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RESUMO

Na área da Computação Bio-Inspirada, Redes Neurais Artificiais (ANNs) e Algoritmos Evolutivos

(EAs) são dois tópicos muito populares, frequentemente aplicados a uma variedade de problemas.

Aprendizagem Profunda (DL) tem tido sucesso no processo de automação da engenharia de

características, sendo amplamente aplicada para diversas tarefas, como, por exemplo, reconheci-

mento de fala, classificação, segmentação de imagens, predição de séries temporais, dentre outras.

Redes Neurais Profundas (DNNs) incorporam o poder de aprender padrões através dos dados,

seguindo um esquema ponta-a-ponta, e expandindo a aplicabilidade em problemas do mundo

real, sendo que menos pré-processamento é necessário. EAs podem ser utilizados no projeto

de soluções para problemas complexos como, por exemplo, robôs, placas de circuitos, e outros

algoritmos, através do uso da Programação Genética (GP). GP utiliza dos mesmos princípios que

outros algoritmos evolutivos, evoluindo uma população de soluções, e modificando elas através

de operadores de recombinação, buscando pelas melhores soluções, definidas por uma métrica

de qualidade. Com o rápido crescimento em ambos escala e complexidade, novos desafios

surgiram com relação ao projeto manual e configuração de DNNs. Abordagens evolucionárias

têm crescido em popularidade para esse assunto, com mais estudos na área de Neuro-evolução,

várias técnicas baseadas em GP tem sido aplicadas de diversas maneiras. Neste trabalho, uma

abordagem evolucionária baseada em gramática, chamada GE/DNN, está sendo proposta para

o projeto de DNNs. Ela consiste de uma versão modificada da Evolução Gramatical (GE),

também buscando inspiração em outros trabalhos relacionados ao projeto de algoritmos, sendo

composta por três componentes principais: a gramática, o mapeamento, e o motor de busca. A

abordagem é validada em três diferentes aplicações: no projeto de Redes Neurais Convolucionais

(CNNs) para a classificação de imagens, U-Nets para segmentação de imagens, e Redes Neurais

de Grafos (GNNs) para classificação de textos. Os resultados mostram que a GE/DNN pode

gerar diferentes arquiteturas de DNNs de forma eficiente, sendo adaptada para cada problema, e

aplicando escolhas que diferem do que é visto usualmente em redes projetadas manualmente.

A abordagem tem mostrado grande potencial em relação ao projeto de arquiteturas, atingindo

resultados competitivos comparado as demais abordagens comparadas.

Palavras-chave: Algoritmos Evolutivos Programação Genética Projeto Automático Evolução

Gramatical Redes Neurais Profundas



ABSTRACT

In the field of Bio-Inspired Computation, Artificial Neural Networks (ANNs) and Evolutionary

Algorithms (EAs) are two popular topics, often applied to a variety of problems. Deep Learning

(DL) has been very successful in automating the feature engineering process, widely applied for

various tasks, such as speech recognition, classification, segmentation of images, time-series

forecasting, among others. Deep neural networks (DNNs) incorporate the power to learn

patterns through data, following an end-to-end fashion, and expand the applicability in real

world problems, since less pre-processing is necessary. EAs can be used to design solutions for

complex problems, like robots, circuit boards, and designing other algorithms, through the use

of Genetic Programming (GP). GP uses the same principles as other evolutionary algorithms,

evolving a population of solutions, and modifying them through the use of recombination

operators, searching for the fittest solutions, defined by a quality measure. With the fast growth

in both scale and complexity, new challenges have emerged regarding the manual design and

configuration of DNNs. Evolutionary approaches have been growing in popularity for this subject,

as Neuroevolution is studied more, with many GP-based techniques being applied in different

ways. In this work, an evolutionary grammar-based GP approach, called GE/DNN, is being

proposed for the design of DNNs. It consists of a modified version of Grammatical Evolution

(GE), also drawing inspiration from other works related to the design of algorithms, and it is

composed of three main components: the grammar, mapping, and search engine. The approach

is validated in three different applications: the design of Convolutional Neural Networks (CNNs)

for image classification, U-Nets for image segmentation, and Graph Neural Networks (GNNs)

for text classification. The results show that GE/DNN can efficiently generate different DNN

architectures, being adapted to each problem, and employing choices that differ from what is

usually seen in networks designed by hand. This approach has shown a lot of promise regarding

the design of architectures, reaching competitive results with the compared approaches.

Keywords: Evolutionary algorithms Genetic Programming Automatic Design Grammatical

Evolution Deep Neural Networks
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1 INTRODUCTION

Bio-Inspired Computing is the field of study which seeks to solve computer science problems

using models based or inspired in the nature [21]. Bio-Inspired methods focuses on understanding

existing patterns, to then apply them in the problem solution, developing new technologies and

tuning existing systems. Among the main areas of research for bio-inspired computing, we have:

• Artificial Neural Networks: inspired by the human brain [78];

• Evolutionary Computing: based on the evolution theory [5];

• Swam intelligence: inspired by the social behavior of birds, bees, etc [27];

• Artificial Immunologic Systems: based on the immune system of human beings [16].

The field of Evolutionary Computation (EC) is well known by the constant efforts of

researchers into mimicking the mechanisms of biological evolution in order to develop robust

algorithms for problems of adaptation and optimization [5]. EC mainly studies population-based

trial-and-error problem solvers, called Evolutionary Algorithms (EA), that employ metaheuristics

and stochastic strategies. EAs maintain a set of candidate solutions that are generated and

iteratively updated. Each new iteration is produced by stochastically removing less desired

solutions, and introducing small random changes. This results in a set of solutions that will

gradually “evolve”, increasing the quality of its solutions.

A very common example of EA is the Genetic Algorithm (GA) [70], which was inspired

by the theory of Darwin on the evolution of species, where only the fittest individuals survive

through a number of generations [28, 40]. It also maintains a population of candidate solutions,

from where individuals are selected and recombined, using procedures analogous to crossover

and mutation from biology, in order to produce new solutions, which can replace the parents if

their fitness is better than the the previous ones.

EAs can also used to design solutions of more complex problems, like robots [50],

circuit boards [49], and other algorithms [57], through the use of Genetic Programming. Genetic

Programming (GP) is a variation of evolutionary algorithms, proposed for the design of computer

programs [84]. GP also follows the same principles of other EAs, having a population of

computer programs that iteratively evolves, applying recombination operators in order to produce

better and improved solutions. Traditional GP uses syntax trees to represent how the programs

are encoded. The nodes are used to represent the modules or procedures of a program, and the

connections between them are used as inputs and outputs. Grammatical Evolution (GE) [90] is

another popular option, among the GP variations, that offers great flexibility to work with the

design of computer programs. GE introduces a different way to work with solutions using an

indirect encoding, which are encoded as an integer vector of variable-length, and a context-free

grammar is used to describe the pieces of the program and the rules that express how these pieces

can be combined in order to generate new programs. Other GP approaches include a graph-based

variation, called Cartesian GP [74], and also Linear GP [45], to cite the more common.

Artificial Neural Networks (ANNs) is another popular topic in the bio-inspired computing

and Machine Learning (ML) fields. ANNs have been developed for many years, trying to use the

available computational power to design intelligent systems, following the natural intelligence

displayed by humans or animals [89]. ANNs are powerful mathematical models that learn from

data, following a similar trial-and-error scheme seen in evolutionary algorithms [78], to be able to
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make decisions without being explicitly programmed to [49]. ML algorithms are used in a wide

variety of applications, such as in medicine [31], email filtering [79], speech recognition [22],

and computer vision [18], where it is difficult or unfeasible to develop conventional algorithms to

perform the needed tasks [41].

Deep learning (DL) techniques have obtained remarkable achievements on various

tasks, such as image recognition, object detection, and language modeling. However, building a

high-quality DL system for a specific task highly relies on human expertise, hindering its wide

application.

Traditional ML methods require careful engineering and considerable domain expertise

to design a feature extractor that could transform raw data into suitable representations learned

by the system, to classify or detect patterns in the input [53]. Deep Learning (DL) was proposed

to overcome such challenges, by including the steps related to figuring out the best representation

for the data, as part of the network. DL models include multiple levels of representation, where

each level learns characteristics from the data, starting simple, and building into more complex

characteristics, feeding the systems with raw data, and learning the representation from data,

automatically. However, building a high-quality DL system for a specific task highly relies on

human expertise, hindering its wide application. Deep Neural Network (DNN) architectures are

growing fast, in both scale and complexity, presenting new challenges regarding the configuration

of these systems. Experts on the subject know how to design and optimize a handful of

configuration parameters through experimentation, however, DNNs have complex topologies and

hundreds of hyperparameters, which require more time and resources to be tuned [72].

Neural Architecture Search (NAS) can be defined as the process of automating architec-

ture engineering [30, 32, 115]. NAS techniques are mainly categorized into three groups: The

Search Space, which defines which architectures can be represented; The Search Strategy, which

details how the space is explored; And the Performance estimation strategy, which defines how

to measure the quality of architectures. Neuroevolution [34, 72, 87, 93, 97] can be considered as

a sub-field on NAS techniques, focusing on evolutionary-based techniques applied to NAS. A

major inspiration of neuroevolution comes from the evolution of brains in nature, asking whether

these rough abstractions of brains might be evolved artificially through EAs [97].

Recently, Dynamic Structured Grammatical Evolution (DSGE) has been proposed for

the design of DNNs [3, 57, 58], as a variation of the traditional Grammatical Evolution (GE)

[90]. DSGE was proposed offering more flexibility to the designed networks, and overcoming

known issues faced by the traditional approach. As a grammar-based technique, the space of

possible designs is defined through a grammar that contains the building blocks for constructing

the networks. According to the defined rules, these building blocks describe the many different

components of a solution (DNN) that can be combined in many different ways, to construct an

architecture offering flexibility and reaching a wider amount of designs with simpler rules.

The automatic design of DNNs is getting more attention [6, 30, 105, 113]. As the

performance of top human-designed networks gets refined, the more difficult it becomes to design

even better networks. At the same time it creates obstacles, it offers the perfect opportunity to try

approaches that deal with the automatic design of algorithms. There are works that successfully

applied automatic configuration techniques, which outperformed their hand-designed counterparts

[65].

In this work, an evolutionary grammar-based approach for the design of DNNs is

proposed. The approach is called GE/DNN, which stands for Grammatical Evolution for Deep

Neural Networks. It consists of a modified version of GE, also drawing inspiration from other

works related to the design of algorithms, and it is composed of three main components: the

grammar, mapping function, and search engine. Firstly, the structure of the grammar is based
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on the work of [4], expanding it to describe both the layers and hyperparameters of a neural

network, also including rules that modify how the architecture grows. Secondly, the improved

encoding and mapping processes from DSGE [3] were incorporated along with the GA as the

search engine. Furthermore, new genetic operators were proposed to take full advantage of the

new encoding and grammar. Thirdly, the evaluation of the solutions was based on the works of

[4, 100], where the network first is trained following the traditional weight-optimization scheme,

calculating the fitness using a validation set. After the evolution is over, the best designs are then

re-trained, and then have their final fitness calculated using the test set.

One of the strengths of GE/DNN is the flexibility it offers, and how easy it is to be

adapted to different problems. To demonstrate this, three different applications are presented,

including problems of different domains, addressing a different type of network, employing an

individual grammar, mapping process, and evaluation strategy, designed specifically for that

domain.

In the first application, we deal with the design of CNNs for image classification tasks.

Image classification is the process of categorizing and labeling groups of pixels or vectors within

an image based on specific rules [96]. A grammar that includes the most common layers used

for image tasks is introduced. Furthermore, the grammar also includes the representation of

residual blocks [37], a custom layer composed of a well defined group of simpler layers. The

use of custom blocks works as a shortcut for designing more elaborated architectures, as it

addresses complex structures built with fewer blocks. An empirical study was made to evaluate

the approach on the CIFAR-10 [51] dataset, comparing the results with other state-of-the-art

evolutionary approaches.

In the second application, we investigate the design of U-Nets for image segmentation

tasks. Segmenting images consists of assigning a label to each pixel of an image in order to

simplify the information, modifying it into a representation which is easier to analyze [95]. We

use a symmetric grammar, which offers an easy and flexible way to generate various U-shaped

networks. Two image segmentation datasets are used, the BSDS500 [2] and ISBI12 [15],

searching for a network design that best performs in each dataset, and then the results are

compared with the original U-Net using 4 image similarity metrics.

The third application covers the design of DNNs for text classification. This study

was performed as part of another work, developed in conjunction with a colleague, and apply

the proposed approach to problems not related to images, verifying the adaptability of the

method. The proposed grammar is based on different Graph Neural Network (GNNs) approaches

[11, 36, 47, 48, 106], to design networks that will be used along with a robust representation

generator for texts, the Sentence-Bert [86]. Experiments then compared the designed networks,

combining these GNN approaches with the individual approaches.

The major contribution of this study is to explore the use of a grammar-based EA in the

design of DNNs, and propose a flexible tool that is extendable to a variety of neuroevolution

problems. To achieve this, the grammar structure must allow the use of any type of layer, including

their hyperparameters. Furthermore, propose ways to manipulate the architecture, doing more

than just selecting which pieces will be used, but also how they are going to be used. In addition

to that, minor goals can be described as follows, which contribute to achieve the major goal:

• Study of different neuroevolution techniques;

• Explore the variety of neural networks and applications;

• Propose variations of the DSGE approach to design DNNs;

• Design a flexible grammar to handle different networks.
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The remainder of this work is structured as follows. In Chapter 2, we present an

introduction to subjects, such as Evolutionary Computation, Genetic Programming, and Neural

Networks, subjects that are heavily addressed in the proposed approach. In Chapter 3, we present

a collection of previous studies on NAS and neuroevolution techniques, covering some different

approaches used over time, and focusing on GP-based approaches. Next, Chapter 4 describes

our grammar-based approach based on DSGE, providing more details regarding the grammar,

mapping, and search process, adapted for the design of DNNs. Moreover, in Chapter 5, we split

our experiments into different sections, each covering the different applications we tested using

our approach, along with the experiments and evaluation of each scenario. In Section 5.2, we

cover our first application, on image classification; Section 5.4, describes the second application,

on image segmentation. Section 5.3, presents the third application, on text classification; and

Finally, in Chapter 6 we discuss the conclusions and propose future ideas related to this work.
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2 BACKGROUND

This chapter covers the main subjects that are relevant for this study, presenting an introduction

to each of them. First, a brief explanation about evolutionary computation is given, introducing

two population algorithms, evolution strategy, and genetic algorithm. Then, GP is presented,

which is a commonly used technique for designing computer programs, inspired by evolutionary

algorithms. GP-based variants are also presented, including the tree-based and grammar-based,

focusing on a grammar-based variant, the DSGE. Moreover, an introduction to DNNs is given,

presenting an overview about the different layers, parameters, and architectures used for most

networks. It is also described how these networks are trained, and tested, with different

optimizers, and how different metrics are employed for the quality assessment. Furthermore, DL

is introduced, including the differences between deep and shallow networks, and also describing

two architectures that are commonly used for some DL problems.

