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RESUMO

No cerne das estranhezas da mecânica quântica estão a superposição de estados e a complemen-

tariedade de Bohr, noções conflitantes com a nossa percepção de realidade física macroscópica.

Recentemente, uma hipótese de realismo foi formulada assumindo que a mecânica quântica

constitui uma teoria física completa. Esta hipótese parte de uma ideia que é compartilhada

também por defensores do Darwinismo Quântico: de que a codificação de informação sobre

um dado observável em um grau de liberdade físico é uma condição necessária para que tal

observável se torne um elemento de realidade física. Nesta tese, nós exploramos tal proposta de

realismo dentro da teoria quântica em duas partes. Na Parte I nós estudamos um sistema físico

conhecido como caminhadas quânticas e analisamos como se dá a emergência de realidade física

objetiva de observáveis de spins durante a evolução de diversas não-classicalidades entre os

subsistemas, a citar, não-localidade de Bell, direcionamento quântico, emaranhamento, discórdia

quântica, irrealismo e não-localidade baseada em realismo. Motivados por esta análise, nós

buscamos, na Parte II, nos aprofundar ainda mais no conceito de realismo dentro da mecânica

quântica. Tomando a ideia de fluxo de informação do sistema para o ambiente como condição

necessária para a emergência de realidade física, nós construímos uma axiomatização para o

aqui chamado realismo quântico—em oposição ao realismo clássico. Nossa estratégia consiste

em listar alguns princípios motivados fisicamente que sejam capazes de caracterizar o realismo

quântico de maneira independente de “métrica”. Introduzimos alguns critérios que definem

monótonas e medidas de realidade e, em seguida, procuramos potenciais candidatos dentro de

algumas teorias da informação célebres (entropias de von Neumann, Rényi e Tsallis) e também

por medidas geométricas (distâncias do traço, Hilbert-Schmidt, Bures e Hellinger). Construímos

explicitamente algumas classes de quantificadores entrópicos e geométricos, entre os quais que

alguns satisfazem todos os axiomas propostos e, portanto, podem ser tomados como estimativas

fiéis para o grau de realidade (ou definidade) de um dado observável físico. Nós esperamos

que nossa estrutura possa oferecer uma base formal para futuras discussões sobre aspectos

fundamentais da mecânica quântica.

Palavras-chaves: realismo. correlações quânticas. caminhadas quânticas. teoria de recursos

quânticos. Darwinismo quântico.



ABSTRACT

At the heart of the strangeness of quantummechanics are the superposition of states and Bohr’s

complementarity, notions that are in conflict with our perception of macroscopic physical

reality. Recently, a realism hypothesis has been formulated assuming that quantum mechanics

constitutes a complete physical theory. This hypothesis starts from an idea that is also shared by

supporters of Quantum Darwinism: that the encoding of information about a given observable

in a physical degree of freedom is a necessary condition for such an observable to become an

element of physical reality. In this thesis, we explore such a proposal of realism within quantum

theory into two parts. In Part I we study a physical system known as quantum walks and

analyze how the emergence of objective physical reality of spin observables occurs during the

evolution of several non-classicalities between subsystems, namely, Bell nonlocality, quantum

steering, entanglement, quantum discord, irrealism, and realism-based nonlocality. Motivated

by this analysis, we seek, in Part II, to get even further into the concept of realism within

quantum mechanics. Taking the idea of information flow from the system to the environment

as a necessary condition for the emergence of physical reality, we build an axiomatization

for the here called quantum realism—as opposed to classical realism. Our strategy is to list

some physically motivated principles that are capable of characterizing quantum realism in a

“metric” independent way. We introduce some criteria that define monotones and measures of

reality and then we look for potential candidates within some famous information theories (von

Neumann, Rényi and Tsallis entropies) and also by geometric measures (trace, Hilbert- Schmidt,

Bures, and Hellinger distances). We explicitly build some classes of entropic and geometric

quantifiers, among which some satisfy all the proposed axioms and, therefore, can be taken

as faithful estimates for the degree of reality (or definiteness) of a given physical observable.

We hope that our framework can provide a formal basis for future discussions of fundamental

aspects of quantum mechanics.

Key-words: realism. quantum correlations. quantum walks. quantum resource theories. quan-

tum Darwinism.
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INTRODUCTION

When we try to understand at a deeper conceptual level the quantum mechanics

predictions we usually do it through our perspective of objective physical reality. Such kind

of attempt generally leads us to intriguing interpretations and conflicting ideas, although

based on correct results. One important source of conflict is the superposition principle, which

is far beyond the idea of being in two places at the same time because in order to be in two

places such an object must really be there. Take a coherent quantum superposition such as√
1 − 𝑝 |0〉 + 𝑒𝑖𝜃√𝑝 |1〉, for instance. The idea that a physical quantity (e.g., spin or polarization)

is an element of reality, that is, is well determined all the time independently of any observer,

does not fit for such a preparation. In fact, this classical physics notion of reality is valid for

a preparation like (1 − 𝑝) |0〉 〈0| + 𝑝 |1〉 〈1|, which, however, is incapable of encapsulate the
fundamental relative phase 𝜃 . Thus, in the absence of a conception of things that lie in an

indefinite state, we appeal to our classical rationale. Consequently, when we are confronted

with results from, e.g., the double-slit experiment indicating that the particle interfered with

itself, we assess the situation intuitively through our classical notion of objective reality and

untimely conclude that the particle passed both slits at the same time (unless one is willing to

accept nonlocal elements of reality, such as the Bohmian trajectories [1, 2]). Such a conclusion

should at least cause a feeling of discomfort.

This thesis deals with the concept of realism and its violations in the context of

quantum mechanics into two parts: the first one is more computational and focused on the

analysis of a specific system (quantum walks); and the second one is more conceptual, where

we will propose a set of axioms in order to better formalize the concept of quantum realism

previously proposed in the literature. Before introducing these specific problems, we will

address the issue regarding realism. In most cases the term realism is taken as a synonym for

“classical reality”, which may be identified with the dogma according to which all the systems

exist and have well defined physical properties at every instant of time regardless the presence

or action of any observer (brain-endowed systems). As we will see, quantum theory poses

challenges when faced with this definition.

The discussion about elements of the physical reality in the context of quantum

mechanics takes us back to the seminal work of Einstein, Podolsky, and Rosen (EPR) [3], where

the authors call into question the completeness of the quantum theory. EPR proposed two

conditions for the success of a physical theory: correctness and completeness. One should

agree that, so far, quantum theory is correct since every one of its predictions agrees with the

experiments. The idea of completeness, however, is more intricate: “every element of physical

reality must have a counterpart in the physical theory”. Here, element of reality was defined in

the following way: “If, without disturbing the system in any way, we can predict with certainty
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(. . . ) the value of a physical quantity, then there exists an element of physical reality corresponding

to this physical quantity”. In order to assess the completeness of quantum theory, EPR analyzed

a Gedankenexperiment (thought experiment) based on position and momentum observables.

Here, we are going to discuss Bohm’s [4] version of that Gedankenexperiment, which is simpler.

A pair of completely entangled spin-1/2 particles prepared in the singlet state

|𝜓𝑠〉 = |↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉√
2

(1)

is spatially separated after its formation. Quantum theory predicts an anti-correlation of spin

measurement outcomes for equal measurement directions. That means that, after the collapse

of the wave function corresponding to the spin of the first particle, there must be an element

of reality associated with the spin of the second particle—which is in a far site—because the

observer can predict its result with certainty without disturbing it. Now, if one were to measure

an orthogonal direction of the spin of the first particle, that is, an incompatible observable, the

predictions would be the same as before (since the singlet is rotational invariant), which would

lead to two different wave functions designated for the same reality of the far particle. Because

EPR assume that no event can influence another one outside its light cone, the reality of both

incompatible observables should have been established since the formation of the pair, rather

than being induced by a “spooky action at a distance”. Since the uncertainty principle prevents

simultaneous definite predictions for incompatible observables, the authors accepted the thesis

that quantum theory is not complete. In other words, they claim that there are elements of

reality not predicted by the theory. Therefore, there might be some lacking information in the

quantum state |𝜓𝑠〉—some hidden variable—that could in principle predetermine the apparently

random result of a quantum measurement.

EPR’s rationale was immediately confronted by Bohr [5], who argued that comple-

mentary physical quantities associated with incompatible observables cannot be elements of

reality in the same experimental arrangement. Indeed, we can see that EPR use a counterfactual

definiteness assumption: “if one were to measure”, “the predictions would be”, “which would

lead”1. That is, EPR’s claim is based on events that have not actually happened, but their

measurement results are treated as defined values. Żukowsky and Brukner [6], for instance,

argue that “this is in striking disagreement with quantum formalism and the complementarity

principle”.

Three decades after the publication of EPR’s paper, Bell (first in 1964 [7] and then

in 1976 [8]) proved a no-go theorem claiming that any model based on local hidden variables

cannot be consistent with the predictions of quantum mechanics. We will cover Bell’s argument

in more detail in the first chapter on fundamental concepts, but for now, it’s enough to know

the following. Based on a set of assumptions, Bell derived inequalities involving expected

1 In fact, these are not phrases taken from the EPR article, but they have the same meaning stated by the authors.
The reader can reach the same conclusion by assessing the article [3] right after Eq. (8) in p. 779.
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values. The violation of these inequalities by any experiment necessarily implies the violation

of at least one of the assumptions assumed by Bell.

One of the major problems regarding Bell’s most famous result is that Bell’s 1964

theorem [7] uses a different set of assumptions compared to Bell’s 1976 theorem [8], nonetheless

leading to the same inequality. These two sets are composed by, respectively: (i) locality (in

the sense of parameter independence: Bob’s inputs do not influence Alice’s outcomes [9])

and predetermination (the existence of hidden variables that predetermine the result of a

measurement [10]); and (ii) local causality (“correlations between physical events in different

space-time regions should be explicable in terms of physical events in the overlap of the backward

light cones” [8]). Common to both sets are also the extra hypotheses of: no-superdeterminism

(choices in the future do not influence results in the present [11]), absoluteness of observed events

(also called macroreality: every actually performed measurement has an observer-independent

result [12]), and the existence of a relativistic space-time structure2.

Given the undeniable success of quantum mechanics in fitting experimental data,

what people do, in general, when reporting an experimental violation of a Bell inequality is to

ignore the extra set of hypotheses (or assume it to be true in advance) and say for short that

nature itself is incompatible with the local causality hypothesis. This phenomenon, conven-

tionally referred to as Bell nonlocality [14], has been verified through several loophole-free

tests [15–20]. Interestingly, local causality has been acknowledged as a compound assumption

[6], stronger than locality but weaker than no-signaling (the impossibility of faster-than-light

communication, which has never been seen violated), so that no tension whatsoever exists

with relativity principles. Note that locality+predetermination do not imply local causality,

being that the source of misunderstanding regarding Bell’s theorems: it is possible to obtain

Bell inequalities from both of them, but they are not equivalent.

Yet, others prefer to say that a violation of a Bell inequality implies that nature is in

conflict with the local realism hypothesis, or local realistic theories, where realism could refer

to the predetermination assumption (e.g., the experimental articles [15–20]). However, realism

in this case is a vague and not-specified term, since even Bell does not mention it in any of his

seminal works3. Even so, some [10] choose to give up predetermination instead of locality in

order to peacefully coexist with relativity, since quantum mechanics is already intrinsically

non-deterministic. However, as we are going to see, giving up predetermination in order to

make quantum mechanics a correct theory is not enough. It has been claimed that there is a

behavior even more “quantum” than Bell nonlocality.

Very recently, an extraordinary development have bring the above debate to a new

2 See the recent works ofWiseman and Cavalcanti [12, 13] for a verymeticulous discussion on all the assumptions
underlying Bell’s theorem, upon which our discourse was based.

3 Besides that, if realism in this case refers only to predetermination, why not use just local predetermination
hypothesis instead? In the work of Gisin [21] we find a deeper discussion on the vagueness of the term realism
when used in the context of Bell inequalities and why a proper definition of it still needs to be made.
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Figure 1 – The original Wigner’s friend scenario (or paradox) [24]. In her laboratory, Alice performs
a quantum measurement—represented here by a Stern-Gerlach experiment over a particle
initially in |𝜓0〉 = ( |↑〉 + |↓〉)/√2. After looking at the mark left by the particle on the
wall in the position, say, +𝑧, she registers a definite outcome and assigns to her particle
the spin state |𝜓 〉 = |↑〉. Wigner, on the other way, lies outside the perfectly isolated lab.
From his point of view, he can assign to Alice and her particle an entangled global state
|Ψ〉 = ( |Alice registers + 𝑧〉 |↑〉 + |Alice registers − 𝑧〉 |↓〉)/√2. There is nothing in quantum
theory that forbids him to do that. Only if he opens the door lab, one of the two realities for
Alice and her particle will be settled. The paradox is: from her perspective, she was never
in superposition. Who is right? Actually performed measurements always have absolute
results? Or the reality status depends on the observer?

level. Based on the well-known Wigner’s friend scenario (see Fig. 1), Brukner [22] proposed

another no-go theorem. In his approach, Alice and Bob are superobservers performing quantum

operations on their respective space-like separated friends’ laboratories. Charlie and Debbie

(Alice’s and Bob’s friends, respectively) share an entangled pair of quantum particles, and

by making measurements on it they establish correlations on the posterior measurements

made by Alice and Bob. Inspired on that, Bong et al. [23] have proved and experimentally

verified that “if a superobserver can perform arbitrary quantum operations on an observer and

its environment, then no physical theory can satisfy” the entire Local Friendliness (LF) set of

hypotheses: absoluteness of observed events, no-superdeterminism, and locality. Note that

predetermination is not included here, but if we add it we obtain the conditions to the first

Bell’s theorem. This means that it is possible to have a scenario where we observe a violation

of a Bell inequality while holding every assumption of the LF set. The opposite, however, is

impossible.

Whatever perspective one may adopt in assessing the quantum phenomena, the

task of combining the algebraic structure of the theory with the experienced physical reality is

always an issue. In effect, it has been suggested that many of the interpretations of quantum

mechanics known to date can be divided into two groups, depending on their attitude toward

(the emergence of) realism [25, 26]. They are: intrinsic realism and participatory realism. The
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first one advocates the view that the measurement probabilities (given by |𝜓 |2) are properties
intrinsic only, and just only, to the observed system itself. In this sense, intrinsic realism can

be divided into another two groups: the 𝜓 -ontic view, which says that there is an objective

reality and the wave function 𝜓 represents this reality on its whole; and the 𝜓 -epistemic

view, which says that 𝜓 represents partial knowledge about an underlying physical reality.

Participatory realism, on the other way, endorses precisely the opposite. According to that view,

the probabilities depend on not just the system itself but also on the observer’s experience.

Hypothesis sets such as the LF one reinforce the above divisions over interpretations

of quantum mechanics. However, the failure of the LF set can be due to any one of its three

assumptions, and the experiment performed by Bong et al. [23] cannot tell us which one it is.

Those who opt for an interpretation of quantum mechanics based on intrinsic realism should

accept absoluteness of observed events at the expense of locality or no-superdeterminism, as are

the cases of Bohmian mechanics [1, 2] or retrocausal models [27], respectively. Those in favor

of participatory realism deny that actually observed events have results that are independent of

any observer, as it is the case with the Copenhagen interpretation [28], the relational quantum

mechanics [29], and QBism [30].

Let us quickly summarize what we have discussed so far. Violations of Bell inequal-

ities are presented as evidence that nature is incompatible with local realistic models. However,

there is still no consensus on what is meant by “realistic” within quantum mechanics. Each

type of interpretation of quantum mechanics has a different view on this issue (and it is really

an issue since superpositions are macroscopically counterintuitive). Furthermore, it has been

argued that no-go theorems such as those proposed by Bell [7, 8], Brukner [22], and Bong et

al. [23] provide us with the basic assumptions behind the classical behavior that are keys to

choosing between different interpretations of quantum mechanics.

One of the prominent frameworks accounting for the emergence of an objective

reality from the quantum substratum that is claimed to be “free of interpretation” is Quantum

Darwinism (QD) [31]. Corroborated by recent experiments [32–34], this model claims that

reality emerges when information about a quantum system gets prolifically copied into the

environment. While in decoherence theory the environment is taken as an information sink, in

QD the environment is structured, containing several fragments that interact with the system

and correlate with it. In the environment, different observers access the same information

about the system through redundant copies encoded in different fragments of the environment.

When different observers can agree that they have accessed the same information (and so the

access must be innocuous), the quantum state of the system is said to exist objectively. The

term “Darwinism” comes, then, from the concept that only states that multiply (or procreate)

their information several times in the environment can survive and, therefore, emerge from

the quantum world to macroscopic classicality.

A very recent result on QD [35] suggests that there is a certain universality in
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the way in which the fragments of the environment acquire information about the system of

interest. The more fragments that are correlated with the system (no matter how weak the

correlation), the more mutual quantum information is shared between system and environment

and, consequently, the more objectively real the state of the system becomes. Thus, once

we accept a non-instantaneous transition to classical reality, it makes sense thinking of an

intermediate state of affairs, the one prior to the definitive achievement of realism. Presumably,

any gradation of “nonrealism” would be possible a priori. This was the intuition leading Bilobran

and Angelo (BA) to introduce the so-called irreality (the complement of reality)—an operational

quantifier intended to diagnose how far a given physical quantity is from full definiteness [36].

The criterion of realism envisaged in this approach, henceforth referred to as BA’s realism

hypothesis, does not imply full classical reality, since situations are shown to exist where the

𝑧-component of spin is an element of reality whereas the 𝑥-component is not. The basic premise

employed by BA is that a measurement establishes an element of reality for the measured

observable, even when the measurement outcome is not revealed. If a given state is not altered

by an unrevealed measurement, then this means that this state already implied an element

of reality before the measurement. Hence, the uncertainties associated with the measured

observable are of subjective essence and the state is epistemic. Many developments followed

from this framework, from a novel notion of nonlocality [37–39] to foundational aspects of

quantum theory [40, 41] and their proof-of-principle [42, 43] to the realization that irreality is

a quantum resource [44].

The abolishment of the idea that all observables are well determined all the time in a

classical sense, leads to alternative and enlightening new perspectives, as Engelbert and Angelo

have shown in their discussion on Hardy’s paradox [41]. In their work, the authors’ analysis

suggests that if one gives up classical realism, then locality can be restored and the Hardy’s

paradox vanishes.We believe that a similar approach can lead us to a better understanding of the

nonclassical behaviors characteristic of other quantum systems. Throughout this thesis, we are

going to reject classical realism and accept that sometimes some physical quantities do not have

definite values previously to the measurement—and that is not a matter of subjective ignorance.

In other words, we are going to accept quantum realism from BA’s view [36] and we are going

to study it on two fronts: Parts I and II. First, we will analyze a particular system from the point

of view of quantum realism in order to observe how the emergence of physical reality occurs

during the evolution of several distinct non-classical features—or non-classicalities. The system

under scrutiny in our work obeys a dynamics known as quantumwalk and the following section

is entirely devoted to introducing this type of dynamics and which non-classicalities we are

interested in. In the second part, we will direct our attention to the quantifier of physical reality

proposed by BA. Inspired by well-established quantum resource theories such as coherence

and entanglement, we will propose an axiomatization for quantum realism in an attempt to

further formalize its conceptual framework. There is a section devoted to this matter on the

next pages.
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Before starting, it is useful to spell out the meaning that shall be presumed from the

term “quantum realism” throughout our work. It is not connected to the existence of a system,

which is taken for granted from the outset, but rather to the definiteness of a physical quantity

prior to any observer’s intervention. When this scenario is realized, the corresponding quantity

is said to be an element of reality. Unlike classical reality, quantum realism does not presume

all physical quantities to be elements of reality simultaneously. “Definiteness”, by its turn,

does not mean “total absence of uncertainties”, which would be equivalent to the condition of

full predictability appearing in EPR’s approach. It actually refers to the absence of quantum

uncertainties for a particular physical quantity.

Without further ado, let us introduce the two topics that we are going to talk about

within quantum realism.

QUANTUM STUFF IN QUANTUMWALKS

Originally introduced as quantum versions of classical random walks—with some

foundational motivations and potential applications to quantum optics—, quantum walks [45]

have now achieved the status of an ubiquitous tool for studies in areas like quantum compu-

tation [46–48], quantum thermodynamics [49, 50], and foundations of quantum theory [51].

Generically speaking, a quantum walk refers to the dynamics of a particle (the walker) whose

motion is conditioned to some internal degree of freedom (“the coin”). Some of the usual

formulations of this problem consist of confining the walker motion to a dimensionless discrete

structure of space-time and modeling the internal coin with a spin-1/2 algebra. By virtue of the

superposition principle, interference patterns typically develop over time, which produces a

distinctive mark of quantum walks, namely, ballistic spreading [52] (see Fig. 2). Interestingly,

the mathematical formalism of quantum walks is platform independent, meaning that other

physical quantities can be used as internal and external degrees of freedom. In fact, it has

been shown that energy levels [51] or light polarization [53] perfectly implement the notion of

internal coin, whereas the walker position can be suitably emulated with time encoding [53],

photonic orbital angular momentum [54], or even actual physical position [55]. References [56,

57] are excellent starting points for the study of quantum walks and Ref. [58] offers a review of

physical implementations.

Another relevant feature of a quantum walk is the ability to produce quantum

resources. Since information about the spin is shared with the position every time the particle

takes a step, quantum correlations are created between these degrees of freedom, especially in

the form of entanglement [59, 60]. For instances involving two quantum walkers [61–64], the

production of nonclassical features becomes even more sophisticated. Different partitions exist

and entanglement can be found between the subsystems (position-spin of one particle with

position-spin of another particle) [65, 66], the spins [67], and the positions [68]. Incidentally, it

is precisely the presence of interaction—and entanglement—between the walkers that makes it
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Figure 2 – While in a classical random walk (a) we can see well defined trajectories guided by, say, the
result of a coin toss game, in a quantumwalk (b) the superposition principle allows the walker
to be in a superposition of spatial positions. Figure source: L. Sansoni, “Integrated devices for
quantum information with polarization encoded qubits”, Ph.D. Thesis presentation (Sapienza
Università di Roma, 2012).

possible to solve, for example, a wider range of graph isomorphism problems when compared

to noninteracting walkers [69]. However, to the best of our knowledge, there is no diagnosis

of the presence or dynamical creation of other quantum resources during a quantum walk.

Such a resource overview may lead to new perspectives for the use and generation of quantum

resources in the fields where the quantum walks apply.

The first part of this thesis aims at advancing the above-delineated framework by

systematically dissecting a given two-particle quantum walk with respect to its potentialities

in producing several types of nonclassical features, in particular, violations of BA’s realism

hypothesis as well as general quantum correlations. We intend to analytically assess the behav-

iors (over time and asymptotically) of some well-established notions, such as entanglement

and genuine multipartite entanglement [71], quantum discord [72, 73], symmetrical quantum

discord [74], quantum steering [75, 76], Bell nonlocality [7, 14], realism-based nonlocality [37],

and, most importantly, quantum irreality [36].

While the global state evolves unitarily, thus conserving its initial degree of purity,

we can say in advance—as we are going to show in Chap. 2—that most of the aforementioned

non-classicalities decrease with time between the bipartitions of the system, with some eventual

occurrences of sudden deaths. On the other hand, some spin observables are shown to persist

violating realism even when the walkers are arbitrarily far apart from each other and some

noise is introduced in the initial two-spin state. This implies that all the involved degrees of

freedom remain quantumly linked throughout the time evolution so that no individual element

of reality can be claimed to exist.

The investigation proposed above can be found in Chap. 2, whereas the necessary

fundamental concepts are presented in Chap. 1. In Sec. 2.1 and 2.2, we introduce a simplified

model which proves crucial for our purposes. This model offers considerable analytical power

for the treatment of the problem as it avoids the implementation of recursive codes to treat
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matrices whose dimension increases with time as 4(2𝑡 + 1)2. In Sec. 2.3, we show how our

results regarding entanglement between spin and position of one particle agrees with previous

studies. In Sec. 2.4, we show that genuine fourpartite entanglement increases over time in the

global state, thus “conserving” the total amount of resource furnished initially. Section 2.5

provides an exhaustive study of the dynamics of the nonclassical features associated with the

two-spin state, thus regarding the spatial degrees of freedom as an external noisy channel.

Concluding remarks about this part of our work are reserved to Chap. 3.

Everything in Chap. 2 are original results and were published at the end of the

second year of this doctorate [A. C. Orthey and R.M. Angelo, “Nonlocality, quantum correlations,

and violations of classical realism in the dynamics of two noninteracting quantum walkers”,

Phys. Rev. A 100, 042110 (2019)].

DEEPER INTO QUANTUM REALISM

BA’s reality condition check protocol is practical and intuitive. If an unrevealed

measurement of a physical quantity does not change the state of the system, then that mea-

surement was innocuous and it only accessed a previously defined value. In other words, there

was no creation of entanglement between the system and the environment (i.e., observers plus

measurement apparatuses). With classical coins, this reasoning becomes even clearer. After

being thrown up, a coin lands on the back of one hand and we hide it with the other. The

unrevealed measurement is done as the result is already set. Raising our hand and revealing

the face of the coin that was up will in no way change its result. In this sense, macroscopic

objects like a coin easily satisfy the idea of classical realism: all physical quantities are well

defined all the time—even before measurement—independent of observers. Notwithstanding,

the interested reader might ask: if the macroscopic coin satisfies classical realism, then how

can it have a well-defined result while spinning in the air? In this case, someone could take

sequential photos of the coin and record its trajectory. At all times, the coin will have a single

side facing up (albeit tilted) and the act of photographing does not change this fact4. At no time

is the coin in a superposition of states.

Once we are faced with the oddities of quantum mechanics, the notion of classical

realism needs to be relaxed, giving space to the aforementioned quantum realism. This is

necessary mainly due to the Heisenberg uncertainty principle, which sometimes prohibits

the definiteness of incompatible observables simultaneously. When we switch from base 𝑧

to base 𝑥 , a spin-up state |+𝑧〉—which contains an element of reality for 𝑆𝑧 = ℏ
2𝜎𝑧 because

𝑆𝑧 |+𝑧〉 = ℏ
2 |+𝑧〉—reveals itself in superposition for the 𝑆𝑥 observable, which configures the

4 Of course, modeling a system that generates random numbers with a classical coin ends up encountering
unavoidable difficulties when we start making deeper questions because the coin is a macroscopic object and
has a side face. At some instants (comprising a measure zero set in the continuous-time interval) the coin will
be vertically aligned. This does not make the measurement result undefined, after all, there is only one side of
the coin that is facing up: the side face.
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absence of an element of reality in this new direction.

Let us be a little more technical. Adhering to BA’s criterion, the quantum state

𝜌 = (1 − 𝑝) |𝑎1〉 〈𝑎1 | + 𝑝 |𝑎2〉 〈𝑎2 | , (2)

with 𝐴 |𝑎1,2〉 = 𝑎1,2 |𝑎1,2〉, is then taken as an example of scenario in which quantum realism

is established for the observable 𝐴, even though mere subjective uncertainties are present

when 𝑝 ∈ (0, 1). To see this, we check what happens with the state when it is submitted to a

nonselective measurement of 𝐴 =
∑
𝑖 𝑎𝑖𝐴𝑖 (where 𝐴𝑖 = |𝑎𝑖〉 〈𝑎𝑖 |). Since ∑𝑖 𝐴𝑖𝜌𝐴𝑖 = 𝜌 , then BA’s

criterion of realism is satisfied, meaning that the element of reality that would presumably

be installed by the measurement is already there before the measurement. In other words,

in this case, reality is not dictated by the measurement and the present uncertainties only

reflect subjective ignorance (𝜌 is an epistemic state). This is consistent with the fact that no

“interference pattern” would be observed with respect to the observable 𝐴. Thus, while in BA’s

approach 𝐴 is an element of reality for all 𝑝 , in EPR’s this is so only when 𝑝 = 0 or 𝑝 = 1 (full

predictability regimes). The differences between these approaches can be further emphasized in

multipartite settings. As thoroughly discussed in Ref. [39], while EPR would claim that the spin

observables 𝑆𝑥,𝑧 are simultaneous elements of reality for the singlet state, BA’s criterion implies

that these observables actually are maximally irreal (see Example 7 in Sec. 1.3.5). As another

example, consider the bipartite separable state 𝜌sep =
∑
𝜆 𝑝𝜆𝜌

A
𝜆

⊗ 𝜌B
𝜆
. It immediately satisfies

Bell’s local causality hypothesis but does not imply BA realism for a vast set of observables,

since
∑
𝑖 (𝐴𝑖 ⊗ �B)𝜌sep(𝐴𝑖 ⊗ �B) ≠ 𝜌sep.

So is it all a matter of superposition of states? In other words, does quantum realism

equal incoherence? The short answer is no. In multipartite systems, quantum correlations play

a crucial role in the emergence of physical reality from the quantum world. In fact, as we are

going to see in detail in Sec. 1.3.5, irreality equals coherence plus non-optimized quantum

discord [36]. When subsystems of composite systems interact, they share information about

their states. The more information is shared, the more the subsystems move towards realism,

which is one of the main results of Dieguez and Angelo in Ref. [40]. This view is, in a way, also

shared by supporters of QD, with the extra condition that the subsystem of interest must share

information with several many other subsystems so that we have objective reality.

So far, so good. So, what is the problem? The first problem regarding BA’s realism

that we can think of here is the very origin of its quantifier. BA took an operational approach—

specifically connected with non-selective collapse—and chose a particular monotone in terms

of the von Neumann entropy to measure how far a quantum state is from full realism. Because

it was an ad hoc choice, that approach does leave space for discussions about the existence

of more general monotones and the possible connection with general quantum information

theories and measurement theories. In fact, as it was conceived, BA’s measure of physical

reality carries with it features that derive from intrinsic properties related to the von Neumann

entropy. In this sense, it is difficult to separate what is an attribute pertinent to quantum realism



27

itself from those that are mathematical consequences of the chosen monotone (e.g., concavity,

additivity, etc.).

Must the amount of quantum realism of a composed system equal the sum of its

parts? Must it increase or decrease due to quantum operations like the discard of information?

And what about the realism regarding incompatible observables? Should there be an upper

bound for the sum of them? Once we chose the measure proposed by BA as “the true one”, the

answers to the above questions just become consequences of such a quantifier. In fact, it is

actually natural in the development of physics that we accept that nature behaves in this or

that way based on mathematical consequences. Experimental violations of Bell’s inequalities,

for instance, were not reported until almost two decades after the theoretical prediction

was published [77]. The same goes for gravitational waves detected nearly a century after

the publication of Einstein’s work on general relativity [78]. The difference between these

examples and BA’s measure of physical reality is that the latter was not completely modeled

from physical principles. Indeed, it accuses full realism for an observable only, and just only,

for states of reality regarding that observable. However, the construction of that measure lacks

a more profound physical motivation.

Given the above, it seems very difficult to figure out what quantum mechanics

is all about without a proper framing of the notion of realism. Moving in this direction, the

second part of this thesis constitutes an attempt to formalize the idea of quantum realism

and, therefore, a measure of physical reality through an axiomatization. Our axioms will

be physically motivated and connected to an informational description of the measurement

dynamics. Let us explore this kind of description through the following example.

The double-slit experiment with electrons5 shows us how matter can sometimes

present wave-like behavior [see Fig. 3 (a)]. In this experiment, we can interpret that elements

of physical reality cannot be assigned to the position of the particle after it passes through

the double-slit. In other words, we can say that its position is not real, or that the particle and

its attributes do not satisfy the idea of classical realism. On the other hand, the particle can

satisfy a slightly less restricted notion of realism for another of its attributes (e.g., momentum),

being that one of the central ideas of BA’s quantum realism. However, when the double-slit

is preceded by a lightweight slit that registers the direction taken by the particle [see Fig. 3

(b)], the interference pattern disappears. Proposed by Bohr [5] and experimentally realized by

Liu et al. [84], this experiment shows how the acquisition of information about the position of

the particle by another degree of freedom precludes its wave-like behavior. The momentum of

the lightweight slit and the position of the particle become entangled, which results in a loss

5 When we look at history, diffraction effects with electron beams had already been reported by Jönsson in 1961
[79]. However, it was not until 1965 that Feynman [80] argued that true evidence of the wave behavior of matter
in such an experiment would only be achieved with single electron shots. It was only in the following decade
that such an accomplishment was performed, this time by Merli et al. [81] still with an electron biprism—not
an actual double-slit. In fact, an experiment with actual slits—just like Fig. 3 (a)—was reported by Batelaan and
colleagues in 2013 [82, 83].
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Figure 3 – (a) Depiction of a standard double-slit experiment with electrons. In the absence of infor-
mation about which slit the particle passed through, it is not possible to assign an element
of reality to the trajectory of the particle between the slits and the screen. In this case,
electrons behave like a wave and we see an interference pattern on the screen. (b) Modi-
fied double-slit experiment, preceded by a lightweight slit. Here, the lightweight slit acts
as a path informant. By conservation of momentum, the slit moves in the opposite direc-
tion to the electron’s path, keeping information about which subsequent slit the electron
passes through. When we look at the screen, we notice that the interference pattern dis-
appears. In this case, we can say that there is an element of reality associated with the
position of the electron since it behaved like a particle. Figure source (with modifications):
https://commons.wikimedia.org/wiki/File:Double-slit.svg

of coherence for the position state of the particle. With that, we say that the trajectory of the

particle became real and the process by which that happened was the flux of information from

one subsystem to the other. This interpretation is supported by some recent works like Refs.

[36, 42, 43, 85], especially Ref. [40]—whose arguments will be revisited in Appendix A.

Our first axiom for quantum realism will then be given by the direct equivalence

between the flow of quantum information from the measured system to the environment and the

increase in the degree of reality of the observable that is been accessed. What we are trying to

achieve with this definition is precisely to stipulate a structure for the variation of the degree

of reality in terms of informational dynamics. We hope with this to obtain a functional whose

form comes from an actual physical process. However, the way in which we are going to

measure the quantum information in the measurement dynamics will depend on the quantum

information theory to be chosen. Since the variation in the quantum information of interest is

due to a quantum operation (an unrevealed projective measurement), it is necessary to use a
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quantum conditional information measure (as opposed to the standard quantum conditional

entropy). Generally speaking, conditional information measures can be constructed by any

quantum divergence or distance between the state of interest and a state that contains zero

conditional information, i.e., states such as 𝜌 = 𝜌A ⊗ �B/𝑑B and 𝜌 = �A/𝑑A ⊗ 𝜌B , where
𝜌A,B = Tr B,A(𝜌) and 𝑑A,B = dimHA,B . Our search for quantifiers, therefore, takes place

within the quantum information theories of Rényi [86–100] and Tsallis [101–106], whose

scopes extend the one induced by the von Neumann entropy [107], because they provide us

with well-established quantum divergences. In addition, we also extend our search within some

measures of geometrical nature, namely, the trace distance, the Hilbert-Schmidt distance [108,

109], and the Bures [109, 110] and Hellinger distances [109, 111].

The axioms that followwill be inspired by the formal structure of QuantumResource

Theories (QRTs) like those of entanglement [112] and coherence [113]. We are going to revisit

the concept of QRTs in Chap. 4, but for now we can say in advance that they are useful

frameworks to characterize and catalog quantum resources based onto two concepts: free

states (null resource states) and free operations (operations that do not create more resource).

Although quantum realism cannot be considered as a quantum resource per se, we can think of

it as the amount of quantum resource that is destroyed by a measurement. Thus, the idea of free

states and free operations that constitute QRTs comes in handy. Finally, once we have specified

our axioms, we can divide our reality quantifiers into two categories: reality monotones and

reality measures, the former requiring a smaller set of axioms to be satisfied.

Continuing our search for the formalization of quantum realism, we will close the

results of this thesis with a talk on QD. As we have already seen, QD and quantum realism

share the idea that a system moves towards classicality when there is the storage of information

about its state in another degree of freedom. The fundamental difference between those views

lies in the fact that the QD requires a large environment for the information to be redundantly

copied and, thus, be available to several observers. What is the logical implication between QD

and quantum realism? Is one more fundamental than the other? Inspired in Ref. [35] we will

show in Chap. 7 that the objective reality of QD necessarily implies the existence of BA reality

elements—at least for qubit systems.

The second part of the thesis is organized as follows. In Chap. 4, we deeply review

the concepts of quantum divergences and distances, the elements of the aforementioned

quantum information theories (von Neumann, Rényi, and Tsallis), and we briefly review QRTs.

In Chap. 5, we present our list of axioms for quantum realism. In Chap. 6, we explicitly build

reality monotones and measures in consonance with the proposed axioms. In Chap. 7 we make

the connection between QD and quantum realism. Concluding remarks on Part II are left to

Chap. 8. Final comments about the whole thesis can be found in Chap. 9



30

PUBLICATIONS ANDWORKS IN PROGRESS

This doctoral thesis resulted in the following works:

• A. C. Orthey and R. M. Angelo, “Nonlocality, quantum correlations, and violations of

classical realism in the dynamics of two noninteracting quantum walkers”, Phys. Rev. A

100, 042110 (2019);

• A. C. Orthey and R. M. Angelo, “Quantum realism: Axiomatization and quantification”,

Phys. Rev. A 105, 052218 (2022).

Other works in preparation:

• A. C. Orthey, “Geometrical quantifiers for quantum realism”;

• A. C. Orthey, “Quantum Darwinism implies Quantum Realism for qubits”.

In preparation but not related to this thesis:

• A. C. S. Costa, A. C. Orthey, R. Uola and S.Wollmann, “The effect of randommeasurements

for the detection of quantum steering”.

Published during doctorate but not related to this thesis (results from Master dissertation):

• A. C. Orthey and E. P. M. Amorim, “Connecting velocity and entanglement in quantum

walks”, Phys. Rev. A 99, 032320 (2019);

• A. C. Orthey and E. P. Amorim, “Weak disorder enhancing the production of entanglement

in quantum walks”, Braz. J. Phys. 49, 595 (2019).



Part I

QUANTUM STUFF IN QUANTUMWALKS



32

1 FUNDAMENTAL CONCEPTS I

This chapter aims to revisit all the fundamental concepts needed for the text that

follows. Nothing here is new except for the notation. We start with the concepts of classical

and quantum entropies and their elements of information theory, move on to non-classicalities,

and end with an introduction to quantum walkers.

1.1 ENTROPIES

The word entropy was introduced by Clausius in his 1865 work (originally in

German [117], but some translated parts to English can be found in [118]) to designate the

quantity 𝑆 in the thermodynamic relation

Δ𝑆 = 𝑆𝑡 − 𝑆0 =
∫ 𝑡

0

𝑑𝑄

𝑇
, (1.1)

where𝑄 and𝑇 stand for heat and absolute temperature, respectively. In his ownwords, Clausius

stated:

“I propose to name the magnitude 𝑆 the entropy of the body, from the Greek

word 𝜏𝜌𝑜𝜋𝜂 [tropē], a transformation. I have intentionally formed the word

entropy so as to be as similar as possible to the word energy, since both these

quantities, which are to be known by these names, are so nearly related to each

other in their physical significance that a certain similarity in their names

seemed to me advantageous.” R. Clausius in Ref. [118].

Some years later, Boltzmann [119] obtained a statistical formulation for Clausius’

entropy, resulting in the relation

Δ𝑆

Δ(lnΩ) = const., (1.2)

where Ω stands for the number of all possible microstates available to the system. However, it

was Planck [120] who presented the formula

𝑆 = 𝑘𝐵 lnΩ (1.3)

with the so called Boltzmann constant 𝑘𝐵 and no arbitrary additive constant 𝑆0. Here the

meaning of the word entropy becomes less nebulous. Since Ω is associated with the probability

of finding the system in a given macrostate, entropy can be considered as a measure of system

disorder. The more microstates are accessible to the system, the lower its predictability and,

consequently, the greater the degree of the system disorder.
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Another way to conceive entropy is through the idea of how much uncertainty—in

the sense of ignorance—there is in the state of a physical system. The more microstates are

accessible to the state, the larger is the uncertainty that we as observers have about it. Entropy

measures this degree of uncertainty. Suppose there is only one possibility of microstate for

a given system, i.e., Ω = 1. Therefore, 𝑆 = 0, which means that the uncertainty intrinsic to

the system is null. Now, if the system changes over time without external interference, its

microstates go from a configuration of less to a higher probability. Thus, the uncertainty rises

as well as entropy.

A closer relation between entropy and the concept of information emerged at

the very beginning of information theory, with Shannon [121]. Although the concepts of

information entropy of Shannon’s work and thermodynamic entropy of Clausius’s work are

analogous, the former was not inspired by the latter. However, in conversation with Tribus

and McIrvine in 1961 (as the authors report in Ref. [122]), Shannon reveals the origin of his

choice by the term entropy:

“My greatest concern was what to call it. I thought of calling it ‘information’,

but the word was overly used, so I decided to call it ‘uncertainty’. When I

discussed it with John von Neumann, he had a better idea. von Neumann

told me, ‘You should call it entropy, for two reasons: In the first place your

uncertainty function has been used in statistical mechanics under that name, so

it already has a name. In the second place, and more important, nobody knows

what entropy really is, so in a debate you will always have the advantage.’ ” C.

Shannon in Ref. [122].

