

JOSÉ AUGUSTO VENÂNCIO DA SILVA RAMOS LIARA RIBAS MICHELE MAIDEL MARCOS LEANDRO ROMANIW

METODOLOGIA LEAN SEIS SIGMA PARA MELHORIA DO PROCESSO DE MANUTENÇÃO DO MOTOR DE TRAÇÃO EM UMA EMPRESA FERROVIÁRIA

JOSÉ AUGUSTO VENÂNCIO DA SILVA RAMOS LIARA RIBAS MICHELE MAIDEL MARCOS LEANDRO ROMANIW

METODOLOGIA LEAN SEIS SIGMA PARA MELHORIA DO PROCESSO DE MANUTENÇÃO DO MOTOR DE TRAÇÃO EM UMA EMPRESA FERROVIÁRIA

Trabalho de Conclusão de Curso apresentado à Universidade Federal do Paraná, Setor de Tecnologia, como requisito parcial para a obtenção do título de pósgraduando (a) em Engenharia da Qualidade 4.0 com certificação Black Belt

Orientador: Prof.º Me. Anderson

Donato

RESUMO

O transporte ferroviário de cargas é estratégico para a logística de países de dimensões continentais como o Brasil, e passa por um momento de expectativa de grandes investimentos, fomentando a competição e a busca por redução de custos. Este estudo propõe a aplicação do Lean Seis Sigma para otimizar a manutenção do motor de tração das locomotivas da frota própria da empresa em estudo. Utilizando a metodologia DMAIC, foram identificadas 39 tarefas que impactam o custo do motor de tração, priorizando as seis principais pelo gráfico de Pareto. Dados de homemhora foram analisados por colaborador, tipo de motor e mês. Filmagens dos processos também auxiliaram a identificar desperdícios. Foram mapeados os processos e o Diagrama de Ishikawa revelou 11 causas potenciais. A seleção de causas utilizou matriz de esforço e impacto, validando cinco causas confirmadas com evidências. Foram então propostas soluções específicas para cada causa confirmada. Através deste projeto, foi possível constatar que é possível aplicar Lean Seis Sigma para otimizar a manutenção de material rodante, priorizando tarefas chave e implementando soluções eficazes.

Palavras-Chave: Lean Seis Sigma, DMAIC, Ferrovia, Material Rodante e Manutenção.

LISTA DE FIGURAS

	,
FIGURA 1 - Densidade do transporte ferroviário (km de infraestrutura por 1.000 km2 de á	
terrestre)	
FIGURA 2 - Etapas do projeto Seis Sigma (DMAIC)	
FIGURA 3 - Orçamento de manutenção de material rodante - frota própria	
FIGURA 4 - Custo total por componente entre jan/21 e jun/22	
FIGURA 5 - Matriz de decisão	
FIGURA 6 - Motor de Tração de uma locomotiva	
FIGURA 7 - Histórico do PMP do motor de tração no ano de 2022	. 15
FIGURA 8 - Comportamento do HH no ano de 2022 Tarefa Recuperação Mecânica do	
Estator	. 16
FIGURA 9 - Comportamento do HH no ano de 2022 Tarefa Pintura do Estator e	
Acabamentos	
FIGURA 10 - Comportamento do HH no ano de 2022 Tarefa Reparo de Trinca no Estator	
FIGURA 11 - Comportamento do HH no ano de 2022 Tarefa Montagem da Armadura no	
Estator e Regulagem do Porta Escovas	
FIGURA 12 - Comportamento do HH no ano de 2022 Tarefa Troca de Cabos	. 18
FIGURA 13 - Comportamento do HH no ano de 2022 Tarefa Recuperação Elétrica do	
Estator	
FIGURA 14 - Fluxograma do processo de manutenção do estator	. 20
FIGURA 15 - Fluxograma do processo de manutenção da armadura	. 20
FIGURA 16 - Diagrama de Ishikawa com as causas potenciais classificadas	. 21
FIGURA 17 - Priorização das causas potenciais com base na Matriz de Esforço e Impact	022
FIGURA 18 – Matriz de comprovação das causas priorizadas	. 23
FIGURA 19 - Exemplo de duas atividades iguais descritas com nomes distintos no sistem	าล
de apontamento de HH	. 24
FIGURA 20 - Diferença entre médias dos colaboradores para Tarefa Recuperação	
Mecânica do Estator	. 26
FIGURA 21 - Diferença entre médias dos colaboradores para Tarefa Troca de Cabos	. 26
FIGURA 22 - Diferença entre médias dos colaboradores para Tarefa Montagem da	
Armadura no Estator	. 27
FIGURA 23 - Matriz de priorização de soluções	. 29
FIGURA 24 - Matriz de análise de riscos para as soluções priorizadas	. 30

LISTA DE TABELAS

TABELA 1 - Ganho potencial estimado para melhoria em cada processo	19
TABELA 2 - HH em movimentação nas atividades gravadas em vídeo	24
TABELA 3 - Estatística descritiva por colaborador da Tarefa Pintura do Estator e	
Acabamentos	27
TABELA 4 - Estatística descritiva por colaborador da Tarefa Reparo de Trinca no Estator.	27
TABELA 5 - Estatística descritiva por colaborador da Tarefa Recuperação Elétrica do	
Estator	27
TABELA 6 - Relação de causas e soluções	28
TABELA 7 - Matriz de estimativa de ganhos	31

SUMÁRIO

1.	INTRODUÇÃO	6
1.1.	CONTEXTUALIZAÇÃO	6
1.1.	FORMULAÇÃO DO PROBLEMA	7
1.2.	JUSTIFICATIVA	7
1.3.	OBJETIVO	7
2.	REVISÃO BIBLIOGRÁFICA	8
2.1.	METODOLOGIA LEAN E OS 8 DESPERDÍCIOS	8
2.2.	LEAN SEIS SIGMA E A METODOLOGIA DMAIC	9
2.3.	LOCOMOTIVA	10
3.	METODOLOGIA	11
4.	RESULTADOS E DISCUSSÕES	12
4.1.	FASE DEFINIR (<i>DEFINE</i>)	12
4.2.	FASE MEDIR (MEASURE)	16
4.3.	FASE ANALISAR (ANALYZE)	19
4.4.	FASE MELHORAR (IMPROVE)	28
4.5.	FASE CONTROLAR (CONTROL)	30
5.	CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS	32
REF	FERÊNCIAS BIBLIOGRÁFICAS	33
ANE	EXO I - SIPOC	34
ANE	EXO II – PLANO DE AÇÃO	35
ANE	EXO III – DECLARAÇÃO DA EMPRESA	36

1. INTRODUÇÃO

1.1. CONTEXTUALIZAÇÃO

O transporte ferroviário é de extrema importância para o desenvolvimento de um país. Em países de dimensões continentais, como Estados Unidos, China, Austrália e Brasil, o papel deste modal se torna ainda mais impactante, haja visto as grandes distâncias a serem percorridas para levar matérias-primas e bens de consumo da origem ao destino. Embora países como os EUA, Índia e China tenham se beneficiado de uma malha mais densa, conforme representado na Figura 1, o Brasil ainda está aquém do seu potencial, com uma baixa densidade de ferrovias por área territorial (CNT, 2015). Além disso, apenas 21% do mix de transporte brasileiro e realizado por vias férreas (CNT, 2015).

