
UNIVERSIDADE FEDERAL DO PARANÁ

ROGÉRIO DE CARVALHO SILVA

MACHINE LEARNING FOR CHANGE-PRONE CLASS PREDICTION: A

HISTORY-BASED APPROACH

CURITIBA PR

2022



ROGÉRIO DE CARVALHO SILVA

MACHINE LEARNING FOR CHANGE-PRONE CLASS PREDICTION: A

HISTORY-BASED APPROACH

Dissertação apresentada como requisito parcial à obtenção

do grau de Mestre em Informática no Programa de Pós-

Graduação em Informática, Setor de Ciências Exatas, da

Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Silvia Regina Vergilio.

CURITIBA PR

2022





MINISTÉRIO DA EDUCAÇÃO
SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -
40001016034P5

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação INFORMÁTICA da Universidade

Federal do Paraná foram convocados para realizar a arguição da Dissertação de Mestrado de ROGÉRIO DE CARVALHO SILVA

intitulada: Machine Learning for Change-Prone Class Prediciton: A History-Based Approach, sob orientação da Profa. Dra.

SILVIA REGINA VERGILIO, que após terem inquirido o aluno e realizada a avaliação do trabalho, são de parecer pela sua

APROVAÇÃO no rito de defesa.

A outorga do título de mestre está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 24 de Agosto de 2022.

Assinatura Eletrônica

25/08/2022 10:58:14.0

SILVIA REGINA VERGILIO

Presidente da Banca Examinadora

Assinatura Eletrônica

25/08/2022 14:24:39.0

EDUARDO JAQUES SPINOSA

Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Assinatura Eletrônica

27/08/2022 12:42:11.0

JULIANA ALVES PEREIRA

Avaliador Externo (PONTIFíCIA UNIVERSIDADE CATóLICA  PUC-RJ)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

Documento assinado eletronicamente de acordo com o disposto na legislação federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificação única: 217668

Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 217668



Dedico este trabalho de pesquisa
a toda minha família, meus pais,
irmãos, esposa, amigos e todos
que sempre me deram suporte nos
meus estudos, trabalhos, projetos e
pesquisas.



ACKNOWLEDGEMENTS

Agradeço a conclusão deste trabalho a minha família, esposa e amigos que sempre me apoiaram

e estiveram ao meu lado em todos os momentos.

Agradeço a minha orientadora Silvia Vergilio por toda paciência e suporte ao longo

dessa jornada.

Agradeço também aos meus colegas de laboratório, Paulo Farah, Enrique Rosa, Jackson

Prado, Bruno Meyer e Cristina Morimoto pela ajuda e orientações ao longo do projeto.

Agradeço ao meu amigo de longa data Leuson Mário por todo auxílio prestado quando

precisei.

Agradeço a Universidade Federal do Paraná pelo suporte e infra-estrutura, e professores

e funcionários envolvidos nos trabalhos de pesquisa e ensino da Universidade.



RESUMO

À medida que os projetos de software evoluem, novos artefatos são criados, modificados ou

removidos. Um dos principais artefatos gerados no desenvolvimento de software orientado a

objetos é a classe. A classe tem um ciclo de vida muito dinâmico em projetos de software

orientados a objetos. Classes são criadas, modificadas ou removidas devido a diferentes motivos,

como por exemplo a necessidade de refatoração, resultando em custos adicionais ao projeto.

Uma maneira de mitigar isso é detectar, logo nos estágios iniciais do projeto, classes que estão

propensas a mudanças. Isso pode impactar positivamente na produtividade da equipe, na alocação

de recursos e na qualidade do software desenvolvido. Vários trabalhos na literatura tentam

prever a propensão a mudanças de uma classe. Alguns deles adotam abordagens baseadas em

estatística, outros usam aprendizado de máquina (AM), muitas vezes coletando métricas de

classe ou informações relacionadas a code smells como base para previsões. O problema com

essas abordagens tradicionais é que elas não consideram a dependência temporal entre diferentes

versões da classe ao longo do projeto, isto é, elas consideram que as instâncias de treinamento são

independentes. Para preencher essa lacuna, este trabalho apresenta uma abordagem para predizer

classes propensas a mudanças baseada no histórico de mudanças da classe. A abordagem utiliza

o método de janela deslizante e adota como preditores, métricas estruturais, evolutivas, bem

como frequência e diversidade de code smells. O trabalho também explora algumas técnicas de

resample que geram dados sintéticos para aumentar o conjunto de dados e melhorar a capacidade

preditiva dos modelos. Cinco projetos e quatro algoritmos de AM são usados na avaliação. Na

grande maioria dos casos, a abordagem proposta supera a abordagem tradicional considerando

a maioria dos indicadores. Além disso, observa-se que as medidas evolutivas desempenham

um papel importante na predição de mudança em classes. Entre os quatro algoritmos de AM

testados, Random Forest apresenta o melhor desempenho, e o uso de informações relacionadas

aos code smells não impacta os resultados.

Palavras-chave: Classes propensas a mudança, aprendizado de máquina, dependência temporal,

evolução de software, manutenção de software



ABSTRACT

As software projects evolve, new artifacts are created, modified or removed. One of the main

artifacts generated in the development of object-oriented software is the class. Classes have a

very dynamic life cycle in object-oriented software projects. They can be created, modified or

removed due to different reasons, e.g. need of refactoring, which results in additional costs to the

project. One way to mitigate this is to detect, in the early stages of the project, classes that are

prone to change. This can positively impact the team’s productivity, the allocation of resources

and the quality of the software developed. To predict the change proneness of a class, most

works in the literature adopt approaches based on statistics, others use machine learning (ML),

often collecting class metrics or smells information as the basis for predictions. The problem

with these traditional approaches is that they do not consider the temporal dependency between

different versions of the class throughout the project, that is, they consider the training instances

are independent. To fill this gap, this work presents an approach for predicting class change

proneness, based on the history of the class changes. The approach uses the sliding window

method and adopts structural and evolutionary metrics as predictors, as well as the frequency and

diversity of code smells. The work also explores some resample techniques to generate synthetic

data to increase the dataset and improve the predictive ability of the models. Five projects and

four ML algorithms are used in the evaluation. In the great majority of the cases, our approach

overcomes the traditional approach considering most of the indicators. We also highlight that

evolutionary measures play an important role in class change-prone prediction. Among the four

ML algorithms tested, Random Forest has the best performance, and the use of smell-based

information does not impact the results.

Keywords: class change proneness, machine learning, temporal dependency, software evolution,

software maintenance



LIST OF FIGURES

2.1 MLP Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Logistic Regression Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Decision Tree Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Random Forest Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Overview of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 All Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Window size statistical analysis - ROC/AUC . . . . . . . . . . . . . . . . . . . . 35

5.3 Window size ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Comparing both approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Statistical analysis of both approaches in all sets . . . . . . . . . . . . . . . . . . 38

5.6 Statistical analysis of ROC/AUC of each set . . . . . . . . . . . . . . . . . . . . 39

5.7 Impact of smells related information . . . . . . . . . . . . . . . . . . . . . . . . 40

5.8 Statistical analysis - smell related information . . . . . . . . . . . . . . . . . . . 40

5.9 Algorithms performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10 Statistical analysis algorithms performance - ROC/AUC. . . . . . . . . . . . . . 42

5.11 Feature importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.12 Feature importance using MDI . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.13 Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



LIST OF TABLES

3.1 Software metrics used for the CPCP problem. . . . . . . . . . . . . . . . . . . . 21

4.1 Structural metrics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Types of code smells (Source: Rêgo (2018)). . . . . . . . . . . . . . . . . . . . 28

4.3 Software evolution-based metrics (Source: Elish and Al-Rahman Al-Khiaty

(2013)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Traditional representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Representation of Table 4.4 reshaped with sliding window method . . . . . . . . 31

5.1 Used Java Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Best results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Comparing both approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Effect size - Set 3 x Set 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Effect size - Set 4 x Set 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Effect Size - ROC/AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Comparing resample techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.8 Top 10 information gain of each dataset . . . . . . . . . . . . . . . . . . . . . . 45



LIST OF ACRONYMS

ADA Adaptive Synthetic

ANN Artificial Neural Network

CPCP Change-Prone Class Prediction

DL Deep Learning

DT Decision Tree

GRU Gated Recurrent Unit

LR Logistic Regression

LSTM Long Short-Term Memory

MDI Mean Decrease in impurity

ML Machine Learning

MLP Multilayer Perceptron

RF Random Forest

ROC Receiver Operating Characteristic Curve

ROS Random Over-Sampler

RUS Random Under-Sampler

SLOC Source Lines of Code

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

SW Sliding Window



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 GOALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 WORK ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 THEORETICAL BASIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 MACHINE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Multi Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 EVALUATION MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 RESAMPLING TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 FACTORS RELATED TO CLASS CHANGE . . . . . . . . . . . . . . . . . . . 19

2.5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 THE CPCP PROBLEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 APPROACHES TO THE CPCP PROBLEM . . . . . . . . . . . . . . . . . . . . 21

3.3 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 PROPOSED APPROACH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 INDEPENDENT VARIABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 DEPENDENT VARIABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 DATA REPRESENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 EVALUATION DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 RESEARCH QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 TARGET SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 DATASET CREATION AND PREPROCESSING . . . . . . . . . . . . . . . . 33

5.4 ML MODEL BUILDING AND PREDICTION . . . . . . . . . . . . . . . . . . 34

5.5 ANALYSIS OF THE RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5.1 RQ1: How different window sizes affect the prediction performance of the models?34

5.5.2 RQ2: What is the performance of our approach with respect to the performance

of a traditional approach? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5.3 RQ3: What is the impact of using smells related information to predict change-

proneness using our approach? . . . . . . . . . . . . . . . . . . . . . . . . . . 39



5.5.4 RQ4: What is the algorithm that leads our approach to produce the best results

when answering all RQs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.5 RQ5: Which metrics are the most important for change-proneness prediction? . . 43

5.6 THREATS TO VALIDITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1 ACADEMIC CONTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 LIMITATIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



12

1 INTRODUCTION

Software projects are constantly evolving. As a consequence, artifacts are created, edited, or

removed over time. One of the most important artifact produced in the object-oriented software

development is the class. Through classes, software components are structured, and the business

logic is implemented (Lindvall, 1998).

Classes may change throughout the project due to many reasons (Malhotra and Khanna,

2019): bugs resolution, implementation of new features, code refactoring or even technology

update. As a result of this continuous evolution, maintaining project quality is expensive,

demanding time from the development team and increasing project costs (Benestad et al., 2010).

Change-prone classes are the ones that are likely to change across different versions

of a software product. Along the software evolution, a class is subject to different kinds

of changes (Malhotra and Khanna, 2019). One kind of change regards the addition of new

functionalities. Classes related to the implementation of essential features of the systems are

more likely to change in the future versions. With the addition of new functionalities, a class

becomes more complex and fault-proneness, increasing the probability of changes to fix bugs.

This change process possibly erodes the original design with a subsequent reduction of the quality

class structure, by introducing smells (Catolino et al., 2020), what leads to refactoring necessity

and future changes to improve the overall quality of the class structure.

Thus, managing and controlling class changes is fundamental; the early detection of

classes that may change in future versions can support technical leaders and managers to take

decisions in an objective and anticipated way, mitigating, for example, that poorly designed

classes remain implemented in the project. This problem is known in the literature as the

Change-Prone Class Prediction (CPCP) problem (Malhotra and Khanna, 2019).

Previous work addresses the problem using different approaches, Malhotra and Bansal

(2016) performed a systematic review of the literature on predicting changes in software. Among

the results, the authors report available studies in the area of change proneness in software

projects. The systematic review shows that more than 50% of the works use class metrics as a

basis for the analysis and that about 25% use mixed approaches, that is, class metrics combined

with other approaches, such as code smells. The authors highlight that machine learning is a

promising approach and is a tendency, adopted in more recent works.

Godara et al. (2018) and Kumar et al. (2019) investigate the use of metrics to predict

change-prone classes. While the work of Godara et al. (2018) relied on the bee colony algorithm

(Karaboga, 2005) to perform its predictions, Kumar et al. (2019) addresses the use of machine

learning. The work of Kumar et al. (2019) used 18 machine learning algorithms, including

Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), among others.

The results show that code metrics are useful in predicting changes in software modules and that

the results may vary according to the choice of metrics.

Pritam et al. (2019b) and Khomh et al. (2011) investigate the relationship of code smells

with the class change proneness through machine learning and statistical analysis. As a result,

the authors point out that classes with more code smells are more likely to change. These works

most often use metric values associated with the class in a software version to predict its change

proneness, not taking into account its history, that is, how these values have changed over the

course of the development of different past versions of the software.

The works of Melo (2020) and Melo et al. (2020a) consider the temporal aspect between

the instances, and time windows, proposing two representations based on time series, called:



13

Concatenated and Recurrent. The first allows the use of traditional machine learning algorithms

such as Logistic Regression, Decision Tree, Random Forest (RF), and Multilayer Perceptron

(MLP) and the second allows the use of Deep Learning algorithms (DL). For example, the Gated

Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) algorithms. The work, however,

is limited to 3 repositories. Moreover, the work considers only structural metrics and a simple

approach based on lines of code to define the change prone classes.

1.1 MOTIVATION

From the context described above, we can then observe that the CPCP problem encompasses

different situations and is a consequence of many causes during the software evolution process.

These causes are inter-related. The addition of a functionality makes the class more complex and

this can lead to bug introduction; the bug fixing can lead to an erosion of the class structure by

introducing a smell; smells should be removed through refactoring. To capture all these changes

that a class may suffer different metrics need to be used. Moreover, we observe that these changes

occur over the time as a sequence, that is, they are time-dependent.