1.1.1 Classical distributions and the Shannon entropy

Shannon defined the information entropy of a random variable 𝑋 by

𝐻 (𝑋 ) � −
∑
𝑥

𝑝𝑥 log 𝑝𝑥, (1.4)

where 𝑝𝑥 is the probability of 𝑥 to occur. In other words, 𝐻 is the average of the information

content ℎ(𝑥) = − log(𝑝𝑥 ), associated to the variable 𝑋 , that is, the amount of information you

gain by knowing 𝑋 . Alternatively, we can also think about 𝐻 (𝑋 ) as the uncertainty about 𝑋

before we learn its value. The entropy is maximum when all events are equally probable and

zero when only one variable has the chance of occurring, since
∑
𝑥 𝑝𝑥 = 1.

The concept of Shannon entropy can be extended to more than one variable. Let 𝑌

be another random variable with probability 𝑝𝑦 for the outcome 𝑦. The joint probability 𝑝𝑥,𝑦

associated to the pair of outcomes (𝑥,𝑦) give us the joint entropy

𝐻 (𝑋,𝑌 ) � −
∑
𝑥𝑦

𝑝𝑥,𝑦 log𝑝𝑥,𝑦 . (1.5)
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If the events are independent, i.e., 𝑝𝑥,𝑦 = 𝑝𝑥𝑝𝑦 , then the entropy becomes additive, that is,

𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 ). However, if 𝑝𝑥,𝑦 can not be decomposed as a product, then when we

know something about 𝑌 our ignorance about 𝑋 must decrease. This translates what is known

as the entropy of 𝑋 conditional on knowing 𝑌 ,

𝐻 (𝑋 |𝑌 ) �
∑
𝑦

𝑝𝑦𝐻 (𝑋 |𝑦), (1.6)

where

𝐻 (𝑋 |𝑦) � −
∑
𝑥

𝑝𝑥 |𝑦 log𝑝𝑥 |𝑦 (1.7)

is the entropy of 𝑋 conditioned to the outcome 𝑦, with 𝑝𝑥 |𝑦 = 𝑝𝑥,𝑦/𝑝𝑦 . A closer look on (1.6)

leads us to write

𝐻 (𝑋 |𝑌 ) = −
∑
𝑥𝑦

𝑝𝑦
𝑝𝑥,𝑦

𝑝𝑦
log

𝑝𝑥,𝑦

𝑝𝑦
(1.8)

= −
∑
𝑥𝑦

𝑝𝑥,𝑦 log𝑝𝑥,𝑦 +
∑
𝑥𝑦

𝑝𝑥,𝑦 log𝑝𝑦 (1.9)

= 𝐻 (𝑋,𝑌 ) − 𝐻 (𝑌 ), (1.10)

where 𝑝𝑦 =
∑
𝑥 𝑝𝑥,𝑦 .

In order to understand how close to each other are two probability distributions 𝑝𝑥

and 𝑞𝑥 of the same variable 𝑋 , one can use the Shannon relative entropy

𝐻 (𝑝𝑥 | |𝑞𝑥 ) �
∑
𝑥

𝑝𝑥 log
𝑝𝑥
𝑞𝑥

= −𝐻 (𝑋 ) −
∑
𝑥

𝑝𝑥 log𝑞𝑥 � 0, (1.11)

where the last equality holds iff 𝑝𝑥 = 𝑞𝑥 .

Furthermore, Shannon entropy satisfies the following properties, whose proofs can

be found in [107]:

Theorem 1 (Basic properties of Shannon entropy).

1. Non-negativity: 𝐻 (𝑋 ) � 0. Equality holds iff 𝑋 = {𝑥1};

2. Symmetry: 𝐻 (𝑋,𝑌 ) = 𝐻 (𝑌,𝑋 );

3. 𝐻 (𝑋,𝑌 ) � 𝐻 (𝑋 ). Equality holds iff 𝑌 is a function of 𝑋 ;

4. Subadditivity:𝐻 (𝑋,𝑌 ) � 𝐻 (𝑋 ) +𝐻 (𝑌 ). Equality holds iff 𝑋 and 𝑌 are independent from

each other;

5. Upper bound: 𝐻 (𝑋 ) � log𝑑 , where 𝑑 = dim𝑋 .
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Together with the above properties, comes the concept of mutual information: the

information that 𝑋 and 𝑌 have in common,

𝐼 (𝑋 : 𝑌 ) � 𝐻 (𝑋 ) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 ) � 0, (1.12)

which is non-negative because of the subadditivity property. Since we are summing up the

information available of both sets, what they have in common in counted twice, that’s why we

subtract 𝐻 (𝑋,𝑌 ). Another way to define mutual information is through the expression

𝐽 (𝑋 : 𝑌 ) � 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ), (1.13)

which gives us 𝐼 (𝑋 : 𝑌 ) = 𝐽 (𝑋 : 𝑌 ) thanks to (1.10). Yet, mutual information in the form of 𝐽

makes direct reference to the measurement process, that is, equation (1.13) interprets mutual

information as the information we can get about 𝑋 after measuring 𝑌 . On the other hand, the

quantity 𝐼 does not have such a requirement, and the fact that both expressions are equal is due

to something very intrinsic to classical physics: it’s always possible to get information without

disturbing the system. This certainly is not the case for quantum physics, where the quantum

versions of 𝐼 and 𝐽 are not equal most of the time, as we will see in the following sections.

1.1.2 Density operators and the von Neumann entropy

At the very beginning of the development of quantum theory, von Neumann was

already trying to find a statistical description for quantum systems, giving rise to the density

operator 𝜌 in his paper from 1927 [123]. The following revision is based on the textbook of

Nielsen and Chuang [107] and the lecture notes of Landi [124]. The density operator describes

an ensemble of quantum systems that can be in different (normalized) quantum states |𝜓𝑖〉 with
probabilities 𝑝𝑖 (such that

∑
𝑖 𝑝𝑖 = 1) as

𝜌 =
∑
𝑖

𝑝𝑖 |𝜓𝑖〉 〈𝜓𝑖 | , (1.14)

the so called mixed states, since |𝜓𝑖〉 〈𝜓𝑖 | are the pure ones. The mixed state 𝜌 is a positive

semi-definite linear operator (i.e., it has only non-negative eigenvalues) that acts over the

Hilbert space H where the quantum states |𝜓𝑖〉 live in. Since |𝜓𝑖〉 ∈ H , we say that 𝜌 ∈ 𝔅(H).
The state 𝜌 is also Hermitian (𝜌† = 𝜌) and it has unit trace, that is

Tr 𝜌 =
∑
𝑖

𝑝𝑖Tr ( |𝜓𝑖〉 〈𝜓𝑖 |) =
∑
𝑖

𝑝𝑖 〈𝜓𝑖 |𝜓𝑖〉 =
∑
𝑖

𝑝𝑖 = 1, (1.15)

where Tr |𝜗〉 〈𝜑 | = 〈𝜑 |𝜗〉 for arbitrary |𝜗〉 and |𝜑〉 quantum states. More generally, if 𝐴 is an

observable, that is, an Hermitian operator acting on H , it admits a spectral decomposition

𝐴 =
∑
𝑎 𝜆𝑎 |𝑎〉 〈𝑎 | with 𝜆𝑎 ∈ R eigenvalues and |𝑎〉 ∈ H eigenstates. The operators |𝑎〉 〈𝑎 | � 𝐴𝑎

are called projectors, since𝐴2
𝑎 = 𝐴𝑎 . That said, a real function 𝑓 : R→ R can be applied to𝐴 as

𝑓 (𝐴) =
∑
𝑎

𝑓 (𝜆𝑎) |𝑎〉 〈𝑎 | . (1.16)
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Trace function

The trace function is formally defined as

Tr𝐴 �
∑
𝑘

〈𝑘 |𝐴 |𝑘〉 , (1.17)

where {|𝑘〉} is any orthonormal basis for H . From the completeness relation
∑

𝑗 | 𝑗〉 〈 𝑗 | = �,

where {|𝑖〉} is another orthonormal basis forH , it is easy to see that the trace is independent

of the basis: ∑
𝑘

〈𝑘 |𝐴 |𝑘〉 =
∑
𝑘 𝑗

〈𝑘 | 𝑗〉 〈 𝑗 |𝐴 |𝑘〉 =
∑
𝑘 𝑗

〈 𝑗 |𝐴 |𝑘〉 〈𝑘 | 𝑗〉 =
∑
𝑗

〈 𝑗 |𝐴 | 𝑗〉 . (1.18)

A useful choice of basis to calculate the trace of 𝐴 is that one that diagonalizes it, i.e., {|𝑎〉}.
Therefore

Tr𝐴 =
∑
𝑎′𝑎

𝜆𝑎′ 〈𝑎 |𝑎′〉 〈𝑎′|𝑎〉 =
∑
𝑎

𝜆𝑎, (1.19)

since 〈𝑎 |𝑎′〉 = 𝛿𝑎𝑎′. It is clear now that the trace is a property of the operator and not of the

basis we choose. Because of that, the trace function plays a fundamental role in calculating the

expected value of observables in quantum mechanics. For pure states, the expected value of an

observable 𝐴 for the state |𝜓 〉 is given by 〈𝐴〉𝜓 = 〈𝜓 |𝐴 |𝜓 〉. It is possible to extend this concept

to mixed states 𝜌 by

〈𝐴〉𝜌 �
∑
𝑖

𝑝𝑖 〈𝜓𝑖 |𝐴 |𝜓𝑖〉 (1.20)

=
∑
𝑖𝑘

𝑝𝑖 〈𝜓𝑖 |𝑘〉 〈𝑘 |𝐴 |𝜓𝑖〉 (1.21)

=
∑
𝑖𝑘

〈𝑘 |𝐴𝑝𝑖 |𝜓𝑖〉 〈𝜓𝑖 |𝑘〉 (1.22)

= Tr (𝐴𝜌) . (1.23)

Time evolution and projective measurements

Let us remember that the unitary time evolution of a quantum state in the Schrödinger

picture is given by

|𝜓 (𝑡)〉 = 𝑒−
𝑖𝐻𝑡
ℏ |𝜓 (0)〉 , (1.24)

where 𝐻 is the Hamiltonian. Therefore, for density operators, we have

𝜌 (𝑡) = 𝑒−
𝑖𝐻𝑡
ℏ 𝜌 (0)𝑒 𝑖𝐻𝑡

ℏ . (1.25)

By applying the Leibniz rule for derivatives in the above equation we obtain the Liouville-von

Neumann equation

𝑖ℏ
d

d𝑡
𝜌 (𝑡) = [𝐻, 𝜌 (𝑡)] , (1.26)
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which is just the Schrödinger’s equation in terms of density operators. A projective measure-

ment, however, cannot be described by (1.26). Actually, it constitutes a postulate of the quantum

theory—something that is put forward ad hoc. A projective measurement by some observable

𝐴 written in its spectral form 𝐴 =
∑
𝑎 𝜆𝑎 |𝑎〉 〈𝑎 | of a pure state |𝜓 〉 = |𝑎〉 always returns the

same eigenstate |𝑎〉 with outcome 𝜆𝑎 ,

𝐴 |𝜓 〉 =
∑
𝑎′

𝜆𝑎′ |𝑎′〉 〈𝑎′|𝑎〉 =
∑
𝑎′

𝜆𝑎′𝛿𝑎𝑎′ |𝑎′〉 = 𝜆𝑎 |𝑎〉 . (1.27)

When |𝜓 〉 is any other thing but an eigenstate of 𝐴, the projective measurement will result

the outcome 𝜆𝑎 with probability 𝑝𝑎 = | 〈𝑎 |𝜓 〉 |2—the well-known Born rule [125]. After the

measurement of 𝐴, the system will randomly collapse to the normalized state

|𝜓 〉 → |𝜓𝑎〉 = 𝐴𝑎 |𝜓 〉√
𝑝𝑎

. (1.28)

This is called the postulate of reduction, and it can be extended to mixtures of quantum states as

𝜌 → 𝜌𝑎 =
𝐴𝑎𝜌𝐴𝑎

Tr (𝐴𝑎𝜌) , (1.29)

where 𝑝𝑎 = Tr (𝐴𝑎𝜌) is the probability of resulting the outcome 𝜆𝑎 by measuring 𝐴 in 𝜌 . Note

that here we use the term “randomly collapse” only in a mathematical sense without assigning

any specific physical interpretation for the centennial dilemma regarding the measurement

problem. Regardless of the interpretation of quantum theory that we choose for the nature

of the quantum state (which goes beyond the debate 𝜓 -ontic/𝜓 -epistemic [25]), there is a

mathematical discontinuity from the point of view of the observer in the description of the

observed system during the measurement procedure. Some questions about this subject will be

addressed in Part II. For now, let us stay with the basics of the density operator algebra.

As a matter of fact, there is a way to describe a projective measurement as a unitary

evolution. In order to do that, we need to introduce partial traces and quantum channels.

Partial traces

Suppose now that 𝜌 describes a statistical mixture of bipartite states, i.e., 𝜌 ∈
𝔅(H = HA ⊗ HB). It is possible to make reference to only one part of the Hilbert space by

means of the partial trace operation:

𝜌A � Tr B (𝜌) and 𝜌B � TrA(𝜌) . (1.30)

The partial trace operation over, say, A, is given by

TrA(𝜌) �
∑
𝑖

〈𝑖 | 𝜌 |𝑖〉 , (1.31)

where {|𝑖〉} is any orthonormal basis forHA . See the following examples:
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Figure 4 – The Bloch sphere. The qubit |𝜓 〉 given by (1.36) have a correspondent point on the surface
of the Bloch sphere. Here, 𝜃 and 𝜙 are the azimuthal and polar angles, respectively.

Example 1. A generic bipartite mixed state in 𝔅(HA ⊗ HB) can be written as

𝜌 =
∑
𝑖 𝑗𝑘𝑙

𝑝𝑖 𝑗𝑘𝑙 |𝛼𝑖〉 〈𝛼𝑗 | ⊗ |𝛽𝑘〉 〈𝛽𝑙 | . (1.32)

The partial trace over A can be computed by

𝜌B =
∑
𝑎𝑖 𝑗𝑘𝑙

𝑝𝑖 𝑗𝑘𝑙 〈𝛼𝑎 |𝛼𝑖〉 〈𝛼𝑗 |𝛼𝑎〉 ⊗ |𝛽𝑘〉 〈𝛽𝑙 | (1.33)

=
∑
𝑎𝑖 𝑗𝑘𝑙

𝑝𝑖 𝑗𝑘𝑙𝛿𝑎𝑖𝛿 𝑗𝑎 |𝛽𝑘〉 〈𝛽𝑙 | (1.34)

=
∑
𝑎𝑘𝑙

𝑝𝑎𝑎𝑘𝑙 |𝛽𝑘〉 〈𝛽𝑙 | (1.35)

�

Example 2. The qubit is the quantum analogous of the classical bit of information because it

can be in a quantum superposition between |0〉 and |1〉 as |𝜓 〉 = 𝑎 |0〉 +𝑏 |1〉, where the complex

coefficients satisfy |𝑎 |2 + |𝑏 |2 = 1. A clever way to represent a qubit is through a spherical

parametrization

|𝜓 〉 = cos
𝜙

2
|0〉 + sin

𝜙

2
𝑒𝑖𝜃 |1〉 , (1.36)

where 𝜃 ∈ [0, 2𝜋) and 𝜙 ∈ [0, 𝜋]. Note that we could have another complex phase multiplying

|0〉, but this would lead to an irrelevant global phase. Having said that, a qubit can be geometri-

cally represented in what is called the Bloch sphere (see Fig. 4). A general mixed qubit state,

however, can be written with two more parameters:

𝜌 = 𝜆0,0 |0〉 〈0| + 𝜆0,1 |0〉 〈1| + 𝜆1,0 |1〉 〈0| + 𝜆1,1 |1〉 〈1| . (1.37)

If we choose the canonical matrix representation given by

|0〉 ≡
(
1

0

)
, |1〉 ≡

(
0

1

)
, 〈0| ≡

(
1 0

)
, 〈1| ≡

(
0 1

)
, (1.38)
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such that

|0〉 〈0| ≡
(
1 0

0 0

)
, |0〉 〈1| ≡

(
0 1

0 0

)
, |1〉 〈0| ≡

(
0 0

1 0

)
, |1〉 〈1| ≡

(
0 0

0 1

)
, (1.39)

then we can write

𝜌 ≡
(
𝜆0,0 𝜆0,1

𝜆1,0 𝜆1,1

)
. (1.40)

Of course there are some constrains between the 𝜆𝑖,𝑗 parameters because we must have Tr 𝜌 = 1

and 𝜌† = 𝜌 (therefore, only three parameters are needed actually). A pure two-qubit state

written with four parameters, will have the form

|Ψ〉 = 𝑎 |0, 0〉 + 𝑏 |0, 1〉 + 𝑐 |1, 0〉 + 𝑑 |1, 1〉 , (1.41)

where

|0, 0〉 ≡ |0〉 ⊗ |0〉 ≡
(
1

0

)
⊗
(
1

0

)
=


������
1

(
1

0

)
0

(
1

0

)
������
=


������
1

0

0

0


������
with |0, 0〉 〈0, 0| ≡


������
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


������
, (1.42)

and so on. Note that the tensor product for quantum states in the Hilbert spaces becomes the

Kronecker product of matrices in the matrix representation. Therefore, a mixed two-qubit state

𝜚 will be represented as a 4x4 matrix

𝜚 =
1∑

𝑖 𝑗𝑘𝑙=0

𝜆𝑖 𝑗𝑘𝑙 |𝑖, 𝑗〉 〈𝑘, 𝑙 | ≡

������
𝜆0000 𝜆0001 𝜆0010 𝜆0011

𝜆0100 𝜆0101 𝜆0110 𝜆0111

𝜆1000 𝜆1001 𝜆1010 𝜆1011

𝜆1100 𝜆1101 𝜆1110 𝜆1111


������
, (1.43)

where |𝑖, 𝑗〉 〈𝑘, 𝑙 | ≡ |𝑖〉 〈𝑘 | ⊗ | 𝑗〉 〈𝑙 |. The partial traces over the first and the second qubit are,

respectively,

𝜚B =
1∑

𝑎 𝑗𝑙=0

𝜆𝑎𝑗𝑎𝑙 | 𝑗〉 〈𝑙 | ≡
(
𝜆0000 + 𝜆1010 𝜆0001 + 𝜆1011
𝜆0100 + 𝜆1110 𝜆0101 + 𝜆1111

)
, (1.44)

𝜚A =
1∑

𝑏𝑖𝑘=0

𝜆𝑖𝑏𝑘𝑏 |𝑖〉 〈𝑘 | ≡
(
𝜆0000 + 𝜆0101 𝜆0010 + 𝜆0111
𝜆1000 + 𝜆1101 𝜆1010 + 𝜆1111

)
. (1.45)

�

Every trace can be decomposed in partial traces

Tr 𝜌 = TrATr B𝜌 = Tr BTrA𝜌. (1.46)

With that in mind, a closely related fact from the above is the following. When dealing with

logarithms of product states, we have

ln(𝜌A ⊗ 𝜌B) = (ln 𝜌A) ⊗ �B + �A ⊗ (ln 𝜌B) (1.47)
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because

ln(𝜌A ⊗ �B) =
∑
𝑖 𝑗

ln(𝜆A𝑖 ) |𝑎𝑖〉 〈𝑎𝑖 | ⊗ |𝑏 𝑗 〉 〈𝑏 𝑗 | , (1.48)

=
∑
𝑖

ln(𝜆A𝑖 ) |𝑎𝑖〉 〈𝑎𝑖 | ⊗
∑
𝑗

|𝑏 𝑗 〉 〈𝑏 𝑗 | , (1.49)

= (ln 𝜌A) ⊗ �B, (1.50)

where 𝜆A𝑖 and |𝑎𝑖〉 are the eigenvalues and eigenvectors of 𝜌A and similarly for B. Note that,

usually, people just write ln(𝜌A ⊗ 𝜌B) = ln(𝜌A) + ln(𝜌B) for shortness. Suppose we want to
calculate the quantity, say, Tr [𝜎 ln(𝜌A ⊗ 𝜌B)] where 𝜎 ∈ 𝔅(HA ⊗ HB) (which appears in

relative entropies as we are going to see further). We can do

Tr [𝜎 ln(𝜌A ⊗ 𝜌B)] = Tr (𝜎 ln 𝜌A) + Tr (𝜎 ln 𝜌B), (1.51)

which from (1.46) reads

Tr [𝜎 ln(𝜌A ⊗ 𝜌B)] = TrATr B (𝜎 ln 𝜌A) + Tr BTrA(𝜎 ln 𝜌B), (1.52)

= TrA(𝜎A ln 𝜌A) + Tr B (𝜎B ln 𝜌B) . (1.53)

The last partial traces, then, can be understood as usual traces since they act only over their

own spaces.

Quantum channels

A quantum channel (or quantum operation) is a completely positive trace preserv-

ing (CPTP) map. A map Λ is completely positive iff it can be written in the operator sum

representation

Λ(𝜌) =
∑
𝑖

𝐾𝑖𝜌𝐾
†
𝑖 , (1.54)

where 𝐾𝑖 are known as Kraus operators. A map Λ will be trace preserving iff∑
𝑖

𝐾†
𝑖 𝐾𝑖 = �. (1.55)

In addition, a quantum channel Λ will be called a bistochastic map iff it is also unital, that is,

Λ(�/𝑑) = �/𝑑 . An excellent revision about these special types of maps can be found in Chap.

10 of Ref. [126].

Example 3. An unrevealed projective measurement is an example of a bistochastic map. Let

𝐴 =
∑
𝑎 𝑎𝐴𝑎 be an observable with 𝐴𝑎 = |𝑎〉 〈𝑎 | projectors satisfying ∑𝑎 𝐴𝑎 = �. With this, we

can define the map Φ𝐴 such that

Φ𝐴 (𝜌) =
∑
𝑎

𝐴𝑎𝜌𝐴𝑎, (1.56)
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which is immediately CPTP, since 𝐴†
𝑎 = 𝐴𝑎 and 𝐴𝑎𝐴𝑎′ = 𝛿𝑎𝑎′𝐴𝑎. In addition, this implies that

Φ𝐴 (�/𝑑) = �/𝑑 . Physically, whatΦ𝐴 (𝜌) represents is an unrevealed, or non-selective, projective
measurement. The experiment was realized and for all practical purposes the quantum state

collapsed, but the experimentalist—for some reason—do not know the result (maybe she has not

looked at the results on the lab computer yet). However, she can make a statistical prediction

of what she will found after the measurement of 𝐴 if she looks at the screen, which is exactly

Φ𝐴 (𝜌). �

Stinespring’s dilation Theorem

With partial traces and quantum channels in mind, we can introduce the Stine-

spring’s dilation theorem1:

Theorem 2 (Stinespring’s dilation). Let Λ : 𝔅(H) → 𝔅(H) be a CPTP map between states on

a finite-dimensional Hilbert spaceH . Then there exists a Hilbert spaceHE and a unitary operation

𝑈 onH ⊗ HE such that

Λ(𝜌) = Tr E
[
𝑈 (𝜌 ⊗ |𝑒0〉 〈𝑒0 |)𝑈 †] , ∀𝜌 ∈ 𝔅(H) . (1.57)

The HE space is usually called auxiliary or ancillary space.

Note that Λ can be any CPTP map, which includes projective measurements like (1.56). There-

fore, for any projective measurement, there is always a bigger Hilbert space in which that

measurement can be seen as a unitary evolution that entangles (couples) the state of the system

that is been measured with an environment2. Some call this informally “the church of the

bigger Hilbert space”.

Generalized measurements

Before ending our introduction to density states and quantum measurements and

move to entropies, it is important to define generalized measurements. A generalized measure-

ment is defined from a set of Kraus operators {𝑀𝑖} satisfying∑
𝑖

𝑀†
𝑖 𝑀𝑖 = �. (1.58)

If the outcome of the measurement is 𝑖 , then the state after the measurement and respective

probability of obtaining it are

𝜌 → 𝜌𝑖 =
𝑀𝑖𝜌𝑀

†
𝑖

𝑝𝑖
, and 𝑝𝑖 = Tr

(
𝑀𝑖𝜌𝑀

†
𝑖

)
. (1.59)

1 The formulation presented here—in terms of CPTP maps—was taken from Sec. 8.2 of Ref. [107]. For the original
version, see Ref. [127].

2 Which can be an auxiliary space, a measurement apparatus, the laboratory, and/or the experimentalist. It
will depend on how good we are and how much time we have available to write and solve all the initial
quantum states and Schrödinger equations for each one of the particles that compose the system+environment
representation.
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Note that if 𝑀𝑖 = 𝑀†
𝑖 and 𝑀2

𝑖 = 𝑀𝑖 , then 𝑀†
𝑖 𝑀𝑖 = 𝑀𝑖 , which is specifically the case of a

projective measurement [Eq. (1.29)]. Now, by the cyclic permutation of the trace, we can write

𝑝𝑖 = Tr (𝑀†
𝑖 𝑀𝑖𝜌) and define the positive operators

𝐸𝑖 = 𝑀†
𝑖 𝑀𝑖, (1.60)

which are called effects and they satisfy
∑
𝑖 𝐸𝑖 = �, 𝐸†𝑖 = 𝐸𝑖 , and 𝐸𝑖 � 0. Therefore, all the

probabilities regarding an specific measurement can be obtained by these effects through

𝑝𝑖 = Tr (𝐸𝑖𝜌), but the point is: the set of measurement operators {𝑀𝑖} is not uniquely defined.

If we are only interested in the probabilities, there is some freedom of choice regarding the

set of measurement operators. The state of the system after the measurement, however, can

be quite different depending on the set {𝑀𝑖}. These effects 𝐸𝑖 define what is called a Positive

Operator-Valued Measure (POVM).

Example 4. An example of POVM is the monitoring map [40]

M𝜖
𝐴 (𝜌) � (1 − 𝜖)𝜌 + 𝜖Φ𝐴 (𝜌), (1.61)

which interpolates between weak and strong (projective) measurements by the intensity

parameter 𝜖 ∈ [0, 1]. One can verify that the effects 𝐸𝑖 ofM𝜖
𝐴 are given by 𝐸0 =

√
1 − 𝜖� and

𝐸𝑖≠0 =
√
𝜖𝐴𝑖 . Indeed,

𝑑A∑
𝑖=0

𝐸𝑖𝜌𝐸
†
𝑖 = (1 − 𝜖)𝜌 + 𝜖

𝑑A∑
𝑖=1

𝐴𝑖𝜌𝐴𝑖 = M𝜖
𝐴 (𝜌), (1.62)

where 𝑑A = dimHA . �

von Neumann entropy

In the same year that von Neumann introduced his density operator for quantum

states, he also presented an expression for the entropy of a quantum state 𝜌 as

𝑆 (𝜌) � −Tr (𝜌 ln 𝜌) = −
∑
𝑖

𝜆𝑖 ln 𝜆𝑖, (1.63)

where 𝜆𝑖 are the eigenvalues of 𝜌 [128]. Years later, von Neumann compiled his results in a

book—originally in German [129] with a posterior translated version to English [130]—which

became a reference to the subject. From (1.63) we can see that for pure states 𝜌 = |𝜓 〉 〈𝜓 | we
have 𝑆 (𝜌) = 0, which means no ignorance about the state. For maximally mixed states 𝜌 = �/𝑑
we have 𝑆 (𝜌) = ln𝑑 , where 𝑑 = dimH , which corresponds to complete ignorance about the

mixture.

Some important properties of the von Neumann entropy are listed bellow with

respective proofs in [107]:

Theorem 3 (Basic properties of the von Neumann entropy).
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1. Non-negativity: 𝑆 (𝜌) � 0. Equality holds iff 𝜌 is pure;

2. Invariance under unitary transformations: If 𝑈𝑈 † = �, then

𝑆 (𝑈𝜌𝑈 †) = 𝑆 (𝜌) . (1.64)

3. Subadditivity: For 𝜌 ∈ 𝔅(HA ⊗ HB) we have

𝑆 (𝜌) � 𝑆 (𝜌A) + 𝑆 (𝜌B), (1.65)

where the equality holds iff 𝜌 = 𝜌A ⊗ 𝜌B ;

4. Strong subadditivity: For 𝜌 ∈ 𝔅(HA ⊗ HB ⊗ HC) we have

𝑆 (𝜌) + 𝑆 (𝜌B) � 𝑆 (𝜌AB) + 𝑆 (𝜌BC), (1.66)

where the equality holds iff 𝜌 = 𝜌AB ⊗ 𝜌C ;

5. Joint entropy theorem: Suppose 𝑝𝑖 are probabilities, |𝑖〉 are orthogonal states for a system
in HA and 𝜌𝑖 is any set of density operators that acts overHB . Then

𝑆

(∑
𝑖

𝑝𝑖 |𝑖〉 〈𝑖 | ⊗ 𝜌𝑖

)
= 𝐻 (𝑝𝑖) +

∑
𝑖

𝑝𝑖𝑆 (𝜌𝑖); (1.67)

6. Concavity: If 𝜌 =
∑
𝑖 𝑝𝑖𝜌𝑖 , then

𝑆

(∑
𝑖

𝑝𝑖𝜌𝑖

)
�
∑
𝑖

𝑝𝑖𝑆 (𝜌𝑖); (1.68)

7. Upper bound: If 𝜌 ∈ 𝔅(H), then

𝑆 (𝜌) � ln dimH . (1.69)

As for the Shannon relative entropy, von Neumann entropy also allows for a

quantifier for the proximity of two quantum statistical descriptions 𝜌 and 𝜎

𝐷 (𝜌 | |𝜎) � Tr (𝜌 ln 𝜌 − 𝜌 ln𝜎) . (1.70)

The non-negativity of the relative entropy is not a straightforward result. As a matter of fact, it

constitutes a theorem [107]:

Theorem 4 (Klein’s Inequality). The quantum relative entropy is non-negative,

𝐷 (𝜌 | |𝜎) � 0, (1.71)

where equality holds iff 𝜌 = 𝜎 .
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Actually, Klein’s inequality has a generalized version which can be quite useful:

Theorem 5 (Generalized Klein’s Inequality). Suppose 𝑓 (·) : R∗+ → R is a convex function,

inducing a natural function 𝑓 (·) on Hermitian operators. If 𝐴 and 𝐵 are Hermitian operators, than

Tr [𝑓 (𝐴) − 𝑓 (𝐵) − (𝐴 − 𝐵) 𝑓 ′(𝐵)] � 0. (1.72)

Moreover, if 𝑓 is strictly convex, then equality holds iff 𝐴 = 𝐵.

1.2 ELEMENTS OF QUANTUM INFORMATION THEORY

On the quantum context, one form of conditional entropy of part A given that we

have knowledge about part B is defined as

𝐻A|B (𝜌) � 𝑆 (𝜌) − 𝑆 (𝜌B) . (1.73)

Unlike Shannon conditional entropy, von Neumann conditional entropy can be negative. This

means that sometimes our ignorance about some part of the state can be greater than that of the

whole state. In situations like this, the informational content can be stored in the correlations

between the subsystems, rather than the subsystems themselves.

Example 5. Let’s take the singlet state (1) and define ↑ = 0 and ↓ = 1. By following the recipe

(1.43), the singlet state can be represented by

𝜌𝑠 = |𝜓𝑠〉 〈𝜓𝑠 | ≡ 1

2


������
0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0


������
. (1.74)

Immediately from (1.44), one has 𝜌B = �2/2. From the formula (1.63), we obtain 𝑆 (𝜌B) = ln 2.

Therefore, 𝐻A|B (𝜌𝑠) = − ln 2, since 𝑆 (𝜌𝑠) = 0. �

Another interesting fact is that it is possible to use definition (1.73) to rewrite the

strong subadditivity property (1.66) as

𝐻A|BC (𝜌) � 𝐻A|B (𝜌AB), (1.75)

which means that the discard of information about one subsystem (in this case the partial trace

over 𝐶) increases the conditional entropy.

Now, if we take the same path of Shannon entropy to define an analogous mutual

information of a quantum state 𝜌 regarding a bipartite spaceHA ⊗HB , an equivalence like that

of (1.12) and (1.13) is not always true. Thus, let us first define the quantum mutual information

of 𝜌 as

𝐼A:B (𝜌) � 𝑆 (𝜌A) + 𝑆 (𝜌B) − 𝑆 (𝜌) . (1.76)
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It is straightforward to see that the quantummutual information of a product state 𝜌 = 𝜌A ⊗ 𝜌B
is zero, since 𝑆 (𝜌A ⊗ 𝜌B) = 𝑆 (𝜌A) + 𝑆 (𝜌B). Now, a definition of quantum mutual information

inspired by (1.13) must take into account the measurement procedure in one part of the

system, let’s say HB , by some observable 𝐵 =
∑
𝑏 𝑏𝐵𝑏 with projectors 𝐵𝑏 = |𝑏〉 〈𝑏 | satisfying∑

𝑏 |𝑏〉 〈𝑏 | = �. Having said that, the quantum mutual information can also be defined as

𝐽 (𝜌 |B) � 𝑆 (𝜌A) − 𝑆 (𝜌A|B), (1.77)

where

𝑆 (𝜌A|B) �
∑
𝑏

𝑝𝑏𝑆 (𝜌A|𝑏) (1.78)

is the conditional entropy of 𝜌A given that a measurement was made in part B, with 𝜌A|𝑏 =
Tr B (𝐵𝑏𝜌𝐵𝑏)/𝑝𝑏 and probability 𝑝𝑏 = Tr (𝐵𝑏𝜌). The difference between (1.76) and (1.77) will

give rise to the quantum discord, a quantum correlation to be defined in Sec. 1.3.4.

Another useful quantity is the available information regarding a state 𝜌 in a space

H of dimension 𝑑 ,

𝐼 (𝜌) � ln𝑑 − 𝑆 (𝜌) . (1.79)

This quantity is maximum for pure states and zero for maximally mixed ones. Now, if we

consider a bipartite state 𝜌 ∈ 𝔅(HA ⊗ HB), where dim(HA ⊗ HB) = 𝑑A𝑑B , one can obtain

the relation

𝐼 (𝜌) = 𝐼 (𝜌A) + 𝐼 (𝜌B) + 𝐼A:B (𝜌). (1.80)

Indeed, by applying (1.79) on (1.80) one has

𝐼 (𝜌A) + 𝐼 (𝜌B) + 𝐼A:B (𝜌) = ln𝑑A − 𝑆 (𝜌A) + ln𝑑B − 𝑆 (𝜌B) + 𝑆 (𝜌A) + 𝑆 (𝜌B) − 𝑆 (𝜌), (1.81)

= ln (𝑑A𝑑B) − 𝑆 (𝜌), (1.82)

= 𝐼 (𝜌). (1.83)

The relation (1.80) tells us that the total available information about the state is composed of

local and global terms, that is, it depends not only on the information regarding each part of

the system but also on interactions between them. Even more interesting is the fact that (1.80)

implies the conservation of information in a closed system (which follows from the unitary

invariance of von Neumann entropy). The left side of (1.80) is constant while the right side

admits transmutations between local information [𝐼 (𝜌A) and 𝐼 (𝜌B)] and nonlocal information

[𝐼A:B (𝜌)] [131].

1.3 NONCLASSICAL FEATURES

This section is dedicated to present each one of the nonclassical features that were

mentioned in the introduction.



46

1.3.1 Bell nonlocality

Nearly three decades after EPR discussed the supposed incompleteness of quantum

mechanics as a physical theory, Bell [7] proved that if we try to complete quantum mechanics

with local hidden variables, we cannot reproduce every one of quantum mechanics predictions.

A simplified version of his argument is as follows (the interested reader can take a look in Ref.

[132] for a more profound discussion). Suppose two scientists, Alice and Bob, share a bipartite

state 𝜌 ∈ 𝔅(HA ⊗ HB). The joint probability 𝑝 (𝑎, 𝑏 |𝐴, 𝐵) of outcomes 𝑎 and 𝑏 for observables

𝐴 and 𝐵 made by Alice and Bob on partiesA and B, respectively, cannot, in general, be written

as a product of independent probability distributions, that is,

𝑝 (𝑎, 𝑏 |𝐴, 𝐵) ≠ 𝑝 (𝑎 |𝐴)𝑝 (𝑏 |𝐵) . (1.84)

Such an assertion does not indicate, a priori, any “spooky action at a distance” since the

correlations could have their origins on local interactions at the preparation of the state.

However, even if the state was already defined since its preparation, quantum mechanics does

not provide such information because measurement results are random. Let us complete the

quantum mechanical description with a hidden variable 𝜆, possibly following a distribution

𝑝 (𝜆) satisfying
∫
𝑝 (𝜆)d𝜆 = 1, that could restore factorizability, that is,

𝑝 (𝑎, 𝑏 |𝐴, 𝐵) =
∫

d𝜆 𝑝 (𝜆)𝑝 (𝑎 |𝐴, 𝜆)𝑝 (𝑏 |𝐵, 𝜆), (1.85)

thus satisfying EPR criticism. The above expression is usually called local causality hypothesis,

or also, Bell locality hypothesis. It means that all available statistical information about the

outcomes 𝑎 and 𝑏 comes from (i) the local choice of observables 𝐴 and 𝐵 and (ii) some hidden

variable 𝜆 that we could not have access for any reason. This hidden variable supposedly defines

the state before the measurement, and together with its local aspect, prevents any explanations

based on some action at a distance that could provide the correlations between results made at

space-like separated sites. Through this Local Hidden Variable Model (LHVM), the expected

value of a measurement can be obtained by

〈𝐴 ⊗ 𝐵〉 =
∬

d𝑎d𝑏 𝑝 (𝑎, 𝑏 |𝐴, 𝐵)𝑎𝑏, (1.86)

=
∬

d𝑎d𝑏

∫
d𝜆 𝑝 (𝜆)𝑝 (𝑎 |𝐴, 𝜆)𝑝 (𝑏 |𝐵, 𝜆)𝑎𝑏. (1.87)

Considering a situation where two measurements can be done over each party, namely 𝐴,

𝐴′, 𝐵, and 𝐵′, with outcomes 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ {−1, 1}, one can derive, after some algebra, the

Clauser-Horne-Shimony-Holt (CHSH) inequality [133]

B �
�� 〈𝐴 ⊗ 𝐵〉 + 〈𝐴′ ⊗ 𝐵〉 + 〈𝐴 ⊗ 𝐵′〉 − 〈𝐴′ ⊗ 𝐵′〉

�� ≤ 2. (1.88)

Contexts, i.e., states and measurement choices, which violate the above inequality necessarily

violate the Bell locality hypothesis (1.85), as in the following example.
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Figure 5 – Depiction of a Bell experiment. Alice and Bob receive each one a particle in their space-like
separated labs of a pair that came out from a single source. Alice measures the observable 𝐴
and registers the outcome 𝑎. Bob measures the observable 𝐵 and registers the outcome 𝑏.
The experiment is repeated several times and the joint probability 𝑃 (𝑎, 𝑏 |𝐴, 𝐵) is registered.

Example 6. If we use the standard quantum mechanical description for the expected value, i.e.,

〈𝐴 ⊗ 𝐵〉𝜌 = Tr [(𝐴 ⊗ 𝐵) 𝜌] , (1.89)

we can calculate the average results that an experimentalist will obtain in a laboratory if

one measures the spin observables 𝐴 and 𝐵 in the singlet state (1.74). Let us specify how

to do that calculation. Any spin-1/2 observable 𝐴 can be written as the inner product of a

three-dimensional unitary vector 𝑒 = (cos𝜃 sin𝜙, sin𝜃 sin𝜙, cos𝜙) with the Pauli vector

�𝜎 � (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) =
((
0 1

1 0

)
,

(
0 −𝑖
𝑖 0

)
,

(
1 0

0 −1

))
, (1.90)

which is a “vector” constituted of the three Pauli matrices. The vector 𝑒 designates the direction

of measurement and the Pauli matrices are associated to the canonical basis (1.38). For instance,

if we measure the spin of the particle in the 𝑧 = (0, 0, 1) direction, we obtain either the result

+ℏ/2 or −ℏ/2 and the particle collapses to either the state |0〉 or |1〉, respectively (see the Bloch

sphere in Fig. 4). In terms of projectors, we have(
ℏ
2
|0〉 〈0| − ℏ

2
|1〉 〈1|

)
|𝜓𝑠〉 ≡ ℏ

2

(
1 0

0 −1

)
|𝜓𝑠〉 = ℏ

2
𝜎𝑧 |𝜓𝑠〉 , (1.91)

where ℏ𝜎𝑧/2 � 𝑆𝑧 is the spin observable in the 𝑧 direction. For now on we can suppress the

constant ℏ/2. Analogously, any spin observable can be written in the above form as 𝑒 · �𝜎 . Now,
let us choose clever directions to measure the singlet state (1.74) and to see a violation of the

CHSH inequality. If we take orthogonal measurement directions 𝐴 = 𝑒1 · �𝜎 and 𝐴′ = 𝑒2 · �𝜎 , and
also orthogonal measurement directions 𝐵 = −(𝑒1 + 𝑒2) · �𝜎/

√
2 and 𝐵′ = (−𝑒1 + 𝑒2) · �𝜎/

√
2 in

(1.88), we obtain B = 2
√
2, which is a clearly violation of the CHSH inequality. Therefore, for

this choice of observables, the state (1.74) is said to be Bell nonlocal, or that it violates the local

causality hypothesis. �

Since 𝑝 (𝜆) is completely generic, the previous counterexample is sufficient to conclude that

there is no LHVM that describes all the predictions of quantum mechanics.
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Instead of simply diagnosing the presence of Bell nonlocality, we can quantify it.