32.0 5.3 **EUA** Índia China Argentina Chile Canadá México Rússia Austrália Brasil Fonte: CNT (2015).

FIGURA 1 - Densidade do transporte ferroviário (km de infraestrutura por 1.000 km2 de área terrestre)

Para mudar este cenário, foi sancionada em 2021 a Lei no 14.273, também conhecida como Lei das Ferrovias, a qual muda a legislação, permitindo que entidades privadas solicitem junto aos órgãos competentes a construção de novos empreendimentos ferroviários através do regime de autorização, com várias solicitações já realizadas junto à ANTT (Brasil, 2021). Embora possivelmente parte destes não se concretize no futuro, o cenário hoje se mostra bastante otimista para esta indústria, com potencial para elevar a competição e reduzir tarifas.

Para manter-se competitivo neste setor, evitar desperdícios e intensificar a produtividade são essenciais. Atualmente, muitas metodologias estão consolidadas, dentre elas a metodologia Lean Seis Sigma e DMAIC, as quais são abordadas neste projeto.

1.1. FORMULAÇÃO DO PROBLEMA

O objeto de estudo deste trabalho é o processo de manutenção de material rodante em uma empresa ferroviária, mais especificamente o motor de tração de locomotivas. Foi identificado que o valor orçado previsto para realizar as manutenções estava acima do *guidance*, valor referencial estipulado pela alta diretoria e conselho, e disponibilizado para as atividades de manutenção.

1.2. JUSTIFICATIVA

É comum encontrar nas empresas os mais variados desperdícios e em um processo em que valores são elevados e recursos humanos limitados, identificar e mapear desperdícios é uma grande oportunidade para mitigá-los.

Para impulsionar a competitividade no setor ferroviário, é vital otimizar os custos dos componentes e reforçar a confiabilidade dos ativos. Além disso, é crucial assegurar que as atividades de manutenção não comprometam a disponibilidade dos recursos. Isso implica em reintegrar rapidamente ativos em reparo, correção ou análise preditiva à operação, minimizando os períodos de inatividade (SANCHES NETO; BESEN, 2020).

A fim de evitar elevados estoques e ainda possibilitar capacidade de resposta ao sistema de manutenção, o sistema de produção enxuta fornece as diretrizes necessárias para o cumprimento destas premissas e, em adicional, possibilita a redução de custos de mão de obra aplicada e tempo de reparo do processo, além de tratar eventuais desvios no processo de reparo tornando-o mais uniforme.

1.3. OBJETIVO

O objetivo deste trabalho é melhorar o processo de manutenção de material rodante em uma empresa ferroviária, mais especificamente o motor de tração de locomotivas, de forma a aproximar o orçamento anual do *guidance* da empresa, por meio da metodologia Lean Seis Sigma e DMAIC.

2. REVISÃO BIBLIOGRÁFICA

2.1. METODOLOGIA LEAN E OS 8 DESPERDÍCIOS

A metodologia Lean, também conhecida como Sistema Lean, é uma abordagem de gestão que busca maximizar o valor entregue ao cliente enquanto minimiza o desperdício de recursos. Essa metodologia se baseia nos princípios do pensamento Lean, que foram desenvolvidos no sistema de produção da Toyota no Japão e, posteriormente, adaptados e aplicados em diversos setores e áreas de negócio em todo o mundo.

A metodologia Lean não se limita à indústria de manufatura, sendo aplicada com sucesso em diversos setores, incluindo serviços, saúde, tecnologia, educação, entre outros. Ao implementar o Lean, as organizações podem alcançar maior produtividade, redução de custos, maior satisfação do cliente e uma cultura mais ágil e orientada para a excelência operacional.

Um dos focos da metodologia, como dito anteriormente, é a redução dos desperdícios que representam atividades ou práticas que não agregam valor ao produto ou serviço final, consumindo recursos desnecessários e comprometendo a eficiência e a produtividade do processo (JONES; WOMACK, 2004). A identificação e eliminação desses desperdícios são fundamentais para alcançar a melhoria contínua e a maximização do valor entregue ao cliente, estes desperdícios podem ser classificados em 8 categorias:

- Superprodução: Produzir mais do que é necessário ou produzir antecipadamente, resultando em excesso de estoque e recursos desperdiçados.
- Espera: Tempo ocioso e atrasos que ocorrem quando os processos não fluem de forma contínua, podendo ser causados por gargalos, falta de coordenação ou má gestão de fluxo.
- Transporte: Movimentar produtos, materiais ou informações desnecessariamente, o que pode levar a danos, atrasos e aumento de custos logísticos.
- 4. Excesso de processamento: Realizar etapas ou atividades que não agregam valor ao produto ou serviço, levando a esforços adicionais e aumento de custos sem benefícios perceptíveis para o cliente.

- Inventário: Manter estoques excessivos, seja de matérias-primas, produtos em processo ou produtos acabados, resultando em custos adicionais de armazenamento e riscos de obsolescência.
- 6. Movimentação: Movimentar pessoas ou equipamentos de maneira desnecessária, resultando em desperdício de tempo e energia.
- 7. Defeitos: Produtos ou serviços com defeitos que precisam ser corrigidos ou refeitos, gerando desperdício de tempo, materiais e recursos.
- 8. Conhecimento Subutilização do talento humano: Não aproveitar o conhecimento, habilidades e experiência dos funcionários, limitando seu potencial de contribuição para a melhoria dos processos e inovação.

Um dos meios que a metodologia Lean visa eliminar esses desperdícios, é a implementação de melhorias contínuas nos processos, como por exemplo a abordagem da metodologia DMAIC (Definir, Medir, Analisar, Melhorar e Controlar) que é um dos pilares do Seis Sigma.

2.2. LEAN SEIS SIGMA E A METODOLOGIA DMAIC

A abordagem do Lean Seis Sigma com o pilar da metodologia DMAIC visa a redução de variação e o aprimoramento dos processos para atingir altos níveis de qualidade e satisfação do cliente (WERKEMA, 2022). A abordagem DMAIC do Seis Sigma complementa a filosofia Lean, proporcionando uma estrutura robusta para a identificação, análise e eliminação sistemática de desperdícios para alcançar altos níveis de qualidade e desempenho nos processos.

Abaixo a estrutura da metodologia e os principais objetivos de cada etapa:

- Definir (*Define*): Na etapa Definir da DMAIC, a equipe estabelece claramente o problema ou oportunidade de melhoria, além de identificar as necessidades e expectativas do cliente.
- Medir (*Measure*): Nesta fase, são coletados dados e informações para medir o desempenho atual do processo. Isso permite identificar e quantificar o impacto dos desperdícios nos resultados do processo, como tempo de ciclo, retrabalho, defeitos etc.
- Analisar (Analyse): Na etapa de análise, os dados coletados são analisados para identificar as principais causas dos problemas ou desperdícios. É uma

- oportunidade para identificar quais dos 8 desperdícios estão contribuindo para a ineficiência do processo.
- Melhorar (*Improve*): Nesta fase, são desenvolvidas e implementadas soluções para eliminar ou reduzir os desperdícios identificados. As melhorias são direcionadas para otimizar o processo e maximizar o valor entregue ao cliente, reduzindo a ocorrência dos 8 desperdícios.
- Controlar (Control): A etapa de controle visa garantir que as melhorias implementadas sejam sustentáveis ao longo do tempo. O controle contínuo dos processos ajuda a evitar a reincidência dos desperdícios e a manter a eficácia das melhorias.

