be parsed at runtime as the bytecode is
already compiled to run in the WebAssembly virtual machine. Of course, if an application
in WebAssembly needs to import some functionality from JS, the limitations of the JS
runtime will appear. As a linear memory model is used in WebAssembly (detailed in
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Section 3.1), a garbage collector does not exist. Operations in memory by consequence turn
out to be similar to operations performed on a buffer in dynamically allocated memory
(Yan et al., 2021).

2.2.3 Browser Security

A web browser interacts with external resources, being responsible for receiving and
executing external commands (without user control). This application also communicates
through encrypted channels (which limits the observation by a defender), performs routines
in the background, and executes instructions that may require sending information (Alcorn
et al., 2014). The main security feature of a web browser is the Same Origin Policy (SOP).
This control mechanism restricts the interaction of resources with different origins.

The two main attack vectors against web browsers are (I) software vulnerabilities,
i.e., bugs with cybersecurity implications (this is not the focus of this work); and (II)
browser features that can be exploited for a malicious purpose, such as executing malicious
JS programs (Bandhakavi et al., 2010).

Well-known attacks exploiting browser features include Injection attacks, where
codes and commands are embedded in requests (similar to SQL commands, and stack-
smashing), Cross-site reference forgery (XSRF) that steal cookies from other tabs, Cross-site
request forgery (CSRF) that replaces content from one page to redirect the user to another
page. However, such attacks require the user to access or run content from a specific page
(Wadlow and Gorelik, 2022).

An assessment of vulnerabilities found in web browsers is presented by (Šilić et al.,
2010). The web browsers are monolithically structured and suffer from problems found in
the sandbox, cross-site attacks, and session hijacking. However, it is possible to point out
that recurring vulnerabilities in the literature have already been fixed in the most popular
web browsers.

Due to the popularity of JS, attackers also aim to exploit it to carry out attacks.
(Fraiwan et al., 2012) presents a proposal aimed at identifying attacks that use JS. The
dataset used in the study is small, with only 6.7 k application samples. The proposed
approach was able to reduce the number of false positives and false negatives through the
use of 32 features, some of them already used in a previous work. An algorithm extracts
such information from the code and stores it for later evaluation.

With a focus on studying malicious JS, (Patil and Patil, 2017) evaluates the
semantics and syntax of malicious JS to identify relevant features when performing attack
identification. To identify attacks, the proposal uses a strategy that considers the most
frequent words, expected behavior of JS, content, and expected output of the application.
The results highlight an adequate strategy for identifying attacks with results superior to
other proposals found in the literature.

System calls can also be used for intrusion identification in web browsers (Canfora
et al., 2014; Pendleton and Xu, 2017). However, using system calls for this purpose requires
dealing with noisy data: it is necessary to collect and process all the system calls issued by
the browser, as it is unfeasible to isolate only those issued by target browser components.

2.3 SYSTEM CALLS

System calls provide an interface between applications and the operating system kernel
(Linux Programmer’s Manual, 2021b). Applications use system calls to access input/output
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devices and interact with OS abstractions (e.g., files, communication channels, processes)
and services (e.g., memory management, process scheduling). In a nutshell, when a running
application needs to do anything beyond computing with data already mapped to its
address space, it issues a system call to request the OS to intervene and perform the
operation on its behalf.

Figure 2.4 illustrates how user space applications interact with the Linux kernel.
User App1 and User App2 represent two user applications running on the OS. The difference
between these applications is the use of a wrapper functions (in this case the GNU C
library, or glibc) to execute or request a certain resource. Using wrapper functions (as
done by User App1 ) is the norm, but the Linux kernel allows system calls to be invoked
directly (this is what User App2 does).

User Space

Kernel Space

Hardware

User App1

GNU C
Library (glibc)

System Call Interface

Linux Memory
Manager IPC Manager

Virtual File
System Linux Process

Scheduler

I/O Interface Network
Interface

User App2

1. read()

2. read()

3. system_call

4. sys_read()

Figure 2.4: System calls flow on Linux.
Source: Author

An example of interaction is presented by User App1. The application invokes
the read() function from the C library (1), which in turn invokes the read() system call in
the kernel (2). This is done through the system call interface (3), which maps the call to
the internal implementation provided by sys_read (4).

A library wrapper handles the requirements before invoking a system call. The
wrapper is responsible for (Linux Programmer’s Manual, 2021a):

• Copying the call parameters to the registers where the kernel expects them;

• Trapping to the kernel, who performs the system call; and

• Checking for error conditions and propagating them back to the application.

A system call is usually associated with a set of information needed to perform a
certain task. This information is defined by function parameters, which are required to
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perform operations. The parameters will vary according to the system call, and may include
memory addresses (pointers), OS resource descriptors, resource-specific flags, resource
demands, mode, among others. Listing 2.1 shows the mmap() system call, which maps
files or devices into memory; its parameters are addr (a memory address), len (length of
the mapping), prot (protection flags), flags (flags that control aspects of the mapping), fd
(a file descriptor), and offset (the starting offset within the file).

1 #include <sys/mman.h>
2 void ∗ mmap(void ∗addr, size_t len, int prot, int flags , int fd, off_t offset ) ;

Listing 2.1: Function parameter example.

The set of system calls provided by an OS usually evolves over time, either to
support new functionalities or to provide a better interface to an existing functionality.
To ensure backward compatibility and allow gradual adoption, it is common to introduce
new system calls alongside the existing ones, keeping the old system calls in the kernel
even when newer versions are available. OSs that target multiple architectures may also
have some architecture-specific system calls.

2.3.1 Example of system call use

Listing 2.2 presents an example of an application trace obtained using the strace tool
on a Linux system. These forty-nine lines show the execution of the command cat on
a file README.md. This sequence demonstrates calling the application cat, reading the
file README.md, storing the information in memory, presenting the information to the
user and closing the application. Lines 36–45 show the system calls actually issued by the
application; lines 1–36 and 46–48 correspond to calls issued by the shell and the runtime.

1 execve("/usr/bin/cat", ["cat", "idpt-2021/README.md"], 0x7ffd366101b8 /∗ 26 vars ∗/) = 0
2 brk(NULL) = 0x5589e7532000
3 arch_prctl(0x3001 /∗ ARCH_??? ∗/, 0x7fff7a778b40) = −1 EINVAL (Invalid argument)
4 access("/etc/ld.so.preload", R_OK) = −1 ENOENT (No such file or directory)
5 openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
6 fstat (3, {st_mode=S_IFREG|0644, st_size=31934, ...}) = 0
7 mmap(NULL, 31934, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f8b21174000
8 close (3) = 0
9 openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

10 read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\360\215\2\0\0\0\0\0"..., 832) = 832
11 pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64) = 784
12 pread64(3, "\4\0\0\0\20\0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\0\0\3\0\0\0\0\0\0\0", 32, 848) = 32
13 pread64(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\0~\303\347M\250B\312<j\233\242\v!0<\341"..., 68, 880) = 68
14 fstat (3, {st_mode=S_IFREG|0755, st_size=1995896, ...}) = 0
15 mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, −1, 0) = 0x7f8b21172000
16 pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64) = 784
17 mmap(NULL, 2004064, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f8b20f88000
18 mprotect(0x7f8b20fae000, 1810432, PROT_NONE) = 0
19 mmap(0x7f8b20fae000, 1495040, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x26000) = 0

x7f8b20fae000
20 mmap(0x7f8b2111b000, 311296, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x193000) = 0x7f8b2111b000
21 mmap(0x7f8b21168000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1df000) = 0

x7f8b21168000
22 mmap(0x7f8b2116e000, 13408, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, −1, 0) = 0

x7f8b2116e000
23 close (3) = 0
24 mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, −1, 0) = 0x7f8b20f86000
25 arch_prctl(ARCH_SET_FS, 0x7f8b211735c0) = 0
26 mprotect(0x7f8b21168000, 12288, PROT_READ) = 0
27 mprotect(0x5589e56d4000, 4096, PROT_READ) = 0
28 mprotect(0x7f8b211aa000, 4096, PROT_READ) = 0
29 munmap(0x7f8b21174000, 31934) = 0
30 brk(NULL) = 0x5589e7532000
31 brk(0x5589e7553000) = 0x5589e7553000
32 openat(AT_FDCWD, "/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
33 fstat (3, {st_mode=S_IFREG|0644, st_size=3041456, ...}) = 0
34 mmap(NULL, 3041456, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f8b20c9f000
35 close (3) = 0
36 fstat (1, {st_mode=S_IFCHR|0600, st_rdev=makedev(0x4, 0x1), ...}) = 0
37 openat(AT_FDCWD, "idpt-2021/README.md", O_RDONLY) = 3
38 fstat (3, {st_mode=S_IFREG|0644, st_size=63, ...}) = 0
39 fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0
40 mmap(NULL, 139264, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, −1, 0) = 0x7f8b20c7d000
41 read(3, "https://sites.google.com/inf.ufp"..., 131072) = 63
42 write(1, "https://sites.google.com/inf.ufp"..., 63) = 63
43 read(3, "", 131072) = 0
44 munmap(0x7f8b20c7d000, 139264) = 0
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45 close (3) = 0
46 close (1) = 0
47 close (2) = 0
48 exit_group(0) = ?
49 +++ exited with 0 +++

Listing 2.2: Example of a system call trace.

As discussed in Section 2.3, processes are confined and require assistance from the
OS (via system calls) to do anything beyond manipulating data already mapped to their
address spaces. This includes allocating memory, communicating with other processes
or over the network, manipulating files, accessing I/O devices, and adjusting privilege
levels. This means that a malicious application has to resort to system calls to perform
security-critical operations, such as read/write other processes’ data, read/write data
from/to the network, or escalate its privileges. A system call is required either for the
operation itself or for gaining access to an OS abstraction (such as memory-mapping a
file) that enables the process to perform the unwanted operation. Therefore, monitoring
the system calls issued by a process allows us to observe its security-relevant behavior.

2.3.2 Intrusion Detection using System Calls

Thus, a behavior classification process can use system calls to identify malicious applications
(Jain and Sekar, 2000). In the literature, monitoring applications through the use of system
calls is already a common technique, and system call attributes (including the attributes
of the calling process, system call parameters, and preceding system calls) may be used to
identify unwanted processes/behavior (Rajagopalan et al., 2006).

The concept of using system calls to identify attacks in a OS was proposed in 1996
by (Forrest et al., 1996). The study concludes that the use of system call sequences can
be used to identify anomalies, and that this strategy appears to be feasible for real-time
evaluations. It also highlights that although applications generate varied sets of calls,
smaller sequences tend to be similar and present patterns similar to previous evaluations.
These conclusions are essential to the use of system calls and have been explored over the
years.

There are different approaches for using system calls as a data source for intrusion
detection. System calls may be analyzed individually, in batches (usually employing a
sliding window of size N), or as complete execution traces. System call traces may be
augmented with external data (such as library calls). Another issue is whether or not
to use system call parameters in the detection process (which requires collecting these
parameters in the first place).

Different techniques can be used for the identification process. In the literature,
some of the techniques used are: clustering, Hidden Markov Models (HMMs), and neural
networks (Liu et al., 2018).

The popularization of this strategy contributed to the definition of threat levels
for system calls. (Bernaschi et al., 2002) presents one of the first classifications of system
calls, which takes into account the threat level of the operations that each call performs.
The work presents the REference Monitor for UNIX Systems (REMUS) which aims to
monitor system calls according to a set of classifications. Altogether four threat levels are
proposed, which aim to group from harmless calls up to calls that offer total control of the
system. By monitoring these operations, it is possible to identify and block attacks such
as buffer overflow. The work also presents details of how system calls interact and are
used in the OS.
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Over the years this concept has matured and has been used with a varied set
of strategies to identify intrusions. Some examples would be: (a) monitoring of specific
applications or even specific groups of system calls (Bridges et al., 2019); (b) Monitoring of
virtualized environments (Castanhel et al., 2021) and cloud computing (Liu et al., 2021a);
(c) Use of pattern identification strategies such as machine learning (Creech and Hu, 2013);
and (d) Improving the identification of attacks that use obfuscation techniques to try to
hide operations by using system calls (Văduva et al., 2019; Zhang et al., 2021).

Finally, an extensive review of the literature is presented by (Liu et al., 2018),
which identifies varied strategies, models, and datasets used to identify intrusion by means
of system calls. The study highlights strengths when using system calls to identify intrusion
and strategies that combine more than one technique for identifying attacks, where it is
possible to highlight a clear increase in the identification rate.

WebAssembly applications running in browsers issue WASI calls to the underlying
runtime. Such calls are somewhat similar to system calls in functionality and behavior.
Studies exploring system calls in WebAssembly, or comparing system calls and WASI
calls, were not found in the literature. However, some authores have explored intrusion
detection in WebAssembly; we review this body of work in Chapter 3.

2.4 MACHINE LEARNING

Machine Learning (ML) solutions are widely applied for cybersecurity, given that signature-
based intrusion detection solutions are of limited use against new threats and may be
circumvented by attackers (Handa et al., 2019). ML for cybersecurity focus on detection,
analysis, attribution, triage, and forensics (Ceschin et al., 2020a).

2.4.1 Application for Cybersecurity

Figure 2.5 shows the steps involved in using ML for intrusion detection, based on (Pedregosa
et al., 2011; Ceschin et al., 2020b; Sudusinghe et al., 2021). There are steps related to
data operations, and a pipeline that consists of data investigation, feature selection,
preprocessing, training, and testing.

Pipeline

Training

Data
Testing

Update ModelTrain model

Evaluation

Result
Classification

Grid Search

Emulate Normal and
Attack Scenarios Gather Data

Definition of Scope for
Data Collection

Feature Selection

Data Investigation

Preprocessing Data
Normalization Encoder

Tokenizing Counting One-of-K
(one-hot)

Distribution Data analysis

Missing
values

Figure 2.5: Steps of the ML based attack detection.
Source: Author
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Before reaching the stage of training and processing the ML models, an evaluation
dataset is needed. The three steps required for data collection are: (1) scope definition,
which describes the limitations for the data collection and how this information will be
collected; (2) emulation, which consists of running the applications that will generate the
behavior; and (3) gather data, that consist of the data collection itself.

Three types of data can be obtained according to the type of data collection
performed. This being (1) raw, which consists of raw data, without any processing, such
as PCAP files, Executable and Linkable Format (ELF), and Android Application Pack
(APK); (2) attributes, information extracted from raw data with a focus on filtering
relevant information; and (3) features, raw information or attributes that have already
been processed by a feature extraction algorithm (Ceschin et al., 2020b).

The next step consists of the data investigation, where the manual analysis of
the data is performed to identify key characteristics and the best way to represent each
feature. After that, strategies for feature selections are applied to the data, and the
required preprocessing is done adapting the models for the next step. At last, the model is
trained and tested with the data. In case the model does not present an adequate result,
the process could restart in the data collection.

2.4.2 Evaluation Metrics

Metrics of evaluation are key calculations to understand how a ML model is learning and
the quality of the data used in the learning phase. Confusion matrix are specifically useful
since allows a better understanding of the sensitivity and specificity. A classification will
achieve one of the following four states:
True Positive (TP) a correct accepting, demonstrating a presence of characteristics;

True Negative (TN) a correct rejection, indicating an absence of a characteristic;

False Positive (FP) an overestimation, wrongly indicating that a characteristic is
present;

False Negative (FN) an underestimation, wrongly indicating that a characteristic is
absent;
Precision or Positive Predictive Value (PPV) consists of the True Positive values

divided by the True Positive and False Positive. The precision will represent the impact of
False Positives in the models. The values describe the relevance of the retrieved instances.

