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“Algebra is generous; she often gives more than is asked of her.”

(Jean Le Rond d’Alembert)



RESUMO

Esta dissertação tem como foco a teoria de representação de quivers. Essa teoria é um

campo fascinante de estudo que tem conexões profundas com outras áreas da matemática,

incluindo geometria algébrica, teoria de Lie e topologia. Também tem aplicações impor-

tantes em física, ciência da computação e outras áreas da ciência e engenharia. Uma

ferramenta importante que será usada nesta dissertação são os sistemas de raízes, que

são coleções de vetores em um espaço Euclidiano que codificam as simetrias de certas

estruturas algébricas, como álgebras de Lie e grupos de Lie. No contexto da teoria da

representação de quivers, os sistemas de raízes desempenham um papel importante na

classificação de representações, fornecendo uma ferramenta poderosa para entender a es-

trutura desses objetos matemáticos. Começamos examinando os conceitos fundamentais

da teoria da representação de quivers, incluindo álgebras de caminho, representações

simples e indecomponíveis, o grupo de Grothendieck, módulos projetivos e a forma de

Euler. Em seguida, estabelecemos várias propriedades chave de órbitas e funtores de

reflexão, que são as duas ferramentas necessárias para provar o teorema de Gabriel. Este

teorema nos dá uma bijeção entre representações indecomponíveis e raízes positivas do

sistema de raízes. No entanto, este teorema só é válido para um caso especial de quivers,

os chamados quivers de Dynkin. Para estender o escopo do teorema de Gabriel além dos

quivers de Dynkin, investigaremos as representações preprojetivas e preinjetivas, bem

como o quiver de Auslander-Reiten, que fornece informações sobre a estrutura de uma

variedade maior de quivers.

Palavras-chave: Quivers; Sistema de raízes; Teoria de representação; Teorema de

Gabriel.



ABSTRACT

This dissertation focuses on the theory of quiver representation. Quiver representation

theory is a fascinating field of study that has deep connections to other areas of math-

ematics, including algebraic geometry, Lie theory, and topology. It also has important

applications in physics, computer science, and other areas of science and engineering.

Root systems will be an important tool used in this dissertation, which are collections of

vectors in a Euclidean space that encode the symmetries of certain algebraic structures,

such as Lie algebras and Lie groups. In the context of quiver representation theory,

root systems play an important role in the classification of representations, providing a

powerful tool for understanding the structure of these mathematical objects. We begin

by examining the fundamental concepts of quiver representation theory, including path

algebras, simple and indecomposable representations, the Grothendieck group, projec-

tive modules, and the Euler form. Next, we establish several key properties of orbits

and reflection functors, which are the two tools needed to prove Gabriel’s theorem. This

theorem gives us a bijection between indecomposable representations and positive roots

of the root systems. However, this theorem only holds for a special case of quivers, the so-

called Dynkin quivers. To extend the scope of Gabriel’s theorem beyond Dynkin quivers,

we will investigate preprojective and preinjective representations, as well as the quiver

of Auslander-Reiten, which provide new insights into the structure of a wider range of

quivers.

Keywords: Quivers; Root system; Representation Theory; Gabriel’s theorem.
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INTRODUCTION

In the 1930s, Andreas Speiser introduced the concept of a graph [20], in the sense of a collection of vertices

and edges, in his study of algebraic number theory. Graphs were later used by Claude Chevalley in his work

on Lie algebras [8], which are a type of algebraic structure used to study continuous symmetries. Chevalley

defined a root system associated to a Lie algebra, which is essentially a collection of vectors that encode its

symmetries. The combinatorial structure of these root systems was shown by Dynkin to be closely related

to certain types of graphs [9], which are now called Dynkin diagrams.

In the 1960s, the mathematicians Gabriel [10] and Auslander [3] independently introduced the notion of

a quiver, which is a directed graph that allows loops and multiple edges. Gabriel was the one that gave the

name quivers to the structure he was working with, this name was proposed because he felt like the word

graph was overused in algebra. They showed that quivers are closely related to representations of certain

types of algebras, known as path algebras. In particular, the vertices of a quiver can be identified with the

simple modules of the associated path algebra, and the arrows can be thought of as describing how these

modules are related to each other. This identification allows one to study the structure of the path algebra

by analyzing the quiver, and vice versa.

The study of quivers and quiver representations continued to develop in the following decades, with

important contributions from many mathematicians. For example, in 1975, Auslander, along with Reiten,

published the paper [4] in which they introduced a theory to study almost split sequences. This theory was

then used to define the quivers known today as Auslander-Reiten quivers. The AR quiver encodes information

about the indecomposable modules over an Artin algebra (a type of finite-dimensional algebra).

Another important contribution to the theory of quivers and quiver representations was made by Bongartz

in his 1981 paper. In the paper [7], Bongartz associated quadratic forms to each basic algebra whose Gabriel

quiver has no oriented cycle. He uses the works of Gabriel, Auslander, Reiten, Bernstein, Gelfand and

Ponomarev as basis for his paper.

We have several applications for quivers and quivers representations. There are connections with several

fields of mathematics, for example, Hall algebras, quantum groups, elliptic Lie algebras, and cluster algebra

[11]. These connections of quivers and other mathematical fields highlight the richness and diversity of

mathematics.

The study of quivers and quiver representations has led to many important applications in algebra,
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geometry, and physics, and continues to be an active area of research today. There are numerous books and

papers on the subject, including the influential book [2] by Assem, Simson, and Skowroński, as well as the

paper [15] by Keller, which introduced the notion of an A-infinity quiver and its connection to topology.

Other important papers in the field include [19] by Ringel and [14] by Kac.

The main goal of this dissertation is to use the theory of root systems, from Lie algebras, and the

representation theory to study representations of quivers. To fulfill that goal we present in this paper the

basic definitions of quivers and of quiver representation, defining indecomposable, projective and injective

representations, also path algebra, Grothendieck group and the Euler form. We give a few properties of orbits

in the appendix and study in depth the reflection functors.

We have two sets of quivers that play an important role here, the Dynkin quivers and the Euclidean

quivers. In the case of Dynkin quivers it is possible to find every indecomposable representation. In a more

general case it is not possible to get all the indecomposable representations this way, but we can find a very

large class of indecomposable representations.

The most important result in this dissertation is Gabriel’s theorem, given by Gabriel in [10]. This theorem

states that for a Dynkin quiver �Q, the map

Ind( �Q) → R+

[V ] �→ dim(V )

gives a bijection between the set Ind( �Q) of isomorphism classes of nonzero indecomposable representations

of �Q and the set R+ of positive roots from a root system R. In order to proof this theorem we need two tools

that we will study in this dissertation, the geometry of orbits and the reflection functors. The latter being

very useful not only for Dynkin quivers but also in the case where the quivers are not Dynkin.

Reflection functors are also called the BGP functors because they were introduced by Bernstein, Gelfand

and Ponomarev in the paper [6]. These functors are operations we can do in a given quiver, such operations

preserves the structure of the quiver, but may change the vertices and arrows themselves. Besides being

an important tool to proof Gabriel’s theorem we will use these functors to construct the preprojective and

preinjective representations, and we do so by applying reflection functors to projective and injective repre-

sentations.

After proving Gabriel’s theorem we do an ordering of the positive roots for the root system R and use

Gabriel’s theorem in order to find all the indecomposable representations of a Dynkin quiver. That is not

possible for all kinds of quivers. However, by introducing the preprojective representations we can find a

large class of indecomposable representations. For that we need to have a graph Q with no edge loops and

an orientation for Q with no oriented cycles.

Using these definitions we can construct the Auslander-Reiten quivers, in which we use the preprojective

representations. We define the quivers Q× Z and ZQ ⊂ Q× Z, then we define a slice T of ZQ and for this

slice we define the preprojective Auslander-Reiten quiver �QT as the subquiver of ZQ with the set of vertices

ΔT = {q ∈ ZQ | ITq �= 0} ⊂ ZQ.
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Using the Auslander Reiten quiver we can prove that the map

ΔT → Ind( �Q)

q �→ ITq

is a bijection between the set ΔT and the set of isomorphism classes of nonzero preprojective indecomposable

representations of �QT .

In the appendix we study the finite and infinite root systems for the readers’ convenience. The finite root

system we study from an axiomatic perspective, i.e., we define a root system R as a subset of a euclidean

space E that satisfies the following four axioms,

(R1) The set R is finite, spans E and does not contain 0.

(R2) If α ∈ R, the only multiples of α in R are ±α.

(R3) If α ∈ R, the reflection sα leaves R invariant.

(R4) If α, β ∈ R, then 〈β, α〉 ∈ Z.

We study the basis of a root system and show that every root system has a basis. One important group for

the root system study is the Weyl group, that consistes of the composition of reflections. The Weyl chambers

of a given root system R are the connected components of E − ∪Pα, where Pα = {β ∈ E; (β, α) = 0} is a

hyperplane. Then we define the Cartan matrices of a root system R and Dynkin diagrams. We can show

how to recover the root system R from the Cartan matrices and Dynkin diagrams. The infinite root systems

are used in chapter five, and we give some properties of it without proof.

This dissertation is organized as follows. The first chapter is for the basic theory of quivers. The second

chapter defines the reflection functors. The third chapter is dedicated to the demonstration of Gabriel’s

theorem and also the characterization of all the indecomposable representations for a Dynkin quiver. In the

fourth chapter we bring a large class of indecomposable representations for quivers that are not Dynkin, they

are called the preprojective representations. Lastly, in the appendix A we have all the theory of root systems

that we used during the dissertation. In the appendix B we have the theory of orbits that will be used mostly

in the demonstration of Gabriel’s theorem.
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Chapter 1

BASIC THEORY

Quivers are directed graphs that have become an important tool in mathematics for studying various

algebraic structures. They arise in many areas, including algebraic geometry, representation theory, Lie

theory, and homological algebra. In this chapter, we will introduce the basic definitions of quivers and

explore their properties. We will define what a quiver is, representations of quivers, projectives and injectives

modules, the Euler form, and Dynkin and Euclidean graphs. We will also discuss the concepts of paths,

cycles, and subquivers in quivers. By the end of this chapter, the reader will have a solid foundation in the

fundamental concepts of quiver theory. We follow [16] for the most part of this work.

1.1 Basic definitions

It is important to highlight that while quivers are relatively simple objects, they can present highly

complex behavior. This is due to the fact that quivers have a rich algebraic structure associated with them,

which allows for the study of many mathematical phenomena. For example, the representation theory of a

quiver, which involves studying how to associate vector spaces to the vertices and linear operators to the

edges, has deep connections to algebraic geometry and mathematical physics. Moreover, quivers can be used

to define other important mathematical structures, such as cluster algebras and noncommutative algebraic

geometry.

Definition 1.1.1. A quiver �Q is a directed graph. Formally, it can be described by a set of vertices I, a set

of edges Ω, and two maps s, t : Ω → I which assign to every edge its source and target, respectively.

For i, j ∈ I we will use h : i → j for an edge h with source i and target j, which means that s(h) = i and

t(h) = j. Throughout this dissertation we will assume that the set of edges and vertices are finite and also

unless stated otherwise we will assume that �Q is connected.

We can forget the directions of edges in �Q, and then we get a graph Q. We can also think of �Q as a graph

Q along with an orientation. This means that we choose for each edge of Q, which of the two endpoints is

the source and which is the target. So we can write �Q = (I,Ω).
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Example 1.1.2. All the oriented graphs below are examples of quivers,

• •

• •

• • • • • •

• •
Example 1.1.3. If we want to describe a quiver more formally, we can say that �Q is the quiver with the set

of vertices I = {i1, i2, i3, i4, i5}, the set Ω = {h1, h2, h3, h4} and the two maps

s : Ω → I t : Ω → I

s(h1) = i1 t(h1) = i3

s(h2) = i3 t(h2) = i2

s(h3) = i5 t(h3) = i3

s(h4) = i3 t(h4) = i4.

Then this quiver has the following drawing

i1 i4

i3

i2 i5

h1

h2

h4

h3

Definition 1.1.4. A quiver �Q has an oriented cycle if there exists a subset of vertices {i1, · · · , in} and a

sequence of edges ht : it → it+1 with t = 1, · · · , n, such that i1 = in.

It is worth noting that oriented cycles play a crucial role in the study of quivers and their associated

algebraic structures. In particular, the presence or absence of oriented cycles in a quiver has important

implications for the properties of its associated algebraic structure, such as its representation theory.

Example 1.1.5. The quiver below has an oriented cycle,

•

• • • • •
Definition 1.1.6. A connected graph with n vertices in I is called a tree if it has n− 1 edges in Ω.

Trees are fundamental objects in mathematics that have numerous applications in different areas of study.

In particular, trees arise in combinatorics, graph theory, algebraic geometry, and computer science, among
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others. The absence of cycles in trees gives them several nice properties, such as the existence of a unique

path between any two vertices and the fact that they are minimally connected.

Definition 1.1.7. The degree of a vertex in a tree is the number of vertices that are connected to it.

Example 1.1.8. The graph Q given by

Q = i1 i2 i3 i4 i5

i6

is a tree. The degree of vertices i1, i5, i6 is 1, the degree of vertex i3 is 3 and the degree of vertices i2, i4 is 2.

The graph Q′ given by
i5

Q′ = i1 i2 i3 i4

i6

is not a tree, since it has 6 vertices and 7 edges.

Set the notation K for the ground field. Unless specified otherwise, all vectors spaces and linear operators

are considered over the field K.

Definition 1.1.9. A representation V of a quiver �Q is the following collection of data.

(1) For every vertex i ∈ I, a vector space Vi over K.

(2) For every edge h ∈ Ω with h : i → j, a linear operator xh : Vi → Vj.

It is important to emphasize that this concept is at the heart of the theory of quivers and has deep

connections to many other areas of mathematics. Representations of quivers provide a powerful tool for

studying the algebraic structures associated with them, such as algebras and Lie algebras. Moreover, the

representation theory of quivers has important applications in other fields, such as algebraic geometry and

mathematical physics. By associating vector spaces to the vertices of a quiver and linear operators between

these vector spaces to the edges, we can study the behavior of the algebraic structure in terms of the linear

operators.

Example 1.1.10. Given the quiver
•

• •

•
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we have the following examples of representations,

K K

K2 K2 K 0

K 0

(0,1)

(1,0)

1 0

1

0

Where
1 : K → K 0 : 0 → K (1, 0) : K → K2 (0, 1) : K → K2

x �→ x x �→ 0 x �→ (x, 0) x �→ (0, x).

Definition 1.1.11. Let V,W be two representations of the quiver �Q. We define a morphism of representations

f : V → W as a collection of linear operators fi : Vi → Wi ∀ i ∈ I, which commute with the operators xh,

that is, if h ∈ Ω with h : i → j then fjxh = xhfi. Equivalently, the square below is commutative,

Vi Wi

Vj Wj

fi

fj

xh xh

Morphisms f : V → W form a vector space with operations of sum and scalar multiplication. We

will denote this vector space as Hom�Q(V,W ), or just Hom(V,W ) when there is no ambiguity. We will

use the notation End �Q(V ) = Hom�Q(V, V ) for the algebra of endomorphisms of a representation V and

Aut�Q(V ) = {f ∈ End�Q(V ); f is invertible} for the group of automorphisms of V.

Example 1.1.12. Consider the quiver �Q given by

�Q = 1 2 3.
h2h1

Let V,W be two representations,

V = K K 0

W = K K K.

01

1 1

Then we have the morphism f : V → W such that

f1 = 1, f2 = 1, f3 = 0.

Indeed, this quiver has two edges, so we have the following two squares

V1 W1 V3 W3

V2 W2 V2 W2

f1

f2

xh1
xh2

f3

f2

xh2
xh2
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Notice that they are commutative.

K K 0 K

K K K K
1

1

1 1 0 1

0

1

Throughout this dissertation, unless stated otherwise, we will only be considering finite dimensional

representations, which means those representations where each space Vi is finite dimensional.

Definition 1.1.13. We will denote the category of finite dimensional representations of the quiver �Q by

Rep( �Q).

There are many examples of representations of quivers that can help illustrate the fundamental concepts

of this theory. In the following examples, we will explore how different representations of quivers can be used

to study various algebraic structures and provide insights into the behavior of these structures.

Example 1.1.14. Consider the Jordan quiver �Q given by

•

A representation of this quiver is a pair (V, x), where V is a K-vector space and x : V → V is a linear

operator. Thus, classifying representations of �Q is equivalent to classifying linear operators up to a change

of basis, or matrices up to conjugate. This is a classical problem of linear algebra over an algebraically closed

field, the classification is given by Jordan canonical form. Note that the answer depends on the ground field

K, if K is not algebraically closed, the answer is different.

Example 1.1.15. Let �Q be a quiver given by

1 2

Then,

Rep( �Q) = {(V1, V2, x);V1, V2 vector spaces, x : V1 → V2 a linear map}.

In this case, it is known that up to a change of basis for V1, V2, any such operator can be brought to the form

x =

⎛
⎝ Ir 0

0 0

⎞
⎠ ,

where Ir is the r × r unit matrix. Note that in this case, the classification does not depend on the field K.

Example 1.1.16. Consider the Kronecker quiver given by

1 2
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Classifying representations of this quiver is equivalent to classifying pairs of linear operators x, y : V1 → V2.

This is a significantly more difficult problem than classifying a single linear operator. In this case a complete

classification is known but is rather complicated. For now, let us just consider classification of representations

with dim(V1) = dim(V2) = 1. In this case, choosing a basis in V1, V2 we can treat x, y as scalars. Therefore,

isomorphism classes of representations are in bijection with K2/K× = {0} ∪ P1(K). In particular, if the field

K is finite, then there are finitely many isomorphism classes.

The category Rep( �Q) is endowed with the following operations.

• Direct sums: If V,W ∈ Rep( �Q), we define their direct sum V ⊕W ∈ Rep( �Q) by (V ⊕W )i = Vi ⊕Wi,

with the obvious definition of operators xh.

• Subrepresentations and quotients: A subrepresentation V ⊂ W is a collection of vector subspaces

Vi ⊂ Wi such that xhV ⊂ V . More precisely, for any edge h : i → j, we have xh(Vi) ⊂ Vj . In this

situation, we can also define the quotient representation W/V by (W/V )i = Wi/Vi, with the obvious

definition of xh.

• Kernel and image: for any morphism of representations f : V → W , we define representations Ker(f)

and Im(f) by

(Ker(f))i = Ker(fi : Vi → Wi) and (Im(f))i = Im(fi : Vi → Wi).

It is easy to check that images and kernels defined as above satisfy properties such as Im(f) � V/(Ker(f)),

in other words Rep( �Q) is an abelian category over K.

Using these notions, we can rewrite the results of Example 1.1.15 by saying that any representation is

isomorphic to a direct sum of the following representations.

K K 0 K K 0.1 0 0

Example 1.1.17. The quiver �Q given by

• •
1 2

is an example of a quiver of finite type.

Example 1.1.18. The Jordan quiver

•

is not of finite type. Over an algebraically closed field, for every d there is exactly one one-parameter family

of indecomposable representations with dimension d. Namely, Jλ, for λ ∈ K, the Jordan block of size d with

eigenvalue λ.
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Example 1.1.19. The Kronecker quiver

• •
1 2

is also not of finite type. In Example 1.1.16 we constructed an infinite number of representations of dimension

(1, 1).

1.2 Path algebra, simple and indecomposable representation

Path algebras are a powerful tool for studying the algebraic structures associated with quivers. They are

defined as the free algebra generated by all paths in a quiver, where a path is a sequence of edges such that

the source of each arrow coincides with the target of the next arrow. Path algebras provide a natural way

to encode the algebraic relations between the edges of a quiver, which are essential for understanding the

behavior of the algebraic structure associated with the quiver.

Given a quiver �Q, a path of length l in �Q is an element p ∈ Ωl such that if

p = (hl, · · · , h1), then s(hi+1) = t(hi), 1 ≤ i < l.

We define the source and target of a path (hl, · · · , h1) in the obvious way,

s(hl, · · · , h1) = s(h1) and t(hl, · · · , h1) = t(hl).

We can define a product of paths by

(hl, · · · , h1)(h
′
m, · · · , h′

1) =

⎧⎨
⎩ (hl, · · · , h1, h

′
m, · · · , h′

1), if s(h1) = t(h′
m),

0, otherwise.
(1.1)

Thus, a path of length l can be written as a product of l edges. It is also convenient to extend this definition

allowing paths of length zero. Formally, we introduce elements ei with s(ei) = t(ei) = i and extend the

multiplication by

eip =

⎧⎨
⎩ p, t(p) = i

0, otherwise,
pei =

⎧⎨
⎩ p, s(p) = i

0, otherwise.
(1.2)

Note that, in particular, this implies

eiej = δijei.

Definition 1.2.1. The path algebra K �Q of a quiver �Q is the algebra with basis given by all paths in �Q,

including paths of length zero, and multiplication defined by (1.1) and (1.2).

The following properties of the path algebra are simple to check from the definition.

(1) The path algebra K �Q is an associative algebra with unit 1 =
∑

ei.

(2) The path algebra K �Q is naturally Z+-graded by path length, and (K �Q)0 =
⊕

Kei is semisimple.
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(3) The path algebra K �Q is finite dimensional if and only if the quiver �Q contains no oriented cycles.

(4) Elements ei are indecomposable projectors. Recall that a projector e is decomposable if it is possible

to write e as a sum of nonzero orthogonal projectors, i.e., e = e′ + e′′ with (e′)2 = e′, (e′′)2 = e′′, and

e′e′′ = e′′e′ = 0.

Definition 1.2.2. A representation V ∈ Rep( �Q) is called

• simple or irreducible if it contains no nontrivial subrepresentations,

• semisimple if it is isomorphic to a direct sum of simple representations,

• indecomposable if it cannot be written as a direct sum of nonzero subrepresentations.

Example 1.2.3. For the quiver �Q given by

• •

the simple representations are

K 0 0 K.0 0

The representation

K K
1

is indecomposable but not simple, since the representation

K 00

is a subrepresentation. It is also not semisimple because the direct sum of the simple representations is

K K.0

Our first goal is to classify the simple representations of a quiver �Q, up to an isomorphism. When �Q has

no oriented cycles this classification is easy. For every i ∈ I we can define the representation S(i) by

S(i)j =

⎧⎨
⎩ K i = j

0 i �= j
(1.3)

and all xh = 0. It is clear that each S(i) is simple and that they are pairwise nonisomorphic.

Theorem 1.2.4. Let �Q be a quiver without oriented cycles. Then {S(i); i ∈ I} form a full list of simple

representations of �Q up to an isomorphism.

Proof. Assume that V is a simple representation. Consider the set I ′ = {i ∈ I;Vi �= 0}. Since �Q contains no

oriented cycles, there must exist i ∈ I ′ such that there are no edges i → j with j ∈ I ′. Therefore, V contains

a subrepresentation V ′ given by V ′
i = Vi and V ′

j = 0 for j �= i. Since V is simple this implies that V = V ′

and dim(Vi) = 1.
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This theorem is a fundamental result in the theory of quiver representations, and it has many important

consequences. For example, it implies that the number of non-isomorphic simple representations of �Q is equal

to the number of vertices of �Q.

Theorem 1.2.5. Any finite dimensional representation of a quiver �Q can be written as a direct sum of

indecomposable representations. Such decomposition is unique up to reordering and up to an isomorphism.

This result provides a powerful tool for understanding the structure of the representation category of

a quiver. The uniqueness of the decomposition ensures that the indecomposable representations form a

complete set of building blocks for all representations of the quiver, and it allows us to study the representation

theory of the quiver by focusing on these simpler objects. Therefore, our goal now will be the classification

of indecomposable representations of �Q.

Definition 1.2.6. Given a quiver �Q. Define

Ind( �Q)={isomorphism classes of nonzero indecomposable representations of �Q}.

Example 1.2.7. For the quiver �Q given by

1 2

the results of Section 1.1 show that indecomposable representations of �Q are

S(1) = K 0 S(2) = 0 K I = K K
0 0 1

Example 1.2.8. Let �Q be the quiver given by

•

• •

•
Classifying representations of this quiver is essentially equivalent to classifying triples of subspaces in a vector

space. Consider the representations bellow

0 K 0

0 K 0 0 0 0

0 0 K

0

0

0 0

0

0

0

0

0
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0 K 0

K K K 0 K 0

0 0 K

0

0

1 0

0

1

0

0

1

K K 0

K K K 0 K K

0 K K

1

1

0

0

1

1

0

1

1

0 K K

K 0 K K K2 K

0 K K

0

0

0

1

1

1

(1,0)

(1,0)

(1,0)

Each of these representations is indecomposable. Later we will show that this is a full list of indecomposable

representations for the quiver �Q. Thus giving a complete answer to the problem of classifying triples of

subspaces in a vector space.

1.3 Grothendieck group and dimension vector

The Grothendieck group, named after the influential mathematician Alexander Grothendieck, is an al-

gebraic structure that plays an important role in many areas of mathematics, including algebraic geometry,

number theory, and representation theory. Informally, the Grothendieck group is a way of formally adding

and subtracting objects in a given category, with the goal of obtaining a simpler and more manageable

structure. In the context of quiver representations, the Grothendieck group provides a way of organizing

and classifying the indecomposable representations of a quiver, and it allows us to study the representation

theory of the quiver in a more systematic way.

Let C be an abelian category. We can define the Grothendieck group K(C), also called the K- group, as

the abelian group generated by symbols [M ] with M ∈ C and relations [A] − [B] + [C] = 0 for every short

exact sequence

0 A B C 0.
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In particular, this implies that [A] = [B] if A,B are isomorphic and that [A⊕B] = [A] + [B].

In this section we will discuss the Grothendieck group of Rep( �Q), which will be simply denoted by K( �Q).

Example 1.3.1. Let �Q = •, so that Rep( �Q) = Vec is the category of finite dimensional vector spaces. Since

every vector space is isomorphic to a direct sum of copies of K, we see that in this case K( �Q) = Z is the free

group generated by the element [K]. One can also describe the isomorphism K( �Q) � Z by [M ] �→ dim(M).

The following theorem is a natural generalization of this result. For a representation V of �Q, define its

graded dimension dim(V ) ∈ ZI by

(dim(V ))i = dim(Vi).

Theorem 1.3.2. Let �Q be a quiver without oriented cycles. Then the map

dim : K( �Q) → ZI

[V ] �→ dim(V )

is an isomorphism.

Proof. Since every representation has a composition series with simple factors, by Theorem 1.2.4 this implies

that [V ] =
∑

ni[S(i)]. Thus, the classes [S(i)] generate K( �Q).

Next, note that dim is well-defined on K( �Q), since dim(S(i)) = ei = (0, . . . , 1, . . . , 0) are independent

in ZI , this implies that [S(i)] are independent in K( �Q) and thus are free generators of the abelian group

K( �Q).

An important consequence of this theorem is that it allows us to study the representation theory of

a quiver purely in terms of its underlying combinatorial structure, namely its vertices and edges. This is

because the dimension vector of a representation is entirely determined by the number of times each vertex

appears in the representation, which in turn is determined by the edges between the vertices. Therefore, the

study of the representation theory of a quiver can be reduced to a purely combinatorial problem, involving

only the structure of the quiver itself.

Definition 1.3.3. A quiver �Q is of finite type if for any v ∈ ZI
+, the number of isomorphism classes of

indecomposable representations of dimension v is finite.

It is worth noting that this is a special class of quivers that has important applications in algebraic

geometry, representation theory, and mathematical physics. This property leads to many interesting algebraic

and geometric properties, such as the existence of a finite-dimensional algebra associated with the quiver.

Moreover, quivers of finite type have connections with many other important mathematical objects, such as

cluster algebras, module spaces of vector bundles, and one that is very important to us, Dynkin quivers.
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1.4 Projective modules and the standard resolution

Projective modules are an important concept in algebraic geometry and representation theory that gen-

eralize the notion of free modules. Roughly speaking, a projective module is a module that behaves like a

free module in many aspects, but with certain additional properties that make it more flexible and useful.

One of the key features of projective modules is that they admit a dual notion of injective modules, which

are modules that behave like direct summands of the dual of a projective module.

This duality is a fundamental concept in algebraic geometry and representation theory, and provides a

powerful tool for understanding the structure of algebraic systems. The standard resolution is a tool for

constructing projective modules, and is an important technique in the study of homological algebra and

algebraic geometry.

Recall that a module P over an associative algebra A is projective if and only if the functor Hom(P,−) is

exact. In particular, a direct summand of a free module is projective. Thus, for the path algebra A = K �Q,

we define for each i ∈ I the representations P (i) by

P (i)j = Kn (1.4)

where n is the number of paths from i to j. The representation P (i) is projective, since A =
⊕

i P (i). Note

that P (i) can be infinite dimensional.

Example 1.4.1. Let �Q be the quiver given by

1 2

the projective representations for each vertex are

P (1) = K K

P (2) = 0 K.

1

0

Note that P (2) = S(2).

Example 1.4.2. For the quiver �Q given by

3

1 2

4
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then the projective representations for all vertices are,

0 0

P (1) = K 0 P (2) = K K

0 0

K 0

P (3) = K 0 P (4) = K 0

0 K

Theorem 1.4.3. For any representation V ∈ Rep( �Q), we have Hom�Q(P (i), V ) = Vi

Proof. For V = {(Vi), (xh)} define the homomorphisms

Ψi : Vi → Hom�Q(P (i), V ) and Φi : Hom�Q(P (i), V ) → Vi

Ψi(v) = (p �→ xp(v)) Φi(f) = fei

if p is a path starting at i. Therefore, we have that

ΨiΦi(f) = Ψi(fei) = (p �→ xp(fei) = fp) = f

and

ΦiΨi(v) = xei(v) = v.

If �Q has no oriented cycles, then P (i) is finite dimensional and in the Grothendieck group we have

[P (i)] =
∑
j

pji[S(j)],

where pji is the number of paths i → j. In particular, it is possible to order vertices so that the matrix pji is

upper triangular with ones on the diagonal and thus invertible. Therefore, the classes [P (i)], i ∈ I also form

a basis of K( �Q).

Theorem 1.4.4. Assume that �Q has no oriented cycles. Then the representations {P (i); i ∈ I} form the

full set of nonzero indecomposable projective objects in Rep( �Q) up to an isomorphism.
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Proof. A module is indecomposable if and only if 0 and 1 are the only idempotents in the ring of endomor-

phisms. By Theorem 1.4.3 we have that Hom(P (i), P (i)) = (P (i))i = K, so P (i) is indecomposable. To show

that it is a full set of indecomposable projective, assume that P is a projective module. Let

P ′ =
⊕
i∈I

niP (i) where ni = dim(Hom(P, S(i))).

Then, it follows from Theorem 1.4.3 that Hom(P, S(i)) � Hom(P ′, S(i)). Using projectivity of P this implies

that Hom(P, V ) � Hom(P ′, V ), for any V ∈ Rep( �Q). Therefore, P � P ′.

This theorem has important implications for the representation theory of quivers and their associated

algebras. In particular, it allows for a complete classification of the indecomposable projective representations

of a quiver algebra, which is crucial for understanding its structure.

We will use representations P (i) to construct a standard resolution for any representation V of �Q. First,

we review some general theory. Let A be an associative algebra with unit, then for any module M we have

M � A⊗A M = A⊗K M/I,

where the subspace I is generated by elements ab ⊗ m − a ⊗ bm with a, b ∈ A and m ∈ M . Moreover, it

suffices to take elements b from some set of generators of A. If L ⊂ A is a subspace such that elements l ∈ L

generate A, then I is spanned by al ⊗m − a ⊗ lm with a ∈ A, l ∈ L and m ∈ M . Thus, we have an exact

sequence of A-modules with all tensor products taken over K

A⊗ L⊗M A⊗M M 0
d1 d0

d1(a⊗ l ⊗m) = al ⊗m− a⊗ lm

d0(a⊗m) = am.

This is a beginning of a free resolution of M . The next term would come from relations among generators

l ∈ L, and the process continues as before.

This has a modification, if A0 is a subalgebra, L is a subspace such that A0L ⊂ L,LA0 ⊂ L, and A0, L

generate A, then we have an exact sequence

A⊗A0 L⊗A0 M A⊗A0 M M 0
d1 d0 (1.5)

with the morphisms defined in the same way as before. We can now apply this in the case A = K �Q.

Theorem 1.4.5. Let �Q be a quiver with set of vertices I and set of edges Ω. For any K �Q-module V , we

have the following short exact sequence of K �Q-modules

0
⊕

h∈Ω P (t(h))⊗Kh⊗ Vs(h)

⊕
i∈I P (i)⊗ Vi V 0

d1 d0

(1.6)
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where P (i) is the projective module defined by 1.4, and the differentials are defined by

d1(p⊗ h⊗ v) = ph⊗ v − p⊗ xh(v),

d0(p⊗ v) = xp(v).

This resolution will be called the standard resolution of V .

Proof. From (1.5) we can write

A⊗A0 L⊗A0 V A⊗A0 V V 0.
d1 d0

If we consider A0 =
⊕

Kei the subspace of paths of length zero. Then L =
⊕

h∈Ω Kh and that gives us

A⊗A0
V =

⊕
Aei ⊗ eiV =

⊕
P (i)⊗ Vi.

So we have

A⊗A0 L⊗A0 V
⊕

P (i)⊗ Vi V 0.
d1 d0

The exactness at V and
⊕

P (i)⊗ Vi follows from the exactness of (1.5).

Now all that remains is to show that d1 is injective. Assume

d1

(∑
n

pn ⊗ hn ⊗ vn

)
=

∑
pnhn ⊗ vn − pn ⊗ xhn

(vn) = 0. (1.7)

Let l = maximal length of the paths pn appearing in this sum. Then taking the terms of length l+1 in (1.7)

we get ∑
pkhk ⊗ vk = 0,

where the sum is taken over all k such that l(pk) = l.

On the other hand, if we take different hk then the paths of the form pkhk are linearly independent, which

leads to a contradiction.

The standard resolution allows us to compute Ext groups between representations, which in turn gives

us information about the dimension of Hom spaces and the classification of indecomposable representations.

We will denote Ext functors in this category by Exti�Q(V,W ).

Corollary 1.4.6. Let �Q be a quiver without oriented cycles. For any V,W ∈ Rep( �Q), we have Exti�Q(V,W ) =

0 for any i > 1.

Proof. We have that Exti�Q(V,W ) can be computed using a standard resolution of V . Every representation

V has a standard resolution of the form

0 P1 P0 V 0

and the corollary follows.
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Example 1.4.7. Let V = S(i) be a simple representation then the standard resolution (1.6) becomes

0
⊕

h:i→j P (j) P (i) S(i) 0

Using this and Theorem 1.4.3, we have, in particular

dim(Hom(S(i), S(j))) = δij

dim(Ext1(S(i), S(j))) = number of edges i → j in �Q.