2.1 EVOLUTIONARY COMPUTATION

In computer science, researchers put lot of effort into mimicking mechanism of biological

evolution in order to develop powerful algorithms for problems of adaptation and optimization,

creating what nowadays is called Evolutionary Computation (EC) [5]. In technical terms, EC is a

sub-field of artificial intelligence, that studies population-based trial-and-error problem solvers

with a metaheuristic or stochastic optimization character.

Typically, an optimization application requires finding a setting �𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ 𝑀
of free parameters of the system under consideration, such that a certain quality criterion

𝑓 : 𝑀 −→ 𝐼𝑅 (typically called the objective function) is maximized (or, equivalently, minimized).

In Evolutionary Algorithms (EAs), an initial set of candidate solutions is generated and

iteratively updated. Each new generation is produced by stochastically removing less desired

solutions, and introducing small random changes. In biological terminology, a population of

solutions is subjected to natural selection (or artificial selection) and mutation. As a result, the

population will gradually evolve to increase in fitness, in this case the chosen fitness function of

the algorithm.

EC techniques can produce highly optimized solutions in a wide range of problem

settings, making them popular in computer science. Many variants and extensions exist, suited

to more specific families of problems and data structures. Most EAs may be divided into

generational algorithms, which update the entire sample once per iteration, and steady-state

algorithms, which update the sample a few candidate solutions at a time. Common EAs include

the Genetic Algorithm (GA) and Evolution Strategies (ES); and there are both generational and

steady-state versions of each [70].

2.1.1 Evolution Strategy

The Evolution Strategy (ES) algorithm was developed by Ingo Rechenberg and Hans-Paul

Schwefel in 1960 [43]. ES is defined by a simple procedure for selecting individuals, and using

only mutation as the operators for introducing small changes. Among the simplest ES algorithms

is the (𝜇 + 𝜆) algorithm.

Algorithm 1 presents the basic pseudocode for ES. It starts with a population of 𝜇
individuals, generated randomly. Then, the following steps are repeated. First, the fitness for
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each solution is computed, keeping track of the best individual found so far, and deleting all bu

the 𝜇 fittest ones. Each of the 𝜇 fittest individuals gets to produce 𝜆/𝜇 children through mutation.

Then, all children replace the parents. These steps are repeated until the ideal solution is found,

or another stop criteria is met, for instance, execution time. Notice that 𝜆 should be a multiple of

𝜇. For example, if 𝜇 = 5 and 𝜆 = 20, then we have a “(5, 20) Evolution Strategy”.

Algorithm 1 The (𝜇 + 𝜆) Evolution Strategy

1: 𝜇← number of parents selected

2: 𝜆← number of children generanted by the parents

3: 𝑃← {}

4: for 𝜆 times do
5: 𝑃← 𝑃

⋃
{new random solution}

6: 𝐵𝑒𝑠𝑡 ← �
7: repeat
8: for each individual 𝑃𝑖 ∈ 𝑃 do
9: AssessFitness(𝑃𝑖)

10: if 𝐵𝑒𝑠𝑡 = � or Fitness(𝑃𝑖) > Fitness(𝐵𝑒𝑠𝑡) then
11: 𝐵𝑒𝑠𝑡 ← 𝑃𝑖
12: 𝑄 ← the 𝜇 individuals in 𝑃 whose fitness are the greatest

13: 𝑃← 𝑄
14: for each individual 𝑄 𝑗 ∈ 𝑄 do
15: for 𝜆/𝜇 times do
16: 𝑃← 𝑃

⋃
{Mutate(Copy(𝑄 𝑗 ))}

17: 𝑃← 𝑄
18: until 𝐵𝑒𝑠𝑡 is the ideal solution or we have run out of time

return 𝐵𝑒𝑠𝑡

2.1.2 Genetic Algorithm

The Genetic Algorithm (GA) was invented by John Holland, in 1970, at the University of

Michigan [70]. It is a population-based evolutionary strategy, similar to the ES 𝜇 + 𝜆. It iterates

through quality assessments (fitness), selecting and recombining individuals (solutions), from a

population of candidates.

The primary difference appears in how selection and recombination take place. While

ES selects all parents (𝜇) and create all the children (𝜆), the GA selects a few parents and

generates a few children, until enough children have been created. Recombination starts with an

empty population of children, where a selection operator will pick two parents from the original

population. Then, these parents are crossed through a Crossover operator, creating two new

children. Later, a Mutation operator is applied, provoking little changes to these children. This

process is repeated until the child population is filled, as shown in Algorithm 2. Since the child

population has the same number of solutions as the original population, the steps for creating

children are repeated for half the size (line 12: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒/2), as each iteration creates two new

individuals. The algorithm will repeat the steps of creating, recombining and replacing the

solutions in the population for a number of iterations, called generations, and saving the best

solution found so far, according to the fitness. The algorithm finally stops when reaching a

stopping criteria, for example, by finding the ideal solution, running out of time, or running for

number of generations.
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Algorithm 2 The Genetic Algorithm

1: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 ← desired population size

2: 𝑃← {}

3: for 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 times do
4: 𝑃← 𝑃

⋃
{new random solution}

5: 𝐵𝑒𝑠𝑡 ← �
6: repeat
7: for each individual 𝑃𝑖 ∈ 𝑃 do
8: AssessFitness(𝑃𝑖)
9: if 𝐵𝑒𝑠𝑡 = � or Fitness(𝑃𝑖) > Fitness(𝐵𝑒𝑠𝑡) then

10: 𝐵𝑒𝑠𝑡 ← 𝑃𝑖
11: 𝑄 ← {}

12: for 𝑝𝑜𝑝𝑠𝑖𝑧𝑒/2 times do
13: Parent 𝑃𝑎 ← SelectWithReplacement(𝑃)

14: Parent 𝑃𝑏 ← SelectWithReplacement(𝑃)

15: Children 𝐶𝑎, 𝐶𝑏 ← Crossover(Copy(𝑃𝑎), Copy(𝑃𝑏))
16: 𝑄 ← 𝑄

⋃
{Mutate(𝐶𝑎), Mutate(𝐶𝑏)}

17: 𝑃← 𝑄
18: until 𝐵𝑒𝑠𝑡 is the ideal solution or we have run out of time

return 𝐵𝑒𝑠𝑡

2.1.2.1 Encoding

There is no specific representation for the solutions, though it has classically been operated over

fixed-length vectors of boolean values. Representation will often vary according to the problem,

or in some cases, according to the algorithm. For example, most common representations are

lists of integers and/or floats, and in some cases, trees or any other data structure.

Some of the important aspects that are desirable in the encoding selected for an algorithm

or problem, includes the representation power. A binary encoding will have a limited range of

values (0 and 1), which is easy to generate new solutions, and recombine using crossover and

mutation. However, it might also require a very specific setup, or way to translate a binary string

into the actual solution.

In other cases, using solutions encoded as tree will have more representation power,

regarding all the characteristics of tree that can be used in your favor. Moreover, the down side

of it might be the difficulty of designing recombination operators for it, also generating new

solutions, and maybe requiring a repair mechanism for such cases.

2.1.2.2 Selection

The Selection procedure is used to select which solutions will be used for crossover and mutation.

While in ES, all 𝜇 best solutions are used, the Genetic Algorithm offers more options, and usually

not all solutions are used. This way, in GA a solution can be a parent to a undefined number of

child solutions, while in ES it is the opposite.

For example, the procedure SelectWithReplacement, mentioned in Algorithm 2, will

pick solutions randomly. Solutions are selected proportionally to their fitness values, so the best

solutions are selected more often, but also offering chance to low-fitness ones. This procedure is

also known as Roulette Selection, with a graphical representation in Figure 2.1.
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Figure 2.1: Roulette Selection example.

2.1.2.3 Crossover

Basically, the Crossover operator involves mixing and matching parts of two parents to form a

child. This mixing and matching will depend on the representation of the solutions. One classic

way of doing crossover in vectors is called One-Point Crossover.

In One-Point crossover, for a vector of length 𝑛, a random cut 𝑐 is selected between 0

and 𝑛. Then, all values which index is < 𝑐 are swapped, producing two children, as shown in

Figure 2.2. Some applications might decide to use only one of the two produced child solutions.

In such cases, any of the possible combinations can be used.

Figure 2.2: One-Point Crossover example.

The One-point crossover can be generalized, generating what is called a N-point

crossover. Figure 2.3 shows an example of a two-point crossover. It follows the same principles

from the one-point, generating 𝑁 cuts (2 in this case), and combining one part from each parent,

producing two new children solutions.

2.1.2.4 Mutation

The mutation is an operator that modifies a children solution and provides the chance of generating

new solutions that would not be possible through traditional Crossover. One simple way to

mutate a boolean vector is through the Bit-flip Mutation.

The Bit-flip Mutation iterates through the vector, generating a random value of a certain

probability (usually 1 / length of the vector). If the generated value is greater than a predefined

threshold, flip the bit in that index. Figure 2.4 shows an example of this procedure.
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Figure 2.3: Two-Point Crossover example.

Figure 2.4: Bit-flip Mutation example.

2.2 GENETIC PROGRAMMING

Genetic Programming (GP) is a domain-independent method for solving problems, by designing

computer programs, starting from a high-level statement of what needs to be done [84]. It

commonly follows the same structure of other evolutionary algorithms, breeding a population

of computer programs, and iteratively transforming these programs into a new generation by

applying recombination operators. The high-level statement is used to define the requirements of

a problem, and attempts of producing computer programs for solving it. A set of well-defined

preparatory steps can be used to describe the basic version of GP:

1. The set of terminals (e.g. the independent variables of the problem, zero-argument

functions, and random constants) for each branch of the to-be-evolved program,

2. The set of primitive functions for each branch of the to-be-evolved program,

3. The fitness measure (for explicitly or implicitly measuring the quality of individuals in

the population),

4. Certain parameters for controlling the run, and

5. The termination criterion and method for designating the result of the run.

The set of terminals and primitives specify the ingredients that are available to create the

computer programs. For some problems, the function set may consist of merely the arithmetic

functions of addition, subtraction, multiplication and division as well as a conditional branching

operator. The terminal set may consist of the external inputs (independent variables) and

numerical constants. For many other problems, the ingredients include specialized functions and

terminals. For example, if the goal is to automatically program a robot to clean the floor in a

room with obstacles, the user must define what the robot is capable of doing, including moving,

turning, and activate the mop or vacuum. Regarding the fitness measure, it is necessary to specify

how GP evaluates what needs to be done. It can be faced as a mechanism for communicating the

high-level requirements of the problem to the GP system. For example, if the goal is to design

a robot that collects trash, the fitness function can be defined as the amount of trash collected.

The first two preparatory steps define the search space whereas the fitness measure implicitly
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specifies the s desired goal. The fourth step is related to specifying the control parameters for

the run, including population size, probabilities for performing recombination, maximum size

of programs, and other details of the run. The fifth preparatory step consists of specifying the

termination criterion and the method of designating the result of the run. For the termination

criterion, we can define a maximum number of generations to be run, while a single best-so-far

strategy can be used to designate the result of the run.

GP has many variations, with different approaches for how the programs are encoded.

The traditional GP, which is also known as tree-based GP, the computer programs are expressed as

syntax trees rather than as lines of code. For example, the simple expression 𝑚𝑎𝑥(𝑥 ∗ 𝑥, 𝑥 + 3 ∗ 𝑦)
is represented as shown in Figure 2.5. The tree includes nodes and links, where nodes are the

instructions to execute, and the links the arguments passed to the instructions. The execution of

a tree starts from the leaves, called terminals, passing the arguments to the instructions, called

functions, and producing outputs that are passed as arguments to other functions, repeating this

process until it reaches the root.

Figure 2.5: Example of a tree-like program.

Some other well-known GP approaches include: Stack-based GP [82], Linear GP (LGP)

[45], Cartesian GP (CGP) [74], and Grammatical Evolution (GE) [90]. Each of these approaches

have their own characteristics that makes them more suitable in different situations, leaving the

decision to the user on which one to use.

2.2.1 Grammatical Evolution

Among the variety of different GP techniques, the grammar-based one is called Grammatical

Evolution (GE) [81]. GE introduced a different way to work with solutions using an indirect

encoding, where they are encoded as an integer vector of variable-length, and a context-free

grammar is used to describe the pieces of the program and the rules that express how these pieces

can be combined in order to generate new programs.

GE can be defined by three main components: a) a grammar; b) the genotype-phenotype

mapping; and c) the search engine. The grammar is responsible for defining the components

used to built the programs, followed by the mapping, which translates one encoded solution

into an actual executable program. Moreover, the search engine is the mechanism for searching

improved solutions.
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2.2.1.1 Grammar

The GE grammar is usually an external file that contains the definition of the components that

can be used to build the computer programs, as well as the definition of structures that allows the

creation of different variations of that program. These components are usually put in form of

rules and productions following the Backus Naur Form (BNF) format.

Formally speaking, a grammar is defined by a tuple 𝐺 = (𝑁,𝑇, 𝑆, 𝑃), where 𝑁 is a

non-empty set of non-terminal symbols, 𝑇 is a non-empty set of terminal symbols, 𝑆 is an element

of 𝑁 called axiom and used as start rule, and 𝑃 is a set of productions of the form 𝐴 ::= 𝛼, with

𝐴 ∈ 𝑁 and 𝛼 ∈ (𝑁 ∪ 𝑇)∗, 𝑁 and 𝑇 are disjoint [68]. Figure 2.6 shows an example of a simple

grammar. The set 𝑁 of non-terminals contains {𝑠𝑡𝑎𝑟𝑡, 𝑒𝑥𝑝𝑟, 𝑜𝑝, 𝑡𝑒𝑟𝑚}, the set of terminals 𝑇
contains {+,−, ∗, /, 𝑥1, 0.5}, and the axiom 𝑆 is given by the non-terminal 𝑠𝑡𝑎𝑟𝑡.