PPV = TP

TP + FP
(2.1)

Recall or True Positive Rate (TPR) consists of the True Positive values divided by
the True Positive and False Negative. The recall represents the impact of False Negative
in the models. The values describe how many relevant instances were retrieved.

TPR = TP

TP + FN
(2.2)

The F1Score is the harmonic mean of the Precision and Recall, in which, both
metrics are combined to evaluate the accuracy of the model.

F1 = 2TP

2TP + FP + FN
(2.3)
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The Accuracy represent how close the values found are to the true value.

ACC = TP + TN

TP + TN + FP + TN
(2.4)

The Balanced Accuracy (BAC) considers the True Positive Rate and True Negative
Rate (TNR). The True Negative Rate considers the False Positive and False Negative in
comparison to the TPR.

BA = TPR + TNR

2 (2.5)

TNR = TN

TN + FP
(2.6)

The Brier Score consist of a mean squared difference between probability and an
outcome.

B = 1
N

N∑

t=1
(ft − ot)2 (2.7)

2.4.3 Categorical Data Representation

Before applying the data to a ML model, a type of representation or encoding needs to
be used. Different data types and encoding can be used, through the use of a range of
techniques the data is retrieved from the dataset and encoded (Kunft et al., 2019; Hancock
and Khoshgoftaar, 2020). Considering a categorical data representation, a data structure
is built that can be used to encode the dataset into a finite number of classes that represent
a specific characteristic in the dataset.

Techniques for encoding such as labeling, counting, hashing, and leave-one-out, are
a small sample of strategies that can be used to represent categorical data (Hancock and
Khoshgoftaar, 2020). Quantitative and qualitative data are represented by the technique
that better fits the data. The representation occurs after the data analysis. From a
machine learning perspective, the representation process occurs during the preprocessing
phase. The result is a transformation of the dataset, that is adequate for the training and
testing of the ML models.

Categorical data or categorical variables are defined as variables that are measured
by categorizing a limited set of “values” (Powers and Xie, 2008). Categorical data are
common in the social sciences field; some of the information represented by categories are
gender, age, language, and location. Categorical variables are a type of representation that
provides a form of classification of items according to a specific constraint, characteristic,
or standard (Agresti, 2003; Charu, 2017).

There are a variety of measurement types (Powers and Xie, 2008), as shown in
Figure 2.6. Before discussing categorical data in deep, it is important to understand the
relation of categorical variables with these other types of measurements.

A quantitative measurement uses a numerical value to describe variables (Powers
and Xie, 2008). Quantitative data is countable and measurable, being divided into
continuous and discrete variables. Continuous variables can assume any real value, unlike
discrete variables that can only take integer values. Discrete variables are also considered
as categorical variables (Powers and Xie, 2008).

In a qualitative measurement, the data is non-numerical. Variables to describe
the quality and relationship between variables. A qualitative variable is also categorical
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Continuous  Discrete Ordinal Nominal

QualitativeQuantitative

Categorical

Figure 2.6: Types of Measurements and relation with Categorical data.
Source: Based on (Powers and Xie, 2008).

and is distinguished in ordinal and nominal variables (Powers and Xie, 2008). Ordinal
variables are concerned with ordering the data, as an example, we can consider revision
notes reject, weak reject, weak accept, and accept. It is not possible to describe a measure of
distance between the values, but it is possible to create an ordering between them. Nominal
variables have no order, and the distance between observations cannot be measured. An
example would be dog breeds, which can assume values such as German Shepherd, Labrador,
Rottweiler, and Mastiff. The values cannot be ordered, and it is not possible to say, for
instance, that German Shepherd is closer to Rottweiler than Mastiff.

It is important to notice that numerical representation can be used for qualitative
and categorical variables. However, the distance and the numerical value does not have
the same meaning (Li et al., 2016).

Categorical data encompass qualitative (nominal and ordinal) and discrete quanti-
tative variables. There may be different possibilities for categorizing a variable, depending
on the application. For example, an Internet Protocol (IP) address can be categorized
as private or public, where a private address is an address that should only be used in
internal networks and a public address is globally routable. This is an example of a
qualitative nominal categorization. IP addresses may also be categorized according to
their network address: 192.0.2.4 and 192.0.2.51 belong to the 192.0.2.0/24 category, while
128.9.2.51 belongs to the 128.9.0.0/16 category. This is an example of a qualitative ordinal
categorization (network addresses can be ordered, and it is possible to define a distance
measure between networks). Using categories to describe IP addresses can provide more
compact representation of data (1 bit is enough to differentiate between public and private),
and may lead to simpler decision rules (for instance, in a network access control policy,
one may write rules that apply to all private or public IP addresses).

As another example, system calls can also be represented as categorical data. An
OS has a finite set of system calls, each with a well-defined behavior. It is possible to
classify the system calls according to their functionality. Thus, open and read calls belong
to a file manipulation category, mmap and sbrk belong to memory management, fork and
exit belongs to process control. These groups can be used later to identify patterns or
behaviors. So, system calls are qualitative data since there is no numerical relationship
between the calls, and therefore nominal since the concept of order between system calls
does not exist. But this dataset can also be represented through categorical approaches
since there are well-defined groups of system calls.

A categorical representation of a population can consist of a one-to-one corre-
spondence, where there is a direct representation between the population samples and the
categories. Otherwise, it can follow a threshold to classify the population samples accord-
ing to their respective categories (Powers and Xie, 2008). For example, a many-to-one
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classification can consider the car’s respective manufacturer for the categorization or the
car’s respective power for a threshold categorization.

Machine Learning (ML) models use categorical encoders to transform, represent,
or convert features. Encoding features to categorical schemes also allows numeric rep-
resentation to be used for specific models that would be limited to numerical inputs
(Pedregosa et al., 2011). Categorical data representation allows both the simplification of
data representation (such as replacing IP addresses with public/private classes) and the
addition of qualitative characteristics to quantitative attributes (as presented by (Bernaschi
et al., 2002), where a threat factor was associated with each system calls).

Taking into account possible learning techniques, both cases can take advantage
of categorical representations. Unsupervised strategies do not have previous knowledge
about the data label and are required to learn what would be normal, abnormal, or data
noise. In supervised scenarios, the label for the data is presented, where this previous
knowledge is used to distinguish the difference between the data points (Charu, 2017).

2.5 CONCLUDING REMARKS

This chapter presented in detail the principles of intrusion detection and its respective
strategies, along with the execution model present in web browsers. The concepts of
system calls were presented, and how system call data can be used in the process of
identifying threats. Finally, ML concepts were discussed with a focus on solutions for
anomaly detection.
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3 WEBASSEMBLY

This chapter presents the WebAssembly format concepts, contextualize the use of the
format, and its current state. Section 3.1 gives an overview of WaebAssembly. Section 3.2
present its development and use. Section 3.3 present the current state of WebAssembly
development.

3.1 OVERVIEW

WebAssembly, also known as Wasm, is a format designed to be a binary target for
programming languages. The portability allows developers to choose the most suitable
language for implementing an application. Therefore, a range of languages not previously
supported in the Web environment now can be used. With high-level languages, developers
have more flexibility, access to frameworks, and a compact binary target.

WebAssembly bytecode is executed inside a stack-based virtual machine. Its
Instruction Set Architecture (ISA) is a binary format designed to be run inside a virtual
machine, allowing the execution of WebAssembly in a range of architectures. Applications
can be run in a host with a runtime Command-Line Interface (CLI), from a server-
side, inside the Web browser, or even on Internet of Things (IoT) devices. From a
client-side perspective, compact binaries are retrieved from a server to be run inside a
sandboxed environment, offering a performance gain relative to interpreted languages such
as JavaScript (JS).

Figure 3.1 presents the expected interaction for a WebAssembly application. A
WebAssembly binary is executed inside a sandbox environment, where instructions push
and pop data from the stack, information is stored in the linear memory, and external
resources can interact with the sandbox environment by an exposed function (Rourke,
2018). An example of external interaction through the exposed function is presented in
Figure 3.1.

Instructions in a stack-based machine will assume that most operations are on
the stack instead of registers (Hoffman, 2019). The WebAssembly stack is a Last-In,
First-Out (LIFO) structure, any interaction and commands with the stack inside the
virtual environment will be limited to the element at the top of the stack (Battagline,
2021). These design choices allow easy portability from other languages and binaries with
a small size (Hoffman, 2019).

The WebAssembly format support four data types: i32 (32-bit Integer), i64
(64-bit Integer), f32 (32-bit floating-point numbers), and f64 (64-bit floating-point
numbers). Intrinsic signed-ness to numeric representation is only carried out when an
operation is made, with specific operations for signed or unsigned data (Hoffman, 2019).
Strings can only be used through linear memory. The control of elements found in the
memory for external resources as JS is made by passing the length and position of the
String in the linear memory (Battagline, 2021). Since WebAssembly does not have a
heap, Object-Oriented Programming (OOP) does not exist and objects are not stored in
the same way as other programming languages. The linear memory is a block of bytes, if
more space is required the blocks can be incremented in pages up to a fixed size limit for
linear memory. Access to the host memory through the linear memory is not possible.
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Figure 3.1: WebAssembly design.

Table 3.1 presents the structure of a WebAssembly binary (or Wasm module),
the binary being the result of a compilation of a .wat file or through porting from
other languages such as Rust or C to WebAssembly. A Wasm binary is composed of a
WebAssembly module, which is structured in three sections: Preamble, Standard, and
Custom. The Preamble indicates that the file is a WebAssembly module and the version
format being used. The Standard section presents known sections that have specific
functionalities. Table 3.1 shows eleven standard sections. No sections are required by a
Wasm module, appearing only when needed. The Custom section can be in any position
of a module, allowing the inclusion of data that can be used for debugging or functions
(Hoffman, 2019).

Preamble
Magic

Version
Standard Section

Type
Import

Function
Table

Memory
Global
Export
Start
Code

Element
Data

Custom Section
Any kind of data

Table 3.1: Structure of the WebAssembly binary (A WebAssembly Module).
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3.2 DEVELOPMENT AND USE

WebAssembly applications are not limited to only implementation using third-party
languages. A human-readable representation called WebAssembly Text (WAT) allows
developers to write WASM code using S-Expressions or linear instruction list styles
(Battagline, 2021; W3C Community Group, 2022b). A WebAssembly application (or a
WebAssembly Text (WAT) file) contains a module, which contains functions and variables
(following the structure presented in Table 3.1). Export and import operations provide
access to WebAssembly functions. The export operation makes a Wasm function available
to other operations in the environment (e.g., a JS shared value during the execution
process). Functions in the environment can also be imported to the WebAssembly using
the import operation.

Listing 3.1 presents the implementation of a simple Hello World in WebAssem-
bly using the WAT format.

1 (module
2 ;; Import the required fd_write WASI function which will write the given io vectors to stdout
3 ;; The function signature for fd_write is :
4 ;; (File Descriptor, ∗iovs, iovs_len, nwritten) −> Returns number of bytes written
5 (import "wasi_unstable" "fd_write" (func $fd_write (param i32 i32 i32 i32) ( result i32)))
6
7 (memory 1)
8 (export "memory" (memory 0))
9

10 ;; Write ’hello world\n’ to memory at an offset of 8 bytes
11 ;; Note the trailing newline which is required for the text to appear
12 (data (i32 .const 8) " hello world\n")
13
14 (func $main (export "_start")
15 ;; Creating a new io vector within linear memory
16 (i32 . store (i32 .const 0) (i32 .const 8)) ;; iov.iov_base − This is a pointer to the start of the ’ hello world\

n’ string
17 (i32 . store (i32 .const 4) (i32 .const 12)) ;; iov.iov_len − The length of the ’hello world\n’ string
18
19 ( call $fd_write
20 (i32 .const 1) ;; file_descriptor − 1 for stdout
21 (i32 .const 0) ;; ∗iovs − The pointer to the iov array, which is stored at memory location 0
22 (i32 .const 1) ;; iovs_len − We’re printing 1 string stored in an iov − so one.
23 (i32 .const 20) ;; nwritten − A place in memory to store the number of bytes written
24 )
25 drop ;; Discard the number of bytes written from the top of the stack
26 )
27 )

Listing 3.1: WAT module (Example from Wasmtime (BytecodeAlliance, 2021a)).

We can understand the WebAssembly workflow through three main abstraction
layers. The first layer describes the compilation target and high-level language supports.
This is one of the main resources of WebAssembly and brings advantages to the development
of applications for the web environment, where a range of languages can be ported to it.
The second layer is the Intermediate Representation (IR), which contains translation and
transformations made by compilers until producing the code for a specific machine. The
third and last layer consists of the result of the previous process. The resulting bytecode
is executed on the WebAssembly runtime, allowing execution in different architectures.

In practice, WebAssembly is used for cryptography, video, audio, graphics, and
other activities that may enjoy the advantages of the format design. However, the
WebAssembly format is not limited to the web browser. Server-side applications, distributed
services, and mobile applications can also take advantage of WebAssembly (Rossberg,
2022).
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3.2.1 Security Model

Aiming for better security, WebAssembly applications are executed inside a sandbox
environment. An application is only able to access information outside of the sandbox
if the correct permission is granted. The WebAssembly module follows the Same Origin
Policy (SOP) and access to specific resources also require the use of an Application
Programming Interface (API) (Kim et al., 2022).

Through the linear memory, data is passed to a WebAssembly module, and
information is shared between JS and WebAssembly, acting as an array of data. The
memory is allocated through pages and after being allocated they cannot be deallocated.
The developer must track what is being stored in memory and where it is (Battagline,
2021).

3.2.2 WASI

The standard API defined for WebAssembly development is known as WebAssembly System
Interface (WASI). It defines the rules for the runtime and interactions that WebAssem-
bly performs with the environment. Through WebAssembly System Interface (WASI),
WebAssembly can perform native operations found in other programming languages, in
addition to guaranteeing the security levels defined for the WebAssembly (Battagline,
2021).

WASI API 

User Application

WASI libc

Bottom half

top half

MUSL libc 

System Call Wrappers 

libpreopen

WASI Implementation

Host Application 
Native OS 
Bare Metal 

Web Polyfill 
...

Figure 3.2: WASI Software Architecture.
Source: Based on (BytecodeAlliance, 2021a).

The initial focus of WASI API is to provide access to resources like files and
networking. The WASI API uses WASI libc (standard C library), which aims to be a libc
interface. This implementation can be divided into bottom half, which is composed
of libpreopen and system call wrappers; and top half, which is an implementation
of MUSL libc1 (BytecodeAlliance, 2021a). Figure 3.2 shows this architecture, with the
expected communication flow. The system call wrapper is responsible for making calls to
the WASI API. Consequently, the WASI API makes the corresponding calls to the WASI
implementation present in the system. These calls can be processed by the Operating
System (OS) or runtime resources of some language.

Every interaction between the application and the operating system is carried out
through WASI calls. These calls have functionality similar to system calls, as without
these calls an application would not be able to access system resources.

1MUSL libc implements the C standard library on top of the Linux system calls API (Felker, 2023).
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3.3 CURRENT STATE OF WEBASSEMBLY

Emscripten and Wasmtime are the two most popular compilers for WebAssembly. Both
follow the WASI standard but have different goals. Emscripten is based on LLVM Compiler
Infrastructure (LLVM, 2023), and is focused on compiling C/C++ code into WebAssembly.
The primary execution target are web browsers, and required JS and HyperText Markup
Language (HTML) files are packaged alongside the generated .wasm code (Emscripten,
2021).

