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RESUMO  

 

O Inventário florestal é um método de levantamento de campo indispensável para conhecer as 
características quantitativas e qualitativas de uma floresta. Esta atividade em florestas nativas é 
demorada, onerosa, risco a saúda do trabalhador, além da possibilidade de ocorrer possíveis 
erros de humanos voltados a identificação e medição das árvores. O uso de geotecnologia 
remotas através das aeronaves para levantamento e mapeamento da vegetação vem sendo um 
verdadeiro aliado aos gestores ambientais na execução de projetos de manejo e conservação 
florestal. Considerado o potencial de uso desta ferramenta, o objetivo deste estudo foi buscar 
avanços técnicos e científicos para apoiar o inventário florestal remoto na floresta Amazônica, 
apresentado em dois capítulos. O Capítulo I corresponde a fusão de imagens aéreas adquiridas 
por meio de um sistema de aeronave não tripulada visando a identificação automática de 
espécies arbóreas utilizando rede neural convulacional (CNN) na floresta Amazônica. O estudo 
foi realizado em uma área de floresta nativa com 260 ha em Rio Branco, na sede da Embrapa 
Acre, em que foram identificadas e segmentado oito espécies florestais com potencial 
econômico, totalizando 406 indivíduos, com DAP a partir de 50 cm. A classificação automática 
das espécies foi feita através da CNN ResNet-18 combinada com a arquitetura DeepLabv3+, 
modelo de aprendizado de máquina profundo, dividiu-se o banco de dados em 60% treinamento 
e 40% para teste. O melhor resultado foi na fusão das imagens aéreas de diferentes meses 
(período seco e chuvoso), a acurácia média foi de 90,5%, onde para seis espécies a acurácia 
ultrapassou 90%, a espécie Phyllocarpus riedelii obteve uma acurácia de 100%. O mês de maio 
teve a menor acurácia, 69,3%, intensa mudança de fenofases das espécies, mais difícil para o 
algorítmico discriminar as espécies florestais enquanto que o melhor mês foi o de novembro, 
acurácia de 83,5%. O capítulo II abordou sobre a estimativa do volume de árvores a partir da 
morfometria da copa obtidas por UAS na mesma área de estudo. Utilizou-se o inventário 
florestal de campo, onde todas as árvores com diâmetro a altura do peito - DAP ≥ 50 cm foram 
mensuradas. A localização das árvores foram combinadas com as imagens aéreas e, após, 
filtrados 388 indivíduos distribuídos em 55 espécies. A morfometria da copa foi identificada 
através do diâmetro médio e da área da copa, posteriormente realizou um teste de correlação 
para analisar o tamanho do relacionado destas variáveis para posterior inserção nos modelos de 
volume, área basal e diâmetro das árvores distribuído por classe diamétrica. O banco de dados 
foi dividido em 70% para o treinamento e 30% para o teste. O teste de correlação identificou 
uma forte interação entre as variáveis da copa com volume e a inexistência da altura, logo foi 
descartada da análise. O volume predito teve métricas para o ajuste SEE 21,97% e para o teste 
RMSE 19,13%, ambos com R² superior a 0,90. Para área basal e diâmetro o SEE foi inferior a 
6,5% e R² maior que 0,99, os resíduos dos modelos foram heterocedáticos, o volume teve a 
maior dispersão, mas concentrou-se até ± 25% demonstrando a acurácia do modelo e o 
potencial em utilizar variáveis da copa das árvores.  
  
 
Palavras-chave: 1. Imagens aéreas 2. Diâmetro 3. segmentação 4. ortomosaico 5. acurácia 



 
 

 ABSTRACT 

 

Performing a forest inventory is an indispensable field survey method for knowing the 
quantitative and qualitative characteristics of a forest. This activity in native forests is time-
consuming, costly, poses a risk to the worker's health, in addition to the possibility of possible 
human errors in identifying and measuring trees. The use of remote geotechnology through 
aircraft for surveying and mapping vegetation has been a true ally to environmental managers 
in executing forest management and conservation projects. Considering the potential use of this 
tool, the objective of this study was to seek technical and scientific advances to support the 
remote forest inventory in the Amazon rainforest, presented in two chapters. Chapter I 
corresponds to a fusion of aerial images acquired through an unmanned aircraft system aiming 
to automatically identify tree species using convulational neural network (CNN) in the Amazon 
rainforest. The study was conducted in an area of native forest with 260 ha in Rio Branco, Acre, 
Brazil, at the headquarters of Embrapa Acre, where eight forest species with economic potential 
were identified and segmented, totaling 406 individuals, with DBH from 50 cm. The automatic 
classification of species was done through CNN ResNet-18 combined with the DeepLabv3+ 
architecture, a deep machine learning model, and the database was divided into 60% training 
and 40% for testing. The best result was in the fusion of aerial images from different months 
(dry and rainy seasons); the average accuracy was 90.5%, it exceeded 90% for six species, and 
the Phyllocarpus riedelii species obtained an accuracy of 100%. The month of May had the 
lowest accuracy (69.3%), with intense change in the phenophases of the species, making it more 
difficult for the algorithm to discriminate forest species, while the best month was November, 
presenting an accuracy of 83.5%. Chapter II addressed the volume estimation of trees from 
crown morphometry obtained by UAS in the same study area. A field forest inventory was used, 
where all trees with diameter at breast height - DBH ≥ 50 cm were measured. The locations of 
the trees were combined with the aerial images, and then 388 individuals distributed in 55 
species were filtered. The canopy morphometry was identified through the average diameter 
and the canopy area, and a correlation test was subsequently performed to analyze the related 
size of these variables to later insert the volume, basal area and diameter of the trees distributed 
by diametric class in the models. The database was divided into 70% for training and 30% for 
testing. The correlation test identified a strong interaction between the canopy variables with 
volume and the lack of height, which was therefore discarded from the analysis. The predicted 
volume had metrics of 21.97% for the SEE fit and 19.13% for the RMSE test, both with R² 
greater than 0.90. The SEE for basal area and diameter was less than 6.5% and R² greater than 
0.99; the residuals of the models were heteroscedastic, the volume had the greatest dispersion, 
but was concentrated up to ± 25%, thereby demonstrating the model accuracy and the potential 
to use treetop variables.  
 
 
Keywords: 1. Aerial images 2. Diameter 3. segmentation 4. orthomosaic 5. accuracy 
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GENERAL INTRODUCTION 

 

The Amazon Forest is the largest tropical forest in the world, home to high biodiversity 

and a powerful stock of forest resources capable of sequestering carbon and contributing to 

global climate regulation (Heinrich et al., 2021). The conservation of its territory is being 

impacted by deforestation arising from invasions of public and private lands, converting it into 

pasture and agriculture. The expansion of consolidated private areas also contributes to the 

increase in CO2 emissions. 

The valuation of ecosystem services through the sustainable use of forest resources is a 

possible solution for protecting the forest, developing an economy based on exploiting existing 

raw materials, wood and non-wood products (Lima and Azevedo-Ramos, 2021). 

The forest inventory is an indispensable tool for knowing the quantitative and qualitative 

characteristics of a forest, which is necessary to outline the viability of forest conservation and 

management projects. Field activities in native forests are time consuming, costly, and 

unhealthy for workers, identification and measurement errors may occur, and above all, have 

high costs. With the advance in the availability of high resolution aerial images and the use of 

active and passive sensors (i.e. LiDAR and RGB, respectively), it has become possible to 

remotely identify tree species in native forests, estimate biomass, and analyze ecological 

succession, thereby optimizing time, reducing financial resources and increasing area coverage 

capacity. 

The use of passive and active sensors, such as LiDAR, has gained a lot of space in the 

forestry sector, as it is able to go beyond the treetops (something that the RGB sensor is not 

capable of) and collect relief information, individualize trees, estimate height, structure the 

understory, estimate biomass and consequently carbon (de Almeida et al., 2021; Ferreira et al., 

2019; Leite et al. 2022). Figueiredo et al. (2014) evaluated the morphometry volume of the tree 

canopy in the Amazon using LiDAR data from plane, reaching estimates of 92.92% of R² and 

a mean error of 16.73% for equations with the DBH variable present and 79.44% of R² and 

27.47% of Syx(%) for the equation without DBH, constituting an important work portraying 

the viability of carrying out a remote forest inventory. 

The availability of high-resolution satellite images contributes to monitoring large areas 

of forests. Works aimed at identifying species have focused on the use of Sentinel-2 and 

WorldWiew images combined with machine learning (Lassalle et al., 2022; Ma et al., 2021). 

Ferreira et al. (2021) used convolutional neural networks (CNN) to identify individuals of the 

species Berthollethia excelsa Bonpl. through the canopy (Lecythidaceae) in the Amazon 
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rainforest from high resolution images from the WorldView-3 satellite (pixel size = 30 cm), 

and achieved an average accuracy greater than 93.0%, demonstrating the robustness of 

combining high resolution images with CNNs being able to discriminate the chestnut tree for 

large tracts of forest at a low cost. 

