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RESUMO 
 

Deep Learning ou aprendizado profundo abriu novas possibilidades para o 
pré-processamento, processamento e análise de dados hiperespectrais usando 
várias camadas de redes neurais e pode ser usado como ferramenta de extração de 
atributos. Nesta pesquisa, é desenvolvido um modelo híbrido baseado em pixels que 
integra Stacked-Autoencoders (SAE) y Redes Neurais Convolucionais (CNN) para 
classificar dados hiperespectrais. O núcleo do modelo integrado (SAE-1DCNN) é um 
Autoencoder que é aprimorado usando camadas convolucionais nas etapas de 
codificação (encoding) e decodificação (decoding). Isso permite melhorar a 
discriminação de dados no treinamento não supervisionado e reduzir o tempo no 
processamento, pois permite uma descrição dos atributos baseada na assinatura 
hiperespectral do pixel e aproveita a eficácia da arquitetura profunda com base nas 
camadas convolucionais e pooling. Como filtros unidimensionais foram aplicados no 
modelo integrado, o tempo de processamento é consideravelmente menor do que ao 
usar filtros 2D-CNN. Em uma primeira etapa, o modelo SAE-1DCNN é usado para 
extração de atributos e, em seguida, esses resultados são usados em uma etapa 
final para uma classificação supervisionada. Assim, na primeira etapa os parâmetros 
da rede são ajustados usando amostras de treinamento e após na segunda etapa 
uma abordagem fine-tuning composta de regressão logística com base na função de 
ativação softmax foi aplicada para classificação. Três aspectos são analisados nesta 
pesquisa: a capacidade do modelo de excluir bandas ruidosas, sua capacidade de 
redução da dimensionalidade e seu potencial para realizar a classificação da 
cobertura da terra usando dados hiperespectrais. Os experimentos foram realizados 
com diferentes conjuntos de dados hiperespectrais: Indian Pines, Universidade de 
Pavia e Salinas, amplamente utilizados pela comunidade científica, e uma imagem 
hiperespectral capturada na Fazenda Canguiri da Universidade Federal do Paraná 
(UFPR) no Paraná-Brasil. Para validar a metodologia proposta, os resultados obtidos 
foram comparados aos métodos tradicionais de aprendizado de máquina  para 
verificar o potencial da integração de autoencoders (AE) e redes convolucionais. Os 
resultados obtidos mostraram similaridade com os métodos tradicionais em termos 
de acurácia da classificação hiperespectral, porém demandaram menos tempo de 
processamento, portanto, a metodologia proposta (SAE-1DCNN) é considerada 
promissora, sólida e pode ser uma alternativa para o pré-processamento de dados 
hiperespectrais. e processamento. 

 

Palavras-chaves: deep learning; convolutional neural network (CNN); stacked-
autoencoders (SAE); processamento de imagens; classificação de cobertura da 
terra; redução de dimensionalidade; dados hiperespectrais. 

 

 

 

 

 



ABSTRACT 
 

Deep learning opened new possibilities for hyperspectral data processing and 
analysis using multiple neural nets layers and can be used as a feature extraction 
tool. In this research, a pixel-based hybrid model is developed that integrates 
Stacked-Autoencoders (SAE) and Convolutional Neural Network (CNN) for 
hyperspectral image classification. The core of the integrated model (SAE-1DCNN) is 
an autoencoder that is improved by using convolutional layers in the encoding and 
decoding steps. This allows improving data discrimination in unsupervised training 
and reducing the processing time because it allows a feature-based description of 
the pixel’s hyperspectral signature and takes advantage of the effectiveness of deep 
architecture based on the convolutional and pooling layers. As one-dimensional 
filters are applied, the processing time is considerably lower than when using 2D-
CNN filters. In a first step, the SAE-1DCNN model is used for feature extraction and 
then these results are used in a final supervised classification step. Thus, in the first 
stage, the parameters of the net are adjusted using training samples and then, in the 
second stage, a fine-tuning approach followed by logistic regression based on the 
softmax activation function was applied for classification. Three aspects are analyzed 
in detail: the capacity of the model to exclude noisy bands, its ability to dimensionality 
reduction, and its potential to perform land cover classification based on 
hyperspectral data. Experiments were performed using different hyperspectral data 
sets: Indian Pines University of Pavia and Salinas, widely used by the scientific 
community, and a hyperspectral image captured at the Canguiri Farm of the Federal 
University of Paraná (UFPR) in Paraná-Brazil. To validate the proposed 
methodology, the obtained results were compared to traditional machine learning 
methods to verify the potential of the integration of autoencoders (AE) and 
convolutional nets. These obtained results showed similarity with traditional methods 
in terms of hyperspectral classification accuracy, however, they demanded less time 
for processing, therefore, the proposed methodology (SAE-1DCNN) is considered 
promising, solid, and can be an alternative for hyperspectral data pre-processing and 
processing. 

 
 

Key-words: deep learning; convolutional neural network (CNN); stacked-
autoencoders (SAE); image processing; land cover classification; dimensionality 
reduction, hyperspectral data. 

 

 

 

 

 

 



RESUMEN 
 

Deep Learning o aprendizaje profundo abrió nuevos desafíos para el 
preprocesamiento, procesamiento y análisis de datos hiperespectrales usando varias 
capas de redes neuronales y puede ser usado como herramienta de extracción de 
atributos. En esta investigación, se desarrolla un modelo híbrido basado en pixeles 
que integra Stacked-Autoencoders (SAE) y redes Neuronales Convolucionales 
(CNN) para clasificar datos hiperespectrales. Este enfoque uso un modelo basado 
en pixeles que integra Convolutional Neural Networks (CNN) y Stacked-
Autoencoders (SAE). El núcleo del modelo integrado (SAE-1DCNN) es un 
Autoencoder (AE) mejorado que usa capas convolucionales en las etapas de 
codificación y decodificación. Esto permite mejorar la discriminación de datos a 
través de un entrenamiento supervisado y además reducir el tiempo en el 
procesamiento, pues permite una descripción de los atributos basad en la respuesta 
hiperespectral del pixel y aprovecha la efectividad de la arquitectura profunda en las 
capas convolucionales (convolutional) y de agrupamiento (pooling). En este modelo 
integrado se aplican filtros unidimensionales lo que permite que el tiempo en el 
procesamiento sea menor si se compara con los filtros bidimensionales 2D-CNN. En 
una primera etapa, el modelo SAE-1DCNN es usado para la extracción de atributos 
y en seguida, esos resultados son usados para la etapa final basada en la 
clasificación supervisada. De esta forma, en la primera etapa los parámetros de la 
red son ajustados usando las muestras de entrenamiento y después en la segunda 
etapa el enfoque conocido como fine-tuning fue aplicado para la clasificación de 
cobertura terrestre basado en regresión logística y la función de activación softmax. 
Tres aspectos son analizados en esta investigación, la capacidad del modelo para 
excluir bandas ruidosas, la capacidad para seleccionar las bandas redundantes y así 
reducir la dimensionalidad y el potencial para realizar la clasificación de la cobertura 
terrestre usando datos hiperespectrales. Los experimentos fueron realizados con 
diferentes conjuntos de datos hiperespectrales: Indian Pines, Universidad de Pavia y 
Salinas, ampliamente usados en trabajos científicos, y una imagen hiperespectral 
capturada en la Hacienda Canguiri de la Universidad Federal de Paraná (UFPR) en 
Paraná-Brasil. Para validar la metodología propuesta, los resultados obtenidos se 
compararon con métodos tradicionales de aprendizaje de máquina (machine 
learning) para verificar el potencial de la integración de Autoencoders (AE) y redes 
convolucionales. Los resultados obtenidos mostraron similitud con los métodos 
tradicionales en cuanto a la precisión de clasificación hiperespectral, sin embargo, 
exigieron menos tiempo de procesamiento, por lo que, la metodología propuesta 
(SAE-1DCNN) se considera prometedora, sólida y puede ser una alternativa para el 
pré-procesamiento y procesamiento de datos hiperespectrales. 

 

Palabras-llave: deep learning; convolutional neural network (CNN); stacked-
autoencoders (SAE); procesamiento digital de imágenes; clasificación de cobertura 
terrestre; reducción de dimensionalidad; datos hiperespectrales. 
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1 INTRODUCTION 
 

Remote sensing became a useful and efficient tool for practical applications 
related to identifying, mapping, and monitoring changes on the Earth's surface (Zhu 

et al., 2020; Paoletti et al., 2018; Hassan et al., 2017) such as land use and land 

cover classification, change detection, environment monitoring and management and 

precision agriculture (Paoletti et al., 2018; Huang et al., 2018; Mahesh et al., 2015; 
Henits et al., 2016; Kussul et al., 2017). Although remote sensing is widely used 

nowadays, it experiences the impact of sensors and classification methods that 

improve the accuracy of its products (Zhu and Woodcock, 2014). 

Among these sensors are those that enable the acquisition and processing of 
hyperspectral images, composed of hundreds of contiguous narrow spectral bands 

that provide valuable information to accurately differentiate objects and materials 

(Chen et al., 2016; Li et al., 2015). Increasing the spectral image resolution can be 

considered, initially, a gain in terms of information contents. Nevertheless, describing 
the spectral response of targets with several bands also increases redundancy in the 

data set and the necessity to use more sophisticated methods to process such data. 

On the other hand, advances were also achieved in terms of the processing 

capacity of computers, which are useful in digital image processing and analysis. 
Better computers enabled using classification methods that were not possible before 

because of their need of high computing requirements. New methods were also 

proposed, including those based on Artificial Intelligence. For example, traditional 

Artificial Neural Networks (ANN) approach developed towards new machine learning 
methods, like Deep Learning or Hierarchical Learning, that allows extracting 

representative features from images. As shown in Chen et al. (2014); Geng et al. 

(2015); Wang et al. (2016), Deep Learning methods proved to be efficient in 
hyperspectral, multispectral and radar image processing. Combining such advances, 

and according to Zhu et al., (2017), improvements of the classification’s accuracy 

and the analysis of more complex data are expected especially exploring the ability 

of deep learning methods to extract attributes from hyperspectral images. 
Several Deep Learning models can be applied for hyperspectral remote 

sensing image processing and classification, such as Convolutional Neural Networks 

(CNN) and Autoencoders (AE). Experiences reported in the literature on the use of 

Convolutional Neural Networks to classify hyperspectral data (Li et al., 2018; Paoletti 
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et al., 2018; Zhao and Du, 2016a) show robust and effective results. Two facts 
contribute to the good performance of Convolutional Neural Networks: Its deep 

structure (the model uses multiple layers to transform the input data into a suitable 

representation) and the convolution and pooling processes (Du et al., 2016). Other 

suitable Deep Learning models for satellite image processing are Autoencoders (AE), 
or Stacked-Autoencoders (SAE). This model is a symmetrical neural network that 

uses unlabeled inputs to build up a compressed feature representation from a high 

dimensional feature space (Cheng et al., 2017). Initially, autoencoders were 

considered a valuable alternative for dimensionality reduction but they can also be 
used to perform unsupervised classification because of its potential to compute more 

discriminative features from the original data (Paoletti et al., 2019; Wang et al., 2016; 

Zabalza et al., 2016). Furthermore, a trained autoencoder can be adapted for 

supervised classification, adjusting its parameters with the help of labeled training 
samples and techniques like supervised fine-tuning, that allows reducing 

classification errors using logistic regression (Lin et al., 2018).   

Several researchers developed methods for land cover classification and 

dimensionality reduction based on CNN, SAE or Convolutional-AEs (Chen et al., 
2014; Wang et al., 2017; Othman et al., 2016; Li et al., 2016; Zhao and Du, 2016b; 

Mei et al., 2019). However, most studies use 2D and 3D models and few use pixel-

based models (1D), as reported by Hu et al., 2015 or Li et al., 2016, although 1D 

models are simpler and faster, in terms of computational complexity and effort, and 
they do not require very deep architectures in the training step (Kiranyaz et al., 

2020). This means that 1D structures are easier to train and do not need 

sophisticated and expensive processing units (e.g., Graphics Processing Unit-GPU) 

to obtain robust and accurate results. 
This study aims at exploring the potential of a 1D deep learning model based 

on stacked autoencoders (SAE) that includes convolutional layers, in the encoding 

and decoding phases, for pre-processing and classifying hyperspectral images. 

Three aspects are studied in detail: The potential use of the model to perform land 
cover classification, the exclusion of noisy bands, and dimensionality reduction. The 

expected advantages are increasing mapping accuracy and reducing the processing 

time. 
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1.1 RESEARCH AIMS 
 

The aim of this research is to develop a pixel-based hybrid model that 

integrates Stacked-Autoencoders and Convolutional Neural Network for 

hyperspectral images classification. The specific aims are: 
 

 To propose a method to include CNN models into the processing flux of SAE 

for hyperspectral images processing. 

 To evaluate the proposed SAE-1DCNN method using different datasets, 
obtained with different hyperspectral sensors. 

 To compare the performance of the SAE-1DCNN model to those achieved 

with other hyperspectral image classification methods. 

 To verify if the SAE-1DCNN models allows identifying noisy bands within a 
hyperspectral image dataset. 

 To verify if the SAE-1DCNN model allows reducing the dimensionality of 

hyperspectral images based on the feature selection capacity. 

 

1.2 BACKGROUND 
 

Deep learning rose as a promising alternative to process and specially 
classify images, including remote sensing images. The most well-known deep 

learning solutions were proposed to detect and identity objects in images, analyzing 

image regions (2D) and computing spatial features from such regions. The 

advantage of these deep learning approaches is that they minimize human 
interaction, providing automated solutions to the classification problem. 