Categories satisfying Exti(V,W ) = 0 for any i > 1 are called hereditary. They also admit another

characterization given below.

Corollary 1.4.8. If P ∈ Rep( �Q) is projective then any subrepresentation of P is also projective.

Proof. Let V ⊂ P and W = P/V , so we have a short exact sequence

0 V P W 0

Then, for any X ∈ Rep( �Q) we have the corresponding long exact sequence of Ext functors

· · · Ext1(W,X) Ext1(P,X)

Ext1(V,X) Ext2(W,X) · · ·

We have Ext1(P,X) = 0 since P is projective and Ext2(W,X) = 0 by Corollary 1.4.6. Then we have that

Ext1(V,X) = 0, which implies that V is projective and therefore any subrepresentation of P is projective.

The fact that subrepresentations of projective representations of a quiver �Q with no oriented cycles are

also projective is a fundamental property of projective modules. It means that projective modules have a

strong level of self-containment, in the sense that any smaller piece of the module also inherits the property

of being projective.

Much of the theory of projective modules has a counterpart in the theory of injective modules, the

following theorem shows that.

Theorem 1.4.9. Let �Q be a quiver. Define, for any i ∈ I,

Q(i) = (eiA)
∗, (1.8)

where A = K �Q is the path algebra and ∗ is the graded dual: (eiA)
∗ =

⊕
l(eiA

l)∗, where Al is the span of

paths of length l. Note that Q(i) has a natural structure of a left A-module. Then we have the following

statements,

(1) For V ∈ Rep( �Q), we have natural isomorphisms Hom�Q(V,Q(i)) � V ∗
i .

(2) If �Q has no oriented cycles, then modules Q(i), i ∈ I, form a full set of indecomposable injective

representations of �Q.
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(3) Any representation V of �Q has an injective resolution of the form

0 V I0 I1 0.

1.5 Euler form

The Euler form is a fundamental tool in the study of representations of quivers. It provides a way to

measure the noncommutativity of a quiver by assigning a value to each pair of representations. The fact that

the Euler form only depends on the dimensions of the representations allows for a more efficient computation

of the form, as it reduces the problem to linear algebra.

Given two representations V,W ∈ Rep( �Q), define 〈V,W 〉 ∈ Z by

〈V,W 〉 =
∑

(−1)idim(Exti(V,W )) = dim(Hom(V,W ))− dim(Ext1(V,W )), (1.9)

since Exti(V,W ) = 0 for i > 1 by Corollary 1.4.6.

Example 1.5.1. For V = P (i) we have that 〈P (i),W 〉 = dim(Hom(P (i),W )) − dim(Ext1(P (i),W )) =

dim(Wi), by Theorem 1.4.3. In particular,

〈P (i), S(j)〉 = δij .

Similarly, if W = Q(i) is an indecomposable injective, then

〈V,Q(i)〉 = dim(Vi).

Theorem 1.5.2. The number 〈V,W 〉 only depends on dim(V ), dim(W ) and thus defines a bilinear form on

ZI , called the Euler form. Moreover, for v, w ∈ ZI , we have

〈v, w〉 =
∑
i∈I

viwi −
∑
h∈Ω

vs(h)wt(h). (1.10)

Proof. It follows from the long exact sequence of Ext functors that if we have a short exact sequence

0 A B C 0,

then 〈A,W 〉 − 〈B,W 〉+ 〈C,W 〉 = 0. Thus, we can use the standard resolution

0 P1 P0 V 0

of V constructed in Theorem 1.4.5 to compute 〈V,W 〉. Since 〈P (i),W 〉 = dim(Wi), this gives

〈V,W 〉 = 〈P0,W 〉 − 〈P1,W 〉
=

∑
i∈I

dim(Vi) dim(Wi)−
∑
h∈Ω

dim(Vs(h)) dim(Wt(h)).
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The formula given for the Euler form in terms of the dimensions and the edges of the quiver is also

important, as it allows for a concrete computation of the form in specific examples. The Euler form is used

in many contexts in representation theory, such as the definition of the Auslander-Reiten quiver, and the

construction of tilting modules.

Example 1.5.3. We have that 〈S(i), S(j)〉 = δij− (number of edges i → j).

Note that 〈 , 〉 is not symmetric. We will frequently use the symmetrized Euler form

(v, w) = 〈v, w〉+ 〈w, v〉 =
∑
i

viwi(2− 2nii)−
∑
i �=j

nijviwj , (1.11)

where nij is the number of unoriented edges between i and j in the graph Q. We will also use the associated

quadratic form, called the Tits form

q�Q(v) =
1

2
(v, v) = 〈v, v〉 . (1.12)

Note that the symmetrized Euler form and the Tits form are independent of the orientation of �Q. In fact,

they can be defined for any graph Q.

1.6 Dynkin and Euclidean graphs

We define Euclidean and Dynkin graphs based in the Tits form in (1.12). Recall that a quadratic form q

is positive definite (semidefinite) if

q�Q(v) > 0 for all nonzero v ∈ RI
(
q�Q(v) ≥ 0 for all v ∈ RI

)
. (1.13)

Definition 1.6.1. Let Q be a connected graph. If the associated Tits form q�Q defined by (1.12) is positive

definite then we call Q Dynkin. If the Tits form is positive semidefinite we call Q Euclidean.

In this theory we use only the diagrams that are simply laced, those are the ADE diagrams. Different

from the root system theory, where we have some more diagrams, you can see that in Theorem A.10.5. In

the rest of this work we will call Dynkin diagrams the ones from the next theorem.

Theorem 1.6.2. Let Q be a connected graph.

(1) The graph Q is Dynkin if and only if it is one of the graphs below, with � vertices in each case.

A�, � ≥ 1 • • · · · • •

•

D�, � ≥ 4 • • · · · • •

•
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E6 • • • • •

•
E7 • • • • • •

•
E8 • • • • • • •

•
(2) The graph Q is Euclidean if and only if it is one of the graphs below, with �+ 1 vertices in each case.

•

Â�, � ≥ 1 • • · · · • •

• •

D̂�, � ≥ 4 • • · · · • •

• •

Ê6 • • • • •

•

•

Ê7 • • • • • • •

•

Ê8 • • • • • • • •

•
Another way to characterize Dynkin graphs is with Gabriel’s Theorem. The proof of this theorem is one

of the most important goals of this work. The theorem is named after Pierre Gabriel, who proved it in his

1972 paper “Unzerlegbare Darstellungen I” [10], and provides a powerful tool for understanding the structure

and properties of finite-dimensional algebras, and has been used to prove many other important results in

algebraic and geometric settings. Overall, Gabriel’s Theorem is a cornerstone of modern algebraic theory

and a key result for anyone studying the structure of finite-dimensional algebras.

Theorem 1.6.3 (Gabriel’s Theorem). A connected quiver �Q is of finite type if and only if the underlying

graph Q is Dynkin.
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Chapter 2

REFLECTION FUNCTORS

Reflection functors are an important tool in representation theory that were introduced by Bernstein,

Gelfand, and Ponomarev in [6]. They are used to study the category of representations of a quiver, and have

deep connections with the geometry of the quivers. The study of reflection functors has its roots in the work

of Borel and Tits on algebraic groups, where the notion of reflection groups plays a central role.

In the context of representation theory, reflection functors are used to construct new representations from

old ones, and to relate representations of different quivers. The study of reflection functors has led to many

interesting results and connections with other areas of mathematics, such as algebraic geometry and Lie

theory. In this chapter, we will explore the theory of reflection functors, their properties, and some of their

applications in representation theory. In this chapter we consider �Q as an arbitrary quiver with vertex set I

and edges set Ω. We follow [16].

2.1 Definitions

Definition 2.1.1. Let i ∈ I.

• The vertex i is called a sink if there are no edges h : i → j for h ∈ Ω.

• The vertex i is called a source if there are no edges h : j → i for h ∈ Ω.

Sinks are vertices that have no outgoing edges, while sources are vertices that have no incoming edges.

These types of vertices play a crucial role in the theory of quivers and their representations. For example, in

the case of acyclic quivers (quivers with no cycles), the sink vertices correspond to the simple representations

of the quiver, while the source vertices correspond to the projective representations. Moreover, the existence

and non-existence of sinks and sources can have important consequences for the structure and behavior of a

quiver and its representations.
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Example 2.1.2. Consider the quiver �Q given by

i6 i8

i1 i2 i3 i4 i5

i7 i9

then I = {i1, i2, i3, i4, i5, i6, i7, i8, i9}. According to Definition 2.1.1 the vertices i5, i6, i7, i8, i9 are sinks, the

vertices i1, i4 are sources and the vertices i2, i3 are neither a sink nor a source.

Definition 2.1.3. Let i ∈ I be a vertex for the quiver �Q.

• If i is a sink for �Q we define a new quiver �Q′ = s+i (
�Q) by reversing the orientation of all edges incident

to i.

• If i is a source for �Q we define a new quiver �Q′ = s−i ( �Q) by reversing the orientation of all edges

incident to i.

We can see this reversion of orientation in the next diagram.

• •
s+i

s−i

Note that if i is a sink for �Q, then i becomes a source for �Q′. Similarly, if i is a source for �Q, then i

becomes a sink for �Q′. Moreover, we have that s−i s
+
i (

�Q) = �Q.

Example 2.1.4. Consider the quiver �Q given by

i6 i4

i1 i2 i3

i7 i5

then we have the quiver �Q′ = s+3 (
�Q)

i6 i4

i1 i2 i3

i7 i5

Lemma 2.1.5. If Q is a tree, as in Definition 1.1.6, with at least two vertices, then there exists a vertex

k ∈ I whose degree is 1, as in Definition 1.1.7.



36

Proof. Since Q has n vertices with n ≥ 2 then it has n − 1 edges. The sum of all degrees of this tree is

2(n − 1) since each edge connects two vertices. If no vertex is connected to exactly one other vertex then

each vertex is connected to at least two vertices. So the sum of the degree would be greater or equal to 2n.

We know that 2n > 2(n− 1), which is a contradiction. There must exist a vertex k ∈ I that is connected to

exactly one other vertex.

Lemma 2.1.6. If Q is a tree and Ω,Ω′ are two orientations of Q, then Ω′ can be obtained from Ω by a

sequence of operations s±i .

Proof. The proof goes by induction on the number of vertices. If we have two vertices, there’s only two

possibilities for the arrows
Ω : 1 2

Ω′ : 1 2

Then we have Ω′ = s−1 (Ω) and Ω = s+1 (Ω
′).

If I has n + 1 vertices, by Lemma 2.1.5 let k ∈ I be a vertex which is connected to exactly one other

vertex. Let Q′ be the graph obtained from Q by removing the vertex k and the incident edge h. The tree

Q′ has n vertices, and it has n − 1 edges. The graph Q′ is also a tree. By the induction hypothesis, we

can find a sequence of reflections s±i1 , · · · , s±il such that s±il · · · s±i1Ω = Ω′ on Q′. Multiplying if necessary by

s±k , depending on whether k is a source or a sink, we see that Ω′ can be obtained from Ω by a sequence of

operations s±i .

This theorem is a fundamental result in the study of tree quivers and their orientations. This result has

important consequences for the classification of representations of tree quivers and their mutations, as it

allows us to understand the structure of the space of representations by studying a single orientation, and

then transforming it to obtain all others.

Suppose that i ∈ I is a sink for the quiver �Q and V is a representation of �Q. As i is a sink we have that

there exists jt ∈ I with t = 1, · · · , k such that

j1

... i

jk

h1

hk

So, in the representation V we have that

V1

... Vi

Vk

φ1

φk
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with Vjt = Vt.

Therefore, we can define a map

φ :
⊕

ht:jt→i

Vt → Vi, (2.1)

where φ =
(

φ1 · · · φk

)
.

Now suppose that i ∈ I is a source for the quiver �Q and V is a representation of �Q. As i is a source we

have that there exists jt ∈ I with t = 1, · · · , k such that

j1

i
...

jk

h1

hk

So, in the representation V we have that

V1

Vi

...

Vk

α1

αk

with Vjt = Vt.

Therefore, we can write a map

α : Vi →
⊕

ht:i→jt

Vt. (2.2)

Where α =
(

α1 · · · αk

)
.

Definition 2.1.7.

(i) Let i ∈ I be a sink for �Q and denote �Q′ = s+i (
�Q). Define the functor

Φ+
i : Rep( �Q) → Rep( �Q′)

by

(Φ+
i (V ))j =

⎧⎨
⎩ Vj , if j �= i

Ker(φ), if j = i

with φ as defined in (2.1). We define on Φ+
i (V ) the structure of representation of �Q′ as follows: for

every edge h : i → k in �Q′ the corresponding operator xh is the composition of the canonical inclusion

and projection

Ker
(⊕

Vk → Vi

)
→

(⊕
Vk

)
→ Vk.

Operators xh for edges not incident to i are defined in the obvious way.
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(ii) Let i ∈ I be a source for �Q and denote �Q′ = s−i ( �Q). Define the functor

Φ−
i : Rep( �Q) → Rep( �Q′)

by

(Φ−
i (V ))j =

⎧⎨
⎩ Vj , if j �= i

Coker(α), if j = i

with α as defined in (2.2). We define on Φ−
i (V ) the structure of representation of �Q′ as follows: for

every edge h : k → i in �Q′ the corresponding operator xh is the composition of the canonical inclusion

and projection

Vk →
(⊕

Vk

)
→ Coker

(
Vi →

⊕
Vk

)
.

Operators xh for edges not incident to i are defined in the obvious way.

It remains to define Φ±
i on the morphisms. Consider V,W two representations of �Q with f : V → W a

morphism between representations.

First we will show how to apply the functor Φ+
i to the morphism f . Consider i ∈ I a sink and φt : Vt → Vi

with Vjt = Vt. In positions j �= i we have that (Φ+
i (f))j = fj . In position i we have the following diagram

V1 W1

... Vi Wi

...

Vk Wk

φ1

φk

ψ1

ψk

fi

f1

fk

with the following squares being commutative for 1 ≤ t ≤ k

Vt Wt

Vi Wi

ft

fi

φt ψt
(2.3)

From the commutativity of the square in (2.3) we have the equations

fiφ1 = ψ1f1

... (2.4)

fiφk = ψkfk.

So we can write the equations in (2.4) as

fiφ = ψ

⎛
⎜⎜⎜⎝

f1 · · · 0
...

. . .
...

0 · · · fk

⎞
⎟⎟⎟⎠ , (2.5)



39

where φ =
(

φ1 · · · φk

)
and ψ =

(
ψ1 · · · ψk

)
.

Using (2.5) we can draw the commutative diagram with exact lines

0 Ker(φ)
⊕k

i=1 Vj Vi

0 Ker(ψ)
⊕k

i=1 Wj Wi

φ

ψ

fi

hence there exists a unique morphism f such that the diagram below is commutative

0 Ker(φ)
⊕k

i=1 Vj Vi

0 Ker(ψ)
⊕k

i=1 Wj Wi

φ

ψ

fif

Then (Φ+
i (V ))i = Ker(φ), (Φ+

i (W ))i = Ker(ψ) and (Φ+
i (f))i = f . Therefore, Φ+

i (f) : Φ
+
i (V ) → Φ+

i (W ) is

well-defined on the morphisms.

Since the diagram

Ker(φ)
⊕k

i=1 Vj Vj

Ker(ψ)
⊕k

i=1 Wj Wj

fjf

is commutative, then the square
Ker(φ) Vj

Ker(ψ) Wj

fjf

is also commutative. Then f is a morphism between representations.

Next we will show how to apply the functor Φ−
i to the morphism f . Consider i ∈ I a source and

αt : Vi → Vt with Vjt = Vt. In positions j �= i we have that (Φ−
i (f))j = fj . In position i we have the

following diagram

V1 W1

... Vi Wi

...

Vk Wk

fi

αk

α1 β1

βk

f1

fk
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with the following squares being commutative for 1 ≤ t ≤ k

Vt Wt

Vi Wi
fi

ft

αi βi
(2.6)

From the commutativity of the square in (2.6) we have the equations

β1fi = f1α1

... (2.7)

βkfi = fkαk.

So we can write the equations in (2.7) as

βfi =

⎛
⎜⎜⎜⎝

f1 · · · 0
...

. . .
...

0 · · · fk

⎞
⎟⎟⎟⎠α, (2.8)

where α =
(

α1 · · · αk

)
and β =

(
β1 · · · βk

)
.

Using (2.8) we can draw the commutative diagram with exact lines

Vi

⊕k
j=1 Vj Coker(α) 0

Wi

⊕k
j=1 Wj Coker(β) 0

fi

α

β

hence there exists a unique morphism f such that the diagram below is commutative

Vi

⊕k
j=1 Vj Coker(α) 0

Wi

⊕k
j=1 Wj Coker(β) 0

fi

α

β

f

Then (Φ−
i (V ))i = Coker(α), (Φ−

i (W ))i = Coker(β) and (Φ−
i (f))i = f . Therefore, Φ−

i (f) : Φ
−
i (V ) → Φ−

i (W )

is well-defined on the morphisms.

Since the diagram

Vj

⊕k
j=1 Vj Coker(α)

Wj

⊕k
j=1 Wj Coker(β)

fj f
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is commutative, then the square
Vj Coker(α)

Wj Coker(β)

fj f

is also commutative. Then f is a morphism between representations.

Example 2.1.8. Consider the quiver �Q given by

3

1 2

4

and consider the representation V given by

0

K K

K

We can apply the reflection functors, and we would have,

0 0

Φ+
2 (V ) = K 0 Φ−

1 (Φ
+
2 (V )) = 0 0

K K

K

Φ−
3 (V ) = K K

K

1

0

0

0

0

0

1

1

1
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which is true because in the first case we have Ker(K → K) = 0, in the second case we have Coker(K → K) = 0

and in the third case we have Coker(0 → K) = K.

Remark 2.1.9.

(1) If i ∈ I is a sink then Φ+
i (S(i)) = 0.

By (1.3) we have (S(i))j = 0 for all j �= i and (S(i))i = K. Since i is a sink we can let ht : jt → i be

all the arrows that end in i. That part of the quiver is shown below

· · · j1 · · · 0

... i
... K

· · · jn · · · 0

For all j �= i we have that (Φ+
i (S(i)))j = 0 and

(Φ+
i (S(i)))i = Ker

(
n⊕

t=1

(S(i))jt → (S(i))i

)
= Ker

(
n⊕

t=1

0 → K

)
= Ker (0 → K) = 0

therefore (Φ+
i (S(i)))j = 0 for all j ∈ I and Φ+

i (S(i)) = 0.

(2) If i ∈ I is a source then Φ−
i (S(i)) = 0.

By (1.3) we have (S(i))j = 0 for all j �= i and (S(i))i = K. Since i is a source we can let ht : i → jt be

all the arrows that begin in i. That part of the quiver is shown below

j1 · · · 0 · · ·

i
... K

...

jn · · · 0 · · ·

For all j �= i we have that (Φ−
i (S(i)))j = 0 and

(Φ−
i (S(i))i = Coker

(
(S(i))i →

n⊕
t=1

(S(i))jt

)
= Coker

(
K →

n⊕
t=1

0

)
= Coker (K → 0) =

0

0
= 0

so (Φ−
i (S(i))j = 0 for all j ∈ I and Φ−

i (S(i)) = 0.

2.2 Properties of the reflection functors

The reflection functors have interesting properties, some of them we need to prove Gabriel’s Theorem in

Chapter 3 and others we use to study preprojective representations in Chapter 4. This section is dedicated

to these properties. Consider the notation RnΦ for the derived functors of a left exact functor Φ, and LnΦ

for the derived functors of a right exact functor Φ.
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Theorem 2.2.1. Let �Q be a quiver and i ∈ I.

(1) The functor Φ+
i is left exact.

(2) The functor Φ−
i is right exact.

Proof. (1) Let V,W,U ∈ Rep( �Q) such that

0 V W U
f g (2.9)

is an exact sequence. We shall prove that

0 Φ+
i (V ) Φ+

i (W ) Φ+
i (U)

Φ+
i (f) Φ+

i (g)
(2.10)

is an exact sequence.

For every j �= i we have that

(Φ+
i (V ))j = Vj , (Φ

+
i (W ))j = Wj , (Φ

+
i (U))j = Uj , (Φ

+
i (f))j = fj and (Φ+

i (g))j = gj ,

so the sequence is exact.

For i we have the commutative diagram with exact lines below

0

0 Ker(φ)
⊕

Vj Vi

0 Ker(ψ)
⊕

Wj Wi

0 Ker(η)
⊕

Uj Ui

a

b

c

φ

ψ

η

f

g

fi

gi

α

β

(2.11)

To finish the argument we need to show that the sequence

0 Ker(φ) Ker(ψ) Ker(η)
f g

is exact. In order to do that we need to show that the sequence

0
⊕

Vj

⊕
Wj

⊕
Uj

α β

is also exact, where

α =

⎛
⎜⎜⎜⎝

f1 · · · 0
...

. . .
...

0 · · · fk

⎞
⎟⎟⎟⎠ :

⊕
Vj →

⊕
Wj and β =

⎛
⎜⎜⎜⎝

g1 · · · 0
...

. . .
...

0 · · · gk

⎞
⎟⎟⎟⎠ :

⊕
Wj →

⊕
Uj .
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We prove that α is injective and that Ker(β) = Im(α).

If α(v1, · · · , vk) = (0, · · · , 0) then⎛
⎜⎜⎜⎝

f1 · · · 0
...

. . .
...

0 · · · fk

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

v1
...

vk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1(v1)
...

fk(vk)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
...

0

⎞
⎟⎟⎟⎠

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(v1) = 0
...

fk(vk) = 0.

The function ft is injective for every t ∈ {1, · · · , k}, so v1 = · · · = vk = 0 which means that

(v1, · · · , vk) = (0, · · · , 0)

and α is injective.

If (w1, · · · , wk) ∈ Ker(β) then β(w1, · · · , wk) = (0, · · · , 0) and we can write⎛
⎜⎜⎜⎝

g1 · · · 0
...

. . .
...

0 · · · gk

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

w1

...

wk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

g1(w1)
...

gk(wk)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
...

0

⎞
⎟⎟⎟⎠ .

And hence we have the equations ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(w1) = 0
...

gk(wk) = 0.

This means that wt ∈ Ker(gt). From (2.9) we have that Ker(gt) = Im(ft) and hence we can write

wt = ft(vt) for some vt ∈ Vt. Then⎛
⎜⎜⎜⎝

w1

...

wk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1(v1)
...

fk(vk)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1 · · · 0
...

. . .
...

0 · · · fk

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

v1
...

vk

⎞
⎟⎟⎟⎠ = α(v1, · · · , vk)

which gives Ker(β) ⊂ Im(α).

If (w1, · · · , wk) ∈ Im(α) then we can write (w1, · · · , wk) = α(v1, · · · , vk) for some vt ∈ Vt and then

(w1, · · · , wk) = (f1(v1), · · · , fk(vk)).

We can write this equation as a system of equations,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(v1) = w1

...

fk(vk) = wk.
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This means that wt ∈ Im(ft) = Ker(gt) and gt(wt) = 0, so we have

β(w1, · · · , wk) = (g1(w1), · · · , gk(wk)) = (0, · · · , 0)

and (w1, · · · , wk) ∈ Ker(β). This shows that Ker(β) = Im(α).

Now we can prove that the sequence

0 Ker(φ) Ker(ψ) Ker(η)
f g

is exact. For this we need to prove that f is injective and that Ker(g) = Im(f).

If f(v) = 0 for v ∈ Ker(φ) then from the diagram (2.11) we have that bf(v) = αa(v) = 0. Since α and

a are injective it follows that v = 0 and therefore f is injective.

If w ∈ Ker(g) then

g(w) = 0 ⇒ cg(w) = βb(w) = 0 ⇒ b(w) ∈ Ker(β) = Im(α).

then there exists v ∈ ⊕Vj such that α(v) = b(w) and

ψα(v) = fiφ(v) = ψb(w) = 0 ⇒ φ(v) ∈ Ker(fi).

Since fi is injective we have φ(v) = 0 and v ∈ Ker(φ) = Im(a). There exists u ∈ Ker(φ) such that

a(u) = v then

bf(u) = αa(u) = α(v) = b(w) ⇒ b(f(u)− w) = 0 ⇒ f(u)− w ∈ Ker(b).

Since b is injective we have f(u) = w and w ∈ Im(f).

If w ∈ Im(f) then there exists v ∈ Ker(φ) such that f(v) = w. Then

bf(v) = αa(v) = b(w) ⇒ 0 = βαa(v) = βb(w) = cg(w) ⇒ g(w) ∈ Ker(c).

Since c is injective we have g(w) = 0 and w ∈ Ker(g). Therefore, Ker(g) = Im(f).

From the above discussion we have the following commutative diagram with exact lines and columns

0 0 0

0 Ker(φ)
⊕

Vj Vi

0 Ker(ψ)
⊕

Wj Wi

0 Ker(η)
⊕

Uj Ui

a

b

c

φ

ψ

η

f

g

fi

gi

α

β

And the sequence in (2.10) is exact and the functor Φ+
i is left exact.
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(2) The second item is done analogously.

These properties are useful in studying the representation theory of quivers, as they allow us to relate

representations of a quiver to representations of certain subquivers or quotient quivers obtained by applying

the reflection functors. Furthermore, they provide a connection between quiver representations and modules

over certain algebras associated to the quiver, known as path algebras.

Theorem 2.2.2. Retain the notation of the section.

(1) RnΦ+
i (V ) = 0 for all n > 1, and R1Φ+

i (V ) = 0 if and only if V satisfies the following condition( ⊕
h:k→i

Vk

)
→ Vi is surjective. (2.12)

(2) LnΦ−
i (V ) = 0 for all n > 1, and L1Φ−

i (V ) = 0 if and only if V satisfies the following condition

Vi →
( ⊕

h:i→k

Vk

)
is injective. (2.13)

Proof. (1) By Theorem 1.4.9 any representation V ∈ Rep( �Q) has an injective resolution, which means that

there exists a short exact sequence

0 V I0 I1 0δ do

where I0, I1 are injective representations.

We have that RiΦ+
i (V ) = Hi(RΦ+

i (V )). By Theorem 2.2.1 we get the exact sequence

0 Φ+
i (V ) Φ+

i (I0) Φ+
i (I1)

Φ+
i (δ) Φ+

i (d0) (2.14)

and we can write the complex

0 Φ+
i (I0) Φ+

i (I1) 0.
Φ+

i (d0)

Note that

R0Φ+
i (V ) = Ker(Φ+

i (d0)), R1Φ+
i (V ) =

Φ+
i (I1)

Im(Φ+
i (d0))

, RnΦ+
i (V ) = 0 ∀ n > 1.

For R0Φ+
i (V ) we know that the sequence (2.14) is exact and hence

R0Φ+
i (V ) = Ker(Φ+

i (d0)) = Im(Φ+
i (δ)) = Φ+

i (V )

since Φ+
i (δ) is injective and

Im(Φ+
i (δ)) =

Φ+
i (V )

Ker(Φ+
i (δ))

.



47

For R1Φ+
i (V ) we need to study what happens in j �= i and in i separated. For j �= i we have

0 (Φ+
i (V ))j = Vj (Φ+

i (I0))j = (I0)j (Φ+
i (I1))j = (I1)j 0

δj (d0)j

and Im((Φ+
i (d0))j) = Im((d0)j) = (Φ+

i (I1))j = (I1)j then (R1Φ+
i (V ))j = 0.

Now for i, consider j1, · · · , jn ∈ I to be all the vertex such that hk : jk → i. Then we have

φ :
n⊕

t=1

Vjt → Vi, ψ :

n⊕
t=1

(I0)jt → (I0)i and η :

n⊕
t=1

(I1)jt → (I1)i.

So we have the commutative diagram with exact lines and columns,

0 0 0

0 (Φ+
i (V ))i

⊕
Vjt Vi

0 (Φ+
i (I0))i

⊕
(I0)jt (I0)i

0 (Φ+
i (I1))i

⊕
(I1)jt (I1)i

Coker((Φ+
i (d0))i) 0 0

φ

ψ

η

δi

(d0)i

α

β

a

b

c

(Φ+
i (δ))i

(Φ+
i (d0))i

(2.15)

We first show that ψ is surjective. Since the representation I0 is injective we can write I0 as the direct

sum of injective indecomposable representations, i.e.,

I0 =

m⊕
h=1

Ih for some m

where Ih = (ehA)
∗ are the linear combination of paths ending in h ∈ I.

By Definition 2.1.7 i is a sink for �Q, so we have

· · · j1

· · · ... i.

· · · jn

For h �= i the indecomposable component Ih is zero since there are no paths beginning in i and ending

in h, so
⊕

(I0)h = 0. If (I0)i is zero of course ψ is surjective. If (I0)i is different from zero we need to
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have the indecomposable component Ii in the sum of I0. For Ii we have

· · · Kt1

· · · ... K

· · · Ktn

where tk is the number of paths from jk to i. So

ψ :
n⊕

k=1

Ktk → K

and ψ is surjective. Therefore, ψ is surjective in all cases. The diagram (2.15) becomes

0 0 0

0 (Φ+
i (V ))i

⊕
Vjt Vi

0 (Φ+
i (I0))i

⊕
(I0)jt (I0)i 0

0 (Φ+
i (I1))i

⊕
(I1)jt (I1)i

Coker((Φ+
i (d0))i) 0 0

φ

ψ

η

δi

(d0)i

α

β

a

b

c

(Φ+
i (δ))i

(Φ+
i (d0))i

By the Snake Lemma there exists a morphism

γ : Vi → Coker((Φ+
i (d0))i)

such that the sequence

(Φ+
i (V ))i

⊕
Vjt Vi Coker((Φ+

i (d0))i) 0 0
γa φ

is exact. Then we have that

φ is surjective ⇐⇒ Coker((Φ+
i (d0))i) = (R1Φ+

i (V ))i = 0.

If φ is surjective then Im(φ) = Vi. Since the sequence is exact we have that Vi = Im(φ) = Ker(γ),

which means that for every v ∈ Vi we have γ(v) = 0 and that is all the domain. So γ = 0, Im(γ) = 0

and γ is also surjective so Coker((Φ+
i (d0))i) = Im(γ) = 0.

If Coker((Φ+
i (d0))i) = 0 then φ is surjective, since the sequence is exact.
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(2) The second item is done analogously.

Based in the Theorem 2.2.2 we will make the next definition.

Definition 2.2.3.

(i) We denote by Repi,− the full subcategory of Rep( �Q) consisting of representations V that satisfy( ⊕
h:k→i

Vk

)
→ Vi is surjective.

(ii) We denote by Repi,+ the full subcategory of Rep( �Q) consisting of representations V that satisfy

Vi →
( ⊕

h:i→k

Vk

)
is injective.

For the proof of the next important result we need a lemma on commutative diagrams.

Lemma 2.2.4. If we have a commutative diagram of modules and linear applications

L M N 0

L′ M ′ N ′

f g

f ′ g′

u v

with the first line exact and g′f ′ = 0, then there exists only one w : N → N ′ such that wg = g′v.

Proof. Let x ∈ N , then there exists y ∈ M such that g(y) = x since g is surjective, and g′v(y) ∈ N ′, so define

g′v(y) = yx, and

w : N → N ′

x �→ yx.

The map w is well-defined, indeed if there exists y1, y2 ∈ M such that g(y1) = g(y2) = x then by definition

w(x) = y1x = g′v(y1)

w(x) = y2x = g′v(y2)

therefore y1x = y2x.

The map w is a linear application by how we defined it. Let us see that wg = g′v, given y ∈ M write

g(y) = x then we have wg(y) = w(x) = yx = g′v(y), so wg(y) = g′v(y).

If there exists w′ : N → N ′ linear application such that w′g = g′v then w′g = g′v = wg and since g is

surjective w = w′.
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The next theorem brings more properties of the functors Φ±
i and using the Definition 2.2.3 we have an

equivalence between Repi,−( �Q) and Repi,+( �Q′). Recall that the simple reflections si = sαi : Z
I → ZI are as

defined in Appendix A.

Theorem 2.2.5. Let i be a sink for �Q and �Q′ = s+i (
�Q). Consider Repi,± as defined in Definition 2.2.3.

(1) Functors Φ+
i ,Φ

−
i are adjoint to each other, which means that for any W ∈ Rep( �Q′), V ∈ Rep( �Q), we

have a natural isomorphism

Hom�Q(Φ
−
i (W ), V ) � Hom�Q′(W,Φ+

i (V )).

(2) For any V ∈ Rep( �Q),Φ+
i (V ) ∈ Repi,+( �Q′). Similarly, for any W ∈ Rep( �Q′),Φ−

i (W ) ∈ Repi,−( �Q).

(3) The restrictions

Φ+
i : Repi,−( �Q) → Repi,+( �Q′)

Φ−
i : Repi,+( �Q′) → Repi,−( �Q)

are inverse to each other and thus give an equivalence of categories Repi,−( �Q) � Repi,+( �Q′).

(4) If V ∈ Repi,−( �Q), then dim(Φ+
i (V )) = si(dim(V )).

Similarly, if V ′ ∈ Repi,+( �Q′), then dim(Φ−
i (V

′)) = si(dim(V ′)).

Proof.

(1) Let

φ : Hom�Q(Φ
−
i (W ), V ) → Hom�Q′(W,Φ+

i (V )),

and take δ : W → Φ+
i (V ). We want to find out which morphism γ : Φ−

i (W ) → V is such that φ(γ) = δ.

For each j �= i we have that δj : Wj → (Φ+
i (V ))j = Vj , therefore we have γj = δj .

Now for i we have

δi : Wi → (Φ+
i (V ))i = Ker(v) where v :

⊕
h:j→i

Vj → Vi.

We can draw the commutative diagram with exact lines

Wi

⊕
Wj Coker(w) 0

0 Ker(v)
⊕

Vj Vi

w

v

δi

By Lemma 2.2.4 there exists only one morphism γi : Coker(w) → Vi such that the square is commutative

Wi

⊕
Wj Coker(w) 0

0 Ker(v)
⊕

Vj Vi

w

v

δi γi
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Therefore we define a γ : Φ−
i (W ) → V such that φ(γ) = δ. For γk = δk the following diagram is

commutative
Wk Coker(w)

Vk Vi

γiγk

since the next diagram is commutative

Wk

⊕
Wj Coker(w)

Vk

⊕
Vj Vi

γk γi

We have that γ is a morphism between Φ−
i (W ) and V with φ(γ) = δ. Then we constructed φ to be

surjective.

If we let φ(γ) = φ(γ′) = δ then γj = δj = γ′
j for all j �= i. For i we have that γi is the only morphism

that makes the following diagram commutate

Wi

⊕
Wj Coker(w) 0

0 Ker(v)
⊕

Vj Vi

w

v

δi γi

The morphism γ′
i also makes that diagram commutative, so γi = γ′

i and γ = γ′. Which makes φ an

injective morphism.