The use of aircraft to map vegetation has been a true ally to environmental managers in 

executing forest management, inspection, monitoring and conservation projects (d'Oliveira et 

al., 2021; d’Oliveira et al., 2020; de Almeida Papa et al., 2020b; Figueiredo et al., 2016; da 

Costa et al., 2021; da Cunha Neto et al., 2021). Corte et al. (2022) estimated the height (ht), 

diameter (DBH) and volume (v) of a silvopastoral eucalyptus plantation using a UAS with 

LiDAR sensor, in which the erro for DBH was 9.33%, ht was 12.40% and volume 26.36%, 

claiming to be a valid alternative to support decision-making on forest management activities, 

especially when considering tree architecture and biomass components. 

With the popularization of Unmanned Aircraft System (UAS) with an RGB sensor, a 

great advance has been taking place in remote data collection in plant and native forests (Mohan 

et al., 2017; Novak et al., 2020; Schiefer et al., 2020; Nasiri et al., 2021; Kuzmin et al., 2021; 

Hartley et al., 2020). The discrimination of native species is already a reality; for example, 

Ferreira et al. (2020b) applied CNN from aerial UAS images with RGB sensor (pixel = 4 cm) 

in an area of native forest in the Amazon (135 hectares) to classify the species Attalea 

butyracea, Euterpe precatoria and Iriartea deltoidea, obtaining positive results with a mean 

accuracy of 78.6%, 98.6% and 96.6%, respectively; and also enabling identification of palm 

trees in the Amazon, an important by-product of the forest responsible for the economy of 

several traditional families, and crucial for the improvement of non-timber forest management. 

Moura et al. (2021a) used UAS images combined with CNN to evaluate forest regeneration in 

the same region and managed to classify six forest species which are indicators of an 

environment in recovery with an average accuracy above 90%, demonstrating the potential of 

using aerial images to assess the quality regeneration of disturbed environments. 

High-resolution images, especially from the LiDAR sensor on NASA’s Global 

Ecosystem Dynamics Investigation (GEDI) satellite or a UAS, are so powerful that they can 

predict wildfire risks in fire-prone areas; this in turn allows for more detailed planning actions 

among public institutions to minimize possible impacts that fire may have on the forest, such 

as loss of biodiversity, carbon and alteration of microecosystems, in addition to social impacts, 

as reported by Leite et al. (2022), inferring about regions with potential for forest fire in tropical 

savannah. 
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Remote data collection in forests is gaining regional proportions; for example, in 

combining UAS with Satellite, it became possible to evaluate large areas with a low cost and 

reduced field effort, demonstrating the potential of this technology (Mohan et al., 2021; 

Parmehr and Amati, 2021; Lahssini et al., 2022; de Almeida et al., 2021; You et al., 2022).  

The main hypothesis of this study is that the use of geotechnologies in native forests 

makes it possible to understand forest resources more quickly, and is able to subsidize a more 

precise and dynamic planning of environmental refuse in the Amazon. This hypothesis was 

tested by dividing the thesis into four parts: two chapters in article format, a general 

consideration and a general conclusion. 

The first chapter corresponds to discriminating eight forest species of economic value 

in the Amazon from the use of CNN with aerial images of UAS and corresponds to an article 

published in the Ecological Informatics journal. It is important to emphasize that the inclusion 

of the article in this thesis is in accordance with the rights that the authors have when publishing 

with Elsevier. The second chapter deals with commercial volume estimates for trees based on 

crown morphometry from aerial images of UAS. Conducting a traditional forest inventory is 

essential to know the qualitative and quantitative characteristics of the native forest in the 

Amazon. However, the logistics are responsible for a large part of the costs, the sampling area 

is reduced and limited due to the access and adverse conditions of the forest; therefore, the use 

of a UAS with RGB sensor allows you to map hundreds of hectares compared to traditional 

field survey methods, as they are very widespread and easily accessible in the market, the 

manpower in the field is reduced and the risks to the health of the field worker are lower.  

These two chapters seek to make a preliminary inventory of the existing commercial 

timber stock in the native forest feasible, from species classification to preliminary remote 

estimation of the commercial tree stock. General considerations are presented to indicate the 

links between the chapters of the thesis and comments on future work on the subject. Finally, 

the last part refers to the general conclusion found in this thesis.  

 

OBJECTIVES 

 

 The general objective of this study was to enable a preliminary commercial remote 

forest inventory in a native forest area in the Amazon through the use of remotely piloted 

aircraft with an RGB sensor to capture aerial images. Thus, the specific objectives are outlined 

in two chapters: 
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I. Discriminate forest species through the use of deep machine learning from 

convolutional neural network for aerial images of different months. 

II. Estimate the volume, basal area and diameter of commercial trees from crown 

parameters derived from aerial images. 
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CHAPTER 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

FUSING MULTI-SEASON UAS IMAGES WITH CONVOLUTIONAL NEURAL 

NETWORKS TO MAP TREE SPECIES IN AMAZON FORESTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Chapter formatted and published in the magazine Ecological Informatics.  DOI: 

https://doi.org/10.1016/j.ecoinf.2022.101815 
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ABSTRACT 

 

Remote sensing images obtained by unoccupied aircraft systems (UAS) across different seasons 

enabled capturing of species-specific phenological patterns of tropical trees. The application of 

UAS multi-season images to classify tropical tree species is still poorly understood. In this 

study, we used RGB images from different seasons obtained by a low cost UAS and 

convolutional neural networks (CNNs) to map tree species in an Amazon forest. Individual tree 

crowns (ITC) were outlined in the UAS images and identified to the species level using forest 

inventory data. The CNN model was trained with images obtained in February, May, August, 

and November. The classification accuracy in the rainy season (November and February) was 

higher than in the dry season (May and August). Fusing images from multiple seasons improved 

the average accuracy of tree species classification by up to 21.1 percentage points, reaching 

90.5%. The CNN model can learn species-specific phenological characteristics that impact the 

classification accuracy, such as leaf fall in the dry season, which highlights its potential to 

discriminate species in various conditions. We produced high-quality individual tree crown 

maps of the species using a post-processing procedure. The combination of multi-season UAS 

images and CNNs has the potential to map tree species in the Amazon, providing valuable 

insights for forest management and conservation initiatives. 
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1. Introduction  

 

Information regarding characteristics of tropical forests, such as aboveground biomass 

and tree species composition, is crucial for their sustainable management. Forest inventories 

are the most common approach used to retrieve such characteristics. However, due to 

prohibitive costs, they are usually limited to small spatial extents (< 1% of the sampling area). 

The combination of remote sensing and forest inventory data has provided accurate information 

on forest characteristics over large areas (hundreds of hectares) and proved helpful in reducing 

field effort (Dalla Corte et al., 2020; de Almeida Papa et al., 2020). 

Remote sensing images acquired by UAS platforms have been employed to retrieve 

characteristics of tropical forests, particularly the spatial distribution of tree species. UAS-based 

data acquisition usually results in hundreds of ultra-high spatial resolution (ground sampling 

distance, GSD < 10 cm) RGB images, which enable retrieving fine-scale features of individual 

tree crowns, such as the arrangement of leaves and branches. Previous investigations showed 

that deep learning methods can automatically learn these features on ultra-high resolution 

images acquired by UAS and successfully discriminate species (Ferreira et al., 2020; 

Kattenborn et al., 2021; Morales et al., 2018).  

The most common deep learning method is convolutional neural networks (CNNs). 

CNNs rely on convolutions (local linear operations) to automatically extract object features 

(e.g., shapes, edges, texture) without user intervention (Zhang et al., 2016). CNNs were initially 

designed to perform scene classification, that is, classifying the image as a whole into one of 

several different classes. CNNs for object detection can locate the object within the image by 

constructing a bounding box that encloses it. Semantic segmentation networks aim to assign a 

label to each image pixel, while instance segmentation networks combine object detection and 

semantic segmentation to precisely outline the object's contour. Semantic and instance 

segmentation methods can simultaneously classify and detect ITCs, making them an alternative 

to object-based approaches that require an image segmentation step before classification 

(Blaschke, 2010).  

Image segmentation algorithms are computationally intensive and require empirical 

parameter tuning. Moreover, applying these algorithms to delineate ITCs in tropical forests 

usually does not produce reliable results because of the structural complexity of the canopy 

(Tochon et al., 2015; Wagner et al., 2018). Although ITC delineation provides valuable insights 

for forest management, such as crown size and shape, retrieving the exact contour of ITCs to 

map tree species is not essential. ITC delineation can be performed using instance segmentation 
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approaches such as Mask R-CNN (He et al., 2017) or improved YOLO variants (e.g., (Hurtik 

et al., 2022)). However, these methods have prohibitive computational costs because they are 

composed of two deep neural networks, one to detect the objects and another to label the pixels 

that belong to them. In turn, semantic segmentation networks provide a more straightforward 

and fast way to map tree species at the ITC level (Ferreira et al., 2020). Recent works, motivated 

by the great flexibility in data acquisition provided by UAS, used remote sensing images from 

multiple seasons to map tree species. Most studies were performed in temperate forests (e.g., 

Natesan et al., 2020; Grybas and Congalton, 2021; Belcore et al., 2021; Liu, 2022) in which 

seasons are well defined and tree species diversity is limited. In tropical forests, tree species 

usually have complex phenological patterns, and selecting the most relevant time frame for 

image acquisition to map a set of tree species is challenging. Images acquired by RGB sensors 

onboard UAS enable capturing and quantifying fine-scale features of ITCs. CNNs can 

automatically learn species-specific features in ultra-high spatial resolution RGB images. 

