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RESUMO

A negociação quantitativa consiste em estratégias baseadas em exploração estatística para 
identificar padrões, criando oportunidades de negociação. O aprendizado por reforço profundo 
(DRL) alcançou progresso significativo em várias áreas, como jogos, controle e manipulação, 
permitindo que os computadores executem tarefas complexas de tomada de decisão. Aplicado a 
finanças, os agentes de negociação DRL podem otimizar suas decisões em diferentes cenários de 
mercado, gerando uma estratégia rentável por meio de suas experiências anteriores. No entanto, 
muitas abordagens fornecem recompensas de maneira constante ao agente, devido ao desafio 
de conduzi-lo a uma política lucrativa fornecendo informações ocasionalmente. Embora prover 
recompensas a cada iteração do algoritmo propicie a conduzi-lo a uma política rapidamente, 
tal método faz com que o mesmo tenha dificuldades em convergir a uma política generalizada 
para diversos de cenários de mercado. Esta dissertação de mestrado propõe um sistema de 
negociação baseado em DRL que possui como componente principal, uma variante do algoritmo 
Redes Q Profundas (DQN) chamada de DQN de Negociação Extendido (ETDQN) que é capaz 
adaptar seu aprendizado para negociar em diversos momentos de comportamento do mercado, 
recebendo recompensas apenas ao término da negociação. Baseado em aprendizado distributivo 
e outras extensões independentes propostas pela comunidade DRL, o algoritmo otimiza sua 
tomada de decisão por meio de experiências amostradas por prioridade, contendo cada uma 
sub-objetivos dinstintos, auxiliando o agente a alcançar seu objetivo principal de reter o valor 
máximo de lucros, e também removendo a necessidade de ajustes finos de recompensa. ETDQN 
aprendeu a negociar em três diferentes sinais de séries temporais financeiras, identificando com 
sucesso oportunidades de negociação em diferentes cenários de mercado. O algoritmo apresentou 
um comportamento mais agressivo em relação à volatilidade de seus retornos anuais do que 
o benchmark DQN de Negociação e teve 1,46 e 7,13 vezes melhor desempenho em relação 
aos retornos cumulativos diários médios aplicado a dados de mercado históricos da Western 
Digital Corporation e criptomoeda Cosmos. Além disso, o algoritmo proposto foi 2,14 vezes 
mais lucrativo do que o segundo benchmark mais bem avaliado aplicado aos dados do fundo 
negociado em bolsa iShares S&P500, "Compre-e-Segure".

Palavras-chave: Negociação Quantitativa, Aprendizado por Reforço Profundo, Redes Q- 
profundas, Ambiente de Negociação com Recompensa Esparsa, Processamento de Sinal 
Financeiro



ABSTRACT

Quantitative trading consists of strategies that rely on statistical exploration to identify 
patterns that turn into trading opportunities. Deep reinforcement learning (DRL) achieved 
significant progress in several areas, such as gaming, control, and manipulation, enabling 
computers to perform complex decision-making tasks. Applied to finance, DRL trading agents 
can optimize their decisions during distinct market scenarios to reach a profitable strategy by 
learning from previous experiences. However, many approaches provide constant feedback to the 
agent, due to the complicated reward tuning that is required to guide the algorithm to a lucrative 
policy by only giving information occasionally. This master’s thesis proposes a DRL-based 
trading system that has as its main component, a variant of the Deep Q-Network algorithm called 
Extended Trading DQN (ETDQN) that can be able to adapt its learning to trade across numerous 
market-behavior moments, receiving feedback only when a trade is over. Based on distributional 
learning and other independent extensions submitted by the DRL community, the algorithm 
optimizes its decision-making process by replaying prioritized experiences containing different 
sub-goals each, assisting the agent to achieve its main objective of retaining the maximum 
value of profits, as well as removing the need for fine-tuning rewards. ETDQN learned to trade 
on three different financial time series signals, successfully identifying trading opportunities 
in different market scenarios. The algorithm showed more aggressive behavior regarding the 
volatility of its annual returns than the Trading DQN benchmark and had 1.46 and 7.13 times 
better performance regarding mean daily cumulative returns in Western Digital Corporation 
and Cosmos cryptocurrency historical market data. In addition, the proposed algorithm was 
2.14 times more lucrative than the second best-evaluated benchmark with iShares S&P500 
exchange-traded fund data frame, Buy-and-Hold.

Keywords: Quantitative Trading, Deep Reinforcement Learning, Deep Q-Networks, Sparsed- 
reward Trading Environment, Financial Signal Processing
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1 INTRODUCTION

According to Kissell (2021), quantitative trading is an automatic trading execution of 
a financial asset that utilizes mathematical functions and models to make trading decisions. 
Quantitative hedge funds use these algorithms to maximize profits due to their ability to learn 
from historical data.

Seeking to help traders better understand stock market conditions, earlier technical 
analysis-based algorithms were built by replicating human trading behavior using traditional 
technical indicators. However, these systems have failed due to their instability, poor generalization 
ability, and susceptibility to environmental change.

Reinforcement Learning (RL) is an emerging sub-field of machine learning. It enables 
an agent to learn in an interactive environment through trial and error, using feedback from its 
actions and experiences. The agent aims to improve its policy to acquire better rewards. Deep 
reinforcement learning (DRL) is a combination of reinforcement learning, and deep learning 
techniques that achieved significant progress in several areas, such as gaming Mnih et al. (2015), 
and manipulation Levine et al. (2016), enabling computers to perform complex decision-making 
tasks. DRL also has achieved significant performance in trading tasks seeking to maximize 
profits by capturing possible trading opportunities.

Even though there exist publications about DRL-based trading systems in the literature, 
many trading systems, such as Li et al. (2019) and Theate and Ernst (2021), provide feedback to 
the agent constantly due to the complicated reward tuning that is required to guide the algorithm 
to a lucrative policy by only giving information occasionally.

Although it may be easier to conduct the agent to a policy quickly, this method misguides 
the agent to be able to converge to a generalized policy involving multiple market scenarios. 
Providing feedback to an agent at every iteration may lead it to not exploring the environment 
efficiently, restraining it from generalizing its decision-making process.

In addition, financial markets do not produce meaningful information constantly. 
Therefore the algorithm should be trained so that it receives a contribution only during the end of 
an event, in this case, at the end of a trade.

This master dissertation proposes to create a Deep Q-Network (DQN) algorithm variant 
based on Trading DQN (TDQN), presented by Theate and Ernst (2021), named Extended Trading 
DQN (ETDQN). This variant can generalize its learning to trade across numerous market-behavior 
moments, receiving a simple, sparse exponential profit-and-loss reward once the trade ends.

ETDQN incorporates Trading DQN algorithm extensions, such as Double DQN, to 
tackle the overestimation problem and extends it by including some DQN improvements combined 
in Hessel et al. (2018).

The DQN-variant adopts distributional learning instead of the standard expectation. 
Proposed by Bellemare et al. (2017), this approach is beneficial since other statistics from 
the approximated distribution can be learned and optimized. In addition, the algorithm took 
advantage of both prioritized Schaul et al. (2016) and hindsight Andrychowicz et al. (2017) 
experience replays to sample meaningful experiences, according to prioritization, with different 
sub-goals each, assisting the model in its primary goal of optimizing its decisions to collect the 
maximum amount of profits and also removes the need for complex reward tuning.

To improve learning even further, instead of the standard feed-forward architecture 
adopted in the standard DQN, ETDQN contains the dueling neural network architecture Wang
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et al. (2016) in combination with noisy linear layers Fortunato et al. (2018). This combination 
assists the agent in performing better exploration and identifying which states are more valuable.

Lastly, instead of using the common sampling approach based on regular intervals, this 
work adopted a different approach proposed by de Prado (2018) that provides the agent intraday 
data according to market activity. This method provides information to the agent at the same 
pace that the market processes information. Contrary to standard time sampling, this approach 
does not oversample information during low market activity or undersample during high activity.

Aiming to compare performance, ETDQN is compared against the classical benchmarks 
Buy-and-Hold and Sell-and-Hold. To check if the model performs better than random, a strategy 
named random action which chooses its actions randomly based on a discrete uniform distribution, 
is compared with it. Finally, ETDQN is also compared to the DQN variant TDQN. TDQN was 
implemented according to the same instructions described in the original paper. The performance 
comparison considers cumulative returns, the 6-month rolling Sharpe ratio, maximum drawdown, 
and average annual return (AAR).

1.1 OBJECTIVES

This section aims to describe the general and specific objectives of this master’s 
dissertation.

1.1.1 General Objective

This master dissertation proposes an event-driven DRL-based trading system that 
processes information according to market activity. The algorithm can generate a policy that 
generalizes across multiple market scenarios, identify trading opportunities, and take advantage 
of them. Moreover, it should be profitable concerning mean daily cumulative and annual averaged 
returns, provide a competitive mean Sharpe ratio, and have less risk of ruin than the remaining 
benchmarks.

1.1.2 Specific Objectives

The specific objectives of this dissertation are:

1. Generate a market-valuation driven intraday trading environment with technical indica­
tors, time signature, and candlestick bars features. The environment should generate 
information at the same pace the market reaches a pre-defined market value and provide 
feedback to the agent only once it finishes a trade.

2. Implement a deep Q-Network (DQN) variant algorithm that extends the Trading DQN 
benchmark, incorporating Categorical DQN, Noisy-Dueling neural networks, prioritized, 
and hindsight experience replay extensions that can identify and take advantage of 
trading opportunities by receiving non-frequent feedback from the environment.

3. Prove that the proposed algorithm performs better than the best-evaluated benchmark in 
iShares S&P500 ETF, Western Digital Corporation, and ATOM/USDT data frames, 
considering the metrics: Mean daily cumulative returns, 6-month rolling Sharpe ratio, 
maximum Drawdown, and Average Annual Return.
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1.2 CONTRIBUTIONS

The intended contributions of this dissertation are:

(a) Provide an automated intraday trading system that is deployable on fundamental trading 
markets and is profitable regarding cumulative and annual returns in the long term.

(b) Analyze and explore a pre-processing sampling step based on market value that generates 
information according to market activity, and compare it against the usual time sampling 
approach.

(c) Propose a DQN-variant that can identify and take advantage of trading opportunities by 
receiving non-frequent feedback from the environment and does not need complicated 
reward tuning.

(d) Obtain evidence that the proposed algorithm leads to a better overall performance in 
cumulative returns and drawdown against the Buy-and-Hold, Sell-and-Hold, random 
action, and TDQN benchmark strategies.

1.3 METHODOLOGY

According to Lakatos and Marconi (2003), a research methodology procedure is a set 
of systematic and rational guidelines that aims to firm a foundation for advancing knowledge 
and facilitating theory development. Research work can be classified as a primary or applied 
research type. Primary research seeks to expand the existing scientific knowledge base, whether 
applied research is designed to solve specific practical problems.

This master dissertation adopts the applied research method to solve a problem using a 
quantitative approach. Figure 1.1 shows the research methodology sequence for the respective 
work, which defines the milestones aiming to achieve its objective. The following hypothesis 
was raised: It may be possible to guide a deep reinforcement learning-based trader agent to find 
trading opportunities more effectively in terms of learning by simulating a sparse-reward trading 
environment.

A systematic literature review of deep reinforcement learning approaches applied to 
trading tasks was conducted. Related works about this topic were collected, analyzed, and 
discussed to find the current gaps and advances in the literature.

The data collection, cleaning, and pre-processing procedures were performed, followed 
by an exploratory analysis. The data frames came from two distinct sources: Kibot and Binance 
spot’s application programming interface. The adopted Interquartile range method removed 
outliers with a 7-day sliding window approach and was followed by the creation of bars sampled 
according to market value. Subsequently, the data was used to generate technical indicators and 
time signature features, embedding this information into the state.

The next step includes the DQN-variant algorithm and the dynamics of the trading 
environment implementation. It consists of the sparse reward dynamics implementation and the 
environment behavior regarding the chosen action. The developed algorithm was trained, having 
each trade position at each time step saved into a log file.

Finally, its performance was evaluated along with four distinct benchmarks: Buy- 
and-Hold, Sell-and-Hold, random action strategy, and TDQN benchmarks, according to daily 
cumulative returns, monthly and annual returns, drawdown, and rolling Sharpe ratio metrics.

Buy-and-hold is a benchmark that the investor buys the asset and holds it for an extended 
period. The strategy follows the asset’s price evolution throughout time. On the contrary,
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Systematic literature review

• Trading tasks
• Deep learning
• Reinforcement learning
• Deep reinforcement learning

i r

Data manipulation and 
exploratory analysis

• Market data collection
• Data cleaning
• Data preprocessing
• Exploratory data analysis

 1-----------------------
Generated 

candlestick bars
____________ _ L ____________

Algorithm development

• Technical indicators generation

• Trading environment 
implementation

• Deep Q-Network variant 
implementation

• Algorithm backtesting

Saved trading position 
at every time step 

♦

Algorithm performance 
evaluation and comparison

1

Conclusion

Figure 1.1: Research methodology sequence

Sell-and-Hold is a strategy in which the trader should open a short position (bet against) the 
asset for a long time. In the random action strategy, the trader would choose decisions randomly 
according to a uniform probability distribution, and TDQN is a DRL-based algorithm proposed
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by Theate and Ernst (2021) which implements Double DQN and apply it to a trading environment 
with time bars and provides dense rewards to the agent. Finally, the conclusion summarizes the 
results achieved in this dissertation and suggests future research direction.
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2 THEORETICAL FOUNDATION

This section reviews some reinforcement learning concepts and Q-learning-based 
algorithms, as well as trading styles and metrics such as returns, maximum drawdown, and Sharpe 
ratio, which are necessary to build and evaluate the proposed deep reinforcement learning-based 
automated trading strategy.

2.1 TRADING STRATEGIES

Widely applied in stock, cryptocurrency, commodity futures, and foreign exchange 
markets, trading is a process of buying and selling one given financial asset to make a profit. 
Scalp trading, day trading, swing trading, and position trading are different trading styles that can 
be explored in strategies. Scalping, or scalp trading, is the most short-term form of trading. This 
style holds open positions for seconds or minutes at most, aiming to make many quick trades 
with smaller profit gains. Day trading is a style that consists of opening and exiting positions 
on the same day, removing the risk of any significant overnight moves. Trades are usually held 
for hours. Swing trading is a style that typically holds positions for several days, although it 
might extend for some weeks. Lastly, position trading is long-term focused—this category spans 
months or even years. Table 2.1 shows the average time duration of each trading style.

Table 2.1: Trading style average time duration

Trading Style Trading Time Period
Scalpping From seconds to minutes
Day Trading From minutes to hours (one day maximum)
Swing Trade From days to weeks
Position Trading From months to years

In trading, mainly in future markets, two possible positions are long or short. The first 
approach aims to open a position of a perpetual future contract at a specific price and profit 
from it as the price increases. On the other hand, the second approach is to open a position 
of a perpetual future contract, betting against the asset and making profits from it as the price 
decreases. Considering the existence of different trading styles, different agents may learn 
different trading styles.

2.2 EVALUATION METRICS

This section describes the evaluation metrics on which the strategy is evaluated. Some 
essential metrics for trading stocks include the Sharpe ratio, cumulative returns, and Maximum 
drawdown. The following subsections describe the metrics mentioned above.

2.2.1 Sharpe Ratio

The Sharpe ratio measures the risk-adjusted return of a financial portfolio. In 1966, 
Sharpe proposed this risk/reward ratio to capture in a single number. Equation 2.1 defines the 
Sharpe ratio:
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E [Ra -  Rb ]Sa = ^ . (2.1)

aThe quality of an investment is defined as the expected value E of the asset return R 
subtracted by the risk-free return Rb, divided by the standard deviation of the asset <ra. This 
metric is defined by the mean of returns generated in the portfolio divided by the standard 
deviation of the same feature. The lower the standard deviation, the less risk and the higher the 
Sharpe ratio; the opposite is true.

2.2.2 Simple Returns

Simple returns on an investment are the amount that the investment has gained or lost 
over time, independent of the amount of time involved. Equation 2.2 defines simple returns 
calculation:

Pt -  PtRetu rns = --------- . (2.2)
Pt0

It is expressed as a percentage and is calculated by subtracting the asset price P in time 
to (Pt0) from the current price P at time t (Pt), divided by the asset price in time t0 (Pt0).

2.2.3 Logarithmic Returns

Logarithmic returns measure the rate of exponential growth. Unlike simple arithmetic 
returns, which measure the percent of price change for each sub-period, logarithmic returns 
measure the exponent of its natural growth during the same sub-period mentioned above. They 
are given by:

rt = ln(1 + Rt) = l n |P ^ J  , (2.3)

where ln(-) is the natural logarithmic function, Rt is the simple period return, Pt is the asset price 
at time t and Pt-1 is the asset price at t -  1. As denoted above in the equation, simple logarithmic 
returns can be calculated by adding 1 to the simple return and subsequently taking its natural 
logarithm of it. Another option is to divide the asset price by its predecessor and apply the natural 
logarithm. This type of return tends to be more normally distributed than simple arithmetic ones.

2.2.4 Simple Cumulative Returns

Cumulative Returns, also known as multi-period returns, show the evolution of the 
investment taking its historical path (many periods) into consideration, unlike simple arithmetic 
returns, which consider a single one. The k -period cumulative return is defined as the cumulative 
product of the k -sub period returns calculated by:

1 + Rt (k ) = (1 + Rt)(1 + Rt- 1) ••• (1 + Rt- k+i), (2.4)

where k is the number of period returns, in order to illustrate a 30-day cumulative returns 
calculation, the following procedure would have to be made:

1 + Rt (30) = (1 + Rt)(1 + Rf-1) • • • (1 + Rf-29), (2.5)
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k = 30 and the 30-day cumulative return would be calculated by the cumulative product from the 
first daily return Rt to the last Rt-29 simple return. Mathematically, multi-period returns can be 
expressed as:

k-1
1 + Rt ( k ) = ^ ( 1  + Rt-j ). (2.6)

j=0
The n  symbol is the productory from the period return j  = 0 to the number of k -  1 with each 
period return summed by 1.

2.2.5 Cumulative Logarithmic Returns

Cumulative logarithmic returns are more simple to calculate than simple cumulative 
ones and are given by:

k-1
rt ( k ) = ^  rt- j. (2.7)

j=0
The cumulative logarithmic return rt ( k ) from period k is the £  from the return from the initial 
period j  = 0 to k -  1.

Unlike simple cumulative returns that require calculating the geometric sum or the 
cumulative product of the two continuously compounded returns, in order to calculate cumulative 
logarithmic returns, it is only necessary to sum the two continuously compounded returns.

2.2.6 Maximum Drawdown

Maximum Drawdown (MDD) is the highest peak-to-valley decline (usually quoted as a 
percentage) of an investment during a specific holding period. Drawdowns can help to determine 
an investment’s financial loss risk by looking into the past. (Choi, 2021) defines the Maximum 
Drawdown as

MDD (T ) = max
t e (0,T)

max (P(t)
t e (0,t) P (T)) (2.8)

with the inner equation part computing the drawdowns that are calculated by the max of the 
difference of the logarithmic-price P(t) at time t ranging from 0 to r , and P (t ) the logarithmic- 
price at the period r , and the outer part takes the max of the drawdowns, which is the maximum 
drawdown.

2.3 Q-LEARNING

Q-learning is a value-based, model-free, and off-policy reinforcement learning algorithm 
introduced by Watkins and Dayan (1992) that seeks to approximate the best action a to be taken 
given a current state s. The algorithm estimates a state-action value function Qn (s, a) , which 
represents how good it is for an agent to perform a particular action in a state under a given policy 
n. Equation 2.9 shows the respective state-action value function:

Qn(s,a) = E [rt + yrt+\ + y 2rt+2 + ... |st = s ,a t = a ,n] . (2.9)

Denominated also as Q-function, Qn(s, a) is calculated by taking the sum of rewards 
r discounted by y  at each time step t , achievable under a given behavior policy n = P (a | s) ,
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after making an observation st and taking action at at a t time step. The standard Q-learning 
algorithm often deals with problems in which the state and action spaces are small enough to 
approximate value functions to be represented as tables, also known as Q-tables. These contain 
the representation of every observation originated by the environment and every possible action 
to be taken. With these features combined, the table represents all possible combinations of each 
state-action pair’s ability to reach the agent’s ultimate objective. Figure 2.1 shows an example of 
a Q-table applied to the trading problem having price and the relative strength index (RSI) as 
features.