To this end, we can adopt a usual strategy according to which one takes the maximal violation

of the inequality (1.88) as a quantifier for the degree of Bell nonlocality of the state. Here we

follow the approach put forward in Refs. [134, 135]. We start with Luo’s result [136], which

ensures that every two-qubit state can be written, up to local unitary operations, as

𝜁 =
1

4

(
� ⊗ � + �𝑎 · �𝜎 ⊗ � + � ⊗ �𝑏 · �𝜎 +

3∑
𝑖=1

𝑐𝑖 𝜎𝑖 ⊗ 𝜎𝑖

)
. (1.92)

where {�𝑎, �𝑏, �𝑐} ∈ R3 and (𝜎1, 𝜎2, 𝜎3) = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧). For this state, the Bell-nonlocality quantifier

proposed in Ref. [134] can be expressed in the form

B(𝜁 ) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩0,
√
�𝑐 · �𝑐 − 𝑐2min − 1

√
2 − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (1.93)

where 𝑐min = min{|𝑐1 |, |𝑐2 |, |𝑐3 |}. Although we are not showing how the authors deduce the

above equation, we can provide some insights. When decomposed in form (1.92), vectors �𝑎,
�𝑏, and �𝑐 carry different aspects regarding the state due to the operators they multiply. Vector

�𝑐 is the only one that carries information regarding non-local aspects. That is why Eq. (1.93)

(specifically for this inequality) only depends on vector �𝑐 .

1.3.2 Quantum steering

Quantum steering (sometimes called EPR steering), or just steering, signalizes the

capability of an observer to steer the state of a system in a remote site via local measure-

ments [75]. Thus, the nonsteerability hypothesis is defined by constraining Bob’s statistical

description in (1.85) as coming from a quantum state,

𝑝 (𝑎, 𝑏 |𝐴, 𝐵) =
∫

d𝜆 𝑝 (𝜆)𝑝 (𝑎 |𝐴, 𝜆)𝑝𝑞 (𝑏 |𝐵, 𝜆), (1.94)

where

𝑝𝑞 (𝑏 |𝐵, 𝜆) = Tr
(
𝐵𝑏𝜌

B
𝜆

)
(1.95)

and 𝐵𝑏 is a projector, although POVMs can be used instead (see Ref. [76] for a review on

quantum steering). If it is possible to find a state 𝜌B
𝜆
to reproduce the probability 𝑝 (𝑎, 𝑏 |𝐴, 𝐵)

in (1.94), then the state shared by Alice and Bob is said to be nonsteerable or, equivalently, it

is consistent with a local hidden state (LHS) model, that is, Bob does not need to believe that

his state can be steered by Alice’s choice of measurement basis. In the absence of a quantum

description 𝜌B
𝜆
, the shared state is called steerable. However, it is hard to find an LHS model in

order to identify if the state is unsteerable. Therefore, similarly to Bell nonlocality, it is easier

to discover if the state is steerable by searching for violations of inequalities, like the ones from

the work of Cavalcanti, Jones, Wiseman, and Reid (CJWR) [137],

1√
𝑛

����� 𝑛∑
𝑖=1

〈𝐴𝑖 ⊗ 𝐵𝑖〉
����� � 1, (1.96)
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where 𝑛 is the number of measurements made in each site of a partite state. In scenarios where

two measurements are performed per site on a two-qubit system, steering becomes identical to

Bell nonlocality, as demonstrated by Costa and Angelo in Ref. [134] (specifically for the CJWR

inequality). On the other hand, quantum steering and Bell nonlocality become distinguishable

when at least three measurements are allowed per site, in which case the following quantum

steering quantifier can be derived for the general two-qubit state (1.92) as the maximal violation

of (1.96):

S(𝜁 ) = max

{
0,

√
�𝑐 · �𝑐 − 1√
3 − 1

}
. (1.97)

Note that the nonsteerablility hypothesis (1.94) is more restrict than the Bell locality (1.85),

which means that if a state is Bell nonlocal, then it is steerable. The contrary implication is not

always true.

1.3.3 Entanglement

Entanglement is related to the degree of inseparability of a quantum state [71]. By

restricting both statistical descriptions for Alice’s and Bob’s parties in (1.85), one obtains the

separability hypothesis

𝑝 (𝑎, 𝑏 |𝐴, 𝐵) =
∫

d𝜆 𝑝 (𝜆)𝑝𝑞 (𝑎 |𝐴, 𝜆)𝑝𝑞 (𝑏 |𝐵, 𝜆) (1.98)

where

𝑝𝑞 (𝑎 |𝐴, 𝜆) = Tr
(
𝐴𝑎𝜌

A
𝜆

)
, (1.99a)

𝑝𝑞 (𝑏 |𝐵, 𝜆) = Tr
(
𝐵𝑏𝜌

B
𝜆

)
, (1.99b)

which implies that

𝑝 (𝑎, 𝑏 |𝐴, 𝐵) =
∫

d𝜆 𝑝 (𝜆) Tr
[
(𝐴𝑎 ⊗ 𝐵𝑏)

(
𝜌A𝜆 ⊗ 𝜌B𝜆

)]
, (1.100)

= Tr (𝐴𝑎 ⊗ 𝐵𝑏𝜌) , (1.101)

with

𝜌 =
∫

d𝜆 𝑝 (𝜆)𝜌A𝜆 ⊗ 𝜌B𝜆 . (1.102)

In other words, if a bipartite state 𝜌 can be written as a sum of product states, then it is called

separable, otherwise, it is called entangled. In order to quantify the degree of separability,

an entanglement measure must satisfy a list of properties such as continuity, subadditivity,

convexity, no increasing under local operations and classical communications (LOCC), and

others [138, 139]. For bipartite pure quantum states |𝜓 〉, the entanglement can be measured by

𝐸𝑆 ( |𝜓 〉) � 𝑆 (𝜌A) = 𝑆 (𝜌B), (1.103)
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where 𝑆 is the von Neumann entropy and 𝜌A,B = Tr B,A(|𝜓 〉 〈𝜓 |). In addition, the linear entropy

𝑆𝐿 (𝜎) = 1 − Tr𝜎2 can also be used as an alternative to the von Neumann one. In the case of

a mixed state, the quantification of entanglement gets trickier in higher dimensions. For a

generic two-qubit state 𝜌 , entanglement can be computed by means of the concurrence [140]:

𝐸𝐶 (𝜌) � max
{
0,
√
𝜆1 −

√
𝜆2 −

√
𝜆3 −

√
𝜆4
}
, (1.104)

where 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 𝜆4 are the eigenvalues of the operator 𝜌 (𝜎𝑦 ⊗ 𝜎𝑦)𝜌∗(𝜎𝑦 ⊗ 𝜎𝑦) and 𝜌∗ is
the complex conjugate of 𝜌 .

1.3.4 Quantum discord

Introduced by Olliver and Zurek [72], and independently by Henderson and Vedral

[73], quantum discord was conceived as the minimum deviation between two different ways of

quantifying mutual information for quantum states, namely, (1.12) and (1.13):

DB(𝜌) � min
𝐵

[𝐼A:B (𝜌) − 𝐽 (𝜌 |B)] , (1.105)

= min
𝐵

[∑
𝑏

𝑝𝑏𝑆 (𝜌A|𝑏) + 𝑆 (𝜌B) − 𝑆 (𝜌)
]
. (1.106)

Note that, in general, DB(𝜌) ≠ DA(𝜌). Later on, Rulli and Sarandy [74] further explored

the idea that quantum discord can also be viewed as the sensitivity of mutual information to

minimally disturbing projective measurements conducted locally. We are going to show how

to do that. Consider a CPTP unital map Φ𝐵 as a local unrevealed measurement procedure such

that

Φ𝐵 (𝜌) =
∑
𝑏

(�A ⊗ 𝐵𝑏)𝜌 (�A ⊗ 𝐵𝑏) =
∑
𝑏

𝜌A|𝑏 ⊗ 𝑝𝑏 |𝑏〉 〈𝑏 | , (1.107)

by an observable 𝐵 =
∑
𝑏 𝑏𝐵𝑏 with projectors 𝐵𝑏 = |𝑏〉 〈𝑏 | satisfying ∑𝑏 𝐵𝑏 = �B , where

𝜌A|𝑏 =
Tr B (𝐵𝑏𝜌𝐵𝑏)

𝑝𝑏
and 𝑝𝑏 = Tr (𝐵𝑏𝜌) . (1.108)

By applying the joint entropy theorem [see Eq. (1.67)] on Φ𝐵 (𝜌), one has

𝑆 (Φ𝐵 (𝜌)) = 𝐻 (𝑝𝑏) +
∑
𝑏

𝑝𝑏𝑆 (𝜌A|𝑏) . (1.109)

In addition,

𝐻 (𝑝𝑏) = −
∑
𝑏

𝑝𝑏 ln𝑝𝑏 = 𝑆

(∑
𝑏

𝑝𝑏 |𝑏〉 〈𝑏 |
)
= 𝑆 (TrA(Φ𝐵 (𝜌))) = 𝑆 (Φ𝐵 (𝜌B)) . (1.110)

Now, we substitute (1.110) in (1.109) and then in (1.106) to obtain

DB(𝜌) = min
𝐵

[𝑆 (Φ𝐵 (𝜌)) − 𝑆 (Φ𝐵 (𝜌B)) + 𝑆 (𝜌B) − 𝑆 (𝜌)] . (1.111)
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Since Φ𝐵 (𝜌A) = 𝜌A , one can add zero in the above equation to arrive at

DB(𝜌) = min
𝐵

[𝑆 (Φ𝐵 (𝜌)) − 𝑆 (Φ𝐵 (𝜌B)) − 𝑆 (Φ𝐵 (𝜌A)) + 𝑆 (𝜌B) + 𝑆 (𝜌A) − 𝑆 (𝜌)] , (1.112)

which clearly reduces to

DB(𝜌) � min
𝐵

[
𝐼A:B (𝜌) − 𝐼A:B (Φ𝐵 (𝜌))

]
. (1.113)

The quantum discord of a state 𝜌 ∈ 𝔅(HA ⊗ HB) relative to B is null when 𝜌 possesses only

classical correlation between each party, i.e., only for quantum-classical (QC) states,

𝜌QC =
∑
𝑖

𝜌A|𝑖 ⊗ 𝑝𝑖 |𝑖〉 〈𝑖 | , (1.114)

and classical-classical (CC) states,

𝜌CC =
∑
𝑖

𝑝𝑖 |𝑖〉 〈𝑖 | ⊗ |𝑖〉 〈𝑖 | . (1.115)

1.3.5 Quantum irreality

In Ref. [36], BA introduced a quantifier of irreality—ameasure that indicates by how

much the hypothesis of realism is violated. Their operational criterion of physical reality is as

follows. Suppose we have a source that gives us infinitely many copies of a bipartite state. These

copies are sent to a tomography procedure that furnishes the description 𝜌 ∈ 𝔅(HA ⊗ HB).
Now, suppose that a secret agent starts to intercept each one of those copies and, before the

tomography procedure, the agent measures always the same observable 𝐴 =
∑
𝑖 𝑎𝑖𝐴𝑖 , where

𝐴𝑖 = |𝑎𝑖〉 〈𝑎𝑖 | ∈ 𝔅(HA) are projectors such that 𝐴𝑖𝐴𝑗 = 𝛿𝑖 𝑗𝐴𝑖 and
∑
𝑖 𝐴𝑖 = �A , but the result

is kept secret (see Fig. 6). Without having access to the measurement outcomes, the best

description we can have now for the state is

Φ𝐴 (𝜌) =
∑
𝑖

(𝐴𝑖 ⊗ �B)𝜌 (𝐴𝑖 ⊗ �B) =
∑
𝑖

𝑝𝑖𝐴𝑖 ⊗ 𝜌B|𝑖, (1.116)

where 𝜌B|𝑖 = TrA(𝐴𝑖𝜌𝐴𝑖)/𝑝𝑖 is the state of the untouched part of the system conditioned

to the part A outcome and 𝑝𝑖 = Tr (𝐴𝑖𝜌) is the probability of the outcome 𝑎𝑖 . Now, we can

choose to interpret that the observable 𝐴 is now an element of reality for Φ𝐴 (𝜌), since new
measurements of the same observable will not disturb the system, i.e., Φ𝐴 (Φ𝐴 (𝜌)) = Φ𝐴 (𝜌).
The act of measuring 𝐴 again will just reveal a pre-existing reality. Thus, the authors in Ref.

[36] define that

Definition 1 (Element of reality). The observable 𝐴 is real for the state 𝜌 iff

Φ𝐴 (𝜌) = 𝜌. (1.117)
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Figure 6 – Illustration of the operational criterion of BA’s reality. (left) A given source provides infinitely
many copies of a state (Preparation) to be sent to a tomography procedure in order to obtain
the description 𝜌 . (right) Each copy is intercepted and always the same observable 𝐴 is
measured, but the result 𝑎𝑖 is kept secret. The unrevealed measured state Φ𝐴 (𝜌) is obtained by
tomography and the descriptions are compared. 𝐴 is real for the preparation 𝜌 iff Φ𝐴 (𝜌) = 𝜌
(illustration inspired on the work of Savi [141]).

A first proposal to quantify the violation of the above criterion was then introduced as the

irreality of 𝐴 given 𝜌 by3

ℑ𝐴 (𝜌) � 𝑆 (Φ𝐴 (𝜌)) − 𝑆 (𝜌) . (1.118)

This measure is non-negative, since von Neumann entropy does not decrease under projective

measurements, and it vanishes only, and just only, for states of 𝐴-reality (1.117). To prove that,

we need the following lemma [142]:

Lemma 1. For any function 𝑓 , any quantum states 𝜌 and 𝜎 , and any observable 𝐴, we have

Tr [𝜌 𝑓 (Φ𝐴 (𝜎))] = Tr [Φ𝐴 (𝜌) 𝑓 (Φ𝐴 (𝜎))] . (1.119)

The reader can find the proof in Appendix B. By the above lemma and the Klein’s inequality

(1.71), we immediately reach

ℑ𝐴 (𝜌) = 𝐷 (𝜌 | |Φ𝐴 (𝜌)) � 0, (1.120)

where the last equality holds iff Φ𝐴 (𝜌) = 𝜌 . Interestingly, for any 𝜌 on HA ⊗ HB , one shows
that

ℑ𝐴 (𝜌) = ℑ𝐴 (𝜌A) + 𝐷𝐴 (𝜌), (1.121)

where 𝐷𝐴 (𝜌) = 𝐼 (𝜌) − 𝐼 (Φ𝐴 (𝜌)) is the measurement-dependent discord (note that DA(𝜌) =
min𝐴 𝐷𝐴 (𝜌)). This decomposition reveals that irreality actually captures both (i) information

about local coherence and (ii) correlation changes induced by local measurements.
3 In Part II we are going to revisit this concept through its complement, the reality, and discuss it in a deeper way

with an axiomatic approach. Indeed, in Chap. 6 we are going to generalize this quantifier with the Rényi and
Tsallis quantum information theories and, in addition, we are going to propose alternative geometric-based
quantifiers for the irreality.
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It is important to note differences between EPR’s and BA’s elements of reality.

Although both of them agree that the eigenstates of an observable are completely real for that

observable, they disagree for correlated states and maximally mixed states. See the following

examples.

Example 7. While EPR say that every observable is real for the singlet state 𝜌𝑠 = |𝜓𝑠〉 〈𝜓𝑠 |
because the state is already defined before the measurement (and quantum mechanics is

“supposedly incomplete”, and that is why we need hidden variables to describe the “apparently”

random measurement results), BA’s criterion claims full irreality. Indeed, one can write any

2-dimensional observable

𝐴 =
∑
𝑖

𝑎𝑖𝐴𝑖 = 𝐴+ −𝐴− (1.122)

in terms of its projectors

𝐴± =
1

2
(�A ± 𝑣 · �𝜎) , (1.123)

where the unitary vector 𝑣 ∈ R3 gives the measurement direction, to obtain

Φ𝐴 (𝜌𝑠) = 1

2
[𝜌 + (𝑣 · �𝜎) 𝜌 (𝑣 · �𝜎)] . (1.124)

A direct calculation using any software of symbolic computation gives 𝑆 (Φ𝐴 (𝜌𝑠)) = ln 2 for

any 𝑣 . Since 𝑆 (𝜌𝑠) = 0, one has ℑ𝐴 (𝜌𝑠) = ln 2. �

Example 8. Now, imagine that we ignore the far particle in the previous example, which

mathematically implies that we are tracing out the B part of the system: 𝜌A = Tr B (𝜌𝑠) = �A/2.
Therefore, ℑ𝐴 (𝜌A) = 0 for any 𝐴. This makes sense when we accept the following argument.

A maximally mixed state represents a fair classical coin that, in turn, lies always in a real state

of affairs. For instance, imagine a classical coin toss game. The coin lands on the back of one

hand and then we cover it with the other. The most skeptical of physicists (and perhaps here

we should leave out our beloved QBist friends [30]) would say that the state of the coin is

already real, even if we cannot predict its outcome. The simple act of raising the hand will not

interfere with the definiteness of the physical quantity associated with the face of the coin that

is already turned up. We can say that the observable 𝐴 = turned-up-face of the coin is already

an element of reality, i.e., ℑ𝐴 (�A/2) = 0. �

After all, is A real or not? It depends. Locally, the element of reality exists, but

globally, correlations with the whole prevent the prevalence of physical reality. Of course,

the classical coin analogy for the state 𝜌A = �A/2 is just that: an analogy. The nature of the

electron spin is still unclear and, therefore, subject to interpretations based on the experimental

results.

1.3.6 Realism-based nonlocality

One of the implications of the irreality measure (1.118) is the realism-based nonlo-

cality, a notion of nonlocal behavior proposed initially by BA [36] and further developed by
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Figure 7 – Venn diagram representing the hierarchy of contextual independent nonclassical aspects:
Bell nonlocality, Steering, Entanglement, Quantum discord, and Realism-based nonlocality.
Each ellipse represents a set of states that contains the highlighted nonclassical feature.

Gomes and Angelo [37, 143]. The BA locality hypothesis is stated as

ℑ𝐴 (𝜌) = ℑ𝐴 (Φ𝐵 (𝜌)), (1.125)

that is, the degree of irreality of an observable𝐴 acting atA should not change due to projective

non-selective measurements made by 𝐵 in a far site B. Violations of (1.125) can be quantified

by

𝜂𝐴𝐵 (𝜌) � ℑ𝐴 (𝜌) − ℑ𝐴 (Φ𝐵 (𝜌)), (1.126)

= 𝑆 (Φ𝐴 (𝜌)) + 𝑆 (Φ𝐵 (𝜌)) − 𝑆 (Φ𝐴𝐵 (𝜌)) − 𝑆 (𝜌), (1.127)

giving rise to the contextual realism-based nonlocality. As the name suggests, this measure

depends on the context (𝐴, 𝐵, 𝜌). It is always non-negative and vanishes for product states

𝜌 = 𝜌A ⊗ 𝜌B or when 𝜌 is a state of reality for 𝐴 or 𝐵4. Then, the (context independent)

realism-based nonlocality N , that is, a nonlocal aspect inherent to the state, can be defined by

taking the maximization over all available observables,

N(𝜌) � max
𝐴,𝐵

𝜂𝐴𝐵 (𝜌) . (1.128)

This measure is always non-negative and it is null for product states 𝜌 = 𝜌A ⊗ 𝜌B . In the case

of pure states, the realism-based nonlocality reduces to entanglement. When compared to the

nonclassical features discussed previously, realism-based nonlocality has shown to be the most

ubiquitous one [143]. Even for nondiscordant states like (1.115), the measureN can be nonzero.

Let us take the contextual realism-based nonlocality for 𝜌𝐶𝐶 ,

𝜂𝐴𝐵 (𝜌𝐶𝐶) = 𝜂𝐴𝐵

(∑
𝑖

𝑝𝑖𝐴
′
𝑖 ⊗ 𝐵′𝑖

)
, (1.129)

= 𝐻 ({𝑝𝑖}) +
∑
𝑖

𝑆
[
Φ𝐴 (𝐴′

𝑖) ⊗ Φ𝐵 (𝐵′𝑖)
] − 𝑆

[∑
𝑖

𝑝𝑖Φ𝐴 (𝐴′
𝑖) ⊗ Φ𝐵 (𝐵′𝑖)

]
. (1.130)

4 The sufficiency for this statement is yet unknown.
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The quantity N(𝜌𝐶𝐶) will be nonzero if at least one context (𝐴, 𝐵, 𝜌𝐶𝐶) provides 𝜂𝐴𝐵 (𝜌𝐶𝐶) > 0.

In fact, for observables 𝐴 and 𝐵 that are maximally incompatible with 𝐴′ =
∑
𝑖 𝑎

′
𝑖𝐴

′
𝑖 and

𝐵′ =
∑
𝑖 𝑏

′
𝑖𝐵

′
𝑖 , respectively, one has Φ𝐴 (𝐴′

𝑖) = �A/𝑑A and Φ𝐵 (𝐵′𝑖) = �B/𝑑B , and therefore

𝜂𝐴𝐵 (𝜌𝐶𝐶) = 𝐻 ({𝑝𝑖}), which is positive. The hierarchy satisfied by the contextual independent

nonclassical aspects presented so far is depicted in Fig. 7.

1.4 QUANTUMWALKS

Quantum walks are the quantum version of classical random walks5. In the classical

version, a walker takes discrete steps depending on the result of a coin toss game (or any other

random event with dichotomous results). In the quantum analog, the walker is a particle with a

spin-like internal degree of freedom whose step to the right or left is conditioned by its internal

degree. One possible description of the system can be formulated, e.g., by setting that spin

up goes right and spin down goes left. If the particle is in a superposition between spin up

and down, then it makes a step as a superposition between left and right. The random aspect

inherent to the quantum walk evolution is due to a rotation in the spin of the particle before

each step. Thus, because of the superposition principle, some aspects emerge from the quantum

walk making it dramatically distinct from its classical version (check out Fig. 2 again in the

Introduction).

1.4.1 Formal structure

The state of a one-dimensional quantum walker belongs to a Hilbert space H =

H𝑆 ⊗ H𝑋 , where H𝑆 , spanned by {|↑〉 , |↓〉}, refers to a spin-1/2 space state (ℏ = 1) and
H𝑋 , spanned by a discrete basis {|𝑥〉 : 𝑥 ∈ Z}, denotes the space state associated with the

dimensionless discrete position 𝑋 . Let

|𝜓0〉 =
(
cos

𝛼

2
|↑〉 + sin

𝛼

2
|↓〉
)
⊗

∞∑
𝑥=−∞

𝑓 (𝑥) |𝑥〉 (1.131)

be the initial state such that 𝛼 ∈ [0, 𝜋] and 𝑓 is the initial probability amplitude for the walker

position. The single-step unitary evolution is determined by the operator [45]

𝑈 = 𝐷 (𝐶 ⊗ �𝑋 ), (1.132)

where 𝐷 is the conditional displacement operator,

𝐷 =
∑
𝑥

(
|↑〉 〈↑| ⊗ |𝑥 + 1〉 〈𝑥 | + |↓〉 〈↓| ⊗ |𝑥 − 1〉 〈𝑥 |

)
, (1.133)

and 𝐶 is the so-called quantum coin, a SU(2) matrix which here is chosen to be the standard

unbiased Hadamard coin:

𝐶 ≡ 1√
2

(
1 1

1 −1

)
. (1.134)

5 For a very gentle introduction see Sec. 1.1 in Ref. [144] in Portuguese or Ref. [56] in English.
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Figure 8 – (𝑎) Depiction of the rotation in the spin state |↑〉 due to the action of the Hadamard coin.
(𝑏) Numerical probability distribution | 〈𝑥 |𝜓𝑡 〉 |2 of a quantum walk under the action of a
Hadamard coin with initial state |𝜓0〉 = |↑〉 ⊗ |0〉 at 𝑡 = 50. Note that, if 𝑡 is even (odd), the
particle can only be found in a even (odd) position.

Figure 9 – Two time steps of a quantum walk starting with spin state |↑〉 at position state |𝑥 = 0〉.

When represented in the Bloch sphere, a qubit under the action of the Hadamard coin is rotated

by 180°around the axis (𝑥 +𝑧)/√2, as in Fig. 8 (𝑎). See also Fig. 9 for a depiction of the quantum

walk evolution.

Example 9. Consider a quantum walker in the initial state |𝜓𝑡=0〉 = |↑〉 ⊗ |0〉, which corresponds

to 𝛼 = 0 and 𝑓 (𝑥) = 𝛿𝑥,0 in (1.131). Now, let us use the canonical basis

|↑〉 ≡
(
1

0

)
, |↓〉 ≡

(
0

1

)
. (1.135)

We can calculate the state of the walker after one time-step by

|𝜓𝑡=1〉 = 𝑈 |𝜓𝑡=0〉 , (1.136)

= 𝐷 (𝐶 ⊗ �𝑋 ) ( |↑〉 ⊗ |0〉), (1.137)

= 𝐷 (𝐶 |↑〉 ⊗ �𝑋 |0〉) , (1.138)

= 𝐷

( |↑〉 + |↓〉√
2

⊗ |0〉
)
, (1.139)
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=

(∑
𝑥

|↑〉 〈↑| ⊗ |𝑥 + 1〉 〈𝑥 | + |↓〉 〈↓| ⊗ |𝑥 − 1〉 〈𝑥 |
) ( |↑〉 + |↓〉√

2
⊗ |0〉

)
, (1.140)

=
1√
2
( |↑〉 ⊗ |1〉 + |↓〉 ⊗ |−1〉) . (1.141)

As we can see, the position and the spin degrees of freedom can become entangled during the

time evolution of the quantum walk. This means that some level of information regarding the

spin state of the walker becomes encoded in the position state. After the second step, we also

start to see quantum interference in the time evolution:

|𝜓𝑡=2〉 = 𝑈 |𝜓𝑡=1〉 , (1.142)

= 𝐷 (𝐶 ⊗ �𝑋 ) 1√
2
( |↑〉 ⊗ |1〉 + |↓〉 ⊗ |−1〉) , (1.143)

=
1

2
|↑〉 ⊗ |2〉 + 1

2
( |↑〉 + |↓〉) ⊗ |0〉 − 1

2
|↓〉 ⊗ |−2〉 (1.144)

At the third time-step, we start to see a shift in the probability 𝑝𝑥 = | 〈𝑥 |𝜓𝑡 〉 |2 towards the right
due to the initial spin state that we have chosen:

|𝜓𝑡=3〉 = 1

2
√
2
|↑〉 ⊗ |3〉 +

( |↑〉√
2
+ |↓〉
2
√
2

)
⊗ |1〉 − 1

2
√
2
|↑〉 ⊗ |−1〉 + 1

2
√
2
|↓〉 ⊗ |−3〉 . (1.145)

In Fig. 8 (𝑏) we show a numerical evaluation of | 〈𝑥 |𝜓𝑡=50〉 |2. �

Remark 1. The class of spin states indicated in (1.131) represents a circle in the 𝑥𝑧 plane of

the Bloch sphere, that is, states with no phase difference between |↑〉 and |↓〉. Some studies

have shown that, when employed along with the Hadamard coin, such class of states is

sufficiently general, in the sense that they can yield every possible production rate of spin-

position entanglement [145], as well as every possible dispersion [115]. Still, there is some lack

of generality because only one combination of features—entanglement and dispersion—can be

simulated through this approach [115].

Now, let us explore a broader class of initial position distributions 𝑓 (𝑥).

1.4.2 The Gaussian states

The walker state after 𝑡 steps can be written as

|𝜓𝑡 〉 = 𝑈 𝑡 |𝜓0〉 =
∑
𝑥

[
𝑎𝑡 (𝛼, 𝑥) |↑〉 + 𝑏𝑡 (𝛼, 𝑥) |↓〉

]
⊗ |𝑥〉 , (1.146)

with normalization condition ∑
𝑥

(|𝑎𝑡 (𝛼, 𝑥) |2 + |𝑏𝑡 (𝛼, 𝑥) |2
)
= 1 (1.147)

and a dimensionless time 𝑡 ∈ N. If the initial distribution |𝑓 (𝑥) |2 is sharply localized, the spin

amplitudes 𝑎𝑡 (𝛼, 𝑥) and 𝑏𝑡 (𝛼, 𝑥) evolve according to a highly oscillatory pattern, a well-known
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characteristic of local states [see Fig. 8 (𝑏)]. Fourier analysis combined with the stationary

phase method [146] define a largely applied scheme to achieve analytical results, such as

those reported for long-time dispersion rates [147–149] and asymptotic entanglement [60, 115,

145, 150, 151]. This approach, however, is not appropriate for our purposes because we are

interested in looking at the whole dynamics of nonclassical features quantifiers. To this end,

we adopt throughout this thesis a model according to which the initial distribution is given by

the Gaussian function

𝑓 (𝑥) = 1√
𝐾
exp

(
− 𝑥2

4𝜎2
0

)
, (1.148)

where 𝜎0 is the dimensionless dispersion and

𝐾 =
∑
𝑥

exp

(
− 𝑥2

2𝜎2
0

)
(1.149)

is the normalization constant. This choice is rather convenient, for it is known that, whenever

𝜎0 is sufficiently large, such state preserves not only its Gaussianity over time [152] but also

the interesting properties of ballistic spreading and entanglement creation. Figure 10 gives a

comparison of the probability distributions | 〈𝑥 |𝜓𝑡 〉|2 at 𝑡 = 100 for quantum walkers initially

prepared in a local (𝜎0 = 0.2) and in a broad (𝜎0 = 5) Gaussian state for different initial spin

states (𝛼 = 0, 𝜋/4, and 3𝜋/4). The region wherein the walker is likely to be found increases with

time as 2𝑡 + 2𝜎0 and the analytical treatment of the problem for long times remains unfeasible

even for Gaussian states.

1.4.3 Entanglement in quantum walks

Since information about the spin is being encoded at the positions the quantum

walker is passing through, we have entanglement being produced during the time evolution

of the system. Because the initial state (1.131) is pure and the time evolution operator (1.132)

is unitary, the state |𝜓𝑡 〉 remains pure. Therefore, the entanglement between the degrees of

freedom inH𝑆 andH𝑋 can be calculated using (1.103). Having said that, we just need to obtain

the reduced density matrix relative to the spins by tracing out the positions

𝜌𝑆 = Tr 𝑋 ( |𝜓𝑡 〉 〈𝜓𝑡 |) =
( ∑

𝑥 |𝑎𝑡 (𝛼, 𝑥) |2
∑
𝑥 𝑎𝑡 (𝛼, 𝑥)𝑏∗𝑡 (𝛼, 𝑥)∑

𝑥 𝑎
∗
𝑡 (𝛼, 𝑥)𝑏𝑡 (𝛼, 𝑥)

∑
𝑥 |𝑏𝑡 (𝛼, 𝑥) |2

)
�

(
Θ Γ

Γ∗ 1 − Θ

)
. (1.150)

Let us choose the von Neumann entropy (1.63) in order to calculate the entanglement in |𝜓𝑡 〉.
To do that, we need the eigenvalues of 𝜌𝑆 , which are

𝜆± =
1

2

(
1 ±

√
(1 − 2Θ)2 + 4|Γ |2

)
. (1.151)

Therefore, the entanglement is given by

𝐸 ( |𝜓𝑡 〉) = 𝑆 (𝜌𝑆 ) = −𝜆+ ln 𝜆+ − 𝜆− ln 𝜆−. (1.152)

In Fig. 11, we present a numerical evaluation of the time evolution of the above equation for
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Figure 10 – Numerical probability distributions | 〈𝑥 |𝜓𝑡 〉|2 of quantumwalks with (𝑎) 𝛼 = 0, (𝑏) 𝛼 = 𝜋/4,
and (𝑐) 𝛼 = 3𝜋/4 [see Eq. (1.131)] for local (𝜎0 = 0.2, black circles) and broad (𝜎0 = 5, red
squares) Gaussian states, at 𝑡 = 100, as a function of the dimensionless position 𝑥 . The
greater the initial dispersion, the more effective the maintenance of the Gaussian shape
over time.

the same six different initial configurations of Fig. 10. In Fig. 11 we can see some fundamental

characteristics about the production of entanglement in quantum walks. The first one is that

the entanglement reaches an asymptotic limit over time, regardless of the distance traveled

by the walker. This asymptotic limit depends both on the quantum coin used in the temporal

evolution and on the characteristics of the walker’s initial state. The more spatially centered

the walker’s state, the greater our uncertainty regarding the moment, which leads to high

oscillations both in the probability distribution and in the production of entanglement. In

the case of wide Gaussian states, the uncertainty at the moment is smaller, which leads to a
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Figure 11 – Numerical simulation of the entanglement [see Eq. (1.152)] as a function of time of a
quantum walker for six different initial conditions: 𝜎0 = 0.2 (circles) and 𝜎0 = 5 (squares),
and 𝛼 = 0 (green), 𝛼 = 𝜋/4 (red), and 𝛼 = 3𝜋/4 (blue).

better-defined trajectory and the asymptotic entanglement limit is reached more quickly. From

Fig. 8 (𝑎), we can see that the spin state given by 𝛼 = 3𝜋/4 is orthogonal to the eigenstates of

the Hadamard coin [which rotates around the (𝑥 + 𝑧)/√2 axis]. Thus, this state is maximally

affected by the transformation caused by 𝐶 and, therefore, leads to the maximum correlation

between spin and position. The exact opposite occurs with spin states with 𝛼 = 𝜋/4 direction.
Another way to produce maximally entangled states in quantum walks is through

the addition of dynamical disorder in the time evolution (1.132) by randomly chosen a different

quantum coin𝐶 at each time-step. That fact was numerically and analytically proved by Vieira

et al. in Refs. [153, 154]. The optimal rate of disorder is actually very low and it depends on

𝜎0, as showed in Ref. [116]. Nonetheless, for the purposes of this thesis, we will not study

dynamically disordered quantum walks.
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2 IRREALITY, QUANTUM CORRELATIONS, AND NONLOCALITY

AMONG QUANTUMWALKERS

This chapter is dedicated to presenting the discussion and related results of our

research into two quantum walker systems published in Physical Review A [A. C. Orthey and

R. M. Angelo, “Nonlocality, quantum correlations, and violations of classical realism in the

dynamics of two noninteracting quantum walkers”, Phys. Rev. A 100, 042110 (2019)]. Following

the discussion made in the Introduction, we are going to explore the dynamical evolution of

several non-classical features in a system composed of two non-interacting quantum walkers.

First, we are going to present our simplified Gaussian model in order to analytically assess the

system.

2.1 SIMPLIFIED GAUSSIAN MODEL FOR QUANTUMWALKS

Let us introduce the fundamental ingredients of our simplified Gaussian model for

quantum walks. First, we employ the approximation

𝐾 =
∞∑

𝑥=−∞
exp

(
− 𝑥2

2𝜎2
0

)
= 𝜗3

(
0, 𝑒−1/2𝜎

2
0

)
�
√
2𝜋𝜎2

0 , (2.1)

where

𝜗3(𝑧, 𝑞) =
+∞∑

𝑥=−∞
𝑞𝑥

2
𝑒2𝑥𝑖𝑧 (2.2)

is the Jacobi theta function. This approximation fails only for 𝜎0 < 1, a domain that will

henceforth be out of scope. Second, for the description of the long-time Gaussian distributions

illustrated in Fig. 10, we propose the ansatz

𝑎𝑡 (𝛼, 𝑥) = 𝑞+𝑎 (𝛼) 𝑔+𝑡 (𝑥) + 𝑞−𝑎 (𝛼) 𝑔−𝑡 (𝑥), (2.3a)

𝑏𝑡 (𝛼, 𝑥) = 𝑞+𝑏 (𝛼) 𝑔+𝑡 (𝑥) + 𝑞−𝑏 (𝛼) 𝑔−𝑡 (𝑥), (2.3b)

where

𝑔±𝑡 (𝑥) =
(±1)𝑡(
2𝜋𝜎2

0

)1/4 exp
⎡⎢⎢⎢⎢⎢⎣−

(
𝑥 ∓ 𝑡/√2

)2
4𝜎2

0

⎤⎥⎥⎥⎥⎥⎦ (2.3c)

and

𝑞±𝑢 (𝛼) =
1

4

[
𝔠±𝑢 cos

(𝛼
2

)
+ 𝔰±𝑢 sin

(𝛼
2

)]
, (2.3d)

with 𝔠±𝑢 and 𝔰±𝑢 (𝑢 = 𝑎, 𝑏) being the coefficients that will adjust our model to the exact numerical

results. The above formulas were derived with basis on preliminary numerical studies. Note

that the amplitudes 𝑔±𝑡 (𝑥) move with speed 1/√2 (a hallmark of the Hadamard walk). The

oscillatory form proposed for 𝑞±𝑢 (𝛼) is naturally induced by the structure of the initial state
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Figure 12 – Comparison between analytical model 𝑞±
𝑎,𝑏

(red line) and numerical data (black points) as a
function of 𝛼 at 𝑡 = 100 and 𝜎0 = 10.

(1.131). After an extensive numerical analysis (see Fig. 12), involving many different values of

𝛼 , 𝜎0, and 𝑡 , we have found1

𝔠±𝑎 � 2 ±
√
2, 𝔰±𝑎 � ±

√
2, (2.4a)

𝔠±𝑏 � ±
√
2, 𝔰±𝑏 � 2 ∓

√
2. (2.4b)

Equations (1.131)-(2.4) define our quantum-walk simplifiedmodel. The quality of thismodel was

tested via evaluation of the fidelity |〈𝜓 sim
𝑡 |𝜓𝑡 〉|2 of the state |𝜓𝑡 〉, computed with our simplified

model, with respect to the state |𝜓 sim
𝑡 〉, derived via numerical simulation. For sufficiently

broad states (𝜎0 � 5) and several values of {𝜎0, 𝛼, 𝑡} the fidelity was never less than 99.8%.

Also noteworthy is the fact that in Eq. (2.3c) we have tacitly assumed that the dispersion of

each Gaussian maintains its initial value 𝜎0, which proved to be a rather good approximation

whenever 𝜎0 � 1. For future convenience, we note that for 𝛼 = 0 and 𝛼 = 𝜋 , which imply the

initial states

|↑〉 ⊗
∑
𝑥

𝑓 (𝑥) |𝑥〉 � |𝜓↑
0 〉 , (2.5a)

|↓〉 ⊗
∑
𝑥

𝑓 (𝑥) |𝑥〉 � |𝜓↓
0 〉 , (2.5b)

the above model leads to the respective solutions:∑
𝑥

[
𝑎𝑡 (0, 𝑥) |↑〉 + 𝑏𝑡 (0, 𝑥) |↓〉

]
⊗ |𝑥〉 � |𝜓↑

𝑡 〉 , (2.6a)∑
𝑥

[
𝑎𝑡 (𝜋, 𝑥) |↑〉 + 𝑏𝑡 (𝜋, 𝑥) |↓〉

]
⊗ |𝑥〉 � |𝜓↓

𝑡 〉 . (2.6b)

1 Two years after the publication of our results in Ref. [38], Vieira et al. [155] have solved this problem analytically.
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Figure 13 – Depiction of the dynamics of the temporal evolution between the four parts of the Hilbert
space that contain the state of the two quantum walkers: two initially entangled qubits 𝑆1
and 𝑆2 that are posteriorly coupled with the position degrees of freedom 𝑋1 and 𝑋2 through
the discrete time unitary evolutions𝑈 𝑡

1 and𝑈 𝑡
2 .

2.2 TWOWALKERS

Consider now two walkers, named 1 and 2, whose state vector lies in the Hilbert

space H = H𝑆1 ⊗ H𝑆2 ⊗ H𝑋1 ⊗ H𝑋2 . In our model, we consider a scenario where the spins 𝑆1,2

are initially prepared in a maximally entangled state (the singlet state) while the positions 𝑋1,2

of the walkers are described by Gaussian distributions centered at the origins of their (distinct)

coordinate systems. The joint state reads

|Ψ0〉 = |↑↓〉 − |↓↑〉√
2

⊗
∑
𝑥1,𝑥2

𝑓 (𝑥1) 𝑓 (𝑥2) |𝑥1, 𝑥2〉 , (2.7)

with 𝑓 given by Eq. (1.148). Moreover, we assume that thewalkers do not interact with each other

and with the external universe. Concretely, we can conceive an instance such that, after getting

their spins maximally correlated, the particles are put to walk in distinct laboratories, which

can be arbitrarily separated in space. Each walker is governed by its own unitary dynamics and

the eventual emergence of any nonclassical feature between initially independent degrees of

freedom (𝑆1 and 𝑋2, for example) must be accomplished thanks to the only quantum resource

encoded in the joint state, namely, two-qubit entanglement. The reader can found a depiction

of our two quantum walker system in Fig. 13.