Wasmtime generates .wasm applications that may be executed either in the browser
or as a host application without requiring a browser engine. Due to these characteristics,
Wasmtime provides a range of debugging tools to evaluate code interaction with the
host and also provides a way to retrieve WASI calls from the runtime of an application
(BytecodeAlliance, 2021b).

A total of 45 calls are already implemented in Wasmtime; these are the calls that
follow the WASI standard (we are going to refer to these calls by WASI calls). Wasmtime
defines snapshots to control the feature support of the compiler, and consequently also
controls the type of WASI calls supported in a specific version. The current version 6.0.0
of Wasmtime defines the WASI calls in the snapshot0, and future snapshot versions allow
developers to use functions from a different snapshot, which consequently will provide
more calls. The snapshot1 will follow the current wasi_unstable, and the snapshot1 will
implement the functions presented in snapshot0.

In general, compilers for WebAssembly are in early stages of development, and
changes are frequent. The advantage of the Wasmtime compiler is in the way that WASI
calls are handled, with the possibility of executing and observing these applications without
the need to use a browser.

WebAssembly has an active community that is constantly adding new features to
improve the current Minimum Viable Product (MVP). The current WebAssembly version
1.0 does not support a Garbage Collection (GC) for memory management and does not
provide direct access to the Document Object Model (DOM) (Rourke, 2018).

3.4 CONSIDERATIONS

The design offered by the WebAssembly format ends up bringing practicality to the
development of Web applications, with the constant development of new features and
mechanisms to improve this new technology. The interactions of the WebAssembly sandbox
that generates WASI calls with the host environment represent an interesting resource
for study due to the possibility of observing the operations carried out in the application
inside the sandbox environment.
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4 WEBASSEMBLY SECURITY LITERATURE REVIEW

This chapter presents a systematic literature review about WebAssembly security. Sec-
tion 4.1 presents the research questions and how the review was performed. Section 4.2
reviews the references deemed relevant. Section 4.3 discusses the main findings of our
review.

4.1 METHODS

A systematic literature review is a method to analyze the state of the art of a specific
topic of interest, providing a background for new studies (Kitchenham and Charters, 2007).
Although the security discussion is not new when discussing WebAssembly, we did not find
a current study that performs a literature review focused on defining gaps and structuring
security issues/solutions for this environment.

Aiming at enlarging our knowledge in the context of WebAssembly security, we
conducted a systematic literature review on this subject. To achieve our research objective,
we define four Research Questions (RQs):

• RQ1: What security issues are encountered when using WebAssembly?

• RQ2: What has already been developed to improve security in WebAssembly?

• RQ3: How WebAssembly is being used to carry out attacks? and

• RQ4: What is the current status of the WebAssembly compilers?

The phrasing model proposed by (Wazlawick, 2009) suggests investigating: the
technique + the area of application. Thus, the search string comprises WebAssembly, as
the main subject of the search, and Security since we are focusing on only topics related
to security. So the search string was: WebAssembly AND security.

The next step was to define the search engines. The focus was to cover search
engines with more features like ACM Digital Library, IEEE Xplore, Scopus, and Springer
Link (Ortega, 2014). To get the most up-to-date results as possible, we also used the
arXiv preprint server. Google Scholar was used to include articles that were not present
in the engines selected and because this engine indexes several databases and has white
papers, which are relevant because they report problems facing the industry and not just
the academia.

We use the same search string in all selected search engines. We select the article’s
title, abstract, and keywords search fields in Scopus. In the other engines, we choose all
available fields, i.e., we use the default search mode.

All resulting publications were taken into account, and all papers that match the
following Selection Criteria (SC) were selected for this review:

• SC1: Published after 2017 (release of WebAssembly);

• SC2: Written in English;

• SC3: Primary studies (i.e., not surveys, meta-analysis, systematic mappings, or
reviews);
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• SC4: Not duplicated;

• SC5: The paper was available (to us) for download; and

• SC6: Central theme is associated with WebAssembly Security.

The search was performed in August 2022 and updated in 2023. After applying
the selection criteria to the search results, we obtained 83 studies. The papers that met
the criteria were also analyzed and categorized.

4.2 WEBASSEMBLY SECURITY RESEARCH

Research about the WebAssembly format in the first year of the development proposal
is quite limited since the focus was on defining the format. The first overview of the
format is presented by (Haas et al., 2017). This is the first in-depth discussion about
functionalities and design choices. The paper makes an excellent approach to present this
new technology, discussing the concepts behind the validation process, execution, and
respective restrictions. As one of the first texts on WebAssembly, the work helps the
community with rich documentation and guides numerous works that follow.

Overall, WebAssembly research is being developed with numerous purposes.
Current discussions focus on exploring the security within this technology, identifying
design flaws, the use of this format with malicious intentions, and applying the benefits
of this technology to other resources. WebAssembly is a new technology highly deployed
and used in the wild to solve various problems, with a range of languages being used by
developers and compilers in constant development in recent years (Stephen, 2022).

4.2.1 WebAssembly as an Attack Vector

From an attacker perspective, WebAssembly can be explored to carry a wide range of
attack strategies. In this section, we focus on studies that consider the use of WebAssembly
as an attack vector.

The first large-scale study to assess the presence and popularity of WebAssembly
on the Internet was carried out by (Musch et al., 2019). It pointed out that 50% of the
pages identified as using WebAssembly ended up exploiting this feature for some malicious
activity (in the Alexa top 1 million1, 56% of the pages are using WebAssembly for malicious
purposes such as obfuscation or cryptojacking) and only 10% of the pages observed had
unique codes. Therefore, before diving into WebAssembly flaws and vulnerabilities, we
will discuss the types of attack vectors explored by attackers.

With a focus on the WebAssembly binaries (.wasm) that can be found on the
Internet, the paper (Hilbig et al., 2021) collected and evaluated the security properties
of 8.4 k binaries. They identified that binaries generated by languages that do not have
security guarantees in memory can export these vulnerabilities to WebAssembly, the
import of potentially dangerous API exists in 21% of the observed binaries, and 65% of
the observed binaries are using a portion of the linear memory that is not managed.

Cryptojacking is an attack that aims to exploit their victim’s computational
resources to mine cryptocurrencies. WebAssembly is attractive for this type of operation

1The Alexa rank consists of a dataset where websites are ranked according to their traffic. (Le Pochat
et al., 2018).



41

due to the performance gain in comparison to other web languages, since performance has
a direct impact on paid earnings for this type of attack.

WebEth is a distributed cryptominer presented by (Tiwari et al., 2018). Its
implementation uses JS and WebAssembly for a distributed web browser Ethereum miner
architecture. Without the requirement of external dependencies, the implementation
handles the memory and network restriction imposed on web browsers. Despite the
performance difference of 30% slower than a C++ implementation, the lazy technique
adopted is the main contribution of the work.

The authors (Bian et al., 2019) and (Bian et al., 2020) propose MineThrottle, a
tool that allows identifying and interrupting the execution of this type of attack, through
the use of WebAssembly features and known cryptojacking algorithms. One contribution
of the work is the discussion of possible strategies for identifying this type of attack,
presenting existing strategies and their strengths and weaknesses. The strategies for the
detection of cryptojacking in the wild use a profile to penalize the mining process that could
be running. The evaluation uses Alexa top 100 thousand and 1 Million. The fingerprint
strategy reached a false negative/positive lower than 2%.

Seismic is a detection system that warns users when cryptojacking activity is
detected (Wang et al., 2018). Signature-based antivirus detection is easily avoided by an
attacker with the use of obfuscation strategies. Seismic uses semantic code features for
the detection process, reaching an accuracy of 98% for four WebAssembly cryptojacking
algorithm families.

MinerGate is a machine learning-based defense against cryptojacking (Yu et al.,
2020), that uses a proxy extension to protect the web browser. The extension was trained
with a set of WebAssembly mining algorithms and is capable of identifying elements
interaction of a cryptojacking activity in the network.

The paper (Petrov et al., 2020) presents CoinPolice, a detection method based on
a deep neural network classifier. The features used for the model consist of performance
characteristics and execution patterns. The proposal detected 97.8% of miners and had a
false positive of 0.7%. In the wild, 6.7 k pages with hidden miners were identified.

Obfuscation aims at the transformation of source or binary code with the
objective of changing its appearance. This can be used for the protection of code intellectual
property or to hide code with malicious purposes (Balakrishnan and Schulze, 2005). Since
WebAssembly is a new player in the web environment, attackers may try to use it to
circumvent security measures through the use of code obfuscation.

The paper (Romano et al., 2022) presents a new strategy to escape classical
identification processes already proposed for JS through the use of code obfuscation.
Wobfuscator is an obfuscation tool that aims to use WebAssembly to move part of the
processing that would be performed in JS. In this way, the application will still reach
its goal, but with key points of the implementation being moved to WebAssembly, it is
possible to escape from static analysis solutions already proposed for the identification of
attacks in JS.

A study of the potential of obfuscation through the use of WebAssembly is the
focus of (Bhansali et al., 2022). Through a range of benign and malicious samples, different
obfuscation strategies were applied and tested against a cryptojacking detector. The
results have shown a highly effective opportunity in the use of obfuscation to prevent
reverse engineering and decompilation of the Wasm binary. The success of obfuscation is
influenced by the type of application and the code complexity, where, where code with
specific characteristics will be harder to be obfuscated.
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The work (Wang et al., 2019) presents a solution for obfuscating intensive numeric
operations found in JS. This system, named JSPro, consists of a code virtualization for
JS built in WebAssembly. However, the translation process is limited, and in some cases,
applications could not be translated correctly into WebAssembly.

Code diversification for WebAssembly binaries is presented in (Arteaga et al.,
2021). This strategy aims at the generation of different binaries for the same program.
The study presents CROW, a framework for code diversification in WebAssembly. The
solution enables the diversification of binaries and traces for a program. The framework is
responsible for automating workflows for LLVM2. The results show that the proposal was
able to achieve diversity when generating code for 79% of the total samples in the dataset
used.

Write Primitive explores vulnerabilities from other languages, like C, that
may allow an attacker to obtain a write primitive in WebAssembly. In some cases, this
vulnerability is not present in the source language but appears in WebAssembly when
ported (Lehmann et al., 2020). In the literature, some vulnerabilities used to reach this
ability are:

Integer overflows/underflows: To store variables, the WebAssembly format supports static
numeric types, similar to languages like C/C++ and Rust. An expected type
needs to be defined with the variable that will store the value. Static typing
provides better performance since there is no need to track the types of variables
during execution. Languages like Python and JS have dynamic typing, where
the type of a variable is assumed during runtime (this way the developer does
not need to worry about the variable type, and this type may change during
execution). However, when WebAssembly and JS interact with each other, an
unexpected value could be sent from JS to WebAssembly. An example would be
the creation of a value for a variable that is outside of the representation range,
in WebAssembly, possibly resulting in an integer overflow. This could be further
explored to perform a buffer overflow (McFadden et al., 2018).

Stack Overflow: An example of this attack in WebAssembly can be achieved in case of
an excessive recursion or a violation in the internal assumptions of the stack.
Instead of a crash, attackers will be able to overwrite data, since protection in the
unmanaged stack does not exist in WebAssembly (Lehmann et al., 2020).

Heap Metadata Corruption: the attacker explores the memory allocator that was used
in the Wasm binary, since this information is stored with the binary (Lehmann
et al., 2020).

Overwriting Data is an attack primitive that allows attackers to overwrite data
in a way that additional control is granted to the malicious actor during the execution
of the application (Lehmann et al., 2020). Some of the vulnerabilities used to reach this
ability of overwriting data in WebAssembly are:

Format String: if an attacker controls the format of a print function, he may read or
write the linear memory. This happens because of the lack of support for some
formats, which has a direct impact on the function operation (McFadden et al.,
2018).

2The LLVM project offers a set of compilers and toolchains that can be used for the development of
any programming language (LLVM-Team, 2023).
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Stack-Based Buffer Overflows: WebAssembly has protections to block applications that
try to write outside the bounds allocated for the linear memory (McFadden et al.,
2018). However, it has no protection against the overwriting of variables found
within those bounds. Variables could be overwritten by the use of an unsafe
function (Lehmann et al., 2020).

Cross Site Scripting (XSS): Since variables stored in the linear memory may be over-
written, static variables are not safely stored. Information could be written over
positions already occupied in the linear memory, allowing a XSS attack. The
memory is not the only vector for XSS, attackers could also control function
pointers (McFadden et al., 2018).

Overwriting Stack Data: Since no security mechanism is present in an unmanaged stack,
the attacker could explore the linear memory by overwriting function data. How-
ever, the reach of this attack is limited, since return addresses are not present in
the stack and only active calls will be explored (Lehmann et al., 2020).

Overwriting Heap Data: The memory design in WebAssembly puts the heap after the
stack, with no defense mechanism to prevent attacks. The corruption of the heap
is just a matter of overflowing the stack (Lehmann et al., 2020).

Overwriting Constant Data: The design of the linear memory makes it impossible to
define an immutable variable. A constant data could be overwritten or changed
by a stack overflow or a stack-based buffer overflow (Lehmann et al., 2020).

Redirect Indirect Calls: Through the overwrite of the linear memory, an attacker can
change an index that could be used to issue an indirect function call (Lehmann
et al., 2020).

Code Injection: Allows attackers to make unwanted changes in the environment. An
example would be in the host, where code can be added to overwrite arguments
found in the WebAssembly application.

Side-channel Attacks explore implementation mistakes that allow attackers
to access and extract information from an application. Different strategies are explored
according to the application and the environment (Spreitzer et al., 2017; Genkin et al.,
2018). The invocation of functions present in Emscripten could enable a server-side code
execution (McFadden et al., 2018).

A demonstration of side-channel attacks in WebAssembly is presented by (Genkin
et al., 2018). The attack does not rely on vulnerability in the browser, exploring memory
access from outside the sandbox. The attack was made against cryptographic libraries
through a portable code.

Timing side-channel attacks is the focus of (Mazaheri et al., 2022). Despite the
study focusing on JS, countermeasures are presented for these types of attacks in JS and
WebAssembly. Cache attack and Spectre attack are the two strategies used to carry the
side-channel attack. Countermeasures are presented with a detection approach named
Lurking Eyes, which applies fixes at the hardware and software levels.

Porting Programs & Compilers: Compiling a program from a given language
to a Wasm binary is known as porting a program. Considering a security perspective,
some questions appear in the propagation of vulnerabilities of the source language and the
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raise of an unexpected behavior. This occurs due to different design choices between them.
The paper (Stiévenart et al., 2022b) presents findings about programs that would crash in
the source language but would run in WebAssembly and different size types for variables.

A study of bugs in WebAssembly compilers is presented by (Romano et al., 2021).
As WebAssembly applications tend to depend on a compiler that converts code from
another language, dealing with the bugs becomes an even more complex problem. A total
of nine unique challenges for WebAssembly compilers were identified when considering the
development for WebAssembly. They are Asyncify Synchronous Code, Incompatible Data
Types, Memory Model Differences, Bugs in Other Infrastructures, Emulating Native Envi-
ronment, Supporting Web APIs, Cross-Language Optimizations, Runtime Implementation
Discrepancy, and Unsupported Primitives. These challenges were found after investigat-
ing the Emscripten compiler, and most of the bugs are related to handling strings and
filesystems.