Action
State

Buy Hold Sell

RSI = 30 
Price = 2.5 -3 3 8

RSI = 36 
Price = 2.0 5 -5 0

RSI = 15 
Price = 1 4 9 6

State
t+N

Q(s,a) Q(s,a) Q(s,a)

Figure 2.1: Q-table representing states from a trading environment

Suppose that the agent is at the state where RSI and Price features are respectively equal 
to 30 and 2.5. If the model chooses the hold action, the Q-table shown in Figure 2.1 states that its 
action value is 3. In other words, this particular state-action pair is more beneficial to reach the 
agent’s goal than the buy action, which is -3. However, this Q-table shows that in this particular 
state RSI = 30 and Price = 2.0, the best action to be taken according to the model objective is 
to sell, which its action value is 8. In addition, the last row of the Q-table shows that more states 
can be included, extending the trading environment and state-action pairs. Lastly, suppose the 
agent chooses its actions according to the Epsilon-Greedy policy, which selects the action with 
the highest estimated state-action pair during its interaction with the environment. In that case, it 
learns to avoid taking specific actions into the state in the future due to its low Q-value.

In reinforcement learning, the agent actively iterates with the environment through 
actions until a desired state is reached or a maximum number of steps are expired. This series of 
steps is defined as an episode. In the beginning, Q-learning starts all possible state-action pairs 
evaluated at 0 and begins learning from the environment. In order to learn through iteration, 
action values must be estimated. Some methods, such as Monte-Carlo learning, only estimate 
how good an action is when the episode finishes and only then is the Q-table updated. Instead of 
waiting for an entire episode to learn, temporal difference methods can estimate Q -  values at 
every iteration. These methods update the Q-table at the exact moment the episode is unfolding. 
At the core of Q-learning lies the Bellman equation shown in equation 2.10, serving as the target to 
estimate the action value given the information in the tuple (Statet, Actiont, Rewardt, Statet+\). 
The main idea in Q-learning is that the state-action pairs can be iteratively approximated using 
equation 2.10.
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Qt+1(s ,a ) = E [rt + ymaxQt (s', a')]. (2.10)
a'

The mentioned equation states that the new Q-value yielded from being at state s and 
performing action a at time step t + 1 is equals to the immediate reward rt plus the best Q-value 
possible from the following state s', multiplied by the discount factor y  which controls the 
contribution of past rewards, and E is the expectation symbol. This component is also called the 
target. Equation 2.2 shows the component as mentioned above, a formula adapted to be recursive 
and shaped to update Q-table action values.

Qt+i (s ,a ) = Qt(s ,a ) + a [rt + ymaxQt(s', a') -  Qt(s ,a )]. (2.11)

Figure 2.2 shows an example of Q-value update by using equation 2.11. Where it is 
composed of two main components: temporal difference target defined on equation 2.10, which 
is used to update the Q-table given a new experience tuple, as well as Q (s, a) element that is 
the current estimation of the action value. The hyper-parameter a e [0,1] is the learning rate. 
It controls how much a new estimated action value impacts the current estimate. If a = 0, the 
model will not learn, and the estimated action pair is not changed. On the other hand, if a = 1, 
the old action value is completely discarded.

Figure 2.2: Q-table update mechanism in a trading environment

By simulating an update of the Q-table presented in Figure 2.1, the learning process has 
already been started; hence the Q-table is not 0. Suppose the agent receives the initial observation 
of RSI = 36 and Price = 2.0 from the environment. Then, the same acts accordingly to its 
greedy policy and chooses to buy since it is the action with the highest value. In the following, 
the environment reacts to the agent’s choice. It returns the immediate reward calculated by the 
objective function defined during the implementation, which yields rt = 4 and the next state 
RSI = 15 and Price = 1.0. As soon as the learner receives the previous information, it can
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update the Q-value using equation 2.2. Having the current estimated action value of Qt(s, a) = 5, 
at the moment the next state S' is presented, the agent will not take the following action based 
on the previous policy but will choose the best action value from all the possible ones. In 
this case, the best action value in the next state S' is 9 (hold), in mathematical representation, 
maxQt(s', a') = 9. Finally, assuming that the discount and learning rates are 0.99 and 0.1, the

a'
new Q-value estimation is given by: Q(s, a) = 5 + 0.1 [4 + 0.99 * 9 -  5] = 5.791. As iterations 
go by, such action values tend to converge to the optimal action-value function Qt ^  Qt * as 
t ^  œ. The optimal state-action value function measures the maximum state-action function 
overall policies and is given by

Q* (s, a) = E [maxQn(s, a)], (2.12)

where Q* (s ,a ) is the optimal action-value function, E the expectation symbol, max the maximum 
operator, and Qn (s ,a) the action-value function following the n policy. Q* (s ,a) equals the 
action-value function that returns the highest expected action-value pairs under n policy.

2.4 DEEP Q-NETWORKS

Deep Q-Network (DQN) is an algorithm that aims to approximate a state-action value 
function in a Q-Learning framework using a deep neural network. Introduced by Mnih et al. 
(2013), it was the first deep learning model to successfully learn to control policies directly 
from high-dimensional sensory input using reinforcement learning. Figure 2.3 shows a standard 
Q-table and a Deep Q-network.

Figure 2.3: Q-table and Deep Q-Network architectures
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In order to overcome the limitation of small state and action spaces in Q-tables, DQN 
incorporated a nonlinear neural network function approximator with weights 6 called Q-networks. 
The main features introduced to the algorithm in order to stabilize learning were Fixed Q-targets 
and Experience Replay. Q-learning updates its estimated action values based on another estimated 
value, hence this mechanism may potentially lead to harmful correlations. DQN solves this issue 
by using a target neural network, which contains fixed Q-targets. This network has the same 
architecture as the main Q-network, except it keeps its 6-  weight parameters fixed, and after r  
steps, they are updated by copying the main Q-network weights 6i. Equation 2.13 represents the 
main Q-network forward pass.

Li(dj) = E(s,a,r,s')~u(D) [(r + yma(s', a ' ; ) -  Q (s ,a ; et))]2 (2.13)

where the subscript of the expected value operator (s, a, r, s') ~ U(D ) means that the (s, a, r, s') 
experience tuples are uniformly drawn from the experience replay buffer, E is the expectation 
symbol, r + ymaxQ(s', a'; 6- ) is the temporal difference updated action value target originated

a'
from the target neural network, and Q (s ,a ; 6t) is the action value originated from the main 
Q-network, parameterized by weights 6t. Figure 2.4 shows the learning mechanism of the DQN 
algorithm.

Figure 2.4: Deep Q-Network sampling and update mechanism in a trading environment

The learning phase starts by uniformly sampling a mini-batch of experiences tuples from 
the experience replay buffer and feeding them to both networks. Then, the Q-network weights 6t
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are copied to the target network, and its 0. weights are kept fixed for r  steps, having also its output 
set to as target Y®QN = r + ymaxQ(s', a'; Q- ) to the main Q-network. In sequence, the predicted1 a' 1
action value Q (s, a ; Qi) produced by the main network is obtained, and its loss is calculated by 
taking the squared difference between the components above. Finally, differentiating the loss 
function with respect to the Q-network weights Qi, reaches Equation 2.14, which results in the 
backward pass at each iteration i of the main Q-network.

V8iLi (6i) = Es,a, rA « (Y lDQN -  Q (s,a; Qi))Ve. Q(s ,a ; Qi)], (2.14)

where the rate of weights Qi change is the difference of the temporal difference updated action 
value target Y®QN and the action value Q (s ,a ; Qi) produced by the prediction neural network 
multiplied by the gradient of the previous component in respect to weights Qi.

In addition to incorporating Fixed-Q targets, an experience replay mechanism was also 
introduced to the algorithm. Initially published by Lin (1992), it is a fixed-size memory buffer 
that stores the most recent experiences gathered by the agent. It enables online reinforcement 
learning agents to reuse them multiple times instead of immediately disposing of them. This 
technique stabilizes learning by breaking the temporal correlations by randomly sampling 
experiences and not presenting them sequentially. It also brings benefits to learning due to the 
reuse of rare experiences multiple times. Experience replay is typically implemented so that 
once a new experience is collected, the buffer discards the oldest and stores the new one in 
its place. Regarding its sampling strategy, the fixed-size buffer has many variants that explore 
distinct distributions. Some other variants include Schaul et al. (2016), which proposes the 
Prioritized Experience Replay to sample transitions accordingly to a non-uniform distribution, 
benefiting experiences with more significant temporal difference error, and Andrychowicz et al. 
(2017), which presents the Hindsight Experience Replay as an alternative for complicated reward 
engineering in challenging environments with sparse or binary rewards. The main idea of this 
variant is to repeat each episode aiming for a different goal other than the previous one that the 
agent was attempting to achieve.

2.5 DOUBLE DEEP Q-NETWORKS

In both standard Q-learning and DQN algorithms, the max operator, in their respective 
temporal difference targets, utilize the same weights to select and evaluate an action. Thus, this 
approach makes the agent more likely to select overestimated values under certain conditions, 
such as when training starts and Q-values are still evolving, resulting in overoptimistic value 
estimates. Aiming to reduce the overestimation problem, Hasselt et al. (2016) proposed to 
implement the original Double Q-learning to deep reinforcement learning proposing a solution 
that decomposes the max operator in the target function into action selection and action evaluation. 
Two value functions are learned by assigning each experience randomly to update one of the 
two value functions, such that there are two weights, Q and Q . Seeking to make the minimal 
possible modifications to DQN towards Double Q-learning, the author proposed to use the main 
Q-network in DQN architecture to evaluate the greedy policy and the target network to estimate 
the values. Even though both networks are not entirely decoupled, they can be used without 
introducing additional networks. Equation 2.15 shows the temporal difference target update for 
Double DQN.

yDoubleDQN _ r + y maxQ (( s’, a’; ); Q. ).
a'

(2.15)
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The selection of the action, in the max operator, is due to the online weights 6i and 
made by the main Q-network. However, the second set of weights 6-  are used to evaluate this 
policy. The target network is still updated every r  steps by copying the Q-network weights 
6i. Equations 2.13, 2.14 still apply to Double DQN, but having its targets replaced by 
yDoubieDQN. Figure 2.5 shows the learning mechanism of the Double DQN algorithm.

Figure 2.5: Double deep Q-Network sampling and update mechanism in a trading environment

The learning phase starts by uniformly sampling experience tuples stored in the 
experience replay buffer. The total amount of sampled tuples is equivalent to the chosen batch 
size. Then, the next state array serves as input to the main Q-network and the argmax operator 
is applied to retrieve the best action predicted from the network. In the following, the next state 
is also fed to the target network, however the Q-value retrieved is regarding the position of the 
previous action generated by the main Q-network, in other words, the action is generated by the 
main Q-network and evaluated by the target network. In case that the trade is over, the temporal 
difference target is given by the reward, else it is given by

yDoubleDQN = r + ymaxQ ((s' , a'. q ). q- ), (2.16)
a' 1

where r is the reward, y  is the discount rate, maxQ ((s', a '; 6i); 6-  is the Q-value in which the 
action is generated by the main Q-network having the target network as evaluator. Lastly, the 
current state is fed to the main Q-network to output the Q-value function, in respect to the current 
state and the loss is given by

Li(6i) = E ( (D) [YDoubleDQN -  Q (5 , a ; 6,)]2, (2.17)
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where Qi is the weights of the main Q-network, YDoubleDQN is the target, and the action value 
Q (i, a ; Qi) is produced by the main neural network.

2.6 CATEGORICAL DQN

Bellemare et al. (2017) proposed to explore the distribution of the random values 
received by an RL agent instead of the typical approach that models the expectation of these 
values using the Bellman expectation equation for state-action value function Q (s, a) which is 
written as

Q (s, a) = En [R (s, a) + yQ (s', a')], (2.18)

where R (s, a) is the immediate reward provided in state s under the action a, y  is the discount 
factor, Q (s', a') is the state-action value in the next state s' taking action a', E is the expectation 
symbol. The authors remove the expectations inside Bellman’s equation and consider instead the 
full distribution of the random variable Zn.

Z (s,a) = R (5 , a )+  y Z (s', a'), (2.19)

where R(s,a) is the immediate reward provided in state s under the action a, y  is the discount 
factor, Z (s', a') is the distribution of the the random variable Z  in next state s' and taking action
a'. = states that Z (s, a) is equivalent to a distribution. This distribution is adopted as a mapping 
from state-action pairs to distributions over returns. It is called the value distribution.

Based on a distributional approach, Bellemare et al. (2017) proposed an algorithm to 
approximate distribution probability masses placed on a discrete support vector z parameterized
by Natoms s N+. The discrete distribution’s atoms may be seen as the "canonical returns" of it.
They are consecutive, non-overlapping intervals with evenly spaced values in z. The discrete 
support Zi is given by

Zi = Vmin + iAz, (2.20)

where Vmin e R is the minimum (starting) value of the support vector Zi whose values are evenly 
spaced, i is the position of vector Zi. Az is the minimum value that is added to each position of 
vector z defined by

. Vmax — Vmin
Az = —------ — , (2.21)

atoms 1
where Natoms is the number of atoms, Vmax e R is the maximum value of the discrete support and 
Vmin is described by equation above. In addition, the atom probabilities pi (s, a) of a distribution 
Zn ( i, a) can be computed as

gZi
p i (s,a) = vA.-i ,. • (2.22)

Z ,.o
where e is the Euler’s number, z is the support vector that holds the "canonical" values of the 
distribution. N  is the number of atoms, i is the position of the atom that the probability is
calculated in the vector z, and j  is an evenly-space variable that sums all-atom values from
position 0 to Natoms -  1. Pi(s, a). It is known as the softmax function. This function takes the 
vector z and normalizes it into a probability distribution consisting of probabilities proportional



30

to the exponentials of the input numbers. Figure 2.6 shows an illustrative example of generating 
the support vector z and calculating the probability of each atom.

Figure 2.6: Example of support vector zi and its probability distribution

Suppose the number of atoms Natoms is 10. The support vector Zi will contain ten 
positions. In addition, the example adopted the vector’s boundaries with the minimum starting 
number Vm{n of -5 and the maximum final number Vmax of +5. To fill the remaining positions, 
first, a minimum variation of vector z (Az) is calculated by:

. Vmax Vmin 5 ( 5) , , ,
A z = - v - i  ÏÔ -T -  = l A l '

where Adopting Az = 1.11, the remaining positions are calculated by multiplying Az with 
its respective position and sum the minimum adopted value Vmin, according to Equation 2.20. 
To illustrate this computation, the first and second positions of the support vector are written, 
respectively

z i = -5  + (1 x 1.11) = -3.89, 
z2 = -5  + (2 x 1.11) = -2.78.

In order to calculate the probabilities pi (s, a) for each atom of the vector n , the Softmax function 
in Equation 2.22 was applied to it. In the upper part of the equation, each atom on positions i 
was taken and served as the exponent of Euler’s number. The value of each atom on positions i 
was added to the lower part. To illustrate how the function is applied, the probabilities of the 
value in positions four and five are given by:
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P4 (s, a) =
-0.56

e zi = 221.242
= 0.00259 = 0.259%,

0.55
P5 (s, a)

E"=0 gZ J = 221.242
0.00787 = 0.788%.

The main idea of Categorical DQN is that the return distributions satisfy equation 2.19. 
Suppose a given state s and action a , the distribution of returns under the optimal policy n * 
should match the target distribution, defined by taking the distribution for the next state s' and 
action a*+1 = n *(st+1). Figure 2.9 shows the effects of reward, discount factor, and projection 
step in the returns distribution.

Figure 2.7: Operations using Bellman operator on Distribution of returns

RnZ (sf, a') is the next state distribution under policy n , y  is the discount factor, R is 
the immediate reward, O is a L2-projection of the target distribution onto the support vector Zi 
and T  is the distributional Bellman optimality operator. By increasing the y  discount factor, the 
distribution shrinks towards 0, and the probability masses are concentrated towards the center, 
increasing the probability in a certain range. In addition, adding rewards shifts the distribution 
in the x-axis. Lastly, the projected Bellman update step O distribution is shown in the last 
Figure. This projection may be used as a target to calculate the loss when updating the Bellman 
equation. To adapt the variant Bellman update to the DQN architecture for a given experience 
tuple (s , a , r, s') , first, the Q-value for the next state Q(s', a') is calculated:
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N -1
Q (s', a') = ^  ZiPi (s', a') . (2.23)

i=0

Where the Q -  value in the next state s' is the sum £ Ĵ-1 of the inner products of the distribution 
in respect to the greedy action with its probability distribution vector p t (s', a') from 0 to the 
number of atoms N -  1. Figure 2.8 shows an illustration of feeding a state in the neural network 
to retrieve the best distribution regarding the greedy action a*.

Figure 2.8: Neural Network architecture in Categorical DQN

Suppose the array Z (s', a*) selected in Figure 2.8 was in respect to the greedy action 
distribution. Z (s', a*) can be denoted Zi, and the Q-value of that distribution would be calculated 
as the inner product of the support vector Zi and p i(s', a*) written as:

Q(s', a*) = ^  ZiPi(s', a*) = 0.68.
i=0

To calculate the loss of the neural network, a new projected vector support Zj is created 
with evenly spaced values, according to equations 2.20 and 2.21. TZj  is computed as well as 
three additional b j , I, and u vector variables respectively written:

r  zj = [r + yzj  1 ’ (2.24)

bi =
<T~‘Z j Vmin

Az 

I = L bj},

u = \bj  ̂.

(2.25)

(2.26) 

(2.27)

Variable bj contains real value index positions which each value of TZj  is closest in respect to 
the support zj and is defined by the projected support T Zj subtracted by the minimum value of
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the distribution Vmin divided by Az which are defined above. The lower variable I is the floor of 
the variable b j . The floor of a number is the greatest integer less than or equal to b j . On the 
other hand, the array variable u is the ceiling of b j . The ceiling of a variable is the least integer 
greater than or equal to b j . Figure 2.9 illustrates the calculation of the abovementioned variables.

Figure 2.9: Computation of the projection of T z  j  onto the support zt, and variables b j , I, and u derived from it

Suppose that the distribution Z (s', a*) was taken from Figure 2.8. To calculate the 
neural network’s loss, a new support vector must be created. In addition, suppose that the first 
array zi is the created support vector. The result of the projection of T n  onto the support 
Zi is shown 2.24 in the second array. The immediate reward given from the environment 
rt was adopted as 4 and the discount factor y  was set to 0.99, the calculation done was 
TZj = \r + y z j ] ̂ ax = 4 + [(0.99 x Zj)]+5. The bounds of the projection must be in [Vmin, Vmax]. 
Following the example, they should be within the [-5,+5] range. It can be observed that the 
last four positions of TZj  contained samples greater than Vmax; hence they were clipped and 
replaced by the maximum value. In the following, the variable bj is calculated using Equation 
2.25 based on the previous TZi array with Az = 1.11. This variable computes the real-valued 
index positions in which each value of Tzi  is closest in respect to the support zi. Lastly, I and u 
variables are calculated. The distribution I and u compute the integer neighboring indexes from 
bi. I contains the greatest integers less than or equal to its respective position on b j , and u holds 
the least integers greater than or equal to its respective position on b j . Lastly, m is described 
as the projected distribution of Z (s', a*). The vector p t (s', a*) holds the probability masses 
in respect to Z (s', a*). The previous variables u , I and bj shifts the probability p i (s', a*) and 
distributes to its neighbors. The projected distribution m is used as the target for the network. 
Equations 2.28 and 2.29 define the probability mass distribution.

mi = mi + p i (s', a*)(u -  bi), (2.28)

mu = mu + pi(s', a*)(b, -  I), (2.29)
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where p j  (s', a*) is the probability vector o f ' Zj, u, bi are the same as the variables mentioned 
above and variable m is the variable that holds probability masses function of the distribution 
values.

Lastly, Cross-entropy is used as the loss function. It is a measure of the difference 
between two probability distributions. The rest follows the same architecture as the standard 
DQN algorithm. Cross-entropy is defined as

L (6) = -  ^  mi log pi (s ,a ) , (2.30)
i

where it is the sum defined as £  of the multiplication of mi the projected distribution vector 
of probability masses and pi (s,a) the probability vector of the distribution Z (s,a)  which is 
generated by inputting the state s taking action a, the base of the used logarithm (log) was the 
Euler’s number e.

2.7 DUELING NETWORK ARCHITECTURE

The dueling neural network architecture was proposed by Wang et al. (2016). The 
authors’ intuition behind this architecture is that some states are more valuable than others; it 
is unnecessary to estimate the value of each action choice for non-important conditions. They 
illustrate this insight using the Atari2600’s Enduro racing game as an example. During the race,
it is only worth knowing whether to move left or right when a collision is imminent. In other 
states, the agent should know which action to take, but in many other states, the choice of action 
has no repercussions on what happens. The dueling network architecture was proposed to learn 
which states are (or are not) valuable without understanding the effect of each action for each 
state. The architecture consists of two linear stream layers (fully connected) such that each has 
the capability of providing separate estimates of the value and advantage functions. Lastly, both 
streams are combined to produce a single Q-value for each action. To construct the architecture 
mentioned above. The state-value and advantage function concepts have to be explained. The 
state-value function V (s) is given by:

Vn (s) = E [rt + yrt+i + y 2rt+i + ... \ st = s ,^ ] , (2.31)

where E is the expectation symbol, rt is the reward provided to the agent at time step t , st is 
the state at time step t, n is the policy that the agent follows and y  is the discount factor. This 
function is the expected return when it starts in state s and follows n after that. In other words, it 
measures how good it is to be in a particular state. This is useful because the agent can know if 
his current state is valuable or worthless regarding reaching his final goal. Usually, this function 
is confused with the state-action value function (Equation 2.9). However, as mentioned above, 
Equation 2.31 measures how good a state is compared to the others and follows the policy n. 
It only provides information about the value of the state. Equation 2.9 measures how good an 
action is in a certain state and follows the policy n after that. It provides information about the 
quality of the action and measures the value of choosing a particular action when in this state;
hence the name Q-value. The advantage function measures how much an action is a good or bad
decision given a certain state and is given by:

An (s,a) = E [Qn (s , a ) -  Vn (s)], (2.32)

where E is the expectation symbol, Qn (s, a) is the state-action value function under the policy 
n and Vn (s) is the state-value function. The advantage function interpretation measures the
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advantage of selecting an action from a state. Figure 2.10 shows the standard adopted feed-forward 
architecture commonly used in deep reinforcement learning and the dueling neural network 
architecture.