Traditional deep learning methods compute features based on the variation 

of the digital numbers within a given image region. Such features are used to 

describe the image and are expected to substitute the features that a human analyst 
would propose based on his knowledge. The experience proved that such alternative 

is feasible and that it is possible to describe the desired object with machine derived 

image features and use them to detect the object in other images. Among some 

works that use deep learning based on the variation of digital numbers to detect 
objects are: Li et al., 2017; Hu et al., 2015. 
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The success of deep learning applied to image analysis encouraged its use 
in hyperspectral image classification. As the information of a pixel is stored in a high 

dimensional vector, it is possible to analyze variations along the spectrum in detail to 

deduce the most probable class within a classification. For this purpose, instead of 

deriving spatial features, it is possible to compute spectral features from the pixel’s 
hyperspectral vector using a 1D approach. The use of 1D deep learning models in 

image processing, although simpler, is not common, because most studies are 

devoted to RGB images with a reduced set of spectral bands. 1D model may not be 

appropriate to process and classify an RGB image, but become interesting when 
dealing with hyperspectral data, where a pixel contains digital values related to many 

narrow and contiguous spectral bands. The use of 1D models discards the inclusion 

of context but can be useful to analyze the spectral signature of each pixel.  

A common problem when dealing with hyperspectral data and statistical 
classification methods is related to the number of training samples. The number of 

training samples needs to be increased, as the number of spectral bands grows. 

Nevertheless, it is difficult (sometimes impossible) to increase the number of samples 

in real situations. Therefore, dimensionality reduction procedures are applied before 
the classification step to reduce the number of input bands and reduce redundancy in 

the data set. 

Deep learning methods, such as convolutional networks, are not based on 

the assumption of statistical distributions or parameters that need to be estimated 
with training samples, which is an advantage. On the other hand, they also need 

large number of samples to compute reasonable features and feature selection 

would be recommended in a pre-processing step. This problem can be solved 

applying autoencoders, which are well-known methods for feature selection. So, the 
combined use of autoencoders and convolutional networks seems to be a 

reasonable solution for the pre-processing (identification of noisy bands and feature 

selection of representative bands for dimensionality reduction) and processing (land 

cover classification) of hyperspectral data. It is expected that the combined model will 
be efficient to describe the spectral signature of the classes and enable a more 

accurate classification of the pixels, by combining the feature computation capacity of 

convolutional networks with the dimension reduction capacity of autoencoders. 
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1.3 ORGANIZATION OF THE DOCUMENT 
 

This document describes a hybrid approach integrating the SAE and CNN 

models for pre-processing and processing of hyperspectral datasets and is organized 

as follows: The first topic consists of the introduction, research objectives and 
background. In the second chapter it is presented a review of the literature on the 

use of deep learning methods for remote sensing image processing. Special 

attention is paid to the fundamental concepts regarding artificial neural networks and 

their architecture, as well as the use of unsupervised, supervised, and hybrid learning 
in remote sensing. It is also discussed the need of the exclusion of noisy bands, 

dimensionality reduction, as well as the land cover classification and performance 

assessment of the results. In the third chapter the proposed methodology is 
described in detail. The proposed autoencoder enhanced with the 1D convolutional 

layers is described first and then the experiments aimed at verifying the proposed 

solutions are presented. Finally, the results are discussed in the fourth chapter, 

followed by the conclusions and recommendations in the fifth chapter. 
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2 LITERATURE REVIEW 
 

In this work, deep learning tools, such as convolutional neural networks and 
autoencoders, are used to classify hyperspectral images. Therefore, it is first 

introduced the principles of neural nets and how this concept is extended to build up 

deep learning models: the basics of the artificial neuron, its combination into complex 

neural nets and the principles of autoencoders and convolutional nets. Finally, a 
survey on the application of such deep learning tools is discussed. 

 

2.1 ARTIFICIAL NEURAL NETWORK 
 

The basic idea of Artificial Neural Networks (ANN) was proposed by 

McCulloch and Pitts in 1943 to understand and model the structure and functioning of 

biological neural networks. They perceived that information flows through a neural 
net and that the stimuli are transmitted and processed within a net of multiple 

elements, called neurons (Negnevitsky, 2005). The function of neurons in the human 

brain is to process information and pass it to other neurons through the synapses. 

So, each neuron receives inputs from other neurons and produces an output. 
A neuron can be mathematically modeled according to Equations 1 and 2: 

 

 

 

 

 

where  represent input signals, which are combined with the synaptic 

weights ; each neuron produces an output   as a function of the inputs, 

that is modulated by an activation function  and can be passed on to other 

neurons; according the expression 2. 

In the mathematical model of a neuron, as displayed in Figure 1, the inputs 
(x) are added, applying weights (w), to compute an output. It is included an external 

bias to the summation, identified as . The bias  can increase or decrease the 

result of the weighted sum that is passed to the activation function. The result of the 
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weighted sum of the inputs is then evaluated using an activation function, that 
transforms this result into a modulated output (y) (Atkinson and Tatnall, 1997). 

 
FIGURE 1 - DIAGRAM OF A NEURON 

 

 

 
 

 

 

 
 

 

 

 
FONT: Adapted from Haykin (2008). 

According to McCulloch and Pitts (1943), in the simple neuron model, the 
neuron computes the weighted sum of the input signals and compares the result with 

a threshold value, θ. If the net input is less than the threshold, the neuron output is -

1. But if it is greater than or equal to the threshold, the neuron is activated, and its 

output is +1. In a more general approach, the output can vary between 0 and 1 
(Haykin, 2008). 

The output of a neuron is controlled by the activation function that is applied 

to make the network dynamic and add the ability to extract complex information from 

the input data and represent functional mappings for the output data (Sharma et al., 
2020). The selection of the activation function depends on the domain to be solved 

such as: object recognition and classification, segmentation, speech recognition, 

cancer detection systems, fingerprint detection, weather forecast, machine 

translation, among others. Based on this domain, there are several types of 
activation function such as, Linear, Sigmoid, Hyperbolic Tangent (Tanh), Rectified 

Linear Unit (ReLU), Softmax, among others. 
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The sigmoid activation function (Figure 2) is the most used because it exhibits 
a balance between linear and non-linear behavior (Haykin, 2008). This function is 

defined by  

 

 

 

where,  represent input signals;  are the outputs obtained after training the 

neural network. 

 
FIGURE 2 - REPRESENTATION OF SIGMOID ACTIVATION FUNCTION 

 

  

 
 

 

 

 

 
FONT: Adapted from Nwankpa et al., 2018 

 
The Softmax function (Equation 4) has similar characteristics as the sigmoid 

function and is used to compute the probability distribution from a vector of real 

numbers. The Softmax function produces an output that ranges between 0 and 1, 

with the sum of the probabilities equal to 1 (Nwankpa et al., 2018).  
 

 

 

where,  ,  represent input signals;  are the outputs obtained after training the 

neural network 
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The Sigmoid and Softmax functions are widely used and successfully applied 
for classification tasks in logistic regression models. However, the difference between 

these two functions is that the Sigmoid function is used for binary classification, while 

Softmax is used for multivariate classification tasks (Sharma et al., 2020). 

A non-linear activation function that is used only in hidden layers and not in 
external layers of neural networks is the ReLU activation function (Nwankpa et al., 

2018). The ReLU function (Figure 3) can be used for object classification and pattern 

recognition when combined with other activation functions (Sigmoid or Softmax) in 

the output layers of network (Wang et al., 2018). It reduces the vanishing gradient 
problem observed in other activation functions (Hara et al., 2015) by discarding 

negative inputs. This activation function applies a threshold to each input, according 

to equation 5. 

 

 

 
FIGURE 3 - REPRESENTATION OF ReLU ACTIVATION FUNCTION
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Several artificial neurons can be arranged to build up an artificial neural net, 

where the inputs of a neuron can produce an output that is passed to other neurons, 

which uses it as a new input. Although the natural neural net may be more complex, 
an artificial neural network is organized in layers of neurons. A typical architecture of 

a simple ANN is displayed in Figure 4. According to this figure, the ANN is composed 

of a hierarchy of layers (input, hidden and output layers) where the neurons are 
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organized. The input layer just reads the input data and pass the signal to the series 
of hidden layers. The outputs of a hidden layer can be used as inputs by the next one 

and the process can be repeated for several layers, passing information along the 

network (Haykin, 2008).  

 
      FIGURE 4 - ARCHITECTURE OF AN ARTIFICIAL NEURAL NETWORK 

 

 

 
 

 

 

 
 

 

FONT: Adapted from Negnevitsky (2005). 

 

The necessary number of layers and neurons, the architecture of the network, 

for a given problem is still an open question. The more neurons and layers are used, 

the network can solve more complex problems. Nevertheless, overfitting may happen 
if the architecture is too complex for the problem.  

Neural nets are widely used in remote sensing image processing, specially to 

perform classification. Examples can be found in Pal (2009), Ul Haq et al., 2011, 

Gong et al. (2011), Garcia-Salgado et al., 2018, Panda et al. (2010), Neagoe et al. 
(2012), Ahmed et al. (2013), Isik et al. (2013), or Jia et al. (2015). A more 

comprehensive description of such examples is listed in Frame 1. 

 

 
 

 

 
 

 

In
pu

t s
ig

na
ls

 

Output layer Input layer Hidden layer 

O
ut

pu
t s

ig
na

ls
 



30 
 

FRAME 1 - WORKS PERFORMED USING ANN APPLICATIONS 

Area Reference Summary 
Land cover 

classification 

Pal, 2009 A supervised classifier (ELM) based on a single hidden layer 

neural network for land cover classification for multispectral 

and hyperspectral images. In this work, a comparison is 

made with a typical neural network based on the 

backpropagation algorithm. The results of this work suggest 

that ELM provides greater classification accuracy comparable 

to a backpropagation neural network for both data sets and 

beyond, it takes less time to process. 

Ul Haq et al., 2011 An approach for hyperspectral data classification using 

adaboosting of artificial neural networks based weak 

classifiers was proposed using hyperspectral images. The 

adaboost algorithm employs an iterative approach which 

combines weak classifiers to approximate a Bayes classifier. 

In the approach, several neural networks based weak 

classifiers were used to make one strong classifier and each 

weak classifier contains only one hidden layer. As the weak 

classifiers are simple, therefore, these does not require a lot 

of time for training and, therefore, are time efficient. 

Gong et al., 2011 A classification model based on an optimized artificial 

immune network (OPTINC) was developed to classify land 

use and land cover. The OPTINC model was evaluated using 

high spatial resolution QuickBird data and LiDAR data for 

residential areas, a HyMap hyperspectral image for suburban 

areas. A decision tree, a multi-layer feed-forward neural 

network with a backpropagation algorithm, and aiNet were 

also tested for comparison. The OPTINC model 

outperformed the other models with higher accuracy and 

more spatially cohesive land cover classes with limited salt-

and-pepper noise. 

Garcia-Salgado et 

al., 2018 

A classification system that can be used for both 

multispectral and hyperspectral data was proposed. The 

designed classification system is composed of a novel 

parallel feature extraction algorithm, which utilizes a cluster of 

two graphics processing units in combination with a multicore 

central processing unit (CPU), and an artificial neural network 

(ANN) particularly devised for the classification of the 

features ensued by the implemented feature extraction 

method. 
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FRAME 1 - WORKS PERFORMED USING ANN APPLICATIONS 
(continuation) 

Monitoring 

and 

change 

detection 

 

Panda et al., 2010 The strength of key spectral vegetation indices for agricultural 

crop yield prediction using neural network techniques was 

investigated. The vegetation indices that were analyzed the 

corn crop yield were: normalized difference vegetation index 

(NDVI), green vegetation index (GVI), soil-adjusted 

vegetation index (SAVI) and perpendicular vegetation index 

(PVI). These four indices were investigated for 3 years (1998, 

1999 and 2001) and for the pooled data of these 3 years and 

were tested with aerial images. The PVI-based models 

provided average accuracy of corn yield prediction than other 

forecast models in 1998, 1999 and 2001. In this context, this 

work verified the usefulness of the application of ANNs as a 

tool for predicting agricultural yields with high accuracy. 

Neagoe et al., 2012 An approach for land cover change detection in remote 

sensing imagery was presented. This approach supervised 

neural network change detection techniques versus statistical 

supervised were considered and evaluated. Firstly, 

supervised neural classifiers were evaluated: Multi-layer 

Perceptron (MLP), Radial Basis Function Neural Network 

(RBF) and Self Organizing Map (SOM), while the statistic 

classifiers applied were: Bayes and Nearest Neighbor. 

Secondly, unsupervised change detection techniques: Self 

Organizing Map (SOM) (neural grouping), versus K-means 

(statistic grouping) and Fuzzy C-means (fuzzy grouping) 

were investigated. The proposed model of change detection 

in multispectral satellite images has two main processing 

stages: (a) feature selection, using three techniques: 

concatenation of corresponding pixels (CON), computation of 

absolute differences between corresponding pixels (ADIP), 

and computation of absolute differences between reflectance 

ratios of corresponding pixels (ADIRR) and (b) classification, 

using the above-mentioned supervised or non-supervised 

models for obtaining two classes: “change” and “no change”. 

The better result using supervised techniques was CON-

MLP, while that the unsupervised techniques was ADIP-

SOM. The results prove the advantage of the neural network 

change detection techniques over the statistical and fuzzy. 
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FRAME 1 - WORKS PERFORMED USING ANN APPLICATIONS 
(continuation) 

Monitoring 

and 

change 

detection 

 

Ahmed et al., 2013 The dynamics of land cover and its impacts on land surface 

temperature in fast-growing megacities in developing 

countries were analyzed using Landsat satellite images from 

1989, 1999 and 2009. This study was based on three 

objectives: (1) identified patterns of land cover changes 

between periods and investigated their impacts on land 

surface temperature; (2) applied an ANN to simulate land 

cover changes for 2019 and 2029; (3) estimated their impacts 

on land surface temperature in respective periods. The results 

would help to quantify the impacts of different scenarios (for 

example, vegetation loss to accommodate urban growth) on 

land surface temperature and to design appropriate policy 

measures. 