Previous studies showed the capacity of CNNs to differentiate among palm species in 

Amazon forests by detecting crown architectural patterns (e.g., Ferreira et al., 2020; Morales et 

al., 2018). To improve tree species mapping, it is worth exploring other features, such as 

seasonal variations in plant characteristics caused by phenology. In this regard, multi-season 

images can be used to track phenological events such as flowering, fruiting, and leaf falling. 

The combined use of CNNs with multi-season UAS images has been poorly investigated, 

particularly in humid tropical forests where trees show highly diverse phenological patterns.  

This study examines the utility of using multi-season RGB images acquired by low cost 

UAS and CNNs to map tree species at the ITC level in Brazilian Amazon forests. We tested the 

following hypothesis: CNNs can learn species-specific phenological characteristics; thus, 

fusing multi-season images for model training improves classification accuracy. To test our 

hypothesis, we defined two fundamental objectives (i) acquire UAS images along the year, 

encompassing the two main seasons in Amazonia; (ii) assess the classification accuracy of a 

CNN model trained with single-date and multi-date images. 

 

2. Materials  

 

2.1. Study area 

 

The study area is an experimental forest of the Brazilian Agricultural Research 

Company (Embrapa) located in the municipality of Rio Branco, Acre state, Brazil (10 01′22”S, 
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67 40′3”W) (Fig. 1a). It is a highly diverse native rainforest area of 1600 ha about 200 m above 

the sea level (a.s.l).  

 

Fig. 1. (A) Location of the study area in the Acre state, southwestern Amazon, Brazil. (B) True 

color (RGB) composition of the orthomosaic with manually delineated individual tree crowns 

(ITCs) overlaid. (C) Examples of UAS images acquired in February, May, August, and 

November. 

 

The orthomosaic used in this study comprises 260 ha. The experimental forest area 

receives 1950 mm of rain annually, and the average temperature is 24.8 (±0.8) C (Ramos et al., 

2009). The vegetation of the area is classified as an open rainforest with the presence of palms 

and bamboos (ACRE, 2010). 

 

2.2. UAS images 

 

We collected aerial images with the UAS DJI Phantom 4 Pro, equipped with an RGB 

(red, green, blue) CMOS sensor of 20-megapixel resolution, a 24 mm autofocus lens, and a 

manual shutter with autonomy up to 30 min. The UAS flew 120 m above the forest canopy with 

a cruising speed of 10 m/s, resulting in images with a GSD (Ground Sample Distance) of 4 cm. 
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UAS mapping was always performed between 10:00 and 14:00, the time of greatest sunlight 

availability on the Forest during the study months. We took a total of 1,585 images with a 

forward overlap of 86.0% and side lap of 86.36% in eight consecutive flights. Ten sequential 

flights were carried out to map the entire study area in different months and no treatment was 

performed on the images in order to portray the field condition and minimize processes. We 

established three ground control points (GCPs) on the edges of the forest reserve before the 

flights. A dual-frequency GNSS receiver was installed at each GCP and collected GPS and 

GLONASS data for 241 min. The average horizontal and vertical precision of the GCPs after 

post-processing were 10 cm and 3 cm, respectively. Finally, we used the PiX4D software 

program (Pix4D Inc.) to generate orthomosaics of the study area.  

We acquired UAS images in different months to capture species-specific phenological 

characteristics such as leaf fall, flowering, changes in leaf color, and fruiting patterns. The aim 

was to encompass two main seasons in Amazonia: the dry and wet seasons. Thus, we used 

images from February (peak of the wet season), May (end of the wet season), August (peak of 

the dry season), and November (end of the dry season). Examples of multi-season UAS images 

are shown in Fig. 1c. 

 

3. Methods  

 

3.1. Individual tree crown (ITC) dataset  

 

In the experimental forest area, we measured and identified to the species level all trees 

with a diameter at breast height (DBH) >50 cm. The traditional forest inventory was conducted 

throughout the Native Forest of Embrapa Acre, however we extracted a portion to be combined 

with the mapping carried out by the UAS. For this study, we selected the most economically 

important species for nut and timber production and delineated their ITCs in the UAS images 

(GSD = 4 cm). We identified each ITC to the species level using information from the forest 

inventory georeferencing and expert knowledge from botanical identification. Manual ITC 

delineation was carefully performed so that a single ITC polygon encompasses the same tree in 

all four images (Fig. 1c). We outlined a total of 406 ITCs, corresponding to eight species. The 

number of ITCs per species, as well as the number of pixels, are shown in Table 1. 
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Table 1. List of tree species with crowns manually delineated in the UAS orthomosaic and 

identified to the species level: species names, number of individual tree crowns (ITCs) and 

average number of pixels per ITC. 

Scientific name Popular 
name 

No of 
ITCs 

No of 
pixels 

Average 
no of 
pixels 

per ITC 

Average 
crown 

diameter 
(pixels) 

Pouteria coriacea (Pierre) Pierre 
Abiorana-

rosa 
74 16,371,007 221,230 616 

Bertholletia excelsa Bonpl. Castanheira 85 15,653,626 184,160 550 

Cedrela odorata L. Cedro 52 3,906,764 75,130 359 

Apuleia leiocarpa (Vogel) J.F. 

Macbr. 
Garapeira 45 5,210,028 115,778 446 

Phyllocarpus riedelii Tul. Guaribeiro 24 2,014,050 83,919 398 

Hymenaea parvifolia Huber Jutaí 32 3,685,441 115,170 443 

Sclerolobium melanocarpu Ducke Tachi 27 3,352,427 115,170 432 

Couratari macrosperma A. C. 

Sm. 
Tauari 67 9,967,430 124,164 505 

 

 

3.1.1. Tree species classification method  

 

We performed tree species classification using the ResNet-18 (He et al., 2016) CNN 

incorporated into the DeepLabv3+ architecture (Chen et al., 2018), which is considered a state-

of-the-art deep learning model for semantic segmentation and was successfully used for tree 

species classification from remotely sensed images (Morales et al., 2018; Ferreira et al., 2021, 

2020). We used ResNet-18 because it has the best trade-off between computational time and 

classification accuracy compared to other ResNet variants in preliminary tests. The ResNet-18 

comprises residual blocks that forward the feature maps (activations) from shallow to deeper 

layers using the so-called skip connections, which allows the training of much deeper models. 

DeepLabv3+ is an encoder-decoder architecture designed to capture multi-level features. The 

encoder module performs feature extraction by gradually reducing the spatial dimension of the 

input image. The decoder recovers the original size of the input image and performs semantic 

segmentation using features extracted by the encoder. (Fig. 2). More details regarding ResNet-

18 and DeepLabv3+ can be found in He et al. (2016) and Chen et al. (2018), respectively.  
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Fig. 2. DeepLabv3+ architecture with the ResNet-18 backbone network. The encoder module 

uses convolution operations and activation functions (ReLU) to extract features of tree species. 

The spatial dimension of the image is reduced by a factor of 16 at the end of the convolution 

process. The decoder module recovers the spatial dimension using transposed convolution 

operations. The softmax classifier is applied to generate score maps for each class. Finally, a 

probability rule is applied to detect the ITCs of target tree species within the input image patch. 

 

Semantic segmentation networks are usually trained with densely labeled datasets, in 

which all pixels from a training image patch are labeled, meaning that they belong to a given 

class. This further means that it is expected that all classes present in the image patch should be 

known beforehand. In the case of map tree species in tropical forests, and given the highly 

diverse nature of these ecosystems, knowing all the tree species contained in an image patch is 

very unlikely. Thus, we trained our model using only the pixels from the target tree species 

(Table 1). To do this, we used a modified cost function that propagates the errors of desired 

classes only, as proposed by Martins et al. (2021). 

 

3.1.2. Post-processing procedures  

 

A semantic segmentation model will classify all pixels from an input image patch 

according to the number of classes used to train the model. In our case, the image pixels are 

labeled into eight species. However, the study area contains >200 tree species (Section 2.1), 

and labeling all of them as one of the eight target species represents an oversimplification. To 

avoid labeling all image pixels, we decided to classify them based on class membership 

probabilities, which indicate the confidence level of the predictions. A pixel is labeled in the 

scores maps of each species if its probability of belonging to that species is higher than 0.8, as 

this probability value is widely practiced by similar works (Ferreira et al. 2020; Martins et al. 

2021), and is therefore used in this study. Otherwise, the pixel is considered an unknown 
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species. We verified that this procedure produced realistic species maps in which ITCs of the 

target species are detected.  

 

3.2. Experimental set-up  

 

First, we separated the ITCs into 60% for training and 40% for testing. Then, we 

performed a vector-to-raster conversion of the ITC polygons to produce a densely labeled 

dataset containing class information of each image pixel. Notably, pixels from non-target 

species were not considered during network training (see Section 3.1.1).  