2.3. LOCOMOTIVA

No contexto do sistema ferroviário de transporte de cargas, as locomotivas desempenham o papel fundamental de fornecer a força de tração para a composição. Especificamente, as locomotivas adotam o formato eletrodiesel, caracterizando-se como veículos híbridos. Nessa configuração, cada locomotiva é composta por um motor diesel (MD) e um gerador principal, encarregados da geração de energia, juntamente com um conjunto de motores elétricos que realizam a tração (motores de tração) (SANCHES NETO; BESEN, 2020).

O controle da tração ocorre pelo acelerador, que regula a injeção de combustível no motor diesel. A rotação desse motor movimenta o conjunto gerador, composto por uma excitatriz de campo e um alternador, que fornecem energia à máquina. A resposta elétrica resultante alimenta os sistemas de controle eletromecânico da máquina. Estes sistemas, por meio do regulador de carga, ajustam a rotação do motor de acordo com a potência elétrica necessária, dentro do limite definido pelo operador (SANCHES NETO; BESEN, 2020).

Finalmente, a corrente elétrica é retificada e direcionada para os motores de tração de corrente contínua, que estão instalados diretamente nos eixos da locomotiva. Isso converte a energia elétrica em energia cinética, impulsionando a locomotiva (SENAI, 2018).

3. METODOLOGIA

A aplicação dos métodos do programa de melhoria contínua Seis Sigma se fez respeitando a estrutura das etapas DMAIC. Para cada uma dessas etapas, foram utilizadas ferramentas da qualidade específicas. A Figura 2 lista as etapas e procedimentos seguidos durante o projeto.

Control Relação de Gráfico Gráfico Fluxograma Etapa em Sequencial Sequencial Matriz de Desenvolvim Pareto Pareto Ishikawa Soluções ento Matriz de Matriz de Estatística Matriz de Esforço e Impacto Priorização Decisão Descritiva Matriz de Método da Análise de Lacuna Médias Comprovaç Risco Plano de ão das Causas SIPOC Ação ŚW2H

FIGURA 2 - Etapas do projeto Seis Sigma (DMAIC)

Fonte: Autores (2023).

4. RESULTADOS E DISCUSSÕES

Nesta seção, são apresentados os resultados obtidos através da aplicação da metodologia Lean Seis Sigma e DMAIC na empresa avaliada.

4.1. FASE DEFINIR (DEFINE)

A primeira etapa constituiu na definição do problema. Para o ano de 2023, 32% do orçamento de manutenção de frota própria está destinado para manutenção de locomotivas e 68% para vagões. Estes valores estão 25% e 6,6% acima do *guidance*, respectivamente, conforme ilustrado na Figura 3.

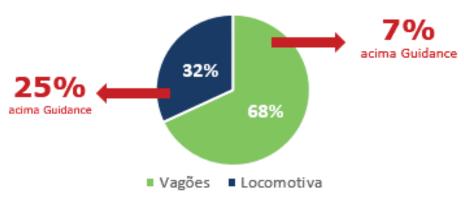
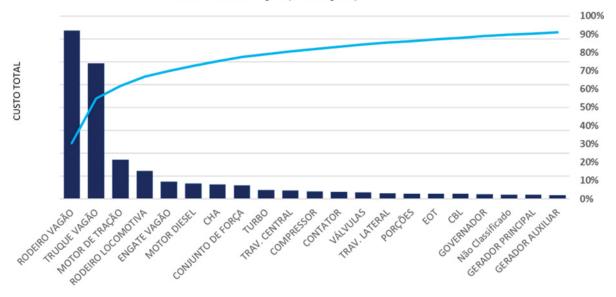


FIGURA 3 - Orçamento de manutenção de material rodante - frota própria


Fonte: Autores (2023).

A frota própria é a fração que apresenta maiores possibilidades de desenvolvimento de projetos de melhoria, pois envolve majoritariamente recursos e processos internos da empresa, enquanto as demais frações não é possível atuar devido a contratos já estabelecidos, ou seja, fora do escopo deste projeto.

Ao analisar o histórico das despesas com componentes para frota própria (setor *Backshop*), os 4 componentes: rodeiro vagão, truque vagão, motor de tração e rodeiro de locomotiva acumulam 67% do valor total. A Figura 4 representa o custo por componente entre janeiro de 2021 e junho de 2022. Os valores foram omitidos a pedido da empresa.

FIGURA 4 - Custo total por componente entre jan/21 e jun/22

Custo total - jan/21 a jun/22

Fonte: Autores (2023).

Para definir o escopo do projeto entre os 4 componentes, foi desenvolvida a matriz de decisão em conjunto com a equipe da empresa, a qual esta representada na Figura 5.

FIGURA 5 - Matriz de decisão

			R	tégua de Decisã	0		
F	Projetos / Soluções	Relevância Financeira	Complexidade de Resolução	Relevância Estratégica	Autonomia	Impacto na Satisfação do Cliente	Score
		30%	10%	15%	25%	20%	
1	Rodeiro de vagão	7	9	3	0	6	4,65
2	Rodeiro de locomotiva	1	9	6	3	9	4,65
3	Motor de tração	2	3	9	9	3	5,1
	Truque de vagão	6	6	0	1	0	2,65

Fonte: Autores (2023)

Desta forma, o projeto foi definido como uma melhoria no processo de reparação do motor de tração. A Figura 6 representa o motor de tração.

FIGURA 6 - Motor de Tração de uma locomotiva

A equipe do projeto foi definida pelos 4 *belts* (autores) e 2 especialistas técnicos da empresa.

Em discussão com a equipe de projeto, e principalmente com os colaboradores da própria companhia, o Preço Médio de Produção (PMP) foi o indicador escolhido para o projeto. O PMP é composto basicamente pelo custo de mão de obra para realizar a manutenção do componente (relacionado ao Homem-Hora (HH) empregado) e pelo custo do material a ser reparado ou trocado durante a manutenção. Esta métrica foi escolhida por ser um dos principais indicadores utilizados pela supervisão da área e áreas de planejamento, refletindo a conexão entre orçamento e produção.

Referente à confiabilidade dos dados, os gastos por componente são oriundos do sistema SAP da empresa e são inseridos por meio da baixa das ordens de manutenção. Os dados de quantidade de componentes são lançados no SAP conforme é executada cada manutenção pelo time do *Backshop*. Esses dados são extraídos dos relatórios contábeis da companhia, seguem o padrão SOX e são auditáveis. Sendo assim, os dados são considerados confiáveis.

A Figura 7 representa a evolução do PMP do motor de tração ao longo do ano de 2022. Conforme comentado anteriormente, os valores reais foram omitidos a pedido da empresa, neste caso, o valor médio do PMP no período foi definido como 1 e os demais valores normalizados à essa parametrização. É possível observar que a

média do PMP anual foi de 1 com desvio padrão de 0.23, o que representa um coeficiente de variação de 23%, o que demonstra alta variabilidade dos dados.

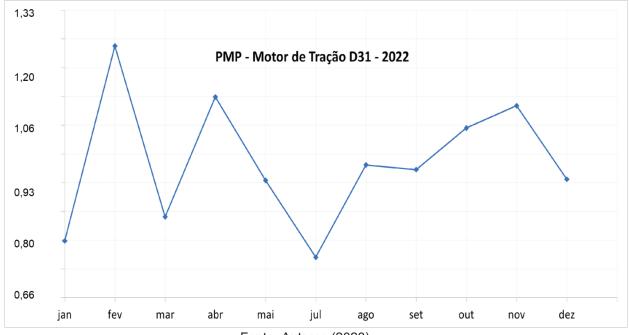


FIGURA 7 - Histórico do PMP do motor de tração no ano de 2022

Fonte: Autores (2023).