State

(a) Typical feed-forward neural network architecture adopted in deep reinforcement learning

(b) Dueling feed-forward neural network architecture

Figure 2.10: Neural network architectures

Figure 2.10(b) shows the dueling neural network architecture. The architecture shares 
a common module at the beginning composed of linear layers followed by rectified linear unit 
activation functions (RELUs). The network is separated into two streams to represent the 
state-value V (s) and advantage A (s ,a ) functions. At the end of the architecture, both streams 
are combined by an aggregating layer followed by a softmax activation function to produce the 
probabilities over the estimated Q (s, a) state-action value function. On the other hand, Figure 
2.10(a) shows the typical single-stream architecture adopted during the classical DQN algorithm. 
It consists of linear layers, followed by the RELU activation functions. A softmax activation 
function in the last linear layer normalizes the network’s output to a probability distribution over 
the state-action value function.

According to Figure 2.10(b), consider one stream of linear layers output a scalar 
V (s; 0;ft), and the remaining stream output a |A |-scalar vector A (s ,a ; 0 ,a ) . 0 denotes the 
parameters of the linear layers shared by both streams at the beginning of the network. a and ft
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are the parameters of the two streams of linear layers. To generate the state-action value function, 
the definition of the advantage given by Equation 2.32 can be applied, resulting in the following

Q (s, a ; 6, a ,0)  = V (s; 6; fi) + A (s, a ; 6, a ) . (2.33)

However, since Q (s, a; 6, a,J3) is just a parameterized estimate of the actual state-action 
value function, Equation 2.35 cannot fully recover V (s; 6;0) and A (s, a; 6, a) by providing the 
Q (i, a; 0, a,J3) function. To solve the previous issue, the authors force the advantage function 
estimator to have zero advantage at the chosen action according to

Q (s,a; 6 ,a ,0)  = V (s; 6 ; fi) + (A (s,a; 6, a) -  max A (s,a'; 6, a)), (2.34)
a'el A|

forcing the advantage function estimator to be 0 in the best-evaluated action a', we have the 
Q-value function equals to the state-value function (Q(s, a; 6, a,J3) = V (s; 6; fi)). This way, one 
stream can measure the estimation of the value function while the other produces an estimate of 
the advantage function. Finally, the authors replace the max operator with an average by adding 
an alternative module. The following final equation was adopted to calculate the Q-function 
separating the advantage and state value functions

Q (s,a; 6,a,J3) = V (s; 6; fi) + (A (s,a; 6, a) -  -—- ^  A (s,a'; 6, a)), (2.35)

where s is a state s, a is an action a, V (s; 6; fi) is the state-value function in state s with respect 
to the parameters 6 from the first shared linear layer of the network and fi are the parameters 
from the value-stream only. A (s, a; 6, a) is the advantage function of the action a in state s with 
respect to the parameters 6 and a, which are the parameters from the Advantage stream branch 
of the network. £ a, A (s, a'; 6, a) is the average of the advantage values produced in state 
 ̂ taking the best evaluated action a' with respect to the parameters 6 and a. X represents a 

sum of multiple terms; in this case, all advantage values are produced in state s concerning the 
best-evaluated action a'. Lastly, | A\ is the absolute value of the number of evaluated advantage 
values.

2.8 NOISY LINEAR LAYER

In a typical reinforcement learning approach, the agent explores or exploits through 
a e-greedy heuristic. The hyperparameter e decreases throughout the training. If e < random 
number, the agent chooses its action randomly, and if e > random number, the agent acts "greedily" 
by choosing its activity according to its policy. Fortunato et al. (2018) proposed to replace the 
conventional exploration e-greedy heuristic for a noisy linear layer that adds parametric noise to 
its weights where learned perturbations of the network weights are used to drive exploration. 
The authors show that the induced stochasticity of the agent’s policy can be used for enhanced 
investigation. The feature’s main idea is that a single change to the weights vector may influence 
a consistent state-dependent shift in policy over multiple time steps. A noise distribution samples 
the perturbations, and variance is a parameter that can be considered as the energy of the injected 
noise. These variance parameters are learned using gradients from the reinforcement learning 
loss function alongside the other parameters of the agent. Suppose a linear layer from a neural 
network with p  inputs and q outputs given by
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y = wx + b, (2.36)

where x e Rp is the layer’s input, w e Rqxp is the neural network’s weight matrix, and neural 
network’s b e Rb is the bias. Its corresponding noisy linear layer is defined by

y = (p w + <rw © s w)x + p b + <rb © s b, (2.37)

where p w e Rqxp and <rw e Rqxp are the learnable parameters from the weight matrix, p b e R9 
and <rb e R9 are learnable parameters for the neural network’s bias. s w e Rqxp and s b e Rq are 
noise random variables from the weight matrix and bias respectively. The authors propose two 
distribution approaches to generate the noisy random variables for the parameters s w and s b: 
Independent Gaussian noise and Factorized Gaussian noise. The first option uses an independent 
Gaussian noise entry per weight, and the second uses an independent noise per output and another 
independent noise per input. This master dissertation uses the factorized Gaussian noise approach 
to reduce the compute time of random number generation. p unit Gaussian variables Si for noise
of the inputs and q unit Gaussian variables sj  for noise of the outputs can be used to factorize
s wi (P + Q unit Gaussian variables in total). Each s™ ■ and s; units can be defined as

G J  G J J

swj = f  (£i) f  (£j ), (2.38)

s b = f  (s j ), (2.39)

where f  (x) is a real-valued function and adopted as f  (x ) = sgn(x)-\l\x\, s  corresponds to the 
Gaussian variables for to create noise for the inputs and sj  the Gaussian variables to apply noise 
to the outputs. Figure 2.11 shows the schematic of the noisy linear layer.

y — wx + b

w =  n w +  crw O e w 

b =  jib +  crb Q e b

X

Figure 2.11: Linear noisy layer schematic

where x e R^ is the layer’s input, s  is a vector of zero-mean noise with fixed statistics. s w are the 
Gaussian random variables to generate noise for the weights matrix, s b are the Gaussian random 
variables to generate noise for the network bias. © is the element-wise multiplication, p w and 
<rwis the mean and standard deviation of the distribution regarding the weights matrix and p b 
and <rbis the mean and standard deviation of the distribution regarding the bias. w is the matrix 
weights and b the bias of the neural network and y the output.
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2.9 PRIORITIZED EXPERIENCE REPLAY

Prioritized experience replay was proposed to enhance the use of replay memory for 
learning. Schaul et al. (2016) proposed to modify the sampling mechanism of the standard DQN 
algorithm, which samples transitions uniformly at random. The main idea of the technique is to 
prioritize transitions that maximally reduce the global loss in its current state that improves on 
uniform random replay. The authors argue that one idealized criterion to prioritize experiences 
could be the amount the agent can learn from experiences in their current state, in other words, the 
expected learning progress. However, this measure is not directly accessible. Attempting to access 
this measure indirectly, the authors adopt the magnitude of the transition’s temporal-difference 
error (TD-error) 5 that stipulates how unexpected the transition is. Specifically, how far the 
value is its next-step bootstrap estimate. This particular criterion is helpful for DQN since the 
algorithm already calculates TD error and updates the parameters in proportion to 5. The authors’ 
first attempt is to apply a ’greed TD error prioritization’ to Q-learning. The algorithm stores 
the last TD error along with each experience in the replay memory. The transition with the 
most significant absolute TD error is replayed from the buffer, and the Q-learning updates the 
Q-function proportionally to the TD error. When new transitions arrive without a known TD 
error, they have maximum priority to ensure they are visited once. However, transitions with 
low TD error on the first visit may only be replayed for a short time, making the algorithm more 
prone to overfitting since high error transitions are replayed more frequently, resulting in a lack 
of diversity. A stochastic sampling method was proposed to overcome this issue. It alternates 
between pure greedy prioritization and uniform random sampling. The probability of sampling a 
transition i is given by

Pf
P (0 = y J- z , (2.40)

ZkPk
where pi > 0 corresponds to the priority of experience i. a  how much prioritization is used. 
Suppose a = 0, the probability of sampling the transition corresponds to the uniform case. £ k p f  
is the sum of all experiences priorities in the k mini-batch.

The authors first considered a direct variant adopting the proportional prioritization 
Pi = 15i | + e, where e is a positive constant that prevents the edge-case of transitions not being 
revisited once their error is zero. The second variant is an indirect, rank-based prioritization 
Pi = ra/1k (.), where rank (i) is the rank of transition i when the replay memory is sorted according 
to 15\.

The estimation of the expected value with stochastic updates assumes that they are done 
corresponding to the same distribution as its expectation. However, Prioritized replay introduces 
bias because it changes this distribution and the solution to which the estimates will converge. 
To tackle this problem, the authors correct this bias by using importance-sampling (IS) weights 
given by

=(Nx W)) • (241)
where P(i) is the probability of sampling a transition i, J3 is a compensation factor. The authors 
define a schedule on y8 exponent that reaches one only at the end of the learning exploiting 
the flexibility of annealing the amount of importance-sampling correction over time. y8 is 
linearly annealed from its initial value yS0 to 1, which fully compensates for the non-uniform 
probabilities P(i). It is worth mentioning that by increasing both a  and yS simultaneously, the
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prioritization sampling gets more aggressive while correcting for it more strongly. N  is the size 
of the mini-batch which stores experiences.

2.10 HINDSIGHT EXPERIENCE REPLAY

In reinforcement learning, the agent’s goal is formalized regarding reward signal 
feedback generated from the environment to the agent. More precisely, the agent’s purpose 
in deep reinforcement learning is to maximize the total reward it receives by constructing 
a single function approximator V (s; 6) that estimates the long-term reward from any state 
i, using parameters 0. Extending this approach, Schaul et al. (2015) introduced universal 
value function approximators (UVFAs) V (s,g,Q) that generalizes over states s and goals g 
concerning 6 parameters. The authors show how to apply UVFAs for supervised learning and 
RL, demonstrating that a UVFA can generalize to previously unseen goals. A sparse reward 
refers to a reward function that is zero in most of its domain and only gives feedback occasionally. 
If the environment has a sparse reward function, the agent won’t get any feedback about whether 
the instantaneous actions it takes are good or bad. Based on the UVFAs mentioned above, 
Andrychowicz et al. (2017) proposed the hindsight experience replay (HER) to deal with sparse 
rewards. The main idea of HER is to replay each episode with a different goal than the one the 
agent was trying to achieve, generalizing not just over states s e S but also over goals g e G .In  
the algorithm’s simplest form, the goal g, achieved in the final state of the episode, is concatenated 
with the current state st (st ||g) and serves as input to the agent. Then, the action at is executed, 
and it observes the next state st+1, and the next state is also concatenated with the goal g (st+11|g) 
and stored as an experience tuple in the replay buffer (st ||g, at, rt, st+11 |g). The agent can also 
concatenate additional goals. Lastly, the authors explored different strategies for choosing goals 
with HER. So far, the only goals used for replay were the ones corresponding to the final state of 
the environment. This strategy is called final. Apart from it, the sampling also can consider the 
future, episode, and random strategies. The first strategy replays with k random states, which 
come from future states from the same episode as the transition being replayed. The episode 
strategy replays k random states from the same episode as the replayed transition. Lastly, the 
random approach replays with k random states encountered during the training procedure. These 
strategies have a hyper-parameter k , which controls the ratio of HER data to data from normal 
experience replay in the replay buffer.
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3 RELATED WORKS

3.1 SYSTEMATIC REVIEW OF THE LITERATURE

This section performs a Systematic Review of the Literature (SLR) about reinforcement 
learning applied to trading tasks. Aiming to have an overview of the existing literature on the 
topic, reinforcement learning, deep learning, and deep reinforcement learning papers related 
to the previously mentioned topic were collected, analyzed, and discussed. In addition, the 
following literature review explored Scopus, Web of Science, and Google Scholar academic 
research databases, seeking to retrieve current relevant information about the topic, limiting its 
search space from 2017 to 2023.

Adopting Kitchenham and Brereton (2013) statement guidelines, the SLR was divided 
into a primary three-stage process: planning (definition of the research questions), conduction 
(inclusion and exclusion criteria definitions, academic research databases search strategy, paper 
selection validation, and data extraction), and lastly, a summary containing the extracted results 
is presented.

This systematic literature review addressed the following research questions:

• RQ1. What are the main reinforcement learning methods applied to quantitative trading?

• RQ2. What are the main performance metrics used on these algorithms?

• RQ3. What are the main markets to which the models have been applied?

Once the research questions were established, the planning stage was completed and 
followed by conduction. In this step, the following inclusion criteria were adopted:

(a) Primary Studies Publications;

(b) Published within the last five years;

(c) English Language Publications;

(d) Journal, conference, and pre-print papers;

(e) Publications relevant to deep learning, reinforcement learning, and deep reinforcement
learning topics related to quantitative trading tasks.

Pre-prints were also included in this review, seeking to achieve more papers. Only 
English publications were selected due to the belief that most relevant studies would only be 
published in English.

The exclusion criteria were set to identify publications, which were eventually removed 
from the research study. The following criteria are adopted:

(a) Secondary Studies Publications;

(b) Technical reports;

(c) Non-English language paper publications;
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(d) Publications that do not approach reinforcement learning or deep reinforcement learning
methods related to quantitative trading tasks;

(e) Non-downloadable publications on their respective research database.

In sequence, through CAPES (2023), both Scopus and Web of Science research databases 
were accessed, and a keyword-based search query was put into their respective advanced document 
search tab. These databases contain traditional publishers such as Elsevier, Springer Link, and 
many others. In order to correctly generate the search query input, OR and AND operators were 
included. The first operator was placed between search groups, whereas the remaining one was 
put between synonyms. The following query search was generated:

("Finance Trading” OR "Quantitative Trading" OR "Algorithmic Trading" OR "Trading" OR 
"Strategy Trading")) AND (("Reinforcement Learning" OR "Deep Learning" OR "Deep

Reinforcement Learning")

In the first stage, all fields were included (no date range or language limitations). A total 
of number 808 publications was retrieved. After that, papers were selected accordingly to the 
inclusion criteria, and the search space was constrained to article title, abstract, and keywords 
only. A total number of 376 publications were selected. Then, the selected papers from stage 2 
were evaluated accordingly to the exclusion criteria. A total of 1 paper was not English written, 47 
were not published between 2017-2022, and 42 were duplicated. Analyzing their respective title, 
44 were off the review’s scope. Some of them included deep reinforcement learning methods; 
however, their application was not in trading tasks. In the course of stage 4, papers were selected 
and removed based on their respective title, abstracts, and conclusion analysis, resulting in 188 
papers. Lastly, papers were excluded accordingly to their complete analysis. 167 publications 
were selected. Figure 3.1 shows an overview of the systematic literature review methodology 
pipeline, containing the number of publications at each stage.

Adopting Kitchenham and Charters (2007) for performing data synthesis, general 
information such as title, authors, and source, as well as specific ones, such as performance 
metrics and benchmark algorithms, were retrieved.

Figure 3.2 shows the amount of RL-related publications applied to trading tasks per 
year between 2017 - 2022. 93 journal papers, 65 conferences, and 9 pre-print publications were 
selected, having the majority published in 2021. The bar chart indicates an ascending slope 
during the years, meaning the following year has a more significant publication amount than its 
precedent. Exceptionally in 2022, it is impossible to confirm this fact because the review has been 
conducted during its course. As previously mentioned, containing the more significant amount 
of publications on it, 43.0% of journals, 32.3% conferences, and 66.7% pre-print publications 
were published in 2021. Figure 3.3 shows the year-based publication percentage in periodicals, 
conferences, and pre-prints, respectively.

Figure 3.4 shows the number of RL-related publications retrieved by research databases 
separately: Elsevier, Institute of Electrical and Electronics Engineers (IEEE), Xplore, Springer, 
Hindawi, and ArXiv, among others. Elsevier research database had the most significant 
contribution with 39 papers, followed by IEEE Xplore and Multidisciplinary Digital Publishing 
Institute (MDPI), having 30 and 26 publications, respectively. Figure 3.5 shows the total 
amount of RL-related works by publication types, concluding that 55.7% are periodical, 38.9% 
conference, and 5.4% pre-print publications.



42

167 papers

y
Data Extraction

Figure 3.1: Systematic literature review process overview

3.1.1 Periodical Publications

Table 3.1 shows the prominent periodical publications responsible for most works on 
reinforcement learning related to trading tasks. Both had an absolute frequency of 9 publications 
and a 9.47% frequency percentage each. IEEE Access had the most significant number of
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Figure 3.2: Publications per year of quantitative trading related works

publications achieving ten works and an 11% frequency percentage, followed by Lecture Notes 
in Computer Science and Expert Systems with Applications.

Deng et al. (2017) introduced a novel recurrent deep neural network for real-time 
financial signal representation and trading. The reinforcement learning module interacts with the 
previously mentioned neural network and makes trading decisions—the reward function as total 
profit. Raw price changes and the momentum change of multiple timeframes are directly used as 
the input of the trading system. Fuzzy concepts are introduced to reduce the uncertainty in the 
original data.

Li et al. (2019) extended both value-based DQN and actor-critic A3C deep reinforcement 
learning algorithms to the trading market and utilized an long short-term memory (LSTM) module 
to capture temporal patterns based on market observations. Stacked denoising autoencoders are 
used for filtering using OHLC prices, trading volume, and specific trading indicators such as 
moving average convergence/divergence (MACD), moving average (MA), exponential moving 
average (EMA), average true range (ATR), and price rate of change. Sharpe ratio is set as the 
reward function, and a novel positions-embedded action space is presented, allowing the agent to 
learn to control positions (holding more positions in a bull market while decreasing positions in 
a bear market).

Wu et al. (2020) proposed a couple of adaptive stock trading strategies, incorporating 
gated recurrent units on both DQN and deep deterministic policy gradient (DDPG) algorithms. 
By using MA, EMA, MACD, volatility rank, and on-balance volume indicators, the agents are 
compared to the turtle trading and the state-of-the-art direct reinforcement learning strategies. 
The previous comparison shows an increase in stability using the Sortino ratio and rate of return 
as performance metrics regarding the DRL-based strategies.
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(a) Periodical publications (b) Conference publications

(c) Pre-print publications

Figure 3.3: Year-based publication percentage in the periodical, conference, and pre-print papers

Figure 3.4: Amount of publications by research databases

Theate and Ernst (2021) introduced a DQN-inspired algorithm denominated Trading 
Deep Q-Network (TDQN) that contains a modified version of the standard DQN, including the
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3 8 .9%

Pre-print Papers Journal Papers Conference Papers

Figure 3.5: Paper publication according to publication types

Double DQN algorithm, a feed-forward network architecture, Adam optimizer, and the use of 
Huber loss. Training in daily historical data, TDQN is applied to various indexes such as Dow 
Jones, NASDAQ, and S&P500, as well as other stocks involving technology and financial services. 
To evaluate the algorithm’s performance, Buy-and-Hold, Sell-and-Hold, Trend following with 
moving averages, and Mean reversion with moving averages strategies are compared to it by 
using the Sharpe ratio, profit & loss, Annualized returns, Annualized volatility metrics among 
others. The authors use dense returns as rewards to the agent.

Carta et al. (2021a) presented a multi-DQN algorithm that is applied to several real-world 
trading scenarios, such as the S&P500 future market and the J.P. Morgan. The author includes 
a pre-processing step based on generating meta-features after converting price time series into 
Gramian Angular Field images. After that, a DRL-based meta-learner processes the signals 
provided by CNN to generate final trading decisions. Sharpe ratio, profit & loss, annualized 
return, volatility, profitability, profit and loss, and Sortino ratios, maximum drawdown, and 
maximum drawdown are performance metrics. In addition, a couple of different ensembling 
techniques (stacking and majority voting) are used to maximize the robustness and stability of the 
strategy. In the end, the benchmark Buy-and-Hold strategy is compared to the proposed model.