〈start〉 ::= 〈expr〉〈op〉〈expr〉 | 〈expr〉

〈expr〉 ::= 〈term〉〈op〉〈term〉 | (〈term〉〈op〉〈term〉)

〈op〉 ::= + | - | / | *

〈term〉 ::= 𝑥1 | 0.5

Figure 2.6: Example of a grammar for mathematical expressions.

2.2.1.2 Mapping

After the solutions have been created, by random sampling or resulting from the combinations of

others solutions, the mapping is responsible for translating a solution into an executable program.

The mapping process is basically a grammar expansion, that starting from the axiom, replaces

all non-terminals (always picking the left-most non-terminal) by one of their corresponding

productions. The way that productions are selected to replace a given nonterminal is by applying

the mathematical mod operator as:

𝐺𝑅 = 𝑠𝑣 𝑀𝑂𝐷 𝑛𝑝 (2.1)

where 𝐺𝑅 is the chosen grammar rule resulted from the 𝑀𝑂𝐷 operation between solution value

(𝑠𝑣) and the number of possible productions for that rule (𝑛𝑝). Figure 2.7 shows a example of a

possible expansion using the vector [22, 7, 55, 22, 3, 4, 30, 16, 203, 24], using the Grammar 2.6.

2.2.1.3 Search Engine

As mentioned earlier, the search engine is responsible for searching for new solutions with better

fitness values through the application of genetic operators. Traditionally, GE uses a GA as the

search mechanism [81], besides some smaller changes, the algorithm is practically the same.

The first change is the addition of the mapping process just before the evaluation step, as we first

need to generate the executable program from the encoded solutions. Moreover, in addition to

the traditional operators of selection, recombination and replacement, GE also introduces the

use of two different operators, created to deal with specific situations generated by the use of

variable-length solutions, to increase diversity. The first operator is called Prune, which is used
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Derivation step Integers left

<start> [22, 7, 55, 22, 3, 4, 30, 16, 203, 24]

<expr><op><expr> [7, 55, 22, 3, 4, 30, 16, 203, 24]

(<term><op><term>)<op><expr> [55, 22, 3, 4, 30, 16, 203, 24]

(0.5 <op><term>)<op><expr> [22, 3, 4, 30, 16, 203, 24]

(0.5 / <term>)<op><expr> [3, 4, 30, 16, 203, 24]

(0.5 / 0.5)<op><expr> [4, 30, 16, 203, 24]

(0.5 / 0.5) + <expr> [30, 16, 203, 24]

(0.5 / 0.5) + <term><op><term> [16, 203, 24]

(0.5 / 0.5) + x1 <op><term> [203, 24]

(0.5 / 0.5) + x1 * <term> [24]

(0.5 / 0.5) + x1 * x1 [ ]

Figure 2.7: Example of the mapping steps for a random solution.

to cut solutions in a given random point, and the second operator is called Duplicate, used to

copy a portion of a solution and pasting it at the end [90].

2.2.2 Dynamic Structured Grammatical Evolution

GE is considered one of the most relevant variants of GP approaches [69]. However, it has

two major issues related to locality and redundancy. The first regards the situation where small

modifications to the genotype can lead to big modifications in the phenotype. The latter leads to

situations where different genotypes can map to the same phenotype. Both situations can affect

the evolutionary process negatively, by wasting time and resources with solutions of poor quality,

resembling random search.

Dynamic Structured Grammatical Evolution (DSGE) [4, 67] is an improved version of

GE, that was proposed to address the known problems with low locality and redundancy present

in the original approach. Moreover, it proposes a different encoding for solutions, which affects

how the grammar and mapping function work, being more efficient during the search process.

2.2.2.1 Encoding

The solutions in DSGE are encoded as a list of lists, rather than a single list from classical GE,

where each internal list is directly connected to one non-terminal symbol from the grammar (see

Figure 2.8). The length of a solution is defined by the number of non-terminals in the grammar.

Moreover, the size of each internal list will depend on the number of values needed to perform a

complete map, and the values will depend on the number of options for each rule.

For example, in Figure 2.8, we have a solution built based on Grammar 2.6. The first

sub-list points to the non-terminal <start>, and it can include values ranging from 0 to 1 (two

options). The second sub-list points to the rule <expr>, also ranging from 0 to 1. Moreover,

the third sub-list points to rule <op>, having four possible values, from 0 to 3. Finally, the last

sub-list points to rule <term>, also with two options.

2.2.2.2 Initialization

Algorithm 3 presents the procedure that is used to create new random solutions using a grammar.

It takes five parameters: the grammar, a maximum depth, the genotype (initially empty), a

non-terminal symbol (initially the axiom symbol), and the current depth (initialized as 0). The
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Figure 2.8: Sample solution using the DSGE encoding.

algorithm takes the current symbol and selects one of the possible expansion (production) for it,

in this initialization context, it means the integer value that would represent that expansion (line 2).

Then, it checks whether this symbol is recursive, and if current procedure state is respecting the

max depth, otherwise it selects a new expansion with no recursive outcome (lines 3-7). Following,

the expansion is added to the genotype in the sub-list that represents the current symbol (lines

8-11). Then, it takes the symbols produced by this expansion and calls this procedure recursively

for each non-terminal symbol (lines 12-15).

Algorithm 3 DSGE Recursive solution generation

1: procedure create_solution(grammar, max_depth, genotype, symbol, depth)

2: expansion = randint(0, len(grammar[symbol]-1)

3: if is_recursive(symbol) then
4: if expansion in grammar.recursive(symbol) then
5: if depth ≥ max_depth then
6: non_rec = grammar.non_recursive(symbol)

7: expansion = choice(non_rec)

8: if symbol in genotype then
9: genotype[symbol].append(expansion)

10: else
11: genotype[symbol] = [expansion]

12: expansion_symbols = grammar[symbol][expansion]

13: for symb in expansion_symbols do
14: if not is_terminal(symb) then
15: create_solution(grammar, max_depth, genotype, symb, depth+1)

2.2.2.3 Mapping

The mapping process for DSGE is very similar to the initialization, however, as presented in

Algorithm 4, instead of randomly selecting the expansions according to the symbol, it uses the

value presented in the encoded solution as the expansion choice.

In other words, the mapping performs a grammar expansion, starting from the axiom,

always replacing the leftmost non-terminal by one of its productions, which is analogous to a

depth-first search. For example, if the left-most terminal is <expr>, the values will be extracted
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Algorithm 4 DSGE Recursive solution mapping

1: procedure mapping(genotype, grammar, max_depth, read_integers, symbol, depth)

2: phenotype = “ ”

3: if symbol not in read_integers then
4: read_integers[symbol] = 0

5: if symbol not in genotype then
6: genotype[symbol] = []

7: if read_integers[symbol] ≥ len(genotype[symbol)] then
8: if depth ≥ max_depth then
9: generate_terminal_expansion(genotype, symbol)

10: else
11: generate_expansion(genotype, symbol)

12: gen_int = genotype[symbol][read_integer[symbol]

13: expansion = grammar[symbol][gen_int]

14: read_integer[symbol] += 1

15: for symb in expansion do
16: if is_terminal(symb) then
17: phenotype += symb

18: else
19: phenotype += mapping(genotype, grammar, max_depth, read_integers, symb,

depth+1)
return phenotype

from the list {1, 0} as in Figure 2.8. Moreover, the values for each non-terminal are sampled

respecting the number of options, which removes the need for using the mod operator as in

classical GE.

Derivation step Integers left

<start> [[0], [1, 0], [2, 0, 3], [1, 1, 0, 0]]

<expr><op><expr> [[], [1, 0], [2, 0, 3], [1, 1, 0, 0]]

(<term><op><term>)<op><expr> [[], [0], [2, 0, 3], [1, 1, 0, 0]]

(0.5 <op><expr>)<op><expr> [[], [0], [2, 0, 3], [1, 0, 0]]

(0.5 / <term>)<op><expr> [[], [0], [0, 3], [1, 0, 0]]

(0.5 / 0.5)<op><expr> [[], [0], [0, 3], [0, 0]]

(0.5 / 0.5) + <expr> [[], [0], [3], [0, 0]]

(0.5 / 0.5) + <expr><op><term> [[], [], [3], [0, 0]]

(0.5 / 0.5) + x1 <op><term> [[], [], [3], [0]]

(0.5 / 0.5) + x1 * <term> [[], [], [], [0]]

(0.5 / 0.5) + x1 * x1 [[], [], [], []]

Figure 2.9: Mapping process using the DSGE encoding.

Considering the solution present in Figure 2.8, the mapping would happen as in Figure

2.9. Starting from the axiom <start>, the first value from the first list is consumed, which is

related to the non-terminal <start>. The value is 0, which means that the non-terminal will be

replaced by the production (considering we are using Grammar 2.6) <expr><op><exp>. To

follow, the next non-terminal is <expr>, and the next value related to this non-terminal is 1,
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which will replace <expr> by the production (<term><op><term>). The mapping procedure

repeats these steps until all the values are used, and there are no non-terminals left.

During the evolution, there might be cases when a solution resulting from a recombination,

might have either extra or not enough values to perform a full mapping. In such cases, the

mapping function is also responsible for adding new random value when needed, and just ignore

unused values, removing them at the end.

2.3 NEURAL NETWORKS

Machine learning (ML) is the study of computer algorithms that can improve automatically

through experience, and by the use of data [78]. The main tool in ML are the Neural Networks

(NNs), which are pattern recognition systems that require careful engineering and considerable

domain expertise to design a feature extractor that transforms raw data, such as the pixel values

of an image, into a suitable internal representation or feature vector from which the learning

subsystem, often a classifier, could detect or classify patterns in the input.

Basically, neural networks are built from simple units, usually called neurons by analogy.

These are interlinked by a set of weighted connections. Learning is accomplished by modifying

these connection weights. Each unit corresponds to a feature of characteristic we want to analyze,

and are organized in layers. Networks have multiple layers, where we have an input layer, the

output layer, and a set of what are called hidden layers (see Figure 2.10). The information to

be analyzed in fed to the neurons in the input layer, and then propagated to the neurons of the

second layer for further processing. The result of this processing is then propagated to the third

layer and so on until the output layer, which defines what is known as a feed-forward network.

The goal of the network is to learn, or to discover, some association between input the output

patterns. This learning is achieved through the modification of the connection weights between

units. In statistical terms, this is equivalent to interpreting the value of the connections between

units as parameters [12].

Figure 2.10: Example of a feed-forward network.

Furthermore, NNs can also be categorized according to the number of hidden layers it

contains. Shallow networks will have a small number of hidden layers, while deep networks will
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be the opposite. There are other characteristics that make deep networks more useful for many

situations, in special, the fact that deep networks require less pre-processing of the data.

2.3.1 Layers

The neurons in a NN are also known as layers, where they act as the basic building blocks for

constructing an architecture. These building blocks consist of basically a set of weights and

an activation function. In general, a layer works by feeding data to the inputs, which are then

multiplied by the weights and then added together. Then, it applies the activation function, which

is usually a non-linear transformation, generating the outputs.

Figure 2.11: Representation of a artificial neuron used in neural networks.

Figure 2.11 shows an example of a basic neuron. For a given artificial neuron 𝑘 , let

there be 𝑚 + 1 inputs with signals 𝑥0 through 𝑥𝑚 and weights 𝑤𝑘0 through 𝑤𝑘𝑚. Usually, the 𝑥0

input is assigned the value +1, which makes it a bias input with 𝑤𝑘0 = 𝑏𝑘 . This leaves only m

actual inputs to the neuron: from 𝑥1 to 𝑥𝑚. The output of the 𝑘𝑡ℎ neuron is:

𝑣𝑘 = 𝑓 (
𝑚∑

𝑗=0

𝑤𝑘 𝑗𝑥 𝑗 ) (2.2)

There are a great variety of layers, for instance, convolutional, pooling, dropouts, and

dense layers, are some of the most common layers that are applied to a variety of architectures,

and for many different tasks. Each of these performs specific transformations to the inputs in

addition to the basic behavior, bringing more options when designing the networks.

2.3.2 Training and Testing

The most common form of ML, deep or not, is Supervised Learning (SL). In SL, the objective is

to learn weights of the network that maps an input to an output based on example input-output

pairs [53]. For example, in convolutional layers, we want to learn the filters, which will extract

the characteristics from the input. In dense layers, we learn the weights that multiply the inputs,

which will give more importance to some features over others. In any case, the weights of each

layers are fine tuned in order to produce an output that is as close to the correct answer. The

learning process is done on a training set, from which we know the input and expected output.
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Then, there is also the test set, which is a set of unseen data, used to evaluate the performance of

the network at the end of the training. Additionally, a validation set can be used to check the

learning process during the training, being applied in regular intervals.

An optimizer is the responsible for adjusting the weights. The network will process

each input and compare the produced output by the network, with the expected output, adjusting

the weights of the layers through backpropagation, guiding the networks towards producing

outputs that are closer to the analyzed data. By repeating this process, the objective is to produce

a network which weights are adjusted to the point where it is able to process unseen data, and

produce the correct output, or something as close to it as possible. There are many different

optimizers that can be used, employing different strategies. For instance, common examples

of optimizers include the Stochastic Gradient Descent (SGD) [13], Adam [46], and RMSprop

[52]. Moreover, the optimization also requires the definition of a set of parameters, like batch

size, number of epochs, momentum, and most important, learning rate, which determines how

the weight adjustments are calculated, heavily impacting the quality of the learning process

of a network. Furthermore, the “quality” of a network is computed using the test set, where

the network is executed over a portion of unseen data, and evaluating how many samples were

processed correctly, compared to the expected output.

Depending on the problem, different metrics can be used to measure the quality of a

network. For instance, for classification problems, with balanced datasets, using the accuracy

might be enough. Then, for segmentation problems, image similarity metrics, such as DICE or

Jaccard, might be more suitable. For other problems, we have root mean squared error (RMSE),

precision, recall, and others.

2.3.3 Deep Neural Networks

Traditional NNs were limited in their ability to process natural data in their raw form. Usually,

pre-processing techniques were applied in order to generate a set of relevant features, that describe

the data being fed into the networks, attaching the quality of a network to the quality of this feature

set. Deep Neural Networks (DNNs) were proposed with the objective of making the architecture

also learn what would be the best representation for the data, through the layers. Deep-learning

methods are representation-learning methods with multiple levels of representation, obtained by

composing simple non-linear modules, where each transforms the representation at one level

(starting with the raw input) into a representation at a higher, slightly more abstract level.