A meta foi definida com base nos dados do indicador de 2022, usando o método da lacuna, de modo que o objetivo a ser alcançado seja atingível. Desta forma, a lacuna é a diferença entre o PMP médio no período e o seu melhor resultado (PMP mais baixo no período). O cálculo está exibido na sequência, conforme a Equação 1.

Lacuna = PMP médio no período – PMP mais baixo no período (1)
Lacuna =
$$1 - 0.76 = 0.24$$

Aplicando-se uma redução de 20% da lacuna, tem-se a meta para o indicador: $1 - 0.24 \times 0.20 = 0.95$

Para estimar os ganhos que serão alcançados com a solução do problema, o racional levou em conta a quantidade de componentes produzidos em 2022, que foi igual a 138. A estimativa de ganhos com o projeto será a diferença da média de PMP menos a meta definida para o PMP.

$$1 - 0.95 = 0.05$$

Ou em ganhos totais anuais:

$$0.05 \times 138 = 6.9$$

Para melhor entender o processo, foi criado o SIPOC. O SIPOC está representado no Anexo I.

4.2. FASE MEDIR (MEASURE)

Nesta etapa, foram selecionadas as tarefas que são precificadas pela empresa, ou seja, que fazem parte do cálculo do PMP do motor de tração, que compõem um total de 39 tarefas. Os dados de HH das tarefas foram estratificados e analisados em relação a colaborador, tipo de motor e mês. Além disso, os processos foram filmados para identificar potenciais desperdícios e oportunidades.

O total de HH realizado em 2022 para as tarefas precificadas dentro do processo foram compiladas em um diagrama de Pareto. As tarefas destacadas foram as sinalizadas pela equipe de Engenharia da empresa como significativas para o HH. Entretanto, os dados levantados apontam para uma ordem de relevância das tarefas diferente do sinalizado. Tal ordem foi levada para a equipe e optou-se por priorizar os 6 primeiros focos do diagrama de Pareto, que representaram, juntos, 44% do HH total precificado no ano de 2022. As Figuras 8 a 13 apresentam o histórico do HH para estes 6 primeiros focos.

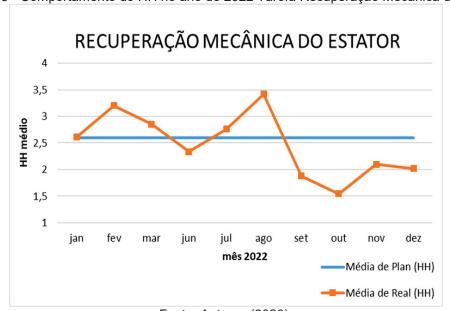


FIGURA 8 - Comportamento do HH no ano de 2022 Tarefa Recuperação Mecânica do Estator

Fonte: Autores (2023).

PINTURA DO ESTATOR E **ACABAMENTOS** 2,9 2,7 2,5 2,5 2,3 2,1 1,9 1,7 1,5 jan fev mar abr mai jun jul set out nov dez ago mês 2022 Média de Plan (HH) Média de Real (HH)

FIGURA 9 - Comportamento do HH no ano de 2022 Tarefa Pintura do Estator e Acabamentos

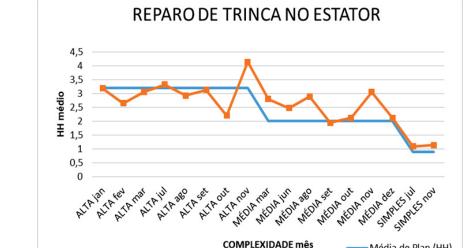


FIGURA 10 - Comportamento do HH no ano de 2022 Tarefa Reparo de Trinca no Estator

Fonte: Autores (2023).

COMPLEXIDADE mês

Média de Plan (HH) –Média de Real (HH)

FIGURA 11 - Comportamento do HH no ano de 2022 Tarefa Montagem da Armadura no Estator e Regulagem do Porta Escovas

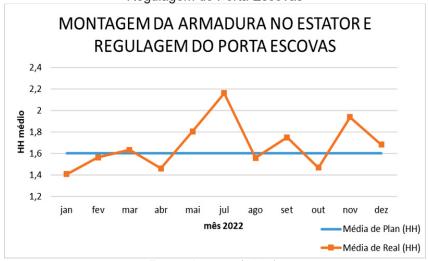
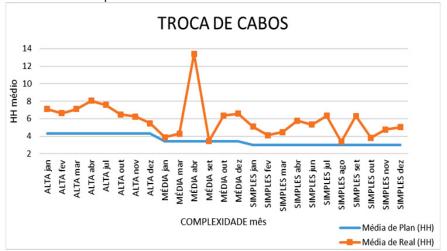
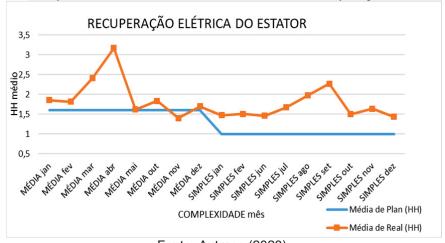




FIGURA 12 - Comportamento do HH no ano de 2022 Tarefa Troca de Cabos

Fonte: Autores (2023).

FIGURA 13 - Comportamento do HH no ano de 2022 Tarefa Recuperação Elétrica do Estator

Fonte: Autores (2023).

Baseado nos focos definidos, foram definidas metas específicas para cada um deles. A Tabela 1 apresenta um sumário das metas definidas. As metas específicas foram calculadas na forma de redução de HH para cada atividade/processo descrito abaixo, levando em consideração o potencial ganho de tempo de desperdício observado nas tarefas analisadas por vídeo. Considerando que o valor do HH é igual a 0,0166, foi estimado o ganho potencial em PMP com base na quantidade realizada dos serviços no ano de 2022.

TABELA 1 - Ganho potencial estimado para melhoria em cada processo

Atividade/ Processo	Complexid.	Média	Meta	Ganho de PMP	n (2022)	Ganho anual
Recuperação Mecânica do Estator	-	2,44	2,29	0,0024	106	0,2577
Pintura do Estator e Acabamentos	-	2,01	1,44	0,0094	143	1,3471
Reparo de Trinca no Estator	Média	2,38	2,17	0,0034	33	0,1127
Reparo de Trinca no Estator	Alta	2,92	2,67	0,0042	55	0,2308
Montagem Armadura e regulagem porta escovas	-	1,57	1,36	0,0034	170	0,5845
Recuperação Elétrica do Estator	Baixa	1,6	1,09	0,0085	53	0,4490
Recuperação Elétrica do Estator	Média	2,14	1,46	0,0113	106	1,2000
Troca dos Cabos A e AA	Baixa	4,88	3,89	0,0165	32	0,5294
Troca dos Cabos A e Forquilha	Média	5,81	4,62	0,0197	8	0,1574
Troca dos Cabos A, AA e Forquilha	Alta	6,74	5,36	0,0228	22	0,5020

4.3. FASE ANALISAR (*ANALYZE*)

A primeira atividade nesta etapa foi um maior entendimento do processo gerador do problema. A ferramenta utilizada para o detalhamento do processo foi o fluxograma. Abriu-se o processo do Motor de Tração entre seus dois principais componentes: armadura e estator. As Figuras 14 e 15 representam ambos os fluxos.