Carta et al. (2021b) used ensembling techniques on DQN agents to perform intraday 
stock market trading on Standard and Poor’s 500 (SP500) and German stock indexes. A multi­
resolution feature is also proposed to capture different data-price patterns at multiple timeframes. 
The evaluation metrics are accuracy, Maximum Drawdown, Coverage, Sortino Ratio, and equity 
curve.

Shi et al. (2021) suggested an explainable reinforcement learning framework for portfolio 
management named XPM. Providing explanations for the temporal convolutional network (TCN), 
the class activation mapping (CAM) method is integrated into the system. It computes an 
activation map for an asset of interest, generating a map highlighting time intervals in the input 
state. The author chooses the Deterministic policy gradient-based RL model. In addition, the final 
accumulative portfolio value, Sharpe ratio, and maximum drawdown are used as performance 
metrics. Some traditional portfolio trading strategies benchmarks to compare the system’s 
performance.

Aiming to incorporate sentiment analysis to understand the sentiment of the news, 
Chen and Huang (2021) included multimodal learning, combining different modalities of data
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Table 3.1: Main journals which contain machine learning publications related to algorithmic trading

Journal Absolute Frequency Percentage Frequency
IEEE Access 10 11%
Expert Systems with Applications 9 9%
Lecture Notes in Computer Science 9 9%
Applied Sciences (Switzerland) 4 4%
Knowledge-Based Systems 4 4%
Pattern Recognition 4 4%
Mathematics 3 3%
Applied Intelligence 3 3%
Advances in Neural Information Processing Systems 3 3%
Neural Computing and Applications 3 3%
Complexity 2 2%
Quantitative Finance 2 2%
Journal of Marine Science and Engineering 2 2%
Electronics (Switzerland) 2 2%
Information Fusion 2 2%
Sun SITE Central Europe Workshop Proceedings 2 2%
Others (containing a single paper each) 29 31%
Total 93 100%

to enhance the model’s performance. The system is based on a basic recurrent reinforcement 
learning model and a recurrent neural network. Conducting experiments with multiple companies 
in the S&P500 index, the authors use annual profit as a performance metric to compare a standard 
deep recurrent neural network and a multimodal recurrent neural network containing sentiment 
information such as title, article, and synthesized influence.

Sagiraju and Mogalla (2022) proposed a framework that includes four DRL algorithms: 
Advantage Actor-Critic, Proximal Policy Optimization, Deep Deterministic Policy Gradient, and 
Deep Q-Learning uses historical stock and Twitter market sentiment data consisting of Dow 
Jones and S&P 500. These are compared using the financial metrics, Sharpe ratio, Sortino ratio, 
maximum drawdown, cumulative returns, annual volatility, and annualized investment return. 
The reward system was not explicitly mentioned during the work.

Lastly, Koratamaddi et al. (2021) also uses a sentiment-aware approach as an extension to 
the adaptive DDPG algorithm, which can learn differently from positive and hostile environments 
calculating the reward obtained by choosing different actions (buy, hold, and sell). The model 
adjusts the amplitude of change in the Q-value per epoch, using different learning rates depending 
on whether the prediction error was positive or negative. In addition, the state passed to the 
agent is extended by including a sentiment confidence score. The reward system is fine-tuned to 
make it learn about the market sentiment effectively. Two components formulate the objective 
function: Reward by the change in portfolio value from the previous day and market sentiment 
confidence score. This last component is formulated by the respective Twitter and Google News 
mean sentiment scores.

3.1.2 Conference Publications

Table 3.2 shows the leading conferences responsible for most publications on reinforce­
ment learning related to trading tasks. The International Joint Conference on Neural Networks 
had the more significant number of publications with an absolute frequency of 4 publications, 
representing 6% of the total conference publications, followed by Association for Computing 
Machinery (ACM) International Conference proceedings with three published works and also 
having 5% of the total conference publications.
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Jiang and Liang (2017) suggested combining a DDPG agent with a CNN neural network 
to perform portfolio management in the cryptocurrency market. Aiming to maximize returns 
while restraining the risk, the author uses the Sharpe ratio, maximum drawdown, final portfolio 
value, and standard deviation to evaluate the risk of the strategies. Buy-and-Hold, Best Single 
Asset, Uniform Constant Rebalanced Portfolio, Universal Portfolio, Online Newton Step, Passive 
Aggressive Mean Reversion benchmarks are compared to the model.

Combining recurrent reinforcement learning and LSTMs, Si et al. (2017) implement a 
multi-objective structure that separately measures profit and risk. Sharpe ratio, annual profit, and 
total trading number are adopted as performance metrics, and the agent is compared with the 
B&H strategy benchmark and a primary, recurrent reinforcement learning (RRL) agent. The 
system is applied to three index-based futures contracts traded in China stock-IF, stock-IH, and 
stock-IC contracts, which are three index-based futures contracts traded in China with 1-min 
close prices as input data.

Shin et al. (2019) presented a deep multi-modal reinforcement learning policy, combining 
both CNN and LSTM neural networks to a DQN-based agent. The strategy model is trained on 
256 stocks listed at KOSPI, using daily OHLC prices, trading volume, moving averages, and a 
slow stochastic oscillator. The previous indicators are used to generate the three types of images 
that serve as input to the CNN. The first image combines the candlestick chart, four moving 
average curves (5, 20, 60, and 120 days), and a bar graph of the trading volume. The second 
image combines the average directional movement index (ADX), the positive directional indicator 
(+DI), and the negative directional indicator (-DI). Lastly, the third image is the slow stochastic 
oscillator (SSO). In the end, average returns, standard deviation, maximum profits, minimum 
returns, and Sharpe ratio are performance metrics.

Conegundes and Pereira (2020) investigated the potential of DDPG applied to 13 
different stocks listed on the Brazilian stock market index (Ibovespa) to solve the asset allocation 
problem. Open and close prices are used as input, and the model is compared to some stock 
portfolios suggested by the leading Brazilian banks and brokers during these years. The model is 
backtested using annual returns, cumulative returns, and maximum drawdown as performance 
metrics.

Yang et al. (2020) explored ensemble methods, training an agent to obtain an ensemble 
trading strategy using three actor-critic algorithms: Proximal Policy Optimization (PPO), 
Advantage Actor Critic (A2C), and DDPG. Inheriting and integrating its best features, the strategy 
robustly adjusts to market situations. Applied to the Dow Jones 30 constituent stocks, the agent’s 
performance is evaluated with the cumulative, annualized return, volatility, Sharpe ratio, and 
maximum drawdown performance metrics. In the end, the strategy is compared to the Dow Jones 
Industrial Average (DJIA) and min-variance portfolio allocation benchmarks.

3.1.3 Pre-print Publications

Table 3.3 shows the leading platforms responsible for pre-print publications on reinforce­
ment learning related to quantitative trading tasks. ArXiv repository had the more significant 
number of publications with an absolute frequency of 5, representing 55.56% of the total pre-print 
publications.

Pricope (2021) reviews the progress made so far with deep reinforcement learning in the 
subdomain of AI in finance, more precisely, automated low-frequency quantitative stock trading.

Liu et al. (2021) present a meta finance reinforcement learning (FinRL-Meta) framework 
that builds a universe of market environments for data-driven financial reinforcement learning. 
The tool separates financial data processing from DRL-based strategy’s design pipeline and 
provides open-source data engineering tools for big financial data.
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Table 3.2: Main conferences of the reviewed works

Conference Absolute Frequency Percentage Frequency
International Joint Conference on Neural Networks 4 6%

ACM International Conference 3 5%

IEEE 4th Advanced Information Management,
Communicates, Electronic and Automation Control Conference 2 3%

Special Interest Group on Knowledge 
Discovery and Data Mining 2 3%

1st ACM International Conference on AI in Finance 2 3%

International Joint Conference on Artificial Intelligence 2 3%

Others (containing a single paper each) 50 77%

Total 65 100%

Daberius et al. (2019) introduces the respective value-based approach DDQN and the 
policy-based approach PPO, applied to 4 different environments. The TWAP (Time-Weighted 
Average Price) was set as a benchmark for evaluating the agents.

Table 3.3: Main pre-print platforms of the reviewed works

Preprint Absolute Frequency Percentage Frequency

arXiv.org 5 55.56%

Social Science Research Network -  SSRN 4 44.44%

Total 9 100%

3.2 CO-AUTHORSHIP AND CO-OCCURRENCE NETWORKS

VOSviewer software was used to provide an overview of the data synthesis. Built by 
van Eck and Waltman (2010), the tool allows bibliometric network visualization and construction 
based on bibliographic co-authorship, co-citation, and co-occurrence among similar keywords. In 
order to generate the co-authorship and co-occurrence networks, the information of the selected 
previous selected papers was exported into the ".ris" data format from the Scopus and Web of 
Science databases and served as input to the tool.

Figure 3.6 shows the generated co-authorship network. Through its visualization, it is 
possible to analyze how researchers are related according to the amount of co-authored papers 
and the specific dates that they published their shared work. Writers had to publish at least one 
paper together and contain at least two documents. Of the 392 authors, only 28 met the threshold, 
distributed into 5 clusters. Confirming the information from Figure 3.2, it is observable that the 
highest amount of publications was in 2021. Moreover, the most significant cluster, regarding the 
number of publications, was composed of Yong Zhang and Xuanzhe Liu, four publications each, 
and Wen Zhang, with two publications.

Figure 3.7 shows the keyword co-occurrence networks. By setting a minimum number 
of 3 keyword occurrences, from the total amount of 444 keywords, only 19 met the threshold.
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Figure 3.6: Co-authorship network of RL-related publications applied to quantitative trading

For each, the total strength of the co-occurrence links with other keywords is calculated, and the 
ones with the most significant total link are selected. VosViewer calculated the total amount of 
4 clusters. It is possible to observe that Machine Learning and Deep Learning keywords were 
the most significant clusters. Both had 25 occurrences and a total link strength of 42 and 37, 
respectively. In addition, neural networks, algorithmic trading, artificial intelligence, finance, 
reinforcement learning, and explainable AI also contained a significant number of occurrences, 
each with 10, 9, 7, 7, and 6, respectively.

3.3 DATA SYNTHESIS

Figure 3.8 shows the deep reinforcement learning algorithms on which the reviewed 
works were based. A total amount of 7 papers (18.4%) were built based on the policy-based 
PPO algorithm, 11 papers (28.9%) on the value-based DQN algorithm, 16 papers (42.1%) on the 
actor-critic DDPG algorithm, followed by the A2C algorithm containing two papers (5.3%), and 
the A3C and RRL algorithms, containing one paper each (2.6%).

Table 3.4 shows the most common performance metrics used for performance mea­
surement purposes by the previously mentioned algorithms. A total amount of 5 papers (6.5%) 
claimed to use the annualized returns, eight papers (10.4%) used maximum drawdown, ten 
papers used Sharpe ratio (13%), and three papers (3.9%) used standard deviation to measure 
performance. Total profits were also used in the same proportion as the previously mentioned 
metric.

Table 3.5 shows the most common markets to which the previously mentioned works 
were applied. S&P500 had the absolute frequency of 7 papers, having its application on 14.3%
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Figure 3.7: Co-occurrence network of RL-related publications applied to quantitative trading 

Table 3.4: Main performance metrics applied to the reviewed works

Performance Metrics Absolute Frequency Percentage Frequency
Sharpe Ratio 10 13%
Maximum Drawdown 8 10.4%
Annualized Return 5 6.5%
Standard Deviation 3 3.9%
Total Profits 3 3.9%
Others (containing one each) 48 62.3%
Total 77 100%

of the RL-related works. Cryptocurrency, Dow Jones, and National Association of Securities 
Dealers Automated Quotations (NASDAQ) had a total amount of 3 papers (6.1%) each. Stock-IF, 
Stock-IC, and foreign exchange market (FOREX) had two papers (4.1%) each.

The previously formulated research questions are answered, interpreting the presented 
data synthesized information.

RQ1: What are the main reinforcement learning methods applied to quantitative trading?
Through the systematic literature review, it was possible to identify that the actor- 

critic deep deterministic policy gradient method was the main deep reinforcement learning 
algorithm applied to quantitative trading tasks, having 42.1% of total citations on the RL-related 
papers. Deep Q-Network and Proximal Policy Optimization had 28.9% and 18.4%, respectively, 
and consequently, achieved the second and third positions. Advantage Actor-Critic (5.3%), 
Asynchronous Advantage Actor-Critic (2.6%), and Recurrent Reinforcement Learning (2.6%) 
were also claimed to be implemented in some reviewed works.
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Figure 3.8: Deep reinforcement learning algorithms applied to reviewed works

Table 3.5: Main markets applied to reviewed works

Markets Absolute Frequency Percentage Frequency

Cryptocurrency 3 6 .1%
Dow Jones 3 6 .1%
FOREX 2 4.1%
NASDAQ 3 6 .1 %
S&P500 V 14.3%
Stock-IC 2 4.1%
Stock-IF 4 B.2%
Others 25 51%
Total 49 100%

RQ2: What are the main performance metrics used on these algorithms?
According to Table 3.4, the Sharpe ratio was the primary metric applied to performance 

evaluation. 13% of all RL-related reviewed publications claimed to have used such a metric. In 
addition, maximum drawdown and annualized return were used, each containing 10.4% and 
6.5%, respectively. Finally, total profits and standard deviation were applied and cited in 3.9% of 
all RL-related reviewed works.

RQ3: What are the main markets in which the models have been applied to?
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As stated in Table 3.5, S&P500 was the primary market for the reviewed agents that had 
been applied to. 14.3% of the RL-related reviewed publications have used such market to apply 
their algorithms, followed by the Stock-IF with 8.2%, Cryptocurrency, Dow Jones, and NASDAQ 
markets that respectively had 6.1% each, and lastly, FOREX and Stock-IC markets with 4.1%.
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4 DATA COLLECTION, CLEANING, PRE-PROCESSING AND EXPLORATORY 
ANALYSIS

This chapter describes the adopted data gathering, cleaning, and pre-processing process. 
First, the data-gathering process is defined, then the outliers removal process is explained, and 
finally, exploratory analysis is conducted. Aiming to clarify what the algorithm should learn, the 
data was processed in a way that could reflect good statistical properties, such as returns closer to 
a normal distribution, according to the Jarque-Bera test and the absence of outliers.

4.1 DATA COLLECTION

Time bars are the most popular technique introduced in finance to transform information 
from a non-uniform frequency to a regular sampled series. Despite its popularity, this type of 
bar over-samples information during low-activity market periods and the other way around. In 
addition, these bars are more prone to undesired statistical properties, such as heteroscedasticity 
and non-normality of returns (de Prado (2018)).

This dissertation adopts dollar bars to achieve returns closer to independent and 
identically distributed Gaussian distribution. The generation of these bars is according to every 
time a pre-defined market value has been exchanged. According to Ane and Geman (2000), the 
cumulative number of trades makes the returns closer to a normal distribution, although outliers 
are usually consistent. In many exchanges, the order book accumulates bids and offers without 
matching them for some time, and once the auction is concluded, a large trade is published at the 
clearing price for an excessive amount. In order to build the bars mentioned above, transaction 
data from the iShares Core S&P 500 exchange-traded fund and Western Digital Corporation 
were downloaded from the Kibot website, which offered free tick with bid/ask intraday data. 
These features were discarded, adopting prices and shares amount only. The original downloaded 
iShares Core S&P 500 exchange-traded fund data frame contained 10,460,165 transactions 
corresponding to the periods of 2009-09-28 09:30:00 / 2022-12-02 16:00:00. Western Digital 
Corporation included 69,242,555 transactions from 2009-09-28 09:41:53 to 2022-09-21 16:00:00. 
Finally, the Cosmos / United States Dollar Tether (ATOM/USDT) cryptocurrency pair market 
data was collected via Binance spot application programming interface comprehending the 
period of 2019-06-05 16:35:28.905 / 2021-11-26 12:11:26.995, the data frame had 30,535,634 
transactions.

4.2 DATA CLEANING

The Interquartile method identifies and removes outliers to clean the data collected in 
the previous section according to a sliding window approach. In this procedure, the entire data 
frame is rearranged in ascending order and divided into four parts (quarters). The first quartile 
(Qi) is the middle value between the first data sample and the median from the dataframe, the 
median is the second quartile (Q2), and the third quartile (Q3) is the middle value between the 
median and the last term. Given a dataset with N  observations arranged in ascending order, the 
quartiles are calculated by:

Qi = (N  + I) x 4, (4.1)
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Q2 = (N  + 1) x 2, (4.2)

3
Q3 = (N  + 1) x 4 . (4.3)

In the following, the interquartile range (IQR) is calculated by:

IQR = Q3 -  Q 1. (4.4)

Followed by the lower and upper boundaries, which are defined by Equations 4.5 and 4.6, 
respectively.

Lower = Q1 - (1 .5  x IQ R), (4.5)

Upper = Q3 + (1.5 x IQR), (4.6)

where the Lower boundary Lower is Q1 subtracted from the product of 1.5 and the interquartile 
range IQR and the Upper boundary Upper is the sum of Q3 with the product of the interquartile 
range and 1.5.

In this master dissertation, the IQR method was applied with a sliding window approach. 
Every time a state is assembled, the data from the last seven days concerning the current time is 
stored in an array, and the IQR method is applied to remove outliers. For illustration purposes, the 
outlier values were saved in an array and analyzed. Figure 4.1 shows the original price behavior
of the iShares Core S&P 500 ETF data frame before the outlier removal and its boxplot and after
it.
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Figure 4.1: (a) iShares Core S&P 500 exchange-traded fund price in United States Dollar with outliers from 
2010-2022. (b) iShares Core S&P 500 exchange-traded fund outlier-free fom 2010-2022 (c) iShares Core S&P 500 
exchange-traded fund price boxplot.

Figures 4.1(a) and 4.1(b) show iShares Core S&P 500 ETF price evolution throughout 
time. Figure 4.1(a) was generated from the original data frame that contained outliers. There is 
a clear outlier presence in 2010, when a sudden price drop occurs towards zero. Figure 4.1(c) 
shows the amount and location of the removed outliers. A single 163.43 USD-valued outlier 
was detected by the upper boundary and removed, in contrast to the lower border, which caught 
a total amount of 115. The total amount of 116 transactions was considered outliers and were 
removed from the data frame, resulting in a final number of 10,460,049 transactions.

With respect to the Western Digital Corporation data frame, the same IQR method was 
applied to remove outliers. Figure 4.2 shows the price evolution from 2010 to 2022 with and 
without outliers and its boxplot.
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Figure 4.2: (a) Western Digital price in United States Dollar with outliers from 2010-2022. (b) Western Digital 
outlier-free fom 2010-2022 (c) Western Digital price boxplot.

In Figure 4.2(a), the total amount of 4805 outliers are located between 2014 and 2015. 
Comparing both Figures 4.2(b) and 4.2(a), it is possible to observe that the second plot was 
clipped in the y-axis, due to the presence of outliers greater than 109.83 USD. Lastly, Figure 
4.2(c) shows the boxplot of the Western Digital transactions price data frame, containing the 
47.68 USD median value and the outliers mentioned above the upper boundary. The plot confirms 
that the outliers are concentrated between 110 and 120 USD and are not dispersed much.

Figure 4.3(a) shows the price evolution of the ATOM/USDT cryptocurrency pair on the 
Binance spot exchange during the periods of 2019-06 and 2021-11. The price started at 4.755 
USDT in June 2019 and has a 650% increase in just a couple of years. Unlike the previously 
analyzed assets, cryptocurrencies are known to be highly volatile. Figure 4.3(b) shows the price 
feature box plot indicating the median of 33.0 USDT. Even though there are outliers located 
below the lower boundary, the decision not to remove them was taken due to the assumption 
that since cryptocurrencies are extremely volatile, these outliers may not be incorrect data. In 
addition to it, since cryptocurrency markets work with no interruptions, it is improbable that the 
order book accumulates bids and offers without matching them for some time.

4.3 DATA PRE-PROCESSING

This section concerns the pre-processing step that is performed after the outlier removal 
from the last section. In every state assemble, transaction data collected is manipulated and
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Figure 4.3: (a) ATOM cryptocurrency price in USDT from 2019-06 to 2021-06. (b) ATOM cryptocurrency price 
boxplot.

transformed into dollar bars. In addition to it, its statistical properties are evaluated and analyzed. 
Aiming to analyze its properties in this work, dollar bars were stored in an array and saved into a 
data frame during every state assemble.

Contrasting time bars, dollar bars are not sampled in a constant pre-defined frequency, 
but every time a pre-defined amount of market value has been exchanged. In order to generate 
time bars from transactions, a constant pre-defined frequency must be chosen to be the interval 
in which they are generated. The open price is equivalent to the first transaction price during 
that period; the high is equivalent to the transaction that achieved the highest price compared 
to the remaining transactions. The same opposed logic applies to the low. The close price is 
equivalent to the last transaction price, and finally, volume is equivalent to the sum of the amount 
of exchanged shares during this interval.