To obtain the time-evolved state vector, we should first realize that the state (2.7)

can be spanned in terms of the kets (2.5) as

|Ψ0〉 = 1√
2

(
|𝜓↑

0 〉 |𝜓↓
0 〉 − |𝜓↓

0 〉 |𝜓↑
0 〉
)
. (2.8)

Linearity immediately allows us to use the solutions (2.6) to write

|Ψ𝑡 〉 = 1√
2

(
|𝜓↑
𝑡 〉 |𝜓↓

𝑡 〉 − |𝜓↓
𝑡 〉 |𝜓↑

𝑡 〉
)
, (2.9)

which can be more explicitly written as

|Ψ𝑡 〉 =
∑
𝑥1,𝑥2

1√
2𝜋𝜎2

0

exp

(
−2𝑡

2 + 4𝑥2𝑐𝑚 + 𝑥2𝑟
8𝜎2

0

)
|𝑠𝑡 (𝑥𝑟 )〉 ⊗ |𝑥1, 𝑥2〉 , (2.10)
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where we have introduced, for the sake of notational simplicity, 𝑥𝑐𝑚 = (𝑥1 + 𝑥2)/2 (the center
of mass position), 𝑥𝑟 = 𝑥2 − 𝑥1 (the relative position), the non-normalized state

|𝑠𝑡 (𝑥𝑟 )〉 = sinh

(
𝑡𝑥𝑟

2
√
2𝜎2

0

)
|𝛽23〉 + cosh

(
𝑡𝑥𝑟

2
√
2𝜎2

0

)
|𝐵4〉 , (2.11)

and the Bell basis

|𝐵1〉 = |↑↑〉 + |↓↓〉√
2

, |𝐵2〉 = |↑↑〉 − |↓↓〉√
2

,

|𝐵3〉 = |↑↓〉 + |↓↑〉√
2

, |𝐵4〉 = |↑↓〉 − |↓↑〉√
2

,

(2.12)

which allowed us to write |𝛽23〉 ≡ (|𝐵2〉 − |𝐵3〉)/
√
2.

It is clear from the result (2.10) that none of the original degrees of freedom

{𝑆1, 𝑆2, 𝑋1, 𝑋2} factorizes for 𝑡 > 0. On the other hand, the two-spin state (2.11) depends

only on the relative coordinate, so that the state associated with the center of mass must

factorize. This can be proved as follows. Let us replace laboratory positions {𝑥1, 𝑥2} with center

of mass and relative coordinates {𝑥𝑐𝑚, 𝑥𝑟 } through the usual map [156, 157]

|𝑥1〉 ⊗ |𝑥2〉 ↦→ |𝑥2 − 𝑥1〉𝑟 ⊗
���𝑥1 + 𝑥2

2

〉
𝑐𝑚
, (2.13)

which links every state inH1 ⊗ H2 with a counterpart inH𝑐𝑚 ⊗ H𝑟 (assuming walkers with

equal masses). Using this map and changing dummy variables in summations, we rewrite the

state (2.10) in an explicitly separable form, |Ψ𝑡 〉 = |Θ〉𝑐𝑚 ⊗ |Φ𝑡 〉𝑟 , where

|Θ〉𝑐𝑚 =
∑
𝑥𝑐𝑚

1

(𝜋𝜎2
0 )1/4

exp

(
−𝑥

2
𝑐𝑚

2𝜎2
0

)
|𝑥𝑐𝑚〉 , (2.14a)

|Φ𝑡 〉𝑟 =
∑
𝑥𝑟

1

(4𝜋𝜎2
0 )1/4

exp

(
−2𝑡

2 + 𝑥2𝑟
8𝜎2

0

)
|𝑠𝑡 (𝑥𝑟 )〉 ⊗ |𝑥𝑟 〉 . (2.14b)

This completes the proof. An interesting observation can now be made for the spins. By

separating the summation for 𝑥𝑟 in parcels with 𝑥𝑟 < 0, 𝑥𝑟 = 0, and 𝑥𝑟 > 0, we can compute the

asymptotic state

|Φ∞〉 = 1√
2

(|𝜙+
∞〉 ⊗ |𝑆+〉 − |𝜙−

∞〉 ⊗ |𝑆−〉
)
, (2.15)

where

|𝜙±
𝑡 〉 =

∑
𝑥𝑟>0

1

(4𝜋𝜎2
0 )1/4

exp

(
− (𝑡 − 𝑥𝑟/

√
2)2

4𝜎2
0

)
|±𝑥𝑟 〉 , (2.16a)

|𝑆±〉 = |𝛽23〉 ± |𝐵4〉√
2

, (2.16b)

and 𝜙±∞ = lim𝑡→∞ |𝜙±
𝑡 〉. We see, therefore, that by measuring the sign of the relative coordinate,

one makes the two-spin state collapse to either |𝑆+〉 or |𝑆−〉, which constitute peculiar coherent

superpositions of Bell states.
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Figure 14 – Probability distribution 𝑝𝑡 (𝑥1, 𝑥2) at 𝑡 = 20 of two quantum walkers with initial states (a)

|Ψ0〉 [see Eq. (2.7)] and (b) |𝜓 ↑
0 〉 |𝜓 ↓

0 〉 [see Eqs. (2.5)], both with 𝜎0 = 5. A correlated two-spin
state is more effective in producing strong spatial anticorrelations.

Nowwe show that correlations develop between walkers’ positions. The probability

𝑝𝑡 (𝑥1, 𝑥2) = Tr (Ω𝑡 |𝑥1, 𝑥2〉 〈𝑥1, 𝑥2 |) (2.17)

of finding them at the respective locations (𝑥1, 𝑥2), at time 𝑡 , given the state Ω𝑡 = |Ψ𝑡 〉 〈Ψ𝑡 |,
results in

𝑝𝑡 (𝑥1, 𝑥2) = 1

4𝜋𝜎2
0

exp

(
−𝑥

2
𝑐𝑚

𝜎2
0

) ⎧⎪⎪⎪⎨⎪⎪⎪⎩exp
⎡⎢⎢⎢⎢⎢⎣−

(
𝑡 − 𝑥𝑟/

√
2
)2

2𝜎2
0

⎤⎥⎥⎥⎥⎥⎦ + exp

⎡⎢⎢⎢⎢⎢⎣−
(
𝑡 + 𝑥𝑟/

√
2
)2

2𝜎2
0

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (2.18)

whose maximum value occurs for 𝑥𝑐𝑚 = 0 and 𝑥𝑟 = ± 𝑡√2, that is, 𝑥1 = −𝑥2 = ±𝑡/√2. This
implies a notorious spatial anticorrelation for walkers’ positions. Such effect is not observed,

for instance, when the joint state is given by |𝜓↑
𝑡 〉 |𝜓↓

𝑡 〉 [see Eqs. (2.6)]—a scenario where the

walkers start in a fully uncorrelated state and evolve without any interaction. It is immediate

to conclude, therefore, that it is the presence of the initial correlations between the spins that

induces the development of spatial correlations (similar results have been reported for local

states [61]). Figure 14 illustrates this result. While the walkers are more likely to be found at

the anticorrelated locations 𝑥1 = −𝑥2 = ±20/√2 at the instant 𝑡 = 20 when the spins start in the

singlet state [Fig. 14(a)], such strong correlation does not appear when the spins are prepared in

|↑↓〉 [Fig. 14(b)]. Even though the spacetime is modeled as discrete, numerical simulations are

throughout presented with continuous variables, which render the results easier to appreciate.

The reliability of our Gaussian model was again checked via direct comparisons

with simulations. To this end we evaluated the fidelity | 〈Ψsim
𝑡 |Ψ𝑡 〉 |2 between the state |Ψsim

𝑡 〉,
computed via numerical simulations, and the state |Ψ𝑡 〉, derived with our Gaussian model.

Some typical results are presented in Tab. 1. We see that the Gaussian model is fairly good

for sufficiently broad states (𝜎0 � 3) and performs better for small times, since in this regime
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𝜎0 1 2 3 5 10

𝑡 = 50 0.3284 0.9098 0.9802 0.9947 0.9987
𝑡 = 100 0.1709 0.7973 0.9641 0.9939 0.9987

Table 1 – Fidelity | 〈Ψsim
𝑡 |Ψ𝑡 〉 |2 of the state |Ψ𝑡 〉, derived through our simplified Gaussian model, with

the numerical simulation |Ψsim
𝑡 〉, for two noninteracting quantum walkers, at times 𝑡 = 50

and 100, for different values of 𝜎0 and the initial state (2.7).

the spreading of the wave packets (not implemented in our model) is less significant. Similar

behaviors for the fidelity were observed for generic spin states, thus indicating the broad

adequacy of our model.

In possession of solution (2.10), we are ready to conduct a thorough study of several

nonclassical features that develop over time in the two-body quantum walk under scrutiny.

Basically, we divide the results in three parts. In the first, we show briefly how our model

agrees with the results of other authors regarding the entanglement between spin and the

position of quantum walkers. In the second, we show that genuine fourpartite entanglement

is monotonically generated during the walk. In the third, we consider a Bell scenario where

the spatial degrees of freedom constitute noisy channels for the spins and then investigate the

time evolution of several nonclassical features quantifiers.

2.3 ENTANGLEMENT BETWEEN SPIN AND POSITION

Since the global state (1.146) is pure, the entanglement 𝐸𝑆𝑋 ( |𝜓𝑡 〉) between the spin

𝑆 and the walker position 𝑋 can be computed via the linear entropy 𝑆𝐿 (𝜎) = 1 − Tr𝜎2 of the

reduced state

𝜌𝑆 = Tr 𝑋 ( |𝜓𝑡 〉 〈𝜓𝑡 |) ≡
( ∑

𝑥 𝑎
2
𝑡

∑
𝑥 𝑎𝑡𝑏𝑡∑

𝑥 𝑎𝑡𝑏𝑡
∑
𝑥 𝑏

2
𝑡

)
. (2.19)

Figure 15 – Entanglement between spin and position given by (2.20) as a function of the scaled time
𝜏 = 𝑡/𝜎0 and the angle 𝛼 of the initial state (1.131).
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Simple calculations then show that

𝐸𝑆𝑋 ( |𝜓𝑡 〉) � 𝑆𝐿 (𝜌𝑆 ) = 1 − sin 2𝛼

4
(1 − E𝑡 ) , (2.20)

where

E𝑡 = exp

(−𝑡2
2𝜎2

0

)
. (2.21)

We see that maximum (minimum) entanglement production will be attained during the walk

when 𝛼 = 3𝜋/4 (𝛼 = 𝜋/4), in agreement with previous works [60]. The factor E𝑡 , which will

be ubiquitous in our model, controls the production of entanglement in a way such that the

sharper the initial distribution the faster the entanglement production. See Fig. 15.

2.4 GENUINE FOURPARTITE ENTANGLEMENT

We have seen above that the initial entanglement between the spins induces the

development of (presumably quantum) spatial correlations, after all, the walkers do not interact

with each other. Naturally, one may ask whether entanglement can also be created among some

other degrees of freedom, as for instance between 𝑋1(2) and 𝑆2(1) , or even among all degrees of

freedom in an inextricable way. Now we show that the latter type of entanglement does indeed

take place.

Our analysis is based on the measure of genuine multipartite entanglement (GME)

introduced by Ma et al. in Ref. [158]. This quantifier is very convenient to our purposes

because it assumes a simple computational form for multipartite pure states. Given a pure state

|Φ〉 ∈ ⊗𝑛
𝑖=1H𝑖 , the authors defined the GME-concurrence of |Φ〉 as

𝐶GME ( |Φ〉) := min
𝛾𝑖∈𝛾

√
2 𝑆𝐿 (𝜌𝛾𝑖 ), (2.22)

where 𝑆𝐿 (𝜌) is the linear entropy of 𝜌 and 𝛾 = {𝛾𝑖} is the set of all possible parts defining the

bipartitions of the state. According to this definition, GME will be present only if the state is

nonseparable in every bipartition, that is, if the reduced states 𝜌𝛾𝑖 of |Φ〉 are all nonpure. In our

system, two examples of parts 𝛾𝑖 are 𝑋1 (for the bipartition 𝑋1 |𝑋2𝑆1𝑆2) and 𝑋2𝑆1 (for 𝑋2𝑆1 |𝑋1𝑆2),

for which one finds the respective reduced states 𝜌𝑋1 = Tr 𝑋2𝑆1𝑆2Ω𝑡 and 𝜌𝑋2𝑆1 = Tr 𝑋1𝑆2Ω𝑡 , with

Ω𝑡 = |Ψ𝑡 〉 〈Ψ𝑡 |. Using the state (2.10) we computed all possible reduced states2 𝜌𝛾𝑖 , whose

schematics can be found in Fig. 16 . For instance, for the two-spin state we found

𝜌𝑆 =
1 − E𝑡

2
|𝛽23〉 〈𝛽23 | + 1 + E𝑡

2
|𝐵4〉 〈𝐵4 | , (2.23)

with 𝑆 = 𝑆1𝑆2. Analytical expressions were then obtained for the respective linear entropies,

the results being

𝑆𝐿 (𝜌𝑆 𝑗 ) =
1

2
, 𝑆𝐿 (𝜌𝑋 𝑗 ) =

1

2
(1 − E𝑡 ) , (2.24a)

2 For all practical purposes, the summations over positions, which emerge in the partial trace, can be safely
substituted by integrals. This has been checked for Gaussian states with 𝜎0 = 5, in which case the difference
between a discrete sum over a closed two-dimensional box of width 200 + 2𝑡 and an integral over the whole
R
2 was never greater than 10−15.
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Figure 16 – Schematics of all seven possible bipartitions of the Hilbert spaceH = H𝑆1⊗H𝑆2⊗H𝑋1⊗H𝑋2

0 1 2 3 4

0

0.5

1

Figure 17 – Dynamical evolution of the entanglement for each bipartite division given by Eqs. (2.24) as
a function of the scaled time 𝜏 = 𝑡/𝜎0. The GME of the global state |Ψ𝑡 〉 is given, therefore,
by the blue dashed line. In Fig. 16, we have the following correspondence: black line (a, c, d,
and g), red dotted line (b) and blue dashed line (e and f).

𝑆𝐿 (𝜌𝑆 𝑗𝑋𝑘 ) =
1

2
, 𝑆𝐿 (𝜌𝑆 ) = 𝑆𝐿 (𝜌𝑋 ) = 1

2

(
1 − E2

𝑡

)
. (2.24b)

with 𝑗, 𝑘 ∈ {1, 2} and 𝑋 = 𝑋1𝑋2. From these relations and the definition (2.22), one finds

𝐶GME( |Ψ𝑡 〉) =
√
1 − E𝑡 , (2.25)

which is a monotonically increasing function of time and can also be written as monotonic

functions of the bipartite entanglement quantifiers 𝑆𝐿 (𝜌𝑋 𝑗 ) and 𝑆𝐿 (𝜌𝑋 ). These results indicate
that even though each walker evolves independently, the presence of entanglement between

the spins at the beginning of the walk allows the global state of the walkers to develop genuine

fourpartite entanglement over time. Later on, this interpretation will be corroborated by further

evidences. Finally, note that all bipartitions will be equally entangled as 𝑡 → ∞, as we can see

in Fig. 17.

2.5 NONCLASSICAL ASPECTS DYNAMICS BETWEEN SPINS

In this section, we confine our attention to the spins only. This leads us to special

Bell scenarios where information about the spins of the particles are encoded, via quantum
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Figure 18 – Purity of the reduced density state 𝜌𝜖𝑡 as a function of the scaled time 𝜏 = 𝑡/𝜎0 and the
noise-related factor 𝜖 . Note that we always have P(𝜌𝜖𝑡 ) � 0.25.

correlations, on spatial degrees of freedom—a mechanism that tends to degrade the resources

present in the two-spin state. As a materialization of such scenarios, we can envisage instances

similar to those recently proposed for witnessing aspects of quantum gravity [159, 160], where

the spin value defines the path to be taken by the particle (as also happens in a Stern-Gerlach

experiment) and then each specific path couples with the gravitation source in a particular

manner. In this framework, the spatial degrees of freedom are expected to play the role of a

noisy channel, whose effect over the two-spin state varies during the motion of the walkers.

We now investigate how several nonclassical aspects present in the two-state spin varies with

time under the aforementioned noisy channel.

To givemore generality to our study, we consider that the spins are initially prepared

in the Werner state

𝜌𝑊𝜖 = (1 − 𝜖)�
4
+ 𝜖 |𝐵4〉 〈𝐵4 | , (2.26)

with 𝜖 ∈ [0, 1]. This formulation considers a white noise of amplitude 1 − 𝜖 over the singlet

state |𝐵4〉. Assuming Gaussian amplitudes for the positions, as in Eq. (2.7), the initial state of the

two-walker model becomes 𝜌0 = 𝜌𝑊𝜖 ⊗ |𝜑1, 𝜑2〉 〈𝜑1, 𝜑2 |, where |𝜑𝑖〉 = ∑
𝑥𝑖 𝑓 (𝑥𝑖) |𝑥𝑖〉. Applying

the time evolution operator 𝑈 𝑡
1𝑈

𝑡
2 [see Eq. (1.132)] and tracing over the positions yield (see

Appendix C.1 for the details)

𝜌𝜖𝑡 = (1 − 𝜖)�
4
+ 𝜖 𝜌𝑆, (2.27)

with 𝜌𝑆 being the time-dependent density operator (2.23). From now on, we restore the time

dependence in the notation. The purity of the two-spin state 𝜌𝜖𝑡 reads

P(𝜌𝜖𝑡 ) = Tr
[(𝜌𝜖𝑡 )2] = 1

4

[
1 + 𝜖2 (1 + 2E2

𝑡

) ]
, (2.28)

which monotonically decreases with time (and with the noise amplitude 1 − 𝜖) towards the

asymptotic value (1 + 𝜖2)/4. This shows that the spatial variables indeed get more correlated

with the spins as the walk takes place. Moreover, the decoherence and the whole dynamics of

the two-spin state is controlled by the decay factor E𝑡 which, by its turn, is determined by the
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initial dispersion 𝜎0 of the Gaussian amplitudes. The broader the spatial distributions, the larger

the time scale within which the two-spin state keeps its coherence. Accordingly, a completely

delocalized walker (𝜎0 → ∞) will never have its position correlated with its spin during the

walk. This is reasonable since, in this case, it is difficult to defend that, being everywhere, the

walker really walks. See Fig. 18.

2.5.1 Bell nonlocality

Let us now apply the formalism introduced in Sec. 1.3.1 to investigate the presence

of Bell nonlocality in the spin state 𝜌𝜖𝑡 . As a first step, it is instructive to look at the nonlocality

induced by 𝜌𝜖𝑡 when there is nowhite noise (𝜖 = 1 and 𝜌𝜖=1𝑡 = 𝜌𝑆 ). It can be directly demonstrated

by taking 𝐴± and 𝐵± in the form 𝑣𝑖 · �𝜎 , with �𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) being the vector composed of Pauli

matrices and 𝑣𝑖 ∈ R3 unit vectors. By letting 𝑣𝑖 assume orthogonal directions 𝑒1 and 𝑒2, for

particle 1, and −(𝑒1 + 𝑒2)/
√
2 and (−𝑒1 + 𝑒2)/

√
2, for particle 2, one shows that

B𝑡 =
1 + 3E𝑡√

2
, (2.29)

which implies a CHSH-inequality (1.88) violation for

𝑡 < 𝜎0

√
2 ln

(
3

2
√
2 − 1

)
� 0.995𝜎0. (2.30)

This means that for 𝑡 > 𝜎0 Bell nonlocality will no longer be detected with those specific

measurement directions. This can be explained as follows. For long times, each walker’s spatial

distribution gets sufficiently correlated with its spin. This effect is illustrated in Fig. 19, where

the probability distributions

𝑝𝑡 (𝑥1) = Tr (Ω𝑡 |𝑥1〉 〈𝑥1 |) (2.31)

and

𝑝
𝜇
𝑡 (𝑥1) = Tr (Ω𝑡 |𝑥1〉 〈𝑥1 | ⊗ |𝜇〉 〈𝜇 |), 𝜇 =↑, ↓, (2.32)

Figure 19 – Probability distributions 𝑝𝑡 (𝑥1) (black line), 𝑝↑𝑡 (𝑥1) (red dotted line), and 𝑝↓𝑡 (𝑥1) (blue dashed
line) of finding particle 1 at position 𝑥1, at position 𝑥1 with spin up, and at position 𝑥1 with
spin down, respectively, at instants (a) 𝑡 = 4 and (b) 𝑡 = 25. The initial dispersion is 𝜎0 = 5.
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for the particle 1 (similarly for particle 2) are shown at two different instants: (a) just before

the Bell-nonlocality sudden death and (b) long after this. As a consequence of the correlations

generated between spin and position (of each walker), the power of the noisy channel on the

two-spin state increases and the nonlocal correlations degrade.

Let us now quantify how much the state 𝜌𝜖𝑡 is Bell nonlocal. Adapted to the

form (1.92), the state (2.27) is such that �𝑎 = �𝑏 = �0 and �𝑐 = (−𝜖,−𝜖 E𝑡 ,−𝜖 E𝑡 ), from which

we find

B(𝜌𝜖𝑡 ) =
(
1 +

√
2
)
max

{
0, 𝜖

√
1 + E2

𝑡 − 1

}
. (2.33)

It follows that Bell nonlocality will be present only for

𝑡 < 𝜎0

√
ln

(
𝜖2

1 − 𝜖2

)
≡ 𝑡B . (2.34)

This shows that for any state 𝜌𝜖𝑡 with 𝜖 ∈ (1/√2, 1) there will be a finite critical time 𝑡B after

which the two-spin state will become Bell local. Such “sudden-death time” is substantially

postponed as the white noise becomes very small (𝜖 → 1), in which case Bell nonlocality, as

measured by B(𝜌𝜖𝑡 ), will vanish only asymptotically [see later Fig. 23(a)]. For high levels of

white noise (𝜖 ≤ 1/√2), Bell nonlocality never manifests itself.

2.5.2 Quantum steering

For the state under scrutiny here, the measure (1.97) introduced in Sec. 1.3.2 reduces

to

S(𝜌𝜖𝑡 ) =
(
1 + √

3

2

)
max

{
0, 𝜖

√
1 + 2E2

𝑡 − 1

}
, (2.35)

which indicates the existence of steering as long as

𝑡 < 𝜎0

√
ln

(
2𝜖2

1 − 𝜖2

)
≡ 𝑡S . (2.36)

It follows that a sudden-death time 𝑡S will exist for quantum steering whenever 𝜖 ∈ (1/√3, 1)
and that 𝑡S can be made arbitrarily large for reduced amounts of white noise (again, see later

Fig. 23(a) for an illustration of this behavior). For 𝜖 ≤ 1/√3, 𝜌𝜖𝑡 is nonsteerable3.

2.5.3 Entanglement

A straightforward calculation from (1.104) gives

𝐸 (𝜌𝜖𝑡 ) =
1

2
max

{
0, 𝜖 (1 + 2E𝑡 ) − 1

}
, (2.37)

3 A method based on LHS and semi-definite program has been developed that predicts the presence of steering
for 𝜖 > 1/2 [161], which agrees with the results of Ref. [75]. The method employed here is based on linear
steering inequalities (see Ref. [134] and references therein) and, although less powerful, allows for analytical
analysis and is in full agreement with a recently introduced geometrical quantifier [162].
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which predicts entanglement for

𝑡 < 𝜎0

√
2 ln

(
2𝜖

1 − 𝜖

)
≡ 𝑡𝐸 . (2.38)

A well defined instant 𝑡𝐸 will exist for entanglement sudden death if 𝜖 ∈ (1/3, 1). While

entanglement will vanish only asymptotically for reduced values of white noise (𝜖 → 1), as it

will be shown in Fig. 23(a), it will not occur if 𝜖 ≤ 1/3.
Two points are now worth noticing. First, in the regime of no white noise (𝜖 = 1),

we have 𝐸 (𝜌𝜖=1𝑡 ) = E𝑡 , which attaches an interesting interpretation to the damping factor.

Moreover, we can revisit Sec. 2.4 and write the complementarity relation

𝐶2
GME( |Ψ𝑡 〉) + 𝐸 (𝜌𝜖=1𝑡 ) = 1, (2.39)

which explicitly shows that fourpartite entanglement develops over time at the expense of the

two-spin entanglement. Second, in the domain 𝜖 ∈ (1/√2, 1), wherein the sudden-death times

are all well defined, one has

𝑡B < 𝑡S < 𝑡𝐸, (2.40)

which corroborates the current knowledge according to which Bell nonlocality is the most

fragile quantum resource, whereas entanglement is the least one [75, 134, 135]. The reader can

find a visual confirmation of the relation (2.40) in Fig. 20.

Figure 20 – Scaled sudden death-times 𝑡�(𝜖)/𝜎0 for the state 𝜌𝜖𝑡 as a function of 𝜖 for (from top to
bottom) entanglement (black), steering (red), and Bell nonlocality (blue). Note that when
𝜖 → 1, all sudden death-times go to infinity.

2.5.4 Quantum discord

To compute quantum discord in our model through (1.113), we consider the observ-

able 𝐵 = 𝑣2 · �𝜎 , with unit vector 𝑣2(𝜃2, 𝜙2) = (cos𝜃2 sin𝜙2, sin𝜃2 sin𝜙2, cos𝜙2) and projectors

𝐵± = (� ± 𝑣2 · �𝜎)/2. Direct calculations produce
𝑆
(
Tr 𝑆1,2𝜌

𝜖
𝑡

)
= 𝑆

(
Φ𝐵

(
Tr 𝑆1𝜌

𝜖
𝑡

) )
= ln 2 (2.41)
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and the formal result

D𝑆2 (𝜌𝜖𝑡 ) = min
𝐵

[
𝑆
(
Φ𝐵 (𝜌𝜖𝑡 )

) − 𝑆
(
𝜌𝜖𝑡
) ]
. (2.42)

Some more algebra gives

𝑆 (𝜌𝜖𝑡 ) =
(
1 − 𝜖

2

)
ln 2 +

(
1 + 𝜖
2

)
𝐻

(
1

2
+ 𝜖 E𝑡
1 + 𝜖

)
+ 𝐻

(
1 + 𝜖
2

)
, (2.43)

with the Shannon entropy

𝐻 (𝑢) = −𝑢 ln𝑢 − (1 − 𝑢) ln (1 − 𝑢) . (2.44)

Numerical analyses revealed that (𝜃2, 𝜙2) = (0, 𝜋4 ) define the optimal observable 𝐵 for all times,

with which we have been able to compute min𝐵 𝑆 (Φ𝐵 (𝜌𝜖𝑡 )) and then obtain

D𝑆2 (𝜌𝜖𝑡 ) =
1 + 𝜖
2

[
ln 2 − 𝐻

(
1

2
+ 𝜖 E𝑡
1 + 𝜖

)]
. (2.45)

In contrast with what we have for Bell nonlocality, quantum steering, and entanglement, there

is no domain of 𝜖 for which the quantum discord of 𝜌𝜖𝑡 suddenly vanishes. In fact, regardless of

the white-noise level, quantum discord vanishes only asymptotically (see Fig. 23). By symmetry,

one can straightforwardly conclude that D𝑆1 (𝜌𝜖𝑡 ) = D𝑆2 (𝜌𝜖𝑡 ).
We can also quantify the sensitivity of total correlations to unread measurements

conducted separately in both sites. This information is captured by the so-called symmetrical

quantum discord [74], which for a state 𝜌 is formally written as

D(𝜌) � min
𝐴,𝐵

[
𝐼A:B (𝜌) − 𝐼A:B (Φ𝐴𝐵 (𝜌))

]
, (2.46)

where

Φ𝐴𝐵 (𝜌) =
∑
𝑎,𝑏

(𝐴𝑎 ⊗ 𝐵𝑏) 𝜌 (𝐴𝑎 ⊗ 𝐵𝑏) , (2.47)

for observables 𝐴 =
∑
𝑎 𝑎𝐴𝑎 and 𝐵 =

∑
𝑏 𝑏𝐵𝑏 acting on H𝑆1 and H𝑆2 , respectively. Also

in this case we have been able to analytically conduct all the calculations and prove that

D(𝜌𝜖𝑡 ) = D𝑆1,2 (𝜌𝜖𝑡 ). Hence, hereafter we make no distinction between quantum discord and its

symmetrical counterpart.

2.5.5 Irreality of spin observables

Now we discuss aspects of quantum irreality introduced in Sec. 1.3.5. For the state

under scrutiny, because 𝜚𝑆1 = Tr 𝑆2𝜌
𝜖
𝑡 = �/2 it follows that Φ𝐴 (𝜚𝑆1) = 𝜚𝑆1 for all 𝐴 on H𝑆1 ,

which implies that ℑ𝐴 (𝜚𝑆1) = 0. As a consequence, ℑ𝐴 (𝜌𝜖𝑡 ) = 𝐷𝑆1 (𝜌𝜖𝑡 ) and, therefore,

ℑ𝐴 (𝜌𝜖𝑡 ) ≥ D(𝜌𝜖𝑡 ) . (2.48)

This relation is important because it establishes a lower bound for the irreality of all observables

𝐴 on H𝑆1 . Since for 𝜖 > 0 quantum discord vanishes only asymptotically, then it is guaranteed
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Figure 21 – (a) Contour plot for the asymptotic irreality ℑ𝐴 (𝜌𝜖=1∞ ) of an observable 𝐴 = 𝑣1 · �𝜎 onH𝑆1 ,
in spherical coordinates, for the no-noise regime (𝜖 = 1). The color scale goes from 0 (blue)
to ln 2 (red). (b) Scaled irreality ℑ̃𝐴 (𝜌𝜖=1𝑡 ) (cyan curves) as a function of the scaled time
𝜏 = 𝑡/𝜎0 for 200 randomly chosen measurement directions 𝑣1. The scaled discord D̃(𝜌𝜖=1𝑡 )
(black dashed curve) defines a tight upper bound [see Eq. (2.50)]. In the inset, the difference
Δ = D̃(𝜌𝜖=1𝑡 ) − ℑ̃𝐴 (𝜌𝜖=1𝑡 ) is plotted for each of the 200 measurement directions, showing
results never greater than 0.03.

that no element of reality will exist at short times. On the other hand, for the regime of maximum

white noise (𝜖 = 0), every observable will always be an element of reality, since 𝜌𝜖=0𝑡 = �/4 and
then ℑ𝐴 (𝜌𝜖=0𝑡 ) = D(𝜌𝜖=0𝑡 ) = 0.

It is interesting to look also at the no-noise regime. Introducing the unit vector

𝑣1(𝜃1, 𝜙1) to define a generic observable 𝐴 = 𝑣1 · �𝜎 for the spin 𝑆1, we find a lengthy and

nonenlightening analytical function for ℑ𝐴 (𝜌𝜖𝑡 ) (omitted). For 𝜖 = 1, though, an interesting

universal behavior is found. Since in this case the initial state (the singlet) is rotationally

invariant, any observable is maximally irreal at 𝑡 = 0. As the Gaussian packets start to split

themselves and get correlated with the spins, irreality becomes direction dependent and

typically decays with time, eventually reaching the asymptotic value

ℑ𝐴 (𝜌𝜖=1∞ ) = 𝐻

(
1 + 𝜈𝜃1𝜙1

2

)
, (2.49)

where 𝜈𝜃𝜙 = (cos𝜙 + cos𝜃 sin𝜙)/√2. A panoramic view of the asymptotic irreality is presented

in Fig. 21(a). First of all, it is seen that ℑ𝐴 (𝜌𝜖=1∞ ) = 0 only for two particular observables, namely,

±(𝜎𝑥 + 𝜎𝑧)/
√
2 (center of the blue circle and its antipode), which are directly related to the

quantum coin (1.134) that we have adopted for the walk [see Fig. 8 (𝑎)]. This happens because
the position of each walker correlates with its respective coin, thus establishing its reality.

For any other observable, we have ℑ𝐴 (𝜌𝜖=1∞ ) > 0, which reveals a broad scenario of quantum

irrealism. In particular, since the Shannon entropy 𝐻 (𝑢) reaches its maximum for 𝑢 = 1/2,
there is a continuous set of observables, defined by 𝜈𝜃1𝜙1 = 0, for which the asymptotic irreality

reaches the maximum value ln 2. This set corresponds to the center of the red strip. We have

checked that, in fact, these observables remain maximally irreal for every instant of time.
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Interestingly, we also found that the way irreality gets to the asymptote (2.49) is

nearly direction-independent (as long as we exclude the aforementioned maximal-irreality set).

After some numerical incursions, we have been able to show that

ℑ̃𝐴 (𝜌𝜖=1𝑡 ) � ℑ𝐴 (𝜌𝜖=1𝑡 ) − ℑ𝐴 (𝜌𝜖=1∞ )
ℑ𝐴 (𝜌𝜖=10 ) − ℑ𝐴 (𝜌𝜖=1∞ ) �

D(𝜌𝜖=1𝑡 )
D(𝜌𝜖=10 ) � D̃(𝜌𝜖=1𝑡 ), (2.50)

with ℑ𝐴 (𝜌𝜖=10 ) = D(𝜌𝜖=10 ) = ln 2. The cyan curves presented in Fig. 21(b) illustrate the behavior

of the scaled irreality ℑ̃𝐴 (𝜌𝜖=1𝑡 ) for 200 randomly chosen directions 𝑣1(𝜃1, 𝜙1) as a function
of the scaled time 𝜏 = 𝑡/𝜎0. Clearly, the curves do not significantly deviate from each other

and are all upper bounded by the scaled discord D̃(𝜌𝜖=1𝑡 ) (black dashed line). As shown in the

inset, 0 ≤ D̃(𝜌𝜖=1𝑡 ) − ℑ̃𝐴 (𝜌𝜖=1𝑡 ) < 0.03. Hence, to a pretty good accuracy we can state that the

scaled irreality is determined by the scaled discord, which is observable independent. It follows,

therefore, that there is an approximate class of universality for the irreality behavior, which

is likely to emerge from the fact that the initial state of the spins is the rotationally invariant

singlet.

2.5.6 Realism-based nonlocality

It is clear from the above that, in contrast with all the other types of nonclassical

aspects studied so far, irreality can be preserved during the quantumwalk. Presumably, a similar

behavior can exist for the realism-based nonlocality introduced in Sec. 1.3.6. Through (1.127),

we can compute the contextual realism-based nonlocality 𝜂𝐴𝐵 (𝜌𝜖𝑡 ) for the context defined by

generic observables 𝐴 = 𝑣1 · �𝜎 and 𝐵 = 𝑣2 · �𝜎 . For the maximum-noise scenario, we directly

obtain 𝜂𝐴𝐵 (𝜌𝜖=0𝑡 ) = 0, since for the state 𝜌𝜖=0𝑡 = �/4 all observables are elements of reality.

Figure 22 – (a) Behavior of the normalized contextual realism-based nonlocality 𝜂𝐴𝐵 (𝜌𝜖=1𝑡 )/ln 2, in the
no-noise regime (𝜖 = 1), as a function of the scaled time 𝜏 = 𝑡/𝜎0, for the following pairs
of observables (contexts) in continuous lines from top to bottom: 𝐴 = 𝐵 = 𝜎𝑦 (black line),
𝐴 = 𝐵 = 𝜎𝑧 (red line), 𝐴 = 𝐵 = (𝜎𝑥 + 𝜎𝑧)/√2 (blue line); and in dashed lines from top to
bottom:𝐴 = (𝜎𝑥 − 𝜎𝑧)/√2 and 𝐵 = 𝜎𝑦 (black line), 𝐴 = 𝜎𝑥 and 𝐵 = 𝜎𝑦 (red line), 𝐴 = 𝜎𝑧 and
𝐵 = 𝜎𝑥 (blue line), 𝐴 = (𝜎𝑥 + 𝜎𝑧)/√2 and 𝐵 = 𝜎𝑦 (green line). (b) Behavior of N(𝜌𝜖𝑡 ) given
by (2.52) as a function of the scaled time 𝜏 for several values of 𝜖 .
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Figure 23 – All the (observable independent) nonclassical aspects quantifiers Q computed in this work
for the two-spin state 𝜌𝜖𝑡 as a function of the scaled times 𝜏 = 𝑡/𝜎0 for (a) 𝜖 = 1.0 (left panels)
and (b) 𝜖 = 0.8 (right panels), where Q assumes in upper panels: Bell nonlocality B (blue
bottom line), quantum steering S (red middle line), entanglement 𝐸 (green top line); and in
bottom panels: normalized (symmetrical) quantum discord D/ln 2 (black bottom line), and
normalized realism-based nonlocality N/ln 2 (purple top line). The vertical dashed lines in
the upper right panel refer to the sudden-death times given by Eqs. (2.34), (2.36), and (2.38).
nonclassical aspects typically decreases with both time and the amount 1 − 𝜖 of noise, but
realism-based nonlocality survives.

On the other hand, in the other extreme (𝜖 = 1), all sorts of behaviors can be found for the

contextual realism-based nonlocality, as is illustrated in Fig. 22(a). For the asymptotic values of

the contextual realism-based nonlocality we have found

𝜂𝐴𝐵 (𝜌𝜖=1∞ ) = 𝐻

(
1 + 𝜈𝜃1𝜙1

2

)
+ 𝐻

(
1 + 𝜈𝜃2𝜙2

2

)
− 𝐻

(
1 + 𝜈𝜃1𝜙1𝜈𝜃2𝜙2

2

)
. (2.51)

Therefore, there exists an infinite set of observables, defined by (𝜈𝜃1𝜙1, 𝜈𝜃2𝜙2) = (0, 0), for which
the contextual realism-based nonlocality will asymptotically reach its maximum value ln 2.

It is also interesting to look at the realism-based nonlocality (1.128). Even though

the maximization over {𝐴, 𝐵} implies a hard mathematical problem in general, numerical and

analytical incursions on 𝜂𝐴𝐵 (𝜌𝜖𝑡 ) give us the clues for the accomplishment of such task. For

instance, we see from Fig. 22(a), that the choice 𝐴 = 𝐵 = 𝜎𝑦 is optimal. In fact, we have verified

that parallel direction measurements 𝑣 (𝜃, 𝜙) satisfying 𝜈𝜃𝜙 = 0, that is, observables in the circle

represented by the red strip in Fig. 21(a), provide the maximization. We then find

N(𝜌𝜖𝑡 ) = D(𝜌𝜖𝑡 ) + 𝐻
(
1 + 𝜖 E𝑡

2

)
− 𝐻

(
1 + 𝜖
2

)
, (2.52)

with the symmetrical quantum discord D(𝜌𝜖𝑡 ) being given by Eq. (2.45). Realism-based nonlo-

cality is similar to quantum discord in that they never experiment sudden death. On the other
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hand, while the latter vanishes asymptotically, the former behaves as (see Figs. 22(b) and 23)

N(𝜌𝜖∞) = ln 2 − 𝐻

(
1 + 𝜖
2

)
, (2.53)

which vanishes as 𝑡 → ∞ only in the maximum noise regime (𝜖 = 0). In fact, it directly

follows from Eq. (2.52) that N(𝜌𝜖𝑡 ) ≥ D(𝜌𝜖𝑡 ). Therefore, in flagrant contrast with the other

nonclassical aspects,N(𝜌𝜖𝑡 ) manifests itself as the most resilient one, which is in full agreement

with previously conducted studies [143].

2.6 TAKEAWAY MESSAGE

• The simplified Gaussian model is good (fidelity 0.99) to describe large walker packages

(𝜎0 ≥ 5). Check again Tab. 1;

• Two non-interacting quantum walkers develop multipartite entanglement if their spins

are initially entangled;

• The positions steal coherence from the spins as the walkers move;

• Correlations between the spins decrease with time and all of them, except realism-based

nonlocality, go to zero (see Fig. 23).

• Spins asymptotically become real in the directions given by the coin eigenvectors [see

Fig. 21 (a)].



78

3 CONCLUDING REMARKS ON PART I

Quantum walk studies often demand numerical simulations, which do not always

allow for the access of some refined physical aspects. In this first part of our work, by introducing

a Gaussian model—which proved to be quite accurate for delocalized walkers (𝜎0 � 1)—we
were able to conduct a profound analysis of the nonclassical feature dynamics in a two-walker

system. Previous studies [115, 145, 152, 163–167] allow us to optimistically speculate upon the

applicability of our model even to scenarios involving more localized states.

Starting with a single quantum walker, we derived an analytical expression for the

entanglement between spin and position [Eq. (2.20)]. This result reveals that the production of

entanglement is regulated by a parameter that controls the initial coherence of the spin state.

For the problem of two noninteracting walkers, with spins prepared in the singlet state, we

showed that genuine fourpartite entanglement is created throughout the walk, monotonically

increasing with time [Eq. (2.25)], at the expense of two-spin correlations [Eq. (2.39)]. This

reveals a scenario where the total amount of resource is conserved. Also, we found that by

measuring the sign of the relative coordinate, the spins can be prepared in superpositions of

Bell states.

With respect to nonclassical aspects between the spins, our results are graphically

summarized in Fig. 23, for two noise regimes, where the quantifiers are separated into two

rows, according to their susceptibility to sudden death. The panels in the upper row show

the behaviors over time of Bell nonlocality [Eq. (2.33)], quantum steering [Eq. (2.35)], and

entanglement [Eq. (2.37)], while in the lower row simulations are presented for (symmetrical)

quantum discord [Eq. (2.45)] and realism-based nonlocality [Eq. (2.52)]. Besides showing a clear

chronology of deaths, which is formally stated in the relations (2.40), our findings corroborate

the view according to which there is a strict hierarchy [143] among the quantifiers, in such a

way that the existence of Bell nonlocality implies steering, which implies entanglement, which

implies quantum discord, which then implies realism-based nonlocality, while the converse

sequence of implications is false. Moreover, it is clear that realism-based nonlocality is the

only type of nonclassical feature that survives upon the noisy channels considered. From such

aspect, an urgent demand arises aiming at characterizing the potential of this nonclassical

feature as a useful quantum resource.