We produced a synthetic image using the training ITCs. We randomly chose five pixels 

for each ITC, from which we grew patches of size 1024 × 1024 pixels. We then extracted these 

patches from the UAS and the labeled image and concatenated them into one rectangular tiled 

image (Fig. 3). Finally, we randomly extracted 2500 patches of size 512 × 512 pixels from the 

synthetic image to feed the network with training data. We extracted a new set of 2500 patches 

for each epoch. We used the stochastic gradient descent with momentum (SGDM) algorithm to 

update the network parameters (weights and biases) (Murphy, 2012). The total number of 

epochs was 25, as the classification accuracy did not change significantly after this number of 

epochs. The mini-batch size was 12, according to the available memory in the GPU. We used 

random reflection and rotation operations to augment the training data and to prevent the 

network from overfitting.  
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Fig. 3. Illustration of the model training strategy. (A) Synthetic image created from the original 

orthomosaic. (B) Labeled image. Image patches of size 1024 × 1024 (orange dotted squares) 

are created from randomly selected pixels of individual tree crowns of the target species (Table 

1). These patches are concatenated into one rectangular tiled image. Then, patches of 512 × 512 

(blue dotted squares) are randomly extracted from the synthetic and labeled image to feed the 

network with training data. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

We performed two experiments to evaluate the use of multi-temporal images to 

discriminate among the species: (i) we used the images from each month (February, May, 

August, and November) individually, and (ii) we combined the images from each month into a 

single 12-bands image to train our model. This process is called early fusion, and is capable of 

merging all image bands at the beginning of processing. The data are aligned and merged 

without any pre-processing, thus being suitable for exploring cross-correlations between 

reference data, increasing the system performance. Training and inference were performed on 

a desktop workstation with an Intel Core i7–8700 3.2GHz CPU, 64GB of main memory, and 
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an NVIDIA® GeForce Titan V GPU with 12GB of dedicated memory and 5120 CUDA® cores. 

All image processing procedures were implemented on the Matlab® enviroment. The average 

computational time spent on the entire image processing routine and CNN output was seven 

hours. 

 

3.3. Accuracy assessment  

 

The accuracy assessment was performed with the testing ITCs, which were not used for 

training. We computed the confusion matrices with intersecting samples between the reference 

and predicted ITCs. From the confusion matrices, we calculated the user's and producer's 

accuracy, the F1-score. The user's accuracy (UA), also known as precision, is the probability 

that a pixel classified as a particular species represents that species in the reference: 

 

UAi =       (1) 

 

Where TPii is the percentage of true positives of species (i), and Mij is the number of 

pixels that truly belong to species (i) but were classified as class (j). The producer's accuracy 

(PA), also known as recall, is the probability that the pixels of a particular species are correctly 

classified in the reference, or:  

 

PAi =       (2)  

 

The F1-score is the harmonic mean between the user’s and producer’s accuracies, 

representing their balance. F1-score is computed as:  

 

2       (3)  

 

Since we are not interested in outlining the ITC boundaries perfectly, we did not 

compute accuracy metrics designed for object detection, such as the intersection over union 

(IoU). Instead of IoU, we computed the percentage of ITCs correctly predicted in the test set. 

An ITC was considered correctly predicted if >50% of its pixels were correctly labeled by the 

model. 
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4. Results  

 

The classification accuracy of tree species is shown in Fig. 4. The highest average 

accuracy was 90.5%, using images from all seasons. Combining images acquired in different 

seasons generally resulted in a significant decrease in the misclassification rate between species. 

For example, the misclassification between P. riedelii and A. leiocarpa was 49.1% in May and 

0% in the multi-season composition. Similarly, H. parvifolia and B. excelsa showed 

misclassification rates above 35% in February and May but only 0.1% in the multi-season 

scenario. Such decreases in misclassification between species suggest that the network 

automatically learned how to select the most discriminative characteristics of each species in 

the multi-season images.  

 
Fig. 4. Confusion matrices with the classification accuracy of tree species mapping using UAS 

images acquired in February, May, August, and November and a multi-season composition 

obtained by combining the images from each month. The producer's accuracy of each species 

in the diagonal cells (highlighted in blue), while the misclassification rate between species is 

shown in the off-diagonal cells. P.c. (Pouteria coriacea), B. e. (Bertholletia excelsa), C.o. 

(Cedrela odorata), A.p. (Apuleia leiocarpa), P.r. (Phyllocarpus riedelii), H.p. (Hymenaea 

parvifolia), S.m. (Sclerolobium melanocarpum), C.m. (Couratari macrosperma). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Accuracy (%) 
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The highest average accuracies were observed in the rainy season, meaning February 

and November, with 81.9% and 83.5%, respectively (Fig. 4). The average accuracy did not 

reach 80% in the dry season (May and August). Some species showed remarkable changes in 

the producer's accuracy between seasons. For example, the producer's accuracy of C. odorata 

was 99.7% in February and dropped to 69.7% in August (Fig. 4). Similarly, P. riedelii was 

classified with 96.4% accuracy in November and with 28.7% in May. The drops in the 

producer's accuracy of these species can be explained by leaf fall in the dry season. Fig. 5 shows 

an ITC of C. odorata in UAS images acquired in August (Fig. 5A) and November (Fig. 5B). 

One can note that the absence of leaves significantly changes the crown structure by exposing 

primary and lateral branches. Conversely, the fully foliated crown in the rainy season forms a 

billowy pattern. UAS images acquired in August and May show differences caused by leaf fall 

in an ITC of P. riedelii (Fig. 5C,D). Unlike, C. odorata, in August, the crown of P. riedelii does 

have leaves. 

 

 

 
 

 

The combination of images from different months increased both the average 

classification accuracy (Fig. 4) and the F1-score of the species (Table 2). For example, the F1-

Fig. 5. UAS images of an individual tree crown of C. odorata obtained in August (A) and 
November (B) and P. riedelii in August (C) and May (D). 
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score of H. parifolia in November, February and May did not exceed 40% but increased to 

65.1% after combining multi-season images. Using images from multiple seasons also 

increased the percentage of correctly predicted ITCs per species (Table 2). On average, more 

ITCs were correctly predicted in the rainy months (February and November) than in the dry 

seasons (May and August). Most of the tree species had >60% of their ITCs correctly predicted 

in the test set, except P. riedelii.  

 

Table 2. User’s accuracy (UA), producer’s accuracy (PA), F1-score (F1), and percentage of 

individual tree crowns (ITCs) that were correctly predicted in the test set. The accuracy metrics 

result from classifications of UAS images acquired in February, May, August, and November 

and a multi-season composition of the images of all seasons. 

Period Accuracy 
Species 

Avarege 
P.c. B.e. C.o. A.l. P.r. H.p. S.m. C.m. 

February 

UA (%) 99.1 93.7 98.1 83.4 60.0 98.8 83.2 86.2 87.8 

PA(%) 94.9 97.4 99.7 88.9 89.1 24.9 78.8 81.8 81.9 

F1 (%) 96.9 95.5 98.9 86.0 71.7 39.8 80.9 84.0 81.7 

ITCs (%) 90.0 100.0 95.0 94.0 80.0 69.0 82.0 85.0 86.9 

May 

UA (%) 96.0 93.6 76.3 66.6 32.1 41.0 97.9 91.4 74.4 

PA(%) 89.1 99.4 99.9 87.4 28.7 25.3 64.4 60.4 69.3 

F1 (%) 92.4 96.4 86.5 75.6 30.3 31.3 77.7 72.7 70.4 

ITCs (%) 93.0 85.0 86.0 83.0 50.0 62.0 82.0 89.0 78.8 

August 

UA (%) 94.2 95.8 64.5 82.4 78.9 86.8 83.3 82.3 83.5 

PA(%) 96.7 99.4 69.7 91.8 71.1 44.1 82.2 75.5 78.8 

F1 (%) 95.4 97.5 67.0 86.9 74.8 58.5 82.7 78.8 80.2 

ITCs (%) 93.0 94.0 67.0 83.0 70.0 85.0 73.0 89.0 81.8 

November 

UA (%) 95.8 95.9 91.7 84.4 91.4 84.3 96.7 95.8 92.0 

PA(%) 99.2 99.7 99.0 94.6 96.4 14.1 76.1 88.7 83.5 

F1 (%) 97.5 97.8 95.2 89.2 93.8 24.2 85.1 92.1 84.4 

ITCs (%) 93.0 94.0 71.0 100.0 80.0 85.0 100.0 96.0 89.9 

Multi-

season 

UA (%) 98.2 99.0 89.6 99.0 100.0 64.5 77.8 88.4 89.6 

PA(%) 94.2 98.4 99.8 90.3 100.0 65.6 79.1 96.5 90.5 

F1 (%) 96.1 98.7 94.4 94.4 100.0 65.1 78.4 92.3 89.9 

ITCs (%) 100.0 97.0 95.0 100.0 60.0 85.0 100.0 81.0 89.8 
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Examples of predictions obtained for images of each month are shown in Fig. 6. P. 

coriacea, B. excelsa and A. leiocarpa presented the homogeneous morphological characteristics 

during the year. The neural network model detected them in all months. Conversely, C. odorata 

showed a strong leaf fall in the dry season and was not detected by the model using the August 

image only (Fig. 6c). By combining images from multiple seasons C. odorata was successfully 

detected (Fig. 6e). In general, one can note a reduction in misclassification after using images 

from multiple seasons. 