Figure 4.4 compares time and dollar bars. Transaction data from the iShares S&P500 
ETF, corresponding to the interval of 2009-09-28 09:41- 2009-09-28 10:32, were used to create 
both. Time bars were sampled in a 1-minute frequency, whereas dollar bars were sampled every 
time market reached 500K exchanged dollars. It was observable that during this period, the total 
amount of 52 and 21 time and dollar bars were sampled, respectively. What can be concluded 
is that during this period, the total amount of exchanged value of 500K USD was achieved 21 
times. Noticeably, time bars undersample information during 9:41 and 9:51, in an ascending 
price movement, lacking show strength. In contrast, it is observable that dollar bars do this by 
generating a couple of solid green candles. It is also noticeable that between 9:51 and 10:00, 
time bars oversample information, indicating a price fall. In contrast, dollar bars show that this 
pullback is not strong due to the exchanged value; hence goes sideways and generates weak dollar 
bars. This type of bar assists the agent in understanding the relationship between market value 
and price movements.

Regarding the dollar bar generation, the defined amount to sample a dollar bars was 
500K United States Dollars (USD) in iShares Core S&P 500 ETF data frame. Transactions are 
aggregated until the exchanged amount market value reaches the threshold above. The open price 
is equivalent to the first transaction price from the group; the high is equal to the maximum price 
compared to all transactions that belong to the group. The opposed logic applies to low. Close 
price equals the last transaction price of the aggregated transactions, and volume is the sum of all 
group transactions. Figure 4.5 shows the time and dollar bars count histogram throughout the 
weeks generated from iShares Core S&P 500 ETF applying the previously mentioned procedures.
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Figure 4.4: Bar sampling method comparison applied to the iShares S&P500 ETF data frame from 2009-09-28 
09:41 to 2009-09-28 10:32: (a) time bars sampled in a 1-minute frequency, (b) Dollar bars sampled every 500K 
dollars market-value exchange.

Figure 4.5: Amount of weekly sampled bars generated from iShares Core S&P 500 exchange-traded fund transactions 
from 2009 to 2022: (a) Weekly sampled dollar bars count, (b) Weekly sampled time bars count.

Regarding the sampled amount, 398,362 dollar bars were generated against 1,081,690 
time bars. Some observations regarding their distributions are made by comparing both count 
plots. In Figure 4.5(a), the number of sampled bars per year is increasing, even though some 
exceptions exist. During 2012, 2017, 2019, and 2021, the amount of generated dollar bars was 
23.2%, 14.7%, 59.64%, and 24.87%, respectively, lower than in the previous year. In addition, 
2018 had the highest exchanged market value compared to the remaining years, resulting in 56691 
dollar bars. On the other hand, 2009 had the lowest exchanged market value having 2902 bars 
only. This fact may have occurred due to missing data since the data frame started at 2009-09-28 
09:30:00. The distribution in Figure 4.5(b) is uniform since time bars are sampled in a constant 
frequency but with some exceptions. Factors that may prevent the sampling from being perfectly 
uniform are the peculiarities of each year, like holidays. Contrasting the distribution in Figure 
4.5(a), the second distribution provides market information uniformly, independently of market 
activity. With 1 minute as the defined sampling frequency, 2016 had the most significant amount 
of bars concerning the remaining years containing 91511 bars.

The market value defined to sample a dollar bar in Western Digital Corporation data 
was 1,000,000 USD. Since this asset holds more transactions than the previous one, it contains
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higher liquidity; hence the defined threshold had to be greater than the previously chosen. Figure 
4.6 shows the histogram of sampled dollar and time bars count per week generated from Western 
Digital Corporation.

2010 2012 2014 2016 2018 2020 2022 2010 2012 2014 2016 2018 2020 2022
Year Year

(a) Weekly sampled dollar bars count (b) Weekly sampled time bars count

Figure 4.6: Amount of weekly sampled bars generated from Western Digital Corporation transactions from 2010 to 
2022.

A total amount of 550,598 dollar bars were generated against 1,305,281. In Figure 
4.6(a), it observable that differently from the distribution shown in Figure 4.5(a), the number 
of samples does not continuously increase throughout the years. By sampling 36,563 bars in 
2010, the distribution kept increasing until it reached its peak in 2017. A total of 65,196 bars was 
generated this year, followed by a continuous reduction until 2022. It is possible to affirm that the 
amount of bars is 78.31% higher during its peak in 2017 compared to 2022. Regarding the mean 
value, an average number of 42,353 bars are generated per week per year. Figure 4.6(b) shows 
the distribution of the produced time bars. Similarly to the iShares S&P500 ETF data, 1 minute 
was adopted as the predefined frequency for sampling a bar and is close to a uniform distribution. 
With an expected 100,406 sampling amount of bars per week per year, the distribution peaked in 
2020 and its lowest value in 2010 compared to the remaining years, with 110,186 and 88,450 
bars, respectively. In addition, the distribution contemplates 24.57% more bars during 2020 
compared to its bottom in 2 0 1 0 .

Finally, the defined market value amount to sample a dollar bar in the ATOM/USDT 
data frame was 7.5K USDT. Since the cryptocurrency does not contain higher liquidity than the 
remaining analyzed data frames, it is feasible that the threshold was lower than the previously 
studied assets. Figure 4.5 shows the histogram of dollar and time bars count throughout the weeks 
generated from Binance spot ATOM/USDT cryptocurrency pair concerning the 2019-04-29 
04:15:31 / 2021-11-26 12:11:26 period.

A total number of 359,786 dollar bars were generated against 1,197,149. It is observable 
that the amount of time bars is 232.74% higher than dollar ones. The cryptocurrency asset 
has as much data as the previous data frames because its market operates uninterruptibly. In 
Figure 4.7(a), it is noticeable that the amount of the generated dollar bars grows exponentially 
during these three years. In 2019, 2020, and 2021,1537, 5820, and 352429 dollars were sampled 
yearly; hence 2021 had 350,892 more sampled bars than 2019. This fact may be due to the 
cryptocurrency market growth in recent years. In addition, Figure 4.7(b) shows the distribution 
of the generated time bars. Since the collected transactions started in April 2019 and ended 
in December 2021, it is possible to affirm that 2019 has incomplete data; hence it cannot be 
analyzed. It may be possible to conclude that if the data concerning 2019 were complete, the 
distribution would be uniform. The year 2021 sampled the highest amount of time bars and 2019 
the smallest; each generated 475,388 and 259,249, respectively.
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Figure 4.7: Amount of weekly sampled bars generated from Binance spot ATOM/USDT cryptocurrency pair 
transactions from 2010 to 2022.

In order to measure the count stability, the standard deviation, given by Equation 4.7, 
was adopted as the dispersion measure to compare both distributions.

The standard deviation is a measure of the dispersion of a population. The sum of each 
value from the population Xi, from i = 1 to N, is given by the sum of each value subtracted 
from its mean ju. This subtraction is then squared and divided by the N  -  1 total population 
size. Finally, the squared root of this value is taken. Regarding the interpretation of the standard 
deviation, a couple of insights can be deduced: a high a  value means that the data points that 
belong to the population are dispersed; in other words, the data points are generally far from the 
mean. On the other hand, a low standard deviation means that the values are typically clustered 
close to the mean.

Concerning the iShares Core S&P 500 ETF data frame, the standard deviation of the 
sampled dollar and time bar counts were calculated and were respectively a  = 413.39 and 
a  = 218.97. These values indicate that the time bars have more stable counts than dollar ones and 
are closer to the 77263-valued mean. Regarding the second data frame, the standard deviation 
of the previously mentioned bars was a  = 368.24 and a  = 271.97. Similarly, time bars had 
the most stable counts. Lastly, dollar and time bars in ATOM/USDT cryptocurrency were 
respectively 6826.89 and 1375.11. Time bars are expected to be more stable than the dollar type 
since the first type is sampled in a constant frequency.

4.4 EXPLORATORY DATA ANALYSIS

Finally, time series properties from the close price feature are discussed for each data 
frame. Figure 4.8 shows monthly returns, distribution/plot of dollar bar returns, and daily 
volatility generated from the iShares Core S&P 500 ETF dollar bars.

Figure 4.8(a) shows the monthly returns heatmap generated from the close price between 
2009-2022. In March 2020, the exchange-traded fund had the lowest return having a -15.5% 
dump, and its highest in November during the same year with a 13% pump. Months with 0% 
return are those whose data was not collected. As shown in Figure 4.8(b), returns are stationary, 
and a few spikes are detected on both sides of the data frame: In 2010, the ETF had its best return 
of 12.25% and its worst in 2020, having an -11.13% dump due to the Coronavirus pandemic

(4.7)
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Figure 4.8: iShares Core S&P 500 exchange-traded fund time series properties from 2009 to 2022.

(COVID-19). It is also worth mentioning a fluctuation during 2016 in which 11.2% and -8.2% 
returns are present. In addition, the returns have a standard deviation of 0.11%, a variance of 
0.012%, and a 0.00025% mean. Finally, in Figure 4.8(c), the distribution of the logarithmic 
returns is shown. It can be observed that most density of the variable ranges between -5% and 5% 
and contains few dispersed returns on both left and right sides. On the left side of the distribution, 
returns are found up to -13%, and on the right side, up to 14%. Most of the values are clustered 
around the mean of the returns.

Volatility is the statistical measure of the dispersion of returns for a given asset during 
a period. This measure provides information about the price fluctuation around its mean in 
percentage. The standard deviation of returns calculates daily volatility. Figure 4.8(d) shows 
the daily volatility of the iShares S&P500 ETF, having rolling standard deviations in a 7-bar 
window. Good-day trading opportunities are usually related to volatile moments. According to 
Figure 4.8(d), three main volatility spikes were detected in 2010 (6.32%), 2016 (5.44%), and 
2020 (4.3%). Moments of medium volatility, such as in 2012 and 2020, are also present in the 
ETF. Lastly, it is also worth mentioning that volatility only provides information that the price 
fluctuates around its mean, but it does not tell what side the price fluctuates. By analyzing the 
plot, iShares Core S&P 500 ETF does not have high volatility. Figure 4.9 shows time series 
properties generated from the Western Union Corporation dollar bars.

Similarly to iShares Core S&P 500 ETF, Figure 4.9(a) shows the heat map plot informing 
monthly returns generated by Western Digital shares during 2010-2022. The lowest -27.8%
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Figure 4.9: Western Digital Corporation time series properties from 2010 to 2022.

monthly return sits in May 2019. On the other hand, the asset’s 32% highest return was in 
July 2012. Comparing Figure 4.9(a) to 4.8(a), Western Digital’s monthly returns have greater 
amplitude than the previous data frame. This fact can be confirmed in Figure 4.9(b), which shows 
the logarithmic returns plot. 1 5 % both-sided returns are present during the years of 2 0 2 0  and 
2021, as well as -6.2% and -5.9% variations in 2022 and 2016 respectively. The logarithmic 
returns contain a mean of -0.000035%, a standard deviation of 0.21%, and a variance of 0.0441%. 
Analyzing the distribution in Figure 4.9(c), it can be asserted that most of the returns are also 
clustered around its mean and concentrated between -10% and +10%. A few 15% variations can 
also be spotted on both sides of the distribution.

Lastly, Figure 4.9(d) shows the daily volatility of the asset. Compared to iShares Core 
S&P 500 ETF, Western Digital’s close price volatility is more often. The highest volatile moments 
were during 2020-2022, with both variations close to 6 %. The COVID-19 pandemic and the 
United States of America inflation increase events may explain these spikes. Finally, Figure 4.10 
shows time series properties generated from the Binance spot ATOM/USDT cryptocurrency pair.

Figure 4.10(a) shows the monthly returns generated by ATOM/USDT cryptocurrency 
dollar bars from April 2019 and November 2021. The cryptocurrency pair had its -45.2% lowest 
and 137% highest returns during August 2019 and February 2021, respectively. It is also worth 
mentioning some variations, such as 91.6% and 88.5% in August 2020 and 2021. In addition, 
some significant -45.1% and -45.2% negative returns are spotted during March 2020 and August
2019. Figure 4.10(b) shows the logarithmic returns plot generated in the previously mentioned
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Figure 4.10: Binance spot ATOM/USDT cryptocurrency pair from 2019 to 2021

period. According to it, the highest spike occurred in 2021 during a -24% drop, followed by a 
recovery. A few -15% approximately spikes can be detected in April 2020, as well as some 10% 
variations in the last quarter of 2019. Figure 4.10(c) shows the distribution of the logarithmic 
returns shown in the previously analyzed plot. Differently from the previous data frames, 
ATOM/USDT logarithmic returns distribution has a -4.01 skewness, which tends to negative 
values. The distribution has a mean of 0.001%, a standard deviation of 0.6%, and a variance of 
0.35%. Compared to the previously analyzed data frames, the asset return’s dispersion is greater 
than the remaining. Figure 4.10(d) shows the volatility plot of the data frame. According to the 
rolling volatility, this is the most volatile asset analyzed in this master dissertation, having its 
maximum volatility moment evaluated at 25%. Some other 6 % to 12% volatile moments are 
also present in April 2020. Regarding the overall trend, volatility increases during the second 
semester of 2019 and starts to reduce from 2021 onwards. Additionally, ATOM/USDT had a 
12% volatility moment during the COVID-19 event, as well as its 25% most volatile moment in 
May 2021. After these events, the asset’s volatility follows an overall downward trend until the 
rest of the data frame, with a few spikes ranging between 2% and 4%.

In order to check the goodness of dollar bars properties, the Jarque-Bera test of normality 
was conducted in both time and dollar bars to compare which one have the lowest test statistic. The 
Jarque-Bera (JB) test evaluates the goodness-of-fit whether the samples, in this case, logarithmic 
returns generated from the dollar and time bars, have the its skewness and kurtosis measures 
close enough to a normal distribution. JB test is defined by:
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JB = + 1 (K -  3) 2 J , (4.8)

where n is the number of data samples originated from the variable; S is the skewness of the 
distribution, which is a measure of the asymmetry of it, given by Equation 4.9.

Z f  (Xi=i -  » )3

S = (f - D  . „ 3  • (49)

where S is the sum from i = 1 to f  of the difference between every sample X and the population 
mean ^  to third power, divided by the product of the total number of the population f  -  1 and 
the standard deviation to the power of three. In addition to it, K is the kurtosis which measures if 
the distribution contains a specified form of tail.

K = ^  • (4.10)a 4
where \i4 is the fourth central moment of the distribution and a 4 is the standard deviation to the 
fourth power. Dollar bars returns had 4.71 x 1010 samples that were not according to a normal
distribution, against 6.4 x 1012 from time bars concerning the iShares Core S&P500 ETF. In
addition to it, Western Union dollar bars returns were 2.28 times more normally distributed 
compared to time bars, each one of them had 1.85 x 109 and 4.22 x 109 respectively. Lastly, as 
an exception due to the chosen threshold, ATOM/USDT time bars were 110 times more normally 
distributed than dollars’, each one of them had 4.79 x 109 and 3.78 x 107 respectively.
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5 EXPERIMENTAL SETUP AND METHODOLOGY

This chapter describes the proposed deep reinforcement learning-based strategy im­
plementation. The following sections detail the approach to formulating trading as a Markov 
decision process (MDP) and implementing the market trading environment. In addition to the 
description of the reward design process and the back-testing methodology.

5.1 TRADING FORMULATED AS A MARKOV DECISION PROCESS

Markov decision process is a time-discrete stochastic control framework that provides a 
mathematical foundation to model decision-making problems. In MDPs, a system is in some 
given state and moves forward to another state based on the agent’s decisions (decision maker). 
These interact continuously. The agent selects actions, and the environment responds to them 
by presenting new situations to the agent, as well as rewards which consist of numerical values 
that the decision maker seeks to maximize over time through its actions. Figure 5.1 shows 
the schematic of the proposed MDP to model an asset trading market. The environment is 
formulated as a set of states containing information such as technical indicators, time signatures, 
and candlestick dollar bars. The trader agent can interact with it by choosing between buy, hold, 
and sell actions. The agent’s goal is to control the system so that some performance criterion is 
maximized, in this case, profits.

State
s t

Trader agent

Reward
R

t

Environment

Candlestick dollar bars

\ O bservations Technical indicators

Time signature

Action
A

t

Figure 5.1: Trading problem formulated as a Markov decision process
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5.1.1 Trading environment

In reinforcement learning, the environment is defined as the entity comprising everything 
outside the agent. More specifically, the agent and environment interact at each of a sequence 
of discrete time steps t = 1,2,3,... At each time step t , the agent receives some representation 
of the environment’s state st e S where S is the set of all possible states. In this dissertation, 
the adopted environment sets each time step representing every time the market value reaches a 
predefined value.

The state of a system provides information that helps the agent to take action; hence this 
is the input. In order to predict the action better than random, the features in the state must be at 
least weakly predictable and stationary (have a stable mean). The market environment used the 
following input features:

• Candlestick dollar bars

• Time signature

• Technical indicators

In order to construct the state, tick data, which is the record of transactions and prices of 
an asset, is grouped until it reaches a pre-defined market value and a dollar bar is generated as 
cited in Chapter 4. In the following, the current date time from the generated bar is collected, and 
outliers are removed according to the IQR method, taking into consideration the last seven days 
according to the date. Once the data is cleaned, the state can be assembled. According to the 
current date time, the state searches for the previous LOOKBACK  amount of data samples of 
every feature and appends them it. Every feature is normalized to prevent a large-valued variable 
from dominating the entire neural network.

Time signature features such as the current time of the day and week were also included 
in the state. These features may have a significant impact on profitability. Adding a particular 
time of the week may provide additional information that may not be apparent from a conventional 
numerical timestamp. These could be events that occur in regular weekly intervals, such as 
Federal Open Market Committee Meetings. Aiming to calculate the current time of the day, the 
hour and minute corresponding the current index position is retrieved and multiplied by 24 x 60 
to map that into float number and then normalization is applied. To calculate the day of week, 
the corresponding day of the current index position is retrieved and transformed into an integer 
number and it is divided by 6  to normalize it.

Finally, the following technical indicators were also included to construct the state 
vector. Relative Strength Index was used with in 14-day period basis on the closing prices. It is 
a Momentum Oscillator that is used with the intention to to measure strength or weakness of 
the asset. This indicator ranges on a scale from 0 to 100, with high and low levels marked at 
70 and 30 representing that above the 70 level, the asset is overbought and in 30 oversold. In 
addition to it, Balance of Power was also included in the state. It determines the pressure of the 
buyers and sellers by looking at how strongly the price has changed. Aiming to identify trends, 
the Aroon Oscillator served also as input tracking the highs and lows for the last 25 periods. 
This oscillator measures the strength of the current trend and providing information about its 
persistence. It also ranges on a scale from 0 to 100. The higher the number indicator’s value, 
stronger the trend. Lastly, Moving Average Convergence/Divergence indicator was used to trade 
trends. It is calculated by subtracting the value of a faster period Exponential Moving Average 
from a slower one. It does not oscillate at some range. When this indicator crosses above zero is 
considered bullish, while crossing below zero is bearish.
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5.1.2 Agent

The agent is the entity that makes decisions based on rewards and punishments, seeking 
to maximize the total reward in a particular environment. This work implemented the agent 
using two deep feed-forward artificial neural networks. The first neural network, also mentioned 
as the main Q-network, is used for getting the probability mass function po.- (s, a), given the 
current state s and action a , the best action a * from the next state s'. The second neural network, 
named target Q-network, generates the probability mass function given the next state s', using the 
action caused by the main Q-network po. (s', a*). Using the Bellman equation in the projected 
distribution of po. (s', a*), a probability mass function is generated to calculate the target values 
for the current state s . Since the two function approximators have seen different samples, it is not 
likely to overestimate the same action. Figure 5.2 shows both neural network inputs and outputs.

Figure 5.2: Adopted Deep Feed-Forward Q-Neural Network architecture in the trading problem

Both deep neural networks’ architectures are composed of input, hidden, and output 
layers. The input layer size corresponds to the size of the state s concatenated with goal g. It 
comprises a standard linear layer, performing linear operations to the input data. Next, it is 
followed by a rectified linear unit (RELU) activation function, which is defined as

f  (*) =
if x > 0 ,

0  otherwise.
(5.1)

where f  (x) is the output of the function, x is the input. This function will output the input directly 
if it is positive; otherwise, it will output zero. It has become the default activation function 
for many types of neural networks. The hidden layer adopts the Dueling network architecture, 
consisting of two noisy linear stream layers that each provide separate estimates of the value 
and advantage functions. The value stream outputs the state value function Vn (s, g) with the 
dimension of Natoms, which are the "canonical returns" of the distribution. The advantage 
stream outputs the advantage of the actions in the state s with dimensions Nactions x Natoms. 
The Noisy linear layers substitute the standard e-greedy into the choice between exploration 
and exploitation. It injects factorized Gaussian noise to perturb the network’s weights, leading
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to better exploration. Lastly, advantage and value streams are combined and followed by the 
Softmax activation function, which transforms values into probabilities. The output layer consists 
of the array of 3 probability masses functions, one for each action buy, sell, and hold. Each 
probability mass function shows the probability that each return would have to be chosen in a 
certain action. The output layer has a dimension of Naction x Natoms.