 Isik et al., 2013 A hybrid model based on Artificial Neural Networks (ANNs) 

and Soil Conservation Service (SCS) Curve Number (CN) was 

developed to predict the effect of changes in land use/cover 

(LULC) on daily streamflows. The model used data from 

LULC, hydrologic soil groups and climatic factors, such as 

temperature and precipitation, in order to replicate the 

hydrologic response of a watershed, in addition, incorporated 

data from neighboring watersheds for training, validation and 

testing purposes. For the development of this study, the 

authors used aerial images with spatial resolution of 1m. The 

results indicated that the hybrid model developed was able to 

predict the increases in average flow and flashiness for the 

urban and pasture dominant scenarios and for the forest 

dominated scenarios, the model predicted more stable 

hydrology (less flashy) with lower average flows. 

 Jia et al., 2015 A reliable estimation algorithm to operationally produce a high-

quality global Fractional vegetation cover (FVC) product from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) 

surface reflectance was developed. For the development of 

this algorithm, Landsat TM / ETM+ and MODIS images were 

processed. The results obtained in this study indicated that the 

spatial and temporal continuity of the estimates from the 

proposed method was superior to that of the other product 
 

FONT: The author (2021). 
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2.2 DEEP LEARNING 
 

Deep Learning is a hierarchical technique that allows analyzing and 

processing data based on various artificial neural networks. This model emerged as 

a learning tool to solve a wide range of tasks related to computer vision, visual object 
recognition, natural language processing, logical reasoning, handwriting recognition, 

audio processing, information retrieval, robotics, among others (Markoff, 2012; Ball et 

al., 2017). However, this technique has still several unique challenges related to 

remote sensing (hyperspectral, multispectral and radar) and its applications, such as 
land cover classification, change detection, data fusion and object recognition 

(Kussul et al., 2017; Ball et al., 2017; Lin et al., 2018). 

 
FIGURE 5 - ILLUSTRATION OF THE DEEP LEARNING MODEL 
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Figure 5 displays an illustration of the use of deep learning to classify a 
satellite image. In this example, not only a pixel, but a region around a pixel is 

analyzed to compute spatial features. The input layer receives the digital numbers of 

the pixels within the region that are combined in the hidden layers, which allows 

identifying features like edges, corners, and contours, that are later used to recognize 
and map the objects. The result is then presented in the output layer of the deep 

learning model. 

The novelty of such approach is that the analyst does not need to specify or 

propose the features that are used to solve the problem and how are they combined, 
but the system computes a series of features, sometimes more than necessary, 

selects the most significant ones and organizes their combination according to the 

proposed aim. In this sense, a high level of automation is introduced. As each layer is 

composed of artificial neural nets, it is said that the nets are stacked, building a deep 
representation of the data.  

 

2.2.1 Deep Learning approaches  
 

According to Deng (2014), there are three approaches based on Deep 

Learning technique: unsupervised or generative, supervised and hybrid learning 

(supervised and unsupervised). 
 

2.2.1.1 Unsupervised or generative learning 
 

This approach refers to learning methods in which the output classes is not “a 

priori” known and the input data is used to detect common patterns within the data 

set. Therefore, it is not necessary to provide labelled samples to guide the solution. 
When used in generative mode, this approach can also be intended to characterize 

the joint statistical distributions of visible data and their associated classes (Deng, 

2014). 

The most common models for unsupervised deep learning include 
Autoencoders (AE) or Stacked-Autoencoders (SAE), Deep Boltzmann Machines 

(DBM) and Deep Belief Network (DBN). As stacked autoencoders are used in the 

present study, they are described below in detail.  
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2.2.1.1.1 Stacked-Autoencoders (SAE) 
 

To understand a Stacked Autoencoder (SAE) it is necessary to understand 

how single Autoencoders (AE) work. The autoencoder model has a symmetric 
architecture and is designed to learn a representation of compressed and distributed 

data sets. AE are made up of two parts, as displayed in Figure 6: the first phase 

(encoder) compresses the input data to a relatively shorter representation, while in 

the second phase (decoder) the compressed data are used to reconstruct the original 
input. So, the AE computes a compact representation preserving the information that 

still allows the reconstruction of the original data, minimizing information loss (Khan 

et al., 2019). 

 
FIGURE 6 - AUTOENCODER NETWORK ILLUSTRATION 

 
 

 

 

 
 

 
 
 
 
 

FONT: The author (2021). 

 
 

During the encoder stage, an input vector  is mapped to the hidden 

representation or code, , through a non-linear activation function . If the network 

has a simple hidden layer, then  will be expressed by equation 6. 

 
 

 

where,  is the weight matrix to be estimated at the training stage (learned) and b is 

a bias vector. 
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The decoder stage maps code  (the hidden representation) to the output . 

This stage performs a reconstruction or approximation of the input vector through a 

non-linear activation function, like the previous stage, by means of equation 7: 

 

 

 

where,   and  are the weight matrix and bias vector of the reconstruction layer 

with a non-linear activation function . 

Normally, the encoding and decoding weight matrices are linked, so that = 

  (  is the operator of the transposed matrix), this means that, the same weight 

matrices are used for encoding the input and decoding the latent representation (Zhu 

et al., 2017; Ball et al., 2017). 

The compact representation obtained (latent representation) with the AE 

network is often understood as a feature vector that can be used for several 
purposes, including clustering, indexing and dimensionality reduction (Khan et al., 

2019) 

To determine the optimized parameters of an AE model, the difference 

between the reconstructed outputs (output layer) and the inputs (input layer) must be 
minimized (Zabalza et al., 2016), according to equation 8: 

 

 

 

 
 

Autoencoders can be combined (stacked) to build up a more complex 

network: A Stacked-Autoencoders network (SAE). In the SAE model the outputs of 
one Autoencoder is used to feed the next one. An example of an SAE architecture is 

shown in Figure 7. In this figure, the SAE model is made up of three hidden layers for 

the encoder stage and another three hidden layers for the reconstruction or decoder 

stage. 
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FIGURE 7 - SAE ARCHITECTURE 
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In the encoding phase, each following layer is smaller, which allows reducing 

processing time and a deep representation of the spectral data based on features 

computed from the inputs (Ma et al., 2019). A great advantage of the SAE model is 

that it allows unsupervised training, which avoids the necessity of labelled data. 
According to Zabalza et al. (2016) there is an iterative update of the 

coefficients ( , ) of each internal AE in the training stage of an SAE model. This 

update progressively reduces the error between the input pixel and the reconstructed 

pixel (output) until reaching a threshold based on the criteria of equation 8. This 
means that, in an SAE model, the pre-trained parameters of an internal AE layer are 

frozen for the training of the subsequent layers (Yue et al., 2016). 
 

2.2.1.2 Supervised learning 
 

Supervised learning is based on prior knowledge of the expected 
classification of the input data. In other words, to train the system it is necessary to 

present the expected result for each input. The system adjusts the weights aiming at 

reproducing the expected output based on the given inputs (Khan et al., 2019). 

According to Schmidhuber (2015), the aim of supervised learning is to find the best 
weights minimizing the global error rate. Supervised training can be used to solve 

classification and regression problems. The supervised deep networks are also 

known as discriminative networks, and the most common architectures for this type 
of learning are: CNN and Recurrent Neural Networks (RNN). 
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2.2.1.2.1 Convolutional Neural Networks (CNN) 
 

Convolutional Neural Nets (CNN) are the most representative and widely 

used supervised neural networks model to solve image analysis problems. CNN is a 

deep learning model designed to process images using the regular organization of 
the pixels (Ma et al., 2019 and LeCun et al., 2015). It is composed of three different 

layers: the convolutional layer, the pooling layer, and the full connected layer (Figure 

8). The Convolutional layers can be understood as 2D filter banks that transform an 

input image into a series of new images, highlighting specific patterns. As each filter 
produces a new image, the data volume increases. Therefore, a pooling layer is used 

to reduce the size of the output through non-linear operations. The full connected 

layer takes the output of the pooling layer as input to compute the final output (LeCun 
et al., 2015). 

 
FIGURE 8 - CNN ARCHITECTURE 
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According to Ma et al. (2019), in a CNN model, the input vector is convolved 

with a set of  kernels with the weight matrices  and biases are 

added , each generating a new feature map , according to 

equation 6. The output of each convolution is modulated applying a non-linear 
transform , and the same process is repeated for every convolutional layer 

(Equation 9). 
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Various applications of CNN-based hierarchical learning with robust and 
effective results prove that it is useful for automatically discovering relevant 

contextual features in image categorization problems (Maggiori et al., 2016). Having 

as most important applications: object detection and land cover classification on 

multispectral, hyperspectral and radar images as shown in Chen et al. (2014); Geng 
et al. (2015); Wang et al. (2016); Paoletti et al., (2018).  

 

2.2.1.3 Hybrid learning  
 

According to Deng (2014), hybrid learning uses the results obtained from a 

previous unsupervised network as basis to produce a more efficient network through 

the optimization or/and regularization of the parameters learned in a previous 
training. The improvement refers to the fact that generative models can provide 

excellent initialization points for highly nonlinear parameter estimation problems; and 

regularization refers to the generative models that can effectively control the 

complexity of the general model (Deng, 2014). For example, unlabeled data can be 
introduced into an unsupervised network that can learn the more significant features 

and clusters. This knowledge can later be used to train a classifier with labeled 

samples by supervised learning.  

There are several examples of the use of hybrid architectures in the field of 
remote sensing in the scientific community. Some of these works are summarized in 

Frame 2. 

 

 
FRAME 2 - RESEARCHS PERFORMED USING THE DEEP LEARNING HYBRID APPROACH 

Area Reference Summary 

Classification  Zhang et al. (2018) 

 

A hybrid classification system is proposed that combines 

CNN (a context-based classifier with deep architectures) and 

MLP (a pixel-based classifier with surface structures) using a 

rules-based decision fusion strategy. This method was 

tested on aerial images with 50 cm spatial resolution and 

four multispectral bands (red, green, blue and near infrared) 

from both an urban scene and a rural area. 
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FRAME 2 - RESEARCHS PERFORMED USING THE DEEP LEARNING HYBRID APPROACH 
(continuation) 

Classification Wu et al. (2016) A new hybrid architecture was developed combining the 

AE network and the Fisher vector (based on the pooling 

layer) to automatically learn the representative and 

discriminative characteristics in a hierarchical way for the 

land cover classification. This hybrid model was tested on 

two images. The first image is an area (UC Merced) with a 

spatial resolution of 30 cm and the second is a satellite 

image collected from Google Earth that are sampled at 4 

different scales. 

Ma et al. (2015) A feature learning algorithm (Contextual Deep Learning) 

for classifying hyperspectral images is proposed. This 

algorithm can extract spectral and spatial features based 

on the Stacked Autoencoders (SAE) model. SAE is a 

hybrid learning method, which includes supervised and 

unsupervised steps. To test this algorithm, hyperspectral 

images were used: Indian Pines, Salinas and University of 

Paiva. 

Object detection Chen et al. (2014) A hybrid model based on the Deep Learning network for 

vehicle detection in satellite images is presented. This 

model is divided into two parts. The first refers to 

extracting the attributes hierarchically using the 

convolutional and max-pooling layers (CNN algorithm). 

And the second is an MLP classifier, which classifies the 

extracted attribute data. The satellite images used for 

testing this algorithm were collected from Google Earth. 

Pashaei et al. 

(2019) 

A hybrid system for the classification of accident images is 

proposed. This system uses a CNN for feature extraction 

and a mixture of extreme learning machines (ELM) for 

classification. The system (CNN-ELM) is developed 

through two tasks. For the first task, the outputs of the last 

max-pooling layer of a Convolution Neural Network 

(CNN) are used to extract the hidden features 

automatically. For the second task, a mixture of advanced 

variations of Extreme Learning Machine (ELM) including 

basic ELM, constraint ELM (CELM), On-Line Sequential 

ELM (OSELM) and Kernel ELM (KELM), is developed.  
 

FONT: The author (2021). 
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2.2.2 Deep Learning in Remote Sensing 
 

Interest on deep learning algorithms is increasing exponentially in the 
scientific community, mainly in the field of remote sensing and image processing. 

According to Ma et al. (2019), CNNs are established as the most widely used deep 

learning models and proved their ability to compute spectral-spatial features of 

images to solve image analysis challenges, like object detection, land cover and land 
use classification, segmentation, change detection, time series analysis, among 

others. However, there are other deep learning models that can be applied for the 

analysis and processing of remote sensing data, among which are: AE, SAE, RNN, 

Long Short-Term Memory (LSTM), deep belief networks (DBN), Fully connected 
network (FCN), generative adversarial networks (GAN), restricted Boltzmann 

machine (RBM), etc. 

Figure 9 shows a taxonomy related to deep learning in remote sensing 

according to Ma et al., (2019), allowing the identification of different topics ranging 
from pre-processing to accuracy assessment in data analysis. In addition, Frame 3 

presents a summary of the deep learning applications in remote sensing. For 

example, Xu et al., (2020), developed a general deep learning solution based on 

Convolutional Neural Network (CNN) and Stacked-Autoencoders (SAE) for 
atmospheric correction and target detection using multiple hyperspectral scenes. 

Zabalza et al., 2016, presented a deep model based on Stacked-Autoencoders for 

feature extraction in hyperspectral remote sensing (dimensionality reduction). Jing et 

al., 2020 proposed a novel deep learning architecture for change detection 
composed of a Trisiamese subnetwork and a Long Short-Term Memory (LSTM) 

subnetwork that fully utilizes the spatial, spectral and multiphase information and 

improves the change detection capabilities for very high-resolution multispectral 

imaging. Zhang et al., 2019, implemented a deep model based on a multilayer 
perceptron (MLP) and convolutional neural network (CNN) by via a Markov process 

involving iterative updating for land cover and land use classification using 

multispectral images. Kemker et al., 2018, implemented a Deep convolutional neural 

network for semantic segmentation using real and synthetic multispectral data. 
Paoletti et al., 2018, proposed a 3D-convolutional neural network (CNN) model that 

uses both spectral and spatial information for hyperspectral data classification. 

However, most of these works use deep models based on a single model and few 
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integrate several models for processing and all these works are used for a specific 
application such as: Radiometric Correction, Dimensionality Reduction, Change 

Detection, Land Use and Cover Classification, Semantic Segmentation, etc. The 

combination of several deep learning models for solving not only one problem in 

remote sensing applications is still new, but a promising field of research. 