 

 
Fig. 6. Model predictions were obtained using images from (a) February, (b) May, (c) August, 

(d) November, and (e) a combination of all months. Reference ITCs not used to train the model 
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are shown as unfilled polygons, while model predictions are shown as filled polygons. For 

clarity, the UAS image shown in (e) is from August.  

 

5. Discussion  

 

Tree species mapping in Amazon forests using UAS images and CNNs is a powerful 

tool for forest conservation and management. User's accuracy in November ranged from 84.4% 

to 95.9%. Even species with <30 ITCs (P. riedelii and S. melanocarpu) reached high levels of 

classification accuracy, with F1-scores of 93.8% and 85.1%, respectively. H. parvifolia was the 

most challenging species to classify. Its ITCs showed highly variable patterns with several 

leafless trees, as well as a high degree of overlap between neighboring crowns. More ITCs of 

H. parvifolia are needed to incorporate its canopy structural variability in model training. 

Nuijten et al. (2019) examined the multi-seasonal consistency of ITC segmentation in a 

Canadian forest and found that the beginning of leaf fall is an adequate period to segment ITCs 

because the canopy is less dense. The authors argue that when leaves begin to fall, the border 

among ITCs is more evident. Similarly, we observed an improvement in the visualization of H. 

parvifolia ITCs when their leaves started to fall in August. However, the beginning of leaf fall 

varied among the species. For example, in August, all C. odorata trees have already lost all 

their leaves, which negatively impacted the classification accuracy. Thus, we believe that the 

total absence of leaves hampers species detection.  

The low cost of acquiring RGB images with a UAS and the flexibility of data acquisition 

promotes a more frequent use of multi-season images for tree species mapping. Natesan et al. 

(2020) used an RGB camera onboard a UAS to classify pine species in Canada over three years. 

The combination of annual images improved the classification accuracy, which reached 90% 

in some cases. Modzelewska et al. (2021) used hyperspectral data acquired in July (early 

summer), August (late summer), and October (autumn) acquired over a forest area in Poland to 

discriminate among seven tree species. The classification results show that a multi-season 

dataset produced the best results reaching 84–94% of overall accuracy.  

In a temperate forest area in New Hampshire, USA, Grybas and Congalton (2021) 

investigated whether the classification accuracy of 14 tree species could be improved with 

multi-temporal UAS data. The authors collected five RGB images between April and June, 

encompassing the spring and summer seasons. They showed that a five-date stack of the multi-

temporal images provided the best results (61.1% of overall accuracy). Studies using multi-
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season RGB images acquired by UAS, particularly on the Brazilian Amazon, do not exist, 

thereby highlighting the relevance of this study.  

To the best of our knowledge, this is the first study to show the potential of multi-season 

UAS images for classifying tree species in tropical forests. Another innovative aspect of our 

work is the classification method used. Most studies employed pixel-or object-based 

approaches along with classical machine learning algorithms such as random forests and 

support vector machines. In pixel-based approaches, pixels are usually labeled based on their 

spectral characteristics, thus neglecting the spatial relationship among neighboring pixels. 

Object-based procedures use a segmentation algorithm to delineate tree crows before 

classifying them. Image segmentation is challenging because it depends on empirical parameter 

settings and is computationally intensive, mainly if applied in UAS images featuring 

hyperspatial resolutions (GSD < 10 cm). The CNN models vanquish the limitations of both 

pixel-based and object-based approaches by simultaneously performing ITC delineation and 

classification. Moreover, CNN-based methods are robust to differences in viewing and 

illumination conditions (Natesan et al., 2020) and our results suggest that they learn species-

specific phenological patterns. 

Combining UAS images and deep learning for mapping tree species in Amazon forests 

paves the way for a new era in conservation and forest resource management (Onishi and Ise, 

2021). The use of UAS for mapping native forests in the Amazon contributes to more optimized 

planning of environmental activities, helps to reduce costs and fieldwork, enabling access to 

the qualitative, quantitative, and spatial explicit characteristics of the forest in a faster and more 

dynamic way. Data collection flexibility provided by UAS particularly enabled taking 

advantage of multi-season images for tree species mapping.  

This tool can be applied in areas intended for non-timber projects (açaí, brazilian 

chestnut, copaíba, palm trees in general) and timber (cedro, ipê, samaúma, abionara and others), 

verifying the potential of the forest at a low cost of field effort combined with high performance, 

along with less risk to the health of traditional workers, providing faster and more accurate 

information for the environmental manager’s decision-making, saving resources that would be 

applied in the field forest inventory activity, and assuming the risk of the area not being suitable 

for project execution. 

Future work will focus on increasing the availability of images of native species through 

UAS mapping in different forests to contemplate a larger group of tree identification in the 

Amazon until it is possible to carry out forest inventories of large trees remotely. 
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6. Conclusions 

 

In this work, we show that fusing RGB images from multiple seasons with CNNs 

improves tree species mapping in Amazon forests. By fusing images acquired in the rainy 

(November and February) and dry seasons (May and August), we verified an improvement in 

the classification accuracy of 27.2 percentage points compared with single-date classifications. 

We developed an effective model training strategy in which a synthetic image is produced based 

only on the reference ITCs. The use of CNNs and multi-season UAS images proved helpful in 

mapping economic relevant tree species in the Amazon and has the potential to contribute to 

forest management and conservation. Future studies will focus on expanding the ITC database 

by including more species. Moreover, we intend to analyze the generalization capability of our 

models to map tree species in other areas using low cost RGB images. 
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Appendix 

 
Code construct and train the DeepLabV3+ model to classify commercial tree species 

 
% To train the model you will need two images 'imgLabel' is the reference labeled image and 
'img' is the RGB image. Include the path location of these images on the variables 
'locationTrain' and 'locationTrainLabel' below. The functions randomPatchExtraction Datastore 
will automatically extract patches from the RGB and labeled image to train the model. 
Prediction is performed using the function 'segmentImagePatchWiseClassification 
BlockProcessing'. Please note that the model is trained with a predefined set of classes. If you 
want to ignore a given class during training, please use the 'standardizeMissing' function. For 
example, you can set the background class to '99' and ignore this class in the backpropagation 
altogrithm using imgLabel = standardize Missing(imgLabel,99). All pixels equal 99 in the 
labeled image will be ignored in the training process. 

 
[imgLabel, ~] = readgeoraster('...'); labelIDs=unique(imgLabel(:)); 

 
% State the folders names in which the RGB image and the training images are 

stored  
 
locationTrain = ''; 
locationTrainLabel = ''; 

 
% Create an ImageDatasote object 

 
imds = imageDatastore(locationTrain,'FileExtensions',{'.tif'}); 

 
% Get the number of classes in the training set labelIDs=1:17; % number of species  

 
labelIDs = labelIDs(2:end,:); 
classes =[]; 

for i=1:size(labelIDs,1) 
fileNameTest=['Tree_',num2str(i)]; 
classes{i,1}=fileNameTest; 

end 
 
% Create a pixelLabelDatastore object 

 
pxds = pixelLabelDatastore(locationTrainLabel,classes,labelIDs); 

 
% Count the number of pixels in each class to compute the class weights  

 
tbl = countEachLabel(pxds); 

 
% Specify the network image size.  
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pathSize = 256; 
imageSize = [pathSize pathSize 3]; 

 

% Specify the number of classes.  
 
numClasses = numel(classes); 

 
%Create DeepLab v3+ for semantic segmentation  

 
lgraph = deeplabv3plusLayers(imageSize, numClasses, "resnet18",'DownsamplingFactor',16); 
 

% Train model with more bands https://www.mathworks.com/ 
matlabcentral/answers/562448-resnet50-on-multi-spectral-image-segmentation  

 

layers = lgraph.Layers; 
lgraph = replaceLayer(lgraph,'data',imageInputLayer([pathSize pathSize 
Nbands],'Name','input')); 
lgraph = replaceLayer(lgraph,'conv1',convolution2dLayer(7,64,'stride',[2 2],'padding',[3 3 3 
3],'Name','conv1')); 

 
 
% Balance Classes Using Class Weighting 

 
imageFreq = tbl.PixelCount ./ 
tbl.ImagePixelCount; classWeights = 
median(imageFreq) ./ imageFreq; 

 
% Specify the class weights using a pixelClassificationLayer.  

 
pxLayer = pixelClassificationLayer('Name','labels','Classes',tbl.Name,'ClassWeights', 
classWeights); 
 
lgraph = replaceLayer(lgraph,"classification",pxLayer);  
 

% The layer automatically ignores undefined pixel labels during training. 
 
analyzeNetwork(lgraph)  
 

% Check if everythin is ok! 
 
clc 
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% Define training options. 
% Select a learning rate that is proportional to the mini-batch size and reduce the 

learning rate by a factor of 10 after 60 epochs. 
 
miniBatchSize = 12; 

 
% learnRate = 0.1*miniBatchSize/128;  

 
learnRate=0.01; 

 
% Data augmentation during training  

 
augmenter = imageDataAugmenter( ... 