5.1.3 Reward

Reinforcement learning does not rely on detailed instructional information. According 
to Russell and Norcvig (2016), the success of a reinforcement learning application strongly 
depends on how well the reward signal frames the goal of the application’s designer and how well 
the signal assesses progress in reaching that goal. Every reward function has pros and cons, and 
it is up to the designer who decides which is the best for them. In this master’s dissertation, the 
exponential profit and loss were adopted as the reward function. It is calculated by subtracting 
the current price (p t), taking into consideration the transaction cost tc involved when exiting the 
position, subtracted by the entry price (p0), also taking in consideration tc in respect to starting 
the trade. All variables mentioned above are divided by the entry price (p0), also taking into 
consideration tc and multiplied by the respective position taken in the trade (1  for long and -1  

for short). Finally, the natural exponent is taken of the respective value. Equation 5.2 shows the 
reward function:

Pt (l-tc)- P0 (1+tc) „„.ition
R (s,a ,g ) = e po (1+fc) (5 .2 )

The Exponential profit and loss were chosen as the reward function based on the 
assumption that the agent should receive a greater reward for greater returns. At each time step, 
the agent will predict whether the trade is over or not. The first option will consider the current 
position, and the agent will provide the reward. On the other hand, if the trade has yet to be 
over, the agent will take action and will not receive any reward. Figure 5.3 shows the process 
mentioned above.

5.2 BACK-TESTING MODEL PROCESS

During the back-testing process, the model walks through the data frame multiple times 
to learn and improve trading. An episode is defined once the agent starts a trade by buying an 
asset (action 1) and exits when a sell signal is received later (action -1). In addition, a sequence 
can also be considered an episode once the agent starts the trade by selling an asset (action -1) 
and exits when a buy signal is received (action 1).

5.2.1 Sequential sampling

Train-test splits and k-fold cross-validation are statistical methods often adopted to 
evaluate performance in machine learning models. However, these approaches do not work 
in the case of time series data because they ignore the temporal components inherent in the 
problem. In the time dimension of observations, it is impossible to split data randomly into 
groups. Instead, data must be split concerning the temporal order in which values were observed. 
In time series forecasting, this evaluation of models on historical data is called backtesting. The 
proposed framework was evaluated according to the sequential sampling approach. The model 
steps through the dataset sequentially, running episode after episode, improving itself along the 
way. Figure 5.4 is described to illustrate sequential sampling.
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Figure 5.3: Sparse reward design process for asset trading

Time

Figure 5.4: Sequential data sampling approach

In this master dissertation, trade and episode are considered synonyms. The first trade 
starts at 2008-01-01 11:00 AM, finishes at 2008-05-01 4:00 PM, and is classified as the 1st 
episode. Instead of random sampling, the following trade (episode) will start at the data sample:
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2008-05-01 at 4:05 PM. The 2nd episode starts at 2008-05-01 4:05 PM and lasts until 2009-01-05 
6:25 AM. Subsequently, Trade 3 (3rd episode) will start at 2009-01-05 6:30 AM and ends at
2009-05-14 8:15 AM. It is possible to infer that a new trade must begin on 2009-05-14 at 8:20 
AM. This mechanism goes until the end of the data frame.

5.2.2 Back-testing process

This subsection describes the backtesting process of training the agent to identify trading 
opportunities. The proposed algorithm contains a couple of steps: the sampling and learning 
phases. The sampling phase consists in integrating with the environment, collecting experience 
tuples, and sampling them to the learning phase according to priority. On the other hand, the 
learning phases consist in feeding the batch of the sampled experience tuples and calculating the 
target and the loss function. Lastly, the algorithm performs the backward pass to transmit what it 
has learned from the loss function to its neural network weights. This way, the algorithm can 
approximate a function that maximizes the goals defined by the designer. Figure 5.5 shows an 
overview of the process above described of backtesting implementation.

The application starts by instantiating the market environment, the main and target 
Q-artificial neural networks, and the hindsight-prioritized experience replay buffer. A new 
episode starts, and a state is generated for each time step. It is a combination of market features 
observed at a certain time-step t presented to the agent. The state combines multi-resolution 
dollar bars, technical indicators, and time signature features. The first feature is regarding the 
asset’s price and is sampled every moment the market value reaches a predefined threshold. 
Technical indicators were also calculated from the price feature and concatenated to the state. 
Lastly, the current day of the week is served as time signature features to capture an event that may 
occur in weekly intervals. In the following, a goal is generated according to a normal distribution. 
It is concatenated with the state, composing the final tensor (s ||g) that serves as input to the main 
Q-network. Since this is the start of the algorithm, it can’t get the terminal state and put it as 
the goal; hence it is randomly generated. Then, the tensor (s ||g) serves as input to the main 
Q-network and takes action a according to the policy n. Once the environment receives action a, 
it generates a next state s', an immediate reward r , and whether the trade is over. The algorithm 
concatenates the chosen goal g with the following state s' forming the tensor (s '||g) and stores 
it as an experience tuple in the hindsight-prioritized experience replay. This experience tuple 
contains the current state s the agent is in concatenated with the chosen goal g (s | |g), the taken 
action a, the immediate reward received r , the next state s' received concatenated with the goal g 
(s '||g) and if the trade is over or not. In the following, if the designer wishes to set additional 
goals to the hindsight-prioritized experience replay to create a broader perception of subgoals 
to the agent, a new goal g' is selected according to a predefined rule and concatenated with the 
current state s (s ||g') and next state (s'Hg') and stored as experience tuple in the replay buffer. 
The accumulated experiences at their initial moment have a maximum priority of 1.0 since they 
should be sampled at least once by the replay buffer. Prioritizing experiences introduces bias 
due to the sampling proportion corresponding to the temporal difference error. The algorithm 
uses importance-sampling weights (Equation 2.41) that fully compensate for the non-uniform 
probabilities P (i) if y8  = 1 to tackle this problem. The hyper-parameter y8  starts at 0.4 and is 
linearly increased during every time step and reaches 1.0 at the end of training. The learning 
phase only begins when the experience replay contains a number of tuples greater than the 
defined batch size to train the neural network. If it does not, the algorithm repeats the same 
previous steps until it reaches enough experience. On the other hand, if the memory size is 
greater than the batch size, the algorithm gets experience tuples indexes according to their priority 
using Equation (2.40). It is a stochastic sampling method that alternates between pure greedy
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prioritization and uniform random sampling. In addition to it, the probability weights P(i) are 
corrected and computed using 2.41 to compensate for the non-uniform probabilities P(i) saving 
the correct weights in the wi array. In the following, the learning phase starts. This phase consists 
in calculating the target for the distributions generated by the network and consequently its loss 
(L(Qi)). This phase will be covered in further detail in the following subsection. After calculating 
L (Qi), an element-wise multiplication is performed between Wi and L (Qi), and the neural network 
performs the backward pass to adjust its weights. The learned experience’s priorities are updated 
by summing the proportion of their temporal difference error with a minimum value of e to make 
priorities > 0. Lastly, if the trade did not finish, the algorithm repeats all steps above until it is. 
Once the trade ends, the target Q-network performs a hard copy update from the main Q-network
weights.
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Figure 5.5: Backtesting overview of the ETDQN strategy, consisting of resource initialization, state assembly by 
combining Dollar bars, technical indicators, and time signature features, followed by the objective concatenation. 
In the following, the tuple of experience is created and stored. Finally, priorities are updated, and target network 
weights’ are updated at the trade liquidation.

Figure 5.6 shows the overall learning phase that includes taking the sampled batches 
generated from the sampling phase, calculate the target distribution and the loss of the neural 
network.
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Figure 5.6: ETDQN learning process consists of storing the best action from Online Q-network, letting the Target 
Q-Network evaluate it, and get its respective distribution. In the following, a discrete-valued support is created, and 
Bellman update is applied to it. Then, probabilities are distributed to the distribution’s closest neighbors, shifting the 
predicted distribution. Finally, the cross-entropy loss between the actual value distribution p g. (s,a) and the shifted 
distribution m is calculated, performing back-propagation in the Online Q-network.

The learning process of the algorithm starts by sampling a batch of tuples based on 
priority from the replay buffer. The batch size was 1 for illustration purposes. In the following, the 
next state concatenated with the goal (s'H g) serves as input to the main Q-network. The first linear 
input layer of the network processes s'Hg and gets split into two branches: the value and advantage 
streams. This division benefits learning since the network learns to estimate the distribution of 
values only for important conditions; hence it learns what states and goals are more valuable. It is 
important in sparsed-reward environments since feedback only occurs occasionally. Each branch 
is composed of noisy linear layers, which add parametric noise to the network weights used to 
drive exploration. The layer contains a hyperparameter called a , the equivalent initial standard 
deviation for creating the perturbation. The higher this hyperparameter is, the more energy the 
injected noise perturbs the weights. The value and advantage streams are combined again and
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followed by a softmax layer to produce the final probability distributions, one for each action. 
Then, for each distribution, each atom is multiplied with its respective probabilities to generate 
Q-values, one for each distribution. The greedy action a* is the distribution that returned the 
highest Q-value. This action is stored, and the same procedure of predicting the probabilities of 
each action from (s'l |g) occurs in the target network. However, the target network only evaluates 
the action. Instead of generating Q-values and selecting the greedy action, the greedy action 
generated by the main Q-Network stored is retrieved, and its probability distribution is collected 
in the target network. This probability distribution is denominated pe- (s', a*). To perform the 
Bellman update, a support Zi array is created. It contains the same number of atoms that the 
Pe - (s', a*) distribution. However, its values are evenly spaced, ranging from minimum Vmin and 
maximum Vmax values. In the following, the Bellman update T Z jis performed concerning the 
support Zi. Zi is multiplied by the discount factor y  and summed to the immediate reward r . Since 
adding r dislocates the distribution in the x-axis, the update may be beyond the set [Vmin,Vmax] 
intervals. To tackle this issue, T Zj is clipped into the previous range. To project T Zj closest to 
the support Zi, the bi array computes the closest real-valued index positions, which each value 
of T Zj is closer in respect to Zi and from that its integer lower and upper neighboring indexes. 
The probabilities of pe - (s', a*) are distributed and saved to the projected distribution m . In the 
following, the main Q-network predicts the distributions from the current state concatenated 
with the goal tensor (s | |g), and the distribution corresponding to the action a in the experience 
serves as the chosen action. This distribution is denominated pe (s, a) . Finally, the loss between 
the project distribution m and pe (s, a) is calculated concerning the cross-entropy loss function, 
which measures the difference between two probability distributions.

5.3 HYPERPARAMETERS

This section describes the set of hyperparameters necessary to tune the model. Table
5.1 shows the chosen values for each.

• Learning Rate:
Determines the step size at each iteration while moving toward a minimum of a loss
function.

• Loss Optimizer:
Optimizer algorithm to reduce loss.

• Loss Function:
Maps the distance between the current output of the algorithm and the expected output.

• Activation Function:
Function that adds non-linearity to the neural network

• Number of Actions:
Number of discrete actions that agent can take. Buy, sell, and hold.

• Lookback:
Number of previous timesteps that are used in order to predict the subsequent timestep.

• Batch Size:
Number of samples that are propagated through the neural networks.
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• Discount Rate:
Reflects both time value and risk compensation.

• Memory Size:
Maximum amount of < s || g ,a ,r ,s  || g > tuples that the replay buffer can store.

• Additional Goals:
Number of Goals to add to the Hindsight Experience Replay

• Noisy layer initial standard deviation (op):
Coming from Factorized Gaussian linear layer. Initial standard deviation to inject noisy 
into the neural network’s weights.

• Prioritization of experiences:
Amount of prioritization of experience tuples.

• Distributional Atom (Natoms):
Number of "canonical values” generated from the distribution.

• Distributional minimum and maximum values (VminIVmax):
Maximum and minimum value of the generated distribution.

Table 5.1: Hyperparameters values used in ETDQN applied to iShares S&P500 ETF, Western Digital Corporation, 
and ATOM/USDT cryptocurrency pair assets.

Hyperparameter iShares Cores S&P500 ETF
Assets

Western Digital Corporation ATOM/USDT cryptocurrency
Learning Rate 0.0000625 0.0000625 0.00000425
Loss Optimizer Adam Adam Adam
Loss Function Cross-entropy Cross-entropy Cross-entropy
Activation Function Rectified Linear Unit Rectified Linear Unit Rectified Linear Unit
Lookback 20 20 20
Batch Size 8 16 8
Discount Rate (y) 0.99 0.99 0.99
Memory Size 500 500 600
Additional Goals 5 3 4
Initial Standard Deviation (<70) 0.5 0.8 0.3
Experiences prioritization (a) 0.5 0.5 0.5
Prioritization bias compensation (8) 0.4 1.0 0.4 1.0 0.4 1.0
Distributional atoms (Na to m s) 51 51 51
Distributional min/max values (Vm in IVm a x) [-20, 100] [-20, 100] [-20, 100]
Market value sampling threshold 500K USD 1M USD 7.5K USD

At the first attempt, the learning rate was set to the standard rate indicated for the Adam 
optimizer, which is 0.001. However, the algorithm presented a poor performance by not being 
able to converge to a good policy. Then, according to DRL similar papers, the adopted learning 
rate of 0.0000625 demonstrated an improvement. Initially, this rate was adopted to optimize the 
stochastic gradient descent, but it showed promising results in Adam. In the network architecture, 
RELUs were adopted as activation functions except for the last layer, which contains the Softmax 
function. RELUs were chosen instead of other types because they avoid nonlinear activation 
functions and reduce complexity. Lookback was set to 20. This parameter was highly sensible to 
tune. The model showed a higher variance during the training when the lookback parameter was 
greater than 60. The same fact occured in the batch size. The higher both parameters, the more 
variance in the results. The opposite is also valid. The discount rate was set to 0.99 to make 
the agent seek to learn as long-term as possible. The memory size was set to 500. The memory 
size did not have to be expressive due to the prioritization feature implemented, allowing the
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agent to keep the most important transitions. To sample sub-goals to make the agent learn as 
much as possible from alternative outcomes, additional goals were fed to the agent. Each data 
frame had distinct amounts, having the iShares Cores S&P500 ETF the maximum amount of 5 
different goals. To perform better exploration, the initial standard deviation set to perturb the 
noise of the neural network was 0.5, 0.8, and 0.3, respectively. In most volatile assets, exploring 
much is not a good idea due to the possibility of a loss. The more volatile the asset, the lower oo. 
The prioritization exponent, which sets how much prioritization to set in transitions, was set to 
0.5. The value was set according to the original implemented paper. The same applies to the yS 
parameter that compensates for the non-uniform distribution sampling which is linearly increased 
at every time step from 0.4 to 1.0. This hyperparameter was set to 0.6. Lastly, the distribution’s 
number of "canonical returns" was 51 as the original implementation of the categorical DQN 
algorithm. However, the minimum and maximum values that the distribution can have were set 
to -20 and 100. Some other values such as [-10,10] and [0,200] were tried. However, the best 
results were achieved with the pair mentioned above.
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6 PERFORMANCE ANALYSIS

This chapter presents the results of the conducted experiments. In order to evaluate and 
compare performance, cumulative returns, Sharpe ratio, drawdown, monthly and annual returns 
were calculated for every benchmark and agent’s strategy, followed by an analysis contemplating 
each of them. Transaction fees (tc) were taken into consideration. The adopted tc in ATOM/USDT 
crytocurrency was 0.03% and 0.18% for the remaining.

6.1 CUMULATIVE RETURNS

In this section, each strategy’s cumulative product of the daily percentage change was 
calculated and analyzed. The cumulative returns metrics show the historical evolution of the 
portfolio value and not only its final evaluation. Figure 6.1 shows the cumulative returns regarding 
the abovementioned strategies applied to the iShares S&P500 ETF data frame.

Time

Figure 6.1: Daily iShares Core S&P 500 ETF cumulative returns from 2010 to 2022

As indicated by Figure 6.1, the ETDQN agent outperformed all benchmarks regarding 
cumulative returns concerning the minimum, mean, and maximum value. The strategy had 
a mean of 3.86, reaching a maximum portfolio value of 8.61 and a minimum of 1.0 between 
2010 and 2022. The policy did not lose the invested amount at any moment during the 12 years.
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Starting in 2010, the model had a good performance, outperforming every benchmark. It formed 
a local peak in April and struggled to learn a good policy until 2016. According to Figure 4.8(d), 
a 6 % volatility spike occurs in the asset, and the agent can take advantage of it, overtaking the lead 
in performance. The strategy keeps increasing the profits compared to the remaining onwards. 
In March 2020, once the Coronavirus pandemic (COVID-19) happened, the model achieved its 
best performing moment, having an outstanding 164% profit, reaching 8.61 cumulative returns. 
Followed by a -6.9% drop in April, the agent keeps increasing its profits and ends its portfolio 
evaluated at 7 .6 0 .

TDQN benchmark had a mean of 2.64, a maximum of 4.92, a minimum of 0.95. Even 
though the strategy is increasing between 2010 and 2013, still does not perform better than the 
previous strategy. However, in 2013 the TDQN outperforms the agent strategy following an 
up-trend reaching 2.63 cumulative returns. Unfortunately, differently from the agent strategy is 
not able to identify and take advantage from the 2019 and 2020 dumps. From 2021 onwards, the 
strategy cumulative returns keeps increasing achieving its maximum value.

The Buy-and-Hold benchmark had a mean of 2.06, a maximum of 3.01, and a minimum 
of 0.91 portfolio value. The strategy ranges between 1.0 to 1.43 cumulative returns until the end 
of 2011, when the asset starts an up-trend that remains active until 2016, Having the second 
position concerning performance. In the following, the strategy has a short-term downtrend 
having -2.2% and -5.3% drops, respectively, in December 2015 and January 2016. In addition, 
the approach formed a local bottom in December 2018 with a -10.1% dump, followed by a 
recovery process; the asset was affected by the COVID-19 pandemic event during March 2020, 
having its worst month with a -15.7% dump. The portfolio assumes an up-trend and ends the 
backtest evaluated at 2.61, recovering from the drop in a v-shaped way. Contrasting the previous 
strategy.

The Sell-and-Hold benchmark had a poor performance with a mean of 0.23 of the initial 
invested amount. This strategy assumes the worst position regarding performance. A maximum 
portfolio value of 1.05 was achieved, as well as a minimum of 0.23. Visually analyzing the 
strategy, a down-trend pattern in the long term is observable. Some positive spikes during 2012, 
2019, and 2020 are detected, even though a reversion and continuation of the down-trend follow 
them.

Lastly, the Random Action strategy achieved the third position regarding performance 
with a mean of 0.96, a maximum of 1.19, and a minimum of 0.58. It achieved the third position 
regarding mean performance. During the 2010 - 2016 period, the strategy does not have a 
considerable variation in performance. In the following years, it assumes a slight down-trend 
finishing the backtest and having a 0.89 portfolio value. Figure 6.2 shows the cumulative returns 
from the same strategies applied to the Western Digital Corporation from 2010 to 2022.
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Figure 6.2: Daily Western Digital Corporation cumulative returns from 2010 to 2022

Similarly to the previous data frame, ETDQN outperformed all benchmarks. In 2012, 
the strategy was evaluated at 0.93, achieving its worst period. From 2012 onwards, the policy 
stood out from the other benchmarks and doubled its initial investment. The strategy stabilized 
between 3.0 and 3.5 during 2014/mid-2015. At the end of 2015, it increased its value five times 
during a drop in the asset. From 2016 to 2018, the asset moves sideways, so the strategy. In 2018, 
the asset assumed a down-trend again; The policy increased its value by eight times, followed by 
a drop of 1.5. In the following, the model recovers its value during the COVID-19 event and 
has its highest 164% pump during March. After the event, the policy assumes a slightly sloped 
downtrend and finishes the backtest assuming an up-trend evaluated at 51.94. In this strategy, the 
mean portfolio value was evaluated at 17.12, meaning that the investment would have increased 
to the above amount.

TDQN benchmark had a minimum value of 0.87, a maximum of 6.12, a mean of 2.40. 
The strategy had the second best position regarding performance. Between 2010 and 2013, this 
strategy is able to outperform the previous policy, achieving a peak of 3.1. However, from 2013 
onwards the strategy is not able to generalize well staying on second position until the end of the 
backtest. Between the years of 2013 to the half-2014, the strategy’s follows a downtrend, followed 
by a recovery in 2015 reaching its highest 6.12 evaluation in the end of 2018. Unfortunately, 
from 2019 onwards, the model is not able to generalize well, failing on taking advantage of the 
COVID-19 event related loss. It reaches its 0.87 lowest value on 2022.