Finally, from a foundational viewpoint, lessons can be learned with respect to

(ir)realism. According to the relation (2.48), since quantum discord vanishes only asymptot-

ically, generic spin variables cannot be elements of reality. In fact, given the presence of

fourpartite quantum correlations, the positions cannot be either. There are only two specific

spin observables that asymptotically behaves as elements of reality [check again the center

of the blue circles in Fig. 21(a)], and these are closely related with the quantum coin 𝐶 [Eq.
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(1.134)]. From Fig. 8 (a), we can see that these elements of reality are in fact the eigenvectors

of 𝐶 , since the coin produces rotations around the axis that crosses the blue circles. The real

reason for this relationship still eludes our understanding, since the dynamics of the quantum

walk ceases to be trivial after a few steps. For now, we can at least predict that other quantum

coins (e.g., the Fourier coin [56]) would produce other elements of reality in directions that

follow the same logic.

Altogether, our findings reinforce the potential of quantum walks as a rich arena for

studies involving information-theoretic and foundational issues, such as the interconversion of

bipartite to multipartite entanglement and the dynamics of further nonclassical aspects, from

nonlocality to (multipartite) quantum correlations and violations of classical realism.



Part II

DEEPER INTO QUANTUM REALISM
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4 FUNDAMENTAL CONCEPTS II

This chapter aims at revisiting fundamental concepts that will be necessary for the

next ones. Unlike Chap. 1, this chapter contains some new elements that will be presented in

Sec. 4.3 with proper indication. Everything else remains a bibliographic review, with some

adaptations to the notation. The goal here is to introduce somemathematical tools to distinguish

quantum states and then show how to represent quantum informational content and conditional

informationwith them. Conditional information constitute the basic element fromwhichwewill

axiomatize quantum realism. At the end of this chapter, we will also make a brief introduction

to quantum resource theories since our axiomatization of quantum realism is inspired on them.

Before all, let us expand our notion of entropy.

4.1 UNIFIED ENTROPY

Beyond the Shannon classical entropy (introduced in Sec. 1.1.1), there are other

propositions to quantify the degree of uncertainty regarding a system, like those proposed

by Rényi [168] and Tsallis [101]. Quantum versions of them are also defined and they are

contemplated, together with von Neumann entropy, by the so called unified entropy [169–171]

𝑆 (𝑞,𝑠) (𝜌) �
(Tr 𝜌𝑞)𝑠 − 1

𝑠 (1 − 𝑞) , (4.1)

where 𝑞 > 0, 𝑞 ≠ 1, and 𝑠 ≠ 0. For 𝑞 → 1 and any 𝑠 we have von Neumann entropy

lim
𝑞→1

𝑆 (𝑞,𝑠) (𝜌) ≡ 𝑆 (𝜌) = −Tr (𝜌 ln 𝜌) . (4.2)

In the case of 𝑠 → 0, one can obtain the quantum Rényi entropies

lim
𝑠→0

𝑆 (𝑞,𝑠) (𝜌) ≡ 𝑆𝑅𝑞 (𝜌) =
ln Tr 𝜌𝑞

1 − 𝑞
. (4.3)

Furthermore, quantum Tsallis entropies are reached for 𝑠 = 1,

𝑆 (𝑞,1) (𝜌) ≡ 𝑆𝑇𝑞 (𝜌) =
Tr 𝜌𝑞 − 1

1 − 𝑞
. (4.4)

It is also possible, by setting 𝑞 = 2 and 𝑠 = 1, to obtain linear entropy

𝑆 (2,1) (𝜌) ≡ 𝑆𝐿 (𝜌) = 1 − Tr 𝜌2. (4.5)

One can see by direct calculation that the limiting case of 𝑞 → 1 for both Rényi and Tsallis

entropies gives us back von Neumann entropy. In fact,

lim
𝑞→1

𝑆𝑅𝑞 (𝜌) L’H
= lim

𝑞→1

d
d𝑞 ln Tr 𝜌

𝑞

d
d𝑞 (1 − 𝑞) (4.6)
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= lim
𝑞→1

d
d𝑞 ln

∑
𝑖 𝜆

𝑞
𝑖

d
d𝑞 (1 − 𝑞) (4.7)

= lim
𝑞→1

1∑
𝑖 𝜆

𝑞
𝑖

∑
𝑖 𝜆

𝑞
𝑖 ln 𝜆𝑖

−1 (4.8)

= lim
𝑞→1

1
Tr 𝜌𝑞Tr 𝜌

𝑞 ln 𝜌

−1 (4.9)

= −Tr 𝜌 ln 𝜌
Tr 𝜌

(4.10)

= −Tr 𝜌 ln 𝜌, (4.11)

where L’H indicates L’Hôpital’s rule, {𝜆𝑖} are the eigenvalues of 𝜌 , and Tr 𝜌 = 1. Analogously,

one has

lim
𝑞→1

𝑆𝑇𝑞 (𝜌) L’H
= lim

𝑞→1

d
d𝑞 (Tr 𝜌𝑞 − 1)

d
d𝑞 (1 − 𝑞) = lim

𝑞→1

Tr 𝜌𝑞 ln 𝜌

−1 = −Tr 𝜌 ln 𝜌. (4.12)

Not all special cases of unified entropy satisfy additivity for product states, as one

can see by the relation

𝑆 (𝑞,𝑠) (𝜌A ⊗ 𝜌B) = 𝑆 (𝑞,𝑠) (𝜌A) + 𝑆 (𝑞,𝑠) (𝜌B) + (1 − 𝑞)𝑠𝑆 (𝑞,𝑠) (𝜌A)𝑆 (𝑞,𝑠) (𝜌B), (4.13)

where additivity is recovered for 𝑞 → 1 or 𝑠 → 0. However, all (𝑞, 𝑠)-entropies satisfy Schur

concavity

𝜎 ≺ 𝜌 ⇒ 𝑆 (𝑞,𝑠) (𝜌) � 𝑆 (𝑞,𝑠) (𝜎), (4.14)

where ≺ means the symbol for majorization, i.e., if {𝑟𝑖} and {𝑠𝑖} are the decreasingly organized

eigenvalues of 𝜌 and 𝜎 , respectively, then

𝜎 ≺ 𝜌 ⇔
𝑛∑
𝑖=1

𝑠𝑖 �
𝑛∑
𝑖=1

𝑟𝑖, (4.15)

where 𝑛 � 𝑁 = max{rank(𝜌), rank(𝜎)}. If rank(𝜌) � rank(𝜎) we just complete the vector 𝑟𝑖

with zeros. Now, suppose 𝜎 is a pure state and 𝜌 is a general mixed state. Then, by (4.14), one

can prove the non-negativity of the unified entropy

𝑛∑
𝑖=1

𝑟𝑖 �
𝑛∑
𝑖=1

𝑠𝑖 = 1 ⇒ 0 � 𝑆 (𝑞,𝑠) (𝜌) . (4.16)

Similarly, by comparing a maximally mixed state 𝜌∗ = �/𝑁 with a general one, one can found

the upper bound of unified entropy

𝑛∑
𝑖=1

�

𝑁
�

𝑛∑
𝑖=1

𝑟𝑖 ⇒ 𝑆 (𝑞,𝑠) (𝜌) � 𝑆 (𝑞,𝑠)
(
1

𝑁

)
=

(∑𝑁
𝑖

1
𝑁𝑞

)𝑠
− 1

(1 − 𝑞)𝑠 =
𝑁 (1−𝑞)𝑠 − 1

(1 − 𝑞)𝑠 . (4.17)
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Under a bistochastic map Λ, unified entropy never decreases, i.e.,

𝑆 (𝑞,𝑠) (Λ(𝜌)) � 𝑆 (𝑞,𝑠) (𝜌) . (4.18)

Moreover, equality holds iff Λ(𝜌) = 𝑈𝜌𝑈 †.

Concavity is another property satisfied by unified entropy only for a set of parame-

ters 𝑞 and 𝑠 (see Proposition 3 in Ref. [169]). If 𝜌 and 𝜎 are density operators and 𝜆 ∈ [0, 1],
then

𝑆 (𝑞,𝑟 ) (𝜆𝜌 + (1 − 𝜆)𝜎) � 𝜆𝑆 (𝑞,𝑠) (𝜌) + (1 − 𝜆)𝑆 (𝑞,𝑠) (𝜌), (4.19)

for all 𝑞 and 𝑠 satisfying either 0 � 𝑞 � 1 and 𝑞𝑠 � 1 or 𝑞 � 1 and 𝑞𝑠 � 1.

4.2 DISTINGUISHING QUANTUM STATES

Essentially, there are two ways of distinguishing one quantum state from another:

distances (or metrics) and divergences (or relative entropies). The former is of geometric nature

an it requires to be symmetric, while the latter is an entropic measure and it does not require

symmetry in its entries.

4.2.1 Norms and Distances

A norm on a complex vector spaceX is a real-valued function whose value at 𝑥 ∈ X
is denoted by ||𝑥 || and must satisfy the following [172]:

Definition 2 (Norm). Every norm ||𝑥 || must be/satisfy:

1. Non-negative: ||𝑥 || � 0;

2. Positive definite: ||𝑥 || = 0 iff 𝑥 = 0;

3. Absolutely homogeneous: ||𝛼𝑥 || = |𝛼 | ||𝑥 ||, ∀𝛼 ∈ C;

4. Triangle inequality: ||𝑥 + 𝑦 || � ||𝑥 || + ||𝑦 ||.

If the triangle inequality is not satisfied, then we have a seminorm. One norm of particular

interest is the Schatten 𝑝-norm [108] of an operator 𝑋

||𝑋 ||𝑝 =
[
Tr

(|𝑋 |𝑝 ) ] 1
𝑝 , (4.20)

where 𝑝 is a real number such that 𝑝 � 1 and |𝑋 | �
√
𝑋 †𝑋 . The Schatten 𝑝-norms of density

operators 𝜌 ∈ 𝔅(H) (i.e. 𝜌 � 0, Tr 𝜌 = 1, and 𝜌† = 𝜌) satisfy the following [108]:

Theorem 6 (Basic properties of Schatten 𝑝-norms).

1. Unitary invariance: If 𝑈 and 𝑉 are unitary operators, then

||𝑈𝜌𝑉 †||𝑝 = ||𝜌 ||𝑝 ; (4.21)
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2. Multiplicativity under tensor products:

||𝜌 ⊗ 𝜎 ||𝑝 = ||𝜌 ||𝑝 ||𝜎 ||𝑝 ; (4.22)

3. Holder’s inequality: Take 𝑝, 𝑞, 𝑟 ∈ [1,∞) such that 1/𝑝 + 1/𝑞 = 1/𝑟 , then

||𝜌𝜎 ||𝑟 � ||𝜌 ||𝑝 ||𝜎 ||𝑞 ; (4.23)

4. Sub-mutiplicativity:

||𝜌𝜎 ||𝑝 � ||𝜌 ||𝑝 ||𝜎 ||𝑝 ; (4.24)

5. Monotonicity: If 1 � 𝑝 � 𝑝′ � ∞, then

1 � ||𝜌 ||1 � ||𝜌 ||𝑝 � ||𝜌 ||𝑝 ′ � ||𝜌 ||∞, (4.25)

where equality holds for pure states.

6. Pinching inequality: If C is a CPTP unital map, then

||C(𝜌) ||𝑝 � ||𝜌 ||𝑝, (4.26)

where equality holds if 𝜌 is a maximally mixed state. Also, equality holds if 𝑝 = 1. In the

particular case that C is a non-selective measurement (e.g., C = Φ𝐴), then equality hols iff

𝜌 = C(𝜌) (see Theorem 5.2 in Ref. [173]).

7. Contractivity: If 𝑝 = 1 and Λ is a CPTP map, then

||Λ(𝜌) ||1 � ||𝜌 ||1. (4.27)

8. Audenaert’s inequality for 𝑝-norms: For any bipartite state 𝜌 ∈ 𝔅(HA ⊗ HB), the
inequality

||𝜌 ||𝑝 + 1 � ||𝜌A||𝑝 + ||𝜌B ||𝑝 (4.28)

holds for 𝑝 > 1 [174].

Some cases of 𝑝-norms receive special names. The reader can find a selection of them in Table

2.

𝑝 Name ||𝑋 ||𝑝 Alternative computation

1 Trace norm Tr |𝑋 | ∑
𝑖 |𝜆𝑖 |

2 Hilbert-Schimidt norm
√
Tr𝑋 2

√∑
𝑖 𝑗 |𝑋𝑖 𝑗 |2

+∞ Operator norm max𝑖{|𝜆𝑖 |} —

Table 2 – Three different special cases of Schatten 𝑝-norms. For the sake of clarity, 𝜆𝑖 and 𝑋𝑖 𝑗 are the

eigenvalues and matrix elements of 𝑋 , respectively. Note that, |𝑋 | �
√
𝑋 †𝑋 .

Let us now define the concept of metric [172]:
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Definition 3 (Metric). Ametric (or distance function, or just distance) is a function 𝑑 : 𝑀×𝑀 ↦→
R that maps each par 𝑥,𝑦 ∈ 𝑀 onto a real number 𝑑 (𝑥,𝑦) satisfying

1. Positive definiteness: 𝑑 (𝑥,𝑦) � 0, where the equality holds iff 𝑥 = 𝑦;

2. Symmetry: 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥);

3. Triangle inequality: 𝑑 (𝑥, 𝑧) � 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧).

Positive definiteness is essential to obtain proper distinguishing measures. In addition, other

properties are necessary for such measures to have a physical meaning. In the context of density

states 𝜌, 𝜎 ∈ 𝔅(H), a metric is said to be contractive under a CPTP map Λ iff

𝑑 (Λ(𝜌),Λ(𝜎)) � 𝑑 (𝜌, 𝜎) . (4.29)

In particular, contractive metrics are unitarily invariant, that is,

𝑑 (𝑈𝜌𝑈 †,𝑈𝜎𝑈 †) = 𝑑 (𝜌, 𝜎) . (4.30)

Having said that, we can use norms to find proper metrics. Note that it is not strictly necessary

to use norms when defining a metric since other functionals can be used instead. Without

further ado, the trace distance 𝑑Tr is given by

𝑑Tr (𝜌, 𝜎) � ||𝜎 − 𝜌 ||1 = Tr |𝜎 − 𝜌 |. (4.31)

Similarly, the Hilbert-Schmidt distance 𝑑HS is defined as

𝑑HS (𝜌, 𝜎) � ||𝜎 − 𝜌 ||2 =
√
Tr |𝜎 − 𝜌 |2. (4.32)

Asmatter of fact, the trace and the Hilbert-Schmidt distances are special cases of the 𝐿𝑝-distances

𝑑𝑝 (also called Schatten 𝑝-distances) [108, 109]

𝑑𝑝 (𝜌, 𝜎) � ||𝜎 − 𝜌 ||𝑝 =
(
Tr |𝜎 − 𝜌 |𝑝 ) 1

𝑝 , (4.33)

for all 𝑝 � 1. Although all the 𝐿𝑝-distances are unitarily invariant because they inherit this

property from the Schatten 𝑝-norms, the only 𝐿𝑝-distance that is contractive under CPTP maps

is the trace distance (𝑝 = 1) [175]. However, all 𝐿𝑝-distances are jointly convex

𝑑𝑝

(∑
𝑖

𝑝𝑖𝜌𝑖,
∑
𝑖

𝑝𝑖𝜎𝑖

)
�
∑
𝑖

𝑝𝑖𝑑𝑝 (𝜌𝑖, 𝜎𝑖) . (4.34)

Note that, any power 𝑝 > 1 of 𝑑𝑝 is also jointly convex. In addition, we have the Bures distance

𝑑Bu [109, 110]

𝑑Bu (𝜌, 𝜎) �
[
2 − 2

√
𝐹 (𝜌, 𝜎)

] 1
2
, (4.35)
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where 𝐹 (𝜌, 𝜎) is the Uhlmann fidelity [176]

𝐹 (𝜌, 𝜎) � ||√𝜎√𝜌 ||21 =
[
Tr

(√
𝜌𝜎

√
𝜌
) 1
2

]2
. (4.36)

Note that, the Uhlmann fidelity is symmetric. Moreover, if 𝜌 = |𝜓 〉 〈𝜓 | and 𝜎 = |𝜙〉 〈𝜙 |, than
𝐹 (𝜌, 𝜎) = | 〈𝜓 |𝜙〉 |2. Last but not least, we can cite the quantum Hellinger distance 𝑑He [109,

111]

𝑑He (𝜌, 𝜎) � ||√𝜎 − √
𝜌 ||2 =

(
2 − 2Tr

√
𝜎
√
𝜌
) 1
2 . (4.37)

It is interesting to note that if 𝜌 and 𝜎 commute, then 𝑑Bu (𝜌, 𝜎) = 𝑑He (𝜌, 𝜎). Both the Bures

and the Hellinger distances are contractive under CPTP maps. The joint convexity, however, is

only satisfied by the square of them, i.e.,

𝑑2Bu

(∑
𝑖

𝑝𝑖𝜌𝑖,
∑
𝑖

𝑝𝑖𝜎𝑖

)
�
∑
𝑖

𝑝𝑖𝑑
2
Bu (𝜌𝑖, 𝜎𝑖) , (4.38)

with an identical expression for 𝑑He [109]. The reader can find a summary of properties about

all these metrics in Tab. 3.

𝑑Tr 𝑑HS 𝑑2HS 𝑑𝑝 𝑑
𝑝
𝑝 𝑑Bu 𝑑2Bu 𝑑He 𝑑2He

Continuity � � � � � � � � �

Positive definiteness � � � � � � � � �

Unitary invariance � � � � � � � � �

Joint convexity � � � � � � � � �

Contractivity � � � � � � � � �

Table 3 – Summary of properties that are satisfied by the trace distance𝑑Tr , the Hilbert-Schmidt distance
𝑑HS , the 𝐿𝑝-distances 𝑑𝑝 with finite 𝑝 > 1 and 𝑝 ≠ 2, the Bures distance 𝑑Bu , the squared Bures
distance 𝑑2Bu , the Hellinger distance 𝑑He , and the squared Hellinger distance 𝑑2He between
any pair of density states.

4.2.2 Quantum Divergences

Quantum divergences (or relative entropies) are measures of the distinctiveness of

positive operators. These measures are known for their usefulness and versatility in defining

several quantum information concepts, in particular, the one that will be shown to be of key

relevance in the next chapter, namely, the quantum conditional information. We now review

three divergence measures, namely, the von Neumann relative entropy, the Rényi divergences,

and the Tsallis relative entropies.
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4.2.2.1 von Neumann relative entropy

The von Neumann relative entropy, also known as the Umegaki relative entropy

[177], is one of the most used divergences in quantum information theory. It is defined as

𝐷 (𝜌 | |𝜎) � Tr [𝜌 (ln 𝜌 − ln𝜎)]
Tr 𝜌

, (4.39)

where 𝜌 > 0, 𝜎 � 0 and ker𝜎 ⊆ ker 𝜌 , where ker stands for kernel of the operator1. The factor

Tr 𝜌 ensures that 𝐷 (𝜆𝜌 | |𝜆𝜎) = 𝐷 (𝜌 | |𝜎) for all 𝜆 > 0 ∈ R. 𝐷 (𝜌 | |𝜎) is a continuous functional
satisfying (whenever 𝜌 � 𝜎) the positive definiteness property:

𝐷 (𝜌 | |𝜎) � 0, with equality holding iff 𝜌 = 𝜎. (4.40)

The von Neumann relative entropy also satisfies the following properties: (i) unitary invariance,

𝐷
(
𝑈𝜌𝑈 †| |𝑈𝜎𝑈 †

)
= 𝐷 (𝜌 | |𝜎), (4.41)

for any unitary𝑈 ; (ii) additivity,

𝐷

(⊗
𝑖

𝜌𝑖

������ ⊗
𝑖

𝜎𝑖

)
=
∑
𝑖

𝐷 (𝜌𝑖 | |𝜎𝑖); (4.42)

(iii) joint convexity,

𝐷

(∑
𝑖

𝑝𝑖𝜌𝑖

������ ∑
𝑖

𝑝𝑖𝜎𝑖

)
�
∑
𝑖

𝑝𝑖𝐷 (𝜌𝑖 | |𝜎𝑖); (4.43)

and (iv) data processing inequality (DPI),

𝐷 (Λ(𝜌) | |Λ(𝜎)) � 𝐷 (𝜌 | |𝜎), (4.44)

also known as contractivity or monotonicity under quantum channels Λ.

4.2.2.2 Rényi divergences

Constituting a generalization of the von Neumann relative entropy, the Rényi

divergences [86] are defined as

𝐷𝛼 (𝜌 | |𝜎) � 1

𝛼 − 1
ln

Tr
(
𝜌𝛼𝜎1−𝛼 )
Tr 𝜌

, (4.45)

for 𝛼 ∈ (0, 1) ∪ (1, +∞) and the same conditions of quantity (4.39). Here, we also have

𝐷𝛼 (𝜆𝜌 | |𝜆𝜎) = 𝐷𝛼 (𝜌 | |𝜎), for any positive real 𝜆. Equation (4.45) is said a generalization of

Eq. (4.39) because 𝐷𝛼→1(𝜌 | |𝜎) = 𝐷 (𝜌 | |𝜎). Another relative entropy comprised by the Rényi

divergences is the min-relative entropy 𝐷min(𝜌 | |𝜎) � lim𝛼→0𝐷𝛼 (𝜌 | |𝜎) = − ln[Tr (𝜌0𝜎)/Tr 𝜌]
where 𝜌0 is the projection onto the support of 𝜌 , as defined by Datta [88] (see Table 4 for a

1 |𝜓 〉 ∈ ker 𝜌 iff 𝜌 |𝜓 〉 = 0.
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summary of properties and Appendix C.2.1 for more details about the min-relative entropy).

Some properties that are satisfied by the von Neumann relative entropy encounter, however,

some restrictions in the Rényi generalization: joint convexity is valid only for 𝛼 ∈ (0, 1) and
DPI only for 𝛼 ∈ (0, 1) ∪ (1, 2] (see Ref. [90] and references therein). The rest of the properties

remain intact. A variant of definition (4.45) is the so-called sandwiched Rényi divergence, which

was independently proposed by Müller-Lennert et al. [93] and Wilde et al. [94] as

𝐷𝛼 (𝜌 | |𝜎) � 1

𝛼 − 1
ln

{
1

Tr 𝜌
Tr

[(
𝜎

1−𝛼
2𝛼 𝜌𝜎

1−𝛼
2𝛼

)𝛼 ]}
, (4.46)

with the same conditions of quantity (4.45). Besides reducing to the von Neumann relative

entropy as 𝛼 → 1, the divergence (4.46) reproduces other famous relative entropies, such

as the collisional relative entropy (𝛼 = 2) [87] and the max-relative entropy 𝐷max(𝜌 | |𝜎) �
lim𝛼→+∞𝐷𝛼 (𝜌 | |𝜎) [88] (see Table 4 for a summary of properties and Appendix C.2.1 for more

details about the collisional and the max-relative entropies). The sandwiched Rényi divergence

satisfies the same properties as its counterpart (4.45) but for different ranges of parameters:

joint convexity is valid only for 𝛼 ∈ [1/2, 1) while DPI holds for 𝛼 ∈ [1/2, 1) ∪ (1, +∞) [91,
92]. It was proved for 𝛼 ∈ (0, 1) [95] and 𝛼 > 1 [94] that the inequality 𝐷𝛼 (𝜌, 𝜎) � 𝐷𝛼 (𝜌, 𝜎) is
always true, where the equality holds iff [𝜌, 𝜎] = 0. The necessity of this statement was noted

in Ref. [98].

The issue concerning the commutativity of operators raised the discussion about the

use of the divergence (4.46) instead of (4.45). However, as pointed out by Gupta and Wilde [97],

𝐷𝛼 (𝜌 | |𝜎) “is perfectly well defined” when 𝜌 and 𝜎 do not commute and, in fact, this divergence

has proven to be useful for discrimination tasks in some contexts when 𝛼 ∈ (0, 1), including
the limiting case 𝛼 → 0 (see Ref. [97] and references therein). The problem with definition

(4.45) is that it does not satisfy DPI for 𝛼 ∈ (2, +∞), a large range that is in fact covered by the

sandwiched version, including its limiting case (𝛼 → +∞) known as max-relative entropy [87].

Since divergences are fundamental tools for one to distinguish a quantum state from another,

it is expected that after the action of a quantum channel the states become less distinguishable

and, therefore, DPI is an essential property for quantum information. Nonetheless, to obtain

reality quantifiers it will be sufficient for us to focus on the original version of the Rényi

divergence, since all the results will directly have a counterpart for the sandwiched version.

4.2.2.3 Tsallis relative entropies

To close this section on quantum divergences, let us revisit the Tsallis relative

entropies, originally proposed by Abe [103]. Here we adopt the form

𝐷𝑞 (𝜌 | |𝜎) �
Tr

[
𝜌𝑞

(
ln𝑞 𝜌 − ln𝑞 𝜎

) ]
Tr 𝜌

=
Tr (𝜌 − 𝜌𝑞𝜎1−𝑞)
(1 − 𝑞) Tr 𝜌 , (4.47)

where 𝑞 ∈ (0, 1) and ln𝑞 (𝑥) � (𝑥1−𝑞 − 1)/(1 − 𝑞). As pointed out by Rastegin [106], the

definition (4.47) can be extended to 𝑞 > 1 if ker𝜎 ⊆ ker 𝜌 . The normalization guarantees that
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𝐷𝑞 (𝜆𝜌 | |𝜆𝜎) = 𝐷𝑞 (𝜌 | |𝜎) for any 𝜆 > 0 ∈ �. When 𝑞 → 1, we regain the von Neumann relative

entropy. The Tsallis relative entropies and the Rényi divergences share several properties.

𝐷𝑞 (𝜌 | |𝜎) is a continuous and positive definite functional in 𝜌 and 𝜎 for 𝑞 ∈ (0, 1) ∪ (1, +∞).
In addition, the Tsallis relative entropies satisfy unitary invariance for 𝑞 ∈ (0, 1) ∪ (1, +∞),
and both joint convexity and DPI for 𝛼 ∈ (0, 1) ∪ (1, 2] [104, 106]. Most importantly, they are

pseudo-additive, that is

𝐷𝑞 (𝜌A ⊗ 𝜌B ||𝜎A ⊗ 𝜎B) = 𝐷𝑞 (𝜌A||𝜎A) +𝐷𝑞 (𝜌B ||𝜎B) + (𝑞 − 1)𝐷𝑞 (𝜌A||𝜎A)𝐷𝑞 (𝜌B ||𝜎B) . (4.48)

We refer the reader to Table 4 for a summary of properties that are satisfied by each divergence

presented in this section.

𝐷 𝐷𝛼 𝐷min 𝐷𝛼 𝐷max 𝐷𝑞

Continuity � � � � � �

Positive def. � � � � � �

Unitary inv. � � � � � �

Additivity � � � � � �

J. convex. � 𝛼 ∈ (0, 1) � 𝛼 ∈ [1/2, 1) � 𝑞 ∈ (0, 2] − {1}
DPI � 𝛼 ∈ (0, 2] − {1} � 𝛼 ∈ [1/2, +∞) − {1} � 𝑞 ∈ (0, 2] − {1}

Table 4 – Summary of properties satisfied by the von Neumann relative entropy𝐷 , the Rényi divergence
𝐷𝛼 , the min-relative entropy 𝐷min � 𝐷𝛼→0, the sandwiched Rényi divergence 𝐷𝛼 , the max-
relative entropy 𝐷max � 𝐷𝛼→+∞, and the Tsallis relative entropy 𝐷𝑞 , for any pair {𝜌, 𝜎} of
density operators.

4.3 ELEMENTS OF QUANTUM INFORMATION THEORYWITH

QUANTUM DIVERGENCES

We review now the representation of quantum informational content and condi-

tional quantum information by means of the above introduced divergences. Note that, the

Rényi conditional information measures [Eq. (4.63)], as well as the Tsallis informational content

and conditional information [Eqs. (4.65) and (4.69)] constitute original proposals.

4.3.1 von Neumann information theory

The largest divergence implied by Eq. (4.39) emerges when one considers a generic

pure state, 𝜓 = |𝜓 〉 〈𝜓 |, and the maximally mixed one, �/𝑑 , with 𝑑 = dimH . We have

𝐷 (𝜓 | |�/𝑑) = 𝑆 (�/𝑑) = ln𝑑 (sometimes referred to as the normalization condition𝐷 (�| |�/𝑑) =
𝑆 (�/𝑑) [93]), where

𝑆 (𝜌) � −Tr (𝜌 ln 𝜌)
Tr 𝜌

(4.49)
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is the von Neumann entropy of 𝜌 . The quantum informational content 𝐼 (𝜌) of a quantum

state 𝜌 is a concept complementary to ignorance, that is, 𝐼 (𝜌) + 𝑆 (𝜌) = 𝐼max = 𝑆max with

𝑆max = 𝑆 (�/𝑑) = ln𝑑 = 𝐼 (𝜓 ) = 𝐼max (meaning that the entropy of a maximally mixed state �/𝑑
equals the informational content of a pure state𝜓 ). In terms of the relative entropy, information

can be defined as

𝐼 (𝜌) � 𝐷 (𝜌 | |�/𝑑) = ln𝑑 − 𝑆 (𝜌), (4.50)

where we have used the fact that Tr 𝜌 ln�/𝑑 = Tr 𝜌 ln(1/𝑑)� = ln(1/𝑑). Since pure states (resp.
maximally mixed states) have maximum (resp. minimum) informational content, 𝐼 (𝜌) is itself a
direct measure of purity. One can make a further interpretation of 𝐼 (𝜌) referring back to the

map (1.116). Consider the pairs {𝐴,𝐴′} and {𝐵, 𝐵′} of noncommuting operators acting on HA
andHB , respectively, and forming maximally unbiased bases (MUB). One has

Φ𝐴𝐴′ (𝜌) ≡ Φ𝐴Φ𝐴′ (𝜌) = Φ𝐴′Φ𝐴 (𝜌) = �A
𝑑A

⊗ 𝜌B, (4.51)

where 𝜌B = TrA(𝜌), and similarly for {𝐵, 𝐵′}. For the whole context � = {𝐴,𝐴′, 𝐵, 𝐵′}, we
can write Φ�(𝜌) = �A

𝑑A ⊗ �B
𝑑B = �/𝑑 , with 𝑑 = 𝑑A𝑑B . This is a state of null irreality—or full

classical reality—, since for any observable 𝑋 one has Φ𝑋 (�/𝑑) = �/𝑑 , that is, a nonselective
measurement of 𝑋 cannot change the established state of affairs. Therefore, we can rewrite

Eq. (4.50) in the form 𝐼 (𝜌) = 𝐷 (𝜌 | |Φ�(𝜌)), which allows us to interpret the informational

content as the divergence of 𝜌 with respect to its classical counterpart Φ�(𝜌).
Equation (4.39) can also be used to define the quantum conditional entropy of a

quantum state 𝜌 ,

𝐻A|B (𝜌) � −𝐷 (𝜌 | |�A ⊗ 𝜌B) . (4.52)

It can be checked by means of (1.53) that this formula yields the usual relation 𝐻A|B =

𝑆 (𝜌) − 𝑆 (𝜌B) from Sec. 1.2. The conditional entropy can alternatively be defined through an

optimization process over the subspace B, since inf𝜎B 𝐷 (𝜌 | |�A ⊗ 𝜎B) = 𝐷 (𝜌 | |�A ⊗ 𝜌B). Here,
inf stands for the infimum2. By its turn, the conditional information of 𝜌 can also be defined

through the information-ignorance complementarity, that is,

𝐼A|B (𝜌) + 𝐻A|B (𝜌) = 𝐻max
A|B = 𝐻A|B

(
�A
𝑑A

⊗ 𝜌B

)
= ln𝑑A, (4.53)

a relation that will be taken as a fundamental premise in all information theories throughout

this thesis. We then write

𝐼A|B (𝜌) � ln𝑑A − 𝐻A|B (𝜌) = 𝐷

(
𝜌
������ �A
𝑑A

⊗ 𝜌B

)
. (4.54)

Because both the entries in the above divergence are normalized density operators, one has

0 � 𝐼A|B (𝜌) � ln𝑑 . Also, the conditional information can be decomposed as

𝐼A|B (𝜌) = 𝐼 (𝜌A) + 𝐼A:B (𝜌), (4.55)
2 The infimum of a set 𝐼 is the greatest of the lower bounds of 𝐼 . For example, if 𝐼 = {1, 2, 3, 4}, than inf 𝐼 = 1.

Now, if 𝐼 = {𝑥 ∈ R | 0 < 𝑥 < 1}, than inf 𝐼 = 0. The infimum of a set does not necessarily belongs to the set
itself. The same logic applies for the sup, i.e., the supremum.
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where 𝐼 (𝜌A) = 𝐷 (𝜌A||�A/𝑑A) is the informational content of part A and

𝐼A:B (𝜌) = 𝐷 (𝜌 | |𝜌A ⊗ 𝜌B) (4.56)

is the mutual information (1.76)—now written as a divergence. Since the mutual information is

a measure of total correlations between the parts, 𝐼A|B can be said to be composed of “local”

and “global” information.

4.3.2 Rényi quantum information theory

The generalization for the Rényi scenario from the von Neumann information

theory is straightforward. By using Eq. (4.45) one checks the validity of the normalization

condition, 𝐷𝛼 (𝜓 | |�/𝑑) = ln𝑑 = 𝑆𝛼 (�/𝑑), where

𝑆𝛼 (𝜌) � − 1

𝛼 − 1
ln

Tr 𝜌𝛼

Tr 𝜌
, (4.57)

is the quantum Rényi entropy of 𝜌 . The Rényi informational content of 𝜌 can be defined as

𝐼𝛼 (𝜌) � 𝐷𝛼 (𝜌 | |�/𝑑) = ln𝑑 − 𝑆𝛼 (𝜌), (4.58)

which reproduces Eq. (4.50) as 𝛼 → 1. See Appendix C.2.2 for more details. Since 𝜌 commutes

with �/𝑑 , the original and the sandwiched Rényi divergences result in the same informational

content. Here as well, we can interpret the informational content as the amount by which 𝜌

diverges from a full reality state, that is, 𝐼𝛼 (𝜌) = 𝐷𝛼 (𝜌 | |Φ�(𝜌)).
It is usual to define the Rényi conditional entropy in at least two different ways [99]:

𝐻𝛼↓
A|B (𝜌) � −𝐷𝛼 (𝜌 | |�A ⊗ 𝜌B), (4.59a)

𝐻𝛼↑
A|B (𝜌) � − inf

𝜎B
𝐷𝛼 (𝜌 | |�A ⊗ 𝜎B), (4.59b)

with 𝜎B ∈ 𝔅(HB). The arrows are used to express the relation 𝐻𝛼↑
A|B � 𝐻

𝛼↓
A|B . It is noteworthy

that, unlike its von Neumann counterpart (4.52), the Rényi conditional entropy cannot be

expanded as 𝑆𝛼 (𝜌) − 𝑆𝛼 (𝜌B). Moreover, as emphasized by Tomamichel et al. [96], proposals

along these lines lead to conceptual problems, such as the invalidation of DPI. From the

complementarity relation

𝐼𝛼↑,↓A|B (𝜌) + 𝐻
𝛼↑,↓
A|B (𝜌) = [𝐻𝛼

𝐴|𝐵]max = 𝐻𝛼↑,↓
A|B

(
�A
𝑑A

⊗ 𝜌B

)
= ln𝑑A, (4.60)

we propose the Rényi conditional information measures

𝐼𝛼↑A|B (𝜌) � ln𝑑A − 𝐻𝛼↓
A|B (𝜌), (4.61a)

𝐼𝛼↓A|B (𝜌) � ln𝑑A − 𝐻𝛼↑
A|B (𝜌), (4.61b)
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with arrows justified by the relation 𝐼𝛼↓A|B (𝜌) � 𝐼𝛼↑A|B (𝜌). For any quantum channel ΛB→B′,

both measures satisfy DPI, that is,

𝐼𝛼↑,↓A|B′ (Λ(𝜌)) � 𝐼𝛼↑,↓A|B (𝜌) (4.62)

for 𝛼 ∈ (0, 1)∪ (1, 2] (including the limiting case 𝛼 → 0) and 𝛼 ∈ [1/2, 1)∪ (1, +∞), respectively
[96]. Both conditional information measures are convex under mixing for 𝛼 ∈ (0, 1) and
𝛼 ∈ [1/2, 1), respectively [99]. Finally, by use of Eq. (4.45) we have

𝐼𝛼↑A|B (𝜌) = 𝐷𝛼

(
𝜌
������ �A
𝑑A

⊗ 𝜌B

)
, (4.63a)

𝐼𝛼↓A|B (𝜌) = inf
𝜎B

𝐷𝛼

(
𝜌
������ �A
𝑑A

⊗ 𝜎B

)
. (4.63b)

The reader can find more details about these relations in Appendix C.2.2.

4.3.3 Tsallis quantum information theory

From Eq. (4.47) we find 𝐷𝑞 (𝜓 | |�/𝑑) = 𝑑𝑞−1𝑆𝑞 (�/𝑑), where

𝑆𝑞 (𝜌) � −Tr (𝜌𝑞 ln𝑞 𝜌 ) = −Tr (𝜌 − 𝜌𝑞)
(1 − 𝑞) Tr 𝜌 (4.64)

is the Tsallis entropy of 𝜌 [101, 102] and 𝑆𝑞 (�/𝑑) = ln𝑞 𝑑 . Note that, differently from the

structure found for the previous information theories, here the normalization relation is such

that 𝐷𝑞 (𝜓 | |�/𝑑) ≠ 𝑆𝑞 (�/𝑑). This suggests that it may be convenient to “correct” either 𝐷𝑞 or

𝑆𝑞 by means of a scaling factor like 𝑑1−𝑞 or 𝑑𝑞−1. To preserve the fundamental status of the

information-ignorance complementarity, we then define the Tsallis informational content as

𝐼𝑞 (𝜌) � 𝑑1−𝑞𝐷𝑞 (𝜌 | |�/𝑑) = ln𝑞 𝑑 − 𝑆𝑞 (𝜌) . (4.65)

Similarly to what can be found in Ref. [105], let us define the Tsallis conditional entropy as

𝐻
𝑞
A|B (𝜌) � −𝐷𝑞 (𝜌 | |�A ⊗ 𝜌B) . (4.66)

One may wonder whether − inf𝜎B 𝐷𝑞 (𝜌 | |�A ⊗ 𝜎B) would be an admissible formulation as well.

Although we believe there is no reason why this proposal should be ruled out a priori, we

are not aware of any study supporting it. Following previous rationales, we now look for a

conditional information satisfying the information-ignorance relation

𝐼
𝑞
A|B (𝜌) + 𝐻

𝑞
A|B (𝜌) = [𝐻𝑞

A|B]max = 𝐻
𝑞
A|B

(
�A
𝑑A

⊗ 𝜌B

)
= ln𝑞 𝑑A . (4.67)

We then find

𝐼
𝑞
A|B (𝜌) � ln𝑞 𝑑A − 𝐻

𝑞
A|B (𝜌), (4.68)

Using the above formulas, one shows that

𝐼
𝑞
A|B (𝜌) = 𝑑

1−𝑞
A 𝐷𝑞

(
𝜌
������ �A
𝑑A

⊗ 𝜌B

)
, (4.69)
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which correctly reduces to the result (4.54) as 𝑞 → 1. Up to the scaling factor 𝑑1−𝑞A , proved

necessary in the present scenario, we note by Eqs. (4.54), (4.63a), and (4.69) that it is possible

to maintain a unified picture for the definition of the conditional informational of 𝜌 in terms of

its divergence with respect to its full reality counterpart, Φ𝐴𝐴′ (𝜌) = �A
𝑑A ⊗ 𝜌B .

4.4 QUANTUM RESOURCE THEORIES

QRTs [178] comprehend a useful way to classify and study non-classicalities based

on the tasks that they are necessary to. A QRT is characterized through its (i) free states, (ii)

resource states, and (iii) free operations. Free states are those that do not contain that quantum

resource, unlike the resource states. Free operations constitute those operations that do not

create more quantum resource. Hence, free operations applied to free states produce only free

states. For instance, coherence [113] and entanglement [112] of quantum states are the most

known quantum resources. Just recently, irreality was argued to be a QRT too [44]. Let us

revisit entanglement and irreality under the framework of QRTs:

Example 10. An entangled state is a bipartite state that can not be written as a separable state,

i.e., 𝜌 =
∑
𝑖 𝑝𝑖𝜌

A
𝑖 ⊗ 𝜌B𝑖 [see Eq. (1.102)]. Therefore, separable states have null entanglement,

which configure them as the free states of the QRT of entanglement. The resource states, in

this case, are all the entangled ones. Now, the free operations are those operations that do not

create more entanglement, namely, the LOCCs. It is not possible, for instance, to entangle two

particles by applying operations on just one of them (a local operation) nor by transmitting

information from one lab to the other through a phone call (a classical communication). Some

tasks in which entanglement is a necessary resource are quantum cryptography [179] and

quantum teleportation [180]. �

Example 11. When it comes to the irreality ℑ𝐴, it is mandatory that we mention which observ-

able is under scrutiny. Hence, one can immediately see that 𝐴-reality states, i.e., states such

that 𝜌 = Φ𝐴 (𝜌), are the free states of the QRT of ℑ𝐴. Consequently, every state that violates

BA’s realism hypothesis is a resource state. The free operations of irreality must be those that

do not create more indefiniteness, namely, weak and projective measurements of 𝐴. �

Note that, a resource theory does not specify how to quantify its own resource.