'RandRotation',[-20,20], ... 
'RandXTranslation',[-5 5], ... 
'RandYTranslation',[-10 10]); 

 
% Random patch extraction datastore  

 
PatchSize=[pathSize pathSize]; 
dsTrain = randomPatchExtractionDatastore(imds,pxds,PatchSize, 'PatchesPerImage', 
500,'DataAugmentation',augmenter); 
 

% inputBatch = preview(dsTrain); 
% disp(inputBatch) 
% dsVal = randomPatchExtractionDatastore(imds,pxds,PatchSize,'PatchesPerImage', 

100); 
 

options = trainingOptions('sgdm', ... 'Momentum',0.9,... 'ExecutionEnvironment','gpu',... 
'LearnRateSchedule','piecewise',... 'InitialLearnRate',learnRate, ... 
'LearnRateDropFactor',0.5, ... 'LearnRateDropPeriod',5, ... 'MaxEpochs',15, ... 
'MiniBatchSize',miniBatchSize, ...'Shuffle','every-epoch', ... 'GradientThreshold',0.05,... 
'VerboseFrequency',2,... 'Plots','training-progress',... 'ValidationPatience', 4); 
[net,~] = trainNetwork(dsTrain,lgraph,options); 

%% Perform semantic segmentaion with trained model  

[img, R] = readgeoraster('...'); 
x=geotiffinfo('...'); 
S=struct([x.GeoTIFFTags.GeoKeyDirectoryTag]); 
patchSize=[1024 1024]; 
 

% Use block processing because the image is too big  
 

block_size=[15000 15000]; 
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SemanticSegFun = @(block_struct)segmentImagePatchWiseClassificationBlock Processing 
(block_struct.data,net, patchSize);  

 
% Create a function handle 
 
out = blockproc(img,block_size,SemanticSegFun,'UseParallel',true, 

'DisplayWaitbar',false);%% 

function [out] = segmentImagePatchWiseClassificationBlock Processing(im,net, patchSize) 
 
%  This function performs patchwise semantic segmentation on the input image using 

the provided network. The segmentation is performed patches-wise on patches of size 
PATCHSIZE. NOTE: The function  also outputs a probability map showing the class 
membership  probabilities for each class nclass is the number of classes  
 
[height, width, nChannel] = size(im); 
patch = zeros([patchSize, nChannel], 'like', im); 

 
% pad image to have dimensions as multiples of patchSize  

 
padSize(1) = patchSize(1) - mod(height, patchSize(1)); padSize(2) = 
patchSize(2) - mod(width, patchSize(2)); 
im_pad = padarray (im, padSize, 0, 'post'); [height_pad, width_pad, ~] = size(im_pad); 
out = zeros([size(im_pad,1), size(im_pad,2)], 'double'); 

 
% outProb = zeros([size(im_pad,1), size(im_pad,2)], 'double'); 
% iter=0 
 

for i = 1:patchSize(1):height_pad for 

j =1:patchSize(2):width_pad 

for p = 1:nChannel 
 

patch(:,:,p) = squeeze(im_pad( i:i+patchSize(1)-1, ... 
end 

 
% iter=iter+1 

[patch_seg,~,~] = semanticseg(patch, net, 'outputtype', 'double'); out(i:i+patchSize(1)-1, 

j:j+patchSize(2)-1) = patch_seg; 
 

           % outProb(i:i+patchSize(1)-1, j:j+patchSize(2)-1) = scores; 
 % outProbClass(i:i+patchSize(1)-1, j:j+patchSize(2)-1,:) = allScores; end 

end 
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% Remove the padding 
 
out = uint8(out(1:height, 1:width)); 
 
% outProb=outProb(1:height, 1:width); 
% outProbClass=outProbClass(1:height, 1:width,:);  
 
end 
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ABSTRACT 
 
The use of remote sensing images obtained by unmanned aerial vehicle (UAS) systems  enables 
measuring the morphometry of the tree canopy to estimate the volume stock in the Amazon 
forest. Application of RGB images from UAS systems to capture the dendrometry  of trees in 
native forest is still poorly understood. In this study, we used RGB images from a low cost UAS 
to map tree species and extract volumetric stock estimates in an Amazon forest. Individual tree 
crowns (ITC) were outlined in the UAS images and identified to the species level using forest 
inventory data. The average diameter and crown area of the trees were measured to estimate 
the volume, basal area and DBH per diameter class for 260 ha of tropical forest. The RMSE 
volume adjustment for the separate field inventory dataset was 19.31% with an R2 of 0.967. 
The UAS system images has the potential to map tree species and estimate tree dendrometry 
attributes in the Amazon Forest, providing valuable insights for forest management and 
conservation. 
 
Keywords: RGB images, diameter class, orthomosaic, tropical forest. 
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1. Introduction 

 

The forest volume is essential to determine the biomass, which constitutes an element 

responsible for reducing the emission of greenhouse gases and has the capacity to fix 

atmospheric carbon during its formation process. Tropical forests have high diversity and 

dynamic characteristics, with constant changes in their structure that require complex planning 

to execute forestry operations (Coops et al., 2022). 

The traditional forest inventory is indispensable for monitoring forests, as it seeks to 

monitor and portray changes in the quantitative and qualitative attributes of the arboreal 

environment (Latifi and Heurich, 2019; Fankhauser et al., 2018a; Tompalski et al., 2021) In 

turn, these attributes are necessary to support accurate diversity, volume and estimates biomass, 

being an important tool to assess important aspects such as productivity and the economic and 

ecological viability of interventions to be conducted in a region, thereby encouraging decision-

making by environmental managers (Keenan et al., 2015). 

The use of geotechnologies applied in forests for identifying species, biomass and 

carbon, conservation, monitoring, impact assessment and even tree dendrometric attributes is 

being used more and more frequently (Corte et al., 2022; Moura et al., 2021; da Cunha Neto et 

al., 2021; da Costa et al., 2021; d’Oliveira et al., 2020; Fankhauser et al., 2018b). Os Unmanned 

Aircraft Vehicle (UAS) with RGB sensors images in the red, green and blue bands, are low cost 

equipment with great demand and supply in the market due to their various uses, and are 

becoming popular in the forestry sector for use as support in data collection operations, 

inspection activities and coverage monitoring, among others. 

UAS-based data acquisition usually results in hundreds of high spatial resolution RGB 

images with ground sampling distance (GSD) under 10 cm (Ferreira et al., 2020; Kattenborn et 

al., 2021; Morales et al., 2018). The combination of remote sensing and forest inventory data 

provides accurate information about forest characteristics over large areas (hundreds hectares) 

and has been shown to be useful in reducing field efforts (de Almeida Papa et al., 2020; Dalla 

Corte et al., 2020; Veras et al., 2022). 

In traditional forest measurement by census or sampling, the measurement of diameter 

at breast height (DBH) and total height (h) of trees are generally used due to the high correlation 

of these variables with parameters such as wood volume and carbon stock (Corte et al., 2020). 

Data collection is time-consuming, has high costs, low productivity, is restricted to small areas 

and dangerous to the health of the field worker, and may still encounter geographic obstacles 

and still risk data collection errors (Latifi, 2020). 
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The measurement and identification of trees using a UAS system significantly reduces 

the need for a traditional forest inventory, which contributes to optimizing financial resources, 

time, labor, planning and forest management, enabling identification of tree distribution, tree 

density, species, individual counts, monitoring forest phenophases, in addition to tree 

biometrics (Veras et al., 2022). 

In view of the above, this study examines the utility of RGB images captured by a UAS 

system to map and to estimate the volume of tree species in Brazilian Amazon forests. 

Specifically, we tested the hypothesis that is possible estimate the tree volume commercial from 

aerial mapping using a UAV system with RGB sensor. And, additionally, estimate diameter 

and basal area from the canopy morphometry of large arboreal trees present in the Amazon 

forest. 

 

2. Materials 

 

2.1. Study area 

 

The study area is an experimental forest of the Brazilian Agricultural Research 

Company (Embrapa) located in the municipality of Rio Branco, Acre state, Brazil (10º 01’ 22" 

S, 67º 40’ 3" W) (Fig 1). It is a highly diverse native rain forest area of 1,600 ha about 200 m 

above the sea level, more than 239 species already cataloged. The orthomosaic used in this 

study comprises 260 ha. The experimental forest area annually receives 1,950 mm of rain, and 

the annual average temperature is 24.8 (±0.8)ºC (Ramos et al., 2009). The vegetation of the area 

is classified as open rain forest with the presence of palms and bamboos (ACRE, 2010). Trees 

exceed 30 meters in height, and there is an abundance of bamboo and diversity of palm trees, 

along with tree individuals in lower density, and the presence of large trees. 
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Fig. 1. (A) Location of the study area in the Acre state, southwestern Amazon, Brazil. (B) 

Segmentation of tree forest species in the native forest 

 

2.2 UAS photographs 

 

We collected aerial photographs with the UAS DJI Phantom 4 Pro, equipped with an 

RGB (red, green, blue) CMOS sensor of 20-megapixel resolution, a 24 mm autofocus lens, and 

a manual shutter with battery autonomy up to 30 min. The UAS flew 120 m above the forest 

canopy with a cruising speed of 10 m/s, resulting in images with a GSD (Ground Sample 

Distance) of 4 cm. We took a total of 1,585 photographs with a forward overlap of 86.0% and 

side lap of 86.36% in eight consecutive flights. All images were captured in manual shutter 

mode, speed 1/500 and diaphragm setting 6.0, which is the necessary setting to avoid rolling 

shutter in images. Before the flights, we established three ground control points (GCPs) on the 

edges of the forest reserve. Ten sequential flights were performed to map the entire study area 

in different months. A dual-frequency GNSS receiver was installed at each GCP and collected 

GPS and GLONASS data for 241 minutes. After post-processing procedures, the average 

horizontal and vertical precision of the GCPs were 10 cm and 3 cm, respectively. We used 

GCPs to facilitate tree identification by crossing field inventory data, minimizing XY 
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displacement errors. Finally, we used the PiX4D® software program (Pix4D Inc.) to generate 

orthomosaics of the study area. 