All these characteristics make CPCP a problem largely studied in the literature (Godara

and Singh, 2014; Malhotra and A., 2015; Malhotra and Khanna, 2019). The great majority

of approaches uses Machine Learning (ML) to derive the prediction model. ML techniques

overcome statistical methods (Malhotra and Khanna, 2013). A great number of algorithms have

been used, but supervised ones are the preferred, and Random Forest has presented the best

results in most studies (Malhotra and Khanna, 2019).

Existing techniques employ features related to different aspects and dimensions of the

software development, each one of them is captured by a particular set of software class metrics.

As a consequence, different models exist, taking into account distinct kinds of metrics to be used

as independent variables (predictors). Structural models use metrics such as size, complexity,

and coupling (Lu et al., 2012; Malhotra and Khanna, 2021). Evolutionary models uses process

metrics that capture some evolution aspects of the class (Al-Khiaty et al., 2017; Catolino and

Ferrucci, 2018, 2019; Catolino et al., 2018; Elish and Al-Rahman Al-Khiaty, 2013; Malhotra and

Khanna, 2018a,b). Smell-based models uses metrics based on the design and structure quality,

such as intensity of smells or anti-patterns (Catolino et al., 2020; Kaur and Jain, 2017; Pritam

et al., 2019a).

The works mentioned above have shown that the use of different kinds of metrics

contributes to improve the performance of the ML models in different degrees. But existing

approaches present some limitations, as stated by Malhotra and Khanna (2019). Their review

discusses trends and challenges to be investigated regarding CPCP. One challenge mentioned

is the necessity of assessing the capability of all these metrics as different predictors, used (or

not) in a combined way, and taking into account the temporal dependency between the classes

changes.

1.2 GOALS

Given the context and motivation presented above, this work introduces a ML approach for the

CPCP problem that considers the class change history. The introduced approach uses the Sliding
Window (𝑆𝑊) method (Dietterich, 2002). This method allows evaluating the dependency that

exists between different instances of a class in a time window. In this way, the approach better

captures the class change history and avoids that the prediction is impacted only by the current

metrics values. In addition to this, the approach is elaborated using different kind of metrics



14

as predictors: structural, evolutionary and smell-based. The approach is evaluated with five

applications extracted from the GitHub repositories and compared with a traditional approach.

The results show that the history-based approach using the Sliding Window method

improves significantly the prediction performance. We also observed that the use of sliding

window size of 3 obtained a better result than windows with sizes 2 and 4. Additionally,

smell-based metrics did not prove to be an impactful prediction feature, and Random Forest

achieved the highest performance of the evaluated algorithms.

In short, this work has as main contribution to present and evaluate a history-based

approach for the CPCP problem. This approach allows considering the structure of the problem

and the dependency between the instances obtained from different releases. This leads to a

better performance. Our approach overcomes the traditional approaches in the great majority

of the cases and for all indicators. The correct detection of change-prone classes can allow

developers better focus on these change-prone parts to minimize the number of future changes,

to guide the maintenance team, and resource distributions, in order to reduce future efforts and

costs. Moreover we evaluate the impact of using smell-related information in our history-based

approach and the performance of four algorithms, commonly adopted in the literature.

1.3 WORK ORGANIZATION

The remainder of this document is divided into chapters, organized as follows. Chapter 2

addresses the theoretical foundation related to our work, bringing important concepts to the

reader. Chapter 3 presents related work. In Chapter 4 our approach is described. Chapter 5

describes the experiment that was conducted, the methodology, research questions and results.

Chapter 6 presents concluding remarks and future work.



15

2 THEORETICAL BASIS

This chapter presents concepts about important themes of this dissertation. Section 2.1 presents

the overall concepts of machine learning. Section 2.2 presents evaluation measures adopted

when evaluating machine learning models. Section 2.3 presents the concepts for resampling

techniques. Section 2.4 presents the factors related to class change.

2.1 MACHINE LEARNING

Machine learning (ML) is a sub-area of artificial intelligence, which seeks to learn and make

predictions about a set of data (Bishop, 2006). Machine learning methods can be categorized

into two main areas, supervised learning and unsupervised learning.

Unsupervised learning has no prior knowledge of the data. In turn, it tries to find and

group data patterns through statistical analysis. For example, it is possible to identify the profile of

customers in online stores. Unsupervised learning can also be used to reduce the dimensionality

of data, seeking to maintain as much integrity as possible. For example, it is complicated to use a

five-dimensional dataset. To solve this problem, it is possible to reduce the 5-dimensional dataset

to a 3-dimensional dataset, where the data can be visualized and interpreted in the form of a

three-dimensional graph.

Unlike unsupervised learning, supervised learning uses a pre-labeled dataset to train

models and make predictions. Within supervised learning there are two types of problems:

Classification and Regression (Kubat, 2015). In the classification task, the classifier aims to

predict pre-established categories. For example, true or false, dog or cat. On the other hand,

regression problems aim to predict real values. For example, the price of a property or the rate

of population growth. Examples of supervised learning algorithms are Decision Tree (DT) and

Artificial Neural Network (ANN) (Kubat, 2015). It is also possible to use multiple algorithms on

supervised learning problems. Techniques that use this strategy are called ensemble methods
(Bengio et al., 2017). In summary, the models are trained using different algorithms and the

models vote on the output for test examples. Examples of ensemble methods are bagging,

boosting and Random Forest algorithms (Livingston, 2005).

This work addresses a classification problem, since one of the objectives is to predict

whether a class will changes in future versions. To this work, we are interested in four supervised

learning techniques: Random Forest, Multi Layer Perceptron, Linear Regression and Decision

Tree. These techniques were also adopted in related work (Malhotra and Khanna, 2013),

(Malhotra and Khanna, 2019), (Catolino et al., 2020).

2.1.1 Multi Layer Perceptron

The Multi Layer Perceptron (MLP) is a type of Artificial Neural Network (ANN) (Riedmiller,

1994). ANNs are computational structures based on the human central nervous system, specifically

the brain. This type of model is composed of nodes, called artificial neurons, also known as

Perceptron (Rosenblatt, 1958), which are connected with each other creating a network where

they transmit signals between them, simulating synapses of the brain.

The MLP structure is typically composed by three layers of nodes: an input layer, a

hidden layer and an output layer, as shown in Figure 2.1. Information flows from the input

layer through the intermediate layers to the output layer. For information to flow, neurons are



16

interconnected and can perform mathematical operations based on pre-established conditions,

passing information to other neurons in the network.

Input Layer Hidden Layer Output Layer

Figure 2.1: MLP Example

2.1.2 Logistic Regression

The Logistic Regression (LR) algorithm is based on statistical models and is often used for

classification (Kubat, 2015). It estimates the probability of an event to occur based on a given

data set of independent variables. The target has a binary nature and therefore the result will be,

for example, true or false.

The LR calculates the probability of an event, so its value varies between 0 and 1, and

cannot exceed this limit, thus generating a sigmoid function S also called logistic function. To

classify the late, the concept of limit value is used. Values above the threshold value tend to true

and a value below the threshold values tend to false, as illustrated on Figure 2.2.

Figure 2.2: Logistic Regression Example

2.1.3 Decision Tree

Decision trees (DTs) are widely used algorithms in ML. The tree is composed of nodes and

leaves, always starting from a root node, as shown on Figure 2.3. Each node represents a decision

point that can lead to one path or another. These paths are known as branches. At the end of each

branch there is a leaf, which indicates the result of the target variable. In a tree, there may be

several options for different paths to be followed, each path leading to a result.

2.1.4 Random Forest

Random Forests (RF) is an ensemble learning method that can be applied for classification or

regression (Livingston, 2005). The technique combines multiple decision trees which perform

individual predictions. The main difference between the Random Forest and the Decision Trees

classifier is that the Random Forest, instead of creating a single complex tree, creates several

smaller trees and combines their result. The results of each prediction are compared against each

other and a vote is taken, choosing the majority or average value (Livingston, 2005).



17

Root
Node

Node

Leaf Leaf

Leaf

Node

Node Node

Leaf

Branch

Figure 2.3: Decision Tree Example

Each tree generated internally by the RF algorithm may contain different paths to find

the solution to the problem. Figure 2.4 abstractly illustrates how the algorithm works. From a

dataset, three decision trees are generated, each tree is executed independently, and its result is

computed. Finally, the algorithm considers the average or majority of the results to decide the

output.

Figure 2.4: Random Forest Example

2.2 EVALUATION MEASURES

To evaluate the performance of the models, some metrics can be applied. The main ones are

precision, sensitivity, f1-score, accuracy and Receiver Operating Characteristic Curve - ROC.

To understand these measures, it is first necessary to understand the concept of confusion

matrix, which is a way of visualizing the errors and successes generated by the classifiers

(Stehman, 1997). The confusion matrix summarizes true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN). As shown in Figure 2.5, the TP indicates when the

model correctly predicts the positive class. The TN indicates when the model correctly predicts



18

the negative class. The FP indicates that the model has incorrectly predicted the positive class.

The FN indicates that the model has incorrectly predicted the negative class.

Figure 2.5: Confusion matrix

Given this the confusion matrix, the metrics can be defined as follows:

• Accuracy:
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.1)

True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN).

• Sensitivity:
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.2)

Proportion of actual positives that were identified correctly.

• Precision:
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.3)

Proportion of positive identifications that were identified correctly.

• F1-Score:

2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(2.4)

Harmonic mean between precision (proportion of positive identifications) and sensitivity;

it is a way of evaluating precision and sensitivity in a single metric;

• ROC: Graph that shows the representation of the rate of true positives by the rate of false

positives. The ROC curve is usually analyzed using the Area Under the Curve (AUC),

which is a measure of performance for classification problems at various threshold

settings. This metric is more suitable for unbalanced data (He and Ma, 2013).

2.3 RESAMPLING TECHNIQUES

In real world problems (non-trivial problems) there may be an imbalance between the variables

to be predicted. This imbalance can make the models to bias around the class that has a higher

frequency, generating erroneous results. To mitigate this, there are two state-of-the-art techniques:

Undersampling and Oversampling.

Undersampling consists on reduce the number of samples in the majority class in order

to balance with the minority class. We can highlight three state-of-art techniques:

• Condensed Nearest Neighbors (CNN) (Hart, 1968), looks for a consistent minimum

set, that is, a subset of a collection of samples that does not lead to a loss of model

performance;



19

• Tomek Links method (Tomek, 1976), is a modification of the CNN method, which

consists of finding a pair of near neighbors, each pair contains a majority class and a

minority class. The examples in the majority class that are closest to the minority class,

can be removed;

• Random Under-Sampler (RUS)(He and Ma, 2013), randomly picks instances of the

majority class and removes them.

Oversampling consists of generating synthetic data in order to balance the proportion of

data. We can highlight three commonly applied techniques:

• Synthetic Minority Oversampling Technique (SMOTE)(Chawla et al., 2002), generates

new synthetic instances obtained by combining the features of an instance and its

k-nearest neighbors;

• Random Over-Sampler (ROS)(Batista et al., 2004), randomly chooses an instance from

the minority class and repeats it;

• Adaptive Synthetic (ADA)(He et al., 2008), is similar to SMOTE, but generates different

number of samples depending on an estimate of the local distribution of the class to be

oversampled.

2.4 FACTORS RELATED TO CLASS CHANGE

Iterative and incremental software projects have a very dynamic lifecycle, artifacts are created,

changed or deleted as new versions of the project are created. This occurs naturally throughout

the life of the project (Benestad et al., 2010). Class changes occur constantly due to the evolving

nature of software projects. Classes may change due to malfunction, addition/removal of features

or the need to refactor them.

Software refactoring aims to improve the maintainability and performance of software

by changing the internal structure of the code, without modifying its external behavior. Fowler

and Beck (1999) identified, in the object-oriented context, a set of simple code restructurings

that aim to improve code quality. For example, renaming methods or separating classes. Other

refactorings seek to remove Code Smells. Code Smells are code patterns that indicate there are

problems with the code, they are symptoms of poor design and poor implementation choices.

Smells may not affect the behavior of the software, but bring quality and maintainability risks as

the system evolves. The presence of smells in the project indicates that there may be a better way

to rewrite the code for quality and maintainability. The presence of Code Smells in classes may

indicate that they are candidates for refactoring in future versions.

2.5 CONCLUDING REMARKS

In this chapter, the essential topics were presented to contextualize the work developed in

this dissertation. Machine learning concepts and algorithms were presented as well the main

evaluation measures. This chapter also introduced the concepts of resampling and factors related

to class change.

In the next chapter, research in the area of change-prone classes is presented, describing

existing work related to the theme of this dissertation.



20

3 RELATED WORK

This chapter presents works that address the main themes related to this dissertation. Section 3.1

describes the CPCP problem and Section 3.2 presents some approaches adopted in the literature

to deal with this problem.

3.1 THE CPCP PROBLEM

The Change-Prone Class Prediction (CPCP) problem concerns the identification of classes that

are most prone to change in order to reduce the cost and resource consumption in activities such

as refactoring, peer-code reviews and software maintenance (Elish and Al-Rahman Al-Khiaty,

2013; Catolino et al., 2017). To define if a class changed, there are many methods. The first one

is based on the number of Source Lines of Code (SLOC). It compares the SLOC between current

and previous releases and considers that a class changed if the values are different (Malhotra and

Khanna, 2019; Arisholm et al., 2004; Kaur and Jain, 2017; Khanna et al., 2021; Koru and Tian,

2005; Lu et al., 2012; Malhotra and Khanna, 2021; Martins et al., 2020; Zhou et al., 2009).

Other studies (Bieman et al., 2003; Eski and Buzluca, 2011; Massoudi et al., 2021)

consider structural changes in the code elements, in which they extract changes comparing the

abstract syntax tree between two versions. This approach usually uses the ChangeDistiller tool.