For instance, convolutional neural networks (CNNs) [54] and recurrent neural networks

(RNNs, in particular long short-term memory, or LSTM [39]), which have existed since the 1990s,

have improved State-of-the-art significantly in computer vision, speech, language processing,

and many other areas [19, 35, 104].

2.3.4 Convolutional Neural Network

Convolutional Neural Networks, are much easier to train and test to achieve good performances

when compared to standard feed-forward neural networks [51]. To design a CNN architecture, it

is required to define the number layers, as well as their types. Usually, convolutional, pooling,

dropout, and dense layers are used. Moreover, each type of layer has different parameters, for

instance, convolutional layers, have the number of feature maps, kernel size, stride size, among

others, while pooling layers have filter size, stride size, number of neurons.

The architecture of a CNN is basically divided into two parts (see Figure 2.12). The first

is responsible for the feature extraction, starting from the inputs, it usually uses convolutional

and pooling layers, to learn features from the data. These features start as simple shapes ans
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forms in early layers, becoming more complex as the architecture goes deeper. The second part

is responsible for the classification, where dense and dropout layers are used to classify the data,

using the features learned previously, to make decisions.

Figure 2.12: CNN architecture example.

Convolutional Layers apply what is called a 2D convolution. The equation for a 2D

convolution is presented in Equation 2.3. Where 𝐹 is the filter, 𝐼 the matrix (image), 𝑀 and 𝑁
are the number of lines and columns respectively.

𝐹 [𝑚, 𝑛] ⊕ 𝐼 [𝑚, 𝑛] =
𝑁∑

𝑗=−𝑁

𝑀∑

𝑖=−𝑀

𝐹 [𝑖, 𝑗] ∗ 𝐼 [𝑚 − 𝑖, 𝑛 − 𝑗] (2.3)

In convolutional layers, given an input image 𝐼 with size of 𝑀 x 𝑁 , a feature map is

generated by performing a convolution operation 𝐹 ⊕ 𝐼. It uses a filter 𝐹, also known as kernel,

that is commonly represented as a matrix of fixed size and randomly initialized. The filter slides

through the image at a specified step, called “stride”, from left to right, top to bottom. Each

element in the feature map is the sum of the products of each element from the filter and the

corresponding elements this filter overlaps on the image [101]. A graphic representation of a

convolution is represented in Figure 2.13.

Pooling layers are very similar to convolutional. It also has a kernel with a pre-defined

size, that slides through the image, calculating the average value (average pooling), or the maximal

value (max pooling) of the elements present at the kernel region [101]. The kernel moves at a

certain pace defined by the stride value. This operation is represented in Figure 2.14.

Finally, a fully connected layer works as regular neural network with one hidden layer

(see Figure 2.15). First the user defines the number of neurons and the number of outputs. Then,

it works by feeding data as inputs, multiplying them by the weights, adding everything together,

and applying the activation function, to generate the outputs.

Regarding the activation function, the rectified linear unit, commonly known as ReLU,

is the most commonly used activation function in neural networks, especially in CNNs, in

convolutional and dense layers. It is an activation function that applies an element-wise function

such as sigmoid to the output of the activation produced by the previous layer. The ReLU

activation is given by the equation 𝑦 = 𝑚𝑎𝑥(0, 𝑥). ReLU is linear (identity) for all positive

values, and zero for all negative values, which means that, it is cheap to compute as there is no

complicated math, and also that it helps converging faster, as linearity means the output does not

saturate with larger values of 𝑥.



31

Figure 2.13: Example of a convolution operation using a 3x3 kernel.

Figure 2.14: Example of a max-pooling operation with a kernel size of 2x2.

2.3.5 U-Net

The U-Net was proposed by Ronneberger, Fischer and Brox [88], with the objective of overcoming

the limitations of CNNs when dealing with image segmentation tasks. Classical CNNs have had

limited success due to the size of available datasets and the size of the networks.

The U-Net was proposed as an extension the architecture presented in [64], in which the

main idea was to supplement the contracting part, replacing pooling operators by upsampling
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Figure 2.15: Example of a dense layer with 4 neurons and output size of 2.

operators. It combines the the high resolution information, resultando from the upsampling, with

the high resolution feature from the contracting part, and apply convolutional layers to assemble

more precise output based on this information.

Figure 2.16 presents a representation of the U-Net arhictecture. As it is mainly composed

of convolutional and pooling layers, the U-Net is called a fully convolutional network [64]. The

architecture is divided into three main parts: the contracting path, the expansive path, and middle.

It follows a unique U-shaped structure, in which some connections between layers are used to

retrieve information from previous layers, to reconstruct the output image. The contracting path

is responsible for learning basic shapes while down-sampling the image, following a typical

convolutional network scheme. It does this by applying repetitions of 3x3 convolutional layers,

each followed by a ReLU activation and a 2x2 max-pooling with stride 2 for down-sampling. The

expansive path is then responsible for reconstructing the image, learning more complex features

while also using information from previous layers. Each step consists of an up-sampling followed

by a 2x2 convolution, a concatenation with the corresponding cropped image from the contracting

path, and two 3x3 convolutions followed by a ReLU activation. Usually considered part of the

contracting part, the middle part is composed of a few convolutional layers and dropout layers.

The output of the network is given by a 1x1 convolutional layer, which performs the classification

for each pixel through a Sigmoid activation function. The networks does not have any dense

layers and only uses the valid part of each convolutional, meaning the segmentation map only

contains the pixels, for which the full context is available in the input image.

The U-Net was presented in [88] for tasks that have very little training data available,

and thus, they use excessive data augmentation, proposed by Dosovitskiy in [25], by applying

elastic deformations to the available training images. This allowed the network to learn invariance

to such deformations, without having to them in the annotated image corpus.

2.4 CONCLUDING REMARKS

Population-based algorithms are often used for combinatorial optimization problems, where is

infeasible to test all possible combinations. Moreover, GP techniques expands the application
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Figure 2.16: Vanilla U-Net architecture.

of evolutionary algorithms, to the design of computer programs, offering a more dynamic way

to deal with the search space. Then, by analyzing how neural network architectures are often

designed, as composed of a number of different layers, and presenting different architectures. For

example, CNNs and U-Nets are two types of networks that present similar structures, composed

of many convolutional, pooling, and dense layers. On the other hand, the way each architecture

is designed, allows the use of the same components for totally different objectives. DNNs have

not yet discovered the best way to combine layers and hyperparameters, and can be interpreted

also as a combinatorial problem, where each piece of the puzzle has to be carefully placed, in

order to produce good results.
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3 RELATED WORK

This chapter presents a number of works related to the design of DNNs, starting from a more

broad definition given by automated machine learning (AutoML), and narrowing down to specific

topics, such as neural architecture search (NAS), which is a sub-field from AutoML, and even

further with evolutionary-based design of neural networks covered in Neuroevolution. We

highlight evolutionary-based methods, as they are closely related to the approach being proposed,

more specific GP-based techniques, showing the different techniques and perspectives, regarding

how networks are represented, encoded, built, and modified, as the search for improved designs

unfold.

3.1 AUTOML AND NEURAL ARCHITECTURE SEARCH

According to [38], automating the entire pipeline of ML has emerged mainly as a way to reduce

the costs related to the development and tuning of well-performing models, and creating what

is known as AutoML. Among the many definitions for AutoML, [114] states that AutoML was

designed to reduce the demand for data scientists and enable domain experts to automatically build

ML applications without much requirement for statistical and ML knowledge. Moreover, [111]

defines AutoML as a combination of automation and ML, involving the automated construction

of an ML pipeline considering a limited computational budget. AutoML will include works that

deal with the automation of pipelines of ML, including data preparation, feature engineering,

model generation, and model estimation [37].

NAS is the term used to categorize techniques focused on automating the design of

ANNs, a trendy topic in the field of automatic ML [30]. Methods for NAS can be categorized

according to the search space, search strategy, and performance estimation strategy used:

• The search space defines the type(s) of ANN that can be designed and optimized;

• The search strategy defines the approach used to explore the search space;

• The performance estimation strategy evaluates the performance of a possible ANN from

its design (without constructing and training it).

Figure 3.1: Abstract illustration of Neural Architecture Search methods. Adapted from [30].

A search strategy selects an architecture 𝑎 from a predefined search space 𝐴. The archi-

tecture is passed to a performance estimation strategy, which returns the estimated performance

of 𝑎 to the search strategy. The described process of NAS methods is presented in Figure 3.1.
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Recent work on NAS [14, 29, 112, 116] incorporates modern design elements known

from hand-crafted architectures, such as skip connections, which allow to build complex,

multi-branch networks, which results in significantly more degrees of freedom.

In the Survey of Elskem et al. [30], the authors cite works, such as [116], which

optimizes two different kind of cells: a normal cell that preserves the dimensionality of the input

and a reduction cell which reduces the spatial dimension. The final architecture is then built by

stacking these cells in a predefined manner. Consequently, this cell-based search space is also

successfully employed by many recent works [61, 85]. Moreover, the work analyzes three major

advantages emerged from this strategy of designing networks from building blocks:

1. Reduction of the search space due to the use of less layers overall.

2. Architectures built from building blocks can be easily transferred or adapted to other

data.

3. Creating architectures by repeating building blocks has proven a useful design principle

in general, such as repeating an LSTM block in RNNs or stacking a residual block.

3.2 NEUROEVOLUTION

Neuroevolution can be seen as a sub-field of NAS that covers the techniques based on EAs to

generate ANNs, by learning neural network building blocks (for example, activation functions),

hyperparameters, architectures, and methods for learning weights [97]. Early studies [73, 109]

already mentioned the use of evolutionary algorithms, a genetic algorithm, in this case, to evolve

the connections of the networks. Regarding recent works, there exist a variety of studies and

reviews [97, 30, 105] that cover the different approaches to the subject. The automatic design

of neural networks has been studied for a long time, with different approaches ranging from

evolving the weights, topology, architectures, parameters, and combinations.

Evolving the weights was the first attempt to combine evolutionary techniques and

neural networks. Most works on this subject [24, 33, 83] follow the same idea of applying

evolutionary algorithms as the mechanism that will learn and adjust the weights of the networks.

This approach is reported as a faster, more efficient, yet robust, training procedure. However, for

DNNs that comprise tens of thousands of parameters, the evolution of weights rapidly becomes

infeasible. In recent works, [99] states that ES can rival backpropagation-based algorithms, such

as Q-learning and policy gradients, on challenging deep reinforcement learning (RL) problems.

They evolve the weights of DNNs with a simple GA, resulting in good performance for hard deep

RL problems.

As the next step, there are many works [44, 55, 66, 72, 98] that explore the design of

the topology of the networks. Neuroevolution of Augmenting Topologies (NEAT) is one of

the first well-known methods that was proposed in [98], by Stanley and Miikkulainen. It was

presented as a method that can outperform the best fixed-topology methods on a challenging

benchmark reinforcement learning task. Later, Miikkulainen et al. in [72] expanded NEAT,

proposing the CoDeepNEAT for optimizing DL architectures through evolution. CoDeepNEAT

uses a coevolutionary strategy to evolve population of chromossomes, encoded as graphs, which

starts with minimal complexity, and adds new nodes incrementally through mutation. By

extending existing neuroevolution methods to topology, components, and hyperparameters,

CoDeepNEAT achieves results comparable to the best human designs in standard benchmarks in

object recognition and language modeling.
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In a similar work from Liang, J et al. [55], the author propose LEAF, which can be

used to optimize both the topology, hyperparameters, and the size of the networks. LEAF uses

CoDeepNEAT in its core, and its composed of three main components: algorithm layer, system

layer, and problem-domain layer. The algorithm layer is responsible for evolving the DNN

hyperparameters and architectures. The system layer parallelizes the training of DNNs on the

cloud. Finally, the problem-domain layer is where LEAF solves problems such as hyperparameter

tuning, architecture search, and complexity minimization.

Furthermore, the use of GP to evolve DNNs became a more interesting option, as they

offer flexible tools to design the networks. There are approaches that use the traditional Tree-GP

[63], Cartesian GP [100], and Grammar-based GP [4].

In [63], Londt, Gao, and Andreae introduce GP-Dense, a novel GP-based algorithm

coupled with an indirect-encoding scheme that facilitates the evolution of performing char-

DenseNet architectures. During the evolution, the networks are evaluated using 25% of the

dataset, and the best-evolved network is then evaluated using 100% of the dataset. Reported

results indicate that even with the reduced dataset, the algorithm produced networks with relevant

performance in terms of accuracy and number of parameters.

The work of Suganuma, Shirakawa, and Nagao [100] proposed the automatic design of

Convolutional Neural Networks (CNNs) using Cartesian GP (CGP). They adopt highly functional

modules, such as convolutional blocks and tensor concatenation, as the node functions. The use

of graph-based encoding allows the creation of non-linear models, expanding the possibilities in

the space of models.

Regarding grammar-based approaches, Assunção et al. present in [3] a grammar-based

algorithm that is an improved version of the traditional GE. In this first work, they propose

DSGE to evolve ANNs with more than one hidden layer. This work was later expanded in [4],

introducing the evolution of DNNs. Moreover, a previous work (Lima and Pozo [58]) studied the

design of CNN using the traditional GE, conducting experiments using the CIFAR10 and MNIST

datasets. In other works, Lima et al. [59, 56], adapted the approach to employ DSGE, proposing

a symmetric grammar that is particularly suited for the characteristics of the U-Net architecture.

Table 3.1 presents the summary of the analyzed works, categorizing them according to

the strategy, and giving a brief description regarding the strategy.

Table 3.1: Summary of related work papers

Strategy Papers Description

Weights [24, 33, 83, 99] Evolves just the weights of the networks. First

attemps on combining evolutionary techniques

and NNs.

Topology and Hy-

perparameters

[44, 55, 66, 72, 98,

14, 29, 112, 116]

Extended existing neuroevolution methods to

topology, components, and hyperparameters.

GP-based [63, 100] Explore the use of GP-based methods for the

design of DNNs.

Grammar-based [3, 4, 58, 59, 56] Works focused on grammar-based techniques,

with application to different types of networks.