 

3 Methods 

 

3.1 Individual tree crown (ITC) dataset 

 

First, we measured and identified all trees with a diameter at breast height (DBH) greater 

than 50 cm to the species level in the forest inventory experimental area, the volume (m³) of the 

trees was derived from the rigorous measurement of 1,500 trunks in a wood storage yard, with 

input of the DBH and H (commercial) variables into an equation generated by the Embrapa 

Acre research institution (Almeida Papa, 2020).  

 

 

 

 

Volume Equation: 

 

V = -0,225042 + 0,697672(DBH2) + 0,638055((DBH2)H) +1,41241(H0,5) 

R²: 90.3223 

Syx(%): 20.58 

  

For this study, we selected the most economically important species for nut and timber 

production and delineated their ITCs in the UAS images. 

We performed the segmentation of each ITC using the Definiens Ecognition® software 

program, in which a greater weight was applied to the image pixel and a smaller one to the 

texture; each orthomosaic has different characteristics, so it was necessary to adjust the weight 

for each image. Then we filtered with the trees from the field forest inventory and excluded the 

non-whole crowns. ITC delineation was carefully performed so that a single ITC polygon 

encompasses the same tree. We outlined a total of 388 ITCs, corresponding to 55 species. 

According to the forest inventory, the DBH of the inventoried trees ranged from 50.0 cm to 

190.0 cm, with the total height of some trees reaching 40 m. A greater number of individuals 

and height estimation resulting from the difference between the Digital Surface Model of the 

UAS and Digital Terrain Model can be seen in the smallest diametric classes (Table 1), 
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constituting similar behavior to a mature forest without anthropic intervention (Meyer, 1952; 

Assmann, 1970).  

Table  1: Diametric distribution and estimated average height of trees from UAS considered to 

estimate volume through crown morphometry using UAS. 

Diametric class N. Tree UAS (m) % 

50|- 60  61 28,02 15,76 

60|- 70 57 29,89 14,73 

70 |- 80 49 30,33 12,66 

80 |- 90 47 30,86 12,14 

90 |- 100 43 32,87 11,11 

110 |- 120 37 33,97 9,56 

120 |- 130 28 35,05 7,24 

130 |- 140 20 35,84 5,17 

140 |- 150 16 35,67 4,13 

150 |- 160 12 35,48 3,10 

160 |- 170 10 36,45 2,58 

> 170 7 36,82 1,81 

   

3.1.1 UAS-derived variables 

 

We derived canopy morphometry metrics, variable area (ca) and diameter (cd) from the 

UAS images; the crown diameter was obtained from the average between the largest and 

smallest diameter of each sample (Fig 2) adapted from Figueiredo et al. (2014).  
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Fig. 2. Example of a sample of the average tree crown diameter (cd) obtained by averaging 

the largest and smallest diameter 

 

3.2 Predicted dendrometric parameters based on UAS-derived variables 

 

We subdivided the dataset into 70% for fitting and 30% to validate the models, which 

is a division based on research in similar works. We selected the independent regression 

variables based on their correlation with the dependent variables (volume - V, basal area - G, 

and DBH). The morphometric diameter and crown area variables obtained a strong correlation 

with volume, basal area and DBH, which were selected to compose the regression model. The 

statistical analysis was conducted in R language programming with used package metrics and 

corplot (R Core Team, 2021). 
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Fig. 3. Correlation chart between dendrometric and UAS derived variables 
*Note: v is the tree volume, G is the tree basal area, DBH is the tree diameter at breast height, ca is 

crown area, cd is crown diameter. 

 

Next, we fitted three linear regression models using volume, basal area, and DBH as 

dependent variables and the diameter and canopy area as independent variables (Models 1 - 3). 

We decided to use the tree’s diametric class as a categorical variable in order to increase the 

model accuracy. 

 

V = β0 + β1ca + β2cd + βiDCi     (1) 

G = β0 + β1ca + βiDCi      (2) 

DBH = β0 + β1cd + βiDCi      (3) 

 

In which: βi are the model parameters, ca is the crown area, cd is the crown diameter, DC is the 

diameter class. 
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3.3. Accuracy assessment 

 

The models’ fit was evaluated by the adjusted determination coefficient (R²), standard 

estimate error (SEE), and the residual plot, while the model generalization at the validation 

database was evaluated by the Pearson’s correlation coefficient, the root mean square error, 

paired T-test, and the residual plot. 

 

4 Results 

 

The volume (v) predictions had metrics on the fit and validation respectively, with SEE 

of 21.97% for the fit and RMSE 19.13%. In addition to an R² greater than 0.90 in both cases. 

On the other hand, the basal area (G) and diameter (DBH) estimates had high statistical metrics, 

with a SEE < 6.5% and R² > 0.99, denoting the model’s accuracy, as well as the potential and 

the canopy variables’ potential for determining these variables (Table 2). 

 

Table  2: Models’ statistical metrics 
 Statistical analysis 

Variable 
FIT Test 

R2 SEE SEE (%) r RMSE RMSE (%) T (p-value) 

V 0.916 2.507 21.972 0.967 2.124 19.314 0.04ns 

G 0.992 0.045 6.231 0.995 0.052 7.297 0.07ns 

DBH 0.993 2.559 2.820 0.995 2.876 3.183 0.02ns 

In which: V is volume, G is basal area, DBH is diameter at breast height, R2 is adjusted 

determination coefficient, SEE is standard estimate error, r is Pearson’s linear correlation, 

RMSE is root mean square error, T is the Paired T-test, ns is non-significance. 

 

Only the volume residuals are heteroscedastic, while G and DBH residuals are between 

-25% and 25%, which demonstrates accuracy (Figure 4). The residual’s fit (Figure 4b) obtained 

a greater variation than the validation. These performances reflected the model’s statistical 

metrics. 
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Fig. 4. Fit and validation residual plot 

Note: a is the fit residuals plot, and b is the validation residuals plot. 

 

The models’ accuracy is observed in the correlation plot, in which the volume had a 

greater variation of observed vs. estimated values, although the regression model’s mean line 

of fit (red line) passes close to the perfect correlation (dashed black line). G and DBH obtained 

lower variation, with points next to the regression model and the perfect correlation (Figure 5). 
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Fig. 5. Dendrometric variables’ accuracy on fit and validation dataset 

 

Dendrometric variables’ accuracy for the fit and validation dataset. The models’ 

coefficients are significant in all the estimated variables, explaining the intercept (β0) variation 

and the inclinations on the regression curves throughout the diameter classes, indicating there 

are different inclinations among the diameter classes which explain the tree volume behavior 

based on the crown variables (Table 3). 

 

Table  3: Coefficients of the variables used to adjust the models 
Parameter V G DBH 

β0 12.254* 0.186* 46.390* 

β1 0.043* 0.00035* 0.633* 

β2 -1.117* 0.073* 8.215* 

β3 1.676* 0.181* 18.297* 

β4 3.560* 0.291* 27.233* 

β5 5.430* 0.418* 36.332* 

β6 7.717* 0.561* 45.601* 

β7 9.949* 0.729* 55.283* 

β8 12.748* 0.867* 62.897* 

β9 14.589* 1.057* 72.171* 

β10 16.519* 1.251* 80.970* 

β11 21.376* 1.619* 96.342* 

β12 26.030* 2.133* 115.421* 

β13 30.830* - - 

Note: V is volume, G is basal area, DBH is diameter at breast height, βi is the model parameter, 
* is significance. Regarding the volume estimates, β1 was associated with crown area and β2 
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with crown diameter, β3 to β13 were associated the 11 diameter class coefficients. For the G 
and DBH estimate β2 to β12 were associated the 11 diameter class coefficients. For the G 
estimates, β1 was associated with crown area, and with crown diameter for DBH. The diameter 
class 1 was associated to β0 for all variables 
 

5. Discussion 

 

The tree crown segmentation using the UAS with RGB sensors proved to be feasible, 

as it is a low cost equipment which enables extracting the variables crown area (ac) and crown 

diameter (cd) and relate them to variables which are difficult to measure: DBH, basal area and 

volume. 