With respect to the Buy-and-Hold benchmark, the strategy had a minimum evaluation 
of 0.78 during 2012, a maximum of 3.86 in 2015, and a mean of 2.13, achieving second place
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regarding performance. The policy oscillated between 1.0 and 1.5 from 2010 until 2014. An 
uptrend started and went up to 2015 when the asset had its best-evaluated value of 3.86. In the 
following, the strategy loses all profits earned from the previous trend and goes back to 1 .2  in the 
most significant dump of the asset of -78% to its maximum value. The same pattern repeats from 
2016 to 2019, but with a lower margin. The asset had a -58% dump during the COVID-19 event, 
followed by a recovery in 2021. The asset finishes the backtest evaluated in 1.21.

Contrasting the Buy-and-Hold strategy, Sell-and-Hold benchmark had achieved the 
fifth and last position regarding performance against the remaining benchmarks. The policy’s 
evaluation is a minimum value of 0.05 in 2022, a maximum of 1.06 in 2010, and a mean of 0.23. 
During the 2010-2015 interval, as opposed to the previous strategy, a strong downtrend was 
predominant until the mid of 2015. From 2015-2016, the strategy has one of its best performance 
moments recovering its portfolio with an 11.2% pump. Followed by the asset value increase in 
2016, the Sell-and-Hold benchmark policy is penalized again, reverting its profits and dropping 
-21.2% while it traded in 2018 with a 28% profit. The strategy keeps decreasing its value until 
reaching 0.05 of the initial investment.

Lastly, the Random Action strategy had a fourth place with a minimum value of 0.45. 
The strategy assumed a downtrend from 2010 to 2019. It assumes an uptrend during the next 
three years, followed by another downtrend. Figure 6.3 shows the cumulative returns from the 
same strategies applied to the Binance spot cryptocurrency pair from 2019 to 2022.

T im e

Figure 6.3: Daily ATOM/USDT cryptocurrency cumulative returns from 2019 to 2022
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The agent strategy outperformed all benchmarks regarding the Binance spot ATOM- 
/USDT data frame. The evaluated policy metrics were a minimum value of 0.95 in August 2019 
and a maximum value of 37.62 in November 2021. With a portfolio value performance mean of 
12.08, the strategy starts with fewer bars than the remaining datasets and, throughout the backtest 
course, has its amount increased. During September 2019 and July 2020, the strategy increased 
its initial investment by three and then decreased performance. During this period, the asset price 
significantly increases quickly and gets equivalent to the agents’ performance. Fortunately, in 
July 2021, the agent is smart enough to capture the asset’s upward trend and outperforms the 
Buy-and-Hold benchmark by opening short positions during the price fall.

TDQN had a minimum of 0.26, a maximum value of 6.12, and a mean of 2.40 cumulative 
returns. Between the intervals from 2019-07 to 2020-03, the agent struggles to be competitive, 
reaching its lowest value of 0.26 in March 2020. Fortunately, the policy is able to learn from the 
experiences and follows an up-trend from April 2020 on wards outperforming the Buy-and-Hold 
strategy in the end of June 2020 and Sell-and-Hold benchmark in July. The strategy reaches its 
maximum peak value of 6.12 during May 2021, surpassing even the previous strategy at the 
moment. Unfortunately, differently from the above mentioned policy, the agent is not able to 
generalize well at the moment and has a worse performance than Buy-and-Hold benchmark, 
assuming a downtrend until the end of the backtest.

The Buy-and-Hold benchmark achieved second place in performance, being evaluated 
at 0.29 during its minimum value in August 2019 and at 7.67 during its maximum performance in 
August 2021. The strategy had a 5.65 cumulative return mean regarding performance. Between 
July 2019 and April 2020, the strategy had its worst performance having its minimum evaluated 
performance value within this interval. In contrast to this period, the cryptocurrency market’s 
Bullrun starts, and the asset multiplies its value by 8 , recovering its losses and generating profits. 
From April 2021 onwards, the strategy moves sideways, followed by a -33.9% drop during May 
2021. The strategy forms a local bottom followed by another 52% pump between July and 
October, stabilizing its value at 6.84.

The Sell-and-Hold benchmark strategy had the fourth position regarding cumulative 
returns contrasting the previous strategy. In addition, the policy had its worst performance 
equivalent to its mean of 0.01. If the investor tried to allocate all capital into a short position, 
he would have lost all investment. During the start of the backtest, the strategy had its best 
performance moment of 2.22, outperforming even the ETDQN. However, the strategy assumes a 
downtrend and does not recover from it.

Lastly, the Random Action strategy achieved third place regarding performance. This 
policy achieved its worst moment of 0.01 accumulated returns in October 2021 and its best 
performance moment at the start of the backtest. This policy had a better position than the 
previous strategy due to its best performance between January and April of 2021, even though 
both assume downtrends during the entire backtest.

In order to summarize all information regarding cumulative returns, Table 6.1 presents 
the minimum, mean and maximum accumulated return values from ETDQN, Buy-and-Hold, 
Sell-and-Hold benchmark, and Random Action strategies in respect to the iShares S&P 500 ETF, 
Western Digital Corporation and Binance spot ATOM/USDT cryptocurrency data frames.
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Table 6.1: Daily cumulative returns

Strategy Cumulative Returns
Minimum Mean Maximum

ETDQN 1.0 3.86 8.61

iShares S&P500 ETF TDQN
Buy and Hold

0.95
0.91

2.64
2.06

4.92
3.01

Sell and Hold 0.23 0.42 1.05
Random 0.58 0.96 1.19

A
ss

et
s ETDQN 0.98 17.12 75.48

Western Digital Corporation TDQN
Buy and Hold

0.87
0.78

2.40
2.13

6.12
3.86

Sell and Hold 0.05 0.23 1.06
Random 0.45 0.88 1.23
ETDQN 0.95 12.08 37.62

ATOMUSDT Cryptocurrency TDQN
Buy and Hold

0.26
0.29

0.86
5.65

7.64
7.67

Sell and Hold 0.01 0.01 2.22
Random 0.01 0.03 1.0

Regarding the first evaluated iShares S&P500 ETF data frame, the ETDQN had 1.46, 
1.87, 8.57, 9 and 3.75 higher mean performance compared to TDQN, Buy-and-Hold, Sell-and- 
Hold benchmark, and Random Action strategy, respectively, hence achieving the first position of 
performance.

The same policy achieved 7.13, 8.04, 19.45, and 74.43 higher performance than the 
TDQN, Buy-and-Hold, Random Action, and Sell-and-Hold benchmark strategies applied to the 
Western Digital Corporation data frame.

Lastly, the abovementioned strategy reached 14.04, 2.14, 402.66, and 1208 greater 
accumulated returns than the TDQN, Buy-and-Hold, Random Action, and Sell-and-Hold 
benchmark strategies. This fact exposes that the algorithm has identified patterns within the 
dollar bars and can profit from opportunities.

It is also worth mentioning that if the investor would allocate capital into the Random 
Action and Sell-and-Hold benchmark strategies in the Western Digital Corporation data frame, 
he would have lost almost his entire capital. This fact is also actual when applied to the 
same strategies in the ATOM/USDT cryptocurrency data frame. According to Table 6.1, the 
capital allocated to the ETDQN would be multiplied by 3.86 in the iShares S&P500 ETF data 
frame, 17.12 if applied to the Western Digital Corporation and 12.08 if applied to Binance spot 
ATOM/USDT.

6.2 SHARPE RATIO

This section calculated and analyzed the Sharpe ratio metric for each data frame and 
benchmark. The metric adopted a 126-day window value to analyze the ratio on a 6 -month 
rolling basis. The estimated number of days in a month was 21 since only business days were 
considered. Figure 6.4 shows the aforementioned rolling metric calculated in the iShares S&P500 
ETF data frame for TDQN-based, Buy-and-Hold, Sell-and-Hold benchmark, and Random Action 
benchmarks as well as for ETDQN.

ETDQN was evaluated during its worst-performing moment with a minimum Sharpe 
ratio of -3.26 in 2021. The agent also achieved a 6.07 ratio in 2019 during its best performance 
and a mean of 1.04. At backtest start, the policy oscillates its Sharpe ratio between the -2.5 /
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(a) ETDQN

(c) Sell-and-Hold benchmark

(b) Buy-and-Hold benchmark

(d) Random Action benchmark

(e) TDQN benchmark

Figure 6.4: iShares S&P500 ETF 6-month rolling Sharpe ratio

2.5 range, followed by a breakout in 2015. In the following, the strategy achieves a 5.2 ratio 
performing an interesting risky-reward relation. In 2019, the strategy kept increasing the ratio 
and achieved its best relation with 6.07 by taking advantage of the COVID-19 event dump and 
opening a short position. Unfortunately, this period is followed by the worst performance moment 
in 2021, achieving a -3.26 ratio. Luckily, the strategy recovers from this loss in a v-shape way 
and reverts to a mean value. This policy has the first position regarding the mean metric against 
the benchmarks.
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TDQN benchmark was evaluated with a minimum of -2.66, a mean of 1.03 and a 
maximum of 4.56 6 -month rolling Sharpe ratio. Its best risk-reward moment occurs in 2013, going 
from -1.24 evaluation to 4.56. During this period this strategy outperforms all of remaining. In 
addition, its worst risk-reward moment happens in 2020 during the start of COVID-19 pandemic. 
During this period, the Sharpe ratio has a dump from 3.62 to -2.66. The strategy achieves the 
second place regarding risk-opportunity relation according to the mean.

The Buy-and-Hold strategy benchmark was evaluated with a minimum value of -2.97 
ratio during its worst risk-reward moment in 2019 and its best moment with a 4.6 ratio in 2017. 
The strategy’s Sharpe ratio oscillates between 3.0 and -2.5, with few exceptions during 2010 and 
2016, and has a 0.76 mean. The policy achieves its best risk-return measure in the following 
year, even though a 150% dump occurs subsequently. This policy achieved third place regarding 
risk-opportunity relation according to the mean.

The sell-and-hold policy achieved the last position regarding risk-return relations, 
reaching a -4.6 Sharpe ratio during its worst moment in 2018 and 2.97 in 2019 during the 
COVID-19 event. It is also worth mentioning that since this strategy is the reverse of the 
previously analyzed one, it achieves its best moment of risk-return relation once the previous 
strategy reaches its worst scenario.

Finally, the Random Action strategy achieved the fourth position regarding risk-return 
relation. This policy had its worst moment Sharpe ratio evaluated at -2.95 in 2021, its best rolling 
ratio estimated at 2.81 in the same year, and a 0.0 mean. Figure 6.5 shows the 6 -month rolling 
Sharpe ratio calculated in the Western Digital Corporation data frame regarding all benchmarks.

The proposed DRL-based strategy had achieved the best position compared to the 
benchmarks regarding the mean Sharpe ratio of 1.0. In addition, during 2020, the policy had its 
worst ratio of -4.64, followed by a recovery in a v-shaped way. Its best risk-return relation was 
achieved during 2018 when the model assumed a strong uptrend. As expected at the beginning 
of the backtest, the agent struggled to learn an excellent risk-return relation when in 2 0 1 0 , its 
ratio had a 200% pump. The ratio oscillates between 6.0 and -2.0, except during 2020 when its 
highest drop occurs from its maximum value of 6.57 to its lowest; hence, this is the strategy’s 
most volatile Sharpe ratio moment.

TDQN had the third position regarding the Sharpe ratio. Although this policy and the 
buy-and-hold benchmark achieved the same 0.3 mean value, the maximum Sharpe ratio value 
was used as tie-breaking criteria; In addition, the strategy had a minimum of -3.43 and maximum 
of 2.76 6 -month rolling Sharpe ratio. This policy has its worst risk-reward moment during March 
2014 having a dump from 1.38 Sharpe ratio to -3.43. On the other hand, its best risk-reward 
moment occurred during July 2016. The ratio had a v-shaped pump from -2.13 to 2.76.

Buy-and-Hold benchmark had the second position regarding the Sharpe ratio evaluation 
with a 0.3 mean. In 2019, the policy had the worst-performing moment when the Sharpe ratio 
dropped from 1.5 to its lowest value of -4.55. During the beginning of the backtest, the strategy 
achieved its best ratio of 3.51, followed by an -112% drop. The moments with the highest 
variation of the metric were during 2016 and 2019, with both of them recovering from it in a 
v-shape way.

Contrasting the previous strategy, Sell-and-Hold benchmark had its best and worst 
evaluated Sharpe ratios as opposed to the Buy-and-Hold strategy. Evaluated in -0.3 Sharpe ratio, 
the strategy occupied the last position regarding risk-return relation, even though the Random 
Action strategy was a mean evaluated in 0.13. Its best 4.02-performing moment evaluation was 
during the COVID-19 event in 2019. On the other hand, the policy suffered from the asset price 
recovery from the episode above and had its worst risk-return rate of -3.62.
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(a) ETDQN

(c) Sell-and-Hold benchmark

(b) Buy-and-Hold benchmark

(d) Random Action benchmark

(e) TDQN benchmark

Figure 6.5: Western Digital Corporation 6-month rolling Sharpe ratio

Lastly, the Random Action strategy was evaluated with a mean Sharpe Ratio of 0.13 
and occupied the fourth place regarding risk-return. Figure 6 .6  shows the 6 -month rolling Sharpe 
ratio calculated in the Binance spot ATOM/USDT data frame regarding all benchmarks.

The Buy-and-Hold benchmark had the best position regarding the mean Sharpe ratio, 
even though ETDQN achieved a more excellent maximum Sharpe ratio value. With respect to 
the strategy above, the Sharpe ratio decreases from October 2020 to July 2021 until the model 
successfully captures an uptrend and the ratio reaches its maximum value of 7.3 during October
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(a) ETDQN

(c) Sell-and-Hold benchmark

(b) Buy-and-Hold benchmark

(d) Random Action benchmark

(e) TDQN benchmark

Figure 6.6: Binance spot ATOM/USDT cryptocurrency 6-month rolling Sharpe ratio

2021. As previously mentioned, this strategy achieved the second position regarding the mean 
Sharpe Ratio of 1.19.

TDQN achieved the third place regarding the Sharpe ratio performance. This strategy 
was evaluated with a minimum value of -3.18, a maximum value of 3.88, and mean value of 
0.86. The strategy had an increasing Sharpe ratio evaluation between October 2019 and July
2020. The strategy has its best risk-reward relation moment during August 2020. From October 
onwards, the Sharpe ratio assumes a downtrend. It reaches its lowest value in October 2021. It is
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worth mentioned that while DRL-based strategy is having its best risk-reward moment during the 
previous mentioned date, this strategy is having its worst value of -3.18.

Switching the analysis to the Buy-and-Hold, the policy started the backtest having its 
minimum evaluated ratio of -1.55 in October 2020 and a maximum of 3.65 in March 2021. In 
addition, the strategy had a mean of 1.19, hence it achieved the first position regarding the mean. 
It is observable that the period between October 2020 and March 2021 contain the most volatile 
period of the asset regarding the Sharpe ratio. It drops from 2.91 to -0.89, followed by a recovery 
in a v-shaped way achieving its best risk-reward ratio of 3.65.

Alternatively, to the previous strategy, the sell-and-hold benchmark had the worst mean 
risky-return relation of -1.19; hence was placed in the last position. The strategy achieves its 
highest ratio evaluation of 1.55 at the start of the backtest and decreases its value onwards, 
achieving the lowest value of -3.65.

Lastly, the Random Action strategy obtained the third position compared to the remaining 
policy with a -0.82 mean Sharpe ratio. The maximum value of a 2.44 ratio was achieved in July 
2020 during the start of the backtest. Its most significant drop having its ratio evaluated at -4.66, 
happens during April.

In order to summarize all information regarding the 6 -month rolling Sharpe ratio, Table
6.2 presents the minimum, mean and maximum rolling Sharpe ratio values from ETDQN, TDQN, 
Buy-and-Hold, Sell-and-Hold benchmark, and Random Action strategies in respect to the iShares 
S&P 500 ETF, Western Digital Corporation and Binance spot ATOMUSDT cryptocurrency data 
frames.

Table 6.2: Strategies’ 6-month rolling Sharpe ratio metric, consisting of minimum, mean, and maximum historical 
value, applied to iShares S&P500 ETF, Western Digital Corporation, and ATOM/USDT cryptocurrency pair assets.

iShares S&P500 ETF

cri 

<
Western Digital Corporation

ATOMUSDT Cryptocurrency

Strategy Rolling Sharpe Ratio
Minimum Mean Maximum

ETDQN -3.26 1.04 6.07
TDQN -2.66 1.03 4.56
Buy and Hold -2.97 0.76 4.6
Sell and Hold -4.6 -0.76 2.97
Random -2.95 0.0 2.81
ETDQN -4.64 1.00 6.57
TDQN -3.43 0.3 2.76
Buy and Hold -4.55 0.3 3.51
Sell and Hold -3.51 -0.3 4.55
Random -3.62 0.13 4.02
ETDQN -2.24 1.02 7.3
TDQN -3.18 0.86 3.88
Buy and Hold -1.55 1.19 3.65
Sell and Hold -3.65 -1.19 1.55
Random -4.66 -0.82 2.44

It is possible to assert that the ETDQN had 1.36,1.01, 2.74, and 1.4 greater mean Sharpe 
ratios having Buy-and-Hold, TDQN, Sell-and-Hold benchmark, and Random Action strategies as 
a basis in iShares S&P500 ETF. The policy achieved the first position regarding this metric. In 
addition, the same policy had 3.3, 3.3, 6 .6 , and 7.7 better risk-return relations regarding Western 
Digital Corporation. In contrast to the previous data frames, the strategy generated by the agent 
was not in the top position regarding the mean Sharpe ratio in ATOM/USDT, even though its 
maximum value was more significant than any of the benchmarks. This fact may be due to 
insufficient data generated at the beginning of the data frame and the asset’s volatility.
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6.3 DRAWDOWN

This section calculated and analyzed the drawdown metric for each data frame and bench­
mark. Figure 6.7 shows the drawdown underwater plots calculated in the iShares S&P500 ETF 
data frame for TDQN, Buy-and-Hold, Sell-and-Hold benchmark, Random Action benchmarks, 
as well as for the ETDQN policy.

The proposed DRL-based strategy suffered from a maximum drawdown of -24.40% in
2021. As previously mentioned, this is the year the strategy’s performance dropped significantly 
for the Sharpe ratio. A few spikes in 2010, 2012, and 2015 were also present during the backtest, 
having respectively -11.2%, -16%, and 14.82% drawdowns. Analyzing the plot, it is observable 
that an average of -10% drawdowns are frequent in the strategy. Lastly, the period between 2016 
and 2019 presents minimal declines.

TDQN had a maximum drawdown of -35.1% during 2020. This dump is related to the 
COVID-19 event. The agent was not able to capture this decline and opened a long position, 
hence had its greatest drawdown. Some spikes of -12.4%, 23.1% and 13.9% in 2016, 2017, and
2 0 2 2 , respectively are also observable in the agent strategy.

Buy-and-Hold strategy had a maximum decline of -36.7% in March 2020. Some 
significant -22.3%, -20.05% spikes are also present during 2012 and 2019, respectively. An 
average value of -12.72% decline is expected following this policy.

Sell-and-Hold benchmark strategy the maximum decline value of -78.00%. It is 
observable that the strategy accumulates its losses throughout the backtest and does to improve 
in the long run, only in a few moments, such as during 2 0 2 0 , contrasting a previous couple of 
analyzed strategies.

Lastly, the Random Action strategy had a maximum drawdown of -47.5% during 2022. 
A significant 25% were spotted in 2012. By analyzing each strategy’s maximum drawdowns, it 
is possible to affirm that the ETDQN’s maximum decline was 12.3%, 53.6%, and 23.1% smaller 
compared to Buy-and-Hold, Sell-and-Hold benchmark, and Random Action benchmarks applied 
to the iShares S&P500 ETF. Figure 6 .8  shows the calculated drawdowns in the Western Digital 
Corporation data frame regarding the previously analyzed strategies.

ETDQN had a -56.60% maximum decline during the start of 2020 and a -50.23% 
drawdown during the start of 2020. Even though these losses were reverted, this strategy gives 
insights aimed at a more aggressive trading style since the investor would have lost more than 
half of his investment value for a certain period.

The TDQN-based strategy had a maximum drawdown of -83.5% in 2022. During the 
period from 2010 to 2012, the strategy has drawdowns pretty similar to the proposed DRL-based 
strategy. However, between 2014 and 2015, the policy achives a significant drawdown of 64.3%, 
followed by a recovery. Its worst moment concerning drawdowns, happens during the period 
between 2019 and 2022. During the COVID-19 event, it is not able to capture the event and has a 
-73.2% drawdown. In addition, in 2022 it has its maximum -83.5% drawdown.

Regarding the Buy-and-Hold strategy, a maximum drawdown of -74.50% is spotted at 
the start of 2 0 2 0 . This decline matches with the DRL-based drawdown of -50.23; hence the 
previous strategy had a smaller drawdown during the same event. Some -65% spikes are also 
present in this strategy during 2016 and 2019, as well as a more diminutive -40% during 2012.