3.3 CONCLUDING REMARKS

Each GP approach offers different perspectives on how to build the networks. GP-based

approaches can use either a direct or indirect encoding for the solutions. A direct encoding can
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offer more control over the solution through adapted genetic operators. However, it increases the

difficulties of representing the different architectures. On the other hand, an indirect encoding

will require little or no modification to the genetic operators, as it is easier to use and modify a

simplified representation, requiring only a mapping function to build the models. Furthermore,

some approaches cover the evolution of both architectures and parameters, limited only by how

flexible the building blocks are and how it impacts the generation of valid models.
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4 PROPOSED APPROACH

In this chapter the concepts introduced previously, regarding evolutionary algorithms, genetic

programming, and deep neural networks, are used to describe the proposed approach. First, an

overview is presented, describing the components included in the approach, and how they interact.

Following, a section about how to structure grammars for the design of DNNs is presented. It

proposes some guidelines on how to define and represent layers and hyperparameters from neural

networks as components of the grammar, including special cases, such as the use of custom

layers, and the design of non-sequential architectures, like the U-Net. The next section describes

the encoding used in the approach, combining what was already described in previous chapters

regarding GE and DSGE, with the newly proposed grammar. The encoding and grammars

are directly related to the mapping procedure, and the building process, which are responsible

for translating an encoded solution into an executable DNN. In this section we describe how

this translation works, explaining how the networks are built, covering simple networks like

CNNs, and also more advanced cases like the U-Net. Moreover, we cover how we evaluate these

networks, listing common approaches used in different cases. Finally, we present the custom

genetic operators proposed for our approach, designed to extract max potential from both the

grammar and encoding applied to the design of DNNs.

4.1 OVERVIEW

The proposed approach is called GE/DNN, and it is composed basically by the definition of a

grammar, a mapping process, and configuring the search engine (see Figure 4.1).

Figure 4.1: Main components of GE/DNN.

First, in the grammar, we define the layers and parameters used to describe the space of

possible solutions. For instance, we might include Convolutional, Pooling, Dense, and Dropout

layers for image tasks. While Long Short-term Memory (LSTM) [102], Recurrent [35], and

Bidirectional [94] layers might be more suitable for text tasks. Furthermore, we propose to use

the grammar to also include rules that influence the initial structure of the network, or rules

that goes beyond simply selecting which layer to add, which later can be complemented by the

mapping process.

Regarding the mapping process, building the networks requires more than just stacking

up layers, as each type of network might employ a variety of connections between the layers
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and create architectures with multiple paths. In this case, prior knowledge about the problem

and networks being explored, are valuable information that can be added to the grammar and

mapping process, in the form of common blocks or set of blocks that are usually seen in the best

architectures, or even adding to the grammar characteristics of the architecture itself, such as a

specific shape or ramification strategy, as the U-Net for example.

Finally, the search engine is one of the most important pieces in this puzzle, since it will

be the responsible for creating and combining the networks. A good search engine must balance

the ability to maintain enough diversity, while also avoiding falling into a random search. This

approach follows the traditional GE and uses a GA as the search engine. The combination of its

populational nature, with the recombination operators, along with an indirect encoding, makes it

very easy to adapt do many different situations.

Figure 4.2 illustrates the general scheme of GE/DNN. The execution follows the usual

evolutionary cycle; solutions are randomly generated, selected, and recombined (through crossover

and mutation) to produce new solutions. After reaching a stop criterion, the best solution found

is returned. The grammar is the component that defines how solutions are created and evaluated,

along with the dataset, that is directly related to the problem we want to solve.

Figure 4.2: General scheme of the proposed approach.

An important aspect of making science is to make sure the work is reliable and

reproducible. For this reason, the code for this approach is publicly available in Github at

https://github.com/rhrlima/cbioge. It was implemented in Python3 mainly, using

two well-known libraries for machine learning, Tensorflow1 and Keras.

4.2 GRAMMARS FOR DNNS

As defined previously in the Section 2.2.1.1, a grammar is basically composed of a tuple

𝐺 = (𝑁,𝑇, 𝑆, 𝑃). In the context of designing DNNs, we define these elements in the same

manner. Taking Grammar 4.3 as reference. The group of non-terminals 𝑁 will be <start>,

1https://www.tensorflow.org
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<conv>, and <dense>. The terminals 𝑇 will be <pool>, <features>, <kernel>, and <units>.

Notice that <conv> and <dense> were not included as terminals, even through they are layers,

because their productions contain other rules. The rule <start> is used as the start symbol 𝑆.

And finally, 𝑃 denotes the relation between rules and the productions, presented in the form of

𝐴 ::= 𝐵, where 𝐴 is the rule, and 𝐵 one or more options separated by the pipe symbol “|”.

〈start〉 ::= 〈conv〉 〈start〉 | 〈pool〉 〈start〉 | 〈dense〉 〈start〉 | &

〈conv〉 ::= Convolutional 〈features〉 〈kernel〉

〈pool〉 ::= Maxpool | Avgpool

〈dense〉 ::= Dense 〈units〉

〈features〉 ::= 16 | 32 | 64 | 128 | 256 | 512

〈kernel〉 ::= 2 | 3 | 5 | 7

〈units〉 ::= 16 | 32 | 64 | 128 | 256 | 512 | 1024

Figure 4.3: Example of a simplified grammar for designing DNNs.

The grammar does not follow any specific structure rather than the pair “rule” and

“productions”. For instance, the <conv> rule, that represents a convolutional layers, includes the

<features> (number of feature maps) and <kernel> (kernel size) hyperparameters, each with

their possible values, defined in their respective rules. Moreover we have the flexibility to add

any combination of layers, hyperparameters, numeric values, intervals, custom layers, “special

types”, and any other element that might be useful when generating the architectures. At the end,

the mapping process will be the responsible to parse the result of a grammar expansion and then

build the network. However, there are some decisions regarding how the rules are designed in

the grammar, which might affect the generated solutions and the probabilities for selecting some

production over others. Two examples are presented bellow, showing some of the possibilities

regarding these decisions.

〈rule-a〉 ::= 〈layer〉 〈rule-a〉
| &

〈layer〉 ::= 〈conv〉 | 〈pool〉 | 〈dense〉

〈rule-b〉 ::= 〈conv〉 〈rule-b〉
| 〈pool〉 〈rule-b〉
| 〈dense〉 〈rule-b〉
| &

Figure 4.4: Example of different structures for grammar rules.

For example, in Figure 4.4 we have two different pieces of grammars, that provide the

same representation power. The difference is that the grammar on the left has two productions

for <rule-a>, <layer> and “&”, and then <layer> contains the productions including <conv>,

<pool>, and <dense>. In this setup, both <layer> and the empty production will have 50%

chance to be picked, and once <layer> is selected, each production of it will have 33% chance to

be selected. On the other hand, the grammar on the right contains all four productions included

in <rule-b>. This setup gives 25% chance for each production, which includes the empty

production. In summary, the second option has a smaller chance to select the empty production,

compared to the first one, which might be desirable depending on the context.
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〈rule〉 ::= 〈conv〉 〈rule〉
| 〈resblock〉 〈rule〉

〈conv〉 ::= Convolutional 〈features〉 〈kernel〉

〈resblock〉 ::= ResBlock 〈features〉 〈kernel〉

Figure 4.5: Example of grammar that includes a custom layer, identified as the <resblock> here.

A second example is presented in Figure 4.5, where a custom layer is added to the

grammar as a way to define a group of layers, of a special type created for the problem. In

this example, the rule <rule> contains the productions <conv>, <resblock>, which add a

convolutional or a residual layer, respectively. In this context, the residual layer is a custom layer

that is composed of two convolutional layers, one batch normalization, one sum operation, which

adds the output from the previous layer and the original input, finalizing with a ReLU activation.

For custom layers, specially groups of layers, to keep track of the input shape, and produced

output shape, as they might interfere with the architecture, producing invalid solutions if not

configured with caution.

4.2.1 Mirror Grammar

When designing more complex networks, such as a U-Net (see Section 2.3.5), a basic grammar

like the example in Figure 2.6 will not be enough, requiring something that allows recreating the

characteristics of U-shaped networks.

Figure 4.6 presents our proposal for a “mirror grammar”. This grammar is able to

generate architectures that respect the structural characteristics of U-Nets, finding a balance

between the original aspects of the network and the possibility of exploring new designs. By

assuming the U-Net as a symmetric structure, it be used to design only the contracting and

middle parts of the network, and then build the expanding path by exploiting the symmetry.

The solutions would be representing only half of the network, decreasing the representation

complexity and also decreasing the chances of producing invalid connections between layers,

and thus, having better control of the parameters.

Forcing a symmetric makes it easier to control how the architecture will grow, considering

that all the steps done on the left side of the networks will be “undone” on the right side. And by

undone, it means the process that reconstructs the image, including all the learning. On the other

hand, this approach also restricts the grammar, once it assumes and pre-defines almost 50% of

the architecture based on the first half.

In the presented example, the grammar “forces” the architecture to start with a con-

volutional layer, followed by a rule called <next>. Then <next> can be used to produce all

the options usually seen in a U-Net, including convolutional layers, dropouts, and poolings. In

addition to these, it is also including a production “bridge” and a rule <nextp>. In this context



42

〈unet〉 ::= 〈conv〉 〈next〉

〈next〉 ::= 〈conv〉 〈next〉 | 〈dropout〉 〈next〉 | 〈pool〉 〈nextp〉 | bridge 〈pool〉 〈nextp〉

〈nextp〉 ::= 〈conv〉 〈next〉 | 〈middle〉

〈middle〉 ::= 〈middle〉 〈middle〉 | 〈conv〉 | 〈dropout〉

Figure 4.6: Example of a grammar designed for U-Nets.

“bridge” is being used to indicate where a concatenation layer will be added during the mapping

and building process, which is the layers that connects both sides of the networks, creating the

U-shape architecture. Moreover, the <nextp> rule stands for “protected”, and it is used to prevent

the addition of two sequential bridges to the architecture. This protected rule will only allow the

addition of a new <conv> <next>, which restarts the cycle, or a transition to the middle part

with the rule <middle>.

4.3 ENCODING

Following the encoding already defined for DSGE in Section 2.2.2.1, we use a list of lists, that

differently from a usual matrix, not all rows will have the same length, yet they depend on the

number of times that rule appeared during the mapping.

Figure 4.7: Example of genotype in GE/DNN using the DSGE encoding.

Figure 4.7 shows a sample solution that was created based on Grammar 4.3. For instance,

rule <start> has three values in its list, meaning that this rule appeared three times during the

creation/recombination. Then, the values 0, 2 and 3, are related to the first, third, and fourth

productions. The length of a solution is defined by the number of non-terminals in the grammar.

Moreover, each internal list will have only values used during the mapping, and the values will

range from 0 to the number of options for each rule.

There is no strict pattern for how the grammar defines the sequence of the rules. As

mentioned earlier, an encoded solution will have as many sub-lists as the number of rules in the

grammar, and these sub-lists will follow the same sequence as the rules. According to Grammar

4.3 and Figure 4.7, both start <start> as the first rule/sub-list, followed by <conv>, and so on.

This is an interesting property that we explore in the proposed genetic operators. By dividing the

encoded solution, grouping all non-terminals in one side, and the terminals in the opposite side,

we can have operators that affect the solutions differently, with bigger or smaller changes.
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4.4 MAPPING

The mapping process for DNNs is the same as the original DSGE (see Section 2.2.2.3). For

example, considering the solution presented in Figure 4.7, if the left-most terminal is <features>,

according to the grammar in Figure 4.3, we have 16, 32, 64, 128, 256, and 512 as possible

productions, and thus, the possibilities will range from 0 to 5.

Derivation step Genotype

<start> [[0, 2, 3] [0] [ ] [0] [1] [0] [1]]

<conv><start> [[2, 3] [0] [ ] [0] [1] [0] [1]]

Conv <features><kernel><start> [[2, 3] [ ] [ ] [0] [1] [0] [1]]

Conv 32 <kernel><start> [[2, 3] [ ] [ ] [0] [ ] [0] [1]]

Conv 32 2 <start> [[2, 3] [ ] [ ] [0] [ ] [ ] [1]]

Conv 32 2 <dense><start> [[3] [ ] [ ] [0] [ ] [ ] [1]]

Conv 32 2 Dense <units><start> [[3] [ ] [ ] [ ] [ ] [ ] [1]]

Conv 32 2 Dense 32 <start> [[3] [ ] [ ] [ ] [ ] [ ] [ ]]

Conv 32 2 Dense 32 & [[ ] [ ] [ ] [ ] [ ] [ ] [ ]]

Figure 4.8: DSGE mapping process for the solution presented in Figure 2.8.

Figure 4.8 presents the mapping of one possible solution generated from the grammar

presented previously. Following the mapping steps, the axiom is represented by the rule <start>.

The sub-list related to this rule is [0, 2, 3], and the first value consumed is 0, replacing <start>
by <conv><start>. This process is repeated until terminal values replace all non-terminals,

consuming all values from the solution. After mapping a solution, we have a list containing

the sequence of layers and their parameters, that can be used to build the network. In the given

example, the produced output was [Conv, 32, 2, Dense, 32] (ignoring the empty production),

which translates to a network with one convolutional layer, with 32 filters, and a 2x2 kernel,

followed by a dense layer with 32 units.

4.5 BUILDING

Sequential architectures are the most common ones, where the layers are sequentially connected,

with no skip connections, or multiple inputs/outputs. Moreover, we can simplify the mapping

and building process, by identifying pieces that will always be present in the architectures, such

as the input and classifier layers. Figure 4.9 shows an example for a linear network, where the

intput and classifiers are added during the building, and thus, those layers can be removed from

the grammar.

However, in cases where we want to build more complex architectures, for example a

U-Net, presented in Section 2.3.5, one of the possible approaches is to initially build the network

as a sequential one, and later add the skip connections between the left and right side of the

network. For example, by using the mirror structure proposed in section 4.2.1, U-shaped networks

can be build following three steps. First, starting from the encoded solution, the mapping will

occur as normal, generating a sequential list of layers (see Figure 4.10). In the example in Figure

4.10, we have a sequence of convolutional (cv), pooling (pl), some bridges along the way, and the

transition to the middle part with dropout (dr) and more convolutional layers.

The second step consists of adding layers to the expanding part according the contracting

part. Following some simple rules we are able to ensure that a symmetric architecture is created.

For example, for each pooling layer, a upsampling layers is added to the expanding part. As
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Figure 4.9: Sequential build example.