Overall, when considering the compiler and the portability of the application, three
attack vectors in WebAssembly are possible. The first would be to explore vulnerabilities
in languages that will be compiled into Wasm. This strategy allows attackers to trigger
unexpected behavior3 and allows access to resources inaccessible in WebAssembly. The
second vector is vulnerabilities found in the compiler, these vulnerabilities are due to
particular features found in each implementation. The third vector is vulnerabilities found
in WebAssembly, which exists because of its design. These vectors could be combined
to effectuate an attack and, as discussed, a range of vulnerabilities and flaws are already
mapped.

Table 4.1 presents an overview of the attack vectors previously discussed, with the
respective attack category, the reference where this threat was presented, and references
that propose countermeasures. Countermeasures solutions are few and have limitations
when to be applied. For attackers, WebAssembly offers, in addition to a vast set of
vulnerabilities, flexibility in using the WebAssembly format design to carry out attacks.

4.2.2 Improving WebAssembly Security

Improvements to WebAssembly security encompass studies that introduce fixes to previous
design flaws and/or that add security features to the format and its environment. The use
of WebAssembly sandbox to improve the security of an environment was also observed.

Sandbox is a restricted environment that allows the execution of applications that
could contain malicious content or unreliable precedents (Prevelakis and Spinellis, 2001).
WebAssembly is a portable sandbox that executes the application module inside a sandbox
environment. The sandbox executes the application independently, only granting external
access through the use of an API. This design allows the fast execution of applications
in the web environment, since the application is ready to run after the download of
the byte code. The paper (Bosamiya et al., 2022) explores two sandboxing techniques
for WebAssembly, evaluating the security and performance of the proposals. The first
technique uses machine-checked proofs to ensure that all inputs are safe to be executed in a
sandbox. The second technique uses provable guarantees for safety, levering the safeguards
present in the Rust design to bring security and performance to the compiler. The runtime
does not have a performance impact and security was improved. RLBox is a framework for
sandboxing third-party libraries that may offer some danger to browser security (Narayan

3consist of behavior that can be triggered because of the porting of the application, or interactions
with other resources in the environment (Lehmann et al., 2020).
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Category Threats Countermeasures

Buffer Overflows (Michael et al., 2023)
XSS (McFadden et al., 2018;

Lehmann et al., 2020)
Format String (McFadden et al., 2018)
Heap Metadata Corruption (Lehmann et al., 2020)
Integer Overflow/Underflow (McFadden et al., 2018) (Michael et al., 2023)
Stack Based Buffer Overflows (McFadden et al., 2018;

Lehmann et al., 2020)
Stack Overflow (Lehmann et al., 2020)
Overwriting Constant Data (Lehmann et al., 2020)
Overwriting Heap Data (Lehmann et al., 2020)
Overwriting Stack Data (Lehmann et al., 2020)
Server-side Remote Code Execution (McFadden et al., 2018)
Side-Channel (Genkin et al., 2018) (Narayan et al., 2021;

Protzenko et al., 2019)
Redirect Indirect Calls (Lehmann et al., 2020)
Code Injection (Lehmann et al., 2020)
Porting Programs & Compilers (Stiévenart et al., 2022b;

Romano et al., 2021)
Constant-Time (Mazaheri et al., 2022;

Tsoupidi et al., 2021;
Watt et al., 2019a; Ren-
ner et al., 2018)

Table 4.1: Overview of WebAssembly Flaws and Vulnerabilities used in Attacks

et al., 2020). Two mechanisms of isolation were evaluated: Software-fault Isolation (SFI)
and multi-core process-based. The performance impact of the solution is modest, with the
highest value being 13% in latency and 25% in memory use.

Spectre is an attack that can bypass WebAssembly security measurements (Kocher
et al., 2020). Swivel is a framework developed to protect against this type of attack,
through hardening the the security of the WebAssembly sandbox against breakout and
poisoning attacks (Narayan et al., 2021). The proposals have an overhead, however, they
offer a more secure sandbox environment by using stronger memory isolation.

Some authors have explored the use of trusted execution environments, such as
Intel SGX (Will et al., 2021), to improve the security of the WebAssembly execution
environment:

• AccTEE is a two-way sandbox framework that offers security in remote com-
putation cases (Goltzsche et al., 2019). The protection exists with the use of
Software Guard Extensions (SGX) and WebAssembly sandbox for securing the
execution and data in the environment. Besides the insurance with integrity
and confidentiality, the solution model offers protection against malicious and
untrusted code.

• TWINE is a runtime design that explores SGX and the WASI interface to create
a trusted environment to execute unmodified applications that were already
compiled to WebAssembly (Ménétrey et al., 2021). The proposal is a Trusted
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Execution Environment (TEE) that uses the WebAssembly sandbox to abstract
the environment from the application. This proposal brings a more secure runtime
environment for cloud computing, in addition to presenting a detailed performance
comparison.

• Se-Lambda is a serverless computing framework that focuses on security in the
cloud computing environment (Qiang et al., 2018). The two-way sandbox solution
protects the API gateway, user data, and cloud platform. The framework presents
a low performance impact and, since the prototype is based on an open-source
project, new features could be added following new improvements in WebAssembly.

• An enclave design based on WebAssembly is presented by (Pop et al., 2022). The
proposal enforces integrity and confidentiality, offering a secure channel for Wasm
services to migrate between different architectures.

• WaTZ is a remote attestation and runtime for WebAssembly (Ménétrey et al.,
2022). The WebAssembly sandbox isolation prevents privilege escalation attacks,
with some performance impact.

• Edgedancer is a platform for mobile edge computing that uses WebAssembly to
ensure security and allows self-migration inside the infrastructure (Nieke et al.,
2021). The platform also takes advantage of TEE to improve security. Small
services present better performance during migration with a higher security
standard.

Fuzzing is a technique for software testing that aim to find weaknesses, flaws, and
vulnerabilities of design through the generation of input tests (Liang et al., 2018). This
strategy allows the monitoring and study of the behavior of an application:

• WAFL is a fuzzing tool for WebAssembly binary that uses AFL++, a well-known
fuzzer (Haßler and Maier, 2021). The solution connects a WebAssembly application
that is being fuzzed with AFL++. Therefore, the Wasm binary is able to use
AFL++. The solution does not harm the performance of compilers.

• Fuzzm is a fuzzer for WebAssembly format, mainly focused on the detection of
vulnerabilities in memory (Lehmann et al., 2021). Through the implementation of
canaries, the fuzzer uses inputs from AFL to detect memory overflows/underflows
that could be explored in the stack and heap. The fuzzer only requires the binary.

• The work (Chen et al., 2022) presents WASAI, a fuzzer for the identification of
vulnerabilities in smart contracts implemented in WebAssembly. The study found
that, in a set of 991 samples, over 70% had some type of vulnerability.

Taint analysis traces the the flow of untrusted data input through an application
during execution (Ming et al., 2016). This is strategy is important to check for policy
violations and unsafe operations.

• Taint tracking of WebAssembly applications is presented in (Szanto et al., 2018).
Through a WebAssembly Virtual Machine (VM) implemented in JS, the framework
allows a taint tracking strategy for the study of the data sensitivity of the bytecode.
The evaluation describes an acceptable memory overhead, with the framework
being limited by only some missing functionalities presented in WebAssembly.
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• TaintAssembly is a framework for taint tracking of WebAssembly, allowing the
study of interactions between WebAssembly and JS (Fu et al., 2018). The
framework has a performance overhead, suffers from design limitations that require
random number generation, and does not implement comparison operations.

SELWasm is a framework to protect WebAssembly code intellectual property (Sun
et al., 2019). The framework makes protections against the reuse of source code without
authorization, using encryption to ensure that attackers are unable to obtain the source
code, and a lazy loading strategy for optimization.

BLADE is a framework to protect against speculation leaks from cryptographic
algorithms (Vassena et al., 2021). The framework is implemented in the WebAssembly
compiler and allows the evaluation of its implementation through vulnerable WebAssembly
implementations. The solution does not require supervision and can be effective in other
languages. The paper (Tsoupidi et al., 2021) presents Vivienne, a tool for the analysis of
cryptographic libraries implemented in WebAssembly. The proposal implements constant
time verification in WebAssembly. The study evaluates the implementation with 57
real-world libraries, proving the effectiveness of the proposal.

In the literature, a set of works focuses on the application of WebAssembly to
improve the IoT environment.

• Aerogel is a framework to better secure access control between bare-metal and IoT
applications using the WebAssembly environment, addressing security gaps previ-
ously not approached (Liu et al., 2021b). The framework uses the WebAssembly
sandbox to enforce access control measures, with a performance overhead of 1%
and the growth of energy consumption reaching almost 46%.

• Wasmachine is a OS mainly focused on the security of WebAssembly for the
execution of applications in IoT and fog computing devices (Wen and Weber,
2020). Through the execution of WebAssembly binary in kernel mode, the cost of
execution is reduced. The paper also implements the OS kernel in Rust to ensure
memory security.

• ThingSpire is a cloud-edge OS based on WebAssembly (Li et al., 2021). The
proposal approach three challenges related to the development of the infrastructure;
(I) how to design the environment effectively; (II) how activate intercommunication
between modules; and (III) how security and fault tolerance are supported.

• MEWE is a framework that presents a technique for edge-cloud computing
(Arteaga et al., 2022). The framework adds randomization for WebAssembly
runtime execution and diversifies Wasm binaries. The combination of these
two strategies hardens attacks as Break-Once-Break-Everywhere (BOBE). With
real-world data, it was possible to identify flexibility to generate binary variants.

WebCloud is an encryption solution for communication between cloud services
and browsers (Sun et al., 2022). The client-side application solves limitations related to
the security and access control of previous solutions.

Aiming in understanding the vulnerabilities behind WebAssembly technology for
cross-platform applications, the work (André et al., 2022) focuses on developer’s questions
found in StackOverflow4 to better understand security issues. More than half of the

4StackOverflow is a web site that focus in questions and answer (stackoverflow, 2023).
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questions are directed to information about features or bugs. Authentication is the group
of most prevalent questions.

Considering the security impact of compiling applications from C to WebAssembly,
and exploring what type of behavior could be expected, the authors in (Stiévenart et al.,
2021) present a study focusing on evaluating the vulnerabilities/divergences that are ported
from C after the compilation process is done. In a dataset with 4.4 k samples, 24% of
applications tested had a different outcome, because of a lack of security measurements as
stack canaries when ported to WebAssembly.

4.2.3 Analysis and Protection for WebAssembly

The analysis of WebAssembly applications allows developers to have a better understanding
of the environment in which the applications will be executed, offering information
about interactions with other languages, performance impacts, and security. Protection
measurements could be taken after this type of study.

• (Romano and Wang, 2020a) presents WASim, a tool for the classification of
WebAssembly modules. Eleven categories were used to train four machine learning
models. The dataset was extracted from the Alexa 1 million, with the models
reaching an accuracy of 91.6%.

• WebAssembly Symbolic Processor (WASP) is the focus in (Marques et al., 2022).
These strategies allow developers to find bugs and security flaws, through the
analysis of multiple program paths.

• Oron is an instrumentation platform that was implemented using WebAssembly
to tackle Linvail performance issues (Munsters et al., 2021). The platform was
evaluated through the instrumentation of AssemblyScript code. The evaluations
show less performance overhead in comparison with other solutions.

• Wasmati is a static analysis tool presented by (Brito et al., 2022), focusing on
finding vulnerabilities in Wasm binaries. Wasmati was developed to be used in the
development stage, being limited to binaries based on Emscripten. The technique
used for the evaluation consists of Code Property Graph (CPG) that includes
information on the code being analyzed as property-value pairs.

• (Lehmann and Pradel, 2019) introduces Wasabi, which is a framework for the
dynamic evaluation of WebAssembly. The first contribution consists of a survey of
approaches with dynamic analysis found in the literature. Wasabi takes advantage
of the WebAssembly implementation to extract information at runtime, besides
not being limited to only applications implemented in WebAssembly.

• (Stiévenart and De Roover, 2020) uses analyze Wasm binaries through isolating
segments of the code. The evaluation focuses on developing a flow analysis of the
WebAssembly applications. Despite a low precision of 64%, the contribution of
the paper consists in a static analysis that allows the evaluation of functionalities
of WebAssembly code.

• EOSafe is a framework that analyzes Wasm binary to find EOSIO5 smart contracts
vulnerabilities (He et al., 2021). The detection strategy relies on heuristics and

5EOSIO is a blockchain protocol (EOSIO, 2023).



49

the limitation of symbolic execution. Four of the most popular vulnerabilities for
EOSIO are explored, with the models achieving an f1-score of 98%.

• WasmView is a framework to evaluate/visualize the interaction between JS and
WebAssembly (Romano and Wang, 2020b). The framework allows the under-
standing of function calls between the languages and stack traces of applications,
through the presentation of a visual call graph and trace logs of the information
captured.

4.2.4 Proposals for WebAssembly

As discussed in section 4.2.1, despite the security focus behind the WebAssembly design,
flaws and vulnerabilities exist and are being explored in the wild. However, there is a set
of works that aim to improve the security of WebAssembly, presenting countermeasures
with improvements and proposals to increase security in the WebAssembly environment.
This section aims to discuss these works.

Constant-Time WebAssembly (CT-Wasm) is a expansion of WebAssembly com-
piler, mainly focusing on cryptographic security (Watt et al., 2019a). CT-Wasm permits
the verification of security properties and is secure against side-channel attacks. Data
protection enables developers to improve security considering the information flow. (Renner
et al., 2018) also focuses on the security limitation of constant-time in WebAssembly for
cryptographic primitives. To achieve this goal, the WebAssembly compiler was modified,
with the adding the support of the sensitivity of a variable type being added. The expan-
sion of the validation process with the addition of type checker functionalities, and the
runtime environment was modified to ensure security. The verification of cryptographic
primitives in WebAssembly is the focus of (Protzenko et al., 2019). A toolchain to compile
F*6 to WebAssembly is implemented, this delivers the option of using platform libraries
via WebAssembly. The validation process consists of compiling HACL*7 to WebAssembly
and verfying protection against side-channel attacks.

Gobi is a SFI for WebAssembly, aimed at addressing limitations in WebAssembly
sandboxing (Narayan et al., 2019). The system groups compilers and changes in the
runtime that allow libraries implemented in languages such as C/C++ to be compiled
to WebAssembly. This prototype of WebAssembly SFI was incorporated by the Wasm
community by the creation of WebAssembly System Interface (WASI) and improvements
to the Lucet toolchain (however, in 2020 focus was changed to the Wasmtime engine
(BytecodeAlliance, 2023)).

The contribution of (Watt et al., 2019b) is directly linked to the development of
the Wasm standard, presenting memory and operation extensions for WebAssembly and
JS. The WebAssembly extensions allow the use of threads, atomics, and mutability. The
memory model ensures sequential data use and shared memory concurrency is guaranteed
for future implementations.

WebAssembly had issues related to memory that still happen inside the sandbox
(Section 4.2.1). Memory-safe WebAssembly (MSWasm) is an extension for memory security
presented by (Michael et al., 2023). The formal specification defines the use of segmented
memory for memory security. Two implementations are discussed, the MSWasm for
memory safety in WebAssembly compilers and a C to MSWasm compiler that guarantees

6F* is a general-purpose, proof-oriented programming language (fstar-lang, 2023).
7HACL* is a cryptographic library written in F* (HACL*, 2023).
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memory safety from unsafe sources. The extension when evaluated presented an overhead
of 197.5%.