Then φ is an isomorphism.

(2) For every representation V ∈ Rep( �Q) we have the exact sequence

0 Ker(φ)
⊕

Vj Vi.
φ

We have that (Φ+
i (V ))i = Ker(φ) so

(Φ+
i (V ))i = Ker(φ) →

⊕
Vj

is injective and then Φ+
i (V ) ∈ Repi,+( �Q′).

For every representation W ∈ Rep( �Q′) we have the exact sequence

Wi

⊕
Wj Coker(ψ) 0.

ψ

We have that (Φ−
i (W ))i = Coker(ψ) so⊕

Wj → Coker(ψ) = (Φ−
i (W ))i

is surjective and then Φ−
i (W ) ∈ Repi,−( �Q).
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(3) We want to see that

Repi,−( �Q) Repi,+( �Q′)
Φ+

i

Φ−
i

are inverse to each other and they are equivalences of categories.

We will see that Φ−
i Φ

+
i = Id and Φ+

i Φ
−
i = Id is analogous.

Let us apply Φ−
i Φ

+
i to a representation. We want to see that Φ−

i Φ
+
i (V ) = V . Of course (Φ−

i Φ
+
i (V ))j =

Vj with j �= i. For i we have that (Φ+
i (V ))i = Ker(φ) where φ :

⊕
Vj → Vi. We have the commutative

diagram with exact lines

0 Ker(φ)
⊕

Vj Vi 0

0 Ker(φ)
⊕

Vj Coker(δ) 0

φ

δ

δ

1 1

hence there exists β : Vi → Coker(δ) such that the square commutes. Then we have the commutative

diagram below

0 0 Ker(β)

0 Ker(φ)
⊕

Vj Vi 0

0 Ker(φ)
⊕

Vj Coker(δ) 0

0 0 Coker(β)

φ

δ

δ

1 1 β

By the Snake Lemma we have that β is an isomorphism, so Coker(δ) � Vi. Therefore, (Φ−
i Φ

+
i (V ))i =

Coker(δ) � Vi.

(4) If V ∈ Repi,−( �Q) then the sequence

0 Ker(φ)
⊕

Vj Vi 0
φ

is exact. The dimension vector of Φ+
i (V ) is

dim(Φ+
i (V )) =

(
dim(Φ+

i (V ))1, · · · , dim(Φ+
i (V ))i, · · · , dim(Φ+

i (V ))�
)

= (dim(V1), · · · , dim(Ker(φ)), · · · , dim(V�))

where φ :
⊕

Vj → Vi. By the exact sequence we have,

dim(Ker(φ)) =
∑

dim(Vj)− dim(Vi).
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On the other hand we have that

si(αj) = αj − (αj , αi)αi

where (αj , αi) = 2δij −Aij and Aij is the number of edges between i and j. So

si(αj) =

⎧⎨
⎩ αj +Aijαi, if j �= i

−αi, if j = i.

For any given vector we can write

(x1, · · · , x�) = x1α1 + · · ·+ x�α�.

The reflection of this vector is

si(x1, · · · , x�) = x1si(α1) + · · ·+ x�si(α�).

If xj = dim(Vj) we know that xjsj(αj) = −xjαj . We know that i is a sink so either it does not have

any edges between i and j which leads us to xjsi(αj) = xjαj or there exists edges from j to i. Then

xjsi(αj) = xj(αj + αi) = xjαj + xjαi.

Which gives us

si(dim(V )) =

⎛
⎝dim(V1), · · · ,

∑
h:j→i

dim(Vj)− dim(Vi), · · · , dim(V�)

⎞
⎠

and therefore dim(Φ+
i (V )) = si(dim(V )).

The second statement is done analogously.

Corollary 2.2.6. If i is a sink for �Q, �Q′ = s+i
�Q, V ∈ Repi,−( �Q) and W ∈ Rep( �Q) then

Hom�Q(V,W ) = Hom�Q′(Φ
+
i (V ),Φ+

i (W )).

Similarly, if i is a source for �Q, �Q′ = s−i �Q, V ∈ Rep( �Q) and W ∈ Repi,+( �Q) then

Hom�Q(V,W ) = Hom�Q′(Φ
−
i (V ),Φ−

i (W )).

Proof. This immediately follows from Theorem 2.2.5. By item (3) if V ∈ Repi,−( �Q) then V = Φ−
i (X) for

some X ∈ Repi,+( �Q′). By item (1) it follows that

Hom�Q(V,W ) = Hom�Q(Φ
−
i (X),W ) = Hom�Q′(X,Φ+

i (W )) = Hom�Q′(Φ
+
i (V ),Φ+

i (W )).

The second part is proved in the same way.

By Theorem 1.2.5 every representation can be written as the direct sum of indecomposable representations,

which makes indecomposable representations an important type of representation. In light of this fact, the

next theorem investigates the behavior of indecomposable representations under the application of the functor

Φ±
i .
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Theorem 2.2.7. Let V ∈ Rep( �Q) be a nonzero indecomposable representation and let i ∈ I be a sink for �Q,

when we apply Φ+
i , or be a source for �Q, when we apply Φ−

i .

(1) We have that V � S(i) if and only if Φ±
i (V ) = 0.

(2) If V �� S(i) then V ∈ Repi,∓( �Q) and Φ±
i (V ) is a nonzero indecomposable representation of �Q′ = s±i ( �Q).

In this case, V � Φ∓
i (Φ

±
i (V )).

Proof. (1) The first part is in Remark 2.1.9.

If Φ+
i (V ) = 0 then (Φ+

i (V ))j = Vj = 0 for all j �= i and (Φ+
i (V ))i = Ker(φ) = 0 where φ :

⊕
Vj → Vi

and
⊕

Vj = 0 since all Vj = 0. We have that Vi � K otherwise the representation would not be

indecomposable. Therefore, V � S(i).

(2) If i ∈ I is a sink and V /∈ Repi,−( �Q) then

⊕
h:j→i

Vj → Vi

is not surjective. So we can write Vi = Im(φ)
⊕

Kr and V can be rewritten as

V = V ′ ⊕S(i)r

where V ′
j = Vj for j �= i and V ′

i = Im(φ), which is a contradiction since V is indecomposable. Therefore,

V ∈ Repi,−( �Q).

From Corollary 2.2.6 we have that

Hom�Q(V, V ) = Hom�Q′(Φ
+
i (V ),Φ+

i (V )),

so End(V ) = End(Φ+
i (V )). As V is indecomposable then End(V ) is a local ring and by the equality

so is End(Φ+
i (V )), therefore Φ+

i (V ) is indecomposable. If V is indecomposable and Φ+
i (V ) = 0 then

V � S(i), but by hypothesis V �� S(i) so Φ+
i (V ) �= 0. Therefore, by the proof of item (3) of Theorem

2.2.5, V � Φ−
i Φ

+
i (V ).

Corollary 2.2.8. Let V ∈ Rep( �Q) be a nonzero indecomposable representation and let i ∈ I be a sink,

respectively a source, for �Q. We have that Φ±
i (V ) is a nonzero indecomposable if and only if si(dim(V )) ≥ 0.

Proof. If Φ+
i (V ) and V are nonzero indecomposable representations then by Theorem 2.2.7 (1) V �� S(i).

By Theorem 2.2.7 (2) we have that V ∈ Repi,−( �Q). By Theorem 2.2.5 (4), dim(Φ+
i (V )) = si(dim(V )). We

have that

dim(Φ+
i (V ))j = dim(Vj) ≥ 0.

In the position i we have

dim(Φ+
i (V ))i = dim(Ker(φ)) = −dim(Vi) +

∑
dim(Vj) ≥ 0
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since φ is surjective. Therefore, si(dim(V )) ≥ 0.

If si(dim(V )) ≥ 0 we saw that

si(dim(V )) =

⎧⎨
⎩ dim(Vj), if j �= i

−dim(Vi) +
∑

h:k→i dim(Vk), if j = i

so, dim(Vj) ≥ 0 and −dim(Vi) +
∑

h:k→i dim(Vk) ≥ 0. If V � S(i) then

dim(Vj) = 0 for all j �= i ⇒
∑

h:k→i

dim(Vk) = 0

and dim(Vi) = 1 therefore

−dim(Vi) +
∑

h:k→i

dim(Vk) = −1 + 0 = −1 �≥ 0

which is a contradiction. So V �� S(i) and V is a nonzero indecomposable representation. By Theorem 2.2.7

Φ±
i (V ) is a nonzero indecomposable representation.

Corollary 2.2.9. If i is a sink for �Q, �Q′ = s+i
�Q, V ∈ Rep( �Q) and W ∈ Repi,−( �Q), then

Ext1�Q(V,W ) = Ext1�Q′(Φ
+
i (V ),Φ+

i (W )).

Similarly, if i is a source for �Q, �Q′ = s−i �Q, V ∈ Repi,+( �Q) and W ∈ Rep( �Q), then

Ext1�Q(V,W ) = Ext1�Q′(Φ
−
i (V ),Φ−

i (W )).

Proof. We will prove the first statement and the second can be done analogously. It suffices to consider the

case when V is indecomposable. Since i is a sink, S(i) = P (i) and if V = S(i) = P (i) then

0 = Ext1�Q(V,W ) = Ext1�Q′(Φ
+
i (V ),Φ+

i (W )) = 0.

Thus, we can assume that V �� S(i). According to Theorem 2.2.7, V ∈ Repi,−( �Q). Let

0 W A V 0

be an extension representing some class in Ext1(V,W ). Note that since R1Φ+
i (V ) = R1Φ+

i (W ) = 0, a long

exact sequence of derived functors implies that R1Φ+
i (A) = 0, so A ∈ Repi,−( �Q).

Since W ∈ Repi,−( �Q), we have R1Φ+
i (W ) = 0, so the sequence

0 Φ+
i (W ) Φ+

i (A) Φ+
i (V ) 0

is also exact, this gives a map Ext1�Q(V,W ) → Ext1�Q′(Φ
+
i (V ),Φ+

i (W )).

A similar argument shows that Φ−
i gives a map Ext1�Q′(Φ

+
i (V ),Φ+

i (W )) → Ext1�Q(V,W ). The fact that

these two maps are inverse to each other is easy to see.

Combining Corollary 2.2.6 and Corollary 2.2.9, we get the following result.
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Theorem 2.2.10. If i is a source for �Q, �Q′ = s−i �Q and V1, V2 ∈ Rep( �Q) are nonzero indecomposable

representations such that Φ−
i (V1),Φ

−
i (V2) are nonzero, then

Hom�Q(V1, V2) = Hom�Q′(Φ
−
i (V1),Φ

−
i (V2)),

Ext1�Q(V1, V2) = Ext1�Q′(Φ
−
i (V1),Φ

−
i (V2)).

The next theorem is a result about the action of reflection functors on projective indecomposable repre-

sentations. Projective indecomposable representations are an important class of representations, and under-

standing how reflection functors act on them is crucial for understanding the behavior of these functors more

generally.

Theorem 2.2.11. If �Q′ = s+k (
�Q) and P ′(i) is the indecomposable projective representation of �Q′ relative to

vertex i �= k then Φ−
k (P

′(i)) = P (i) is an indecomposable projective representation of �Q.

Proof. We have that P ′(i) is the projective related to the vertex i for the quiver s+k (
�Q) with k �= i. Note

that k is a source for s+k (
�Q).

Le us denote by P ′(i)j the K-vector space of the representation P ′(i) in vertex j. By definition P ′(i)j is

the vector space that has as basis the paths that start in i and finish in j.

If j �= k, by definition (
Φ−

k (P
′(i))

)
j
= P ′(i)j .

Besides that, as j �= k the paths of �Q and �Q′ are the same and

P (i)j = P ′(i)j .

Since k is a source for �Q′ then P ′(i)k = 0 and by definition

(
Φ−

k (P
′(i))

)
k
= Coker

⎛
⎝0 →

⊕
k→j

P ′(i)j

⎞
⎠ =

⊕
k→j

P ′(i)j .

For each arrow k → j we have a vector space generated by paths from i to j. Therefore,

P (i)k =
⊕
k→j

P ′(i)j .

We can see how this works in some examples. The first example is with only one path and the second

example will have more than one path.

Example 2.2.12. Consider the quivers �Q′ = s+1 (
�Q) and �Q

1 4 1 4

�Q′ = 3 �Q = 3

2 5 2 5
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The projective representations for the vertex 3 are

0 K K K

P ′(3) K P (3) K

0 K 0 K

note that Φ−
1 (P

′(3)) = P (3) since

Coker (0 → K) =
K

0
= K

and the other vector spaces remain the same.

Example 2.2.13. Consider the quivers �Q′ = s+5 (
�Q) and �Q

2 3 4

�Q′ = 1 9 10 11 5

6 7 8

2 3 4

�Q = 1 9 10 11 5

6 7 8

The projective representations for the vertex 1 are

K K K

P ′(1) = K K K K 0

K K K

K K K

P (1) = K K K K K3

K K K

note that Φ−
5 (P

′(1)) = P (1) since

Coker (0 → K3) =
K3

0
= K3

and the other vector spaces remain the same.
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Chapter 3

DYNKIN QUIVERS

In this chapter we will study representations of Dynkin quivers. The main goal is to prove a Theorem

due to Gabriel that can be found in [10], which states that a quiver has a finite number of indecomposable

representations if and only if it is Dynkin. After that we will classify all the indecomposable representations

for a Dynkin quiver.

In this chapter we consider �Q to be a simply laced Dynkin quiver with set of vertices I and set of edges

Ω. We recall the notation of root systems that we determined in the Appendix A.

• R is the root system of �Q;

• αi are the simple roots, for i ∈ {1, · · · , �} and Δ = {α1, · · · , α�} is a basis for the root system with

� =| I |;

• L is the root lattice for the root system R, with the identification L � ZI given by

�∑
i=1

niαi �→ (n1, · · · , n�);

• R+ = R∩L+ is the set of positive roots and R− = R∩L− is the set of negative roots, with R = R+∪R−;

• sα(β) = α − 〈β, α〉α are the reflections for α ∈ R and β ∈ L, with 〈β, α〉 = (β,α)
(α,α) . If α ∈ Δ then sα is

called a simple reflection;

• W = span{sα; α ∈ Δ} is the Weyl group for the root system R.

Note that in the Dynkin case both W and R are finite. With the identification for the root lattice with

ZI we are writing the elements of L in ZI with {α1 · · · , α�} as a basis and that gives us

K( �Q) � L

[V ] �→ dim(V ) =

�∑
i=1

(dim(Vi))αi.

Then the class of simple representations [S(i)] are identified with the simple roots αi.
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3.1 Coxeter element

The Coxeter elements are named after the mathematician Harold Scott MacDonald Coxeter, who first

introduced them in his seminal work on Coxeter groups. In this context, they are often used to measure the

complexity of the group, and have many important applications in geometric and algebraic contexts.

For us in this work recall that if Δ = {α1, · · · , α�} is an ordering for the basis of the root system R then

a Coxeter element C ∈ W as defined in Definition A.11.2 is

C = s� · · · s1 with sαi = si.

Definition 3.1.1. For a positive semidefinite bilinear form ( , ), the set

rad( , ) = {x ∈ Zn; (x, y) = 0 ∀ y ∈ Zn}

is called the radical of the form ( , ), and its elements are called radical vectors.

Theorem 3.1.2. Let C ∈ W be a Coxeter element and x ∈ L⊗Z R. Then Cx = x if and only if x is in the

radical of the form ( , ).

Proof. Assume that C = s� · · · s1 and Cx = x then

Cx = x

s� · · · s1(x) = x

s�−1 · · · s1(x) = s�(x)

s�−1 · · · s1(x)− x = s�(x)− x

s�−1 · · · s1(x)− x = x− 〈x, α�〉α� − x

s�−1 · · · s1(x)− x = −〈x, α�〉α�.

In the right-hand side of the equation we have a multiple of α�. In the left-hand side we have a linear

combination of α1, · · · , α�−1, and x. Each simple root appear once in the writing of C, then there is no α�

in the left-hand side. We can write

s�−1 · · · s1(x)− x = x+ a�−1α�−1 + · · ·+ a1α1 − x = a�−1α�−1 + · · ·+ a1α1 = −〈x, α�〉α�.

That means that ai = 0 for all i = {1, · · · , �− 1} and 〈x, α�〉 = 0 which implies that (x, α�) = 0.

If we proceed this way we will get (x, αi) = 0 for all i = {1, · · · , �}. Since Δ is a basis then (x, α) = 0 for

all α ∈ L⊗Z R. Therefore, x is in the radical of the form ( , ).

If x is in the radical of the form ( , ) then (x, α) = 0 for all α ∈ L. Then (x, αi) = 0 for all αi ∈ Δ. So

si(x) = x− 〈x, αi〉αi = x ∀ i = {1, · · · , �}.

Therefore, Cx = s� · · · s1(x) = x.
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Corollary 3.1.3. Let Q be Dynkin. Then:

(1) The operator C − 1 is invertible in L⊗Z R.

(2) For any α ∈ L, α �= 0, there exists k > 0 such that Ck(α) �≥ 0.

(3) For any α ∈ L, α �= 0, there exists k < 0 such that Ck(α) �≥ 0.

Proof. (1) Since �Q is Dynkin we know that ( , ) is positive definite by Definition 1.6.1. If (C − 1)(x) = 0

then C(x)− x = 0 and C(x) = x. By Theorem 3.1.2 we know that x is in the radical of the form ( , ).

So (x, α) = 0 for all α ∈ L⊗Z R. Therefore, x = 0 and then C − 1 is invertible.

(2) Let h be the order of C. Then Ch = 1 and

0 =
Ch − 1

C − 1
= Ch−1 + · · ·+ C + 1.

If α �= 0 then

0 =
(
Ch−1 + · · ·+ C + 1

)
(α) = Ch−1(α) + · · ·+ C(α) + α. (3.1)

This sum is made coordinate by coordinate so if all Ck(α) ≥ 0 for α > 0 then the sum would be

Ch−1(α) + · · ·+ C(α) + α > 0.

Therefore, there exists k > 0 such that Ck(α) �≥ 0.

(3) The argument for this item is very similar to item (2). We can start from (3.1) and multiply both sides

by C−h+1 to obtain

0 = C−h+1
(
Ch−1(α)

)
+ · · ·+ C−h+1 (C(α)) + C−h+1(α) = α+ · · ·+ C−h+2(α) + C−h+1(α),

now all the powers are negative. This sum is made coordinate by coordinate so if all Ck(α) ≥ 0 for

α > 0 then the sum would be

α+ · · ·+ C−h+2(α) + C−h+1(α) > 0.

Therefore, there exists k < 0 such that Ck(α) �≥ 0.

This theorem is an important result in the study of Coxeter elements in Dynkin quivers. It shows that

the Coxeter element has some interesting properties in this setting. The invertibility of C − 1 in L⊗Z R is a

key fact that allows us to establish the other two parts of the theorem, which describe the behavior of C on

the root lattice L. These results help us to understand the structure of the Dynkin quiver and its associated

root system in more detail.
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Definition 3.1.4. Given a sequence of indices i1, · · · , ik ∈ I, respectively a reduced expression w = sik · · · si1
for an element w ∈ W . We call the sequence of indices or the reduced expression adapted to an orientation

Ω of Q if

i1 is a sink for �Q,

i2 is a sink for s+i1(
�Q),

...

ik is a sink for s+ik−1
· · · s+i1( �Q).

Example 3.1.5. Consider the quiver �Q with orientation Ω given by

i4

i1 i2 i3

i5

We have that i4, i3, i2 ∈ I is a sequence of indices adapted to the orientation Ω, since

i4 is a sink for �Q,

i3 is a sink for s+i4(
�Q),

i2 is a sink for s+i3s
+
i4
( �Q).

Let I = {i1, · · · , i�} be an ordering of the vertices adapted to Ω. That gives us an ordering for the

basis Δ = {αi1 , · · · , αi�}. As in Definition A.11.2 we have the corresponding Coxeter element C = si� · · · si1
adapted to �Q.

In this case, we can define a sequence of quivers

�Q, s+i1(
�Q), s+i2s

+
i1
( �Q), · · · , C+( �Q) = s+i� · · · s+i1( �Q).

With the last quiver in this sequence being the same as the first one, C+( �Q) = �Q. Indeed, for every edge h

its orientation was reversed twice.

Lemma 3.1.6. Let Q be Dynkin, v ∈ ZI
+ and v �= 0. Then there exists k ∈ Z+ and a sequence j1 · · · , jk+1 ∈ I

adapted to �Q such that v ≥ 0, sj1(v) ≥ 0, · · · , sjk · · · sj1(v) ≥ 0 but sjk+1
sjk · · · sj1(v) �≥ 0.

Proof. Choose an ordering of vertices I = {i1, · · · , i�} as in Definition 3.1.4. Consider the sequence

v, si1(v), · · · , si� · · · si1(v) = C(v),

si1C(v), · · · , C2(v),

...
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Since this sequence contains Ct(v) for all t ≥ 0, by Corollary 3.1.3 this sequence must contain an element

Ct(v) �≥ 0. Let us take the minimum t such that Ct(v) �≥ 0. Therefore, somewhere between Ct−1 and Ct we

have the index jk+1 that makes sjk+1
sjk · · · sj1(v) �≥ 0.

Corollary 3.1.7. If v is a positive root and j1, · · · , jk+1 are indices as in Lemma 3.1.6 then

v = sj1 · · · sjk(αjk+1
).

Proof. Write α′ = sjk · · · sj1(v). We have that α′ is a positive root and sjk+1
(α′) �≥ 0 by Lemma 3.1.6. By

Lemma A.6.3 we have that sjk+1
permutes all the positive roots except for αjk+1

. It follows that α′ = αjk+1

and hence v = sj1 · · · sjk(αjk+1
).

3.2 Gabriel’s Theorem

Gabriel’s Theorem is a fundamental result in the representation theory of finite-dimensional algebras,

which provides a complete classification of the indecomposable representations of a given quiver. This theorem

gives a powerful tool to analyze the structure of the module category, which is essential in many areas of

mathematics, including algebraic geometry, algebraic topology, and mathematical physics. In this section,

we will explore the statement of Gabriel’s Theorem as in Theorem 1.6.3, as well as its proof, and discuss

some of its consequences and applications.

Proposition 3.2.1. Let �Q be a Dynkin quiver. Consider the map

φ : K( �Q) → L

[V ] �→ dim(V )

[S(i)] �→ αi.

The map φ is an isomorphism and φ(Ind( �Q)) = R+, which means that we have a bijection between the set

Ind( �Q) of isomorphism classes of nonzero indecomposable representations of �Q and the set R+ of positive

roots. We will denote by Iα the indecomposable representation of graded dimension α ∈ R+.

Proof. The idea of this proof is to construct indecomposable representations by applying reflections functors.

Much alike one constructs all roots by applying simple reflections to simple roots. However, there is a trick

when we want to construct representations, we can only apply the reflection functor Φ±
i if i is a sink or a

source for �Q as seen in Definition 2.1.7. This justifies the Definition 3.1.4.

Let V be a nonzero indecomposable representation of �Q. Denote by v = dim(V ) and let j1, · · · , jk+1 be
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a sequence of indices as in Lemma 3.1.6. By Corollary 2.2.8 we see that

Φ+
j1
(V ) is a nonzero indecomposable representation of s+j1(

�Q),

Φ+
j2
Φ+

j1
(V ) is a nonzero indecomposable representation of s+j2s

+
j1
( �Q),

...

V ′ = Φ+
jk
· · ·Φ+

j1
(V ) is a nonzero indecomposable representation of �Q′ = s+jk · · · s+j1( �Q).

However, since sjk+1
(dim(V ′)) �≥ 0 then Φjk+1

(V ′) = 0. By Theorem 2.2.7 we must have V ′ � S(jk+1).

Thus, by Theorem 2.2.5, we see that we must have

V � Φ−
j1
· · ·Φ−

jk
(S(jk+1)).

In particular, this implies that dim(V ) = sj1 · · · sjk(αjk+1
) is a root and thus a positive root. The represen-

tation V is uniquely determined by dim(V ), since given dim(V ) = sj1 · · · sjk(αjk+1
) we have that only exists

one representation V with that dimension.

If v is a positive root then choose a sequence j1, · · · , jk+1 as in Lemma 3.1.6. Then by Corollary 3.1.7 we

have that v = sj1 · · · sjk(αjk+1
). If we define V by

V � Φ−
j1
· · ·Φ−

jk
(S(jk+1)),

then V will be an indecomposable representation with dim(V ) = v.

With this proposition we will finally demonstrate Gabriel’s theorem, which we restate for the reader’s

convenience.

Theorem. A connected quiver �Q is of finite type if and only if the underlying graph Q is Dynkin.

Proof. Assume that �Q is of finite type. By Definition 1.6.1 it is enough to show that the associated Tits form

q is positive defined, i.e., q(v) > 0 for all v ∈ RI by (1.13).

By Theorem 1.2.5 every representation is a direct sum of indecomposable representations. This implies

that for any v ∈ ZI
+, there is a finite number of isomorphism classes of representations of dimension v. By

Theorem B.1.1 we have that the action of the group GL(v) on the representation space R( �Q, v) has only

finitely many orbits. Then there must exist an orbit Ox with dim(Ox) = dim(R(v)), by Proposition B.2.1

(5).

By Proposition B.2.1 (3),

dim(Ox) = dim(GL(v))− dim(Gx),

where Gx is the stabilizer of x in GL(v). Then

dim(Gx) = dim(GL(v))− dim(Ox) = dim(GL(v))− dim(R(v)).
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On the other hand, the subgroup of scalar matrices K× acts trivially in R(v) therefore dim(Gx) ≥ 1. So

we have

dim(GL(v))− dim(R(v)) ≥ 1,∑
v2i −

∑
h

vs(h)vt(h) ≥ 1,

q(v) = 〈v, v〉 ≥ 1. (3.2)

Thus, q is positive defined for any nonzero v ∈ ZI
+.

Now consider v ∈ ZI , write v = v+ − v− with v+, v− ∈ ZI
+ and with disjoint support. So q(v+) ≥

1, q(v−) ≥ 1 by (3.2). By (1.12) we can write

2q(v) = (v, v) = (v+ − v−, v+ − v−) = (v+, v+)− 2(v+, v−) + (v−, v−)

q(v) =
1

2
(v+, v+)− (v+, v−) +

1

2
(v−, v−)

= q(v+)− (v+, v−) + q(v−) ≥ 2− (v+, v−).

And by (1.11) we can write

(v+, v−) =
∑
i∈I

(v+)i(v−)i(2− 2nii)−
∑
i �=j

nij(v+)i(v−)j (3.3)

with nij the number of edges between i and j. In particular nij ≥ 0.

Since v+, v− have disjoint support we have that (v+)i(v−)i = 0 ∀ i ∈ I. So

∑
i∈I

(v+)i(v−)i(2− 2nii) = 0.

Therefore, we can rewrite (3.3) as

(v+, v−) = −
∑
i �=j

nij(v+)i(v−)j

Since v+, v− ∈ ZI
+ we have (v+)i(v−)j ≥ 0 for all i, j ∈ I, and then

(v+, v−) = −
∑
i �=j

nij(v+)i(v−)j ≤ 0.

Therefore, −(v+, v−) ≥ 0 and hence q(v) ≥ 2 − (v+, v−) ≥ 2. Thus, q is positive defined for any nonzero

v ∈ ZI .

If v ∈ QI then we can write

vi =
ai
bi

for all i ∈ I and let d =
∑
j∈I

bj ∈ Z.

So,

dv = (dv1, · · · , dv�) =
⎛
⎝∑

j �=1

bja1, · · · ,
∑
j �=�

bja�

⎞
⎠ ∈ ZI ,
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and hence q(dv) ≥ 2 by the previous case. Since

q(dv) =
1

2
(dv, dv) =

d2

2
(v, v) = d2q(v) ≥ 2.

It follows that q(v) ≥ 2
d2 > 0.

Therefore, we have a quadratic form defined in QI . This quadratic form comes from a symmetric bilinear

form. Since it is positive defined in QI , there exists an orthonormal basis {v1, · · · , v�} of QI with respect to

this bilinear form. Hence, for each x ∈ RI we can write x =
∑

xivi and

q(x) =
∑

q(vi)x
2
i .

Since q(vi) > 0 and x0
i ≥ 0 we have that q(x) > 0 if x �= 0.

Assume that �Q is Dynkin. The set of isomorphism classes of nonzero indecomposable representation of
�Q is in bijection with the set of positive roots by Proposition 3.2.1. In the Dynkin quiver the set of positive

roots is finite, so there is a finite number of isomorphism classes of nonzero indecomposables. That implies

that a Dynkin quiver is of finite type.

This theorem provides a fundamental characterization of quivers of finite type. This is a powerful result

because it allows us to identify the finite type quivers by simply looking at their graphs, which are much

easier to visualize and manipulate than the representations themselves. The theorem also highlights the deep

connection between the geometry of root systems and the representation theory of quivers, as the Dynkin

graphs play a crucial role in both fields.

Example 3.2.2. Let �Q be the quiver given by

•

• •

•
The corresponding graph is the Dynkin diagram of type D4. We saw in Example A.10.2 that the correspond-

ing root system has 12 positive roots. On the other hand, we had given 12 nonisomorphic indecomposable

representations of this quiver in Example 1.2.8. Thus, Proposition 3.2.1 implies that the list given in Example

1.2.8 is the full list of possible nonzero indecomposable representations. In particular, this gives a complete

answer to the problem of classifying triples of subspaces in a vector space.

3.3 Ordering of positive roots

In the previous section we showed that for any positive root α ∈ R+ there is a unique, up to an iso-

morphism, indecomposable representation Iα of �Q. This representation can be constructed by applying a
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sequence of reflection functors Φ−
i to a simple representation. In this section we refine this result, showing

how one can get all indecomposable representations from a single sequence of reflection functors. In partic-

ular, it will give us a natural order on the set of positive roots.

With the way of writing w0 given in Theorem A.11.5 we can prove the following theorem that will help

write all the indecomposable representations. The Theorem 3.3.1 was proved by Lusztig in [17]. Consider

Ω0 the orientation of Q where every i ∈ I0 is a sink and every i ∈ I1 is a source.

Theorem 3.3.1. Given an orientation Ω of a Dynkin graph Q, there exists a reduced expression w0 =

sik · · · si1 which is adapted to Ω.

Proof. By Theorem A.11.5 we know that w0 = · · · c0c1c0 is the reduced expression adapted to the orientation

Ω0. Suppose that w0 = sir · · · si1 is the reduced expression adapted to the orientation Ω.

Let us show that w0 = sjsir · · · si2 is a reduced expression adapted to s+i1Ω, where αj = −w0(αi1). So we

can write

αj = −w0(αi1) = −sik · · · si1(αi1) = sir · · · si2(αi1).

If we write β0 = sir · · · si2(β) we have

sjsir · · · si2(β) = sj(β0) = β0 − 〈β0, αj〉αj = sir · · · si2(β)− 〈sir · · · si2(β), sir · · · si2(αi1)〉 sir · · · si2(αi1)

= sir · · · si2(β)− 〈β, αi1〉 sir · · · si2(αi1) = sir · · · si2(β − 〈β, αi1〉αi1) = sir · · · si2si1(β)
= w0(β).

Therefore, sjsir · · · si2 is an expression for w0, and it has the same amount of elements as sir · · · si1 , so it is

a reduced expression for w0.

Now we need to show that this reduced expression is adapted to s+i1Ω. We have that

w0 = sjsir · · · si2 = sjsir · · · si2si1si1 = sjw0si1

sj = w0si1w
−1
0

Then by [17, p. 462] we have that w0 = sjsir · · · si2 is adapted to s+i1Ω.

By Lemma 2.1.6 since every orientation can be found from Ω0 by reflections then there exists a reduced

expression adapted to any Ω.

If we choose a reduced expression for w0 as

w0 = sir · · · si1 , r = |R+|. (3.4)

Then we can write R+ = {γ1, · · · , γr}, where

γ1 =αi1 ,

γ2 =si1(αi2),

... (3.5)

γr =si1 · · · sir−1
(αir ).
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Indeed, we can see that γj ∈ R+ for 1 ≤ j ≤ k. Otherwise, we would have that γj = si1 · · · sij−1
(αij ) is

negative. Then by Lemma A.6.5 we have that for some index 1 ≤ t ≤ j

γj = si1 · · · sij−1(αij ) = si1 · · · sit−1sit+1 · · · sij−1(αij ).

So we can write γj with fewer elements, and then we could write w0 with fewer elements and that is a

contradiction since the expression for w0 is already reduced. Therefore, γj ∈ R+.

Besides that we can see that γj �= γm for all j �= m. Otherwise, we would have that

γj = si1 · · · sij−1
(αij ) = si1 · · · sim−1

(αim) = γm.

Supposing t > j we can do

αij = sij · · · sim−1
(αim)

applying sij in both sides we have,

−αij = sij+1
· · · sim−1

(αim) ∈ R−.

Then we have the same contradiction from the last part. Therefore, we have that R+ = {γ1, · · · , γr}.
What we showed and the way we defined the set {γ1, · · · , γr} gives us some properties

γj ∈ R+

sik · · · si1(γj) ∈ R+ for all k = 1, · · · , j − 1

sij · · · si1(γj) ∈ R−.

Let us now choose a reduced expression for w0 adapted to �Q and let γ1, · · · , γr be as defined in (3.5).

From the previous discussion we can construct all indecomposable representations of �Q by

I1 =S(i1), dim I1 = γ1 = αi1 ,

I2 =Φ−
i1
(S(i2)), dim I2 = γ2 = si1(αi2),

... (3.6)

Ir =Φ−
i1
· · ·Φ−

ir−1
(S(ir)), dim Ir = γr = si1 · · · sir−1(αir ).

Example 3.3.2. Consider the quiver �Q given by

1 2.

Then the adapted reduced expression for w0 is w0 = s2s1s2. The corresponding roots are

γ1 = α2

γ2 = s2(α1) = α1 + α2

γ3 = s2s1(α2) = α1.
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Therefore, the corresponding indecomposables are

I1 = S(2) = 0 K ,

I2 = Φ−
2 ( K 0 ) = K K

1 = P (1),

I3 = Φ−
2 Φ

−
1 ( 0 K ) = Φ−

2 ( K K
1 ) = K 0 = S(1).

Theorem 3.3.3. Let I1, · · · , Ir be indecomposable representations, defined as by (3.6). Then

Hom�Q(Ia, Ib) = 0 for a > b,

Ext1�Q(Ia, Ib) = 0 for a ≤ b.

Proof. By Theorem 2.2.5 and Remark 2.1.9, if i is a sink for �Q then for any V ∈ Rep(s+i �Q) we have that

Hom(Φ−
i (V ), S(i)) = Hom(V,Φ+

i S(i)) = Hom(V, 0) = 0.