Some authors argue that a mathematical function must satisfy a set of properties based on

physical arguments in order to proper quantify a given quantum resource [178]. Depending

on the properties that are satisfied by a given quantifier, it can be identified as a monotone

or as a measure, albeit that classification varies from one QRT to the other. Entanglement,

for instance, can be quantified through several different ways. For pure quantum states, the

linear entropy (4.5), the von Neumann entropy (1.63), and, more generally, the Rényi entropy

(4.3) of the reduced state 𝜌A = Tr B (𝜌) of a bipartite state 𝜌 ∈ 𝔅(HA ⊗ HB) are considered
proper entanglement measures. Entanglement monotones, on the other way, satisfy a smaller list

of properties. Any pair of parameters (𝑞, 𝑠) that results in a concave unified entropy [see Eq.
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(4.19)] gives us an entanglement monotone [181]

𝐸 (𝑞,𝑠) ( |𝜓 〉) � 𝑆 (𝑞,𝑠) (Tr B (|𝜓 〉 〈𝜓 |)) = 𝑆 (𝑞,𝑠) (TrA(|𝜓 〉 〈𝜓 |)) , (4.70)

for 𝑞 and 𝑠 satisfying either 0 � 𝑞 � 1 and 𝑟𝑠 � 1 or 𝑟 � 1 and 𝑟𝑠 � 1, which is a broader class

of entanglement quantifiers than the entanglement measures.

Let the continuous non-negative functional 𝜌 ↦→ Q(𝜌) be a quantum resource

quantifier, FQ its set of free states, and ΛQ its free operations. Some of the aforementioned

elementary properties can be stated as [178]:

1. Vanishing for free states:

Q(𝜌) = 0 iff 𝜌 ∈ FQ ; (4.71)

2. Monotonicity:

Q(𝜌) � Q (ΛQ (𝜌)) ; (4.72)

3. Convexity:

Q
(∑

𝑖

𝑝𝑖𝜌𝑖

)
�
∑
𝑖

𝑝𝑖Q(𝜌𝑖); (4.73)

4. Subadditivity:

Q(𝜌 ⊗ 𝜎) � Q(𝜌) + Q(𝜎); (4.74)

We should mention that, the first two are absolutely essential since they deal with the basics of

a QRT. The last two, on the other side, represent convenient mathematical properties without

which the meaning of a quantum resource would be harmed. This is due to the fact that mixing

or adding states moves the system towards classicality. Other properties that are even less

essential are additivity [when the equality holds in (4.74)] and flag additivity. The latter will be

addressed in Sec. 5.3
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5 AXIOMS FOR QUANTUM REALISM

This chapter and the next one aim at presenting the main results of Part II. These

results were published in Ref. [A. C. Orthey and R. M. Angelo, “Quantum realism: Axioma-

tization and quantification”, Phys. Rev. A 105, 052218 (2022)]. Here, we are going to present

the axioms for quantum realism which are fundamentally based on the flux of conditional

information and the QRTs.

5.1 REALITY AND INFORMATION

As we have seen in the last chapter, quantum resource theories have shown to be

a powerful framework to characterize a given quantum effect [178]. Incidentally, quantum

realism cannot be thought of as a quantum resource because reality abounds for free in the

classical regime. On the other hand, quantum realism is complementary to quantum irrealism

(as quantified by irreality, which is believed to be a quantum resource [44]). With this inversion

in mind, we seek inspiration in the formal structure of quantum resource theories to guide our

axiomatization of quantum realism.

We start by grounding our intuition on some empirical facts. After passing through

a wall with two slits, an electron has its paths described as a quantum superposition and

an interference pattern is observed in the detection system (check out Fig. 3 again in the

Introduction). During the flight, quantum mechanics does not ascribe a well defined position

for the electron, so that its position is not an element of reality and the electron is said to behave

like a wave. On the other hand, when the two slits are preceded with a very lightweight floating

slit, the interference pattern disappears [5, 84] (see the double-slit quantum eraser [182] for a

similar phenomenology). In this case, the entanglement created between the electron and the

floating slit allows for the former to be described by a statistical mixture. It then follows that

trajectory-based models are admissible so that the electron position can be claimed to be an

element of reality. In other words, particle-like elements of reality emerge in this experiment

because a given degree of freedom—the momentum of the lightweight slit—encodes which-way

information about the electron [85]. In this case, trajectory-based models are admissible so that

the electron position can be claimed to be an element of reality. These are expected to be the

results of the experiment even in the absence of a huge environment, like a thermal bath.

Now, even though the supporters of quantum Darwinism would eventually claim

that the conditions for the emergence of an objective reality are not met during the electron

flight—for the information about the electron path has not an environment to be recorded

in—we believe they would agree that the motional degree of freedom of the first slit is able to

acquire information about the electron path, thus suppressing its wave-like properties. This
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is exactly the same viewpoint adopted by supporters of BA’s realism [40, 42]. We then take

this common perspective as our fundamental premise regarding the dynamical emergence of

quantum realism:

The reality status of a physical observable can only increase when information about

it is stored in another physical degree of freedom.

The above dictum translates the information-reality complementarity principle introduced by

Dieguez and Angelo [40]. In Appendix A, we revisit the authors’ argument using the notation

to be introduced in the next section.

5.2 AXIOMS FOR REALITY MONOTONES

To formalize these ideas, we consider the functional 𝜌 ↦→ ℜ𝐴 (𝜌), hereafter named

the reality of the observable 𝐴 ∈ 𝔅(HA) given the state 𝜌 ∈ 𝔅(HS = HA ⊗ HB), where𝔅(H)
is the set of positive semidefinite Hermitian operators acting on the Hilbert spaceH . Let us

now consider some generic dynamics involving the interest system S and an ancillary system

E generically referred to as environment. Assume that the state of the composite system at

an arbitrary instant of time 𝑡 is given by 𝜐𝑡 ∈ 𝔅(HS ⊗ HE), so that 𝜌𝑡 = Tr E (𝜐𝑡 ) denotes the
reduced state of S with initial condition 𝜌𝑡=0 = 𝜌 . An alteration in the reality degree of the

observable 𝐴 in the time interval [𝑡1, 𝑡2] is here denoted as

Δℜ𝐴 (𝑡2, 𝑡1) � ℜ𝐴 (𝜌𝑡2) −ℜ𝐴 (𝜌𝑡1) . (5.1)

Let us also introduce another functional, 𝜐𝑡 ↦→ 𝐼E|S (𝜐𝑡 ), aiming at denoting how certain

informational content associated with the environment is conditioned to some configuration

of the system. Variations of this information with time are then described as

Δ𝐼E|S (𝑡2, 𝑡1) � 𝐼E|S (𝜐𝑡2) − 𝐼E|S (𝜐𝑡1) . (5.2)

We are now ready to state our main postulate.

Axiom 1 (Reality and information flow). The degree of reality of an observable 𝐴 is altered in

the time interval [𝑡1, 𝑡2] only when an amount Δ𝐼E|S (𝑡2, 𝑡1) of information about this observable

is shared with the environment, that is,

Δℜ𝐴 (𝑡2, 𝑡1) ≡ Δ𝐼E|S (𝑡2, 𝑡1) . (5.3)

The specific mathematical structures of ℜ𝐴 and 𝐼E|S and the sense in which information

leaks into the environment will be opportunely specified for each information theory we

consider. By now, the crux is realizing that this axiom implements the fundamental premise of

quantum Darwinism and BA’s realism, namely, that reality varies with time only through a

physical process involving interactions, the establishment of correlations, and some form of



97

information exchange. Also, the relation (5.3) attaches an informational profile to the quantifier

ℜ𝐴. Although this choice is somewhat ad hoc (after all, one could use, for instance, norm-based

“metrics”) it is very convenient for the establishment of conceptual bridges with well-known

information theoretic quantities.

Our second axiom aims at making explicit reference to measurements, another

fundamental process through which an element of reality emerges. In a sense, this axiom is

related to the first one in that a measurement can be viewed as a process whereby information

about an observable is shared with an apparatus. On the other hand, a measurement is a very

special instance involving, at the last stage, updating of information in the observer’s mind, a

physical system whose informational dynamics is often excluded from the theoretical descrip-

tion. For this reason, the quantum state collapse is generally used as an effective description

for the measurement process. Let us consider a nonselective measurement of a nondegenerate

discrete-spectrum observable 𝐴 as described by the map Φ𝐴 [see Eq. (1.116)]. In BA’s approach,

the relation Φ𝐴 (𝜌) = 𝜌 is taken as an operational criterion of realism, since measuring 𝐴 and

not revealing the outcomes (operations implied by Φ𝐴) do not change the state of affairs, thus

implying that 𝜌 is already a state for which 𝐴 is an element of reality. In this circumstance, 𝜌 is

termed an 𝐴-reality state. We can also consider a monitoring of 𝐴 [40], a generalized version

of the unrevealed projective measurement (1.116) that is able to interpolate weak and strong

measurements through the strength parameter 𝜖 ∈ [0, 1]. Formally, the monitoring of 𝐴 is

written as

M𝜖
𝐴 (𝜌) � (1 − 𝜖) 𝜌 + 𝜖 Φ𝐴 (𝜌) . (5.4)

Implementing a POVM with effects {√1 − 𝜖�,
√
𝜖𝐴𝑖} (see Example 4), this map is expected to

increase the reality of 𝐴 whenever 𝜖 > 0. The second axiom then follows.

Axiom 2 (Reality and measurements). The realityℜ𝐴 (𝜌) is a non-negative real number bounded

from above byℜmax
A . It is maximum iff 𝜌 is an𝐴-reality state and never decreases upon generalized

measurements of 𝐴, that is,

0 � ℜ𝐴 (𝜌) � ℜ𝐴
(M𝜖

𝐴 (𝜌)
)
� ℜ𝐴 (Φ𝐴 (𝜌)) � ℜmax

A , (5.5)

where the second and third equalities hold iff Φ𝐴 (𝜌) = 𝜌 .

Given the informational nature of the reality quantifier ℜ𝐴 and because the maximum amount

of information a given Hilbert space can codify is bounded by its dimension, the upper bound

ℜmax
A is expected to depend on 𝑑A = dim(HA). Note that while Axiom 1 specifies the measure

unity by which reality is quantified, Axiom 2 establishes a numerical scale. The intrinsic relation

between these axioms can be appreciated in terms of the dynamics imposed on the initial

state 𝜌 ⊗ |𝑒0〉 〈𝑒0 | by a given unitary operator𝑈𝜖
𝑡 acting onHS ⊗ HE . By use of the Theorem 2

(Stinespring dilation), we have

𝜌𝑡 = Tr E
[
𝑈𝜖
𝑡 (𝜌 ⊗ |𝑒0〉 〈𝑒0 |)𝑈𝜖

𝑡
†
]
= M𝜖

𝐴 (𝜌), (5.6)
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where 𝜌 ∈ 𝔅(HS) and𝑈𝜖
𝑡=0 = �SE . The action ofM𝜖

𝐴 generally changes the purity degree of

𝜌 , so that some correlations with the environment and corresponding alterations in 𝐼E|S are

expected to occur, in agreement with the prescription (5.3).

To state our third axiom, we appeal to the intuition that the reality status of a

physical quantity should not decrease upon discard or addition of uncorrelated degrees of

freedom. On the other hand, we cannot exclude the possibility of increasing the realism of

a quantity when the discarded system is correlated because in this case the system state

undergoes an effective decoherence process, and hence, is shifted toward classical reality.

Axiom 3 (Role of other parts). (a) Discarding a part of the system does not diminishes reality,

that is,

ℜ𝐴 (Tr X(𝜌)) � ℜ𝐴 (𝜌), (5.7a)

forHX ⊆ HB , where the equality applies when the discarded part is uncorrelated. Also, (b) adding
a fully uncorrelated systemZ can by no means change the elements of reality of the system S,
that is

ℜ𝐴 (𝜌 ⊗ Ω) = ℜ𝐴 (𝜌), (5.7b)

where Ω ∈ 𝔅(HZ).

From a mathematical viewpoint, we can recognize by Axioms 2 and 3 a set of maps, henceforth

called realistic operations, that do not diminish the reality of an observable. Formally,

Definition 4. A realistic operation is a map 𝜌 ↦→ Γ(𝜌) such that ℜ𝐴 (Γ(𝜌)) � ℜ𝐴 (𝜌).

For the above axioms, we have identified a particular set of realistic operations, that is, Γ ∈
{M𝜖

𝐴,Tr X, ⊗ Ω}.
With our fourth axiom we make a clear departure from classical reality. The point

consists of implementing the intuition according to which, for a generic preparation 𝜌 , noncom-

muting observables, as for instance three orthogonal spin components, cannot be simultaneous

elements of reality. In other words, quantum realism is expected to be upper bounded.

Axiom 4 (Uncertainty relation). Two observables 𝑋 and 𝑌 acting onHA cannot be simultaneous

elements of reality in general, that is,

ℜ𝑋 (𝜌) +ℜ𝑌 (𝜌) � 2ℜmax
A . (5.8)

The equality is expected to hold only in “classical-like” circumstances, such as 𝜌 = (�/𝑑A) ⊗ 𝜌B
or [𝑋,𝑌 ] = 0. The above statement links quantum realism to Bohr’s complementarity principle.

Interestingly, a recent experiment conducted in a nuclear magnetic resonance platform [43] has

been reported corroborating the validity of the uncertainty relation (5.8) within the information

theory induced by the von Neumann entropy.
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Let us consider now a collection of quantum states 𝜌𝑖 ∈ HS with associated

probabilities 𝑝𝑖 and realitiesℜ𝐴 (𝜌𝑖).We do not expect the simple combination of these individual

members to generate an ensemble with a lower reality status. In fact, mixing typically is an

action toward classicality, so that reality is expected to be a concave functional. The fifth axiom

is then stated as follows.

Axiom 5 (Mixing). The reality of a mixture {𝑝𝑖, 𝜌𝑖} of density operators 𝜌𝑖 with respective weights
𝑝𝑖 can never decrease the installed mean reality, that is,

ℜ𝐴

(∑
𝑖

𝑝𝑖𝜌𝑖

)
�
∑
𝑖

𝑝𝑖ℜ𝐴 (𝜌𝑖) . (5.9)

So far, we have presented the properties that we consider sufficient to define a

meaningful reality monotone, in the sense that, upon the processes described above, reality

never decreases1. That is, the typical move is toward classical reality, not the opposite. Although

this set of axioms is rather constraining, we shall see in the next chapter that it can be satisfied

by a number of quantifiers supported not only by the standard von Neumann information

theory but also by the Rényi and the Tsallis ones. This justifies the following definition.

Definition 5. A functional 𝜌 ↦→ ℜ𝐴 (𝜌) satisfying Axioms 1-5 is called a reality monotone.

5.3 AXIOMS FOR REALITY MEASURES

In what follows we introduce two supplementary properties that can arguably be

viewed as natural requirements for a reality measure.

Axiom 6 (Additivity). The reality is an additive quantity over 𝑛 independent systems each one

prepared in a state 𝜌𝑖 , that is,

ℜ𝐴

(
𝑛⊗
𝑖=1

𝜌𝑖

)
=

𝑛∑
𝑖=1

ℜ𝐴 (𝜌𝑖), (5.10)

where 𝐴, on the left-hand side, acts on each one of the 𝑛 systems.

In particular, this means that given 𝑛 independent (eventually far apart) systems prepared in

the same state 𝜌 , the total amount of reality of an observable 𝐴 that acts on each 𝜌 is nothing

but the direct sum 𝑛ℜ𝐴 (𝜌).

Axiom 7 (Flagging). The mean reality of an ensemble {𝑝𝑖, 𝜌𝑖} does not change under flagging,
that is,

ℜ𝐴

(∑
𝑖

𝑝𝑖𝜌𝑖 ⊗ |𝑥𝑖〉 〈𝑥𝑖 |
)
=
∑
𝑖

𝑝𝑖ℜ𝐴 (𝜌𝑖) . (5.11)

1 With respect to Axiom 1, we are of course envisaging dynamics whereby correlations typically build up so that
Δ𝐼E |S (𝑡2, 𝑡1) � 0. This is particularly true when the environment E is a genuine reservoir, like a thermal bath.
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The flagging property [183] has recently been discussed within the context of quantum resource

theories. Suppose one identifies with a flag |𝑥𝑖〉 ∈ HX each one of the states 𝜌𝑖 ∈ HS of our

collection. The above axiom reflects the fact that merely labelling each element of the ensemble

with a flag basis {|𝑥𝑖〉} should not increase the mean reality. In other words, the insertion of

classical correlations with respect to the flag is innocuous on average.

With the above axioms we have set the grounds to define what we propose to be a

significant reality quantifier.

Definition 6. A functional 𝜌 ↦→ ℜ𝐴 (𝜌) satisfying Axioms 1-7 is called a reality measure.

5.4 TAKEAWAY MESSAGE

• We have proposed physically motivated axioms for reality measures and monotones;

• Reality measures require more axioms than reality monotones, but the latter still carries

minimum physical meaning;

• If we forget the result of a measurement, the reality status of such observable must

not change. That is why non-selective measurements are used to define BA’s realism

condition, i.e., Φ𝐴 (𝜌) = 𝜌 ;

• The main axiom connects the reality increase with the gain of conditional information

regarding the system by the environment. QD, by the way, requires the extra condition

of a very big environment.

• It is not yet clear whether our list of axioms is strictly necessary or sufficient. What we

present here is a kind of catalog of the properties that are and are not satisfied by this or

that quantifier.
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6 CASE STUDIES

Now that we have a list of axioms for quantum realism at hand, let us explore some

celebrated quantum information theories in search of quantum reality quantifiers. We start

with those induced by the von Neumann, Rényi, and Tsallis entropies. Then, we will propose

geometric measures of quantum conditional information through the 𝐿𝑝 , Bures, and Hellinger

distances. We will see that some reality monotones can also be obtained from them.

6.1 ENTROPIC QUANTIFIERS

Let us start with the measures of conditional information 𝐼E|S that are induced by

quantum divergences, namely, von Neumann relative entropy, Réniy divergences, and Tsallis

relative entropies.

6.1.1 von Neumann reality measure

Through the relation ℜ𝐴 (𝜌𝑡 ) − ℜ𝐴 (𝜌) = 𝐼E|S (𝜐𝑡 ) − 𝐼E|S (𝜐0), Axiom 1 links the

emergence of realism in the system S with the acquisition of information by the environment

E. Our strategy here consists of starting with the uncorrelated state 𝜐0 = 𝜌 ⊗ |𝑒0〉 〈𝑒0 | and
searching for a dynamics that yields maximum reality for 𝐴. That is, we want to find a reduced

state 𝜌𝑡 = Tr E (𝜐𝑡 ) = Φ𝐴 (𝜌) such that ℜ (𝜌𝑡 ) = ℜmax
A as per Axiom 2, so that we can construct

the 𝐴-reality measure ℜ𝐴 (𝜌) = ℜmax
A − Δ𝐼E|S (𝑡, 0). From the additivity [Eq. (4.42)] of the von

Neumann conditional information [Eq. (4.54)] we find

𝐼E|S (𝜐0) = 𝐷

(
𝜌 ⊗ |𝑒0〉 〈𝑒0 |

������ 𝜌 ⊗ �E
𝑑E

)
= ln𝑑E . (6.1)

Because there are no correlations in the initial state, the informational content of the environ-

ment is not conditioned to the system.

Now we consider a dynamics induced by a unitary operator𝑈𝑡 satisfying Eq. (5.6)

with 𝜖 = 1. It is worth noting that, by using the state 𝜐𝑡 = 𝑈𝑡 (𝜌 ⊗ |𝑒0〉 〈𝑒0 |)𝑈 †
𝑡 in (4.55),

we can compute the variation of 𝐼E|S (𝜐𝑡 ) = 𝐼 (Tr S𝜐𝑡 ) + 𝐼E:S (𝜐𝑡 ) in the interval [0, 𝑡] and
then return to Axiom 1 to better specify the notion of “information flow”. The condition for

the 𝐴-reality increase, Δ𝐼E|S (𝑡, 0) > 0, will be satisfied when 𝐼E:S (𝜐𝑡 ) > 𝑆 (Tr S (𝜐𝑡 )), which
means that the share of information (correlations) between system and environment has to

be sufficiently large for the emergence of reality. An alternative way of appreciating the role

of the information flow for the emergence of realism is by writing 𝐼 (𝜐𝑡 ) = 𝐼
(
Tr E𝜐𝑡

) + 𝐼E|S (𝜐𝑡 )
and then noticing that 𝐼 (𝜐𝑡 ) is conserved in any unitary dynamics. It readily follows that

Δ𝐼E|S = 𝐼
(
Tr E𝜐0

) − 𝐼
(
Tr E𝜐𝑡

) ≡ −Δ𝐼S . By Axiom 1 we then have Δℜ𝐴 = −Δ𝐼S , which shows

that the 𝐴-reality increases whenever information “flows out of the system”. For a more
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detailed discussion, see Appendix A. Without further ado, let us get back to the divergence.

Since Tr E (𝜐𝑡 ) = Φ𝐴 (𝜌), we have 𝐼E|S (𝜐𝑡 ) = 𝐷
(
𝑈𝑡𝜐0𝑈

†
𝑡 | |Φ𝐴 (𝜌) ⊗ �E/𝑑E

)
. To evaluate this

quantity, let us use the following result (whose proof can be found in Appendix B):

Theorem 7. Let the unitary evolution 𝑈𝑡 be defined by the Stinespring dilation theorem (5.6)

with 𝜖 = 1. It follows that𝑈𝑡 commutes with Φ𝐴 (𝜌) ⊗ �E/𝑑E , that is,

𝑈𝑡

(
Φ𝐴 (𝜌) ⊗ �E

𝑑E

)
𝑈 †
𝑡 = Φ𝐴 (𝜌) ⊗ �E

𝑑E
. (6.2)

The above theorem means that Φ𝐴 (𝜌) ⊗ �E/𝑑E does not evolve under the action of 𝑈𝑡 . As a

corollary we have Φ𝐴 (Φ𝐴 (𝜌)) = Φ𝐴 (𝜌). This shows that once a state of reality is established by
the conjugation of a unitary evolution and a discard, then repeating this operation is innocuous,

as maximum reality cannot be further enhanced. That means that we can freely apply𝑈𝑡 onto

Φ𝐴 (𝜌) ⊗ �E/𝑑E and then use the unitary invariance of the von Neumann relative entropy to

obtain 𝐼E|S (𝜐𝑡 ) = 𝐷 (𝜐0 | |Φ𝐴 (𝜌) ⊗ �E/𝑑E). Using additivity again, we get

𝐼E|S (𝜐𝑡 ) = ln𝑑E + 𝐷 (𝜌 | |Φ𝐴 (𝜌)) . (6.3)

From Eqs. (6.1) and (6.3) we have Δ𝐼E|S (𝑡, 0) = 𝐷 (𝜌 | |Φ𝐴 (𝜌)) and hence ℜ𝐴 (𝜌) = ℜmax
A −

𝐷 (𝜌 | |Φ𝐴 (𝜌)). It is always possible to say that 𝐷 (𝜌 | |𝜎) � ln𝑑A𝑑B , where 𝜌, 𝜎 ∈ 𝔅(HA ⊗ HB)
and 𝑑A,B = dimHA,B . However, Φ𝐴 only acts over HA , which means that the divergence

caused by it must be at most ln𝑑A . In fact, this is stated by the following result (see Appendix

B):

Lemma 2. Given the reality state Φ𝐴 (𝜌) =
∑
𝑖 𝑝𝑖𝐴𝑖 ⊗ 𝜌B|𝑖 , it holds that 𝐷 (𝜌 | |Φ𝐴 (𝜌)) �

𝑆 (Φ𝐴 (𝜌A)) � ln𝑑A .

Thus, we can set ℜmax
A = ln𝑑A . This yields the reality quantifier

ℜ𝐴 (𝜌) = ln𝑑A − 𝐷 (𝜌 | |Φ𝐴 (𝜌)) , (6.4)

which is such that ℜ𝐴 (𝜌) � 0 and ℜ𝐴 (Φ𝐴 (𝜌)) = ln𝑑A , as required by Axiom 2.

A particularly interesting property of the reality quantifier (6.4) is that it allows

us to formally state a complementarity relation. To see this, we can employ Lemmas 1 and 2

to demonstrate that 𝐷 (𝜌 | |Φ𝐴 (𝜌)) = 𝑆 (Φ𝐴 (𝜌)) − 𝑆 (𝜌) � ℑ𝐴 (𝜌), where ℑ𝐴 (𝜌) is the irreality
(indefinite reality) of the observable 𝐴 given the state 𝜌 , as originally proposed by BA [36] and

revisited in Sec. 1.3.5. We then have

ℜ𝐴 (𝜌) + ℑ𝐴 (𝜌) = ln𝑑A . (6.5)

It becomes clear now the duality between irreality—a quantum resource per se [44]—and reality,

which can thus be viewed as the amount of quantum resource that is destroyed when an

observable is measured1.
1 Maybe we could say that ℜ𝐴 is a classical resource.
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Now we show that the quantifier (6.4) does satisfy Definition 6, which characterizes

it as a reality measure. Axiom 1 was of course satisfied by construction. From DPI, we can check

that any quantum channel Λ that commutes with Φ𝐴 for every 𝜌 , that is, Λ(Φ𝐴 (𝜌)) = Φ𝐴 (Λ(𝜌)),
will never decrease the 𝐴 reality. This includes monitoring maps M𝜖

𝐴 of any intensity and the

discarding of parts of the system that do not include A. The Axioms 2 and 3(a) are therefore

satisfied. Along with the fact that Φ𝐴 (𝜌⊗Ω) = Φ𝐴 (𝜌) ⊗Ω, additivity [Eq. (4.42)] guarantees that

the quantifier (6.4) satisfies the Axiom 3(b). Therefore, we haveℜ𝐴 (Γ(𝜌)) � ℜ𝐴 (𝜌), confirming

that realistic operations Γ cannot make realism decrease.

That Axiom 4 is respected follows from (see Appendix B):

Lemma 3. Consider generic observables 𝑋,𝑌 ∈ 𝔅(HA) and the von Neumann reality quantifier

(6.4). It follows that ℜ𝑋 (𝜌) +ℜ𝑌 (𝜌) � 2 ln𝑑A , with equality iff 𝜌 = Φ𝑋 (𝜌) = Φ𝑌 (𝜌).

At this point, it is opportune to remark how quantum correlations influence the realism uncer-

tainty relation (Axiom 4). From Eq. (1.121) we can see that irreality ℑ𝐴 depends on the nonop-

timized quantum discord 𝐷𝐴 associated to the observable 𝐴. Since 𝐷𝐴 (𝜌) � min𝐴 𝐷𝐴 (𝜌) ≡
DA(𝜌), where DA stands for the one-sided quantum discord, one can conclude that 𝐷𝑋 (𝜌) +
𝐷𝑌 (𝜌) � 2DA(𝜌), with equality holding, for instance, for product states. Combining ℑ𝐴 (𝜌A) =
𝐷 (𝜌A||Φ𝐴 (𝜌A)) � 0 with Eq. (6.5), we can verify that ℜ𝐴 (𝜌) � ln𝑑A − 𝐷A(𝜌) and

ℜ𝑋 (𝜌) +ℜ𝑌 (𝜌) � 2 [ln𝑑A − DA(𝜌)] . (6.6)

This shows that quantum correlations, as measured by quantum discord (entanglement for

pure states) forbid 𝑋 and 𝑌 to be simultaneous elements of reality. Accordingly, using a nuclear

magnetic resonance platform and associating 𝑋 and 𝑌 with wave- and particle-like observables,

researchers have recently reported on an experiment where an entangled quantum system

behaves neither as a wave nor as particle [43].

The validity of Axiom 5 (mixing) comes immediately from joint convexity [Eq. (4.43)].

With respect to Axiom 6 (additivity), we should first note that

ℜ𝐴 (𝜌⊗𝑛) � ln𝑑𝑛A − 𝐷 (𝜌⊗𝑛 | |Φ𝐴 (𝜌)⊗𝑛), (6.7)

that is, 𝐴 is presumed to act over each copy of 𝜌 . It then follows from the identity (4.42) that

ℜ𝐴 (𝜌⊗𝑛) = 𝑛ℜ𝐴 (𝜌).
Last but not least, to verify the validity of Axiom 7 (flagging), we start withℜ𝐴 (𝜌𝑓 ) =

ln𝑑A − 𝑆 (Φ𝐴 (𝜌𝑓 )) + 𝑆 (𝜌𝑓 ) (see the proof of Lemma 2, Appendix B), with the flagged state

𝜌𝑓 =
∑
𝑖 𝑝𝑖𝜌𝑖 ⊗ |𝑥𝑖〉 〈𝑥𝑖 |. The joint entropy theorem yields 𝑆 (𝜌𝑓 ) = 𝐻 ({𝑝𝑖}) +∑𝑖 𝑝𝑖𝑆 (𝜌𝑖), where

𝐻 ({𝑝𝑖}) = −∑𝑖 𝑝𝑖 ln𝑝𝑖 is the Shannon entropy of the distribution 𝑝𝑖 [107]. Direct calculations

gives ℜ𝐴 (𝜌𝑓 ) =
∑
𝑖 𝑝𝑖ℜ𝐴 (𝜌𝑖) with ℜ𝐴 (𝜌𝑖) = ln𝑑A − 𝑆 (Φ𝐴 (𝜌𝑖)) + 𝑆 (𝜌𝑖), which proves the point.

With all that, it becomes established that the quantifier (6.4) does indeed satisfy Definition 6

and can hereafter be called a reality measure.
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Referring back to Axiom 2, it is worth discussing how the reality measure (6.4)

changes upon monitoring maps [Eq. (5.4)]. First, because the reality measure respects Axiom 5

(mixing), which ultimately is a statement of concavity, one can readily show thatℜ𝐴 (M𝜖
𝐴 (𝜌)) �

(1 − 𝜖)ℜ𝐴 (𝜌) + 𝜖 ℜ𝐴 (Φ𝐴 (𝜌)). Then, by use of Eq. (6.5) we arrive at

ℜ𝐴
(M𝜖

𝐴 (𝜌)
) −ℜ𝐴 (𝜌) � 𝜖 ℑ𝐴 (𝜌) . (6.8)

This shows that a monitoring of 𝐴 always increases the 𝐴 reality as long as there is a nonzero

amount of 𝐴 irreality [40]. Second and more surprising, it turns out that the monitoring of an

observable 𝑌 ∈ 𝔅(HA) never diminishes the reality of another observable 𝑋 ∈ 𝔅(HA). That
is stated by the following lemma:

Lemma 4. Consider observables 𝑋,𝑌 ∈ 𝔅(HA) and the von Neumann reality quantifier (6.4). If

Φ𝑋𝑌 = Φ𝑌𝑋 , then the monitoring of 𝑌 never decreases the reality of 𝑋 , that is,

Δ � ℜ𝑋 (M𝜖
𝑌 (𝜌)) −ℜ𝑋 (𝜌) � 0, ∀𝜖 ∈ [0, 1] . (6.9)

This is one of the main results of Ref. [40], but the reader can find a simpler alternative proof

of it based on DPI and mixing in Appendix B. Notice that inequality 6.9 generalizes Axiom 2.

Finally, it is worth noticing that the so-called local irreality, ℑ𝐴 (𝜌A) = 𝑆
(
Φ𝐴 (𝜌A))−

𝑆 (𝜌A), which relates to irreality through the formula ℑ𝐴 (𝜌) = ℑ𝐴 (𝜌A)+𝐷𝐴 (𝜌) [see Eq.(1.121)],
is nothing but the measure known as relative entropy of coherence [184], which has been

acknowledged as a quantum resource [113]. This shows that quantum irrealism is induced

by both types of “quantumness”, namely, quantum coherence and quantum correlations. In

particular, in the absence of correlations, one has ℑ𝐴 (𝜌A ⊗ 𝜌B) = ℑ𝐴 (𝜌A), showing that

coherence is sufficient to preclude classical reality. Within the coherence theory of multipartite

settings, the irreality ℑ𝐴 (𝜌) turns out to be equivalent to the concept known as quantum-

incoherent relative entropy [185]. These connections between quantum irrealism and quantum

coherence measures just reinforce that ℑ𝐴 (𝜌) is a sensible quantifier of the former concept,

for quantum superposition (coherence) is the fundamental mechanism responsible for the

departure of the natural behavior from classical reality.

6.1.2 Rényi reality monotones

We now derive a reality quantifier based on the non-optimized conditional infor-

mation (4.63a). Because this quantity and the von Neumann relative entropy share properties

such as positive definiteness, unitary invariance, and additivity, we can rigidly follow the steps

of the precedent section, which amounts to use Theorem 7 and Axiom 1, to directly propose

the Rényi reality quantifier

ℜ𝛼↓
𝐴 (𝜌) = ln𝑑A − 𝐷𝛼 (𝜌 | |Φ𝐴 (𝜌)) , (6.10)



105

for 𝛼 ∈ (0, 1)∪ (1, +∞). Since lim𝛼→1ℜ
𝛼↓
𝐴 (𝜌) = ℜ𝐴 (𝜌) for any 𝜌 and𝐴, we have here an evident

generalization of (6.4) within the Rényi quantum information theory. Inspired by the results

of the previous section, we have chosen ℜmax
A = ln𝑑A to make the quantity (6.10) always

non-negative (in particular, for 𝛼 → 1).

As we show now, the quantifier (6.10) is a reality monotone only in the restricted

range 𝛼 ∈ (0, 1). Axioms 2 and 3(a) are satisfied whenever DPI is valid, in this case, for

𝛼 ∈ (0, 1) ∪ (1, 2]. Axioms 3(b) and 4 are validated by additivity and positive definiteness,

respectively. Axiom 5, however, only holds when 𝐷𝛼 is jointly convex, that is, for 𝛼 ∈ (0, 1).
This significantly restricts the domain whereinℜ𝛼

𝐴 can be termed a reality monotone. Although

additivity guarantees the Axiom 6 to be respected by the monotone (6.10), there is no answer

yet as to whether or not 𝐷𝛼 satisfies flagging. Only in the affirmative case we could regard ℜ𝛼
𝐴

as a reality measure for 𝛼 ∈ (0, 1).
Since the Rényi divergence is a monotonically increasing real function of 𝛼 , for all

𝛼 > 0 and fixed density operators [90], the reality measure (6.10) is a monotonically decreasing

real function of its parameter, meaning that

ℜ𝛼↓
𝐴 (𝜌) � ℜ𝛽↓

𝐴 (𝜌) (6.11)

for real non-negative numbers 𝛼 � 𝛽 . This entails that if ℜ𝛽↓
𝐴 (𝜌) = ln𝑑A for some 𝛽 � 0,

meaning that 𝜌 = Φ𝐴 (𝜌), then ℜ𝛼↓
𝐴 (𝜌) = ln𝑑A for every 𝛼 � 𝛽 . If, in addition, 𝛽 → 1, then all

Rényi reality monotones will numerically reach the maximum ln𝑑A . Therefore, although Rényi

reality monotones with different parameters 𝛼 disagree in value when applied to non-real

observables (those for which ℜ𝛼↓
𝐴 (𝜌) < ln𝑑A), they do always agree about states of reality (see

Example 13 and respective Fig. 25 below).

One of the consequences of the positive definiteness property—which does not hold

when we use the min-relative entropy—is that ℜ𝛼↓
𝐴 (𝜌) = 0 if and only if 𝜌 =

∑
𝑖 𝑝𝑖𝐴𝑖 ⊗ 𝜌B|𝑖 =

Φ𝐴 (𝜌), which is a classical-quantum state with zero one-sided quantum discord. This means

that the lack of quantum correlations is a condition necessary for the occurrence of at least

one element of reality. On the other hand, classical reality manifests itself for the preparation

𝜌 = (�A/𝑑A) ⊗ 𝜌B , since in this case we have ℜ𝛼↓
𝐴 (𝜌) = ln𝑑A for any 𝐴.

Next, we present some case studies.

Example 12. Let 𝜌𝜖 ∈ 𝔅(HA ⊗ HB) be the Werner state

𝜌𝜖 = (1 − 𝜖)�
4
+ 𝜖 𝜓𝑠, (6.12)

where 𝜖 ∈ [0, 1], 𝜓𝑠 = |𝜓𝑠〉 〈𝜓𝑠 |, and |𝜓𝑠〉 = ( |01〉 − |10〉)/√2 is the singlet state. To assess the

reality degree of the spin observable 𝐴 = 𝑢 · �𝜎 acting on HA , with �𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) being the

Pauli vector, we take the projectors𝐴± = (�A ±𝑢 · �𝜎)/2 with 𝑢 = (cos𝜃 sin𝜙, sin𝜃 sin𝜙, cos𝜙)
and then compute the 𝐴-reality state Φ𝐴 (𝜌𝜖) = 𝐴+𝜌𝜖𝐴+ +𝐴−𝜌𝜖𝐴−. Because 𝜌𝜖 is rotationally
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Figure 24 – Reality measure (dash-dotted green line) and Rényi monotonesℜ𝛼↓
𝐴 (𝜌𝜖 ) for any spin observ-

able 𝐴 of the first qubit of a Werner state [Eq. (6.12)] as a function of the purity parameter
𝜖 (as introduced in Example 12) for: 𝛼 = 1/8 (solid black line), 𝛼 = 1/4 (dashed blue line),
𝛼 = 1/2 (dotted red line), and 𝛼 → 1 (dash-dotted green line).

invariant, it commutes with Φ𝐴 (𝜌𝜖) and we have 𝐷𝛼 (𝜌𝜖 | |Φ𝐴 (𝜌𝜖)) = 𝐷𝛼 (𝜌𝜖 | |Φ𝐴 (𝜌𝜖)) for 𝛼 ∈
(0, 1) ∪ (1, +∞). Therefore, both the original and the sandwiched Rényi divergences can be

used within the range 𝛼 ∈ (0, 1) to provide a reality monotone for the Werner state. By direct

calculation of ℜ𝛼↓
𝐴 (𝜌𝜖) = ln 2 − 𝐷𝛼 (𝜌𝜖 | |Φ𝐴 (𝜌𝜖)) we find

ℜ𝛼↓
𝐴 (𝜌𝜖) = ln 2 − ln

[ (1 − 𝜖)𝛼 + (1 + 3𝜖)𝛼
4(1 + 𝜖)𝛼−1 + 1 − 𝜖

2

] 1
𝛼−1

. (6.13)

Note that the special cases

lim
𝛼→0

ℜ𝛼↓
𝐴 (𝜌𝜖) =

{
ln 2 if 𝜖 ∈ [0, 1) ,
0 if 𝜖 = 1,

(6.14a)

lim
𝛼→+∞ℜ𝛼↓

𝐴 (𝜌𝜖) = ln 2 − ln

(
1 + 3𝜖

1 + 𝜖
)
, (6.14b)

do not constitute reality monotones, since they do not satisfy Axioms 2 and 5, respectively.

See Appendix C.2.1 for the technical details on how to calculate the Rényi divergences when

𝛼 → 0 and +∞. As we can see in Fig. 24, the monotonicity property (6.11) is verified. Also, since

the Rényi monotone is concave (due to the mixing axiom) and ℜ𝛼↓
𝐴 (𝜓𝑠) = 0, then ℜ𝛼↓

𝐴 (𝜌𝜖) �
(1 − 𝜖) ln 2. This result manifests itself in Fig. 24 through the concavity of the curves, a feature

that is not respected by the convex function (6.14b). �

Example 13. Let us consider now the one-parameter two-qubit state 𝜌𝜇 ∈ 𝔅(HA ⊗ HB) defined
as

𝜌𝜇 =
�

4
+ 𝜇

4

(
𝜎𝑥 ⊗ 𝜎𝑥 − 𝜎𝑦 ⊗ 𝜎𝑦

) + 2𝜇 − 1

4
𝜎𝑧 ⊗ 𝜎𝑧, (6.15)

where 𝜇 ∈ [0, 1]. This state is such that 𝜌𝜇=1 = |𝜑〉 〈𝜑 |, with |𝜑〉 ≡ (|00〉 + |11〉)/√2, and
𝜌𝜇=0 = ( |01〉 〈01| + |10〉 〈10|)/2. Unlike the previous example, for the observable 𝐴 = 𝑢 · �𝜎 it
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Figure 25 – Reality monotones ℜ𝛼↓
𝐴 (𝜌𝜇) of the spin observable 𝐴 = 𝑢 · �𝜎 , where 𝑢 =

(cos𝜃 sin𝜙, sin𝜃 sin𝜙, cos𝜃 ), regarding the first qubit of the 𝜌𝜇 state (6.15) as a function of
𝜇 as introduced in Example 13 for any 𝜃 and (a) 𝜙 = 0, (b) 𝜙 = 𝜋/4, and (c) 𝜙 = 𝜋/2 and for
(from top to bottom): 𝛼 = 1/8 (solid black line), 𝛼 = 1/4 (dashed blue line), 𝛼 = 1/2 (dotted
red line), and 𝛼 → 1 (dash-dotted green line).

follows that 𝜌𝜇 does not always commute with Φ𝐴 (𝜌𝜇). Indeed, our calculations show that

ℜ𝛼↓
𝐴 (𝜌𝜇) (whose lengthy and non-enlightening expression will be omitted) depends on the polar

angle 𝜙 , as shown in Fig. 25. Again, the monotonicity relation (6.11) makes itself clear. Also,

numerical simulations show that in this case a reality monotone based on 𝐷𝛼 for 𝛼 ∈ [1/2, 1)
behaves very similarly to what is presented in Fig. 25. �

Now we turn our attention to the optimized version (4.63b) of the Rényi conditional

information. Here the derivation of a reality monotone becomes subtler because the optimiza-

tion process does not keep a unique and straightforward connection with the self-contained

dynamical scenario prescribed by Axiom 1. Still, some potential candidates can be proposed.