Fonte: Autores (2023).

Para a exploração de causas potenciais, foi aplicado o Diagrama de Ishikawa. O resultado obtido após reunião com a equipe de projeto está apresentado na Figura 16.

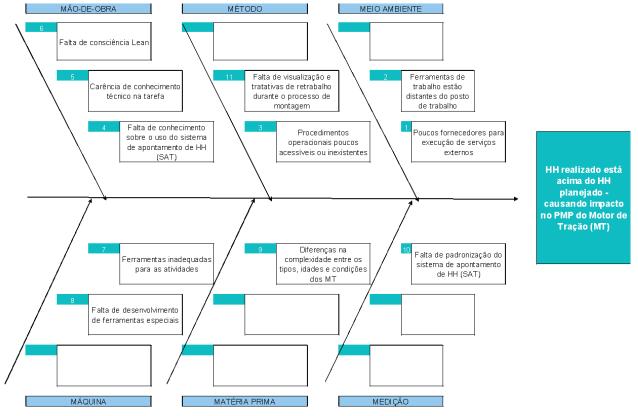


FIGURA 16 - Diagrama de Ishikawa com as causas potenciais classificadas

As causas potenciais foram então priorizadas utilizando a matriz de esforço e impacto. A matriz está representada na Figura 17. Os 6 primeiros itens foram escolhidos para as próximas etapas do projeto.

FIGURA 17 - Priorização das causas potenciais com base na Matriz de Esforço e Impacto

	Matriz de Esforço e Impact	to			
Item	Possíveis Causas	Grupos de afinidade	Impacto no HH	Esforço	Impacto/Esforço
2	Ferramentas de trabalho estão distantes do posto de trabalho	Meio Ambiente	70	3	23.3
10	Falta de padronização do sistema de apontamento de HH (SAT)	Medição	60	3	20.0
3	Procedimentos operacionais poucos acessíveis ou inexistentes	Método	80	5	16.0
4	Falta de conhecimento sobre o uso do sistema de apontamento de HH (SAT)	Mão-de-Obra	60	4	15.0
5	Carência de conhecimento técnico na tarefa	Mão-de-Obra	90	6	15.0
6	Falta de consciência Lean	Mão-de-Obra	70	5	14.0
11	Falta de visualização e tratativas de retrabalho no processo de montagem	Método	60	5	12.0
7	Ferramentas inadequadas para as atividades	Máquina	70	9	7.8
9	Diferenças na complexidade entre os tipos, idades e condições dos MT	Matéria Prima	70	10	7.0
8	Falta de desenvolvimento de ferramentas especiais	Máquina	60	9	6.7
1	Poucos fornecedores para execução de serviços externos	Meio Ambiente	10	10	1.0

Para comprovar as causas buscou-se evidências, resultando em 5 causas comprovadas. Estas são apresentadas na Figura 18.

FIGURA 18 – Matriz de comprovação das causas priorizadas

	FIGURA 18 – Matriz de comprovação das causas priorizadas									
F0C0 1	F0C0 2	FOCO 3	FOCO 4	FOCO 5	FOCO 6	CAUSA PRIORIZADA	DESCRIÇÃO DA CAUSA	EVIDÊNCIA DA CAUSA (Mostrar que a causa acontece de Fato - Coloca Anexo se Necessário)	PROVA DE QUE A CAUSA TEM CORRELAÇÃO COM O FOCO (Colocar anexo se Necessário)	CAUSA COMPRO VADA?
×	×	×	×	×	×	Ferramentas de trabalho estão distantes do posto de trabalho	Ferramentas ou peças guardadas em locais distantes ou de difícil acesso, o colaborador perde tempo ao buscá-las e procurá-las.	Durante a análise da tarefa, foi calculado o porcentagem do tempo de movimentação do colaborador, em sua maior parte ocorre por ir buscar ferramentas ou peças para a atividade.	Todas os focos apresentaram uma porcentagem considerável de gasto com movimentação.	sim
×	×	×	×	×	×	Falta de padronização do sistema de apontamento de HH (SAT)	As atividades não estão padronizadas no sistema	Descrição de atividades não padronizadas no SAT	A falta de padronização faz com que os colaboradores dêem entradas incorretas e/ou diferentes para atividades iguais, o que prejudica ou impossibilita a análise pela equipe de engenharia, impossibilitando a identificação dos problemas que aumentam o HH.	sim
×	×	×	×	×	×	Procedimentos operacionais poucos acessíveis ou inexistentes	Não há procedimentos operacionais para as tarefas selecionadas	Falta de procedimentos operacionais	A falta de procedimento acessível e de fácil e rápida compreensão faz com que os colaboradores tenham que parar a atividade por muito tempo para resolver o problemas e pode gerar retrabalho.	sim
×	×	×	×	×	×	Falta de conhecimento sobre o uso do sistema de apontamento de HH (SAT)	Não há frequencia de treinamento prevista, o uso do sistema é aprendido na prática.	Base de dados com vários preenchimentos incorretos e com baixo nível de detalhamento.	Erros no preenchimento do sistema e baixo detalhamento geram dificuldades na análise da atividade por parte da equipe de engenharia.	Sim
×	×	×	×	×	×	Carência de conhecimento técnico na tarefa	Alguns técnicos demonstraram média mais alta e maior dispersividade dos dados, o que também eleva a média total das tarefas	Comparação entre médias e dispersividade de HH dos colaboradores para as tarefas	Os colaboradores com menos experiência na tarefa foram aqueles que apresentaram maiores dispersividades no HH.	sim
×	×	×	×	×	×	Falta de consciência Lean	Falta de conhecimento da filosofia enxuta ou pouca importância ao assunto	-	-	não

Fonte: Autores (2023).

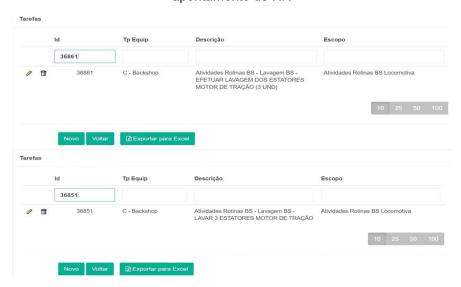

A causa "Ferramentas de trabalho estão distantes do posto de trabalho", foi comprovada pela análise do tempo de movimentação do colaborador durante o vídeo em cada uma das tarefas, que apresentou valores consideráveis, sintetizado na Tabela 2:

TABELA 2 - HH em movimentação nas atividades gravadas em vídeo

Atividade	HH em movimentação
Recuperação Mecânica do Estator	10%
Pintura do Estator e Acabamentos	47%
Reparo de Trinca no Estator	17%
Montagem Armadura e regulagem porta escovas	22%
Recuperação Elétrica do Estator	53%
Troca dos Cabos	34%

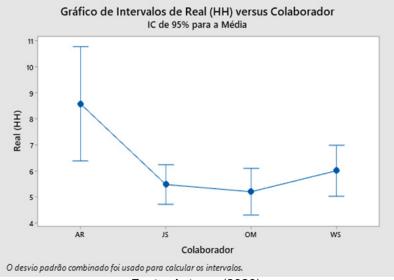
A causa "Falta de padronização do sistema de apontamento de HH (SAT)" relaciona-se com os focos, pois a falta de padronização faz com que os colaboradores deem entradas incorretas ou diferentes para atividades iguais, o que prejudica ou impossibilita a análise pela equipe de engenharia, dificultando a identificação dos problemas que aumentam o HH. Isso foi evidenciado pelas diferentes descrições encontradas dentro do sistema, como o exemplo das imagens da Figura 19, que demonstram duas descrições diferentes da mesma atividade.