In this study, the variables v, G, DBH, ca and cd were strongly correlated with each 

other (Figure 3), evidencing their importance in the estimates by equations (1-3). The strong 

correlation is in agreement with the study by Iizuka et al. (2018), in which it is mentioned that 

the variables DBH, area and crown diameter are highly correlated with the individual diameters 

of the trees. 

Obtaining the tree volume is a limiting factor for operational planning in forest 

management and forest biomass, in which the use of morphometric variables of the crown tend 

to improve the accuracy of estimates from the UAS (Figueiredo et al., 2014), which confirms 

the high degree of correlation between canopy variables and volume. DBH is another variable 

to be considered when estimating volume (Tudoran et al., 2021) due to its high correlation, 

which is evidenced in this study. 

The fitting of the volume model that relates the crown variables and the diametric class 

proves to be an efficient way for its estimation. The results related to the volume model fit 

statistics (Table 2) were lower than the studies by Tudoran (2022) (RMSE ≈ 9%) and by 

Figueiredo et al. (2014) (RMSE = 16.73%). The superiority of the cited studies in addition to 

the different models used can be explained by being associated with characteristics related to 

the forest rather than the individual characteristics of the trees, such as DBH, height and crown 

size, which vary167 in relation to the tree stand structure. The inferiority of the calculated 

statistics, mainly in relation to the study by Tudoran et al. (2021), can be explained by the 

specificity of the study area, since the Amazon forest has a high degree of complexity which 

entails a greater variability of the Biometric characteristics of trees. 

Therefore, the influence of structure and local conditions in trees should be taken into 

account when developing models based on biometric variables (Tudoran et al., 2021; Guerra-
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Hernández et al., 2016). In turn, models that express the relationship between the dendrometric 

characteristics of trees need to be developed separately for each type of structure. 

Figueiredo et al. (2014) found that models using variables exclusively from the canopy 

revealed R2
aj.(%), results ranging from 72,68 to 79,44 and percentage standard error between 

27,47% to 30,84%, which were lower than those models that included the DBH as one of the 

independent variables, and constituting similar results to the simple entry equations in 

dendrometric studies in the Amazon. According to the same author, none of the generated 

models that exclusively use the traditionally employed independent variables (DBH, Ht) 

obtained better results than models that also apply variables derived from the crown 

morphometry indices. 

The study revealed satisfactory results for the 3 models. The fits of the diameter and 

basal area models present superior statistics according to the R² and SEE values. This can be 

explained since the DBH and G are variables with a lower degree of uncertainty when measured 

directly than the volume that is a variable estimated. The fits were satisfactory according to the 

analyzed statistics when comparing the results obtained with other studies. Tudoran (2022) 

found an RMSE of 13.7%, which can be explained by the use of the cd variable only as a linear 

function in estimating the diameter, and the diameter classes in the model in this study were 

associated in addition to cd. When Tudoran et al. (2021) used a third-degree polynomial 

function using cd as a variable, it resulted in RMSE values which varied between (0.32 – 0.89). 

This difference in the goodness of fit can be explained by the difference in forest density that 

influences the DBH-cd relationship. 

Despite the results found showing great efficiency in estimating variables resulting from 

crown morphometry, one of the major limitations in indirect estimations through data capture 

with passive sensors coupled to UASs is penetration into dense forests, resulting in partial 

detection or omission of smaller trees shaded by larger trees, limiting the data collection from 

the understory (for example), as pointed out by Iizuka et al. (2018) in their tree segmentation 

study. 

Collecting good aerial images with an RGB sensor to accurately define the treetops is 

still a difficult task. It is necessary to take some precautions: mapping with the UAS in the hours 

of greatest luminosity, adjusting the camera shutter for fast shooting (>1/500) and the high 

diaphragm to be more accurate in correctly focusing the target (>6.0). The aerial images will 

be very clear without the rolling shutter effect from following these settings, able to extract 

more accurate information, even with the existing limitations of the segmentation of the cd and 

ca variables from the UAS. The inference of hard-to-obtain dendrometric variables such as 
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volume decreases operating costs in forest inventories, in addition to only needing information 

from larger trees for decision-making, for example in sustainable forest management. 

Studies have achieved satisfactory results by segmenting trees from UAS data with 

spacing between objects (Veras et al., 2022; Tudoran et al., 2021; Torres et al., 2020; Huang et 

al., 2018; Lin et al., 2015; Torres-Sánchez et al., 2015). The segmentation of trees to obtain 

dendrometric variables from UAS data in a natural dense forest is complex due to the proximity 

between tree canopies; data from active sensors, such as LiDAR, generally have better 

performance to segment the tree canopy and characterize the tree stock (Torresan et al., 2020; 

Figueiredo et al., 2014; Yan et al., 2018). 

The use of remote technologies is a strong ally for decision-making by the 

environmental manager. This study has the role of providing information quickly at a reduced 

cost and from large areas, while the use of canopy variables with a high degree of association 

with volume, basal area and DBH provided accurate estimates, which infers that we should seek 

alternatives of using these variables in order to make the forest inventory less onerous and 

maintain its accuracy. Thus, remote RGB sensors can help as complementary tools to the forest 

inventory, making it possible to reduce sampling units in the field and adapt models for the 

entire area based on morphometric variables of the tree canopy. 

 

6. Conclusions 

 

In this work, we have shown that the use of aerial images from a UAS system enables 

making indirect dendrometric estimates through tree canopy morphometry for the Amazon 

Forest. The equation for the variable volume composed by a combination of the area and crown 

diameter variables by diametric class had an admissible error in the context of inventories in 

natural tropical forests compatible with the field data of the forest inventory, with R2 0.967 and 

RMSE 19.31%. The aerial mapping with UAS to extract information from the dendrometry 

attributes of the trees proved to be very useful to obtain a previous estimate of the tree stock of 

a forest, constituting important data for the environmental manager to plan the management and 

conservation of forest resources. Future studies will focus on applying this technique to other 

forest typologies to expand the study base and improve the accuracy of the models by using 

more accurate algorithms and image processing methods. 
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GENERAL CONSIDERATIONS 

 

According to the results obtained in this thesis, it is possible to affirm that there were 

positive contributions to improve the remote forest inventory commercial using the 

combination of high resolution images captured by UAS with deep learning methods, in 

particular convolutional neural networks (CNN). 

Chapter I discusses the results of using CNN to identify tree species in the Amazon 

rainforest through aerial UAS images from different periods and their fusion, constituting a 

combination of powerful tools which allow mapping large areas, which are extremely difficult 

to access at a low cost. It is important to highlight that the methodological procedure proposed 

in this study is considered one of the best options for classifying forest species in environments 

as heterogeneous as the Amazon. This methodology provides preliminary information 

regarding the diversity of commercial species in the region, reducing the sampling effort in the 

field, making it possible to analyze the feasibility of conservation projects or forest management 

more quickly. 

The CNN algorithm allows necessary adjustments and adaptations for application in 

other forests of different typologies. It is important that the tool is popularized, as it will 

contribute to form a library of samples and reference data (one of the challenges of this study), 

since the availability of samples is quite variable between species; therefore, it is important for 

CNN to be able to learn the different characteristics present in the species group during 

phenophases, and be able to apply neural network learning in other areas. The cost of the 

machine is high, so there is a limitation in hardware, as the combination of CNN and UAS 

requires powerful GPUs capable of performing all the miles of necessary interactions that the 

neural network needs. 

Chapter II addresses a methodology for indirect biometrics of trees through the canopy 

using aerial UAS images, constituting valuable information which helps in planning forest 

management or conservation projects, since this study brings estimates of the volumetric stock 

of a forest by diameter class. These are crucial attributes that the environmental manager needs 

to support decision-making, in turn optimizing financial resources and time. 

Future studies will be able to concentrate on applying this methodology in different 

forests to evaluate the level of accuracy, and it will also be possible to fit the models to compose 

biometrics of samples where the crown does not have leaves; this characteristic was excluded 

from this study because it generates noise in the estimates. Improve the modeling so that it can 
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fully portray the biometrics of the forest diameter classes is a problem which currently exists in 

large individuals present in the upper diameter classes 

Finally, it can be considered that the hypotheses of this study were met and that the use 

of aerial images in forest planning can bring valuable technical and scientific contributions to 

the conservation of the Amazon forest. 
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GENERAL CONCLUSION 

 

 According to the proposed methodology and the results obtained in this study, it is 

possible to conclude that: 

 

- Aerial images from the UAS with high spatial resolution, combined with the use of 

CNN enable discriminating forest species commercial in the Amazon. 

- The fusion of multi-station aerial images of the UAS applying CNN improves the 

classification accuracy of forest species commercial, therefore the neural network can 

learn different characteristics (ecological phenophases) present in the species over the 

course of months. 

- The diameter and crown area variables obtained by aerial images from the UAS have 

a strong relationship with the DBH and the basal area of the tree, and are relevant 

variables in estimating the preliminary commercial volume (m³) in native forest areas 

in the Amazon. 

- The volumetric model derived from combining diameter and canopy area generated 

promising estimates at low cost, making it possible to have preliminary knowledge of 

the commercial tree stock present in the forest. 
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