 

FRAME 3 - SUMMARY OF DEEP LEARNING TAXONOMY IN REMOTE SENSING 

Area Reference Model 
Image fusion Xing et al., 2018 Stacked Sparse Autoencoders (SSAE) 

Image registration Merkle et al., 2018 Generative Adversarial Networks (GAN) 

Radiometric correction Xu et al., 2020 
Convolutional Neural Network (CNN) and 
Stacked-Autoencoders (SAE) 

Dimensionality reduction / 
feature extraction 

Zabalza et al., 2016 Stacked-Autoencoders (SAE) 

Change detection 
Gong et al., 2017 

Sparse Autoencoders and Convolutional Neural 
Network (CNN) 

Jing et al., 2020 Long Short-Term Memory network (LSTM) 

Time series analysis Wang et al., 2019 
Bidirectional Long Short-Term Memory network 
(Bi-LSTM) 

Land use and land cover 
classification 

Zhang et al., 2019 
Multilayer Perceptron (MLP) and Convolutional 
Neural Network (CNN) 

Land cover classification 

Sharma et al., 2017, 
Paoletti et al., 2018 

Convolutional Neural Network (CNN) 

Chen et al., 2015 Deep Belief Network (DBN) 

Mei et al., 2019 Convolutional Autoencoder (CAE) 

Land use classification 

Feng et al., 2019 Convolutional Neural Network (CNN),  

Huang et al., 2018 
Semi-Transfer Deep Convolutional Neural 
Network (STDCNN) 

Accuracy assessment Xing et al., 2018 Convolutional Neural Network (CNN) 

Human detection Kim and Moon, 2015 Deep Convolutional Neural Networks (DCNN) 

Object recognition 
Diao et al., 2015 Deep Belief Network (DBN) 

Sumbul et al., 2017 Convolutional Neural Network (CNN) 

Semantic Segmentation 
Basaeed et al., 2016 Convolutional Neural Network (CNN) 

Kemker et al., 2018 Deep Convolutional Neural Networks (DCNN) 

Weather forecast 
Hossain et al., 2015 Stacked Denoising Auto-Encoders (SDAE) 

Wimmers et al., 2019 Convolutional Neural Network (CNN) 

Spatial dynamics  Reddy and Prasad, 2018 Long Short-Term Memory network (LSTM) 

Territorial studies Kussul et al., 2017 Convolutional Neural Network (CNN) 

 
FONT: The author (2021) 
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2.3 OTHER ALGORITHM FOR FEATURE EXTRACTION 
 

2.3.1 Random Forest (RF) 
 

The RF is an ensemble of many independent individual classification and 

regression tree (CART) to make a prediction (Breiman, 2001). In this sense, this 

algorithm is a combination of tree classifiers in which each classifier is obtained using 
a random vector sampled independently from the input vector, and each tree casts a 

unit vote for the most popular class to classify an input vector (Breiman, 2001). The 

creation of each decision tree that makes up the forest is the key to the success of 

RF and two steps are taken into consideration in the random selection process 
(Breiman, 2001). The first step uses a bootstrap strategy, where two thirds of the 

samples (in-bag samples) are used to train trees and the remaining one third (out-of-

bag samples) is used for internal cross-validation to assess the classification 

accuracy. The second step of random sampling is to determine the split conditions 
for each node in the decision tree (Breiman, 2001). Figure 10 shows a schematic 

diagram of the RF algorithm for classification. 

 

FIGURE 10 - SCHEMATIC DIAGRAM OF RANDOM FOREST FOR IMAGE CLASSIFICATION 

 

 

FONT: From Feng et al., (2015). 

 

 

 

 

FONT: From Feng et al. (2015) 

 

According to Breiman (2001), the processing of the RF algorithm considers 

two parameters: the first is the number of trees that will become a complete forest 
and the second refers to the number of randomly selected predictor variables, 

however, you must also consider a threshold value. 
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2.3.2 Support Vector Machine (SVM) 
 

SVM is a machine learning method based on supervised learning. This 

approach is based on an optimal linear separating hyperplane, which is fitted to the 
training samples of two classes within a multidimensional feature space as shown in 

Figure 11. The optimal hyperplane is obtained by solving an optimization problem 

that is solved via structural risk minimization (Benediktsson and Ghamisi, 2015). The 

aim of the solution is to maximize the margins between the hyperplane and the 
closest training samples, the so-called support vectors (Vapnik, 1998). Thus, in 

training the classifier only samples that are close to the class boundary are needed.  

Generally, the SVM is a linear classifier, i.e., a line is used to define the 

optimal hyperplane to discriminate the samples in the feature space, however, when 
a line cannot be established to discriminate the training samples, the well-known 

Kernel trick must be applied (Scholkopf and Smola, 2002).  A kernel-based SVM is 

being used to project the pixel vectors into a higher dimensional space and estimate 

maximum margin hyperplanes in this new space, in order to improve linear 
separability of data (Scholkopf and Smola, 2002).   
 

FIGURE 11 – REPRESENTATION OF SVM CLASSIFICATION 
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3 DATA AND METHODOLOGY 
 

This chapter is organized as follows: first, the software and hardware that 

were used to develop the model are described. Then, the hyperspectral data that 

were used in the experiments are described. After the description of the software and 

data, the methods are presented. It is described the methods that build up the 
proposed autoencoder model enhanced with convolutional layers. Then, the methods 

used to evaluate its applicability and performance are described. 
 

3.1 SOFTWARE AND HARDWARE 
 

The hardware used for the training of the proposed model is equipped with a 
Core I9 CPU and 16 GB in RAM, and was coded in the Python environment. The 

Pyzo interface (free and open-source computing environment) was used to edit and 

run the necessary programs. The TensorFlow and Keras libraries, included in Pyzo, 

were applied to develop the neural nets of the proposed SAE-1DCNN model. 
Although the core of the study was developed in Python, additional software (ENVI 

and Multispec) was used to visualize the images and help the quality assessment. 

 

3.2 EXPERIMENTAL DATA 
 

In order to evaluate the performance of the proposed method, four 

hyperspectral data sets obtained at different locations were used. The first set, 
Canguiri farm was obtained by the author in collaboration with KIT (Karlsruhe 

Institute of Technology, Germany), while the other three were downloaded from well-

known research institutions such as: Purdue University, USA for the Airborne Visible 

/ Infrared Imaging Spectrometer (AVIRIS) sensor and University of Pavia, Italy (Prof. 
P. Gamba) for the Reflective Optics System Imaging Spectrometer (ROSIS) sensor 

data (Indian Pines, Salinas and Universidad of Pavia). They are listed below, 

together with the necessary ground truth map used to train and evaluate the 

classifier.  
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3.2.1.1 Sampling 
 

Training and test samples for each land cover class were selected based on 

the available ground truth map. In our study, the element is the pixel described by its 
digital values in all the available hyperspectral bands. Therefore, the model is said to 

be 1D because it does not include regions of the image.  

The labeled and collected samples for the three hyperspectral data sets were 

divided into training and test samples. Of the total samples collected, 30% were used 
as test samples (learning the weights and biases of each neuron) and the remaining 

70% as training samples (model architecture design). Details of the samples are 

presented in Tables 1 – 4. 

 

3.2.2 Canguiri Experiment 
 

The Canguiri data set was captured in the summer season in 2020 using the 
Cubert's FireflEYE S185 sensor over the experimental Canguiri Farm of the Federal 

University of Paraná (UFPR) in Paraná-Brazil (Figure 12a). This data collection was 

possible thanks to the support of KIT and the Institute of Photogrammetry and 

Remote Sensing (IPF) in Karlsruhe-Germany that provided the UAV (Unmanned 
Aerial Vehicle) equipment with the hyperspectral sensor to collect the data. 

The surveyed area includes some buildings but also regular shaped thin 

fields of different crops with similar spectral signatures (Figure 12b). The 

hyperspectral image size is 249 pixels × 124 pixels with spatial resolution of 0.30 m 
and 138 bands in the range of 0.450 – 0.998 μm with average interval between 

spectral bands around 4 nm. After removing 13 noisy bands, 125 bands were 

available for the experiment. This image has been calibrated and radiometrically 

corrected using a Spectralon. Table 1 lists the training and test samples collected 
based on the available ground truth map. The classes that were considered are: 

Roofs, Sweet potato, Yam crop, corn at with different growing seasons (2, 3 and 5 

months), Lettuce 1wk (1 week), Onion and Grass. It should be mentioned that the 

shadow class was not considered in this scene. 
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FIGURE 12 - (A) HYPERSPECTRAL IMAGE OF THE CANGUIRI FARM DATA SET. (B) GROUND 
TRUTH CLASSIFICATION MAP OF CANGUIRI FARM DATA SET 

 
 
 

 

 

 
 

 

 
        

(a)                                     (b) 

FONT: The author (2021) 

 

TABLE 1 - INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THE CANGUIRI FARM 
DATA SET 

Class Training Test Total

Roofs 273 119 392 
Sweet potato 174 71 245
Yam 204 90 294 

Corn 2mths 157 88 245 

Corn 3mths 244 99 343 

Corn 5mths 279 113 392 

Lettuce 1wk 145 51 196 
Onion 139 57 196 
Grass 305 136 441 

 

FONT: The author (2021). 
 

3.2.3 Pavia Experiment 
 

The second data set was recorded by the ROSIS airborne sensor during a 

flight campaign over the campus of the University of Pavia, northern Italy (Figure 

13a). This scene considered 103 spectral bands covering the range of 0.43 to 0.86 

μm with a spectral halfwidth of 7.6 nm. The University of Pavia image was 
radiometrically and spatially calibrated to: derive physical parameters from the 

measured radiance. The image consists of 610 x 340 pixels with spatial resolution of 
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1.3 m and contains nine different associated classes, listed in Table 2. The land 
cover samples (training and test) for each class were selected from the available 

ground truth map (Figure 13b) and are displayed in Table 2. This data set is available 

for download for scientific purposes at the University of Pavia repository. 

 
FIGURE 13 - (A) HYPERSPECTRAL IMAGE OF THE UNIVERSITY OF PAVIA DATA SET. (B) 

GROUND TRUTH CLASSIFICATION MAP OF THE UNIVERSITY OF PAVIA DATA SET 

 

 

 

 

 

 
 

                         (a)                                           (b)                          

FONT: Adapted from University of Pavia repository

 

TABLE 2 - INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THE UNIVERSITY OF 
PAVIA DATA SET 

Class Training Test Total 

Asphalt 4623 2008 6631 

Meadows 13073 5576 18649 

Gravel 1465 634 2099 

Trees 2149 915 3064 

Painted metal sheets 962 383 1345 

Bare soil 3508 1521 5029 

Bitumen 940 390 1330 

Bricks 2550 1132 3682 

Shadows 673 274 947 
 

FONT: The author (2021). 

 

3.2.4 Indian Pines Experiment 
The Indian Pines data set was captured by the AVIRIS airborne sensor in 

Northwest Indiana in the United States of America (Figure 14a). This area is covered 
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by mixed agricultural fields that are difficult to classify. The image size is 145 × 145 
pixels and the spatial resolution is 20 m. This image has been calibrated and 

radiometrically corrected. For this scene, 34 spectral bands due to water absorption 

and noise were discarded. Therefore, 190 bands covering the range of 0.4 to 2.5 μm 

wavelength with an average spectral bandwidth of 10 nm were used for the 
experiments. The ground truth available in Figure 14b is divided into seven classes 

(Table 3), considering training and test samples of each class that were distributed 

throughout the full scene for land classification. The AVIRIS sensor hyperspectral 

dataset was provided by the University of Purdue-USA. 

 
FIGURE 14 - (A) HYPERSPECTRAL IMAGE OF INDIAN PINES DATA SET. (B) GROUND TRUTH 

CLASSIFICATION MAP OF INDIAN PINES DATA SET 

 

 
 

 

 

 
 

                                     (a)                                                      (b)                          
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TABLE 3 - INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THE INDIAN PINES 
DATA SET 

Class Training Test Total 

Vegetation  205 89 294 
Corn-no till 266 127 393 
Corn-min 232 111 343 
Grass/Pasture 101 47 148 
Grass/trees 238 106 344 
Soybeans-no till 315 104 419 
Soybeans-min 448 190 638 

 
FONT: The author (2021). 
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3.2.5 Salinas Experiment 
 

The last hyperspectral data set used in this study is the Salinas image (Figure 

15a). This hyperspectral image was collected over the Salinas Valley, California, 
recording 224 spectral bands covering the range of 0.4 to 2.5 μm with 512 x 217 

pixels through the AVIRIS airborne sensor. Like the Indian Pines image, the Salinas 

image has been calibrated and radiometrically corrected. The spatial resolution of 

this scene is 3.7 m per pixel. As mentioned above, 20 noise bands must be 
discarded in the AVIRIS sensor due to water vapor absorption, so only 204 bands 

were used for further analysis. Figure 15b shows the ground truth of this scene, 

which was divided into 16 classes of land cover and its training and test samples are 

presented in Table 4. 

 

 FIGURE 15 - (A) HYPERSPECTRAL IMAGE OF THE SALINAS DATA SET. (B) GROUND TRUTH 
CLASSIFICATION MAP OF SALINAS DATA SET 

               

                      (a)                                                          (b)                  

 
TABLE 4 - INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THE SALINAS DATA 
SET 

Class Training Test Total 

Broccoli green weeds 1 1401 608 2009 

Broccoli green weeds 2 2596 1130 3726 

Fallow 1358 618 1976 

Fallow rough plow  963 431 1394 

Fallow smooth  1867 811 2678 
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TABLE 4 - INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THE SALINAS DATA 
SET  

(continuation) 
Class Training Test Total 

Stubble  2754 1205 3959 

Celery  2447 1132 3579 

Grapes untrained 7963 3308 11271 

Soil vinyard develop  4373 1830 6203 

Corn senesced green weeds  2275 1003 3278 

Lettuce_romaine_4wk  740 328 1068 

Lettuce_romaine_5wk  1355 572 1927 

Lettuce_romaine_6wk  655 261 916 

Lettuce_romaine_7wk  746 324 1070 

Vinyard untrained  5127 2141 7268 

Vinyard vertical trellis  1270 537 1807 
 
FONT: The author (2021). 