FIGURA 19 - Exemplo de duas atividades iguais descritas com nomes distintos no sistema de apontamento de HH

Fonte: Autores (2023).

A causa "Procedimentos operacionais pouco acessíveis ou inexistentes" faz com que os colaboradores tenham que parar a atividade por muito tempo para resolver os problemas e pode gerar retrabalho. Isso foi comprovado por meio de busca nos documentos da empresa. Para os 6 focos selecionados, só foram encontrados documentos de instrução do tipo *Checklist*, os quais não são considerados suficientes para orientar os colaboradores sobre a execução da tarefa.

A causa "Falta de conhecimento sobre o sistema de apontamento de HH (SAT)" foi comprovada porque erros no preenchimento do sistema e baixo detalhamento geram dificuldades na análise da atividade por parte da equipe de engenharia e evidenciada pela constatação de que na base de dados há vários campos com preenchimentos incorretos e com baixo nível de detalhamento. Como por exemplo, no campo Observação:


- 1. "SAT ESTÁ ALTERANDO TEMPO AUTOMÁTICO VOLTANDO AO TEMPO REAL DA TAREFA NA VOLTA DO ALMOÇO."
- 2. "ok reajustar tempo"
- "OK SAT BUGADO"
- 4. "FORAM REUTILIZADOS OS CABOS DE OUTRO ESTATOR"
- 5. "TEMPO NEGATIVO PORQUE OS PARAFUSOS DAS BOBINAS TIVERAM QUE ESQUENTAR PARA SOLTAR."
- 6. "FEITO SOLDAS ESTATOR COM BASTANTE SERVIÇO A SER FEITO"
- 7. "ATRASO DA TAREFA POR APRESENTAR FALHA NA ARMADURA"

A causa "Carência de conhecimento Técnico na Tarefa" deve-se ao fato de que os colaboradores com menos experiência na tarefa foram aqueles que apresentaram maiores médias ou dispersividade no HH, o que foi comprovado pela análise estatística das médias dos colaboradores para algumas das tarefas, conforme Figuras 20 a 22 e Tabelas 3 a 5.

FIGURA 20 - Diferença entre médias dos colaboradores para Tarefa Recuperação Mecânica do Estator

FIGURA 21 - Diferença entre médias dos colaboradores para Tarefa Troca de Cabos

Fonte: Autores (2023).

FIGURA 22 - Diferença entre médias dos colaboradores para Tarefa Montagem da Armadura no Estator

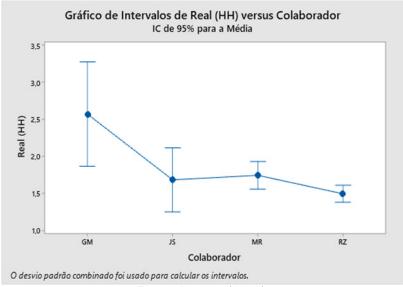


TABELA 3 - Estatística descritiva por colaborador da Tarefa Pintura do Estator e Acabamentos

Colaborador	N	Média	Desvio Padrão	cv
JC	138	2,0017	0,4184	21%
JS	2	2,465	0,191	8%
WS	2	2,26	0,226	10%

TABELA 4 - Estatística descritiva por colaborador da Tarefa Reparo de Trinca no Estator

Colaborador	N	Média	Desvio Padrão	CV
AF	40	2,418	1,279	53%
CF	37	2,815	0,905	32%
MC	17	2,206	0,744	34%
MS	2	3,635	1,181	32%

TABELA 5 - Estatística descritiva por colaborador da Tarefa Recuperação Elétrica do Estator

Colaborador	N	Média	Desvio Padrão	cv
AR	9	5,31	3,9	73%
JS	68	1,6659	0,4107	25%
OM	37	1,4968	0,3892	26%
WS	42	2,136	0,733	34%

Por fim, a causa "Falta de consciência Lean" não foi possível de ser evidenciada.

4.4. FASE MELHORAR (IMPROVE)

Foram determinadas 5 soluções diferentes para as causas comprovadas. Elas são apresentadas na Tabela 6.

TABELA 6 - Relação de causas e soluções

Causa	Soluções	Soluções
Ferramentas de trabalho estão distantes do posto de trabalho	Organização do Layout do posto de trabalho para que as ferramentas fiquem próximas na execução	Manter um kit com ferramentas essenciais para a tarefa próximo ao posto de trabalho
Falta de padronização do sistema de apontamento de HH (SAT)	Definir padrões para conteúdo de listas suspensas (observação e justificativa)	Treinar a equipe para realizar o preenchimento correto
Procedimentos operacionais poucos acessíveis ou inexistentes	Criar instruções/procedimentos de trabalho para melhor assimilação e disponibilizá-las na área operacional	
Falta de conhecimento sobre o uso do sistema de apontamento de HH (SAT)	Treinar a equipe para realizar o preenchimento correto	
Carência de conhecimento técnico na tarefa	Utilizar a matriz de capacitação para criar troca de conhecimento técnico entre os colaboradores mais e menos experientes	

Para definir a ordem de priorização das soluções, foi utilizada uma matriz de priorização. Ela está apresentada na Figura 23.

FIGURA 23 - Matriz de priorização de soluções

Prioridade						Possíveis Soluções	
1	Organizac	ção do Lay	yout do po	sto de trab	alho para	que as ferramentas fiquem próximas na execução	
1	Manter un	n kit com fe	erramentas	essenciais į	para a tare	fa próximo ao posto de trabalho	
2	Definir pac	drões para	conteúdos	de listas sus	spensas		
2	Treinar a e	equipe para	realizar o p	oreenchime	nto corret	o	
3	Consultar	colaborado	res experie	entes sobre	parâmetro	s e atividades críticas para cada tarefa e possibilitar a c	livulgação da informação
3	Criar instru	ıções de tra	abalho de f	ácil assimila	ação e expô	ô-las na área operacional	
4	Treinar a e	auipe para	realizar o t	oreenchime	nto correto		
5						os colaboradores mais e menos experientes (dinâmica:	s. simulados, etc)
_							-,
Rec. Mecânica	Pintura do Estator	Reparo de Trinca	Montagem da Armadura	Troca de Cabos	Rec. Elétrica	CAUSAS FUNDAMENTAIS	SOLUÇÕES ESCOLHIDAS
×	×		*	×		Ferramentas de trabalho estão distantes do	Organização do Layout do posto de trabalho para que as ferramentas fiquem próximas na execução
×	×		×	×		posto de trabalho	Manter um kit com ferramentas essenciais para a tarefa próximo ao posto de trabalho
×	×	×	×	×	×	Falta de padronização do sistema de	Definir padrões para conteúdos de listas suspensas
×	×	×	×	×	×	apontamento de HH (SAT)	Treinar a equipe para realizar o preenchimento correto
×	×	×	×	×	×	Procedimentos operacionais poucos	Criar instruções/procedimentos de trabalho
×	×	×	×	×	×	acessíveis ou inexistentes	para melhor assimilação e diponizá-las na
	.,		''	.,			área operacional
×	×	×	×	×	×	Falta de conhecimento sobre o uso do	Treinar a equipe para realizar o
						sistema de apontamento de HH (SAT)	preenchimento correto Utilizar a matriz de capacitação para criar
×	×	×	×	×	×	Carência de conhecimento técnico na tarefa	troca de conhecimento técnico entre os colaboradores mais e menos experientes

E para contribuir com a tomada de decisão, também foram mapeados os riscos associados a cada uma das soluções propostas. A análise está presente na Figura 24.