A description of the tool and the complete list of operations are presented in (Fluri et al., 2007;

Gall et al., 2009). This method is known as Fine-Grained Changes (FGC) in the literature.

Some works (Catolino et al., 2020; Romano and Pinzger, 2011) adopted the number of structural

changes higher than the median of the distribution of the number of changes experienced by all

the classes of the system.

The SLOC-based method identifies that a class has changed even if only a few SLOCs

have been changed. This ensures that all changes will be detected. On the other hand, this

method has as disadvantages to have a huge quantity of varied types of changes, including

even trivial changes and do not capture the details about the semantics of changes (Giger et al.,

2012). The FGC method identifies which kind of the code structure has changed (loop, control

structure, statement) and can provide a more detailed information about the changes on the

level of statement and declaration changes. The drawback of the FGC method is that it is more

complex to implement and can let some small changes not be considered. Taking into account

the robustness of method, in this work we adopt the FGC method. The method is also adopted in

other works (Catolino et al., 2020; Romano and Pinzger, 2011), its adoption allows comparison

with state-of-the-art approaches.

Many works addressing the Change-Prone Class Prediction (CPCP) problem are found

in the literature. Due to its importance, the problem has been subject of surveys and systematic

reviews (Godara and Singh, 2014; Malhotra and A., 2015; Malhotra and Khanna, 2019). These

studies show that the great majority of approaches use Machine Learning (ML) to derive the

prediction models. ML overcome statistical methods (Malhotra and Khanna, 2013). A great

number of algorithms have been used, but supervised ones are the preferred. Logistic regression,

MLP, Decision Trees, and Random Forest are the most employed and evaluated algorithms.

Random Forest has presented the best results in most studies (Malhotra and Khanna, 2019).



21

3.2 APPROACHES TO THE CPCP PROBLEM

As mentioned before, the CPCP problem encompasses different aspects and dimensions of

the software development. Existing ML approaches adopt as predictors different kind of

metrics (Malhotra and Khanna, 2019). Table 3.1 contains a brief description of the approaches

adopted by previous works. The categories of static metrics are: structural, evolutionary, network,

developer-related, word vector, code smells and bugs.

Table 3.1: Software metrics used for the CPCP problem.

Metric Category Description Studies
Static metrics

Structural

These metrics are software internal

quality metrics, which depict structural

attributes of Object-Oriented elements

as size, coupling, complexity, cohesion,

etc. These structural metrics include

suites such as CK (Chidamber and Ke-

merer, 1994), QMOOD (Bansiya and

Davis, 2002), among others.

All

Evolutionary

These metrics quantify the change his-

tory of a software evolution, from one

release to another, e.g., Birth of a

class, amount of changes, frequency

of changes, change density, and others.

(Al-Khiaty et al., 2017;

Catolino and Ferrucci,

2018, 2019; Catolino et al.,

2018; Elish and Al-

Rahman Al-Khiaty, 2013;

Malhotra and Khanna,

2018a,b)

Developer-related

Entropy of changes introduced by a

developer in a time of period, number

of developers employed on an specific

segment in a specific time, structural

and semantic scattering of developers

in a specific time period.

(Catolino and Ferrucci,

2018, 2019; Catolino et al.,

2017, 2018)

Code Smells

These metrics are related with poor

Object-Oriented design structures,

which can cause source code degra-

dation as code smells (Fowler, 1999),

antipatterns (Brown et al., 1999) and

identity disharmonies (Lanza and Mari-

nescu, 2010).

(Kaur and Jain, 2017; Pri-

tam et al., 2019a)

Others

Less used metrics based in word vector

method, the dependency graph of the

software and bugs collected in issue

tracking repositories.

(Alhawi and Abdilrahim,

2020; Giger et al., 2012;

Zhu et al., 2018)

The structural approaches use product-based metrics that capture structural aspects

of the classes, such as size, complexity, coupling, inheritance, and cohesion (Lu et al., 2012;



22

Malhotra and Khanna, 2021; Catolino et al., 2020; Godara and Singh, 2014; Khomh et al., 2011;

Lu et al., 2012; Malhotra and A., 2015; Malhotra and Khanna, 2019; Tsantalis et al., 2005). They

consider that more complex classes are more change-prone. The evolutionary approaches use

process-based metrics that capture some evolution aspects of the class, such as birth date, change

frequency and density (Al-Khiaty et al., 2017; Catolino and Ferrucci, 2018, 2019; Catolino et al.,

2018; Elish and Al-Rahman Al-Khiaty, 2013; Malhotra and Khanna, 2018a,b). The smell-based

approach uses metrics based on the design and structure quality, such as intensity of smells or

anti-patterns (Catolino et al., 2020; Kaur and Jain, 2017; Pritam et al., 2019a; Khomh et al.,

2009). There are approaches based on information extracted from the class text vocabulary or

the class dependency graph, and other approaches are developer-based and use metrics related to

the number of developers working in a time period, or related to social and other aspects of their

communication (Zhu et al., 2018; Giger et al., 2012; Zhu et al., 2018; Catolino and Ferrucci,

2018, 2019; Catolino et al., 2017, 2018).

Although there are a large number of approaches, few studies compare their performance

or use them in a combined way (Malhotra and Khanna, 2019). There is also a lack of benchmarks,

because the metric values are collected in different contexts and ways. Studies do not show a

consensus on the use of structural metrics, despite all CPCP researches use them. Tsantalis et al.

(2005) concluded that structural metrics are insignificant features for CPCP, except class size.

Lu et al. (2012) analyzed the highest number of systems in literature and confirmed that size

structural metrics have moderate prediction capacity. On the other hand, Zhou et al. (2009)

indicate that size metrics present a strong confound effect and are not good predictors.

On the other hand studies show that classes with code smells are more prone to change

than classes without smells (Kaur and Jain, 2017; Pritam et al., 2019a). The work of Catolino

et al. (2020) shows that the adoption of code smell-related information improves the performance

of different categories of prediction models performance: structural, evolutionary and developer-

based. The results show that the smell intensity is a better predictor than anti-pattern metrics

and that a combined change prediction model including product, process, developer-based, and

smell-related features presents notably higher performance than other models.

A limitation of existing approaches is that they do not take into account the CPCP

problem structure, which resembles a temporal sequence. Some works consider class evolution

aspects and history (Al-Khiaty et al., 2017; Catolino and Ferrucci, 2018, 2019; Catolino et al.,

2018; Elish and Al-Rahman Al-Khiaty, 2013; Malhotra and Khanna, 2018a,b) to derive the

predictors, but the problem of these and all the works mentioned above is that they use as training

inputs each instance individually and do not take temporal dependencies between them. Some

initiatives exist to model the problem by using time series (Caprio et al., 2001; Melo et al.,

2020b). The work of Caprio et al. (2001) employs ARIMA to model the problem. The work

of Melo et al. (2020b) introduces two representations to capture the temporal aspect, called

by the authors concatenated and recurrent. They evaluated the first one with conventional ML

algorithms and the second representation is used with Recurrent Neural Network (RNN) based

on the Gated Recurrent Units - GRU architecture. The problem with these two works is that

they use a limited number of independent variables. They do not combine and diversify metrics,

using only a few structural metrics. Another problem is that to define the change prone class as

simple SLOC approach is used. This approach works with structural metrics, but would create

a bias when working with evolutionary metrics, as evolutionary metrics already capture these

SLOC-related changes in their nature. The mentioned limitations make not feasible a direct

comparison between our work and the work of Caprio et al. (2001) or Melo et al. (2020b).



23

3.3 CONCLUDING REMARKS

In this chapter we discuss the concepts involved in the CPCP problem (Section 3.1), we also

discuss how related works approach the problem, Section 3.2. In this dissertation, we apply an

approach that considers the temporal factor in CPCP problems, but differently from related work,

our approach uses different kinds of features in a combined way, and adopts the FGC method to

define a class-change, similarly to the work of Catolino et al. (2020). This allows comparison

with a traditional state-of-the-art approach. The approach we propose is described in the next

chapter.



24

4 PROPOSED APPROACH

Based on the content and works described in the previous chapter, this chapter introduces a

history based approach to Change-Prone Class Prediction (CPCP). The chapter is organized as

follows: Section 4.1 presents an overview of our approach. Section 4.2 describes the independent

variables, Section 4.3 describes how the dependent variable is calculated and extracted. Section

4.4 describes how the data is represented.

4.1 OVERVIEW

Figure 4.1 presents a summarized overview of the approach. We divided the approach in five

main steps. Initially, we studied the CPCP literature and identified relevant metrics to act as

predictors. To choose the dependent and independent variables, we followed the work of Catolino

et al. (2020) and we used the metrics in a combined way. We selected the following kind of

metrics: structural, evolutionary and smell-related. On the second step, we created the dataset by

mining public repositories of the GitHub and collected the metrics using static analysis tools.

In the third step, we conducted a data preprocessing. We first built an input representation for

the ML algorithms, by adopting the Sliding Window (SW) method (Dietterich, 2002), and we

applied some methods for data normalization and balancing.

Choose Independent 
and Dependent Variables

Structural
Evolutionary
Code Smells
Class Change

Public
Repositories

Multiple
Class Releases

Build Re-
presentation

Normalization Resampling

CK
Organic
Understand
ChangeDistiller

Analysis Tools Data Collection

Train ML Model Validate ML Model Test ML Model

1. Data Definition 2. Create Dataset

3. Data Preprocessing 4. ML Model Building

Evaluate ML
Performance

5. Prediction

Figure 4.1: Overview of our approach

On the fourth step, after the preprocessing, we used the resulting dataset to train and

test the ML models. On the last step, we evaluated the performance of the ML algorithms.

These steps were adopted in all experiments of each project individually. More details about the

independent and dependent variables used, as well as the representation adopted as input for the

ML algorithms are provided next.

4.2 INDEPENDENT VARIABLES

The independent variables of our approach comprises metrics from three categories (Malhotra

and Khanna, 2019), also used by the traditional approaches (Catolino et al., 2020). They



25

are: i) structural: these metrics are related to software internal quality metrics, which depict

structural attributes of Object-Oriented elements. These structural metrics include suites such

as CK (Chidamber and Kemerer, 1994), QMOOD (Bansiya and Davis, 2002), among others;

ii) evolutionary: these metrics are related to the software evolution from one release to another,

e.g., birth of a class, amount of changes, frequency of changes, change density, and so on. It is

worth mentioning that, unlike our approach, the changes captured by the evolutionary metrics are

related to a simple SLOC change between two versions, whereas our approach is able to test

longer horizons and with a more complex change definition; and iii) smell-based: these metrics

capture poor Object-Oriented design structures, which can cause source code degradation as code

smells (Fowler, 1999) and anti-patterns (Brown et al., 1999; Lanza and Marinescu, 2010), (Kaur

and Jain, 2017; Pritam et al., 2019a). We employed two smell-based metrics which are density

and diversity of smells. Density calculates the number of smells found in the class, diversity

calculates how many types of smells the class has.

Table 4.1 presents the structural metrics covered in this work, presenting the metric

category, name, brief description and source. To extract the structural metrics, we use two

extraction tools Understand1 and CK (Aniche, 2015). Understand is a static code analyzer

which collects product metrics of code elements. CK is a tool that calculates class-level and

method-level code metrics in Java projects.

Table 4.2 presents the name and description of the code smells covered in this work to

calculate density and diversity. To extract these smells, we use the tool Organic2. Organic can

identify all code smells considered in this research. To extract density and diversity, from the

data collected, we built our own tool, available on our replication package (Silva, 2022).

Table 4.3 presents the software evolution-based metrics proposed by Elish and Al-Khiaty

(Elish and Al-Rahman Al-Khiaty, 2013). We could not find an updated tool to extract these

metrics, thus, we implemented our own tool, available on our replication package (Silva, 2022).

Table 4.1: Structural metrics.

Metric Definition Source
Cohesion metrics

LCOM2

Lack of cohesion in methods. The number of pairs of methods

in the class using no common attributes minus the number of

pairs of methods that do. If this difference is negative, then,

LCOM2 is set to zero.

(Chidamber

and Ke-

merer,

1994)

LCOM3
Lack of cohesion in methods. Treats each method pair as an

individual entity, and determines the difference between the

amount of similar and different pairs.

(Li and

Henry,

1993)

TCC

Tight class cohesion. The percentage of pairs of public methods

of the class which are directly connected methods. Two methods

are called connected, if they use common attributes, directly or

indirectly.

(Bieman

and Kang,

1995)

LCC

Loose class cohesion. The percentage of pairs of public methods

of the class which are directly or indirectly connected. If there

are methods 𝑚1, . . . , 𝑚𝑛, such that 𝑚𝑖 and 𝑚𝑖+1 are connected

for 𝑖 = 1, . . . , 𝑛 − 1, then 𝑚1 and 𝑚𝑛 are indirectly connected.

(Bieman

and Kang,

1995)

Continued on next page

1https://www.scitools.com/

2https://github.com/opus-research/organic



26

Table 4.1 – continued from previous page
Metric Definition Source

Coupling metrics

CBO
Coupling Between Object Classes. A count of the number of

other classes to which it is coupled.

(Chidamber

and Ke-

merer,

1994)

RFC
Response For a Class. A set of methods that can potentially be

executed in response to a message received by an object of that

class.

(Chidamber

and Ke-

merer,

1994)

FANIN
Fan-in. The number of external classes that invoke methods

from the analyzed class.

(Henry

and Ka-

fura,

1981)

FANOUT
Fan-out. The number of external method invocations made by

the analyzed class

(Henry

and Ka-

fura,

1981)

Complexity metrics

WMC
Weighted Methods Per Class. The sum of the cyclomatic

complexity of the methods of a class.