(Vassena and Patrignani, 2020) discusses memory issues found in WebAssembly,
and points out known solutions that could be explored in each problem. Through the use
of the MS-Wasm extension, the proposal can guarantee memory safety. An extension of
WebAssembly is presented in (Disselkoen et al., 2019), which presents a design to ensure
spatial and temporal safety and pointer integrity. With explicit memory safety at the
language level, the proposed WebAssembly implementation ensures memory safety.

(Kolosick et al., 2022) modify the WebAssembly sandbox to guarantee better
performance and security. The Wasm sandbox uses heavyweight transitions that weigh
the runtime, changing this to zero-cost conditions also achieves the same level of security
guarantee with better performance. Through a checker named VeriZero, it is possible to
identify when a function is semantically capable to explore this feature.

WebAssembly suffers from memory consumption and start-up time, a design for
an effective solution is the focus in (Titzer, 2022). The proposal uses a compact side table
generated during the validation process to provide better performance performance for
Wasm.

SecWasm is a hybrid Information-Flow Control (IFC) system design for the
confidentiality of information in WebAssembly application (Bastys et al., 2022). The
solution overcomes structured control flow and linear memory problems with only a
performance overhead.

(Arteaga, 2022) presents a solution to mitigate software monoculture in We-
bAssembly. Randomization and multi-variable execution were proposed for the Code
Randomization of WebAssembly (CROW) and Multi-variant Execution for WebAssembly
(MEWE) frameworks.

4.2.5 General Applications

The use of WebAssembly to solve problems found in a variety of scenarios is considered
in this section. Since WebAssembly offers a range of features, different applications can
explore this technology for performance and security gain.

In the context of IoT security, (Radovici et al., 2018) propose a framework that
focuses on running bytecodes in an isolated WebAssembly sandbox. The proposal mainly
depends on the WebAssembly environment, with a focus on a design to securely expose
the required resources to run an application. It is expected that the proposal contributes
to the security and performance in the IoT scenario.

Considering edge computing and the demand for performance in these resources/en-
vironments, (Koren, 2021) presents a proof-of-concept of the use of WebAssembly for
microcontrollers. A web server of an Integrated Development Environment (IDE) was
developed to deliver new modules to edge computing devices and the cloud.

(Baumgärtner et al., 2019) presents an alternative for Disruption-Tolerant Net-
working (DTN). The network is established through a combination of Bundle Protocol 7
and WebAssembly. A web application that is enabled by the browser will carry out the
exchange of messages.

Sledge is a serverless framework using WebAssembly for edge computing (Gadepalli
et al., 2020). It offers lightweight function isolation in the runtime implemented in
WebAssembly and scheduling policies for the infrastructure. Results have shown a low
latency and efficient management of concurrency.
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WasmAndroid is a cross-platform runtime for native languages in Android that
only requires the compilation of the code to WebAssembly (Wen et al., 2021). The model
is 1.3x slower than the benchmark suite SPEC CPU 2006.

WasmTree is a Resource Description Framework (RDF) implementation that
explores WebAssembly and Rust to optimize and gain performance in the Web environment
(Bruyat et al., 2021). The use of WebAssembly did not show a gain in performance.
However, the evaluation with the SPARQL query showed performance improvement.

(Stiévenart et al., 2022a) propose a static strategy for slicing WebAssembly
programs. The study aims at a static intra-procedural backward slicing approach for
WebAssembly. The proposal is evaluated with real-world applications.

(Ménétrey et al., 2022) presents a position paper for the development of applica-
tions that could run in a set of hardware devices without loss of performance and security.
The study focuses on describing the impact that the use of WebAssembly can bring to
this medium.

An evaluation of the use of Ethereum Virtual Machine (EVM) and WebAssembly
for smart contracts is the focus in (Zheng et al., 2020). The use of WebAssembly in the
Ethereum blockchain clients presents issues related to support, development limitations,
and instability. The performance of WebAssembly varies significantly.

Hector is a web application framework that enables distributed applications in
the web browser (Goltzsche et al., 2020). WebAssembly is one of the components that
guarantee integrity, confidentiality, and isolation.

EVulHunter is a tool developed for the detection of EOSIO WebAssembly vul-
nerabilities, mainly focused on fake-transfer attacks (Quan et al., 2019). Two strategies
are used for the static analysis, (I) predefined functions; and (II) comparison operations.
EOSDFA is a framework for the analysis of the EOSIO smart contracts (Li and Zhang,
2022). The framework expands the automatic deployment system known as Octopus
framework, allowing the evaluation of pointer access for control flow and dataflow analysis.

ZAWA is a virtual machine that emulates WebAssembly bytecodes (Gao et al.,
2022). Aiming at a more secure runtime, ZAWA takes advantage of Zero-Knowledge
Succinct Non-Interactive Argument of Knowledge (ZKSNARK), to evaluate if any leakages
are happening.

4.2.6 Datasets available

The availability of data for experimentation helps researchers to compare results, improve
previously published research, and develop new approaches. Table 4.2 presents the currently
available WebAssembly datasets, describing the type of data, number of samples, extraction
methodology, and year of creation.

Overall, despite the limited amount of datasets that may be used in security
studies, the most recent samples are aiming to represent the current Wasm ecosystem. It
is important to notice that these datasets are not being updated with newer samples. This
can be considered risky, considering that WebAssembly is still experiencing major changes
and newer, more representative data will be required in the future.

The Alexa rank (Amazon, 2023) is a recurrent source of data for experiments not
only in WebAssembly. In the data collection presented by (Kim et al., 2022), only one
approach does not explore the Alexa rank. However, the use of the Alexa rank for security
research is not adequate, since the method used for data gathering varies widely and the
lack of details may affect research results (Le Pochat et al., 2018; Ruth et al., 2022). Some
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Dataset Purpose Samples Extraction Year

WasmBench
(Hilbig et al.,
2021)

A real-world dataset rep-
resentation

8.4 K From a variety of
sources, such as:
GitHub, package man-
ager, websites, and
manually

2021

SnowWhite
(Lehmann and
Pradel, 2022)

Recovering of We-
bAssembly types

6.3 M 4 k samples from from
C and C++ Ubuntu
source code packages

2022

(Chen et al., 2022) Identification of Wasm
smart contract vulnera-
bilities

3.3 k Vulnerabilities and
smart contract in the
wild

2022

QRS (Stiévenart
et al., 2021)

C applications with dif-
ferent behavior when
compiled to WebAseem-
bly

1,088 Vulnerable C code from
Juliet Test Suite 1.3
(2017)

2021

SAC (Stiévenart
et al., 2022b)

Present Wasm binary
with security issues from
porting WebAssembly
from C

4.9 K Vulnerable C code from
Juliet Test Suite 1.3
(2017)

2022

Alexa (Amazon,
2023)

A ranking of 1 million
of the highest traffic do-
mains globally, updated
daily

Variable Traffic data is ranked by
domain. Data is col-
lected though a browser
extension used by users

2008-
2022

Base on Alexa
(Musch et al.,
2019)

Define the use of We-
bAssembly on the web

150 WebAssembly module
from webpages was col-
lected, with 1950 sam-
ples (150 unique) from
1,639 websites

2019

Question dataset
(André et al.,
2022)

WebAssembly security
related questions made
by developers

359 Security questions from
Stack OverFlow

2022

Bug dataset (Ro-
mano et al., 2021)

Emscripten bug collec-
tion

1,054 Bugs were extracted
from the Emscripten
project

2021

Table 4.2: WebAssembly Datasets

alternatives that are more adequate to represent the Web environment for security research
are discussed in (Xie et al., 2022; Le Pochat et al., 2018; Durumeric, 2023).

It is also important to consider the type of information each dataset provides. For
the extraction of information from binaries, most of the samples available in the datasets
presented can be used. However, for an evaluation requiring the execution of the binaries,
restrictions related to missing dependencies from the period of data extraction or even
support of the data, limit the use of that dataset. An alternative, in this case, would be
to use benchmark tools and test suites that are known to work in compilers.
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4.2.7 Wasm Current Limitations

Despite its security focus, some design choices in WebAssembly end up limiting security
measures found in other languages that can be compiled to WebAssembly. In some cases,
these mechanisms will not be present when the code is compiled from another language to
Wasm (McFadden et al., 2018).

Address Space Layout Randomization (ASLR) is a memory protection that, despite
being present in other languages, would be difficult to be implemented in WebAssembly,
considering the design of the linear memory (McFadden et al., 2018). In the future, this
protection could be added (W3C Community Group, 2022a). However, the linear memory
also removes the requirement of some protection as stack canaries.

The WebAssembly design also removes the requirements of resources as Data
Execution Prevention (DEP), since low-level instructions will not have the same access to
resources thus this protection is not required.

Heap Hardening is presented in some compilers and solutions were proposed in
the literature. Also, compilers that support Control Flow Integrity (CFI) can export the
protection to the compiled Wasm (McFadden et al., 2018).

4.2.8 Open Research Topics

Discussions about WebAssembly vulnerabilities are evolving and it is possible to notice
changes made by the community based on these findings. However, in practice the malicious
use of WebAssembly has been limited so far. We saw studies on how interactions between
WebAssembly and resources presented in the environment could be helpful for attackers
and the impact of the binary format for obfuscation. Future studies should be more
aligned in evaluating the current use of WebAssembly by attackers, the effectiveness of
the WebAssembly sandbox, and the real advantages in specific areas such as IoT, Trusted
Computing (TC), and blockchains, in which we observe wide applicability of WebAssembly.

Studies that aim at describing the adoption and use of WebAssembly applications
in the real-world are still limited, with many of them not representative of the current state
of the Internet. Discussion of WebAssembly adoption, even considering the security point of
view, also presents the same problems. These problems are directly associated with (I) the
use of outdated databases, which in some cases were already shown to not be representative;
(II) lack of samples, validation strategies, and worries about the reproducibility of the data
used in future studies. The availability is considered, however, the usefulness of the data
for future studies is not considered.

Attestations of WebAssembly format security measures are not studied. The
security discussion in the literature could be expanded for the WebAssembly design/de-
velopment, aiming at a better understanding of the security of the format. A similar
discussion would be helpful to clarify the impact of porting from some languages to
WebAssembly, where several security discussions are focusing.

4.2.9 Current developments in WebAssembly

The advances made by the community in the latest years were massive and future proposals
could give us a glimpse for future discussions. Future proposals that are interesting
considering the current security state are: (I) the addition of support for tail calls, (II)
multiple memory, (III) garbage collection, and (IV) threads (WebAssembly, 2023b).
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4.3 DISCUSSION OF FINDINGS

Research on WebAssembly security has grown between 2021 and 2023, more than doubling
in comparison with works published between 2017 and 2019. The articles are mostly
published in conferences, symposiums, and workshops. The topic also became more open,
not being limited to problems related to format design. Between 2021 and 2023, some
of the research focus concerned security solutions, behavior detection, and the use of
WebAssembly features to bring a more secure environment to a variety of systems. Next
we discuss the RQs defined for the review.

RQ1: What security issues are encountered when using WebAssembly?
Overall, security issues will exist in any format, as bugs/flaws can occur due to
the way features and implementations are made by developers. In WebAssembly,
attackers could explore vulnerabilities or design flaws that facilitate malicious
operations, despite the security involved in WebAssembly design. Most of the
security issues discussed in this chapter are related to some design limitation or
choice.
The linear memory is one of the design highlights in WebAssembly, isolating the
application, since memory accesses are limited to a specific region (Kim et al.,
2022). However, despite this design, memory vulnerabilities persist due to the
lack of security safeguards in languages that can be ported to Wasm. Not being
limited to memory, one of the most attractive features of WebAssembly could be
one of the most dangerous ones. Portability from a range of languages impacts
directly the security of the Wasm binary, since a range of languages implement
different safeguards that are not present in WebAssembly and, in many cases,
may be carried over when generating a Wasm binary.
The security flaws/vulnerabilities discussed in the literature (section 4.2.1) explore
a vast range of elements. However, most of these problems are not limited
to WebAssembly, so emphasizing this problem as a constraint on the use of
WebAssembly is not adequate. Considering the current state, advances were made
for a more secure environment, and solutions have been proposed to patch security
flaws/vulnerabilities.

RQ2: What has already been developed to improve security in WebAssembly?
Security measures for WebAssembly are not limited to a specific problem. The
improvement of security is being achieved by new proposals for the WebAssembly
design, frameworks that improve security, or strategies of evaluation for Wasm
binaries.
Improving the environment security is being achieved by changes in the sandbox,
exploring resources such as SGX and API to harden the WebAssembly runtime
safeguards. For the development strategies with fuzzing, tracing, and taint were
developed to demonstrate how resources interact in an application. It is also
possible to point to the development of analysis and protection strategies for
WebAssembly applications (Section 4.2.3).
New proposals are approaching major problems of WebAssembly with improve-
ments in format design. These improvements are being used by the community to
make changes in the format to guarantee a more secure environment.
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RQ3: How WebAssembly is being used to carry out attacks? As discussed in
Section 4.2.1, a range of attack options are possible. However, WebAssembly
mainly helps attackers by (I) providing a binary format that may help in code
obfuscation (unlike source-only languages such as JS); (II) the performance gain
of WebAssembly in comparison with other languages in the same environment
makes WebAssembly attractive for cryptojacking; (III) as in any language, vul-
nerabilities/flaws are attractive; (IV) being a resource supported for most web
browsers and the proximity with JS, malicious WebAssembly applications become
interesting.

RQ4: What is the current status of the WebAssembly compilers? Support
for the WebAssembly format is reaching most of the major languages, and a
range of compilers are available (Stephen, 2022). The adoption of the format is
also high, with all of the major browsers having support for most of the features.
Proposals also present the same rate, with constant releases of new features.
Wasmtime and Emscripten are projects where new features are added frequently
and have an active community.

WebAssembly security research focuses on niches around the format design, the
detection of development errors in binaries, and the sandbox environment. With a range of
proposals for the improvement of the security found in the WebAssembly format. However,
the detection of anomalies inside the WebAssembly sandbox is not being explored. Since the
WebAssembly it is also being explored to improve security solutions with other technologies
such as SGX and IoT environment. The detection of anomalies has become even more
relevant, since the WebAssembly sandbox adoption for the improvement of security.
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5 AN ANOMALY DETECTION SOLUTION FOR WEBASSEMBLY

This chapter defines the research problem and provides an overview of the proposed
solution and how the research was conducted. Section 5.1 states the problem. Section 5.2
outlines the solution. Section 5.3 describes how data categorization is used in our solution.
Section 5.4 presents the methodology used for developing and evaluating the solution.
Section 5.5 discusses system calls and WASI calls. Section 5.6 concludes the chapter.

5.1 PROBLEM DEFINITION

Computer security requires dealing with an ever-changing landscape of technologies and
threats. New technologies provide new avenues for attacks, especially in early stages of
adoption, when the technology is evolving rapidly and knowledge about how to use and
deploy it securely has not been cemented or disseminated enough. Another relevant aspect
of new technologies is that they may be affected both by already-known threats adapted
from other environments and novel threats that leverage specific characteristics of the
technology.

WebAssembly is an example of a new technology that has been gaining adoption.
Its availability in popular web browsers means that WebAssembly-based attacks have
the potential of affecting a significant number of users. This implies that WebAssembly
security is a topic of great importance, especially given that, as discussed in Chapter 4,
such attacks have already been documented and the technology still has some security
gaps, noticeably in the detection of vulnerable and malicious applications (Section 4.3).