Using Theorem 2.2.10, this gives for a > b

Hom(Ia, Ib) = Hom(Φ−
i1
· · ·Φ−

ib
· · ·Φ−

ia−1
(S(ia)),Φ

−
i1
· · ·Φ−

ib−1
(S(ib)))

= Hom(Φ−
ib
· · ·Φia−1(S(ia)), S(ib)) = 0.

The second part is proved similarly. Using as the starting point the equality Ext1(S(i), V ) = 0 for all V and

for i a source. Which is immediate since in this case S(i) = P (i) is projective.

In the next chapter we will show that the nonzero indecomposable representations I1, · · · , Ir constructed

as above are in bijection with the vertices of a certain quiver, called the Auslander-Reiten quiver of �Q.
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Chapter 4

COXETER FUNCTOR AND

PREPROJECTIVE

REPRESENTATIONS

When the quiver �Q is not Dynkin it is much harder to describe all the indecomposable representations

as we did in the Dynkin case. We can, however, use the reflection functors to construct a large class of

indecomposable representations of �Q, those are called preprojective representations. We will also show that

in the Dynkin case all the representations are preprojective. In this chapter Q is a graph with no edge loops,

all the orientations of Q we consider will be such that there are no oriented cycles.

So far we worked with graphs that had a corresponding finite root system, that is not the case in this

chapter. Here we can have infinity root systems as well. Therefore, we need to remind the reader the notation

given in Section A.12. We denote by Rre the set of real roots, by Rim the set of imaginary roots. We also

denote by Rre
+ the positive roots and Rre

− the negative roots with Rre = Rre
+ ∩ Rre

− . For Dynkin quivers, by

Theorem A.7.1 (c), we have that every root is a real root. For this chapter recall that in Theorem 1.6.2 we

showed which graphs are Dynkin and which are Euclidean.

In Section A.12 we define a root system based on generalized Cartan matrices. If we have a graph Q with

no edge loops and let A = (aij)1≤i,j≤� be the matrix defined by

aij = number of edges between i, j,

then the matrix CQ = 2−A is the generalized Cartan matrix for the graph Q.
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4.1 Coxeter functor

In this section we want to define a Coxeter functor, this functor is related to the Coxeter element, and

we defined this element in Definition A.12.5. Consider �Q to be a quiver without oriented cycles and denote

by C = si� · · · si1 a Coxeter element adapted to �Q, with � =| I |. If we consider the corresponding sequence

of reflections C+ = s+i� · · · s+i1 , then C+ �Q = �Q since the orientation of every edge is reversed twice.

For any k = 1, · · · , � we can define roots

pk = si1 · · · sik−1
(αik) and qk = si� · · · sik+1

(αik). (4.1)

Lemma 4.1.1. The elements pk and qk, as in (4.1), are distinct positive real roots, and we have that

(a) C(pk) = −qk;

(b) C−1(qk) = −pk;

(c) {p1, · · · , p�} = {α ∈ Rre
+ ;Cα ∈ Rre

− }.

(d) {q1, · · · , q�} = {α ∈ Rre
+ ;C−1α ∈ Rre

− }.

Proof. In the same way as made in (3.5) and using Lemma A.12.8, we have that pk and qk are distinct

positive real roots.

To prove item (a) and (b) we have that,

C(pk) = si� · · · si1(si1 · · · sik−1
(αik)) = si� · · · sik(αik) = −si� · · · sik+1

(αik) = −qk,

C−1(qk) = si1 · · · si�(si� · · · sik+1
(αik)) = si1 · · · sik(αik) = −si1 · · · sik−1

(αik) = −pk.

For the equality of sets of item (c) we have that if qk ∈ Rre
+ then C(pk) = −qk ∈ Rre

− , which means that

{p1, · · · , p�} ⊂ {α ∈ Rre
+ ;Cα ∈ Rre

− }.
On the other hand we have that C = si� · · · si1 is a reduced expression for C, so by Lemma A.12.7, it

sends � elements of Rre
+ into Rre

− then {α ∈ Rre
+ ;Cα ∈ Rre

− } is a set with � elements and {p1, · · · , p�} also has

� elements then we have the equality.

The equality in item (d) is obtained analogously.

The corresponding indecomposable representation associated with pk is

Pk = Φ−
i1
· · ·Φ−

ik−1
(S(ik)), where dim(Pk) = pk. (4.2)

Note that here S(ik) is the simple representation of the quiver s+ik−1
· · · s+i1 �Q. Similarly, the indecomposable

representation associated with qk is

Qk = Φ+
i�
· · ·Φ+

ik+1
(S(ik)), where dim(Qk) = qk. (4.3)

Note that here S(ik) is the simple representation of the quiver s+ik+1
· · · s+i� �Q.

Next we have some examples of these representations. We will give an example with a Dynkin quiver and

another with a Euclidean quiver.
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Example 4.1.2. Consider the graph D4 with orientation given by

i3

i2 i1

i4

We have that I = {i1, i2, i3, i4} is an ordering of the vertices adapted to the orientation since

i1 is a sink for �Q

i2 is a sink for s+1 (
�Q)

i3 is a sink for s+2 s
+
1 (

�Q)

i4 is a sink for s+3 s
+
2 s

+
1 (

�Q)

with s+ik = s+k for k = 1, 2, 3, 4. Therefore, we have the Coxeter element adapted to �Q as C = s4s3s2s1.

We can write the roots pk and qk for this quiver as

p1 = αi1 q1 = s4s3s2(αi1)

p2 = s1(αi2) q2 = s4s3(αi2)

p3 = s1s2(αi3) q3 = s4(αi3)

p4 = s1s2s3(αi4) q4 = αi4 .

Then we can write the corresponding indecomposable representation associated with pk and qk as

P1 = S(i1) Q1 = Φ+
i4
Φ+

i3
Φ+

i2
(S(i1))

P2 = Φ−
i1
(S(i2)) Q2 = Φ+

i4
Φ+

i3
(S(i2))

P3 = Φ−
i1
Φ−

i2
(S(i3)) Q3 = Φ+

i4
(S(i3))

P4 = Φ−
i1
Φ−

i2
Φ−

i3
(S(i4)) Q4 = S(i4).

And we can actually find these representations, first let us see the Pk indecomposable representations. Rep-

resentation P1 is also a simple representation,

P1 : 0

0 K

0

0

0

0
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The representation P2 can be calculated as

S(i2) : 0 P2 : 0

K 0 K K

0 0

0

0

0

0

0

1

The representation P3 can be calculated as

S(i3) : K Φ−
i2
(S(i3)) : K

0 0 K K

0 0

P3 : K

K K

0

0

1

0

0

0

0

1

0

1



73

The representation P4 can be calculated as

S(i4) : 0 Φ−
i3
(S(i4)) : 0

0 0 0 0

K K

Φ−
i2
Φ−

i3
(S(i4)) : 0 P4 : 0

K 0 K K

K K

0

1

0

0

0

0

0

0

0

0

1

1

Now we will see the Qk indecomposable representations. The representation Q1 can be calculated as

S(i1) : 0 Φ+
i2
(S(i1)) : 0

0 K K K

0 0

Φ+
i3
Φ+

i2
(S(i1)) : K Q1 : K

K K K K

0 K

0

0

0

0

0

1

1

0

1

1

1

1
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The representation Q2 can be calculated as

S(i2) : 0 Φ+
i3
(S(i2)) : K

K 0 K 0

0 0

Q2 : K

K 0

K

0

0

1

0

0

0

0

1

1

The representation Q3 can be calculated as

S(i3) : K Q3 : K

0 0 0 0

0 0

0

0

0

00

0

The representation Q4 is also a simple representation

Q4 : 0

0 0

K

0

0

0

Example 4.1.3. Consider the graph D̂4 with orientation given by

i4 i1

�Q = i3

i5 i2
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We have that I = {i1, i2, i3, i4, i5} is an ordering of the vertices adapted to the orientation, since

i1 is a sink for �Q

i2 is a sink for s+1 (
�Q)

i3 is a sink for s+2 s
+
1 (

�Q)

i4 is a sink for s+3 s
+
2 s

+
1 (

�Q)

i5 is a sink for s+4 s
+
3 s

+
2 s

+
1 (

�Q)

with s+ik = s+k for k = 1, 2, 3, 4, 5. Therefore, we have the Coxeter element adapted to �Q as C = s5s4s3s2s1.

We can write the roots pk and qk for this quiver as

p1 = αi1 q1 = s5s4s3s2(αi1)

p2 = s1(αi2) q2 = s5s4s3(αi2)

p3 = s1s2(αi3) q3 = s5s4(αi3)

p4 = s1s2s3(αi4) q4 = s5(αi4)

p5 = s1s2s3s4(αi5) q5 = αi5 .

Then we can write the corresponding indecomposable representation associated with pk and qk as

P1 = S(i1) Q1 = Φ+
i5
Φ+

i4
Φ+

i3
Φ+

i2
(S(i1))

P2 = Φ−
i1
(S(i2)) Q2 = Φ+

i5
Φ+

i4
Φ+

i3
(S(i2))

P3 = Φ−
i1
Φ−

i2
(S(i3)) Q3 = Φ+

i5
Φ+

i4
(S(i3))

P4 = Φ−
i1
Φ−

i2
Φ−

i3
(S(i4)) Q4 = Φ+

i5
(S(i4))

P5 = Φ−
i1
Φ−

i2
Φ−

i3
Φ−

i4
(S(i5)) Q5 = S(i5).

And we can actually find these representations, first let us see the Pk indecomposable representations. Rep-

resentation P1 is also a simple representation,

P1 : 0 K

0

0 0

0

0 0

0

The representation P2 can be calculated as

S(i2) : 0 0 P2 : 0 0

0 0

0 K 0 K

0

0

0

0
0

0

0

0
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The representation P3 can be calculated as

S(i3) : 0 0 Φ−
i2
(S(i3)) : 0 0

K K

0 0 0 K

P3 : 0 K

K

0 K

0

0

0

0

1

0

0

0

0

1

1

0

The representation P4 can be calculated as

S(i4) : K 0 Φ−
i3
(S(i4)) : K 0

0 K

0 0 0 0

Φ−
i2
Φ−

i3
(S(i4)) : K 0 P4 : K K

K K

0 K 0 K

1

0

1

0 1

0

0

0

1

0

1

1

0

0

0

0
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The representation P5 can be calculated as

S(i5) : 0 0 Φ−
i4
(S(i5)) : 0 0

0 0

K 0 K 0

Φ−
i3
Φ−

i4
(S(i5)) :: 0 0 Φ−

i2
Φ−

i3
Φ−

i4
(S(i5)) :: 0 0

K K

K 0 K K

P5 : 0 K

K

K K

0

1

0

1 1

0

0

0

0 0

0

11

1

0

0 0

0

0

Now we will see the Qk indecomposable representations. The representation Q1 can be calculated as

S(i1) : 0 K Φ+
i2
(S(i1)) : 0 K

0 0

0 0 0 0

Φ+
i3
Φ+

i2
(S(i1)) :: 0 K Φ+

i4
Φ+

i3
Φ+

i2
(S(i1)) :: K K

K K

0 0 0 0

Q1 : K K

K

K 0

0

0

1

01

1

0

0

0

0

0

0

1

0

0

0 1

0

0

1
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The representation Q2 can be calculated as

S(i2) : 0 0 Φ+
i3
(S(i2)) : 0 0

0 K

0 K 0 K

Φ+
i4
Φ+

i3
(S(i2)) :: K 0 Q2 : K 0

K K

0 K K K

0

1
0

1

1

0

00

0

0

00

0
1

1

1

The representation Q3 can be calculated as

S(i3) : 0 0 Φ+
i4
(S(i3)) : K 0

K K

0 0 0 0

Q3 : K 0

K

K 0

0

0

0

0

0

1

0

0

0

0

1

1

The representation Q4 can be calculated as

S(i4) : K 0 Q4 : K 0

0 0

0 0 0 0

0

0

0

0

0

0

0

0

The representation Q5 is also a simple representation

Q5 : 0 0

0

K 0

0

0

0

0
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Lemma 4.1.4. For representations Pk as in (4.2) and nonzero indecomposable projective representations

P (ik) as in (1.4) we have that

Pk = Φ−
i1
· · ·Φ−

ik−1
(S(ik)) = P (ik).

Similarly, for representations Qk as in (4.3) and nonzero indecomposable injective representations Q(ik) as

in (1.8) we have that

Qk = Φ+
i�
· · ·Φ+

ik+1
(S(ik)) = Q(ik).

Proof. If �Q′ = s+k (
�Q) and P ′(i) is the projective indecomposable representation of �Q′ with i �= k then by

Theorem 2.2.11 we have that Φ−
k (P

′(i)) = P (i) is a projective indecomposable representation for �Q. We will

use the notation P (ik) for the projective indecomposable representation for �Q and P (ik)
t for the projective

indecomposable representation for s+ik−1
· · · s+i1 �Q. Then we have that

P1 := S(i1) = P (i1) i1 is a sink for �Q

P2 := Φ−
i1
(S(i2)) = Φ−

i1
(P (i2)

2) = P (i2) i2 is a sink for s+i1
�Q

P3 := Φ−
i1
Φ−

i2
(S(i3)) = Φ−

i1
Φ−

i2
(P (i3)

3) = Φ−
i1
(P (i3)

2) = P (i3) i3 is a sink for s+i2s
+
i1
�Q

...
...

P� := Φ−
i1
· · ·Φ−

i�−1
(S(i�)) = Φ−

i1
· · ·Φ−

i�−1
(P (i�)

�) = P (i�) i� is a sink for s+i�−1
· · · s+i1 �Q.

We can do it analogously to show that Qk = Q(ik).

This theorem relates the representation theory of a quiver to its orientation. It shows that for certain

representations Pk and Qk, which are constructed recursively using the orientation of the quiver, there exist

corresponding indecomposable projective and injective representations P (ik) and Q(ik) that can also be

constructed recursively using the orientation of the quiver.

Definition 4.1.5. The Coxeter functor C+ associated with the Coxeter element C = si� · · · si1 is

C+ = Φ+
i�
· · ·Φ+

i1
: Rep( �Q) → Rep( �Q). (4.4)

Similarly, we can also define C− associated with the Coxeter element C−1 = si1 · · · si� is

C− = Φ−
i1
· · ·Φ−

i�
: Rep( �Q) → Rep( �Q). (4.5)

Theorem 4.1.6. Let V be an indecomposable representation of �Q. The representations C+(V ) and C−(V )

are also indecomposable, possibly zero. If V and C+(V ) are nonzero, then C−C+(V ) � V . Similarly, if V

and C−(V ) are nonzero, then C+C−(V ) � V .

Proof. By Theorem 2.2.7 we have that if V is an indecomposable representation of �Q then Φ±
i (V ) = 0

or Φ±
i (V ) is a nonzero indecomposable representation. Therefore, we have that either C±(V ) = 0 or by

applying successive times the second condition on the composition of C± we have that C±(V ) is a nonzero

indecomposable representation.
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One important case for us is when we apply C± to an indecomposable representation V and get C±(V ) =

0. The next result is for these cases.

Theorem 4.1.7. Let V be a nonzero indecomposable representation of �Q. Then the following conditions are

equivalent,

(i) C+(V ) = 0.

(ii) V � Pk for some k = 1, · · · , �.

(iii) V is projective.

Proof. If C+(V ) = 0 then Φ+
i�
· · ·Φ+

i1
(V ) = 0 and there exists k such that Φ+

ik−1
· · ·Φ+

i1
(V ) � S(ik) for some

k ≤ �, by Theorem 2.2.7 item (a). Otherwise, we would have that C+(V ) is a nonzero indecomposable

representation, by Theorem 2.2.7 item (b), and that is a contradiction since C+(V ) = 0. Therefore,

Φ+
ik−1

· · ·Φ+
i1
(V ) � S(ik)

and

V � Φ−
i1
· · ·Φ−

ik−1
(S(ik)) = Pk

for some k = 1, · · · , �.
If V � Pk for some k = 1, · · · , � then, by Lemma 4.1.4, Pk is always a projective representation so V is

projective.

We know that {P (ik); ik ∈ I} is the set of all projective indecomposable representation by Theorem 1.4.4.

If V is a projective indecomposable representation and Pk = P (ik) then V � Pk for some k ≤ �. As we can

write Pk = Φ−
i1
· · ·Φ−

ik−1
(S(ik)) we have that

C+(V ) = C+(Pk) = Φ+
i�
· · ·Φ+

i1
(Pk) = Φ+

i�
· · ·Φ+

i1

(
Φ−

i1
· · ·Φ−

ik−1
(S(ik))

)
= Φ+

i�
· · ·Φ+

i1
Φ−

i1
· · ·Φ−

ik−1
(S(ik)) = Φ+

i�
· · ·Φ+

ik
(S(ik)) = Φ+

i�
· · ·Φ+

ik+1
(0) = 0,

since Φ+
ik
(S(ik)) = 0 by Remark 2.1.9.

Theorem 4.1.8. Let V be a nonzero indecomposable representation of �Q. Then the following conditions are

equivalent,

(i) C−(V ) = 0.

(ii) V � Qk for some k = 1, · · · , �.

(iii) V is injective.

Proof. The proof is analogous to Theorem 4.1.7.

Corollary 4.1.9. If V is a representation with V ∈ Rep( �Q).
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(a) C+(V ) = 0 if and only if V is projective.

(b) C−(V ) = 0 if and only if V is injective.

Proof. (a) If V is any representation of �Q we can write

V =

n⊕
i=1

Vi

with each Vi an indecomposable subrepresentation of V .

If C+(V ) = 0 then

C+(V ) = C+

(
n⊕

i=1

Vi

)
=

n⊕
i=1

C+(Vi) = 0.

As the direct sum is the null representation then each C+(Vi) = 0 for all i, by Theorem 4.1.7 we have

that each Vi is projective for every i so V is projective.

If V is projective then Vi is projective for all i and by Theorem 4.1.7 we have that C+(Vi) = 0.

Therefore,

C+(V ) = C+

(
n⊕

i=1

Vi

)
=

n⊕
i=1

C+(Vi) = 0.

(b) It is analogous to the first one.

4.2 Preprojective and preinjective representations

In this section we choose an orientation of Q without oriented cycles, we also choose a Coxeter element

C adapted to this orientation, and we let C± be the corresponding Coxeter functors as defined in Definition

4.1.5. The goal here is to prove an analogous to Proposition 3.2.1 that establishes a bijection between positive

roots and indecomposable representations. This is not true in general, for instance the Kronecker quiver has

infinite representations of a given dimension, but the theorem can be true in certain cases.

Definition 4.2.1. If V is an indecomposable representation of �Q then V is said to be

• preprojective if (C+)n(V ) = 0 for n � 0;

• preinjective if (C−)n(V ) = 0 for n � 0;

• regular if for any n ∈ Z+, we have (C+)n(V ) �= 0 and (C−)n(V ) �= 0.

A representation V ∈ Rep( �Q) is called preprojective, preinjective or regular if each of its indecomposable

summands is of the corresponding type. We have a similar definition for the roots.

Definition 4.2.2. If α ∈ Rre
+ is a real positive root then α is said to be

• preprojective if Cn(α) �> 0 for some n > 0;
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• preinjective if Cn(α) �> 0 for some n < 0.;

Example 4.2.3. Roots pk are preprojective and roots qk are preinjective since,

C(pk) = −qk, Cn(pk) �> 0 for n = 1

and

C−1(qk) = −pk, Cn(qk) �> 0 for n = −1.

Remark 4.2.4. In the Dynkin case, from Corollary 3.1.3 (2), we have that for any positive root α there

exists k > 0 such that Ckα �> 0 then every positive root is preprojective. From Corollary 3.1.3 (3), we have

that for any positive root α there exists k < 0 such that Ckα �> 0 then every positive root is preinjective.

Theorem 4.2.5. Let C = si� · · · si1 be a Coxeter element adapted to �Q and C± the corresponding Coxeter

functors.

(1) If V is a nonzero preprojective indecomposable representation, then

V � (C−)n(P (i)) for some n ≥ 0 and i ∈ I.

In this case, dim(V ) is a preprojective positive real root. Conversely, for every preprojective positive real

root α, there is a unique indecomposable representation Vα of graded dimension α and this representation

is preprojective.

(2) If V is a nonzero preinjective indecomposable representation then

V � (C+)n(Q(i)) for some n ≥ 0 and i ∈ I.

In this case, dim(V ) is a preinjective positive real root. Conversely, for every preinjective positive real

root α, there is a unique indecomposable representation Vα of graded dimension α and this representation

is preinjective.

Proof. (1) If V is a nonzero preprojective indecomposable representation then there exists n+ 1 such that

(C+)n+1(V ) = 0. Let us choose n+ 1 to be the minimum that satisfy this condition, so

(C+)n(V ) �= 0 and C+((C+)n(V )) = 0.

By Theorem 4.1.7 we have that

(C+)n(V ) � Pk for some k = 1, · · · , �.

If V and C+(V ) are nonzero then C−C+(V ) � V by Theorem 4.1.6. As we have that V is nonzero and
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(C+)t(V ) is nonzero for all t ≤ n then

C−(C+)n(V ) � (C+)n−1(V )

C−(C+)n−1(V ) � (C+)n−2(V )

...

C−(C+)2(V ) � C+(V )

C−C+(V ) � V

and by recursion we get (C−)n(C+)n(V ) � V which means (C−)n(Pk) � V . By Lemma 4.1.4, Pk =

P (ik) then V � (C−)n(P (ik)). For the dimension we have that

dim(V ) = dim((C−)n(Pk)) = C−ndim(Pk) = C−n(pk),

where the second equality holds by Theorem 2.2.5 (4) and the third equality is true by (4.2). Since

dim(V ) = C−n(pk) then C−n(pk) is a positive real root. By Definition 4.2.2 we have that Ct(pk) �> 0

for some t > 0, since pk is a preprojective positive real root. Then there exists t+ n > 0 such that

Ct+n(C−n(pk)) = Ct+n−n(pk) = Ct(pk) �> 0.

Therefore, dim(V ) is a preprojective positive real root.

On the other hand, if α ∈ Rre
+ and α is a preprojective root then we know that there exists n > 0 such

that Cn(α) �> 0 by Definition 4.2.2. Let us choose n+1 to be the maximum that satisfy this condition,

so

α > 0, C(α) > 0, · · · , Cn(α) > 0 and C(Cn(α)) = Cn+1(α) �> 0, (4.6)

which means that C(Cn(α)) ∈ Rre
− . By the equality in item (b) of Lemma 4.1.1 we have that Cn(α) = pk

for some k = 1, · · · , �, then α = C−n(pk). Consider Vα = (C−)n(P (ik)). We have that

dim(Vα) = dim((C−)n(P (ik))) = C−n(pk) = α,

where the second equality is true by Theorem 2.2.5. Since P (ik) is an indecomposable preprojective

representation, and we are applying a sequence of Φ−
i to this representation then by Theorem 2.2.7 we

have that Vα is an indecomposable representation. We have that

pk = Cn(α), C−1pk = Cn−1(α), · · · , C−npk = α

are all positive, from (4.6), then

P (ik), C−P (ik), · · · , (C−)n(P (ik))

are all nonzero. Also,

(C+)n+1(Vα) = (C+)n+1(C−)n(P (ik)) = C+(P (ik)) = 0
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and Vα is preprojective. Therefore, Vα is a nonzero indecomposable preprojective representation. The

representation Vα is unique since if there exists another representation V ′ with dimension α then by

the first part we have that V ′ � (C−)n(P (i)) = Vα.

(2) The second one is made analogously.

This theorem is a fundamental result in the representation theory of quivers of finite type. It provides a

complete characterization of the indecomposable preprojective and preinjective representations in terms of

the Coxeter element and Coxeter functors. It also establishes a correspondence between positive roots and

indecomposable representations, which is an important tool for studying the structure of the representation

category.

Example 4.2.6. Consider the graph D̂4 with orientation given by

i4 i1

�Q = i3

i5 i2

We have that I = {i1, i2, i3, i4, i5} is an ordering of the vertices adapted to the orientation, since

i1 is a sink for �Q

i2 is a sink for s+1 (
�Q)

i3 is a sink for s+2 s
+
1 (

�Q)

i4 is a sink for s+3 s
+
2 s

+
1 (

�Q)

i5 is a sink for s+4 s
+
3 s

+
2 s

+
1 (

�Q)

with sik for k = 1, 2, 3, 4, 5. Therefore, we have the Coxeter element adapted to �Q as C = s5s4s3s2s1 and the

Coxeter functors

C+ = Φ+
i5
Φ+

i4
Φ+

i3
Φ+

i2
Φ+

i1

C− = Φ−
i1
Φ−

i2
Φ−

i3
Φ−

i4
Φ−

i5

For ease of notation we will write P (ik) = Pk, Q(ik) = Qk and Φ±
ik

= Φ±
k for k = 1, 2, 3, 4, 5. In

example 4.1.3 we calculate the five projective indecomposable representations. Now we want to apply C− in

the projective indecomposable representations to find some preprojective indecomposable representations in

the orbits of the projective ones as we saw in Theorem 4.2.5. In the D̂4 case we will apply C− until n = 4.
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We will start with the projective P1. For n = 1 we have,

P1 : 0 K Φ−
5 (P1) : 0 K

0 0

0 0 0 0

Φ−
4 Φ

−
5 (P1) : 0 K Φ−

3 Φ
−
4 Φ

−
5 (P1) : 0 K

0 K

0 0 0 0

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (P1) : 0 K C−(P1) : 0 0

K K

0 K 0 K

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

0

0

1

Consider C−(P1) = V1. For n = 2 we have,

V1 : 0 0 Φ−
5 (V1) : 0 0

K K

0 K K K

Φ−
4 Φ

−
5 (V1) : K 0 Φ−

3 Φ
−
4 Φ

−
5 (V1) : K 0

K K2

K K K K

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (V1) : K 0 C−(V1) : K K2

K2 K2

K K K K

0

0

0

1

0

1

1

0

1

1

0

1

(0,1)

(1,1)

(1,0)

0

(0,1)

(1,1)

(1,0)

0

(0,1)

(1,1)

1

(1,0)
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Consider C−(V1) = (C−)2(P1) = V2. For n = 3 we have,

V2 : K K2 Φ−
5 (V2) : K K2

K2 K2

K K K K

Φ−
4 Φ

−
5 (V2) : K K2 Φ−

3 Φ
−
4 Φ

−
5 (V2) : K K2

K2 K3

K K K K

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (V2) : K K2 C−(V2) : K K

K3 K3

K K2 K K2

(0,1)

(1,1)

1

(1,0)

(0,1)

(1,1)

(1,0)

1

(1,0)

(1,1)

1

(1,0)

Consider C−(V2) = (C−)3(P1) = V3. For n = 4 we have,

V3 : K K Φ−
5 (V3) : K K

K3 K3

K K2 K2 K2

Φ−
4 Φ

−
5 (V3) : K2 K Φ−

3 Φ
−
4 Φ

−
5 (V3) : K2 K

K3 K4

K2 K2 K2 K2

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (V3) : K2 K C−(V3) : K2 K3

K4 K4

K2 K2 K2 K2
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Now for the projective P2 we have,

P2 : 0 0 C−(P2) : 0 K

0 K

0 K 0 0

(C−)2(P2) : K K (C−)3(P2) : K K2

K2 K3

K K2 K K

(C−)4(P2) : K2 K2

K4

K2 K3

0

0

0

0
0

0

1

0

(0,1)

(1,1)

(1,0)

1

Now for the projective P3. For n = 1 we have,

P3 : 0 K Φ−
5 (P3) : 0 K

K K

0 K K K

Φ−
4 Φ

−
5 (P3) : K K Φ−

3 Φ
−
4 Φ

−
5 (P3) : K K

K K3

K K K K

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (P3) : K K C−(P3) : K K2

K3 K3

K K2 K K2

0

0

1

1

0

1

1

1

1

1

1

1
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Consider C−(P3) = V1. For n = 2 we have,

V1 : K K2 Φ−
5 (V1) : K K2

K3 K3

K K2 K2 K2

Φ−
4 Φ

−
5 (V1) : K2 K2 Φ−

3 Φ
−
4 Φ

−
5 (V1) : K2 K2

K3 K5

K2 K2 K2 K2

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (V1) : K2 K2 C−(V1) : K2 K3

K5 K5

K2 K3 K2 K3

Consider C−(V1) = (C−)2(P3) = V2. For n = 3 we have,

V2 : K2 K3 Φ−
5 (V2) : K2 K3

K5 K5

K2 K3 K3 K3

Φ−
4 Φ

−
5 (V2) : K3 K3 Φ−

3 Φ
−
4 Φ

−
5 (V2) : K3 K3

K5 K7

K3 K3 K3 K3

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (V2) : K3 K3 C−(V2) : K3 K4

K7 K7

K3 K4 K3 K4
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Consider C−(V2) = (C−)3(P3) = V3. For n = 4 we have,

V3 : K3 K4 Φ−
5 (V3) : K3 K4

K7 K7

K3 K4 K4 K4

Φ−
4 Φ

−
5 (V3) : K4 K4 Φ−

3 Φ
−
4 Φ

−
5 (V3) : K4 K4

K7 K9

K4 K4 K4 K4

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (V3) : K4 K4 C−(V3) : K4 K5

K9 K9

K4 K5 K4 K5

Now for the projective P4. For n = 1 we have,

P4 : K K Φ−
5 (P4) : K K

K K

0 K K K

Φ−
4 Φ

−
5 (P4) : 0 K Φ−

3 Φ
−
4 Φ

−
5 (P4) : 0 K

K K2

K K K K

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (P4) : 0 K C−(P4) : 0 K

K2 K2

K K K K

1

0

1

1

1

1

1

1

0

1

1

1

0

(0,1)

(1,1)

(1,0)

0

(0,1)

(1,1)

(1,0)

0

(0,1)

(1,0)

(1,1)
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Consider C−(P4) = V1. For n = 2 we have,

V1 : 0 K Φ−
5 (V1) : 0 K

K2 K2

K K K K

Φ−
4 Φ

−
5 (V1) : K2 K Φ−

3 Φ
−
4 Φ

−
5 (V1) : K2 K

K2 K3

K K K K

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (V1) : K2 K C−(V1) : K2 K2

K3 K3

K K2 K K2

0

(0,1)

(1,0)

(1,1)

0

(0,1)

(1,1)

(1,0)

1

(0,1)

(1,0)

(1,1)

Consider C−(V1) = (C−)2(P4) = V2. For n = 3 we have,

V2 : K2 K2 Φ−
5 (V2) : K2 K2

K3 K3

K K2 K2 K2

Φ−
4 Φ

−
5 (V2) : K K2 Φ−

3 Φ
−
4 Φ

−
5 (V2) : K K2

K3 K4

K2 K2 K2 K2

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (V2) : K K2 C−(V2) : K K2

K4 K4

K2 K2 K2 K2
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Consider C−(V2) = (C−)3(P4) = V3. For n = 4 we have,

V3 : K K2 Φ−
5 (V3) : K K2

K4 K4

K2 K2 K2 K2

Φ−
4 Φ

−
5 (V3) : K3 K2 Φ−

3 Φ
−
4 Φ

−
5 (V3) : K3 K2

K4 K5

K2 K2 K2 K2

Φ−
2 Φ

−
3 Φ

−
4 Φ

−
5 (V3) : K3 K2 C−(V3) : K3 K3

K5 K5

K2 K3 K2 K3

Now for the projective P5 we have,

P5 : 0 K C−(P5) : K K

K K2

K K 0 K

(C−)2(P5) : K K2 (C−)3(P5) : K2 K2

K3 K4

K2 K2 K K2

(C−)4(P5) : K2 K3

K5

K3 K3

1

0

1

1
0

(1,0)

(1,1)

(0,1)

In example 4.1.3 we calculate the five injective indecomposable representations. In an analogous way to the
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preprojective indecomposable representations we can calculate the preinjective indecomposable representations.

For the injective representation Q1 we have,

Q1 : K K C+(Q1) : K 0

K K3

K 0 K K

(C+)2(Q1) : K2 K2 (C+)3(Q1) : K2 K

K3 K4

K2 K K2 K2

(C+)4(Q1) : K3 K3

K5

K3 K2

1

0

1

1

(1,0)

(0,1)

(1,1)

0

For the injective representation Q2 we have,

Q2 : K 0 C+(Q2) : K K

K K2

K K K 0

(C+)2(Q2) : K2 K (C+)3(Q2) : K2 K2

K3 K4

K2 K2 K2 K

(C+)4(Q2) : K3 K2

K5

K3 K3

1

1

1

0

(1,1)

0

(0,1)

(1,0)
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For the injective representation Q3 we have,

Q3 : K 0 C+(Q3) : K2 K

K K3

K 0 K2 K

(C+)2(Q3) : K3 K2 (C+)3(Q3) : K4 K3

K5 K7

K3 K2 K4 K3

(C+)4(Q3) : K5 K4

K9

K5 K4

1

0

1

0

For the injective representation Q4 we have,

Q4 : K 0 C+(Q4) : 0 0

0 K

0 0 K 0

(C+)2(Q4) : K2 K (C+)3(Q4) : K K

K2 K3

K K K2 K

(C+)4(Q4) : K3 K2

K4

K2 K2

0

0

0

0

0

0

1

0

1

(1,1)

(0,1)

(1,0)
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For the injective representation Q5 we have,

Q5 : 0 0 C−(Q5) : K 0

0 K

K 0 0 0

(C−)2(Q5) : K K (C−)3(Q5) : K2 K

K2 K3

K2 K K K

(C−)4(Q5) : K2 K2

K4

K3 K2

0

0

0

0

1

0

0

0

(1,0)

(0,1)

1

(1,1)

Corollary 4.2.7. If �Q is a Dynkin quiver, then any indecomposable representation is both preprojective and

preinjective, and there are no nonzero regular representations.

Proof. By Remark 4.2.4 we have that every positive root is preprojective and preinjective. Also in the

Dynkin case, by Proposition 3.2.1 we have that the nonzero indecomposable representations are in bijection

with the positive roots, so by Theorem 4.2.5 every indecomposable representation is both preprojective and

preinjective. Therefore, it does not exist any nonzero indecomposable regular representations.

A representation is regular if every indecomposable summand is regular and no nonzero indecomposable

representation is regular in the Dynkin case. So there are no nonzero regular representation.

In the Dynkin case this means that we can find all the preprojective and preinjective indecomposable

representations. We will show this in an example.