(Chidamber

and Ke-

merer,

1994)

AvgCyclomatic
Average Cyclomatic Complexity. Average cyclomatic com-

plexity for all nested functions or methods.

(McCabe,

1976)

SumCyclomatic
Sum Cyclomatic Complexity. Sum of cyclomatic complexity

of all nested functions or methods.

(McCabe,

1976)

MaxCyclomatic
Max. Cyclomatic Complexity. Maximum cyclomatic com-

plexity of all nested functions or methods.

(McCabe,

1976)

Inheritance metrics
IFANIN Base Classes. The number of immediate base classes and

interfaces.

(Destefanis

et al.,

2014)

DIT
Depth of Inheritance Tree. The number of nodes between the

root of the inheritance tree and the analyzed class.

(Chidamber

and Ke-

merer,

1994)

NOC
Number of Children. Number of immediate sub classes

subordinated to a class in the class hierarchy.

(Chidamber

and Ke-

merer,

1994)

OR Override Ratio. Ratio of methods in a class that are overrides

from a superclass.

(Lanza

and Mari-

nescu,

2010).

Size metrics
NIM Instance Methods. The number of instance methods in a class. (Lorenz

and Kidd,

1994)

Continued on next page



27

Table 4.1 – continued from previous page
Metric Definition Source

NIV Instance Variables. The number of instance variables in a

class.

(Lorenz

and Kidd,

1994)

LOC Total lines of code. Count all lines of executable code within

the system, class, or method.

(Lorenz

and Kidd,

1994)

CLOC Lines with Comments. The number of lines containing com-

ments in a class.

(Lorenz

and Kidd,

1994)

NOPA Public Fields. Number of Public Fields. (Lanza

and Mari-

nescu,

2010)

STMTC Statements. The number of statements in a class. (Lorenz

and Kidd,

1994)

WOC
Weight of a Class. The number of methods in the interface of

the class, divided by the total number of interface members.

(Lanza

and Mari-

nescu,

2010)

CountSemicolon Semicolons. The number of semicolons in a class. (Scitools,

2021)

CountStmtDecl Declarative Statements. The number of declarative statements

in a class.

(Scitools,

2021)

RatioCommentToCode Comment to Code Ratio. The ratio of comment lines to code

lines in a class.

(Scitools,

2021)

CountDeclMethodDeflt
Local Default Visibility Methods. The number of local meth-

ods with default visibility in a class.

(Scitools,

2021)

AvgLine
Average Number of Lines. The average number of physical

lines between methods of a class.

(Scitools,

2021)

AvgLineComment
Average Number of Lines with Comments. The average

number of lines containing comments between methods of a

class.

(Scitools,

2021)

CountDeclClassMethod Class Methods. The number of class methods in a class. (Scitools,

2021)

CountDeclClassVariable Class Variables. The number of class variables in a class. (Scitools,

2021)

NPM Private Methods. The number of local private methods in a

class.

(Scitools,

2021)

CountDeclMeProtected Protected Methods. The number of local protected methods in

a class.

(Scitools,

2021)

NPRM Public Methods. The number of local public methods in a

class.

(Scitools,

2021)



28

Table 4.2: Types of code smells (Source: Rêgo (2018)).

Metric Definition
Brain Class Complex classes that centralize functionalities

Brain Method Methods that centralize the intelligence of a class

Complex Class Classes presenting a overly high cyclomatic complexity

Data Class A class exposes its attributes, thus violating the information hiding

principle

Dispersed Cou-

pling

Occurs when a method calls methods from a large number of provider

classes

Feature Envy A method accesses the data of another object more than its own data

God Class One class monopolizes the processing, and other classes primarily

encapsulate data

Intensive Cou-

pling

When a method calls many other methods from a few classes

Lazy Class
Understanding and maintaining classes always costs time and money. So

if a class doesn’t do enough to earn your attention, it should be deleted.

Long Method
A method contains too many lines of code. Generally, any method

longer than ten lines should make you start asking questions

Long Parame-

ter List

More than three or four parameters for a method

Message Chains

Message chains occur when a client requests another object, that object

requests yet another one, and so on. These chains mean that the client is

dependent on navigation along the class structure. Any changes in these

relationships require modifying the client.

Refused Bequest
Subclass uses only some of the methods and properties inherited from its

parents, the hierarchy is off-kilter. The unneeded methods may simply

go unused or be redefined and give off exceptions.

Shotgun

Surgery

Making any modifications requires that you make many small changes

to many different classes.

Spaghetti Code Declare a number of long methods without parameters

Speculative

Generality

There’s an unused class, method, field or parameter.

4.3 DEPENDENT VARIABLE

The dependent variable represents if a class changed or not in a period of time, that is in our

approach the time between two subsequent releases. In our work, releases are official versions of

the project that have been approved. Each release is identified by the project developers through

tags. To decide whether a class has changed in a given context we considered the Fine-Grained
Changes (FGC) method, mentioned in Section 3.1. To compute the dependent variable we use

the same definition of other works (Catolino et al., 2020; Romano and Pinzger, 2011). A class is

change-prone if, in a period of time 𝑡, the number of structural changes of a class is higher than the

median of the distribution of the number of changes experienced by all the classes of the system.

For each pair of commits (𝑐𝑖, 𝑐𝑖+1) of 𝑡 we run the ChangeDistiller tool (Fluri et al., 2007). This

tool implements a differencing algorithm that generates and compares the syntax tree between



29

Table 4.3: Software evolution-based metrics (Source: Elish and Al-Rahman Al-Khiaty (2013)).

Metric Definition
BOC Birth of a Class. The first time the class appears.

TACH Total Amount of Changes. It is the sum of added lines, deleted lines, and twice

changed lines between release 𝑛 − 1 and release 𝑛.

FCH First Change. The first time the class has been exposed to changes.

LCH Last Change. The last time the class has been exposed to changes.

CHO Change Occurred. It is a binary metric that indicates whether or not the class has

been exposed to changes from release 𝑛 − 1 to 𝑛.

FRCH Frequency of Changes. The number of times (in term of releases) the class has

been changed.

CHD
Change Density. Change density of a class 𝐶 is its change size (𝑇 𝐴𝐶𝐻 (𝐶))

normalized by the size of the class (its total lines of code (𝐿𝑂𝐶)).

WCD
Weighted Change Density. It is a cumulative frequency of change density (CHD)

that favor the latest occurrence of changes over the old ones.

WFR Weighted Frequency of Changes. Is a cumulative frequency of changes that

favor the latest occurrence of changes over the old ones.

ATAF
Aggregated Change Size Normalized by Frequency of Change. This is obtained

from accumulating size of changes of the class in the past and normalizing by

frequency of changes.

LCA Last Change Amount. It is defined as the last change size of the class when

moving from release 𝑖 − 1 to release 𝑖.
LCD Last Change Density. This metric is defined as its last change size (LCA)

normalized by the size of the class.

CSB Changes since the Birth. It is computed by comparing the size of the first version

of a class with its current version.

CSBS Changes since the Birth Normalized by Size. It is the CSB normalized by the

size of the first version of the class

ACDF
Aggregated Change Density Frequency. It is obtained from cumulating density

of changes introduced to the class in the past, and then this accumulated amount is

normalized by the frequency of changes.



30

two versions of a project. A description of the tool and the complete list of changes it identifies

are presented in (Fluri et al., 2007). Change examples are: attribute renaming change, parameter

ordering change, and other methods and classes declaration changes. It is worth mentioning that

the tool ignores white space-related differences and documentation-related updates.

Note that, we compute the independent variables considering the release before the one

where the dependent variable is computed, i.e., we compute the independent variables in the

release 𝑅𝑖, while the change-proneness was computed between 𝑅𝑖 and 𝑅𝑖+1: in this way, we avoid

biases due to the computation of the change-proneness in the same periods as the independent

ones. An example of the data collected following the chronological order is presented in Table 4.4.

This representation is used by the traditional approaches found in the literature. The model

would predict true in case the class should undergo through a change, or false otherwise. In this

structure, each instance represents a version of the class in a given release of the project, each

instance contains the metrics 𝑀 as the independent variables.

4.4 DATA REPRESENTATION

In the build representation step of our approach, the data structure is changed to a representation

that captures the temporal dependency between the data instances. To this end, we employ the

Sliding Window (𝑆𝑊) method (Dietterich, 2002). This concept allows the ML algorithm to use a

window of size 𝑆, containing data of the previous 𝑆 releases, as the source of information. In this

way, the analysis is not limited to a fixed release and each instance of the dataset may contain

the total or partial history of the class changes. The method works as follows. First, we select

metrics from the versions of a class 𝐶 for all releases, if the number of versions (releases) of the

class is less than 𝑆, the class is dropped. Then we select metrics of the 𝑆 first releases to create

the first instance of the dataset. In the next iteration, we take the interval of 𝑆 releases by starting

from the second analyzed release, creating the second instance of the dataset. This process is

repeated until the end of the releases, always following a chronological order.

In summary, the main difference between the traditional and Sliding Window methods is

that the traditional considers the metrics values of a single release, and in the second, the metrics

values of the 𝑆 previous releases are used into a single structure. The role of the window is to say

how many releases will be aggregated at a time, that is, the size of the metrics history over this

period. Table 4.5 shows the dataset from Table 4.4 reshaped with sliding window method with

𝑆 = 2. Thus, the instance 0 contains metrics 𝑀1, 𝑀2, and 𝑀3 from releases 0 and 1 and will

predict the dependent variable 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 from release 𝑅, so 1 step ahead. The process is repeated

by shifting the two boxes simultaneously over the samples, one step at a time, creating new rows

until the window reaches the end of the table.



31

Table 4.4: Traditional representation

Release 𝑀1 𝑀2 𝑀3 Changed

0 1 10 100 -

1 2 20 200 true

2 3 30 300 true

3 4 40 400 false

4 5 50 500 true

5 2 20 400 false

Table 4.5: Representation of Table 4.4 reshaped with sliding window method

Release i Release i+1 Release i+2

Instance 𝑀1 𝑀2 𝑀3 𝑀1 𝑀2 𝑀3 Changed

0 1 10 100 2 20 200 true

1 2 20 200 3 30 300 false

2 3 30 300 4 40 400 true

3 4 40 400 5 50 500 false

4.5 CONCLUDING REMARKS

In this chapter, the detailed steps of the approach were presented. Section 4.1 presented an

overview of the approach. The independent and dependent variables were described in Section

4.2 and Section 4.3. Section 4.4 presented the traditional and temporal structures adopted in this

work. The proposed approach has well-defined steps and can be implemented relatively easily.

The biggest difficulty lies in the pre-processing of the metrics, since data from several tools are

aggregated into a single dataset. In summary, the main difference between the traditional and

sliding window methods is that the first considers the metrics values of a single release, and in

the second the metrics values of the 𝑆 previous releases are used into a single structure. The

role of the window is to say how many releases will be aggregated at a time, that is, the size of

the metrics history over this period.The next chapter presents the experiments conducted for the

evaluation of our history-based approach.



32

5 EVALUATION DESCRIPTION

The current chapter presents the experiments conducted for the evaluation of our history-based

approach compared with a traditional approach. The use of different metrics in a combined way

is also evaluated, as well as the impact of the smell-based features in the performance of temporal

models obtained by our approach. This chapter is organized as follows: Section 5.1 describes the

Research Questions (RQs). Section 5.2 describes the repositories adopted by our study. Section

5.3 presents the generated datasets. Section 5.4 describes how the models were build. Section

5.5 presents and analyzes the results of each RQ.

5.1 RESEARCH QUESTIONS

• RQ1. How different window sizes affect the prediction performance of the models?
In this RQ, we intend to evaluate the performance of the models produced by the most

used algorithms according to different window sizes. To this end we use sizes of 2, 3

and 4 for each application. These values were adopted based on literature (Tsoukalas

et al., 2020).

• RQ2. What is the performance of our approach with respect to the performance
of a traditional approach? In this RQ, we intend to compare the performance of the

algorithms using our representation based on a temporal dependency with respect to

the algorithms’ performance using a traditional approach. The work of Catolino et al.

(2020) shows that when traditional and non-temporal approaches are adopted, the best

models are obtained using a set that combines all the kinds of features. Then to answer

this RQ, our approach uses the set of all features. The best value for window size pointed

in RQ1 is used in comparison with a traditional approach using the same features.

• RQ3. What is the impact of using smell-related information to predict change-
proneness using our approach? As mentioned in Chapter 3 the use of smell-based

features in traditional approaches shows a performance improvement in different kinds

of models (Catolino et al., 2020), but existing approaches that consider the temporal

dependency do not include smell-based metrics (Caprio et al., 2001; Melo et al., 2020b).

Then this RQ evaluates if the use of such metrics contributes to improve the performance

of the models obtained by our temporal approach.

• RQ4. What is the algorithm that leads our approach to produce the best results
when answering all RQs? In the literature, the algorithm Random Forest presented the

best performance in most of the reports (Malhotra and Khanna, 2019). But it is relevant

to investigate that this also holds for our temporal approach.

• RQ5. Which metrics are the most important for change-proneness prediction?
We analyzed different sets of features, algorithms and resample techniques, we also

compared the effects of considering smell-related information. However, it is important

to analyze the individual importance of each metric. We apply two techniques to

measure the importance of features in predicting change-proneness: Mean Decrease in

Impurity (MDI) (Loh, 2011) and Information Gain.



33

5.2 TARGET SYSTEMS

We extracted features from five open-source Java applications from the GitHub 1 online repository.