Thus, the research problem explored in this work is how to detect malicious
behavior in WebAssembly applications.

5.2 ANOMALY DETECTION SOLUTION

Our proposal for tackling the research problem involves applying anomaly-based intrusion
detection to identify malicious behavior in WebAssembly applications. More specifically,
the idea is to monitor the WASI calls (Section 4.2.2) issued by an application, as these
calls correspond to the interactions between the application and the environment.

WASI calls provide rich information about the security-relevant behavior of an
application. Operations with security implications usually involve access to resources
outside the application (e.g., files, network, user interface), which requires WASI calls. Prior
work in performing intrusion detection by observing the interactions between applications
and the operating systems using system calls (Forrest et al., 1996; Bernaschi et al., 2002)
and Binder calls (Lemos et al., 2023) has shown this approach to be effective.

Figure 5.1 provides an overview of the proposal. We use machine learning models
for anomaly detection. To apply such models, we record the WASI calls issued by
WebAssembly applications and transform these data into a format suitable for processing.
Our proposal introduces a categorical data representation for WASI calls. Based on previous
work, we developed classification schemes for WASI calls according to functionality and
threat level, as detailed in Section 5.3. The exact WASI calls issued by an application
are substituted by their categorical representation, which combines the functionality and
threat classifications. These categorical data are then fed into a previously trained ML
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Figure 5.1: Overview of our proposal for intrusion detection using WASI calls.

classifier, which indicates whether the application is benign or malicious. The figure omits
the classifier’s training phase; Chapter 6 describes how the classifiers were trained in our
experimental evaluation, and discusses the results obtained. It should be noticed that our
approach is suitable for both on-line and off-line intrusion detection.

The collection of WebAssembly System Interface (WASI) calls made by WebAssem-
bly applications is dependent on the compiler used. Although the available compilers
adhere to the WASI standard, they provide different features. In our experiments we
used Wasmtime, since it already has many resources for tracing running applications
(BytecodeAlliance, 2021a). Wasmtime also offers a feature dedicated to watch the WASI
calls made by an application. This option eliminates the need to change the compiler’s
source code to obtain the data.

5.3 DATA CATEGORIZATION

Data categorization allows characteristics of operations and functionalities to be associated
with groups. These categorizations can later be used in the learning process, to highlight
characteristics that would not be present in the raw data. This strategy contributes to
classification models where categorical features can be used in the learning process.

The proposed classification aims to be applied to the classification of WASI calls.
However, given the semantic proximity between WASI calls and system calls, a classification
that works for both types is interesting, as it facilitates an eventual comparison between
them. Two classifications are proposed here, one considering the threat associated with a
call and the other considering the functionalities implemented by the calls.

The classification scheme proposed by (Bernaschi et al., 2002) is a pioneer work
considering system call categorization. In their scheme, system calls are classified indepen-
dently according to two criteria: functionality and threat level. The threat levels are 1
(enable full system compromise), 2 (allow a denial-of-service attack against the system),
3 (enable subversion of the calling process), and 4 (harmless calls). This classification is
hierarchical, as it assumes that a system call classified at level i can also perpetrate an
attack at threat level j for i < j. A problem with this classification is treating threat levels
as an hierarchy, with threats at lower levels subsuming threats at higher levels, which may
not always be true. A counter example would be the fork system call, which can cause a
Denial of Service (DoS) on the system (and is thus classified at threat level 2) but cannot
subvert a process (threat level 3).
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In our proposal, we remove the hierarchical constraint from the classification
defined by (Bernaschi et al., 2002) and propose a categorical definition that is flexible for
using with other types of data.

Each WASI call has specific information related to its operation, functionality,
and security. Each interaction (or operation) that an application performs with the system
can be categorized. Also, each interaction also has a respective threat associated to it.

Table 5.1 presents the classification according to the threat offered by WASI calls.
The five levels were defined based on the observation of WASI calls in the set of Wasm
code samples used in the experiment (Chapter 6). The level represents correlation, not
causation. Therefore, it is not because a code has a call classified in one of the levels
considered high threat (A, B or C) that it is malicious/vulnerable. On the other hand, an
application that uses several calls in class A (for example) tends to pose a greater threat
than an application that only uses calls in class D.

Threat Level Threat Group Type of operation

A
High

calls that alone appear more frequently in mali-
cious/vulnerable code than in benign code

B calls that were used together more often in mali-
cious/vulnerable code than in benign code

C calls that, in malicious/vulnerable code, are re-
peated many more times than in benign code

D Low calls that are used in the same way in malicious/vul-
nerable code and in benign code, and whose seman-
tics allow us to assume that they cannot cause a
security breach

E unused/deprecated calls

Table 5.1: Classification according to threat level.

The five threat levels presented aim to group interactions (that in our proposal
are WASI calls) that alone pose some kind of threat to the system if used by a malicious
application. When considering the defined threat group (high or low), we tend to directly
relate it to the type of operation that the interaction performs in the system. The first
three threat levels (A, B, and C), in the high threat group, are interactions that can be
used by an attacker for malicious purposes. Such threat levels define different behavior of
operations that malicious applications perform in the environment.

We also propose a classification based on the functions performed by each in-
teraction with the runtime (WASI call), shown in Table 5.2. This classification is an
expansion of categorizations already proposed, such as (Bernaschi et al., 2002) and (Galvin
et al., 2003). We added the removed/debug (9) and the device manipulation (10) groups,
since several changes were observed in modern operating system APIs. The separation is
justified because current OSs have a richer set of calls for manipulating devices, and the
distinction between files and devices is more pronounced in WASI calls. Another change
was in group 9, which contained only unimplemented calls and now also includes calls
removed or used for debugging kernel.

We assume that an application that frequently makes calls classified in class A
tends to pose a higher threat than an application that mostly uses calls presented in class D.
This classification is not used alone in the intrusion detection process, but together with
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Group Functionalities

1 File manipulation
2 Process control
3 Module management
4 Memory management
5 Time operation
6 Communication
7 System information
8 Reserved
9 Not implemented/removed/debug
10 Device manipulation

Table 5.2: Classification according to functionality.

the classification of functionalities. In this way, an application that makes calls classified
as A-2 (a process control call at the highest threat level) poses a greater threat than if it
makes calls classified as C-5 (time-related calls at a medium threat level). This distinction
contributes to the training stage of the Machine Learning (ML) models, as it is possible to
emphasize calls that pose more threat.

Table 5.3 presents the proposed data categorization for the WASI calls1. We-
bAssembly is a format in active development, thus we are using the calls supported for
version 1.0. In future versions currently under development (snapshots) new calls
will be introduced, but this proposal already has the required categories for the correct
classification of such calls.

Level Gr WASI calls

A 1 path_link, path_rename, path_symlink, path_unlink_file,
path_remove_directory, path_filestat_set_times,
args_get, environ_get

B 1 fd_fdstat_set_flags, fd_tell, fd_seek,
path_create_directory, fd_pread, fd_pwrite, sock_recv,
fd_read, sock_send, fd_write, fd_filestat_get,
path_create_directory

2 fd_advise, sched_yield

C 1 fd_renumber, fd_allocate, path_open, random_get
6 sock_recv, sock_send, proc_raise

D 1 fd_close, path_readlink, path_filestat_get,
args_sizes_get, environ_sizes_get, fd_prestat_get,
fd_prestat_dir_name fd_readdir

5 clock_res_get, clock_time_get
7 sock_shutdown
9 fd_filestat_set_times
10 fd_datasync, fd_sync, fd_fdstat_get

Table 5.3: WASI Calls classification.

1A classification for system calls and WASI calls is presented in Table C.1.
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We note that threat level E (Table 5.1) and groups 3, 4, and 8 (Table 5.2) are
not used in Table 5.3. We chose to keep these classes for three reasons: (i) to facilitate
correspondence with the original classification of (Bernaschi et al., 2002); (ii) to allow us
to apply the same categorization to system calls (as shown in Appendix C); and (iii) to be
ready for future WASI calls (which are likely to provide functionalities that are similar to
those of existing system calls).

The advantages of the categorization proposed here are (i) it is flexible enough to
be applied to other types of data; (ii) it reduces the volume of data used for training and
identification; (iii) it allows a better understanding of the behaviors behind application
interactions; and (iv) it allows to relate different types of interactions.

5.4 DEVELOPMENT AND TEST

To develop an anomaly detection strategy for WebAssembly using categorical data a
methodology was defined. The following steps are needed to achieve these goals:

• Dataset definition: The data selection must include different types of appli-
cations, to cover the widest possible range of application behaviors. The use of
different data sources helps to improve data heterogeneity;

• Data collection: Since we focus on the interaction between the WebAssembly
application and the host environment, the WebAssembly binaries must be executed
in their sandbox environments, with the interaction being collected and saved for
posterior evaluation. Each application will generate one trace, that stores the
executed interaction;

• Data categorization: The data collected must be categorized considering the
definition presented in Section 5.3. A set of machine learning models is selected,
considering previous experiment and use in security solutions (Galante et al., 2019;
Castanhel et al., 2020; Lemos et al., 2023);

• Experimentation: The data is then used for the training and testing of the
machine learning models; and

• Data analysis: The evaluation focuses on assessing the impact of using categorical
data for intrusion detection solutions.

5.5 WASI CALLS VS SYSTEM CALLS

WASI calls have similar functionality to system calls, but the mapping of calls is not
one-to-one. Since WASI calls are closer to the application, they are planned to work with
specific resources. A system call could be used by more than one WASI call and a WASI
call may trigger more than one system call. Consequently, the WASI calls are more specific
to better use the sandbox environment. However, considering the information about the
operations of both types of calls, similar characteristics are expected.

As WASI calls are at a level closer to the application, they also require operations
that would not exist when working with system calls. Some of these operations are
associated with input/output and parameter handling, which could later be translated
into a set of system calls.
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The vast majority of Antivirus (AV) solutions are not capable of protecting the
environment against malicious content that runs inside virtual machines such as Java
Virtual Machine (JVM) (Botacin et al., 2021) and the WebAssembly sandbox. Our
proposal offers an alternative for protecting such environments. Observing WASI calls is
interesting for detecting behaviors for two main reasons:

• The proximity that a WASI call has to the application, which tends to help in the
identification of behavior since a translation turns out to be clearer; and

• The similarity of these WASI calls to system calls, which have already proven to
be useful for observing behavior.

Anomaly detection solutions will have similar results, between system calls and
WASI calls, since the same information will be presented in different points of view.
However, an overhead could exist considering the level at that system calls are being
collected, in some cases making it difficult to identify threats. Since we are using a
categorical data approach, both strategies will present similar models for the machine
learning training.

5.6 CONSIDERATIONS

The anomaly detection proposal presented in this chapter focuses on the use of categorical
data to represent the behavior of WebAssembly applications. As presented in Table 5.3,
the corresponding classification can be used for a variety of types of data. After an in-depth
evaluation of the representation a better understanding of the use of categorical data for
security and WASI calls for anomaly detection in WebAssembly is expected.
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6 EVALUATION OF WASI CALLS FOR ANOMALY DETECTION

The chapter presents the experimental evaluation of our proposal. Section 6.1 describes
the evaluation strategy. Sections 6.2 and 6.3 present the results for offline and online
detection, respectively. Section 6.4 provides a general discussion of results.

6.1 EVALUATION STRATEGY

To evaluate the proposal, we defined a classification strategy, collected data to conduct the
experiments, and trained/tested the machine learning models. This allowed us to evaluate
the effectiveness of our anomaly detection solution, based on the categorization of WASI
calls.

Intrusion detection systems can perform online and/or offline evaluation. In online
evaluation, events of interest are collected and analyzed occurs in real-time, making it
possible to identify attacks in progress. However, online evaluation restricts the amount of
data to be analyzed and limits the choice of algorithms, in order to be fast. On the other
hand, in offline evaluation an application is executed and monitored, and the events of
interest are analyzed later. This is useful in a controlled environment, enabling the study
of the entire application and its interactions, while allowing us to analyze more data with
more sophisticated algorithms.

To assess the effectiveness of using WASI calls for anomaly detection, we defined
two test scenarios. The first scenario considers an offline approach and uses all the
interactions from the environment. The second scenario used a fixed size sliding window,
defining a partial view of the environment, and simulating an online approach for intrusion
detection solutions.

In both scenarios, the interactions from the environment were treated equally,
using the same classification process for the WASI calls. This way, we are able to evaluate
the effectiveness of using this type of interaction for anomaly detection in WebAssembly
and discuss how this type of solution based on the use of categorical data may be used in
other solutions.

Overall, we selected six Machine Learning (ML) models for the experiment, to
study the impact of the proposal in different model approaches. These models are from a
range of supervised learning algorithms, encompassing decision tree classifiers, ensemble
methods, and neural network models. The models were used with their default parameters.

6.1.1 Dataset

It is necessary to select a set of applications that will be executed and observed, to collect
information about the calls performed by each application during its execution. In the
case of this work, different strategies can be explored for the extraction of the WASI calls
in each binary sample, we used the Wasmtime runtime CLI (BytecodeAlliance, 2021b),
which executes standalone (i.e. outside a browser). It provides functionality to generate
detailed traces of the WebAssembly application being run, without instrumenting nor
modifying the application. Listing 6.1 presents an example of part of a trace obtained
from the execution of a Wasm application.

1 TRACE wasi_common::snapshots::preview_1::wasi_snapshot_preview1 > wiggle abi; module="
wasi_snapshot_preview1" function="environ_sizes_get"
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2 TRACE wasi_common::snapshots::preview_1::wasi_snapshot_preview1 > result=Ok((0, 0))
3 TRACE wasi_common::snapshots::preview_1::wasi_snapshot_preview1 > wiggle abi; module="

wasi_snapshot_preview1" function="args_sizes_get"
4 TRACE wasi_common::snapshots::preview_1::wasi_snapshot_preview1 > result=Ok((1, 36))
5 TRACE wasi_common::snapshots::preview_1::wasi_snapshot_preview1 > wiggle abi; module="

wasi_snapshot_preview1" function="args_get"
6 TRACE wasi_common::snapshots::preview_1::wasi_snapshot_preview1 > argv=∗guest 0x104a70 argv_buf=∗guest 0

x104a80
7 TRACE wasi_common::snapshots::preview_1::wasi_snapshot_preview1 > result=Ok(())

Listing 6.1: Trace of a Wasm application.

Data gathering poses a problem, which is the availability of malicious content
already classified. Since WebAssembly is a format that is still under development, the
standardization of some models has not yet been carried out and there are still pending
topics for discussion in the community. Consequently, few samples of malicious content
are available, and the few samples available often focus on exploiting vulnerabilities in the
compiler rather than in the format or in the runtime.

The dissemination of vulnerabilities and discussions about malicious content found
in this area is limited, as presented in Section 4.2. Thus, a large part of the set of attacks
described in the literature is not publicly available, consequently the available set is not
considered sufficient for the development of a representative dataset (Section 4.2.6). In
this way, it becomes necessary to define a set of vulnerabilities present in WebAssembly
applications, aiming later at evaluating and identifying attacks using WebAssembly System
Interface (WASI) calls.

Our goal is to have a varied set of samples that represents the environment.
The variety of the data samples allows us to better assess how the data categorization
proposed is able to highlight the functionality and operations behind each interaction of the
application with the underlying environment. The samples are also helpful to demonstrate
that the proposal categorization is generic and may be applied to other data sources.