FIGURA 24 - Matriz de análise de riscos para as soluções priorizadas

SOLUÇÃO	RISCO DA IMPLEMENTAÇÃO	ANÁ	LISE DE RISCO	
SELECIONADA	(Imaginar que a solução foi implantada - Quais efeitos colaterais podem ser gerados ?)	PROBABILIDADE	IMPACTO	RISCO
Organização do Layout do posto de trabalho para que as ferramentas fiquem próximas na execução	Perda de tempo por falta de hábito com a nova disposição	50%	3	Ваіхо
Manter um kit com ferramentas essenciais para a tarefa próximo ao posto de trabalho	As ferramentas disponíveis não permanecerem em condições adequadas (manutenção, calibração, etc)	20%	6	Ваіхо
Definir padrões para conteúdos de listas suspensas	Padrões insuficientes ou dificuldade na interpretação	20%	5	Ваіхо
Treinar a equipe para realizar o preenchimento correto	Resistência à mudança por parte da equipe	20%	5	Baixo
Criar instruções/procedimentos de trabalho para melhor assimilação e diponizá-las na área	Colaboradores não utilizarem as instruções/procedimentos	60%	1	Baixo
operacional	Instruções tornarem-se obsoletas com o tempo	30%	4	Baixo
Treinar a equipe para realizar o preenchimento correto	Resistência à mudança por parte da equipe	20%	5	Baixo
Utilizar a matriz de capacitação para criar troca de conhecimento técnico entre os colaboradores mais e menos experientes	"Perpetuar" práticas menos eficientes/adequadas	30%	6	Ваіхо

Foi então definido um plano de ação para a implementação das soluções, contando com a matriz 5W2H. O plano de ação está presente no Anexo II e a declaração da empresa de que será realizado o plano de ação está no Anexo III.

4.5. FASE CONTROLAR (CONTROL)

O plano de ação está em fase de implementação até a data de publicação deste trabalho de conclusão de curso, desta forma, não foi possível avaliar o ganho real do projeto. Como uma forma de auxiliar na comprovação dos ganhos, foi gerada uma matriz de estimativa de ganhos com os ganhos potenciais revisados após as etapas realizadas, esses valores foram calculados tendo como base a matriz de Impacto e Esforço (Figura 17), utilizando a fração proporcional ao impacto no HH estimado para cada solução. A Tabela 7 apresenta a matriz de estimativa de ganhos.

TABELA 7 - Matriz de estimativa de ganhos

Causa	Solução	Fração	Estimativa
Ferramentas de trabalho estão distantes do posto de	Organização do Layout do posto de trabalho para que as ferramentas fiquem próximas na execução	0,5	0,6539
trabalho	Manter um kit com ferramentas essenciais para a tarefa próximo ao posto de trabalho	0,5	0,6539
Procedimentos operacionais poucos acessíveis ou inexistentes	Criar instruções/procedimentos de trabalho para melhor assimilação e disponibilizá-las na área operacional	1	1,4946
Carência de conhecimento técnico na tarefa	Utilizar a matriz de capacitação para criar troca de conhecimento técnico entre os colaboradores mais e menos experientes	1	1,6814
Falta de padronização do	Definir padrões para conteúdo de listas suspensas	0,5	0,5605
sistema de apontamento de HH (SAT)	Treinar a equipe para realizar o preenchimento correto	0,5	0,5605
Falta de conhecimento sobre o uso do sistema de apontamento de HH (SAT)	Treinar a equipe para realizar o preenchimento correto	1	112,09
Total			6,7257

5. CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

A implementação da metodologia DMAIC em uma empresa ferroviária revelase um instrumento crucial para superar as complexidades e os desafios inerentes à operação e gestão do setor. Através das fases distintas de Definir, Medir, Analisar, Melhorar e Controlar, a empresa pode identificar de maneira precisa os gargalos operacionais, ineficiências e oportunidades de aprimoramento em suas operações ferroviárias.

A abordagem orientada por dados proporcionada pela DMAIC permite à empresa adotar decisões embasadas em informações sólidas, otimizando não somente a eficiência operacional, mas também a segurança, a pontualidade e a qualidade dos serviços prestados aos clientes. Ao estabelecer uma cultura de melhoria contínua, a empresa ferroviária pode responder de maneira ágil às demandas em constante evolução do mercado, garantindo que suas operações estejam alinhadas com as necessidades dos clientes e com os padrões regulatórios.

Em um setor onde a segurança, a confiabilidade e a satisfação do cliente são de suma importância, a metodologia DMAIC emerge como uma aliada fundamental. Ao abraçar essa abordagem, a empresa ferroviária não apenas melhora seus processos internos, mas também contribui para um sistema ferroviário mais seguro, eficiente e competitivo, assegurando a sua posição como protagonista no cenário do transporte e logística ferroviária.

Para trabalhos futuros, a metodologia pode ser aplicada para os demais componentes de manutenção de locomotiva e para a área de vagões.

REFERÊNCIAS BIBLIOGRÁFICAS

BRASIL. Constituição (2021). Lei nº 14273, de 23 de dezembro de 2021. Estabelece a Lei das Ferrovias; altera o Decreto-Lei nº 3.365, de 21 de junho de 1941, e as Leis nºs 6.015, de 31 de dezembro de 1973, 9.074, de 7 de julho de 1995, 9.636, de 15 de maio de 1998, 10.233, de 5 de junho de 2001, 10.257, de 10 de julho de 2001, 10.636, de 30 de dezembro de 2002, 12.815, de 5 de junho de 2013, 12.379, de 6 de janeiro de 2011, e 13.448, de 5 de junho de 2017; e revoga a Lei nº 5.917, de 10 de setembro de 1973. **Lei das Ferrovias**. Brasília, DF

CONFEDERAÇÃO NACIONAL DO TRANSPORTE – CNT (2015). **Pesquisa Ferroviária CNT 2015**. Brasília, DF.

SANCHES NETO, Javert Brusamolin; BESEN, Josué Victor. Aplicação de Lean Manufacturing na otimização do processo de reparação de motores de tração de uma empresa de logística ferroviária do Paraná. 2020. 33 f. TCC (Graduação) - Curso de Engenharia Mecânica, Departamento Acadêmico de Mecânica, Universidade Tecnológica Federal do Paraná, Curitiba, 2020.

SENAI. **Backshop – Elétrica.** Apostila de treinamento. SENAI - Sistema FIEP. Pinhais, 2018.

WERKEMA, Cristina. Lean Seis Sigma - Introdução às Ferramentas do Lean Manufacturing. São Paulo: Atlas, 2022.

JONES, Daniel; WOMACK, James. A mentalidade enxuta nas empresas: elimine o desperdício e crie riqueza. São Paulo: Elsevier, 2004.