Example 4.2.8. Consider the quiver D4 given by

i3

�Q = i2 i1

i4
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We have that I = {i1, i2, i3, i4} is an ordering of the vertices adapted to the orientation, since

i1 is a sink for �Q

i2 is a sink for s+1 (
�Q)

i3 is a sink for s+2 s
+
1 (

�Q)

i4 is a sink for s+3 s
+
2 s

+
1 (

�Q)

with sik for k = 1, 2, 3, 4. Therefore, we have the Coxeter element adapted to �Q as C = s4s3s2s1 and the

Coxeter functors

C+ = Φ+
i4
Φ+

i3
Φ+

i2
Φ+

i1

C− = Φ−
i1
Φ−

i2
Φ−

i3
Φ−

i4

For ease of notation we will write P (ik) = Pk, Q(ik) = Qk and Φ±
ik

= Φ±
k for k = 1, 2, 3, 4. In example

4.1.2 we calculate the four projective indecomposable representations and the four injective indecomposable

representations.

In the Dynkin case by Corollary 4.2.7 all indecomposable representations are both preprojective and prein-

jective. So we can apply C− to every projective indecomposable representation as many times as needed until

we get an injective indecomposable representation.

For the projective P1 we have,

P1 : 0 C−(P1) : 0

0 K K 0

0 0

(C−)2(P1) : K

K K

K

0

0

0

0

0

0

1

1

1

and this means that (C−)2(P1) = Q1.
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For the projective P2 we have,

P2 : 0 C−(P2) : K

K K K2 K

0 K

(C−)2(P2) : K

K 0

K

0

0

1

(1,0)

(0,1)

(1,1)

1

1

0

and this means that (C−)2(P2) = Q2.

For the projective P3 we have,

P3 : K C−(P3) : 0

K K K 0

0 K

(C−)2(P3) : K

0 0

0

1

0

1

0

1

0

0

0

0

and this means that (C−)2(P3) = Q3.
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For the projective P4 we have,

P4 : 0 C−(P4) : K

K K K 0

K 0

(C−)2(P4) : 0

0 0

K

0

1

1

1

0

0

0

0

0

and this means that (C−)2(P4) = Q4.

4.3 Auslander-Reiten quiver: Combinatorics

In this section we will study some special types of quivers to introduce a tool that makes the combinatorics

of orientations reversal operations s±i much more transparent. The goal is to define the Auslander-Reiten

(AR) quiver. This quiver is usually defined in terms of almost split sequences, that can be seen in [5]. We

will define the AR quiver in a more elementary combinatorial construction.

From now on we assume that Q is a connected bipartite graph with I = I0 ∪ I1, which means that for

each edge of Q one vertex is in I0 and the other one is in I1. This partition is possible if and only if Q

has no cycles of odd length, in particular, any tree graph is bipartite. We will also assume that Q is not

the graph of only one vertex •. For the example 4.2.6 we can write the partition of I = {i1, i2, i3, i4, i5} as

I0 = {i1, i2, i4, i5} and I1 = {i3}.
We define the parity of i ∈ I with the notation p(i) ∈ Z2 by

p(i) =

⎧⎨
⎩ 0, i ∈ I0,

1, i ∈ I1.

The quiver Q× Z is defined by the set of vertices I × Z and oriented edges

(i, n) → (j, n+ 1) and (j, n) → (i, n+ 1)

for every edge i− j in Q and every n ∈ Z. It is easy to check that Q×Z is not connected, (i, n) is connected

with (j,m) if and only if m−n ≡ d(i, j) mod(2) where d(i, j) is the length of a path connecting i and j in �Q.
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The simplest example to represent these concepts is with the graphs A�. We will also give more complex

examples with the D� graph, which is a Dynkin graph, and with the D̂� graph, which is a Euclidean graph.

Example 4.3.1. For the graph of type A5

• • • • •

we have the quiver Q× Z

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •
We can see that this quiver is not connected, in fact there are two connected components, one in black and

one in red.

Example 4.3.2. For the graph of type D4

•

•

•

•
we have the quiver Q× Z

• • • •

• • • •

• • • •

• • • •
In this example we can also see that this quiver is not connected, we have two connected components, one in

black and one in red.
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Example 4.3.3. For the graph of type D̂4

•

•

•

•

•
we have the quiver Q× Z

• • • •

• • • •

• • • •

• • • •

• • • •
In this example we can also see that this quiver is not connected, we have two connected components, one in

black and one in red.

Define the quiver,

ZQ = {(i, n); p(i) + n ≡ 0 mod(2)} ⊂ Q× Z.

This quiver is called the translation quiver, and it is easy to see that ZQ is connected unless Q is a single

vertex.

Example 4.3.4. In example 4.3.1 we have the Q×Z quiver for the graph A5, if we label the vertices of that

graph we have,

i1 i2 i3 i4 i5

Set I0 = {i2, i4} and I1 = {i1, i3, i5}. We have that

p(i1) + 1 = 1 + 1 = 2 ≡ 0 mod(2) ⇒ (i1, 1) ∈ ZQ

p(i1) + 2 = 1 + 2 = 3 �≡ 0 mod(2) ⇒ (i1, 2) �∈ ZQ

p(i2) + 1 = 0 + 1 = 1 �≡ 0 mod(2) ⇒ (i2, 1) �∈ ZQ

p(i2) + 2 = 0 + 2 = 2 ≡ 0 mod(2) ⇒ (i2, 2) ∈ ZQ.
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Hence, we have the ZQ quiver,

(i1, 1) (i1, 3) (i1, 5)

(i2, 2) (i2, 4)

(i3, 1) (i3, 3) (i3, 5)

(i4, 2) (i4, 4)

(i5, 1) (i5, 3) (i5, 5)

The quiver ZQ has a canonical automorphism τ defined by

τ : ZQ → ZQ (4.7)

(i, n) �→ (i, n− 2).

In the next three examples the dashed line represents that τ(i, n) = (i, n− 2).

Example 4.3.5. For the graph of type A5

• • • • •

we have the quiver ZQ

• • • •

• • • •

• • • •

• • • •

• • • •
To understand the way we named the vertices in ZQ we can name the vertices of the A5 graph as

i1 i2 i3 i4 i5
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then we have the ZQ quiver with the label we give to each vertex

(i1, 1) (i1, 3) (i1, 5) (i1, 7)

(i2, 2) (i2, 4) (i2, 6)

(i3, 1) (i3, 3) (i3, 5) (i3, 7)

(i4, 2) (i4, 4) (i4, 6)

(i5, 1) (i5, 3) (i5, 5) (i5, 7)

Example 4.3.6. For the graph of type D4

•

•

•

•
we have the quiver ZQ

• • •

• • •

• • •

• • •
To understand the way we named the vertices in ZQ we can name the vertices of the D4 graph as

i2

i1

i3

i4



102

then we have the ZQ quiver with the label we give to each vertex

(i2, 1) (i2, 3) (i2, 5)

(i1, 2) (i1, 4)

(i3, 1) (i3, 3) (i3, 5)

(i4, 1) (i4, 3) (i4, 5)

Example 4.3.7. For the graph of type D̂4

•

•

•

•

•
we have the quiver ZQ

• • •

• • •

• • •

• • •

• • •

To understand the way we named the vertices in ZQ we can name the vertices of the D̂4 graph as

i2

i3

i1

i4

i5
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then we have the ZQ quiver with the label we give to each vertex

(i2, 1) (i2, 3) (i2, 5)

(i3, 1) (i3, 3) (i3, 5)

(i1, 2) (i1, 4)

(i4, 1) (i4, 3) (i4, 5)

(i5, 1) (i5, 3) (i5, 5)

We can observe a natural projection of the quiver ZQ onto Q. By taking the sections of these projections,

we obtain embeddings of Q in ZQ. The following definition clarifies this notion.

Definition 4.3.8. A subset T ⊂ ZQ is called a slice if, for any i ∈ I there is an unique vertex q = (i, hi) ∈ T

and whenever vertices i, j are connected by an edge in Q, we have hi = hj ± 1.

If we choose a slice T ⊂ ZQ that gives us an orientation ΩT for Q. Which gives a quiver �QT with

underlying graph Q. We will orient every edge e connecting vertices i, j in Q by

e : i → j if hi = hj + 1,

e : j → i if hi = hj − 1.

The orientation ΩT is exactly the opposite to the orientation we would get considering T as a subquiver of

ZQ.

Example 4.3.9. The next figure shows a slice T in red for the quiver ZQ of graph A5

• • • •

• • • •

• • • •

• • • •

• • T • •
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Then the quiver with orientation given by this slice is �QT given by,

•

•

•

•

•
Example 4.3.10. The next figure shows a slice T in red for the quiver ZQ of graph D4

• • •

• •

• • T •

• • •

Then the quiver with orientation given by this slice if �QT given by

•

•

•

•

Example 4.3.11. The next figure shows a slice T in red for the quiver ZQ of graph D̂4

• • •

• • •

• •

• • T •

• • •



105

Then the quiver with orientation given by this slice if �QT given by

•

•

•

•

•
Lemma 4.3.12. If Q is a tree, any orientation of Q can be obtained from a slice in ZQ.

Proof. Given an orientation Ω of Q. If q = (i, hi) ∈ ZQ. Let us define

ζ : I → Z

i �→ hi.

Note that

ζ(i) = ζ(j) + 1 if i → j in Ω.

Then for every vertex i ∈ I we have that if there exists j ∈ I such that i → j then (i, ζ(i)) → (j, ζ(j)) in

ZQ and (i, ζ(i)), (j, ζ(j)) ∈ T . This way we have a slice T of ZQ.

This theorem is a useful result in the study of quivers, as it allows us to easily generate all possible

orientations of a tree quiver by considering its slices. It also provides a nice connection between the algebraic

and combinatorial structures of the quiver, as it shows that the orientations of a tree quiver are intimately

related to the elements of the associated path algebra.

Lemma 4.3.13. Let Q be a tree. Two slices T, T ′ give the same orientation if and only if T ′ = τk(T ) for

some k ∈ Z.

Proof. If T, T ′ are two slices of ZQ that give the same orientation of Q. Let i ∈ I a vertex of Q. By Definition

4.3.8 there exists unique hi, h
′
, ∈ Z such that (i, hi) ∈ T and (i, h′

i) ∈ T ′. Since ZQ is connected then

hi − h′
i � d(i, i) mod(2).

The graph Q does not have edge loops, so d(i, i) = 0. Therefore, hi = h′
i + 2t for some t. We can assume

that t ≥ 0. Then by the definition of τ in (4.7) we have that

τ t(i, hi) = (i, h′
i).

Consider an arrow in T , i.e., there exists i, j ∈ I and an edge i− j in Q and an arrow α : (i, hi) → (j, hi + 1)

in T . Since T ′ has the same orientation of T we have an arrow β : (i, h′
i) → (j, h′

i + 1). Then τ t(α) = β.

Hence, τ t is a quiver morphism and τ t(T ) = T ′.
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If T ′ = τk(T ) for some k ∈ Z then for every (i, hi) ∈ T we have that (i, hi − 2k) ∈ T ′. If (i, hi) → (j, hj)

in the slice T then (i, hi − 2k) → (j, hj − 2k) is in the slice T ′. Therefore, T and T ′ give the same orientation

for Q.

This lemma has important consequences for understanding the combinatorics of slices and orientations

of a tree quiver. It allows us to identify certain slices as equivalent, and can be used to simplify calculations

involving Auslander-Reiten quivers. The operations s±i , which relate two different orientations of a quiver �Q

have their counterpart for the slices.

Definition 4.3.14. Let T = {(i, hi)} be a slice and let k ∈ I be a sink for the corresponding orientation

ΩT , which means that the function i �→ hi has a local minimum at k. We define a new slice T ′ = s+k T by

T ′ = {(i, h′
i)}, where

h′
i =

⎧⎨
⎩ hi + 2 if i = k,

hi if i �= k.

Similarly, if k ∈ I is a source for the orientation ΩT , which means that the function i �→ hi has a local

maximum at k. We define a new slice T ′ = s−k T by T ′ = {(i, h′
i)}, where

h′
i =

⎧⎨
⎩ hi − 2 if i = k,

hi if i �= k.

Example 4.3.15. The next graph illustrates the operations s±k .

• • • • •

• • • • •

k • • • •

• • • • •

• • • • •

• • • • •

• • • • •

k • • • •

• • • • •

• • • • •

s+k

s−k
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Example 4.3.16. The next graph illustrates the operations s±k .

• • • •

k • •

• • • •

• • • •

• • • •

k • •

• • • •

• • • •

s+k

s−k

The operations for the slices agree with the operations s±i for orientations,

Ωs±i T = s±i ΩT . (4.8)

Any two orientations can be obtained from each other by a sequence of operations s±i , by Lemma 2.1.6.

Definition 4.3.17. Let T = {(i, hi)} ⊂ ZQ be a slice.

(a) We say that a vertex q = (j, n) ∈ ZQ is above (respectively strictly above), T and write q � T (respec-

tively q � T ), if we have n ≥ hj, (respectively n > hj). We say that a slice T ′ is above a slice T if

every vertex q ∈ T ′ is above T .

(b) We say that a vertex q = (j, n) ∈ ZQ is below (respectively strictly below), T and write q � T (respec-

tively q ≺ T ), if we have n ≤ hj (respectively n < hj). We say that a slice T ′ is below a slice T if every

vertex q ∈ T ′ is below T .

Proposition 4.3.18. Let T = {i, hi} be a slice of ZQ.

(a) We have that p � T if and only if there exists a path in ZQ from some vertex q ∈ T to p.

(b) If p � T and q ∈ T then there are no paths from p to q in ZQ.

Proof. (a) If p � T we can write p = (j, n) and there exists q = (j, hj) ∈ T such that n ≥ hj . Let k be such

that j − k in Q, which must exist otherwise Q would be only one vertex, or it would not be connected.

Then n = hj + 2l and
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Therefore, there is a path in ZQ from some q ∈ T to p.

If we write p = (j, n) and q = (j, hj) ∈ T such that it exists a path from q to p then of course n ≥ hj

and p � T .

(b) Write p = (j, n). Since p � T we have that there exists q′ = (j, hj) ∈ T such that n > hj . If j − k in Q

we have that n = hj + 2l and

this means we can have a path from q′ to p but not one from p to q′. Then we can not have a path

from p to any other q ∈ T .

Theorem 4.3.19. If T, T ′ are two slices such that T ′ � T , then one can obtain T ′ by applying a sequence

of operations s+i to T . Moreover, this sequence is defined uniquely up to interchanging s+i s
+
j ↔ s+j s

+
i for i, j

not connected in Q.

Proof. Define

d(T, T ′) =| {q ∈ ZQ;T � q ≺ T ′} | .

We proceed by induction on d(T, T ′).

If d(T, T ′) = 0 then there is no vertex between T and T ′, which means that T = T ′.

Now suppose that d(T, T ′) > 0. Then we know that there exists a vertex q = (i, hi) such that T � q ≺ T ′.

If i → j in ΩT then there exists q′ = (j, hj) with hi = hj + 1, we want to show that q′ ≺ T ′. In fact in these

conditions we have that there exists (i, h′
i) ∈ T ′ with hi < h′

i, so it exists (j, h′
j) ∈ T ′ such that h′

i = h′
j ± 1.

Therefore, we have

hi < h′
i ⇒ hj + 1 < h′

j ± 1



109

and we have that
hj + 1 < h′

j + 1 hj + 1 < h′
j − 1

⇒ hj < h′
j ⇒ hj < h′

j − 2 < h′
j

⇒ q′ = (j, hj) ≺ T ′ ⇒ q′ = (j, hj) ≺ T ′.

Then amongst all vertex that are strictly below T ′ there exists a sink for ΩT . Indeed, as Q does not have

oriented cycles there exists a sink in �QT . Let q = (i, hi) ≺ T ′ if it is not a sink, exists j such that i → j

and q′ = (j, hj) is also strictly below T ′ from what we have seen above. Since we have finitely many points

between T and T ′ then this have to end with a sink.

Let (k, hk) ∈ T such that (k, hk) ≺ T ′ and k is a sink in ΩT . We can apply s+k in T , since k is a

sink, and we have T = s+k (T ) that takes the vertex (k, hk) in (k, hk + 2) and keeps all the other vertex the

same. So T � T ′ since (k, hk + 2) may be in T ′ or not, but the rest of the slice stayed the same. Therefore,

d(T , T ′) = d(T, T ′)−1 and by the induction hypothesis we have that T ′ can be obtained from T by a sequence

of operations s+i . Then

T ′ = s+i1 · · · s+in(T ) = s+i1 · · · s+ins+k (T ).

In this way T ′ is obtained from T by a sequence of operations s+i .

For the uniqueness, we will also do induction in d(T, T ′). If d(T, T ′) = 0 then T = T ′.

If d(T, T ′) > 0 and we write

T ′ = s+ik · · · s+i1(T ) = s+jn · · · s+j1(T ).

Then i1 is a sink for T , but we can only move (i1, hi1) by applying s+i1 which means that the second sequence

must contain i1. This means that there exists ja such that ja = i1 for some a. Choose a to be the smallest

possible. So the sequence becomes

s+jn · · · s+j1 = s+jn · · · s+ja+1
s+i1s

+
ja−1

· · · s+j1 .

As a is the smallest possible we have that i1 is a sink for

s+j1(T ), s
+
j2
s+j1(T ), · · · , s+ja−1

· · · s+j1(T ).

Thus, as every j → i then j can not be a sink itself, so j1, · · · , ja−1 are not connected in Q, so we can

permute and rewrite

T ′ = s+jn · · · s+ja+1
s+i1s

+
ja−1

· · · s+j1(T ) = s+jn · · · s+ja+1
s+ja−1

· · · s+j1s+i1(T )

and

T ′ = s+ik · · · s+i2(T ) = s+jn · · · s+ja−1
· · · s+j1(T )

with T = s+i1(T ) and these sequences have d(T , T ′) = d(T, T ′) − 1 since we took out the element s+i1 . So T ′

is written in a unique way up to interchanging permutations in T and T .
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This theorem is a crucial result in the study of the Auslander-Reiten quiver of a representation-infinite

algebra. It provides a way to obtain any slice in the Auslander-Reiten quiver starting from a fixed slice,

by applying a sequence of standard mutations. Furthermore, it ensures the uniqueness of this sequence up

to certain commutation relations. This result is often used to show that the Auslander-Reiten quiver is a

connected quiver.

Corollary 4.3.20. For any two orientation Ω,Ω′ of a tree Q, one can obtain Ω′ by applying a sequence of

operations s+i to Ω. One can also get Ω′ by applying a sequence of operations s−i to Ω.

Proof. By Lemma 4.3.12 we have that any orientation of Q can be obtained from a slice in ZQ, so we have

that there exists T, T ′ slices such that Ω = ΩT and Ω′ = ΩT ′ . We can suppose that T ′ � T and by Theorem

4.3.19 we can write

T ′ = s+in · · · s+i1(T ).

Therefore, by (4.8) we have that

Ω′ = ΩT ′ = Ωs+in ···s+i1 (T ) = s+in · · · s+i1(ΩT ) = s+in · · · s+i1(Ω).

The second statement is made analogously.

This corollary provides an important property of the operations s+i and s−i in the context of tree orien-

tations. It shows that any two orientations of a tree can be related to each other by applying a sequence

of these operations, either in the positive or negative direction. This result is fundamental in the study of

Auslander-Reiten theory, as it allows us to understand the structure of the Auslander-Reiten quiver associ-

ated to a tree quiver in terms of the possible orientations of the tree. Furthermore, the uniqueness up to

interchanging certain operations is an important observation, as it allows us to identify which sequences of

operations lead to the same orientation.

4.4 Auslander-Reiten quiver: Representation theory

We introduced the quiver ZQ and the notion of slice as a convenient tool for visualizing sink to source

transformations. In this section we will introduce the Auslander Reiten quiver and some properties of

preprojective representations.

Theorem 4.4.1. Let Q be a bipartite graph. Then one can assign to every pair (T, q), where T is a slice of

ZQ and q is a vertex of ZQ, a representation ITq of �QT so that the following conditions hold:

(a) If q is strictly below T , then ITq = 0.

(b) If q = (i, hi) ∈ T is a sink for T then ITq = S(i).

(c) If T ′ = s+i T and q � T ′ then ITq = Φ−
i I

T ′
q , IT

′
q = Φ+

i I
T
q .
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Moreover, these conditions determine ITq uniquely up to isomorphism.

Condition (c) of Theorem 4.4.1 is illustrated in the Figure below.

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

T=s−i (T ′)

T ′=s+i (T )

IT ′
q

IT
q

Proof. First note that if such representations ITq exists, they are unique. Given q � T and choose a slice T ′

such that T ′ � T that contains q as a sink. By Theorem 4.3.19 we can write T ′ = s+in · · · s+i1(T ) for some

sequence s+in · · · s+i1 . Then we have

ITq = Φ−
i1
· · ·Φ−

in
(S(i))

since IT
′

q = S(i) where S(i) is the simple representation of �QT ′ . This proves uniqueness of ITq .

For every pair (T, q) with q � T we have a slice T ′ � T that contains q such that q is a sink of T ′ and a

sequence of reflections sin · · · si1 such that T ′ = s+in · · · s+i1(T ). Define ITq by

ITq = Φ−
i1
· · ·Φ−

in
(S(i))

in this definition the representations does not depend on the choice of T ′ neither the reflections s+in · · · s+i1 .
Indeed, by Theorem 4.3.19, for some choice of T ′ the sequence of reflections is unique up to interchanging s+i

with s+j when i, j are not connected in Q. But in this case the functors Φ−
i and Φ−

j commute, that means

that there exists a functorial isomorphism

Φ−
i Φ

−
j � Φ−

j Φ
−
i .

Of course if i and j are not connected in Q the vector space and the morphism of one does not affect the

other. Then ITq does not depend on the choice of reflections.
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Now let us show that it does not depend on the choice of the slice T ′. If T ′ = {(j, h′
j)} and T ′′ = {(j, h′′

j )}
are two slices that have q = (i, hi) as a sink, then the two slices coincide at i and at every j such that j is

connected with i in Q. In this case, by Theorem 4.3.19 we have that with a sequence of operations s+k we

can get to T ′′ where k is not connected to i. But T ′ and s+k (T
′) give the same representation ITq , indeed if

T ′ = s+in · · · s+i1(T ) and T ′′ = s+k s
+
in
· · · s+i1(T ) we have

ITq = Φ−
i1
· · ·Φ−

in
(S(i)) = Φ−

i1
· · ·Φ−

in
Φ−

k (S(i))

since Φ−
k (S(i)) = S(i) since k �= i and k is not connected to i.

Therefore, the representation ITq as defined just depends on q and T . And this definition satisfies the

conditions.

Example 4.4.2. Consider the graph of type A5

i1 i2 i3 i4 i5.

We have the quiver ZQ with slice T in red

• • • •

• • •

• • • •

• • •

• • T • •

By Theorem 4.4.1 we have a representation ITq for every vertex q ∈ ZQ. For every q strictly below T we have

that ITq = 0. See below the vertices that we are going to calculate the associated representation ITq ,

• • q3 q8

• q1 q6

• • q4 q9

• q2 q7

• • T q5 q10
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Therefore we have the following representations in the quiver ZQ

0 0 ITq3 ITq8

0 ITq1 ITq6

0 0 ITq4 ITq9

0 ITq2 ITq7

0 0 T ITq5 ITq10

Let us find the representations in the vertices that belong to the slice T . For the vertices q ∈ T such that q is

a sink for T we have the simple representations, so ITq1 = S(i2) and ITq2 = S(i4) with S(i2), S(i4) relative to

the quiver �QT . The quiver �QT and the representations can be seen as follows,

�QT = • • • • •

S(i2) = 0 K 0 0 0

S(i4) = 0 0 0 K 0.

To find the representations for the vertices that are not a sink we need to use other slices. Let T1 = s+i2(T ),

T2 = s+i2s
+
i4
(T ) and T3 = s+i4(T ) then we have the representations

ITq3 = Φ−
i2
(S(i1)), ITq4 = Φ−

i2
Φ−

i4
(S(i3)), and ITq5 = Φ−

i4
(S(i5)).

With representation ITq3 as,

�QT1 = • • • • •

S(i1) = K 0 0 0 0

ITq3 = K K 0 0 0
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representation ITq4 as,

�QT2
= • • • • •

S(i3) = 0 0 K 0 0

Φ−
i4
(S(i3)) = 0 0 K K 0

ITq4 = 0 K K K 0.

and representation ITq5 as,

�QT3
= • • • • •

S(i5) = 0 0 0 0 K

ITq5 = 0 0 0 K K

For the vertices that do not belong to the slice T we need longer slices in order to find the represen-

tations for each vertex. Consider T4 = s+i2s
+
i1
s+i4s

+
i3
(T ), T5 = s+i2s

+
i4
s+i3s

+
i5
(T ), T6 = s+i2s

+
i1
s+i4s

+
i3
s+i2(T ),

T7 = s+i2s
+
i4
s+i3s

+
i1
s+i2s

+
i5
s+i4(T ), and T8 = s+i2s

+
i4
s+i3s

+
i5
s+i4(T ) then we have the representations

ITq6 =Φ−
i2
Φ−

i1
Φ−

i4
Φ−

i3
(S(i2)), ITq7 = Φ−

i2
Φ−

i4
Φ−

i3
Φ−

i5
(S(i4)), ITq8 = Φ−

i2
Φ−

i1
Φ−

i4
Φ−

i3
Φ−

i2
(S(i1)),

ITq9 =Φ−
i2
Φ−

i4
Φ−

i3
Φ−

i1
Φ−

i2
Φ−

i5
Φ−

i4
(S(i3)), and ITq10 = Φ−

i2
Φ−

i4
Φ−

i3
Φ−

i5
Φ−

i4
(S(i5)).

With representation ITq6 as,

�QT4 = • • • • •

S(i2) = 0 K 0 0 0

ITq6 = K K K K 0

representation ITq7 as,
�QT5

= • • • • •

S(i4) = 0 0 0 K 0

ITq7 = 0 K K K K
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representation ITq8 as,
�QT6

= • • • • •

S(i1) = K 0 0 0 0

ITq8 = 0 0 K K 0

representation ITq9 as,

�QT7 = • • • • •

S(i3) = 0 0 K 0 0

ITq9 = K K K K K

and representation ITq10 as,

�QT8
= • • • • •

S(i5) = 0 0 0 0 K

ITq10 = 0 K K 0 0.

Example 4.4.3. Consider the graph of type D̂4

i2

i3

i1

i4

i5.
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We have the quiver ZQ with the slice T in red

• • •

• • •

• •

• T • •

• • •

In the same way as in the Example 4.4.2 we have a representation ITq for every vertex q ∈ ZQ. For every

q strictly below T we have that ITq = 0. See below the vertices that we are going to calculate the associated

representation ITq ,

• q2 q7

• q3 q8

q1 q6

• T q4 q9

• q5 q10

Therefore we have the following representations in the quiver ZQ

0 ITq2 ITq7

0 ITq3 ITq8

ITq1 ITq6

0 T ITq4 ITq9

0 ITq5 ITq10

Let us find the representations in the vertices that belong to the slice T . For the vertices q ∈ T such that q

is a sink for T we have the simple representations, so ITq1 = S(i1), with S(i1) relative to the quiver �QT . The
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quiver �QT and the representation can be seen as follows,

• 0

• 0

�QT = • S(i1) = K

• 0

• 0.

To find the representations for the vertices that are not a sink we need to use other slices. Let T1 = s+i1(T )

then we have the representations

ITq2 = Φ−
i1
(S(i2)), ITq3 = Φ−

i1
(S(i3)), ITq4 = Φ−

i1
(S(i4)), and ITq5 = Φ−

i1
(S(i5)).

With representation ITq2 as,

• K K

• 0 0

�QT1 • S(i2) = 0 ITq2 = K

• 0 0

• 0 0

representation ITq3 as,

• 0 0

• K K

�QT1
• S(i3) = 0 ITq3 = K

• 0 0

• 0 0
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representation ITq4 as,

• 0 0

• 0 0

�QT1
• S(i4) = 0 ITq4 = K

• K K

• 0 0

and representation ITq5 as,

• 0 0

• 0 0

�QT1
• S(i5) = 0 ITq5 = K

• 0 0

• K K.

For the vertices that do not belong to the slice T we need longer slices in order to find the representations for

each vertex. Consider T2 = s+i1s
+
i2
s+i3s

+
i4
s+i5(T ), and T3 = s+i1s

+
i2
s+i3s

+
i4
s+i5s

+
i1
(T ) then we have the representations

ITq6 =Φ−
i1
Φ−

i2
Φ−

i3
Φ−

i4
Φ−

i5
(S(i1)), ITq7 = Φ−

i1
Φ−

i2
Φ−

i3
Φ−

i4
Φ−

i5
Φ−

i1
(S(i2)), ITq8 = Φ−

i1
Φ−

i2
Φ−

i3
Φ−

i4
Φ−

i5
Φ−

i1
(S(i3))

ITq9 =Φ−
i1
Φ−

i2
Φ−

i3
Φ−

i4
Φ−

i5
Φ−

i1
(S(i4)), and ITq10 = Φ−

i1
Φ−

i2
Φ−

i3
Φ−

i4
Φ−

i5
Φ−

i1
(S(i5)).

With representation ITq6 as,

• 0 K

• 0 K

�QT2
= • S(i1) = K ITq6 = K3

• 0 K

• 0 K
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representation ITq7 as,

• K 0

• 0 K

�QT3 = • S(i2) = 0 ITq7 = K2

• 0 K

• 0 K

representation ITq8 as,

• 0 K

• K 0

�QT3
= • S(i3) = 0 ITq8 = K2

• 0 K

• 0 K

representation ITq9 as,

• 0 K

• 0 K

�QT3 = • S(i4) = 0 ITq9 = K2

• K 0

• 0 K
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and representation ITq10 as,

• 0 K

• 0 K

�QT3 = • S(i5) = 0 ITq10 = K2

• 0 K

• K 0.

Theorem 4.4.4. Let Q be a bipartite graph and (T, q) a pair with T a slice and q a vertex of ZQ. Consider

the representations ITq as defined in Theorem 4.4.1.

(a) If q = (i, n) ∈ T then ITq = P (i) is the indecomposable projective representation.

(b) The construction is invariant under the translation τ defined by (4.7), which means that IτTτq = ITq .

(c) If q � T then ITτ−1q = IτTq = C−(ITq ), where C− is the Coxeter functor as in (4.5).

(d) Each representation ITq is indecomposable and preprojective, possibly zero.

Proof. (a) Suppose that q = (i, n) ∈ T and ITq = Φ−
i1
· · ·Φ−

in
(S(i)). We saw in Theorem 2.2.11 that if

�Q′ = s+k (
�Q) and k �= i we have Φ−

k (P
′(i)) = P (i) is the indecomposable representation of �Q. The way

we defined the representations ITq we have that q is a sink for T ′ and so S(i) = P (i)n is the projective

indecomposable representation for s+in−1
· · · s+i1 �Q. So ITq = Φ−

i1
· · ·Φ−

in
(P (i)n) = P (i) since all the index

i1, · · · , in are different from i. Therefore, ITq are indecomposable projective representations.

(b) We have that τT gives us another slice of ZQ and that slice give the same orientation for the graph Q

by Lemma 4.3.12, from the uniqueness of the construction we have that

IτTτq = ITq .

(c) By the item (2) we have that

IτTq = IτTττ−1q = ITτ−1q.

We can write C− = Φ−
i1
· · ·Φ−

i�
. If T ′ = τT and we want to write T ′ from T by reflections, we will need

to use each i ∈ I once, so we can choose to write it by T ′ = s−i1 · · · s−i�(T ) and T = s+i� · · · s+i1(T ′). We

have that q � T , so by Theorem 4.4.1 we have that

IT
′

q = IτTq = Φ−
i1
· · ·Φ−

i�
(ITq ) = C−(ITq ).
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(d) If q � T , write q = τ−nq′ with q′ ∈ T and n ≥ 0 then by item (3) we have

ITq = ITτ−nq′ = (C−)n(ITq′).

We have that q′ ∈ T therefore from item (1) we have that ITq′ = P (i) then

ITq = (C−)n(ITq′) = (C−)n(P (i)).

By applying (C+)n+1 we have

(C+)n+1(ITq ) = (C+)n+1((C−)n(P (i))) = (C+)(P (i)) = 0

and ITq is preprojective.

Corollary 4.4.5. Item (a) of Theorem 4.4.4 gives all the indecomposable projective representations of Q.

Proof. By Theorem 1.4.4 we know that the number of indecomposable projective representations is the

number of vertices of the quiver Q, consider | I |= �. The number of vertices of T is also �. Theorem 4.4.4 (a)

gives us � indecomposable projective representation. Therefore, we have all the indecomposable projective

representation.

Let us see an example where we have representations ITq = 0 for some q ∈ ZQ.

Example 4.4.6. Consider the graph A3

i1 i2 i3.

We have the quiver ZQ with slice T in red, see below the vertices that we are going to calculate the associated

representation ITq ,

• q1 • •

• q2 • •

• • q3 q4

Therefore we have the following representations in the quiver ZQ,

• ITq1 • •

• ITq2 • •

• • ITq3 ITq4
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We have one vertex in the slice that is also a sink, so we have the simple representation in that vertex,

ITq1 = S(i1) with S(i1) relative to the quiver �QT . The quiver �QT and the representation can be seen as

follows,
�QT = • • •

S(i1) = K 0 0.

For the other vertices of the slice T we have to use other slices, T1 = s+i1(T ), T2 = s+i1s
+
i2
(T ), and T3 =

s+i1s
+
i2
s+i1s

+
i3
s+i2(T ) with representations

ITq2 = Φ−
i1
(S(i2)), ITq3 = Φ−

i1
Φ−

i2
(S(i3)), and ITq4 = Φ−

i1
Φ−

i2
Φ−

i1
Φ−

i3
Φ−

i2
(S(i3)).

With representation ITq2 as,
�QT1

= • • •

S(i2) = 0 K 0

ITq2 = K K 0

representation ITq3 as,
�QT2

= • • •

S(i3) = 0 0 K

ITq3 = K K K

representation ITq4 as,
�QT3 = • • •

S(i3) = 0 0 K

ITq4 = 0 0 0.

Therefore, ITq4 = 0.

The way we constructed the representation ITq allow it to be zero, as we saw in Example 4.4.6. However,

for the Auslander-Reiten quiver we are interested in studying the representations ITq that are different from

zero, for that we have the following definition.

Definition 4.4.7. Let Q be a bipartite graph and let T ⊂ ZQ be a slice. We define the preprojective

Auslander-Reiten quiver of �QT as the subquiver of ZQ with the set of vertices

ΔT = {q ∈ ZQ | ITq �= 0} ⊂ ZQ.
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If Q is Dynkin, we will drop the word “preprojective” and we will say that Δ is the Auslander-Reiten

quiver of �QT .

Example 4.4.8. Consider the graph A4,

i1 i2 i3 i4.