  

3.3 METHODOLOGY 
 

Figure 16 shows the proposed methodology. First, noisy bands, caused by 
the presence of atmospheric water vapor, were excluded from each data set. In the 

second step, dimensionality reduction was performed to reduce the spectral 

redundancy of the hyperspectral data while preserving the information to distinguish 

between different land cover classes. This first two steps can be understood as pre-
processing steps: exclusion of noisy bands and dimensionality reduction. They are 

common in hyperspectral remote sensing image classification.  

After the pre-processing steps, training and test samples were collected to 

perform the classification with the SAE-1DCNN model. The classification is 
composed by two parts: First, the SAE-1DCNN model is used to perform an 

unsupervised classification using the training samples without their labels. This 

allowed computing relevant features from the available data. Then, a supervised 

training is performed, including labelled samples. Here, the SAE-1DCNN parameters 
are adjusted based on the labels of the training samples (supervised fine-tuning). 

Finally, the classification obtained with the SAE-1DCNN approach were also 

compared to those obtained using other machine learning methods, such as SVM, 

ANN, CNN and SAE. 
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FIGURE 16 - FRAMEWORK OF THE STEPS OF THE METHODOLOGY 
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3.3.1 Hyperspectral Data Pre-processing 
 

Electromagnetic radiation can be strongly absorbed by water vapor in the 

atmosphere, which prevents remote sensing in specific spectral regions. As 

hyperspectral sensors collect data along a broad spectral range, including water 
absorption bands in the middle infrared, it is necessary to exclude such bands to 

reduce noise. Therefore, an initial pre-processing step, aimed at excluding noisy 

bands is necessary. Even after excluding noisy bands, the data set is still large, with 

high redundancy. Therefore, a common practice is to reduce the number of bands 
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and reduce the redundancy applying feature selection or feature extraction 
algorithms, which constitutes a second pre-processing step. These two steps are 

discussed below. 

 

3.3.1.1 Exclusion of noisy bands 
 

In this study, noisy bands were eliminated based on two approaches. Initially, 

noisy bands were detected and eliminated by visual inspection (traditional and 
subjective approach). For this purpose, each band of each hyperspectral set was 

displayed on the screen where its noise was visually evaluated, considering the 

exaggerated roughness produced by noise. To illustrate the effect of noise, a noisy 

band with water vapor interference and band without noise from the Indian Pines 
hyperspectral image of the AVIRIS sensor are displayed in Figure 17. This is a 

simple method but is also affected by the user’s experience, which can lead to 

different results. 

 
FIGURE 17 - VISUALIZATION OF BANDS FROM THE INDIAN PINES HYPERSPECTRAL IMAGE 

(a) NOISY BAND (BAND 103 = 1352,68 nm), (b) BAND WITHOUT NOISE (BAND 120 = 1620,98 nm) 
 

           
(a) (b) 

FONT: The author (2021) 
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3.3.1.2 Dimensionality reduction 
 

Although it is expected that increasing the number of bands would increase 

spectral information, it has been proven that using a large number of spectral bands 

reduces the accuracy of the classification due to the Hughes phenomenon (Hughes, 
1968). Therefore, dimensionality reduction is an important step (Zabalza et al., 2016). 

Dimensionality reduction methods can be divided into feature extraction and feature 

selection (Serpico et al., 2003). In this study, the dimensionality reduction was 

performed applying a machine learning algorithm based on the feature selection 
approach known as RF.  

On issues of dimensionality reduction, this algorithm allows the selection of 

significant and relevant features from a large dataset (original), preserving the 
original information for future analyzes (Belgiu and Drăguţ, 2016). In this context, RF 

consists of a combination of tree-structured classifiers and can be defined according 

to Equation 10. 

 
{h(x,  

 

where h represents the Random Forest classifier,  is input vector and the  are 

independent identically distributed random vectors. 

 

According to Breiman (2001); Feng et al., (2015) and Belgiu and Drăgut 

(2016), the algorithm creates multiple classification and regression trees, each 
trained on a bootstrapped sample of the original training data and searches only 

across a randomly selected subset of the input variables to determine a split (for 

each node). The feature selection is performed analyzing the output of all the 

involved decision trees (Gislason et al., 2006). In this context, the RF algorithm works 
from the input (labeled) samples, where, multiple decision trees are created, each 

with a subset of randomly chosen variables. 

In order to reduce the spectral dimension of the hyperspectral images using 

the RF algorithm (coded in the Python environment), the parameters (number of 
trees and number of randomly selected predictor variables) were specified and the 

threshold for the selection of representative bands was defined.  Figure 18 shows the 

methodological procedure of the RF algorithm.  
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FIGURE 18 - FLOWCHART OF RANDOM FOREST MODEL 
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3.3.2 Hyperspectral Data Processing
 

3.3.2.1 SAE-1DCNN model 
 

A classical AutoEncoder (AE) computes a reduced set of new variables in the 
hidden layer as the weighted addition of the input variables, according to equation 6. 

Traditionally, the input of the autoencoder is the original data set, the digital values in 

all available spectral bands, which is processed in the hidden layers. In the hidden 

layers, the input variables (digital values in different spectral bands) are combined 
applying weights to each input variable, and the output is the result of the weighted 

sum. This approach is modified in the present work. Instead of computing the 

weighted sum of the digital values in all spectral channels, the output is computed 

using only the information of spectrally neighboring channels, based on spectral 
regions. So, local spectral patterns are detected, and these patterns can be used to 

compute features that can help summarize the spectral signature of each pixel. To 
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compute the output, several one-dimensional convolutional nets are applied. The 
intention is to concentrate on the spectral relationship between neighboring bands 

instead of the spatial relationship between neighboring pixels, as it is traditionally 

done when CNN is applied. 

This is possible considering that the set of hyperspectral measurements of a 
pixel resembles a continuous series, its spectral signature, which is characterized by 

local spectral variations that can be detected by a CNN. In such series, spectral 

signature, adjacent spectral bands are highly correlated and local variations are 

caused by the presence of specific elements, like water, chlorophyl or iron, for 
example, which introduce variations that are relative smooth. So, the complete 

spectral set of digital values of one pixel can also be understood as a one-

dimensional function, in discrete form. 

As the central idea is to replace the weighted sum of the spectral data by a 
convolutional net, a new value is computed from the input data applying the 

convolution concept to the spectral series. This is equivalent to say that the spectral 

series is “filtered” using several 1D linear filters to compute the output values. The 

use of one-dimensional filters has the advantage that they are faster to compute than 
the 2D filters used in traditional convolutional layers. This significantly reduces the 

processing time.  

The use of CNN enables describing the input vector with a reduced set of 

features, computed from spectral neighboring bands, enhancing the shape of the 
signatures.  

Two different deep learning models are used in the proposed SAE-1DCNN 

classifier. The first one builds up the shell of the system and is a combination of 

multiple layers of Autoencoders (Stacked AutoEncoders - SAE), which is finally 
adapted to perform classification in a tuning step based on logistic regression. This 

architecture is improved by inserting a second model based on convolutional Neural 

Nets CNN in the encoding and decoding steps. Figure 19 displays the mechanism of 

the proposed model based on the two stages mentioned above. In the following 
subsections it is described the principles of the use of stacked autoencoders and fine 

tuning and the refinement of this concept by the introduction of the convolutional 

layers. 

 



58 
 

FIGURE 19 - GLOBAL TRAINING MECHANISM OF THE PROPOSED MODEL (SAE-1DCNN) 
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3.3.2.1.1 The SAE-1DCNN Architecture
 

The architecture of the proposed SAE will be described using the encoding 

phase, with the help of Figure 20 (Indian Pines data set). As the net is symmetric, the 
decoding phase is symmetric to the encoding one. 

The size of the input layer is equal to the number of previously selected 

bands. For example, 22 bands for the Indian Pines data set. Then, the data is feed 

into a series of AE that use three convolutional layers (reducing their size 
progressively). In each convolutional step, the input data is filtered using 1x3 linear 

filters, and the ReLU activation function is used to compute the output. Then, the 

result is down sampled with a 1x3 kernel and stored in a pooling layer. In the first AE, 

it is used 256 filters. The second uses 128 and the last one 64. The output of this net 
is then used as input of a conventional (dense) neural net to compute a reduced 

number of neurons in the latent vector. The size of the latent vector was set equal to 

the number of desired features. For the Indian Pines scene, the latent vector size 

was seven. 
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FIGURE 20 - PROPOSED SAE ARCHITECTURE-ENCODING PHASE 

 

FONT: The author (2021). 

 

The SAE-1DCNN network is first used to extract relevant features from the 

samples and a reduced representation of the original data set can be found in the 

center of the net. So, for the next step, the weights that are obtained in this step are 
used as start point for the next step: fine-tuning. 

Fine-tuning consists of adjusting the weights for a desired purpose. In our 

case, the classification of the samples in the desired classes. The Fine-tuning step 
uses two fully connected layers. The output from the previous encoding stage is used 

as input in the first fully connected layer and passed to the second fully connected 

layer, with less neurons, that computes the final output (classification) using a 

conventional, dense, layer and the logistic regression based on the Softmax 
activation function. As the proposed model is trained to classify pixels according to 

their digital values in a series of hyperspectral bands, the number of neurons in the 

output layer is equal to the number of classes. 

The parameters of the proposed SAE-1DCNN model used to process three 
scenes are detailed in Table 5. This table includes the number of iterations, number 

of hidden units, learning rate, batch size, the depth of the network, number of AEs, 

etc., for both the pre-training (SAE-encoder) and the supervised fine-tuning stage. 
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TABLE 5 - INFORMATION OF THE ARCHITECTURE OF THE SAE-1DCNN MODEL FOR 
HYPERSPECTRAL DATA SET 

SAE-1DCNN proposed method 

Hyperspectral 
data set 

Parameters 
Pretraining (encoder) Fine-tuning 

Parameter’s stage Filters Parameter’s stage Full Connected 
Neurons 

Canguiri Farm 
Epoch=50; 

Optimizer=Adam; 
Batch size=64 

256 
Epoch=100; 

Optimizer=Adam; 
Learn rate=0.001 

300 
300 

9 

128 
128 
128 
64 

University of 
Paiva 

Epoch=100; 
Optimizer=Adam; 

Batch size=32 

256 Epoch=300; 
Optimizer=Adam; 
Learn rate=0.001 

300 
100 

9 
128 
64 

  Indian Pines 
Epoch=50; 

Optimizer=Adam; 
Batch size=32 

256 Epoch=1500; 
Optimizer=Adam; 
Learn rate=0.001 

3000 
100 

7 
128 
64 

Salinas 
Epoch=300; 

Optimizer=Adam; 
Batch size=32 

256 Epoch=300; 
Optimizer=Adam; 
Learn rate=0.001 

300 
300 
16 

128 
64 

 

FONT: The author (2021). 
 

3.3.2.2 Unsupervised classification with Autoencoders 
 

The basic idea of this stage is to perform an unsupervised training with 
stacked autoencoders that include convolutional and pooling layers that belong to the 

CNN concept. To carry out this procedure, this network was based on equations 6 

and 7. As mentioned earlier, the encoder stage compacts the input data to a 

relatively short representation and decoder one reconstructs the original input from 
that short representation minimizing loss of information. 

The parameters for the training of this model are mentioned in section 

3.2.2.1.1 in Table 5. Once the unsupervised training step the proposed model (SAE-

1DCNN) has been carried out, Fine-tuning is applied to adjust the network 
parameters according to labelled training samples, which allows performing land 

cover classification. 
 

3.3.2.3 Supervised Fine-Tuning and Classification 
 

Supervised fine-tuning is a procedure based on the transfer learning concept 
(Bengio, 2012; Donahue et al., 2014) that performs parameter adjustment (weights of 
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the model) of a pre-trained network by logistic regression (softmax) aiming at 
minimizing classification errors (Xing et al., 2016, Nogueira et al., 2017). In this study, 

the supervised fine-tuning approach is used to refine the parameters of the SAE 

model to label the results of the unsupervised classification. This process aims at 

refining the parameters of the hidden layers of the network (encoding and decoding) 
applying the logistic regression method by softmax for land cover classification 

purposes. This means that the pre-trained weights are used as initial weights in a 

new training step (fine-tuning by logistic regression) to obtain the labeled pixels. 

 

3.3.3 Performance assessment 
 

After the hyperspectral image classification, it is important and necessary to 

evaluate the quality of the results of the output classification map derived from the 

application of the proposed model (SAE-1DCNN). Through the evaluation of the 

results, the success of the classification can be measured and the confidence in the 
results can be estimated, indicating whether the aims of the analysis were achieved 

or not (Richards, 2013).   

To assess the quality of the thematic maps, the confusion matrix of selected 

test samples with the known ground truth was analyzed. In addition, the method 
presented in this study was compared to traditional machine learning methods such 

as SVM, ANN, CNN and SAE. Producer’s Accuracy (PA), User’s Accuracy (UA), 

Overall Accuracy (OA), Average Accuracy (AA) and Kappa coefficient were used to 

compare the performance between methods and evaluate the accuracy of the land 
cover classification of each reduced hyperspectral image.  

For the computation of such indexes, it is necessary to compute the 

confusion matrix of the labeled samples, a matrix that stores a comparison between 

the true and the obtained classification of each sample. The cells of the confusion 
matrix store the number of pixels of every class classified in the different classes. 

Each line represents how the samples of a given class are classified. The correct 

classified samples are stored in the diagonal of the confusion matrix, as displayed in 

Table 6. 
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TABLE 6 - EXAMPLE OF CONFUSION MATRIX CONSIDERING THREE CLASSES 

 Classification data   
G

ro
un

d 
tru

th
 

Class    Row total 
Producer's 

Accuracy 

      

      

      

Column total      

 
User's 

Accuracy 
     

 

FONT: Adapted from Benediktsson and Ghamisi (2015). 