Let us consider again the initial state 𝜐0. Plugged into Eq. (4.63b), it yields

𝐼𝛼↓E|S (𝜐0) = inf
𝜎S

𝐷𝛼

(
𝜌 ⊗ |𝑒0〉 〈𝑒0 |

������𝜎S ⊗ �E
𝑑E

)
= ln𝑑E, (6.16)

where we have used additivity and inf𝜎S 𝐷𝛼 (𝜌 | |𝜎S) = 0. By applying𝑈𝑡 , we find

𝐼𝛼↓E|S (𝜐𝑡 ) = inf
𝜎S

𝐷𝛼

(
𝜐𝑡

������𝜎S ⊗ �E
𝑑E

)
. (6.17)

As before, we assume that 𝑈𝑡 is such that 𝜌𝑡 = Tr E (𝜐𝑡 ) = Φ𝐴 (𝜌). With that, we obtain

ℜ𝛼↑
𝐴 (𝜌𝑡 ) = ℜmax

A = ln𝑑A and, via Axiom 1,

ℜ𝛼↑
𝐴 (𝜌) = ln𝑑 − inf

𝜎S
𝐷𝛼

(
𝜐𝑡

������𝜎S ⊗ �E
𝑑E

)
, (6.18)

where 𝜐𝑡 = 𝑈𝑡 (𝜌 ⊗ |𝑒0〉 〈𝑒0 |)𝑈 †
𝑡 , 𝑑 = 𝑑A𝑑E , and 𝑑E = 𝑑A . That this quantifier is indeed a reality

monotone for 𝛼 ∈ (0, 1) (when ℜ𝛼↓
𝐴 is too) is demonstrated by Proposition 1 in Appendix B. A

disadvantage of ℜ𝛼↑
𝐴 in comparison with ℜ𝛼↓

𝐴 is the presence of the environment state |𝑒0〉 and
the observable-dependent unitary operator 𝑈𝑡 , whose formal structure is provided in the proof

of Theorem 7 (Appendix B). What is more, the optimization process may be impracticable,
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Figure 26 – Differences ℜ↑𝛼
𝐴 (𝜌𝜖 ) − ℜ↓𝛼

𝐴 (𝜌𝜖 ) for the Werner state (6.12) as a function of the purity
parameter 𝜖 ∈ (0, 1) and 𝛼 ∈ (0, 1). The maximum difference, ∼ 0.0044, is reached when
(𝛼, 𝜖) ∼ (0.24, 0.89).

specially if the sandwiched Rényi divergence 𝐷𝛼 is used instead of 𝐷𝛼 . Interestingly, however,

by use of the quantum Sibson identity (see supplemental material of Ref. [186]), we obtain the

closed form

inf
𝜎B

𝐷𝛼 (𝜌 | |�A ⊗ 𝜎B) = 𝛼

𝛼 − 1
ln Tr B

{
[TrA (𝜌𝛼 )]1/𝛼

}
, (6.19)

which allows us to simplify Eq. (6.18) as

ℜ𝛼↑
𝐴 (𝜌) = ln𝑑A − 𝛼

𝛼 − 1
ln TrA

{[
Tr E

(
𝜐𝛼𝑡
) ]1/𝛼 }

, (6.20)

for 𝛼 ∈ (0, 1). An example is opportune.

Example 14. Computing the monotone (6.20) for the Werner state (6.12) yields the result

ℜ𝛼↑
𝐴 (𝜌𝜖) = ln 2 − 𝛼

𝛼−1 ln 𝜒 , where

𝜒 =
1 − 𝜖

2
+
[ (1 + 𝜖)𝛼 + (1 + 3𝜖)𝛼

2𝛼+1

]1/𝛼
(6.21)

and 𝛼 ∈ (0, 1). Figure 26 illustrates the slight differences between the monotones (6.20) and

(6.10), which always respect ℜ𝛼↑
𝐴 (𝜌𝜖) � ℜ𝛼↓

𝐴 (𝜌𝜖), as expected. �

Roughly speaking, the divergences in Eq. (6.18) evaluate the “minimum distance”

(according to an “entropic metric”) between the time evolved state𝜐𝑡 and the product𝜎S⊗�E/𝑑E .
One might argue, however, that it would be more reasonable to run the optimization, at every

instant of time, within a set more closely related with the reduced state Tr E (𝜐𝑡 ), which is

strictly confined to the dynamics imposed by𝑈𝑡 . Adhering to this rationale, we start over by
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proposing the following adaptation in the optimized conditional information (4.63b):

𝐼𝛼↓E|S (𝑈𝑡𝜐0𝑈
†
𝑡 ) = inf

𝜎S
𝐷𝛼

(
𝑈𝑡𝜐0𝑈

†
𝑡

������Tr E (𝑈𝑡𝜂0𝑈
†
𝑡

)
⊗ �E
𝑑E

)
. (6.22)

where 𝜂0 = 𝜎S ⊗ |𝑒0〉 〈𝑒0 | and 𝜎S ∈ 𝔅(HS). For 𝑡 = 0 we see that no significant change is

implied to the original definition. By use of additivity and 𝜐0 = 𝜌 ⊗ |𝑒0〉 〈𝑒0 |, we easily obtain

𝐼𝛼↓E|S (𝜐0) = ln𝑑E . Nevertheless, for 𝑡 > 0 the optimization runs only over the initial state 𝜎S . This
preserves the dynamics imposed by𝑈𝑡 and avoids any artificial freedom that would otherwise

be tested throughout the minimization process. Noticing that Tr E
(
𝑈𝑡𝜂0𝑈

†
𝑡

)
= Φ𝐴 (𝜎S), we

can employ Theorem 7, unitary invariance, and additivity to show that 𝐼𝛼↓E|S (𝜐𝑡 ) = ln𝑑E +
inf𝜎S 𝐷𝛼 (𝜌 | |Φ𝐴 (𝜎S)). Employing Axiom 1 with ℜ̄𝛼

𝐴 (𝜌𝑡 ) = ln𝑑A gives

ℜ̄𝛼
𝐴 (𝜌) = ln𝑑A − inf

𝜎S
𝐷𝛼 (𝜌 | |Φ𝐴 (𝜎S)) . (6.23)

This is exactly the result we would obtain by restricting the optimization in Eq. (6.18) to the set

of 𝐴-reality states, that is, the one constituted by states satisfying 𝜎S = Φ𝐴 (𝜎S).
From the discussion conducted up until now, one can conclude that

ℜ𝛼↓
𝐴 (𝜌) � ℜ̄𝛼

𝐴 (𝜌) � ℜ𝛼↑
𝐴 (𝜌) . (6.24)

This is not to say, however, that we have mathematical evidence that ℜ̄𝛼
𝐴 and ℜ𝛼↓

𝐴 are distinct

quantities. On the contrary, we do have evidence that they are equal when 𝛼 → 1. To show this,

we use Lemma 1 to obtain 𝐷 (𝜌 | |Φ𝐴 (𝜎S)) = 𝐷 (𝜌 | |Φ𝐴 (𝜌)) + 𝐷 (Φ𝐴 (𝜌) | |Φ𝐴 (𝜎S)), which gives

inf𝜎S 𝐷 (𝜌 | |Φ𝐴 (𝜎S)) = 𝐷 (𝜌 | |Φ𝐴 (𝜌)). This readily implies that, ℜ̄𝛼
𝐴 = ℜ𝛼↓

𝐴 as 𝛼 → 1. Although

we expect for the definitive solution to this problem, we can safely announce the Rényi reality

monotone ℜ𝛼
𝐴 (𝜌) in the form

ℜ𝛼
𝐴 ∈ {ℜ𝛼↓

𝐴 , ℜ̄𝛼
𝐴,ℜ

𝛼↑
𝐴 } (6.25)

for 𝛼 ∈ (0, 1), with their respective formulas (6.10), (6.23), and (6.18), and ℜ𝛼↓
𝐴 thus being a

lower bound for the Rényi 𝐴-reality.

Remark 2. Very similar arguments can be made toward the establishment of reality quantifiers

such as ℜmin
𝐴 , ℜ̃𝐴, and ℜmax

𝐴 . Operationally, they can be directly obtained through the replace-

ment of 𝐷𝛼 in Eq. (6.10) by the respective divergences 𝐷min � lim𝛼→0𝐷𝛼 , 𝐷𝛼 (the sandwiched

Rényi divergence), and 𝐷max � lim𝛼→+∞𝐷𝛼 . The reader can find in Table 4 a summary of

the properties that are satisfied by these divergences and, in Table 5, the axioms respected

by the corresponding reality quantifiers. It turns out, though, that only ℜ̃𝐴 works as a reality

monotone for some values of 𝛼 .

6.1.3 Tsallis reality monotones

Unlike the Rényi divergence (4.45), the Tsallis relative entropy (4.47) is not additive

on its entries. Yet, we show now that it is still possible to construct a reality monotone in this
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information theory. Aiming at accounting for Axiom 1, we employ Theorem 7, unitary invari-

ance, and definitions (4.47) and (4.69) to demonstrate that 𝐼𝑞E|S (𝜐𝑡 ) − 𝐼
𝑞
E|S (𝜐0) = 𝐷𝑞 (𝜌 | |Φ𝐴 (𝜌)),

where 𝜐0 = 𝜌 ⊗ |𝑒0〉 〈𝑒0 |. Now, we note that for 𝜌 = |𝜓 〉 〈𝜓 | ⊗ �B/𝑑B and Φ𝐴 (𝜓 ) = �/𝑑A we

find 𝐷𝑞 (𝜌 | |Φ𝐴 (𝜌)) = 𝑑
𝑞−1
A 𝑆𝑞 (�A/𝑑A), which also manifests the normalization issue. Selecting

a unitary evolution such that ℜ𝑞
𝐴 (𝜌𝑡 ) = ℜ𝑞

𝐴 (Φ𝐴 (𝜌)) = ln𝑞 𝑑A , we then propose the quantifier

ℜ𝑞
𝐴 (𝜌) = ln𝑞 𝑑A − 𝑑

1−𝑞
A 𝐷𝑞 (𝜌 | |Φ𝐴 (𝜌)) , (6.26)

which reduces to its von Neumann counterpart (6.4) as 𝑞 → 1. Table 4, along with the fact

that 𝐷𝑞 (𝜌 ⊗ Ω | |𝜎 ⊗ Ω) = 𝐷𝑞 (𝜌 | |𝜎), shows that likewise the Rényi divergences, 𝐷𝑞 satisfies all

properties necessary for one to validate ℜ𝑞
𝐴 as a reality monotone in the domain 𝑞 ∈ (0, 2]. On

the other hand, even if flagging comes to eventually be proved for the Tsallis reality monotone,

the lack of additivity already guarantees that ℜ𝑞
𝐴 will never be classified as a reality measure.

Check out Table 5 (next landscape-oriented page) for a summary of the axioms

held by the Tsallis reality monotone (6.26) with respect to the parameter 𝑞. Next, we present a

brief case study.

Example 15. Let us take again the Werner state (6.12). A lengthy but direct calculation of (6.26)

yields

ℜ𝑞
𝐴 (𝜌𝜖) = ln𝑞 2 − (1 − 𝜖)𝑞 − 2(1 + 𝜖)𝑞 + (1 + 3𝜖)𝑞

4(𝑞 − 1) [2(1 + 𝜖)]𝑞−1 , (6.27)

for 𝑞 ∈ (0, 1) ∪ (1, 2]. As in Example 12, due to the rotational invariance of the singlet state it

follows that ℜ𝑞
𝐴 (𝜌𝜖) actually is observable independent. See Fig. 27 for numerical illustrations

of the above formula. It can be checked that 𝜕𝑞ℜ
𝑞
𝐴 (𝜌𝜖) � 0, meaning that ℜ𝑞

𝐴 (𝜌𝜖) � ℜ𝑝
𝐴 (𝜌𝜖) for

𝑞 � 𝑝 . �

Figure 27 – Tsallis reality monotone ℜ𝑞
𝐴 (𝜌𝜖 ) for any spin observable 𝐴 of the first qubit of a Werner

state (6.12) as a function of the purity parameter 𝜖 (as introduced in Example 12) for: 𝑞 = 1/2
(solid black line), 𝑞 → 1 (dashed blue line), 𝑞 = 3/2 (dotted red line) and 𝑞 = 2 (dash-dotted
green line).
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6.2 GEOMETRIC QUANTIFIERS

Let us define a geometric measure of conditional information by

𝐼�A|B (𝜌) � 𝑑𝑛�

(
𝜌,
�A
𝑑A

⊗ 𝜌B

)
, (6.28)

where 𝑑� is any of the distances presented in Sec. 4.2.1 and 𝑛 is some power conveniently

chosen. This definition is clearly borrowed from the notion of conditional information with

divergences we presented in Sec. 4.3 and inspired by the work of Roga et al. [111]. Immediately

from the positive definiteness property of distances, we have that

𝐼�A|B (𝜌) = 0 iff 𝜌 =
�A
𝑑A

⊗ 𝜌B . (6.29)

In addition to that, we can expect meaningful measures of conditional information from the

definition (6.28) once we use distances 𝑑𝑛� that respect the contractivity relation (4.29), which

is nothing more than a DPI in the geometrical context. This is the case for the trace distance

and the square of the Bures and the Hellinger distances.

In order to follow Axiom 1, we must obtain the conditional information of the

global states 𝜐0 = 𝜌 ⊗ |𝑒0〉 〈𝑒0 | and 𝜐𝑡 = 𝑈𝑡 (𝜐0)𝑈 †
𝑡 by

𝐼�E|S (𝜐0) = 𝑑𝑛�

(
𝜌 ⊗ |𝑒0〉 〈𝑒0 | , 𝜌 ⊗ �E

𝑑E

)
, (6.30a)

𝐼�E|S (𝜐𝑡 ) = 𝑑𝑛�

(
𝜌 ⊗ |𝑒0〉 〈𝑒0 | ,Φ𝐴 (𝜌) ⊗ �E

𝑑E

)
, (6.30b)

where we have used Theorem 7 in the last equation. Geometric reality quantifiers can be

obtained using the following recipe:

ℜ�𝐴 (𝜌) = ℜmax
𝐴 (�) − Δ𝐼�E|S (𝜐0, 𝜐𝑡 ), (6.31)

whereΔ𝐼�E|S (𝜐0, 𝜐𝑡 ) = 𝐼�E|S (𝜐𝑡 )−𝐼�E|S (𝜐0) is the change in the geometric conditional informational

content. After some algebra (see Appendix C.4), we reach the following four geometric reality

quantifiers:

ℜTr
𝐴 (𝜌) = ℜmax

A (Tr ) −
[
𝑑Tr

(
𝜌,

Φ𝐴 (𝜌)
𝑑E

)
− 𝑑E − 1

𝑑E

]
; (6.32)

ℜHS
𝐴 (𝜌) = ℜmax

A (HS ) − 1

𝑑E
𝑑2HS (𝜌,Φ𝐴 (𝜌)); (6.33)

ℜBu
𝐴 (𝜌) = ℜmax

A (Bu ) − 1√
𝑑E

𝑑2Bu (𝜌,Φ𝐴 (𝜌)); (6.34)

ℜHe
𝐴 (𝜌) = ℜmax

A (He ) − 1√
𝑑E

𝑑2He (𝜌,Φ𝐴 (𝜌)). (6.35)

Note that 𝑑E = 𝑑A . We have chosen 𝑛 = 1 for the reality quantifier based on the trace distance

and 𝑛 = 2 for the other cases. The max valueℜmax
A (�) can be obtained by making 𝜌 a maximally

entangled pure state in each one of the four terms Δ𝐼�E|S . Note that, by Theorem 7, 𝑑E = 𝑑A .
An example can be opportune:



113

0. 1/3 0.5 1.

0.

0.5

2 - 1

0.25

ln 2

Figure 28 – Reality degree ℜ�𝐴 of any spin-1/2 observable regarding the first particle of a Werner state
𝜌𝜖 from Example 16 as a function of 𝜖 for � = von Neumann (black line), Tr (red dashed
line), Bu and He (blue dotted line), and HS (orange dash-dotted line).ℜmax

𝐴 (�) is highlighted
in the vertical axe.

Example 16. Let us see how the reality of an spin-1/2 observable 𝐴 = 𝑣 · �𝜎 regarding the first

particle of the Werner state 𝜌𝜖 = (1 − 𝜖)�4/4 + 𝜖 |𝜓𝑠〉 〈𝜓𝑠 |, where |𝜓𝑠〉 is the singlet state (1.74),
increases with the loss of coherence within the aforementioned quantifiers. The calculations

were made with the help of a software of symbolic computation and the nonenlightening

expressions will be omitted, but the results can be visualized in Fig. 28. As expected for the

Werner state, the reality degree does not depend on the direction of measurement 𝑣 . Notably,

ℜTr
𝐴 violates Axiom 2 for 𝜖 ∈ [0, 1/3], which makes the trace distance unsuitable for reality

quantifiers. It is also important to note that since 𝜌𝜖 commutes with Φ𝐴 (𝜌𝜖), then we have

ℜBu
𝐴 (𝜌𝜖) = ℜHe

𝐴 (𝜌𝜖). �

We can also propose to measure the reality degree of an observable by means of

the 𝐿𝑝-distances (4.33). Such a quantifier could generalize the trace and the Hilbert-Schmidt

realities. However, the expression we have obtained for it does not provide any further insight

[see Eq. (C.55) in Appendix C.4]. Nonetheless, we present in Tab. 6 which axioms we know

that are fulfilled by ℜ𝑝
𝐴.

Let us now investigate which of the seven axioms that we proposed in the last

chapter are satisfied by each one of the four geometric reality quantifiers in Eqs. (6.32)-(6.35).

6.2.1 Trace reality

The Example 16 alone is sufficient to eliminate ℜTr
𝐴 as a candidate to a reality

monotone since Axiom 2 is violated, that is, maximum reality is achieved by other states than

Φ𝐴 (𝜌). Although the trace distance satisfies the positive definiteness property, it emerges in

Eq. (6.32) with one of its entries non-normalized. Because of that, if we chose to maintain

the validity of Axiom 1, we lose Axioms 2 and 4. Nonetheless, the trace distance is invariant

under the addition of an uncorrelated system and it is also jointly convex, therefore satisfying
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Axioms 3(b) and 5. Besides, none of the 𝐿𝑝-distances is additive, so Axiom 6 is not valid. For the

same reason, Yu et al. [187] argued that the trace distance can not be used to provide a proper

coherence measure. Since von Neumann reality can be interpreted as just the complementary of

coherence when 𝜌 ∈ 𝔅(HA), one can argue that the trace reality should do the same. However,

as we have just seen, the trace distance cannot provide adequate quantifiers of reality nor

coherence. Finally, the effectiveness of the flagging axiom remains unknown.

6.2.2 Hilbert-Schmidt reality

Although the Hilbert-Schmidt distance is not contractive under CPTP maps in

general, it becomes contractive under CPTP unital maps, which is the case for projective

measurements Φ𝐴, monitorings M𝜖
𝐴, and partial traces [see the pinching inequality (4.26)].

Also, the square of 𝑑HS remains contractive because 𝑥 ↦→ 𝑥2 is an injective monotonically

increasing function for 𝑥 � 0. Therefore, the Axiom 3(a) of the realistic operations is valid. It is

easy to see that Axioms 2, 4, and 5 are also valid given the positive definiteness and the joint

convexity properties of the 𝐿𝑝-distances. The irrelevance of the uncorrelated [Axiom 3(B)],

however, is not fulfilled because

𝑑2HS (𝜌 ⊗ Ω,Φ𝐴 (𝜌) ⊗ Ω) = ||𝜌 ⊗ Ω − Φ𝐴 (𝜌) ⊗ Ω ||22, (6.36)

= ||𝜌 − Φ𝐴 (𝜌) ||22 ||Ω ||22, (6.37)

> 𝑑2HS (𝜌,Φ𝐴 (𝜌)), (6.38)

if Ω is not pure. This is, in fact, a common issue regarding quantum correlations derived from

the Hilbert-Schmidt distance, as argued by Piani [188]. Having said that, the quantifier ℜHS
𝐴

does not meet the minimum requirements to be considered a reality monotone.

6.2.3 Bures and Hellinger reality monotones

When we choose to keep as true the information-reality complementarity principle,

the Bures and Hellinger distances are the only ones—of the ones we’ve seen so far—that provide

us with at least a reality monotone. Since additivity is far from been reached (mainly because

of the absence of the logarithm), a reality measure can not be obtained from these distances.

An easy way to see that is by realizing that

𝑑2He (𝜌, 𝜎) = 𝐷𝑞= 1
2
(𝜌 | |𝜎), (6.39)

that is, the square of the Hellinger distance (4.37) is equal to the Tsallis relative entropy (4.47)

when 𝑞 = 1/2. As the latter is not additive, the former is not either.

The positive definiteness, the contractivity, and the joint convexity of the Bures

and the Hellinger distances are sufficient features for us to verify that both ℜHe
𝐴 and ℜBu

𝐴 are

indeed reality monotones, satisfying Axioms 1-5. In addition to that, we can also see that

𝑑2Bu (𝜌, 𝜎) = 2 − 2 exp

(
−1
2
𝐷𝛼= 1

2
(𝜌 | |𝜎)

)
, (6.40)
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Figure 29 – Injective increasing relation between 𝑑2Bu and 𝐷𝛼= 1
2
of any pair of quantum states given by

(6.40). Identical behavior for (6.41).

𝑑2He (𝜌, 𝜎) = 2 − 2 exp

(
−1
2
𝐷𝛼= 1

2
(𝜌 | |𝜎)

)
, (6.41)

which means that the Bures and the Hellinger reality monotones can be written as injective

increasing functions of special cases of the Rényi divergences (4.45) and (4.46), precisely when

𝛼 = 1/2. This reaffirms our argument that the Bures and the Hellinger distances provide proper

reality monotones. See Fig. 29 to verify the almost linear behavior of Eqs. (6.40) and (6.41).

The main difference between the Bures and the Hellinger distances is that the

latter is sensitive to the noncommutativity of states. In fact, the role of this feature in the

measurability of the reality of observables is not yet clear to us—which suggests a path of

research in line with the work of Martins et al. [189]. Nevertheless, the reader can get an idea

of how close these quantifiers are to each other by the following example.

Example 17. Let us take again the state 𝜌𝜇 fromExample 13. As before,ℜBu
𝐴 (𝜌𝜇) andℜHe

𝐴 (𝜌𝜇) are
also dependent only on 𝜇 and 𝜙 . The slightly differences between these two reality monotones

due to the noncommutativity between 𝜌𝜇 and Φ𝐴 (𝜌𝜇) can be visualised in Fig. 30. �

Figure 30 – Reality monotones ℜBu
𝐴 (black line) and ℜHe

𝐴 (red dashed line) of a spin-1/2 observable
𝐴 = 𝑣 · �𝜎 , where 𝑣 = (cos𝜃 sin𝜙, sin𝜃 sin𝜙, cos𝜙), regarding the first qubit of the state 𝜌𝜇
for (a) 𝜙 = 0, (b) 𝜙 = 𝜋/4, and (c) 𝜙 = 𝜋/2.
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ℜTr
𝐴 ℜHS

𝐴 ℜ𝑝
𝐴 ℜBu

𝐴 ℜHe
𝐴

Axiom 1 (information flow) � � � � �

Axiom 2 (measurements) � � ? � �

Axiom 3(a) (part discard) � � ? � �

Axiom 3(b) (uncorrelated part) � � � � �

Axiom 4 (uncertainty relation) � � ? � �

Axiom 5 (mixing) � � � � �

Axiom 6 (additivity) � � � � �

Axiom 7 (flagging) ? ? ? ? ?

Table 6 – Summary of the axioms satisfied by the𝐴-reality quantifiersℜTr
𝐴 [Eq. (6.32)],ℜHS

𝐴 [Eq. (6.33)],
ℜ𝑝
𝐴, ℜ

Bu
𝐴 [Eq. (6.34)], and ℜHe

𝐴 [Eq. (6.35)] built out of their corresponding distance measures
𝑑Tr , 𝑑2HS , 𝑑

𝑝
𝑝 (for finite 𝑝 > 1 and 𝑝 ≠ 2), 𝑑2Bu , and 𝑑

2
He , whose properties are listed in Table 3.

Our approach legitimates just two geometric reality monotones, namely, ℜBu
𝐴 and ℜHe

𝐴 .

In short, the takeaway message is as follows. In our search for genuinely geometric

quantifiers for the violation of the BA’s realism hypothesis, we ended up encountering precisely

the monotones related to the Rényi and the Tsallis divergences that are symmetrical in their

inputs (𝑞 = 𝛼 = 1/2), that is, divergences that are also genuine metrics. It is possible that these

conclusions are directly related to the informational nature of entropy, which in turn is strictly

necessary for us to maintain the validity of Axiom 1. The reader can find a summary of our

findings in Tab. 6.

6.3 TAKEAWAY MESSAGE

• Our axiomatic approach to quantum realism recovers BA’s original reality measure from

von Neumann entropy;

• Reality is not equivalent to incoherence because

ℜ𝐴 (𝜌) = ln𝑑A − ℑ𝐴 (𝜌A)︸��������������︷︷��������������︸
incoherence

− 𝐷𝐴 (𝜌) .︸��︷︷��︸
correlations

(6.42)

• Rényi and Tsallis entropies provide reality monotones only for restricted parameter

ranges;

• Within the explored distances, only those that are also quantum divergences can provide

reality monotones, namely, Bures and Hellinger distances.
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7 A TALK ON QUANTUM DARWINISM

This is our final chapter of results. Here, we show a logical implication between

the objective reality of QD and the BA’s realism hypothesis for qubit systems. This result is not

yet submitted for publication.

As we saw in the introduction, QD [31] is a framework used to describe the emer-

gence of objective physical reality from the quantum world. According to that view, the system

of interest interacts with different fragments of the environment and, in this way, encodes

partial information about itself in them. The pointer state that is most reproduced in the envi-

ronment is what emerges as the objective physical reality once it is capable of being accessed

by several observers without them interfering with the system. Inspired by a recent paper [35],

we are going to show that this process logically implies BA’s realism hypothesis—at least for

qubits.

First, let us model our system (see Fig. 31). Let H = HS ⊗ HE , such that HS =

HA ⊗ HB and HE =
⊗𝑁

𝑘=1HE𝑘 , with HA containing 1 qubit and HE containing 𝑁 qubits.

Note that the fragment F𝑚 of the environment E is constituted by HF𝑚 =
⊗𝑚

𝑘=1HE𝑘 , with

𝑚 � 𝑁 . As in the proof of Theorem 7, let𝑈 be the unitary operator

𝑈 ≡

������
1 0 0 0

0 1 0 0

0 0 𝑠 𝑐

0 0 −𝑐 𝑠


������
(7.1)

henceforth called c-maybe gate, where 𝑠2 + 𝑐2 = 1. If 𝑠 = 0, than 𝑈 is the standard c-not gate. It

is possible to write

𝑈 =
1∑
𝑖=0

𝑃𝑖 ⊗ 𝑇𝑖 (7.2)

where 𝑃𝑖 = 𝐴𝑖 ⊗ �B , 𝑇0 = �E1 , and 𝑇1 = 𝜎𝑠,𝑐 ≡
(
𝑠 𝑐

−𝑐 𝑠

)
. In particular, if 𝑠 = 0, than 𝜎𝑠,𝑐 becomes

the Pauli matrix 𝜎𝑥 . Thus,

𝑈 = 𝑃0 ⊗ �E1 + 𝑃1 ⊗ 𝜎𝑠,𝑐 . (7.3)

Observe that 𝜎𝑠,𝑐 |0〉 = 𝑠 |0〉 + 𝑐 |1〉 e (𝜎𝑠,𝑐)2 = �E1 . Therefore, we can write the following useful

term

〈0|𝑇𝑖𝑇𝑗 |0〉 = 𝑠 + 𝛿𝑖 𝑗 (1 − 𝑠) . (7.4)

Now, let us see what happens when the system interact with just 1 qubit from the

environment. Let us take 𝜌SE1 (0) = 𝜌 ⊗ |01〉 〈01 | in a 1 + 1-qubit space. With that,

𝜌SE1 (𝑡) = 𝑈𝜌SE1 (0)𝑈 † =
∑
𝑖 𝑗

𝑃𝑖𝜌𝑃𝑗 ⊗ 𝑇𝑖 |01〉 〈01 |𝑇𝑗 . (7.5)
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Figure 31 – A system S composed by just 1 qubit interacts with𝑚 qubits in the environment E through
a c-maybe gate𝑈 . Figure source: A. Touil, Eavesdropping on the Decohering Environment:

Quantum Darwinism, Amplification, and the Origin of Objective Classical Reality, Online
workshop: Quantum Boundaries 2021, https://youtu.be/pNwBGwYF0Go (visited
on 10/14/2021).

By tracing out the fragment E1 of the environment (which turns out to be the whole environ-

ment), we obtain

Tr E1

[
𝜌SE1 (𝑡)

]
=
∑
𝑖 𝑗

𝑃𝑖𝜌𝑃𝑗 〈0|𝑇𝑖𝑇𝑗 |0〉 , (7.6)

=
∑
𝑖 𝑗

𝑃𝑖𝜌𝑃𝑗 [𝑠 + 𝛿𝑖 𝑗 (1 − 𝑠)], (7.7)

= 𝑠
∑
𝑖 𝑗

𝑃𝑖𝜌𝑃𝑗 + (1 − 𝑠)
∑
𝑖

𝑃𝑖𝜌𝑃𝑖, (7.8)

= 𝑠𝜌 + (1 − 𝑠)Φ𝐴 (𝜌), (7.9)

= M𝜖=1−𝑠
𝐴 (𝜌) . (7.10)

As we can see here, the c-maybe operator written in the eigenbasis of 𝐴 is precisely the unitary

evolution that results in a monitoring of 𝐴 with intensity 𝜖 = 1 − 𝑠 after we trace out the

environment.

Let us remember that the premise behind QD is the redundancy of information

about the system that is codified in several degrees of freedom of a structured environment. Let

𝜌SF𝑚 (0) be the initial state of the system S plus the fragment F𝑚 of the environment such that

𝜌SF𝑚 (0) = 𝜌 ⊗
𝑚⊗
𝑘=1

|0𝑘〉 〈0𝑘 | . (7.11)

Now, let𝑈 (𝑘) be the c-maybe gate that acts over the pair SE𝑘 . Therefore, we obtain (see the
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calculations in Appendix C.5)

𝜌SF𝑚 (𝑡) = 𝑈 (𝑚)𝑈 (𝑚−1) · · ·𝑈 (2)𝑈 (1)
[
𝜌

𝑚⊗
𝑘=1

|0𝑘〉 〈0𝑘 |
]
𝑈 (1)𝑈 (2) · · ·𝑈 (𝑚−1)𝑈 (𝑚), (7.12)

=
∑
𝑖 𝑗

𝑃𝑖𝜌𝑃𝑗

𝑚⊗
𝑘=1

𝑇𝑖 |0𝑘〉 〈0𝑘 |𝑇𝑗 . (7.13)

The above equation is the entangled state that represents the situation found at the end of the

experiment depicted in Fig. 31. By tracing out the whole fragment F𝑚 , we obtain

Tr F𝑚
(
𝜌SF𝑚

)
=
∑
𝑖 𝑗

𝑃𝑖𝜌𝑃𝑗
[
𝑠 + 𝛿𝑖 𝑗 (1 − 𝑠)]𝑚 , (7.14)

=
∑
𝑖

𝑃𝑖𝜌𝑃𝑖 + 𝑠𝑚
∑
𝑖≠ 𝑗

𝑃𝑖𝜌𝑃𝑗, (7.15)

= Φ𝐴 (𝜌) + 𝑠𝑚
∑
𝑖

𝑃𝑖𝜌𝑃𝑖 − 𝑠𝑚
∑
𝑖

𝑃𝑖𝜌𝑃𝑖 + 𝑠𝑚
∑
𝑖≠ 𝑗

𝑃𝑖𝜌𝑃𝑗, (7.16)

= (1 − 𝑠𝑚)Φ𝐴 (𝜌) + 𝑠𝑚𝜌, (7.17)

where we have used the useful term (7.4). By summoning Eq. (18) from Ref. [40], that is,[M𝜖
𝐴

]𝑚 (𝜌) = (1 − 𝜖)𝑛𝜌 + [1 − (1 − 𝜖)𝑛]Φ𝐴 (𝜌), (7.18)

we have that

Tr F𝑚
(
𝜌SF𝑚

)
=
[M𝜖=1−𝑠

𝐴

]𝑚 (𝜌) . (7.19)

The above equation is really a significant and even intuitive result. Each weak interaction

with some part of the environment produces one more monitoring over the system. This

process clearly increases the degree of reality, since monitorings are realistic operations (see

Definition 4).

A closer look on (7.18) also give us that
[M𝜖

𝐴

]𝑚 (𝜌) = M1−(1−𝜖)𝑚
𝐴 (𝜌) [40]. Having

said that, when several observers access the information about 𝜌 through a huge fragment F𝑚
of the environment, i.e.,𝑚 → +∞, we obtain

lim
𝑚→+∞

[M𝜖=1−𝑠
𝐴

]𝑚 (𝜌) = Φ𝐴 (𝜌), (7.20)

since 0 � 𝜖 � 1. This configures BA’s realism hypothesis from a Darwinist perspective, that

is, the objective reality achieved through the redundant codification of information about the

state of the system in different fragments of the environment implies the full reality of the

observable𝐴 given 𝜌—at least for 1+𝑚 qubits. Moreover, no matter how weak is the interaction

between system and environment, if the system finds enough parts of the environment to

redundantly codify its information, it can always become as real as it wants.

The theory of QD does not determine, a priori, the size of the environment nor

for how many observers the information about the system should be available. Here, we use
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‘infinite’ observers as a mathematical tool, a synonym for ‘many’. Depending on the quality

of the c-maybe gate (parameter 1 − 𝑠 = 𝜖), few fragments may be necessary for the state to

approach Φ𝐴 (𝜌) in such a way that the experimental apparatus is incapable to discern it from[M𝜖
𝐴

]𝑚 (𝜌). However, if we want the system to present objective reality to more observers,

more fragments must be needed so that, in the limit, we must stick to Eq. (7.20).

Unquestionably, there is an urgent need to make a clearer connection between

BA’s reality hypothesis and the objective reality of QD. Proposals such as Spectrum Broadcast

Structures and Strong Quantum Darwinism [191] seem to be promising starting points of

investigation since more specifications are presented in these frameworks.

7.1 TAKEAWAY MESSAGE

• The emergence of objective reality according to Quantum Darwinism that results from

the interaction, albeit weak, of the system of interest with infinite fragments of the

environment implies the reality hypothesis of BA for systems of qubits, i.e., it results in

Φ𝐴 (𝜌) = 𝜌 .
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8 CONCLUDING REMARKS ON PART II

Inspired by a significant amount of theoretical and experimental works regarding

the emergence of classicality from the quantum substratum [31, 35–44, 192–194], here we have

proposed an axiomatization for the concept of quantum realism. This notion is different from

classical reality in a very fundamental manner, namely, non-commuting observables cannot be

simultaneous elements of reality in general (Axiom 4).

Our core premise, implemented via Axiom 1, is the one permeating the aforemen-

tioned literature: an observable 𝐴 emerges as an element of the physical reality only when

another degree of freedom encodes information about it. By its turn, Axiom 2 highlights the

role of measurements to quantum realism. In full consonance with Axiom 1—for measurements

can be viewed as dynamical processes through which an apparatus get to know about the

measured observable—the second axiom can yet be used, along with the Stinespring theorem

[Eq. (5.6)], as a necessary criterion for one to decide when a measurement is concluded. The

rationale is that we do not expect a measurement to have been finished before the establishment

of reality, that is, before the instant 𝑡 at which 𝜌𝑡 = Φ𝐴 (𝜌) and hence ℜ𝐴 (𝜌𝑡 ) = ℜmax
A . The

role of large environments in this respect then consists of ensuring the irreversibility of the

measurement. Axioms 3 and 5 complete the list of reasonable assumptions for a functional

ℜ𝐴 (𝜌) to be named a reality monotone, while Axioms 6 and 7 are additional conditions le-

gitimating a reality measure. However debatable our list of axioms may be, it furnishes an

intuitive “metric independent” characterization of quantum realism, thus framing the concept

in a formal structure. Moreover, as we have explicitly demonstrated (see Tables 5 and 6 for an

overview), sensible reality monotones and a reality measure can be built by use of information

theoretic quantities associated with the von Neumann, Rényi, and Tsallis entropies, as well

as, the Bures and Hellinger distances. Regarding the latter, we have found that they are also

quantum divergences and therefore carry informational properties within. This is probably the

reason why the Bures and Hellinger distances provide reality monotones, unlike the trace and

Hilber-Schmidt distances.

At least two technical questions are left open for future research with respect to

the reality monotones and measures. The first one concerns the completion of the last line of

Table 5, as well as, the last line and third column of Table 6. Indeed, the concept of flagging has

been introduced only recently and formal results in this regard are still lacking for the Rényi

and Tsallis divergences and the explored distances. Second, the computational advantage of

using geometric measures such as the Bures and Hellinger distances in calculating reality still

lacks evidence. Yet, the paths in this line were open.

With regard to resource theories, although some evidences have been put forward

suggesting that the 𝐴-irreality, ℑ𝐴 (𝜌) = ln𝑑A −ℜ𝐴 (𝜌), can be viewed as a quantum resource
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[44], it would be interesting to have at hand a concrete information task wherein this concept

configures a clear advantage in relation to contexts involving the 𝐴-reality state Φ𝐴 (𝜌).
Another relevant contribution of this thesis is the fact that we started a conversation

between Quantum Realism and Quantum Darwinism. The presence of an element of reality

for a given observable according to BA is guaranteed whenever the system of interest is

correlated with infinite different fragments of the environment—no matter the strength of the

interaction. It remains unclear, however, whether the opposite implication is true. A cursory

analysis points to a negative answer. As a counterexample, we can go back to the lightweight

double-slit experiment and verify that the particle contains an element of physical reality for

its position even though it is correlated only with a single system, in this case, the lightweight

slit. Therefore, we have Φ𝐴 (𝜌) = 𝜌 without the redundancy of information required by QD.
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9 FINAL COMMENTS

This thesis explores a notion of physical reality in the context of quantummechanics

in several ways. Here, we use the term “Quantum” Realism as opposed to “Classical” Realism.

Our intention with this is to emphasize that, in quantum systems, the notion that “all physical

quantities are well defined all the time independent of observers” falls apart. Of course, if

we follow an interpretation of quantum mechanics that assumes that there are well-defined

trajectories all the time for an electron around a nucleus (as is the case with Bohmianmechanics),

then our nomenclature would need to be reformulated. Still, BA’s equation given by Φ𝐴 (𝜌) = 𝜌

may or may not be violated depending on the system under scrutiny—and that does not depend

on the interpretation of quantum mechanics chosen by the reader.

In Part I, when we explored quantum walkers, we got in touch with the notion

that quantum correlations prevent local elements of reality. This is clear at the beginning of

Sec. 2.5.5 by the relation ℑ𝐴 (𝜌𝜖𝑡 ) = 𝐷𝑆1 (𝜌𝜖𝑡 ). As locally the spins of the walkers are given by

completely incoherent states (i.e., Tr 𝑆2𝜌
𝜖
𝑡 = Tr 𝑆1𝜌

𝜖
𝑡 = �/2), the irreality of the pair of spins is

exclusively due to the context (non-optimized) quantum discord between them. Furthermore,

another important dynamics stands out: while the entanglement between the spins decreases,

the multipartite entanglement of the global state increases (Fig. 17). This leads to the idea

of a flow of correlations [Eq. (2.39)]—and therefore information—which is followed by the

emergence of some elements of reality associated with the spins of the walkers over time [Fig.

21 (a)].