Figure 4.10: Mirror build step 1: performing the grammar expansion.

the pooling is responsible for decreasing the shape of the data flowing through the network, the

upsampling will do the opposite. Moreover, a bridge connection can be added before a pooling,

indicating that the previous layer will be concatenated with the output from the upsampling added

to the expanding part. Also, a convolutional layer is added after every upsampling, responsible

for learning features from the data resulted from the concatenation.

Figure 4.11: Mirror build step 2: adding the layer for the opposite side.

The third and final step is responsible for two things. First is adding the remaining layers

that are common to every designed network, such as the input and output layers, as well as the

classifier, which in U-Nets is represented by a 1x1 convolutional layer with sigmoid activation.

The second is to connect all the layers, making sure they are valid connections regarding the

input and output shapes, and also applying some repair procedure when necessary.
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Figure 4.12: Mirror build step 3: connecting the layers.

4.6 EVALUATION

Evaluating a solution will first require the solution to be mapped, and then the network can be

built and executed. For classification problems, the most common way is to use the accuracy

achieved by the network on the dataset as the quality of that network. Depending on the problem,

different metrics can be used, for instance, the loss function, similarity metrics, root mean squared

error (RMSE), precision, and recall, among others. Executing the network means performing

a full training using the training set, adjusting the weights according to the selected optimizer,

batch size, epochs, and others parameters. Then, the accuracy of the network is computed by

executing the trained network on the validation set. Furthermore, the best-evolved network is

re-trained, calculating the final accuracy using the test set after the evolution ends.

Other strategies were tested, for instance, evaluating networks with no training phase

(random weights). The hypothesis behind this option was to verify if “good” networks, i.e.

models with good fitness, would achieve even better performance when re-evaluated after the

evolution with a proper training phase. After some empirical experimentation, it was concluded

what a good performance with random weights do not guarantee that the model will perform

well after trained.

4.7 GENETIC OPERATORS

There are four basic operators in an evolutionary algorithm: selection, crossover, mutation, and

replacement. In GE/DNN we adapted these operators to work with the new encoding, and extract

maximum potential from the characteristics of each type of network. Selection and replacement

follow the same behavior seen in the literature; for instance, we used tournament selection and

replacement with elitism. Crossover and Mutation were also adapted, including the creation of

two mechanisms to help controlling diversity in the population. They are not actually operators,

however, are used as such as they are applied during the recombination phase.

4.7.1 Crossover

Our adaptation for the crossover follows a similar behavior of a simple one-point crossover, from

where two variations were created. The first, named after the original One-Point Crossover, starts

with two parents, where a random “cut” point is selected, and then creates the new solution by

combining the first part from one parent and the second part from the other parent, respecting the

blocks (sub-lists). The second variant is called Gene Crossover, which similarly to the previous
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one, will select a “cut” point, this time for each individual sub-list, and then create the new

solution from the combination of the parents. A graphical representation of the two crossovers is

shown in Figure 4.13.

Figure 4.13: DSGE One-Point and Gene crossover examples.

4.7.2 Mutation

The adaptation of the mutation also follows the original point-mutation behavior. A random gene

in the solution is selected to be replaced by a new valid one. The difference here is that this

process can be applied to the whole genotype and produce a greater variety of changes, or be

restricted to parts of the genotype related to either non-terminals or terminals. When restricted,

the operator may produce changes with a bigger impact when changing non-terminal values

or fine-tuning by changing terminal values. GE/DNN proposes two new mutation operators,

Terminal Mutation, and Nonterminal Mutation, which are described below.

Figure 4.14: Terminal Mutation example. The replaced values will produce smaller changes to the network, acting

like fine tuning.

In the Terminal Mutation (see Figure 4.14), what happens is that each sub-list has a

chance to have one of their values replaced. Replacing a terminal value will, for example, change

the number of filters on one convolutional layer from 256 to 64.
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Figure 4.15: Nonterminal Mutation example. Replaced values might impact other parts of the solution, causing big

changes to the network, including the necessity of adding more values, or remove some.

In our Nonterminal Mutation (see Figure 4.15), similar to the previous operator, each

sub-list will have a chance to replace of the of values inside it. When a non-terminal value is

replaced, it might produce a structural change that, for example, adds three new layers to the

architecture. And thus, when such chances happen, other sub-lists are affected, as now we have

three convolutional layers, instead of one, or in other cases, less layers than before. For both

cases, the mapping process “repairs” the solution, adding values as needed, or removing unused

values.

4.7.3 Diversity Control

The first proposed mechanism is called Half and Half, which combines crossover and mutation. It

works by applying either crossover or mutation with a given probability. For example if crossover

is defined with a probability of 𝑝 = 0.6, then the mutation will have 1.0 − 𝑝, which is 0.4. Half

and Half is more like a meta-operator, as crossover and mutation must be defined previously.

A second diversity mechanism was proposed with the objective of maintaining high

diversity in the population, working as “movement acceptance”. The way it works is by checking

for every new solution, created or recombined, if it was already known, and replacing it by another

solution if so. In other words, every solution ever created during the evolution is registered in a

list, so no duplicates are accepted. The impact on the evolution time is very low, considering

how diverse a simple grammar can be in generating different networks. This mechanism is not

always necessary, being dependent on the context of the application.

4.8 REPAIR SOLUTION

Invalid solutions are defined by solutions which do not produce a executable architecture. As

mentioned earlier, there are some cases where invalid solutions are generated as product of

recombination. The impact of having too many invalid solutions might affect the evolutionary

process. Combining two valid solutions can produce a invalid one, and it is more likely to also

produce invalid solutions when combining other invalid ones. In the end the population can have

a premature convergence full of invalid architectures.

This approach has two repair mechanisms, one generic that is applied when necessary,

and an optional one that is domain dependent, and must be adapted to the problem. The

generic repair system is applied to the encoded solutions, on the search engine level, by adding

new values when necessary, and removing unused values. The optional repair system can be
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applied to the intermediate representation, generated during the mapping procedure, where

domain-specific changes will be applied in order to repair the architecture. It cover cases such as

invalid connections between layers, modifying hyperparameters to ensure that the connection

won’t lead to invalid outputs, such as decreasing an image below 1x1.

4.9 CONCLUDING REMARKS

GE/DNN can be defined through its three main components: the grammar, mapping, and the

search engine. Grammars can be easily adapted to the design of DNNs, but also include more

elaborated rules, and strategic decisions, which affects how architectures are built. The mapping

is then responsible for expanding and applying what was defined in the grammar, building a

variety of networks, from linear CNNs, to U-shaped networks. How the solution was encoded,

and how the grammar was structure, will affect the mapping process, into building the networks.

Moreover, the search engine explores the use of a GA, proposing new genetic operators, which

were adapted to the design of DNNs, including modified crossover, mutation, and other operators,

to generate, combine, and evaluate the solutions.
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5 APPLICATIONS

In this chapter, we present three scenarios in which GE/DNN is applied, as a proof of concept on

designing DNNs. Each application addresses a different type of network, and also a different

problem. The first application focuses on the design of CNNs for image classification, a classic

problem, with a variety of architectures. The second application regards image segmentation,

covering a different perspective on how the networks can be built, and also the metrics used to

evaluate them. The third application is a study performed by a colleague, in collaboration to

expand the approach and test it on different domains, in this case, text classification.

5.1 RESEARCH QUESTIONS

The main objective of this research is proposing an approach that is able to produce high quality

networks, that are adapted to each problem, and reducing the need for expert knowledge and

resources, usually seen on manual designs. The following research questions are proposed to

discuss the individual aspects that helps addressing the main objective.

• RQ1: Is the approach easily adapted for different types of networks?

• RQ2: Are the networks generated by this approach competitive with other evolutionary

design methods?

• RQ3: Can automatically designed networks perform better or similarly to manually

created designs?

• RQ4: What novelty does this approach brings, compared to other neuroevolution

techniques?

5.2 DESIGN OF NETWORKS FOR IMAGE CLASSIFICATION

CNNs are one of the reasons why research on DL is a hot topic in AI [72, 101], and presented as a

powerful approach when applied to computer vision tasks, delivering state-of-the-art architectures.

Recent studies on the manual design of novel CNN architectures [37, 42, 103] reported high

accuracy, showing the potential of using such techniques.

CNNs are a popular option for classification tasks, where the network is used to learn

the features from data and then classify the data into classes. In this application, we propose

a grammar that includes the most common layers found in state-of-the-art CNN architectures,

searching for the best performing design on the CIFAR-10 [51] dataset, a well-known dataset for

image classification tasks. We compare our GE/DNN architectures with the designs found by

two GP-based approaches, DENSER [4] and CGP [100, 108].

5.2.1 CNN grammar

For the CNN grammar (Figure 5.1), we use five types of layers, commonly found in CNNs

architectures. The layers are convolutional, residual, pooling, dropout, and dense; each layer

includes some of the hyperparameters related to it, such as number of filter and kernel size for

convolutional layers and residual layers, number of units for the dense layers, and the rate for

dropout layers. In our context, the residual layer [37] was defined as a group of two convolutional
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layers, batch normalization, summation, and a ReLU activation, with a skip connection from the

input to the summation layer.

〈cnn〉 ::= 〈layer〉 〈layer〉 〈layer〉 〈layer〉 〈layer〉 | 〈layer〉 〈layer〉 〈layer〉 | 〈layer〉

〈layer〉 ::= 〈l_type〉 〈layer〉 | 〈l_type〉

〈l_type〉 ::= 〈conv〉 | 〈resblock〉 | 〈pool〉 | 〈dropout〉 | 〈dense〉 | &

〈conv〉 ::= conv 〈filters〉 〈ksize〉 〈strides〉 〈padding〉 〈activation〉

〈resblock〉 ::= resblock 〈filters〉 〈ksize〉

〈dense〉 ::= dense 〈units〉 〈activation〉

〈dropout〉 ::= dropout 〈rate〉

〈pool〉 ::= 〈pool_type〉 〈ksize〉 〈strides〉 〈padding〉

〈pool_type〉 ::= maxpool | avgpool

〈activation〉 ::= relu | selu | elu | tanh | sigmoid | linear

〈padding〉 ::= valid | same

〈filters〉 ::= 16 | 32 | 64 | 128 | 256 | 512

〈strides〉 ::= 1 | 2

〈ksize〉 ::= 1 | 2 | 3 | 4 | 5

〈units〉 ::= 32 | 64 | 128 | 256 | 512 | 1024

〈rate〉 ::= [0.0,0.5]

Figure 5.1: CNN grammar. It includes structure rules, layers and hyperparameters. The most common layers for

CNN were used. For hyperparameters, we also included special types, for example, the <rate> rule, which samples

a random value within the defined range when selected.

In order to support the creation of larger networks, the first rule <cnn> offers three start

points, with one, three, or five <layer> non-terminals. The redundancy helps creating different

start points for the networks, rather than creating all designs starting with one single layer, we

provide them the chance of producing bigger networks, without having to heavily depend on

randomness to grow. Rule <layer> can also be used to grow the structure by adding one of

the five layers we defined through the <l-type> non-terminal, followed by a new occurrence of

<layer>, or not, giving the grammar a recursive tool. The remaining non-terminals are used to

describe the layer types and their hyperparameters.

Building the networks designed by this grammar is very simple. During the mapping

and building processes, two extra layers are added to every design, the input layer, already

configured with the shape from the data that will be fed, a flatten, which transforms the 2d matrix

input into a 1d vector, and finally a dense layer, also configured with the number of units as the

number of classes, which will be used as the classification layer of the network. The input and
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classification layers are the same regardless of the architecture, meaning that there is no need to

add them to the grammar.

5.2.2 Experiments

Table 5.1 presents the configuration of the evolutionary search. We perform 10 independent runs,

with a population of 20 solutions, for 25 generations. These values are small, mainly due to the

computational cost involved in training many networks. Moreover, genetic operators include

tournament selection, our Half and Half recombination (described in Section 4.7), with one-point

crossover, non-terminal mutation, and replacement with elitism. During the evolution, each

model is trained using the Adam optimizer [46], with default parameters, for 50 epochs, and the

fitness is calculated using a validation set.

Table 5.1: Parameters of the evolutionary search of CNNs.

Parameter Value Parameter Value

Population size 20 Generations 25

One-point Crossover 60% Non-Term. Mutation 40%

Tournament size 5 # of Elites 25%

Model Epochs 50/500 # of Runs 10

In the end, the best design found is re-trained 10 times, using the same configuration

proposed in [4], with stochastic gradient descent (SGD) optimizer, with a learning rate of 0.01

and momentum of 0.9, for 500 epochs. Basically, Adam is faster, compared to SGD, regarding

the optimization of the loss function, however, for a higher number of epochs, it has difficulties

for improving the weights of the architectures. Then, the SGD optimizer, despite being slower, is

more reliable when used for longer training, decreasing the risks of producing overfitting.

The dataset CIFAR-10 [51], consists of 60.000 32x32 colored images (Figure 5.2),

divided into 10 classes, with 6.000 images per class. The dataset is divided into five training

batches and one test batch, each with 10.000 images. The test batch contains exactly 1000

randomly-selected images from each class. The training batches contain the remaining images in

random order, but some training batches may contain more images from one class than another.

Between them, the training batches contain exactly 5000 images from each class.

Following the methodology described in [100], for this experimentation, we used only

10% of the training set, divided into 4500 images for training, 500 for validation, and the test

set (10.000 images), for testing the best network. Moreover, the training set also employs the

following data augmentation techniques: padding 4 pixels on each side followed by a random

32×32 crop from the padded image and random horizontal flips on the cropped 32×32 image.

The main reason for this is to provide variety for the data, considering it uses only 10% of the

dataset. The final network quality is calculated using the test set.

Table 5.2: Classification accuracy and loss for the CIFAR-10 dataset, with average accuracy and standard deviation.