 
The Overall Accuracy (OA) is computed comparing the number of correct 

classified samples (sum of the diagonal) to the total number of samples ( ). 

 

 

 
The Producer's Accuracy (PA) describes how often the samples of a given 

class are correctly classified and is computed as the ratio between the correct 

classified samples of a class divided by the number of samples of this class. 

The User's Accuracy (UA) describes how often the class displayed on the map 
is really present on the ground, the reliability of the thematic map. It is computed 

dividing the number of correct classified samples of a class by the number of 

samples classified as this class (sum along the column). 

The average accuracy (AA) is computed as the sum of the producer’s 
accuracies of all classes divided by the number of classes ( ). 

The Kappa coefficient is a statistical measure that refers to the agreement 

between the final classification and the reference data (ground truth). When the 
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classification is not better than reference data for each sample, kappa is equal zero 
(null agreement) while positive values show that the classification result is agreement 

with a ground truth and the best results are close to one. The kappa coefficient can 

be calculated by the following expression: 

 

 

 

where,  the number of correct classified samples (sum of the diagonal);  total of 

observations in row  (shown as the sum total of each class to the right of the matrix); 

 total of observations in column  (shown as the sum total of each class at bottom 

of the matrix). The higher the value of the kappa coefficient, the result will be 

considered of better quality. According to Richards (2013), Table 7 shows the 

performance of the resulting classification compared with the reference data, this 

table was adapted from Landis and Koch (1977). 
 

 
TABLE 7 - AGREEMENT BETWEEN RESULTING CLASSIFICATION AND REFERENCE DATA BY 
KAPPA COEFFICIENT 

Kappa coefficient  Classification performance 
< 0,04 Poor 

0,41 < κ ≤ 0,60 Moderate 
0,61 < κ ≤ 0,75 Good 
0,76 < κ ≤ 0,80 Excellent 
0,81 < κ ≤ 1,00 Almost Perfect 

FONT: From Richards (2013). 

 

 

3.3.4 Sensitivity analysis and Improvement of the pre-processing steps 
 

Once the model is calibrated with the labelled samples it can be used to 

classify new samples, or the rest of the image and assess the quality of the product. 
However, it would be relevant to assess which input variables are really being used 

in the model and how each one affects the result. Within a small artificial network, it 
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would be possible to list the weights and compute influence of each input variable, 
but as the SAE-1DCNN model is complex, and includes many neurons, with weights 

and biases, this task is difficult. Therefore, a simple approach was used to evaluate 

the relevance of each input variable, the sensitivity of the model to the input 

variables. 
Sensitivity analysis of a model is a method aimed at determining how the 

outputs are affected based on changes in the input variables. It can be used to 

determine how changes in one variable affect the output. In a more general 

approach, the sensitivity analysis would study the extent of the changes in the output 
variables based on the extent of changes in the inputs.  

Here, it will be analyzed how the lack of each variable influences the resulting 

thematic map. A solution was proposed in which the classification was repeated with 

the calibrated model but including one null image each time. The idea is, if a band 
plays an important role in the solution, substituting such band by a constant would 

cause a significant decrease in the kappa value. On the other hand, if the model 

does not use this band, the classification would not be affected. The effect of the 

replacement of each band was measured by the kappa coefficient obtained from the 
confusion matrix.  

For this purpose, the SAE-1DCNN model was first calibrated with the 

available band set, and the accuracy of this result assessed. The kappa coefficient 

was used ( ). Then, the coefficients of the net were frozen, and the model used 

to classify the same samples, but in each experiment one band was excluded and 

replaced by a constant value. This was repeated for each spectral band. The kappa 

coefficient was computed for each experiment. Next, the experiments were ranked 

according to the kappa coefficients ( ;  = 1, 2, 3,…, number of bands) and the 

one with the maximal kappa coefficient identified ( ). In the experiments, 

one can find kappa values above the first reference kappa ( ). Therefore, the 

reference was adjusted using the maximal kappa computed in the series of 

experiments. The average between the maximal kappa coefficient ( ) and 

the reference kappa ( ) was computed to obtain an adjusted reference kappa 

( ) as shown in expression 13. Figure 21 shows the pre-processing 

methodology by the SAE-1DCNN model. 

 
 



65 
 

FIGURE 21 - METHODOLOGY TO IMPROVE PRE-PROCESSING STEPS BY SAE-1DCNN 

 

 

 

 
 

 

 

 
 

 

 
FONT: The author (2021). 

 

Then, it was computed the difference between the adjusted reference kappa 

and the kappa coefficient of each experiment to identify the significant bands

(expression 14). For this purpose, a threshold was set, empirically. If the absolute 
difference lies below the threshold, then the band can be discarded. 

 

 

 

 

 

 

where: 
: omitted band; : adjusted reference kappa; : maximal kappa 

obtained in the experiments omitting one band; : kappa coefficient of the 

experiment using all bands. 
This procedure enables detecting the most significant input variables, those 

that affect more significantly the quality of the result, and the less significant, those 

that do not change the result. The idea is, if a band plays an important role in the 

solution, substituting such band by a constant would cause a significant decrease in 
the kappa value. On the other hand, if the model does not use this band, the 
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classification would not be affected. The effect of the replacement of each band was 
measured by the kappa coefficient obtained from the confusion matrix. A threshold 

was applied to detect which bands can be omitted and which are significant.     

The results that were obtained with the SAE-1DCNN model encouraged to 

investigate its potential use to perform the pre-processing steps and substitute the 
previously feature selection and noisy band suppression steps. 

As the proposed model used autoencoders, it was verified if the autoencoder 

can detect which bands do not contribute to the solution and can be discarded.  This 

would be the case of two situations:  

 if a spectral band is redundant and its information is contained in other bands. 

 if a spectral band does not contain relevant information. This can happen, for 

example, when the band is noisy and therefore not valuable for the decision 

about the probable class. 
So, the sensitivity analysis was performed to evaluate the potential of the 

SAE-1DCNN model to deal with these two problems: features selection and noise 

detection. 
 

3.3.4.1 Identification of noisy bands with the SAE-1DCNN model  
 

After the first series of classification tests with the proposed SAE-1DCNN 

model, it was verified if the model is also able to detect noisy bands and, so, 

eliminate the necessity to perform visual band selection, based on the sensitivity 
analysis. For the detection of noisy bands applying the proposed model (SAE-

1DCNN) only the Salinas and Indian Pines images of the AVIRIS sensor were used, 

because in these images there are noisy bands available. 

First, the SAE-1DCNN model was trained with a data set including noisy 
bands to obtain a reference classification of a selected set of pixels. Then, the 

sensitivity analysis was applied, substituting one band by a constant value, which 

would eliminate it in the decision. The rationale behind the idea is that, if the model 

computes spectral features from different spectral regions and selects the most 
relevant ones to perform the classification, it would not include noisy regions in the 

solution. The weights of such regions would be null at some point in the net to reduce 

the unnecessary information and improve the results.  
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After computing the weights that can be used to classify the hyperspectral 
imagen in the desired classes, the weights are defined and frozen. If the input set 

includes a noisy band, the system will not use it to compute the solution, as this band 

does not include useful information. The problem here is to detect which bands are 

used and which are not used, which can be solved by inspecting the difference of the 
kappa values. 

To detect the noisy bands, a threshold was applied to the kappa difference 

and it was analyzed if the noisy bands are included in the set of bands below the 

threshold. 
 

3.3.4.2 SAE-1DCNN band selection  
 

Knowing the potential of the SAE-1DCNN model in classification and 

identification of noisy bands, it was proposed to carry out a test to evaluate the 

potential of the SAE-1DCNN model for feature selection and identification of 

redundant bands. For this purpose, the sensitivity analysis was used.  The steps are 
the same as those described in the previous subsection “Identification of noisy bands 

with the SAE-1DCNN model”, but in this case the interest lies in identifying the most 

significant bands, those that produce a significant fall of the kappa coefficient. So, it 

was possible to detect and discard unnecessary bands. If the difference is low 
relative to the threshold, the band is not considered necessary and can be 

eliminated. The images used in this process were Salinas and Indian Pines to 

continue the previous process. 
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4 RESULTS AND DISCUSSION 
 

In this chapter it is presented the results obtained applying the SAE-1DCNN 

model to classify four different hyperspectral data sets. This includes the pre-

processing steps and the classification. It is also described the results of the 

application of the sensitivity analysis to detect noisy bands and to perform band 
selection. 
 

4.1 HYPERSPECTRAL DATA PRE-PROCESSING 
 

The pre-processing steps described below include the detection of noisy bands 

as well as the reduction of the original hyperspectral set.  

To detect noisy bands, the first approach was visual inspection of each band. 
Then, in a second attempt, the SAE-1DCNN model was used to perform the same 

task.  

The reduction of the input variables was first performed using the RF method. In 

a second experiment, the sensitivity analysis was applied to select the most relevant 
variables and the results obtained the two approaches were compared. 
 

4.1.1 Exclusion of noisy bands 
 

Noisy bands were visually identified and excluded. For this purpose, each 
band was visualized on the computer screen (detailed in section 3.1) and the number 

of noisy bands was visually estimated. The result of this step depends on the 

experience of the analyst and different results may be obtained by different analysts, 

which is a critic to this method. Nevertheless, it was used as a first approach in the 
experiments. In a second step, tests were also performed based on the proposed 

SAE-1DCNN band selection approach. 

The bands that were excluded for each hyperspectral image through visual 

identification are presented in Table 8. For further analysis, hyperspectral images 
without noisy bands will be used. 
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TABLE 8 - NOISY BANDS REMOVED BY VISUAL IDENTIFICATION 

Hyperspectral data set Total bands Noisy bands Used 
Canguiri Farm 138 13 125 

University of Pavia 115 12 103 

Indian Pines 224 34 190 

Salinas  224 20 204 
 

FONT: The author (2021). 

 

Additionally, to confirm the robustness of the SAE-1DCNN model in terms of 
identification of noisy bands, tests were carried out with the AVIRIS hyperspectral 

images of Indian Pines and Salinas (process carried out based on a code in the 

Python environment). The tests consisted of applying the proposed SAE-1DCNN 

band selection approach using band sets with and without noisy bands.  
For the tests performed in this section (using the SAE-1DCNN model), the 

noiseless bands used for the Salinas image were a total of 18, while 22 were used 

for the Indian Pines image, respectively. Five noisy bands were included in the 

Salinas image and 10 noisy bands in the Indian Pines image. This means that 23 
bands were used for the Salinas image and 32 bands for the Indian Pines image. For 

the Salinas image, the noisy bands used were: 108, 111, 159, 160, 162; while for the 

Indian Pines image: 1, 103, 104, 107, 109, 153, 155, 157, 161, 163. The noisy bands 

for the two evaluated scenes were randomly collected, and belong to the red regions 
and infrared of the electromagnetic spectrum.  

In the next step, the experiment was repeated replacing the information of 

one band by a constant value, which means that this band has no relevant 

information. Then, the quality of the thematic map of each experiment was analyzed 
using the overall accuracy (OA), average accuracy (AA) and kappa coefficient. The 

thresholds of 10% for the Salinas data set and 3% for the Indian Pines data set were 

used to identify the bands that do not contribute significantly to the solution. The 

adjusted reference kappa ( ) computed and used for the Salinas image was 

88% while for the Indian Pines image it was 76%. 

The evaluation and identification of noisy bands was carried out based on the 
difference between the adjusted reference kappa (  and the kappa 

coefficient of each experiment. These differences were compared through the 
threshold established for each image. Thus, if the difference between these two 
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kappa values is less than the set threshold, it is identified as a noisy band. Based on 
the results obtained in each scene, all the noisy bands used in this section were 

identified, therefore, they can be eliminated since they do not contribute to later 

analysis. Tables 9 and 10 show the results obtained in the images of Salinas and 

Indian Pines for the identification of noisy bands. 
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4.1.2 Dimensionality reduction 
 

After identifying and excluding noisy bands, the next pre-processing step is 

dimensionality reduction. To avoid the Hughes phenomenon (Hughes, 1968) on 
hyperspectral images, it was necessary to reduce the spectral dimension. The 

approach used to reduce the dimensionality in each image was RF. Table 11 

displays the number of bands before and after the dimensionality reduction process. 

 

TABLE 11 - REDUCTION OF SPECTRAL BANDS BY RANDOM FOREST 

Hyperspectral image Total bands Reduced Used 

Canguiri Farm 125 100 25 

University of Pavia 103 83 20 

Indian Pines 190 168 22 

Salinas 204 186 18 
 

FONT: The author (2021). 

 

Additional tests were performed to verify if the SAE-1DCNN model can 

perform dimensionality reduction. The Salinas and Indian Pines data sets were used 

in the experiments (explained in the section 3.3.4.1). From each data set, a subset of 
bands (without noise) was randomly chosen (102 for Salinas and 100 bands for 

Indian Pines). These sets include redundant bands. 

Again, the SAE-1DCNN model was trained using all available spectral bands 

and a reference classification was computed, which enabled computing the OA, AA 
and Kappa quality indexes. Then, the same model was applied using all the available 

bands but substituting the values of a chosen band by a constant. This means that 

the model was applied 102 and 100 times for the Salinas and Indian Pines images, 

respectively. The results of the metrics obtained in the tests carried out on the 
images of the AVIRIS sensor are presented in Tables 12 and 13.  

The adjusted reference kappa computed for the Salinas image was 92% 

while the Indian Pines image was 95%. Then, the differences between the adjusted 

reference kappa and the kappa of each band with constant value were computed. 
And then, the threshold was set to identify redundant bands based on the kappa 

differences. 
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Analyzing the metrics obtained for each test, it was possible to identify the 
bands that contribute to the land cover classification on each scene. For example, in 

the Salinas image (see Graphic 1), 18 useful bands were identified, being 1 in the 

blue region, 2 in the green region, 3 in the red region, 11 in the near infrared region 

and 1 in the middle infrared, while for the Indian Pines image (see Graphic 2), 22 
bands were identified, 5 belong to the green region, 8 to the red region and 9 to the 

near infrared. This procedure enables detecting the most useful bands and allows 

eliminating those that are less significant (Table 14).  