Inspired by the investigation made in Part I, we delve into the notion of quantum

realism in Part II through an axiomatization whose fundamental concept is the idea described

above: the physical reality of an observable grows when there is a flow of information from

the system to the environment. In the Wigner’s friend scenario, for instance, the Alice+particle

bipartite system does not contain an element of reality associated with the particle from

Wigner’s point of view, since he did not perform any measurement, that is, there was no flow

of quantum conditional information. On the other hand, Alice prescribes an element of reality

for her particle from the moment her measurement is performed. Also, if Wigner discards the

information regarding Alice’s state, the particle starts to have an element of reality (since it

was completely entangled with Alice). From here, new questions arise about this quantum

notion of realism. Since the unrevealed quantum measurement is essentially a partial trace

on the environment, one can wonder if the partial trace performed by Wigner is a physical

process. When is the quantum measurement actually performed? Our analysis points in the

following direction: the measurement is only finished when an element of reality emerges.

However, here a new question arises: is it possible for the element of reality to exist without an

actual measurement having been previously performed? In other words, is it possible to find



124

𝜌 = Φ𝐴 (𝜌) in nature? BA’s realism hypothesis is operational and therefore does not reveal by

what mechanisms reality arises. Our Axiom 1, on the other hand, only determines how the

degree of reality of an observable varies. Whether it is possible to find a state given by Φ𝐴 (𝜌)
without the observable 𝐴 having been previously measured or not is a question of profound

importance. We believe that the negative answer to this question can rule out interpretations

of quantum mechanics based on the notion of intrinsic realism in favor of those based on

participatory realism, where the observer plays a crucial role in the emergence of physical

reality and, possibly, the measurement results. In this way, the idea that nothing is real until it

is measured would be accepted. Speculation or not, isn’t that how physics develops?
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APPENDIX A – REVISITING THE INFORMATION-REALITY

COMPLEMENTARITY PRINCIPLE

Let us revisit the main argument on which Part II is constructed. Based on BA’s

realism [36], Dieguez and Angelo [40] showed the existence of a complementarity principle

between reality and information by means of a map that unifies non-selective weak and

projective measurements,

M𝜖
𝐴 (𝜌) � (1 − 𝜖)𝜌 + 𝜖Φ𝐴 (𝜌), (A.1)

which they called monitoring. First, they introduce the concept of reality ℜ𝐴 as complementary

to irreality ℑ𝐴, just as information and ignorance (entropy),

ℜ𝐴 (𝜌) + ℑ𝐴 (𝜌) = ln𝑑A . (A.2)

Under a monitoring M𝜖
𝐴 of intensity 𝜖 , the reality ℜ of the observable 𝐴 given the state 𝜌

changes by

Δℜ𝐴 (M𝜖
𝐴 (𝜌), 𝜌) � ℜ𝐴 (M𝜖

𝐴 (𝜌)) −ℜ𝐴 (𝜌), (A.3)

= ℑ𝐴 (𝜌) − ℑ𝐴 (M𝜖
𝐴 (𝜌)), (A.4)

= 𝑆 (M𝜖
𝐴 (𝜌)) − 𝑆 (𝜌), (A.5)

where the hierarchyM𝜖
𝐴Φ𝐴 = Φ𝐴M𝜖

𝐴 = Φ𝐴 was applied to obtain (A.5) from (A.4). Since von

Neumann entropy is concave [see Eq. (1.68)], one has

Δℜ𝐴 (M𝜖
𝐴 (𝜌), 𝜌) = 𝑆 [(1 − 𝜖)𝜌 + 𝜖Φ𝐴 (𝜌)] − 𝑆 (𝜌) (A.6)

� (1 − 𝜖)𝑆 (𝜌) + 𝜖𝑆 (Φ𝐴 (𝜌)) − 𝑆 (𝜌) (A.7)

= 𝜖 [𝑆 (Φ𝐴 (𝜌)) − 𝑆 (𝜌)] , (A.8)

which leads to

Δℜ𝐴 (Φ𝐴 (𝜌), 𝜌) � 𝜖ℑ𝐴 (𝜌) . (A.9)

Through the above result, the authors claim that a monitoring of intensity 𝜖 will always

increase the reality—or, equivalently, destroy the irreality—of an observable by never less

than the original amount of irreality times the intensity 𝜖 . When 𝜖 → 1, i.e., a projective

measurement, one has Δℜ𝐴 (M𝜖
𝐴 (𝜌), 𝜌) = ℑ𝐴 (𝜌).

The authors’ argument for the complementarity connection between reality and

information is as follows. First, let us invoke Theorem 2 (Stinespring dilation), that allows

us to describe the measurement from the perspective of a super-observer, that is, in a sys-

tem+environment description. SinceM𝜖
𝐴 is a CPTP map, one has

M𝜖
𝐴 (𝜌) = Tr E

[
𝑈𝜖
𝑡 (𝜌 ⊗ |𝑒0〉 〈𝑒0 |)𝑈𝜖

𝑡
†
]
= 𝜌𝑡, (A.10)
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where𝑈𝜖
𝑡 is a unitary time evolution that entangles the degrees of freedom inHS = HA ⊗ HB

with an auxiliary space HE initially prepared as |𝑒0〉 〈𝑒0 |. We can assume that the environment

is in a pure state because otherwise, we can always assume that there is a bigger Hilbert

space where this supposed mixed state results from a partial trace over a pure state. Let us

call 𝜐0 = 𝜌 ⊗ |𝑒0〉 〈𝑒0 | and 𝜐𝑡 = 𝑈𝜖
𝑡 𝜐0𝑈

𝜖
𝑡
† the initial and final global states, respectively, and

𝜎𝑡 = Tr S (𝜐𝑡 ) the final state of the environment. The mutual information (1.76) shared by S
and E in 𝜐𝑡 is given by

𝐼S:E (𝜐𝑡 ) = 𝑆 (𝜌𝑡 ) + 𝑆 (𝜎𝑡 ) − 𝑆 (𝜐𝑡 ) . (A.11)

Since the evolution is unitary, one has 𝑆 (𝜐𝑡 ) = 𝑆 (𝜐0). Thus, by denoting Δ𝑆S � 𝑆 (𝜌𝑡 ) − 𝑆 (𝜌)
and Δ𝑆E � 𝑆 (𝜎𝑡 ) − 𝑆 ( |𝑒0〉), one can obtain the change in mutual information as

Δ𝐼S:E (𝜐𝑡, 𝜐0) � 𝐼S:E (𝜐𝑡 ) − 𝐼S:E (𝜐0) = Δ𝑆S + Δ𝑆E . (A.12)

From (1.79), one has

Δ𝐼E � 𝐼 (𝜎𝑡 ) − 𝐼 ( |𝑒0〉) = −Δ𝑆E, (A.13)

and from (A.10), one obtain

Δ𝑆S = 𝑆 (M𝜖
𝐴 (𝜌)) − 𝑆 (𝜌) = Δℜ𝐴 (M𝜖

𝐴 (𝜌), 𝜌) . (A.14)

Back to (A.12), one has

Δ𝐼S:E (𝜐𝑡, 𝜐0) + Δ𝐼E = Δℜ𝐴 (M𝜖
𝐴 (𝜌), 𝜌). (A.15)

From (1.80), one has

Δ𝐼S:E (𝜐𝑡, 𝜐0) + Δ𝐼E

= 𝑆 (𝜌𝑡 ) + 𝑆 (𝜎𝑡 ) − 𝑆 (𝜐𝑡 ) − [𝑆 (𝜌) + 𝑆 ( |𝑒0〉) − 𝑆 (𝜐0)] − 𝑆 (𝜎𝑡 ) + 𝑆 ( |𝑒0〉), (A.16)

= 𝑆 (𝜌𝑡 ) − 𝑆 (𝜌), (A.17)

= 𝐼 (𝜌) − 𝐼 (𝜌𝑡 ), (A.18)

� −Δ𝐼S, (A.19)

where the invariance of total available information on closed systems was applied. Therefore,

one can obtain

Δ𝐼S + Δℜ𝐴 (M𝜖
𝐴 (𝜌), 𝜌) = 0. (A.20)

The above relation tells us that variations in 𝐴’s reality directly implies in variations on the

information associated to the system S. Dieguez and Angelo also show that, in the case of pure

states, one has [see Eq. (4.70)]

Δ𝐼S = −𝑆 (𝜌𝑡 ) = −𝐸 (𝜐𝑡 ) (A.21)

and, therefore, Δℜ𝐴 (M𝜖
𝐴 (𝜌), 𝜌) = 𝐸 (𝜐𝑡 ). In other words, the entanglement created between the

system S and the environment E during the monitoring increases the reality of the observable

𝐴 and vice versa.
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APPENDIX B – PROOFS

The results presented in this section refers to states such that 𝜌 ∈ 𝔅(HS), with
HS = HA ⊗ HB , and the unrevealed measurements map (1.116).

Theorem 7. Let the unitary evolution 𝑈𝑡 be defined by the Stinespring dilation theorem (5.6)

with 𝜖 = 1. It follows that𝑈𝑡 commutes with Φ𝐴 (𝜌) ⊗ �E/𝑑E , that is,

𝑈𝑡

(
Φ𝐴 (𝜌) ⊗ �E

𝑑E

)
𝑈 †
𝑡 = Φ𝐴 (𝜌) ⊗ �E

𝑑E
. (B.1)

Proof. Take the joint state 𝜐0 = 𝜌 ⊗ |𝑒0〉 〈𝑒0 | ∈ 𝔅(HS ⊗ HE), with 𝑑E = dimHE = dimHA .
Write the unitary operator

𝑈𝑡 =
𝑑E−1∑
𝑘=0

𝑃𝑘 ⊗ 𝑇𝑘, (B.2)

where 𝑃𝑘 = 𝐴𝑘 ⊗ �B is a subspace projector and 𝑇𝑘 is a unitary operator satisfying 𝑇𝑘𝑇
†
𝑘
=

𝑇 †
𝑘
𝑇𝑘 = �E and 〈𝑒0 |𝑇 †

𝑗 𝑇𝑖 |𝑒0〉 = 𝛿𝑖 𝑗 . An example of this structure is provided by the shift operator

𝑇𝑘 |𝑒𝑖〉 = |𝑒𝑖+𝑘〉 in the cyclic space with the boundary condition 𝑇1 |𝑒𝑑E−1〉 = |𝑒𝑑E 〉 = |𝑒0〉. Its
matrix representation is given by a power of the generalized Pauli operator 𝜎𝑥 ,

𝑇𝑘
·≡


�����������

0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


�����������

𝑘

. (B.3)

Notice that 𝑇𝑖𝑇𝑗 = 𝑇𝑖+ 𝑗 , which renders 𝑈𝑡𝑈𝑡 =
∑
𝑖 𝑃𝑖 ⊗ 𝑇2𝑖 . One has 𝜐𝑡 = 𝑈𝑡𝜐0𝑈

†
𝑡 =

∑
𝑖, 𝑗 𝑃𝑖𝜌𝑃𝑗 ⊗

𝑇𝑖 |𝑒0〉 〈𝑒0 |𝑇 †
𝑗 , which correctly reproduces the Stinespring relation

Tr E (𝜐𝑡 ) =
∑
𝑖 𝑗

𝑃𝑖𝜌𝑃𝑗 〈𝑒0 |𝑇 †
𝑗 𝑇𝑖 |𝑒0〉 = Φ𝐴 (𝜌), (B.4)

The unitary operator (B.2) is unique up to a unitary operation over the environment. Finally,

by direct application of𝑈𝑡 we have

𝑈

(
Φ𝐴 (𝜌) ⊗ �E

𝑑E

)
𝑈 † =

∑
𝑘𝑖 𝑗

𝑃𝑖𝑃𝑘𝜌𝑃𝑘𝑃𝑗 ⊗ 𝑇𝑖
�E
𝑑E

𝑇 †
𝑗 , (B.5)

=
∑
𝑘

𝑃𝑘𝜌𝑃𝑘 ⊗
𝑇𝑘𝑇

†
𝑘

𝑑E
, (B.6)

= Φ𝐴 (𝜌) ⊗ �E
𝑑E

, (B.7)

which yields the desired result since 𝑃𝑖 is a projector and 𝑇𝑖 is unitary. �
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Lemma 1. For any function 𝑓 , any quantum states 𝜌 and 𝜎 , and any observable 𝐴, we have

Tr [𝜌 𝑓 (Φ𝐴 (𝜎))] = Tr [Φ𝐴 (𝜌) 𝑓 (Φ𝐴 (𝜎))] . (B.8)

Proof. Let us abbreviate 𝐴𝑎 ⊗ �B by just 𝐴𝑎 . Having said that, we do

Tr [𝜌 𝑓 (Φ𝐴 (𝜎))] = Tr
∑
𝑎

𝜌 𝑓 (𝑝𝑎𝐴𝑎 ⊗ 𝜎B|𝑎), (B.9)

= Tr
∑
𝑎

𝜌 [𝐴𝑎 ⊗ 𝑓 (𝑝𝑎𝜎B|𝑎)], (B.10)

By the complementarity relation
∑
𝑎′ 𝐴𝑎′ = �A , the projector’s property 𝐴2

𝑎′ = 𝐴𝑎′, and the

cyclic permutation of the trace we have

Tr [𝜌 𝑓 (Φ𝐴 (𝜎))] = Tr
∑
𝑎𝑎′

𝐴2
𝑎′𝜌 [𝐴𝑎 ⊗ 𝑓 (𝑝𝑎𝜎B|𝑎)], (B.11)

= Tr
∑
𝑎𝑎′

𝐴𝑎′𝜌 [𝐴𝑎 ⊗ 𝑓 (𝑝𝑎𝜎B|𝑎)]𝐴𝑎′, (B.12)

= Tr
∑
𝑎𝑎′

𝐴𝑎′𝜌𝐴𝑎′ [𝐴𝑎 ⊗ 𝑓 (𝑝𝑎𝜎B|𝑎)], (B.13)

= Tr
∑
𝑎′

𝐴𝑎′𝜌𝐴𝑎′
∑
𝑎

[𝐴𝑎 ⊗ 𝑓 (𝑝𝑎𝜎B|𝑎)], (B.14)

= Tr [Φ𝐴 (𝜌) 𝑓 (Φ𝐴 (𝜎))] . (B.15)

�

Lemma 2. Given the reality state Φ𝐴 (𝜌) =
∑
𝑖 𝑝𝑖𝐴𝑖 ⊗ 𝜌B|𝑖 , it holds that 𝐷 (𝜌 | |Φ𝐴 (𝜌)) �

𝑆 (Φ𝐴 (𝜌A)) � ln𝑑A .

Proof. From Lemma 1 one can straightforwardly show that 𝐷 (𝜌 | |Φ𝐴 (𝜌)) = 𝑆 (Φ𝐴 (𝜌)) − 𝑆 (𝜌).
Since 𝑆 (𝜌) � ∑𝑖 𝑝𝑖𝑆 (𝜌B|𝑖) (see Lemma 2 of Ref. [195]), we can employ the joint entropy theorem

(1.67) to reach 𝑆 (Φ𝐴 (𝜌)) = 𝐻 ({𝑝𝑖}) +∑𝑖 𝑝𝑖𝑆 (𝜌B|𝑖), with 𝐻 ({𝑝𝑖}) being the Shannon entropy

of the distribution 𝑝𝑖 , to finally obtain

𝐷 (𝜌 | |Φ𝐴 (𝜌)) � 𝐻 ({𝑝𝑖}) = 𝑆 (Φ𝐴 (𝜌A)) � ln𝑑A . (B.16)

�

Lemma 3. Consider generic observables 𝑋,𝑌 ∈ 𝔅(HA) and the von Neumann reality quantifier

(6.4). It follows that ℜ𝑋 (𝜌) +ℜ𝑌 (𝜌) � 2 ln𝑑A , with equality iff 𝜌 = Φ𝑋 (𝜌) = Φ𝑌 (𝜌).

Proof. By Eqs. (4.40) and (6.4) we see that the main claim is readily satisfied and that the equality

holds iff 𝜌 = Φ𝑋 (𝜌) = Φ𝑌 (𝜌), meaning that 𝜌 must be a state of simultaneous reality for 𝑋

and 𝑌 . This will certainly be the case when [𝑋,𝑌 ] = 0, for 𝑋 and 𝑌 will share the same set

of eigenstates so that Φ𝑋 = Φ𝑌 , but also for 𝜌 = (�A/𝑑A) ⊗ 𝜌B , as can be checked by direct

calculation. �
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Note that this proof is valid also for a reality quantifier that is based on any divergence measure

that respects the positive definiteness property [Eq. (4.40)].

Lemma 4. Consider observables 𝑋,𝑌 ∈ 𝔅(HA) and the von Neumann reality quantifier (6.4). If

Φ𝑋𝑌 = Φ𝑌𝑋 , then the monitoring of 𝑌 never decreases the reality of 𝑋 , that is,

Δ � ℜ𝑋 (M𝜖
𝑌 (𝜌)) −ℜ𝑋 (𝜌) � 0, ∀𝜖 ∈ [0, 1] . (B.17)

Proof. In light of Axiom 5 (mixing) and definition (5.4), we find Δ � 𝜖 [ℜ𝑋 (Φ𝑌 (𝜌)) −ℜ𝑋 (𝜌)],
which can be explicitly expressed asΔ � 𝜖 [𝐷 (𝜌 | |Φ𝑋 (𝜌)) − 𝐷 (Φ𝑌 (𝜌) | |Φ𝑋𝑌 (𝜌))], whereΦ𝑋𝑌 (𝜌) ≡
Φ𝑋Φ𝑌 (𝜌). Using the hypothesis and DPI we can write

𝐷 (Φ𝑌 (𝜌) | |Φ𝑋𝑌 (𝜌)) = 𝐷 (Φ𝑌 (𝜌) | |Φ𝑌𝑋 (𝜌)) � 𝐷 (𝜌 | |Φ𝑋 (𝜌)) , (B.18)

which proves that Δ � 0 ∀𝜖 ∈ [0, 1], as desired. It is worth noticing that, apart from the

trivial scenario where [𝑋,𝑌 ] = 0, the hypothesis is true also when 𝑋 and 𝑌 are maximally

noncommuting, that is, when their eigenstates form MUB satisfying | 〈𝑥𝑖 |𝑦𝑗 〉 | = 1/
√
𝑑A . �

Lemma 5. ||𝜌 ||22 − ||Φ𝐴 (𝜌) ||22 = ||𝜌 − Φ𝐴 (𝜌) ||22.

Proof.

||𝜌 − Φ𝐴 (𝜌) ||22 = Tr (𝜌 − Φ𝐴 (𝜌))2 , (B.19)

= Tr 𝜌2 − Tr 𝜌Φ𝐴 (𝜌) − TrΦ𝐴 (𝜌)𝜌 + TrΦ𝐴 (𝜌)2, (B.20)

= Tr 𝜌2 − 2Tr 𝜌Φ𝐴 (𝜌) + TrΦ𝐴 (𝜌)2, (B.21)

= Tr 𝜌2 − 2Tr 𝜌Φ𝐴 (𝜌) + Tr 𝜌Φ𝐴 (𝜌), (Lemma 1) (B.22)

= Tr 𝜌2 − Tr 𝜌Φ𝐴 (𝜌), (B.23)

= Tr 𝜌2 − TrΦ𝐴 (𝜌)2, (Lemma 1) (B.24)

= ||𝜌 ||22 − ||Φ𝐴 (𝜌) ||22. (B.25)

�

Proposition 1. 𝜌 ↦→ ℜ𝛼↑
𝐴 (𝜌) is a reality monotone.

Proof. By construction, ℜ𝛼↑
𝐴 is in harmony with Axiom 1. We now prove that ℜ𝛼↑

𝐴 (𝜌) = ℜmax

iff 𝜌 = Φ𝐴 (𝜌), as per Axiom 2. The claim is true iff 𝐷𝛼 (𝜐𝑡 | |𝜎S ⊗ �E/𝑑E) = ln𝑑E , where 𝜎S is

the solution for the minimization and 𝜐𝑡 = 𝑈𝑡 (𝜌 ⊗ |𝑒0〉 〈𝑒0 |)𝑈 †
𝑡 . Choosing 𝜎S = Φ𝐴 (𝜎S) (an

𝐴-reality state), one can apply Theorem 7 and unitary invariance to obtain 𝐷𝛼 (𝜌 | |Φ𝐴 (𝜎S)) = 0,

which can be reached iff 𝜌 = ΦA(𝜎S), meaning that 𝜌 is an𝐴-reality state satisfying Φ𝐴 (𝜌) = 𝜌 .

Axioms 2 and 3(a) are satisfied directly from DPI and the fact that𝑈𝜖
𝑡 in Eq. (5.6) commutes with

M𝜖
𝐴 and Tr X for HX ⊆ HB . Provided the optimization is made over 𝜎S ⊗ Ω ∈ 𝔅(HS ⊗ HΩ),

Axiom 3(b) is trivially satisfied via the additivity property. Also, because Axiom 2 applies, we
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can use the arguments employed for the proof of Lemma 3 to show that Axiom 4 is also true for

ℜ𝛼↑
𝐴 . Finally, the validity of Axiom 5 is immediately verified by the convexity of the conditional

information (4.63b). Although additivity guarantees the agreement with Axiom 6, the flagging

property has not yet been demonstrated for the quantity (4.63b), which precludes ℜ𝛼↑
𝐴 to be

promoted to the status of a reality measure for 𝛼 ∈ (0, 1). �
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APPENDIX C – CALCULATIONS

C.1 TWO QUANTUMWALKERS WITH NOISE

The initial state of the two quantum walkers is given by:

𝜌0 = 𝜌𝑊𝜖 ⊗ |𝜑1, 𝜑2〉 〈𝜑1, 𝜑2 | , (C.1)

=

[
(1 − 𝜖)�

4
+ 𝜖 |𝐵4〉 〈𝐵4 |

]
⊗ |𝜑1, 𝜑2〉 〈𝜑1, 𝜑2 | , (C.2)

= (1 − 𝜖)�
4
⊗ |𝜑1, 𝜑2〉 〈𝜑1, 𝜑2 | + 𝜖 |𝐵4〉 〈𝐵4 | ⊗ |𝜑1, 𝜑2〉 〈𝜑1, 𝜑2 | . (C.3)

Let us remember that𝑈1 = 𝐷1(𝐶1 ⊗ �𝑋1) and𝑈2 = 𝐷2(𝐶2 ⊗ �𝑋2), with �𝑋1 ⊗ �𝑋2 = �𝑋 , act over

different spaces:

𝑈 𝑡
1𝑈

𝑡
2𝜌0

(
𝑈 𝑡
1𝑈

𝑡
2

)†
= (1 − 𝜖)𝑈 𝑡

1𝑈
𝑡
2

(
�

4
⊗ |𝜑1, 𝜑2〉 〈𝜑1, 𝜑2 |

) (
𝑈 𝑡
1𝑈

𝑡
2

)†
+ 𝜖𝑈 𝑡

1𝑈
𝑡
2 ( |𝐵4〉 〈𝐵4 | ⊗ |𝜑1, 𝜑2〉 〈𝜑1, 𝜑2 |)

(
𝑈 𝑡
1𝑈

𝑡
2

)†
, (C.4)

= (1 − 𝜖)𝑈 𝑡−1
1 𝑈 𝑡−1

2 𝐷1𝐷2

(
𝐶1𝐶2�𝐶1𝐶2

4
⊗ �𝑋 |𝜑1, 𝜑2〉 〈𝜑1, 𝜑2 | �𝑋

)
𝐷†
1𝐷

†
2

(
𝑈 𝑡−1
1 𝑈 𝑡−1

2

)†
+ 𝜖 |Ψ𝑡 〉 〈Ψ𝑡 | , (C.5)

= (1 − 𝜖)𝑈 𝑡−1
1 𝑈 𝑡−1

2 𝐷1𝐷2

(
�

4
⊗ |𝜑1, 𝜑2〉 〈𝜑1, 𝜑2 |

)
𝐷†
1𝐷

†
2

(
𝑈 𝑡−1
1 𝑈 𝑡−1

2

)† + 𝜖 |Ψ𝑡 〉 〈Ψ𝑡 | . (C.6)

Now, observe that

𝐷1

(
�

2
⊗ |𝜑1〉 〈𝜑1 |

)
𝐷†
1 =

∑
𝑥1𝑥 ′1

1

2
|↑〉 〈↑| ⊗ |𝑥1 + 1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 + 1|

+ 1

2
|↓〉 〈↓| ⊗ |𝑥1 − 1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 − 1| , (C.7)

=
∑
𝑥1𝑥 ′1

1

2
|↑〉 〈↑| ⊗ 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 |𝑥1 + 1〉 〈𝑥′1 + 1|

+ 1

2
|↓〉 〈↓| ⊗ 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 |𝑥1 − 1〉 〈𝑥′1 − 1| , (C.8)

with identical expression for particle 2. If we trace out the positions, we obtain

Tr 𝑋1𝑈1

(
�

2
⊗ |𝜑1〉 〈𝜑1 |

)
(𝑈1)†

=
∑
𝑥1𝑥 ′1

1

2
|↑〉 〈↑| ⊗ 𝛿𝑥1𝑥 ′1 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 +

1

2
|↓〉 〈↓| ⊗ 𝛿𝑥1𝑥 ′1 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 , (C.9)

=
∑
𝑥1

�

2
| 〈𝑥1 |𝜑1〉 |2, (C.10)
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=
�

2
. (C.11)

If we apply the unitary evolution twice, we reach

[𝐷1(𝐶1 ⊗ �𝑋1)]𝐷1

(
�

2
⊗ |𝜑1〉 〈𝜑1 |

)
𝐷†
1 [𝐷1(𝐶1 ⊗ �𝑋1)]†

= 𝐷1

⎡⎢⎢⎢⎢⎣
∑
𝑥1𝑥 ′1

1

4

(
1 1

1 1

)
⊗ |𝑥1 + 1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 + 1|

+1
4

(
1 −1
−1 1

)
⊗ |𝑥1 − 1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 − 1|

]
𝐷†
1 , (C.12)

=
∑

𝑥1𝑥 ′1𝑥
′′
1 𝑥

′′′
1

|↑〉 〈↑|
4

⊗ |𝑥′′1 + 1〉 〈𝑥′′1 |𝑥1 + 1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 + 1|𝑥′′′1 〉 〈𝑥′′′1 + 1|

+ |↑〉 〈↑|
4

⊗ |𝑥′′1 + 1〉 〈𝑥′′1 |𝑥1 − 1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 − 1|𝑥′′′1 〉 〈𝑥′′′1 + 1|

+ |↓〉 〈↓|
4

⊗ |𝑥′′1 − 1〉 〈𝑥′′1 |𝑥1 + 1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 + 1|𝑥′′′1 〉 〈𝑥′′′1 − 1|

+ |↓〉 〈↓|
4

⊗ |𝑥′′1 − 1〉 〈𝑥′′1 |𝑥1 − 1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 − 1|𝑥′′′1 〉 〈𝑥′′′1 − 1| , (C.13)

=
∑
𝑥1𝑥 ′1

|↑〉 〈↑|
4

⊗ |𝑥1 + 2〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 + 2|

+ |↑〉 〈↑|
4

⊗ |𝑥1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 |

+ |↓〉 〈↓|
4

⊗ |𝑥1〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 |

+ |↓〉 〈↓|
4

⊗ |𝑥1 − 2〉 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉 〈𝑥′1 − 2| , (C.14)

=
∑
𝑥1𝑥 ′1

|↑〉 〈↑|
2

⊗ 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉
1

2

(|𝑥1 + 2〉 〈𝑥′1 + 2| + |𝑥1〉 〈𝑥′1 |
)

+ |↓〉 〈↓|
2

⊗ 〈𝑥1 |𝜑1〉 〈𝜑1 |𝑥′1〉
1

2

(|𝑥1 − 2〉 〈𝑥′1 − 2| + |𝑥1〉 〈𝑥′1 |
)
, (C.15)

which again results in �/2 after we trace over the positions. For 𝑡 steps, this behavior remains

unchanged. Therefore, from (C.6), we have

Tr 𝑋1𝑋2

[
𝑈 𝑡
1𝑈

𝑡
2𝜌0

(
𝑈 𝑡
1𝑈

𝑡
2

)†] = (1 − 𝜖)�
4
+ 𝜖 𝜌𝑆 � 𝜌𝜖𝑡 . (C.16)

C.2 RÉNYI DIVERGENCES

C.2.1 Special cases

The min-relative entropy, as defined by Datta [88], is the limit of the original Rényi

divergence as 𝛼 → 0 . Operationally, it comes as follows. Consider the spectral decompositions

𝜌 =
∑
𝑖 𝑟𝑖 |𝜆𝑖〉 〈𝜆𝑖 | and 𝜎 =

∑
𝑗 𝑠 𝑗 |𝜈 𝑗 〉 〈𝜈 𝑗 |. Since 𝑓 (𝜌) =

∑
𝑖 𝑓 (𝑟𝑖) |𝜆𝑖〉 〈𝜆𝑖 |, then we have 𝜌0 =
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∑
𝑖: 𝑟𝑖>0 |𝜆𝑖〉 〈𝜆𝑖 |, which is called the projection onto the support of 𝜌 . Thus, the min-relative

entropy is given by 𝐷0(𝜌 | |𝜎) = − ln Tr 𝜌0𝜎 . Explicitly, we have

𝐷𝛼→0(𝜌 | |𝜎) = − ln
∑
𝑗

∑
𝑖: 𝑟𝑖>0

𝑠 𝑗 | 〈𝜆𝑖 |𝜈 𝑗 〉 |2. (C.17)

Note that, the min-relative entropy does not satisfy continuity nor positive definiteness in 𝜌

and 𝜎 , a feature that prevents it to satisfy Axiom 2. One special case of the sandwiched Rényi

divergence is the collision relative entropy, which was introduced in Ref. [87] in its conditional

form as a generalization of the classical conditional collision entropy to the quantum theory. It

is obtained when we choose 𝛼 = 2 in (4.46):

𝐷2(𝜌 | |𝜎) = ln Tr

[(
𝜎− 1

4 𝜌𝜎− 1
4

)2]
. (C.18)

Another special case of 𝐷𝛼 is obtained as 𝛼 → +∞, which is called max-relative entropy [88]:

𝐷𝛼→+∞(𝜌 | |𝜎) = ln
������𝜎− 1

2 𝜌𝜎− 1
2

������
∞
. (C.19)

Here, the operator norm ||𝜚 ||∞ is given by the maximum eigenvalue of a density state 𝜚 .

C.2.2 Extra steps

Let us check the Eq. (4.58). From definition (4.45), we can directly calculate

𝐼𝛼 (𝜌) = 𝐷𝛼 (𝜌 | |�/𝑑), (C.20)

=
1

𝛼 − 1
ln

Tr
(
𝜌𝛼 (�/𝑑)1−𝛼 )
Tr 𝜌

, (C.21)

=
1

𝛼 − 1
ln

(1/𝑑)1−𝛼Tr (𝜌𝛼�)
Tr 𝜌

, (C.22)

=
1

𝛼 − 1
ln

Tr (𝜌𝛼 )
Tr 𝜌

+ 1

𝛼 − 1
ln𝑑𝛼−1, (C.23)

= ln𝑑 − 𝑆𝛼 (𝜌) . (C.24)

Now, let us check the Eq. (4.63a). From (4.45), we have

𝐼𝛼↑A|B (𝜌) = 𝐷𝛼

(
𝜌
������ �A
𝑑A

⊗ 𝜌B

)
, (C.25)

=
1

𝛼 − 1
ln

Tr
[
𝜌𝛼 (�A/𝑑A ⊗ 𝜌B)1−𝛼

]
Tr 𝜌

, (C.26)

=
1

𝛼 − 1
ln

(1/𝑑A)1−𝛼Tr [𝜌𝛼 (�A ⊗ 𝜌B)1−𝛼
]

Tr 𝜌
, (C.27)

= ln𝑑A + 𝐷𝛼 (𝜌 | |�A ⊗ 𝜌B), (C.28)

= ln𝑑A − 𝐻𝛼↓
A|B (𝜌) . (C.29)
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C.3 TSALLIS RELATIVE ENTROPIES

C.3.1 Monotonicity on 𝑞

It is known that the Rényi divergences are monotonically increasing functions on

their parameter alpha [93]. Although there is no such result in the literature regarding Tsallis

relative entropies, we can conjecture its validity based on the following. Just for now, let us use

superscripts 𝑇 and 𝑅 to better distinguish between the Tsallis and the Rényi divergences. It is

easy to show that

𝐷𝑇
𝑞 (𝜌 | |𝜎) =

1

1 − 𝑞

[
1 − 𝑒 (𝑞−1)𝐷

𝑅
𝑞 (𝜌 | |𝜎)

]
. (C.30)

The derivative of the above equation with respect to the parameter 𝑞 can be written as

d

d𝑞
𝐷𝑇
𝑞 (𝜌 | |𝜎) =

1 + 𝑒 (𝑞−1)𝐷𝑅
𝑞 (𝜌 | |𝜎)

(𝑞 − 1)2
[
−1 + (𝑞 − 1)𝐷𝑅

𝑞 (𝜌 | |𝜎) + (𝑞 − 1)2 d

d𝑞
𝐷𝑅
𝑞 (𝜌 | |𝜎)

]
. (C.31)

We know that 0 � 𝐷𝑅
𝑞 (𝜌 | |𝜎) � ln 2 and also that the derivative of 𝐷𝑅

𝑞 must always be non-

negative (see Theorem 7 in Ref. [93]), but the non-negativity of (C.31) remains an open question.

However, although we have no analytical proof that (C.31) is non-negative for all 𝑞 > 0, our

numerical incursions given the aforementioned constraints point to a positive answer which

indicates that in fact, 𝑞 ↦→ 𝐷𝑇
𝑞 (𝜌 | |𝜎) is a monotonically increasing function for fixed states.

C.4 GEOMETRIC CONDITIONAL INFORMATION

For 𝜐0 = 𝜌 ⊗ �E/𝑑E , the Eq. (6.28) reads:

𝐼�E|S (𝜐0) = 𝑑𝑛�

(
𝜐0,Tr E𝜐0 ⊗ �E

𝑑E

)
, (C.32)

= 𝑑𝑛�

(
𝜌 ⊗ |𝑒0〉 〈𝑒0 | , 𝜌 ⊗ �E

𝑑E

)
. (C.33)

After the unitary evolution, we have:

𝐼�E|S (𝜐𝑡 ) = 𝑑𝑛�

(
𝜐𝑡,Tr E𝜐𝑡 ⊗ �E

𝑑E

)
, (C.34)

= 𝑑𝑛�

(
𝑈𝑡 (𝜌 ⊗ |𝑒0〉 〈𝑒0 |)𝑈 †

𝑡 ,Φ𝐴 (𝜌) ⊗
�E
𝑑E

)
, (C.35)

= 𝑑𝑛�

(
𝑈𝑡 (𝜌 ⊗ |𝑒0〉 〈𝑒0 |)𝑈 †

𝑡 ,𝑈𝑡

(
Φ𝐴 (𝜌) ⊗ �E

𝑑E

)
𝑈 †
𝑡

)
, (Theorem 7) (C.36)

= 𝑑𝑛�

(
𝜌 ⊗ |𝑒0〉 〈𝑒0 | ,Φ𝐴 (𝜌) ⊗ �E

𝑑E

)
. (C.37)

Now, let us evaluate the above expressions for the following specific cases:
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C.4.1 𝐿𝑝-distances

𝐼
𝑝
E|S (𝜐0) = 𝑑

𝑝
𝑝

(
𝜌 ⊗ |𝑒0〉 〈𝑒0 | , 𝜌 ⊗ �E

𝑑E

)
, (C.38)

=
������𝜌 ⊗ |𝑒0〉 〈𝑒0 | − 𝜌 ⊗ �E

𝑑E

������𝑝
𝑝
, (C.39)

= ||𝜌 ||𝑝𝑝
������|𝑒0〉 〈𝑒0 | − �E

𝑑E

������𝑝
𝑝
, (C.40)

= ||𝜌 ||𝑝𝑝
������∑𝑑E−1

𝑘=0

(
𝛿𝑘,0 − 1

𝑑E

)
|𝑒𝑘〉 〈𝑒𝑘 |

������𝑝
𝑝
, (C.41)

= ||𝜌 ||𝑝𝑝
⎧⎪⎪⎨⎪⎪⎩Tr

�����𝑑E−1∑
𝑘=0

(
𝛿𝑘,0 − 1

𝑑E

)
|𝑒𝑘〉 〈𝑒𝑘 |

�����
𝑝⎫⎪⎪⎬⎪⎪⎭ , (C.42)

= ||𝜌 ||𝑝𝑝
{
𝑑E−1∑
𝑘=0

����𝛿𝑘,0 − 1

𝑑E

����𝑝 Tr |𝑒𝑘〉 〈𝑒𝑘 |} , (C.43)

= ||𝜌 ||𝑝𝑝
{
𝑑E−1∑
𝑘=0

����𝛿𝑘,0 − 1

𝑑E

����𝑝} , (C.44)

= ||𝜌 ||𝑝𝑝
{(

1 − 1

𝑑E

)𝑝
+ 𝑑E − 1

𝑑
𝑝
E

}
, (C.45)

= ||𝜌 ||𝑝𝑝
1

𝑑
𝑝
E

[(𝑑E − 1)𝑝 + 𝑑E − 1
]
. (C.46)

𝐼
𝑝
E|S (𝜐𝑡 ) = 𝑑

𝑝
𝑝

(
𝜌 ⊗ |𝑒0〉 〈𝑒0 | ,Φ𝐴 (𝜌) ⊗ �E

𝑑E

)
, (C.47)

=
������𝜌 ⊗ |𝑒0〉 〈𝑒0 | − Φ𝐴 (𝜌) ⊗ �E

𝑑E

������𝑝
𝑝
, (C.48)

=

��������∑𝑑E−1
𝑘=0

(
𝛿𝑘,0𝜌 − Φ𝐴 (𝜌)

𝑑E

)
⊗ |𝑒𝑘〉 〈𝑒𝑘 |

��������𝑝
𝑝

, (C.49)

= Tr

�����𝑑E−1∑
𝑘=0

(
𝛿𝑘,0𝜌 − Φ𝐴 (𝜌)

𝑑E

)
⊗ |𝑒𝑘〉 〈𝑒𝑘 |

�����
𝑝

, (C.50)

=
𝑑E−1∑
𝑘=0

Tr

����𝛿𝑘,0𝜌 − Φ𝐴 (𝜌)
𝑑E

����𝑝 Tr |𝑒𝑘〉 〈𝑒𝑘 | , (C.51)

=
𝑑E−1∑
𝑘=0

Tr

����𝛿𝑘,0𝜌 − Φ𝐴 (𝜌)
𝑑E

����𝑝 , (C.52)

= Tr

����𝜌 − Φ𝐴 (𝜌)
𝑑E

����𝑝 + (𝑑E − 1) Tr
����Φ𝐴 (𝜌)𝑑E

����𝑝 , (C.53)

= 𝑑
𝑝
𝑝

(
𝜌,

Φ𝐴 (𝜌)
𝑑E

)
+ 𝑑E − 1

𝑑
𝑝
E

||Φ𝐴 (𝜌) ||𝑝𝑝 (C.54)

Δ𝐼
𝑝
E|S (𝜐𝑡, 𝜐0) = 𝑑

𝑝
𝑝

(
𝜌,

Φ𝐴 (𝜌)
𝑑E

)
− 𝑑E − 1

𝑑
𝑝
E

(
||Φ𝐴 (𝜌) ||𝑝𝑝 − ||𝜌 ||𝑝𝑝

)
− ||𝜌 ||𝑝𝑝

(
𝑑E − 1

𝑑E

)𝑝
(C.55)
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Trace distance (𝑝 = 1):

𝐼TrE|S (𝜐0) = 2

(
𝑑E − 1

𝑑E

)
. (C.56)

𝐼TrE|S (𝜐𝑡 ) = 𝑑Tr

(
𝜌,

Φ𝐴 (𝜌)
𝑑E

)
+ 𝑑E − 1

𝑑E
. (C.57)

Δ𝐼TrE|S (𝜐𝑡, 𝜐0) = 𝑑Tr

(
𝜌,

Φ𝐴 (𝜌)
𝑑E

)
− 𝑑E − 1

𝑑E
. (C.58)

Hilbert-Schmidt distance (𝑝 = 2):

𝐼HSE|S (𝜐0) = 𝑑E − 1

𝑑E
||𝜌 ||22. (C.59)

𝐼HSE|S (𝜐𝑡 ) = Tr

(
𝜌 − Φ𝐴 (𝜌)

𝑑E

)2
+ 𝑑E − 1

𝑑2E
TrΦ𝐴 (𝜌)2, (C.60)

= Tr 𝜌2 − 2

𝑑E
Tr 𝜌Φ𝐴 (𝜌) + 1

𝑑2E
TrΦ𝐴 (𝜌)2 + 𝑑E − 1

𝑑2E
TrΦ𝐴 (𝜌)2, (C.61)

= Tr 𝜌2 − 2

𝑑E
TrΦ𝐴 (𝜌)2 + 1

𝑑E
TrΦ𝐴 (𝜌)2, (Lemma 1) (C.62)

= ||𝜌 ||22 −
1

𝑑E
||Φ𝐴 (𝜌) ||22. (C.63)
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C.4.2 Bures distance

For the Bures distance, first we need the Uhlmann fidelity:
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