Model Accuracy Loss Mean (StdDev)

CGP-CNN (ResSet1) 74,16 1,70 73,42 ± 0,89

CGP-CNN (ResSet2) 73,22 1,93 71,22 ± 1,76

DENSER 72,93 1,62 67,68 ± 5,60

GE/DNN 74,28 1,79 72,42 ± 1,65

Table 5.2 presents the accuracy, loss, and number of parameters for CGP [100], DENSER

[4], and GE/DNN, and also the mean accuracy across all runs including the standard deviation.
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Figure 5.2: Image examples from the CIFAR-10 dataset. The dataset includes 10 arbitrary classes: airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Our approach took took, on average, 38 hours per run, running on a i3-9100f CPU, with 16gb

RAM, and a GTX 1660, 6gb VRAM. After training all best models for 500 epochs and evaluating

them on the test set, the GE/DNN networks achieved higher accuracy values, with 74,28% against

74,16% for CGP, and 72,93% for DENSER, on the best models. For the loss, GE/DNN achieved

1,79 on the best model, compared to 1,7 for CGP, and 1,62 for DENSER. On the other hand,

CGP was able to generate less complex networks with 1.64 million parameters, compared to 3.55,

and 10.08 million for GE/DNN and DENSER respectively. We should add that the DENSER

model was designed using the full data from CIFAR-10, and thus, this probably affected the

performance in our reduced scenario.

The architecture of our best CNN is represented in Figure 5.3. It combines convolutional,

residual, pooling, and dense layers, in uncommon sequences, with dense layers appearing in early

layers, rather than at the end, and also the preference for the Elu activation instead of ReLU. It

is noteworthy that the representation of the network does not show the input and classification

layers, which is composed of a flatten layer followed by a dense layer with the number of units

equal to the number of classes of the dataset.

5.3 DESIGNING NETWORKS FOR IMAGE SEGMENTATION

Segmenting an image consists of dividing it in multiple segments of pixels to describe objects.

The objective is to simplify the information, modifying its representation into some semantic

representation which is easier to analyze [95]. Image segmentation tasks are classification

problems where a label is assigned for every pixel individually, thus creating a new image as

output. This kind of approach is commonly used to identify objects and boundaries (lines, curves,

shapes, etc.), in images, and often applied to Medical [26, 75, 80, 107], Security [1, 10], and

other modern systems, such as self-driving cars [92].
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Figure 5.3: Best CNN architecture designed by the GE/DNN approach for the CIFAR-10 dataset.

The U-net [88] is the most popular deep learning model used for image segmentation

for medical applications [77, 80, 91, 107]. As described in Section 2.3.5, its architecture is

composed basically of convolutional and pooling layers. The non-sequential organization of its

layers is one of the most relevant characteristics, which gives the network the ability to re-use

information from previous layers in order to learn high-resolution features. These characteristics

add new restrictions, which make the design of U-nets harder, compared to classical CNNs.

5.3.1 U-Net grammar

For designing U-shape architectures, we introduce a mirror-grammar that explores the character-

istics of the U-Nets. It allowed us to design U-shaped networks with broader variety, regarding

the overall structure and components, while also achieving a low probability of producing invalid

models during generation.
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The proposed grammar is shown in Figure 5.4. This grammar assumes the U-Net has a

symmetric structure; thus, we used it to design only the contracting (left-side) and middle parts

of the network and then build the expanding path (right-side) by exploiting the symmetry. By

representing only half of the network in each solution, the representation complexity is reduced,

and we also decrease the chances of producing invalid connections between layers, having better

control of the parameters while guaranteeing the generation of 100% valid solutions.

〈unet〉 ::= 〈conv〉 〈next〉

〈next〉 ::= 〈conv〉 〈next〉 | 〈dropout〉 〈next〉 | 〈pool〉 〈nextp〉 | bridge 〈pool〉 〈nextp〉

〈nextp〉 ::= 〈conv〉 〈next〉 | 〈middle〉

〈middle〉 ::= 〈middle〉 〈middle〉 | 〈conv〉 | 〈dropout〉

〈conv〉 ::= conv 〈filters〉 〈k_size〉 〈strides〉 〈padding〉 〈activ〉

〈pool〉 ::= 〈p_type〉 〈strides〉 〈padding〉 〈padding〉

〈dropout〉 ::= dropout 〈rate〉

〈p_type〉 ::= maxpool | avgpool

〈filters〉 ::= 16 | 32 | 64 | 128 | 256

〈k_size〉 ::= 1 | 2 | 3 | 4

〈strides〉 ::= 1 | 2

〈padding〉 ::= valid | same

〈activ〉 ::= relu | sigmoid | linear

〈rate〉 ::= [0.0, 0.5]

Figure 5.4: U-Net mirror grammar. The structural rules focus on building the left side of the network.

The mapping and building processes had to be adapted. During the mapping process, the

layers and hyperparameters for the expanding path are selected according to the result obtained

by the mapping of the contracting part. Later, building the network will apply the configuration,

repairing the network when needed. More details about the how the U-shaped networks are built,

are given in Section 4.5.

5.3.2 Experiments

GE/DNN is applied for two image segmentation datasets, the BSDS500 [2] and ISBI12 [15],

with the objective of searching for a network design that best performs in each dataset. Then, we

compare the best designed networks with the original U-Net using four image similarity metrics.

Since there is a variety of metrics, each one focuses on different characteristics of the image to

calculate how similar two images are.
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Here, four metrics are introduced: Jaccard, Dice, Sensitivity, and Specificity. The

Jaccard coefficient (Jacc, Eq. 5.1), also known as Intersection over Union, is a statistic used

for gauging the similarity and diversity of sample sets. The Dice coefficient (DCS, Eq. 5.2) is

similar to the Jaccard but more popular in image segmentation tasks. We also use the well-known

Sensitivity and Specificity metrics. Sensitivity, or true positive rate (TPR, Eq. 5.3), measures

the proportion of actual positives that are correctly identified as such (e.g., the percentage of

foreground pixels correctly identified as foreground). Specificity, or true negative rate (TNR, Eq.

5.4), measures the proportion of actual negatives that are correctly identified as such (e.g., the

percentage of background pixels correctly identified as background). The fitness we proposed is

then calculated as a weighted average (Eq. 5.5) of the presented metrics. The weights can be

adjusted according to either how easy or hard is to satisfy each metric.

𝐽𝑎𝑐𝑐 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
(5.1) 𝐷𝐶𝑆 =

2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
(5.2)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5.3) 𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(5.4)

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑎 ∗ 𝐽𝑎𝑐𝑐 + 𝑏 ∗ 𝐷𝐶𝑆 + 𝑐 ∗ 𝑇𝑃𝑅 + 𝑑 ∗ 𝑇𝑁𝑅

𝑎 + 𝑏 + 𝑐 + 𝑑
(5.5)

Table 5.3 present the parameters used for the experiments. We performed 10 runs,

generating 10 different U-shaped networks for each dataset. The population size was set to 20,

evolved for 25 generations, resulting in about 500 evaluated networks per run. For recombination,

we used our adapted crossover and mutation, tournament selection, and replacement with elitism.

During the evolutionary process, the models were trained for 10 epochs and with a time limit

of 60 minutes, with the quality of the network being calculated using the validation set. In

the end, the best-performing model is delivered and re-trained for 500 epochs, now having its

performance calculated on the test data. Adam optimizer, with default parameters, was used for

both the evolution and the best network.

The weighted mean used as the fitness was configured using 0.4 to Dice and Sensitivity

and 0.1 to Jaccard and Specificity. The two metrics with smaller weights were not able to give

much feedback to the evolution, as they were either getting high values too easily or becoming

too difficult to improve. It was concluded that such metrics were not able to track fine tuning on

the segmentation produced by the models, and thus, not being a suitable fitness function for this

application.

Table 5.3: Parameters of the evolutionary search of U-Nets.

Parameter Value Parameter Value

Population size 20 Generations 25

Crossover 60% Mutation 40%

Tournament size 3 # of Elites 10%

# Epochs 10/500 Model time limit 60 min

The Berkeley Segmentation Dataset and Benchmark1 (BSDS) [2] is a large dataset

of natural images that have been segmented by human observers (Figure 5.5). The human

annotations serve as ground truth for learning grouping cues as well as a benchmark for comparing

different segmentation and boundary detection algorithms. The dataset is divided into the three

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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sets usually used for learning approaches: training, validation, and test sets, with 200, 100, and

200 images. As the images do not share the same width and height across the dataset, we resized

both the image and its corresponding contour image to the size of 256x256 pixels.

Figure 5.5: Examples extracted from the BSDS500 dataset, along with their respective contour images.

The serial section Transmission Electron Microscopy (ssTEM) dataset2 [15] is a set

of 60 images, along with their ground truth segmentation, 512x512 pixels grayscale, divided

into 30 images for training, and 30 for the test. For the proposed experiments, we applied data

augmentation techniques in order to enlarge the dataset. In total, we provide 300 images for

training, 30 for validation, and 30 for the test, all resized to 256x256 pixels.

Table 5.4: Segmentation accuracy and loss for each dataset, with mean accuracy and standard deviation.

Model Accuracy Loss Mean (StdDev)

BSDS500

GE/DNN 53.46 0,16 50,04 ± 0,036

UNET 51.59 0,05 49,45 ± 0,021

ISBI12

GE/DNN 86.10 0,15 82,77 ± 0,057

UNET 84.44 0,17 82,72 ± 0,017

Table 5.4 presents the image similarity metrics computed between the predictions and

the ground truth of the original U-Net architecture, the best evolved U-Net, and the mean metrics

for all evolved networks, over the test set. Our approach took, on average, 48 hours per run,

considering the two datasets, running on a cluster equipped with Intel Xeon CPU processors,

with 96 GB RAM, and no GPU. For the BSDS500 dataset, the Specificity and Sensitivity had

a greater impact on the weighted average, while the Dice and mainly the Jaccard index were

more difficult to satisfy, not responding to the changes in the image as easily as the other metrics.

According to the weighted average, the best-evolved network is presented as slightly better than

the original U-Net. Moreover, for the ISBI12 dataset, the Jaccard and Dice indexes had a more

significant influence than the BSDS500. Once again, the best-evolved network achieved a higher

weighted average than the U-Net. For both datasets, the Dice index was the metric that differed

the most, meaning that this metric was more valuable for the ISBI12 dataset (segmentation

problem) rather than the BSDS500 (edge detection). The best-evolved network is presented as a

better solution than the original U-Net, although the mean among all evolved networks presented

a worse performance compared to the original U-Net. The one design that achieved the best

performance is also a smaller, less complex, and faster network to train, with 29,685 parameters,

compared to the 31,032,837 from the U-Net.

2http://brainiac2.mit.edu/isbi_challenge/home
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Figure 5.6: Best U-Net architecture designed by the GE/DNN approach.

The best desing found by GE/DNN is presented in Figure 5.6. Its architecture contains

three “bridge connections”, compared to the four connections in the original U-Net. Moreover, it

includes a dropout connection, that was placed as the layer to be copied to the expanding path,

which is unusual in these networks.

5.4 DESIGN OF NETWORKS FOR TEXT CLASSIFICATION

This application presents an investigation on the design of GNN architectures using GE/DNN,

applied to text classification tasks. Text classification is a classic problem in natural language

processing (NLP), where the main objective is to label textual elements, such as phrases, queries,

paragraphs, and documents. In general, text classification tasks include sentiment analysis

(analyzing the opinions of people in textual data), news categorization (to obtain information of

interest in real-time), and topic classification (to identify the theme or topics of a text) [76].

In this context, neural network approaches have been used in several of these tasks.

Recurring Neural Networks (RNN), for example, is applied to capture word dependencies. A

Convolutional Neural Network (CNN) learns how to recognize patterns in the text, highlighting
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unique or discriminating features, making this type of architecture quite popular for text

classification. Some approaches have combined RNN and LSTM as in [7], and RNN and CNN

as in [8].

Recently, from the representation of texts through graphs, some text classification

models based on convolution in graphs (GNN) have been proposed [110]. In these approaches,

the text is represented by a graph G(V, E), where V is the set of nodes that usually represent the

text units (words, terms, collocations) or documents; and E is the set of edges that represent

the relationships between words, or between words and documents. These relationships vary

between models, i.e., they can represent lexical or semantic relations, contextual overlap, or a

combination of all of them. Other studies used graph convolutional networks (GCNs) for NLP

tasks: [71] used GCN to incorporate syntactic information in neural models; [9] proposed a

model for graph-to-sequence learning that promoted recent advances in neural encoder-decoder

architectures; and [17] proposed a modification for the GCN architecture by introducing a

bidirectional mechanism for convolution directed graph, leading to an improved F1 score in the

used dataset.

There are different perspectives of convolution on graphs present in the literature. These

approaches differ mainly in the propagation function. Table 5.5 shows the convolution methods

used in this work.

Table 5.5: Graph convolution layer methods.

Name Description Author(s)
GraphConv Uses adjacency matrix with

added self-loops and a degree

matrix to propagate discrimi-

nating nodes

Kipf and Welling [47]

GraphSageConv Uses a function to aggregate

the neighborhood of a node

Hamilton et al. [36]

ARMAConv Graph convolutional layer

based on a rational graph filter

Bianchi et al. [11]

GraphAttention This layer computes a convo-

lution similar to GraphConv.

However, it uses the attention

mechanism to weigh the adja-

cency matrix instead of using

the normalized Laplacian

Velickovic et al. [106]

APPNP A graph convolutional layer

implementing the APPNP op-

erator

Klicpera et al. [48]

Furthermore, the advent of BERT [23] created new perspectives for text classification.

BERT was designed to pre-train deep bidirectional representations from an unlabeled text by

jointly conditioning the left and right context in all layers. “As a result, the pre-trained BERT

model can be fine-tuned with just one additional output layer to create state-of-the-art models for

a wide range of tasks, such as question answering and language inference, without substantial

task-specific architecture modifications”.

In general, it is essential to note that graph-based convolution models are closely linked

to the adjacency matrix (constructed from the graph). Therefore, the edge values present in the
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adjacency matrix can direct the convolution to distinct niches in the vector space, thus justifying

an in-depth analysis of this graph construction aspect.

5.4.1 GNN grammar

We developed a grammar (Figure 5.7) that combines an easy way of defining which components

can be used to design the networks with structural rules that guide the designs towards valid

architectures, minimizing invalid models.

Our main objective is to build a grammar capable of combining different convolutional

layers applied for GNNs, in a single neural network architecture. It includes the main components

of the convolutional graph model: the types of convolutional layers and dropout layers, as well

as their parameters: for example, the number of units, activation function, and dropout rate.