 
TABLE 14 - REDUCTION OF SPECTRAL BANDS BY SAE-1DCNN MODEL 

Hyperspectral image Total bands Reduced Used 

Salinas 102 84 18 

Indian Pines 100 78 22 
 

FONT: The author (2021). 

 

To evaluate the set of selected bands, they were used to classify the images, 

and quality indexes computed. The land cover classification of each scene (Salinas 
and Indian Pines) was performed using three methods, the first was SVM, the 

second was CNN and the third was the same proposed SAE-1DCNN approach. The 

results obtained based on these three classification methods gave accurate values in 

their metrics (Table 15), indicating that the proposed method can be an alternative to 
reduce the spectral dimension of hyperspectral images. 

 
TABLE 15 - METRICS OF LAND COVER CLASSIFICATION FOR REDUCED HYPERSPECTRAL 
DATA SETS 

Hyperspectral Data set Index SVM            CNN             SAE-CNN  

Salinas 
OA 0.93 0.92 0.92 

Kappa 91.71 91.36 91.40 

Indian Pines 
Index SVM            CNN             SAE-CNN  

OA 0.91 0.80 0.92 
Kappa 89.84 76.13 90.60 

 

FONT: The author (2021). 
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Additionally, a comparison was made between the classification metrics 
(kappa coefficient) obtained using RF and SAE-1DCNN as dimensionality reduction 

methods (Table 16). For example, for the Indian Pines image, applying the RF 

method for dimensionality reduction and the SVM method for land cover 

classification, a kappa value of 71.36% was obtained, while using the SAE-1DCNN 
method for dimensionality reduction and the SVM for classification was obtained 

89.84%. Another example can be identified when applying the RF method for 

dimensionality reduction and for land cover classification the proposed method (SAE-

1DCNN), the kappa coefficient gave a value of 76.04%, while applying the SAE-
1DCNN model for reduction of dimensionality and also for land cover classification 

obtained a kappa value of 90.60%. With these data mentioned above, it is possible to 

identify the effectiveness of the proposed model (SAE-1DCNN) as a dimensionality 

reduction model, because when choosing the appropriate method for dimensionality 
reduction the most representative bands in a hyperspectral image are selected and 

thus, it increases the land cover classification accuracy. 

 
 
TABLE 16 - KAPPA COEFFICIENT COMPARISON USING RF AND SAE-1DCNN AS 
DIMENSIONALITY REDUCTION METHODS FOR INDIAN PINES DATA. 

Hyperspectral 
Data set 

Dimensionality 
reduction method Index SVM             CNN           SAE-CNN  

Indian Pines 
Random Forest 

Kappa 
71.36 65.71 76.04 

SAE-1DCNN 89.84 76.13 90.60 
FONT: The author (2021). 

 

Also, a comparison was made between the bands selected by the RF method 

and the SAE-1DCNN method for dimensionality reduction (Graphic 3 and Graphic 4) 

for the hyperspectral images Salinas and Indian Pines.  
Using the Salinas data set, the proposed method selects several bands in the 

near infrared region (Graphic 3), where the reflectance of vegetation is high, which 

allows discriminating the different crops that are represented in this scene. On the 

other hand, the RF method selects mostly bands in the visible portion of the 
electromagnetic spectrum. This can be good to discriminate impervious areas but is 

not good to classify different crops.  
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Similarly, when the Indian Pines image is used, the SAE-1DCNN method 
selects several bands in the near infrared, while the Random Forest method 

recommends bands in the middle-infrared (Graphic 4), which contributes to the 

discrimination of vegetation classes based on these two methods, however, it must 

be taken into account that for this scene the proposed model selected bands that 
belong to the near infrared and improved the accuracy in the land cover 

classification. 

Based on the obtained results, it was concluded that the proposed method 

made the feature selection based on the land cover classes of each scene, while RF 
made the feature selection based on the redundancy of the bands.  

Selecting bands based on the available training samples has advantages, 

because the selection maximizes the separability between the desired classes. On 

the other hand, methods that reduce the number of bands based on the analysis of 
redundancy may produce worse results when these bands are used in the 

classification. Therefore, better accuracy is expected when the selection is performed 

with the help of training samples, as it is the case of the SAE-1DCNN model.  
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4.2 HYPERSPECTRAL DATA PROCESSING 
 

After the pre-processing steps, the remaining bands were used as input for 

the SAE-1DCNN classifier. The results obtained are presented in the following sub-
sections. To evaluate the performance of the method, other established machine 

learning methods were applied under the same conditions for comparison purposes. 

The discussion of the results is divided into two steps. First, the overall 

accuracy measurements achieved with the five classification approaches are 
compared and discussed. For this purpose, quality indexes like Overall Accuracy 

(OA), Average Accuracy (AA) and Kappa Coefficient were computed from the 

confusion matrix of the verification samples. Then, in a second step, confusion 

between classes is described in detail analyzing the user’s and producer’s accuracy 
obtained in each experiment, which allows a better view of the capacity of each 

method to deal with spectrally similar classes. 

 

4.2.1 Canguiri Experiment 
 

Figure 22 displays the Cubert's FireflEYE S185 hyperspectral image obtained 

at the Canguiri Farm, the ground truth map and the classification results obtained by 
the different machine learning approaches. These thematic maps are related to the 

statistics listed in Table 17, where the producer’s and user’s accuracy are compared. 

This is a more complex scene because there are more similar classes in spectral 

terms. For example, there are corn fields with different growing seasons (2, 3 and 5 
months), as well as other crops. The easiest case is the classification of the roofs 

because their spectral signature is different from the remaining classes. 

The result obtained using SVM is displayed in Figure 22c. The method 

enabled separating roofs and grass, but had difficulties in classifying the crops. The 
greatest confusion occurred between the Corn 2mths and Corn 3mths. This is also 

visible in the accuracy values listed in Table 17. According to Table 17, the Corn 

2mths class presented the worst producer’s accuracy with a value of 77.27% and the 

worst user’s accuracy was the Corn 3mths with 73.95%. While the Roof class was 
the best classified with values of 100.00% and 98.35% for producer’s and user’s 

accuracy, respectively. 
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TABLE 17 - CLASSIFICATION ACCURACY BASED ON THE SUMMARY OF CONFUSION MATRIX 
FROM PROPOSED METHODS OVER THE CANGUIRI FARM DATA SET 

Classification 
Method SVM ANN CNN SAE-1DCNN SAE 

Figure 22 (c) (d) (e) (f) (g) 

Accuracy (%) PA UA PA UA PA UA PA UA PA UA 

Roofs 100.00 98.35 100.00 88.81 100.00 77.78 100.00 88.81 100.00 89.47 
Sweet potato 97.18 98.57 97.18 98.57 97.18 98.57 97.18 98.57 97.18 97.18 

Yam 78.89 87.65 86.67 88.64 86.67 83.87 88.89 87.91 85.56 90.59 
Corn 2mths 77.27 95.77 85.23 89.29 73.86 92.86 79.55 93.33 86.36 92.68 
Corn 3mths 88.89 73.95 87.88 86.14 79.80 85.87 88.89 87.13 85.86 87.63 
Corn 5mths 92.04 94.55 91.15 96.26 88.50 93.46 91.15 94.50 92.04 94.55 
Lettuce 1wk 96.08 96.08 96.08 94.23 98.04 89.29 94.12 94.12 96.08 96.08 

Onion 94.74 93.10 98.25 94.92 92.98 96.36 98.25 98.25 98.25 96.55 
Grass 89.71 85.31 88.97 93.80 87.50 92.97 94.12 94.12 94.85 94.16 

FONT: The author (2021). 
PA= Producer’s Accuracy, UA= User’s Accuracy 
 

The second thematic map, produced with ANN (Figure 22d), has similar 

problems. There was confusion between Corn 2mths and Corn 3mths. The results 

were better when analyzing the accuracy values relating to the previous model. The 
producer’s accuracy of the Corn 2mths class (85.23%) is the lowest, while Corn 

3mths had the lowest value in user’s accuracy with 86.14%, according to Table 17.  

Figure 22e displays the thematic map obtained with the CNN method. The 

quality of the CNN classifier was worse than the one achieved with ANN; however, it 
was better than SVM. The confusion between Corn 2mths and Corn 3mths is still 

visible, as in the previous methods, and between Corn 3mths and Roofs. The 

producer’s accuracy of the Corn 2mths class (73.86%) is the lowest, when 

considering all the classes, and when comparing all methods. According to Table 17, 
CNN enabled a particularly good classification of Roofs, with 100.00% producer’s 

accuracy, but on the other hand, the user’s accuracy of this class is the lowest 

(77.78%). This means that this class was overestimated. 

The thematic map presented in Figure 22f displays the results obtained with 
the SAE-1DCNN approach. The confusion between Corn 2mths and Corn 3mths 

prevailed as in the three previous methods. When analyzing the accuracies obtained 

for each class, Corn 2mths has the lowest values in producer’s accuracy with 

79.55%, while the lowest value for user’s accuracy were the Yam and Corn 3mths 
classes with 88.89%. The best producer’s accuracy was obtained, again, for the 
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Roofs class (100.00%). This is expected, as this class is very uniform and spectrally 
different from the others, which are vegetation classes. 

Finally, Figure 22g shows the thematic map obtained with the SAE method. In 

this method there was confusion between the Yam and Grass classes and also 

between the Corn 2mths and Corn 3mths classes (the same one that was presented 
in previous methods). The Yam, Corn 2mths and Corn 3mths classes presented the 

lowest values in producer’s accuracy with 85.56%, 86.36% and 85.86%, respectively, 

while the highest value was presented again in the Roofs class with 100.00%. The 

highest value in user’s accuracy was presented in the Sweet potato class w ith 
97.18%, while the lowest was for the Corn 3mths class with 87.63%. 

As the reliability of a thematic map is described by the user’s accuracy that 

informs how often the class plotted on the map represents the right information on 

the ground, the user’s accuracy was analyzed in the last part of the comparison. It 
was noted that SVM had the highest user’s accuracy for “Roofs” and “Corn 2mths”. In 

addition, this method produced relative worse results for the "Corn 3mths " class 

when compared to all other methods. Nevertheless, it is worth stating that the user’s 

accuracy achieved for “Roofs” is remarkably superior. ANN produced better results 
only for “Corn 5mths”, but the other methods enable similar results. CNN did not 

good perform in processing this image, thus, it was not superior in any class. SAE-

1DCNN was superior for “Onion”, while SAE was superior for “Yam”. Both methods 

are equivalent, and the differences are small as in “Corn 3mths” and “Grass”. This 
indicates that the methods that relate SAE allowed a better differentiation of classes 

with similar spectral signatures in this scene. 
 

4.2.2 Pavia Experiment 
 

The University of Pavia data set captured by the ROSIS sensor, the ground 

truth, and the results of the thematic maps of the second experiment are presented in 

Figure 23. In addition, Table 18 shows the statistical data based on the confusion 
matrix of the methods developed in this experiment. The Pavia data set covers an 

urban area with classes with quite different spectral responses, which allows greater 

separability between classes. This is reflected in the high statistical values listed in 

Table 18. 
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The thematic classification of the SVM method can be seen in Figure 23c. 
Here, there is only one vegetation class: Trees, that can be separated from the 

remaining classes that are artificial surfaces. When the classes have a very particular 

signature, such as Painted metal sheets and Shadows, the accuracies are high, 

which was expected. Spectral confusion can be expected between classes like 
“Gravel”, “Bitumen”, “Meadows” and “Bricks”. For example, gravel is a mixture of 

different stones that results in a complex spectral signature that produces spectral 

confusion with other classes, like “Bricks”. This was a problem for SVM. The ANN 

method also found some difficulty in dealing with such spectral similarity, which led to 
confusion again between “Bricks” and “Gravel”. Additionally, there was confusion 

between the “Bare soil” and “Meadows” and “Bitumen” and “Asphalt” classes in the 

classified image displayed in Figure 23d. 
 
TABLE 18 - CLASSIFICATION ACCURACY BASED ON THE SUMMARY OF CONFUSION MATRIX 
FROM PROPOSED METHODS OVER THE UNIVERSITY OF PAVIA DATA SET. 
Classification 

Method SVM ANN CNN SAE-1DCNN SAE 

Figure 23 (c) (d) (e) (f) (g) 

Accuracy (%) PA UA PA UA PA UA PA UA PA UA 

Asphalt 91.58 94.45 93.73 89.75 92.08 95.95 93.33 94.98 94.57 91.21 
Meadows 98.35 95.06 98.46 91.47 98.46 95.83 98.21 95.38 98.03 93.39 

Gravel 80.60 83.36 70.03 86.05 75.39 87.71 76.50 87.39 79.50 79.87 

Trees 93.33 96.50 90.93 97.77 93.88 97.06 94.97 95.92 89.40 97.03 
Painted metal 

sheets 99.74 99.48 99.48 98.96 99.74 99.74 99.74 99.74 99.48 100.00 

Bare soil 85.21 93.78 71.93 92.63 87.84 94.48 85.60 94.21 81.33 92.11 

Bitumen 82.05 78.43 83.85 83.21 86.67 85.14 87.69 84.24 82.31 88.43 
Bricks 90.11 87.11 85.42 85.42 93.82 83.10 91.52 85.48 82.60 88.04 

Shadows 100.00 100.00 100.00 99.28 100.00 99.64 100.00 99.64 100.00 99.64 
FONT: The author (2021). 
PA= Producer’s Accuracy, UA= User’s Accuracy 
 
 

The CNN and SAE-1DCNN methods are more suitable for dealing with such 

confusion, as can be seen in Figures 23e and 23f. Their increased performance is also 
visible in the accuracy indexes. 