The choice of the datasets were based on their popularity and number of releases (at least greater

than 20). We choose projects with a diverse number of classes and releases, and already used by

previous change-proneness works (Malhotra and Lata, 2020; Malhotra et al., 2021). Although the

number of projects is small we have a large amount of classes (111.917). For each application,

we collected a subsequent number of releases. This approach led to five datasets containing from

23 up to 61 releases of each application. The applications are described in Table 5.1.

Table 5.1: Used Java Applications

Application Releases Samples Avg Classes Period
Commos-bcel 23 5383 234 Jul/2011 to Sep/2019

Commons-io 61 34556 566 Mar/2012 to Sep/2020

Junit4 26 7987 307 Nov/2012 to Feb/2021

PdfBox 57 47079 826 Jun/2018 to Mar/2021

Wro4j 50 16912 338 Mar/2010 to Nov/2021

5.3 DATASET CREATION AND PREPROCESSING

To answer RQ3 that evaluates the impact of using smell-based information in our history-based

approach, we created 6 sets, as illustrated in Figure 5.1. Set 1 contains all features combined, Set

2 combines structural metrics with evolutionary metrics. Set 3 combines smell-based metrics

with evolutionary metrics. Set 4 combines smell-based metrics with structural metrics. Sets 5

and 6 contain structural metrics and evolutionary metrics alone, respectively.

Evolution-based
Metrics Structural Metrics

Evolution-based
Metrics

Smell-based
Metrics Smell-based

MetricsEvolution-based
Metrics

Structural MetricsStructural Metrics

Smell-based
Metrics

Set 1

Set 2
Set 3

Set 4

Structural Metrics

Set 5

Evolution-based
Metrics

Set 6

Figure 5.1: All Sets

In order to answer RQ3, in addition to the datasets using our representation (Table 4.5),

we also build datasets using the representation of the traditional approaches (Table 4.4). To

ensure that the data are on the same scale, they were normalized using the min-max technique,

where the data are scaled with values ranging from 0 to 1.

After analyzing the data distribution, we found a high imbalance in relation to the

dependent variable. Training unbalanced models can make the models tend to predict the class

that has the highest frequency, generating erroneous results. To mitigate this, we chose to test

three state-of-the-art oversampling techniques: Synthetic Minority Oversampling Technique

(SMOTE), (Chawla et al., 2002), Random Over-Sampler (ROS) (Batista et al., 2004) and Adaptive

Synthetic (ADA) (He et al., 2008). Additionally, we also tried to use undersampling techniques,

1https://github.com



34

but they further reduced our dataset until we did not have enough data left for the split step used

in validation.

5.4 ML MODEL BUILDING AND PREDICTION

In the training step, the sets were divided into training (70% of the instances) and testing (30%)

sets. The training set is used to train the algorithms and measure the performance of the generated

models, identifying, among the trained models, the models with the best results. Test data are

used for a final evaluation of the trained models. To increase the reliability and accuracy of

the results we performed a stratified 10-fold cross-validation (Stone, 1974), which consists of

dividing the training data into distinct subsets and using part of this subset for training and the

rest for testing (i.e., 9 folds for training and 1 fold for testing). To implement the cross-validation

we used the scikit-learn tool (Pedregosa et al., 2011).

To evaluate the performance of the algorithms, we used: Accuracy (Acc), Sensitivity

(Sen), F1-Score, and Receiver Operating Characteristic Curve - ROC. For our study and answer

RQ4, we employed the algorithms widely used in the literature (Malhotra and Khanna, 2019):

Decision Tree (DT); Logistic Regression (LR); Multi Layer Perceptron (MLP), and Random

Forest (RF). The normalization and resample methods, as well as to implement the algorithms,

we used the scikit-learn tool (Pedregosa et al., 2011). All the raw data and scripts used are

available in our repository (Silva, 2022).

At the end, our approach generated a total of 1440 models. Each algorithm was executed

for each dataset (Set 1 up to Set 6) using three window sizes, and three or none resample techniques

(4 algorithms x 6 sets x 3 windows sizes x 4 techniques x 5 applications). Default parameters

of the scikit-learn tool were used. For each application 96 models were generated. Similarly,

the traditional approach generated 480 models; 96 models generated for each application. All

these models were used to evaluate the impact of the sliding window size (RQ1). The values of

the indicators described above obtained for these models are presented in our supplementary

material (Silva, 2022).

But, as mentioned before, to answer the other RQs we consider only the models adopting

the best value for the window size pointed out by RQ1, as well as the best resample technique for

each algorithm and application.

5.5 ANALYSIS OF THE RESULTS

5.5.1 RQ1: How different window sizes affect the prediction performance of the models?

As mentioned in the last section, we investigated three values for the window size (2, 3 and 4).

There is no standard rule for optimal window size, so we empirically tested initial window sizes,

starting with the smallest possible window two, as in the work of Tsoukalas et al. (2020) and

Melo (2020). Larger window values did not imply an improvement in the results because the

larger the window size, the greater the necessary history of the class, thus excluding classes

added in more recent versions; this consequently reduces the training data and can generate bias

in relation to older classes. By testing three values of windows, we generated a total of 288

models for each application.

To answer this RQ we first perform a statistical analysis, using Kruskal Wallis test

(Kruskal and Wallis, 1952), using ROC/AUC score. Figure 5.2 presents the result and shows that

the p-value was 0.927 considering all results for each size. As the results do not have difference

with statistical significance between evaluated values, we decided to create a raking of the top 10

best models, in order to choose the most outstanding window size. We selected the top 10 best



35

models from each of the 5 application, according to the ROC/AUC score. We aggregated the top

10 results from each application, thus creating a list of 50 models.

With this list, we counted the number of times each size appears. The result is presented

in Figure 5.3. We can see that 20 (out of 50) of the best models uses 3 for the window size,

followed by size 2 that is used in 17 models, and size 4, used in 13. Models using windows with

size of 4 have almost the worst distribution in the ranking, which could be an indication that this

size value is too large for our problem, when considering the parameters tested. On the other

hand, models with window size 3 stand out and appear more often among the best.

Figure 5.2: Window size statistical analysis - ROC/AUC

Figure 5.3: Window size ranking

Answer to RQ1: Although there was no statistical difference between the models using the

different window sizes evaluated, the models with an intermediate size, equals to 3, appear

most frequently among the best ones.

Implications: based on the ranking created, the results can be view as indicative of how much

the change-proneness of a class depends on its history. It seems that it is not necessary a long

history to reach good performance; a time period of 3 releases seems enough. But further studies



36

should be conducted to better characterize the life of a class along the project and its relation

with changes. It is expected that newborn classes are more change-prone, and otherwise for more

mature classes. This finding points out new research directions.

5.5.2 RQ2: What is the performance of our approach with respect to the performance of a

traditional approach?

To answer this and the next RQs, we refer to Table 5.2, which presents the results of the best

models using window size equals to 3, according to RQ1. This table presents for each application

and algorithm the indicator values of F1-Score, Accuracy, Sensitivity, ROC/AUC of the models

obtained using our approach and the traditional one, for all sets. The columns RS correspond to

the resample technique used in the model, which reaches the best performance. We can observe

that for the great majority of the cases, high values of AUC imply high values of the others

indicators. Moreover, except for the application commons-io the best values of AUC were

obtained by our approach, independently of the set and algorithm used.

To a better visualization, we calculated, for all approaches, the mean values for all

indicators, considering all algorithms and all sets from Table 5.2. A comparison is presented in

Figure 5.4. If we consider AUC, we can see that our approach got the best results in 3 out of 5

projects. For the commons-io and commons-bcel projects, both approaches have similar results.

Regarding F1-Score and Accuracy, our approach is better than the traditional approach on 4 out

five systems, almost tied on commons-io dataset. The traditional approach has no outstanding

results compared to our approach, having slightly better results on commons-io. For sensitivity

indicator we observe the greatest differences for systems Junit4, PdfBox, and Wro4j, what

represents a better performance of our approach in identifying correctly the prone-change classes.

Figure 5.4: Comparing both approaches

Table 5.3 counts how many times each approach was better or obtained the same result

in each set, for all evaluation measures. The results confirm that our approach obtained the best

values for the indicators compared to the traditional approach. We observed that for 120 cases

analyzed in Table 5.3 (4 algorithms and 5 systems and 6 sets), the models generated by our

approach obtained the best values of AUC in 96, and equivalent values in 8 models. The models



37

Table 5.2: Best results

DT LR MLP RF

Commos-bcel

App F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS
Set 1 Our 0,98 0,98 0,73 0,86 A 0,93 0,91 0,95 0,92 S 0,98 0,98 0,78 0,88 R 0,99 0,99 0,78 0,89 A

Set 1 Trad 0,95 0,94 0,68 0,82 A 0,92 0,90 0,82 0,86 S 0,96 0,96 0,63 0,80 S 0,97 0,97 0,78 0,88 A

Set 2 Our 0,98 0,98 0,78 0,89 R 0,93 0,90 0,95 0,92 R 0,98 0,98 0,76 0,87 S 0,99 0,99 0,78 0,89 A

Set 2 Trad 0,94 0,93 0,79 0,86 A 0,92 0,90 0,83 0,87 S 0,96 0,96 0,68 0,83 S 0,97 0,97 0,80 0,89 A

Set 3 Our 0,98 0,98 0,73 0,86 A 0,88 0,83 0,95 0,89 A 0,95 0,94 0,78 0,87 A 0,99 0,99 0,78 0,89 R

Set 3 Trad 0,95 0,94 0,80 0,87 S 0,83 0,77 0,88 0,82 R 0,92 0,91 0,79 0,85 A 0,95 0,95 0,80 0,88 S

Set 4 Our 0,96 0,96 0,54 0,76 R 0,84 0,76 0,78 0,77 A 0,90 0,85 0,78 0,82 A 0,97 0,97 0,38 0,68 S

Set 4 Trad 0,90 0,88 0,56 0,73 A 0,94 0,94 0,51 0,74 S 0,93 0,94 0,22 0,60 R 0,88 0,85 0,76 0,81 S

Set 5 Our 0,96 0,95 0,54 0,75 N 0,81 0,72 0,81 0,77 A 0,88 0,82 0,81 0,82 R 0,97 0,97 0,38 0,68 S

Set 5 Trad 0,89 0,87 0,39 0,65 R 0,93 0,92 0,48 0,71 S 0,91 0,91 0,24 0,60 A 0,89 0,86 0,73 0,80 A

Set 6 Our 0,98 0,98 0,73 0,86 R 0,87 0,81 1,00 0,90 S 0,94 0,92 0,81 0,87 R 0,98 0,98 0,73 0,86 R

Set 6 Trad 0,94 0,93 0,93 0,93 A 0,81 0,75 0,89 0,82 R 0,88 0,84 0,89 0,86 S 0,94 0,93 0,90 0,92 A

Commons-io

App F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS
Set 1 Our 0,94 0,93 0,83 0,89 S 0,81 0,77 0,73 0,75 R 0,94 0,94 0,80 0,88 A 0,97 0,97 0,83 0,91 R

Set 1 Trad 0,96 0,96 0,86 0,91 R 0,78 0,73 0,72 0,73 S 0,92 0,92 0,83 0,88 R 0,96 0,96 0,88 0,93 R

Set 2 Our 0,94 0,94 0,80 0,87 S 0,81 0,77 0,73 0,75 R 0,94 0,94 0,86 0,90 R 0,97 0,97 0,84 0,91 R

Set 2 Trad 0,95 0,95 0,88 0,92 S 0,78 0,74 0,73 0,73 S 0,92 0,92 0,78 0,86 A 0,96 0,96 0,88 0,93 R

Set 3 Our 0,89 0,88 0,64 0,78 A 0,73 0,67 0,71 0,69 S 0,84 0,82 0,77 0,80 R 0,95 0,95 0,79 0,88 A

Set 3 Trad 0,94 0,93 0,86 0,90 A 0,70 0,62 0,67 0,64 R 0,82 0,78 0,65 0,72 S 0,96 0,96 0,90 0,94 A

Set 4 Our 0,93 0,93 0,86 0,90 A 0,76 0,71 0,68 0,70 S 0,90 0,89 0,83 0,86 S 0,95 0,95 0,85 0,91 A

Set 4 Trad 0,93 0,93 0,83 0,89 N 0,73 0,67 0,71 0,68 S 0,86 0,84 0,88 0,85 S 0,95 0,95 0,86 0,91 S

Set 5 Our 0,93 0,92 0,85 0,89 A 0,76 0,71 0,68 0,70 S 0,89 0,87 0,84 0,86 A 0,95 0,95 0,85 0,91 R

Set 5 Trad 0,93 0,92 0,85 0,89 S 0,73 0,67 0,70 0,68 R 0,84 0,81 0,89 0,85 R 0,95 0,94 0,86 0,91 A

Set 6 Our 0,88 0,86 0,66 0,77 S 0,69 0,62 0,70 0,65 S 0,81 0,78 0,72 0,75 R 0,95 0,95 0,78 0,88 S

Set 6 Trad 0,94 0,93 0,86 0,90 A 0,65 0,57 0,69 0,63 S 0,80 0,76 0,64 0,71 S 0,96 0,96 0,91 0,94 A

Junit4

App F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS
Set 1 Our 0,97 0,97 0,82 0,90 S 0,90 0,87 0,78 0,83 R 0,96 0,96 0,56 0,77 A 0,98 0,98 0,80 0,90 S

Set 1 Trad 0,92 0,90 0,53 0,72 A 0,83 0,76 0,71 0,74 N 0,91 0,88 0,64 0,77 R 0,94 0,95 0,40 0,69 S

Set 2 Our 0,97 0,97 0,79 0,88 S 0,90 0,87 0,79 0,83 A 0,96 0,96 0,62 0,80 S 0,98 0,98 0,79 0,89 S