The dataset used for the training and testing of our proposal was created by us
from different sources, allowing us to build a dataset that represents a variety of behavior
found in the WebAssembly environment. Overall, we have 26 types of attack samples
present1, with a total of 377 samples to form the anomaly class, and we have 263 samples
for the normality class. The code samples came from a range of data sources like test suits,
benchmarks, single WebAssembly modules, and applications obtained from (Stiévenart,
2023; Denis, 2023; WebAssembly, 2023a; Beyer, 2023).

The normality part of the dataset consists of WebAssembly applications that
perform data processing and mathematical calculations that would be expected from an
application. For the anomaly portion similar operations are presented, however, we explore
vulnerabilities such as stack, heap, and buffer overflow. We do not focus on selecting any
specific application niche of WebAssembly behavior.

6.1.2 Machine Learning Approach

Six algorithms were chosen to make the classification of the samples. The classifiers were
chosen considering their popularity in security proposals for anomaly detection and also
for variety, to avoid being limited to a single model strategy.

The algorithms chosen are XGBoost, Decision Tree, Nu-Support Vector, Multilayer
Perceptron (MLP), AdaBoost, and Stochastic Gradient Descent (SGD). With a variety of
supervised models, we can better understand the impact of categorical data representation

1A description of the attacks is presented in Appendix A.
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and present results from classifiers commonly adopted in the literature for anomaly
detection.

For the evaluation of the models, we use a 50/50 approach, where the dataset was
split into 50% of the code samples for the training and 50% for testing. This approach
was used for both online and offline evaluation.

6.1.3 Data Preprocessing

Listing 6.1 presents the raw data collected. Considering the example trace, the resulting
WASI calls after the data cleaning are presented in Listing 6.2. The result is a trace that
contains only the sequence of WASI calls performed by a WebAssembly application.

1 environ_sizes_get
2 args_sizes_get
3 args_get

Listing 6.2: WASI calls extracted.

Before training and testing the models using the dataset, the data need to be
categorized. The preprocessing of the dataset allows the application of the categorical
strategy defined in Section 5.3. This process is responsible for converting calls into their
respective categories. A WASI call will be represented by an operational and functional
category (as presented by Listing 6.3).

1 D1
2 D1
3 A1

Listing 6.3: Classification results.

After this conversion, the dataset is ready to be used for training and testing. All
information collected during the execution of each WebAssembly application is used by
the models. The information is presented in a vector of the frequency of the respective
characteristics, which are now represented as function and operation categories.

6.2 OFFLINE DETECTION

In the offline evaluation, all the information collected during the execution of an application
is used by the models during the classification phase. Table 6.1 presents the results obtained
for each model, using the performance metrics presented in Section 2.4.2.

Classifier Precision Recall F1Score Accuracy BAC Brier Score

AdaBoost 98.38% 100.00% 99.18% 99.06% 98.91% 0.94%
Decision Tree 98.38% 100.00% 99.18% 99.06% 98.91% 0.94%

MLP 96.81% 100.00% 98.38% 98.12% 97.81% 1.88%
Nu-Support Vector 92.86% 100.00% 96.30% 95.61% 94.89% 4.39%

SGD 73.09% 89.56% 80.49% 75.24% 72.88% 24.76%
XGBoost 98.36% 100.00% 99.18% 99.06% 98.91% 0.94%

Table 6.1: Performance of the models for the offline strategy.

The precision shows the impact of false positives in the models. Although we
obtained high precision values, our models are still impacted by a small fraction of the
samples being misclassified and generating false positives. The recall does not depend on
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precision and is influenced by false negative samples, which do not impact our models.
The f1score is based on precision and recall. This metric enables the description of the
positive classes, describing the adequacy of the models to classify the normal behavior
and the detection of the intrusion classes. In these three metrics, we are not considering
the impact of true negative samples.

The accuracy and balanced accuracy (BAC) metrics show a better under-
standing of the true positive and true negative classifications. Despite not considering
the false negative/positive classes, we notice that our results are similar to the previous
results found for the f1score, showing that our models are being able to classify correctly
most of the samples. The similarity between accuracy and BAC results also shows that
the dataset used for the training and test is balanced.

The lower the Brier score is, the more calibrated the models are to make the
classification. This evaluation strategy enables the measurement between the predicted
probability of a sample and the achieved result. Only two models present a brier score
higher than 2%, and only one of them presents a poor overall result.

Stochastic Gradient Descent (SGD) is a linear classifier, which in our case is being
impacted by a variety of samples found in the dataset. With a high number of classes that
come from a variety of samples, the linear model is not being able to correctly distinguish
between the two groups, resulting in a model that is not adequate for anomaly detection
with this type of data.

The similarity between Decision Tree and AdaBoost results (over even XGBoost),
is due to the proximity of the strategies used in such classifiers (Hastie et al., 2009; Molnar,
2020). They are also popular for intrusion detection and malware detection, enabling users
to study the decision made by the classifier.

Overall, our results are promising for the proposal for anomaly detection, with
all models achieving an f1score above 80%. Most of the evaluated models were able to
classify correctly both classes, with few samples being missclassified. The strategy for
offline detection is quite adequate using the classification of WASI calls issued by the
WebAssembly application to its runtime.

6.3 ONLINE DETECTION

For the online proposal, we have as the objective to identify threats as soon as possible,
during execution time. A new model was trained and tested using a strategy that allows an
online point of view. A sliding window consists of a strategy where a fixed-size window is
used to limit the view of the data set. This window slides through the data, offering a view
of a set of features that are contained in the window. Considering for instance a sequence
of data /abcdefghi/, we simulated a limited vision for the models using a fixed-size sliding
window, using two strategies: non-overlapping sliding windows (abc, def, ghi, ...) and
overlapping sliding windows (abc, bcd, cde, ...).

With a sliding window, we can understand the impact of our proposal in a real-time
intrusion detection strategy where only small portions of the execution interactions are
available since the application is still running. In comparison with the previous solution,
the same categorical classification is used, with the only difference being the use of the
sliding window.

The sliding window size was defined as three (3), based on previous research
using this value, the size of the traced applications, and characteristics observed from
WebAssembly applications (Liu et al., 2018; Castanhel et al., 2020). WebAssembly
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applications are limited to a module, a limited number of types exist in the format, and its
design limits the number of operations available. In consequence, the size of an application
is quite smaller than what would be found in other languages, and it generates a smaller
amount of calls to the runtime. Such reasons led to choose a small window size.

Table 6.2 presents the results of the online experiments with a non-overlapping
sliding window. Overall, the restriction on the information amount provided to the models
impacts the detection efficacy. However, the precision was reduced in four of the classifiers
and the recall reduced for all of them, directly affecting the f1score. The f1score and
accuracy for these models indicate a reduction in the detection rate, leading to an increase
of false positives and false negatives. This behavior was expected because we are trying to
detect threats with only partial information being provided to the classifiers.

Classifier Precision Recall F1Score Accuracy BAC Brier Score

AdaBoost 88.20% 96.01% 91.94% 93.03% 93.46% 6.97%
Decision Tree 99.86% 92.88% 93.86% 94.97% 94.66% 5.03%

MLP 93.70% 92.88% 93.29% 94.46% 94.23% 5.54%
Nu-Support Vector 93.70% 92.88% 93.29% 94.46% 94.23% 5.54%

SGD 32.81% 68.58% 44.38% 28.83% 34.66% 71.17%
XGBoost 94.69% 92.88% 93.78% 94.90% 94.60% 5.10%

Table 6.2: Performance of the models for the real-time strategy (non-overlapping window).

Two of the classifiers in Table 6.2 achieved a better result for precision here than
in the offline strategy, showing a reduction in the number of false positives. However, the
same models had an increase in the number of false negatives (as their recall shows a
reduction in comparison with Table 6.1), and the accuracy describes an impact in both
classes (negative/positive detection rates are lower than in the previous solution).

Considering BAC and Brier score, it is clear that the models were impacted and
had an increase in the number of misclassified samples. However, Table 6.2 shows a small
reduction in comparison with the offline approach; we consider such results acceptable.
The classifiers are still able to detect threats despite missclassifying some samples.

Considering an online (i.e. real-time) anomaly detection, the f1score metric above
93% obtained in four of the classifiers is considered an adequate result. The low score
obtained by the SGD classifier was expected; as discussed for Table 6.1, such a linear
model seems not well-suited for this kind of data.

Table 6.3 presents the results for the overlapping sliding window with size 3 and
overstep 1 (abc, cde, efg, ...). We included these results as it is quite popular when using
sliding windows to consider overlapping to simulate a real-world case and to increase the
amount of data, since more windows are created. We noticed an increase in the number of
false positives, despite the reduction in the number of false negatives. The models had an
inferior performance, as demonstrated by the f1score result. The similar values of accuracy
and BAC between Tables 6.2 and 6.3 are not enough to suggest that the use of overlapping
windows is a good strategy when using categorical data.

Giving a deeper look at the data, we can better understand why the overlapping
approach is not ideal for this type of data. Since our interactions that are WASI calls are
being categorized, when the overlapping strategy is adopted we duplicated some of the
information. In this case, we are adding more categories to the window generated from the
trace of the application, because we have an overlap of one (that adds a category in each
window). In all the categories proposed in Table C.1 (Appendix C), most groups present
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Classifier Precision Recall F1Score Accuracy BAC Brier Score

AdaBoost 82.54% 100.00% 90.44% 92.30% 93.95% 7.70%
Decision Tree 82.44% 100.00% 90.37% 92.25% 93.91% 7.75%

MLP 81.47% 99.84% 89.73% 91.68% 93.43% 8.32%
Nu-Support Vector 72.17% 100.00% 83.83% 85.96% 88.97% 14.04%

SGD 71.97% 99.84% 83.65% 85.80% 88.80% 14.20%
XGBoost 82.44% 100.00% 90.37% 92.25% 93.91% 7.75%

Table 6.3: Performance of the models for the real-time strategy (overlapping window).

a similar number of calls, except for three classes. Two of them are from the high-threat
level and present higher number of calls for classes C1 (87.4%) and B1 (23.1%). Class D5
also presented a growth of 37.2%. The increase in the false positive rate of our models is
directly associated with the increase in the number of calls in the categories with high
threat. As we are categorizing the information used, in the case of overlapping we are
also adding information to the dataset that is incorrect. Since we are duplicating small
portions of the data, we are also adding information related to operations, functionality,
and security of the application that in the reality do not exist. For instance, an 87.4%
increase in the number of calls in class C1 tells the models that. . . the threat is higher
in comparison with the previous experiment (Table 6.2), which is not exact, because the
threat is the same.

The impact in machine learning models also exists because of the categorization,
we are specifying distinct features that with an overlapping strategy are misleading the
models. For this reason, we cannot recommend the use of categorization and overlapping
in the same data.

6.4 DISCUSSION OF RESULTS

The use of system calls for intrusion detection is not new (Forrest et al., 1996; Bernaschi
et al., 2002). However, an approach that considers this type of interaction in the We-
bAssembly sandbox is a novelty. Representing calls as categorical data is also a new
strategy for anomaly detection in this context. Our results highlight how the use of this
type of strategy is able to properly represent the characteristics found in the applications
on the dataset.

Using categorical data allows ML models to focus on essential aspects of appli-
cations’ runtime behavior, abstracting away details that to not contribute to intrusion
detection. This choice of representation has led to good results in both offline and online
evaluation.

The experimental evaluation allows us to say that our proposal is a viable solution
for intrusion detection for WebAssembly applications. While we have used Wasmtime in our
experiments, this proposal can be adapted to other runtime environments. The categorical
classification presented is flexible and easily applicable to other types of communication as
system calls and Inter-Process Communication (IPC) mechanisms.

We applied a range of machine learning classifiers intending to evaluate the efficacy
obtained by exclusively using categorical data for intrusion detection. As previously
discussed, the models do not appear to be harmed by this design choice.

A downside to the use of categorical data is limited flexibility, since a finite and
known set of classes is required for data classification. This requirement also limits the
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expansion of the models to cover new features, since the addition of new categories has a
direct influence on the entire previously classified set.
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7 CONCLUSION

WebAssembly (Wasm) has been designed to improve the security, portability, and perfor-
mance of Web applications in comparison to JavaScript (JS). The WebAssembly sandbox
offers a secure environment to execute Wasm applications. Even if security is one of its
chief concerns, proposals for intrusion detection in WebAssembly do not exist, to the best
of our knowledge. Thus, the research goal of this thesis was to propose and evaluate a
strategy for anomaly detection in WebAssembly applications.

To detect anomalies in WebAssembly applications, we explored their interactions
with the environment through WASI calls, which are akin to the system calls provided by
operating systems. We adopted a dynamic approach, observing the WASI calls issued by
an application during execution. Leveraging prior work on system call categorization, we
introduced two classifications for WASI calls, one according to the threat level and the
other according to the functionality provided by each call. The WASI calls issued by an
application are therefore substituted by their corresponding groups and fed into an ML
model that classifies the application as either benign or malicious.

To evaluate the proposal, we compiled a dataset with 640 WebAssembly applica-
tions. This dataset has 263 benign and 377 malicious samples, representing 26 different
types of attacks. Our evaluation used six different supervised learning models, and was
performed in three scenarios: (i) offline; (ii) online with non-overlapping window; and
(iii) online with overlapping window. The overall results highlight the potential of using
WASI calls for anomaly detection, and show that categorical data are a viable representa-
tion when exploring Machine Learning (ML) models. One limitation of the proposal is
that the use of categorical representations for data requires knowledge of all possible sets
of categories.

The work presented in this thesis resulted in two publications that are directly
associated with its research goals (Heinrich et al., 2023; Helpa et al., 2023). Future research
considering the security of the WebAssembly environment could expand the type of data
used by the detection strategies. The interactions from the environment are not limited
to only WASI calls and the use of more parameters may be helpful for the improvement
of the detection of anomalies. Also, the WebAssembly format has a range of tools for
debugging. Accessing the static information found in a Wasm binary may prove helpful
for the detection of attacks without relying on the WebAssembly sandbox.
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APPENDIX A – LIST OF ATTACKS PRESENTED IN THE DATASET

Table A.1 presents the Common Weakness Enumeration (CWE) of the portion of attacks
selected from the different data sources to represent the anomaly class of the dataset.

CWE Description

CWE 121 Stack-based Buffer Overflow
CWE 122 Heap-based Buffer Overflow
CWE 123 Write-what-where Condition
CWE 124 Buffer Underwrite (‘Buffer Underflow’)
CWE 126 Buffer Over-read
CWE 127 Buffer Under-read
CWE 129 Improper Validation of Array Index
CWE 134 Use of Externally-Controlled Format String
CWE 135 Incorrect Calculation of Multi-Byte String Length
CWE 193 Off-by-one Error
CWE 194 Unexpected Sign Extension
CWE 195 Signed to Unsigned Conversion Error
CWE 252 Unchecked Return Value
CWE 253 Incorrect Check of Function Return Value
CWE 390 Detection of Error Condition Without Action
CWE 391 Unchecked Error Condition
CWE 400 Uncontrolled Resource Consumption
CWE 401 Missing Release of Memory after Effective Lifetime
CWE 404 Improper Resource Shutdown or Release
CWE 416 Use After Free
CWE 457 Use of Uninitialized Variable
CWE 475 Undefined Behavior for Input to API
CWE 476 NULL Pointer Dereference
CWE 511 Logic/Time Bomb
CWE 805 Buffer Access with Incorrect Length Value
CWE 806 Buffer Access Using Size of Source Buffer

Table A.1: List of Attacks presented at the Dataset.
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APPENDIX B – USING CATEGORICAL DATA FOR
CYBERSECURITY SOLUTIONS

We did not find a systematic literature review concerning the use of categorical data for
cybersecurity solutions. Thus, considering the definitions presented in Section 4.2, we
performed a systematic review on this subject, based on the following research questions
(RQ):

• RQ1: How categorical data is being used in cybersecurity solutions? and

• RQ2: How categorical data is being used for anomaly detection?