Each convolutional layer presented in Table 5.5 can extract specific features from the input set,

highlighting different portions of the graph. Combining these factors could bring a performance

gain when evaluated in text classification. We applied restrictions to the grammar in order to

decrease the creation of invalid or inefficient architectures. The rules are the following:

• The model will have at least one graph convolution and dense layer;

• The last layer will always be a graph convolution node with ‘softmax’ activation and the

number of units set as the number of classes of the dataset;

〈gnn〉 ::= 〈conv〉 〈layer_c〉 〈dense〉

〈layer_c〉 ::= 〈conv〉 | 〈dropout〉 | 〈layer_c〉 〈layer_c〉

〈dense〉 ::= conv 〈conv_type〉 〈units〉 softmax

〈conv〉 ::= conv 〈conv_type〉 〈units〉 〈activation〉

〈conv_type〉 ::= GraphConv | GraphSageConv | ARMAConv

| GraphAttention | APPNP

〈dropout〉 ::= dropout 〈rate〉

〈units〉 ::= 32 | 64 | 128 | 256

〈activation〉 ::= relu | sigmoid

〈rate〉 ::= [0.0, 0.25, 0.5]

Figure 5.7: GNN grammar. It includes five different types of convolutional layers for GNNs.

5.4.2 Experiments

Table 5.6 presents the configuration of the evolutionary search. We perform 10 independent

runs, with a population of 20 solutions, for 25 generations. Moreover, genetic operators include

tournament selection, our Half and Half recombination (described in Section 4.7), with one-point

crossover and non-terminal mutation and replacement with elitism. During the evolution, each
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model is trained using the Adam optimizer [46], with default parameters, for 50 epochs, and

the fitness is calculated using the validation set. In the end, the best design found is re-trained

with a learning rate of 0.001 and weight decay of 5 ∗ 10−4, for 500 epochs, similar to the CNN

experiment in Section 5.2.

Table 5.6: Parameters of the evolutionary search of GNNs.

Parameter Value Parameter Value

Population size 20 Generations 25

One-point Crossover 60% Non-Term. Mutation 40%

Tournament size 5 # of Elites 25%

Model Epochs 50/500 # of Runs 10

We run experiments on four widely-used text classification benchmarks: R8, R523,

Ohsumed4, and Movie Review (MR)5. Our approach has two stages: building a representation

of texts and designing a neural network adapted to the domain. The texts of our corpus follow

the flow presented in [110], except for the representation of the sentences. Originally, sentences

were represented by vectors of zeros. We use Sentence-Bert [86] in order to generate a vector

representation for sentences6. The models from Sentence-Bert are based on transformer networks

such as BERT [23], RoBERTa [62] and XLM-RoBERTa[20]. In general, BERT-based approaches

generate vector representations in vector space such that similar text is close and can be efficiently

found using cosine similarity. There are two main reasons to use it: 1) BERT is pre-trained on

a large amount of data, and in this way it is possible to find semantic relationships in a large

vocabulary; 2) BERT can account for a word’s context, i.e., it returns different vectors for the

same word depending on the words around it, and this feature has fundamental relevance for

contextual analysis.

Table 5.7 summarizes the descriptive statistics for each dataset. The number of words is

potentially different from the number of nodes due to two main reasons: 1) in the study model,

each document is also represented by a node. 2) Not all words present in the dataset will become

a node in the representation, mainly due to low frequency.

Table 5.7: Descriptive statistics of each dataset.

Dataset Doc Words Nodes Edges Classes

R8 7,674 6,792 14,466 4,024,898 8

R52 9,100 7,890 16,990 5,118,159 52

Ohsumed 7,400 13,323 20,723 8,384,734 23

MR 10,662 20,473 31,135 1,665,491 2

In Table 5.8, we present the results of the GNNs designed by our methods, comparing

them with other GNN architectures. The architecture of each of these GNN was provided from

the best practices in the literature. Highlighting the experiment over the dataset MR, our approach

reaches the highest accuracy values among the presented methods. As in the CNN experiment,

when executed under the same conditions as our best networks, the GE/DNN networks were

generally able to achieve higher accuracy values. In many cases, GE/DNN generates quite

3https://www.cs.umb.edu/ smimarog/ textmining/datasets/

4ftp://medir.ohsu.edu/pub/ohsumed

5http://www.cs.cornell.edu/people/pabo/movie-review-data/

6For this task, we use the pre-trained model paraphrase-MiniLM-L12-v2 available at:

https://www.sbert.net/docs/pretrained_models.html
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complex networks. However, it was possible to observe the construction of networks with

different convolution layers due to the proposed grammar.

We highlight the architecture of our best GNN for the MR dataset in Figure 5.8, which

applied different graph layers in a very compact architecture. However, our best solution is a

network that took 13,5 hours, on average, to be found. In contrast, the second best approach

(Sentence-Bert + GraphAttention) took about 8 hours. All experiments were executed on a

Google Cloud Compute Engine instance, with 8vCPU, 32gb RAM and no GPU.

Table 5.8: Classification accuracy and loss of different models on the four datasets, with average accuracy and

standard deviation.

Sentence-Bert + Model Accuracy Loss Mean (StdDev)

MR

GraphConv 72,09 1,86 72,00 ± 0,01

GraphSageConv 62,51 1,82 62,10 ± 0,02

ARMAConv 60,40 1,78 60,31 ± 0,01

GraphAttention 74,00 1,78 73,20 ± 0,17

APPNP 50,99 1,79 50,48 ± 0,02

GE/DNN 75,03 1,81 74,08 ± 0,01

R8

GraphConv 84,00 1,60 83,90 ± 0,01

GraphSageConv 80,50 1,59 80,44 ± 0,01

ARMAConv 80,00 1,75 79,93 ± 0,03

GraphAttention 85,02 1,71 84,33 ± 0,13

APPNP 66,80 1,49 66,30 ± 0,03

GE/DNN 87,03 1,62 85,00 ± 0,01

R52

GraphConv 81,05 1,84 81,00 ± 0,03

GraphSageConv 68,96 1,83 67,18 ± 0,47

ARMAConv 61,20 1,85 60,90 ± 0,40

GraphAttention 84,00 1,92 82,09 ± 0,77

APPNP 60,50 1,85 59,98 ± 0,19

GE/DNN 89,01 1,86 87,09 ± 0,19

Ohsumed

GraphConv 55,03 1,87 55,00 ± 0,02

GraphSageConv 45,00 1,99 43,64 ± 0,59

ARMAConv 46,70 1,99 45,66 ± 0,42

GraphAttention 58,00 1,99 55,03 ± 0,89

APPNP 51,07 1,98 50,42 ± 0,17

GE/DNN 64,99 1,98 63,00 ± 0,21

5.5 CONCLUDING REMARKS

On the first application, it was tested basic features of the proposed approach. The grammar

defined a number of layers and hyperparameters as building blocks for CNNs, and also added a

custom layers, the residual layer, as another option, which helped designing better architectures.

For the second application, a different grammar and build strategy were necessary. We assumed
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Figure 5.8: Best GNN architecture designed by the GE/DNN approach for the MR dataset.

the U-Net as a symmetric network, from which the grammar was used to define half of the

architecture, while the other half was inferred. It showed that our approach is capable to

handle more complex architectures, when employing the correct grammar and mapping process.

Designing GNNs takes a similar approach to what was already shown in the first application,

however, this time applied to a complete different domain, which are networks for graphs. This

time, our approach was presented as a flexible tool, that required only the definition of the layers,

adapted to graphs, and a building process that could handle the multi input/output required for

text problems.

Revisiting the research questions: RQ1 asked if the approach is easily adapted to

the different applications. As demonstrated, three different types of networks, with different

requirements and objectives were successfully addressed by only defining a grammar and the

building process. Different grammars were proposed for each application, with different layers,

hyperparameters, and architecture choices. For some of the applications, restrictions were added

to the grammar in order to prevent the generation of invalid models, however, even though it

might decrease the space of possible designs, the approach did not faced diversity problems.

Moreover, the fitness is also flexible, as each problem might require different metrics in order to

properly evaluate the quality of the solutions.

RQ2 asks whether the proposed approach is comparable to other neuroevolution

techniques. The first application performs a comparison between our approach and CGP, another

GP-based approach that uses graphs, showing that the networks generated by GE/DNN were able

to outperform the CGP networks, and thus, showing the potential of our approach. To provide a

fair comparison, we used the methodology proposed by works we compare to, comparing our
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best models with theirs. It included how we trained our models during and after the evolutionary

process, and also the optimizer used on the best architecture. Similarly, in RQ3 the question

extends to manually designed networks. This scenario was covered in both the second and third

applications, where our designed networks were tested against manually designed architectures,

achieving higher results on the proposed experiments. The results obtained here reinforces the

hypothesis, that the automatic design of DNNs is able to generate networks that are able to

surpass manually design networks, and in some cases, through unusual choices for the layers and

hyperparameters.

Lastly, RQ4 asks about the novelty of this approach. Despite the fact that grammar-based

approaches are under explored, compared to other approaches, it is worth mentioning all the

work that has been put into exploring the different grammar strategies, along with the building

process, for each application. Furthermore, the fine-tuning performed on the search engine,

with the proposal of more suitable recombination operators, and the movement acceptance, all

contributed to navigate the search space for better designs. More than better accuracy results, the

novel aspect presented by our approach is presented by the combination of classical topics on the

design of DNNs, proposing new ways to use grammars to define and guide how the architectures

are built. The idea is reinforced considering the three different applications proposed, showing

the generality of the approach. This is shown through the three proposed applications
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6 FINAL REMARKS

DL is a prevalent topic, with extensive studies being developed for a variety of tasks. State-of-

the-art architectures are being continuously modified and fine-tuned by experts, increasing the

complexity and number of hyperparameters to a point where it takes a significant effort to make

further progress. This challenge is part of the motivation for the growing interest in applying

techniques to help design DNNs. Neuroevolution and other NAS techniques have been studied

and applied with success to the design of architectures, showing the potential, for instance, of

evolutionary-based approaches, in generating and recombining solutions as a promising way to

improve the quality of the networks.

6.1 CONTRIBUTIONS AND LIMITATIONS

In this work, we proposed an approach called GE/DNN, for the design of DNNs, which combines

existing techniques used for the design of algorithms, with novel mechanisms adapted to design

DNNs. We described how a grammar could be used to define layers and hyperparameters as

building blocks for DNN architectures. Explored the indirect encoding and mapping process,

used in DSGE, with the well-known evolutionary schema for generating, recombining and

evaluating solutions. GE/DNN was designed to be a flexible tool, which can be applied to various

machine learning problems, requiring the user to only define the grammar and how the networks

are built. On the other hand, evaluating these designs have high computational cost, regardless of

an optimized set of parameters, balancing the amount of evolved networks. We evaluated our

approach in three different applications, each on the design of networks for different domains.

The first application focused on the design of CNNs for image classification tasks, proposing

a grammar with the most common layers used for CNNs, and a residual block composed of

a particular set of layers. Our designed networks were able to outperform another GP-based

evolutionary approach when executing the training under the same conditions. The second

application involved the design of U-Nets for image segmentation problems. The particularities

of the U-Net were used to propose a symmetric grammar that built networks by only designing

the left side and inferring the right side. GE/DNN was tested on two real-world datasets, the

BSDS500 for edge detection and the ISBI12 for image segmentation, where we were able to obtain

an architecture that outperformed the original U-Net, in both datasets. The third application

focused on the design of GNNs for text classification tasks. Sentence-Bert was used to generate

the representation for the sentences, and state-of-the-art modules were used to compose part of

the proposed grammar for this application. The evolved networks were then compared to these

state-of-the-art modules individually, presenting a better result when combined by our approach

than in the original architectures.

The following list presents the main contributions of GE/DNN.

• Proposed a grammar strategy for DNNs that combines rules for layers, hyperparameters

and architectures;

• Created new recombination operators that explores the improved encoding from DSGE;

• Applied the approach to different scenarios to show the potential as a flexible tool;

• Demonstrated that it is possible to automatically generate architectures competitive to

other automated techniques.



65

Similarly, the following list presents some of the existing limitations of the approach:

• More complex architectures will require further exploration of the proposed grammar;

• Each different scenario also requires a evaluation strategy that is suitable to the type of

network;

• Currently, the approach only generates the architecture, not including tuning the weights;

• In general, the whole evolutionary process consumes a lot of computational resources.

6.2 FUTURE DIRECTIONS

By using only a fraction of the dataset when designing the CNNs, we significantly reduced the

time and computational resources involved while also finding high-performing and also compact

architectures. More experiments with similar approaches might help reducing costs related

to training the networks. For instance, similarly to the hypothesis that was empirically tested,

where the models were evaluated with no training. Even though the results were not positive,

it can be faced as one among many possibilities, that should be more explored. Moreover, we

explored two types of architectures, sequential and U-shaped, and a variety of layer types, for

three different problems. Each application tested different features of our approach, such as

representation power, adaptability and flexibility. Testing the approach for other architectures

and domains brings value and useful insights that can help expanding the existing approach.

Extended work can be performed on the search engine, proposing suitable operators for specific

situations, similar to what was presented with our Half and Half mechanism, that proved to be

more useful than regular crossover and mutation. Considering different criteria for selecting

the architectures could be implemented as a way to explore multi-objective search spaces, such

as novelty along with quality. Furthermore, exploring mixing the “design from scratch”, with

other perspectives, for instance, evolving parts of the network separately, taking inspiration from

transfer learning works, similar to what was explored in the U-Net grammar.

6.3 PUBLICATIONS

The following list contains the works that were generated throughout this research, with paper

published in well-known, national and international, congresses of the evolutionary computation

field.

• [58] Ricardo H. R. Lima, Aurora T. R. Pozo. Evolving convolutional neural networks
through grammatical evolution. Genetic and Evolutionary Computation Conference

(GECCO) 2019.

• [60] Ricardo H. R. Lima, Aurora T. R. Pozo. Automatic Design of Convolutional Neural
Networks using Grammatical Evolution. Brazilian Conference on Intelligent Systems

(BRACIS) 2019.

• [59] Ricardo H. R. Lima, Aurora T. R. Pozo, Alexander Mendiburu, Roberto Santana.

A Symmetric grammar approach for designing segmentation models. IEEE Congress on

Evolutionary Computation (CEC) 2020

• [56] Ricardo H. R. Lima, Aurora T. R. Pozo, Alexander Mendiburu, Roberto Santana.

Automatic Design of Deep Neural Networks Applied to Image Segmentation Problems.
European Conference on Genetic Programming (EuroGP) 2021
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• Ricardo H. R. Lima, Dimmy K. Magalhães, Aurora T. R. Pozo, Alexander Mendiburu,

Roberto Santana. A Grammar-based GP approach applied to the design of deep neural
networks. Journal of Genetic Programming and Evolvable Machines 2022. Accepted

for publication.
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