We have the quiver ZQ with slice T in red,

• • • •

• • • •

• • • •

• T • • •
We want to find the Auslander-Reiten quiver for this slice, for that we need to calculate the representations

ITq with q ∈ ZQ. By Theorem 4.4.1 we know that if q is strictly below T then ITq = 0. See below the vertices

that we will calculate the representations ITq ,

q1 q5 q8 q10 q14

q2 q6 q9 q13

q3 q7 q12

q4 q11

That will give us the representations,

ITq1 ITq5 ITq8 ITq10 ITq14

ITq2 ITq6 ITq9 ITq13

ITq3 ITq7 ITq12

ITq4 ITq11

As q1 is a sink, we have ITq1 = S(i1) with

�QT = • • • •

S(i1) = K 0 0 0.
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For the other representations we need some slices. Consider

T1 =s+i1(T ), T2 = s+i1s
+
i2
(T ), T3 = s+i1s

+
i2
s+i3(T ), T4 = s+i1s

+
i2
s+i1s

+
i3
(T ),

T5 =s+i1s
+
i2
s+i1s

+
i3
s+i2s

+
i4
(T ), T6 = s+i1s

+
i2
s+i1s

+
i3
s+i2s

+
i4
s+i3s

+
i1
(T ), T7 = s+i1s

+
i2
s+i3s

+
i1
s+i2s

+
i1
s+i4s

+
i3
s+i2(T ),

T8 =s+i1s
+
i2
s+i3s

+
i4
s+i1s

+
i2
s+i3(T ), T9 = s+i1s

+
i2
s+i3s

+
i1
s+i2s

+
i1
s+i4s

+
i3
s+i2s

+
i4
(T ),

T10 =s+i1s
+
i2
s+i1s

+
i3
s+i2s

+
i4
s+i3s

+
i1
s+i2s

+
i1
s+i4s

+
i3
(T ), and T11 = s+i1s

+
i2
s+i3s

+
i1
s+i2s

+
i4
s+i3s

+
i1
s+i2s

+
i4
s+i3s

+
i1
s+i2(T )

with representations,

ITq2 = Φ−
i1
(S(i2)), ITq3 = Φ−

i1
Φ−

i2
(S(i3)), ITq4 = Φ−

i1
Φ−

i2
Φ−

i3
(S(i4)), ITq5 = Φ−

i1
Φ−

i2
(S(i1)),

ITq6 = Φ−
i1
Φ−

i2
Φ−

i1
Φ−

i3
(S(i2)), ITq7 = Φ−

i1
Φ−

i2
Φ−

i1
Φ−

i3
Φ−

i2
Φ−

i4
(S(i3)), ITq8 = Φ−

i1
Φ−

i2
Φ−

i1
Φ−

i3
Φ−

i2
Φ−

i4
(S(i1))

ITq9 = Φ−
i1
Φ−

i2
Φ−

i1
Φ−

i3
Φ−

i2
Φ−

i4
Φ−

i3
Φ−

i1
(S(i2)), ITq10 = Φ−

i1
Φ−

i2
Φ−

i3
Φ−

i1
Φ−

i2
Φ−

i1
Φ−

i4
Φ−

i3
Φ−

i2
(S(i1)),

ITq11 = Φ−
i1
Φ−

i2
Φ−

i3
Φ−

i4
Φ−

i1
Φ−

i2
Φ−

i3
(S(i4)), ITq12 = Φ−

i1
Φ−

i2
Φ−

i3
Φ−

i1
Φ−

i2
Φ−

i1
Φ−

i4
Φ−

i3
Φ−

i2
Φ−

i4
(S(i3)),

ITq13 = Φ−
i1
Φ−

i2
Φ−

i1
Φ−

i3
Φ−

i2
Φ−

i4
Φ−

i3
Φ−

i1
Φ−

i2
Φ−

i1
Φ−

i4
Φ−

i3
(S(i2)),

and ITq14 = Φ−
i1
Φ−

i2
Φ−

i3
Φ−

i1
Φ−

i2
Φ−

i4
Φ−

i3
Φ−

i1
Φ−

i2
Φ−

i4
Φ−

i3
Φ−

i1
Φ−

i2
(S(i1)).

With representation ITq2 as,

�QT1
= • • • •

S(i2) = 0 K 0 0

ITq2 = K K 0 0

representation ITq3 as,
�QT2 = • • • •

S(i3) = 0 0 K 0

ITq3 = K K K 0

representation ITq4 as,
�QT3

= • • • •

S(i4) = 0 0 0 K

ITq4 = K K K K
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representation ITq5 as,
�QT2

= • • • •

S(i1) = K 0 0 0

ITq5 = 0 K 0 0

representation ITq6 as,
�QT4 = • • • •

S(i2) = 0 K 0 0

ITq6 = 0 K K 0

representation ITq7 as,
�QT5

= • • • •

S(i3) = 0 0 K 0

ITq7 = 0 K K K

representation ITq8 as,
�QT5

= • • • •

S(i1) = K 0 0 0

ITq8 = 0 0 K 0

representation ITq9 as,
�QT6 = • • • •

S(i2) = 0 K 0 0

ITq9 = 0 0 K K

representation ITq10 as,
�QT7

= • • • •

S(i1) = K 0 0 0

ITq10 = 0 0 0 K
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representation ITq11 as,
�QT8

= • • • •

S(i4) = 0 0 0 K

ITq11 = 0 0 0 0

representation ITq12 as,
�QT9

= • • • •

S(i3) = 0 0 K 0

ITq12 = 0 0 0 0

representation ITq13 as,
�QT10 = • • • •

S(i2) = 0 K 0 0

ITq13 = 0 0 0 0

and representation ITq14 as,

�QT11
= • • • •

S(i1) = K 0 0 0

ITq14 = 0 0 0 0.

Therefore, the Auslander-Reiten quiver for the slice T is,

• • • •

• • •

• •

•
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If we choose another slice T ′ in red in the quiver ZQ as

• • • •

• • • •

• • • •

• T ′ • • •

then we can follow the same steps as before and find the following Auslander-Reiten quiver for the slice T ′ as

• •

• • •

• •

• • •
Theorem 4.4.9. Let Q be a bipartite graph and let T be a slice of ZQ. Then the map

φ : ΔT → Ind( �QT )

q �→ ITq

is a bijection between ΔT as defined in Definition 4.4.7 and the set Ind( �QT ) of isomorphism classes of nonzero

preprojective indecomposable representations of �QT .

Proof. By Theorem 4.4.4 (4) we know that each ITq is a preprojective indecomposable representation, so

ITq ∈ Ind( �QT ).

On the other hand, if I is a preprojective indecomposable representation then by Theorem 4.2.5

I = (C−)n(P (i))

for some n ≥ 0. For q = (i, hi) ∈ T we have by Theorem 4.4.4 item (1) that ITq = P (i). Then

I = (C−)n(P (i)) = (C−)n(ITq ) = ITτ−nq

therefore each preprojective indecomposable representation can be written as ITq for some q. It follows that

φ is surjective.

Now it remains to show that two representations of the form (C−)n(P (i)) are not isomorphic. Indeed, if

I = (C−)n1(P (i1)) = (C−)n2(P (i2)).

We have that n1 is taken to be the maximum such that (C+)n(I) �= 0, then n1 = n2. So P (i1) = P (i2),

which only occurs if i1 = i2. Which means that the function φ is injective, and hence bijective.
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This theorem relates the combinatorics of slices of the path algebra ZQ of a bipartite graph Q to the

representation theory of the quiver �QT obtained by restricting Q to T . It shows that the set of isomorphism

classes of nonzero preprojective indecomposable representations of �QT is in bijection with the set of elements

of the root lattice ΔT of T .

Theorem 4.4.10. Let Q be a Dynkin graph, and let T,ΔT be as in Definition 4.4.7. Let w0 ∈ W be as in

Lemma A.11.1 and write w0 = sir · · · si1 to be a reduced expression for w0 adapted to orientation ΩT , also

let T ′ = s+ir · · · s+i1T . Then

ΔT = {q ∈ ZQ | T � q ≺ T ′}.

Proof. Denote by

Δ′
T = {q ∈ ZQ | T � q ≺ T ′}.

Each q ∈ Δ′
T is such that ITq �= 0 then q ∈ ΔT and Δ′

T ⊆ ΔT . Therefore, {ITq ; q ∈ Δ′
T } are all the

indecomposable representations I1, · · · , Ir with,

I1 =S(i1), dim (I1) = γ1 = αi1 ,

I2 =Φ−
i1
(S(i2)), dim (I2) = γ2 = si1(αi2), (4.9)

...

Ir =Φ−
i1
· · ·Φ−

ir−1
(S(ir)), dim (Ir) = γr = si1 · · · sir−1(αir ).

As in (3.6).

Then the function,

φ : Δ′
T → Ind( �QT )

q �→ ITq

is injective, since Δ′
T is a subset of ΔT . By Theorem 4.4.9 we have that ΔT is in bijection with Ind( �QT ).

The set Δ′
T has �+ r− � = r elements and the set Ind( �QT ) has r elements as we can see in (4.9). Therefore,

the function is a bijection and the only possibility for this to happen is if Δ′
T = ΔT .

Corollary 4.4.11. The slice T ′ = s+ir · · · s+i1T used in the proof of Theorem 4.4.10, does not depend on the

choice of the reduced expression w0 = sir · · · si1 .

Proof. If w0 = sir · · · si1 = sjr · · · sj1 then we have that T ′ = sir · · · si1(T ) = sjr · · · sj1(T ) but by Theorem

4.3.19 the sequence is defined uniquely up to interchanging s+i s
+
j ↔ s+j s

+
i for i, j not connected in Q

By Proposition 3.2.1, the nonzero indecomposable representations are in bijection with positive roots in

the Dynkin case, so we have a bijection

ΔT � R+.

Therefore, by Example 4.4.8 we have that the positive root system R+ associated with the graph A4 has 10

elements.
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Theorem 4.4.12. Let Q be a Dynkin graph, T ⊂ ZQ a slice, and ΔT the Auslander-Reiten quiver. Define

a partial order � on ΔT , and thus on Ind( �QT ), by

q � q′ ⇐⇒ there is a path in ΔT from q to q′.

(a) For any choice of reduced expression w0 = sir · · · si1 adapted to �QT , the order on R+ defined by (3.6)

is compatible with the partial order �, which means that if Ik � In then k ≤ n.

(b) Any linear order on R+ compatible with � can be obtained from some reduced expression for w0 adapted

to �QT .

(c) We have that

Hom�QT
(Iq, Iq′) �= 0 ⇒ q � q′,

Ext1�QT
(Iq, Iq′) �= 0 ⇒ q ≺ q′.

Proof. (a) Consider the sequence of slices

T1 = T,

T2 = s+i1(T ),

...

Tr = s+ir−1
· · · s+i1(T )

Tr+1 = s+ir · · · s+i1(T ) = T ′.

Since every Ti differs from Ti−1 in a single place, there exists only one qi ∈ ZQ such that qi ∈ Ti and

qi � Ti−1 for i = 2, · · · , r and for i = 1 we have that q1 ∈ T1 and q1 ≺ T2.

The Auslander-Reiten quiver has the set of vertices:

ΔT = {q ∈ ZQ;T � q ≺ T ′} = {q1, · · · , qr}.

By Theorem 4.4.1 item (2) and Theorem 4.4.10 we have that

ITq1 = S(i1) = I1.

Since w0 is adapted to �QT then i1 is a sink for �QT . As Tk = s+ik−1
· · · s+i1(T ) and qk � Tk then

ITq2 = Φ−
i1
(IT2

q2 ) = Φ−
i1
(S(i2)) = I2

...

ITqr = Φ−
i1
· · ·Φ−

ir−1
(S(ir)) = Ir,

so we have all the indecomposable representations of a Dynkin quiver.

Now it is enough to show that if qk � qn then k ≤ n. If qk � qn then there exists a path in ΔT from

qk to qn, and by Proposition 4.3.18 we have that p � T if and only if there exists a path in ZQ from

some vertex of T to p. Since qk ∈ Tk we have that qn � Tk. If qn ∈ Tk then n = k and if qn � Tk then

n > k, so k ≤ n.
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(b) If we have a total order in R+ we have that R+ = {α1, · · · , αr} and if αi � αj then i ≤ j. If the order

is compatible with � from ΔT this means that there is a total order in ΔT . So we have a sequence of

slices T0 � T1 � · · · � Tr = T ′ where each Tk is obtained from Tk−1 by applying one reflection s+ik and

that defines a reduced expression for w0 adapted to �QT ,

w0 = sir · · · si1 .

(c) Note that q � q′ if and only if for every total order ≤ compatible with � we have that q ≤ q′. By

Theorem 3.3.3

Hom�Q(Ia, Ib) = 0 for a > b,

Ext1�Q(Ia, Ib) = 0 for a ≤ b.

Therefore,

Hom�Q(Iq, Iq′) �= 0 for q ≤ q′ ⇒ q � q′,

Ext1�Q(Iq, Iq′) �= 0 for q > q′ ⇒ q � q′.

This theorem is an important result in the study of the Auslander-Reiten quivers of Dynkin quivers. It

provides a partial order on the indecomposable representations of the preprojective algebra that is compatible

with the Auslander-Reiten structure. The fact that any linear order compatible with this partial order can be

obtained from a reduced expression for w0 adapted to �QT is a useful tool for constructing Auslander-Reiten

quivers and studying their properties. The implications of the last part of the theorem for Hom and Ext

groups provide important information about the structure of the quiver and the relationships between its

representations. Overall, this theorem plays a key role in understanding the representation theory of Dynkin

quivers and their preprojective algebras.
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Appendix A

ROOT SYSTEM

For the reader’s convenience we include all definitions and results related to the theory of finite root

systems as an appendix for this dissertation. This study will be made from an axiomatic point of view to

avoid the Lie theory approach. We follow [12] in this chapter.

We will use four axioms to define root systems and from that we can prove all the properties we need

along this dissertation. We will start this appendix studying the definition and some properties of reflections,

since in the axioms we will use this definition.

A.1 Reflections in a Euclidean space

Fix a euclidean space E, which is a finite dimensional vector space over R endowed with an inner product

( , ). And set � = dim(E).

Geometrically, an orthogonal reflection on the euclidean space E is an invertible linear operator on E that

leaves a hyperplane point wise fixed and sends any vector orthogonal to that hyperplane into its negative.

The reader can see that in Figure A.1.

A reflection is an orthogonal operator, which is an operator that preserves the inner product on E, using

symbols this means that (s(α), s(β)) = (α, β). Any nonzero vector α determines a reflection sα, with respect

to the hyperplane

Pα = {β ∈ E; (β, α) = 0}. (A.1)

Naturally nonzero vectors proportional to α yield the same reflection. Given a vector α ∈ E − {0} we

have the reflection

sα : E → E with sα(β) = β − 2(β, α)

(α, α)
α.

For ease of notation we define

〈β, α〉 = 2(β, α)

(α, α)
,

which will be frequently used through this appendix.
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Figure A.1: Reflection of β

Notice that 〈β, α〉 is linear only in the first coordinate, indeed for α, β, γ ∈ E and t ∈ R we have

〈β + γ, α〉 = 2(β + γ, α)

(α, α)
=

2 ((β, α) + (γ, α))

(α, α)
=

2(β, α)

(α, α)
+

2(γ, α)

(α, α)
= 〈β, α〉+ 〈γ, α〉

〈tβ, α〉 = 2(tβ, α)

(α, α)
= t

2(β, α)

(α, α)
= t 〈β, α〉

〈β, tα〉 = 2(β, tα)

(tα, tα)
=

2t(β, α)

t2(α, α)
=

1

t

2(β, α)

(α, α)
�= t 〈β, α〉 .

Further, for each β ∈ E we have

sαsα(β) = sα(β − 〈β, α〉α) = sα(β)− 〈β, α〉 sα(α) = β − 〈β, α〉α+ 〈β, α〉α = β,

so sα is an involution and sα = s−1
α .

Lemma A.1.1. Let R be a finite set which spans E. Suppose all reflections sα with α ∈ R leave R invariant,

which means that sα(R) = R. If s ∈ GL(E) and P is a hyperplane of E are such that,

(i) s(R) = R;

(ii) s(β) = β ∀ β ∈ P ;

(iii) s(α) = −α for some α ∈ R.

Then s = sα and P = Pα.

Proof. Let τ = ssα = ss−1
α . Then τ(R) = R and

τ(α) = ssα(α) = s(−α) = −s(α) = α.
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Since τ is the composition of linear transformations then τ(β) = β for all β ∈ Rα so τ act as the identity on

the subspace Rα.

Therefore, τ induces a liner map

τ ′ :
E

Rα
→ E

Rα
defined by τ ′(β) = τ(β),

and moreover τ ′ = id. In fact, since E = P ⊕ Rα, given any β ∈ E and writing β = γ + bα, for some γ ∈ P

and b ∈ R, we have

τ(β) = τ(γ + bα) = τ(γ) + bτ(α) = ssα(γ) + bα = s(γ − 〈γ, α〉α) + bα

= s(γ)− 〈γ, α〉 s(α) + bα = γ + 〈γ, α〉α+ bα = γ + (〈γ, α〉+ b)α.

Since β = γ and τ(β) = γ + (〈p, α〉+ b)α = γ, then

τ ′(β) = τ(β) = γ = β.

It follows that τ is equivalent to ⎡
⎣ 1 A

0 Id�−1

⎤
⎦ ,

for some 1× (�− 1)-matrix A and Id�−1 denotes the identity square matrix of size �− 1. Then all eigenvalues

of τ are 1, and the minimal polynomial mτ (t) of τ divides (t− 1)�.

On the other hand, since R is finite and τ(R) = R it follows that τ |R is an element of the symmetric group

SR. In particular, there exists k such that τk|R = IdR. Since R spans E we have that τk = IdE and hence mτ (t)

divides tk − 1. Combined with the previous step, this shows that mτ (t) divides t− 1 = gcd(tk − 1, (t− 1)�)

which implies τ = 1 and thus s = sα.

A.2 Root systems

Root systems are a fundamental concept in the theory of Lie algebras, with wide-ranging applications in

mathematics and physics. A root system is a set of vectors in a Euclidean space that satisfy certain axioms,

which reflect the symmetry of the set. Root systems have an elegant mathematical structure that encodes

information about the underlying Lie algebra, making them a powerful tool for studying Lie theory. In

this section, we will provide a detailed introduction to root systems, starting with their definition and basic

properties.

Definition A.2.1. A subset R of the euclidean space E is called a root system in E if the following axioms

are satisfied,

(R1) R is finite, spans E and does not contain 0.

(R2) If α ∈ R, the only multiples of α in R are ±α.
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(R3) If α ∈ R, the reflection sα leaves R invariant.

(R4) If α, β ∈ R, then 〈β, α〉 ∈ Z.

Notice that if we replace the given inner product on E by a positive multiple then the axioms would

not be affected. Since only ratios of inner products occur. We define the rank of the root system R to be

� = dim(E).

Let R be a root system in E. Denote by W the subgroup of GL(E) generated by the reflections sα, with

α ∈ R. By (R3) we have that W permutes the set R, which by (R1) is finite and spans E. This allows us

to identify W with a subgroup of the symmetric group on R, in particular this implies that W is finite. The

group W is called the Weyl group of R and plays an extremely important role in the root system theory. The

following lemma shows how certain automorphisms of E act on W by conjugation.

Lemma A.2.2. Let R be a root system in E with Weyl group W . If s ∈ GL(E) leaves R invariant, then

ssαs
−1 = ss(α) for all α ∈ R. Moreover, for each α, β ∈ R we have 〈β, α〉 = 〈s(β), s(α)〉.

Proof. As s and sα leave R invariant so does ssαs
−1. We can write ssαs

−1(s(β)) = ssα(β) and that gives us

the equality

ssα(β) = s(sα(β)) = s(β − 〈β, α〉α) = s(β)− 〈β, α〉 s(α).

If γ ∈ s(Pα) then γ = s(δ) for some δ ∈ Pα and hence

ssαs
−1(γ) = ssαs

−1(s(δ)) = s(δ)− 〈δ, α〉 s(α) = s(δ) = γ.

Therefore, ssαs−1 fixes point wise the hyperplane s(Pα). Further

ssαs
−1(s(α)) = s(α)− 〈α, α〉 s(α) = s(α)− 2s(α) = −s(α),

and hence ssαs
−1 sends s(α) to −s(α). By Lemma A.1.1 we have that ssαs

−1 = ss(α) and the first claim

follows.

For the second claim, using the previous one we have, for each β ∈ R,

ss(α)(s(β)) = s(β)− 〈s(β), s(α)〉 s(α) = s(β)− 〈β, α〉 s(α) = s(sα(β)) = ssαs
−1(s(β)).

Thus,

s(β)− 〈s(β), s(α)〉 s(α) = s(β)− 〈β, α〉 s(α)
−〈s(β), s(α)〉 s(α) = −〈β, α〉 s(α)
〈s(β), s(α)〉 s(α) = 〈β, α〉 s(α)

〈s(β), s(α)〉 = 〈β, α〉

and that gives us the second assertion of the lemma.
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Consider two root systems R and R′ defined in euclidean spaces E and E′, respectively. There is a natural

way to define an isomorphism between these root systems.

Definition A.2.3. Consider the root system R of E and the root system R′ of E′. We say that the two root

systems are isomorphic if there exists a vector space isomorphism φ : E → E′ that sends R to R′ and such

that 〈φ(β), φ(α)〉 = 〈β, α〉 for each pair of roots α, β ∈ R.

From the Definition A.2.3 it follows that,

sφ(α)(φ(β)) = φ(β)− 〈φ(β), φ(α)〉φ(α) = φ(β)− 〈β, α〉φ(α) (A.2)

= φ(β − 〈β, α〉α) = φ(sα(β)).

For the root system R we have the associated Weyl group W and for the root system R′ we have the

associated Weyl group W ′. By (A.2) we have that an isomorphism of root systems φ as in Definition A.2.3

induces a natural isomorphism of Weyl groups,

ϕ : W → W ′

s �→ φ ◦ s ◦ φ−1.

In view of Lemma A.2.2, an automorphism of R induces an automorphism of E. In particular, we can regard

W as a subgroup of Aut(E).

A.3 Examples

When � ≤ 2 we can describe R simply drawing a picture. In view of (R2), there is only one possibility in

case � = 1 as it can be seen in the Figure A.2.

Figure A.2: Rank 1 Example

It is easy to check that this actually is a root system, with Weyl group of order 2. This root system is

said to be of A1 type.

For rank � = 2 we have more possibilities, four of which are depicted in Figure A.3. These possibilities

turn out to be the only ones, any other possibility is isomorphic to one of these four.
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Figure A.3: Rank 2 Examples

A.4 Pairs of roots

Remember that in Definition A.2.1 the item (R4) states that for all α, β ∈ R we have that 〈β, α〉 ∈ Z.

Further, the cosine of the angle θ between vectors α, β ∈ E is given by

||α||||β|| cos θ = (α, β).

That is going to limit the possible angles occurring between pairs of roots.

Consider the equalities

〈β, α〉 = 2
(β, α)

(α, α)
= 2

||β||||α|| cos θ
||α||||α|| = 2

||β||
||α|| cos θ (A.3)

and

〈α, β〉 = 2
(α, β)

(β, β)
= 2

||α||||β|| cos θ
||β||||β|| = 2

||α||
||β|| cos θ. (A.4)

Multiplying (A.4) and (A.3) gives us,

〈α, β〉 〈β, α〉 =
(
2
||α||
||β|| cos θ

)(
2
||β||
||α|| cos θ

)
= 4 cos2 θ. (A.5)

Therefore, 0 ≤ 〈α, β〉 〈β, α〉 ≤ 4 and moreover 〈α, β〉 , 〈β, α〉 must have the same sign. Assuming α �= ±β and

||β|| ≥ ||α|| the only possibilities are the ones portrayed in Table A.1.

The reader can check in the Figure A.3 that the angles and relative lengths we have in the Table A.1 are

the ones we get there.
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Table A.1: Possibilities of angles

〈α, β〉 〈β, α〉 θ ||β||2/||α||2

0 0 π/2 undetermined

1 1 π/3 1

−1 −1 2π/3 1

1 2 π/4 2

−1 −2 3π/4 2

1 3 π/6 3

−1 −3 5π/6 3

Lemma A.4.1. Let α, β be non-proportional roots. If (α, β) > 0, which means that the angle between α and

β is strictly acute, then α− β is a root. Similarly, if (α, β) < 0 then α+ β is a root.

Proof. The second assertion follows from the first. It is enough to apply the first assertion to −β instead of

β. We have (α,−β) = −(α, β) > 0 and then α− (−β) = α+ β is a root.

To prove the first assertion note that (α, β) > 0 if and only if 〈α, β〉 > 0. Inspecting Table A.1 it follows

that either 〈α, β〉 = 1 or 〈β, α〉 = 1. If 〈α, β〉 = 1 we have sβ(α) = α−β ∈ R, by (R3). Similarly, if 〈β, α〉 = 1

then sα(β) = β − α ∈ R, by (R3) and sβ−α(β − α) = α − β ∈ R, also by (R3). In both cases α − β is a

root.

As an application, consider a pair of non–proportional roots α, β. Let us look at all roots of the form

β + iα, where i ∈ Z, the α-string through β. Let r, q ∈ Z+ be the largest integers for which β − rα ∈ R and

β+ qα ∈ R. We shall prove that the α-string is unbroken, i.e., for all i between −r and q we have β+ iα ∈ R.

In fact, if the α-string breaks we have that there exists p,m with −r ≤ p < m ≤ q such that

β + pα ∈ R, β + (p+ 1)α /∈ R, β + (m− 1)α /∈ R, β +mα ∈ R.

By Lemma A.4.1 we have that (α, β+pα) ≥ 0, (α, β+sα) ≤ 0, since otherwise β+(p+1)α a and β+(m−1)α

would be roots. Then we have

(α, β + pα) = (α, β) + p(α, α) ≥ 0, (α, β + sα) = (α, β) + s(α, α) ≤ 0.

Hence, p(α, α) ≥ s(α, α) which implies p ≥ m, contradicting the fact that p < m. We conclude that the

α-string through β is unbroken from β − rα to β + qα.

Notice that for −r ≤ i ≤ q such that β + iα ∈ R we have,

sα(β + iα) = sα(β) + isα(α) = β − 〈β, α〉α− iα = β + (−〈β, α〉 − i)α ∈ R.

Which means that sα just add a multiple of α to β. We have that −r ≤ (−〈β, α〉 − i) ≤ q, since otherwise

(−〈β, α〉 − i) would contradict the maximality of r or q. Then this α-string is invariant under sα.
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Let f be the function such as

f : [−r, q] → [−r, q]

i �→ −i− 〈β, α〉

where [−r, q] is the interval of integer numbers between −r e q. Then sα(β + iα) = β + f(i)α. Note that f

is injective, in fact

f(i1) = f(i2) ⇒ −i1 − 〈β, α〉 = −i2 − 〈β, α〉 ⇒ i1 = i2.

Therefore, f is bijective. Besides that, f is decreasing, indeed

i1 ≥ i2 ⇒ −i1 − 〈β, α〉 ≤ −i2 − 〈β, α〉 ⇒ f(i1) ≤ f(i2).

Then geometrically sα just reverses the string, since sα(β + iα) = β + f(i)α. In particular, f(q) = −r so

sα(β + qα) = β − rα. But we also can write sα(β + qα) = β − 〈β, α〉α− qα, and then,

β − 〈β, α〉α− qα = β − rα,

and finally we obtain

r − q = 〈β, α〉 .

We have that an α-string through β has q + r + 1 elements and by Table A.1,

〈β + qα, α〉 ≤ 3 and 〈β − rα, α〉 ≥ −3.

Then

〈β, α〉+ 2q ≤ 3 and − 〈β, α〉+ 2r ≤ 3.

By adding the two equations we have

2q + 2r ≤ 6 ⇒ q + r + 1 ≤ 4.

In particular, we have proved that root strings are of length at most 4.

A.5 Basis and Weyl chambers

The concept of root systems in Lie algebras is closely related to the notion of a basis, and the Weyl group

is an important mathematical object that arises naturally in the study of root systems. A Weyl chamber is

a subset of the Euclidean space that is bounded by hyperplanes associated with the roots of the root system,

and the chambers are used to classify the elements of the Weyl group. In this section, we will explore the

concept of Weyl chambers and their relationship with the basis of a root system.

Definition A.5.1. A subset Δ of R is called a basis of the root system R if it satisfies two properties.
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(B1) The subset Δ is a basis of E.

(B2) Each root β can be written as β =
∑

kαα with α ∈ Δ and integral coefficients kα all non–negative or

all non–positive.

The roots α ∈ Δ are called simple roots. Since Δ is a basis for E then Card(Δ) = � and the expression

for β in item (B2) of Definition A.5.1 is unique. With this we can define the height of a root relative to the

basis Δ by

ht(β) =
∑
α∈Δ

kα.

If every kα ≥ 0 we say that β is positive and write β � 0, if every kα ≤ 0 we say that β is negative and write

β ≺ 0. We denote the collection of all positive roots relative to Δ by R+ and the negative ones by R−, we

can write this sets as

R+ = {β ∈ Δ;β � 0} and R− = {β ∈ Δ;β ≺ 0}.

Clearly R− = −R+. Indeed, if β ∈ R− then

β =
∑
α∈Δ

kαα with kα ≤ 0.

We have that −kα ≥ 0, so

β = −
∑
α∈Δ

(−kα)α ∈ −R+.

If β ∈ −R+ then

β = −
∑
α∈Δ

kαα with kα ≥ 0.

We have that −kα ≤ 0, so

β =
∑
α∈Δ

(−kα)α ∈ R−.

Consider α and β to be positive roots. If α + β is a root then α + β is also a positive root. Actually, �
defines a partial order on E. For λ, μ ∈ E, we define that λ ≺ μ if and only if μ− λ is a sum of positive roots

or λ = μ.

The next important theorem is about the existence of a basis for every root system. In the examples of

rank 1 and 2 the roots labelled as α and β form a basis in each case. Notice that the angle between α and β

is obtuse, which means that (α, β) ≤ 0. As we will see in the next lemma, that is no coincidence.

Lemma A.5.2. Let Δ be a basis for R and α, β ∈ Δ with α �= β. We have that (α, β) ≤ 0 and α− β is not

a root.

Proof. Otherwise, (α, β) > 0. Since α �= β, by assumption, and α �= −β since −β /∈ Δ. Lemma A.4.1 then

says that α− β is a root, but this violates item (B2) in Definition A.5.1.

Theorem A.5.3. Any root system R has a basis.
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The proof of Theorem A.5.3 is constructive, which means that we will actually show how to construct a

basis for any root system. In order to do that we will need the following two lemmas and some definitions.

Lemma A.5.4. The union of finitely many hyperplanes Pα with α ∈ R cannot exhaust E.

Proof. Since R is a finite set, we can let r be the number of elements in R, so we can write R = {α1, · · · , αr}.
We want to show that

E �=
r⋃

i=1

Pαi
.

We proceed by induction in r, which clearly starts for r = 1. As Pα1
is a hyperplane we have that

dim(Pα1
) = dim(E)− 1, then obviously E �= Pα1

.

Now suppose that

E =

r+1⋃
i=1

Pαi .

By the induction hypothesis there exists an element x ∈ E such that

x /∈
r⋃

i=1

Pαi =⇒ x ∈ Pαr+1 .

On the other hand, let y ∈ E be such that y /∈ Pαr+1 , then

y ∈
r⋃

i=1

Pαi
.

Consider the set V = {x+λy;λ ∈ R}. The set V is infinite, since R is infinite. There exists an integer i such

that 1 ≤ i ≤ r and distinct elements λ, μ ∈ R, such that x+ λy, x+ μy ∈ Pαi . Therefore,

(x+ λy)− (x+ μy) = (λ− μ)y ∈ Pαi
.

So y ∈ Pαi which means that x ∈ Pαi . Which contradicts the choice of x.

Lemma A.5.5. The intersection of positive open half-spaces associated with any basis B = {γ1, · · · , γ�} of

E is non-void.

Proof. An open half-space associated with γi is the set Ωi = {β ∈ E; (β, γi) > 0}. The intersection of the

open half-spaces associated with the basis B is

Ω =
�⋂

i=1

Ωi.

Define

Ui := span(γ1, · · · , γi−1, γi+1, · · · , γ�) and δi = projU⊥
i
(γi).

We claim that (δi, γi) > 0. In fact, let {u1, · · · , u�} be an orthonormal basis of E. Then

projU⊥
i
(γi) =

�∑
i−1

(ui, γi)ui
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and

(δi, γi) =
(
projU⊥

i
(γi), γi

)
=

(
�∑

i−1

(ui, γi)ui, γi

)
=

�∑
i−1

(ui, γi)(ui, γi) =
�∑

i−1

(ui, γi)
2 ≥ 0.

If (δi, γi) = 0 then γi ∈ Ui which is impossible by the definition of Ui, so (δi, γi) > 0 which proves the claim.

Note further that (δj , γi) = 0, for j �= i, since γi ∈ Uj .

Finally, set δ =
∑

δj . Then δ ∈ Ω since

(δ, γi) =

(
�∑

i−1

δj , γi

)
=

�∑
i−1

(δj , γi) = (δi, γi) > 0.

Given γ ∈ E define R+(γ) = {α ∈ R; (γ, α) > 0} to be the set of roots lying on the “positive” side of the

hyperplane orthogonal to γ.

Definition A.5.6. We say that γ ∈ E is regular if

γ ∈ E−
⋃
α∈R

Pα

and singular otherwise.

Note that Lemma A.5.4 implies the existence of regular elements. If γ is regular it is clear that R =

R+(γ) ∪ −R+(γ).

Definition A.5.7. An element α ∈ R+(γ) is said to be decomposable if α = β1+β2 for some β1, β2 ∈ R+(γ)

and indecomposable otherwise.

The following result guarantees the existence of a basis for a root system, and it is actually the proof of

Theorem A.5.3.

Theorem A.5.8. Let γ ∈ E be regular. Then the set Δ(γ) of all indecomposable roots in R+(γ) is a basis of

R, and every basis is obtainable is this manner.

Proof. The proof is proceeded in steps.

(1) Each root in R+(γ) is a non-negative Z-linear combination of Δ(γ). Otherwise, some α ∈ R+(γ) cannot

be so written, choose α so that (γ, α) is as small as possible. Obviously α itself cannot be in Δ(γ),

since then α would be a Z-linear combination of Δ(γ). So α is decomposable, which means α = β1+β2

with β1, β2 ∈ R+(γ), whence

(γ, α) = (γ, β1) + (γ, β2).

But each of the (γ, βi) is positive since βi ∈ R+(γ) and (γ, βi) < (γ, α) for i = 1, 2. Therefore, to avoid

contradicting the minimality of (γ, α) we have that β1 and β2 must each be a nonnegative Z-linear

combination of Δ(γ), whence α also is. This contradiction proves the original assertion.
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(2) If α, β ∈ Δ(γ) then (α, β) ≤ 0 unless α = β. Otherwise, α− β is a root and so either

α− β ∈ R+(γ) or β − α ∈ R+(γ).