Set 2 Trad 0,92 0,91 0,51 0,72 S 0,83 0,76 0,71 0,74 N 0,91 0,88 0,60 0,75 R 0,95 0,95 0,38 0,68 A

Set 3 Our 0,97 0,97 0,75 0,86 A 0,91 0,88 0,78 0,83 S 0,96 0,96 0,70 0,84 S 0,98 0,98 0,88 0,93 S

Set 3 Trad 0,92 0,90 0,59 0,75 S 0,80 0,72 0,74 0,73 N 0,84 0,78 0,78 0,78 R 0,95 0,94 0,59 0,78 S

Set 4 Our 0,89 0,86 0,41 0,65 S 0,82 0,75 0,60 0,68 N 0,90 0,87 0,43 0,66 R 0,93 0,94 0,22 0,60 A

Set 4 Trad 0,88 0,84 0,40 0,63 A 0,80 0,71 0,65 0,68 N 0,85 0,80 0,57 0,69 A 0,92 0,92 0,23 0,59 A

Set 5 Our 0,93 0,93 0,24 0,60 N 0,83 0,77 0,57 0,68 R 0,90 0,88 0,38 0,64 S 0,93 0,94 0,21 0,60 A

Set 5 Trad 0,88 0,84 0,46 0,66 A 0,80 0,71 0,64 0,68 N 0,81 0,74 0,63 0,69 R 0,92 0,92 0,23 0,59 A

Set 6 Our 0,97 0,97 0,69 0,84 S 0,90 0,86 0,77 0,82 A 0,97 0,97 0,81 0,89 R 0,97 0,97 0,84 0,91 S

Set 6 Trad 0,90 0,87 0,52 0,70 A 0,78 0,70 0,71 0,70 R 0,86 0,81 0,71 0,77 R 0,94 0,94 0,56 0,76 S

PdfBox

App F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS
Set 1 Our 0,92 0,91 0,75 0,84 A 0,81 0,77 0,71 0,74 R 0,90 0,89 0,78 0,84 R 0,94 0,94 0,73 0,85 A

Set 1 Trad 0,81 0,79 0,58 0,70 S 0,75 0,69 0,63 0,67 R 0,81 0,78 0,60 0,70 R 0,86 0,86 0,42 0,67 S

Set 2 Our 0,92 0,92 0,73 0,84 A 0,80 0,77 0,71 0,74 S 0,91 0,91 0,77 0,85 R 0,94 0,94 0,73 0,85 S

Set 2 Trad 0,83 0,81 0,52 0,69 S 0,75 0,69 0,64 0,67 S 0,80 0,76 0,67 0,72 R 0,86 0,86 0,43 0,67 A

Set 3 Our 0,91 0,90 0,71 0,82 A 0,79 0,74 0,69 0,72 A 0,90 0,89 0,81 0,85 A 0,93 0,92 0,79 0,86 A

Set 3 Trad 0,82 0,79 0,56 0,69 A 0,74 0,68 0,59 0,64 A 0,78 0,74 0,70 0,72 S 0,87 0,86 0,61 0,75 A

Set 4 Our 0,87 0,87 0,46 0,69 R 0,76 0,71 0,65 0,69 R 0,82 0,78 0,80 0,79 R 0,88 0,88 0,53 0,73 A

Set 4 Trad 0,76 0,71 0,49 0,61 R 0,75 0,70 0,61 0,66 R 0,75 0,69 0,71 0,70 R 0,76 0,71 0,51 0,62 R

Set 5 Our 0,84 0,82 0,54 0,69 S 0,76 0,71 0,65 0,69 S 0,83 0,80 0,78 0,79 R 0,88 0,88 0,54 0,73 A

Set 5 Trad 0,76 0,71 0,50 0,62 R 0,73 0,67 0,65 0,66 A 0,75 0,70 0,71 0,70 R 0,76 0,71 0,51 0,62 R

Set 6 Our 0,88 0,87 0,74 0,81 A 0,83 0,80 0,61 0,72 A 0,88 0,86 0,85 0,86 A 0,89 0,88 0,85 0,87 A

Set 6 Trad 0,79 0,75 0,66 0,71 A 0,72 0,66 0,59 0,63 N 0,75 0,69 0,74 0,72 S 0,83 0,80 0,70 0,76 A

Wro4j

App F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS F1 Acc Sen AUC RS
Set 1 Our 0,93 0,92 0,76 0,85 S 0,77 0,73 0,80 0,76 R 0,89 0,88 0,71 0,81 A 0,93 0,93 0,78 0,87 A

Set 1 Trad 0,80 0,77 0,44 0,63 A 0,75 0,69 0,67 0,68 R 0,81 0,79 0,51 0,67 R 0,86 0,86 0,36 0,64 A

Set 2 Our 0,93 0,92 0,78 0,86 A 0,77 0,73 0,79 0,75 R 0,89 0,89 0,64 0,78 A 0,94 0,93 0,80 0,88 A

Set 2 Trad 0,79 0,76 0,45 0,62 A 0,75 0,69 0,65 0,68 N 0,78 0,74 0,59 0,67 R 0,86 0,86 0,36 0,64 S

Set 3 Our 0,92 0,92 0,76 0,85 A 0,72 0,66 0,81 0,73 S 0,90 0,89 0,86 0,88 R 0,94 0,94 0,91 0,92 A

Set 3 Trad 0,77 0,73 0,51 0,64 S 0,65 0,58 0,75 0,65 N 0,76 0,71 0,65 0,68 S 0,84 0,83 0,49 0,68 S

Set 4 Our 0,80 0,77 0,47 0,64 S 0,72 0,66 0,71 0,69 A 0,83 0,81 0,59 0,72 R 0,86 0,86 0,37 0,65 A

Set 4 Trad 0,83 0,82 0,32 0,60 R 0,74 0,69 0,63 0,66 R 0,76 0,71 0,64 0,68 A 0,83 0,83 0,35 0,62 A

Set 5 Our 0,79 0,76 0,46 0,63 A 0,73 0,68 0,69 0,68 A 0,82 0,79 0,59 0,70 R 0,86 0,86 0,37 0,65 A

Set 5 Trad 0,83 0,82 0,31 0,60 R 0,75 0,70 0,63 0,67 S 0,78 0,74 0,59 0,67 R 0,84 0,83 0,36 0,63 S

Set 6 Our 0,92 0,92 0,75 0,85 A 0,72 0,66 0,80 0,72 R 0,91 0,90 0,89 0,90 R 0,94 0,93 0,92 0,93 A

Set 6 Trad 0,76 0,72 0,52 0,63 S 0,68 0,61 0,60 0,61 A 0,72 0,66 0,68 0,67 S 0,84 0,83 0,51 0,69 S

Legend: Approach (App); Traditional (Trad); Decision Tree (DT); Logistic Regression (LR); Multi Layer
Perceptron (MLP); Random Forest (RF); F1-Score (F1); Accuracy (Acc); Sensitivity (Sen); ROC AUC Score

(AUC), Resample (RS), ADA(A); SMOTE (S); ROS (R); NONE (N)



38

of the traditional approach obtained the best AUC values only in 16 cases. Considering the other

indicators, our approach also overcomes the traditional. For F1-score the models of our approach

obtained 102 best values, against only 14 of the traditional and 4 ties. Related to accuracy, both

approaches tied 4 times and the models of our approach obtained 102 best values against 14 of

the traditional. Regarding sensitivity, our approach overcomes the traditional reaching 78 of the

best values, against 37 of the traditional and 5 ties.

If we consider all the indicators, algorithms and all sets (480 cases). Our approach

produces the best results or equivalent ones in 399 cases (83.13%). To corroborate the findings

we applied the Wilcoxon test (Rey and Neuhäuser, 2011) and calculated the p-value for all results

of ROC/AUC, F1-score, accuracy and sensitivity performance metrics. For all metrics, there’s a

statistical difference in the distribution of history-based and traditional approaches with >95% of

confidence (p-value=0.001), as Figure 5.5 shows. To confirm that our approach overcomes the

traditional, we analyzed individually each set. We decided to evaluate the ROC/AUC, since it is

a robust evaluation measure. We can see in Figure 5.6 that our approach perfom better in all sets.

Figure 5.5: Statistical analysis of both approaches in all sets

Answer to RQ2: For all the indicators analyzed, our approach overcomes the traditional

approach in the great majority of the cases (83.13%). Then we can conclude that our approach

contributes to improve the performance of the models.

Implications: These results show that our history-based approach, considering the temporal

dependency between the instances of the datasets, contributes to improve performance in the

great majority of the cases. This happens independently of the algorithm and set of features

used. Only for one indicator and one system the traditional approach presented a better mean

value. The use of our approach seems to be the best option and can help developers, testers and

managers to concentrate effort in the correct classes, that ones that really will change in the future,

what helps to improve project quality, ease maintenance and evolution, and decrease costs.



39

Table 5.3: Comparing both approaches

Set 1 Set 2

App F1 Acc Sen AUC App F1 Acc Sen AUC
Our 19 19 15 16 Our 19 18 15 17

Trad 1 1 4 2 Trad 1 1 4 2

Eq 0 0 1 2 Eq 0 1 1 1

Set 3 Set 4

App F1 Acc Sen AUC App F1 Acc Sen AUC
Our 18 18 14 17 Our 14 14 10 16

Trad 2 2 6 3 Trad 4 4 10 2

Eq 0 0 0 0 Eq 2 2 0 2

Set 5 Set 6

App F1 Acc Sen AUC App F1 Acc Sen AUC
Our 14 15 9 14 Our 18 18 15 16

Trad 4 4 8 3 Trad 2 2 5 4

Eq 2 1 3 3 Eq 0 0 0 0

Figure 5.6: Statistical analysis of ROC/AUC of each set

5.5.3 RQ3: What is the impact of using smells related information to predict change-proneness

using our approach?

To analyze the impact of using or not smells in the performance of our approach, we refer to

Figure 5.7. This figure presents a comparison regarding the average values of AUC for all sets



40

considering all algorithms. We can compare models with and without the smell-based metrics,

Set 1 (combination of smell-based metrics, structural metrics and evolution-based metrics)

against Set 2 (combination of structural metrics and evolution-based metrics); Set 3 (combination

of smell-based metrics and evolution-based metrics) against Set 6 (only evolution-based metrics);

and Set 4 (combination of smell-based metrics and structural metrics) against Set 5 (only structural

metrics). We can see little difference when comparing the sets across all projects. This means

that using smell-based metrics did not impact the prediction.

Figure 5.7: Impact of smells related information

To corroborate this hypothesis, we performed Wilcoxon test (Rey and Neuhäuser, 2011)

and calculated the p-value for all results of ROC/AUC , between each comparison. Figure 5.8

shows the obtained results of the Wilcoxon test. For Set 1 against Set 2 the p-value was 0.871,

which means no statistical difference between the sets. When comparing Set 3 against Set 4

and Set 4 against Set 5, we have p-value less than 0.05 and 0.001 respectively, which means a

statistical difference on the results.

Figure 5.8: Statistical analysis - smell related information



41

To explore how different the results are between each set, we calculated the effect size.

For effect size analyses, we used Vargha and Delaney’s metric 𝐷̂ (Vargha and Delaney, 2000).

This measure ranges from 0 to 1 and defines the probability of a value, taken randomly from

the first sample, is higher than a value taken randomly from the second sample. A 𝑁𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒
magnitude ((𝐷̂ < 0, 56)) represents a very small difference among the values and usually does

not yield statistical difference. The 𝑆𝑚𝑎𝑙𝑙 (0, 56 ≤ 𝐷̂ < 0, 64) and 𝑚𝑒𝑑𝑖𝑢𝑚 (0, 64 ≤ 𝐷̂ < 0, 71)

magnitudes represent small and medium differences among the values, and may or not yield

statistical differences. Finally, a 𝐿𝑎𝑟𝑔𝑒 magnitude (0, 71 ≤ 𝐷̂) represents a significantly large

difference that usually can be seen in the numbers without much effort.

We can observe in Tables 5.4 and 5.5 that sets 3 and 4 has the best ROC/AUC when

compared to sets without smell-based metrics. However, when analyzing closely, we can see that

the effect size was negligible, that is, it had little significance.

Table 5.4: Effect size - Set 3 x Set 6

Set ROC Effect Size
Set 3 0.8060 ± 0.0690 best result
Set 6 0.8015 ± 0.0800 negligible magnitude

Table 5.5: Effect size - Set 4 x Set 5

Set ROC Effect Size
Set 4 0.7034 ± 0.0920 best result
Set 5 0.6985 ± 0.0910 negligible magnitude

Answer to RQ3: The results show that the use of smell-based metrics does not have a

significant impact on the performance of the models generated by our approach. Similar

results were obtained for all sets of features, for all algorithms and projects.

Implications: our findings are different from the ones reported in the literature. For instance the

work of Catolino et al. (2020) shows that the adoption of code smell-related information improves

the performance of different categories of models obtained with the traditional approaches.

Moreover, studies do not show a consensus on the use of structural metrics (Tsantalis et al., 2005;

Lu et al., 2012; Zhou et al., 2009). Our results shows that the addition of density and diversity of

smells does not contribute to improve performance of our approach. The use of a lower number

of features can be advantageous because makes the models simpler. The combination of different

kind of features and their influence in our approach should be better evaluated in further studies.

5.5.4 RQ4: What is the algorithm that leads our approach to produce the best results when

answering all RQs?

Answering previous RQs, we did not find great differences in the indicators values; great values

of AUC imply great values of other indicators. Similarly, we did not observe performance

improvements using the smell-based features. Then to answer RQ4 we consider the AUC

indicator and all sets.