Similarly, as in the previous data frame, Sell-and-Hold benchmark benchmark had 
accumulated declines in the entire backtest, resulting in a -9 5 % maximum drawdown and losing 
almost its entire invested amount for 5%.
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(a) ETDQN (b) Buy-and-Hold benchmark

(c) Sell-and-Hold benchmark (d) Random Action benchmark

(e) TDQN benchmark

Figure 6.7: iShares S&P500 ETF drawdown from 2009 to 2022

Finally, the Random Action strategy had the maximum decline of -65.40% in 2020. 
Some significant declines in 2011, 2017, and 2022 are also present, each having -42%, -32%, 
and 58% drawdowns, respectively.

In summary, it is possible to conclude that even though ETDQN had an expressive 
-56.60% maximum decline, the policy still had the lowest drawdown applied to the Western
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(a) ETDQN

(c) Sell-and-Hold benchmark

(b) Buy-and-Hold benchmark

(d) Random Action benchmark

(e) TDQN benchmark

Figure 6.8: Western Digital Corporation drawdown from 2010 to 2022

Digital Corporation data frame. Figure 6.9 shows the calculated drawdowns in the Binance spot 
ATOM/USDT cryptocurrency data frame regarding the previously analyzed strategies.
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Time 

(a) ETDQN

Time

(b) Buy-and-Hold benchmark

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct 
2020  2021 

Time

(c) Sell-and-Hold benchmark

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct 
2020 2021 

Time

(d) Random Action benchmark

(e) TDQN

Figure 6.9: Binance spot ATOM/USDT cryptocurrency pair drawdown from 2019 to 2022

ATOM/USDT cryptocurrency pair had the most significant drawdowns since it was the 
most volatile asset. ETDQN had a maximum decline of expressively -76.70% in July 2021. The 
Strategy accumulates declines between July 2020 during one year and achieves its maximum
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decline as mentioned above, followed by an impressive reversion of the total loss in the following 
month.

The TDQN-based benchmark had a significant maximum drawdown of -90.9% during 
October 2021. This event is explained due to the failure of the agent to be able to capture the 
uptrend of the market, opposing to the previous strategy. In addition, between the period of July
2019 and July 2020, the strategy had drawdowns up to 72.3%, followed by a recovery. In July
2020 and July 2021, the policy oscillates having a significant spike of 50% during February. 
Finally, between July 2021 and October 2021, the model struggles to capture the trend and has its 
maximum drawdown of -90.9%.

In addition, the Buy-and-Hold benchmark also had an expressive -74.00% maximum 
decline during April 2 0 2 0 . The Strategy does not accumulate drawdowns as the previous Strategy. 
Some other -65% spikes are present during October 2020 and July 2021.

Sell-and-Hold benchmark strategy had the maximum drawdown of -99.9%; hence if the 
investor had opened a short position in July 2020 until October 2021, he would have lost all his 
investment.

Lastly, the Random Action strategy had a maximum decline of -94%. This Strategy had 
a behavior similar to the previously analyzed.

It is possible to conclude that the ETDQN achieved the second position regarding having 
the lowest maximum drawdown. The same Strategy had 17.3%, -3.65%, 30.25%, and 22.55% 
more stable drawdowns compared to the TDQN-based, Buy-and-Hold, Sell-and-Hold benchmark 
and Random Action Strategies.

6.4 MONTHLY RETURNS

The generated monthly returns by each benchmark were analyzed to give the reader 
an idea of how much the strategy would profit monthly. Figure 6.10 shows monthly returns 
heatmaps from each benchmark and the developed algorithm strategy.

As shown in Figure 6.10(a), ETDQN did not profit much in 2009 due to the lack of 
data. In the following year, the strategy profit had eight months of positive returns having its 
best performance in March with a 10.1% return. In August 2011, meanwhile, the TDQN-based, 
Buy-and-Hold, Buy-and-Hold, and Random Action benchmarks had -0.6%, 6.9%, 5.9%, and 
5.3% returns, ETDQN had 15.9%, followed by another 7.1% positive return. Unfortunately, the 
strategy delivers both negative returns in the next couple of months.

From 2012 to 2017, the profits generated by the agent did not have a high amplitude 
ranging between -2.5 to 5, hence having a slight positive asymmetry. A few exceptions are 
present on both sides, for example, the 7.1% profit during September 2016 and the -4.9% loss in 
August 2015.

In 2018, the ETDQN again outperformed all benchmarks concerning February, October, 
and December, generating 7.5%, 9.7%, and 10.5% returns. At the exact moment, TDQN generates 
-5.3%, -7.6%, -10.2% returns, Buy-and-Hold strategy -5.3%, -5.3$, and -10.1%, Buy-and-Hold 
5.1%, 5.3%, and 10.6% and the Random Action strategy -3.8%, 2.6%, and 5.1% respectively. It 
is observable that a dump in the asset price must have occurred during this period.

Even though Buy-and-Hold also performed well in these price dumps, it cannot maintain 
its earnings like ETDQN. In the following year, 2019, the agent-based strategy outperformed all 
benchmarks once again in March, having an 11.2% return.

In 2020, the proposed algorithm achieved its best performance compared to all bench­
marks taking advantage of the COVID-19 pandemic event price drop. The model can subsequently 
generate 14.6%, 54.7%, 10.2%, and 4.9% returns. During 2021, the model strategy had profits
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Figure 6.10: iShares S&P500 ETF monthly returns from 2009 to 2022

between 3.5 and 4.4%, but in 2022, the agent gets volatile again, having returns ranging between 
-7.3% to 10.6%. Figure 6.11 shows monthly returns generated from each benchmark applied to 
the Western Digital Corporation data frame.

Comparing monthly returns generated from every strategy, it is observable that the 
ETDQN monthly returns heat map contains more uniform colors. With a few exceptions, the 
returns are within a specific range.

During 2010, the strategy only provided positive returns. In the following year, it is 
possible to visually positive returns, such as 5%, 14.8%, 4.1%, 14.7%, and 10%, respectively,
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Figure 6.11: Western Digital Corporation monthly returns from 2010 to 2022

generated in January, March, April, August, and October. Unfortunately, a few expressive -4.6%, 
-5.3%, -15.9%, and -11.7% negative returns are spotted in August, September, November, and 
December. It is also worth mentioning that the backtest is still in an early phase; hence the model 
weights are not fully adjusted. In 2012, a negative -12.3% return only is placed in December, 
and some expressive 13.6%, 36%, 9,6%, 13.2%, and 10.3% positive ones are generated during 
March, May, June, October, and November.

In the following year, 2013, returns are more neural. The policy generated positive 6.5%, 
12.3%, and 8.3% returns during February, June, and July, as well as some -5.2%, 5.1% declines
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in January and September, but still leaving the strategy in a positive balance. During 2014, the 
most expressive return generated was -13.3% in October, even though some 7.7% and 6.3% 
positive ones during April and March counterbalanced the equation and ended up closing the 
year in a positive balance. Succeeding the previous year with a good margin regarding positive 
returns, 2015 resulted in a -12.8% negative return in January.

However, in the following months of February, May, August, September, October, and 
December, expressive 8 .8 %, 6 .6 %, 23.1%, 18.4%, 23.8%, and 10.5% positive returns were 
generated by the policy. During 2016, the strategy generated during January, March, April, 
September, and December expressive 29,4%, 9.1%, 10.7%, 10.4%, and 9,6% positive returns 
during 2016, even though -6 .8 % and -7.8% negative returns are spotted. Negative returns 
predominated the following year, 2017. Expressive returns such as -10.8%, -14.1%, and -9.3% 
were generated during January, March, and September, and only 11.4% expressive positive 
returns were generated. Outperforming the previous year, 2018 generated the expressive 17.1%, 
9.3%, 11.5%, 10.5%, 14.1%, and 19.8% predominating positive returns. During 2019, the 
positive/negative return ratio is balanced with expressive positive returns such as 13.4%, 7.9%, 
18.8%, and -21.7%, -13%, -10.4%. The year 2020 was marked by the COVID-19 pandemic, 
drastically affecting the global economy.

While Buy-and-Hold, Sell-and-Hold benchmark, and Random Action benchmarks 
generated -25.3%, 12.6%, -18.8% returns in March, the ETDQN agent was smart enough to 
profit from the drop, resulting in outstanding 164% returns in one month. In the following year, 
the strategy provides negative -13.7%, -14%, -15.9% returns, even though some positive 10.1%, 
9.1%, and 8 .8 % balance the strategies’ performance.

Finally, during 2022, the strategy generates expressive 37.6%, 26.5%, and 23.7% returns. 
However, some -22.9%, -13.8%, and -the policy generates 11.8% negative returns in May, July, 
and November. Figure 6.11 shows monthly returns generated from each benchmark applied to 
the Binance spot ATOM/USDT data frame.
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Figure 6.12: Binance spot ATOM/USDT monthly returns from 2019 to 2021

Unlike the previous assets, it is impossible to perform a deeper analysis since ATOM- 
/USDT data frame contains only three years of data. Comparing the color overview generated by 
the heat map in Figure 6.12(a), the map shows a positive-sided returns tendency.

In 2019, TDQN outperformed all strategies. However, during the cryptocurrency bull 
run in 2 0 2 0 , B&H and TDQN beat the proposed algorithm. ETDQN outperformed all the 
previous benchmarks again in 2021, generating returns such as 72.4%, 163%, 116%, and 73.4%, 
subsequently in August, September, October, and November, concentrating expressive returns at 
the year’s end.
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Regarding the S&H benchmark, ETDQN outperforms it every year. S&H generated 
positive returns of 30.7% and 41.9% in 2019, but unfortunately, it also holds more expressive 
negative -33% -25.8% and -19.9% returns.

Lastly, the proposed algorithm also outperformed the Random Action benchmark. 
During 2019, the policy had significant negative return amounts, such as -56.5%, -39.8%, and 
-21.8% in September, July, and June, respectively. The policy achieved its worst-performing 
month the following year, generating significant -40.3%, -36.3%, and 29.4% negative returns. In 
2021, the strategy generated a distinguished 66.7% return and some positive 52.6%, 33%, and 
34.5% profits. Unfortunately, the policy cannot keep its gains and finishes the year with negative 
returns.

6.5 ANNUAL RETURNS

In this section, annualized returns generated by each benchmark were analyzed in order 
to give the reader a better overview of each strategy’s performance in a annual basis. Table 6.10 
shows annualized returns from each benchmark, as well as the developed algorithm strategy.

Table 6.3: Annual returns in percentage generated by BH, SH, Random, ETDQN, TDQN strategies between 2009 to 
2022 applied to iShares S&P500 ETF, Western Digital Corporation, and ATOM/USDT cryptocurrency pair assets.

ASSET / iShares SP500 ETF Western Digital ATOM/USDT
STRATEGY B&H S&H Random Agent TDQN B&H S&H Random Agent TDQN B&H S&H Random Agent TDQN

2009 -0.56 0.56 0.31 0.56 3.04 X X X X X X X X X X
2010 13.37 -14.6 -0.31 28.15 22.77 13.84 -14.09 -9.42 8.72 29.71 X X X X X
2011 -2.74 -2.28 -8.25 6.75 13.20 -9.35 -14.73 -7.41 3.38 67.36 X X X X X
2012 14.59 -14.31 6.91 3.45 10.47 35.89 -38.16 27.78 138.02 6.53 X X X X X
2013 28.47 -23.07 -3.55 -4.36 29.05 99.52 -53.81 -10.16 13.35 -47.08 X X X X X

YE
AR

2014 9.94 -9.99 10.58 -3.22 12.18 33.48 -29.34 -13.26 11.7 6.23 X X X X X
2015 -5.34 3.19 5.58 11.85 14.24 -45.52 63.67 -1.03 84.94 61.74 X X X X X
2016 13.94 -13.9 0.54 35.49 15.03 10.61 -29.82 -8.13 41.73 120.43 X X X X X
2017 12.99 -12.00 -1.67 10.95 19.22 17.62 -23.50 20.03 -4.21 -12.26 X X X X X
2018 -11.66 10.61 2.11 45.87 -17.20 -53.58 88.03 -23.73 187.24 39.17 X X X X X
2019 28.59 -23.51 0.56 11.11 29.42 71.93 -54.00 18.59 -18.66 -58.77 -15.97 -33.33 -81.8 253.45 -63.81
2020 -1.16 -10.27 -40.8 68.75 1.05 -13.55 -26.93 1.20 140.85 -22.57 30.28 -79.65 -82.57 27.73 348.30
2021 22.37 -19.65 -4.85 19.55 20.51 19.67 -31.63 -25.94 -26.8 10.25 462.68 -98.14 -46.3 646.56 -53.57
2022 -11.12 9.70 7.54 4.14 -0.27 -43.9 44.65 6.60 34.29 -30.63 X X X X X

Concerning the iShares S&P500 ETF, TDQN had the best performance with 3.04% 
returns in 2009, followed by the DRL-based strategy with 0.56%. On the other hand, the 
DRL-based strategy was the most lucrative in 2010, beating TDQN by 5.98%. In the next 
five years, TDQN outperforms all benchmarks, and from 2016 to 2021, these two strategies 
keep alternating in the top performance position. Finally, in 2022 the Sell-and-Hold takes the 
best-performing position.

Even though TDQN had the first position for nine years and the DRL-based strategy 
for four years only, the DRL-based strategy performed better in respect to the average annual 
return (AAR) metric, which in this case represents historical arithmetic average return between 
the period of 2009 and 2022. The policy had an AAR of 17.07%, against 12.34% produced by 
TDQN. The DRL-based strategy showed more aggressive behavior, delivering higher and more 
volatile returns with a 66.14% higher standard deviation than TDQN’s.

In the Western Digital Corporation data frame, the DRL-based strategy took the third 
position regarding performance, having a difference of 20.99% and 5.12% returns from TDQN 
and Buy-and-Hold benchmarks in 2010. During the following year, the strategy took the second 
position staying behind TDQN with a 63.68%. In 2012, the DRL-based strategy outperformed 
the remaining benchmarks, achieving a 138.02% return.

In 2016, TDQN stayed in first position, causing approximately triple returns compared 
to the DRL-based strategy. However, the following year, it returned to the second position, losing
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to the Buy-and-Hold benchmark, which generated a 99.52%. In 2014, the agent finished the year 
with approximately half of the returns produced by the Buy-and-Hold benchmark, but it took 
back the lead, generating 84.94% return in 2015.

From 2017 onwards, TDQN cannot generalize well and produces few significant returns, 
such as in 2018 and 2021. During 2018 and 2020, the DRL-based strategy can take profit from 
both dumps and delivers its best 187.24% and 140.85% returns. The second one can be explained 
due to the COVID-19 pandemic. Lastly, the Buy-and-Hold strategy assumes the first performance 
evaluation position in 2019 and 2021, producing 71.93% and 19.67%, respectively, and in 2022 
Sell-and-Hold outperforms the DRL-based strategy with a difference of 10.36%.

Even though both the Buy-and-Hold benchmark and the DRL-based strategy had the 
same number of times that achieved the first position concerning annual returns, the DRL-based 
strategy had an AAR from the year 2010 to 2022 of 47.27%, against 10.52%. In addition, the 
TDQN presented the AAR from 2010 to 2022 of 13.09%, being positioned in the second position 
regarding annual returns. Once again, the DRL-based strategy showed aggressive behavior 
with the highest standard deviation of 65.93, compared to 48.44 and 43.14 from TDQN and 
Buy-and-Hold benchmarks, respectively. According to the analysis, despite its high volatility, the 
model shows that the model tends to produce positive returns with high volatility, which is the 
reason that it achieved the best performance compared to all benchmarks.

In ATOM/USDT cryptocurrency data frame, the DRL-based strategy outperformed all 
benchmarks during 2019 and 2021, generating 253.45% and 646.56% annual returns. However, 
the strategy had the second position in 2020, losing to the TDQN, which produced a 348.30% 
return. The DRL-based strategy had the best-performance regarding AAR from 2019 to 2021 
with 309.25%.

In addition, the strategy again showed the most aggressive and volatile behavior, having 
33.24% and 18.61% higher standard deviation than the TDQN and Buy-and-Hold benchmarks, 
respectively. By analyzing which position each benchmark achieved during every year concerning 
the annual returns, it is possible to affirm that the DRL-based strategy always had the first or 
second position, even though the other benchmarks alternate between first, third, and last places.
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7 CONCLUSION AND FUTURE WORKS

This master dissertation proposed a DRL-based trading system that processes information 
according to market activity. The proposed system’s main component is a DQN variant that 
extends the Trading DQN benchmark by incorporating enhancements that generate a policy 
that generalizes across multiple market scenarios, identifies trading opportunities, and takes 
advantage of them. ETDQN optimizes its decisions by receiving non-frequent feedback from the 
environment, and replaying prioritized experiences containing different sub-goals each, which 
assists in its primary goal of retaining the maximum amount of profits. It is observable that, 
as opposed to the TDQN benchmark, the proposed algorithm could successfully generalize its 
policy and identify main events related to higher volatility, such as the COVID-19 dump during 
March 2020 and the ATOM/USDT pump during July 2021, and take profits from it, without the 
need of complex reward tuning.

Exponential profit and loss was the adopted reward function based on the assumption that 
the agent could notice an exponential growth rate during a particular time. A trading environment 
was created containing candlestick dollar bars and RSI, MACD, Momentum, and Aroon oscillator 
technical indicators generated from it. In addition, it also included time signatures of the current 
hour and day of the week. Historical intraday tick data from iShares Core S&P 500 ETF, Western 
Digital Corporation, and ATOM/USDT assets were collected and pre-processed according to 
market value to generate the previously mentioned bars. They do not undersample information 
during high market activity nor over-sample information during low market activity. iShares 
Core S&P 500 ETF generated 398,362 dollar bars using a 500K USD threshold, Western Digital 
Corporation developed 550,598 bars using a 1M USD threshold, and ATOM/USDT produced 
359,786 intraday dollar bars using a 7.5K USDT threshold.

Concerning mean cumulative returns, ETDQN proved to be approximately 1.46 and 7.13 
times more lucrative compared to the second-best evaluated benchmark in the iShares S&P500 
ETF and Western Digital Corporation data frames, TDQN. In addition, the same strategy was 
2.14 times more lucrative than the second best-evaluated benchmark in iShares S&P500 ETF, 
Buy-and-Hold.

Regarding the mean 6 -month rolling Sharpe ratio metric, the previously mentioned 
strategy outperformed every benchmark in both iShares S&P500 ETF and Western Digital 
Corporation data frames. The algorithm achieved better 1.01 and 3.33 times risk-return relation 
compared to TDQN and Buy-and-Hold benchmarks. Unfortunately, even though the agent’s 
developed strategy achieved a 7.3 maximum rolling Sharpe ratio in the ATOM/USDT, it did not 
outperform the Buy-and-Hold benchmark concerning the mean in this data frame.

Concerning maximum drawdown, ETDQN had 10.7% less risk of ruin in iShares 
S&P500 ETF than the second-best evaluated benchmark, TDQN strategy. In Western Digital 
Corporation, it had 8 .8 % less risk of ruin than the second-best considered benchmark, the random 
action strategy. However, in the ATOM/USDT data frame, the policy did have 2.7% more risk of 
ruin than the Buy-and-Hold benchmark.

Finally, the proposed strategy outperformed every benchmark regarding the AAR metric. 
In iShares S&P500 ETF, the ETDQN had an AAR of 17.07% against 12.34% produced by TDQN. 
In addition, it showed more aggressive behavior, delivering higher and more volatile returns with 
a 66.14% higher standard deviation than TDQN. Regarding the Western Digital Corporation, 
the same algorithm had an AAR from 2010 to 2022 of 47.27%, against 13.09% generated by 
TDQN from 2010 to 2022. Once again, it showed aggressive behavior with the highest standard
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deviation of 65.93, compared to 48.44 from TDQN. Finally, in ATOM/USDT data frame, the 
ETDQN had the best performance regarding AAR from 2019 to 2021 with 309.25%, showing 
the most aggressive and volatile behavior, having 33.24% and 18.61% higher standard deviation 
than the TDQN and Buy-and-Hold benchmarks.

This work considered a single position size only; hence the algorithm trades a single 
amount of the asset. Future works may extend it to a position size more significant than one. 
In addition, Sentiment analysis could also be explored to enhance the information in the states. 
Natural language processing techniques can be used to read texts and predict sentiment classes, 
serving as input to the state.

Regarding learning with non-frequent feedback from the environment, it is difficult 
to guide an agent to its objective depending on how delayed its reward is provided. Temporal- 
difference learning creates bias. This fact is even more severe when rewards are sparse. Reward 
decomposition techniques could be explored, attributing compensation once a sub-goal is 
completed and maintaining the generalization capability.

Concerning distributional learning, the implemented approach uses discrete distributions, 
which have limitations. The number of atoms and bounds of the support requires domain 
knowledge of the task; hence a different approach could be explored to change the proposed 
parameterization.
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