In the first case, α = β+(α−β), which says that α is decomposable. In the second case, β = α+(β−α)

is decomposable. This contradicts the assumption that α, β are indecomposable.

(3) The set Δ(γ) is linearly independent. Suppose
∑

rαα = 0, where α ∈ Δ(γ) and rα ∈ R. Separating

the indices α for which rα > 0 from those for which rα < 0, we can rewrite this as

∑
uαα =

∑
tββ with uα, tβ > 0.

Note that the sets of α’s and β’s are disjoint. Consider ε =
∑

uαα =
∑

tββ. Then

(ε, ε) =
∑

uαtβ(α, β) ≤ 0

by step (2). We know that (ε, ε) ≥ 0 and this forces (ε, ε) = 0 and then ε = 0. Therefore,

0 = (γ, ε) =
∑

uα(γ, α),

but (γ, α) > 0 ∀ α ∈ Δ(γ). As the sum is zero then each uα = 0. Similarly, we can get to all tβ = 0.

Which is a contradiction since we started with uα, tβ > 0. There is not any rα > 0 or rα < 0 then

rα = 0 for all α ∈ Δ(γ). Whence the set is linearly independent.

(4) Finally, we can show that Δ(γ) is a basis of R. Since R = R+(γ) ∪ −R+(γ), the requirement (B2) of

Definition A.5.1 is satisfied thanks to step (1). Also, from step (1) it follows that Δ(γ) spans E, which

combined with step (3) yields (B1) of Definition A.5.1.

(5) Each basis Δ of R has the form Δ(γ) for some regular γ ∈ E. Given Δ let γ ∈ E so that (γ, α) > 0 for

all α ∈ Δ. This is possible since the intersection of positive open half-spaces associated with any basis

of E is non-void by Lemma A.5.5. In view of (B2) of Definition A.5.1, γ is regular and if β ∈ R+ then

β =
∑

kαα with α ∈ Δ and kα > 0. Then we can write

(γ, β) = (γ,
∑

kαα) =
∑

kα(γ, α) > 0,

so β ∈ R+(γ) and

R+ ⊂ R+(γ). (A.6)

The same occurs for R− ⊂ −R+(γ). We know we can write

R = R+ ∪ −R+ = R+(γ) ∪ −R+(γ).

By (A.6) we have that R+ = R+(γ) and −R+ = −R+(γ). As R+ = R+(γ) we have that the set Δ consists

of indecomposable elements, which means that Δ ⊂ Δ(γ). As we have Card(Δ) = Card(Δ(γ)) = �

then Δ = Δ(γ).
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Remark A.5.9. The argument given in item (3) of Theorem A.5.8 actually shows that any set of vectors

lying strictly on one side of a hyperplane in E and forming pairwise obtuse angles must be linearly independent.

The hyperplanes Pα with α ∈ R, partition E into finitely many regions. The connected components of

E−
⋃
α

Pα

are called the open Weyl chambers of E and denoted by C . Each regular γ ∈ E belongs to precisely one Weyl

chamber, denoted by C (γ). Let γ′ ∈ E be also regular then we have that C (γ) = C (γ′) if and only if γ and

γ′ lie on the same side of each hyperplane Pα with α ∈ R. More specifically, R+(γ) = R+(γ
′), or equivalently

Δ(γ) = Δ(γ′). This shows that Weyl chambers are in natural 1–1 correspondence with basis of R.

If Δ = Δ(γ) then we write C (Δ) = C (γ), and we say that this is the fundamental Weyl chamber of Δ.

We have that C (Δ) is the open convex set consisting of all γ ∈ E which satisfy (γ, α) > 0 with α ∈ Δ. In

rank 2 the Weyl chambers are drawn as seen in Figure A.4. The shaded chamber is the one fundamental

relative to the basis {α, β}.

Figure A.4: Weyl chamber for rank 2

The Weyl group sends one Weyl chamber onto another, explicitly, for s ∈ W and γ ∈ E regular we have

s(C (γ)) = C (sγ).

On the other hand, W permutes basis s ∈ W sends Δ to s(Δ), which is again a basis. These two actions

of W are in fact compatible with the above correspondence between Weyl chambers and basis. We have

s(Δ(γ)) = Δ(sγ), since (sγ, sα) = (γ, α).
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Definition A.5.10. Given a root system R we define the root lattice

L =
⊕
i∈I

Zαi � ZI .

We also define the positive and negative root lattice as

L+ = ZI
+ and L− = ZI

−. (A.7)

A.6 Lemmas on simple roots

Let Δ be a fixed basis of a root system R. We prove here several very useful lemmas about the behavior

of simple roots.

Lemma A.6.1. If α ∈ R+ and α /∈ Δ then α− β is a positive root for some β ∈ Δ.

Proof. If (α, β) ≤ 0 for all β ∈ Δ then Δ ∪ {α} is a linearly independent set by Theorem A.5.8 item (3) and

this is an absurd, since Δ is already a basis of E. So (α, β) > 0 for some β ∈ Δ and then α − β ∈ R by

Lemma A.4.1, which applies since β cannot be proportional to α. Consider

α =
∑
γ∈Δ

kγγ with all kγ ≥ 0.

Then some kγ > 0 for γ �= β since α �= β. Subtracting β from α yields a Z-linear combination of simple roots

with at least one positive coefficient, the one from γ �= β continues positive. This forces all coefficients to be

positive, thanks to the uniqueness of expression in (B2) of Definition A.5.1.

Corollary A.6.2. Each β ∈ R+ can be written in the form α1 + · · · + αk, with αi ∈ Δ not necessarily

distinct, in such a way that each partial sum α1 · · ·+ αi is a root.

Proof. This proof will be done by induction on the height of β. If ht(β) = 1 there is nothing to prove.

Consider δ ∈ R+ with ht(δ) > 1 and write δ =
∑

kαα with α ∈ Δ and kα ≥ 0. By Lemma A.6.1 we can

find αr ∈ Δ such that δ−αr ∈ R+ and ht(δ−αr) = ht(δ)− 1. Then δ−αr = α1 + · · ·+αk with αi ∈ Δ not

necessarily distinct, in such a way that each partial sum α1 · · ·+αi is a root. So δ = α1+· · ·+αk+αr ∈ R+.

Lemma A.6.3. Let α be a simple root. Then sα permutes the positive roots other than α.

Proof. Let β ∈ R+ −{α} then β =
∑

γ∈Δ kγγ com kγ ∈ Z+. It is clear that β is not proportional to α, since

we took β �= α and −α /∈ R+. Therefore, kγ �= 0 for some γ �= α. We have that

sα(β) = β − 〈β, α〉α.

So the coefficient of γ in sα(β) is still kγ , since the only coefficient that changes is the one from α. In other

words, sα(β) has at least one positive coefficient, relative to Δ, forcing it to be positive. Moreover, sα(β) �= α

since α is the image of −α.
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Corollary A.6.4. Set

δ =
1

2

∑
β	0

β.

Then sα(δ) = δ − α for all α ∈ Δ.

Proof. Write δ = δ′ + 1
2α. We have that sα(δ

′) = δ′ since sα is a bijection and

sα

(
1

2
α

)
= −1

2
α.

Then

sα(δ) = sα

(
δ′ +

1

2
α

)
= sα(δ

′) +
1

2
sα(α) = δ′ − 1

2
α = δ′ +

1

2
α− α = δ − α.

Lemma A.6.5. Let α1, · · · , αt ∈ Δ, not necessarily distinct, and write si = sαi
. If s1 · · · st−1(αt) ∈ R− then

s1 · · · st = s1 · · · sr−1sr+1 · · · st−1, for some index 1 ≤ r < t.

Proof. Write βi = si+1 · · · st−1(αt) with 0 ≤ i ≤ t − 2, and βt−1 = αt. Since β0 = s1 · · · st−1(αt) ≺ 0 and

βt−1 � 0 we can find the smallest index r for which βr � 0. Then sr(βr) = srsr+1 · · · st−1(αt) = βr−1 ≺ 0

and βr = αr by Lemma A.6.1. In general if s ∈ W that implies ss(α) = ssαs
−1 by Lemma A.2.2. So in

particular,

sr = sαr
= sβr

= ssr+1···st−1(αt) = (sr+1 · · · st−1)st(st−1 · · · sr+1).

Multiplying both sides by (s1 · · · sr−1) on the left side and by (sr+1 · · · st) on the right side we have,

(s1 · · · sr−1)sr(sr+1 · · · st) = (s1 · · · sr−1)(sr+1 · · · st−1)st(st−1 · · · sr+1)(sr+1 · · · st)
s1 · · · st = s1 · · · sr−1sr+1 · · · st−1.

Corollary A.6.6. If s = s1 · · · st is an expression for s ∈ W in terms of reflections corresponding to simple

roots, with t as small as possible, then s(αt) ≺ 0.

Proof. We have that

s(αt) = s1 · · · st(αt) = s1 · · · st−1(−αt) = −s1 · · · st−1(αt).

If s1 · · · st−1(αt) ≺ 0 then by Lemma A.6.5 we could write

s1 · · · st = s1 · · · sr−1sr+1 · · · st−1.

Which contradicts the minimality of t. Therefore, s1 · · · st−1(αt) � 0 and s(αt) = −s1 · · · st−1(αt) ≺ 0.
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A.7 The Weyl group

The Weyl group is a fundamental mathematical object that arises naturally in the study of Lie algebras

and Lie groups. It is a group of symmetries that preserves the root system structure and plays a central role

in the classification of semisimple Lie algebras. In this section, we will explore the structure and properties

of the Weyl group in detail. We will examine the relationship between the Weyl group and the root system,

including how the Weyl group acts on the roots and how it generates all possible bases of the root system by

permutating the basis of R or, equivalently, the Weyl chambers.

Theorem A.7.1. Let Δ be a basis for the root system R.

(a) If γ ∈ E and γ is regular, then there exists s ∈ W such that (s(γ), α) > 0 for all α ∈ Δ. So W acts

transitively on Weyl chambers.

(b) If Δ′ is another basis for R, then s(Δ′) = Δ for some s ∈ W . So W acts transitively on basis.

(c) If α ∈ R is any root, there exists s ∈ W such that s(α) ∈ Δ.

(d) The Weyl group W is generated by the reflections sα with α ∈ Δ.

(e) If s(Δ) = Δ and s ∈ W , then s = 1. So W acts simply transitively on basis.

Proof. Let W ′ be the subgroup of W generated by all sα with α ∈ Δ. We shall prove (a) to (c) for W ′, then

deduce that W ′ = W .

(a) Write

δ =
1

2

∑
α	0

α,

and choose s ∈ W ′ for which (s(γ), δ) is maximal in the set {(ω(γ), δ);ω ∈ W }. If α is simple, then sαs

is also in W ′. The choice of s implies that

(s(γ), δ) ≥ (sαs(γ), δ) = (s(γ), sα(δ)) = (s(γ), δ − α) = (s(γ), δ)− (s(γ), α)

where the equality is true by Corollary A.6.4. This forces (s(γ), α) ≥ 0 for all α ∈ Δ. Since γ is regular,

we cannot have (s(γ), α) = 0 for any α ∈ R, since then γ would be orthogonal to s−1α ∈ R. So all the

inequalities are strict and (s(γ), α) > 0 for all α ∈ Δ. Therefore, s(γ) lies in the fundamental Weyl

chamber C (Δ) and s sends C (γ) to C (Δ) as desired.

(b) Since W ′ permutes the Weyl chambers, by item (a), it also permutes the basis of R, transitively.

(c) In view of item (b), it suffices to prove that each root belongs to at least one basis. Since the only roots

proportional to α are ±α, the hyperplanes Pβ with β �= ±α are distinct from Pα. Then there exists

γ ∈ Pα such that γ /∈ Pβ for all β �= ±α. Choose γ′ close enough to γ so that (γ′, α) = ε > 0 while
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|(γ′, β)| > ε for all β �= ±α. Then α ∈ R+(γ
′). If α /∈ Δ(γ′) then α = β1 + β2 with β1, β2 ∈ R+(γ

′).

And then (γ′, βi) > ε, so

(γ′, α) = (γ′, β1) + (γ′, β2) > 2ε,

which is a contradiction since (γ′, α) = ε. Therefore, α ∈ Δ(γ′).

(d) To prove that W ′ = W , it is enough to show that each reflection sα with α ∈ R is in W ′. Given

any α ∈ R there exists s ∈ W ′ such that β = s(α) ∈ Δ by item (c). Then sβ = ss(α) = ssαs
−1, so

sα = s−1sβs ∈ W ′.

(e) Let s(Δ) = Δ and s �= 1. If s is written minimally as a product of one or more simple reflections, which

is possible thanks to item (d), then the Corollary A.6.6 gives s(αt) ≺ 0. As αt ∈ Δ and s(Δ) = Δ then

s(αt) � 0 which is a contradiction.

We defined W to be the group generated by reflections sα for all α ∈ R. The Theorem A.7.1 showed that

in fact W is generated by the reflections sα with α ∈ Δ. Recall that we can write s = sα1 · · · sαt with αi ∈ Δ,

when t is minimal we say that the expression is reduced. Then we can define the length of a reflection s ∈ W

relative to Δ as l(s) = t. Define

N(s) = {α ∈ R+; s(α) ≺ 0} and n(s) =| N(s) | . (A.8)

Lemma A.7.2. For all s ∈ W we have that l(s) = n(s) for n(s) as in (A.8).

Proof. We proceed by induction on l(s).

If l(s) = 0 then s = 1 and n(s) = 0, since for every positive root α we have that s(α) = α.

Assume the lemma is true for all τ ∈ W with l(τ) < l(s). Write the reduced expression of s as s =

sα1
· · · sαt

and set α = αt. By Corollary A.6.6 we have that s(α) ≺ 0. Then Lemma A.6.3 implies that

n(ssα) = n(s) − 1 since sα sends all positive roots different from α to a positive root. On the other hand,

since α = αt, we have

ssα = s1 · · · stsα = s1 · · · stst = s1 · · · st−1.

Then l(ssα) = l(s)−1 < l(s). By induction hypothesis we have l(ssα) = n(ssα). Combining these statements,

we obtain

l(ssα) = l(s)− 1 = n(s)− 1 = n(ssα).

Hence, l(s) = n(s).

Lemma A.7.3. Let β ∈ C (Δ). If s(β) = β for some s ∈ W then s = 1.

Proof. If β ∈ C (Δ) then for every α ∈ Δ we have (β, α) > 0. Since s(β) = β we have

0 < (β, α) = (s(β), s(α)) = (β, s(α)) ∀ α ∈ Δ.
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If s �= 1 we can write s in terms of reflections corresponding to simple roots s = s1 · · · st with t minimal.

As αt ∈ Δ, we have that (β, s(αt)) > 0 and by Corollary A.6.6 we know that s(αt) ≺ 0. This means that

s(αt) =
∑

α∈Δ kαα with every kα ≤ 0. Then

0 < (β, s(αt)) =

(
β,

∑
α∈Δ

kαα

)
=

∑
α∈Δ

kα(β, α).

By hypothesis (β, α) > 0 so each term kα(β, α) ≤ 0 which is a contradiction, since this would mean that∑
α∈Δ

kα(β, α) ≤ 0.

Therefore, s = 1.

We saw in item (e) of Theorem A.7.1 that W acts simply transitively on Weyl chambers. Let us get

a better understanding of that. The next lemma shows that the closure C (Δ) of the fundamental Weyl

chamber relative to Δ is a fundamental domain for the action of W on E. Which means that each vector in

E is W conjugate to precisely one point of this set.

Lemma A.7.4. Let λ, μ ∈ C (Δ). If s(λ) = μ for some s ∈ W then s is a product of simple reflections which

fix λ. In particular λ = μ.

Proof. We proceed by induction on l(s). If l(s) = 0 then s = 1 and s(λ) = λ = μ so s = 1 is written as

simple reflections that fixes λ.

Let l(s) > 0. By Lemma A.7.2 n(s) > 0 and s must send some positive root to a negative root, then s

cannot send all simple roots to positive roots. Say s(α) ≺ 0 for α ∈ Δ. Since λ, μ ∈ C (Δ) we have (μ, α) ≥ 0

and (λ, α) ≥ 0. If we write

s(α) =
∑
β∈Δ

kββ with kβ ≤ 0.

Then,

(μ, s(α)) = (μ,
∑

kββ) =
∑

kβ(μ, β) ≤ 0,

since kβ ≤ 0 and (μ, β) ≥ 0 ∀ β ∈ Δ. Now

0 ≥ (μ, s(α)) = (s−1(μ), α) = (λ, α) ≥ 0,

and this forces (λ, α) = 0. Therefore, sα(λ) = λ − 〈λ, α〉α = λ and hence (ssα)(λ) = μ. By Lemma A.6.3

and Lemma A.7.3, l(ssα) = l(s) − 1. Then by the induction hypothesis ssα = sα1
· · · sαt−1

is such that sαi

fixes λ, so s = sα1 · · · sαt−1sα and sαi , sα fixes λ.

A.8 Irreducible root systems

Definition A.8.1. The root system R is called reducible if we can write

R = R1 ∪ R2

with (R1,R2) = 0 and R1 �= 0,R2 �= 0. We say that R is irreducible otherwise.
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We can do a similar definition for the basis of a root system.

Definition A.8.2. The basis Δ for a root system R is called reducible if we can write

Δ = Δ1 ∪Δ2

with (Δ1,Δ2) = 0 and Δ1 �= 0,Δ2 �= 0. We say that Δ is irreducible otherwise.

In the examples we gave in section A.3 we can see that A1, A2, B2, G2 are irreducible, while A1 × A1 is

reducible.

Proposition A.8.3. Let Δ be the basis for the root system R. Then R is irreducible if and only if Δ is

irreducible.

Proof. Suppose that R is irreducible and Δ = Δ1 ∪Δ2 with (Δ1,Δ2) = 0.

For each root α ∈ R there exists s ∈ W such that s(α) ∈ Δ by Theorem A.7.1 item (c). Let Ri be the

set of roots conjugate to a root in Δi, for i = 1, 2. Then R = R1 ∪ R2. Recall that W is generated by simple

reflections sα with α ∈ Δ.

If α ∈ Δi and β ∈ Δj , with i �= j, then sα(β) = β − 〈β, α〉α = β, since (β, α) = 0. Hence, each root of Ri

is obtained from Δi by adding or subtracting elements of Δi. Therefore, (R1,R2) = 0 and that is an absurd

since R is irreducible.

Suppose that Δ is irreducible and R = R1 ∪ R2 with (R1,R2) = 0.

If Δ �⊂ R1 and Δ �⊂ R2 then Δ = Δ1 ∪Δ2 with Δ1 = Δ ∩ R1 and Δ2 = Δ ∩ R2. Therefore, (Δ1,Δ2) = 0

and that contradicts the irreducibility of Δ.

If Δ ⊂ R1 then (Δ,R2) = 0. Recall that Δ generates E, so we have that (E,R2) = 0, which is an absurd

since R is a finite set. If Δ ⊂ R2 the same contradiction happens.

Lemma A.8.4. Let R be irreducible. Relative to the partial order ≺, there is a unique maximal root θ. In

particular, α �= θ implies that ht(α) < ht(θ), and (θ, α) ≥ 0 for all α ∈ Δ. If

θ =
∑
α∈Δ

kαα

then all kα > 0 for every α ∈ Δ.

Proof. Let

θ =
∑
α∈Δ

kαα ∈ R

be maximal with respect to ≺. We have that θ � 0, indeed if θ ≺ 0 then −θ ∈ R+ and −θ � θ.

So for θ =
∑

kαα it follows that kα ≥ 0. Then we can write

Δ1 = {α ∈ Δ; kα > 0} and Δ2 = {α ∈ Δ; kα = 0}.
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Note that Δ = Δ1∪Δ2 is a disjoint union. Suppose Δ2 �= 0 and let γ ∈ Δ2. Then by Lemma A.5.2 (γ, α) ≤ 0

for all α ∈ Δ− {γ}. So

(γ, θ) =
(
γ,

∑
kαα

)
=

∑
kα(γ, α) =

∑
α �=γ

kα(γ, α) ≤ 0

since kγ = 0 and kα ≥ 0 for all α �= γ, then (γ, θ) ≤ 0. Since R is irreducible, there exists α ∈ Δ1 such that

(γ, α) < 0, whence (γ, θ) < 0. Then by Lemma A.4.1 θ + γ is a root, contradicting the maximality of θ.

Therefore, Δ2 is empty and all kα > 0.

This argument also shows that

(α, θ) ≥ 0 ∀ α ∈ Δ.

Since otherwise we would have α+ θ a root, which contradicts the maximality of θ.

Now let β be another maximal root. The preceding argument applies to β as well, so β involves at least

one α ∈ Δ, with positive coefficient, for which (α, θ) > 0. It follows that (β, θ) > 0, and either θ = β or θ−β

is a root. If θ − β is a root, then either θ − β ∈ R− and θ ≺ β, which contradicts the maximality of θ or else

θ − β ∈ R+ and β ≺ θ, which contradicts the maximality of β. Therefore, θ is unique.

Lemma A.8.5. Let R be irreducible. Then W acts irreducibly on E. In particular, the W -orbit of a root α

spans E.

Proof. Given a root α ∈ R, the W −orbit of the root is the set

W (α) = {s(α); s ∈ W }.

The span of W (α) is a nonzero W -invariant subspace of E. Indeed, for all β ∈ W (α) we have that β = s(α)

for some s ∈ W . Then for all s′ ∈ W we have that s′(β) = s′(s(α)) = s′s(α) ∈ W (α) since s′s ∈ W , so the

second statement follows from the first.

As to the first, let E′ be a nonzero subspace of E invariant under W . If E′′ is the orthogonal complement

of E′ then for all β ∈ E′′ we have (β,E′) = 0. For every s ∈ W we have s(E′) ⊂ E′ since E′ is W -invariant and

then s(E′) = E′ since s is an isomorphism. Therefore,

(s(β), s(E′)) = (β,E′) = 0 and (s(β), s(E′)) = (s(β),E′).

So (s(β),E′) = 0 and s(β) ∈ E′′, which means that E′′ is W -invariant. We can write E = E′ ⊕ E′′.

Suppose that α ∈ R and E′ �⊂ Pα, then ∃ λ ∈ E′ − Pα. So

sα(λ) = λ− 〈λ, α〉α ∈ E′

since E′ is W -invariant. As λ /∈ Pα then 〈λ, α〉 �= 0 and sα(λ)−λ = −〈λ, α〉α ∈ E′ which implies that α ∈ E′.

This proves that for α ∈ R either α ∈ E′ or else E′ ⊂ Pα.

Thus, α /∈ E′ implies E′ ⊂ Pα and then (α,E′) = 0 so α ∈ E′′. So each root lies in one subspace or the

other. We can write R = R1 ∪ R2 with (R1,R2) = 0, R1 = R ∩ E′ and R2 = R ∩ E′′ which is a partition of R

into orthogonal subsets, forcing one or the other to be empty. Since we took E′ to be nonzero then E′′ = ∅.
Recall that R spans E, so we conclude that E′ = E.
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Lemma A.8.6. Let R be irreducible. Then at most two root lengths occur in R and all roots of a given length

are conjugate under W .

Proof. If α, β are two arbitrary roots and (β, s(α)) = 0 for all s(α) with s ∈ W , then β ∈ W (α)⊥. By Lemma

A.8.5 we have that W (α) spans E so β = 0. Hence, there exists s ∈ W such that

(β, s(α)) �= 0. (A.9)

Suppose that (α, β) �= 0, we know from Table A.1 that the possible ratios of squared root lengths of α, β

are 1, 2, 3, 1/2, 1/3. Let α, β, γ be three roots with different lengths. If ||α|| = 2||β|| and ||γ|| = 1/3||β|| then

||γ|| = 1
6 ||α|| and that is not a possible ratio. If we do other combinations we can get the ratios 6, 2/3, 3/2

and those are not possible ratios as well. Therefore, at most two root lengths occur in R.

Now let α, β have equal length with (α, β) �= 0, which we can do by (A.9). We may assume them to be

non-orthogonal and distinct, otherwise we’re done. This forces 〈α, β〉 = 〈β, α〉 = ±1, by Table A.1. Replacing

β, if needed, by −β = sβ(β), we may assume that 〈α, β〉 = 1. Therefore,

(sαsβsα)(β) = sαsβ(β − α) = sα(−β − α+ β) = α.

And we got one from the other only applying elements of W .

In case R is irreducible with two distinct root lengths, we call one of then long root and the other one

short root. If all roots are of equal length, it is conventional to say that they are all long.

Lemma A.8.7. Let R be irreducible, with two distinct root lengths. Then the maximal root θ of Lemma

A.8.4 is long.

Proof. Let α ∈ R be arbitrary. It suffices to show that (β, β) ≥ (α, α) since then ||β|| ≥ ||α||. As (s(α), s(α)) =

(α, α) for all s ∈ W we may replace α by a W -conjugate. By Theorem A.7.1 item (c) we have that there

exists s1 ∈ W such that s1(α) ∈ Δ. By Theorem A.7.1 item (a) we have that there exists s2 ∈ W such that

(s2(γ), s1(α)) > 0, therefore

(s2(γ), s1(α)) = (s2(γ), s2s2s1(α)) = (γ, s2s1(α)) > 0

so s(α) = s2s1(α) ∈ C (Δ). Hence, we can replace α by a W -conjugate lying in the closure of the fundamental

Weyl chamber relative to Δ.

By Lemma A.8.4 we have that (θ, α) ≥ 0 for all α ∈ Δ, then θ ∈ C (Δ). Since θ is maximal then θ−α � 0

and θ − α is a nonnegative sum of positive roots. Therefore, we have that (γ, θ − α) ≥ 0 for any γ ∈ C (Δ).

This fact, applied to the cases γ = θ and γ = α yields,

(θ, θ − α) ≥ 0 ⇒ (θ, θ)− (θ, α) ≥ 0 ⇒ (θ, θ) ≥ (α, θ)

(α, θ − α) ≥ 0 ⇒ (α, θ)− (α, α) ≥ 0 ⇒ (α, θ) ≥ (α, α)

then (θ, θ) ≥ (α, θ) ≥ (α, α).
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A.9 Cartan matrix of a root system

In this section, we will explore the concept of the Cartan matrix in detail. We will begin by defining the

Cartan matrix and discussing its basic properties, such as its symmetry and its relationship with the root

system. Let R be a root system of rank � with basis Δ and associated Weyl group W .

Definition A.9.1. Fix an ordering for Δ as Δ = {α1, · · · , α�}. Consider the matrix C = (cij) defined by

cij = 〈αi, αj〉.

The matrix C is called the Cartan matrix of R and the entries of C are called Cartan integers.

Example A.9.2. For the root systems of rank 2, the Cartan matrices are

A1 ×A1 :

⎛
⎝ 2 0

0 2

⎞
⎠ ; A2 :

⎛
⎝ 2 −1

−1 2

⎞
⎠ ; B2 :

⎛
⎝ 2 −2

−1 2

⎞
⎠ ; G2 :

⎛
⎝ 2 −1

−3 2

⎞
⎠ .

The Cartan matrix is independent of the choice of Δ, and that is thanks to the fact that W acts transitively

on the collection of basis, and that is the important point for us. Moreover, the Cartan matrix is non-singular,

since Δ is a basis of E. And the Cartan matrix characterize the root system R completely.

Proposition A.9.3. Let R′ ⊂ E′ be another root system, with basis Δ′ = {α′
1, · · · , α′

�}. If 〈αi, αj〉 =
〈
α′
i, α

′
j

〉
for 1 ≤ i, j ≤ �, then the bijection αi �→ α′

i extends, uniquely, to an isomorphism φ : E → E′ mapping R onto

R′ and satisfying 〈φ(α), φ(β)〉 = 〈α, β〉 for all α, β ∈ R. Therefore, the Cartan matrix of R determines R up

to isomorphism.

Proof. Since Δ is a basis of E and Δ′ is a basis of E′, there is a unique vector space isomorphism φ : E → E′

that sends αi to α′
i with 1 ≤ i ≤ �. If α, β ∈ Δ, the hypothesis insures that

sφ(α)(φ(β)) = sα′(β′) = β′ − 〈β′, α′〉α′ = φ(β)− 〈β, α〉φ(α) = φ(β − 〈β, α〉α) = φ(sα(β)).

In other words, the following diagram commutes for each α ∈ Δ,

E E′

E E′

φ

sα sφ(α)

φ

The respective Weyl groups W and W ′ are generated by simple reflections. It follows that the map s �→
φ ◦ s ◦ φ−1 is an isomorphism of W onto W ′, sending sα to sφ(α) where α ∈ Δ. Each β ∈ R is conjugate

under W to a simple root, say β = s(α) where α ∈ Δ. This forces

φ(β) = φ(s(α)) = φ(s(φ−1φ(α))) = (φ ◦ s ◦ φ−1)(φ(α)) ∈ R′.

It follows that φ maps R to R′.
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We showed that sφ(α)(φ(β)) = φ(sα(β)) for all α, β ∈ Δ in (A.2). By linearity, we know that this follows

for every β ∈ E, in particular to all β ∈ R. For α ∈ R we know by Theorem A.7.1 (c) that there exists w ∈ W

such that w(αi) = α for some αi ∈ Δ. By Lemma A.2.2 we have that sα = sw(αi) = w ◦ sαi ◦w−1 and hence

φ ◦ sα ◦ φ−1 = φ ◦ w ◦ sαi
◦ w−1 ◦ φ−1 = φ ◦ w ◦ φ−1︸ ︷︷ ︸

=:w′

◦φ ◦ sαi
◦ φ−1 ◦ φ ◦ w−1 ◦ φ−1

= w′ ◦ sφ(αi) ◦ w′−1 = sw′(φ(αi)) = sφ(w(αi)) = sφ(α).

For all α, β ∈ R we have that

sφ(α)(φ(β)) = φ(β)− 〈φ(β), φ(α)〉φ(α)
φ(sα(β)) = φ(β)− 〈β, α〉φ(α).

Which gives us 〈φ(β), φ(α)〉 = 〈β, α〉.

This proposition shows that if you have the Cartan integers you can recover the root system R. In fact, we

can devise a practical algorithm for writing all roots, or just the positive roots. Probably the best approach is

to consider root strings. Start with the roots of height one, which are the simple roots. For any pair αi �= αj ,

the integer r for the αj-string through αi is 0, which means that αi − αj is not a root, thanks to Lemma

A.5.2. So the integer q equals −〈αi, αj〉.
From this we can write down all roots α of height 2, hence all integers 〈α, αj〉. For each root α of height

2 the integer r for the αj-string through α can be determined easily. The root αj can be subtracted at most

once, since if we subtract twice we will have α − 2αj , which is not a root. Then q is found, since we know

r − q = 〈α, αj〉. The Corollary A.6.2 assures us that all positive roots are eventually obtained if we repeat

this process enough times. The reader can see this process in the next example.

Example A.9.4. Let us see we can find a root system given the Cartan matrix. If we have the Cartan matrix

for B2 ⎛
⎝ 2 −2

−1 2

⎞
⎠ .

We know the basis Δ has two elements. If we say that Δ = {α1, α2} then from the Cartan matrix we

know that
〈α1, α1〉 = 2 〈α1, α2〉 = −2

〈α2, α1〉 = −1 〈α2, α2〉 = 2.

We will calculate the αi-string through α for i = 1, 2 and α ∈ R, for the strings through α1 and α2 we know

that α1 − α2 /∈ R

• α1-string through α2

r = 0 and −q = 〈α2, α1〉 = −1 then q = 1, so the string is

α2, α2 + α1 ∈ R+.
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• α2-string through α1

r = 0 and −q = 〈α1, α2〉 = −2 then q = 2, so the string is

α1, α1 + α2, α1 + 2α2 ∈ R+.

• α1-string through α1 + 2α2

〈α1 + 2α2, α1〉 = 〈α1, α1〉+2 〈α2, α1〉 = 2−2 = 0 since 〈, 〉 is linear in the first variable, and α1+2α2−
α1 = 2α2 /∈ R, so r = 0 and then −q = 〈α1 + 2α2, α1〉 = 0 and q = 0, so the string is

α1 + 2α2 ∈ R+.

The root α1 + α2 is in both α1 and α2 strings, so we don’t need to calculate the α1-string through α1 + α2

and α2-string through α1+α2. The root α1+2α2 is in the α2- string, so we don’t need to calculate α2-string

through α1 + 2α2.

So, the root system is R = R+ ∪ R− with R+ = {α1, α2, α1 + α2, α1 + 2α2}.

We will see a more difficult example.

Example A.9.5. Let us find the root system for the Cartan matrix D4⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0 −1

0 2 0 −1

0 0 2 −1

−1 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

We know that the basis Δ have four elements. If we say that Δ = {α1, α2, α3, α4} and 〈αi, αj〉 = cij we

have that

• αj-string through αi for {(i, j)} = {(1, 2); (2, 1); (1, 3); (3, 1); (2, 3); (3, 2)}

r = 0 and −q = 〈αi, αj〉 = 0 then q = 0, so the string is

αi ∈ R+.

• α1-string through α4

r = 0 and −q = 〈α4, α1〉 = −1 then q = 1, so the string is

α4, α1 + α4 ∈ R+.

• α2-string through α4

r = 0 and −q = 〈α4, α2〉 = −1 then q = 1, so the string is

α4, α2 + α4 ∈ R+.
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• α3-string through α4

r = 0 and −q = 〈α4, α3〉 = −1 then q = 1, so the string is

α4, α3 + α4 ∈ R+.

• α1-string through α2 + α4

r = 0 and −q = 〈α2 + α4, α1〉 = 0− 1 then q = 1, so the string is

α2 + α4, α1 + α2 + α4 ∈ R+.

• α3-string through α2 + α4

r = 0 and −q = 〈α2 + α4, α3〉 = 0− 1 then q = 1, so the string is

α2 + α4, α2 + α3 + α4 ∈ R+.

• α1-string through α3 + α4

r = 0 and −q = 〈α3 + α4, α1〉 = 0− 1 then q = 1, so the string is

α3 + α4, α1 + α3 + α4 ∈ R+.

• α1-string through α2 + α3 + α4

r = 0 and −q = 〈α2 + α3 + α4, α1〉 = 0 + 0− 1 then q = 1, so the string is

α2 + α3 + α4, α1 + α2 + α3 + α4 ∈ R+.

• α4-string through α1 + α2 + α3 + α4

r = 0 since α1 + α2 + α3 is not a root and −q = 〈α1 + α2 + α3 + α4, α4〉 = −1− 1− 1 + 2 then q = 1,

so the string is

α1 + α2 + α3 + α4, α1 + α2 + α3 + 2α4 ∈ R+.

So, the root system is R = R+∪R− with R+ = {α1, α2, α3, α4, α1+α4, α2+α4, α3+α4, α1+α2+α4, α2+

α3 + α4, α1 + α3 + α4, α1 + α2 + α3 + α4, α1 + α2 + α3 + 2α4}.