42

Figure 5.9 presents a summary of the results. We can see that RF stands out in all

projects, being the best in 3, out of 5 projects, and only surpassed by LR and MLP respectively,

in commons-bcel and MLP in Pdfbox. It is worth to observe that commons-bcel has

the smallest average number of classes and samples in comparison with the others. We can also

highlight the DT algorithm, which reaches ROC/AUC values greater than 0.8 for all projects. LR

and MLP also reach values greater than 0.7, but they do not reach values greater than 0.8 in all

projects.

Figure 5.9: Algorithms performance

We also applied Kruskal Wallis test (Kruskal and Wallis, 1952) and calculated the

p-value for all results of ROC/AUC . The statistical difference for the algorithms has 95% of

confidence, as shown in Figure 5.10. The effect size presented small and negligible magnitudes

and can be seen in Table 5.6. Random forest obtained the best result among the algorithms

Figure 5.10: Statistical analysis algorithms performance - ROC/AUC

To complement our discussion, by using information from Table 5.2, we generated

Table 5.7. This table shows for each algorithm how many times it uses each one of the resample

techniques in all approaches. We observe that for our approach, in all 30 cases (5 projects and 6

sets of metrics), RF obtained the best results using ADA (17 times), and the same occurred for

the traditional approach, using ADA 15 times. The DT algorithm for our approach performed



43

Table 5.6: Effect Size - ROC/AUC

Algorithm ROC Effect Size
DT 0.7780 ± 0.0850 small magnitude

LogistRegression 0.7506 ± 0.0760 negligible magnitude

MLP 0.7812 ± 0.0910 negligible magnitude

RandomForest 0.7919 ± 0.1110 best result

better with the ADA technique (14 times), on both approaches. For LR, SMOTE stands out for

both approaches, appearing 10 times for our approach and 10 for the traditional one. The MLP

algorithm performed better in both approach using ROS, in our approach 16 times, while for the

traditional 15 times.

Table 5.7: Comparing resample techniques

Our Trad

ADA NONE ROS SMOTE ADA NONE ROS SMOTE

DT 14 2 4 10 14 1 6 9

LR 9 1 10 10 3 8 9 10

MLP 9 0 16 5 5 0 15 10

RF 17 0 5 8 15 0 4 11

Answer to RQ4: The analysis indicates that our approach produced the best results with

Random Forest. This happens for 3 out of 5 projects. MLP and LR leads our approach to

reach the second best performance, being best in 1 project each. We can highlight that ADA

is the resample technique that stood out the most when applying Random Forest algorithm,

in both approaches

Implications: the results obtained with our approach are similar to the ones reported in the

literature when the traditional approaches are applied, which reports that RF algorithm presents

the best performance for the CPCP problem (Malhotra and Khanna, 2019). Thus smarter

algorithms (e.g. Random Forest and Decision Trees) leads our approach to produce better results,

but it is interesting to observe that our approach works well with simple/less sophisticated learners

(e.g. Logistic Regression), which reach AUC values greater than 0.7. We also observe that

the use of resample techniques is important and their performance may vary according to the

algorithms. This and other pre-processing techniques should be further investigated.

5.5.5 RQ5: Which metrics are the most important for change-proneness prediction?

To calculate the most important features in the prediction of change-proneness we applied two

methods: Mean Decrease in Impurity (MDI) (Loh, 2011) and Information gain. To calculate

MDI we ran ExtraTreesClassifier, of scikit-learn, for each dataset. In both methods we evaluate

the set containing all features (Set 1).

In the first method we computed the MDI for each dataset individually and ranked the

10 most important features in each dataset, Figures 5.11. We then created a unique set of 50

features, the top 10 of each dataset. In this set of 50 features, we intersected the 10 most repeated

features. Figure 5.12 presents the result of this ranking. The LCH, WFR and FRCH appeared



44

Figure 5.11: Feature importance

in the top 10 across all datasets. ACD, ATAF, CHD, CSB, FANIN and FANOUT features are

among the top 10 in four out of five datasets, followed by WCD, with three datasets. We can

notice that only two of the top 10 are structural metrics (FANIN, FANOUT), which are associated

with class coupling.

To evaluate the information gain of features, we use the method mutual_info_classif
of scikit-learn with default settings, which is equivalent to the entropy calculation of Weka

(Witten et al., 1999). The information gain (as known as entropy) is calculated for each output

variable. This value ranges from 0 (no gain) to 1 (maximum of information gain).

In the information gain method, we computed the top 10 features for each dataset

individually, Table 5.8 presents the results. We then created a unique set of 50 features, the top

10 of each dataset. In this set of 50 features, we intersected the 10 most repeated features, Figure

5.13. The features CHD, FRCH, sumCyclomaticModified, and TACH performed best across all

datasets, followed by BOC, FCH, finalFieldsQty, LCH, and WFR with four out of five datasets.

The CHO feature is the last one in the ranking, ranking among the top 10 in just two datasets. As

in the MDI method, in the information gain method we can observe that the evolutionary metrics

performed better.



45

Figure 5.12: Feature importance using MDI

Table 5.8: Top 10 information gain of each dataset

Commons-bcel Common-io Junit4 pdfbox wro4j

Metric Info gain Metric Info gain Metric Info gain Metric Info gain Metric Info gain
TACH 0,154 TACH 0,301 TACH 0,178 TACH 0,199 TACH 0,294

FRCH 0,096 FRCH 0,152 WFR 0,112 WFR 0,094 WFR 0,147

CHD 0,083 WFR 0,149 FRCH 0,109 BOC 0,073 FRCH 0,122

innerClassesQty 0,081 BOC 0,116 BOC 0,101 FRCH 0,071 BOC 0,108

finalFieldsQty 0,079 CHD 0,113 CHD 0,092 SumCyclomaticModified 0,063 LCH 0,079

MaxCyclomaticModified 0,065 LCH 0,105 LCH 0,091 FCH 0,049 CHD 0,071

CHO 0,055 FCH 0,075 FCH 0,065 LCH 0,047 WCD 0,067

stringLiteralsQty 0,055 finalFieldsQty 0,069 SumCyclomaticModified 0,064 CHD 0,046 FCH 0,061

wmc 0,054 ATAF 0,066 CHO 0,051 finalFieldsQty 0,042 finalFieldsQty 0,045

SumCyclomaticModified 0,053 SumCyclomaticModified 0,065 SumEssential 0,040 LCA 0,039 SumCyclomaticModified 0,037

Figure 5.13: Information Gain



46

Answer to RQ5: The MDI and information gain analyzes show that evolutionary metrics

were present in 80% of the top 10 features in both methods. Structural metrics appeared in

only 20% of the top 10 features. The smell-based metrics did not appear among the top 10,

which reinforces the RQ3 findings, which states that these metrics have no impact on the

change-proneness prediction.

Implications: The result can be seen as an indication that the class history of changes plays a

predominant role in the chance of the class being changed in future versions. We also know that

this history does not necessarily have to be long, according to our RQ1, indicating that a period

of three releases would be enough. These results can help developers to create more robust and

objective tools to predict change-prone classes.

5.6 THREATS TO VALIDITY

Although we attempted to mitigate them to the best of our effort, there are some threats to the

validity of our results. Below we present them, according to the taxonomy of Wohlin et al.

(2000).

Internal Validity: We could make mistakes in the extraction, selection, and preparation of the

data. A possible threat is related to the data treatment and preprocessing, as well as the techniques

used. To minimize them, we followed a methodology including a set of steps commonly reported

in the literature, and make the data available for a possible replication study. The algorithms

were configured with standard parameters, then a study testing and optimizing other parameters

can lead to better results.

External Validity: We analyze 5 systems with different sizes, diverse application domains and

from distinct developers. However, all systems were developed in Java. Therefore, the limited

number of projects and the predominance of only one language is a threat, and make it not

possible to generalize the obtained results to a different context.

Conclusion Validity: The conclusions may be dependent on the indicators used in our analysis.

To minimize such a threat, we employed different indicators and statistical tests.

5.7 CONCLUDING REMARKS

This chapter presented the experiments conducted for the evaluation of our history-based approach

in relation to the traditional one. We introduced and evaluated the results of 5 research questions,

as well their implications. The results show that our approach surpasses the traditional approach.

We also showed that the smell-based metrics had no impact on the prediction of change-prone

classes, and that the Random Forest algorithm obtained better results in most tested cases. We

also highlight, through feature importance techniques, that evolutionary metrics stood out in the

prediction of change-prone classes. In RQ5 we carried out a study to detect the most important

features, but due to time, we did not do a feature selection to create specialized models, this

would be interesting in future work. The next chapter discusses the final conclusions and research

directions.



47

6 CONCLUSIONS

This work introduced a history-based approach for the CPCP problem. This approach adopts the

sliding window method that allows considering the structure of the problem and the temporal

dependency between the instances obtained from different releases. In this way, each learning

instance is not limited to a fixed release, but contains the total or partial history of the class

changes. Our approach combines structural, evolutionary and smell-based metrics to predict

change-prone classes. We compare our work with the traditional approach, that associates metric

values with the class in a single version to predict its change-proneness, without taking into

account the history of the class throughout the project.

We analyzed 3 window sizes (2, 3, 4), the results point that to predict change-proneness

of a class is not necessary a long history; in the tested applications, 3 releases seems enough.

When comparing our approach with the traditional, results show that our approach, independently

of the algorithm and set of features, contributes to improve performance in the great majority of

the cases. Regarding performance, the execution time of both approaches is similar. The biggest

bottleneck is found in the data collection and pre-processing phase, but this is a problem that

affects both approaches.

Other aspect of the work was to test if smell-based features have influence on the

performance of the models, for that we have tested models with and without density and

diversity of smells. The results show that the smell-based metrics does not contribute to improve

performance of our approach. When analyzing the individual performance of the algorithms,

Random Forest algorithm was the best. We can also observe that our approach works well with

other tested algorithms, e.g. Decision Tree, with ROC/AUC above 0.7. Allied to the algorithms,

the use of resample proved to be effective in improving performance of the models. We can

highlight that the best results were obtained when some resample technique was applied, e.g.

ADA. We also evaluated the feature importance in the prediction of change-proneness. The

results show that evolutionary metrics are predominant on the change-proneness. Structural

metrics stood out discreetly, 2 out of 10 most important. Smell-based metrics did not stand out

among the most important.

In this way, our work can lead researchers to understand the aspects of history-based

representation and the role of evolutionary, structural and smell-related metrics in predicting

change-prone classes. Researches can develop precise tools to recommend change-prone classes.

In the practical field, our approach helps developers to better focus on change-prone classes to

minimize the number of future changes, guide maintenance staff and resource distributions in

order to reduce future efforts and costs.

6.1 ACADEMIC CONTRIBUTION

Throughout the work, some aspects of the research were submitted to the academic community,

generating the following publications:

• R. C. Silva, P. R. Farah, S. R. Vergilio. - "Machine Learning for Change-Prone Class

Prediction: A History-Based Approach", Brazilian Symposium on Software Engineering

(SBES), 2022.

• E. A. da Roza, J. A. P. Lima, R. C. Silva and S. R. Vergilio, "Machine Learning Regression

Techniques for Test Case Prioritization in Continuous Integration Environment", IEEE



48

International Conference on Software Analysis, Evolution and Reengineering (SANER),

2022, pp. 196-206, doi: 10.1109/SANER53432.2022.00034.

• P. R. Farah, T. Mariani, E. A. da Roza, R. C. Silva, S. R. Vergilio, "Unsupervised Learning

For Refactoring Pattern Detection", IEEE Congress on Evolutionary Computation (CEC),

2021, pp. 2377-2384, doi: 10.1109/CEC45853.2021.9504804.

In order that the study can be replicated, and new academic discussions can be fostered,

we make all source codes and results available in our repository (Silva, 2022). It contains the set

of scripts used to extract all the metrics used in the system, as well as scripts for executing the

approach. Scripts for data analysis are also available.

6.2 LIMITATIONS AND FUTURE WORK

Due to the difficulty of extracting and processing the metrics, the approach studied a limited set

of repositories. It would be interesting to expand the dataset. We only used three window sizes,

it would be interesting to test other window thresholds, to better explore the boundaries between

small windows and large windows. Another limitation is that the study is limited to the Java

programming language. An interesting extension of the work would be to cover other languages,

so that other types of projects can be analyzed. We also intend to investigate sets of applications

from the same domain, to create more specific models for these problems. We did an analysis on

the features, but we did not generate a model with the best features, it would be interesting in

future work to make this comparison.

As future work, we intend to expand the approach by applying Deep Learning neural

networks, since they naturally have the power to analyze the state of variables in different versions,

e.g. Long short-term memory (LSTM) networks can be used for speech recognition, time series

prediction, among others. For this, it would also be necessary to expand the dataset, since these

networks demand a large amount of data.

We also plan further analysis on how other types of metrics sets can impact the change-

prone class prediction. We also plan on investigating other history-based representations along

with others ML algorithms.



49

REFERENCES

Al-Khiaty, M., Abdel-Aal, R., and Elish, M. (2017). Abductive network ensembles for improved

prediction of future change-prone classes in object-oriented software. International Arab
Journal of Information Technology (IAJIT), 14(6).

Alhawi, C. and Abdilrahim, A. (2020). Studying the Relation Between Change- and Fault-
proneness - Are Change-prone Classes More Fault-prone, and Vice-versa? Bachelor’s thesis,

Linnaeus University.

Aniche, M. (2015). Java code metrics calculator (CK). Available in

https://github.com/mauricioaniche/ck/.

Arisholm, E., Briand, L., and Foyen, A. (2004). Dynamic coupling measurement for object-

oriented software. IEEE Transactions on Software Engineering, 30(8):491–506.

Bansiya, J. and Davis, C. (2002). A hierarchical model for object-oriented design quality

assessment. IEEE Transactions on Software Engineering, 28(1):4–17.

Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C. (2004). A study of the behavior of several

methods for balancing machine learning training data. SIGKDD Explor. Newsl., 6(1):20–29.

Benestad, H. C., Anda, B., and Arisholm, E. (2010). Understanding cost drivers of software

evolution: A quantitative and qualitative investigation of change effort in two evolving software

systems. Empirical Software Engineering, 15(2):166–203.

Bengio, Y., Goodfellow, I., and Courville, A. (2017). Deep learning, volume 1. MIT press

Massachusetts, USA:.

Bieman, J., Straw, G., Wang, H., Munger, P., and Alexander, R. (2003). Design patterns and

change proneness: an examination of five evolving systems. In Proceedings. 5th International
Workshop on Enterprise Networking and Computing in Healthcare Industry (IEEE Cat.
No.03EX717), pages 40–49.

Bieman, J. M. and Kang, B.-K. (1995). Cohesion and reuse in an object-oriented system. ACM
SIGSOFT Software Engineering Notes, 20(SI):259–262.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information science and

statistics. Springer, 1st ed. 2006. corr. 2nd printing edition.

Brown, W., Malveau, R., Brown, W., McCormick, H. I., and Mowbray, T. (1999). Refactoring –
Improving the Design of Existing Code. Addison-Wesley.

Caprio, F., Casazza, G., Penta, M., and Villano, U. (2001). Measuring and predicting the linux

kernel evolution. In Proceedings of the International Workshop of Empirical Studies on
Software Maintenance.

Catolino, G. and Ferrucci, F. (2018). Ensemble techniques for software change prediction: A

preliminary investigation. In 2018 IEEE Workshop on Machine Learning Techniques for
Software Quality Evaluation (MaLTeSQuE), pages 25–30. IEEE.



50

Catolino, G. and Ferrucci, F. (2019). An extensive evaluation of ensemble techniques for software

change prediction. Journal of Software: Evolution and Process, 31(9):e2156.

Catolino, G., Palomba, F., De Lucia, A., Ferrucci, F., and Zaidman, A. (2017). Developer-related

factors in change prediction: An empirical assessment. In 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), pages 186–195.

Catolino, G., Palomba, F., De Lucia, A., Ferrucci, F., and Zaidman, A. (2018). Enhancing

change prediction models using developer-related factors. Journal of Systems and Software,

143:14–28.

Catolino, G., Palomba, F., Fontana, F. A., De Lucia, A., Andy, Z., and Ferrucci, F. (2020).

Improving change prediction models with code smell-related information. Empirical Software
Engineering, 25:49–95.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE: Synthetic

minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357.

Chidamber, S. and Kemerer, C. (1994). A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493.

Destefanis, G., Counsell, S., Concas, G., and Tonelli, R. (2014). Software metrics in agile

software: An empirical study. In International Conference on Agile Software Development,
pages 157–170. Springer.

Dietterich, T. G. (2002). Machine learning for sequential data: A review. In Caelli, T., Amin, A.,

Duin, R. P. W., de Ridder, D., and Kamel, M., editors, Structural, Syntactic, and Statistical
Pattern Recognition, pages 15–30, Berlin, Heidelberg. Springer Berlin Heidelberg.

Elish, M. O. and Al-Rahman Al-Khiaty, M. (2013). A suite of metrics for quantifying historical

changes to predict future change-prone classes in object-oriented software. Journal of Software:
Evolution and Process, 25(5):407–437.

Eski, S. and Buzluca, F. (2011). An empirical study on object-oriented metrics and software

evolution in order to reduce testing costs by predicting change-prone classes. In 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation Workshops,
pages 566–571.

Fluri, B., Wursch, M., Pinzger, M., and Gall, H. (2007). Change Distilling:Tree differencing

for fine-grained source code change extraction. IEEE Transactions on Software Engineering,

33(11):725–743.

Fowler, M. (1999). Refactoring – Improving the Design of Existing Code. Addison-Wesley.

Fowler, M. and Beck, K. (1999). Refactoring: Improving the Design of Existing Code. Addison-

Wesley, Boston, MA, USA.

Gall, H. C., Fluri, B., and Pinzger, M. (2009). Change analysis with Evolizer and ChangeDistiller.

IEEE software, 26(1):26–33.

Giger, E., Pinzger, M., and Gall, H. C. (2012). Can we predict types of code changes? an

empirical analysis. In 2012 9th IEEE working conference on Mining Software Repositories
(MSR), pages 217–226. IEEE.



51

Godara, D., Choudhary, A., and Singh, R. K. (2018). Predicting change prone classes in open

source software. International Journal of Information Retrieval Research (IJIRR), 8(4):1–23.

Godara, D. and Singh, R. (2014). A review of studies on change proneness prediction in object

oriented software. International Journal of Computer Applications, 105(3):0975–8887.

Hart, P. (1968). The condensed nearest neighbor rule (corresp.). IEEE Transactions on Information
Theory, 14(3):515–516.

He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn: Adaptive synthetic sampling approach

for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), pages 1322–1328.

He, H. and Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications.
Wiley-IEEE Press, 1st edition.

Henry, S. and Kafura, D. (1981). Software structure metrics based on information flow. IEEE
Transactions on Software Engineering, 1(5):510–518.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization, technical

report - tr06. Technical Report, Erciyes University.

Kaur, K. and Jain, S. (2017). Evaluation of machine learning approaches for change-proneness

prediction using code smells. Advances in Intelligent Systems and Computing, 515.

Khanna, M., Priya, S., and Mehra, D. (2021). Software change prediction with homogeneous

ensemble learners on large scale open-source systems. In 17th IFIP International Conference
on Open Source Systems (OSS), pages 68–86. Springer International Publishing.

Khomh, F., Di Penta, M., and Gueheneuc, Y.-G. (2009). An exploratory study of the impact

of code smells on software change-proneness. In 2009 16th Working Conference on Reverse
Engineering, pages 75–84.

Khomh, F., Di Penta, Massimiliano an Guéhéneuc, Y.-G., and Antonio, G. (2011). An exploratory

study of the impact of antipatterns on class change- and fault-proneness. Empirical Software
Engineering, 17:243–275.

Koru, A. and Tian, J. (2005). Comparing high-change modules and modules with the highest

measurement values in two large-scale open-source products. IEEE Transactions on Software
Engineering, 31(8):625–642.

Kruskal, W. H. and Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis.

Journal of the American Statistical Association, 47(260):583–621.

Kubat, M. (2015). An Introduction to Machine Learning. Springer Publishing Company,

Incorporated, 1st edition.

Kumar, L., Lal, S., Goyal, A., and Murthy, N. L. B. (2019). Change-proneness of object-oriented

software using combination of feature selection techniques and ensemble learning techniques.

In Proceedings of the 12th Innovations on Software Engineering Conference (Formerly Known
as India Software Engineering Conference), ISEC’19, New York, NY, USA. Association for

Computing Machinery.



52

Lanza, M. and Marinescu, R. (2010). Object-Oriented Metrics in Practice: Using Software
Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems.
Springer.

Li, W. and Henry, S. (1993). Object-oriented metrics that predict maintainability. Journal of
Systems and Software, 23(2):111–122. Object-Oriented Software.

Lindvall, M. (1998). Are large C++ classes change-prone? An empirical investigation. Journal
of Software: Practice and Experience, 28(15):1551–1558.

Livingston, F. (2005). Implementation of breiman’s random forest machine learning algorithm.

Machine Learning Journal Paper.

Loh, W.-Y. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data
mining and knowledge discovery, 1(1):14–23.

Lorenz, M. and Kidd, J. (1994). Object-oriented software metrics - a practical guide. Prentice-Hall,

Inc.

Lu, H., Zhou, Y., X, B., Leung, H., and Chen, L. (2012). The ability of object-oriented metrics

to predict change-proneness: a meta-analysis. Empirical Software Engineering, 17:200–242.

Malhotra, R. and A., B. (2015). Predicting change using software metrics: A review. In IEEE
International Conference on Reliability, Infocom Technologies and Optimization (ICRITO),
pages 1–6.

Malhotra, R. and Bansal, A. J. (2016). Software change prediction: a literature review.

International Journal of Computer Applications in Technology, 54(4):240–256.

Malhotra, R., Kapoor, R., Aggarwal, D., and Garg, P. (2021). Comparative study of feature

reduction techniques in software change prediction. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), pages 18–28.

Malhotra, R. and Khanna, M. (2013). Investigation of relationship between object-oriented

metrics and change proneness. International Journal of Machine Learning and Cybernetics,
4:273–286.

Malhotra, R. and Khanna, M. (2018a). Particle swarm optimization-based ensemble learning for

software change prediction. Information and Software Technology, 102:65–84.

Malhotra, R. and Khanna, M. (2018b). Prediction of change prone classes using evolution-based

and object-oriented metrics. Journal of Intelligent & Fuzzy Systems, 34:1755–1766.

Malhotra, R. and Khanna, M. (2019). Software change prediction: A systematic review and

future guidelines. e-Informatica Software Engineering Journal, 13(1):227–259.

Malhotra, R. and Khanna, M. (2021). On the applicability of search-based algorithms for software

change prediction. International Journal of Systems Assurance Engineering and Management.

Malhotra, R. and Lata, K. (2020). An empirical study on predictability of software maintainability

using imbalanced data. Software Quality Journal, 28.



53

Martins, A. D. F., Melo, C. S., Monteiro, J. M., and de Castro Machado, J. (2020). Empirical

study about class change proneness prediction using software metrics and code smells. In

International Conference on Enterprise Information Systems (ICEIS), pages 140–147.

Massoudi, M., Jain, N. K., and Bansal, P. (2021). Software defect prediction using dimension-

ality reduction and deep learning. In 2021 Third International Conference on Intelligent
Communication Technologies and Virtual Mobile Networks (ICICV), pages 884–893.

McCabe, T. (1976). A complexity measure. IEEE Transactions on Software Engineering,

SE-2(4):308–320.

Melo, C., Lima da Cruz, M., Martins, A., Filho, J., and Machado, J. (2020a). Time-series

approaches to change-prone class prediction problem. In Proceedings of the 22nd International
Conference on Enterprise Information Systems - Volume 2: ICEIS, pages 122–132. INSTICC,

SciTePress.

Melo, C. S. (2020). Supporting change-prone class prediction. Master’s thesis, Universidade

Federal do Ceará.

Melo, C. S., da Cruz, M. M. L., Martins, A. D. F., da Silva Monteiro Filho, J. M., and

de Castro Machado, J. (2020b). Time-series approaches to change-prone class prediction

problem. In International Conference on Enterprise Information Systems (ICEIS), pages

122–132.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Pritam, N., Khari, M., Hoang Son, L., Kumar, R., Jha, S., Priyadarshini, I., Abdel-Basset, M.,

and Viet Long, H. (2019a). Assessment of code smell for predicting class change proneness

using machine learning. IEEE Access, 7:37414–37425.

Pritam, N., Khari, M., Kumar, R., Jha, S., Priyadarshini, I., Abdel-Basset, M., Long, H. V.,

et al. (2019b). Assessment of code smell for predicting class change proneness using machine

learning. IEEE Access, 7:37414–37425.

Rey, D. and Neuhäuser, M. (2011). Wilcoxon-Signed-Rank Test, pages 1658–1659. Springer

Berlin Heidelberg, Berlin, Heidelberg.

Riedmiller, M. (1994). Advanced supervised learning in multi-layer perceptrons — from

backpropagation to adaptive learning algorithms. Computer Standards & Interfaces, 16(3):265–

278.

Romano, D. and Pinzger, M. (2011). Using source code metrics to predict change-prone Java

interfaces. In 2011 27th IEEE International Conference on Software Maintenance (ICSM),
pages 303–312.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386.

Rêgo, D. C. G. (2018). Understanding and Improving Batch Refactoring in Software Systems.
PhD thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro.



54

Scitools (2021). What metrics does undertand have? https://support.scitools.com/
t/what-metrics-does-undertand-have/66.

Silva, R. d. C. (2022). Supplementary Material - Machine Learning for Change-Prone Class Predic-

tion: A History-Based Approach. URL https://github.com/carvalho7976/ChangeProneTools.

Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy.

Remote sensing of Environment, 62(1):77–89.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of
the Royal Statistical Society: Series B (Methodological), 36(2):111–133.

Tomek, I. (1976). Two modifications of cnn. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-6(11):769–772.

Tsantalis, N., Chatzigeorgiou, A., and Stephanides, G. (2005). Predicting the probability of change

in object-oriented systems. IEEE Transactions on Software Engineering, 31(7):601–614.

Tsoukalas, D., Kehagias, D., Siavvas, M., and Chatzigeorgiou, A. (2020). Technical debt

forecasting: An empirical study on open-source repositories. Journal of Systems and Software,

170:110777.

Vargha, A. and Delaney, H. (2000). A critique and improvement of the "cl" common language

effect size statistics of mcgraw and wong. Journal of Educational and Behavioral Statistics - J
EDUC BEHAV STAT, 25.

Witten, I. H., Frank, E., Trigg, L., Hall, M., Holmes, G., and Cunningham, S. J. (1999). Weka:

Practical machine learning tools and techniques with java implementations.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2000).

Experimentation in Software Engineering: An Introduction. Kluwer Academic Publishers.

Zhou, Y., Leung, H., and Xu, B. (2009). Examining the potentially confounding effect of

class size on the associations between object-oriented metrics and change-proneness. IEEE
Transactions on Software Engineering, 35(5):607–623.

Zhu, X., He, Y., Cheng, L., Jia, X., and Zhu, L. (2018). Software change-proneness prediction

through combination of bagging and resampling methods. Journal of Software: Evolution and
Process, 30(12):e2111.