For this scene, the SAE method is inferior to the previous methods (CNN and 

SAE-1DCNN) according to Table 18, although it achieves the highest values for the 
"Bitumen" and "Bricks" classes in relation to user’s accuracy. Figure 18g shows the 

thematic map for the SAE method. 

 



87
 

 FI
G

U
R

E 
23

 - 
(A

) H
YP

ER
SP

EC
TR

AL
 IM

AG
E 

O
F 

TH
E 

U
N

IV
ER

SI
TY

 O
F 

PA
VI

A 
D

AT
A 

SE
T 

(R
 =

 9
0,

 G
 =

 6
0,

 B
 =

 4
0)

. (
B)

 G
R

O
U

N
D

 T
R

U
TH

 C
LA

SS
IF

IC
AT

IO
N

 
M

AP
 O

F 
U

N
IV

ER
SI

TY
 O

F 
PA

VI
A 

D
AT

A 
SE

T.
 C

LA
SS

IF
IC

AT
IO

N
 M

AP
S 

O
BT

AI
N

ED
 B

Y 
TE

ST
S 

FO
R

 D
IF

FE
R

EN
T 

M
AC

H
IN

E 
LE

AR
N

IN
G

 A
PP

R
O

AC
H

 
O

VE
R

 U
N

IV
ER

SI
TY

 O
F 

PA
VI

A 
D

AT
A 

SE
T.

 (C
) S

VM
; D

) A
N

N
; (

E)
 C

N
N

; (
F)

 P
R

O
PO

SE
D

 S
AE

-1
D

C
N

N
; (

G
) S

AE
    

  

FO
N

T:
 T

he
 A

ut
ho

r (
20

21
). 

   
  



88 
 

4.2.3 Indian Pines Experiment 
 

The most complex scene, in terms of spectral confusion, is the Indian Pine 

data set. This was visible in the comparison of the global accuracy indexes. Here the 

details of the user’s and producer’s accuracies are observed (Table 19). Figure 24 
shows the hyperspectral image of Indian Pines, the ground truth, recorded with 7 

land cover classes, and the result of the thematic classifications obtained through the 

algorithms applied for this study.   

According to Figure 24c, the SVM method encountered difficulties in 
separating soybeans and corn crops. The main confusion was between the Corn-min 

and Soybeans-min classes. Analyzing the statistics, the worst classified according to 

the producer’s accuracy was Corn-min with 22.52%, being the worst value when 
compared with all methods used in this study. On the other hand, SVM was very 

efficient in classifying "Grass" and "Vegetation" pixels. 

The thematic map obtained with the ANN method, Figure 24d, shows that the 

“Corn-min” pixels could not be correctly identified and were classified as “Soybeans-
min” at the bottom left of the image. There was also confusion between “Soybeans-

min” and “Vegetation”, “Corn-min” and “Soybeans-no till” crops that are difficult to 

separate, which is visible in the low values of these classes in Table 19. Performance 

in relation to “Vegetation” is lower, when compared to the previous method, which 
was not expected. On the other hand, as in the previous method, the best results are 

related to Grass/trees with 99.06% for producer’s accuracy and 97.22% for user’s 

accuracy. 

Figure 24e displays the result of classification with the CNN method. Here, 
the biggest confusion occurred between “Corn-min” and “Soybeans-min” has the 

worst producer’s accuracy, while the Grass/trees class has the highest one, with 

percentages of 99.06%. Consequently, the best labeled class in this thematic map 

was Grass/trees and can be identified as red regions in Figure 24e. 
The confusion between “Corn-min” and “Soybeans-min” is also a problem 

when applying the proposed method (SAE-1DCNN), as shown in Figure 24f. There 

were also problems between the classes of “Corn-no till” and “Soybeans-no till” at the 

time of being classified. Table 19 also shows that the highest value for producer’s 
and user’s accuracy was given for the Grass/trees class with 98.11% and 99.05%, 

respectively. This is the reason why, in the thematic map obtained by this method, 
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the areas referring to the Grass/trees class are the most uniform and there is no 
confusion with the other classes. 

The thematic map presented in Figure 24g represents the classification 

obtained by the SAE method. The confusion in this method occurred between the 

classes "Corn-min" and "Soybeans-min" as it happened in the previous methods. The 
highest value in relation to user’s accuracy was for the class "Grass / trees" with 

99.05%, while the lowest was given in the class "Vegetation" with 62.31%. With these 

results, it was confirmed that the "Grass/ trees" class was the best classified by this 

method. 
 

TABLE 19 - CLASSIFICATION ACCURACY BASED ON THE SUMMARY OF CONFUSION MATRIX 
FROM PROPOSED METHODS OVER THE INDIAN PINES DATA SET 

Classification 
Method SVM ANN CNN SAE-1DCNN SAE 

Figure 24 (c) (d) (e) (f) (g) 

Accuracy (%) PA UA PA UA PA UA PA UA PA UA 

Vegetation 80.90 98.63 83.15 47.13 73.03 73.03 83.15 60.66 91.01 62.31 
Corn-no till 80.31 77.27 77.17 85.96 71.65 77.78 76.38 87.39 83.46 85.48 
Corn-min 22.52 71.43 31.53 89.74 42.34 57.32 49.55 78.57 47.75 82.81 

Grass/Pasture 97.87 76.67 97.87 77.97 97.87 68.66 91.49 75.44 95.74 86.54 
Grass/trees 100.00 97.25 99.06 97.22 99.06 97.22 98.11 99.05 98.11 99.05 

Soybeans-no till 75.96 58.09 79.81 63.85 56.73 51.30 83.65 73.73 71.15 74.00 
Soybeans-min 83.68 69.43 69.47 79.04 72.63 70.41 83.16 82.72 82.11 78.39 

FONT: The author (2021). 

PA= Producer’s Accuracy, UA= User’s Accuracy 
 

Considering the user’s accuracy of each class, ANN produced results that are 
below the other methods. The best classification of “Vegetation” was obtained using 

the SVM classifier. When it comes to differentiating Corn and Soybeans, the SAE 

and SAE-1DCNN methods are better, although the Soybeans-no till class was the 

most difficult to be discriminated against. Comparing these two methods, one can 
see that SAE and SAE-1DCNN achieved better user’s accuracy for “Grass/trees” with 

99.05%, however, SAE achieved better user’s accuracy for "Grass / Pasture". The 

proposed method proved to be more efficient for classifying the “Corn-no till” and 

“Soybeans-min”, while SAE was more efficient for Soybeans-no till classes, although 
the values computed for these two methods were close. 
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4.3 PERFORMANCE ASSESSMENT 
 

4.3.1 Overall accuracy Comparison 
 

Table 20 displays the quality indexes (Overall Accuracy and Kappa 

Coefficient) computed from the verification samples of each experiment and the 

resulting thematic maps are presented in Figures 22-24. Table 20 shows the results 

for the Canguiri, University of Pavia and Indian Pines images because these were 
used for the classification of land cover using visual inspection to eliminate noisy 

bands and RF for dimensionality reduction. 

The Pavia scene is, in spectral terms, the simplest image because the 

spectral signature of the classes is different, which explains the relative high values 
of the accuracy indexes. The worst results were obtained using ANNs in the Pavia 

scene, while the best ones were achieved using the CNN method.  However, the 

quality achieved by the SAE-1DCNN method is almost equal, less than 1% 

difference, which shows that the proposed method is superior to the ANN, SVM, SAE 
methods and comparable to CNN when it comes to classifying hyperspectral images. 

 

TABLE 20 - COMPARISON OF OVERALL ACCURACY, AVERAGE ACCURACY AND KAPPA 
COEFFICIENT 

Hyperspectral 
Data set Index SVM ANN CNN SAE-1DCNN SAE 

Canguiri Farm 
OA 90.29 91.87 88.83 92.35 92.72 

Kappa 88.95 90.75 87.29 91.30 91.71 

University of 
Paiva 

OA 93.35 91.10 94.04 93.82 92.22 
Kappa 91.15 88.04 92.07 91.78 89.60 

Indian Pines 
OA 76.10 74.03 71.19 79.84 79.97 

Kappa 71.36 69.30 65.71 76.04 76.14 
 

FONT: The author (2021). 

 

The more complex data set is the Indian Pines hyperspectral image because 

the crops are mixed in the fields, which makes it difficult to separate them. Different 

mixtures result in similar spectral signatures that do not allow one class to be 

separated from another. This difficulty is reflected in the accuracy values, which are 
low compared to the other data sets. The lowest values were obtained using CNN, 
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which is also visible in the thematic maps. On the other hand, the highest accuracies 
are related to the SAE method. Again, the proposed method (SAE-1DCNN) produces 

results that are equivalent to those achieved with SAE. 

The accuracy indexes obtained applying to the Canguiri data set point out 

that the CNN approach had more difficulty in classifying the image. This is also 
visible in the thematic maps presented in Figure 20, where the crops were not 

correctly classified. The SAE and SAE-1DCNN methods obtained the best results 

with very similar values, i.e., the OA values obtained were 92.72% and 92.35%, and 

the Kappa coefficient values were around 91.71% and 91.30%, respectively. 
Analyzing these statistical results, it can be stated that the SAE-1DCNN method can 

be applied in hyperspectral images for land cover classification purposes. 

 

4.3.2 Processing time 
 

Based on the previous discussion, it was seen that the methods found 

difficulties separating some spectrally similar classes, depending on the scene and 
data set. The best results were obtained using the SAE, but the SAE-1CNN 

produced similar results in terms of accuracy. To evaluate the advantage of the SAE-

1DCNN method in terms of computational efficiency, the processing time was also 

compared. Table 21 presents the time in seconds (s) used for processing each 
hyperspectral image. 

 

TABLE 21 - COMPARISON OF PROCESSING TIME BY EACH MACHINE LEARNING METHOD 
PER HYPERSPECTRAL DATA SET. 

Hyperspectral 
Data set SVM (s) ANN (s) CNN (s) SAE-1DCNN (s) SAE (s) 

Canguiri Farm 0.21 121.94 245.29 188.95 248.29 
University of Paiva 21.39 379.46 6340.46 3811.23 1499.44 

Indian Pines 17.69 1711.95 3209.96 2500.77 4892.27 
 

FONT: The author (2021). 

 

SVM and ANN are faster methods but, as verified before, their results are 

worse. So, they can solve the problem faster, but the accuracy is lower. The SAE 

and SAE-1DCNN methods demand more processing time but produce better results. 
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A direct comparison of these methods reveals that the SAE-1DCNN needs less time, 
including complex and less complex scenes, while the SAE method demands more 

processing time, although the land cover classification accuracy was higher (minimal 

difference between the proposed method) for the three scenes evaluated. 

Although greater accuracy was obtained with the SAE model (about 0.13% 
with respect to the SAE-1DCNN) in the Indian Pines experiment, it did not perform 

well in terms of processing time, demanding the highest processing time. In this 

context, the efficiency of the SAE-1DCNN model is confirmed, since, in complex 

scenes with very similar vegetation classes in spectral signatures, for example, Corn-
no till and Corn-min; Soybeans-no till and Soybeans-min it managed to discriminate 

and higher classification accuracy was obtained in user’s accuracy for these classes. 

In addition, it reduced processing time to 40% when comparing these two methods. 
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5 CONCLUSIONS AND RECOMMENDATIONS 
 

In this research, it was proposed a deep learning method that integrates stacked 
autoencoders (SAE) and convolutional neural networks (CNN) to classify remote 

sensing hyperspectral images, the so-called SAE-1DCNN model. The efficiency of 

the proposed approach was evaluated different aspects: quality of the produced 

thematic map, processing time, its capacity to detect noisy bands and the possibility 
to use it as band selection method. The proposed method includes convolutional 

layers in the encoding and decoding phases of the stacked-autoencoder. 

The proposed method was evaluated with different hyperspectral data sets and 
compared to other classification methods. It was verified that the SAE-1DCNN model 

enables higher land cover classification accuracy when compared to the other 

machine learning models used in this study. The proposed method, called SAE-

1DCNN, can be considered a valid alternative for classification of hyperspectral 
images considering different types of scenes such as urban, crop fields and mixed 

agriculture. These results were evaluated under two criteria. The first one was the 

accuracy of the land cover classification, which proved that the method is effective 

and efficient. The second criterion that was analyzed was processing time. 

In terms of accuracy, the best results were obtained with traditional autoencoders, 

but the proposed method produced similar results, with less processing time.  

Although the results obtained relating the classification accuracy by the SAE model 

were higher compared to the SAE-1DCNN model (minimum difference) for the three 
hyperspectral images evaluated in this study, the processing time needed by the 

SAE-1DCNN model is lower when compared to the SAE model, confirming that the 

proposed model is an alternative for the hyperspectral images classification. 

Although the results obtained proved its potential for hyperspectral image 
classification, it should be noted that they depend highly on the samples (training and 

testing), which must be chosen with care. 

It was also proved that the proposed method can detect noisy bands and cancel 

them in the classification step. This is useful because it can be used to avoid human 
band selection, based on visual analysis of each spectral band. Thus, this method 
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can be considered as a scientific alternative for the identification of noisy bands 
without relying on visual identification. 

The experiments also showed that the method can be used to perform band 

selection based on the training samples. This was possible because the net 

computes features based on the spectral signature of the training pixels and then 
selects the more relevant features in the deep net. It is concluded that this method 

reduces the spectral dimension based on the reflectance of the evaluated classes of 

the scene and not based on band redundancy. This dimensionality reduction 

capacity, based on the training samples, allows increasing the accuracy in the image 
classification.  

It is recommended that the method is evaluated with different images, including other 

classes, and with different spectral and spatial resolutions. In future studies, it is 

recommended to assess if the band selection method is also successful when other 
classification methods are applied in the classification phase. In this research, band 

selection and noise detection were performed with an empirical threshold. Future 

studies should be devoted to propose a method to set this threshold according to the 

input variables and information. 

Finally, it is recommended that new studies be devoted to the architecture of the net, 

varying the number of layers and neurons, which was not possible in the present 

study. 
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