A.10 Coxeter graphs and Dynkin diagrams

Coxeter graphs and Dynkin diagrams are powerful tools for understanding the structure of root systems.

A Coxeter graph is a graph that encodes the symmetry properties of a root system, while a Dynkin diagram is

a variation of the Coxeter graph that provides additional information about the root system. In this section,

we will explore these concepts.
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If α, β are distinct positive roots by Table A.1 we know that 〈α, β〉 〈β, α〉 ∈ {0, 1, 2} or 3. Define the

Coxeter graph of R to be a graph having � vertices, the ith joined to the jth with i �= j by 〈αi, αj〉 〈αj , αi〉
edges.

A1 ×A1

A2

B2

G2

The Coxeter graph determines the numbers 〈αi, αj〉 in case all roots have equal length, since then

〈αi, αj〉 = 〈αj , αi〉. In case more than one root length occurs, like B2 or G2, the graph fails to tell us

which of the pair of vertices should correspond to a short simple root, and which correspond to a long simple

root.

Whenever a double or triple edge occurs in the Coxeter graph of R, we add an arrow pointing towards

the shorter one of the two roots. This additional information allows us to recover the Cartan integers. We

call the resulting figure the Dynkin diagram of R. For example

B2

G2

The next diagram gives us another example,

which turns out to be associated Dynkin diagram with the root system F4, it is easy to recover the Cartan

matrix ⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Example A.10.1. Let us recover the Cartan matrix given the Dynkin diagram. If we have the diagram for

B2

B2

We know that the basis Δ have two elements. If we say that the first is α1 and the second is α2, then

from the diagram we know that ||α1|| > ||α2||, 〈α1, α2〉 〈α2, α1〉 = 2, 〈α1, α2〉 ≤ 0, 〈α2, α1〉 ≤ 0 and 〈α1, α2〉 >
〈α2, α1〉. Then we get 〈α1, α2〉 = −2 and 〈α2, α1〉 = −1. So we have the Cartan matrix,

C1 =

⎛
⎝ 2 −2

−1 2

⎞
⎠ .
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Example A.10.2. For the diagram D4

•

D4 = • •

•
we have the Cartan matrix ⎛

⎜⎜⎜⎜⎜⎜⎝

2 0 0 −1

0 2 0 −1

0 0 2 −1

−1 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

By Proposition A.8.3 we have that a root system R is irreducible if and only if R or Δ cannot be partitioned

into two proper and orthogonal subsets. Then it is clear that R is irreducible if and only if its Coxeter graph

if connected. We can say in general that there will be a number of connected components in the Coxeter

graph.

Lemma A.10.3. Let E′ be a subspace of E. If a reflection sα leaves E′ invariant then either α ∈ E′ or else

E′ ⊂ Pα.

Proof. We know that Pα = {β ∈ E; (β, α) = 0} by (A.1). Suppose that E′ �⊂ Pα. Then there exists some

β ∈ E′ such that (β, α) �= 0. By hypothesis, we have that sα(β) ∈ E′, which means that

sα(β) = β − 〈β, α〉α ∈ E′ with 〈β, α〉 �= 0.

As β ∈ E′ we have that α ∈ E′.

Proposition A.10.4. The root system R decomposes, uniquely, as the union of irreducible root systems Ri,

in subspaces Ei of E, such that E = E1 ⊕ · · · ⊕ Et, the sum is the orthogonal direct sum.

Proof. Let Δ = Δ1 ∪ · · · ∪ Δt be the partition of Δ into mutually orthogonal subsets, which means that

(Δi,Δj) = 0 ∀ i �= j. If Ei = span{Δi} then E = E1 ⊕ · · · ⊕ Et as an orthogonal direct sum. Now let

Ri = Ei ∩ R. We have that Ri is a root system in Ei, since all the axioms of Definition A.2.1 are satisfied as

seen below,

• Ri is finite, spans Ei and does not contain 0;

• if α ∈ Ri then the only multiples of α in Ri are ±α since those are the only ones in R;

• if α ∈ Ri then sα(β) = β − 〈β, α〉α for all β ∈ Ri and that is just a Z-linear combination of elements

from Ri and that is in R and in Ei, therefore they are in Ri so sα leaves Ri invariant;
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• if α, β ∈ Ri then 〈β, α〉 ∈ Z since that is the case in R.

The Weyl group of Ei is the restriction to Ei of the subgroup of W generated by all sα with α ∈ Δi.

Now if α /∈ Δi then sα = β − 〈β, α〉α = β for all β ∈ Ei since 〈β, α〉 = 0, so sα acts trivially on Ei and Ei

is W -invariant. The argument that either α ∈ Ei or Ei ⊂ Pα given in Lemma A.10.3 shows that each root

lies in one of the Ei. Then R = R1 ∪ · · · ∪ Rt.

The following theorem establishes the classification of connected Dynkin diagram. In particular, we obtain

a classification of irreducible root systems.

Theorem A.10.5. If R is an irreducible root system of rank �, its Dynkin diagram is one of the following,

with � vertices in each case:

A�, � ≥ 1

B�, � ≥ 2

C�, � ≥ 3

D�, � ≥ 4

E6

E7

E8

F4

G2

A.11 Longest element and the Coxeter element

In this section we will introduce two important elements of the Weyl group, the longest element and the

Coxeter element. After that we will give an equation that links the two elements. We will use the length in

Lemma A.7.2 to study the longest element.

Lemma A.11.1. There exists a unique element w0 ∈ W sending R+ to R−, relative to Δ. Any reduced

expression for w0 must involve all sα with α ∈ Δ. And l(w0) =| R+ |.
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Proof. Note that −Δ = {−α;α ∈ Δ} is also a basis for R. Since W acts transitively on basis of R, there

exists w0 ∈ W such that s(Δ) = −Δ. Then w0 necessarily takes positive roots of R to negative roots of R,

relative to Δ. If τ ∈ W also has this property, then w0τ takes a positive basis to another positive basis. By

definition, two basis can be positive with respect to Δ only if they are equal. By Theorem A.7.1 we have

that w0τ = 1. As w0 has order two then w0 = τ . Therefore, w0 is unique.

Let w0 = sα1 · · · sαt be a reduced expression for w0 with αi ∈ Δ. Suppose β ∈ Δ is not in this expression.

Since sα(β) = β − 〈β, α〉α it is clear that sαs · · · sαt cannot take β to another simple root. Since each sαi

permutes R+ − {αi} then w0(β) /∈ R−, which is a contradiction. Hence, a reduced expression for w0 must

involve all sα with α ∈ Δ.

As w0(R+) = R− we have that n(w0) = |R+| and l(w0) = n(w0), so we have l(w0) = |R+|.

Definition A.11.2. An element C ∈ W is called a Coxeter element if for some ordering of simple roots

Δ = {α1, · · · , α�} and sαi
= si, we have

C = s� · · · s1.

Of course, we have more than one Coxeter element. We can show that they are all conjugate in W . If

Δ1 = {α1, · · · , α�} and Δ2 = {β1, · · · , β�}

are two orderings for the simple roots with

C1 = sα�
· · · sα1

and C2 = sβ�
· · · sβ1

the two Coxeter elements associated to Δ1 and Δ2, respectively. Then there exists s = C2C
−1
1 ∈ W such

that

sC1 = C2C
−1
1 C1 = C2.

Definition A.11.3. The order of a Coxeter element is called the Coxeter number of the root system, which

we will denote by h. In other words Ch = 1.

By Lemma A.11.1 we have that W contains a unique element w0 with the longest length, which means

that l(w0) = |R+|. The next theorem will give us a relation between this w0 and the Coxeter element. For

this we need to choose a partition for the index set I, we will split that set as I = I0 ∪ I1. This partition of I

will be made so that for every edge in Ω one of the endpoints will be in I0 and the other in I1. This partition

is called the bipartite partition.

We will define c0, c1 ∈ W by

c0 =
∏
i∈I0

si and c1 =
∏
i∈I1

si. (A.10)

Since (αi, αj) = 0 for all i, j ∈ I0 or for all i, j ∈ I1, then all si with i ∈ I0 commute, and similarly for si with

i ∈ I1, this implies that c0 and c1 are well-defined. By Definition A.11.2, the product C = c1c0 is a Coxeter

element. Let us see in an example how this bipartite partition works.



161

Example A.11.4. Let �Q be the quiver given by

i5

i1 i2 i3 i4

i6

A bipartite partition of this quiver can be done as,

I0 = {i1, i3, i5, i6} and I1 = {i2, i4}.

We can write c0 and c1 as,

c0 = si1si3si5si6 = si6si5si1si3 and c1 = si2si4 = si4si2 .

The next theorem is based on section 3.17 of [13].

Theorem A.11.5. If c0, c1 are as defined above in (A.10) and w0 ∈ W is the longest element as in Lemma

A.11.1, then

w0 = · · · c0c1c0 (h factors)

= · · · c1c0c1 (h factors)

are reduced expressions for w0, here h is the Coxeter number as in Definition A.11.3.

Proof. As the order of factors in c0, c1 are irrelevant then both have order two. We can write

C = c1c0 = sk1
· · · skt

skt+1
· · · sk�

with k1, · · · , kt, kt+1, · · · k� ∈ I.

So c1 = sk1
· · · skt

and c0 = skt+1
· · · sk�

. Let us write I0 = {kt+1, · · · , k�} and I1 = {k1, · · · , kt}, which makes

I = I0 ∪ I1. For ease of notation write J0 = {t+ 1, · · · , �}, J1 = {1, · · · , t} and J = J0 ∪ J1.

We can write a basis B for the space R� as B = {αk1 , · · · , αk�
} and the dual basis of B is B∨ =

{ωk1 , · · · , ωk�
}. Which means that

(
αki

, ωkj

)
= δij =

⎧⎨
⎩ 1, if i = j,

0, if i �= j.

Consider the sets

Y = span{ωkt+1
, · · · , ωk�

} and Z = span{ωk1
, · · · , ωkt

}

and consider the orthogonal sets of Y and Z

Y ⊥ = span{αk1 , · · · , αkt} and Z⊥ = span{αkt+1 , · · · , αk�
}.



162

Let Hki
be the hyperplane orthogonal to αki

, which means that Hki
= {x ∈ V ; (x, αki

) = 0}. Also

consider

Y ′ = Hk1 ∩ · · · ∩Hkt and Z ′ = Hkt+1 ∩ · · · ∩Hk�
.

We know that Y ′ ∩ Z ′ = {0}, since otherwise it would exist a vector v ∈ V such that v ∈ V ⊥ and 0 is the

only vector with this property. Also, (wki , αkj ) = 0 for all i ∈ J0 and j ∈ J1. Then we have that Y ⊂ Y ′ and

analogously Z ⊂ Z ′. To conclude this argument we have that V = Y ⊕Z so Y = Y ′ and Z = Z ′. Therefore,

we proved that

Y = span{ωkt+1 , · · · , ωk�
} = Hk1 ∩ · · · ∩Hkt and Z = span{ωk1 , · · · , ωkt} = Hkt+1 ∩ · · · ∩Hk�

.

For y ∈ Y we know that (y, αki
) = 0 for i ∈ J1. So c1(y) = y and c1 fixes Y point by point. Also, we have

that c1(αki) = −αki for all i ∈ J1, since (αki , αkj ) = 0 for all i, j ∈ J1. So c1 acts as −1 in Y ⊥. Analogously

we have that c0 fixes Z point by point and acts as −1 in Z⊥.

Let

A : R� → R�

ωki
�→ αki

.

Since

αkj =
∑
i∈J

aijωki ,

we can write A = (aij) with aij = (αki , αkj ) the matrix relative to the dual basis of the operator A.

We know from linear algebra that if a matrix is indecomposable, positive defined, symmetric, with non-

positive entries in the diagonal, then A has an eigenvalue d associated to an eigenvector (d1, · · · , d�) ∈ R�

with di > 0 for all i ∈ J . This means that

A(d1, · · · , d�) = d(d1, · · · , d�).

Consider

λ =
∑
j∈J1

djωkj
∈ Z and μ =

∑
i∈J0

diωki
∈ Y

and write L = λR, M = μR and P = span{L,M}. We can write A(d1, · · · , d�) in two ways,

A(d1, · · · , d�) = A

(∑
i∈J

diωki

)
=

∑
i∈J

diA(ωki
) =

∑
i∈J

diαki

A(d1, · · · , d�) = d(d1, · · · , d�) =
∑
i∈J

ddiωki

so, ∑
i∈J

diαki =
∑
i∈J

ddiωki .
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Making the inner product in both sides with αkj
for j ∈ J1 we have(∑

i∈J

diαki , αkj

)
=

(∑
i∈J

ddiωki , αkj

)
∑
i∈J

di
(
αki

, αkj

)
=

∑
i∈J

ddi
(
ωki

, αkj

)
2dj +

∑
i∈J0

di(αki
, αkj

) = ddj

∑
i∈J0

diaij = (d− 2)dj

since (αkj
, αkj

) = 2 and (αki
, αkj

) = 0 for all i ∈ J1 and i �= j.

Joining this information we have,

(d− 2)λ = (d− 2)
∑
j∈J1

djωkj
=

∑
j∈J1

(d− 2)djωkj
=

∑
j∈J1

(∑
i∈J0

diaij

)
ωkj

=
∑
i∈J0

di

⎛
⎝∑

j∈J1

aijωkj

⎞
⎠ =

∑
i∈J0

di

⎛
⎝∑

j∈J1

(αki
, αkj

)ωkj

⎞
⎠

=
∑
i∈J0

di

(
−2ωki

+
∑
t∈J

atiωkt

)
=

∑
i∈J0

di (−2ωki
+ αki

)

= −2
∑
i∈J0

diωki +
∑
i∈J0

diαki = −2μ+ v

where

(d− 2)λ+ 2μ = v =
∑
i∈J0

diαki
∈ Z⊥.

Since v is orthogonal to Z, so it is (d− 2)λ+ 2μ.

As v ∈ Z⊥ then c0(v) = −v and λ ∈ Z then c0(λ) = λ so

−(d− 2)λ− 2μ = −v = c0(v) = c0((d− 2)λ+ 2μ) = (d− 2)λ+ 2c0(μ)

therefore,

2c0(μ) = −2(d− 2)λ− 2μ

c0(μ) = −(d− 2)λ− μ.

The elements that belong to P are of the form aλ+ bμ, so

c0(aλ+ bμ) = ac0(λ) + bc0(μ) = aλ+ b(−(d− 2)λ− μ) = (a− b(d− 2))λ− bμ ∈ P

therefore c0(P ) = P . Analogously we can see that c1(P ) = P so C(P ) = c1c0(P ) = P .

As λ ∈ Z and μ ∈ Y we have that L = λR ⊂ Z and M = μR ⊂ Y then c0 fixes L point by point and c1

fixes M point by point. So L⊥ ∩ P ⊂ Z⊥ and c0 acts as −1 in L⊥ ∩ P so c0 is a reflection in P with fixed

line L. Analogously c1 is a reflection in P with fixed line M . Therefore, C acts in P as a rotation.
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The fundamental Weyl chamber is,

C =
{∑

βiωi; βi > 0
}
,

and it is closure is

C =
{∑

βiωi; βi ≥ 0
}
.

We have that λ, μ ∈ C and

P ∩ C = {aλ+ bμ; a, b > 0}

then we have that λ+ μ ∈ P ∩ C so P ∩ C �= ∅.
If Cx fixes P point by point then it fixes some element of C then by Lemma A.7.3 we have that Cx = 1,

but h is the minimum such that Ch = 1 so C has order h in P and acts as a rotation through 2π
h .

If h é even then w0 = C
h
2 and since C is a rotation through 2π

h then C
h
2 is a rotation through π, and it

takes points from P ∩ C to points of P ∩ w0C .

Since C is a fundamental domain to the action of W , while points of C have trivial stabilizers in W then

w0 = C
h
2 .

If h is odd, looking case by case the numbers of Coxeter that have an odd h is only in the An type when

n is even and h = n+ 1. For the Sn+1 group in type An with n even we can see directly that a modification

of the procedure above is enough to produce a reduced decomposition, w0 is the product of C
h
2 times the

first factor c1 of C.

Note that if h is even then we can write w0 = C
h
2 for C = c1c0, but if h is odd then we have that

l(w0) = l(· · · c1c0c1) = · · ·+ l(c1) + l(c0) + l(c1)

we can do that since c0, c1 are reduced expressions. If we write h = 2k+1, and we know that C = c1c0 = c0c1

so

l(w0) = kl(c0) + (k + 1)l(c1) = kl(c1) + (k + 1)l(c0)

that implies that l(c0) = l(c1) therefore

l(w0) = kl(c0) + (k + 1)l(c1) = kl(c0) + (k + 1)l(c0) = (2k + 1)l(c0) = hl(c0),

and we get that

l(c0) = l(c1) =
l(w0)

h
.

Corollary A.11.6. If h is the order of the Coxeter element and |I| is the rank of the root system R, then

|I|h = |R|.

Proof. We have that |R| = 2|R+| and l(w0) = |R+|.
If h is even we have that by Theorem A.11.5

|R| = 2|R+| = 2l(w0) = 2l
(
C

h
2

)
= 2

(
h

2
l(c0) + l(c1)

)
= |I|h.
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If h is odd we have that by Theorem A.11.5

|R| = 2|R+| = 2l(w0) = 2l(c1)h = (l(c1) + l(c1))h = (l(c0) + l(c1))h = |I|h.

A.12 Infinity root system

In the previous sections we have studied root system of finite type. However, for a second part of this

dissertation we need some information coming from infinity root system. Similarly, as in the finite case, the

infinity root systems are related to the weight theory of Kac-Moody algebra - certain generalizations of the

simple finite dimensional Lie algebras. In this section we define and state only the necessary results which

are needed in this work. Furthermore, we approach the theory of infinity root system in a way to avoid going

through the Kac-Moody algebra theory, since this is not in the scope of this work. We follow [18] in this

section. For a deeper interest and its connection with Kac-Moody algebra we suggest [14].

Definition A.12.1. A matrix A = (aij)1≤i,j≤�, ai,j ∈ K is said to be a generalized Cartan matrix if A

satisfies the following axioms, for all 1 ≤ i, j ≤ �:

(i) aij ∈ Z

(ii) aii = 2

(iii) aij ≤ 0 if i �= j

(iv) aij = 0 if and only if aji = 0.

Definition A.12.2. A realization of A (over a field K of characteristic 0) consists of a finite dimensional

vector space V and a pair of sets Δ = {α1, · · · , α�} ⊂ V and Δ∨ = {α∨
1 , · · · , α∨

� } ⊂ V ∗, such that

(i) The set Δ and Δ∨ are linearly independent;

(ii)
〈
αi, α

∨
j

〉
= ai,j,

where 〈 , 〉 denotes the natural paring V × V ∗ → K.

Given a realization R = (V,Δ,Δ∨) of A we can define the Weyl group W as the subgroup of GL(V )

generated by simple reflections si : V → V given by

si(v) = v − 〈v, α∨
i 〉αi, v ∈ V.

The real root system of R is defined by Rre = WΔ. Define

Q =
�⊕

j=1

Zαj , Q∨ =
�⊕

j=1

Zα∨
j .
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Given β ∈ Q and α ∈ R we have sα(β) = β − uα for some u ∈ Z. Then the root string between β and

sα(β) is defined as

[β, sα(β)] =

⎧⎪⎨
⎪⎩
{β, β + α, · · · , β + uα}, u ≥ 0

{β, β − α, · · · , β + uα}, u < 0.

A subset Δ of Q is said to have the root string property relative to Rre if

(i) Rre ⊂ Δ,

(ii) whenever β ∈ Δ and α ∈ Rre we have [β, sα(β)] ⊂ Δ.

Proposition A.12.3. There is a unique minimal subset R of V with root string property relative to Rre.

The set R above is called the root string closure of Rre.

Definition A.12.4. The elements of R\Rre are called imaginary roots and hence we denote by Rim = R\Rre.

It is now clear that we can define a Coxeter element, similarly, as we did in Definition A.11.2 for the finite

case.

Definition A.12.5. Given {i1, · · · , i�} = {1, · · · , �} we can define a Coxeter element C ∈ W by

C = si1 · · · ci� .

Definition A.12.6. If we write s ∈ W as s = sα1
· · · sαt

with αi ∈ Δ and t minimal we say that the

expression of s is reduced.

We define the length of a reflection s ∈ W relative to Δ as l(s) = t. Define

N(s) = {α ∈ Rre
+ ; s(α) ∈ Rre

− } and n(s) =| N(s) | . (A.11)

Lemma A.12.7. For all s ∈ W we have that l(s) = n(s) for n(s) as in (A.11).

Lemma A.12.8. Let α1, · · · , αt ∈ Δ, not necessarily distinct, and write si = sαi
. If s1 · · · st−1(αt) ∈ Rre

−

then s1 · · · st = s1 · · · sr−1sr+1 · · · st−1, for some index 1 ≤ r < t.

Corollary A.12.9. If s = s1 · · · st is an expression for s ∈ W in terms of reflections corresponding to simple

roots, with t as small as possible, then s(αt) ∈ Rre
− .
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Appendix B

ORBITS

In mathematics, an orbit is a set of points related by the action of a group. Specifically, given a group G

acting on a set X, the orbit of an element x ∈ X under the action of G is the set of all elements in X that

can be obtained by applying some element of G to x. Orbits are a fundamental concept in many areas of

mathematics, including group theory, algebraic geometry, and representation theory. In representation theory,

orbits play a crucial role in the study of group actions on vector spaces and modules, and in particular in the

classification of irreducible representations.

Throughout this chapter, K is an algebraically closed field, all the words related to topology are referring

to the Zariski topology. Notation X stands for the closure of X in Zariski topology. We also fix a quiver �Q

with set of vertices I and set of oriented edges Ω. To start we need to set some notation on representation

and how they translate to the orbits. We follow [16] in this appendix.

B.1 Representation space

Representation space refers to the collection of all possible representations of a given algebraic structure.

In mathematics, the study of representation spaces is a fundamental tool used to understand the underlying

algebraic objects.

Let �Q = (I,Ω) be a quiver and V = (Vi, xh)i∈I,h∈Ω ∈ Rep( �Q). Denote by

v = dim(V ) and vi = dim(Vi), i ∈ I.

We identify Vi � Kvi . If we have an arrow h : i → j then the linear transformation can be described as

xh : Kvi → Kvj , which means that

xh ∈ HomK(K
vi ,Kvj ) = Matvj×vi(K).

Or equivalently, the linear transformation can be described by a vector x in the space

R( �Q, v) =
⊕
h∈Ω

HomK(K
vs(h) ,Kvt(h)).
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Conversely, every x ∈ R( �Q, v) defines a representation

V x = ({Kvi}, {xh}).

The space R( �Q, v) is called the representation space. We will omit �Q from the notation, when there is no

ambiguity, and write just R(v). Or we may also write

R(V ) =
⊕
h∈Ω

HomK(Vs(h), Vt(h))

for an I-graded vector space V =
⊕

Vi. Obviously, R(V ) � R(dim(V )).

Consider now the group

GL(v) =
∏
i∈I

GL(vi,K)

which acts in R(v) by conjugation. Note that if g ∈ GL(v) then g = (gi)i∈I and if x = (xh)h∈Ω ∈ R(v) then

gx = ((gx)h∈Ω) ∈ R(v) where

(gx)h = gt(h)xhg
−1
s(h).

If we have an edge h : i → j then (gx)h = gjxhg
−1
i and the orbit of x ∈ R(v) is

Ox = {gx; g ∈ GL(v)}.

We will denote the orbit of x ∈ R(v) by Ox. We will also use the notation OV for the orbit corresponding

to a representation V , that is an abuse of language.

Theorem B.1.1. Two elements x, x′ ∈ R(v) define isomorphic representations of �Q if and only if they are

in the same GL(v) orbit.

Proof. If Vx � Vx′ then there exists g : Vx → Vx′ that is an isomorphism. So each gi is invertible and

gi ∈ GL(vi,K) and then g ∈ GL(v) therefore the diagram commutes,

Kvi Kvj

Kvi Kvj

xh

x′
h

gi gj

which means that x′
hgi = gjxh. Since gi is invertible there exists g−1

i , so

x′
h = gjxhg

−1
i = (gx)h

then x′ = gx and x′ ∈ Ox. Therefore, Ox = Ox′ .

Conversely, if x, x′ ∈ R(v) are in the same orbit then gx = x′ which means (gx)h = x′
h for all h ∈ Ω. So

x′
h = gjxhx

−1
i for every h : i → j, then the diagram commutes,

Kvi Kvj

Kvi Kvj

xh

x′
h

gi gj
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Therefore g : Vx → Vx′ is a morphism of representations with each gi ∈ GL(vi,K). So gi is an isomorphism

and g is an isomorphism between representations, which means Vx � Vx′ .

In other words, we have a bijection

(isomorphism classes of representations of graded dimension v) ⇐⇒ (GL(v)-orbits in R(v))

This result is particularly useful in the study of the classification of representations of quivers, as it allows

us to reduce the problem of classifying isomorphism classes of representations to the problem of classifying

orbits under the action of GL(v).

Example B.1.2. Let �Q be the quiver given by

• •

We want to find all the orbits related with the quiver �Q with dimension v = (1, 1). In this quiver we have

only one edge in Ω, so the representation space is given by

R(v) =
⊕
h∈Ω

Hom (Kvs(h) ,Kvt(h)) = Hom(K,K) � K

and the group GL(v) is

GL(v) = K× ×K×,

where K× are the nonzero elements of the field.

Let x ∈ R(v) and g ∈ GL(v). Then we have that x ∈ K and g = (α, β) with α, β ∈ K×. So

gx = (α, β)x = βxα−1.

For x = 0 we have O0 = {0}. For x = 1 we have gx = βα−1 and by varying the α and β we have all the

elements of the field except the zero one, therefore O1 = K×.

So

R(v) = K = O0 ∪O1.

And we have two representations, up to an isomorphism, with dimension v = (1, 1),

O0 � K K

O1 � K K

0

1

B.2 Properties of orbits

The group GL(v) is a linear algebraic group acting on a finite dimensional vector space. In the next

proposition we state the results of the general theory of orbits and algebraic groups that we will need in this

chapter. For proofs and further details we suggest [21].
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Proposition B.2.1.

(1) Each orbit is a nonsingular algebraic variety.

(2) The closure of an orbit is a union of orbits in Zariski topology and for K = C it is also in the analytic

topology. Moreover, O−O is a union of orbits of smaller dimensions.

(3) For any x ∈ R(v), the stabilizer subgroup

Gx = {g ∈ GL(v); g(x) = x}

is a closed algebraic subgroup in GL(v), and we have natural isomorphism

Ox = GL(v)/Gx,

TxOx = T1GL(v)/T1(Gx), (B.1)

where T1 stands for the tangent space at identity. In particular,

dim(Ox) = dim(GL(v))− dim(Gx).

(4) There exists at most one orbit of dimension equal to dim(R(v)). If it exists, it is open and dense in

R(v) in Zariski topology. For K = C it is also open and dense in the analytic topology.

(5) If R(v) has a finite number of orbits then there exists an orbit Ox with dim(Ox) = dim(R(v)).

The properties listed are important for understanding the structure of representation spaces, which is a

fundamental concept in representation theory. The fact that each orbit is a nonsingular algebraic variety

and that the closure of an orbit is a union of orbits in the Zariski topology provides a way to analyze the

structure of the space by studying its orbits. The concept of stabilizer subgroup is also useful in analyzing

the orbits and understanding their dimension. The fact that there exists at most one orbit of dimension

equal to the dimension of the representation space is also important, as it characterizes the structure of the

space in terms of its orbits. Now we can see some properties that are specific to quiver representation.

Theorem B.2.2. For every x ∈ R(v), the stabilizer Gx is connected in Zariski topology. For K = C it is

also connected in the analytic topology.

Proof. By definition,

Gx = {g ∈ GL(v); gjxhg
−1
i = xh for any edge h : i → j} = Aut�Q(V

x),

where V x is the representation of �Q corresponding to x ∈ R(v). We have that Aut�Q(V ) is the subset in

End�Q(V ) consisting of operators A satisfying det(A) �= 0. Thus, Aut�Q(V ) can be written as

Aut�Q(V ) = End�Q(V )− {A ∈ End�Q(V ); det(A) = 0} = L−X,
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where L is a vector space and X is an algebraic subvariety of codimension 1 closed in L. If A ⊂ L − X is

open then A is open in L since A = (L−X)∩B with B open in L and X is closed in L. So L−X is open in

L and A is the intersection of two open subsets, which means that A is open in L. Thus, any two nonempty

open subsets intersect, and it is Zariski connected.

For K = C, connectedness in the analytic topology follows from the observation that if m,m′ ∈ L −X,

then the complex line through m,m′ intersects X at finitely many points and thus m,m′ can be connected

by a path in L−X.

The importance of this theorem lies in its implications for the structure of the orbit Ox. In particular,

since Gx is a closed subgroup of GL(v), the orbit Ox is a homogeneous space GL(v)/Gx, which inherits the

structure of a manifold from that of GL(v) and Gx. The connectedness of Gx in both the Zariski and analytic

topologies ensures that Ox is connected as well, which is a key property for understanding the geometry and

topology of the space of representations R(v).

Lemma B.2.3. For any V,W ∈ Rep( �Q), we have an exact sequence

0 Hom�Q(V,W )
⊕

i HomK(Vi,Wi)

⊕
h HomK(Vs(h),Wt(h)) Ext1�Q(V,W ) 0

Proof. We have the projective resolution for the representation V

0
⊕

h→Ω P (t(h))⊗Kh⊗ Vs(h)

⊕
i∈I P (i)⊗ Vi V 0.

d0d1

Applying the functor Hom�Q(−,W ) to the resolution we have

0 Hom�Q(V,W ) Hom�Q

(⊕
i∈I P (i)⊗ Vi,W

)

Hom�Q

(⊕
h→Ω P (t(h))⊗Kh⊗ Vs(h),W

)
Ext1�Q(V,W )

Ext1�Q
(⊕

i∈I P (i)⊗ Vi,W
)
.

To prove that

Hom�Q(
⊕
i∈I

P (i)⊗ Vi,W ) �
⊕
i∈I

HomK(Vi,Wi)

recall that

HomA(L,HomB(M,N)) � HomB(M ⊗A L,N) (B.2)

this can be found in [1, p. 126]. So,

Hom�Q

(⊕
i∈I

P (i)⊗ Vi,W

)
� HomK(Vi,Hom�Q(P (i),W )) � HomK(Vi,Wi),
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where the second equivalence is true by Theorem 1.4.3.

Using isomorphism (B.2) we have

Hom�Q

(⊕
h→Ω

P (t(h))⊗Kh⊗ Vs(h),W

)
� HomK

(
Kh⊗ Vs(h),Hom�Q(P (t(h)),W )

)
� HomK

(
Kh⊗ Vs(h),Wt(h)

)
� HomK

(
Vs(h),Wt(h)

)
.

Where the second equivalence is true by Theorem 1.4.3. The third equivalence is true since

Kh⊗ Vs(h) � K⊗ Vs(h) � Vs(h)

by [1, p. 123].

Finally, to show that

Ext1�Q

(⊕
i∈I

P (i)⊗ Vi,W

)
= 0

we just need to show that P (i)⊗Vi is projective. Which means that Hom�Q(P (i)⊗K Vi,−) is exact. By (B.2)

we have that

Hom�Q(P (i)⊗ Vi,−) � HomK(Vi,Hom�Q(P (i),−)).

As P (i) is projective then Hom�Q(P (i),−) is exact and HomK(Vi,−) is exact since Vi is a K vector space with

finite dimension. Therefore, Hom�Q(P (i)⊗K Vi,−) is exact. Since P (i)⊗Vi is projective then
⊕

i∈I P (i)⊗Vi

is also projective and

Ext1�Q

(⊕
i∈I

P (i)⊗ Vi,W

)
= 0.

Theorem B.2.4. Let x ∈ R(v) and let V x ∈ Rep( �Q) be the corresponding representation.

(1) We have that

TxOx � End(v)
End�Q(V

x)
where End(v) =

⊕
i∈I

End(Kvi).

(2) Let

NxOx =
TxR(v)

TxOx

be the normal space for the orbit Ox. Then NxOx = Ext1�Q(V
x, V x).

Proof. (1) From (B.1) in Proposition B.2.1 item (3) we have that

Ox =
GL(v)

Gx
and TxOx =

T1GL(v)

T1Gx
.

So, T1GL(v) = End(v) and Gx = Aut�Q(V
x) then T1Gx = End�Q(V

x) therefore

TxOx � End(v)
End�Q(V

x)
.
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(2) Using the exact sequence from Lemma B.2.3 with V = W = V x we have

0 Hom�Q(V
x, V x)

⊕
i HomK((V

x)i, (V
x)i)

⊕
h HomK((V

x)s(h), (V
x)t(h)) Ext1�Q(V

x, V x) 0.

Which leads us to the exact sequence

0 End�Q(V
x) End(v) R(v) Ext1�Q(V

x, V x) 0.α β

So we have two short exact sequences

0 End�Q(V
x) End(v) Im(β) 0

0 Im(β) R(v) Ext1�Q(V
x, V x) 0.

α β

γ

From the first short exact sequence we have

Im(β) � Coker(α) � End(v)
End�Q(V

x)
� TxOx.

Using that in the second sequence we have

0 TxOx R(v) Ext1�Q(V
x, V x) 0.

γ

Therefore we have that

Ext1�Q(V
x, V x) � Coker(γ) � R(v)

TxOx
� TxR(v)

TxOx
= NxOx.

Corollary B.2.5. The orbit Ox is open in R(v) if and only if Ext1�Q(V
x, V x) = 0.

Proof. If Ox is open in R(v) then we have that Ox = R(v) and dim(Ox) = dim(R(v)), since R(v) is irreducible

then every open set of R(v) is dense in R(v). We have that Ox is locally closed then dim(Ox) = dim
(
Ox

)
.

We also have that dim(Ox) = dim(TxOx). Therefore, dim(TxOx) = dim(R(v)) and by Theorem B.2.4

Ext1�Q(V
x, V x) = R(v)TxOx = 0.

Conversely, consider that Ext1�Q(V
x, V x) = 0. We saw in Theorem B.2.4 that

Ext1�Q(V
x, V x) � R(v)

TxOx
= NxOx = 0.

Then

dim(R(v)) = dim(TxOx) = dim(Ox).

Therefore, Ox is open in R(v) by Proposition B.2.1 item (4).

This theorem is a fundamental result in the study of representation spaces and plays an important role in

the theory of stability conditions and moduli spaces. It allows us to relate geometric properties of the orbit

to algebraic properties of the Ext groups, and vice versa, which helps us to better understand the structure

of representation spaces and their moduli spaces.
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