ANEXO I - SIPOC

Fornecedores	Insumos	Processo	Produtos	Consumidores
Suppliers	Inputs	Process	Outputs	Customers
Suppliers	Imputs	Trocess	Outputs	Cuscomers
Postos de Manutenção e equipes de Campo	Motor Avariado ou em fim de vida	1-Receber o item a recuperar	Fecamento da vida do componente na rastreabilidade	Engenharia
Controle de recebimento + Eng BKS	Conclusão do recebimento e verificação de não garantia	2- Enviar o item ao estoque "Arecup"	Item a recuperar armazenado	Almox arifad XYZ
РСМ	Requisição de motor novo ou planejamento de demanda	3- Emitir a ordem de produção	Ordens de produção	Lideres e programadores de produção
Almoxarifado XYZ	Requisição	4- Baixar os itens no processo	Motor disponivel para desmontagem	Célula de desmontagem
Mantenedores	Coleta de dados	5- FMEA do item recebido	Alimentação da FTA	Engenharia
Operador	Demanda de peça	6- Desmontar o item	Segregação das peças	Lavagem de peça
Desmontagem	Estator, Armadura e acessórios	7- Lavar as peças	Peças limpas	Estufa
Lavagem de peça	Conjunto limpo	8- Secar, em estufa, o estator e a amadura	Peças para qualificação	Qualificação
Estufa	Estator	9- Qualificar o estator	1-UK (Seguir o processo) 2-NOK (Segrega,Erwia para	Reparação elétrica
Estufa	Armadura	10- Qualificar a armadura	1-UK (Seguir o processo) 2-NOK (Segrega,Erwia para	Reparação elétrica
Qualificação	Estator Qualificado	11- Reaparar elétrica do estator	Estator com isolação reparada	Impregnadora
Reparação elétrica	Estator reparado	12- Impregnar o estator	Estator Impregnado	Reparação mecânica
Impregnadora	Estatore impregnado	13- Reparar a mecânica do estator	Estator sem trica	Cabine de pintura
Qualificação	Amadura Qualificada	14- Reparar a mecânica da armadura		Rebaixamento de mica
Reparação mecânica	Armadura Reparada	15- Rebaixar mica	Coletor usinado e rebaixado	Balanceadora
Reparação mecânica	Armadura Usinada	16- Balancear	Armadura com laudo	Cabine de pintura
Balancear	Armadura Balanceada	17- Pintar	Motor com a cor correta e com book de check lists	Mercado de montagem
Células+ Kanban	Requisição	18 - Requisitar peças para montagem	Kanban de montagem de motor	Montagem
Mantenedor	Combo de peças	19- Montar motor de tração	Motor montado	Regulagens
Mantenedor		20- Regular itens do motor	Escovas reguladas	Testes dinâmicos
Mantenedor		21- Testar dinâmicamente	Parametros de funcionamento atestado e	Estapas de acabamento
Técnico especializado	Coletas de dados	22- Inspecionar características criticas	Dennição de produto conforme ou não	Engenharia
Mantenedor	Coletas de dados	23- Arquivar check lists	Rastreabilidade e análise de dados	Controle de qualidade
Mantenedor	Material aguardando liberação	24- Embalar motor	Motor peletado	Estoque
Almoxarifado XYZ	Entrada de motor no estoque	Enviar motor ao estoque	Produto Acabado	Expedição

ANEXO II – PLANO DE AÇÃO

					5W2H				
Causa Fundamental	Solução a ser implementada	Atividade	Who	When	Why	Where	How	How Much	Status
	Organização do Layout do Analisar Layout e propor posto de trabalho para que lalterações	Analisar Layout e propor alterações	Belts	Ago/23	Para propor melhor solução	Gemba e Layout atual	Análise das possibilidades de layout	0	
Ferramentas de trabalho estão	as ferramentas fiquem próximas na execução	Realizar æ alterações	Equipe de engenharia da empresa	Set/23	Realizar a methoria	Gemba	Alterar o espaço	0	
distantes do posto de trabalho	Manter um kit com ferramentas essenciais	Definir lista de ferramentas	Equipe de engenharia da empresa	Ago/23	Propor melhor solução	Gemba	Analisar ferramentas indispensáveis àtarefa	0	
	para atarefa próximo ao posto de trabalho	Adquirir ferramentas e montar os kits	Equipe de engenharia da empresa	Set/23	Realizar a methoria	Gemba	Comprar, separar e montar os kits		
		Estudar os procedimentos existentes	Belts	Ago/23	Adquirir conhecimento da tarefa	Procedimentos e checklists Leitura, análise e atuais discussões	Leitura, análise e discussões	0	
Procedimentos operacionais	Criar in≴ruções⁄procedimentos de trabalho para melhor	Acompanhar execução no gemba com funcionário experiente	Equipe de engenharia da empresa+ belt s	Ago/23	Adquirir conhecimento da tarefa	Gemba	Acompanhar tarafa e registrar	0	
poucos acessaveis ou mexistentes	assimilação e diponizá-las na área operacional	Confeccionar instrução de trabalho	Belts	Set/23	Propor melhor solução	Escritório	Utilizar registros para criar documentp	0	
		Disponibilizar instrução na Equipe de engenharia da área operacional empresa+ belts	Equipe de engenharia da empresa+ belt s	Set/23	Facilitar o acesso	Gemba e escritório	Imprimir, plastificar e disponibilizar na área		
	Utilizar a matriz de capacitação para criar	Análise da matriz de capacitação	Belts	Ago/23	Propormelhor solução	Matriz de capacitação	Definir quais colaboradores serão envolvidos	0	
Carência de conhecimento técnico na tarefa	troca de conhecimento técnico entre os colaboradores mais e	Planejamento e programação do treinamento	Equipe de engenharia da empresa+ belt s	Ago/23	Definir programação do treinamento	Escritório	Definir qual o melhor local e período	0	
	menos experientes	Realização dos treinamentos	Equipe de engenharia da empresa+ belts	S ct./2 3	Realizar a methoria	Gemba	Promover o treinamento	0	
	20 mg	Definir quais listas serão criadas	Equipe de engenharia da empresa+ belt s	Ago/23	Para propor melhor solução	Bæe de dados do SAT	Analisar a base de dados do SAT e as necessidades da engenharia da empresa	0	concluído
Falta de padronização do sistema de apontamento de HH (SAT)		Definir padrões paralistæ	Equipe de engenharia da empresa+ belt s	Ago/23	Padronizar o sistema de respostas	Bæe de dados do SAT	Analisar a base de dados do SAT e as necessidades da engenharia da empresa	0	em andament o
		Criar listas suspensas no sistema	Equipe de engenharia da empresa+ belts	Ago/23	Realizar a methoria	SAT	Alterar as configurações do sistema	0	
Falta de padronização do sistema de apontamento de HH (SAT	Treinar a equipe para	Preparar o treinamento	Equipe de engenharia da empresa+ belt s	Ago/23	Adequar treinamento às necessidades da área	Escritório	Extudar sistema e procedimentos e preparar a forma de treinamento	0	
Falta de conhecimento sobre o uso do sistema de apontamento de HH (SAT)		Realizar o treinamento	Equipe de engenharia da empresa	Set/23	Realizar amethoria	Gemba	Reunir colaboradores e realizar treinamento	0	

ANEXO III - DECLARAÇÃO DA EMPRESA