The research string consists of Categorical Data, as the primary topic, and as the
secondary topic Cybersecurity or Anomaly Detection. The search string was: categorical
data AND (Cybersecurity OR Anomaly Detection).

The search engines used follow the criteria set out in Section 4.2. The Selection
Criteria (SC) were selected for this research:

• SC1: Written in English;

• SC2: Primary studies (i.e., not surveys, meta-analysis, systematic mappings or
reviews);

• SC3: Not duplicated;

• SC4: The paper was widely available for download; and

• SC5: Central theme is associated with Categorical Data.

B.1 RESEARCH USING CATEGORICAL DATA

In a classification pipeline, the data model used for representation is an important aspect,
and using categorical data is one of the options (Charu, 2017). Within the scope of our
review, categorical data is used mostly for anomaly and outlier detection. We also found
discussions about the use of categorical data with a statistical focus.

Overall, proposals in this scope focus on the optimization of previous data mining
solutions (He et al., 2005), the comparison of different detection strategies (Koufakou
et al., 2007), and the definition of new models based on this type of data (Wu and Wang,
2011a).

B.1.1 Categorical data for Anomaly Detection

A frequent goal in categorical data analysis is to identify differences between groups, which
according to the type of data may contain different classes of objects. (Bay and Pazzani,
1999) present a strategy for mining categorical data, to identify significant differences in the
data. The contribution of the work is a methodology for the identification of contrasting
groups, which allows for the distinction and comparison of such groups.

(Liao and Vemuri, 2002) apply text categorization for intrusion detection using
system calls. Instead of focusing on the order in which the calls are presented, the proposal
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considers the frequency that system calls are issued by the application to characterize
whether an application has anomalous behavior or not. The second contribution of the
work is the use of text processing categorization strategies to handle system calls. Finally,
the K-Nearest Neighbors (KNN) algorithm is used as a classifier for intrusion detection
using the set of proposed strategies.

(Wong et al., 2002) presents an algorithm for the identification of disease outbreaks,
through the identification of anomalies. The identification process was carried out based on
a set of predefined rules, which do not correlate the features to carry out the identification
of an anomaly. The focus of the strategy is on the grouping of specific features that help
in the process of identifying anomalies. The proposed What’s strange about recent events
(WSARE) algorithm was able to identify new patterns, and overfitting caused by intensive
multiple testing.

The use of strategies based on association rules are recurrently applied in data
mining tasks. The problem when using such strategies is the volume of rules obtained
when evaluating a data set. Thus, evaluating strategies to minimize this problem is the
approach proposed in (Balderas et al., 2005). In addition to presenting a set of correlated
solutions for this problem, an algorithm is proposed to identify such rules.

(He et al., 2005) propose a local search algorithm to find outliers in categorical
data. Their work main contribution is the focus on the optimization of models for outlier
detection in categorical data, and the use of this strategy in real datasets.

(Koufakou et al., 2007) introduce Attribute Value Frequency (AVF) for outlier
detection in categorical data. AVF is a linear time solution that provided an improvement
over existing methods, which were more complex. The scalable outlier detection algorithm
proposed ends up being faster and more accurate than other proposals.

Taking the focus away from identifying anomalies, (Das and Schneider, 2007)
focuses on identifying unusual factors. This focus on unusual factors already is the objective
of systems such as network monitoring systems. However, it has a strong link with the
definition of what this unusual group would be. The proposal starts from an unlabeled
dataset, and assumes that the anomalous set has a minor presence in the dataset. Using a
probability-based approach and an association between attributes, the work manages to
present a method for identifying anomalies in categorical data without a label.

A new methodology for detecting patterns in categorical data is presented by (Das
et al., 2008). The proposed strategy is taking into account that an anomaly in a process is
a subset of altered data. This identification process is carried out from the moment when
operations outside the expected are identified in the sample being evaluated, and later
this anomaly is used for searches in other data samples.

Focusing on the identification of outliers in categorical data sets, (Wu and Wang,
2011b) discusses and presents a strategy for the identification of significant similarity
measures for this problem. The proposed methodology uses entropy and total correlation
to characterize outliers effectively. This strategy turns out to be relevant when considering
the difficulty in defining that an outlier exists in a categorical dataset, since a categorical
set does not allow the use of a distance measure and outlier classifications for categorical
data do not have a formal definition.

Taking into account multidimensional datasets, (Akoglu et al., 2012) uses pattern-
based compression to perform anomaly identification. The authors propose CompreX, a
parameter-free method that uses a dictionary to encode data and, through this encoding,
identifies anomalies. The proposed method is scalable and adequate results were found
when dealing with different types of categorical data. The work is pioneer in the use of
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discrete data for the identification of anomalies, having a valid solution for both numerical
and categorical data.

Considering the relation between categorical variables, (Taha and Hadi, 2016)
propose two measurements used in mixed variables. The main contribution of the work is
the study of relationship in categorical variables, and ways of representation that could be
used for this type of data.

Outlier mining it is being widely used to solve problems in intrusion detection,
fraud, and fault detection. (Li et al., 2018) focus on correlation among features when
considering outlier mining. The work propose WATCH, a weighted outlier mining method
that uses feature grouping for categorical data. The results achieved by WATCH are
similar to the ideal results of the dataset, and WATCH outperform others proposal like
AVF (Koufakou, 2009).

B.1.2 Cybersecurity and Categorical Data

An expansion of the work by (Forrest et al., 1996) is presented by (Lee et al., 1997). The
work applies a machine learning strategy to identify security anomalies using system calls.
Two contributions that can be (highlighted|mentioned) are a discussion of the impact of
non-generic models for the definition of normal behaviors and an investigation of the impact
of the size of sliding windows on the threat identification process. Another contribution of
the study consists of a brief presentation of related works that present new approaches.
(Oates and Cohen, 1996) is one of these works, which presents a Multi-Stream Dependency
Detection (MSDD) algorithm that is responsible for performing a systematic search to
identify dependencies in a categorical dataset.

We also found research that uses categorical data, however, no discussion about
the use of this type of data representation is presented (Bernaschi et al., 2002; Castanhel
et al., 2021; Lemos et al., 2023). The classification was used for pattern recognition,
anomaly detection, and feature classification.

B.2 CONSIDERATIONS

The references reviewed in Section B.1 show how anomalies and outliers can be addressed
when working with categorical data, and how this approach can be used for anomaly
detection strategies. We can thus propose the following answers to the research questions
defined in Section B:

RQ1: How categorical data is being used in cybersecurity solutions? There
are not many references that use categorical data in cybersecurity solutions.
Those that use categorical data for classification lack in-depth discussion about
this choice of representation.

RQ2: How categorical data is being used for anomaly detection? Overall,
anomaly detection strategies take advantage of categorical data, with more studies
published. The area takes advantage of categorical data models that can be used
for data analysis and are well-fitted to handle this data type. Despite being
limited to specific areas where categorical data representation appears more often,
anomaly and outlier detection are subjects with more discussion.
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APPENDIX C – SYSTEM CALLS AND WASI CALLS
CLASSIFICATION
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# # System Calls WASI Calls

A

1 chmod, chown, chown32, execveat, fanotify_init, fanotify_mark, fchmod, fchmodat,
fchown, fchown32, fchownat, fsetxattr, fsmount, fsopen, lchown, lchown32, link, linkat,
lsetxattr, mount, perf_event_open, pivot_root, rename, renameat, renameat2, setxattr,
splice, symlink, symlinkat, tee, unlink, unlinkat, userfaultfd, utimensat, vmsplice

path_link, path_rename, path_symlink, path_unlink_file,
path_remove_directory, path_filestat_set_times, args_get,
environ_get

2 execve, getresgid, getresgid32, getresuid, getresuid32, ioperm, keyctl, rseq, seccomp,
set_thread_area, set_tid_address, setfsgid, setfsgid32, setfsuid, setfsuid32, setgid, set-
gid32, setgroups, setgroups32, setpgid, setregid, setregid32, setresgid, setresgid32, setre-
suid, setresuid32, setreuid, setreuid32, setsid, setuid, setuid32, unshare

3 delete_module, finit_module, init_module, inotify_init, inotify_init1, request_key
4 modify_ldt, move_mount, move_pages, pkey_mprotect, process_vm_writev
5 getitimer
6 accept, accept6, mq_getsetattr
7 pkey_alloc, pkey_free, restart_syscall, semctl, setns, setpriority, sethostid
9 create_module
10 ioctl, iopl, epoll

B

1 _llseek, chdir, chroot, epoll_ctl, fcntl, fcntl64, ftruncate, ftruncate64, lseek, mkdir,
mkdirat, mknod, mknodat, pread, pread64, preadv, preadv2, pwritev, pwritev2, readv,
sync_file_range, sync_file_range2, syncfs, truncate, truncate64, umask, utime, utimes,
write, writev, epoll_ctl_old

fd_fdstat_set_flags, fd_tell, fd_seek,
path_create_directory, fd_pread, fd_pwrite, sock_recv,
fd_read, sock_send, fd_write, fd_filestat_get,
path_create_directory

2 arch_prctl, capset, exit, exit_group, fadvise64, fadvise64_64, fchdir, personality,
prctl, rt_sigaction, rt_sigpending, rt_sigprocmask, rt_sigqueueinfo, rt_sigreturn,
rt_sigsuspend, rt_sigtimedwait, rt_tgsigqueueinfo, sched_yield, sigaction, sigaltstack,
signal, signalfd, signalfd4, sigpending, sigprocmask, sigreturn, sigsuspend, ssetmask,
uselib, wait4, waitid, waitpid

fd_advise, sched_yield

3 add_key, inotify_add_watch, inotify_rm_watch
4 brk, mprotect, mremap, munmap, sbrk
5 clock_nanosleep, clock_settime, io_pgetevents, nanosleep, nice, setitimer, timer_create,

timer_delete, timer_settime, timerfd_create, timerfd_settime
6 connect, mq_notify, mq_open, msgctl
7 semget, semop, semtimedop
9 _sysctl
10 io_cancel, io_destroy, io_getevents, io_setup, io_submit, io_uring_enter,

io_uring_register, io_uring_setup, msync, poll, ppoll

C

1 creat, dup, dup2, dup3, epoll_create, epoll_create1, eventfd, eventfd2, fallocate,
flock, fremovexattr, lremovexattr, name_to_handle_at, open, open_by_handle_at,
open_tree, openat, openat2, pidfd_getfd, pidfd_open, quotactl, read, readahead, re-
movexattr, rmdir, sendfile, sendfile64, umount, umount2

fd_renumber, fd_allocate, path_open, random_get

2 bind, clone2, clone, clone3, futex, getrlimit, kill, prlimit64, ptrace, reboot,
sched_setaffinity, sched_setattr, sched_setparam, sched_setscheduler, set_robust_list,
setrlimit, fork, vfork, vhangup, vm86old, vm86, _exit, __clone2

4 madvise, mbind, mincore, mlock, mlock2, mlockall, mmap, mmap2, munlock, munlockall,
process_vm_readv, set_mempolicy, swapoff, swapon

5 adjtimex, clock_adjtime, pause, settimeofday, stime, ntp_adjtime
6 bpf, listen, mq_timedreceive, mq_timedsend, mq_unlink, msgrcv, msgsnd,

pidfd_send_signal, recv, recvfrom, recvmsg, recvmmsg, send, sendmmsg, sendmsg,
sendto, setsockopt, socket, socketcall, socketpair, killpg, raise

sock_recv, sock_send, proc_raise

7 fspick, setdomainname, sethostname, syslog, tgkill, tkill, gethostid, ssize_t
9 nfsservctl
10 pselect6, select

D

1 close, copy_file_range, fgetxattr, getdents, getdents64, getxattr, lgetxattr, listxattr,
llistxattr, lookup_dcookie, lstat, lstat64, newfstatat, oldfstat, oldlstat, oldstat, pipe,
pipe2, readdir, readlink, readlinkat, stat, stat64, statfs, statfs64, statx, sync, sysfs, ustat

fd_close, path_readlink, path_filestat_get,
args_sizes_get, environ_sizes_get, fd_prestat_get
fd_prestat_dir_name fd_readdir

2 access, acct, alarm, capget, cmpxchg_badaddr, faccessat, flistxattr, fstat, fs-
tat64, fstatat64, fstatfs, fstatfs64, get_robust_list, getcpu, getcwd, getegid, gete-
gid32, geteuid, geteuid32, getgid, getgid32, getgroups, getgroups32, getpgid, getp-
grp, getpid, getppid, getrandom, getrusage, getsid, gettid, getuid, getuid32,
sched_get_priority_max, sched_get_priority_min, sched_getaffinity, sched_getattr,
sched_getparam, sched_getscheduler, sched_rr_get_interval, sgetmask, ugetrlimit,
pdflush

4 cacheflush, get_mempolicy, get_thread_area
5 clock_getres, clock_gettime, gettimeofday, time, timer_getoverrun, timer_gettime,

timerfd_gettime, times
clock_res_get, clock_time_get

6 getpeername, getsockname, getsockopt, msgget
7 fsconfig, getpriority, oldolduname, olduname, shutdown, sysinfo, uname sock_shutdown
8 afs_syscall, break, ftime, getpmsg, gtty, idle, lock, madvise1, mpx, phys, prof, profil,

putpmsg, security, stty, tuxcall, ulimit, vserver, unimplemented, ftime, ulimit
9 bdflush, futimesat, get_kernel_syms, query_module, remap_file_pages, xtensa fd_filestat_set_times
10 epoll_pwait, epoll_wait, fdatasync, fsync, epoll_wait_old fd_datasync, fd_sync, fd_fdstat_get

E

1 oldumount, pwrite, pwrite64, s390_guarded_storage, spu_create, spu_run
2 arc_gettls, arc_settls, arc_usr_cmpxchg, atomic_barrier, atomic_cmpxchg_32,

bfin_spinlock, breakpoint, execv, old_getrlimit, perfctr, perfmonctl,
s390_runtime_instr, sched_get_affinity, sched_set_affinity, setpgrp, switch_endian

3 s390_sthyi
4 dma_memcpy, getpagesize, memory_ordering, metag_get_tls, metag_set_fpu_flags,

metag_set_tls, metag_setglobalbit, membarrier, memfd_create, migrate_pages,
riscv_flush_icache, s390_pci_mmio_read, s390_pci_mmio_write, shmat, shmctl,
shmdt, shmget, spill, sram_alloc, sram_free, subpage_prot

5 old_adjtimex
7 getdomainname, gethostname, getxgid, getxpid, getxuid, rtas, sethae, swapcontext, make-

context, sys_debug_setcontext, syscall, usr26, usr32, utrap_install
9 alloc_hugepages, free_hugepages, get_tls, getdtablesize, getunwind, set_tls, setup, sys-

mips
10 _newselect, or1k_atomic, pciconfig_iobase, pciconfig_read, pciconfig_write

Table C.1: System Calls and WASI Calls classification.


